Science.gov

Sample records for active site catalytic

  1. Resonant active sites in catalytic ammonia synthesis: A structural model

    NASA Astrophysics Data System (ADS)

    Cholach, Alexander R.; Bryliakova, Anna A.; Matveev, Andrey V.; Bulgakov, Nikolai N.

    2016-03-01

    Adsorption sites Mn consisted of n adjacent atoms M, each bound to the adsorbed species, are considered within a realistic model. The sum of bonds Σ lost by atoms in a site in comparison with the bulk atoms was used for evaluation of the local surface imperfection, while the reaction enthalpy at that site was used as a measure of activity. The comparative study of Mn sites (n = 1-5) at basal planes of Pt, Rh, Ir, Fe, Re and Ru with respect to heat of N2 dissociative adsorption QN and heat of Nad + Had → NHad reaction QNH was performed using semi-empirical calculations. Linear QN(Σ) increase and QNH(Σ) decrease allowed to specify the resonant Σ for each surface in catalytic ammonia synthesis at equilibrium Nad coverage. Optimal Σ are realizable for Ru2, Re2 and Ir4 only, whereas other centers meet steric inhibition or unreal crystal structure. Relative activity of the most active sites in proportion 5.0 × 10- 5: 4.5 × 10- 3: 1: 2.5: 3.0: 1080: 2270 for a sequence of Pt4, Rh4, Fe4(fcc), Ir4, Fe2-5(bcc), Ru2, Re2, respectively, is in agreement with relevant experimental data. Similar approach can be applied to other adsorption or catalytic processes exhibiting structure sensitivity.

  2. Face the Edges: Catalytic Active Sites of Nanomaterials

    PubMed Central

    Ni, Bing

    2015-01-01

    Edges are special sites in nanomaterials. The atoms residing on the edges have different environments compared to those in other parts of a nanomaterial and, therefore, they may have different properties. Here, recent progress in nanomaterial fields is summarized from the viewpoint of the edges. Typically, edge sites in MoS2 or metals, other than surface atoms, can perform as active centers for catalytic reactions, so the method to enhance performance lies in the optimization of the edge structures. The edges of multicomponent interfaces present even more possibilities to enhance the activities of nanomaterials. Nanoframes and ultrathin nanowires have similarities to conventional edges of nanoparticles, the application of which as catalysts can help to reduce the use of costly materials. Looking beyond this, the edge structures of graphene are also essential for their properties. In short, the edge structure can influence many properties of materials. PMID:27980960

  3. Vitamin K epoxide reductase: homology, active site and catalytic mechanism.

    PubMed

    Goodstadt, Leo; Ponting, Chris P

    2004-06-01

    Vitamin K epoxide reductase (VKOR) recycles reduced vitamin K, which is used subsequently as a co-factor in the gamma-carboxylation of glutamic acid residues in blood coagulation enzymes. VKORC1, a subunit of the VKOR complex, has recently been shown to possess this activity. Here, we show that VKORC1 is a member of a large family of predicted enzymes that are present in vertebrates, Drosophila, plants, bacteria and archaea. Four cysteine residues and one residue, which is either serine or threonine, are identified as likely active-site residues. In some plant and bacterial homologues the VKORC1 homologous domain is fused with domains of the thioredoxin family of oxidoreductases. These might reduce disulfide bonds of VKORC1-like enzymes as a prerequisite for their catalytic activities.

  4. All the catalytic active sites of MoS2 for hydrogen evolution

    DOE PAGES

    Li, Guoqing; Zhang, Du; Qiao, Qiao; ...

    2016-11-29

    MoS2 presents a promising low-cost catalyst for the hydrogen evolution reaction (HER), but the understanding about its active sites has remained limited. Here we present an unambiguous study of the catalytic activities of all possible reaction sites of MoS2, including edge sites, sulfur vacancies, and grain boundaries. We demonstrate that, in addition to the well-known catalytically active edge sites, sulfur vacancies provide another major active site for the HER, while the catalytic activity of grain boundaries is much weaker. Here, the intrinsic turnover frequencies (Tafel slopes) of the edge sites, sulfur vacancies, and grain boundaries are estimated to be 7.5more » s–1 (65–75 mV/dec), 3.2 s–1 (65–85 mV/dec), and 0.1 s–1 (120–160 mV/dec), respectively. We also demonstrate that the catalytic activity of sulfur vacancies strongly depends on the density of the vacancies and the local crystalline structure in proximity to the vacancies. Unlike edge sites, whose catalytic activity linearly depends on the length, sulfur vacancies show optimal catalytic activities when the vacancy density is in the range of 7–10%, and the number of sulfur vacancies in high crystalline quality MoS2 is higher than that in low crystalline quality MoS2, which may be related with the proximity of different local crystalline structures to the vacancies.« less

  5. All the catalytic active sites of MoS2 for hydrogen evolution

    SciTech Connect

    Li, Guoqing; Zhang, Du; Qiao, Qiao; Yu, Yifei; Peterson, David; Zafar, Abdullah; Kumar, Raj; Curtarolo, Stefano; Hunte, Frank; Shannon, Steve; Zhu, Yimei; Yang, Weitao; Cao, Linyou

    2016-11-29

    MoS2 presents a promising low-cost catalyst for the hydrogen evolution reaction (HER), but the understanding about its active sites has remained limited. Here we present an unambiguous study of the catalytic activities of all possible reaction sites of MoS2, including edge sites, sulfur vacancies, and grain boundaries. We demonstrate that, in addition to the well-known catalytically active edge sites, sulfur vacancies provide another major active site for the HER, while the catalytic activity of grain boundaries is much weaker. Here, the intrinsic turnover frequencies (Tafel slopes) of the edge sites, sulfur vacancies, and grain boundaries are estimated to be 7.5 s–1 (65–75 mV/dec), 3.2 s–1 (65–85 mV/dec), and 0.1 s–1 (120–160 mV/dec), respectively. We also demonstrate that the catalytic activity of sulfur vacancies strongly depends on the density of the vacancies and the local crystalline structure in proximity to the vacancies. Unlike edge sites, whose catalytic activity linearly depends on the length, sulfur vacancies show optimal catalytic activities when the vacancy density is in the range of 7–10%, and the number of sulfur vacancies in high crystalline quality MoS2 is higher than that in low crystalline quality MoS2, which may be related with the proximity of different local crystalline structures to the vacancies.

  6. Lethal Factor Active-Site Mutations Affect Catalytic Activity In Vitro

    PubMed Central

    Hammond, S. E.; Hanna, P. C.

    1998-01-01

    The lethal factor (LF) protein of Bacillus anthracis lethal toxin contains the thermolysin-like active-site and zinc-binding consensus motif HEXXH (K. R. Klimpel, N. Arora, and S. H. Leppla, Mol. Microbiol. 13:1093–1100, 1994). LF is hypothesized to act as a Zn2+ metalloprotease in the cytoplasm of macrophages, but no proteolytic activities have been previously shown on any target substrate. Here, synthetic peptides are hydrolyzed by LF in vitro. Mass spectroscopy and peptide sequencing of isolated cleavage products separated by reverse-phase high-pressure liquid chromatography indicate that LF seems to prefer proline-containing substrates. Substitution mutations within the consensus active-site residues completely abolish all in vitro catalytic functions, as does addition of 1,10-phenanthroline, EDTA, and certain amino acid hydroxamates, including the novel zinc metalloprotease inhibitor ZINCOV. In contrast, the protease inhibitors bestatin and lysine CMK, previously shown to block LF activity on macrophages, did not block LF activity in vitro. These data provide the first direct evidence that LF may act as an endopeptidase. PMID:9573135

  7. Twinning in fcc lattice creates low-coordinated catalytically active sites in porous gold

    NASA Astrophysics Data System (ADS)

    Krajčí, Marian; Kameoka, Satoshi; Tsai, An-Pang

    2016-08-01

    We describe a new mechanism for creation of catalytically active sites in porous gold. Samples of porous gold prepared by de-alloying Al2Au exhibit a clear correlation between the catalytic reactivity towards CO oxidation and structural defects in the fcc lattice of Au. We have found that on the stepped {211} surfaces quite common twin boundary defects in the bulk structure of porous gold can form long close-packed rows of atoms with the coordination number CN = 6. DFT calculations confirm that on these low-coordinated Au sites dioxygen chemisorbs and CO oxidation can proceed via the Langmuir-Hinshelwood mechanism with the activation energy of 37 kJ/mol or via the CO-OO intermediate with the energy barrier of 19 kJ/mol. The existence of the twins in porous gold is stabilized by the surface energy.

  8. Twinning in fcc lattice creates low-coordinated catalytically active sites in porous gold.

    PubMed

    Krajčí, Marian; Kameoka, Satoshi; Tsai, An-Pang

    2016-08-28

    We describe a new mechanism for creation of catalytically active sites in porous gold. Samples of porous gold prepared by de-alloying Al2Au exhibit a clear correlation between the catalytic reactivity towards CO oxidation and structural defects in the fcc lattice of Au. We have found that on the stepped {211} surfaces quite common twin boundary defects in the bulk structure of porous gold can form long close-packed rows of atoms with the coordination number CN = 6. DFT calculations confirm that on these low-coordinated Au sites dioxygen chemisorbs and CO oxidation can proceed via the Langmuir-Hinshelwood mechanism with the activation energy of 37 kJ/mol or via the CO-OO intermediate with the energy barrier of 19 kJ/mol. The existence of the twins in porous gold is stabilized by the surface energy.

  9. Active site structure and catalytic mechanism of phosphodiesterase for degradation of intracellular second messengers

    NASA Astrophysics Data System (ADS)

    Zhan, Chang-Guo

    2002-03-01

    Phosphodiesterases are clinical targets for a variety of biological disorders, because this superfamily of enzymes regulate intracellular concentration of cyclic nucleotides that serve as the second messengers playing a critical role in a variety of physiological processes. Understanding structure and mechanism of a phosphodiesterase will provide a solid basis for rational design of the more efficient therapeutics. Although a three-dimensional X-ray crystal structure of the catalytic domain of human phosphodiesterase 4B2B was recently reported, it was uncertain whether a critical bridging ligand in the active site is a water molecule or a hydroxide ion. The identity of this bridging ligand has been determined by performing first-principles quantum chemical calculations on models of the active site. All the results obtained indicate that this critical bridging ligand in the active site of the reported X-ray crystal structure is a hydroxide ion, rather than a water molecule, expected to serve as the nucleophile to initialize the catalytic degradation of the intracellular second messengers.

  10. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles

    DOE PAGES

    Wang, Yanggang; Mei, Donghai; Glezakou, Vassiliki Alexandra; ...

    2015-03-04

    Ab initio Molecular Dynamics simulations and static Density Functional Theory calculations have been performed to investigate the reaction mechanism of CO oxidation on Au/CeO2 catalyst. It is found that under reaction condition CO adsorption significantly labializes the surface atoms of the Au cluster and leads to the formation of isolated Au+-CO species that resides on the support in the vicinity of the Au particle. In this context, we identified a dynamic single-atom catalytic mechanism at the interfacial area for CO oxidation on Au/CeO2 catalyst, which is a lower energy pathway than that of CO oxidation at the interface with themore » metal particle. This results from the ability of the single atom site to strongly couple with the redox properties of the support in a synergistic manner thereby lowering the barrier for redox reactions. We find that the single Au+ ion, which only exists under reaction conditions, breaks away from the Au cluster to catalyze CO oxidation and returns to the Au cluster after the catalytic cycle is completed. Generally, our study highlights the importance of the dynamic creation of active sites under reaction conditions and their essential role in a catalytic process.« less

  11. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles

    SciTech Connect

    Wang, Yanggang; Mei, Donghai; Glezakou, Vassiliki Alexandra; Li, Jun; Rousseau, Roger J.

    2015-03-04

    Ab initio Molecular Dynamics simulations and static Density Functional Theory calculations have been performed to investigate the reaction mechanism of CO oxidation on Au/CeO2 catalyst. It is found that under reaction condition CO adsorption significantly labializes the surface atoms of the Au cluster and leads to the formation of isolated Au+-CO species that resides on the support in the vicinity of the Au particle. In this context, we identified a dynamic single-atom catalytic mechanism at the interfacial area for CO oxidation on Au/CeO2 catalyst, which is a lower energy pathway than that of CO oxidation at the interface with the metal particle. This results from the ability of the single atom site to strongly couple with the redox properties of the support in a synergistic manner thereby lowering the barrier for redox reactions. We find that the single Au+ ion, which only exists under reaction conditions, breaks away from the Au cluster to catalyze CO oxidation and returns to the Au cluster after the catalytic cycle is completed. Generally, our study highlights the importance of the dynamic creation of active sites under reaction conditions and their essential role in a catalytic process.

  12. Direct Visualization of Catalytically Active Sites at the FeO-Pt(111) Interface

    SciTech Connect

    Kudernatsch, Wilhelmine; Peng, Guowen; Zeuthen, Helene; Bai, Yunhai; Merte, L. R.; Lammich, Lutz; Besenbacher, Fleming; Mavrikakis, Manos; Wendt, Stefen

    2015-08-25

    Within the area of surface science, one of the “holy grails” is to directly visualize a chemical reaction at the atomic scale. Whereas this goal has been reached by high-resolution scanning tunneling microscopy (STM) in a number of cases for reactions occurring at flat surfaces, such a direct view is often inhibited for reaction occurring at steps and interfaces. Here we have studied the CO oxidation reaction at the interface between ultrathin FeO islands and a Pt(111) support by in situ STM and density functional theory (DFT) calculations. Time-lapsed STM imaging on this inverse model catalyst in O2 and CO environments revealed catalytic activity occurring at the FeO-Pt(111) interface and directly showed that the Fe-edges host the catalytically most active sites for the CO oxidation reaction. This is an important result since previous evidence for the catalytic activity of the FeO-Pt(111) interface is essentially based on averaging techniques in conjunction with DFT calculations. The presented STM results are in accord with DFTþU calculations, in which we compare possible CO oxidation pathways on oxidized Fe-edges and O-edges. We found that the CO oxidation reaction is more favorable on the oxidized Fe-edges, both thermodynamically and kinetically.

  13. The roles of active site residues in the catalytic mechanism of methylaspartate ammonia-lyase.

    PubMed

    Raj, Hans; Poelarends, Gerrit J

    2013-01-01

    Methylaspartate ammonia-lyase (MAL; EC 4.3.1.2) catalyzes the reversible addition of ammonia to mesaconate to yield l-threo-(2S,3S)-3-methylaspartate and l-erythro-(2S,3R)-3-methylaspartate as products. In the proposed minimal mechanism for MAL of Clostridium tetanomorphum, Lys-331 acts as the (S)-specific base catalyst and abstracts the 3S-proton from l-threo-3-methylaspartate, resulting in an enolate anion intermediate. This enolic intermediate is stabilized by coordination to the essential active site Mg(2+) ion and hydrogen bonding to the Gln-329 residue. Collapse of this intermediate results in the release of ammonia and the formation of mesaconate. His-194 likely acts as the (R)-specific base catalyst and abstracts the 3R-proton from the l-erythro isomer of 3-methylaspartate, yielding the enolic intermediate. In the present study, we have investigated the importance of the residues Gln-73, Phe-170, Gln-172, Tyr-356, Thr-360, Cys-361 and Leu-384 for the catalytic activity of C. tetanomorphum MAL. These residues, which are part of the enzyme surface lining the substrate binding pocket, were subjected to site-directed mutagenesis and the mutant enzymes were characterized for their structural integrity, ability to catalyze the amination of mesaconate, and regio- and diastereoselectivity. Based on the observed properties of the mutant enzymes, combined with previous structural studies and protein engineering work, we propose a detailed catalytic mechanism for the MAL-catalyzed reaction, in which the side chains of Gln-73, Gln-172, Tyr-356, Thr-360, and Leu-384 provide favorable interactions with the substrate, which are important for substrate binding and activation. This detailed knowledge of the catalytic mechanism of MAL can serve as a guide for future protein engineering experiments.

  14. Differential Assembly of Catalytic Interactions within the Conserved Active Sites of Two Ribozymes

    PubMed Central

    Herschlag, Daniel

    2016-01-01

    Molecular recognition is central to biology and a critical aspect of RNA function. Yet structured RNAs typically lack the preorganization needed for strong binding and precise positioning. A striking example is the group I ribozyme from Tetrahymena, which binds its guanosine substrate (G) orders of magnitude slower than diffusion. Binding of G is also thermodynamically coupled to binding of the oligonucleotide substrate (S) and further work has shown that the transition from E•G to E•S•G accompanies a conformational change that allows G to make the active site interactions required for catalysis. The group I ribozyme from Azoarcus has a similarly slow association rate but lacks the coupled binding observed for the Tetrahymena ribozyme. Here we test, using G analogs and metal ion rescue experiments, whether this absence of coupling arises from a higher degree of preorganization within the Azoarcus active site. Our results suggest that the Azoarcus ribozyme forms cognate catalytic metal ion interactions with G in the E•G complex, interactions that are absent in the Tetrahymena E•G complex. Thus, RNAs that share highly similar active site architectures and catalyze the same reactions can differ in the assembly of transition state interactions. More generally, an ability to readily access distinct local conformational states may have facilitated the evolutionary exploration needed to attain RNA machines that carry out complex, multi-step processes. PMID:27501145

  15. The transient catalytically competent coenzyme allocation into the active site of Anabaena ferredoxin NADP+ -reductase.

    PubMed

    Peregrina, José Ramón; Lans, Isaías; Medina, Milagros

    2012-01-01

    Ferredoxin-NADP(+) reductase (FNR) catalyses the electron transfer from ferredoxin to NADP(+) via its flavin FAD cofactor. A molecular dynamics theoretical approach is applied here to visualise the transient catalytically competent interaction of Anabaena FNR with its coenzyme, NADP(+). The particular role of some of the residues identified as key in binding and accommodating the 2'P-AMP moiety of the coenzyme is confirmed in molecular terms. Simulations also indicate that the architecture of the active site precisely contributes to the orientation of the N5 of the FAD isoalloxazine ring and the C4 of the coenzyme nicotinamide ring in the conformation of the catalytically competent hydride transfer complex and, therefore, contributes to the efficiency of the process. In particular, the side chain of the C-terminal Y303 in Anabaena FNR appears key to providing the optimum geometry by reducing the stacking probability between the isoalloxazine and nicotinamide rings, thus providing the required co-linearity and distance among the N5 of the flavin cofactor, the C4 of the coenzyme nicotinamide and the hydride that has to be transferred between them. All these factors are highly related to the reaction efficiency, mechanism and reversibility of the process.

  16. Nature of Catalytic Active Sites Present on the Surface of Advanced Bulk Tantalum Mixed Oxide Photocatalysts

    SciTech Connect

    Phivilay, Somphonh; Puretzky, Alexander A; Domen, Kazunari Domen; Wachs, Israel

    2013-01-01

    The most active photocatalyst system for water splitting under UV irradiation (270 nm) is the promoted 0.2%NiO/NaTaO3:2%La photocatalyst with optimized photonic efficiency (P.E.) of 56%, but fundamental issues about the nature of the surface catalytic active sites and their involvement in the photocatalytic process still need to be clarified. This is the first study to apply cutting edge surface spectroscopic analyses to determine the surface nature of tantalum mixed oxide photocatalysts. Surface analysis with HR-XPS (1-3nm) and HS-LEIS (0.3nm) spectroscopy indicates that the NiO and La2O3 promoters are concentrated in the surface region of the bulk NaTaO3 phase. The La2O3 is concentrated on the NaTaO3 outermost surface layers while NiO is distributed throughout the NaTaO3 surface region (1-3nm). Raman and UV-vis spectroscopy revealed that the bulk molecular and electronic structures, respectively, of NaTaO3 were not modified by the addition of the La2O3 and NiO promoters, with La2O3 resulting in a slightly more ordered structure. Photoluminescence (PL) spectroscopy reveals that the addition of La2O3 and NiO produces a greater number of electron traps resulting in the suppression of the recombination of excited electrons/holes. In contrast to earlier reports, the La2O3 is only a textural promoter (increasing the BET surface area ~7x by stabilizing smaller NaTaO3 particles), but causes a ~3x decrease in the specific photocatalytic TORs ( mol H2/m2/h) rate because surface La2O3 blocks exposed catalytic active NaTaO3 sites. The NiO promoter was found to be a potent electronic promoter that enhances the NaTaO3 surface normalized TORs by a factor of ~10-50 and TOF by a factor of ~10. The level of NiO promotion is the same in the absence and presence of La2O3 demonstrating that there is no promotional synergistic interaction between the NiO and La2O3 promoters. This study demonstrates the important contributions of the photocatalyst surface properties to the fundamental

  17. A single active catalytic site is sufficient to promote transport in P-glycoprotein

    PubMed Central

    Bársony, Orsolya; Szalóki, Gábor; Türk, Dóra; Tarapcsák, Szabolcs; Gutay-Tóth, Zsuzsanna; Bacsó, Zsolt; Holb, Imre J.; Székvölgyi, Lóránt; Szabó, Gábor; Csanády, László; Szakács, Gergely; Goda, Katalin

    2016-01-01

    P-glycoprotein (Pgp) is an ABC transporter responsible for the ATP-dependent efflux of chemotherapeutic compounds from multidrug resistant cancer cells. Better understanding of the molecular mechanism of Pgp-mediated transport could promote rational drug design to circumvent multidrug resistance. By measuring drug binding affinity and reactivity to a conformation-sensitive antibody we show here that nucleotide binding drives Pgp from a high to a low substrate-affinity state and this switch coincides with the flip from the inward- to the outward-facing conformation. Furthermore, the outward-facing conformation survives ATP hydrolysis: the post-hydrolytic complex is stabilized by vanadate, and the slow recovery from this state requires two functional catalytic sites. The catalytically inactive double Walker A mutant is stabilized in a high substrate affinity inward-open conformation, but mutants with one intact catalytic center preserve their ability to hydrolyze ATP and to promote drug transport, suggesting that the two catalytic sites are randomly recruited for ATP hydrolysis. PMID:27117502

  18. Remote site-selective C–H activation directed by a catalytic bifunctional template

    NASA Astrophysics Data System (ADS)

    Zhang, Zhipeng; Tanaka, Keita; Yu, Jin-Quan

    2017-03-01

    In chemical syntheses, the activation of carbon–hydrogen (C–H) bonds converts them directly into carbon–carbon or carbon–heteroatom bonds without requiring any prior functionalization. C–H activation can thus substantially reduce the number of steps involved in a synthesis. A single specific C–H bond in a substrate can be activated by using a ‘directing’ (usually a functional) group to obtain the desired product selectively. The applicability of such a C–H activation reaction can be severely curtailed by the distance of the C–H bond in question from the directing group, and by the shape of the substrate, but several approaches have been developed to overcome these limitations. In one such approach, an understanding of the distal and geometric relationships between the functional groups and C–H bonds of a substrate has been exploited to achieve meta-selective C–H activation by using a covalently attached, U-shaped template. However, stoichiometric installation of this template has not been feasible in the absence of an appropriate functional group on which to attach it. Here we report the design of a catalytic, bifunctional nitrile template that binds a heterocyclic substrate via a reversible coordination instead of a covalent linkage. The two metal centres coordinated to this template have different roles: one reversibly anchors substrates near the catalyst, and the other cleaves remote C–H bonds. Using this strategy, we demonstrate remote, site-selective C–H olefination of heterocyclic substrates that do not have the necessary functional groups for covalently attaching templates.

  19. Simultaneous pore enlargement and introduction of highly dispersed Fe active sites in MSNs for enhanced catalytic activity

    SciTech Connect

    Gu Jinlou; Dong Xu; Elangovan, S.P.; Li Yongsheng; Zhao Wenru; Iijima, Toshio; Yamazaki, Yasuo; Shi Jianlin

    2012-02-15

    An effective post-hydrothermal treatment strategy has been developed to dope highly dispersed iron catalytical centers into the framework of mesoporous silica, to keep the particle size in nanometric scale, and in the meanwhile, to expand the pore size of the synthesized mesoporous silica nanoparticles (MSNs). Characterization techniques such as XRD, BET, SEM and TEM support that the synthesized samples are long period ordered with particles size about 100 nm and a relatively large pore size of ca. 3.5 nm. UV-vis, XPS and EPR measurements demonstrate that the introduced iron active centers are highly dispersed in a coordinatively unsaturated status. NH{sub 3}-TPD verifies that the acid amount of iron-doped MSNs is quite high. The synthesized nanocatalysts show an excellent catalytic performance for benzylation of benzene by benzyl chloride, and they present relatively higher yield and selectivity to diphenylmethane with a lower iron content and much shorter reaction time. - Graphical abstract: Uniform MSNs with iron active centers and large pore size have been prepared by a newly developed strategy, which demonstrates enhanced catalytic performance for benzylation of benzene by benzyl chloride. Highlights: Black-Right-Pointing-Pointer Iron species were introduced into the framework of mesoporous silica nanoparticles with uniform dispersion. Black-Right-Pointing-Pointer The pore sizes of the synthesized nanocatalysts were expanded. Black-Right-Pointing-Pointer The acidic site quantities were quite high and the acidic centers were accessible. Black-Right-Pointing-Pointer The nanocatalysts presented higher yield and selectivity to diphenylmethane with significantly lower Fe content.

  20. Effect of chromium oxide as active site over TiO2-PILC for selective catalytic oxidation of NO.

    PubMed

    Zhang, Jingxin; Zhang, Shule; Cai, Wei; Zhong, Qin

    2013-12-01

    This study introduced TiO2-pillared clays (TiO2-PILC) as a support for the catalytic oxidation of NO and analyzed the performance of chromium oxides as the active site of the oxidation process. Cr-based catalysts were prepared by a wet impregnation method. It was found that the 10 wt.% chromium doping on the support achieved the best catalytic activity. At 350 degrees C, the NO conversion was 61% under conditions of GHSV = 23600 hr(-1). The BET data showed that the support particles had a mesoporous structure. H2-TPR showed that Cr(10)TiP (10 wt.% Cr doping on TiO2-PILC) clearly exhibited a smooth single peak. EPR and XPS were used to elucidate the oxidation process. During the NO + O2 adsorption, the intensity of evolution of superoxide ions (O2(-)) increased. The content of Cr3+ on the surface of the used catalyst was 40.37%, but when the used catalyst continued adsorbing NO, the Cr3+ increased to 50.28%. Additionally, O(alpha)/O(beta) increased markedly through the oxidation process. The NO conversion decreased when SO2 was added into the system, but when the SO2 was removed, the catalytic activity recovered almost up to the initial level. FT-IR spectra did not show a distinct characteristic peak of SO4(2-).

  1. Analyzing the catalytic role of active site residues in the Fe-type nitrile hydratase from Comamonas testosteroni Ni1.

    PubMed

    Martinez, Salette; Wu, Rui; Krzywda, Karoline; Opalka, Veronika; Chan, Hei; Liu, Dali; Holz, Richard C

    2015-07-01

    A strictly conserved active site arginine residue (αR157) and two histidine residues (αH80 and αH81) located near the active site of the Fe-type nitrile hydratase from Comamonas testosteroni Ni1 (CtNHase), were mutated. These mutant enzymes were examined for their ability to bind iron and hydrate acrylonitrile. For the αR157A mutant, the residual activity (k cat = 10 ± 2 s(-1)) accounts for less than 1% of the wild-type activity (k cat = 1100 ± 30 s(-1)) while the K m value is nearly unchanged at 205 ± 10 mM. On the other hand, mutation of the active site pocket αH80 and αH81 residues to alanine resulted in enzymes with k cat values of 220 ± 40 and 77 ± 13 s(-1), respectively, and K m values of 187 ± 11 and 179 ± 18 mM. The double mutant (αH80A/αH81A) was also prepared and provided an enzyme with a k cat value of 132 ± 3 s(-1) and a K m value of 213 ± 61 mM. These data indicate that all three residues are catalytically important, but not essential. X-ray crystal structures of the αH80A/αH81A, αH80W/αH81W, and αR157A mutant CtNHase enzymes were solved to 2.0, 2.8, and 2.5 Å resolutions, respectively. In each mutant enzyme, hydrogen-bonding interactions crucial for the catalytic function of the αCys(104)-SOH ligand are disrupted. Disruption of these hydrogen bonding interactions likely alters the nucleophilicity of the sulfenic acid oxygen and the Lewis acidity of the active site Fe(III) ion.

  2. An active site rearrangement within the Tetrahymena group I ribozyme releases nonproductive interactions and allows formation of catalytic interactions

    PubMed Central

    Sengupta, Raghuvir N.; Van Schie, Sabine N.S.; Giambaşu, George; Dai, Qing; Yesselman, Joseph D.; York, Darrin; Piccirilli, Joseph A.; Herschlag, Daniel

    2016-01-01

    Biological catalysis hinges on the precise structural integrity of an active site that binds and transforms its substrates and meeting this requirement presents a unique challenge for RNA enzymes. Functional RNAs, including ribozymes, fold into their active conformations within rugged energy landscapes that often contain misfolded conformers. Here we uncover and characterize one such “off-pathway” species within an active site after overall folding of the ribozyme is complete. The Tetrahymena group I ribozyme (E) catalyzes cleavage of an oligonucleotide substrate (S) by an exogenous guanosine (G) cofactor. We tested whether specific catalytic interactions with G are present in the preceding E•S•G and E•G ground-state complexes. We monitored interactions with G via the effects of 2′- and 3′-deoxy (–H) and −amino (–NH2) substitutions on G binding. These and prior results reveal that G is bound in an inactive configuration within E•G, with the nucleophilic 3′-OH making a nonproductive interaction with an active site metal ion termed MA and with the adjacent 2′-OH making no interaction. Upon S binding, a rearrangement occurs that allows both –OH groups to contact a different active site metal ion, termed MC, to make what are likely to be their catalytic interactions. The reactive phosphoryl group on S promotes this change, presumably by repositioning the metal ions with respect to G. This conformational transition demonstrates local rearrangements within an otherwise folded RNA, underscoring RNA's difficulty in specifying a unique conformation and highlighting Nature's potential to use local transitions of RNA in complex function. PMID:26567314

  3. Catalytic roles of flexible regions at the active site of ribulose-bisphosphate carboxylase/oxygenase (Rubisco)

    SciTech Connect

    Hartman, F.C.; Harpel, M.R.; Chen, Yuh-Ru; Larson, E.M.; Larimer, F.W.

    1995-12-31

    Chemical and mutagenesis studies of Rubisco have identified Lys329 and Glu48 as active-site residues that are located in distinct, interacting domains from adjacent subunits. Crystallographic analyses have shown that Lys329 is the apical residue in a 12-residue flexible loop (loop 6) of the {Beta},{alpha}-barrel domain of the active site and that Glu48 resides at the end of helix B of the N-terminal domain of the active site. When phosphorylated ligands are bound by the enzyme, loop 6 adopts a closed conformation and, in concert with repositioning of helix B, thereby occludes the active site from the external environment. In this closed conformation, the {gamma}-carboxylate of Glu48 and the {epsilon}-amino group of Lys329 engage in intersubunit electrostatic interaction. By use of appropriate site-directed mutants of Rhodospirillum rubrum Rubisco, we are addressing several issues: the catalytic roles of Lys329 and Glu48, the functional significance of the intersubunit salt bridge comprised of these two residues, and the roles of loop 6 and helix B in stabilizing labile reaction intermediates. Characterization of novel products derived from misprocessing of D-ribulose-1,5-bisphosphate (RuBP) by the mutant proteins have illuminated the structure of the key intermediate in the normal oxygenase pathway.

  4. New Ulvan-Degrading Polysaccharide Lyase Family: Structure and Catalytic Mechanism Suggests Convergent Evolution of Active Site Architecture.

    PubMed

    Ulaganathan, ThirumalaiSelvi; Boniecki, Michal T; Foran, Elizabeth; Buravenkov, Vitaliy; Mizrachi, Naama; Banin, Ehud; Helbert, William; Cygler, Miroslaw

    2017-03-23

    Ulvan is a complex sulfated polysaccharide biosynthesized by green seaweed and contains predominantly rhamnose, xylose, and uronic acid sugars. Ulvan-degrading enzymes have only recently been identified and added to the CAZy ( www.cazy.org ) database as family PL24, but neither their structure nor catalytic mechanism(s) are yet known. Several homologous, new ulvan lyases, have been discovered in Pseudoalteromonas sp. strain PLSV, Alteromonas LOR, and Nonlabens ulvanivorans, defining a new family PL25, with the lyase encoded by the gene PLSV_3936 being one of them. This enzyme cleaves the glycosidic bond between 3-sulfated rhamnose (R3S) and glucuronic acid (GlcA) or iduronic acid (IdoA) via a β-elimination mechanism. We report the crystal structure of PLSV_3936 and its complex with a tetrasaccharide substrate. PLSV_3936 folds into a seven-bladed β-propeller, with each blade consisting of four antiparallel β-strands. Sequence conservation analysis identified a highly conserved region lining at one end of a deep crevice on the protein surface. The putative active site was identified by mutagenesis and activity measurements. Crystal structure of the enzyme with a bound tetrasaccharide substrate confirmed the identity of base and acid residues and allowed determination of the catalytic mechanism and also the identification of residues neutralizing the uronic acid carboxylic group. The PLSV_3936 structure provides an example of a convergent evolution among polysaccharide lyases toward a common active site architecture embedded in distinct folds.

  5. Substrate conformational transitions in the active site of chorismate mutase: their role in the catalytic mechanism.

    PubMed

    Guo, H; Cui, Q; Lipscomb, W N; Karplus, M

    2001-07-31

    Chorismate mutase acts at the first branch-point of aromatic amino acid biosynthesis and catalyzes the conversion of chorismate to prephenate. The results of molecular dynamics simulations of the substrate in solution and in the active site of chorismate mutase are reported. Two nonreactive conformers of chorismate are found to be more stable than the reactive pseudodiaxial chair conformer in solution. It is shown by QM/MM molecular dynamics simulations, which take into account the motions of the enzyme, that when these inactive conformers are bound to the active site, they are rapidly converted to the reactive chair conformer. This result suggests that one contribution of the enzyme is to bind the more prevalent nonreactive conformers and transform them into the active form in a step before the chemical reaction. The motion of the reactive chair conformer in the active site calculated by using the QM/MM potential generates transient structures that are closer to the transition state than is the stable CHAIR conformer.

  6. Catalytic efficiency of HAP phytases is determined by a key residue in close proximity to the active site.

    PubMed

    Fu, Dawei; Li, Zhongyuan; Huang, Huoqing; Yuan, Tiezheng; Shi, Pengjun; Luo, Huiying; Meng, Kun; Yang, Peilong; Yao, Bin

    2011-05-01

    The maximum activity of Yersinia enterocolitica phytase (YeAPPA) occurs at pH 5.0 and 45 °C, and notably, its specific activity (3.28 ± 0.24 U mg(-1)) is 800-fold less than that of its Yersinia kristeensenii homolog (YkAPPA; 88% amino acid sequence identity). Sequence alignment and molecular modeling show that the arginine at position 79 (Arg79) in YeAPPA corresponding to Gly in YkAPPA as well as other histidine acid phosphatase (HAP) phytases is the only non-conserved residue near the catalytic site. To characterize the effects of the corresponding residue on the specific activities of HAP phytases, Escherichia coli EcAPPA, a well-characterized phytase with a known crystal structure, was selected for mutagenesis-its Gly73 was replaced with Arg, Asp, Glu, Ser, Thr, Leu, or Tyr. The results show that the specific activities of all of the corresponding EcAPPA mutants (17-2,400 U mg(-1)) were less than that of the wild-type phytase (3,524 U mg(-1)), and the activity levels were approximately proportional to the molecular volumes of the substituted residues' side chains. Site-directed replacement of Arg79 in YeAPPA (corresponding to Gly73 of EcAPPA) with Ser, Leu, and Gly largely increased the specific activity, which further verified the key role of the residue at position 79 for determining phytase activity. Thus, a new determinant that influences the catalytic efficiency of HAP phytases has been identified.

  7. Catalytic and Structural Role of a Conserved Active Site Histidine in Berberine Bridge Enzyme

    PubMed Central

    2012-01-01

    Berberine bridge enzyme (BBE) is a paradigm for the class of bicovalently flavinylated oxidases, which catalyzes the oxidative cyclization of (S)-reticuline to (S)-scoulerine. His174 was identified as an important active site residue because of its role in the stabilization of the reduced state of the flavin cofactor. It is also strictly conserved in the family of BBE-like oxidases. Here, we present a detailed biochemical and structural characterization of a His174Ala variant supporting its importance during catalysis and for the structural organization of the active site. Substantial changes in all kinetic parameters and a decrease in midpoint potential were observed for the BBE His174Ala variant protein. Moreover, the crystal structure of the BBE His174Ala variant showed significant structural rearrangements compared to wild-type enzyme. On the basis of our findings, we propose that His174 is part of a hydrogen bonding network that stabilizes the negative charge at the N1–C2=O locus via interaction with the hydroxyl group at C2′ of the ribityl side chain of the flavin cofactor. Hence, replacement of this residue with alanine reduces the stabilizing effect for the transiently formed negative charge and results in drastically decreased kinetic parameters as well as a lower midpoint redox potential. PMID:22757961

  8. p-Coumaric acid decarboxylase from Lactobacillus plantarum: structural insights into the active site and decarboxylation catalytic mechanism.

    PubMed

    Rodríguez, Héctor; Angulo, Iván; de Las Rivas, Blanca; Campillo, Nuria; Páez, Juan A; Muñoz, Rosario; Mancheño, José M

    2010-05-15

    p-Coumaric acid decarboxylases (PDCs) catalyze the nonoxidative decarboxylation of hydroxycinnamic acids to generate the corresponding vinyl derivatives. Despite the biotechnological relevance of PDCs in food industry, their catalytic mechanism remains largely unknown. Here, we report insights into the structural basis of catalysis for the homodimeric PDC from Lactobacillus plantarum (LpPDC). The global fold of LpPDC is based on a flattened beta-barrel surrounding an internal cavity. Crystallographic and functional analyses of single-point mutants of residues located within this cavity have permitted identifying a potential substrate-binding pocket and also to provide structural evidences for rearrangements of surface loops so that they can modulate the accessibility to the active site. Finally, combination of the structural and functional data with in silico results enables us to propose a two-step catalytic mechanism for decarboxylation of p-coumaric acid by PDCs where Glu71 is involved in proton transfer, and Tyr18 and Tyr20 are involved in the proper substrate orientation and in the release of the CO(2) product.

  9. Structural definition of the active site and catalytic mechanism of 3,4-dihydroxy-2-butanone-4-phosphate synthase.

    PubMed

    Liao, Der-Ing; Zheng, Ya-Jun; Viitanen, Paul V; Jordan, Douglas B

    2002-02-12

    X-ray crystal structures of L-3,4-dihydroxy-2-butanone-4-phosphate synthase from Magnaporthe grisea are reported for the E-SO(4)(2-), E-SO(4)(2-)-Mg(2+), E-SO(4)(2)(-)-Mn(2+), E-SO(4)(2)(-)-Mn(2+)-glycerol, and E-SO(4)(2)(-)-Zn(2+) complexes with resolutions that extend to 1.55, 0.98, 1.60, 1.16, and 1.00 A, respectively. Active-site residues of the homodimer are fully defined. The structures were used to model the substrate ribulose 5-phosphate in the active site with the phosphate group anchored at the sulfate site and the placement of the ribulose group guided by the glycerol site. The model includes two Mg(2+) cations that bind to the oxygen substituents of the C2, C3, C4, and phosphate groups of the substrate, the side chains of Glu37 and His153, and water molecules. The position of the metal cofactors and the substrate's phosphate group are further stabilized by an extensive hydrogen-bond and salt-bridge network. On the basis of their proximity to the substrate's reaction participants, the imidazole of an Asp99-His136 dyad from one subunit, the side chains of the Asp41, Cys66, and Glu174 residues from the other subunit, and Mg(2+)-activated water molecules are proposed to serve specific roles in the catalytic cycle as general acid-base functionalities. The model suggests that during the 1,2-shift step of the reaction, the substrate's C3 and C4 hydroxyl groups are cis to each other. A cis transition state is calculated to have an activation barrier that is 2 kcal/mol greater than that of the trans transition state in the absence of the enzyme.

  10. Structural definition of the active site and catalytic mechanism of 3,4-dihydroxy-2-butanone 4-phosphate synthase

    SciTech Connect

    Liao, D.-I.; Zheng, Y.-J.; Viitanen, P.V.; Jordan, D.B.

    2010-03-08

    X-ray crystal structures of L-3,4-dihydroxy-2-butanone-4-phosphate synthase from Magnaporthe grisea are reported for the E-SO{sub 4}{sup 2-}, E-{sub 4}{sup 2-}-Mg{sup 2+}, E-SO{sub 4}{sup 2-}-Mn{sup 2+}, E-SO{sub 4}{sup 2-}-Mn{sup 2+}-glycerol, and E-SO{sub 4}{sup 2-}-Zn{sup 2+} complexes with resolutions that extend to 1.55, 0.98, 1.60, 1.16, and 1.00 {angstrom}, respectively. Active-site residues of the homodimer are fully defined. The structures were used to model the substrate ribulose 5-phosphate in the active site with the phosphate group anchored at the sulfate site and the placement of the ribulose group guided by the glycerol site. The model includes two Mg{sup 2+} cations that bind to the oxygen substituents of the C2, C3, C4, and phosphate groups of the substrate, the side chains of Glu37 and His153, and water molecules. The position of the metal cofactors and the substrate's phosphate group are further stabilized by an extensive hydrogen-bond and salt-bridge network. On the basis of their proximity to the substrate's reaction participants, the imidazole of an Asp99-His136 dyad from one subunit, the side chains of the Asp41, Cys66, and Glu174 residues from the other subunit, and Mg{sup 2+}-activated water molecules are proposed to serve specific roles in the catalytic cycle as general acid-base functionalities. The model suggests that during the 1,2-shift step of the reaction, the substrate's C3 and C4 hydroxyl groups are cis to each other. A cis transition state is calculated to have an activation barrier that is 2 kcal/mol greater than that of the trans transition state in the absence of the enzyme.

  11. Probing the catalytic mechanism of bovine CD38/NAD+ glycohydrolase by site directed mutagenesis of key active site residues.

    PubMed

    Kuhn, Isabelle; Kellenberger, Esther; Cakir-Kiefer, Céline; Muller-Steffner, Hélène; Schuber, Francis

    2014-07-01

    Bovine CD38/NAD(+) glycohydrolase catalyzes the hydrolysis of NAD(+) to nicotinamide and ADP-ribose and the formation of cyclic ADP-ribose via a stepwise reaction mechanism. Our recent crystallographic study of its Michaelis complex and covalently-trapped intermediates provided insights into the modalities of substrate binding and the molecular mechanism of bCD38. The aim of the present work was to determine the precise role of key conserved active site residues (Trp118, Glu138, Asp147, Trp181 and Glu218) by focusing mainly on the cleavage of the nicotinamide-ribosyl bond. We analyzed the kinetic parameters of mutants of these residues which reside within the bCD38 subdomain in the vicinity of the scissile bond of bound NAD(+). To address the reaction mechanism we also performed chemical rescue experiments with neutral (methanol) and ionic (azide, formate) nucleophiles. The crucial role of Glu218, which orients the substrate for cleavage by interacting with the N-ribosyl 2'-OH group of NAD(+), was highlighted. This contribution to catalysis accounts for almost half of the reaction energy barrier. Other contributions can be ascribed notably to Glu138 and Asp147 via ground-state destabilization and desolvation in the vicinity of the scissile bond. Key interactions with Trp118 and Trp181 were also proven to stabilize the ribooxocarbenium ion-like transition state. Altogether we propose that, as an alternative to a covalent acylal reaction intermediate with Glu218, catalysis by bCD38 proceeds through the formation of a discrete and transient ribooxocarbenium intermediate which is stabilized within the active site mostly by electrostatic interactions.

  12. New insights into the catalytic mechanism of histidine phosphatases revealed by a functionally essential arginine residue within the active site of the Sts phosphatases.

    PubMed

    San Luis, Boris; Nassar, Nicolas; Carpino, Nick

    2013-07-01

    Sts (suppressor of T-cell receptor signalling)-1 and Sts-2 are HPs (histidine phosphatases) that negatively regulate TCR (T-cell receptor) signalling pathways, including those involved in cytokine production. HPs play key roles in such varied biological processes as metabolism, development and intracellular signalling. They differ considerably in their primary sequence and substrate specificity, but possess a catalytic core formed by an invariant quartet of active-site residues. Two histidine and two arginine residues cluster together within the HP active site and are thought to participate in a two-step dephosphorylation reaction. To date there has been little insight into any additional residues that might play an important functional role. In the present study, we identify and characterize an additional residue within the Sts phosphatases (Sts-1 Arg383 or Sts-2 Arg369) that is critical for catalytic activity and intracellular function. Mutation of Sts-1 Arg383 to an alanine residue compromises the enzyme's activity and renders Sts-1 unable to suppress TCR-induced cytokine induction. Of the multiple amino acids substituted for Arg383, only lysine partially rescues the catalytic activity of Sts-1. Although Sts-1 Arg383 is conserved in all Sts homologues, it is only conserved in one of the two sub-branches of HPs. The results of the present study highlight an essential role for Sts-1 phosphatase activity in regulating T-cell activation and add a new dimension of complexity to our understanding of HP catalytic activity.

  13. alpha3beta3gamma complex of F1-ATPase from thermophilic Bacillus PS3 can maintain steady-state ATP hydrolysis activity depending on the number of non-catalytic sites.

    PubMed Central

    Amano, T; Matsui, T; Muneyuki, E; Noji, H; Hara, K; Yoshida, M; Hisabori, T

    1999-01-01

    Homogeneous preparations of alpha(3)beta(3)gamma complexes with one, two or three non-competent non-catalytic site(s) were performed as described [Amano, Hisabori, Muneyuki, and Yoshida (1996) J. Biol. Chem. 271, 18128-18133] and their properties were compared with those of the wild-type complex. The ATPase activity of the complex with three non-competent non-catalytic sites decayed rapidly to an inactivated state, as reported previously [Matsui, Muneyuki, Honda, Allison, Dou, and Yoshida (1997) J. Biol. Chem. 272, 8215-8221]. In contrast, the complex with one or two non-competent non-catalytic sites displayed a substantial steady-state phase activity depending on the number of non-competent non-catalytic sites in the complex. This result indicates that one competent non-catalytic site can maintain the continuous catalytic turnover of the enzyme and can potentially relieve all three catalytic sites from inhibition by MgADP(-). Furthermore, the results suggest that the interaction between three non-catalytic sites might not be as strong as that between catalytic sites, which are all strictly required for a continuous catalytic turnover. PMID:10493921

  14. Radiation-induced gas-phase grafted polymerization as a method for producing macromolecular carries for active catalytic sites

    SciTech Connect

    Kritskaya, D.A.; Ponomarev, A.N.; Pomogailo, A.D.; Dyachkovskii, A.D.

    1980-01-01

    To obtain polymer supports with different functional coverage, the kinetic peculiarities of radiation-induced gas-phase grafting of allyl (allyl alcohol, ally and diallyl amines) and vinyl (acryl and methacryl acids, their methyl ethers, methylvinylketone, 2- and 4-vinylpyridine, acrylonitrile) monomers to polymer powder (polyethylene, polypropylene, polystyrene, and copolymer of ethylene with propylene) were studied. The degrees and radiation yields of grafting were measured and evidence of the grafting occurrence is given. The radiation yield of allyl monomers grafting to polyethylene was found to be 10 to 20 molecules/10 eV of absorbed energy and was found to keep constant on a change of the dose rate from 3 x 10/sup -3/ to 6.5 Mrad/min. That testifies to the absence of second-order chain termination and provides wide possibilities for effective use of various radiation sources. By grafting some monomers containing radioactive isotopes (/sup 14/C, /sup 3/H) and analyzing the grafted product after extraction, the ungrafted homopolymer content was shown to be less than 10%. The appearance of some additional absorption bands from fragments of the grafted monomers in the ir spectrum of the treated polymer was considered as evidence of grafting. Some polymer-analogous reactions of the grafted polymer (reduction, saponification, hydrolysis, formation of Schiff bases) are given as illustrations of the validity of the method proposed for producing polyfunctional coverage of the macromolecular carries for active catalytic sites.

  15. Crystal structure of full-length human collagenase 3 (MMP-13) with peptides in the active site defines exosites in the catalytic domain

    PubMed Central

    Stura, Enrico A.; Visse, Robert; Cuniasse, Philippe; Dive, Vincent; Nagase, Hideaki

    2013-01-01

    Matrix metalloproteinase (MMP)-13 is one of the mammalian collagenases that play key roles in tissue remodelling and repair and in progression of diseases such as cancer, arthritis, atherosclerosis, and aneurysm. For collagenase to cleave triple helical collagens, the triple helical structure has to be locally unwound before hydrolysis, but this process is not well understood. We report crystal structures of catalytically inactive full-length human MMP-13(E223A) in complex with peptides of 14–26 aa derived from the cleaved prodomain during activation. Peptides are bound to the active site of the enzyme by forming an extended β-strand with Glu40 or Tyr46 inserted into the S1′ specificity pocket. The structure of the N-terminal part of the peptides is variable and interacts with different parts of the catalytic domain. Those areas are designated substrate-dependent exosites, in that they accommodate different peptide structures, whereas the precise positioning of the substrate backbone is maintained in the active site. These modes of peptide-MMP-13 interactions have led us to propose how triple helical collagen strands fit into the active site cleft of the collagenase.—Stura, E. A., Visse, R., Cuniasse, P., Dive, V., Nagase, H. Crystal structure of full-length human collagenase 3 (MMP-13) with peptides in the active site defines exosites in the catalytic domain. PMID:23913860

  16. Functional analyses for tRNase Z variants: an aspartate and a histidine in the active site are essential for the catalytic activity.

    PubMed

    Elbarbary, Reyad A; Takaku, Hiroaki; Nashimoto, Masayuki

    2008-12-01

    We performed functional analyses for various single amino-acid substitution variants of Escherichia coli, Bacillus subtilis, and human tRNase Zs. The well-conserved six histidine, His(I)-His(VI), and two aspartate, Asp(I) and Asp(II), residues together with metal ions are thought to form the active site of tRNase Z. The Mn(2+)-rescue analysis for Thermotoga maritima tRNase Z(S) has suggested that Asp(I) and His(V) directly contribute the proton transfer for the catalysis, and a catalytic mechanism has been proposed. However, experimental evidence supporting the proposed mechanism was limited. Here we intensively examined E. coli and B. subtilis tRNase Z(S) variants and human tRNase Z(L) variants for cleavage activities on pre-tRNAs in the presence of Mg(2+) or Mn(2+) ions. We observed that the Mn(2+) ions cannot rescue the activities of Asp(I)Ala and His(V)Ala variants from each species, which are lost in the presence of Mg(2+). This observation may support the proposed catalytic mechanism.

  17. Molecular dynamics simulation of the last step of a catalytic cycle: product release from the active site of the enzyme chorismate mutase from Mycobacterium tuberculosis.

    PubMed

    Choutko, Alexandra; van Gunsteren, Wilfred F

    2012-11-01

    The protein chorismate mutase MtCM from Mycobacterium tuberculosis catalyzes one of the few pericyclic reactions known in biology: the transformation of chorismate to prephenate. Chorismate mutases have been widely studied experimentally and computationally to elucidate the transition state of the enzyme catalyzed reaction and the origin of the high catalytic rate. However, studies about substrate entry and product exit to and from the highly occluded active site of the enzyme have to our knowledge not been performed on this enzyme. Crystallographic data suggest a possible substrate entry gate, that involves a slight opening of the enzyme for the substrate to access the active site. Using multiple molecular dynamics simulations, we investigate the natural dynamic process of the product exiting from the binding pocket of MtCM. We identify a dominant exit pathway, which is in agreement with the gate proposed from the available crystallographic data. Helices H2 and H4 move apart from each other which enables the product to exit from the active site. Interestingly, in almost all exit trajectories, two residues arginine 72 and arginine 134, which participate in the burying of the active site, are accompanying the product on its exit journey from the catalytic site.

  18. Mutagenesis and crystallographic studies of the catalytic residues of the papain family protease bleomycin hydrolase: new insights into active-site structure

    PubMed Central

    O'Farrell, Paul A.; Joshua-Tor, Leemor

    2006-01-01

    Bleomycin hydrolase (BH) is a hexameric papain family cysteine protease which is involved in preparing peptides for antigen presentation and has been implicated in tumour cell resistance to bleomycin chemotherapy. Structures of active-site mutants of yeast BH yielded unexpected results. Replacement of the active-site asparagine with alanine, valine or leucine results in the destabilization of the histidine side chain, demonstrating unambiguously the role of the asparagine residue in correctly positioning the histidine for catalysis. Replacement of the histidine with alanine or leucine destabilizes the asparagine position, indicating a delicate arrangement of the active-site residues. In all of the mutants, the C-terminus of the protein, which lies in the active site, protrudes further into the active site. All mutants were compromised in their catalytic activity. The structures also revealed the importance of a tightly bound water molecule which stabilizes a loop near the active site and which is conserved throughout the papain family. It is displaced in a number of the mutants, causing destabilization of this loop and a nearby loop, resulting in a large movement of the active-site cysteine. The results imply that this water molecule plays a key structural role in this family of enzymes. PMID:17007609

  19. Steady-State NTPase Activity of Dengue Virus NS3: Number of Catalytic Sites, Nucleotide Specificity and Activation by ssRNA

    PubMed Central

    Incicco, J. Jeremías; Gebhard, Leopoldo G.; González-Lebrero, Rodolfo M.; Gamarnik, Andrea V.; Kaufman, Sergio B.

    2013-01-01

    Dengue virus nonstructural protein 3 (NS3) unwinds double stranded RNA driven by the free energy derived from the hydrolysis of nucleoside triphosphates. This paper presents the first systematic and quantitative characterization of the steady-state NTPase activity of DENV NS3 and their interaction with ssRNA. Substrate curves for ATP, GTP, CTP and UTP were obtained, and the specificity order for these nucleotides - evaluated as the ratio (kcat/KM)- was GTPATPCTP UTP, which showed that NS3 have poor ability to discriminate between different NTPs. Competition experiments between the four substrates indicated that all of them are hydrolyzed in one and the same catalytic site of the enzyme. The effect of ssRNA on the ATPase activity of NS3 was studied using poly(A) and poly(C). Both RNA molecules produced a 10 fold increase in the turnover rate constant (kcat) and a 100 fold decrease in the apparent affinity (KM) for ATP. When the ratio [RNA bases]/[NS3] was between 0 and 20 the ATPase activity was inhibited by increasing both poly(A) and poly(C). Using the theory of binding of large ligands (NS3) to a one-dimensional homogeneous lattice of infinite length (RNA) we tested the hypothesis that inhibition is the result of crowding of NS3 molecules along the RNA lattices. Finally, we discuss why this hypothesis is consistent with the idea that the ATPase catalytic cycle is tightly coupled to the movement of NS3 helicase along the RNA. PMID:23526990

  20. Catalytic site identification--a web server to identify catalytic site structural matches throughout PDB.

    PubMed

    Kirshner, Daniel A; Nilmeier, Jerome P; Lightstone, Felice C

    2013-07-01

    The catalytic site identification web server provides the innovative capability to find structural matches to a user-specified catalytic site among all Protein Data Bank proteins rapidly (in less than a minute). The server also can examine a user-specified protein structure or model to identify structural matches to a library of catalytic sites. Finally, the server provides a database of pre-calculated matches between all Protein Data Bank proteins and the library of catalytic sites. The database has been used to derive a set of hypothesized novel enzymatic function annotations. In all cases, matches and putative binding sites (protein structure and surfaces) can be visualized interactively online. The website can be accessed at http://catsid.llnl.gov.

  1. Enhancement of the catalytic activity of ferulic acid decarboxylase from Enterobacter sp. Px6-4 through random and site-directed mutagenesis.

    PubMed

    Lee, Hyunji; Park, Jiyoung; Jung, Chaewon; Han, Dongfei; Seo, Jiyoung; Ahn, Joong-Hoon; Chong, Youhoon; Hur, Hor-Gil

    2015-11-01

    The enzyme ferulic acid decarboxylase (FADase) from Enterobacter sp. Px6-4 catalyzes the decarboxylation reaction of lignin monomers and phenolic compounds such as p-coumaric acid, caffeic acid, and ferulic acid into their corresponding 4-vinyl derivatives, that is, 4-vinylphenol, 4-vinylcatechol, and 4-vinylguaiacol, respectively. Among various ferulic acid decarboxylase enzymes, we chose the FADase from Enterobacter sp. Px6-4, whose crystal structure is known, and produced mutants to enhance its catalytic activity by random and site-directed mutagenesis. After three rounds of sequential mutations, FADase(F95L/D112N/V151I) showed approximately 34-fold higher catalytic activity than wild-type for the production of 4-vinylguaiacol from ferulic acid. Docking analyses suggested that the increased activity of FADase(F95L/D112N/V151I) could be due to formation of compact active site compared with that of the wild-type FADase. Considering the amount of phenolic compounds such as lignin monomers in the biomass components, successfully bioengineered FADase(F95L/D112N/V151I) from Enterobacter sp. Px6-4 could provide an ecofriendly biocatalytic tool for producing diverse styrene derivatives from biomass.

  2. Predictions of Cleavability of Calpain Proteolysis by Quantitative Structure-Activity Relationship Analysis Using Newly Determined Cleavage Sites and Catalytic Efficiencies of an Oligopeptide Array*

    PubMed Central

    Shinkai-Ouchi, Fumiko; Koyama, Suguru; Ono, Yasuko; Hata, Shoji; Ojima, Koichi; Shindo, Mayumi; duVerle, David; Ueno, Mika; Kitamura, Fujiko; Doi, Naoko; Takigawa, Ichigaku; Mamitsuka, Hiroshi; Sorimachi, Hiroyuki

    2016-01-01

    Calpains are intracellular Ca2+-regulated cysteine proteases that are essential for various cellular functions. Mammalian conventional calpains (calpain-1 and calpain-2) modulate the structure and function of their substrates by limited proteolysis. Thus, it is critically important to determine the site(s) in proteins at which calpains cleave. However, the calpains' substrate specificity remains unclear, because the amino acid (aa) sequences around their cleavage sites are very diverse. To clarify calpains' substrate specificities, 84 20-mer oligopeptides, corresponding to P10-P10′ of reported cleavage site sequences, were proteolyzed by calpains, and the catalytic efficiencies (kcat/Km) were globally determined by LC/MS. This analysis revealed 483 cleavage site sequences, including 360 novel ones. The kcat/Kms for 119 sites ranged from 12.5–1,710 M−1s−1. Although most sites were cleaved by both calpain-1 and −2 with a similar kcat/Km, sequence comparisons revealed distinct aa preferences at P9-P7/P2/P5′. The aa compositions of the novel sites were not statistically different from those of previously reported sites as a whole, suggesting calpains have a strict implicit rule for sequence specificity, and that the limited proteolysis of intact substrates is because of substrates' higher-order structures. Cleavage position frequencies indicated that longer sequences N-terminal to the cleavage site (P-sites) were preferred for proteolysis over C-terminal (P′-sites). Quantitative structure-activity relationship (QSAR) analyses using partial least-squares regression and >1,300 aa descriptors achieved kcat/Km prediction with r = 0.834, and binary-QSAR modeling attained an 87.5% positive prediction value for 132 reported calpain cleavage sites independent of our model construction. These results outperformed previous calpain cleavage predictors, and revealed the importance of the P2, P3′, and P4′ sites, and P1-P2 cooperativity. Furthermore, using our

  3. Cutoff lensing: predicting catalytic sites in enzymes

    NASA Astrophysics Data System (ADS)

    Aubailly, Simon; Piazza, Francesco

    2015-10-01

    Predicting function-related amino acids in proteins with unknown function or unknown allosteric binding sites in drug-targeted proteins is a task of paramount importance in molecular biomedicine. In this paper we introduce a simple, light and computationally inexpensive structure-based method to identify catalytic sites in enzymes. Our method, termed cutoff lensing, is a general procedure consisting in letting the cutoff used to build an elastic network model increase to large values. A validation of our method against a large database of annotated enzymes shows that optimal values of the cutoff exist such that three different structure-based indicators allow one to recover a maximum of the known catalytic sites. Interestingly, we find that the larger the structures the greater the predictive power afforded by our method. Possible ways to combine the three indicators into a single figure of merit and into a specific sequential analysis are suggested and discussed with reference to the classic case of HIV-protease. Our method could be used as a complement to other sequence- and/or structure-based methods to narrow the results of large-scale screenings.

  4. Cutoff lensing: predicting catalytic sites in enzymes.

    PubMed

    Aubailly, Simon; Piazza, Francesco

    2015-10-08

    Predicting function-related amino acids in proteins with unknown function or unknown allosteric binding sites in drug-targeted proteins is a task of paramount importance in molecular biomedicine. In this paper we introduce a simple, light and computationally inexpensive structure-based method to identify catalytic sites in enzymes. Our method, termed cutoff lensing, is a general procedure consisting in letting the cutoff used to build an elastic network model increase to large values. A validation of our method against a large database of annotated enzymes shows that optimal values of the cutoff exist such that three different structure-based indicators allow one to recover a maximum of the known catalytic sites. Interestingly, we find that the larger the structures the greater the predictive power afforded by our method. Possible ways to combine the three indicators into a single figure of merit and into a specific sequential analysis are suggested and discussed with reference to the classic case of HIV-protease. Our method could be used as a complement to other sequence- and/or structure-based methods to narrow the results of large-scale screenings.

  5. Cutoff lensing: predicting catalytic sites in enzymes

    PubMed Central

    Aubailly, Simon; Piazza, Francesco

    2015-01-01

    Predicting function-related amino acids in proteins with unknown function or unknown allosteric binding sites in drug-targeted proteins is a task of paramount importance in molecular biomedicine. In this paper we introduce a simple, light and computationally inexpensive structure-based method to identify catalytic sites in enzymes. Our method, termed cutoff lensing, is a general procedure consisting in letting the cutoff used to build an elastic network model increase to large values. A validation of our method against a large database of annotated enzymes shows that optimal values of the cutoff exist such that three different structure-based indicators allow one to recover a maximum of the known catalytic sites. Interestingly, we find that the larger the structures the greater the predictive power afforded by our method. Possible ways to combine the three indicators into a single figure of merit and into a specific sequential analysis are suggested and discussed with reference to the classic case of HIV-protease. Our method could be used as a complement to other sequence- and/or structure-based methods to narrow the results of large-scale screenings. PMID:26445900

  6. Different cleavage sites are aligned differently in the active site of M1 RNA, the catalytic subunit of Escherichia coli RNase P.

    PubMed Central

    Kufel, J; Kirsebom, L A

    1996-01-01

    We have studied RNase P RNA (M1 RNA) cleavage of model tRNA precursors that are cleaved at two independent positions. Here we present data demonstrating that cleavage at both sites depends on the 2'-OH immediately 5' of the respective cleavage site. However, we show that the 2-amino group of a guanosine at the cleavage site plays a significant role in cleavage at one of these sites but not at the other. These data suggest that these two cleavage sites are handled differently by the ribozyme. This theory is supported by our finding that the cross-linking pattern between Ml RNA and tRNA precursors carrying 4-thioU showed distinct differences, depending on the location of the 4-thioU relative to the respective cleavage site. These findings lead us to suggest that different cleavage sites are aligned differently in the active site, possibly as a result of different binding modes of a substrate to M1 RNA. We discuss a model in which the interaction between the 3'-terminal "RCCA" motif (first three residues interact) of a tRNA precursor and M1 RNA plays a significant role in this process. Images Fig. 2 Fig. 3 Fig. 4 PMID:8650223

  7. Active sites, deactivation and stabilization of Fe-ZSM-5 for the selective catalytic reduction (SCR) of NO with NH(3).

    PubMed

    Kröcher, Oliver; Brandenberger, Sandro

    2012-01-01

    Fe-ZSM-5 has been systematically investigated as catalyst for the selective catalytic reduction (SCR) of NO with NH(3), concentrating on the active sites, the deactivation mechanism during hydrothermal aging and the chemical possibilities to stabilize this type of SCR catalyst. Regarding the active SCR sites, it could be shown that monomeric species start to become active at the lowest temperatures (E(a,app) ≈ 36.3 ± 0.2 kJ/mol), followed by dimeric species at intermediate temperatures (E(a,app) ≈ 77 ± 16 kJ/mol) and oligomeric species at high temperatures. Experiments with Fe-ZSM-5 samples, in which the Brønsted acidity was specifically removed, proved that Brønsted acidity is not required for high SCR activity and that NH(3) can also be adsorbed on other acidic sites on the zeolite surface. The hydrothermal deactivation of Fe-ZSM-5 could be explained by the migration of active iron ions from the exchange sites. Parallel to the iron migration dealumination of the zeolite framework occurs, which has to be regarded as an independent process. The migration of iron can be reduced by the targeted reaction of the aluminum hydroxide groups in the lattice with trimethylaluminium followed by calcination. With respect to the application of iron zeolites in the SCR process in diesel vehicles, the most efficient stabilization method would be to switch from the ZSM-5 to the BEA structure type. The addition of NO(2) to the feed gas is another effective measure to increase the activity of even strongly deactivated iron zeolites tremendously.

  8. Study of Single Catalytic Events at Copper-in-Charcoal: Localization of Click Activity Through Subdiffraction Observation of Single Catalytic Events.

    PubMed

    Decan, Matthew R; Scaiano, Juan C

    2015-10-15

    Single molecule fluorescence microscopy reveals that copper-in-charcoal--a high performance click catalyst- has remarkably few catalytic sites, with 90% of the charcoal particles being inactive, and for the catalytic ones the active sites represent a minute fraction (∼0.003%) of the surface. The intermittent nature of the catalytic events enables subdiffraction resolution and mapping of the catalytic sites.

  9. A nickel hydride complex in the active site of methyl-coenzyme m reductase: implications for the catalytic cycle.

    PubMed

    Harmer, Jeffrey; Finazzo, Cinzia; Piskorski, Rafal; Ebner, Sieglinde; Duin, Evert C; Goenrich, Meike; Thauer, Rudolf K; Reiher, Markus; Schweiger, Arthur; Hinderberger, Dariush; Jaun, Bernhard

    2008-08-20

    Methanogenic archaea utilize a specific pathway in their metabolism, converting C1 substrates (i.e., CO2) or acetate to methane and thereby providing energy for the cell. Methyl-coenzyme M reductase (MCR) catalyzes the key step in the process, namely methyl-coenzyme M (CH3-S-CoM) plus coenzyme B (HS-CoB) to methane and CoM-S-S-CoB. The active site of MCR contains the nickel porphinoid F430. We report here on the coordinated ligands of the two paramagnetic MCR red2 states, induced when HS-CoM (a reversible competitive inhibitor) and the second substrate HS-CoB or its analogue CH3-S-CoB are added to the enzyme in the active MCR red1 state (Ni(I)F430). Continuous wave and pulse EPR spectroscopy are used to show that the MCR red2a state exhibits a very large proton hyperfine interaction with principal values A((1)H) = [-43,-42,-5] MHz and thus represents formally a Ni(III)F430 hydride complex formed by oxidative addition to Ni(I). In view of the known ability of nickel hydrides to activate methane, and the growing body of evidence for the involvement of MCR in "reverse" methanogenesis (anaerobic oxidation of methane), we believe that the nickel hydride complex reported here could play a key role in helping to understand both the mechanism of "reverse" and "forward" methanogenesis.

  10. Decavanadate binding to a high affinity site near the myosin catalytic centre inhibits F-actin-stimulated myosin ATPase activity.

    PubMed

    Tiago, Teresa; Aureliano, Manuel; Gutiérrez-Merino, Carlos

    2004-05-11

    Decameric vanadate (V(10)) inhibits the actin-stimulated myosin ATPase activity, noncompetitively with actin or with ATP upon interaction with a high-affinity binding site (K(i) = 0.27 +/- 0.05 microM) in myosin subfragment-1 (S1). The binding of V(10) to S1 can be monitored from titration with V(10) of the fluorescence of S1 labeled at Cys-707 and Cys-697 with N-iodo-acetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (IAEDANS) or 5-(iodoacetamido) fluorescein, which showed the presence of only one V(10) binding site per monomer with a dissociation constant of 0.16-0.7 microM, indicating that S1 labeling with these dyes produced only a small distortion of the V(10) binding site. The large quenching of AEDANS-labeled S1 fluorescence produced by V(10) indicated that the V(10) binding site is close to Cys-697 and 707. Fluorescence studies demonstrated the following: (i) the binding of V(10) to S1 is not competitive either with actin or with ADP.V(1) or ADP.AlF(4); (ii) the affinity of V(10) for the complex S1/ADP.V(1) and S1/ADP.AlF(4) is 2- and 3-fold lower than for S1; and (iii) it is competitive with the S1 "back door" ligand P(1)P(5)-diadenosine pentaphosphate. A local conformational change in S1 upon binding of V(10) is supported by (i) a decrease of the efficiency of fluorescence energy transfer between eosin-labeled F-actin and fluorescein-labeled S1, and (ii) slower reassociation between S1 and F-actin after ATP hydrolysis. The results are consistent with binding of V(10) to the Walker A motif of ABC ATPases, which in S1 corresponds to conserved regions of the P-loop which form part of the phosphate tube.

  11. Atomic-Scale Assembly of a Heterogeneous Catalytic Site

    SciTech Connect

    Han, Patrick; Axnanda, Stephanus; Lyubinetsky, Igor; Goodman, D. W.

    2007-11-21

    The (100) surface of a AuPd bulk alloy was imaged by scanning tunneling microscopy. Chemical-contrast revealed structures with short-range order involving surface Pd atoms at c(2x2) sites with respect to the surface lattice—a first time observation of a known active heterogeneous catalytic site with atomic resolution. Comparison of the Pd distribution in a AuPd(100) surface with that in a Au3Pd(100) surface shows the unique thermodynamic properties of the 50 : 50 alloy are decisive in controlling the formation of isolated Pd sites.

  12. Dynamic Contacts of U2, RES, Cwc25, Prp8 and Prp45 Proteins with the Pre-mRNA Branch-Site and 3' Splice Site during Catalytic Activation and Step 1 Catalysis in Yeast Spliceosomes

    PubMed Central

    Schneider, Cornelius; Agafonov, Dmitry E.; Schmitzová, Jana; Hartmuth, Klaus; Fabrizio, Patrizia; Lührmann, Reinhard

    2015-01-01

    Little is known about contacts in the spliceosome between proteins and intron nucleotides surrounding the pre-mRNA branch-site and their dynamics during splicing. We investigated protein-pre-mRNA interactions by UV-induced crosslinking of purified yeast Bact spliceosomes formed on site-specifically labeled pre-mRNA, and analyzed their changes after conversion to catalytically-activated B* and step 1 C complexes, using a purified splicing system. Contacts between nucleotides upstream and downstream of the branch-site and the U2 SF3a/b proteins Prp9, Prp11, Hsh49, Cus1 and Hsh155 were detected, demonstrating that these interactions are evolutionarily conserved. The RES proteins Pml1 and Bud13 were shown to contact the intron downstream of the branch-site. A comparison of the Bact crosslinking pattern versus that of B* and C complexes revealed that U2 and RES protein interactions with the intron are dynamic. Upon step 1 catalysis, Cwc25 contacts with the branch-site region, and enhanced crosslinks of Prp8 and Prp45 with nucleotides surrounding the branch-site were observed. Cwc25’s step 1 promoting activity was not dependent on its interaction with pre-mRNA, indicating it acts via protein-protein interactions. These studies provide important insights into the spliceosome's protein-pre-mRNA network and reveal novel RNP remodeling events during the catalytic activation of the spliceosome and step 1 of splicing. PMID:26393790

  13. Gold-Copper Nanoparticles: Nanostructural Evolution and Bifunctional Catalytic Sites

    SciTech Connect

    Yin, Jun; Shan, Shiyao; Yang, Lefu; Mott, Derrick; Malis, Oana; Petkov, Valeri; Cai, Fan; Ng, Mei; Luo, Jin; Chen, Bing H.; Engelhard, Mark H.; Zhong, Chuan-Jian

    2012-12-12

    Understanding of the atomic-scale structure is essential for exploiting the unique catalytic properties of any nanoalloy catalyst. This report describes novel findings of an investigation of the nanoscale alloying of gold-copper (AuCu) nanoparticles and its impact on the surface catalytic functions. Two pathways have been explored for the formation of AuCu nanoparticles of different compositons, including wet chemical synthesis from mixed Au- and Cu-precursor molecules, and nanoscale alloying via an evolution of mixed Au- and Cu-precursor nanoparticles near the nanoscale melting temperatures. For the evolution of mixed precursor nanoparticles, synchrotron x-ray based in-situ real time XRD was used to monitor the structural changes, revealing nanoscale alloying and reshaping towards an fcc-type nanoalloy (particle or cube) via a partial melting–resolidification mechanism. The nanoalloys supported on carbon or silica were characterized by in-situ high-energy XRD/PDFs, revealing an intriguing lattice "expanding-shrinking" phenomenon depending on whether the catalyst is thermochemically processed under oxidative or reductive atmosphere. This type of controllable structural changes is found to play an important role in determining the catalytic activity of the catalysts for carbon monoxide oxidation reaction. The tunable catalytic activities of the nanoalloys under thermochemically oxidative and reductive atmospheres are also discussed in terms of the bifunctional sites and the surface oxygenated metal species for carbon monoxide and oxygen activation.

  14. The 'pair of sugar tongs' site on the non-catalytic domain C of barley alpha-amylase participates in substrate binding and activity.

    PubMed

    Bozonnet, Sophie; Jensen, Morten T; Nielsen, Morten M; Aghajari, Nushin; Jensen, Malene H; Kramhøft, Birte; Willemoës, Martin; Tranier, Samuel; Haser, Richard; Svensson, Birte

    2007-10-01

    Some starch-degrading enzymes accommodate carbohydrates at sites situated at a certain distance from the active site. In the crystal structure of barley alpha-amylase 1, oligosaccharide is thus bound to the 'sugar tongs' site. This site on the non-catalytic domain C in the C-terminal part of the molecule contains a key residue, Tyr380, which has numerous contacts with the oligosaccharide. The mutant enzymes Y380A and Y380M failed to bind to beta-cyclodextrin-Sepharose, a starch-mimic resin used for alpha-amylase affinity purification. The K(d) for beta-cyclodextrin binding to Y380A and Y380M was 1.4 mm compared to 0.20-0.25 mm for the wild-type, S378P and S378T enzymes. The substitution in the S378P enzyme mimics Pro376 in the barley alpha-amylase 2 isozyme, which in spite of its conserved Tyr378 did not bind oligosaccharide at the 'sugar tongs' in the structure. Crystal structures of both wild-type and S378P enzymes, but not the Y380A enzyme, showed binding of the pseudotetrasaccharide acarbose at the 'sugar tongs' site. The 'sugar tongs' site also contributed importantly to the adsorption to starch granules, as Kd = 0.47 mg.mL(-1) for the wild-type enzyme increased to 5.9 mg.mL(-1) for Y380A, which moreover catalyzed the release of soluble oligosaccharides from starch granules with only 10% of the wild-type activity. beta-cyclodextrin both inhibited binding to and suppressed activity on starch granules for wild-type and S378P enzymes, but did not affect these properties of Y380A, reflecting the functional role of Tyr380. In addition, the Y380A enzyme hydrolyzed amylose with reduced multiple attack, emphasizing that the 'sugar tongs' participates in multivalent binding of polysaccharide substrates.

  15. Ce-Ti amorphous oxides for selective catalytic reduction of NO with NH3: confirmation of Ce-O-Ti active sites.

    PubMed

    Li, Ping; Xin, Ying; Li, Qian; Wang, Zhongpeng; Zhang, Zhaoliang; Zheng, Lirong

    2012-09-04

    The amorphous Ce-Ti mixed oxides were reported to be catalysts for selective catalytic reduction of NO(x) with NH(3), in which Ce and not Ti acts as their solvent in spite of the fact that Ce is low in content. The amorphous catalysts were characterized by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) equipped with selective area electron diffraction (SAED). The Ce-Ti amorphous oxide shows higher activity than its crystalline counterpart at lower temperatures. Moreover, the presence of small CeO(2) crystallites as for the impregnated sample is deleterious to activity. The Ce-O-Ti short-range order species with the interaction between Ce and Ti in atomic scale was confirmed for the first time to be the active site using temperature programmed reduction with H(2) (H(2)-TPR), in situ FTIR spectra of NO adsorption, X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine-structure (XAFS). Lastly, the Ce-O-Ti structure was directly observed by field-emission TEM (FETEM).

  16. Conformational Flexibility of a Short Loop near the Active Site of the SARS-3CLpro is Essential to Maintain Catalytic Activity

    PubMed Central

    Li, Chunmei; Teng, Xin; Qi, Yifei; Tang, Bo; Shi, Hailing; Ma, Xiaomin; Lai, Luhua

    2016-01-01

    The SARS 3C-like proteinase (SARS-3CLpro), which is the main proteinase of the SARS coronavirus, is essential to the virus life cycle. This enzyme has been shown to be active as a dimer in which only one protomer is active. However, it remains unknown how the dimer structure maintains an active monomer conformation. It has been observed that the Ser139-Leu141 loop forms a short 310-helix that disrupts the catalytic machinery in the inactive monomer structure. We have tried to disrupt this helical conformation by mutating L141 to T in the stable inactive monomer G11A/R298A/Q299A. The resulting tetra-mutant G11A/L141T/R298A/Q299A is indeed enzymatically active as a monomer. Molecular dynamics simulations revealed that the L141T mutation disrupts the 310-helix and helps to stabilize the active conformation. The coil-310-helix conformational transition of the Ser139-Leu141 loop serves as an enzyme activity switch. Our study therefore indicates that the dimer structure can stabilize the active conformation but is not a required structure in the evolution of the active enzyme, which can also arise through simple mutations. PMID:26879383

  17. Conformational Flexibility of a Short Loop near the Active Site of the SARS-3CLpro is Essential to Maintain Catalytic Activity

    NASA Astrophysics Data System (ADS)

    Li, Chunmei; Teng, Xin; Qi, Yifei; Tang, Bo; Shi, Hailing; Ma, Xiaomin; Lai, Luhua

    2016-02-01

    The SARS 3C-like proteinase (SARS-3CLpro), which is the main proteinase of the SARS coronavirus, is essential to the virus life cycle. This enzyme has been shown to be active as a dimer in which only one protomer is active. However, it remains unknown how the dimer structure maintains an active monomer conformation. It has been observed that the Ser139-Leu141 loop forms a short 310-helix that disrupts the catalytic machinery in the inactive monomer structure. We have tried to disrupt this helical conformation by mutating L141 to T in the stable inactive monomer G11A/R298A/Q299A. The resulting tetra-mutant G11A/L141T/R298A/Q299A is indeed enzymatically active as a monomer. Molecular dynamics simulations revealed that the L141T mutation disrupts the 310-helix and helps to stabilize the active conformation. The coil-310-helix conformational transition of the Ser139-Leu141 loop serves as an enzyme activity switch. Our study therefore indicates that the dimer structure can stabilize the active conformation but is not a required structure in the evolution of the active enzyme, which can also arise through simple mutations.

  18. Modulation of Escherichia coli Adenylyl Cyclase Activity by Catalytic-Site Mutants of Protein IIAGlc of the Phosphoenolpyruvate:Sugar Phosphotransferase System

    PubMed Central

    Reddy, Prasad; Kamireddi, Madhavi

    1998-01-01

    It is demonstrated here that in Escherichia coli, the phosphorylated form of the glucose-specific phosphocarrier protein IIAGlc of the phosphoenolpyruvate:sugar phosphotransferase system is an activator of adenylyl cyclase and that unphosphorylated IIAGlc has no effect on the basal activity of adenylyl cyclase. To elucidate the specific role of IIAGlc phosphorylation in the regulation of adenylyl cyclase activity, both the phosphorylatable histidine (H90) and the interactive histidine (H75) of IIAGlc were mutated by site-directed mutagenesis to glutamine and glutamate. Wild-type IIAGlc and the H75Q mutant, in which the histidine in position 75 has been replaced by glutamine, were phosphorylated by the phosphohistidine-containing phosphocarrier protein (HPr∼P) and were equally potent activators of adenylyl cyclase. Neither the H90Q nor the H90E mutant of IIAGlc was phosphorylated by HPr∼P, and both failed to activate adenylyl cyclase. Furthermore, replacement of H75 by glutamate inhibited the appearance of a steady-state level of phosphorylation of H90 of this mutant protein by HPr∼P, yet the H75E mutant of IIAGlc was a partial activator of adenylyl cyclase. The H75E H90A double mutant, which cannot be phosphorylated, did not activate adenylyl cyclase. This suggests that the H75E mutant was transiently phosphorylated by HPr∼P but the steady-state level of the phosphorylated form of the mutant protein was decreased due to the repulsive forces of the negatively charged glutamate at position 75 in the catalytic pocket. These results are discussed in the context of the proximity of H75 and H90 in the IIAGlc structure and the disposition of the negative charge in the modeled glutamate mutants. PMID:9457881

  19. Simultaneous presence of both open metal sites and free functional organic sites in a noncentrosymmetric dynamic metal-organic framework with bimodal catalytic and sensing activities.

    PubMed

    Saha, Rajat; Joarder, Biplab; Roy, Anupam Singha; Manirul Islam, Sk; Kumar, Sanjay

    2013-12-02

    Assimilation of open metal sites (OMSs) and free functional organic sites (FOSs) with a framework strut has opened up a new route for the fabrication of novel metal-organic materials, thereby providing a unique opportunity to explore their multiple functionalities. A new metal-organic framework (MOF), {[Cu(ina)2(H2O)][Cu(ina)2(bipy)]·2H2O}n (1) (ina=isonicotinate, bipy=4,4'-bipyridine), has been synthesized and characterized. Complex 1 is crystallized in the orthorhombic noncentrosymmetric space group Aba2 and consists of two different 2D coordination polymers, [Cu(ina)2(H2O)]n and [Cu(ina)2(bipy)]n, with entrapped solvent water molecules. Hydrogen-bonding interactions assemble these two different 2D coordination layers in a single-crystal structure with interdigitation of pendant 4,4'-bipy from one layer into the groove of another. Upon removal of guest molecules, 1 undergoes a structural transformation in single-crystal-to-single-crystal fashion with expansion of the effective void space. Each metal center is five-coordinated and thus can potentially behave as an OMS, and the free pyridyl groups of pendant 4,4'-bipy moieties and free -C=O groups can act as free FOSs. Thus, owing to presence of both OMSs and free FOSs, the framework exhibits multifunctional properties. Owing to the presence of OMSs, the framework can act as a Lewis acid catalyst as well as a small-molecule sensor material, and in a similar way, owing to the presence of free FOSs, it performs as a Lewis base catalyst and a cation sensor material. Furthermore, owing to noncentrosymmetry with large polarity along a particular direction, it shows strong second-harmonic generation/nonlinear optical (SHG-NLO) activity.

  20. Thioredoxin binding site of phosphoribulokinase overlaps the catalytic site. [R

    SciTech Connect

    Porter, M.A.; Hartman, F.C.

    1986-01-01

    The ATP-regulatory binding site of phosphoribulokinase was studied using bromoacetylethanolamine phosphate (BrAcNHEtOP). BrAcNHEtOP binds to the active-regulatory binding site of the protein. Following trypsin degradation of the labeled protein, fragments were separated by HPLC and sequenced. (DT)

  1. Active-Site Models for the Nickel-Iron Hydrogenases: Effects of Ligands on Reactivity and Catalytic Properties

    PubMed Central

    Carroll, Maria E.; Barton, Bryan E.; Gray, Danielle L.; Mack, Amanda E.; Rauchfuss, Thomas B.

    2011-01-01

    Described are new derivatives of the type [HNiFe(SR)2(diphosphine)(CO)3]+, which feature a Ni(diphosphine) group linked to a Fe(CO)3 group via two bridging thiolate ligands. Previous work had described [HNiFe(pdt)(dppe)(CO)3]+ ([1H]+) and its activity as a catalyst for the reduction of protons. Work described in this paper focused on the effects of the diphosphine attached to nickel as well as the dithiolate bridge, 1,3-propanedithiolate (pdt) vs 1,2-ethanedithiolate (edt). A new synthetic route to these Ni-Fe dithiolates is described, involving reaction of Ni(SR)2(diphosphine) with FeI2(CO)4 followed by in situ reduction with cobaltocene. Evidence is presented that this route proceeds via metastable μ-iodo derivatives. Attempted isolation of such species led to the crystallization of NiFe(Me2pdt)(dppe)I2, which features tetrahedral Fe(II) and square planar Ni(II) centers (Me2pdt = 2,2-dimethylpropanedithiol). The new tricarbonyls prepared in this work are NiFe(pdt)(dcpe)(CO)3 (2, dcpe = 1,2-bis(dicyclohexylphosphino)ethane), NiFe(edt)(dppe)(CO)3 (3), and NiFe(edt)(dcpe)(CO)3 (4). Attempted preparation of a phenylthiolate-bridged complex via the FeI2(CO)4 + Ni(SPh)2(dppe) route gave the tetrametallic species [(CO)2Fe(SPh)2Ni(CO)]2(μ-dppe)2. Crystallographic analysis of the edt-dcpe compund [2H]BF4 and the edt-dppe compound [3H]BF4 verified their close resemblance. Each features pseudo-octahedral Fe and square pyramidal Ni centers. Starting from [4H]BF4 we prepared the PPh3 derivative [HNiFe(edt)(dppe)(PPh3)(CO)2]BF4 ([5H]BF4), which was obtained as a ~2:1 mixture of unsymmetrical and symmetrical isomers. Acid-base measurements indicate that changing from Ni(dppe) to Ni(dcpe) decreases the acidity of the cationic hydride complexes by 2.5 pKaMeCN units, from ~11 to ~13.5 (previous work showed that substitution at Fe leads to more dramatic effects). The redox potentials are more strongly affected by the change from dppe to dcpe, for example the [2]0/+ couple occurs

  2. Computationally designed variants of Escherichia coli chorismate mutase show altered catalytic activity.

    PubMed

    Lassila, Jonathan Kyle; Keeffe, Jennifer R; Oelschlaeger, Peter; Mayo, Stephen L

    2005-04-01

    Computational protein design methods were used to predict five variants of monofunctional Escherichia coli chorismate mutase expected to maintain catalytic activity. The variants were tested experimentally and three active site mutants exhibited catalytic activity similar to or greater than the wild-type enzyme. One mutant, Ala32Ser, showed increased catalytic efficiency.

  3. Looking at enzymes from the inside out: the proximity of catalytic residues to the molecular centroid can be used for detection of active sites and enzyme-ligand interfaces.

    PubMed

    Ben-Shimon, Avraham; Eisenstein, Miriam

    2005-08-12

    Analysis of the distances of the exposed residues in 175 enzymes from the centroids of the molecules indicates that catalytic residues are very often found among the 5% of residues closest to the enzyme centroid. This property of catalytic residues is implemented in a new prediction algorithm (named EnSite) for locating the active sites of enzymes and in a new scheme for re-ranking enzyme-ligand docking solutions. EnSite examines only 5% of the molecular surface (represented by surface dots) that is closest to the centroid, identifying continuous surface segments and ranking them by their area size. EnSite ranks the correct prediction 1-4 in 97% of the cases in a dataset of 65 monomeric enzymes (rank 1 for 89% of the cases) and in 86% of the cases in a dataset of 176 monomeric and multimeric enzymes from all six top-level enzyme classifications (rank 1 in 74% of the cases). Importantly, identification of buried or flat active sites is straightforward because EnSite "looks" at the molecular surface from the inside out. Detailed examination of the results indicates that the proximity of the catalytic residues to the centroid is a property of the functional unit, defined as the assembly of domains or chains that form the active site (in most cases the functional unit corresponds to a single whole polypeptide chain). Using the functional unit in the prediction further improves the results. The new property of active sites is also used for re-evaluating enzyme-inhibitor unbound docking results. Sorting the docking solutions by the distance of the interface to the centroid of the enzyme improves remarkably the ranks of nearly correct solutions compared to ranks based on geometric-electrostatic-hydrophobic complementarity scores.

  4. Atomic-scale assembly of a heterogeneous catalytic site.

    PubMed

    Han, Patrick; Axnanda, Stephanus; Lyubinetsky, Igor; Goodman, D Wayne

    2007-11-21

    The distance between surface Pd atoms has been shown to control the catalytic formation of vinyl acetate from ethylene and acetic acid by AuPd catalysts. Here, we use the bulk alloy's thermodynamic properties, as well as the surface lattice spacing of a AuPd(100) alloy single-crystal model catalyst to control and optimize the concentration of the active site (Pd atom pairs at a specific Pd-Pd distance with Au nearest-neighbors). Scanning tunneling microscopy reveals that sample annealing has a direct effect on the surface Pd arrangements: short-range order preferentially forms Pd pairs located in the c(2 x 2) sites, which are known to be optimal for vinyl acetate synthesis. This effect could be harnessed for future industrial catalyst design.

  5. Structure of the catalytic chain of Methanococcus jannaschii aspartate transcarbamoylase in a hexagonal crystal form: Insights into the path of carbamoyl phosphate to the active site of the enzyme

    SciTech Connect

    Vitali J.; Soares A.; Singh, A. K.; Colaneri, M. J.

    2012-05-01

    Crystals of the catalytic chain of Methanococcus jannaschii aspartate transcarbamoylase (ATCase) grew in the presence of the regulatory chain in the hexagonal space group P6{sub 3}22, with one monomer per asymmetric unit. This is the first time that crystals with only one monomer in the asymmetric unit have been obtained; all known structures of the catalytic subunit contain several crystallographically independent monomers. The symmetry-related chains form the staggered dimer of trimers observed in the other known structures of the catalytic subunit. The central channel of the catalytic subunit contains a sulfate ion and a K{sup +} ion as well as a glycerol molecule at its entrance. It is possible that it is involved in channeling carbamoyl phosphate (CP) to the active site of the enzyme. A second sulfate ion near Arg164 is near the second CP position in the wild-type Escherichia coli ATCase structure complexed with CP. It is suggested that this position may also be in the path that CP takes when binding to the active site in a partial diffusion process at 310 K. Additional biochemical studies of carbamoylation and the molecular organization of this enzyme in M. jannaschii will provide further insight into these points.

  6. A Phosphoenzyme Mimic, Overlapping Catalytic Sites and Reaction Coordinate Motion for Human NAMPT

    SciTech Connect

    Burgos, E.; Ho, M; Almo, S; Schramm, V

    2009-01-01

    Nicotinamide phosphoribosyltransferase (NAMPT) is highly evolved to capture nicotinamide (NAM) and replenish the nicotinamide adenine dinucleotide (NAD+) pool during ADP-ribosylation and transferase reactions. ATP-phosphorylation of an active-site histidine causes catalytic activation, increasing NAM affinity by 160,000. Crystal structures of NAMPT with catalytic site ligands identify the phosphorylation site, establish its role in catalysis, demonstrate unique overlapping ATP and phosphoribosyltransferase sites, and establish reaction coordinate motion. NAMPT structures with beryllium fluoride indicate a covalent H247-BeF3- as the phosphohistidine mimic. Activation of NAMPT by H247-phosphorylation causes stabilization of the enzyme-phosphoribosylpyrophosphate complex, permitting efficient capture of NAM. Reactant and product structures establish reaction coordinate motion for NAMPT to be migration of the ribosyl anomeric carbon from the pyrophosphate leaving group to the nicotinamide-N1 while the 5-phosphoryl group, the pyrophosphate moiety, and the nicotinamide ring remain fixed in the catalytic site.

  7. A phosphoenzyme mimic, overlapping catalytic sites and reaction coordinate motion for human NAMPT

    PubMed Central

    Burgos, Emmanuel S.; Ho, Meng-Chiao; Almo, Steven C.; Schramm, Vern L.

    2009-01-01

    Nicotinamide phosphoribosyltransferase (NAMPT) is highly evolved to capture nicotinamide (NAM) and replenish the nicotinamide adenine dinucleotide (NAD+) pool during ADP-ribosylation and transferase reactions. ATP-phosphorylation of an active-site histidine causes catalytic activation, increasing NAM affinity by 160,000. Crystal structures of NAMPT with catalytic site ligands identify the phosphorylation site, establish its role in catalysis, demonstrate unique overlapping ATP and phosphoribosyltransferase sites, and establish reaction coordinate motion. NAMPT structures with beryllium fluoride indicate a covalent H247-BeF3− as the phosphohistidine mimic. Activation of NAMPT by H247-phosphorylation causes stabilization of the enzyme-phosphoribosylpyrophosphate complex, permitting efficient capture of NAM. Reactant and product structures establish reaction coordinate motion for NAMPT to be migration of the ribosyl anomeric carbon from the pyrophosphate leaving group to the nicotinamide-N1 while the 5-phosphoryl group, the pyrophosphate moiety, and the nicotinamide ring remain fixed in the catalytic site. PMID:19666527

  8. The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis.

    PubMed

    Azurmendi, Hugo F; Wang, Susan C; Massiah, Michael A; Poelarends, Gerrit J; Whitman, Christian P; Mildvan, Albert S

    2004-04-13

    trans-3-Chloroacrylic acid dehalogenase (CaaD) converts trans-3-chloroacrylic acid to malonate semialdehyde by the addition of H(2)O to the C-2, C-3 double bond, followed by the loss of HCl from the C-3 position. Sequence similarity between CaaD, an (alphabeta)(3) heterohexamer (molecular weight 47,547), and 4-oxalocrotonate tautomerase (4-OT), an (alpha)(6) homohexamer, distinguishes CaaD from those hydrolytic dehalogenases that form alkyl-enzyme intermediates. The recently solved X-ray structure of CaaD demonstrates that betaPro-1 (i.e., Pro-1 of the beta subunit), alphaArg-8, alphaArg-11, and alphaGlu-52 are at or near the active site, and the >or=10(3.4)-fold decreases in k(cat) on mutating these residues implicate them as mechanistically important. The effect of pH on k(cat)/K(m) indicates a catalytic base with a pK(a) of 7.6 and an acid with a pK(a) of 9.2. NMR titration of (15)N-labeled wild-type CaaD yielded pK(a) values of 9.3 and 11.1 for the N-terminal prolines, while the fully active but unstable alphaP1A mutant showed a pK(a) of 9.7 (for the betaPro-1), implicating betaPro-1 as the acid catalyst, which may protonate C-2 of the substrate. These results provide the first evidence for an amino-terminal proline, conserved in all known tautomerase superfamily members, functioning as a general acid, rather than as a general base as in 4-OT. Hence, a reasonable candidate for the general base in CaaD is the active site residue alphaGlu-52. CaaD has 10 arginine residues, six in the alpha-subunit (Arg-8, Arg-11, Arg-17, Arg-25, Arg-35, and Arg-43), and four in the beta-subunit (Arg-15, Arg-21, Arg-55, and Arg-65). (1)H-(15)N-heteronuclear single quantum coherence (HSQC) spectra of CaaD showed seven to nine Arg-NepsilonH resonances (denoted R(A) to R(I)) depending on the protein concentration and pH. One of these signals (R(D)) disappeared in the spectrum of the largely inactive alphaR11A mutant (deltaH = 7.11 ppm, deltaN = 89.5 ppm), and another one (R

  9. Lanthanide Metal-Organic Frameworks with Six-Coordinated Ln(III) Ions and Free Functional Organic Sites for Adsorptions and Extensive Catalytic Activities

    PubMed Central

    Zhu, Yu; Zhu, Min; Xia, Li; Wu, Yunlong; Hua, Hui; Xie, Jimin

    2016-01-01

    Three chelating-amino-functionalized lanthanide metal-organic frameworks, Y-DDQ, Dy-DDQ and Eu-DDQ, were synthesized with a flexible dicarboxylate ligand based on quinoxaline (H2DDQ = N, N′-dibenzoic acid-2,3-diaminoquinoxaline). The three-dimensional framework is constructed by the H2DDQ linkers connecting the zigzag ladders, showing a net of sra topology. In the structures, one kind of Ln(III) ions metal centers are six-coordinated and thus can potentially behave as open metal sites (OMSs), while the free chelating amino groups can act as free functional organic sites (FOSs). The N2 and Ar adsorption behaviors indicate that these Ln-DDQ exhibits stable microporous frameworks with high surface area after remove of the solvents. Owing to presence of OMSs and FOSs, these MOFs show good ability of CO2, dyes captures and Lewis acid catalyst for cyanosilylation reaction. In view of the existing FOSs in the framework, Pd NPs were immobilized onto the MOFs through graft interactions between free chelating amino groups and metal ions precursor using postsynthetic modification. The well dispersed Pd@Ln-DDQs exhibit efficient and recyclable catalytic reduction of 4-nitrophenol to 4-aminophenol, and they can also act as an excellent catalyst for Suzuki-Miyaura cross-coupling reactions with the exposed Pd NPs. PMID:27431731

  10. Lanthanide Metal-Organic Frameworks with Six-Coordinated Ln(III) Ions and Free Functional Organic Sites for Adsorptions and Extensive Catalytic Activities

    NASA Astrophysics Data System (ADS)

    Zhu, Yu; Zhu, Min; Xia, Li; Wu, Yunlong; Hua, Hui; Xie, Jimin

    2016-07-01

    Three chelating-amino-functionalized lanthanide metal-organic frameworks, Y-DDQ, Dy-DDQ and Eu-DDQ, were synthesized with a flexible dicarboxylate ligand based on quinoxaline (H2DDQ = N, N‧-dibenzoic acid-2,3-diaminoquinoxaline). The three-dimensional framework is constructed by the H2DDQ linkers connecting the zigzag ladders, showing a net of sra topology. In the structures, one kind of Ln(III) ions metal centers are six-coordinated and thus can potentially behave as open metal sites (OMSs), while the free chelating amino groups can act as free functional organic sites (FOSs). The N2 and Ar adsorption behaviors indicate that these Ln-DDQ exhibits stable microporous frameworks with high surface area after remove of the solvents. Owing to presence of OMSs and FOSs, these MOFs show good ability of CO2, dyes captures and Lewis acid catalyst for cyanosilylation reaction. In view of the existing FOSs in the framework, Pd NPs were immobilized onto the MOFs through graft interactions between free chelating amino groups and metal ions precursor using postsynthetic modification. The well dispersed Pd@Ln-DDQs exhibit efficient and recyclable catalytic reduction of 4-nitrophenol to 4-aminophenol, and they can also act as an excellent catalyst for Suzuki-Miyaura cross-coupling reactions with the exposed Pd NPs.

  11. Heterolytic Activation of C-H Bonds on Cr(III)-O Surface Sites Is a Key Step in Catalytic Polymerization of Ethylene and Dehydrogenation of Propane.

    PubMed

    Conley, Matthew P; Delley, Murielle F; Núñez-Zarur, Francisco; Comas-Vives, Aleix; Copéret, Christophe

    2015-06-01

    We describe the reactivity of well-defined chromium silicates toward ethylene and propane. The initial motivation for this study was to obtain a molecular understanding of the Phillips polymerization catalyst. The Phillips catalyst contains reduced chromium sites on silica and catalyzes the polymerization of ethylene without activators or a preformed Cr-C bond. Cr(II) sites are commonly proposed active sites in this catalyst. We synthesized and characterized well-defined chromium(II) silicates and found that these materials, slightly contaminated with a minor amount of Cr(III) sites, have poor polymerization activity and few active sites. In contrast, chromium(III) silicates have 1 order of magnitude higher activity. The chromium(III) silicates initiate polymerization by the activation of a C-H bond of ethylene. Density functional theory analysis of this process showed that the C-H bond activation step is heterolytic and corresponds to a σ-bond metathesis type process. The same well-defined chromium(III) silicate catalyzes the dehydrogenation of propane at elevated temperatures with activities similar to those of a related industrial chromium-based catalyst. This reaction also involves a key heterolytic C-H bond activation step similar to that described for ethylene but with a significantly higher energy barrier. The higher energy barrier is consistent with the higher pKa of the C-H bond in propane compared to the C-H bond in ethylene. In both cases, the rate-determining step is the heterolytic C-H bond activation.

  12. Glycosyltransfer in mutants of putative catalytic residue Glu303 of the human ABO(H) A and B blood group glycosyltransferases GTA and GTB proceeds through a labile active site.

    PubMed

    Blackler, Ryan J; Gagnon, Susannah M L; Polakowski, Robert; Rose, Natisha L; Zheng, Ruixiang B; Letts, James A; Johal, Asha R; Schuman, Brock; Borisova, Svetlana N; Palcic, Monica M; Evans, Stephen V

    2016-11-22

    The homologous glycosyltransferases α-1,3-N-acetylgalactosaminyltransferase (GTA) and α-1,3-galactosyltransferase (GTB) carry out the final synthetic step of the closely related human ABO(H) blood group A and B antigens. The catalytic mechanism of these model retaining enzymes remains under debate, where Glu303 has been suggested to act as a putative nucleophile in a double displacement mechanism, a local dipole stabilizing the intermediate in an orthogonal associative mechanism or a general base to stabilize the reactive oxocarbenium ion-like intermediate in an S N i-like mechanism. Kinetic analysis of GTA and GTB point mutants E303C, E303D, E303Q and E303A shows that despite the enzymes having nearly identical sequences, the corresponding mutants of GTA/GTB have up to a 13-fold difference in their residual activities relative to wild type. High-resolution single crystal X-ray diffraction studies reveal, surprisingly, that the mutated Cys, Asp and Gln functional groups are no more than 0.8 Å further from the anomeric carbon of donor substrate compared to wild type. However, complicating the analysis is the observation that Glu303 itself plays a critical role in maintaining the stability of a strained "double-turn" in the active site through several hydrogen bonds, and any mutation other than E303Q leads to significantly higher thermal motion or even disorder in the substrate recognition pockets. Thus, there is a remarkable juxtaposition of the mutants E303C and E303D, which retain significant activity despite disrupted active site architecture, with GTB/E303Q, which maintains active site architecture but exhibits zero activity. These findings indicate that nucleophilicity at position 303 is more catalytically valuable than active site stability and highlight the mechanistic elasticity of these enzymes.

  13. Treatment of activated carbon to enhance catalytic activity for reduction of nitric oxide with ammonia

    SciTech Connect

    Ku, B.J.; Rhee, H.K. . Dept. of Chemical Engineering); Lee, J.K.; Park, D. )

    1994-11-01

    Catalytic activity of activated carbon treated with various techniques was examined in a fixed bed reactor for the reduction of nitric oxide with ammonia at 150 C. Activated carbon derived from coconut shell impregnated with an aqueous solution of ammonium sulfate, further treated with sulfuric acid, dried at 120 C, and then heated in an inert gas stream at 400 C, showed the highest catalytic activity within the range of experimental conditions. The enhancement of catalytic activity of modified activated carbon could be attributed to the increase in the amount of oxygen function groups which increased the adsorption site for ammonia. Catalytic activity of activated carbons depended on the surface area and the oxygen content as well.

  14. EGFR kinase possesses a broad specificity for ErbB phosphorylation sites, and ligand increases catalytic-centre activity without affecting substrate binding affinity

    PubMed Central

    2005-01-01

    We previously found that EGF (epidermal growth factor) increases the EGFR (EGF receptor) kinase-binding affinity towards the major tyrosine phosphorylation sites in downstream adaptor proteins such as Gab1 (Grb2-associated binding protein 1) and Shc [Src homology 2 (SH2) domain and collagen containing protein], but not that towards EGFR autophosphorylation sites [Fan, Wong, Deb and Johnson (2004) J. Biol. Chem. 279, 38143–38150]. EGFR activation can also result in transphosphorylation of tyrosine resides in the C-terminal region of the related receptors ErbB2, ErbB3 and ErbB4 in heterodimers which are formed upon ligand stimulation. In the present study, we investigated the specificity of EGFR kinase by comparing the steady state kinetic parameters for peptides derived from all four ErbBs in the absence or presence of EGF. Our results demonstrated that (i) EGFR kinase can efficiently phosphorylate a broad range of diverse peptide sequences representing ErbB sites; (ii) certain ErbB2, ErbB3 and ErbB4 sites had higher specificity constants than any EGFR sequence and (iii) EGF stimulation consistently increases the kcat approx. 5-fold, but does not significantly alter the Km for any ErbB peptides. Furthermore, peptides containing lysine at position −2 or −3 N-terminal to the target tyrosine were found to be poor EGFR kinase substrates, and substitution of these lysines with glutamine decreased the Km and increased the kcat for these substrates. We conclude that EGFR kinase-mediated ErbB transphosphorylations are mostly controlled at the level of oligomerization, and not by a preference of the EGFR kinase for phosphorylation sites in any particular ErbB. The results also demonstrated that, unlike phosphorylation sites in select downstream targets, EGF does not regulate the recognition of phosphorylation sites in the C-terminal region of any of the ErbBs. PMID:16122376

  15. Identification by nuclear magnetic resonance spectroscopy of an active-site hydrogen-bond network in human monoacylglycerol lipase (hMGL): implications for hMGL dynamics, pharmacological inhibition, and catalytic mechanism.

    PubMed

    Karageorgos, Ioannis; Tyukhtenko, Sergiy; Zvonok, Nikolai; Janero, David R; Sallum, Christine; Makriyannis, Alexandros

    2010-08-01

    Intramolecular hydrogen bonding is an important determinant of enzyme structure, catalysis, and inhibitor action. Monoacylglycerol lipase (MGL) modulates cannabinergic signaling as the main enzyme responsible for deactivating 2-arachidonoylglycerol (2-AG), a primary endocannabinoid lipid messenger. By enhancing tissue-protective 2-AG tone, targeted MGL inhibitors hold therapeutic promise for managing pain and treating inflammatory and neurodegenerative diseases. We report study of purified, solubilized human MGL (hMGL) to explore the details of hMGL catalysis by using two known covalent hMGL inhibitors, the carbamoyl tetrazole AM6701 and N-arachidonoylmaleimide (NAM), that act through distinct mechanisms. Using proton nuclear magnetic resonance spectroscopy (NMR) with purified wild-type and mutant hMGLs, we have directly observed a strong hydrogen-bond network involving Asp239 and His269 of the catalytic triad and neighboring Leu241 and Cys242 residues. hMGL inhibition by AM6701 alters this hydrogen-bonding pattern through subtle active-site structural rearrangements without influencing hydrogen-bond occupancies. Rapid carbamoylation of hMGL Ser122 by AM6701 and elimination of the leaving group is followed by a slow hydrolysis of the carbamate group, ultimately regenerating catalytically competent hMGL. In contrast, hMGL titration with NAM, which leads to cysteine alkylation, stoichiometrically decreases the population of the active-site hydrogen bonds. NAM prevents reformation of this network, and in this manner inhibits hMGL irreversibly. These data provide detailed molecular insight into the distinctive mechanisms of two covalent hMGL inhibitors and implicate a hydrogen-bond network as a structural feature of hMGL catalytic function.

  16. Functional dissection of the N-terminal sequence of Clostridium sp. G0005 glucoamylase: identification of components critical for folding the catalytic domain and for constructing the active site structure.

    PubMed

    Sakaguchi, Masayoshi; Matsushima, Yudai; Nagamine, Yusuke; Matsuhashi, Tomoki; Honda, Shotaro; Okuda, Shoi; Ohno, Misa; Sugahara, Yasusato; Shin, Yongchol; Oyama, Fumitaka; Kawakita, Masao

    2017-03-01

    Clostridium sp. G0005 glucoamylase (CGA) is composed of a β-sandwich domain (BD), a linker, and a catalytic domain (CD). In the present study, CGA was expressed in Escherichia coli as inclusion bodies when the N-terminal region (39 amino acid residues) of the BD was truncated. To further elucidate the role of the N-terminal region of the BD, we constructed N-terminally truncated proteins (Δ19, Δ24, Δ29, and Δ34) and assessed their solubility and activity. Although all evaluated proteins were soluble, their hydrolytic activities toward maltotriose as a substrate varied: Δ19 and Δ24 were almost as active as CGA, but the activity of Δ29 was substantially lower, and Δ34 exhibited little hydrolytic activity. Subsequent truncation analysis of the N-terminal region sequence between residues 25 and 28 revealed that truncation of less than 26 residues did not affect CGA activity, whereas truncation of 26 or more residues resulted in a substantial loss of activity. Based on further site-directed mutagenesis and N-terminal sequence analysis, we concluded that the 26XaaXaaTrp28 sequence of CGA is important in exhibiting CGA activity. These results suggest that the N-terminal region of the BD in bacterial GAs may function not only in folding the protein into the correct structure but also in constructing a competent active site for catalyzing the hydrolytic reaction.

  17. Thermal Stabilization of Metal-Organic Framework-Derived Single-Site Catalytic Clusters through Nanocasting.

    PubMed

    Malonzo, Camille D; Shaker, Sammy M; Ren, Limin; Prinslow, Steven D; Platero-Prats, Ana E; Gallington, Leighanne C; Borycz, Joshua; Thompson, Anthony B; Wang, Timothy C; Farha, Omar K; Hupp, Joseph T; Lu, Connie C; Chapman, Karena W; Myers, Jason C; Penn, R Lee; Gagliardi, Laura; Tsapatsis, Michael; Stein, Andreas

    2016-03-02

    Metal-organic frameworks (MOFs) provide convenient systems for organizing high concentrations of single catalytic sites derived from metallic or oxo-metallic nodes. However, high-temperature processes cause agglomeration of these nodes, so that the single-site character and catalytic activity are lost. In this work, we present a simple nanocasting approach to provide a thermally stable secondary scaffold for MOF-based catalytic single sites, preventing their aggregation even after exposure to air at 600 °C. We describe the nanocasting of NU-1000, a MOF with 3 nm channels and Lewis-acidic oxozirconium clusters, with silica. By condensing tetramethylorthosilicate within the NU-1000 pores via a vapor-phase HCl treatment, a silica layer is created on the inner walls of NU-1000. This silica layer provides anchoring sites for the oxozirconium clusters in NU-1000 after the organic linkers are removed at high temperatures. Differential pair distribution functions obtained from synchrotron X-ray scattering confirmed that isolated oxozirconium clusters are maintained in the heated nanocast materials. Pyridine adsorption experiments and a glucose isomerization reaction demonstrate that the clusters remain accessible to reagents and maintain their acidic character and catalytic activity even after the nanocast materials have been heated to 500-600 °C in air. Density functional theory calculations show a correlation between the Lewis acidity of the oxozirconium clusters and their catalytic activity. The ability to produce MOF-derived materials that retain their catalytic properties after exposure to high temperatures makes nanocasting a useful technique for obtaining single-site catalysts suitable for high-temperature reactions.

  18. Detection of protein catalytic sites in the biomedical literature.

    PubMed

    Verspoor, Karin; Mackinlay, Andrew; Cohn, Judith D; Wall, Michael E

    2013-01-01

    This paper explores the application of text mining to the problem of detecting protein functional sites in the biomedical literature, and specifically considers the task of identifying catalytic sites in that literature. We provide strong evidence for the need for text mining techniques that address residue-level protein function annotation through an analysis of two corpora in terms of their coverage of curated data sources. We also explore the viability of building a text-based classifier for identifying protein functional sites, identifying the low coverage of curated data sources and the potential ambiguity of information about protein functional sites as challenges that must be addressed. Nevertheless we produce a simple classifier that achieves a reasonable ∼69% F-score on our full text silver corpus on the first attempt to address this classification task. The work has application in computational prediction of the functional significance of protein sites as well as in curation workflows for databases that capture this information.

  19. Glu311 and Arg337 Stabilize a Closed Active-site Conformation and Provide a Critical Catalytic Base and Countercation for Green Bioluminescence in Beetle Luciferases.

    PubMed

    Viviani, V R; Simões, A; Bevilaqua, V R; Gabriel, G V M; Arnoldi, F G C; Hirano, T

    2016-08-30

    Beetle luciferases elicit the emission of different bioluminescence colors from green to red. Whereas firefly luciferases emit yellow-green light and are pH-sensitive, undergoing a typical red-shift at acidic pH and higher temperatures and in the presence of divalent heavy metals, click beetle and railroadworm luciferases emit a wider range of colors from green to red but are pH-independent. Despite many decades of study, the structural determinants and mechanisms of bioluminescence colors and pH sensitivity remain enigmatic. Here, through modeling studies, site-directed mutagenesis, and spectral and kinetic studies using recombinant luciferases from the three main families of bioluminescent beetles that emit different colors of light (Macrolampis sp2 firefly, Phrixotrix hirtus railroadworm, and Pyrearinus termitilluminans click beetle), we investigated the role of E311 and R337 in bioluminescence color determination. All mutations of these residues in firefly luciferase produced red mutants, indicating that the preservation of opposite charges and the lengths of the side chains of E311 and R337 are essential for keeping a salt bridge that stabilizes a closed hydrophobic conformation favorable for green light emission. Kinetic studies indicate that residue R337 is important for binding luciferin and creating a positively charged environment around excited oxyluciferin phenolate. In Pyrearinus green-emitting luciferase, the R334A mutation causes a 27 nm red-shift, whereas in Phrixotrix red-emitting luciferase, the L334R mutation causes a blue-shift that is no longer affected by guanidine. These results provide compelling evidence that the presence of arginine at position 334 is essential for blue-shifting the emission spectra of most beetle luciferases. Therefore, residues E311 and R337 play both structural and catalytic roles in bioluminescence color determination, by stabilizing a closed hydrophobic conformation favorable for green light emission, and also

  20. Human holocarboxylase synthetase with a start site at methionine-58 is the predominant nuclear variant of this protein and has catalytic activity

    SciTech Connect

    Bao, Baolong; Wijeratne, Subhashinee S.K.; Rodriguez-Melendez, Rocio; Zempleni, Janos

    2011-08-19

    Highlights: {yields} Unambiguous evidence is provided that methionine-58 serves as an in-frame alternative translation site for holocarboxylase synthetase (HLCS58). {yields} Full-length HLCS and HLCS58 enter the nucleus, but HLCS58 is the predominant variant. {yields} HLCS58 has biological activity as biotin protein ligase. -- Abstract: Holocarboxylase synthetase (HLCS) catalyzes the covalent binding of biotin to both carboxylases in extranuclear structures and histones in cell nuclei, thereby mediating important roles in intermediary metabolism, gene regulation, and genome stability. HLCS has three putative translational start sites (methionine-1, -7, and -58), but lacks a strong nuclear localization sequence that would explain its participation in epigenetic events in the cell nucleus. Recent evidence suggests that small quantities of HLCS with a start site in methionine-58 (HLCS58) might be able to enter the nuclear compartment. We generated the following novel insights into HLCS biology. First, we generated a novel HLCS fusion protein vector to demonstrate that methionine-58 is a functional translation start site in human cells. Second, we used confocal microscopy and western blots to demonstrate that HLCS58 enters the cell nucleus in meaningful quantities, and that full-length HLCS localizes predominantly in the cytoplasm but may also enter the nucleus. Third, we produced recombinant HLCS58 to demonstrate its biological activity toward catalyzing the biotinylation of both carboxylases and histones. Collectively, these observations are consistent with roles of HLCS58 and full-length HLCS in nuclear events. We conclude this report by proposing a novel role for HLCS in epigenetic events, mediated by physical interactions between HLCS and other chromatin proteins as part of a larger multiprotein complex that mediates gene repression.

  1. Thimet oligopeptidase: site-directed mutagenesis disproves previous assumptions about the nature of the catalytic site.

    PubMed

    Chen, J M; Stevens, R A; Wray, P W; Rawlings, N D; Barrett, A J

    1998-09-11

    Zinc metallopeptidases that contain the His-Glu-Xaa-Xaa-His (HEXXH) motif generally have a third ligand of the metal ion that may be either a Glu residue (in clan MA) or a His residue (in clan MB) (Rawlings and Barrett (1995) Methods Enzymol. 248, 183-228). Thimet oligopeptidase has not yet been assigned to either clan, and both Glu and His residues have been proposed as the third ligand. We mutated candidate ligand residues in the recombinant enzyme and identified Glu, His and Asp residues that are important for catalytic activity and/or stability of the protein. However, neither of the Glu and His residues close to the HEXXH motif that have previously been suggested to be ligands is required for the binding of zinc. We conclude that thimet oligopeptidase is not a member of clan MA or clan MB and it is likely that the enzyme possesses a catalytic site and protein fold different from those identified in any metallopeptidase to date. The definitive identification of the third zinc ligand may well require the determination of the crystallographic structure of thimet oligopeptidase or one of its homologues.

  2. Method to produce catalytically active nanocomposite coatings

    DOEpatents

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2016-02-09

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  3. Tunable Molecular MoS2 Edge-Site Mimics for Catalytic Hydrogen Production.

    PubMed

    Garrett, Benjamin R; Polen, Shane M; Click, Kevin A; He, Mingfu; Huang, Zhongjie; Hadad, Christopher M; Wu, Yiying

    2016-04-18

    Molybdenum sulfides represent state-of-the-art, non-platinum electrocatalysts for the hydrogen evolution reaction (HER). According to the Sabatier principle, the hydrogen binding strength to the edge active sites should be neither too strong nor too weak. Therefore, it is of interest to develop a molecular motif that mimics the catalytic sites structurally and possesses tunable electronic properties that influence the hydrogen binding strength. Furthermore, molecular mimics will be important for providing mechanistic insight toward the HER with molybdenum sulfide catalysts. In this work, a modular method to tune the catalytic properties of the S-S bond in MoO(S2)2L2 complexes is described. We studied the homogeneous electrocatalytic hydrogen production performance metrics of three catalysts with different bipyridine substitutions. By varying the electron-donating abilities, we present the first demonstration of using the ligand to tune the catalytic properties of the S-S bond in molecular MoS2 edge-site mimics. This work can shed light on the relationship between the structure and electrocatalytic activity of molecular MoS2 catalysts and thus is of broad importance from catalytic hydrogen production to biological enzyme functions.

  4. Heterogeneous catalytic degradation of phenolic substrates: catalysts activity.

    PubMed

    Liotta, L F; Gruttadauria, M; Di Carlo, G; Perrini, G; Librando, V

    2009-03-15

    This review article explored the catalytic degradation of phenol and some phenols derivates by means of advanced oxidation processes (AOPs). Among them, only the heterogeneous catalyzed processes based on catalytic wet peroxide oxidation, catalytic ozonation and catalytic wet oxidation were reviewed. Also selected recent examples about heterogeneous photocatalytic AOPs will be presented. In details, the present review contains: (i) data concerning catalytic wet peroxide oxidation of phenolic compounds over metal-exchanged zeolites, hydrotalcites, metal-exchanged clays and resins. (ii) Use of cobalt-based catalysts, hydrotalcite-like compounds, active carbons in the catalytic ozonation process. (iii) Activity of transition metal oxides, active carbons and supported noble metals catalysts in the catalytic wet oxidation of phenol and acetic acid. The most relevant results in terms of catalytic activity for each class of catalysts were reported.

  5. How absorbed hydrogen affects the catalytic activity of transition metals.

    PubMed

    Aleksandrov, Hristiyan A; Kozlov, Sergey M; Schauermann, Swetlana; Vayssilov, Georgi N; Neyman, Konstantin M

    2014-12-01

    Heterogeneous catalysis is commonly governed by surface active sites. Yet, areas just below the surface can also influence catalytic activity, for instance, when fragmentation products of catalytic feeds penetrate into catalysts. In particular, H absorbed below the surface is required for certain hydrogenation reactions on metals. Herein, we show that a sufficient concentration of subsurface hydrogen, H(sub) , may either significantly increase or decrease the bond energy and the reactivity of the adsorbed hydrogen, H(ad) , depending on the metal. We predict a representative reaction, ethyl hydrogenation, to speed up on Pd and Pt, but to slow down on Ni and Rh in the presence of H(sub) , especially on metal nanoparticles. The identified effects of subsurface H on surface reactivity are indispensable for an atomistic understanding of hydrogenation processes on transition metals and interactions of hydrogen with metals in general.

  6. Catalytically Active Regenerative Sorbent beds (CARS) for airborne contaminants.

    PubMed

    Akse, J R; Thompson, J O

    1995-01-01

    The Pd on Al2O3 catalyst used in the projected Space Station's Trace Contaminant Control System (TCCS) catalytic oxidizer can be poisoned by volatile halogen-, sulfur-, and nitrogen-containing organic species. Catalytically Active Regenerable Sorbents (CARS) eliminate these problematic contaminants and the large carbon bed used for their elimination in a three-step process. Contaminants are conventionally adsorbed by the CARS bed. After saturation, the bed is connected to an off-line recirculation loop, filled with hydrogen, and then heated. At temperature, contaminants are hydrogenated on catalytic sites within the bed, forming simple alkanes and acid gases that are efficiently converted to innocuous salts in an in-line alkaline bed. The CARS bed is regenerated by this cycle and alkane gases are released to be safely oxidized in the catalytic oxidizer. A challenge mixture containing Freon-113, thiophene, trichloroethylene, Halon-1301, and dichloromethane at 1670, 75, 81, 68, and 83 mg/m3 was successfully treated using this technology, demonstrating the CARS feasibility.

  7. Structural Basis for Catalytic Activation of a Serine Recombinase

    SciTech Connect

    Keenholtz, Ross A.; Rowland, Sally-J.; Boocock, Martin R.; Stark, W. Marshall; Rice, Phoebe A.

    2014-10-02

    Sin resolvase is a site-specific serine recombinase that is normally controlled by a complex regulatory mechanism. A single mutation, Q115R, allows the enzyme to bypass the entire regulatory apparatus, such that no accessory proteins or DNA sites are required. Here, we present a 1.86 {angstrom} crystal structure of the Sin Q115R catalytic domain, in a tetrameric arrangement stabilized by an interaction between Arg115 residues on neighboring subunits. The subunits have undergone significant conformational changes from the inactive dimeric state previously reported. The structure provides a new high-resolution view of a serine recombinase active site that is apparently fully assembled, suggesting roles for the conserved active site residues. The structure also suggests how the dimer-tetramer transition is coupled to assembly of the active site. The tetramer is captured in a different rotational substate than that seen in previous hyperactive serine recombinase structures, and unbroken crossover site DNA can be readily modeled into its active sites.

  8. Long-range electrostatics-induced two-proton transfer captured by neutron crystallography in an enzyme catalytic site

    DOE PAGES

    Gerlits, Oksana; Wymore, Troy; Das, Amit; ...

    2016-03-09

    Neutron crystallography was used to directly locate two protons before and after a pH-induced two-proton transfer between catalytic aspartic acid residues and the hydroxy group of the bound clinical drug darunavir, located in the catalytic site of enzyme HIV-1 protease. The two-proton transfer is triggered by electrostatic effects arising from protonation state changes of surface residues far from the active site. The mechanism and pH effect are supported by quantum mechanics/molecular mechanics (QM/MM) calculations. The low-pH proton configuration in the catalytic site is deemed critical for the catalytic action of this enzyme and may apply more generally to other asparticmore » proteases. Neutrons therefore represent a superb probe to obtain structural details for proton transfer reactions in biological systems at a truly atomic level.« less

  9. Long-range electrostatics-induced two-proton transfer captured by neutron crystallography in an enzyme catalytic site

    SciTech Connect

    Gerlits, Oksana; Wymore, Troy; Das, Amit; Shen, Chen -Hsiang; Parks, Jerry M.; Smith, Jeremy C.; Weiss, Kevin L.; Keen, David A.; Blakeley, Matthew P.; Louis, John M.; Langan, Paul; Weber, Irene T.; Kovalevsky, Andrey

    2016-03-09

    Neutron crystallography was used to directly locate two protons before and after a pH-induced two-proton transfer between catalytic aspartic acid residues and the hydroxy group of the bound clinical drug darunavir, located in the catalytic site of enzyme HIV-1 protease. The two-proton transfer is triggered by electrostatic effects arising from protonation state changes of surface residues far from the active site. The mechanism and pH effect are supported by quantum mechanics/molecular mechanics (QM/MM) calculations. The low-pH proton configuration in the catalytic site is deemed critical for the catalytic action of this enzyme and may apply more generally to other aspartic proteases. Neutrons therefore represent a superb probe to obtain structural details for proton transfer reactions in biological systems at a truly atomic level.

  10. Moving metal ions through ferritin-protein nanocages from three-fold pores to catalytic sites.

    PubMed

    Tosha, Takehiko; Ng, Ho-Leung; Bhattasali, Onita; Alber, Tom; Theil, Elizabeth C

    2010-10-20

    Ferritin nanocages synthesize ferric oxide minerals, containing hundreds to thousands of Fe(III) diferric oxo/hydroxo complexes, by reactions of Fe(II) ions with O(2) at multiple di-iron catalytic centers. Ferric-oxy multimers, tetramers, and/or larger mineral nuclei form during postcatalytic transit through the protein cage, and mineral accretion occurs in the central cavity. We determined how Fe(II) substrates can access catalytic sites using frog M ferritins, active and inactivated by ligand substitution, crystallized with 2.0 M Mg(II) ± 0.1 M Co(II) for Co(II)-selective sites. Co(II) inhibited Fe(II) oxidation. High-resolution (<1.5 Å) crystal structures show (1) a line of metal ions, 15 Å long, which penetrates the cage and defines ion channels and internal pores to the nanocavity that link external pores to the cage interior, (2) metal ions near negatively charged residues at the channel exits and along the inner cavity surface that model Fe(II) transit to active sites, and (3) alternate side-chain conformations, absent in ferritins with catalysis eliminated by amino acid substitution, which support current models of protein dynamics and explain changes in Fe-Fe distances observed during catalysis. The new structural data identify a ∼27-Å path Fe(II) ions can follow through ferritin entry channels between external pores and the central cavity and along the cavity surface to the active sites where mineral synthesis begins. This "bucket brigade" for Fe(II) ion access to the ferritin catalytic sites not only increases understanding of biological nanomineral synthesis but also reveals unexpected design principles for protein cage-based catalysts and nanomaterials.

  11. Identification of the srtC1 Transcription Start Site and Catalytically Essential Residues Required for Actinomyces oris T14V SrtC1 Activity

    DTIC Science & Technology

    2011-07-27

    al., 1999, 2002; Frankel et al., 2007), Cys 193 in SrtC1 from Streptococcus pneumoniae (Manzano et al., 2008) and Cys 219 in SrtC1 from Group B...Sortase mediated pilus fiber biogenesis in Streptococcus pneumoniae . Structure 16: 1838 1848. Manzano C, Izore T, Job V, Di Guilmi AM & Dessen A... Streptococcus (Cozzi et al., 2011) are critical for each of their corresponding sortase activities. When two other residues (Leu263 and Thr265) in this

  12. Allosteric-Site and Catalytic-Site Ligand Effects on PDE5 Functions are Associated with Distinct Changes in Physical Form of the Enzyme

    PubMed Central

    Corbin, Jackie D.; Zoraghi, Roya; Francis, Sharron H.

    2009-01-01

    Native phosphodiesterase-5 (PDE5) homodimer contains distinct non-catalytic cGMP allosteric sites and catalytic sites for cGMP hydrolysis. Purified recombinant PDE5 was activated by pre-incubation with cGMP. Relatively low concentrations of cGMP produced a Native PAGE gel-shift of PDE5 from a single band position (lower band) to a band with decreased mobility (upper band); higher concentrations of cGMP produced a band of intermediate mobility (middle band) in addition to the upper band. Two point mutations (G659A and G659P) near the catalytic site that reduced affinity for cGMP substrate retained allosteric cGMP-binding affinity like that of WT PDE5 but displayed cGMP-induced gel-shift only to the middle-band position. The upper band could represent a form produced by cGMP binding to the catalytic site, while the middle band could represent a form produced by cGMP binding to the allosteric site. Millimolar cGMP was required for gel-shift of PDE5 when added to the pre-incubation before native PAGE, presumably due to removal of most of the cGMP during electrophoresis, but micromolar cGMP was sufficient for this effect if cGMP was included in the native gel buffer. cGMP-induced gel-shift was associated with stimulation of PDE5 catalytic activity, and the rates of onset and reversibility of this effect suggested that it was due to cGMP binding to the allosteric site. Incubation of PDE5 with non-hydrolyzable, catalytic site-specific, substrate analogs such as the inhibitors sildenafil and tadalafil, followed by dilution, did not produce activation of catalytic activity like that obtained with cGMP, although both inhibitors produced a similar gel-shift to the upper band as that obtained with cGMP. This implied that occupation of the catalytic site alone can produce a gel-shift to the upper band. PDE5 activation or gel-shift was reversed by lowering cGMP with dilution followed by at least one hour of incubation. Such slow reversibility could prolong effects of cGMP on PDE

  13. Identification of catalytically essential residues in Escherichia coli esterase by site-directed mutagenesis.

    PubMed

    Haruki, M; Oohashi, Y; Mizuguchi, S; Matsuo, Y; Morikawa, M; Kanaya, S

    1999-07-09

    Escherichia coli esterase (EcE) is a member of the hormone-sensitive lipase family. We have analyzed the roles of the conserved residues in this enzyme (His103, Glu128, Gly163, Asp164, Ser165, Gly167, Asp262, Asp266 and His292) by site-directed mutagenesis. Among them, Gly163, Asp164, Ser165, and Gly167 are the components of a G-D/E-S-A-G motif. We showed that Ser165, Asp262, and His292 are the active-site residues of the enzyme. We also showed that none of the other residues, except for Asp164, is critical for the enzymatic activity. The mutation of Asp164 to Ala dramatically reduced the catalytic efficiency of the enzyme by the factor of 10(4) without seriously affecting the substrate binding. This residue is probably structurally important to make the conformation of the active-site functional.

  14. Catalytic improvement and structural analysis of atrazine chlorohydrolase by site-saturation mutagenesis.

    PubMed

    Guo, Yuan; Zhao, Panjie; Zhang, Wenhao; Li, Xiaolong; Chen, Xiwen; Chen, Defu

    2016-07-01

    To improve the catalytic activity of atrazine chlorohydrolase (AtzA), amino acid residues involved in substrate binding (Gln71) and catalytic efficiency (Val12, Ile393, and Leu395) were targeted to generate site-saturation mutagenesis libraries. Seventeen variants were obtained through Haematococcus pluvialis-based screening, and their specific activities were 1.2-5.2-fold higher than that of the wild type. For these variants, Gln71 tended to be substituted by hydrophobic amino acids, Ile393 and Leu395 by polar ones, especially arginine, and Val12 by alanine, respectively. Q71R and Q71M significantly decreased the Km by enlarging the substrate-entry channel and affecting N-ethyl binding. Mutations at sites 393 and 395 significantly increased the kcat/Km, probably by improving the stability of the dual β-sheet domain and the whole enzyme, owing to hydrogen bond formation. In addition, the contradictory relationship between the substrate affinity improvement by Gln71 mutation and the catalytic efficiency improvement by the dual β-sheet domain modification was discussed.

  15. List 9 - Active CERCLIS Sites:

    EPA Pesticide Factsheets

    The List 9 displays the sequence of activities undertaken at active CERCLIS sites. An active site is one at which site assessment, removal, remedial, enforcement, cost recovery, or oversight activities are being planned or conducted.

  16. Catalytically active single-atom niobium in graphitic layers

    NASA Astrophysics Data System (ADS)

    Zhang, Xuefeng; Guo, Junjie; Guan, Pengfei; Liu, Chunjing; Huang, Hao; Xue, Fanghong; Dong, Xinglong; Pennycook, Stephen J.; Chisholm, Matthew F.

    2013-05-01

    Carbides of groups IV through VI (Ti, V and Cr groups) have long been proposed as substitutes for noble metal-based electrocatalysts in polymer electrolyte fuel cells. However, their catalytic activity has been extremely limited because of the low density and stability of catalytically active sites. Here we report the excellent performance of a niobium-carbon structure for catalysing the cathodic oxygen reduction reaction. A large number of single niobium atoms and ultra small clusters trapped in graphitic layers are directly identified using state-of-the-art aberration-corrected scanning transmission electron microscopy. This structure not only enhances the overall conductivity for accelerating the exchange of ions and electrons, but it suppresses the chemical/thermal coarsening of the active particles. Experimental results coupled with theory calculations reveal that the single niobium atoms incorporated within the graphitic layers produce a redistribution of d-band electrons and become surprisingly active for O2 adsorption and dissociation, and also exhibit high stability.

  17. Catalytic residues in hydrolases: analysis of methods designed for ligand-binding site prediction

    PubMed Central

    Jadczyk, Tomasz; Roterman, Irena

    2010-01-01

    The comparison of eight tools applicable to ligand-binding site prediction is presented. The methods examined cover three types of approaches: the geometrical (CASTp, PASS, Pocket-Finder), the physicochemical (Q-SiteFinder, FOD) and the knowledge-based (ConSurf, SuMo, WebFEATURE). The accuracy of predictions was measured in reference to the catalytic residues documented in the Catalytic Site Atlas. The test was performed on a set comprising selected chains of hydrolases. The results were analysed with regard to size, polarity, secondary structure, accessible solvent area of predicted sites as well as parameters commonly used in machine learning (F-measure, MCC). The relative accuracies of predictions are presented in the ROC space, allowing determination of the optimal methods by means of the ROC convex hull. Additionally the minimum expected cost analysis was performed. Both advantages and disadvantages of the eight methods are presented. Characterization of protein chains in respect to the level of difficulty in the active site prediction is introduced. The main reasons for failures are discussed. Overall, the best performance offers SuMo followed by FOD, while Pocket-Finder is the best method among the geometrical approaches. Electronic supplementary material The online version of this article (doi:10.1007/s10822-010-9402-0) contains supplementary material, which is available to authorized users. PMID:21104192

  18. Catalytic residues in hydrolases: analysis of methods designed for ligand-binding site prediction

    NASA Astrophysics Data System (ADS)

    Prymula, Katarzyna; Jadczyk, Tomasz; Roterman, Irena

    2011-02-01

    The comparison of eight tools applicable to ligand-binding site prediction is presented. The methods examined cover three types of approaches: the geometrical (CASTp, PASS, Pocket-Finder), the physicochemical (Q-SiteFinder, FOD) and the knowledge-based (ConSurf, SuMo, WebFEATURE). The accuracy of predictions was measured in reference to the catalytic residues documented in the Catalytic Site Atlas. The test was performed on a set comprising selected chains of hydrolases. The results were analysed with regard to size, polarity, secondary structure, accessible solvent area of predicted sites as well as parameters commonly used in machine learning (F-measure, MCC). The relative accuracies of predictions are presented in the ROC space, allowing determination of the optimal methods by means of the ROC convex hull. Additionally the minimum expected cost analysis was performed. Both advantages and disadvantages of the eight methods are presented. Characterization of protein chains in respect to the level of difficulty in the active site prediction is introduced. The main reasons for failures are discussed. Overall, the best performance offers SuMo followed by FOD, while Pocket-Finder is the best method among the geometrical approaches.

  19. Identification of the Catalytic Residue of Rat Acyl-CoA Dehydrogenase 9 by Site-Directed Mutagenesis.

    PubMed

    Zeng, Jia; Deng, Senwen; Wang, Yiping

    2017-01-13

    Acyl-CoA dehydrogenase 9 (ACAD 9) is the ninth member of ACADs involved in mitochondrial fatty acid oxidation and possibly complex I assembly. Sequence alignment suggested that Glu389 of rat ACAD 9 was highly conserved and located near the active center and might act as an important base for the dehydrogenation reaction. The role of Glu389 in the catalytic reaction was investigated by site-directed mutagenesis. Both wild-type and mutant ACAD 9 proteins were purified and their catalytic characterization was studied. When Glu389 was replaced by other residues, the enzyme activity could be lost to a large extent. Those results suggested that Glu389 could function as the catalytic base that abstracted the α-proton of the acyl-CoA substrate in a proposed catalytic mechanism.

  20. Glycosylation is crucial for a proper catalytic site organization in human glucocerebrosidase.

    PubMed

    Pol-Fachin, Laercio; Siebert, Marina; Verli, Hugo; Saraiva-Pereira, Maria Luiza

    2016-04-01

    Gaucher disease, an autosomal recessive disorder, is caused by a deficiency of glucocerebrosidase (GCase) enzyme, a peripheral membrane-associated glycoprotein that hydrolyses glucosylceramide in lysosomes. Glycosylation is essential for the development of a catalytically active enzyme, specifically in the first site, located at Asn19. However, both the molecular basis of the relevance of N-glycosylation over GCase activity and the effects of glycosylation over its structure and dynamics are still not fully understood. Thus, the present work evaluated GCase enzyme in increasing glycosylation content using triplicate unbiased molecular dynamics simulations. Accordingly, the N-linked glycan chains caused local conformational stabilization effects over the protein, as well as in regions flanking the enzyme catalytic dyad. In the case of the Asn19-linked glycan, it also occurred around region 438-444, where one of the most prevalent GCase mutations is found. Markedly, an increasing catalytic dyad organization was related to increasing glycosylation contents, offering the first atomic-level explanation for the experimental observation that GCase activity is controlled by glycosylation, especially at Asn19.

  1. Expression, purification, and characterization of a biologically active bovine enterokinase catalytic subunit in Escherichia coli.

    PubMed

    Yuan, Liu-Di; Hua, Zi-Chun

    2002-07-01

    Enterokinase (EC 3.4.21.9) is a serine proteinase in the duodenum that exhibits specificity for the sequence (Asp)(4)-Lys. It converts trypsinogen to trypsin. Its high specificity for the recognition site makes enterokinase (EK) a useful tool for in vitro cleavage of fusion proteins. cDNA encoding the catalytic chain of Chinese bovine enterokinase was cloned and its encoding amino acid sequence is identical to the previously reported sequence although there are two one-base mutations which do not change the encoded amino acid. The EK catalytic subunit cDNA was cloned into plasmid pET32a, and fused downstream to the fusion partner thioredoxin (Trx) and the following DDDDK enterokinase recognition sequence. The recombinant bovine enterokinase catalytic subunit was expressed in Escherichia coli BL21(DE3), and most products existed in soluble form. After an in vivo autocatalytic cleavage of the recombinant Trx-EK catalytic domain fusion protein, intact, biologically active EK catalytic subunit was released from the fusion protein. The recombinant intact EK catalytic subunit was purified to homogeneity with a specific activity of 720 AUs/mg protein through ammonium sulfate precipitation, DEAE chromatography, and gel filtration. The purified intact EK catalytic subunit has a K(m) of 0.17 mM, and K(cat) is 20.8s(-1). From 100 ml flask culture, 4.3 mg pure active EK catalytic subunits were obtained.

  2. Catalytic role of Cu sites of Cu/MCM-41 in phenol hydroxylation.

    PubMed

    Zhang, Guoying; Long, Jinlin; Wang, Xuxu; Zhang, Zizhong; Dai, Wenxin; Liu, Ping; Li, Zhaohui; Wu, Ling; Fu, Xianzhi

    2010-01-19

    Four types of copper-containing MCM-41 mesoporous silicas were synthesized by the surface organometallic chemistry (SOMC) procedure (Cu/MCM-41-S), mechanical mixing (Cu/MCM-41-M), impregnation (Cu/MCM-41-I), and the hydrothermal technique (Cu/MCM-41-H). The resultant samples were characterized in detail by X-ray diffraction (XRD), N(2) physical adsorption, transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), temperature-programmed reduction (TPR), and infrared spectroscopy (IR) of NO adsorption. Catalytic behaviors of these samples for hydroxylation of phenol with H(2)O(2) were evaluated. The results revealed that depending on the preparation methods the samples contain different copper-oxo species and thus show different catalytic behaviors. Among these samples, the one prepared by SOMC contains a predominant amount of isolated Cu(2+) and exhibits the most excellent catalytic activity and selectivity. The amount of isolated copper species decreases in the order of Cu/MCM-41-S > Cu/MCM-41-H > Cu/MCM-41-I > Cu/MCM-41-M, while the amount of copper oxide clusters increases in a reversal order. The difference in the catalytic activity and product selectivity of these four samples could be rationally explained by the distinction of chemical states of copper species. The highly dispersed isolated Cu(2+) species are identified as the active sites in the phenol hydroxylation, while the nonisolated Cu(2+) clusters or oxide are responsible for the deep oxidation of primary product HQ and the decrease of product selectivity. The mechanism of the copper-catalyzed phenol hydroxylation was proposed.

  3. Modeling the heterogeneous catalytic activity of a single nanoparticle using a first passage time distribution formalism

    NASA Astrophysics Data System (ADS)

    Das, Anusheela; Chaudhury, Srabanti

    2015-11-01

    Metal nanoparticles are heterogeneous catalysts and have a multitude of non-equivalent, catalytic sites on the nanoparticle surface. The product dissociation step in such reaction schemes can follow multiple pathways. Proposed here for the first time is a completely analytical theoretical framework, based on the first passage time distribution, that incorporates the effect of heterogeneity in nanoparticle catalysis explicitly by considering multiple, non-equivalent catalytic sites on the nanoparticle surface. Our results show that in nanoparticle catalysis, the effect of dynamic disorder is manifested even at limiting substrate concentrations in contrast to an enzyme that has only one well-defined active site.

  4. Probes of the Catalytic Site of Cysteine Dioxygenase

    SciTech Connect

    Chai,S.; Bruyere, J.; Maroney, M.

    2006-01-01

    The first major step of cysteine catabolism, the oxidation of cysteine to cysteine sulfinic acid, is catalyzed by cysteine dioxygenase (CDO). In the present work, we utilize recombinant rat liver CDO and cysteine derivatives to elucidate structural parameters involved in substrate recognition and x-ray absorption spectroscopy to probe the interaction of the active site iron center with cysteine. Kinetic studies using cysteine structural analogs show that most are inhibitors and that a terminal functional group bearing a negative charge (e.g. a carboxylate) is required for binding. The substrate-binding site has no stringent restrictions with respect to the size of the amino acid. Lack of the amino or carboxyl groups at the a-carbon does not prevent the molecules from interacting with the active site. In fact, cysteamine is shown to be a potent activator of the enzyme without being a substrate. CDO was also rendered inactive upon complexation with the metal-binding inhibitors azide and cyanide. Unlike many non-heme iron dioxygenases that employ a-keto acids as cofactors, CDO was shown to be the only dioxygenase known to be inhibited by {alpha}-ketoglutarate.

  5. Toward Understanding the Catalytic Mechanism of Human Paraoxonase 1: Site-Specific Mutagenesis at Position 192

    PubMed Central

    Aggarwal, Geetika; Prajapati, Rameshwar; Tripathy, Rajan K.; Bajaj, Priyanka; Iyengar, A. R. Satvik; Sangamwar, Abhay T.; Pande, Abhay H.

    2016-01-01

    Human paraoxonase 1 (h-PON1) is a serum enzyme that can hydrolyze a variety of substrates. The enzyme exhibits anti-inflammatory, anti-oxidative, anti-atherogenic, anti-diabetic, anti-microbial and organophosphate-hydrolyzing activities. Thus, h-PON1 is a strong candidate for the development of therapeutic intervention against a variety conditions in human. However, the crystal structure of h-PON1 is not solved and the molecular details of how the enzyme hydrolyzes different substrates are not clear yet. Understanding the catalytic mechanism(s) of h-PON1 is important in developing the enzyme for therapeutic use. Literature suggests that R/Q polymorphism at position 192 in h-PON1 dramatically modulates the substrate specificity of the enzyme. In order to understand the role of the amino acid residue at position 192 of h-PON1 in its various hydrolytic activities, site-specific mutagenesis at position 192 was done in this study. The mutant enzymes were produced using Escherichia coli expression system and their hydrolytic activities were compared against a panel of substrates. Molecular dynamics simulation studies were employed on selected recombinant h-PON1 (rh-PON1) mutants to understand the effect of amino acid substitutions at position 192 on the structural features of the active site of the enzyme. Our results suggest that, depending on the type of substrate, presence of a particular amino acid residue at position 192 differentially alters the micro-environment of the active site of the enzyme resulting in the engagement of different subsets of amino acid residues in the binding and the processing of substrates. The result advances our understanding of the catalytic mechanism of h-PON1. PMID:26829396

  6. Catalytic activities of zeolite compounds for decomposing aqueous ozone.

    PubMed

    Kusuda, Ai; Kitayama, Mikito; Ohta, Yoshio

    2013-12-01

    The advanced oxidation process (AOP), chemical oxidation using aqueous ozone in the presence of appropriate catalysts to generate highly reactive oxygen species, offers an attractive option for removing poorly biodegradable pollutants. Using the commercial zeolite powders with various Si/Al ratios and crystal structures, their catalytic activities for decomposing aqueous ozone were evaluated by continuously flowing ozone to water containing the zeolite powders. The hydrophilic zeolites (low Si/Al ratio) with alkali cations in the crystal structures were found to possess high catalytic activity for decomposing aqueous ozone. The hydrophobic zeolite compounds (high Si/Al ratio) were found to absorb ozone very well, but to have no catalytic activity for decomposing aqueous ozone. Their catalytic activities were also evaluated by using the fixed bed column method. When alkali cations were removed by acid rinsing or substituted by alkali-earth cations, the catalytic activities was significantly deteriorated. These results suggest that the metal cations on the crystal surface of the hydrophilic zeolite would play a key role for catalytic activity for decomposing aqueous ozone.

  7. Slow inactivation of ribulosebisphosphate carboxylase during catalysis is not due to decarbamylation of the catalytic site

    SciTech Connect

    Edmondson, D.L.; Badger, M.R.; Andrews, T.J. )

    1990-08-01

    An investigation was made of the proposal that the slow inactivation of ribulosebisphosphate carboxylase (Rubisco) activity, which occurs during in vitro assays, is due to decarbamylation of the enzyme. The level of carbamylation was compared with catalytic activity during assay conditions in which activity was both increasing and decreasing. A dual isotope procedure was used in which ({sup 3}H)carboxyarabinitol-P{sub 2} measured total active sites and {sup 14}CO{sub 2} reported the level of carbamylation. The efficacy of the procedure was verified both in the presence and in the absence of the substrate D-ribulose-1,5-bisphosphate (ribulose-P{sub 2}). These measurements showed that changes in activity during assays were not correlated with carbamylation status. Inactivation during assays initiated with both fully and partially carbamylated enzyme was not associated with any change in carbamylation level. This implies that the loss of activity during assays is not due to ribulose-P{sub 2} binding and sequestering the E form of the enzyme. Ribulose-P{sub 2} did not appear to alter the equilibrium between carbamylated and uncarbamylated enzyme, but it did slow the rate at which enzyme was both decarbamylated and carbamylated. The most likely explanation for the loss of activity during assays appears to be the sequestration of carbamylated, Mg{sup 2+}-bound active sites by an inhibitor.

  8. Evidence that the catalytic activity of prokaryote leader peptidase depends upon the operation of a serine-lysine catalytic dyad.

    PubMed Central

    Black, M T

    1993-01-01

    Leader peptidase (LP) is the enzyme responsible for proteolytic cleavage of the amino acid leader sequence from bacterial preproteins. Recent data indicate that LP may be an unusual serine proteinase which operates without involvement of a histidine residue (M. T. Black, J. G. R. Munn, and A. E. Allsop, Biochem. J. 282:539-543, 1992; M. Sung and R. E. Dalbey, J. Biol. Chem. 267:13154-13159, 1992) and that, therefore, one or more alternative residues must perform the function of a catalytic base. With the aid of sequence alignments, site-specific mutagenesis of the gene encoding LP (lepB) from Escherichia coli has been employed to investigate the mechanism of action of the enzyme. Various mutant forms of plasmid-borne LP were tested for their abilities to complement the temperature-sensitive activity of LP in E. coli IT41. Data are presented which indicate that the only conserved amino acid residue possessing a side chain with the potential to ionize, and therefore with the potential to transfer protons, which cannot be substituted with a neutral side chain is lysine at position 145. The data suggest that the catalytic activity of LP is dependent on the operation of a serine-lysine catalytic dyad. Images PMID:8394311

  9. Improving the catalytic efficiency of Bacillus pumilus CotA-laccase by site-directed mutagenesis.

    PubMed

    Chen, Yu; Luo, Quan; Zhou, Wen; Xie, Zeng; Cai, Yu-Jie; Liao, Xiang-Ru; Guan, Zheng-Bing

    2017-03-01

    Bacterial laccases are potential enzymes for biotechnological applications because of their remarkable advantages, such as broad substrate spectrum, various reactions, high thermostability, wide pH range, and resistance to strongly alkaline environments. However, the use of bacterial laccases for industrialized applications is limited because of their low expression level and catalytic efficiency. In this study, CotA, a bacterial laccase from Bacillus pumilus, was engineered through presumptive reasoning and rational design approaches to overcome low catalytic efficiency and thermostability. L386W/G417L, a CotA double-mutant, was constructed through site-directed mutagenesis. The catalytic efficiency of L386W/G417L was 4.3 fold higher than that of wild-type CotA-laccase, but the thermostability of the former was decreased than that of the latter and other mutants. The half-life (t 1/2) of wild-type and G417L were 1.14 and 1.47 h, but the half-life of L386W/G417L was only 0.37 h when incubating the enzyme at 80 °C. Considering the high catalytic efficiency of L386W/G417L, we constructed L386W/G417L/G57F, another mutant, to improve thermostability. Results showed that the half-life of L386W/G417L/G57F was 0.54 h when incubating the enzyme at 90 °C for 2 h with about 34% residual activity, but the residual activity of L386W/G417L was less than 40% when incubating the enzyme at 90 °C for 5 min. L386W/G417L was more efficient in decolorizing various industrial dyes at pH 10 than other mutants. L386W/G417L/G57F also exhibited an efficient decolorization ability. L386W/G417L/G57F is appropriate for biotechnological applications because of its high activity and thermostability in decolorizing industrial dyes. CotA-laccase may be further subjected to molecular modification and be used as an enhancer to improve decolorization efficiency for the physical and chemical treatment of dye wastewater.

  10. Metal-ion mutagenesis: conversion of a purple acid phosphatase from sweet potato to a neutral phosphatase with the formation of an unprecedented catalytically competent Mn(II)Mn(II) active site.

    PubMed

    Mitić, Natasa; Noble, Christopher J; Gahan, Lawrence R; Hanson, Graeme R; Schenk, Gerhard

    2009-06-17

    The currently accepted paradigm is that the purple acid phosphatases (PAPs) require a heterovalent, dinuclear metal-ion center for catalysis. It is believed that this is an essential feature for these enzymes in order for them to operate under acidic conditions. A PAP from sweet potato is unusual in that it appears to have a specific requirement for manganese, forming a unique Fe(III)-mu-(O)-Mn(II) center under catalytically optimal conditions (Schenk et al. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 273). Herein, we demonstrate, with detailed electron paramagnetic resonance (EPR) spectroscopic and kinetic studies, that in this enzyme the chromophoric Fe(III) can be replaced by Mn(II), forming a catalytically active, unprecedented antiferromagnetically coupled homodivalent Mn(II)-mu-(H)OH-mu-carboxylato-Mn(II) center in a PAP. However, although the enzyme is still active, it no longer functions as an acid phosphatase, having optimal activity at neutral pH. Thus, PAPs may have evolved from distantly related divalent dinuclear metallohydrolases that operate under pH neutral conditions by stabilization of a trivalent-divalent metal-ion core. The present Mn(II)-Mn(II) system models these distant relatives, and the results herein make a significant contribution to our understanding of the role of the chromophoric metal ion as an activator of the nucleophile. In addition, the detailed analysis of strain broadened EPR spectra from exchange-coupled dinuclear Mn(II)-Mn(II) centers described herein provides the basis for the full interpretation of the EPR spectra from other dinuclear Mn metalloenzymes.

  11. Structure of the catalytic sites in Fe/N/C-catalysts for O2-reduction in PEM fuel cells

    PubMed Central

    Kramm, Ulrike I.; Herranz, Juan; Larouche, Nicholas; Arruda, Thomas M.; Lefèvre, Michel; Jaouen, Frédéric; Bogdanoff, Peter; Fiechter, Sebastian; Abs-Wurmbach, Irmgard; Mukerjee, Sanjeev; Dodelet, Jean-Pol

    2012-01-01

    Fe-based catalytic sites for the reduction of oxygen in acidic medium have been identified by 57Fe Mössbauer spectroscopy of Fe/N/C catalysts containing 0.03 to 1.55 wt% Fe, which were prepared by impregnation of iron acetate on carbon black followed by heat-treatment in NH3 at 950°C. Four different Fe-species were detected at all iron concentrations: three doublets assigned to molecular FeN4-like sites with their ferrous ion in low (D1), medium (D2) or high spin state (D3), and two other doublets assigned to a single Fe-species (D4 and D5) consisting of surface oxidized nitride nanoparticles (FexN, with x≤2.1). A fifth Fe-species appears only in those catalysts with Fe-contents ≥ 0.27 wt%. It is characterized by a very broad singlet, which has been assigned to incomplete FeN4-like sites that quickly dissolve in contact with an acid. Among the five Fe-species identified in these catalysts, only D1 and D3 display catalytic activity for the oxygen reduction reaction (ORR) in the acid medium, with D3 featuring a composite structure with a protonated neighbour basic nitrogen and being by far the most active species, with an estimated turn over frequency for the ORR of 11.4 e− site−1 s−1 at 0.8V vs RHE. Moreover, all D1 sites and between 1/2 to 2/3 of the D3 sites are acid-resistant. A scheme for the mechanism of site formation upon heat-treatment is also proposed. This identification of the ORR-active sites in these catalysts is of crucial importance to design strategies to improve the catalytic activity and stability of these materials. PMID:22824866

  12. Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors

    SciTech Connect

    Yu, Wenyu; Chory, Emma J.; Wernimont, Amy K.; Tempel, Wolfram; Scopton, Alex; Federation, Alexander; Marineau, Jason J.; Qi, Jun; Barsyte-Lovejoy, Dalia; Yi, Joanna; Marcellus, Richard; Iacob, Roxana E.; Engen, John R.; Griffin, Carly; Aman, Ahmed; Wienholds, Erno; Li, Fengling; Pineda, Javier; Estiu, Guillermina; Shatseva, Tatiana; Hajian, Taraneh; Al-awar, Rima; Dick, John E.; Vedadi, Masoud; Brown, Peter J.; Arrowsmith, Cheryl H.; Bradner, James E.; Schapira, Matthieu

    2012-12-18

    Selective inhibition of protein methyltransferases is a promising new approach to drug discovery. An attractive strategy towards this goal is the development of compounds that selectively inhibit binding of the cofactor, S-adenosylmethionine, within specific protein methyltransferases. Here we report the three-dimensional structure of the protein methyltransferase DOT1L bound toEPZ004777, the first S-adenosylmethionine-competitive inhibitor of a protein methyltransferase with in vivo efficacy. This structure and those of four new analogues reveal remodelling of the catalytic site. EPZ004777 and a brominated analogue, SGC0946, inhibit DOT1L in vitro and selectively kill mixed lineage leukaemia cells, in which DOT1L is aberrantly localized via interaction with an oncogenic MLL fusion protein. These data provide important new insight into mechanisms of cell-active S-adenosylmethionine-competitive protein methyltransferase inhibitors, and establish a foundation for the further development of drug-like inhibitors of DOT1L for cancer therapy.

  13. Control of industrial VOC (volatile organic compound) emissions by catalytic incineration. volume 5. catalytic incinerator performance at industrial site c-3. Final report, May 1982-August 1983

    SciTech Connect

    Blacksmith, J.R.; Randall, J.L.

    1984-07-01

    The report is part of a two-phase EPA effort to assess the performance, suitability, and costs of various technologies to control emissions of volatile organic compounds (VOCs). In Phase 1, information was assembled from the literature on the use and cost of using catalytic incineration for VOC control. Results included: (1) a review of current and developing catalytic incineration technology, (2) an assessment of the overall performance of catalytic incinerators, (3) a review of applications where catalytic incinerators are used, (4) a comparative analysis of catalytic incineration with other competing VOC controls, (5) an examination of available methods for emission testing catalytic incinerators, and (6) an assessment of the need for additional performance test data. Phase 2 was a test program designed to increase the catalytic incinerator performance data base. It resulted in reports documenting the performance of eight catalytic incinerators at six industrial sites. The incinerators were used to control VOC emissions from solvent evaporation processes at can coating, coil coating, magnet wire, and graphic arts printing plants. Performance was measured at several process conditions at each site. Incinerator performance was characterized in terms of destruction efficiency, outlet solvent concentration, and energy usage. Design and operating data were collected. This report preseents test resultls and data evaluation for the testing conducted at the third test site, which involved the testing of two catalytic incinerators at Plant C-3, a graphic arts printing establishment.

  14. Quantum chemical modelling of ethene epoxidation with hydrogen peroxide: role of catalytic sites.

    PubMed

    Lundin, Angelica; Panas, Itai; Ahlberg, Elisabet

    2007-12-07

    Ethene epoxidation with hydrogen peroxide was studied on hydroxylated binuclear metal sites, using DFT calculations at the B3LYP/6-311+G(d,p) level of theory. A decrease of the activation enthalpy of approximately 100 kJ mol(-1) was observed compared to the gas phase reaction between hydrogen peroxide and ethene. It was previously shown that micro-solvation with water reduces the activation enthalpy by approximately 77 kJ mol(-1) and only the additional 24 kJ mol(-1) can be attributed to the binuclear site. Three different metal centres were tested, Ti(iv), Si(iv) and Ge(iv), in order to investigate any specific role of the metal centre on the activation enthalpy. The results clearly show that the activation enthalpy is independent on the nature of the metal centre. This emphasises the role of the hydrogen bonded network provided by the hydroxylated metal sites, on the stabilisation of the transitions state. In ref. 1 (A. Lundin, I. Panas and E. Ahlberg, J. Phys. Chem. A, 2007, 111, 9080) it was demonstrated that, at the transition state and upon micro-solvation, the hydrogen peroxide entity becomes polarized within the hydrogen bonding network, forming a negatively-charged fragment distant from the ethene molecule and a positively-charged fragment directly involved in the oxygen insertion step. The same mechanism was found to hold also for the reaction at the binuclear catalytic site, since the required hydrogen bonding is effectively provided by the hydroxylated metal centres. This mechanism is compared to the two-step pathway which employs a metal peroxide intermediate. Both reaction channels were found to be plausible in confined environments.

  15. Probing the Catalytic Potential of the Hamster Arylamine N-Acetyltransferase 2 Catalytic Triad by Site-directed Mutagenesis of the Proximal Conserved Residue, Tyrosine 190

    PubMed Central

    Zhou, Xin; Zhang, Naixia; Liu, Li; Walters, Kylie J.; Hanna, Patrick E.; Wagner, Carston R.

    2009-01-01

    Summary Arylamine N-acetyltransferases (NATs) play an important role in both detoxification of arylamine and hydrazine drugs and activation of arylamine carcinogens. Since the catalytic triad, Cys-His-Asp, of mammalian NATs has been shown to be essential for maintaining protein stability, rendering it impossible to assess alterations of the triad on catalysis, we explored the impact of the highly conserved proximal residue, Tyr-190, which forms a direct hydrogen bond interaction with one of the triad residues, Asp-122, as well as a potential pi-pi stacking interaction with the active site His-107. Replacement of Hamster NAT2 Tyr-190 by either phenylalanine, isoleucine, or alanine was well tolerated and did not result in significant alterations in the overall fold of the protein. Nevertheless, stopped-flow and steady-state kinetic analysis revealed that Tyr-190 was critical for maximizing the acetylation rate of NAT2 and the transacetylation rate of p-aminobenzoic acid (PABA) when compared to wild type. Tyr-190 was also shown to play an important role in determining the pKa of the active site cysteine during acetylation, as well as the pH versus rate profile for transacetylation. We hypothesized that the pH-dependence was associated with global changes in the active site structure, which was revealed by the superposition of [1H, 15N] HSQC spectra for wild type and Y190A. These results suggest that NAT2 catalytic efficiency is partially governed by the ability of Tyr-190 to mediate the collective impact of multiple side chains on the electrostatic potential and local conformation of active site. PMID:19860825

  16. Amine binding and oxidation at the catalytic site for photosynthetic water oxidation

    PubMed Central

    Ouellette, Anthony J. A.; Anderson, Lorraine B.; Barry, Bridgette A.

    1998-01-01

    Photosynthetic water oxidation occurs at the Mn-containing catalytic site of photosystem II (PSII). By the use of 14C-labeled amines and SDS-denaturing PAGE, covalent adducts derived from primary amines and the PSII subunits, CP47, D2/D1, and the Mn-stabilizing protein, can be observed. When PSII contains the 18- and 24-kDa extrinsic proteins, which restrict access to the active site, no 14C labeling is obtained. NaCl, but not Na2SO4, competes with 14C labeling in Mn-containing PSII preparations, and the concentration dependence of this competition parallels the activation of oxygen evolution. Formation of 14C-labeled adducts is observed in the presence or in the absence of a functional manganese cluster. However, no significant Cl− effect on 14C labeling is observed in the absence of the Mn cluster. Isolation and quantitation of the 14C-labeled aldehyde product, produced from [14C]benzylamine, gives yields of 1.8 ± 0.3 mol/mol PSII and 2.9 ± 0.2 mol/mol in Mn-containing and Mn-depleted PSII, respectively. The corresponding specific activities are 0.40 ± 0.07 μmol(μmol PSII-hr)−1 and 0.64 ± 0.04 μmol(μmol PSII-hr)−1. Cl− suppresses the production of [14C]benzaldehyde in Mn-containing PSII, but does not suppress the production in Mn-depleted preparations. Control experiments show that these oxidation reactions do not involve the redox-active tyrosines, D and Z. Our results suggest the presence of one or more activated carbonyl groups in protein subunits that form the active site of PSII. PMID:9482863

  17. Catalytic Activation of Nitrogen Dioxide for Selective Synthesis of Nitroorganics

    DTIC Science & Technology

    2015-01-15

    AFRL-OSR-VA-TR-2015-0035 Catalytic activation of nitrogen dioxide for selective synthesis SETH BROWN UNIVERSITY OF NOTRE DAME DU LAC Final Report 01...8-98) v Prescribed by ANSI Std. Z39.18 12-01-2015 Final 15 Aug 2011 - 14 Aug 2014 Catalytic activation of nitrogen dioxide for selective synthesis...reductive elimination of the nitroarene has not. Nitrogen dioxide can be used as a source of the nitro group in reactions with arylboronic acids or their

  18. Evidence for Two Catalytic Sites in the Functional Unit of H+-ATPase from Higher Plants.

    PubMed Central

    Roberts, G.; Berberian, G.; Beauge, L.

    1995-01-01

    We investigated the nature of the complex ATP activation kinetics of plant H+-ATPases. To this aim we analyzed that activation in three isolated isoforms (AHA1, AHA2, and AHA3) of H+-ATPase from Arabidopsis thaliana. The isoforms were obtained by heterologous expression in endoplasmic reticulum of yeast. ATP stimulation was always with low affinity (K0.5 between 500 and 1800 [mu]M). In addition, the curves were not Michaelian and displayed positive cooperativity. Detailed studies with AHA2 showed that (a) enzyme solubilized with lysophosphatidylcholine exhibited Michaelian behavior even in the presence of soybean lecithin liposomes free of enzyme, (b) solubilized enzyme incorporated into the same liposomes displayed two-site kinetics with negative cooperativity, and (c) enzyme partially digested with trypsin lost the C-terminal portion of the molecule. Under this condition the ATP activation kinetics was Michaelian or had a slight negative cooperativity and the K0.5ATP was reduced 3-fold. These data suggest that the functional unit of the H+-ATPase has two catalytic ATP sites with variable cooperativity and kinetics competence of the E(ATP) and E(ATP)2 complexes. Such variability is likely modulated by the association of the enzyme with membrane structures and by a regulatory domain in the C terminus of the enzyme molecule. PMID:12228512

  19. Theoretical study of catalytic mechanism for single-site water oxidation process

    PubMed Central

    Lin, Xiangsong; Hu, Xiangqian; Concepcion, Javier J.; Chen, Zuofeng; Liu, Shubin; Meyer, Thomas J.; Yang, Weitao

    2012-01-01

    Water oxidation is a linchpin in solar fuels formation, and catalysis by single-site ruthenium complexes has generated significant interest in this area. Combining several theoretical tools, we have studied the entire catalytic cycle of water oxidation for a single-site catalyst starting with [RuII(tpy)(bpm)(OH2)]2+ (i.e., [RuII-OH2]2+; tpy is 2,2′∶6′,2′′-terpyridine and bpm is 2,2′-bypyrimidine) as a representative example of a new class of single-site catalysts. The redox potentials and pKa calculations for the first two proton-coupled electron transfers (PCETs) from [RuII-OH2]2+ to [RuIV = O]2+ and the following electron-transfer process to [RuV = O]3+ suggest that these processes can proceed readily in acidic or weakly basic conditions. The subsequent water splitting process involves two water molecules, [RuV = O]3+ to generate [RuIII-OOH]2+, and H3O+ with a low activation barrier (∼10 kcal/mol). After the key O---O bond forming step in the single-site Ru catalysis, another PECT process oxidizes [RuIII-OOH]2+ to [RuIV-OO]2+ when the pH is lower than 3.7. Two possible forms of [RuIV-OO]2+, open and closed, can exist and interconvert with a low activation barrier (< 7 kcal/mol) due to strong spin-orbital coupling effects. In Pathway 1 at pH = 1.0, oxygen release is rate-limiting with an activation barrier ∼12 kcal/mol while the electron-transfer step from [RuIV-OO]2+ to [RuV - OO]3+ becomes rate-determining at pH = 0 (Pathway 2) with Ce(IV) as oxidant. The results of these theoretical studies with atomistic details have revealed subtle details of reaction mechanisms at several stages during the catalytic cycle. This understanding is helpful in the design of new catalysts for water oxidation. PMID:22615356

  20. Multiple Glycogen-binding Sites in Eukaryotic Glycogen Synthase Are Required for High Catalytic Efficiency toward Glycogen

    SciTech Connect

    Baskaran, Sulochanadevi; Chikwana, Vimbai M.; Contreras, Christopher J.; Davis, Keri D.; Wilson, Wayne A.; DePaoli-Roach, Anna A.; Roach, Peter J.; Hurley, Thomas D.

    2012-12-10

    Glycogen synthase is a rate-limiting enzyme in the biosynthesis of glycogen and has an essential role in glucose homeostasis. The three-dimensional structures of yeast glycogen synthase (Gsy2p) complexed with maltooctaose identified four conserved maltodextrin-binding sites distributed across the surface of the enzyme. Site-1 is positioned on the N-terminal domain, site-2 and site-3 are present on the C-terminal domain, and site-4 is located in an interdomain cleft adjacent to the active site. Mutation of these surface sites decreased glycogen binding and catalytic efficiency toward glycogen. Mutations within site-1 and site-2 reduced the V{sub max}/S{sub 0.5} for glycogen by 40- and 70-fold, respectively. Combined mutation of site-1 and site-2 decreased the V{sub max}/S{sub 0.5} for glycogen by >3000-fold. Consistent with the in vitro data, glycogen accumulation in glycogen synthase-deficient yeast cells ({Delta}gsy1-gsy2) transformed with the site-1, site-2, combined site-1/site-2, or site-4 mutant form of Gsy2p was decreased by up to 40-fold. In contrast to the glycogen results, the ability to utilize maltooctaose as an in vitro substrate was unaffected in the site-2 mutant, moderately affected in the site-1 mutant, and almost completely abolished in the site-4 mutant. These data show that the ability to utilize maltooctaose as a substrate can be independent of the ability to utilize glycogen. Our data support the hypothesis that site-1 and site-2 provide a 'toehold mechanism,' keeping glycogen synthase tightly associated with the glycogen particle, whereas site-4 is more closely associated with positioning of the nonreducing end during catalysis.

  1. Engineering a hyper-catalytic enzyme by photo-activated conformation modulation

    SciTech Connect

    Agarwal, Pratul K

    2012-01-01

    Enzyme engineering for improved catalysis has wide implications. We describe a novel chemical modification of Candida antarctica lipase B that allows modulation of the enzyme conformation to promote catalysis. Computational modeling was used to identify dynamical enzyme regions that impact the catalytic mechanism. Surface loop regions located distal to active site but showing dynamical coupling to the reaction were connected by a chemical bridge between Lys136 and Pro192, containing a derivative of azobenzene. The conformational modulation of the enzyme was achieved using two sources of light that alternated the azobenzene moiety in cis and trans conformations. Computational model predicted that mechanical energy from the conformational fluctuations facilitate the reaction in the active-site. The results were consistent with predictions as the activity of the engineered enzyme was found to be enhanced with photoactivation. Preliminary estimations indicate that the engineered enzyme achieved 8-52 fold better catalytic activity than the unmodulated enzyme.

  2. Is Dimerization Required for the Catalytic Activity of Bacterial Biotin Carboxylase?

    SciTech Connect

    Shen,Y.; Chou, C.; Chang, G.; Tong, L.

    2006-01-01

    Acetyl-coenzyme A carboxylases (ACCs) have crucial roles in fatty acid metabolism. The biotin carboxylase (BC) subunit of Escherichia coli ACC is believed to be active only as a dimer, although the crystal structure shows that the active site of each monomer is 25 Angstroms from the dimer interface. We report here biochemical, biophysical, and structural characterizations of BC carrying single-site mutations in the dimer interface. Our studies demonstrate that two of the mutants, R19E and E23R, are monomeric in solution but have only a 3-fold loss in catalytic activity. The crystal structures of the E23R and F363A mutants show that they can still form the correct dimer at high concentrations. Our data suggest that dimerization is not an absolute requirement for the catalytic activity of the E. coli BC subunit, and we propose a new model for the molecular mechanism of action for BC in multisubunit and multidomain ACCs.

  3. HIPK2 catalytic activity and subcellular localization are regulated by activation-loop Y354 autophosphorylation

    PubMed Central

    Siepi, Francesca; Gatti, Veronica; Camerini, Serena; Crescenzi, Marco; Soddu, Silvia

    2013-01-01

    HIPK2 (homeodomain-interacting protein kinase-2) binds to and phosphorylates, at Ser and Thr residues, a large number of targets involved in cell division and cell fate decision in response to different physiological or stress stimuli. Inactivation of HIPK2 has been observed in human and mouse cancers supporting its role as a tumor suppressor. Despite the biological relevance of this kinase, very little is known on how HIPK2 becomes catalytically active. Based on sequence homologies, HIPK2 has been taxonomically classified as a subfamily member of the dual-specificity tyrosine-regulated kinases (DYRKs) and the activation-loop Y354 of HIPK2 has been found phosphorylated in different cells; however, the relevance of this Y phosphorylation is presently unknown. Here, we show that HIPK2, which is extensively phosphorylated at S/T sites throughout its functional domains, becomes catalytically active by autophosphorylation at the activation-loop Y354. In particular, we found that, in analogy to DYRKs, HIPK2-Y354 phosphorylation is an autocatalytic event and its prevention, through Y354 substitution with non-phosphorylatable amino acids or by using the kinase inhibitor purvalanol A, induces a strong reduction of the HIPK2 S/T-kinase activity on different substrates. Interestingly, at variance from DYRKs, inhibition of HIPK2-Y354 phosphorylation induces a strong out-of-target Y-kinase activity in cis and a strong cytoplasmic relocalization of the kinase. Together, these results demonstrate that the catalytic activity, substrate specificity, and subcellular localization of HIPK2 are regulated by autophosphorylation of its activation-loop Y354. PMID:23485397

  4. Catalytically active nanomaterials: a promising candidate for artificial enzymes.

    PubMed

    Lin, Youhui; Ren, Jinsong; Qu, Xiaogang

    2014-04-15

    Natural enzymes, exquisite biocatalysts mediating every biological process in living organisms, are able to accelerate the rate of chemical reactions up to 10(19) times for specific substrates and reactions. However, the practical application of enzymes is often hampered by their intrinsic drawbacks, such as low operational stability, sensitivity of catalytic activity to environmental conditions, and high costs in preparation and purification. Therefore, the discovery and development of artificial enzymes is highly desired. Recently, the merging of nanotechnology with biology has ignited extensive research efforts for designing functional nanomaterials that exhibit various properties intrinsic to enzymes. As a promising candidate for artificial enzymes, catalytically active nanomaterials (nanozymes) show several advantages over natural enzymes, such as controlled synthesis in low cost, tunability in catalytic activities, as well as high stability against stringent conditions. In this Account, we focus on our recent progress in exploring and constructing such nanoparticulate artificial enzymes, including graphene oxide, graphene-hemin nanocomposites, carbon nanotubes, carbon nanodots, mesoporous silica-encapsulated gold nanoparticles, gold nanoclusters, and nanoceria. According to their structural characteristics, these enzyme mimics are categorized into three classes: carbon-, metal-, and metal-oxide-based nanomaterials. We aim to highlight the important role of catalytic nanomaterials in the fields of biomimetics. First, we provide a practical introduction to the identification of these nanozymes, the source of the enzyme-like activities, and the enhancement of activities via rational design and engineering. Then we briefly describe new or enhanced applications of certain nanozymes in biomedical diagnosis, environmental monitoring, and therapeutics. For instance, we have successfully used these biomimetic catalysts as colorimetric probes for the detection of

  5. A split active site couples cap recognition by Dcp2 to activation

    PubMed Central

    Floor, Stephen N.; Jones, Brittnee N.; Hernandez, Gail A.; Gross, John D.

    2010-01-01

    Decapping by Dcp2 is an essential step in 5′-3′ mRNA decay. In yeast, decapping requires an open-to-closed transition in Dcp2, though the link between closure and catalysis remains elusive. Here we show using NMR that cap binds conserved residues on both the catalytic and regulatory domains of Dcp2. Lesions in the cap-binding site on the regulatory domain reduce the catalytic step two orders of magnitude and block formation of the closed state whereas Dcp1 enhances the catalytic step by a factor of ten and promotes closure. We conclude that closure occurs during the rate-limiting catalytic step of decapping, juxtaposing the cap-binding region of each domain to form a composite active site. This work suggests a model for regulation of decapping, where coactivators trigger decapping by stabilizing a labile composite active site. PMID:20711189

  6. Identification of catalysis, substrate, and coenzyme binding sites and improvement catalytic efficiency of formate dehydrogenase from Candida boidinii.

    PubMed

    Jiang, Wei; Lin, Peng; Yang, Ruonan; Fang, Baishan

    2016-10-01

    Formate dehydrogenases (FDHs) are continually used for the cofactor regeneration in biocatalysis and biotransformation with hiring NAD(P)H-dependent oxidoreductases. Major weaknesses of most native FDHs are their low activity and operational stability in the catalytic reaction. In this work, the FDH from Candida boidinii (CboFDH) was engineered in order to gain an enzyme with high activity and better operational stability. Through comparing and analyzing its spatial structure with other FDHs, the catalysis, substrate, and coenzyme binding sites of the CboFDH were identified. To improve its performance, amino acids, which concentrated on the enzyme active site or in the conserved NAD(+) and substrate binding motif, were mutated. The mutant V120S had the highest catalytic efficiency (k cat/K m ) with COONH4 as it enhanced the catalytic velocity (k cat) and k cat/K m 3.48-fold and 1.60-fold, respectively, than that of the wild type. And, the double-mutant V120S-N187D had the highest k cat/K m with NAD(+) as it displayed an approximately 1.50-fold increase in k cat/K m . The mutants showed higher catalytic efficiency than other reported FDHs, suggesting that the mutation has achieved good results. The single and double mutants exhibited higher thermostability than the wild type. The structure-function relationship of single and double mutants was analyzed by homology models and site parsing. Asymmetric synthesis of L-tert-leucine was executed to evaluate the ability of cofactor regeneration of the mutants with about 100 % conversion rates. This work provides a helpful theoretical reference for the evolution of an enzyme in vitro and promotion of the industrial production of chiral compounds, e.g., amino acid and chiral amine.

  7. Structural Basis for the Catalytic Activity of Human SER/THR Protein Phosphatase-5

    NASA Technical Reports Server (NTRS)

    Swingle, M. R.; Honkanen, R.; Ciszak, E.

    2004-01-01

    Serinekhreonine protein phosphatase-5 (PP5) affects many signaling networks that regulate cell growth. Here we report the 1.6 Angstrom resolution crystal structure of PP5 catalytic domain with metal and phosphate ions in the active site. The structure reveals a mechanism for PPS-mediated catalysis that requires the precise positioning of two metal ions within a conserved Asp(sup 271)-M(sub 1),-M(sub 2)-His(sup 427)-W(sup 2)-His(sup 304)-Asp(sup 274) catalytic motif, and provides a structural basis for the exceptional catalytic proficiency of protein phosphatases placing them among the most powerful catalysts. Resolution of the entire C-terminus revealed a novel subdomain, and the structure of PP5 should aid development of specific inhibitors.

  8. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature

    PubMed Central

    Deng, Dehui; Chen, Xiaoqi; Yu, Liang; Wu, Xing; Liu, Qingfei; Liu, Yun; Yang, Huaixin; Tian, Huanfang; Hu, Yongfeng; Du, Peipei; Si, Rui; Wang, Junhu; Cui, Xiaoju; Li, Haobo; Xiao, Jianping; Xu, Tao; Deng, Jiao; Yang, Fan; Duchesne, Paul N.; Zhang, Peng; Zhou, Jigang; Sun, Litao; Li, Jianqi; Pan, Xiulian; Bao, Xinhe

    2015-01-01

    Coordinatively unsaturated (CUS) iron sites are highly active in catalytic oxidation reactions; however, maintaining the CUS structure of iron during heterogeneous catalytic reactions is a great challenge. Here, we report a strategy to stabilize single-atom CUS iron sites by embedding highly dispersed FeN4 centers in the graphene matrix. The atomic structure of FeN4 centers in graphene was revealed for the first time by combining high-resolution transmission electron microscopy/high-angle annular dark-field scanning transmission electron microscopy with low-temperature scanning tunneling microscopy. These confined single-atom iron sites exhibit high performance in the direct catalytic oxidation of benzene to phenol at room temperature, with a conversion of 23.4% and a yield of 18.7%, and can even proceed efficiently at 0°C with a phenol yield of 8.3% after 24 hours. Both experimental measurements and density functional theory calculations indicate that the formation of the Fe═O intermediate structure is a key step to promoting the conversion of benzene to phenol. These findings could pave the way toward highly efficient nonprecious catalysts for low-temperature oxidation reactions in heterogeneous catalysis and electrocatalysis. PMID:26665170

  9. Catalytic site inhibition of insulin-degrading enzyme by a small molecule induces glucose intolerance in mice

    SciTech Connect

    Deprez-Poulain, Rebecca; Hennuyer, Nathalie; Bosc, Damien; Liang, Wenguang G.; Enée, Emmanuelle; Marechal, Xavier; Charton, Julie; Totobenazara, Jane; Berte, Gonzague; Jahklal, Jouda; Verdelet, Tristan; Dumont, Julie; Dassonneville, Sandrine; Woitrain, Eloise; Gauriot, Marion; Paquet, Charlotte; Duplan, Isabelle; Hermant, Paul; Cantrelle, François- Xavier; Sevin, Emmanuel; Culot, Maxime; Landry, Valerie; Herledan, Adrien; Piveteau, Catherine; Lippens, Guy; Leroux, Florence; Tang, Wei-Jen; van Endert, Peter; Staels, Bart; Deprez, Benoit

    2015-09-23

    Insulin-degrading enzyme (IDE) is a protease that cleaves insulin and other bioactive peptides such as amyloid-β. Knockout and genetic studies have linked IDE to Alzheimer’s disease and type-2 diabetes. As the major insulin-degrading protease, IDE is a candidate drug target in diabetes. Here we have used kinetic target-guided synthesis to design the first catalytic site inhibitor of IDE suitable for in vivo studies (BDM44768). Crystallographic and small angle X-ray scattering analyses show that it locks IDE in a closed conformation. Among a panel of metalloproteases, BDM44768 selectively inhibits IDE. Acute treatment of mice with BDM44768 increases insulin signalling and surprisingly impairs glucose tolerance in an IDE-dependent manner. These results confirm that IDE is involved in pathways that modulate short-term glucose homeostasis, but casts doubt on the general usefulness of the inhibition of IDE catalytic activity to treat diabetes.

  10. The catalytic and photocatalytic activity of coal fly ashes

    NASA Astrophysics Data System (ADS)

    Dlugi, Ralph; Güsten, Hans

    Great differences in the catalytic and photocatalytic activity of two samples of fly ash from two different coal-fired power plants have been demonstrated to exist for two reactions of environmental significance, namely, the heterogeneous SO 2 oxidation in a smog chamber and the photochemical degradation of two polynuclear aromatic hydrocarbons adsorbed onto the fly ashes. At a relative humidity (r.h.) of 80%, the reaction rate for the heterogeneous SO 2 oxidation on an acidic fly ash (pH 5.65) is ten times higher than for the oxidation on a fly ash of pH 9.3. Compared to silica gel, the 'acidic' fly ash gives rise to a faster photocatalytic degradation of anthracene and phenanthrene, while the same aromatic hydrocarbons are highly resistant to photodegradation when adsorbed on the fly ash of pH 9.3. Possible explanations and environmental consequences of the differing catalytic activity of fly ashes are discussed.

  11. Experimental and Mechanistic Understanding of Aldehyde Hydrogenation Using Au25 Nanoclusters with Lewis Acids: Unique Sites for Catalytic Reactions.

    PubMed

    Li, Gao; Abroshan, Hadi; Chen, Yuxiang; Jin, Rongchao; Kim, Hyung J

    2015-11-18

    The catalytic activity of Au25(SR)18 nanoclusters (R = C2H4Ph) for the aldehyde hydrogenation reaction in the presence of a base, e.g., ammonia or pyridine, and transition-metal ions M(z+), such as Cu(+), Cu(2+), Ni(2+) and Co(2+), as a Lewis acid is studied. The addition of a Lewis acid is found to significantly promote the catalytic activity of Au25(SR)18/CeO2 in the hydrogenation of benzaldehyde and a number of its derivatives. Matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometry in conjunction with UV-vis spectroscopy confirm the generation of new species, Au25-n(SR)18-n (n = 1-4), in the presence of a Lewis acid. The pathways for the speciation of Au24(SR)17 from its parent Au25(SR)18 nanocluster as well as its structure are investigated via the density functional theory (DFT) method. The adsorption of M(z+) onto a thiolate ligand "-SR-" of Au25(SR)18, followed by a stepwise detachment of "-SR-" and a gold atom bonded to "-SR-" (thus an "Au-SR" unit) is found to be the most likely mechanism for the Au24(SR)17 generation. This in turn exposes the Au13-core of Au24(SR)17 to reactants, providing an active site for the catalytic hydrogenation. DFT calculations indicate that M(z+) is also capable of adsorbing onto the Au13-core surface, producing a possible active metal site of a different kind to catalyze the aldehyde hydrogenation reaction. This study suggests, for the first time, that species with an open metal site like adducts [nanoparticle-M]((z-1)+) or fragments Au25-n(SR)18-n function as the catalysts rather than the intact Au25(SR)18.

  12. Kinetic analysis of bypass of abasic site by the catalytic core of yeast DNA polymerase eta.

    PubMed

    Yang, Juntang; Wang, Rong; Liu, Binyan; Xue, Qizhen; Zhong, Mengyu; Zeng, Hao; Zhang, Huidong

    2015-09-01

    Abasic sites (Apurinic/apyrimidinic (AP) sites), produced ∼ 50,000 times/cell/day, are very blocking and miscoding. To better understand miscoding mechanisms of abasic site for yeast DNA polymerase η, pre-steady-state nucleotide incorporation and LC-MS/MS sequence analysis of extension product were studied using pol η(core) (catalytic core, residues 1-513), which can completely eliminate the potential effects of the C-terminal C2H2 motif of pol η on dNTP incorporation. The extension beyond the abasic site was very inefficient. Compared with incorporation of dCTP opposite G, the incorporation efficiencies opposite abasic site were greatly reduced according to the order of dGTP > dATP > dCTP and dTTP. Pol η(core) showed no fast burst phase for any incorporation opposite G or abasic site, suggesting that the catalytic step is not faster than the dissociation of polymerase from DNA. LC-MS/MS sequence analysis of extension products showed that 53% products were dGTP misincorporation, 33% were dATP and 14% were -1 frameshift, indicating that Pol η(core) bypasses abasic site by a combined G-rule, A-rule and -1 frameshift deletions. Compared with full-length pol η, pol η(core) relatively reduced the efficiency of incorporation of dCTP opposite G, increased the efficiencies of dNTP incorporation opposite abasic site and the exclusive incorporation of dGTP opposite abasic site, but inhibited the extension beyond abasic site, and increased the priority in extension of A: abasic site relative to G: abasic site. This study provides further understanding in the mutation mechanism of abasic sites for yeast DNA polymerase η.

  13. Activity of catalytic silver nanoparticles modulated by capping agent hydrophobicity.

    PubMed

    Janani, Seralathan; Stevenson, Priscilla; Veerappan, Anbazhagan

    2014-05-01

    In this paper, a facile in situ method is reported for the preparation of catalytic silver nanoparticles (AgNPs) using N-acyl tyramine (NATA) with variable hydrophobic acyl length. Scanning electron microscopic analysis shows that NATA exists initially as larger aggregates in alkaline aqueous solution. The addition of AgNO3 dissociates these larger aggregate and subsequently promotes the formation of self-assembled NATA and AgNPs. Characterization of AgNPs using UV-vis spectroscopy, scanning electron microscope and transmission electron microscope revealed that the hydrophobic acyl chain length of NATA does not influence the particle size, shape and morphology. All NATA-AgNPs yielded relatively identical values in full width at half-maximum (FWHM) analysis, indicating that the AgNPs prepared with NATA are relatively polydispersed at all tested acyl chain lengths. These nanoparticles are able to efficiently catalyze the reduction of 4-nitro phenol to 4-amino phenol, 2-nitro aniline to 1,2-diamino benzene, 2,4,6-trinitro phenol to 2,4,6-triamino phenol by NaBH4 in an aqueous environment. The reduction reaction rate is determined to be pseudo-first order and the apparent rate constant is linearly dependent on the hydrophobic acyl chain length of the NATA. All reaction kinetics presented an induction period, which is dependent on the N-acyl chain length, indicating that the hydrophobic effects play a critical role in bringing the substrate to the metal nanoparticle surface to induce the catalytic reaction. In this study, however, the five catalytic systems have similar size and polydispersity, differing only in terms of capping agent hydrophobicity, and shows different catalytic activity with respect to the alkyl chain length of the capping agent. As discussed, the ability to modulate the metal nanoparticles catalytic property, by modifying the capping agent hydrophobicity represents a promising future for developing an efficient nanocatalyst without altering the size

  14. Rational design of ornithine decarboxylase with high catalytic activity for the production of putrescine.

    PubMed

    Choi, Hyang; Kyeong, Hyun-Ho; Choi, Jung Min; Kim, Hak-Sung

    2014-09-01

    Putrescine finds wide industrial applications in the synthesis of polymers, pharmaceuticals, agrochemicals, and surfactants. Owing to economic and environmental concerns, the microbial production of putrescine has attracted a great deal of attention, and ornithine decarboxylase (ODC) is known to be a key enzyme in the biosynthetic pathway. Herein, we present the design of ODC from Escherichia coli with high catalytic efficiency using a structure-based rational approach. Through a substrate docking into the model structure of the enzyme, we first selected residues that might lead to an increase in catalytic activity. Of the selected residues that are located in the α-helix and the loops constituting the substrate entry site, a mutational analysis of the single mutants identified two key residues, I163 and E165. A combination of two single mutations resulted in a 62.5-fold increase in the catalytic efficiency when compared with the wild-type enzyme. Molecular dynamics simulations of the best mutant revealed that the substrate entry site becomes more flexible through mutations, while stabilizing the formation of the dimeric interface of the enzyme. Our approach can be applied to the design of other decarboxylases with high catalytic efficiency for the production of various chemicals through bio-based processes.

  15. Remarkable difference in catalytic performance of an organoamino-functionalized MCM-41-HPA composite with controlled site-isolation and site-aggregation

    NASA Astrophysics Data System (ADS)

    Chu, Xiaofeng; Le, Ying-Yi; Zhu, Quanjing; Fan, Kangnian; Dai, Wei-Lin

    2011-08-01

    The organoamino-functionalized mesoporous silicas with different distribution patterns—site-isolation or site-aggregation are prepared using post-grafting method. We have investigated the effects of the solvents and the catalytic reactivity of these catalysts. It is found that, using the polar ethanol as solvent, the catalytic center is site-isolated. Contrarily, the catalytic center is site-aggregated with the non-polar toluene. Characterization techniques, including transmission electron microscopy, nitrogen sorption experiments, thermogravimetric analysis, and ultraviolet-visible absorbance spectroscopy, demonstrate the most important dependencies of the distribution pattern on the polarity of solvent.

  16. E2 superfamily of ubiquitin-conjugating enzymes: constitutively active or activated through phosphorylation in the catalytic cleft

    PubMed Central

    Valimberti, Ilaria; Tiberti, Matteo; Lambrughi, Matteo; Sarcevic, Boris; Papaleo, Elena

    2015-01-01

    Protein phosphorylation is a modification that offers a dynamic and reversible mechanism to regulate the majority of cellular processes. Numerous diseases are associated with aberrant regulation of phosphorylation-induced switches. Phosphorylation is emerging as a mechanism to modulate ubiquitination by regulating key enzymes in this pathway. The molecular mechanisms underpinning how phosphorylation regulates ubiquitinating enzymes, however, are elusive. Here, we show the high conservation of a functional site in E2 ubiquitin-conjugating enzymes. In catalytically active E2s, this site contains aspartate or a phosphorylatable serine and we refer to it as the conserved E2 serine/aspartate (CES/D) site. Molecular simulations of substrate-bound and -unbound forms of wild type, mutant and phosphorylated E2s, provide atomistic insight into the role of the CES/D residue for optimal E2 activity. Both the size and charge of the side group at the site play a central role in aligning the substrate lysine toward E2 catalytic cysteine to control ubiquitination efficiency. The CES/D site contributes to the fingerprint of the E2 superfamily. We propose that E2 enzymes can be divided into constitutively active or regulated families. E2s characterized by an aspartate at the CES/D site signify constitutively active E2s, whereas those containing a serine can be regulated by phosphorylation. PMID:26463729

  17. Piv site-specific invertase requires a DEDD motif analogous to the catalytic center of the RuvC Holliday junction resolvases.

    PubMed

    Buchner, John M; Robertson, Anne E; Poynter, David J; Denniston, Shelby S; Karls, Anna C

    2005-05-01

    Piv, a unique prokaryotic site-specific DNA invertase, is related to transposases of the insertion elements from the IS110/IS492 family and shows no similarity to the site-specific recombinases of the tyrosine- or serine-recombinase families. Piv tertiary structure is predicted to include the RNase H-like fold that typically encompasses the catalytic site of the recombinases or nucleases of the retroviral integrase superfamily, including transposases and RuvC-like Holliday junction resolvases. Analogous to the DDE and DEDD catalytic motifs of transposases and RuvC, respectively, four Piv acidic residues D9, E59, D101, and D104 appear to be positioned appropriately within the RNase H fold to coordinate two divalent metal cations. This suggests mechanistic similarity between site-specific inversion mediated by Piv and transposition or endonucleolytic reactions catalyzed by enzymes of the retroviral integrase superfamily. The role of the DEDD motif in Piv catalytic activity was addressed using Piv variants that are substituted individually or multiply at these acidic residues and assaying for in vivo inversion, intermolecular recombination, and DNA binding activities. The results indicate that all four residues of the DEDD motif are required for Piv catalytic activity. The DEDD residues are not essential for inv recombination site recognition and binding, but this acidic tetrad does appear to contribute to the stability of Piv-inv interactions. On the basis of these results, a working model for Piv-mediated inversion that includes resolution of a Holliday junction is presented.

  18. Comprehensive Characterization of AMP-Activated Protein Kinase Catalytic Domain by Top-Down Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Yu, Deyang; Peng, Ying; Ayaz-Guner, Serife; Gregorich, Zachery R.; Ge, Ying

    2016-02-01

    AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that is essential in regulating energy metabolism in all eukaryotic cells. It is a heterotrimeric protein complex composed of a catalytic subunit (α) and two regulatory subunits (β and γ). C-terminal truncation of AMPKα at residue 312 yielded a protein that is active upon phosphorylation of Thr172 in the absence of β and γ subunits, which is refered to as the AMPK catalytic domain and commonly used to substitute for the AMPK heterotrimeric complex in in vitro kinase assays. However, a comprehensive characterization of the AMPK catalytic domain is lacking. Herein, we expressed a His-tagged human AMPK catalytic domin (denoted as AMPKΔ) in E. coli, comprehensively characterized AMPKΔ in its basal state and after in vitro phosphorylation using top-down mass spectrometry (MS), and assessed how phosphorylation of AMPKΔ affects its activity. Unexpectedly, we found that bacterially-expressed AMPKΔ was basally phosphorylated and localized the phosphorylation site to the His-tag. We found that AMPKΔ had noticeable basal activity and was capable of phosphorylating itself and its substrates without activating phosphorylation at Thr172. Moreover, our data suggested that Thr172 is the only site phosphorylated by its upstream kinase, liver kinase B1, and that this phosphorylation dramatically increases the kinase activity of AMPKΔ. Importantly, we demonstrated that top-down MS in conjunction with in vitro phosphorylation assay is a powerful approach for monitoring phosphorylation reaction and determining sequential order of phosphorylation events in kinase-substrate systems.

  19. Comprehensive Characterization of AMP-activated Protein Kinase Catalytic Domain by Top-down Mass Spectrometry

    PubMed Central

    Yu, Deyang; Peng, Ying; Ayaz-Guner, Serife; Gregorich, Zachery R.; Ge, Ying

    2015-01-01

    AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that is essential in regulating energy metabolism in all eukaryotic cells. It is a heterotrimeric protein complex composed of a catalytic subunit (α) and two regulatory subunits (β and γ. C-terminal truncation of AMPKα at residue 312 yielded a protein that is active upon phosphorylation of Thr172 in the absence of β and γ subunits, which is refered to as the AMPK catalytic domain and commonly used to substitute for the AMPK heterotrimeric complex in in vitro kinase assays. However, a comprehensive characterization of the AMPK catalytic domain is lacking. Herein, we expressed a His-tagged human AMPK catalytic domin (denoted as AMPKΔ) in E. coli, comprehensively characterized AMPKΔ in its basal state and after in vitro phosphorylation using top-down mass spectrometry (MS), and assessed how phosphorylation of AMPKΔ affects its activity. Unexpectedly, we found that bacterially-expressed AMPKΔ was basally phosphorylated and localized the phosphorylation site to the His-tag. We found that AMPKΔ has noticeable basal activity and was capable of phosphorylating itself and its substrates without activating phosphorylation at Thr172. Moreover, our data suggested that Thr172 is the only site phosphorylated by its upstream kinase, liver kinase B1, and that this phosphorylation dramatically increases the kinase activity of AMPKΔ. Importantly, we demonstrated that top-down MS in conjunction with in vitro phosphorylation assay is a powerful approach for monitoring phosphorylation reaction and determining sequential order of phosphorylation events in kinase-substrate systems. PMID:26489410

  20. Cd-substituted horse liver alcohol dehydrogenase: catalytic site metal coordination geometry and protein conformation.

    PubMed

    Hemmingsen, L; Bauer, R; Bjerrum, M J; Zeppezauer, M; Adolph, H W; Formicka, G; Cedergren-Zeppezauer, E

    1995-05-30

    The coordination geometry of the catalytic site in Cd-substituted horse liver alcohol dehydrogenase (LADH) has been investigated as a function of pH using the method of perturbed angular correlation of gamma-rays (PAC). LADH in solution fully loaded with cadmium, including radioactive 111mCd in the catalytic site [Cd2(111mCd)Cd2LADH], was studied over the pH range 7.9-11.5. Analysis of the PAC spectra showed the ionization of a group with pKa of 11. This pKa value is about 2 pH units higher than that of native zinc-containing LADH. A pKa of 9.6 was found for the binary complex of Cd2(111mCd)Cd2LADH with NAD+. This value is also about 2 pH units higher than that of the binary complex of native zinc-containing enzyme and NAD+. No pH dependency was detected for the binary complex of Cd2(111mCd)Cd2LADH with NADH within the pH range measured (pH 8.3-11.5). Assuming that metal-coordinated water is the ionizing group [Kvassman, J., & Pettersson, G. (1979) Eur. J. Biochem. 100, 115-123], we conclude that the larger ionic radius of Cd(II) relative to Zn(II) in the catalytic site causes the elevated pKa values of metal-bound water. Interpretation of nuclear quadrupole interaction (NQI) parameters derived from PAC spectra is based on the use of the angular overlap model, using the coordinates for the catalytic zinc site from the 1.8 A resolution crystal structure of the ternary complex between LADH, NADH, and dimethyl sulfoxide as a model.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Spectroscopic properties and the catalytic activity of new organo-lead supramolecular coordination polymer containing quinoxaline

    NASA Astrophysics Data System (ADS)

    Etaiw, Safaa El-din H.; Abdou, Safaa N.

    2015-01-01

    The 3D-supramolecular coordination polymer (SCP) 3∞[ Cu2(CN)3(Me3Pb)(qox)], 1, as the first example of the CuCN SCP containing the (Me3Pb) fragment, was explored to investigate its catalytic and photo-catalytic activities. The structure of 1 contains two chemically identical but crystallographically different [Cu2(CN)3ṡMe3Pbṡqox]2 units with four Cu(I) sites assuming distorted TP-3 geometry. Two non-linear chains of equal abundance are formed producing corrugated parallel chains which are connected laterally by quinoxaline creating 2D-layers which are arranged parallel in an (AB⋯AB⋯AB)n fashion forming 3D-network. IR, mass, electronic absorption and fluorescence spectra are also investigated. The SCP 1 is diamagnetic and exhibits good catalytic and photo-catalytic activities for the degradation of methylene blue (MB). The reaction is first order with respect to MB dye. The irradiation of the reaction with UV-light enhanced the rate of MB mineralization. The efficiency of recycled the 1 and the mechanism of degradation of MB dye were investigated.

  2. Crystal structure of the catalytic domain of human bile salt activated lipase.

    PubMed Central

    Terzyan, S.; Wang, C. S.; Downs, D.; Hunter, B.; Zhang, X. C.

    2000-01-01

    Bile-salt activated lipase (BAL) is a pancreatic enzyme that digests a variety of lipids in the small intestine. A distinct property of BAL is its dependency on bile salts in hydrolyzing substrates of long acyl chains or bulky alcoholic motifs. A crystal structure of the catalytic domain of human BAL (residues 1-538) with two surface mutations (N186D and A298D), which were introduced in attempting to facilitate crystallization, has been determined at 2.3 A resolution. The crystal form belongs to space group P2(1)2(1)2(1) with one monomer per asymmetric unit, and the protein shows an alpha/beta hydrolase fold. In the absence of bound bile salt molecules, the protein possesses a preformed catalytic triad and a functional oxyanion hole. Several surface loops around the active site are mobile, including two loops potentially involved in substrate binding (residues 115-125 and 270-285). PMID:11045623

  3. Metal active site elasticity linked to activation of homocysteine in methionine synthases

    SciTech Connect

    Koutmos, Markos; Pejchal, Robert; Bomer, Theresa M.; Matthews, Rowena G.; Smith, Janet L.; Ludwig, Martha L.

    2008-04-02

    Enzymes possessing catalytic zinc centers perform a variety of fundamental processes in nature, including methyl transfer to thiols. Cobalamin-independent (MetE) and cobalamin-dependent (MetH) methionine synthases are two such enzyme families. Although they perform the same net reaction, transfer of a methyl group from methyltetrahydrofolate to homocysteine (Hcy) to form methionine, they display markedly different catalytic strategies, modular organization, and active site zinc centers. Here we report crystal structures of zinc-replete MetE and MetH, both in the presence and absence of Hcy. Structural investigation of the catalytic zinc sites of these two methyltransferases reveals an unexpected inversion of zinc geometry upon binding of Hcy and displacement of an endogenous ligand in both enzymes. In both cases a significant movement of the zinc relative to the protein scaffold accompanies inversion. These structures provide new information on the activation of thiols by zinc-containing enzymes and have led us to propose a paradigm for the mechanism of action of the catalytic zinc sites in these and related methyltransferases. Specifically, zinc is mobile in the active sites of MetE and MetH, and its dynamic nature helps facilitate the active site conformational changes necessary for thiol activation and methyl transfer.

  4. Isomorphous substitution and the generation of catalytic activity in VPI-5

    SciTech Connect

    Kraushaar-Czarnetzki, B.; Dogterom, R.J.; Stork, W.H.J.; Emeis, K.A.; Van Braam Houckgeest, J.P. ) )

    1993-05-01

    VPI-5 and substituted derivatives containing silicon or magnesium have been synthesized, analyzed, and tested for their catalytic activity. By means of [sup 29]Si solid-state NMR, it could be shown that SAPO-VPI-5 prepared with polyphosphoric acid as a phosphorus source exhibits both [open quotes]silica patches[close quotes] and isolated silicon atoms incorporated in the framework. Broensted acid sites in SAPO-and MAPO-VPI-5 could be detected by means of infrared spectroscopy in combination with pyridine adsorption. The isomorphously substituted VPI-5 samples were active in the hydroconversion of n-heptane, giving both cracking and isomerization products. The highest activity and the highest yield in iso-heptane, however, were observed with AlPO-VPI-5 as a catalyst. The catalytic activity could be ascribed to the presence of unreacted alumina. Upon treatment with an EDTA solution the Al/P atomic ratio decreased from 1.29 to 1.07, and the purified AlPO-VPI-5 showed considerably reduced catalytic activity. 28 refs., 6 figs., 2 tabs.

  5. Catalytic oxidation ofS(IV) on activated carbon in aqueous suspension: kinetics and mechanism

    SciTech Connect

    Brodzinsky, R.

    1981-02-01

    Activated carbon and combustion produced soot particles have been studied for their catalytic effect on the oxidation of aqueous sulfur(IV) species. Detailed kinetic studies of the reaction were performed on three different activated carbons and on a soot collected in a highway tunnel. Combustion produced soots were tested for their catalytic behavior and found to be similar to the activated carbons. The reaction rate was found to be linearly dependent on the concentration of carbon particles in the solution. The rate was found to follow a Langmuir adsorption isotherm for its dependence on oxygen and the product of two adsorption isotherms for S(IV). The reaction is independent of the pH of the solution when the pH is below 7.6. The reaction does not occur when the pH is above 7.6. The three aqueous S(IV) species are catalyzed in their oxidation by the carbon particles in a similar manner. Activation energies for the reactions on the different carbons are all about 8.5 kcal/mole. A possible four-step reaction mechanism is proposed. It consists of the adsorption of a dissolved oxygen molecule onto the carbon surface, followed by the adsorption of two S(IV) molecules or ions. These are oxidized on the surface to sulfate, which desorbs from the surface, regenerating the catalytically active site.

  6. Size Effects in the Catalytic Activity of Unsupported Metallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Weber, Alfred P.; Seipenbusch, Martin; Kasper, Gerhard

    2003-08-01

    The influence of the size of nanoparticles on their catalytic activity was investigated for two systems on unsupported, i.e. gasborne nanoparticles. For the oxidation of hydrogen on Pt nanoparticle agglomerates, transport processes had to be taken into account to extract the real nanoparticle size effects. The results indicate an optimum particle size for the catalytic activity below 5nm which points clearly toward a real volume effect. In the case of the methanation reaction on gasborne Ni nanoparticles, no transport limitations were observed and the product concentration was directly proportional to the activity of the primary particles. We found an activity maximum for particles of about 19nm in diameter. This size is too large to be attributed to a real nanoparticle size effect induced by the electronic band structure. Therefore, we concluded that the particle size influences the adsorption behavior of the carbon monoxide molecules. In fact, it is known that intermediate adsorption enthalpies may favor dissociation processes, which is an essential step for the reaction, as manifested in the so called volcano-shaped curve. Then, in addition to the material dependence of the adsorption, we would also encounter a direct size dependence in the case of methanation on gasborne Ni nanoparticles.

  7. Catalytically and biologically active silver nanoparticles synthesized using essential oil

    NASA Astrophysics Data System (ADS)

    Vilas, Vidya; Philip, Daizy; Mathew, Joseph

    2014-11-01

    There are numerous reports on phytosynthesis of silver nanoparticles and various phytochemicals are involved in the reduction and stabilization. Pure explicit phytosynthetic protocol for catalytically and biologically active silver nanoparticles is of importance as it is an environmentally benign green method. This paper reports the use of essential oil of Myristica fragrans enriched in terpenes and phenyl propenes in the reduction and stabilization. FTIR spectra of the essential oil and the synthesized biogenic silver nanoparticles are in accordance with the GC-MS spectral analysis reports. Nanosilver is initially characterized by an intense SPR band around 420 nm, followed by XRD and TEM analysis revealing the formation of 12-26 nm sized, highly pure, crystalline silver nanoparticles. Excellent catalytic and bioactive potential of the silver nanoparticles is due to the surface modification. The chemocatalytic potential of nanosilver is exhibited by the rapid reduction of the organic pollutant, para nitro phenol and by the degradation of the thiazine dye, methylene blue. Significant antibacterial activity of the silver colloid against Gram positive, Staphylococcus aureus (inhibition zone - 12 mm) and Gram negative, Escherichia coli (inhibition zone - 14 mm) is demonstrated by Agar-well diffusion method. Strong antioxidant activity of the biogenic silver nanoparticles is depicted through NO scavenging, hydrogen peroxide scavenging, reducing power, DPPH and total antioxidant activity assays.

  8. Catalytic Intramolecular Ketone Alkylation with Olefins by Dual Activation.

    PubMed

    Lim, Hee Nam; Dong, Guangbin

    2015-12-07

    Two complementary methods for catalytic intramolecular ketone alkylation reactions with unactivated olefins, resulting in Conia-ene-type reactions, are reported. The transformations are enabled by dual activation of both the ketone and the olefin and are atom-economical as stoichiometric oxidants or reductants are not required. Assisted by Kool's aniline catalyst, the reaction conditions can be both pH- and redox-neutral. A broad range of functional groups are thus tolerated. Whereas the rhodium catalysts are effective for the formation of five-membered rings, a ruthenium-based system that affords the six-membered ring products was also developed.

  9. Imaging Isolated Gold Atom Catalytic Sites in Zeolite NaY

    SciTech Connect

    Lu, Jing; Aydin, C.; Browning, Nigel D.; Gates, Bruce C.

    2012-06-11

    Gold, the most stable metallic element, attracted wide attention as a catalyst only after the discovery that gold nanoclusters on oxide supports are highly active and selective for reactions including numerous oxidation,[1–8] hydrogenation,[9–11] hydroamination,[12, 13] ring expansion,[14, 15] and coupling[16, 17] reactions. The catalytic properties of supported gold strongly dependent on the gold–support interactions and the size of the active species, which must be small—typically clusters with diameters of the order of 1 nm.[18–20] Frequent discoveries of new gold-catalyzed reactions are leading the science; understanding has been slow to emerge.[21] Major challenges are to identify the catalytically active species and to characterize gold–support interactions.

  10. Functional roles of ATP-binding residues in the catalytic site of human mitochondrial NAD(P)+-dependent malic enzyme.

    PubMed

    Hung, Hui-Chih; Chien, Yu-Ching; Hsieh, Ju-Yi; Chang, Gu-Gang; Liu, Guang-Yaw

    2005-09-27

    Human mitochondrial NAD(P)+-dependent malic enzyme is inhibited by ATP. The X-ray crystal structures have revealed that two ATP molecules occupy both the active and exo site of the enzyme, suggesting that ATP might act as an allosteric inhibitor of the enzyme. However, mutagenesis studies and kinetic evidences indicated that the catalytic activity of the enzyme is inhibited by ATP through a competitive inhibition mechanism in the active site and not in the exo site. Three amino acid residues, Arg165, Asn259, and Glu314, which are hydrogen-bonded with NAD+ or ATP, are chosen to characterize their possible roles on the inhibitory effect of ATP for the enzyme. Our kinetic data clearly demonstrate that Arg165 is essential for catalysis. The R165A enzyme had very low enzyme activity, and it was only slightly inhibited by ATP and not activated by fumarate. The values of K(m,NAD) and K(i,ATP) to both NAD+ and malate were elevated. Elimination of the guanidino side chain of R165 made the enzyme defective on the binding of NAD+ and ATP, and it caused the charge imbalance in the active site. These effects possibly caused the enzyme to malfunction on its catalytic power. The N259A enzyme was less inhibited by ATP but could be fully activated by fumarate at a similar extent compared with the wild-type enzyme. For the N259A enzyme, the value of K(i,ATP) to NAD+ but not to malate was elevated, indicating that the hydrogen bonding between ATP and the amide side chain of this residue is important for the binding stability of ATP. Removal of this side chain did not cause any harmful effect on the fumarate-induced activation of the enzyme. The E314A enzyme, however, was severely inhibited by ATP and only slightly activated by fumarate. The values of K(m,malate), K(m,NAD), and K(i,ATP) to both NAD+ and malate for E314A were reduced to about 2-7-folds compared with those of the wild-type enzyme. It can be concluded that mutation of Glu314 to Ala eliminated the repulsive effects

  11. Ultra-high electrochemical catalytic activity of MXenes.

    PubMed

    Pan, Hui

    2016-09-08

    Cheap and abundant electrocatalysts for hydrogen evolution reactions (HER) have been widely pursued for their practical application in hydrogen-energy technologies. In this work, I present systematical study of the hydrogen evolution reactions on MXenes (Mo2X and W2X, X = C and N) based on density-functional-theory calculations. I find that their HER performances strongly depend on the composition, hydrogen adsorption configurations, and surface functionalization. I show that W2C monolayer has the best HER activity with near-zero overpotential at high hydrogen density among all of considered pure MXenes, and hydrogenation can efficiently enhance its catalytic performance in a wide range of hydrogen density further, while oxidization makes its activity reduced significantly. I further show that near-zero overpotential for HER on Mo2X monolayers can be achieved by oxygen functionalization. My calculations predict that surface treatment, such as hydrogenation and oxidization, is critical to enhance the catalytic performance of MXenes. I expect that MXenes with HER activity comparable to Pt in a wide range of hydrogen density can be realized by tuning composition and functionalizing, and promotes their applications into hydrogen-energy technologies.

  12. Ultra-high electrochemical catalytic activity of MXenes

    PubMed Central

    Pan, Hui

    2016-01-01

    Cheap and abundant electrocatalysts for hydrogen evolution reactions (HER) have been widely pursued for their practical application in hydrogen-energy technologies. In this work, I present systematical study of the hydrogen evolution reactions on MXenes (Mo2X and W2X, X = C and N) based on density-functional-theory calculations. I find that their HER performances strongly depend on the composition, hydrogen adsorption configurations, and surface functionalization. I show that W2C monolayer has the best HER activity with near-zero overpotential at high hydrogen density among all of considered pure MXenes, and hydrogenation can efficiently enhance its catalytic performance in a wide range of hydrogen density further, while oxidization makes its activity reduced significantly. I further show that near-zero overpotential for HER on Mo2X monolayers can be achieved by oxygen functionalization. My calculations predict that surface treatment, such as hydrogenation and oxidization, is critical to enhance the catalytic performance of MXenes. I expect that MXenes with HER activity comparable to Pt in a wide range of hydrogen density can be realized by tuning composition and functionalizing, and promotes their applications into hydrogen-energy technologies. PMID:27604848

  13. Catalytic activation of carbon-carbon bonds in cyclopentanones.

    PubMed

    Xia, Ying; Lu, Gang; Liu, Peng; Dong, Guangbin

    2016-11-24

    In the chemical industry, molecules of interest are based primarily on carbon skeletons. When synthesizing such molecules, the activation of carbon-carbon single bonds (C-C bonds) in simple substrates is strategically important: it offers a way of disconnecting such inert bonds, forming more active linkages (for example, between carbon and a transition metal) and eventually producing more versatile scaffolds. The challenge in achieving such activation is the kinetic inertness of C-C bonds and the relative weakness of newly formed carbon-metal bonds. The most common tactic starts with a three- or four-membered carbon-ring system, in which strain release provides a crucial thermodynamic driving force. However, broadly useful methods that are based on catalytic activation of unstrained C-C bonds have proven elusive, because the cleavage process is much less energetically favourable. Here we report a general approach to the catalytic activation of C-C bonds in simple cyclopentanones and some cyclohexanones. The key to our success is the combination of a rhodium pre-catalyst, an N-heterocyclic carbene ligand and an amino-pyridine co-catalyst. When an aryl group is present in the C3 position of cyclopentanone, the less strained C-C bond can be activated; this is followed by activation of a carbon-hydrogen bond in the aryl group, leading to efficient synthesis of functionalized α-tetralones-a common structural motif and versatile building block in organic synthesis. Furthermore, this method can substantially enhance the efficiency of the enantioselective synthesis of some natural products of terpenoids. Density functional theory calculations reveal a mechanism involving an intriguing rhodium-bridged bicyclic intermediate.

  14. Catalytic Mesoporous Janus Nanomotors for Active Cargo Delivery

    PubMed Central

    2015-01-01

    We report on the synergy between catalytic propulsion and mesoporous silica nanoparticles (MSNPs) for the design of Janus nanomotors as active cargo delivery systems with sizes <100 nm (40, 65, and 90 nm). The Janus asymmetry of the nanomotors is given by electron beam (e-beam) deposition of a very thin platinum (2 nm) layer on MSNPs. The chemically powered Janus nanomotors present active diffusion at low H2O2 fuel concentration (i.e., <3 wt %). Their apparent diffusion coefficient is enhanced up to 100% compared to their Brownian motion. Due to their mesoporous architecture and small dimensions, they can load cargo molecules in large quantity and serve as active nanocarriers for directed cargo delivery on a chip. PMID:25844893

  15. Identification of putative active site residues of ACAT enzymes.

    PubMed

    Das, Akash; Davis, Matthew A; Rudel, Lawrence L

    2008-08-01

    In this report, we sought to determine the putative active site residues of ACAT enzymes. For experimental purposes, a particular region of the C-terminal end of the ACAT protein was selected as the putative active site domain due to its high degree of sequence conservation from yeast to humans. Because ACAT enzymes have an intrinsic thioesterase activity, we hypothesized that by analogy with the thioesterase domain of fatty acid synthase, the active site of ACAT enzymes may comprise a catalytic triad of ser-his-asp (S-H-D) amino acid residues. Mutagenesis studies revealed that in ACAT1, S456, H460, and D400 were essential for activity. In ACAT2, H438 was required for enzymatic activity. However, mutation of D378 destabilized the enzyme. Surprisingly, we were unable to identify any S mutations of ACAT2 that abolished catalytic activity. Moreover, ACAT2 was insensitive to serine-modifying reagents, whereas ACAT1 was not. Further studies indicated that tyrosine residues may be important for ACAT activity. Mutational analysis showed that the tyrosine residue of the highly conserved FYXDWWN motif was important for ACAT activity. Furthermore, Y518 was necessary for ACAT1 activity, whereas the analogous residue in ACAT2, Y496, was not. The available data suggest that the amino acid requirement for ACAT activity may be different for the two ACAT isozymes.

  16. Principles of water oxidation and O2-based hydrocarbon transformation by multinuclear catalytic sites

    SciTech Connect

    Musaev, Djamaladdin G; Hill, Craig L; Morokuma, Keiji

    2014-10-28

    Abstract The central thrust of this integrated experimental and computational research program was to obtain an atomistic-level understanding of the structural and dynamic factors underlying the design of catalysts for water oxidation and selective reductant-free O2-based transformations. The focus was on oxidatively robust polyoxometalate (POM) complexes in which a catalytic active site interacts with proximal metal centers in a synergistic manner. Thirty five publications in high-impact journals arose from this grant. I. Developing an oxidatively and hydrolytically stable and fast water oxidation catalyst (WOC), a central need in the production of green fuels using water as a reductant, has proven particularly challenging. During this grant period we have designed and investigated several carbon-free, molecular (homogenous), oxidatively and hydrolytically stable WOCs, including the Rb8K2[{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2]·25H2O (1) and [Co4(H2O)2(α-PW9O34)2]10- (2). Although complex 1 is fast, oxidatively and hydrolytically stable WOC, Ru is neither abundant nor inexpensive. Therefore, development of a stable and fast carbon-free homogenous WOC, based on earth-abundant elements became our highest priority. In 2010, we reported the first such catalyst, complex 2. This complex is substantially faster than 1 and stable under homogeneous conditions. Recently, we have extended our efforts and reported a V2-analog of the complex 2, i.e. [Co4(H2O)2(α-VW9O34)2]10- (3), which shows an even greater stability and reactivity. We succeeded in: (a) immobilizing catalysts 1 and 2 on the surface of various electrodes, and (b) elucidating the mechanism of O2 formation and release from complex 1, as well as the Mn4O4L6 “cubane” cluster. We have shown that the direct O-O bond formation is the most likely pathway for O2 formation during water oxidation catalyzed by 1. II. Oxo transfer catalysts that contain two proximal and synergistically interacting redox active metal

  17. Balancing the stability and the catalytic specificities of OP hydrolases with enhanced V-agent activities.

    PubMed

    Reeves, T E; Wales, M E; Grimsley, J K; Li, P; Cerasoli, D M; Wild, J R

    2008-06-01

    Rational site-directed mutagenesis and biophysical analyses have been used to explore the thermodynamic stability and catalytic capabilities of organophosphorus hydrolase (OPH) and its genetically modified variants. There are clear trade-offs in the stability of modifications that enhance catalytic activities. For example, the H254R/H257L variant has higher turnover numbers for the chemical warfare agents VX (144 versus 14 s(-1) for the native enzyme (wild type) and VR (Russian VX, 465 versus 12 s(-1) for wild type). These increases are accompanied by a loss in stability in which the total Gibb's free energy for unfolding is 19.6 kcal/mol, which is 5.7 kcal/mol less than that of the wild-type enzyme. X-ray crystallographic studies support biophysical data that suggest amino acid residues near the active site contribute to the chemical and thermal stability through hydrophobic and cation-pi interactions. The cation-pi interactions appear to contribute an additional 7 kcal/mol to the overall global stability of the enzyme. Using rational design, it has been possible to make amino acid changes in this region that restored the stability, yet maintained effective V-agent activities, with turnover numbers of 68 and 36 s(-1) for VX and VR, respectively. This study describes the first rationally designed, stability/activity balance for an OPH enzyme with a legitimate V-agent activity, and its crystal structure.

  18. Origin of the catalytic activity of bovine seminal ribonuclease against double-stranded RNA

    NASA Technical Reports Server (NTRS)

    Opitz, J. G.; Ciglic, M. I.; Haugg, M.; Trautwein-Fritz, K.; Raillard, S. A.; Jermann, T. M.; Benner, S. A.

    1998-01-01

    Bovine seminal ribonuclease (RNase) binds, melts, and (in the case of RNA) catalyzes the hydrolysis of double-stranded nucleic acid 30-fold better under physiological conditions than its pancreatic homologue, the well-known RNase A. Reported here are site-directed mutagenesis experiments that identify the sequence determinants of this enhanced catalytic activity. These experiments have been guided in part by experimental reconstructions of ancestral RNases from extinct organisms that were intermediates in the evolution of the RNase superfamily. It is shown that the enhanced interactions between bovine seminal RNase and double-stranded nucleic acid do not arise from the increased number of basic residues carried by the seminal enzyme. Rather, a combination of a dimeric structure and the introduction of two glycine residues at positions 38 and 111 on the periphery of the active site confers the full catalytic activity of bovine seminal RNase against duplex RNA. A structural model is presented to explain these data, the use of evolutionary reconstructions to guide protein engineering experiments is discussed, and a new variant of RNase A, A(Q28L K31C S32C D38G E111G), which contains all of the elements identified in these experiments as being important for duplex activity, is prepared. This is the most powerful catalyst within this subfamily yet observed, some 46-fold more active against duplex RNA than RNase A.

  19. Salt site performance assessment activities

    SciTech Connect

    Kircher, J.F.; Gupta, S.K.

    1983-01-01

    During this year the first selection of the tools (codes) for performance assessments of potential salt sites have been tentatively selected and documented; the emphasis has shifted from code development to applications. During this period prior to detailed characterization of a salt site, the focus is on bounding calculations, sensitivity and with the data available. The development and application of improved methods for sensitivity and uncertainty analysis is a focus for the coming years activities and the subject of a following paper in these proceedings. Although the assessments to date are preliminary and based on admittedly scant data, the results indicate that suitable salt sites can be identified and repository subsystems designed which will meet the established criteria for protecting the health and safety of the public. 36 references, 5 figures, 2 tables.

  20. Catalytic site-specific cleavage of a DNA-target by an oligonucleotide carrying bleomycin A5.

    PubMed Central

    Sergeyev, D S; Godovikova, T S; Zarytova, V F

    1995-01-01

    Oligonucleotide reagents have been created which are capable of catalytic site-specific cleavage of DNA-targets. The oligonucleotide reagent Blm-R-pd(CCAAACA) bearing the bleomycin A5 (Blm-RH) residue was used to degrade the DNA-target pd(TGTTTGGCGAAGGA). It has been shown that at equimolar reagent: target concentration the bleomycin oligonucleotide derivative can repeatedly cleave the target at G9, G7, T5, T4 and T3 in site-specific manner. This paper demonstrates that with a 10-fold excess of the DNA-target relative to the reagent 30% degradation of the target was observed primarily at a single position G7. The paper also shows that one reagent molecule containing bleomycin A5 residue was capable to degrade three molecules of the DNA-target. The catalytic activity of Blm-R-pd(CCAAACA) was the highest in the temperature range close to the melting temperature of the reagent-target complex, that is under conditions where the oligonucleotide reagent can form a complementary complex and easily dissociate to interact with the next molecule of the target. The number of target molecules degraded by the bleomycin reagent is limited by the degradation of the antibiotic residue itself. Images PMID:7501462

  1. Catalytic activity of nuclease P1: Experiment and theory

    SciTech Connect

    Miller, J.H.; Falcone, J.M.; Shibata, M.; Box, H.C.

    1994-10-01

    Nuclease P1 from Penicillium citrinum is a zinc dependent glyco-enzyme that recognizes single stranded DNA and RNA as substrates and hydrolyzes the phosphate ester bond. Nuclease Pl seems to recognize particular conformations of the phosphodiester backbone and shows significant variation in the rate of hydrolytic activity depending upon which nucleosides are coupled by the phosphodiester bond. The efficiency of nuclease Pl in hydrolyzing the phosphodiester bonds of a substrate can be altered by modifications to one of the substrate bases induced by ionizing radiation or oxidative stress. Measurements have been made of the effect of several radiation induced lesions on the catalytic rate of nuclease Pl. A model of the structure of the enzyme has been constructed in order to better understand the binding and activity of this enzyme on various ssDNA substrates.

  2. Site-specific growth of Au-Pd alloy horns on Au nanorods: a platform for highly sensitive monitoring of catalytic reactions by surface enhancement Raman spectroscopy.

    PubMed

    Huang, Jianfeng; Zhu, Yihan; Lin, Ming; Wang, Qingxiao; Zhao, Lan; Yang, Yang; Yao, Ke Xin; Han, Yu

    2013-06-12

    Surface-enhanced Raman scattering (SERS) is a highly sensitive probe for molecular detection. The aim of this study was to develop an efficient platform for investigating the kinetics of catalytic reactions with SERS. To achieve this, we synthesized a novel Au-Pd bimetallic nanostructure (HIF-AuNR@AuPd) through site-specific epitaxial growth of Au-Pd alloy horns as catalytic sites at the ends of Au nanorods. Using high-resolution electron microscopy and tomography, we successfully reconstructed the complex three-dimensional morphology of HIF-AuNR@AuPd and identified that the horns are bound with high-index {11l} (0.25 < l < 0.43) facets. With an electron beam probe, we visualized the distribution of surface plasmon over the HIF-AuNR@AuPd nanorods, finding that strong longitudinal surface plasmon resonance concentrated at the rod ends. This unique crystal morphology led to the coupling of high catalytic activity with a strong SERS effect at the rod ends, making HIF-AuNR@AuPd an excellent bifunctional platform for in situ monitoring of surface catalytic reactions. Using the hydrogenation of 4-nitrothiophenol as a model reaction, we demonstrated that its first-order reaction kinetics could be accurately determined from this platform. Moreover, we clearly identified the superior catalytic activity of the rod ends relative to that of the rod bodies, owing to the different SERS activities at the two positions. In comparison with other reported Au-Pd bimetallic nanostructures, HIF-AuNR@AuPd offered both higher catalytic activity and greater detection sensitivity.

  3. Topological constraints of structural elements in regulation of catalytic activity in HDV-like self-cleaving ribozymes

    PubMed Central

    Webb, Chiu-Ho T.; Nguyen, Dang; Myszka, Marie; Lupták, Andrej

    2016-01-01

    Self-cleaving ribozymes fold into intricate structures, which orient active site groups into catalytically competent conformations. Most ribozyme families have distinct catalytic cores stabilized by tertiary interactions between domains peripheral to those cores. We show that large hepatitis delta virus (HDV)-like ribozymes are activated by peripheral domains that bring two helical segments, P1 and P2, into proximity – a “pinch” that results in rate acceleration by almost three orders of magnitude. Kinetic analysis of ribozymes with systematically altered length and stability of the peripheral domain revealed that about one third of its free energy of formation is used to lower an activation energy barrier, likely related to a rate-limiting conformational change leading to the pre-catalytic state. These findings provide a quantitative view of enzyme regulation by peripheral domains and may shed light on the energetics of allosteric regulation. PMID:27302490

  4. Active-site zinc ligands and activated H2O of zinc enzymes.

    PubMed Central

    Vallee, B L; Auld, D S

    1990-01-01

    The x-ray crystallographic structures of 12 zinc enzymes have been chosen as standards of reference to identify the ligands to the catalytic and structural zinc atoms of other members of their respective enzyme families. Universally, H2O is a ligand and critical component of the catalytically active zinc sites. In addition, three protein side chains bind to the catalytic zinc atom, whereas four protein ligands bind to the structural zinc atom. The geometry and coordination number of zinc can vary greatly to accommodate particular ligands. Zinc forms complexes with nitrogen and oxygen just as readily as with sulfur, and this is reflected in catalytic zinc sites having a binding frequency of His much greater than Glu greater than Asp = Cys, three of which bind to the metal atom. The systematic spacing between the ligands is striking. For all catalytic zinc sites except the coenzyme-dependent alcohol dehydrogenase, the first two ligands are separated by a "short-spacer" consisting of 1 to 3 amino acids. These ligands are separated from the third ligand by a "long spacer" of approximately 20 to approximately 120 amino acids. The spacer enables formation of a primary bidentate zinc complex, whereas the long spacer contributes flexibility to the coordination sphere, which can poise the zinc for catalysis as well as bring other catalytic and substrate binding groups into apposition with the active site. The H2O is activated by ionization, polarization, or poised for displacement. Collectively, the data imply that the preferred mechanistic pathway for activating the water--e.g., zinc hydroxide or Lewis acid catalysis--will be determined by the identity of the other three ligands and their spacing. Images PMID:2104979

  5. Guiding catalytically active particles with chemically patterned surfaces

    NASA Astrophysics Data System (ADS)

    Uspal, William; Popescu, Mihail; Dietrich, Siegfried; Tasinkevych, Mykola

    Catalytically active Janus particles in solution create gradients in the chemical composition of the solution along their surfaces, as well as along any nearby container walls. The former leads to self-phoresis, while the latter gives rise to chemi-osmosis, providing an additional contribution to self-motility. Chemi-osmosis strongly depends on the molecular interactions between the diffusing chemical species and the wall. We show analytically, using an approximate ``point-particle'' approach, that by chemically patterning a planar substrate (e.g., by adsorbing two different materials) one can direct the motion of Janus particles: the induced chemi-osmotic flows can cause particles to either ``dock'' at a chemical step between the two materials, or to follow a chemical stripe. These theoretical predictions are confirmed by full numerical calculations. Generically, docking occurs for particles which tend to move away from their catalytic caps, while stripe-following occurs in the opposite case. Our analysis reveals the physical mechanisms governing this behavior.

  6. The catalytic triad of the influenza C virus glycoprotein HEF esterase: characterization by site-directed mutagenesis and functional analysis.

    PubMed

    Pleschka, S; Klenk, H D; Herrler, G

    1995-10-01

    Influenza C virus is able to inactivate its own cellular receptors by virtue of a sialate 9-O-acetylesterase that releases the acetyl residue at position C-9 of N-acetyl-9-O-acetylneuraminic acid (Neu5,9Ac2). The receptor-destroying enzyme activity is a function of the surface glycoprotein HEF and this esterase belongs to the class of serine hydrolases. In their active site, these enzymes contain a catalytic triad made up of a serine, a histidine and an aspartic acid residue. Sequence comparison with other serine esterases has indicated that, in addition to serine-71 (S71), the amino acids histidine-368 or -369 (H368/369) and aspartic acid 261 (D261) are the most likely candidates to form the catalytic triad of the influenza C virus glycoprotein. By site-directed mutagenesis, mutants were generated in which alanine substituted for either of these amino acids. Using a phagemid expression vector, pSP1D-HEF the HEF gene was expressed in both COS 7 and MDCK I cells. The glycoprotein was obtained in a functional form only in the latter cells, as indicated by its transport to the cell surface and measurable enzyme activity. The low level of expression could be increased by stimulating the NF-KB-binding activity of the cytomegalovirus immediate-early promoter/enhancer element of the vector. The esterase activity of the mutant proteins was compared with that of the wild-type glycoprotein. With Neu5,9Ac2 as the substrate, the esterase specific activities of the S71/A mutant and the H368,369/A mutant were reduced by more than 90%. In the case of the D261/A mutant the specific activity was reduced by 64%. From this data we conclude that S71, H368/369 and D261 are likely to represent the catalytic triad of the influenza C virus glycoprotein HEF. In addition, N280 is proposed to stabilize the oxyanion of the presumptive transition state intermediate formed by the enzyme-substrate complex.

  7. A Redox 2-Cys Mechanism Regulates the Catalytic Activity of Divergent Cyclophilins1[W

    PubMed Central

    Campos, Bruna Medéia; Sforça, Mauricio Luis; Ambrosio, Andre Luis Berteli; Domingues, Mariane Noronha; Brasil de Souza, Tatiana de Arruda Campos; Barbosa, João Alexandre Ribeiro Gonçalvez; Leme, Adriana Franco Paes; Perez, Carlos Alberto; Whittaker, Sara Britt-Marie; Murakami, Mario Tyago; Zeri, Ana Carolina de Matos; Benedetti, Celso Eduardo

    2013-01-01

    The citrus (Citrus sinensis) cyclophilin CsCyp is a target of the Xanthomonas citri transcription activator-like effector PthA, required to elicit cankers on citrus. CsCyp binds the citrus thioredoxin CsTdx and the carboxyl-terminal domain of RNA polymerase II and is a divergent cyclophilin that carries the additional loop KSGKPLH, invariable cysteine (Cys) residues Cys-40 and Cys-168, and the conserved glutamate (Glu) Glu-83. Despite the suggested roles in ATP and metal binding, the functions of these unique structural elements remain unknown. Here, we show that the conserved Cys residues form a disulfide bond that inactivates the enzyme, whereas Glu-83, which belongs to the catalytic loop and is also critical for enzyme activity, is anchored to the divergent loop to maintain the active site open. In addition, we demonstrate that Cys-40 and Cys-168 are required for the interaction with CsTdx and that CsCyp binds the citrus carboxyl-terminal domain of RNA polymerase II YSPSAP repeat. Our data support a model where formation of the Cys-40-Cys-168 disulfide bond induces a conformational change that disrupts the interaction of the divergent and catalytic loops, via Glu-83, causing the active site to close. This suggests a new type of allosteric regulation in divergent cyclophilins, involving disulfide bond formation and a loop-displacement mechanism. PMID:23709667

  8. Preparation of aluminum-containing mesoporous silica with hierarchical macroporous architecture and its enhanced catalytic activities.

    PubMed

    Kamegawa, Takashi; Tanaka, Shota; Seto, Hiroki; Zhou, Dayang; Yamashita, Hiromi

    2013-08-28

    Aluminum-containing mesoporous silica with hierarchical macroporous architecture (Al-MMS) was successfully prepared using a solvent evaporation method through the combination of precursor solution for synthesis of Al-containing mesoporous silica (Al-MS) and poly(methyl methacrylate) (PMMA) colloidal crystals as a hard template. The porous structure and the state of aluminum were investigated using various characterization techniques. The construction of combined structure of Al-MMS, i.e., hierarchical macroporous architecture consisting of thin mesoporous silica frameworks, led to the formation of many mesopore entrances and the shortening of the mesoporous channels. In the tetrahydropyranylation of linear alcohols with dihydropyran (DHP), Al-MMS exhibited higher catalytic activities for the formation of corresponding tetrahydropyranyl ethers as compared to Al-MS. The advantageous structure of Al-MMS enables the efficient transport of reactants to the catalytically active sites, which realizes the significant enhancement of catalytic performances in the reaction of DHP with alcohols having longer alkyl chains.

  9. Importance of the lid and cap domains for the catalytic activity of gastric lipases.

    PubMed

    Miled, N; Bussetta, C; De caro, A; Rivière, M; Berti, L; Canaan, S

    2003-09-01

    Human gastric lipase (HGL) is an enzyme secreted by the stomach, which is stable and active despite the highly acidic environment. It has been clearly established that this enzyme is responsible for 30% of the fat digestion processes occurring in human. This globular protein belongs to the alpha/beta hydrolase fold family and its catalytic serine is deeply buried under a domain called the extrusion domain, which is composed of a 'cap' domain and a segment consisting of 58 residues, which can be defined as a lid. The exact roles played by the cap and the lid domains during the catalytic step have not yet been elucidated. We have recently solved the crystal structure of the open form of the dog gastric lipase in complex with a covalent inhibitor. The detergent molecule and the inhibitor were mimicking a triglyceride substrate that would interact with residues belonging to both the cap and the lid domains. In this study, we have investigated the role of the cap and the lid domains, using site-directed mutagenesis procedures. We have produced truncated mutants lacking the lid and the cap. After expressing these mutants and purifying them, their activity was found to have decreased drastically in comparison with the wild type HGL. The lid and the cap domains play an important role in the catalytic reaction mechanism. Based on these results and the structural data (open form of DGL), we have pointed out the cap and the lid residues involved in the binding with the lipidic substrate.

  10. Insights into the catalytic mechanism of human sEH phosphatase by site-directed mutagenesis and LC-MS/MS analysis.

    PubMed

    Cronin, Annette; Homburg, Shirli; Dürk, Heike; Richter, Ingrid; Adamska, Magdalena; Frère, Frederic; Arand, Michael

    2008-11-14

    We have recently reported that human soluble epoxide hydrolase (sEH) is a bifunctional enzyme with a novel phosphatase enzymatic activity. Based on a structural relationship with other members of the haloacid dehalogenase superfamily, the sEH N-terminal phosphatase domain revealed four conserved sequence motifs, including the proposed catalytic nucleophile D9, and several other residues potentially implicated in substrate turnover and/or Mg(2+) binding. To enlighten the catalytic mechanism of dephosphorylation, we constructed sEH phosphatase active-site mutants by site-directed mutagenesis. A total of 18 mutants were constructed and recombinantly expressed in Escherichia coli as soluble proteins, purified to homogeneity and subsequently analysed for their kinetic parameters. A replacement of residues D9, K160, D184 or N189 resulted in a complete loss of phosphatase activity, consistent with an essential function for catalysis. In contrast, a substitution of D11, T123, N124 and D185 leads to sEH mutant proteins with altered kinetic properties. We further provide evidence of the formation of an acylphosphate intermediate on D9 by liquid chromatography-tandem mass spectrometry based on the detection of homoserine after NaBH(4) reduction of the phosphorylated enzyme, which identifies D9 as the catalytic nucleophile. Surprisingly, we could only show such homoserine formation using the D11N mutant, which strongly suggests D11 to be involved in the acylphosphate hydrolysis. In the D11 mutant, the second catalytic step becomes rate limiting, which then allows trapping of the labile intermediate. Substrate turnover in the presence of (18)H(2)O revealed that the nucleophilic attack during the second reaction step occurs at the acylphosphate phosphorous. Based on these findings, we propose a two-step catalytic mechanism of dephosphorylation that involves the phosphate substrate hydrolysis by nucleophilic attack by the catalytic nucleophile D9 followed by hydrolysis of the

  11. Role of Arginine 293 and Glutamine 288 in Communication between Catalytic and Allosteric Sites in Yeast Ribonucleotide Reductase

    SciTech Connect

    Ahmad, Md. Faiz; Kaushal, Prem Singh; Wan, Qun; Wijerathna, Sanath R.; An, Xiuxiang; Huang, Mingxia; Dealwis, Chris Godfrey

    2012-11-01

    Ribonucleotide reductases (RRs) catalyze the rate-limiting step of de novo deoxynucleotide (dNTP) synthesis. Eukaryotic RRs consist of two proteins, RR1 ({alpha}) that contains the catalytic site and RR2 ({beta}) that houses a diferric-tyrosyl radical essential for ribonucleoside diphosphate reduction. Biochemical analysis has been combined with isothermal titration calorimetry (ITC), X-ray crystallography and yeast genetics to elucidate the roles of two loop 2 mutations R293A and Q288A in Saccharomyces cerevisiae RR1 (ScRR1). These mutations, R293A and Q288A, cause lethality and severe S phase defects, respectively, in cells that use ScRR1 as the sole source of RR1 activity. Compared to the wild-type enzyme activity, R293A and Q288A mutants show 4% and 15%, respectively, for ADP reduction, whereas they are 20% and 23%, respectively, for CDP reduction. ITC data showed that R293A ScRR1 is unable to bind ADP and binds CDP with 2-fold lower affinity compared to wild-type ScRR1. With the Q288A ScRR1 mutant, there is a 6-fold loss of affinity for ADP binding and a 2-fold loss of affinity for CDP compared to the wild type. X-ray structures of R293A ScRR1 complexed with dGTP and AMPPNP-CDP [AMPPNP, adenosine 5-({beta},{gamma}-imido)triphosphate tetralithium salt] reveal that ADP is not bound at the catalytic site, and CDP binds farther from the catalytic site compared to wild type. Our in vivo functional analyses demonstrated that R293A cannot support mitotic growth, whereas Q288A can, albeit with a severe S phase defect. Taken together, our structure, activity, ITC and in vivo data reveal that the arginine 293 and glutamine 288 residues of ScRR1 are crucial in facilitating ADP and CDP substrate selection.

  12. Antibacterial and catalytic activities of green synthesized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Bindhu, M. R.; Umadevi, M.

    2015-01-01

    The aqueous beetroot extract was used as reducing agent for silver nanoparticles synthesis. The synthesized nanoparticles were characterized using UV-visible spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The surface plasmon resonance peak of synthesized nanoparticles was observed at 438 nm. As the concentration of beetroot extract increases, absorption spectra shows blue shift with decreasing particle size. The prepared silver nanoparticles were well dispersed, spherical in shape with the average particle size of 15 nm. The prepared silver nanoparticles are effective in inhibiting the growth of both gram positive and gram negative bacteria. The prepared silver nanoparticles reveal faster catalytic activity. This natural method for synthesis of silver nanoparticles offers a valuable contribution in the area of green synthesis and nanotechnology avoiding the presence of hazardous and toxic solvents and waste.

  13. [Effect Of Polyelectrolytes on Catalytic Activity of Alcohol Dehydrogenase].

    PubMed

    Dubrovsky, A V; Musina, E V; Kim, A L; Tikhonenko, S A

    2016-01-01

    Fluorescent and optical spectroscopy were used to study the interaction of alcohol dehydrogenase (ADH) with negatively charged polystyrene sulfonate (PSS) and dextran sulfate (DS), as well as positively charged poly(diallyldimethylammonium) (PDADMA). As found, DS and PDADMA did not affect the structural and catalytic enzyme properties. In contrast, PSS slightly decreased the protein self-fluorescence over 1 h of incubation, which is associated with partial destruction of its quaternary (globular) structure. Investigation of the ADH activity with and without PSS showed its dependency on the incubation time and the PSS presence. Sodium chloride (2.0 M and 0.2 M) or ammonium sulfate (0.1 M) added to the reaction mixture did not completely protect the enzyme quaternary structure from the PSS action. However ammonium sulfate or 0.2 M sodium chloride stabilized the enzyme and partially inhibited the negative PSS effect.

  14. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles.

    PubMed

    Vayssilov, Georgi N; Lykhach, Yaroslava; Migani, Annapaola; Staudt, Thorsten; Petrova, Galina P; Tsud, Nataliya; Skála, Tomáš; Bruix, Albert; Illas, Francesc; Prince, Kevin C; Matolín, Vladimír; Neyman, Konstantin M; Libuda, Jörg

    2011-04-01

    Interactions of metal particles with oxide supports can radically enhance the performance of supported catalysts. At the microscopic level, the details of such metal-oxide interactions usually remain obscure. This study identifies two types of oxidative metal-oxide interaction on well-defined models of technologically important Pt-ceria catalysts: (1) electron transfer from the Pt nanoparticle to the support, and (2) oxygen transfer from ceria to Pt. The electron transfer is favourable on ceria supports, irrespective of their morphology. Remarkably, the oxygen transfer is shown to require the presence of nanostructured ceria in close contact with Pt and, thus, is inherently a nanoscale effect. Our findings enable us to detail the formation mechanism of the catalytically indispensable Pt-O species on ceria and to elucidate the extraordinary structure-activity dependence of ceria-based catalysts in general.

  15. Antibacterial and catalytic activities of green synthesized silver nanoparticles.

    PubMed

    Bindhu, M R; Umadevi, M

    2015-01-25

    The aqueous beetroot extract was used as reducing agent for silver nanoparticles synthesis. The synthesized nanoparticles were characterized using UV-visible spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The surface plasmon resonance peak of synthesized nanoparticles was observed at 438 nm. As the concentration of beetroot extract increases, absorption spectra shows blue shift with decreasing particle size. The prepared silver nanoparticles were well dispersed, spherical in shape with the average particle size of 15 nm. The prepared silver nanoparticles are effective in inhibiting the growth of both gram positive and gram negative bacteria. The prepared silver nanoparticles reveal faster catalytic activity. This natural method for synthesis of silver nanoparticles offers a valuable contribution in the area of green synthesis and nanotechnology avoiding the presence of hazardous and toxic solvents and waste.

  16. Role of enzyme-substrate flexibility in catalytic activity: an evolutionary perspective.

    PubMed

    Demetrius, L

    1998-09-21

    Site-directed mutagenesis has proved an effective experimental technique to investigate catalytic mechanisms and to determine relations between enzyme structure and function. This article invokes an analytical model based on evolution by mutation and natural selection-Nature's analogue of site-directed mutagenesis-to derive a set of general rules relating enzyme structure and activity. The catalysts are described in terms of the structural parameters, rigidity and flexibility, and the functional variables, reaction rate and substrate specificity. The evolutionary model predicts the following structure-activity relations: (a) rigid enzyme-flexible substrate: large variation in reaction rates, broad substrate specificity; (b) rigid enzyme-rigid substrate: diffusion controlled rates, absolute specificity; (c) flexible enzyme-rigid substrate: intermediate reaction rates, group specificity; (d) flexible enzyme-flexible substrate: slow rates, absolute specificity. Spectroscopic methods and X-ray crystallography now yield important characteristics of enzyme-substrate complexes such as molecular flexibility. The evolutionary analysis we have exploited provides general principles for inferring catalytic activity from structural studies of enzyme-substrate complexes.

  17. MYST protein acetyltransferase activity requires active site lysine autoacetylation.

    PubMed

    Yuan, Hua; Rossetto, Dorine; Mellert, Hestia; Dang, Weiwei; Srinivasan, Madhusudan; Johnson, Jamel; Hodawadekar, Santosh; Ding, Emily C; Speicher, Kaye; Abshiru, Nebiyu; Perry, Rocco; Wu, Jiang; Yang, Chao; Zheng, Y George; Speicher, David W; Thibault, Pierre; Verreault, Alain; Johnson, F Bradley; Berger, Shelley L; Sternglanz, Rolf; McMahon, Steven B; Côté, Jacques; Marmorstein, Ronen

    2012-01-04

    The MYST protein lysine acetyltransferases are evolutionarily conserved throughout eukaryotes and acetylate proteins to regulate diverse biological processes including gene regulation, DNA repair, cell-cycle regulation, stem cell homeostasis and development. Here, we demonstrate that MYST protein acetyltransferase activity requires active site lysine autoacetylation. The X-ray crystal structures of yeast Esa1 (yEsa1/KAT5) bound to a bisubstrate H4K16CoA inhibitor and human MOF (hMOF/KAT8/MYST1) reveal that they are autoacetylated at a strictly conserved lysine residue in MYST proteins (yEsa1-K262 and hMOF-K274) in the enzyme active site. The structure of hMOF also shows partial occupancy of K274 in the unacetylated form, revealing that the side chain reorients to a position that engages the catalytic glutamate residue and would block cognate protein substrate binding. Consistent with the structural findings, we present mass spectrometry data and biochemical experiments to demonstrate that this lysine autoacetylation on yEsa1, hMOF and its yeast orthologue, ySas2 (KAT8) occurs in solution and is required for acetylation and protein substrate binding in vitro. We also show that this autoacetylation occurs in vivo and is required for the cellular functions of these MYST proteins. These findings provide an avenue for the autoposttranslational regulation of MYST proteins that is distinct from other acetyltransferases but draws similarities to the phosphoregulation of protein kinases.

  18. MYST protein acetyltransferase activity requires active site lysine autoacetylation

    PubMed Central

    Yuan, Hua; Rossetto, Dorine; Mellert, Hestia; Dang, Weiwei; Srinivasan, Madhusudan; Johnson, Jamel; Hodawadekar, Santosh; Ding, Emily C; Speicher, Kaye; Abshiru, Nebiyu; Perry, Rocco; Wu, Jiang; Yang, Chao; Zheng, Y George; Speicher, David W; Thibault, Pierre; Verreault, Alain; Johnson, F Bradley; Berger, Shelley L; Sternglanz, Rolf; McMahon, Steven B; Côté, Jacques; Marmorstein, Ronen

    2012-01-01

    The MYST protein lysine acetyltransferases are evolutionarily conserved throughout eukaryotes and acetylate proteins to regulate diverse biological processes including gene regulation, DNA repair, cell-cycle regulation, stem cell homeostasis and development. Here, we demonstrate that MYST protein acetyltransferase activity requires active site lysine autoacetylation. The X-ray crystal structures of yeast Esa1 (yEsa1/KAT5) bound to a bisubstrate H4K16CoA inhibitor and human MOF (hMOF/KAT8/MYST1) reveal that they are autoacetylated at a strictly conserved lysine residue in MYST proteins (yEsa1-K262 and hMOF-K274) in the enzyme active site. The structure of hMOF also shows partial occupancy of K274 in the unacetylated form, revealing that the side chain reorients to a position that engages the catalytic glutamate residue and would block cognate protein substrate binding. Consistent with the structural findings, we present mass spectrometry data and biochemical experiments to demonstrate that this lysine autoacetylation on yEsa1, hMOF and its yeast orthologue, ySas2 (KAT8) occurs in solution and is required for acetylation and protein substrate binding in vitro. We also show that this autoacetylation occurs in vivo and is required for the cellular functions of these MYST proteins. These findings provide an avenue for the autoposttranslational regulation of MYST proteins that is distinct from other acetyltransferases but draws similarities to the phosphoregulation of protein kinases. PMID:22020126

  19. Effects of detergents on catalytic activity of human endometase/matrilysin 2, a putative cancer biomarker.

    PubMed

    Park, Hyun I; Lee, Seakwoo; Ullah, Asad; Cao, Qiang; Sang, Qing-Xiang Amy

    2010-01-15

    Matrix metalloproteinases (MMPs) are a family of hydrolytic enzymes that play significant roles in development, morphogenesis, inflammation, and cancer invasion. Endometase (matrilysin 2 or MMP-26) is a putative early biomarker for human carcinomas. The effects of the ionic and nonionic detergents on catalytic activity of endometase were investigated. The hydrolytic activity of endometase was detergent concentration dependent, exhibiting a bell-shaped curve with its maximum activity near the critical micelle concentration (CMC) of nonionic detergents tested. The effect of Brij-35 on human gelatinase B (MMP-9), matrilysin (MMP-7), and membrane-type 1 MMP (MT1-MMP) was further explored. Their maximum catalysis was observed near the CMC of Brij-35 ( approximately 90muM). Their IC(50) values were above the CMC. The inhibition mechanism of MMP-7, MMP-9, and MT1-MMP by Brij-35 was a mixed type as determined by Dixon's plot; however, the inhibition mechanism of endometase was noncompetitive with a K(i) value of 240muM. The catalytic activities of MMPs are influenced by detergents. Monomer of detergents may activate and stabilize MMPs to enhance catalysis, but micelle of detergents may sequester enzyme and block the substrate binding site to impede catalysis. Under physiological conditions, a lipid or membrane microenvironment may regulate enzymatic activity.

  20. Orthogonal gene knock out and activation with a catalytically active Cas9 nuclease

    PubMed Central

    Dahlman, James E.; Abudayyeh, Omar O.; Joung, Julia; Gootenberg, Jonathan S.; Zhang, Feng; Konermann, Silvana

    2015-01-01

    We have developed a CRISPR-based method that uses catalytically active Cas9 and distinct sgRNA constructs to knock out and activate different genes in the same cell. These sgRNAs, with 14 15 bp target sequences and MS2 binding loops, can activate gene expression using an active Cas9 nuclease, without inducing DSBs. We use these ‘dead RNAs’ to perform orthogonal gene knockout and transcriptional activation in human cells. PMID:26436575

  1. Determination of the positions of aluminum atoms introduced into SSZ-35 and the catalytic properties of the generated Brønsted acid sites.

    PubMed

    Miyaji, Akimitsu; Kimura, Nobuhiro; Shiga, Akinobu; Hayashi, Yoshihiro; Nishitoba, Toshiki; Motokura, Ken; Baba, Toshihide

    2017-03-01

    The positions of aluminum (Al) atoms in SSZ-35 together with the characteristics of the generated protons were investigated by (27)Al multiple quantum magic-angle spinning (MQ-MAS), (29)Si MAS, and (1)H MAS NMR data analyses accompanied by a variable temperature (1)H MAS NMR analysis. The origin of the acidic -OH groups (Brønsted acid sites) generated by introducing Al atoms into the T sites was investigated and the T sites introduced into the Al atoms were revealed. To further determine the catalytic properties of the acidic protons generated in SSZ-35, the influence of the concentration of the Al atoms on the catalytic activity and selectivity during the transformation of toluene was examined.

  2. Identification of amino acid residues essential for catalytic activity of gentisate 1,2-dioxygenase from Pseudomonas alcaligenes NCIB 9867.

    PubMed

    Chua, C H; Feng, Y; Yeo, C C; Khoo, H E; Poh, C L

    2001-10-16

    Gentisate 1,2-dioxygenase (GDO, EC 1.13.11.4) is a ring cleavage enzyme that utilizes gentisate as a substrate yielding maleylpyruvate as the ring fission product. Mutant GDOs were generated by both random mutagenesis and site-directed mutagenesis of the gene cloned from Pseudomonas alcaligenes NCIB 9867. Alignment of known GDO sequences indicated the presence of a conserved central core region. Mutations generated within this central core resulted in the complete loss of enzyme activity whereas mutations in the flanking regions yielded GDOs with enzyme activities that were reduced by up to 78%. Site-directed mutagenesis was also performed on a pair of highly conserved HRH and HXH motifs found within this core region. Conversion of these His residues to Asp resulted in the complete loss of catalytic activity. Mutagenesis within the core region could have affected quaternary structure formation as well as cofactor binding. A mutant enzyme with increased catalytic activities was also characterized.

  3. The NS4A Cofactor Dependent Enhancement of HCV NS3 Protease Activity Correlates with a 4D Geometrical Measure of the Catalytic Triad Region

    PubMed Central

    Hamad, Hamzah A.; Thurston, Jeremy; Teague, Thomas; Ackad, Edward; Yousef, Mohammad S.

    2016-01-01

    We are developing a 4D computational methodology, based on 3D structure modeling and molecular dynamics simulation, to analyze the active site of HCV NS3 proteases, in relation to their catalytic activity. In our previous work, the 4D analyses of the interactions between the catalytic triad residues (His57, Asp81, and Ser139) yielded divergent, gradual and genotype-dependent, 4D conformational instability measures, which strongly correlate with the known disparate catalytic activities among genotypes. Here, the correlation of our 4D geometrical measure is extended to intra-genotypic alterations in NS3 protease activity, due to sequence variations in the NS4A activating cofactor. The correlation between the 4D measure and the enzymatic activity is qualitatively evident, which further validates our methodology, leading to the development of an accurate quantitative metric to predict protease activity in silico. The results suggest plausible “communication” pathways for conformational propagation from the activation subunit (the NS4A cofactor binding site) to the catalytic subunit (the catalytic triad). The results also strongly suggest that the well-sampled (via convergence quantification) structural dynamics are more connected to the divergent catalytic activity observed in HCV NS3 proteases than to rigid structures. The method could also be applicable to predict patients’ responses to interferon therapy and better understand the innate interferon activation pathway. PMID:27936126

  4. Crystal structure of a catalytic-site mutant alpha-amylase from Bacillus subtilis complexed with maltopentaose.

    PubMed

    Fujimoto, Z; Takase, K; Doui, N; Momma, M; Matsumoto, T; Mizuno, H

    1998-03-27

    The X-ray crystal structure of a catalytic-site mutant EQ208 [Glu208-->Gln] of alpha-amylase from Bacillus subtilis cocrystallized with maltopentaose (G5) and acarbose has been determined by multiple isomorphous replacement at 2.5 A resolution. Restrained crystallographic refinement has resulted in an R-factor of 19.8% in the 7.0 to 2.5 A resolution range. EQ208 consists of three domains containing a (beta/alpha)8-barrel as observed in other alpha-amylases. Clear connected density corresponding to a pentasaccharide was observed, which was considered as the G5 molecule based on the high affinity of EQ208 for G5 that could replace pre-bound acarbose or a possible transglycosylation product of acarbose. The conformation around the third alpha-(1,4)-glucosidic bond makes a sharp turn, allowing the substrate to fit into the L-shaped cleft. Aromatic residues build the walls of the substrate binding cleft and leucine residues form the inner curvature of the cleft. The amide nitrogen of Gln208 forms a hydrogen bond with the glucosidic oxygen in the scissile bond between Glc3 and Glc4 (Glc1 is the non-reducing end glucose residue of the substrate). This hydrogen-bonding manner may correspond to that of the protonated state of Glu208 in the initial kinetic complex between wild-type enzyme and substrate. The amide oxygen of Gln208 is anchored by two hydrogen bonds with Ala177 and a water molecule, assisting to make the amide proton point precisely to the place of the catalytic attack. The carboxyl oxygen atoms of the other catalytic-site residues Asp176 and Asp269 form hydrogen bonds with the oxygen atoms of Glc3. The carboxyl group of Asp176 has non-bonded contacts to the anomeric carbon atom and to the endocyclic oxygen atom of Glc3. These results suggest that Glu208 acts as a general acid and Asp176 as a general base. Glc3 forms seven hydrogen bonds with the surrounding protein groups and a stacking interaction with Tyr62, which is consistent with the fact that Glc3 has

  5. Development of novel catalytically active polymer-metal-nanocomposites based on activated foams and textile fibers

    PubMed Central

    2013-01-01

    In this paper, we report the intermatrix synthesis of Ag nanoparticles in different polymeric matrices such as polyurethane foams and polyacrylonitrile or polyamide fibers. To apply this technique, the polymer must bear functional groups able to bind and retain the nanoparticle ion precursors while ions should diffuse through the matrix. Taking into account the nature of some of the chosen matrices, it was essential to try to activate the support material to obtain an acceptable value of ion exchange capacity. To evaluate the catalytic activity of the developed nanocomposites, a model catalytic reaction was carried out in batch experiments: the reduction of p-nitrophenol by sodium borohydride. PMID:23680063

  6. Screening for catalytically active Type II restriction endonucleases using segregation-induced methylation deficiency

    PubMed Central

    Ukanis, Mindaugas; Sapranauskas, Rimantas; Lubys, Arvydas

    2012-01-01

    Type II restriction endonucleases (REases) are one of the basic tools of recombinant DNA technology. They also serve as models for elucidation of mechanisms for both site-specific DNA recognition and cleavage by proteins. However, isolation of catalytically active mutants from their libraries is challenging due to the toxicity of REases in the absence of protecting methylation, and techniques explored so far had limited success. Here, we present an improved SOS induction-based approach for in vivo screening of active REases, which we used to isolate a set of active variants of the catalytic mutant, Cfr10IE204Q. Detailed characterization of plasmids from 64 colonies screened from the library of ∼200 000 transformants revealed 29 variants of cfr10IR gene at the level of nucleotide sequence and 15 variants at the level of amino acid sequence, all of which were able to induce SOS response. Specific activity measurements of affinity-purified mutants revealed >200-fold variance among them, ranging from 100% (wild-type isolates) to 0.5% (S188C mutant), suggesting that the technique is equally suited for screening of mutants possessing high or low activity and confirming that it may be applied for identification of residues playing a role in catalysis. PMID:22753027

  7. Elucidation of eukaryotic elongation factor-2 contact sites within the catalytic domain of Pseudomonas aeruginosa exotoxin A.

    PubMed Central

    Yates, Susan P; Merrill, Allan R

    2004-01-01

    Pseudomonas aeruginosa produces the virulence factor, ETA (exotoxin A), which catalyses an ADP-ribosyltransferase reaction of its target protein, eEF2 (eukaryotic elongation factor-2). Currently, this protein-protein interaction is poorly characterized and this study was aimed at identifying the contact sites between eEF2 and the catalytic domain of ETA (PE24H, an ETA from P. aeruginosa, a 24 kDa C-terminal fragment containing a His6 tag). Single-cysteine residues were introduced into the toxin at 21 defined surface-exposed sites and labelled with the fluorophore, IAEDANS [5-(2-iodoacetylaminoethylamino)-1-napthalenesulphonic acid]. Fluorescence quenching studies using acrylamide, and fluorescence lifetime and wavelength emission maxima analyses were conducted in the presence and absence of eEF2. Large changes in the microenvironment of the AEDANS [5-(2-aminoethylamino)-1-naphthalenesulphonic acid] probe after eEF2 binding were not observed as dictated by both fluorescence lifetime and wavelength emission maxima values. This supported the proposed minimal contact model, which suggests that only small, discrete contacts occur between these proteins. As dictated by the bimolecular quenching constant (k(q)) for acrylamide, binding of eEF2 with toxin caused the greatest change in acrylamide accessibility (>50%) when the fluorescence label was near the active site or was located within a known catalytic loop. All mutant proteins showed a decrease in accessibility to acrylamide once eEF2 bound, although the relative change varied for each labelled protein. From these data, a low-resolution model of the toxin-eEF2 complex was constructed based on the minimal contact model with the intention of enhancing our knowledge on the mode of inactivation of the ribosome translocase by the Pseudomonas toxin. PMID:14733615

  8. ADAM17 is regulated by a rapid and reversible mechanism that controls access to its catalytic site

    PubMed Central

    Le Gall, Sylvain M.; Maretzky, Thorsten; Issuree, Priya D. A.; Niu, Xiao-Da; Reiss, Karina; Saftig, Paul; Khokha, Rama; Lundell, Daniel; Blobel, Carl P.

    2010-01-01

    Protein ectodomain shedding is crucial for cell–cell interactions because it controls the bioavailability of soluble tumor necrosis factor-α (TNFα) and ligands of the epidermal growth factor (EGF) receptor, and the release of many other membrane proteins. Various stimuli can rapidly trigger ectodomain shedding, yet much remains to be learned about the identity of the enzymes that respond to these stimuli and the mechanisms underlying their activation. Here, we demonstrate that the membrane-anchored metalloproteinase ADAM17, but not ADAM10, is the sheddase that rapidly responds to the physiological signaling pathways stimulated by thrombin, EGF, lysophosphatidic acid and TNFα. Stimulation of ADAM17 is swift and quickly reversible, and does not depend on removal of its inhibitory pro-domain by pro-protein convertases, or on dissociation of an endogenous inhibitor, TIMP3. Moreover, activation of ADAM17 by physiological stimuli requires its transmembrane domain, but not its cytoplasmic domain, arguing against inside–out signaling via cytoplasmic phosphorylation as the underlying mechanism. Finally, experiments with the tight binding hydroxamate inhibitor DPC333, used here to probe the accessibility of the active site of ADAM17, demonstrate that this inhibitor can quickly bind to ADAM17 in stimulated, but not quiescent cells. These findings support the concept that activation of ADAM17 involves a rapid and reversible exposure of its catalytic site. PMID:20980382

  9. Catalytic site inhibition of insulin-degrading enzyme by a small molecule induces glucose intolerance in mice

    DOE PAGES

    Deprez-Poulain, Rebecca; Hennuyer, Nathalie; Bosc, Damien; ...

    2015-09-23

    Insulin-degrading enzyme (IDE) is a protease that cleaves insulin and other bioactive peptides such as amyloid-β. Knockout and genetic studies have linked IDE to Alzheimer’s disease and type-2 diabetes. As the major insulin-degrading protease, IDE is a candidate drug target in diabetes. Here we have used kinetic target-guided synthesis to design the first catalytic site inhibitor of IDE suitable for in vivo studies (BDM44768). Crystallographic and small angle X-ray scattering analyses show that it locks IDE in a closed conformation. Among a panel of metalloproteases, BDM44768 selectively inhibits IDE. Acute treatment of mice with BDM44768 increases insulin signalling and surprisinglymore » impairs glucose tolerance in an IDE-dependent manner. These results confirm that IDE is involved in pathways that modulate short-term glucose homeostasis, but casts doubt on the general usefulness of the inhibition of IDE catalytic activity to treat diabetes.« less

  10. Human airway epithelia express catalytically active NEU3 sialidase.

    PubMed

    Lillehoj, Erik P; Hyun, Sang Won; Feng, Chiguang; Zhang, Lei; Liu, Anguo; Guang, Wei; Nguyen, Chinh; Sun, Wenji; Luzina, Irina G; Webb, Tonya J; Atamas, Sergei P; Passaniti, Antonino; Twaddell, William S; Puché, Adam C; Wang, Lai-Xi; Cross, Alan S; Goldblum, Simeon E

    2014-05-01

    Sialic acids on glycoconjugates play a pivotal role in many biological processes. In the airways, sialylated glycoproteins and glycolipids are strategically positioned on the plasma membranes of epithelia to regulate receptor-ligand, cell-cell, and host-pathogen interactions at the molecular level. We now demonstrate, for the first time, sialidase activity for ganglioside substrates in human airway epithelia. Of the four known mammalian sialidases, NEU3 has a substrate preference for gangliosides and is expressed at mRNA and protein levels at comparable abundance in epithelia derived from human trachea, bronchi, small airways, and alveoli. In small airway and alveolar epithelia, NEU3 protein was immunolocalized to the plasma membrane, cytosolic, and nuclear subcellular fractions. Small interfering RNA-induced silencing of NEU3 expression diminished sialidase activity for a ganglioside substrate by >70%. NEU3 immunostaining of intact human lung tissue could be localized to the superficial epithelia, including the ciliated brush border, as well as to nuclei. However, NEU3 was reduced in subepithelial tissues. These results indicate that human airway epithelia express catalytically active NEU3 sialidase.

  11. Catalytic Growth of Macroscopic Carbon Nanofibers Bodies with Activated Carbon

    SciTech Connect

    Abdullah, N.; Muhammad, I. S.; Hamid, S. B. Abd.; Rinaldi, A.; Su, D. S.; Schlogl, R.

    2009-06-01

    Carbon-carbon composite of activated carbon and carbon nanofibers have been synthesized by growing Carbon nanofiber (CNF) on Palm shell-based Activated carbon (AC) with Ni catalyst. The composites are in an agglomerated shape due to the entanglement of the defective CNF between the AC particles forming a macroscopic body. The macroscopic size will allow the composite to be used as a stabile catalyst support and liquid adsorbent. The preparation of CNT/AC nanocarbon was initiated by pre-treating the activated carbon with nitric acid, followed by impregnation of 1 wt% loading of nickel (II) nitrate solutions in acetone. The catalyst precursor was calcined and reduced at 300 deg. C for an hour in each step. The catalytic growth of nanocarbon in C{sub 2}H{sub 4}/H{sub 2} was carried out at temperature of 550 deg. C for 2 hrs with different rotating angle in the fluidization system. SEM and N{sub 2} isotherms show the level of agglomeration which is a function of growth density and fluidization of the system. The effect of fluidization by rotating the reactor during growth with different speed give a significant impact on the agglomeration of the final CNF/AC composite and thus the amount of CNFs produced. The macrostructure body produced in this work of CNF/AC composite will have advantages in the adsorbent and catalyst support application, due to the mechanical and chemical properties of the material.

  12. Bacillus pumilus Cyanide Dihydratase Mutants with Higher Catalytic Activity

    PubMed Central

    Crum, Mary A.; Sewell, B. Trevor; Benedik, Michael J.

    2016-01-01

    Cyanide degrading nitrilases are noted for their potential to detoxify industrial wastewater contaminated with cyanide. However, such application would benefit from an improvement to characteristics such as their catalytic activity and stability. Following error-prone PCR for random mutagenesis, several cyanide dihydratase mutants from Bacillus pumilus were isolated based on improved catalysis. Four point mutations, K93R, D172N, A202T, and E327K were characterized and their effects on kinetics, thermostability and pH tolerance were studied. K93R and D172N increased the enzyme’s thermostability whereas E327K mutation had a less pronounced effect on stability. The D172N mutation also increased the affinity of the enzyme for its substrate at pH 7.7 but lowered its kcat. However, the A202T mutation, located in the dimerization or the A surface, destabilized the protein and abolished its activity. No significant effect on activity at alkaline pH was observed for any of the purified mutants. These mutations help confirm the model of CynD and are discussed in the context of the protein–protein interfaces leading to the protein quaternary structure. PMID:27570524

  13. Catalytic activation of pre-substrates via dynamic fragment assembly on protein templates.

    PubMed

    Burda, Edyta; Rademann, Jörg

    2014-11-18

    Sensitive detection of small molecule fragments binding to defined sites of biomacromolecules is still a considerable challenge. Here we demonstrate that protein-binding fragments are able to induce enzymatic reactions on the protein surface via dynamic fragment ligation. Fragments binding to the S1 pocket of serine proteases containing a nitrogen, oxygen or sulphur nucleophile are found to activate electrophilic pre-substrates through a reversible, covalent ligation reaction. The dynamic ligation reaction positions the pre-substrate molecule at the active site of the protein thereby inducing its enzymatic cleavage. Catalytic activation of pre-substrates is confirmed by fluorescence spectroscopy and by high-performance liquid chromatography. The approach is investigated with 3 pre-substrates and 14 protein-binding fragments and the specific activation and the templating effect exerted by the enzyme is quantified for each protease-fragment-pre-substrate combination. The described approach enables the site-specific identification of protein-binding fragments, the functional characterization of enzymatic sites and the quantitative analysis of protein template-assisted ligation reactions.

  14. 3-Nitropropionic Acid is a Suicide Inhibitor of MitochondrialRespiration that, Upon Oxidation by Complex II, Forms a Covalent AdductWith a Catalytic Base Arginine in the Active Site of the Enzyme

    SciTech Connect

    Huang, Li-shar; Sun, Gang; Cobessi, David; Wang, Andy C.; Shen,John T.; Tung, Eric Y.; Anderson, Vernon E.; Berry, Edward A.

    2005-12-01

    We report three new structures of mitochondrial respiratory Complex II (succinate ubiquinone oxidoreductase, E.C. 1.3.5.1) at up to 2.1 {angstrom} resolution, with various inhibitors. The structures define the conformation of the bound inhibitors and suggest the residues involved in substrate binding and catalysis at the dicarboxylate site. In particular they support the role of Arg297 as a general base catalyst accepting a proton in the dehydrogenation of succinate. The dicarboxylate ligand in oxaloacetate-containing crystals appears to be the same as that reported for Shewanella flavocytochrome c treated with fumarate. The plant and fungal toxin 3-nitropropionic acid, an irreversible inactivator of succinate dehydrogenase, forms a covalent adduct with the side chain of Arg297. The modification eliminates a trypsin cleavage site in the flavoprotein, and tandem mass spectroscopic analysis of the new fragment shows the mass of Arg 297 to be increased by 83 Da and to have potential of losing 44 Da, consistent with decarboxylation, during fragmentation.

  15. Development of a novel catalytic amyloid displaying a metal-dependent ATPase-like activity.

    PubMed

    Monasterio, Octavio; Nova, Esteban; Diaz-Espinoza, Rodrigo

    2017-01-22

    Amyloids are protein aggregates of highly regular structure that are involved in diverse pathologies such as Alzheimer's and Parkinson's disease. Recent evidence has shown that under certain conditions, small peptides can self-assemble into amyloids that exhibit catalytic reactivity towards certain compounds. Here we report a novel peptide with a sequence derived from the active site of RNA polymerase that displays hydrolytic activity towards ATP. The catalytic reaction proceeds in the presence of the divalent metal manganese and the products are ADP and AMP. The kinetic data shows a substrate-dependent saturation of the activity with a maximum rate achieved at around 1 mM ATP. At higher ATP concentrations, we also observed substrate inhibition of the activity. The self-assembly of the peptide into amyloids is strictly metal-dependent and required for the catalysis. Our results show that aspartate-containing amyloids can also be catalysts under conditions that include interactions with metals. Moreover, we show for the first time an amyloid that exerts reactivity towards a biologically essential molecule.

  16. Design of activated serine-containing catalytic triads with atomic level accuracy

    PubMed Central

    Rajagopalan, Sridharan; Wang, Chu; Yu, Kai; Kuzin, Alexandre P.; Richter, Florian; Lew, Scott; Miklos, Aleksandr E.; Matthews, Megan L.; Seetharaman, Jayaraman; Su, Min; Hunt, John. F.; Cravatt, Benjamin F.; Baker, David

    2014-01-01

    A challenge in the computational design of enzymes is that multiple properties must be simultaneously optimized -- substrate-binding, transition state stabilization, and product release -- and this has limited the absolute activity of successful designs. Here, we focus on a single critical property of many enzymes: the nucleophilicity of an active site residue that initiates catalysis. We design proteins with idealized serine-containing catalytic triads, and assess their nucleophilicity directly in native biological systems using activity-based organophosphate probes. Crystal structures of the most successful designs show unprecedented agreement with computational models, including extensive hydrogen bonding networks between the catalytic triad (or quartet) residues, and mutagenesis experiments demonstrate that these networks are critical for serine activation and organophosphate-reactivity. Following optimization by yeast-display, the designs react with organophosphate probes at rates comparable to natural serine hydrolases. Co-crystal structures with diisopropyl fluorophosphate bound to the serine nucleophile suggest the designs could provide the basis for a new class of organophosphate captures agents. PMID:24705591

  17. Exploring functionally related enzymes using radially distributed properties of active sites around the reacting points of bound ligands

    PubMed Central

    2012-01-01

    Background Structural genomics approaches, particularly those solving the 3D structures of many proteins with unknown functions, have increased the desire for structure-based function predictions. However, prediction of enzyme function is difficult because one member of a superfamily may catalyze a different reaction than other members, whereas members of different superfamilies can catalyze the same reaction. In addition, conformational changes, mutations or the absence of a particular catalytic residue can prevent inference of the mechanism by which catalytic residues stabilize and promote the elementary reaction. A major hurdle for alignment-based methods for prediction of function is the absence (despite its importance) of a measure of similarity of the physicochemical properties of catalytic sites. To solve this problem, the physicochemical features radially distributed around catalytic sites should be considered in addition to structural and sequence similarities. Results We showed that radial distribution functions (RDFs), which are associated with the local structural and physicochemical properties of catalytic active sites, are capable of clustering oxidoreductases and transferases by function. The catalytic sites of these enzymes were also characterized using the RDFs. The RDFs provided a measure of the similarity among the catalytic sites, detecting conformational changes caused by mutation of catalytic residues. Furthermore, the RDFs reinforced the classification of enzyme functions based on conventional sequence and structural alignments. Conclusions Our results demonstrate that the application of RDFs provides advantages in the functional classification of enzymes by providing information about catalytic sites. PMID:22536854

  18. Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution.

    PubMed

    Voiry, Damien; Yamaguchi, Hisato; Li, Junwen; Silva, Rafael; Alves, Diego C B; Fujita, Takeshi; Chen, Mingwei; Asefa, Tewodros; Shenoy, Vivek B; Eda, Goki; Chhowalla, Manish

    2013-09-01

    Efficient evolution of hydrogen through electrocatalysis at low overpotentials holds tremendous promise for clean energy. Hydrogen evolution can be easily achieved by electrolysis at large potentials that can be lowered with expensive platinum-based catalysts. Replacement of Pt with inexpensive, earth-abundant electrocatalysts would be significantly beneficial for clean and efficient hydrogen evolution. To this end, promising results have been reported using 2H (trigonal prismatic) XS₂ (where X  =  Mo or W) nanoparticles with a high concentration of metallic edges. The key challenges for XS₂ are increasing the number and catalytic activity of active sites. Here we report monolayered nanosheets of chemically exfoliated WS₂ as efficient catalysts for hydrogen evolution with very low overpotentials. Analyses indicate that the enhanced electrocatalytic activity of WS₂ is associated with the high concentration of the strained metallic 1T (octahedral) phase in the as-exfoliated nanosheets. Our results suggest that chemically exfoliated WS₂ nanosheets are interesting catalysts for hydrogen evolution.

  19. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    SciTech Connect

    Sherly, K. B.; Rakesh, K.

    2014-01-28

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl{sub 2}⋅8H{sub 2}O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  20. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    NASA Astrophysics Data System (ADS)

    Sherly, K. B.; Rakesh, K.

    2014-01-01

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl2ṡ8H2O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  1. Adventitious Arsenate Reductase Activity of the Catalytic Domain of the Human Cdc25B and Cdc25C Phosphatases†

    PubMed Central

    Bhattacharjee, Hiranmoy; Sheng, Ju; Ajees, A. Abdul; Mukhopadhyay, Rita; Rosen, Barry P.

    2013-01-01

    A number of eukaryotic enzymes that function as arsenate reductases are homologues of the catalytic domain of the human Cdc25 phosphatase. For example, the Leishmania major enzyme LmACR2 is both a phosphatase and an arsenate reductase, and its structure bears similarity to the structure of the catalytic domain of human Cdc25 phosphatase. These reductases contain an active site C-X5-R signature motif, where C is the catalytic cysteine, the five X residues form a phosphate binding loop, and R is a highly conserved arginine, which is also present in human Cdc25 phosphatases. We therefore investigated the possibility that the three human Cdc25 isoforms might have adventitious arsenate reductase activity. The sequences for the catalytic domains of Cdc25A, -B, and -C were cloned individually into a prokaryotic expression vector, and their gene products were purified from a bacterial host using nickel affinity chromatography. While each of the three Cdc25 catalytic domains exhibited phosphatase activity, arsenate reductase activity was observed only with Cdc25B and -C. These two enzymes reduced inorganic arsenate but not methylated pentavalent arsenicals. Alteration of either the cysteine and arginine residues of the Cys-X5-Arg motif led to the loss of both reductase and phosphatase activities. Our observations suggest that Cdc25B and -C may adventitiously reduce arsenate to the more toxic arsenite and may also provide a framework for identifying other human protein tyrosine phosphatases containing the active site Cys-X5-Arg loop that might moonlight as arsenate reductases. PMID:20025242

  2. Reversal of coenzyme specificity and improvement of catalytic efficiency of Pichia stipitis xylose reductase by rational site-directed mutagenesis.

    PubMed

    Zeng, Qi-Kai; Du, Hong-Li; Wang, Jing-Fang; Wei, Dong-Qing; Wang, Xiao-Ning; Li, Yi-Xue; Lin, Ying

    2009-07-01

    A major problem when xylose is used for ethanol production is the intercellular redox imbalance arising from different coenzyme specificities of xylose reductase (XR) and xylitol dehydrogenase. The residue Lys21 in XR from Pichia stipitis was subjected to site-directed mutagenesis to alter its coenzyme specificity. The N272D mutant exhibited improved catalytic efficiency when NADH was the coenzyme. Both K21A and K21A/N272D preferred NADH to NADPH, their catalytic efficiencies for NADPH were almost zero. The catalytic efficiency of K21A/N272D for NADH was almost 9-fold and 2-fold that of K21A and the wild-type enzyme, respectively. Complete reversal of coenzyme specificity toward NADH and improved catalytic efficiency were achieved.

  3. Silica-supported Au@hollow-SiO2 particles with outstanding catalytic activity prepared via block copolymer template approach.

    PubMed

    Shajkumar, Aruni; Nandan, Bhanu; Sanwaria, Sunita; Albrecht, Victoria; Libera, Marcin; Lee, Myong-Hoon; Auffermann, Gudrun; Stamm, Manfred; Horechyy, Andriy

    2017-04-01

    Catalytically active Au@hollow-SiO2 particles embedded in porous silica support (Au@hollow-SiO2@PSS) were prepared by using spherical micelles from poly(styrene)-block-poly(4-vinyl pyridine) block copolymer as a sacrificial template. Drastic increase of the shell porosity was observed after pyrolytic removal of polymeric template because the stretched poly(4-vinyl pyridine) chains interpenetrating with silica shell acted as an effective porogen. The embedding of Au@hollow-SiO2 particles in porous silica support prevented their fusion during pyrolysis. The catalytic activity of Au@hollow-SiO2@PSS was investigated using a model reaction of catalytic reduction of 4-nitrophenol and reductive degradation of Congo red azo-dye. Significantly, to the best of our knowledge, Au@hollow-SiO2@PSS catalyst shows the highest activity among analogous systems reported till now in literature. Such high activity was attributed to the presence of multiple pores within silica shell of Au@hollow-SiO2 particles and easy accessibility of reagents to the catalytically active sites of the ligand-free gold surface through the porous silica support.

  4. Relief of autoinhibition by conformational switch explains enzyme activation by a catalytically dead paralog

    PubMed Central

    Volkov, Oleg A; Kinch, Lisa; Ariagno, Carson; Deng, Xiaoyi; Zhong, Shihua; Grishin, Nick; Tomchick, Diana R; Chen, Zhe; Phillips, Margaret A

    2016-01-01

    Catalytically inactive enzyme paralogs occur in many genomes. Some regulate their active counterparts but the structural principles of this regulation remain largely unknown. We report X-ray structures of Trypanosoma brucei S-adenosylmethionine decarboxylase alone and in functional complex with its catalytically dead paralogous partner, prozyme. We show monomeric TbAdoMetDC is inactive because of autoinhibition by its N-terminal sequence. Heterodimerization with prozyme displaces this sequence from the active site through a complex mechanism involving a cis-to-trans proline isomerization, reorganization of a β-sheet, and insertion of the N-terminal α-helix into the heterodimer interface, leading to enzyme activation. We propose that the evolution of this intricate regulatory mechanism was facilitated by the acquisition of the dimerization domain, a single step that can in principle account for the divergence of regulatory schemes in the AdoMetDC enzyme family. These studies elucidate an allosteric mechanism in an enzyme and a plausible scheme by which such complex cooperativity evolved. DOI: http://dx.doi.org/10.7554/eLife.20198.001 PMID:27977001

  5. Relief of autoinhibition by conformational switch explains enzyme activation by a catalytically dead paralog

    SciTech Connect

    Volkov, Oleg A.; Kinch, Lisa; Ariagno, Carson; Deng, Xiaoyi; Zhong, Shihua; Grishin, Nick; Tomchick, Diana R.; Chen, Zhe; Phillips, Margaret A.

    2016-12-15

    Catalytically inactive enzyme paralogs occur in many genomes. Some regulate their active counterparts but the structural principles of this regulation remain largely unknown. We report X-ray structures ofTrypanosoma brucei S-adenosylmethionine decarboxylase alone and in functional complex with its catalytically dead paralogous partner, prozyme. We show monomericTbAdoMetDC is inactive because of autoinhibition by its N-terminal sequence. Heterodimerization with prozyme displaces this sequence from the active site through a complex mechanism involving acis-to-transproline isomerization, reorganization of a β-sheet, and insertion of the N-terminal α-helix into the heterodimer interface, leading to enzyme activation. We propose that the evolution of this intricate regulatory mechanism was facilitated by the acquisition of the dimerization domain, a single step that can in principle account for the divergence of regulatory schemes in the AdoMetDC enzyme family. These studies elucidate an allosteric mechanism in an enzyme and a plausible scheme by which such complex cooperativity evolved.

  6. Spectroscopic characterization of recombinant Cu,Zn superoxide dismutase from Photobacterium leiognathi expressed in Escherichia coli: evidence for a novel catalytic copper binding site.

    PubMed

    Foti, D; Lo Curto, B; Cuzzocrea, G; Stroppolo, M E; Polizio, F; Venanzi, M; Desideri, A

    1997-06-10

    Cu,Zn superoxide dismutase from Photobacterium leiognathi has been cloned and expressed in Escherichia coli. The circular dichroism spectrum in the UV region of the recombinant protein indicates an higher content of random coil structure with respect to the eukaryotic enzymes. Investigation of the active site by optical, CD, and EPR spectroscopy indicates a different coordination geometry around the catalytic copper site with respect to the eukaryotic enzymes. In particular a different orientation of the metal bridging histidine is suggested. The pH dependence of the copper EPR spectrum shows the presence of a single equilibrium which is at least one unit lower than the pK value observed for the bovine enzyme. Despite such structural differences the catalytic rate of this enzyme is identical to that observed for the eukaryotic Cu,Zn superoxide dismutase, suggesting that the overall electric field distribution is similar to that observed in the eukaryotic enzymes.

  7. Site-specific cleavage by metal ion cofactors and inhibitors of M1 RNA, the catalytic subunit of RNase P from Escherichia coli.

    PubMed Central

    Kazakov, S; Altman, S

    1991-01-01

    The location of phosphate residues involved in specific centers for binding of metal ions in M1 RNA, the catalytic RNA subunit of RNase P from Escherichia coli, was determined by analysis of induction of cleavage of RNA by metal ions. At pH 9.5, Mg2+ catalyzes cleavage of M1 RNA at five principal sites. Under certain conditions, Mn2+ and Ca2+ can each replace Mg2+ as the cofactor in the processing of precursor tRNAs by M1 RNA and P RNA, the RNA subunit of RNase P from Bacillus subtilis. These cations, as well as various metal ion inhibitors of the catalytic activity of M1 RNA, also promote cleavage of M1 RNA in a specific manner. Certain conditions that affect the catalytic activity of M1 RNA also alter the rate of metal ion-induced cleavage at the various sites. From these results and a comparison of cleavage of M1 RNA with that of a deletion mutant of M1 RNA and of P RNA, we have identified two different centers for binding of metal ions in M1 RNA that are important for the processing of the precursor to tRNA(Tyr) from E. coli. There is also a center for the binding of metal ions in the substrate, close to the site of cleavage by M1 RNA. Images PMID:1718000

  8. Insecticidal activity of an essential oil of Tagetes patula L. (Asteraceae) on common bed bug Cimex lectularius L. and molecular docking of major compounds at the catalytic site of ClAChE1.

    PubMed

    Politi, Flávio Augusto Sanches; Nascimento, Juliana Damieli; da Silva, Alexander Alves; Moro, Isabela Jacob; Garcia, Mariana Lopes; Guido, Rafael Victório Carvalho; Pietro, Rosemeire Cristina Linhari Rodrigues; Godinho, Antônio Francisco; Furlan, Maysa

    2017-01-01

    Emerging resistance to insecticides has influenced pharmaceutical research and the search for alternatives to control the common bed bug Cimex lectularius. In this sense, natural products can play a major role. Tagetes patula, popularly known as dwarf marigold, is a plant native to North America with biocide potential. The aim of this work was to evaluate the biological activity of T. patula essential oil (EO) against adult common bed bugs via exposure to dry residues by the Impregnated Paper Disk Test (IPDT) using cypermethrin as a positive control. We selected the enzyme acetylcholinesterase as a target for modeling studies, with the intent of investigating the molecular basis of any biological activity of the EO. Chemical analysis of the EO was performed using gas chromatography coupled to mass spectrometry (GC-MS). Additionally, oral and dermal acute toxicity tests were performed according to Organization for Economic Cooperation and Development (OECD) guidelines. The sulforhodamine B assay (SRB) was performed to verify the cytotoxicity of EO to HaCaT cells. The EO eliminated 100 % of the bed bugs at 100 mg mL(-1) with an LC50 value of 15.85 mg mL(-1). GC-MS analysis identified α-terpinolene, limonene, piperitenone, and piperitone as major components of the mixture. Molecular modeling studies of these major compounds suggested that they are acetylcholinesterase inhibitors with good steric and electronic complementarity. The in vitro cytotoxicity evaluation revealed a LC50 = 37.06 μg mL(-1) and in vivo acute toxicity showed an LC50 >4000 mg kg(-1), indicating that the EO presents low risk of toxic side effects in humans. The T. patula essential oil components provide a promising strategy for controlling bed bug populations with low mammalian toxicity. These findings pave the way for further in vivo studies aimed at developing a safe and effective insecticide.

  9. The Origin of the Catalytic Activity of a Metal Hydride in CO2 Reduction.

    PubMed

    Kato, Shunsuke; Matam, Santhosh Kumar; Kerger, Philipp; Bernard, Laetitia; Battaglia, Corsin; Vogel, Dirk; Rohwerder, Michael; Züttel, Andreas

    2016-05-10

    Atomic hydrogen on the surface of a metal with high hydrogen solubility is of particular interest for the hydrogenation of carbon dioxide. In a mixture of hydrogen and carbon dioxide, methane was markedly formed on the metal hydride ZrCoHx in the course of the hydrogen desorption and not on the pristine intermetallic. The surface analysis was performed by means of time-of-flight secondary ion mass spectroscopy and near-ambient pressure X-ray photoelectron spectroscopy, for the in situ analysis. The aim was to elucidate the origin of the catalytic activity of the metal hydride. Since at the initial stage the dissociation of impinging hydrogen molecules is hindered by a high activation barrier of the oxidised surface, the atomic hydrogen flux from the metal hydride is crucial for the reduction of carbon dioxide and surface oxides at interfacial sites.

  10. Tailoring micro-mesoporosity in activated carbon fibers to enhance SO₂ catalytic oxidation.

    PubMed

    Diez, Noel; Alvarez, Patricia; Granda, Marcos; Blanco, Clara; Gryglewicz, Grażyna; Wróbel-Iwaniec, Iwona; Sliwak, Agata; Machnikowski, Jacek; Menendez, Rosa

    2014-08-15

    Enhanced SO2 adsorption of activated carbon fibers is obtained by tailoring a specific micro-mesoporous structure in the fibers. This architecture is obtained via metal catalytic activation of the fibers with a novel precursor, cobalt naphthenate, which contrary to other precursors, also enhances spinnability and carbon fiber yield. In the SO2 oxidation, it is demonstrated that the combination of micropores and large mesopores is the main factor for an enhanced catalytic activity which is superior to that observed in other similar microporous activated carbon fibers. This provides an alternative way for the development of a new generation of catalytic material.

  11. Fabrication of catalytically active Au/Pt/Pd trimetallic nanoparticles by rapid injection of NaBH{sub 4}

    SciTech Connect

    Zhang, Haijun; Lu, Lilin; Cao, Yingnan; Du, Shuang; Cheng, Zhong; Zhang, Shaowei

    2014-01-01

    Graphical abstract: The synthesis and characterization of 2.0 nm-diameter Au/Pt/Pd nanoparticles are reported. The catalytic activity for glucose oxidation of the nanoparticles is several times higher than that of Au nanoparticles with nearly same size. - Highlights: • PVP-protected Au/Pt/Pd trimetallic nanoparticles (TNPs) of 2.0 nm in diameter were prepared. • The catalytic activity of TNPs is several times higher than that of Au nanoparticles. • Negatively charged Au atoms in the TNPs were confirmed by DFT calculation. - Abstract: Au/Pt/Pd trimetallic nanoparticles (TNPs) with an alloyed structure and an average diameter of about 2.0 nm were prepared via reducing the corresponding ions with rapidly injected NaBH{sub 4}, and characterized by UV–vis, TEM and HR-TEM. The catalytic activity of as-prepared TNPs for the aerobic glucose oxidation is several times higher than that of Au monometallic nanoparticles with about the same average size, which could be attributed to the catalytically active sites provided by the negatively charged Au atoms as a result of the electron donation from the neighboring Pd atoms. This was well supported by the electron density calculations based on the density functional theory.

  12. Aminoalcohols as Probes of the Two-subsite Active Site of Beta-D-xylosidase from Selenomonas ruminantium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Catalysis and inhibitor binding by the GH43 beta-xylosidase are governed by the protonation state of catalytic base (D14, pKa 5.0) and catalytic acid (E186, pKa 7.2) which reside in subsite -1 of the two-subsite active site. Cationic aminoalcohols are shown to bind exclusively to subsite -1 of the ...

  13. Nanoscale mapping of catalytic activity using tip-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Stephanidis, B.; Zenobi, R.; Wain, A. J.; Roy, D.

    2015-04-01

    Chemical mapping of a photocatalytic reaction with nanoscale spatial resolution is demonstrated for the first time using tip-enhanced Raman spectroscopy (TERS). An ultrathin alumina film applied to the Ag-coated TERS tip blocks catalytic interference whilst maintaining near-field electromagnetic enhancement, thus enabling spectroscopic imaging of catalytic activity on nanostructured Ag surfaces.

  14. Graphene incorporated, N doped activated carbon as catalytic electrode in redox active electrolyte mediated supercapacitor

    NASA Astrophysics Data System (ADS)

    Gao, Zhiyong; Liu, Xiao; Chang, Jiuli; Wu, Dapeng; Xu, Fang; Zhang, Lingcui; Du, Weimin; Jiang, Kai

    2017-01-01

    Graphene incorporated, N doped activated carbons (GNACs) are synthesized by alkali activation of graphene-polypyrrole composite (G-PPy) at different temperatures for application as electrode materials of supercapacitors. Under optimal activation temperature of 700 °C, the resultant samples, labeled as GNAC700, owns hierarchically porous texture with high specific surface area and efficient ions diffusion channels, N, O functionalized surface with apparent pseudocapacitance contribution and high wettability, thus can deliver a moderate capacitance, a high rate capability and a good cycleability when used as supercapacitor electrode. Additionally, the GNAC700 electrode demonstrates high catalytic activity for the redox reaction of pyrocatechol/o-quinone pair in H2SO4 electrolyte, thus enables a high pseudocapacitance from electrolyte. Under optimal pyrocatechol concentration in H2SO4 electrolyte, the electrode capacitance of GNAC700 increases by over 4 folds to 512 F g-1 at 1 A g-1, an excellent cycleability is also achieved simultaneously. Pyridinic- N is deemed to be responsible for the high catalytic activity. This work provides a promising strategy to ameliorate the capacitive performances of supercapacitors via the synergistic interaction between redox-active electrolyte and catalytic electrodes.

  15. Mutagenesis of putative catalytic and regulatory residues of Streptomyces chromofuscus phospholipase D differentially modifies phosphatase and phosphodiesterase activities.

    PubMed

    Zambonelli, Carlo; Casali, Monica; Roberts, Mary F

    2003-12-26

    Phospholipase D from Streptomyces chromofuscus (sc-PLD) is a member of the diverse family of metallo-phosphodiesterase/phosphatase enzymes that also includes purple acid phosphatases, protein phosphatases, and nucleotide phosphodiesterases. Whereas iron is an essential cofactor for scPLD activity, Mn2+ is also found in the enzyme. A third metal ion, Ca2+, has been shown to enhance scPLD catalytic activity although it is not an essential cofactor. Sequence alignment of scPLD with known phosphodiesterases and phosphatases requiring metal ions suggested that His-212, Glu-213, and Asp-389 could be involved in Mn2+ binding. H212A, E213A, and D389A were prepared to test this hypothesis. These three mutant enzymes and wild type scPLD show similar metal content but considerably different catalytic properties, suggesting different roles for each residue. His-212 appears involved in binding the phosphate group of substrates, whereas Glu-213 acts as a ligand for Ca2+. D389A showed a greatly reduced phosphodiesterase activity but almost unaltered ability to hydrolyze the phosphate group in p-nitrophenyl phosphate suggesting it had a critical role in aligning groups at the active site to control phosphodiesterase versus phosphatase activities. We propose a model for substrate and cofactor binding to the catalytic site of scPLD based on these results and on sequence alignment to purple acid phosphatases of known structure.

  16. Catalytic decomposition of hydrogen peroxide and 4-chlorophenol in the presence of modified activated carbons.

    PubMed

    Huang, Hsu-Hui; Lu, Ming-Chun; Chen, Jong-Nan; Lee, Cheng-Te

    2003-06-01

    The objective of this research was to examine the heterogeneous catalytic decomposition of H(2)O(2) and 4-chlorophenol (4-CP) in the presence of activated carbons modified with chemical pretreatments. The decomposition of H(2)O(2) was suppressed significantly by the change of surface properties including the decreased pH(pzc) modified with oxidizing agent and the reduced active sites occupied by the adsorption of 4-CP. The apparent reaction rate of H(2)O(2) decomposition was dominated by the intrinsic reaction rates on the surface of activated carbon rather than the mass transfer rate of H(2)O(2) to the solid surface. By the detection of chloride ion in suspension, the reduction of 4-CP was not only attributed to the advanced adsorption but also the degradation of 4-CP. The catalytic activity toward 4-CP for the activated carbon followed the inverse sequence of the activity toward H(2)O(2), suggesting that acidic surface functional group could retard the H(2)O(2) loss and reduce the effect of surface scavenging resulting in the increase of the 4-CP degradation efficiency. Few effective radicals were expected to react with 4-CP for the strong effect of surface scavenging, which could explain why the degradation rate of 4-CP observed in this study was so slow and the dechlorination efficiency was independent of the 4-CP concentration in aqueous phase. Results show that the combination of H(2)O(2) and granular activated carbon (GAC) did increase the total removal of 4-CP than that by single GAC adsorption.

  17. Normal Modes Expose Active Sites in Enzymes

    PubMed Central

    Glantz-Gashai, Yitav; Samson, Abraham O.

    2016-01-01

    Accurate prediction of active sites is an important tool in bioinformatics. Here we present an improved structure based technique to expose active sites that is based on large changes of solvent accessibility accompanying normal mode dynamics. The technique which detects EXPOsure of active SITes through normal modEs is named EXPOSITE. The technique is trained using a small 133 enzyme dataset and tested using a large 845 enzyme dataset, both with known active site residues. EXPOSITE is also tested in a benchmark protein ligand dataset (PLD) comprising 48 proteins with and without bound ligands. EXPOSITE is shown to successfully locate the active site in most instances, and is found to be more accurate than other structure-based techniques. Interestingly, in several instances, the active site does not correspond to the largest pocket. EXPOSITE is advantageous due to its high precision and paves the way for structure based prediction of active site in enzymes. PMID:28002427

  18. Fourier Transform Infrared (FTIR) Observation Of Catalytically Active Intermediates Produced By Laser Photolysis Of Iron Pentacarbonyl

    NASA Astrophysics Data System (ADS)

    Paquette, Michael S.

    1984-05-01

    The pulsed laser excitation of iron pentacarbonyl in solutions of 1-pentene photoinitiates a highly active catalytic process for isomerization of the olefin. This process is observed in situ by rapid scanning FTIR spectroscopy, allowing subsecond acquisition of spectra. These are deconvoluted into discrete spectral components which are assigned molecular formulas. Specific activities have been obtained for two catalytically significant complexes from a correlation of catalytic activity with compositional changes. A similar interpretation of multipulse and cw experiments allowed development of a comprehensive cycle of thermal and photochemical interconversions among components.

  19. Single-Molecule Nanocatalysis Reveals Catalytic Activation Energy of Single Nanocatalysts.

    PubMed

    Chen, Tao; Zhang, Yuwei; Xu, Weilin

    2016-09-28

    By monitoring the temperature-dependent catalytic activity of single Au nanocatalysts for a fluorogenic reaction, we derive the activation energies via multiple methods for two sequential catalytic steps (product formation and dissociation) on single nanocatalysts. The wide distributions of activation energies across multiple individual nanocatalysts indicate a huge static heterogeneity among the individual nanocatalysts. The compensation effect and isokinetic relationship of catalytic reactions are observed at the single particle level. This study exemplifies another function of single-molecule nanocatalysis and improves our understanding of heterogeneous catalysis.

  20. Extending Thymidine Kinase Activity to the Catalytic Repertoire of Human Deoxycytidine Kinase

    SciTech Connect

    Hazra, Saugata; Sabini, Eliszbetta; Ort, Stephan; Konrad, Manfred; Lavie, Arnon

    2009-03-04

    Salvage of nucleosides in the cytosol of human cells is carried out by deoxycytidine kinase (dCK) and thymidine kinase 1 (TK1). Whereas TK1 is only responsible for thymidine phosphorylation, dCK is capable of converting dC, dA, and dG into their monophosphate forms. Using structural data on dCK, we predicted that select mutations at the active site would, in addition to making the enzyme faster, expand the catalytic repertoire of dCK to include thymidine. Specifically, we hypothesized that steric repulsion between the methyl group of the thymine base and Arg104 is the main factor preventing the phosphorylation of thymidine by wild-type dCK. Here we present kinetic data on several dCK variants where Arg104 has been replaced by select residues, all performed in combination with the mutation of Asp133 to an alanine. We show that several hydrophobic residues at position 104 endow dCK with thymidine kinase activity. Depending on the exact nature of the mutations, the enzyme's substrate preference is modified. The R104M-D133A double mutant is a pyrimidine-specific enzyme due to large K{sub m} values with purines. The crystal structure of the double mutant R104M-D133A in complex with the L-form of thymidine supplies a structural explanation for the ability of this variant to phosphorylate thymidine and thymidine analogs. The replacement of Arg104 by a smaller residue allows L-dT to bind deeper into the active site, making space for the C5-methyl group of the thymine base. The unique catalytic properties of several of the mutants make them good candidates for suicide-gene/protein-therapy applications.

  1. Microscopic investigations of site and functional selectivity of triazole for CO2 capture and catalytic applications.

    PubMed

    Boulmène, Reda; Prakash, Muthuramalingam; Hochlaf, Majdi

    2016-11-02

    Ab initio and DFT studies on CO2 interacting with different tautomers and isomers of triazole (TZ) are carried out to understand the adsorption mechanism and their mutual preferential sites. We used post Hartree-Fock methods (MP2, CCSD(T), and CCSD(T)-F12) and various DFTs (PBE, PBE0, M05-2X, and M11) with and without considering the dispersion correction for comparison. We determined hence the equilibrium structures, vibrational frequencies and binding energies of TZ-CO2 clusters and mapped their potential energy surfaces along the intermonomer coordinates. We find that the most stable TZ-CO2 clusters, some of them are already known, are not relevant for CO2 capture in porous materials. In addition, we show that the bonding between TZ and CO2 is due to various kinds of noncovalent interactions such as π-stacking, acid-base pair electron donor-electron acceptor (EDA) interactions along with N-HO and C-HO H-bonds with CO2. Our analysis reveals the existence of site selectivity effects when CO2 binds to TZ. These effects are related to the magnitude of the interaction potentials, in the order EDA (+N-HO) > EDA (+C-HO) > C(δ+)N[double bond, length as m-dash]N > π-stacking > σ type N-HO > C-HO H-bonds. This is the first report on the importance of competition between EDA, π-stacking and σ-bonds for CO2 capture and catalytic applications. Findings from this work may be used to give insights into the site specific CO2 capture ability of porous materials such as metal organic frameworks (MOFs), zeolitic imidazolate frameworks (ZIFs) or functionalized polymers. Finally, we show that IR spectroscopy of CO2 within the pores is neither a specific nor an efficient marker in probe-molecule experiments.

  2. Activities of human RRP6 and structure of the human RRP6 catalytic domain

    SciTech Connect

    Januszyk, Kurt; Liu, Quansheng; Lima, Christopher D.

    2011-08-29

    The eukaryotic RNA exosome is a highly conserved multi-subunit complex that catalyzes degradation and processing of coding and noncoding RNA. A noncatalytic nine-subunit exosome core interacts with Rrp44 and Rrp6, two subunits that possess processive and distributive 3'-to-5' exoribonuclease activity, respectively. While both Rrp6 and Rrp44 are responsible for RNA processing in budding yeast, Rrp6 may play a more prominent role in processing, as it has been demonstrated to be inhibited by stable RNA secondary structure in vitro and because the null allele in budding yeast leads to the buildup of specific structured RNA substrates. Human RRP6, otherwise known as PM/SCL-100 or EXOSC10, shares sequence similarity to budding yeast Rrp6 and is proposed to catalyze 3'-to-5' exoribonuclease activity on a variety of nuclear transcripts including ribosomal RNA subunits, RNA that has been poly-adenylated by TRAMP, as well as other nuclear RNA transcripts destined for processing and/or destruction. To characterize human RRP6, we expressed the full-length enzyme as well as truncation mutants that retain catalytic activity, compared their activities to analogous constructs for Saccharomyces cerevisiae Rrp6, and determined the X-ray structure of a human construct containing the exoribonuclease and HRDC domains that retains catalytic activity. Structural data show that the human active site is more exposed when compared to the yeast structure, and biochemical data suggest that this feature may play a role in the ability of human RRP6 to productively engage and degrade structured RNA substrates more effectively than the analogous budding yeast enzyme.

  3. The role of short-range Cys171-Cys178 disulfide bond in maintaining cutinase active site integrity: A molecular dynamics simulation

    SciTech Connect

    Matak, Mehdi Youssefi; Moghaddam, Majid Erfani

    2009-12-11

    Understanding structural determinants in enzyme active site integrity can provide a good knowledge to design efficient novel catalytic machineries. Fusarium solani pisi cutinase with classic triad Ser-His-Asp is a promising enzyme to scrutinize these structural determinants. We performed two MD simulations: one, with the native structure, and the other with the broken Cys171-Cys178 disulfide bond. This disulfide bond stabilizes a turn in active site on which catalytic Asp175 is located. Functionally important H-bonds and atomic fluctuations in catalytic pocket have been changed. We proposed that this disulfide bond within active site can be considered as an important determinant of cutinase active site structural integrity.

  4. Noninvasive Nanoscopy Uncovers the Impact of the Hierarchical Porous Structure on the Catalytic Activity of Single Dealuminated Mordenite Crystals

    PubMed Central

    Kubarev, Alexey V; Janssen, Kris P F; Roeffaers, Maarten B J

    2015-01-01

    Spatial restrictions around catalytic sites, provided by molecular-sized micropores, are beneficial to reaction selectivity but also inherently limit diffusion. The molecular transport can be enhanced by introducing meso- and macropores. However, the impact of this extraframework porosity on the local nanoscale reactivity is relatively unexplored. Herein we show that the area of enhanced reactivity in hierarchical zeolite, examined with super-resolution fluorescence microscopy, is spatially restricted to narrow zones around meso- and macropores, as observed with focused ion-beam-assisted scanning electron microscopy. This comparison indicates that reagent molecules efficiently reach catalytic active sites only in the micropores surrounding extraframework porosity and that extensive macroporosity does not warrant optimal reactivity distribution throughout a hierarchical porous zeolite. PMID:26697122

  5. Direct photoaffinity labeling by nucleotides of the apparent catalytic site on the heavy chains of smooth muscle and Acanthamoeba myosins

    SciTech Connect

    Maruta, H.; Korn, E.D.

    1981-01-10

    The heavy chains of Acanthamoeba myosins, IA, IB and II, turkey gizzard myosin, and rabbit skeletal muscle myosin subfragment-1 were specifically labeled by radioactive ATP, ADP, and UTP, each of which is a substrate or product of myosin ATPase activity, when irradiated with uv light at 0/sup 0/C. With UTP, as much as 0.45 mol/mol of Acanthamoeba myosin IA heavy chain and 1 mol/mol of turkey gizzard myosin heavy chain was incorporated. Evidence that the ligands were associated with the catalytic site included the observations that reaction occurred only with nucleotides that are substrates or products of the ATPase activity; that the reaction was blocked by pyrophosphate which is an inhibitor of the ATPase activity; that ATP was bound as ADP; and that label was probably restricted to a single peptide following limited subtilisin proteolysis of labeled Acanthamoeba myosin IA heavy chain and extensive cleavage with CNBr and trypsin of labeled turkey gizzard myosin heavy chain.

  6. Effects of FGFR2 kinase activation loop dynamics on catalytic activity.

    PubMed

    Karp, Jerome M; Sparks, Samuel; Cowburn, David

    2017-02-01

    The structural mechanisms by which receptor tyrosine kinases (RTKs) regulate catalytic activity are diverse and often based on subtle changes in conformational dynamics. The regulatory mechanism of one such RTK, fibroblast growth factor receptor 2 (FGFR2) kinase, is still unknown, as the numerous crystal structures of the unphosphorylated and phosphorylated forms of the kinase domains show no apparent structural change that could explain how phosphorylation could enable catalytic activity. In this study, we use several enhanced sampling molecular dynamics (MD) methods to elucidate the structural changes to the kinase's activation loop that occur upon phosphorylation. We show that phosphorylation favors inward motion of Arg664, while simultaneously favoring outward motion of Leu665 and Pro666. The latter structural change enables the substrate to bind leading to its resultant phosphorylation. Inward motion of Arg664 allows it to interact with the γ-phosphate of ATP as well as the substrate tyrosine. We show that this stabilizes the tyrosine and primes it for the catalytic phosphotransfer, and it may lower the activation barrier of the phosphotransfer reaction. Our work demonstrates the value of including dynamic information gleaned from computer simulation in deciphering RTK regulatory function.

  7. Effects of FGFR2 kinase activation loop dynamics on catalytic activity

    PubMed Central

    2017-01-01

    The structural mechanisms by which receptor tyrosine kinases (RTKs) regulate catalytic activity are diverse and often based on subtle changes in conformational dynamics. The regulatory mechanism of one such RTK, fibroblast growth factor receptor 2 (FGFR2) kinase, is still unknown, as the numerous crystal structures of the unphosphorylated and phosphorylated forms of the kinase domains show no apparent structural change that could explain how phosphorylation could enable catalytic activity. In this study, we use several enhanced sampling molecular dynamics (MD) methods to elucidate the structural changes to the kinase’s activation loop that occur upon phosphorylation. We show that phosphorylation favors inward motion of Arg664, while simultaneously favoring outward motion of Leu665 and Pro666. The latter structural change enables the substrate to bind leading to its resultant phosphorylation. Inward motion of Arg664 allows it to interact with the γ-phosphate of ATP as well as the substrate tyrosine. We show that this stabilizes the tyrosine and primes it for the catalytic phosphotransfer, and it may lower the activation barrier of the phosphotransfer reaction. Our work demonstrates the value of including dynamic information gleaned from computer simulation in deciphering RTK regulatory function. PMID:28151998

  8. Cytochrome c oxidase loses catalytic activity and structural integrity during the aging process in Drosophila melanogaster

    SciTech Connect

    Ren, Jian-Ching; Rebrin, Igor; Klichko, Vladimir; Orr, William C.; Sohal, Rajindar S.

    2010-10-08

    Research highlights: {yields} Cytochrome c oxidase loses catalytic activity during the aging process. {yields} Abundance of seven nuclear-encoded subunits of cytochrome c oxidase decreased with age in Drosophila. {yields} Cytochrome c oxidase is specific intra-mitochondrial site of age-related deterioration. -- Abstract: The hypothesis, that structural deterioration of cytochrome c oxidase (CcO) is a causal factor in the age-related decline in mitochondrial respiratory activity and an increase in H{sub 2}O{sub 2} generation, was tested in Drosophila melanogaster. CcO activity and the levels of seven different nuclear DNA-encoded CcO subunits were determined at three different stages of adult life, namely, young-, middle-, and old-age. CcO activity declined progressively with age by 33%. Western blot analysis, using antibodies specific to Drosophila CcO subunits IV, Va, Vb, VIb, VIc, VIIc, and VIII, indicated that the abundance these polypeptides decreased, ranging from 11% to 40%, during aging. These and previous results suggest that CcO is a specific intra-mitochondrial site of age-related deterioration, which may have a broad impact on mitochondrial physiology.

  9. Encapsulating Metal Clusters and Acid Sites within Small Voids: Synthetic Strategies and Catalytic Consequences

    NASA Astrophysics Data System (ADS)

    Goel, Sarika

    active sites. We have demonstrated the selectivity of the encapsulation processes by combining transmission electron microscopy and chemisorptive titrations with rigorous catalytic assessments of the ability of these materials to catalyze reactions of small molecules, which can access the intracrystalline voids, but not of larger molecules that cannot access the metal clusters within such voids. The selective confinement of clusters also prevented their contact with sulfur compounds (e.g., thiophene and H2S), thus allowing reactions to occur at conditions that otherwise render unconfined clusters unreactive. We have also developed synthetic protocols and guiding principles, inspired by mechanistic considerations, for the synthesis of zeolites via interzeolite transformations without the use of organic structure-directing agents (OSDA). More specifically, we have synthesized high-silica MFI (ZSM-5), CHA (chabazite), STF (SSZ-35) and MTW (ZSM-12) zeolites from FAU (faujasite) or BEA (beta) parent materials. Structures with lower framework densities (FAU or BEA) were successfully transformed into thermodynamically-favored, more stable structures with higher framework densities (MFI, CHA, STF, and MTW); to date, target materials with higher Si/Al ratios (Si/Al >10) have not been synthesized via interzeolite transformations without the aid of the OSDA species used to discover these zeolite structures and deemed essential up until now for their successful synthesis. Overcoming kinetic hurdles in such transformations required either the presence of common composite building units (CBU) between parent and target structures or, in their absence, the introduction of small amount of seeds of the daughter structures. The NaOH/SiO2 ratio, H2O/SiO2 ratio and Al content in reagents are used to enforce synchronization between the swelling and local restructuring within parent zeolite domains with the spalling of fragments or building units from seeds of the target structure. The

  10. Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation

    PubMed Central

    Birkner, Nancy; Nayeri, Sara; Pashaei, Babak; Najafpour, Mohammad Mahdi; Casey, William H.; Navrotsky, Alexandra

    2013-01-01

    Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn3+/Mn4+ ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states. PMID:23667149

  11. Tunable catalytic activity of solid solution metal-organic frameworks in one-pot multicomponent reactions.

    PubMed

    Aguirre-Díaz, Lina María; Gándara, Felipe; Iglesias, Marta; Snejko, Natalia; Gutiérrez-Puebla, Enrique; Monge, M Ángeles

    2015-05-20

    The aim of this research is to establish how metal-organic frameworks (MOFs) composed of more than one metal in equivalent crystallographic sites (solid solution MOFs) exhibit catalytic activity, which is tunable by virtue of the metal ions ratio. New MOFs with general formula [InxGa1-x(O2C2H4)0.5(hfipbb)] were prepared by the combination of Ga and In. They are isostructural with their monometal counterparts, synthesized with Al, Ga, and In. Differences in their behavior as heterogeneous catalysts in the three-component, one pot Strecker reaction illustrate the potential of solid solution MOFs to provide the ability to address the various stages involved in the reaction mechanism.

  12. HI-6 assisted catalytic scavenging of VX by acetylcholinesterase choline binding site mutants.

    PubMed

    Maček Hrvat, Nikolina; Žunec, Suzana; Taylor, Palmer; Radić, Zoran; Kovarik, Zrinka

    2016-11-25

    The high toxicity of organophosphorus compounds originates from covalent inhibition of acetylcholinesterase (AChE), an essential enzyme in cholinergic neurotransmission. Poisonings that lead to life-threatening toxic manifestations require immediate treatment that combines administration of anticholinergic drugs and an aldoxime as a reactivator of AChE. An alternative approach to reduce the in vivo toxicity of OPs focuses on the use of bioscavengers against the parent organophosphate. Our previous research showed that AChE mutagenesis can enable aldoximes to substantially accelerate the reactivation of OP-enzyme conjugates, while dramatically slowing down rates of OP-conjugate dealkylation (aging). Herein, we demonstrate an efficient HI-6-assisted VX detoxification, both ex vivo in human blood and in vivo in mice by hAChE mutants modified at the choline binding site (Y337A and Y337A/F338A). The catalytic scavenging of VX in mice improved therapeutic outcomes preventing lethality and resulted in a delayed onset of toxicity symptoms.

  13. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site

    PubMed Central

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel

    2015-01-01

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called ‘catalytic residues’ are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes. DOI: http://dx.doi.org/10.7554/eLife.06181.001 PMID:25902402

  14. Carbon Nanotube Materials for Substrate Enhanced Control of Catalytic Activity

    SciTech Connect

    Heben, M.; Dillon, A. C.; Engtrakul, C.; Lee, S.-H.; Kelley, R. D.; Kini, A. M.

    2007-05-01

    Carbon SWNTs are attractive materials for supporting electrocatalysts. The properties of SWNTs are highly tunable and controlled by the nanotube's circumferential periodicity and their surface chemistry. These unique characteristics suggest that architectures constructed from these types of carbon support materials would exhibit interesting and useful properties. Here, we expect that the structure of the carbon nanotube support will play a major role in stabilizing metal electrocatalysts under extreme operating conditions and suppress both catalyst and support degradation. Furthermore, the chemical modification of the carbon nanotube surfaces can be expected to alter the interface between the catalyst and support, thus, enhancing the activity and utilization of the electrocatalysts. We plan to incorporate discrete reaction sites into the carbon nanotube lattice to create intimate electrical contacts with the catalyst particles to increase the metal catalyst activity and utilization. The work involves materials synthesis, design of electrode architectures on the nanoscale, control of the electronic, ionic, and mass fluxes, and use of advanced optical spectroscopy techniques.

  15. Synthesis, Characterization, and Catalytic Properties of Novel Single-Site and Nanosized Platinum Catalysts

    SciTech Connect

    Bonati, Matteo L.M.; Douglas, Thomas M.; Gaemers, Sander; Guo, Neng

    2013-01-10

    Novel single-site platinum catalysts have been synthesized by reacting platinum(II) organometallics with partially dehydroxylated silica. The resulting materials have been characterized by various methods such as IR, MAS NMR, and EXAFS. Further, the single-site platinum catalysts were calcined in air to remove the ligand and produce nanosized platinum particles, that were characterized by TEM and H{sub 2} chemisorption. All catalysts were tested for the hydrogenation of toluene. The single-site platinum catalysts were less active than a commercial Pt/SiO{sub 2} catalyst with comparable platinum loading, and this has been ascribed to ligand effects. Conversely, the nanosized platinum catalysts were more active than the commercial Pt/SiO{sub 2} catalyst due to their high dispersion and small particle sizes.

  16. Active sites in char gasification: Final technical report

    SciTech Connect

    Wojtowicz, M.; Lilly, W.D.; Perkins, M.T.; Hradil, G.; Calo, J.M.; Suuberg, E.M.

    1987-09-01

    Among the key variables in the design of gasifiers and combustors is the reactivity of the chars which must be gasified or combusted. Significant loss of unburned char is unacceptable in virtually any process; the provision of sufficient residence time for complete conversion is essential. A very wide range of reactivities are observed, depending upon the nature of the char in a process. The current work focuses on furthering the understanding of gasification reactivities of chars. It has been well established that the reactivity of char to gasification generally depends upon three principal factors: (1) the concentration of ''active sites'' in the char; (2) mass transfer within the char; and (3) the type and concentration of catalytic impurities in the char. The present study primarily addresses the first factor. The subject of this research is the origin, nature, and fate of active sites in chars derived from parent hydrocarbons with coal-like structure. The nature and number of the active sites and their reactivity towards oxygen are examined in ''model'' chars derived from phenol-formaldehyde type resins. How the active sites are lost by the process of thermal annealing during heat treatment of chars are studied, and actual rate for the annealing process is derived. Since intrinsic char reactivities are of primary interest in the present study, a fair amount of attention was given to the model char synthesis and handling so that the effect of catalytic impurities and oxygen-containing functional groups in the chemical structure of the material were minimized, if not completely eliminated. The project would not be considered complete without comparing characteristic features of synthetic chars with kinetic behavior exhibited by natural chars, including coal chars.

  17. The cooperative effect between active site ionized groups and water desolvation controls the alteration of acid/base catalysis in serine proteases.

    PubMed

    Shokhen, Michael; Khazanov, Netaly; Albeck, Amnon

    2007-08-13

    What is the driving force that alters the catalytic function of His57 in serine proteases between general base and general acid in each step along the enzymatic reaction? The stable tetrahedral complexes (TC) of chymotrypsin with trifluoromethyl ketone transition state analogue inhibitors are topologically similar to the catalytic transition state. Therefore, they can serve as a good model to study the enzyme catalytic reaction. We used DFT quantum mechanical calculations to analyze the effect of solvation and of polar factors in the active site of chymotrypsin on the pKa of the catalytic histidine in FE (the free enzyme), EI (the noncovalent enzyme inhibitor complex), and TC. We demonstrated that the acid/base alteration is controlled by the charged groups in the active site--the catalytic Asp102 carboxylate and the oxyanion. The effect of these groups on the catalytic His is modulated by water solvation of the active site.

  18. Lipase immobilized catalytically active membrane for synthesis of lauryl stearate in a pervaporation membrane reactor.

    PubMed

    Zhang, Weidong; Qing, Weihua; Ren, Zhongqi; Li, Wei; Chen, Jiangrong

    2014-11-01

    A composite catalytically active membrane immobilized with Candida rugosa lipase has been prepared by immersion phase inversion technique for enzymatic synthesis of lauryl stearate in a pervaporation membrane reactor. SEM images showed that a "sandwich-like" membrane structure with a porous lipase-PVA catalytic layer uniformly coated on a polyvinyl alcohol (PVA)/polyethersulfone (PES) bilayer was obtained. Optimum conditions for lipase immobilization in the catalytic layer were determined. The membrane was proved to exhibit superior thermal stability, pH stability and reusability than free lipase under similar conditions. In the case of pervaporation coupled synthesis of lauryl stearate, benefited from in-situ water removal by the membrane, a conversion enhancement of approximately 40% was achieved in comparison to the equilibrium conversion obtained in batch reactors. In addition to conversion enhancement, it was also found that excess water removal by the catalytically active membrane appears to improve activity of the lipase immobilized.

  19. Activation of phenylalanine hydroxylase by phenylalanine does not require binding in the active site.

    PubMed

    Roberts, Kenneth M; Khan, Crystal A; Hinck, Cynthia S; Fitzpatrick, Paul F

    2014-12-16

    Phenylalanine hydroxylase (PheH), a liver enzyme that catalyzes the hydroxylation of excess phenylalanine in the diet to tyrosine, is activated by phenylalanine. The lack of activity at low levels of phenylalanine has been attributed to the N-terminus of the protein's regulatory domain acting as an inhibitory peptide by blocking substrate access to the active site. The location of the site at which phenylalanine binds to activate the enzyme is unknown, and both the active site in the catalytic domain and a separate site in the N-terminal regulatory domain have been proposed. Binding of catecholamines to the active-site iron was used to probe the accessibility of the active site. Removal of the regulatory domain increases the rate constants for association of several catecholamines with the wild-type enzyme by ∼2-fold. Binding of phenylalanine in the active site is effectively abolished by mutating the active-site residue Arg270 to lysine. The k(cat)/K(phe) value is down 10⁴ for the mutant enzyme, and the K(m) value for phenylalanine for the mutant enzyme is >0.5 M. Incubation of the R270K enzyme with phenylalanine also results in a 2-fold increase in the rate constants for catecholamine binding. The change in the tryptophan fluorescence emission spectrum seen in the wild-type enzyme upon activation by phenylalanine is also seen with the R270K mutant enzyme in the presence of phenylalanine. Both results establish that activation of PheH by phenylalanine does not require binding of the amino acid in the active site. This is consistent with a separate allosteric site, likely in the regulatory domain.

  20. Catalytic activity of bimetallic catalysts highly sensitive to the atomic composition and phase structure at the nanoscale.

    PubMed

    Shan, Shiyao; Petkov, Valeri; Prasai, Binay; Wu, Jinfang; Joseph, Pharrah; Skeete, Zakiya; Kim, Eunjoo; Mott, Derrick; Malis, Oana; Luo, Jin; Zhong, Chuan-Jian

    2015-12-07

    The ability to determine the atomic arrangement in nanoalloy catalysts and reveal the detailed structural features responsible for the catalytically active sites is essential for understanding the correlation between the atomic structure and catalytic properties, enabling the preparation of efficient nanoalloy catalysts by design. Herein we describe a study of CO oxidation over PdCu nanoalloy catalysts focusing on gaining insights into the correlation between the atomic structures and catalytic activity of nanoalloys. PdCu nanoalloys of different bimetallic compositions are synthesized as a model system and are activated by a controlled thermochemical treatment for assessing their catalytic activity. The results show that the catalytic synergy of Pd and Cu species evolves with both the bimetallic nanoalloy composition and temperature of the thermochemical treatment reaching a maximum at a Pd : Cu ratio close to 50 : 50. The nanoalloys are characterized structurally by ex situ and in situ synchrotron X-ray diffraction, including atomic pair distribution function analysis. The structural data show that, depending on the bimetallic composition and treatment temperature, PdCu nanoalloys adopt two different structure types. One features a chemically ordered, body centered cubic (B2) type alloy consisting of two interpenetrating simple cubic lattices, each occupied with Pd or Cu species alone, and the other structure type features a chemically disordered, face-centered cubic (fcc) type of alloy wherein Pd and Cu species are intermixed at random. The catalytic activity for CO oxidation is strongly influenced by the structural features. In particular, it is revealed that the prevalence of chemical disorder in nanoalloys with a Pd : Cu ratio close to 50 : 50 makes them superior catalysts for CO oxidation in comparison with the same nanoalloys of other bimetallic compositions. However, the catalytic synergy can be diminished if the Pd50Cu50 nanoalloys undergo

  1. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons.

    PubMed

    Quesada-Peñate, I; Julcour-Lebigue, C; Jáuregui-Haza, U J; Wilhelm, A M; Delmas, H

    2012-06-30

    The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  2. Phosphorylation of Ser-204 and Tyr-405 in human malonyl-CoA decarboxylase expressed in silkworm Bombyx mori regulates catalytic decarboxylase activity.

    PubMed

    Hwang, In-Wook; Makishima, Yu; Suzuki, Tomohiro; Kato, Tatsuya; Park, Sungjo; Terzic, Andre; Chung, Shin-Kyo; Park, Enoch Y

    2015-11-01

    Decarboxylation of malonyl-CoA to acetyl-CoA by malonyl-CoA decarboxylase (MCD; EC 4.1.1.9) is a vital catalytic reaction of lipid metabolism. While it is established that phosphorylation of MCD modulates the enzymatic activity, the specific phosphorylation sites associated with the catalytic function have not been documented due to lack of sufficient production of MCD with proper post-translational modifications. Here, we used the silkworm-based Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid system to express human MCD (hMCD) and mapped phosphorylation effects on enzymatic function. Purified MCD from silkworm displayed post-translational phosphorylation and demonstrated coherent enzymatic activity with high yield (-200 μg/silkworm). Point mutations in putative phosphorylation sites, Ser-204 or Tyr-405 of hMCD, identified by bioinformatics and proteomics analyses reduced the catalytic activity, underscoring the functional significance of phosphorylation in modulating decarboxylase-based catalysis. Identified phosphorylated residues are distinct from the decarboxylation catalytic site, implicating a phosphorylation-induced global conformational change of MCD as responsible in altering catalytic function. We conclude that phosphorylation of Ser-204 and Tyr-405 regulates the decarboxylase function of hMCD leveraging the silkworm-based BmNPV bacmid expression system that offers a fail-safe eukaryotic production platform implementing proper post-translational modification such as phosphorylation.

  3. Crystal structure of a catalytic site mutant of beta-amylase from Bacillus cereus var. mycoides cocrystallized with maltopentaose.

    PubMed

    Miyake, Hideo; Kurisu, Genji; Kusunoki, Masami; Nishimura, Sigenori; Kitamura, Shinichi; Nitta, Yasunori

    2003-05-20

    The X-ray crystal structure of a catalytic site mutant of beta-amylase, E172A (Glu172 --> Ala), from Bacillus cereus var. mycoides complexed with a substrate, maltopentaose (G5), and the wild-type enzyme complexed with maltose were determined at 2.1 and 2.0 A resolution, respectively. Clear and continuous density corresponding to G5 was observed in the active site of E172A, and thus, the substrate, G5, was not hydrolyzed. All glucose residues adopted a relaxed (4)C(1) conformation, and the conformation of the maltose unit for Glc2 and Glc3 was much different from those of other maltose units, where each glucose residue of G5 is named Glc1-Glc5 (Glc1 is at the nonreducing end). A water molecule was observed 3.3 A from the C1 atom of Glc2, and 3.0 A apart from the OE1 atom of Glu367 which acts as a general base. In the wild-type enzyme-maltose complex, two maltose molecules bind at subsites -2 and -1 and at subsites +1 and +2 in tandem. The conformation of the maltose molecules was similar to that of the condensation product of soybean beta-amylase, but differed from that of G5 in E172A. When the substrate flips between Glc2 and Glc3, the conformational energy of the maltose unit was calculated to be 20 kcal/mol higher than that of the cis conformation by MM3. We suggest that beta-amylase destabilizes the bond that is to be broken in the ES complex, decreasing the activation energy, DeltaG(++), which is the difference in free energy between this state and the transition state.

  4. Mixed Inhibition of cPEPCK by Genistein, Using an Extended Binding Site Located Adjacent to Its Catalytic Cleft

    PubMed Central

    Dhanjal, Jaspreet Kaur; Sundar, Durai

    2015-01-01

    Cytosolic phosphoenolpyruvate carboxykinase (cPEPCK) is a critical enzyme involved in gluconeogenesis, glyceroneogenesis and cataplerosis. cPEPCK converts oxaloacetic acid (OAA) into phosphoenol pyruvate (PEP) in the presence of GTP. cPEPCK is known to be associated with type 2 diabetes. Genistein is an isoflavone compound that shows anti-diabetic and anti-obesitic properties. Experimental studies have shown a decrease in the blood glucose level in the presence of genistein by lowering the functional activity of cPEPCK, an enzyme of gluconeogenesis. Using computational techniques such as molecular modeling, molecular docking, molecular dynamics simulation and binding free energy calculations, we identified cPEPCK as a direct target of genistein. We studied the molecular interactions of genistein with three possible conformations of cPEPCK—unbound cPEPCK (u_cPEPCK), GTP bound cPEPCK (GTP_cPEPCK) and GDP bound cPEPCK (GDP_cPEPCK). Binding of genistein was also compared with an already known cPEPCK inhibitor. We analyzed the interactions of genistein with cPEPCK enzyme and compared them with its natural substrate (OAA), product (PEP) and known inhibitor (3-MPA). Our results demonstrate that genistein uses the mechanism of mixed inhibition to block the functional activity of cPEPCK and thus can serve as a potential anti-diabetic and anti-obesity drug candidate. We also identified an extended binding site in the catalytic cleft of cPEPCK which is used by 3-MPA to inhibit cPEPCK non-competitively. We demonstrate that extended binding site of cPEPCK can further be exploited for designing new drugs against cPEPCK. PMID:26528723

  5. The surface chemistry of heterogeneous catalysis: mechanisms, selectivity, and active sites.

    PubMed

    Zaera, Francisco

    2005-01-01

    The role of chemical kinetics in defining the requirements for the active sites of heterogeneous catalysts is discussed. A personal view is presented, with specific examples from our laboratory to illustrate the role of the chemical composition, structure, and electronic properties of specific surface sites in determining reaction activity and selectivity. Manipulation of catalytic behavior via the addition of chemical modifiers and by tuning of the reaction conditions is also introduced.

  6. Layered materials with coexisting acidic and basic sites for catalytic one-pot reaction sequences.

    PubMed

    Motokura, Ken; Tada, Mizuki; Iwasawa, Yasuhiro

    2009-06-17

    Acidic montmorillonite-immobilized primary amines (H-mont-NH(2)) were found to be excellent acid-base bifunctional catalysts for one-pot reaction sequences, which are the first materials with coexisting acid and base sites active for acid-base tamdem reactions. For example, tandem deacetalization-Knoevenagel condensation proceeded successfully with the H-mont-NH(2), affording the corresponding condensation product in a quantitative yield. The acidity of the H-mont-NH(2) was strongly influenced by the preparation solvent, and the base-catalyzed reactions were enhanced by interlayer acid sites.

  7. Characterisation of the organophosphate hydrolase catalytic activity of SsoPox

    PubMed Central

    Hiblot, Julien; Gotthard, Guillaume; Chabriere, Eric; Elias, Mikael

    2012-01-01

    SsoPox is a lactonase endowed with promiscuous phosphotriesterase activity isolated from Sulfolobus solfataricus that belongs to the Phosphotriesterase-Like Lactonase family. Because of its intrinsic thermal stability, SsoPox is seen as an appealing candidate as a bioscavenger for organophosphorus compounds. A comprehensive kinetic characterisation of SsoPox has been performed with various phosphotriesters (insecticides) and phosphodiesters (nerve agent analogues) as substrates. We show that SsoPox is active for a broad range of OPs and remains active under denaturing conditions. In addition, its OP hydrolase activity is highly stimulated by anionic detergent at ambient temperature and exhibits catalytic efficiencies as high as kcat/KM of 105 M−1s−1 against a nerve agent analogue. The structure of SsoPox bound to the phosphotriester fensulfothion reveals an unexpected and non-productive binding mode. This feature suggests that SsoPox's active site is sub-optimal for phosphotriester binding, which depends not only upon shape but also on localised charge of the ligand. PMID:23139857

  8. Enhancement of ribozyme catalytic activity by a contiguous oligodeoxynucleotide (facilitator) and by 2'-O-methylation.

    PubMed Central

    Goodchild, J

    1992-01-01

    RNA catalysts (ribozymes) designed to cleave sequences unique to viral RNA's might be developed as therapeutics. For this purpose, they would require high catalytic efficiency and resistance to nucleases. Reported here are two approaches that can be used in combination to improve these properties. First, catalytic efficiency can be improved by oligonucleotides (facilitators) that bind to the substrate contiguously with the 3'-end of the ribozyme. Second, 2'-O-methylation of flanking sequences of the ribozyme increases catalytic activity as well as resistance to nucleases. In combination with a facilitator oligodeoxynucleotide, the cleavage rate was increased 20 fold over that of the unmodified ribozyme. Images PMID:1383929

  9. Spectroscopic studies of the active site of galactose oxidase

    SciTech Connect

    Knowles, P.F.; Brown, R.D. III; Koenig, S.H.

    1995-07-19

    X-ray absorption and EPR spectroscopy have been used to probe the copper site structure in galactose oxidase at pH 4.5 and 7.0. the results suggest that there are no major differences in the structure of the tetragonal Cu(II) site at these pH values. Analysis of the extended X-ray absorption fine structure (EXAFS) indicates that four N,O scatterers are present at approximately 2 {Angstrom}; these are presumably the equatorial ligands. In addition, the EXAFS data establish that oxidative activation to produce the active-site tyrosine radical does not cause major changes in the copper coordination environment. Therefore results obtained on the one-electron reduced enzyme, containing Cu(II) but not the tyrosine radical, probably also apply to the catalytically active Cu(II)/tyrosine radical state. Solvent water exchange, inhibitor binding, and substrate binding have been probed via nuclear magnetic relaxation dispersion (NMRD) measurements. The NMRD profile of galactose oxidase is quantitatively consistent with the rapid exchange of a single, equatorial water ligand with a Cu(II)-O separation of about 2.4 {Angstrom}. Azide and cyanide displace this coordinated water. The binding of azide and the substrate dihydroxyacetone produce very similar effects on the NMRD profile of galactose oxidase, indicating that substrates also bind to the active site Cu(II) in an equatorial position.

  10. An Active Site Water Network in the Plasminogen Activator Pla from Yersinia pestis

    SciTech Connect

    Eren, Elif; Murphy, Megan; Goguen, Jon; van den Berg, Bert

    2010-08-13

    The plasminogen activator Pla from Yersinia pestis is an outer membrane protease (omptin) that is important for the virulence of plague. Here, we present the high-resolution crystal structure of wild-type, enzymatically active Pla at 1.9 {angstrom}. The structure shows a water molecule located between active site residues D84 and H208, which likely corresponds to the nucleophilic water. A number of other water molecules are present in the active site, linking residues important for enzymatic activity. The R211 sidechain in loop L4 is close to the nucleophilic water and possibly involved in the stabilization of the oxyanion intermediate. Subtle conformational changes of H208 result from the binding of lipopolysaccharide to the outside of the barrel, explaining the unusual dependence of omptins on lipopolysaccharide for activity. The Pla structure suggests a model for the interaction with plasminogen substrate and provides a more detailed understanding of the catalytic mechanism of omptin proteases.

  11. An active site water network in the plasminogen activator pla from Yersinia pestis.

    PubMed

    Eren, Elif; Murphy, Megan; Goguen, Jon; van den Berg, Bert

    2010-07-14

    The plasminogen activator Pla from Yersinia pestis is an outer membrane protease (omptin) that is important for the virulence of plague. Here, we present the high-resolution crystal structure of wild-type, enzymatically active Pla at 1.9 A. The structure shows a water molecule located between active site residues D84 and H208, which likely corresponds to the nucleophilic water. A number of other water molecules are present in the active site, linking residues important for enzymatic activity. The R211 sidechain in loop L4 is close to the nucleophilic water and possibly involved in the stabilization of the oxyanion intermediate. Subtle conformational changes of H208 result from the binding of lipopolysaccharide to the outside of the barrel, explaining the unusual dependence of omptins on lipopolysaccharide for activity. The Pla structure suggests a model for the interaction with plasminogen substrate and provides a more detailed understanding of the catalytic mechanism of omptin proteases.

  12. Flexibility Matters: Cooperative Active Sites in Covalent Organic Framework and Threaded Ionic Polymer.

    PubMed

    Sun, Qi; Aguila, Briana; Perman, Jason; Nguyen, Nicholas; Ma, Shengqian

    2016-12-07

    The combination of two or more reactive centers working in concert on a substrate to facilitate the reaction is now considered state of the art in catalysis, yet there still remains a tremendous challenge. Few heterogeneous systems of this sort have been exploited, as the active sites spatially separated within the rigid framework are usually difficult to cooperate. It is now shown that this roadblock can be surpassed. The underlying principle of the strategy presented here is the integration of catalytic components with excellent flexibility and porous heterogeneous catalysts, as demonstrated by the placement of linear ionic polymers in close proximity to surface Lewis acid active sites anchored on the walls of a covalent organic framework (COF). Using the cycloaddition of the epoxides and CO2 as a model reaction, dramatic activity improvements have been achieved for the composite catalysts in relation to the individual catalytic component. Furthermore, they also clearly outperform the benchmark catalytic systems formed by the combination of the molecular organocatalysts and heterogeneous Lewis acid catalysts, while affording additional recyclability. The extraordinary flexibility and enriched concentration of the catalytically active moieties on linear polymers facilitate the concerted catalysis, thus leading to superior catalytic performance. This work therefore uncovers an entirely new strategy for designing bifunctional catalysts with double-activation behavior and opens a new avenue in the design of multicapable systems that mimic biocatalysis.

  13. Chemical Engineering of Enzymes: Altered Catalytic Activity, Predictable Selectivity and Exceptional Stability of the Semisynthetic Peroxidase Seleno-Subtilisin

    NASA Astrophysics Data System (ADS)

    Häring, Dietmar; Schreier, Peter

    The increasing demand for enzymes as highly selective, mild, and environmentally benign catalysts is often limited by the lack of an enzyme with the desired catalytic activity or substrate selectivity and by their instability in biotechnological processes. The previous answers to these problems comprised genetically engineered enzymes and several classes of enzyme mimics. Here we describe the potential of chemical enzyme engineering: native enzymes can be modified by merely chemical means and basic equipment yielding so-called semisynthetic enzymes. Thus, the high substrate selectivity of the enzymatic peptide framework is combined with the catalytic versatility of a synthetic active site. We illustrate the potential of chemically engineered enzymes with the conception of the semisynthetic peroxidase seleno-subtilisin. First, the serine endoprotease subtilisin was crystallized and cross-linked with glutaraldehyde to give cross-linked enzyme crystals which were found to be insoluble in water or organic solvents and highly stable. Second, serine 221 in the active site (Enz-OH) was chemically converted into an oxidized derivative of selenocystein (Enz-SeO2H). As a consequence, the former proteolytic enzyme gained peroxidase activity and catalyzed the selective reduction of hydroperoxides. Due to the identical binding sites of the semisynthetic peroxidase and the protease, the substrate selectivity of seleno-subtilisin was predictable in view of the well-known selectivity of subtilisin.

  14. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate.

    PubMed

    Johnson, Joseph L; Cusack, Bernadette; Davies, Matthew P; Fauq, Abdul; Rosenberry, Terrone L

    2003-05-13

    Acetylcholinesterase (AChE) contains a narrow and deep active site gorge with two sites of ligand binding, an acylation site (or A-site) at the base of the gorge, and a peripheral site (or P-site) near the gorge entrance. The P-site contributes to catalytic efficiency by transiently binding substrates on their way to the acylation site, where a short-lived acyl enzyme intermediate is produced. A conformational interaction between the A- and P-sites has recently been found to modulate ligand affinities. We now demonstrate that this interaction is of functional importance by showing that the acetylation rate constant of a substrate bound to the A-site is increased by a factor a when a second molecule of substrate binds to the P-site. This demonstration became feasible through the introduction of a new acetanilide substrate analogue of acetylcholine, 3-(acetamido)-N,N,N-trimethylanilinium (ATMA), for which a = 4. This substrate has a low acetylation rate constant and equilibrates with the catalytic site, allowing a tractable algebraic solution to the rate equation for substrate hydrolysis. ATMA affinities for the A- and P-sites deduced from the kinetic analysis were confirmed by fluorescence titration with thioflavin T as a reporter ligand. Values of a >1 give rise to a hydrolysis profile called substrate activation, and the AChE site-specific mutant W86F, and to a lesser extent wild-type human AChE itself, showed substrate activation with acetylthiocholine as the substrate. Substrate activation was incorporated into a previous catalytic scheme for AChE in which a bound P-site ligand can also block product dissociation from the A-site, and two additional features of the AChE catalytic pathway were revealed. First, the ability of a bound P-site ligand to increase the substrate acetylation rate constant varied with the structure of the ligand: thioflavin T accelerated ATMA acetylation by a factor a(2) of 1.3, while propidium failed to accelerate. Second, catalytic rate

  15. Mutational analysis of the catalytic and feedback sites of the tryptophan-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase of Escherichia coli.

    PubMed Central

    Ray, J M; Yanofsky, C; Bauerle, R

    1988-01-01

    The nucleotide sequence of aroH, the structural gene for the tryptophan-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase [DAHPS(Trp)], is presented, and the deduced amino acid sequence of AroH is compared with that of the tyrosine-sensitive (AroF) and phenylalanine-sensitive (AroG) DAHPS isoenzymes. The high degree of sequence similarity among the three isoenzymes strongly indicates that they have a common evolutionary origin. In vitro chemical mutagenesis of the cloned aroH gene was used to identify residues and regions of the polypeptide essential for catalytic activity and for tryptophan feedback regulation. Missense mutations leading either to loss of catalytic activity or to feedback resistance were found interspersed throughout the polypeptide, suggesting overlapping catalytic and regulatory sites in DAHPS(Trp). We conclude that the specificity of feedback regulation of the isoenzymes was probably acquired by the duplication and divergent evolution of an ancestral gene, rather than by domain recruitment. PMID:2903857

  16. Asymmetric Intramolecular Alkylation of Chiral Aromatic Imines via Catalytic C-H Bond Activation

    SciTech Connect

    Watzke, Anja; Wilson, Rebecca; O'Malley, Steven; Bergman, Robert; Ellman, Jonathan

    2007-04-16

    The asymmetric intramolecular alkylation of chiral aromatic aldimines, in which differentially substituted alkenes are tethered meta to the imine, was investigated. High enantioselectivities were obtained for imines prepared from aminoindane derivatives, which function as directing groups for the rhodium-catalyzed C-H bond activation. Initial demonstration of catalytic asymmetric intramolecular alkylation also was achieved by employing a sterically hindered achiral imine substrate and catalytic amounts of a chiral amine.

  17. Wobble Pairs of the HDV Ribozyme Play Specific Roles in Stabilization of Active Site Dynamics

    PubMed Central

    Sripathi, Kamali N.; Banáš, Pavel; Reblova, Kamila; Šponer, Jiři; Otyepka, Michal

    2015-01-01

    The hepatitis delta virus (HDV) is the only known human pathogen whose genome contains a catalytic RNA motif (ribozyme). The overall architecture of the HDV ribozyme is that of a double-nested pseudoknot, with two GU pairs flanking the active site. Although extensive studies have shown that mutation of either wobble results in decreased catalytic activity, little work has focused on linking these mutations to specific structural effects on catalytic fitness. Here we use molecular dynamics simulations based on an activated structure to probe the active site dynamics as a result of wobble pair mutations. In both wild-type and mutant ribozymes, the in-line fitness of the active site (as a measure of catalytic proficiency) strongly depends on the presence of a C75(N3H3+)N1(O5′) hydrogen bond, which positions C75 as the general acid for the reaction. Our mutational analyses show that each GU wobble supports catalytically fit conformations in distinct ways; the reverse G25U20 wobble promotes high in-line fitness, high occupancy of the C75(N3H3+)G1(O5′) general-acid hydrogen bond and stabilization of the G1U37 wobble, while the G1U37 wobble acts more locally by stabilizing high in-line fitness and the C75(N3H3+)G1(O5′) hydrogen bond. We also find that stable type I A-minor and P1.1 hydrogen bonding above and below the active site, respectively, prevent local structural disorder from spreading and disrupting global conformation. Taken together, our results define specific, often redundant architectural roles for several structural motifs of the HDV ribozyme active site, expanding the known roles of these motifs within all HDV-like ribozymes and other structured RNAs. PMID:25631765

  18. Development of catalytically active and highly stable catalyst supports for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Taekeun; Xie, Tianyuan; Jung, Wonsuk; Gadala-Maria, Francis; Ganesan, Prabhu; Popov, Branko N.

    2015-01-01

    Novel procedures are developed for the synthesis of highly stable carbon composite catalyst supports (CCCS-800 °C and CCCS-1100 °C) and an activated carbon composite catalyst support (A-CCCS). These supports are synthesized through: (i) surface modification with acids and inclusion of oxygen groups, (ii) metal-catalyzed pyrolysis, and (iii) chemical leaching to remove excess metal used to dope the support. The procedure results in increasing carbon graphitization and inclusion of non-metallic active sites on the support surface. Catalytic activity of CCCS indicates an onset potential of 0.86 V for the oxygen reduction reaction (ORR) with well-defined kinetic and mass-transfer regions and ∼2.5% H2O2 production in rotating ring disk electrode (RRDE) studies. Support stability studies at 1.2 V constant potential holding for 400 h indicate high stability for the 30% Pt/A-CCCS catalyst with a cell potential loss of 27 mV at 800 mA cm-2 under H2-air, 32% mass activity loss, and 30% ECSA loss. Performance evaluation in polymer electrolyte membrane (PEM) fuel cell shows power densities (rated) of 0.18 and 0.23 gPt kW-1 for the 30% Pt/A-CCCS and 30% Pt/CCCS-800 °C catalysts, respectively. The stabilities of various supports developed in this study are compared with those of a commercial Pt/C catalyst.

  19. The G-patch protein Spp2 couples the spliceosome-stimulated ATPase activity of the DEAH-box protein Prp2 to catalytic activation of the spliceosome

    PubMed Central

    Warkocki, Zbigniew; Schneider, Cornelius; Mozaffari-Jovin, Sina; Schmitzová, Jana; Höbartner, Claudia

    2015-01-01

    Structural rearrangement of the activated spliceosome (Bact) to yield a catalytically active complex (B*) is mediated by the DEAH-box NTPase Prp2 in cooperation with the G-patch protein Spp2. However, how the energy of ATP hydrolysis by Prp2 is coupled to mechanical work and what role Spp2 plays in this process are unclear. Using a purified splicing system, we demonstrate that Spp2 is not required to recruit Prp2 to its bona fide binding site in the Bact spliceosome. In the absence of Spp2, the Bact spliceosome efficiently triggers Prp2’s NTPase activity, but NTP hydrolysis is not coupled to ribonucleoprotein (RNP) rearrangements leading to catalytic activation of the spliceosome. Transformation of the Bact to the B* spliceosome occurs only when Spp2 is present and is accompanied by dissociation of Prp2 and a reduction in its NTPase activity. In the absence of spliceosomes, Spp2 enhances Prp2’s RNA-dependent ATPase activity without affecting its RNA affinity. Our data suggest that Spp2 plays a major role in coupling Prp2’s ATPase activity to remodeling of the spliceosome into a catalytically active machine. PMID:25561498

  20. Reactivity and Catalytic Activity of Hydrogen Atom Chemisorbed Silver Clusters.

    PubMed

    Manzoor, Dar; Pal, Sourav

    2015-06-18

    Metal clusters of silver have attracted recent interest of researchers as a result of their potential in different catalytic applications and low cost. However, due to the completely filled d orbital and very high first ionization potential of the silver atom, the silver-based catalysts interact very weakly with the reacting molecules. In the current work, density functional theory calculations were carried out to investigate the effect of hydrogen atom chemisorption on the reactivity and catalytic properties of inert silver clusters. Our results affirm that the hydrogen atom chemisorption leads to enhancement in the binding energy of the adsorbed O2 molecule on the inert silver clusters. The increase in the binding energy is also characterized by the decrease in the Ag-O and increase in the O-O bond lengths in the case of the AgnH silver clusters. Pertinent to the increase in the O-O bond length, a significant red shift in the O-O stretching frequency is also noted in the case of the AgnH silver clusters. Moreover, the hydrogen atom chemisorbed silver clusters show low reaction barriers and high heat of formation of the final products for the environmentally important CO oxidation reaction as compared to the parent catalytically inactive clusters. The obtained results were compared with those of the corresponding gold and hydrogen atom chemisorbed gold clusters obtained at the same level of theory. It is expected the current computational study will provide key insights for future advances in the design of efficient nanosilver-based catalysts through the adsorption of a small atom or a ligand.

  1. Selection of active phase of MnO2 for catalytic ozonation of 4-nitrophenol.

    PubMed

    Nawaz, Faheem; Cao, Hongbin; Xie, Yongbing; Xiao, Jiadong; Chen, Yue; Ghazi, Zahid Ali

    2017-02-01

    Catalytic ozonation is a highly effective method in wastewater treatment, and MnO2 materials are widely recognized as active heterogeneous catalysts in this process. Many works reported the progress in active MnO2 synthesis, but the active phase is rarely systematically studied. In this paper, all six phases of MnO2 (α-, β-, δ-, γ-, λ- and ε-) were synthesized by facile methods. Their catalytic activities in ozonation of 4-nitrophenol (4-NP) were evaluated and correlated with the physicochemical properties obtained from X-ray Diffraction (XRD), transmission electron microscopy (TEM), physical adsorption and cyclic voltammetry (CV) analysis. α- MnO2 was found to be the most active catalyst in 4-NP degradation at neutral pH. MnO2 with low average oxidation state (AOS) showed stronger oxidation/reduction peaks in CV characterization, which benefited catalytic decomposition of ozone to generate active species. Superoxide radical was confirmed as the main oxidizing species, along with singlet oxygen and ozone molecule oxidation in bulk solution and little contribution of oxidation on the MnO2 surface. Mn(2+) leaching happened during catalytic ozonation, but its catalytic role is negligible. This result may give rise to the preparation of new active MnO2 catalysts.

  2. Cold catalytic recovery of loaded activated carbon using iron oxide-based nanoparticles.

    PubMed

    Bach, Altai; Zelmanov, Grigory; Semiat, Raphael

    2008-01-01

    A novel approach for the recovery of spent activated carbon by an advanced oxidation process using iron oxide-based nanocatalysts was proposed and investigated. Model organic contaminants, such as ethylene glycol and phenol, were chosen for this study as water pollutants. It was shown that there are several advantages in using catalytic oxidation recovery of activated carbon with iron oxide-based nanocatalysts: low temperature reactivity of catalytic recovery without heating; and a relatively large number of adsorption-recovery cycles, without a reduction in the adsorptive properties of the virgin activated carbon or without a performance decrease from the first adsorption-recovery cycle of the new modified adsorptive properties of the activated carbon. The catalytic recovery takes place without ultraviolet light or any visible radiation sources. Results show a high efficiency of catalytic recovery of spent activated carbon using iron oxide-based nanocatalysts. A 97-99% efficiency of spent activated carbon catalytic regeneration was achieved under chosen conditions after 15-20 min of reaction. The process may be also considered as cold in situ recovery of active carbon.

  3. Extreme electric fields power catalysis in the active site of ketosteroid isomerase.

    PubMed

    Fried, Stephen D; Bagchi, Sayan; Boxer, Steven G

    2014-12-19

    Enzymes use protein architecture to impose specific electrostatic fields onto their bound substrates, but the magnitude and catalytic effect of these electric fields have proven difficult to quantify with standard experimental approaches. Using vibrational Stark effect spectroscopy, we found that the active site of the enzyme ketosteroid isomerase (KSI) exerts an extremely large electric field onto the C=O chemical bond that undergoes a charge rearrangement in KSI's rate-determining step. Moreover, we found that the magnitude of the electric field exerted by the active site strongly correlates with the enzyme's catalytic rate enhancement, enabling us to quantify the fraction of the catalytic effect that is electrostatic in origin. The measurements described here may help explain the role of electrostatics in many other enzymes and biomolecular systems.

  4. A study on the morphology and catalytic activity of gold nanoparticles by the kinetic Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    He, Xiang; Chen, Zhao-Xu

    2016-05-01

    We studied the thermal-stability of supported Au nanoparticles on the substrates of different binding strength to gold by Monte Carlo simulations. It has been revealed that the stable Au morphology is determined by the temperature and the binding strength. When heated on the strongly-binding substrates, the Au nanoparticles would wet the substrate completely and form monolayer. The stable Au layered structure of few layers can be formed by the incomplete wetting of clusters on the intermediate-binding substrates. The simulation results are in good agreement with pertinent experimental and theoretical results. Based on the simulation results and experimental observations, we find the strong linkage between the top edge sites and the activity TOF of low-temperature CO oxidation. We conclude that the top edges sites of Au layered structures are possible reactive sites. This study may provide new perspective for controlling morphology and understanding catalytic activity of supported metallic clusters.

  5. Identification and reactivity of the catalytic site of pig liver thioltransferase

    SciTech Connect

    Gan, Z.R.; Wells, W.W.

    1987-05-01

    The active site cysteine of pig liver thioltransferase was identified as Cys 22. The kinetics of the reaction between Cys 22 of the reduced enzyme and iodoacetic acid as a function of pH revealed that the active site sulfhydryl group had a pKa of 2.5. Incubation of reduced enzyme with (1-/sup 14/C)cystine prevented the inactivation of the enzyme by iodoacetic acid at pH 6.5 and no stable protein-cysteine disulfide was found suggesting an intramolecular disulfide formation. The reaction rate between reduced enzyme and S-sulfocysteine was concentration dependent, but not pH dependent, whereas the reaction between oxidized enzyme and reduced glutathione was both concentration and pH dependent. The results suggested a reaction mechanism for thioltransferase. The thiolated Cys 22 first initiates a nucleophilic attack on a disulfide substrate, resulting in the formation of an unstable mixed disulfide between Cys 22 and the substrate. Subsequently, the sulfhydryl group at Cys 25 is deprotonated as a result of microenvironmental changes within the active site domain, releasing the mixed disulfide and forming an intramolecular disulfide bond. Reduced glutathione, the second substrate, reduces the intramolecular disulfide forming a transient mixed disulfide which is then further reduced by glutathione to regenerate the reduced enzyme and form oxidized glutathione. The rate limiting step is proposed to be the reduction of the intramolecular disulfide form of the enzyme by reduced glutathione.

  6. Preclinical profile of BI 224436, a novel HIV-1 non-catalytic-site integrase inhibitor.

    PubMed

    Fenwick, Craig; Amad, Ma'an; Bailey, Murray D; Bethell, Richard; Bös, Michael; Bonneau, Pierre; Cordingley, Michael; Coulombe, René; Duan, Jianmin; Edwards, Paul; Fader, Lee D; Faucher, Anne-Marie; Garneau, Michel; Jakalian, Araz; Kawai, Stephen; Lamorte, Louie; LaPlante, Steven; Luo, Laibin; Mason, Steve; Poupart, Marc-André; Rioux, Nathalie; Schroeder, Patricia; Simoneau, Bruno; Tremblay, Sonia; Tsantrizos, Youla; Witvrouw, Myriam; Yoakim, Christiane

    2014-06-01

    BI 224436 is an HIV-1 integrase inhibitor with effective antiviral activity that acts through a mechanism that is distinct from that of integrase strand transfer inhibitors (INSTIs). This 3-quinolineacetic acid derivative series was identified using an enzymatic integrase long terminal repeat (LTR) DNA 3'-processing assay. A combination of medicinal chemistry, parallel synthesis, and structure-guided drug design led to the identification of BI 224436 as a candidate for preclinical profiling. It has antiviral 50% effective concentrations (EC50s) of <15 nM against different HIV-1 laboratory strains and cellular cytotoxicity of >90 μM. BI 224436 also has a low, ∼2.1-fold decrease in antiviral potency in the presence of 50% human serum and, by virtue of a steep dose-response curve slope, exhibits serum-shifted EC95 values ranging between 22 and 75 nM. Passage of virus in the presence of inhibitor selected for either A128T, A128N, or L102F primary resistance substitutions, all mapping to a conserved allosteric pocket on the catalytic core of integrase. BI 224436 also retains full antiviral activity against recombinant viruses encoding INSTI resistance substitutions N155S, Q148H, and E92Q. In drug combination studies performed in cellular antiviral assays, BI 224436 displays an additive effect in combination with most approved antiretrovirals, including INSTIs. BI 224436 has drug-like in vitro absorption, distribution, metabolism, and excretion (ADME) properties, including Caco-2 cell permeability, solubility, and low cytochrome P450 inhibition. It exhibited excellent pharmacokinetic profiles in rat (clearance as a percentage of hepatic flow [CL], 0.7%; bioavailability [F], 54%), monkey (CL, 23%; F, 82%), and dog (CL, 8%; F, 81%). Based on the excellent biological and pharmacokinetic profile, BI 224436 was advanced into phase 1 clinical trials.

  7. Use of an Improved Matching Algorithm to Select Scaffolds for Enzyme Design Based on a Complex Active Site Model

    PubMed Central

    Huang, Xiaoqiang; Xue, Jing; Lin, Min; Zhu, Yushan

    2016-01-01

    Active site preorganization helps native enzymes electrostatically stabilize the transition state better than the ground state for their primary substrates and achieve significant rate enhancement. In this report, we hypothesize that a complex active site model for active site preorganization modeling should help to create preorganized active site design and afford higher starting activities towards target reactions. Our matching algorithm ProdaMatch was improved by invoking effective pruning strategies and the native active sites for ten scaffolds in a benchmark test set were reproduced. The root-mean squared deviations between the matched transition states and those in the crystal structures were < 1.0 Å for the ten scaffolds, and the repacking calculation results showed that 91% of the hydrogen bonds within the active sites are recovered, indicating that the active sites can be preorganized based on the predicted positions of transition states. The application of the complex active site model for de novo enzyme design was evaluated by scaffold selection using a classic catalytic triad motif for the hydrolysis of p-nitrophenyl acetate. Eighty scaffolds were identified from a scaffold library with 1,491 proteins and four scaffolds were native esterase. Furthermore, enzyme design for complicated substrates was investigated for the hydrolysis of cephalexin using scaffold selection based on two different catalytic motifs. Only three scaffolds were identified from the scaffold library by virtue of the classic catalytic triad-based motif. In contrast, 40 scaffolds were identified using a more flexible, but still preorganized catalytic motif, where one scaffold corresponded to the α-amino acid ester hydrolase that catalyzes the hydrolysis and synthesis of cephalexin. Thus, the complex active site modeling approach for de novo enzyme design with the aid of the improved ProdaMatch program is a promising approach for the creation of active sites with high catalytic

  8. Characterization of three abnormal factor IX variants (Bm Lake Elsinore, Long Beach, and Los Angeles) of hemophilia-B. Evidence for defects affecting the latent catalytic site.

    PubMed Central

    Usharani, P; Warn-Cramer, B J; Kasper, C K; Bajaj, S P

    1985-01-01

    Abnormal factor IX variant proteins were isolated from the plasmas of three unrelated severe hemophilia-B families that had been previously shown to contain functionally impaired molecules immunologically similar to normal factor IX. The families studied were: (1) a patient with markedly prolonged ox brain prothrombin time, designated factor IX Bm Lake Elsinore (IXBmLE); (b) three patients (brothers) with moderately prolonged ox brain prothrombin time, designated factor IX Long Beach (IXLB); and (c) a patient with normal ox brain prothrombin time designated factor IX Los Angeles (IXLA). Each variant molecule comigrates with normal factor IX (IXN) both in the sodium dodecyl sulfate and in the nondenaturing alkaline gel electrophoresis. All three variant proteins are indistinguishable from IXN in their amino acid compositions, isoelectric points, carbohydrate distributions and number of gamma-carboxyglutamic acid residues. Each variant protein undergoes a similar pattern of cleavage by factor XIa/Ca2+ and by factor VIIa/Ca2+/tissue factor, and is activated at a rate similar to that observed for IXN. All of the three variant proteins also react with an anti-IXN monoclonal antibody that interferes with the binding of activated IXN(IXaN) to thrombin-treated factor VIIIC. However, in contrast to IXaN, the cleaved IXBmLE has negligible activity (approximately 0.2%), and cleaved forms of IXLA and IXLB have significantly reduced activity (approximately 5-6%) in binding to antithrombin-III/heparin, and in activating factor VII (plus Ca2+ and phospholipid) or factor X (plus Ca2+ and phospholipid) +/- factor VIII. These data, taken together, strongly indicate that the defect in these three variant proteins resides near or within the latent catalytic site. This results in virtually a complete loss of catalytic activity of the cleaved IXBmLE molecule and approximately 95% loss of catalytic activity of the cleaved IXLA and IXLB molecules. Images PMID:3965513

  9. Characterization of three abnormal factor IX variants (Bm Lake Elsinore, Long Beach, and Los Angeles) of hemophilia-B. Evidence for defects affecting the latent catalytic site.

    PubMed

    Usharani, P; Warn-Cramer, B J; Kasper, C K; Bajaj, S P

    1985-01-01

    Abnormal factor IX variant proteins were isolated from the plasmas of three unrelated severe hemophilia-B families that had been previously shown to contain functionally impaired molecules immunologically similar to normal factor IX. The families studied were: (1) a patient with markedly prolonged ox brain prothrombin time, designated factor IX Bm Lake Elsinore (IXBmLE); (b) three patients (brothers) with moderately prolonged ox brain prothrombin time, designated factor IX Long Beach (IXLB); and (c) a patient with normal ox brain prothrombin time designated factor IX Los Angeles (IXLA). Each variant molecule comigrates with normal factor IX (IXN) both in the sodium dodecyl sulfate and in the nondenaturing alkaline gel electrophoresis. All three variant proteins are indistinguishable from IXN in their amino acid compositions, isoelectric points, carbohydrate distributions and number of gamma-carboxyglutamic acid residues. Each variant protein undergoes a similar pattern of cleavage by factor XIa/Ca2+ and by factor VIIa/Ca2+/tissue factor, and is activated at a rate similar to that observed for IXN. All of the three variant proteins also react with an anti-IXN monoclonal antibody that interferes with the binding of activated IXN(IXaN) to thrombin-treated factor VIIIC. However, in contrast to IXaN, the cleaved IXBmLE has negligible activity (approximately 0.2%), and cleaved forms of IXLA and IXLB have significantly reduced activity (approximately 5-6%) in binding to antithrombin-III/heparin, and in activating factor VII (plus Ca2+ and phospholipid) or factor X (plus Ca2+ and phospholipid) +/- factor VIII. These data, taken together, strongly indicate that the defect in these three variant proteins resides near or within the latent catalytic site. This results in virtually a complete loss of catalytic activity of the cleaved IXBmLE molecule and approximately 95% loss of catalytic activity of the cleaved IXLA and IXLB molecules.

  10. Wet hydrogen peroxide catalytic oxidation of phenol with FeAC (iron-embedded activated carbon) catalysts.

    PubMed

    Liou, Rey-May; Chen, Shih-Hsiung; Huang, Cheng-Hsien; Hung, Mu-Ya; Chang, Jing-Song; Lai, Cheng-Lee

    2010-01-01

    This investigation aims at exploring the catalytic oxidation activity of iron-embedded activated carbon (FeAC) and the application for the degradation of phenol in the wet hydrogen peroxide catalytic oxidation (WHPCO). FeAC catalysts were prepared by pre-impregnating iron in coconut shell with various iron loadings in the range of 27.5 to 46.5% before they were activated. The FeAC catalysts were characterised by measuring their surface area, pore distribution, functional groups on the surface, and X-ray diffraction patterns. The effects of iron loading strongly inhibited the pore development of the catalyst but benefited the oxidation activity in WHPCO. It was found that the complete conversion of phenol was observed with all FeAC catalysts in oxidation. High level of chemical oxygen demand (COD) abatement can be achieved within the first 30 minutes of oxidation. The iron embedded in the activated carbon showed good performance in the degradation and mineralisation of phenol during the oxidation due to the active sites as iron oxides formed on the surface of the activated carbon. It was found that the embedding irons were presented in gamma-Fe(2)O(3), alpha-Fe(2)O(3), and alpha-FeCOOH forms on the activated carbon. The aging tests on FeAC catalysts showed less activity loss, and less iron leaching was found after four oxidation runs.

  11. Catalytic activity of nuclear PLC-beta(1) is required for its signalling function during C2C12 differentiation.

    PubMed

    Ramazzotti, Giulia; Faenza, Irene; Gaboardi, Gian Carlo; Piazzi, Manuela; Bavelloni, Alberto; Fiume, Roberta; Manzoli, Lucia; Martelli, Alberto M; Cocco, Lucio

    2008-11-01

    Here we report that PLC-beta(1) catalytic activity plays a role in the increase of cyclin D3 levels and induces the differentiation of C2C12 skeletal muscle cells. PLC-beta(1) mutational analysis revealed the importance of His(331) and His(378) for the catalysis. The expression of PLC-beta(1) and cyclin D3 proteins is highly induced during the process of skeletal myoblast differentiation. We have previously shown that PLC-beta(1) activates cyclin D3 promoter during the differentiation of myoblasts to myotubes, indicating that PLC-beta(1) is a crucial regulator of the mouse cyclin D3 gene. We show that after insulin treatment cyclin D3 mRNA levels are lower in cells overexpressing the PLC-beta(1) catalytically inactive form in comparison to wild type cells. We describe a novel signalling pathway elicited by PLC-beta(1) that modulates AP-1 activity. Gel mobility shift assay and supershift performed with specific antibodies indicate that the c-jun binding site is located in a cyclin D3 promoter region specifically regulated by PLC-beta(1) and that c-Jun binding activity is significantly increased by insulin and PLC-beta(1) overexpression. Mutation of AP-1 site decreased the basal cyclin D3 promoter activity and eliminated its induction by insulin and PLC-beta(1). These results hint at the fact that PLC-beta(1) catalytic activity signals a c-jun/AP-1 target gene, i.e. cyclin D3, during myogenic differentiation.

  12. Shell-anchor-core structures for enhanced stability and catalytic oxygen reduction activity

    NASA Astrophysics Data System (ADS)

    Ramirez-Caballero, Gustavo E.; Hirunsit, Pussana; Balbuena, Perla B.

    2010-10-01

    Density functional theory is used to evaluate activity and stability properties of shell-anchor-core structures. The structures consist of a Pt surface monolayer and a composite core having an anchor bilayer where C atoms in the interstitial sites lock 3d metals in their locations, thus avoiding their surface segregation and posterior dissolution. The modified subsurface geometry induces less strain on the top surface, thus exerting a favorable effect on the surface catalytic activity where the adsorption strength of the oxygenated species becomes more moderate: weaker than on pure Pt(111) but stronger than on a Pt monolayer having a 3d metal subsurface. Here we analyze the effect of changing the nature of the 3d metal in the subsurface anchor bilayer, and we also test the use of a Pd monolayer instead of Pt on the surface. It is found that a subsurface constituted by two layers with an approximate composition of M2C (M=Fe, Ni, and Co) provides a barrier for the migration of subsurface core metal atoms to the surface. Consequently, an enhanced resistance against dissolution in parallel to improved oxygen reduction activity is expected, as given by the values of adsorption energies of reaction intermediates, delayed onset of water oxidation, and/or low coverage of oxygenated species at surface oxidation potentials.

  13. Structural analysis of the PP2C phosphatase tPphA from Thermosynechococcus elongatus: a flexible flap subdomain controls access to the catalytic site.

    PubMed

    Schlicker, Christine; Fokina, Oleksandra; Kloft, Nicole; Grüne, Tim; Becker, Stefan; Sheldrick, George M; Forchhammer, Karl

    2008-02-15

    The homologue of the phosphoprotein PII phosphatase PphA from Thermosynechococcus elongatus, termed tPphA, was identified and its structure was resolved in two different space groups, C222(1) and P4(1)2(1)2, at a resolution of 1.28 and 3.05 A, respectively. tPphA belongs to a large and widely distributed subfamily of Mg(2+)/Mn(2+)-dependent phosphatases of the PPM superfamily characterized by the lack of catalytic and regulatory domains. The core structure of tPphA shows a high degree of similarity to the two PPM structures identified so far. In contrast to human PP2C, but similar to Mycobacterium tuberculosis phosphatase PstP, the catalytic centre exhibits a third metal ion in addition to the dinuclear metal centre universally conserved in all PPM members. The fact that the third metal is only liganded by amino acids, which are universally conserved in all PPM members, implies that the third metal could be general for all members of this family. As a specific feature of tPphA, a flexible subdomain, previously recognized as a flap domain, could be revealed. Comparison of different structural isomers of tPphA as well as site-specific mutagenesis implied that the flap domain is involved in substrate binding and catalytic activity. The structural arrangement of the flap domain was accompanied by a large side-chain movement of an Arg residue (Arg169) at the basis of the flap. Mutation of this residue strongly impaired protein stability as well as catalytic activity, emphasizing the importance of this amino acid for the regional polysterism of the flap subdomain and confirming the assumption that flap domain flexibility is involved in catalysis.

  14. Catalytic activity of bimetallic catalysts highly sensitive to the atomic composition and phase structure at the nanoscale

    NASA Astrophysics Data System (ADS)

    Shan, Shiyao; Petkov, Valeri; Prasai, Binay; Wu, Jinfang; Joseph, Pharrah; Skeete, Zakiya; Kim, Eunjoo; Mott, Derrick; Malis, Oana; Luo, Jin; Zhong, Chuan-Jian

    2015-11-01

    The ability to determine the atomic arrangement in nanoalloy catalysts and reveal the detailed structural features responsible for the catalytically active sites is essential for understanding the correlation between the atomic structure and catalytic properties, enabling the preparation of efficient nanoalloy catalysts by design. Herein we describe a study of CO oxidation over PdCu nanoalloy catalysts focusing on gaining insights into the correlation between the atomic structures and catalytic activity of nanoalloys. PdCu nanoalloys of different bimetallic compositions are synthesized as a model system and are activated by a controlled thermochemical treatment for assessing their catalytic activity. The results show that the catalytic synergy of Pd and Cu species evolves with both the bimetallic nanoalloy composition and temperature of the thermochemical treatment reaching a maximum at a Pd : Cu ratio close to 50 : 50. The nanoalloys are characterized structurally by ex situ and in situ synchrotron X-ray diffraction, including atomic pair distribution function analysis. The structural data show that, depending on the bimetallic composition and treatment temperature, PdCu nanoalloys adopt two different structure types. One features a chemically ordered, body centered cubic (B2) type alloy consisting of two interpenetrating simple cubic lattices, each occupied with Pd or Cu species alone, and the other structure type features a chemically disordered, face-centered cubic (fcc) type of alloy wherein Pd and Cu species are intermixed at random. The catalytic activity for CO oxidation is strongly influenced by the structural features. In particular, it is revealed that the prevalence of chemical disorder in nanoalloys with a Pd : Cu ratio close to 50 : 50 makes them superior catalysts for CO oxidation in comparison with the same nanoalloys of other bimetallic compositions. However, the catalytic synergy can be diminished if the Pd50Cu50 nanoalloys undergo phase

  15. Modulation of Tumorigenesis by Dietary Intervention Is Not Mediated by SIRT1 Catalytic Activity

    PubMed Central

    Clark-Knowles, Katherine V.; Dewar-Darch, Danielle; Jardine, Karen E.; McBurney, Michael W.

    2014-01-01

    The protein deacetylase SIRT1 is involved in the regulation of a large number of cellular processes that are thought to be required for cancer initiation and progression. Both SIRT1 activity and tumorigenesis can be influenced by dietary fat and polyphenolics. We set out to determine whether dietary modulations of tumorigenesis are mediated by SIRT1 catalytic functions. We introduced a mammary gland tumor-inducing transgene, MMTV-PyMT, into stocks of mice bearing a H355Y point mutation in the Sirt1 gene that abolishes SIRT1 catalytic activity. Tumor latency was reduced in animals fed a high fat diet but this effect was not dependent on SIRT1 activity. Resveratrol had little effect on tumor formation except in animals heterozygous for the mutant Sirt1 gene. We conclude that the effects of these dietary interventions on tumorigenesis are not mediated by modulation of SIRT1 catalytic activity. PMID:25380034

  16. Removal performance and mechanism of ibuprofen from water by catalytic ozonation using sludge-corncob activated carbon as catalyst.

    PubMed

    Wang, Hongjuan; Zhang, Liqiu; Qi, Fei; Wang, Xue; Li, Lu; Feng, Li

    2014-09-01

    To discover the catalytic activity of sludge-corncob activated carbon in catalytic ozonation of Ibuprofen, the performance of sludge-corncob activated carbon and three selected commercial activated carbons as catalysts in catalytic ozonation was investigated. The observation indicates the degradation rate of Ibuprofen increases significantly in the presence of sludge-corncob activated carbon and the catalytic activity of sludge-corncob activated carbon is much higher than that of the other three commercial activated carbons. Ibuprofen's removal rate follows pseudo-first order kinetics model well. It is also found that the adsorption removal of Ibuprofen by sludge-corncob activated carbon is less than 30% after 40 min. And the removal efficiency of Ibuprofen in the hybrid ozone/sludge-corncob activated carbon system is higher than the sum of sludge-corncob activated carbon adsorption and ozonation alone, which is a supportive evidence for catalytic reaction. In addition, the results of radical scavenger experiments demonstrate that catalytic ozonation of Ibuprofen by sludge-corncob activated carbon follows a hydroxyl radical reaction pathway. During ozonation of Ibuprofen in the presence of activated carbon, ozone could be catalytically decomposed to form hydrogen peroxide, which can promote the formation of hydroxyl radical. The maximum amount of hydrogen peroxide occurs in the presence of sludge-corncob activated carbon, which can explain why sludge-corncob activated carbon has the best catalytic activity among four different activated carbons.

  17. Improving the Thermostability and Catalytic Efficiency of Bacillus deramificans Pullulanase by Site-Directed Mutagenesis

    PubMed Central

    Duan, Xuguo; Chen, Jian

    2013-01-01

    Pullulanase (EC 3.2.1.41) is a well-known starch-debranching enzyme. Its instability and low catalytic efficiency are the major factors preventing its widespread application. To address these issues, Asp437 and Asp503 of the pullulanase from Bacillus deramificans were selected in this study as targets for site-directed mutagenesis based on a structure-guided consensus approach. Four mutants (carrying the mutations D503F, D437H, D503Y, and D437H/D503Y) were generated and characterized in detail. The results showed that the D503F, D437H, and D503Y mutants had an optimum temperature of 55°C and a pH optimum of 4.5, similar to that of the wild-type enzyme. However, the half-lives of the mutants at 60°C were twice as long as that of the wild-type enzyme. In addition, the D437H/D503Y double mutant displayed a larger shift in thermostability, with an optimal temperature of 60°C and a half-life at 60°C of more than 4.3-fold that of the wild-type enzyme. Kinetic studies showed that the Km values for the D503F, D437H, D503Y, and D437H/D503Y mutants decreased by 7.1%, 11.4%, 41.4%, and 45.7% and the Kcat/Km values increased by 10%, 20%, 140%, and 100%, respectively, compared to those of the wild-type enzyme. Mechanisms that could account for these enhancements were explored. Moreover, in conjunction with the enzyme glucoamylase, the D503Y and D437H/D503Y mutants exhibited an improved reaction rate and glucose yield during starch hydrolysis compared to those of the wild-type enzyme, confirming the enhanced properties of the mutants. The mutants generated in this study have potential applications in the starch industry. PMID:23624477

  18. Active sites of thioredoxin reductases: why selenoproteins?

    PubMed

    Gromer, Stephan; Johansson, Linda; Bauer, Holger; Arscott, L David; Rauch, Susanne; Ballou, David P; Williams, Charles H; Schirmer, R Heiner; Arnér, Elias S J

    2003-10-28

    Selenium, an essential trace element for mammals, is incorporated into a selected class of selenoproteins as selenocysteine. All known isoenzymes of mammalian thioredoxin (Trx) reductases (TrxRs) employ selenium in the C-terminal redox center -Gly-Cys-Sec-Gly-COOH for reduction of Trx and other substrates, whereas the corresponding sequence in Drosophila melanogaster TrxR is -Ser-Cys-Cys-Ser-COOH. Surprisingly, the catalytic competence of these orthologous enzymes is similar, whereas direct Sec-to-Cys substitution of mammalian TrxR, or other selenoenzymes, yields almost inactive enzyme. TrxRs are therefore ideal for studying the biology of selenocysteine by comparative enzymology. Here we show that the serine residues flanking the C-terminal Cys residues of Drosophila TrxRs are responsible for activating the cysteines to match the catalytic efficiency of a selenocysteine-cysteine pair as in mammalian TrxR, obviating the need for selenium. This finding suggests that the occurrence of selenoenzymes, which implies that the organism is selenium-dependent, is not necessarily associated with improved enzyme efficiency. Our data suggest that the selective advantage of selenoenzymes is a broader range of substrates and a broader range of microenvironmental conditions in which enzyme activity is possible.

  19. Structural Insights into Omega-Class Glutathione Transferases: A Snapshot of Enzyme Reduction and Identification of a Non-Catalytic Ligandin Site

    PubMed Central

    Brock, Joseph; Board, Philip G.; Oakley, Aaron J.

    2013-01-01

    Glutathione transferases (GSTs) are dimeric enzymes containing one active-site per monomer. The omega-class GSTs (hGSTO1-1 and hGSTO2-2 in humans) are homodimeric and carry out a range of reactions including the glutathione-dependant reduction of a range of compounds and the reduction of S-(phenacyl)glutathiones to acetophenones. Both types of reaction result in the formation of a mixed-disulfide of the enzyme with glutathione through the catalytic cysteine (C32). Recycling of the enzyme utilizes a second glutathione molecule and results in oxidized glutathione (GSSG) release. The crystal structure of an active-site mutant (C32A) of the hGSTO1-1 isozyme in complex with GSSG provides a snapshot of the enzyme in the process of regeneration. GSSG occupies both the G (GSH-binding) and H (hydrophobic-binding) sites and causes re-arrangement of some H-site residues. In the same structure we demonstrate the existence of a novel “ligandin” binding site deep within in the dimer interface of this enzyme, containing S-(4-nitrophenacyl)glutathione, an isozyme-specific substrate for hGSTO1-1. The ligandin site, conserved in Omega class GSTs from a range of species, is hydrophobic in nature and may represent the binding location for tocopherol esters that are uncompetitive hGSTO1-1 inhibitors. PMID:23593192

  20. A spectroscopic and catalytic investigation of active phase-support interactions

    SciTech Connect

    Haller, G.L.

    1991-01-01

    Active catalytic phases (metal, mixed metals, oxide or mixed oxides) interacting with oxide support on which the active phase is dispersed can affect the percentage exposed, the morphology of supported particles, the degree of reducibility of cations, etc., in a variety of ways. Our objective is to characterize the physical chemistry of the active phase-oxide support by spectroscopic methods and to correlate this structure with catalytic function. The three systems discussed in this progress report are Ag/TiO{sub 2}, Ru-Cu/SiO{sub 2} and SiO{sub 2}/Al{sub 2}O{sub 3}. 24 refs., 3 figs., 2 tabs.

  1. Catalytic activation of carbohydrates as formaldehyde equivalents for Stetter reaction with enones.

    PubMed

    Zhang, Junmin; Xing, Chong; Tiwari, Bhoopendra; Chi, Yonggui Robin

    2013-06-05

    We disclose the first catalytic activation of carbohydrates as formaldehyde equivalents to generate acyl anions as one-carbon nucleophilic units for a Stetter reaction. The activation involves N-heterocyclic carbene (NHC)-catalyzed C-C bond cleavage of carbohydrates via a retro-benzoin-type process to generate the acyl anion intermediates. This Stetter reaction constitutes the first success in generating formal formaldehyde-derived acyl anions as one-carbon nucleophiles for non-self-benzoin processes. The renewable nature of carbohydrates, accessible from biomass, further highlights the practical potential of this fundamentally interesting catalytic activation.

  2. Catalytic activity of titania zirconia mixed oxide catalyst for dimerization eugenol

    NASA Astrophysics Data System (ADS)

    Tursiloadi, S.; Kristiani, A.; Jenie, S. N. Aisyiyah; Laksmono, J. A.

    2017-01-01

    Clove oil has been found to possess antibacterial, antifungal, antiviral, antitumor, antioxidant and insecticidal properties. The major compound of clove oil is eugenol about 49-87%. Eugenol as phenolic compounds exhibits antioxidant and antimicrobial activities. The derivative compound of eugenol, dieugenol, show antioxidant potency better than parent eugenol. A series of TiO2-ZrO2 mixed oxides (TZ) with various titanium contents from 0 to 100wt%, prepared by using sol gel method were tested their catalytic activity for dimerization eugenol, Their catalytic activity show that these catalysts resulted a low yield of dimer eugenol, dieugenol, about 2-9 % and the purity is more than 50%.

  3. Mutational analysis of amino acid residues involved in catalytic activity of a family 18 chitinase from tulip bulbs.

    PubMed

    Suzukawa, Keisuke; Yamagami, Takeshi; Ohnuma, Takayuki; Hirakawa, Hideki; Kuhara, Satoru; Aso, Yoichi; Ishiguro, Masatsune

    2003-02-01

    We expressed chitinase-1 (TBC-1) from tulip bulbs (Tulipa bakeri) in E. coli cells and used site-directed mutagenesis to identify amino acid residues essential for catalytic activity. Mutations at Glu-125 and Trp-251 completely abolished enzyme activity, and activity decreased with mutations at Asp-123 and Trp-172 when glycolchitin was the substrate. Activity changed with the mutations of Trp-251 to one of several amino acids with side-chains of little hydrophobicity, suggesting that hydrophobic interaction of Trp-251 is important for the activity. Molecular dynamics (MD) simulation analysis with hevamine as the model compound showed that the distance between Asp-123 and Glu-125 was extended by mutation of Trp-251. Kinetic studies of Trp-251-mutated chitinases confirmed these various phenomena. The results suggested that Glu-125 and Trp-251 are essential for enzyme activity and that Trp-251 had a direct role in ligand binding.

  4. Identification of a multifunctional docking site on the catalytic unit of phosphodiesterase-4 (PDE4) that is utilised by multiple interaction partners

    PubMed Central

    Houslay, Kirsty F.; Christian, Frank; MacLeod, Ruth; Adams, David R.; Houslay, Miles D.

    2017-01-01

    Cyclic AMP (cAMP)-specific phosphodiesterase-4 (PDE4) enzymes underpin compartmentalised cAMP signalling by localising to distinct signalling complexes. PDE4 long isoforms can be phosphorylated by mitogen-activated protein kinase-activated protein kinase 2 (MK2), which attenuates activation of such enzymes through their phosphorylation by protein kinase A. Here we show that MK2 interacts directly with PDE4 long isoforms and define the sites of interaction. One is a unique site that locates within the regulatory upstream conserved region 1 (UCR1) domain and contains a core Phe141, Leu142 and Tyr143 (FLY) cluster (PDE4A5 numbering). Located with the second site is a critical core Phe693, Glu694, Phe695 (FQF) motif that is also employed in the sequestering of PDE4 long forms by an array of other signalling proteins, including the signalling scaffold β-arrestin, the tyrosyl kinase Lyn, the SUMOylation E2 ligase UBC9, the dynein regulator Lis1 (PAFAH1B1) and the protein kinase Erk. We propose that the FQF motif lies at the heart of a multifunctional docking (MFD) site located within the PDE4 catalytic unit. It is clear from our data that, as well as aiding fidelity of interaction, the MFD site confers exclusivity of binding between PDE4 and a single specific partner protein from the cohort of signalling proteins whose interaction with PDE4 involves the FQF motif. PMID:27993970

  5. Biomimetic Single-Site Heterogeneous Catalysts: Design Strategies and Catalytic Potential

    NASA Astrophysics Data System (ADS)

    Xuereb, David; Dzierzak, Joanna; Raja, Robert

    Enzymes catalyze the most fundamental reactions in organic chemistry from simple oxidations of straight chain alkanes to complex C-C bond forming reactions with exceptional selectivity. Mimicking the active site of an enzyme by immobilising a well defined amino acid containing transition-metal centre on a robust inorganic framework, provides a powerful catalyst that can be utilized in the production of fine chemicals and complicated drug molecules. Porous aluminosilicates and mesoporous silicas offer suitable supports for single-site bio-derived catalysts. These materials can be created from a range of methodologies and the different strategies used for immobilisation can greatly affect the nature of the active catalyst. The routes by which these catalysts are immobilised have also given the potential to derivatize inorganic structures with amino acids, not just for complexation to metal centres but for use as organocatalysts as well. These metal free bio-derivatized frameworks offer advantages over their homogeneous counterparts and can carry out stereoselective reactions with great effectiveness. Herein, the routes to heterogenizing biomimetic catalysts will be critically assessed and depending on the methods used, suitable active catalysts for use in chemo- and stereoselective transformations can be developed.

  6. Conformational basis for substrate recognition and regulation of catalytic activity in Staphylococcus aureus nucleoside di-phosphate kinase.

    PubMed

    Srivastava, Sandeep Kumar; Rajasree, Kalagiri; Gopal, B

    2011-10-01

    Nucleoside diphosphate kinases (NDK) are characterized by high catalytic turnover rates and diverse substrate specificity. These features make this enzyme an effective activator of a pro-drug-an application that has been actively pursued for a variety of therapeutic strategies. The catalytic mechanism of this enzyme is governed by a conserved histidine that coordinates a magnesium ion at the active site. Despite substantial structural and biochemical information on NDK, the mechanistic feature of the phospho-transfer that leads to auto-phosphorylation remains unclear. While the role of the histidine residue is well documented, the other active site residues, in particular the conserved serine remains poorly characterized. Studies on some homologues suggest no role for the serine residue at the active site, while others suggest a crucial role for this serine in the regulation and quaternary association of this enzyme in some species. Here we report the biochemical features of the Staphylococcus aureus NDK and the mutant enzymes. We also describe the crystal structures of the apo-NDK, as a transition state mimic with vanadate and in complex with different nucleotide substrates. These structures formed the basis for molecular dynamics simulations to understand the broad substrate specificity of this enzyme and the role of active site residues in the phospho-transfer mechanism and oligomerization. Put together, these data suggest that concerted changes in the conformation of specific residues facilitate the stabilization of nucleotide complexes thereby enabling the steps involved in the ping-pong reaction mechanism without large changes to the overall structure of this enzyme.

  7. Comparison of Two Preparation Methods on Catalytic Activity and Selectivity of Ru-Mo/HZSM5 for Methane Dehydroaromatization

    DOE PAGES

    Petkovic, Lucia M.; Ginosar, Daniel M.

    2014-01-01

    Catalytic performance of Mo/HZSM5 and Ru-Mo/HZSM5 catalysts prepared by vaporization-deposition of molybdenum trioxide and impregnation with ammonium heptamolybdate was analyzed in terms of catalyst activity and selectivity, nitrogen physisorption analyses, temperature-programmed oxidation of carbonaceous residues, and temperature-programmed reduction. Vaporization-deposition rendered the catalyst more selective to ethylene and coke than the catalyst prepared by impregnation. This result was assigned to lower interaction of molybdenum carbide with the zeolite acidic sites.

  8. Rapid catalytic water oxidation by a single site, Ru carbene catalyst

    SciTech Connect

    Chen, Zuofeng; Concepcion, Javier J.; Meyer, Thomas J.

    2011-01-01

    Compared to earlier single site catalysts, greatly enhanced rates of electrocatalytic water oxidation by the Ru carbene catalyst [Ru(tpy)(Mebim-py)(OH2)]2+ (tpy = 2,2':6',2''-terpyridine; Mebim-py = 3-methyl-1-pyridylbenzimidazol-2-ylidene) have been observed. The mechanism appears to be the same with proton coupled electron transfer (PCET) activation to RuV=O3+ followed by O–O coupling and further oxidation. An important factor in the enhanced reactivity of the carbene complex may come from increased driving force for the O–O bond forming step.

  9. Iridium ultrasmall nanoparticles, worm-like chain nanowires, and porous nanodendrites: One-pot solvothermal synthesis and catalytic CO oxidation activity

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Li, Shuai-Chen; Zhu, Wei; Ke, Jun; Yu, Jing-Wen; Zhang, Zhi-Ping; Dai, Lin-Xiu; Gu, Jun; Zhang, Ya-Wen

    2016-06-01

    We report a facile one-pot solvothermal synthesis of monodisperse iridium (Ir) ultrasmall (1.5-2.5 nm in diameter) nanoparticles (NPs), worm-like chain nanowires (NWs), and porous nanodendrites (NDs), for which CO oxidation reaction has been employed as a probe reaction to investigate the effects of nanoparticle size and surface-capping organics on the catalytic activities. Time-dependent experiments revealed that an oriented attachment mechanism induced by the strong adsorption of halide anions (Br- and I-) on specific facet of Ir nanoclusters or by decreasing the reduction rate of Ir precursors with changing their concentrations during the synthesis was responsible for the formation of Ir NWs and NDs. Annealing tests indicated that an O2-H2 atmosphere treatment turned out to be an effective measure to clean up the surface-capping organics of Ir NPs supported on commercial SiO2. Catalytic CO oxidation reaction illustrated that a significant improvement in the catalytic activity of CO oxidation reaction was achieved together with the changing of activation energies after such atmosphere treatment for the supported catalysts of the ultrasmall Ir NPs. It is noteworthy that this enhancement in catalytic activity could be ascribed to the changes in the surface status (including populations of Ir species in metallic and oxidized states, removal of surface capping organics, the variety of active sites, and total effective active site number) for the supported nanocatalysts during the atmosphere treatment.

  10. Catalase-like and peroxidase-like catalytic activities of silicon nanowire arrays.

    PubMed

    Wang, Hongwei; Jiang, Wenwen; Wang, Yanwei; Liu, Xiaoli; Yao, Jianlin; Yuan, Lin; Wu, Zhaoqiang; Li, Dan; Song, Bo; Chen, Hong

    2013-01-08

    Silicon nanowire arrays (SiNWAs) were found to have catalytic activities similar to those of biological enzymes catalase and peroxidase. Thus not only can these materials catalyze the decomposition reaction of H(2)O(2) into water and oxygen, but they can also catalyze the oxidation of o-phenylenediamine (OPD), a common substrate for peroxidases, by H(2)O(2). The presence of Si-H bonds and the morphology of the SiNWAs are found to be crucial to the occurrence of such catalytic activity. When the SiNWAs are reacted with H(2)O(2), the data from Raman spectroscopy suggests the formation of (Si-H)(2)···(O species) ((Si-H)(2)···Os), which is presumably responsible for the catalytic activity. These findings suggest the potential use of SiNWAs as enzyme mimics in medicine, biotechnology, and environmental chemistry.

  11. Restoration of catalytic activity beyond wild-type level in glucoamylase from Aspergillus awamori by oxidation of the Glu400-->Cys catalytic-base mutant to cysteinesulfinic acid.

    PubMed

    Fierobe, H P; Mirgorodskaya, E; McGuire, K A; Roepstorff, P; Svensson, B; Clarke, A J

    1998-03-17

    Glucoamylase catalyzes the hydrolysis of glucosidic bonds with inversion of the anomeric configuration. Site-directed mutagenesis and three-dimensional structure determination of the glucoamylase from Aspergillus awamori previously identified Glu179 and Glu400 as the general acid and base catalyst, respectively. The average distance between the two carboxyl groups was measured to be 9.2 A, which is typical for inverting glycosyl hydrolases. In the present study, this distance was increased by replacing the catalytic base Glu400 with cysteine which was then oxidized to cysteinesulfinic acid. Initially, this oxidation occurred during attempts to carboxyalkylate the Cys400 residue with iodoacetic acid, 3-iodopropionic acid, or 4-bromobutyric acid. However, endoproteinase Lys-C digestion of modified glucoamylase followed by high-pressure liquid chromatography in combination with matrix-assisted laser desorption ionization/time-of-flight mass spectrometry on purified peptide fragments demonstrated that all enzyme derivatives contained the cysteinesulfinic acid oxidation product of Cys400. Subsequently, it was demonstrated that treatment of Glu400-->Cys glucoamylase with potassium iodide in the presence of bromine resulted in complete conversion to the cysteinesulfinic acid product. As expected, the catalytic base mutant Glu400-->Cys glucoamylase had very low activity, i.e., 0.2% compared to wild-type. The oxidation of Cys400 to cysteinesulfinic acid, however, restored activity (kcat) on alpha-1,4-linked substrates to levels up to 160% of the wild-type glucoamylase which corresponded to approximately a 700-fold increase in the kcat of the Glu400-->Cys mutant glucoamylase. Whereas Glu400-->Cys glucoamylase was much less thermostable and more sensitive to guanidinium chloride than the wild-type enzyme, the oxidation to cysteinesulfinic acid was accompanied by partial recovery of the stability.

  12. Structure of the Catalytic Domain of EZH2 Reveals Conformational Plasticity in Cofactor and Substrate Binding Sites and Explains Oncogenic Mutations

    PubMed Central

    Wu, Hong; Zeng, Hong; Dong, Aiping; Li, Fengling; He, Hao; Senisterra, Guillermo; Seitova, Alma; Duan, Shili; Brown, Peter J.; Vedadi, Masoud; Arrowsmith, Cheryl H.; Schapira, Matthieu

    2013-01-01

    Polycomb repressive complex 2 (PRC2) is an important regulator of cellular differentiation and cell type identity. Overexpression or activating mutations of EZH2, the catalytic component of the PRC2 complex, are linked to hyper-trimethylation of lysine 27 of histone H3 (H3K27me3) in many cancers. Potent EZH2 inhibitors that reduce levels of H3K27me3 kill mutant lymphoma cells and are efficacious in a mouse xenograft model of malignant rhabdoid tumors. Unlike most SET domain methyltransferases, EZH2 requires PRC2 components, SUZ12 and EED, for activity, but the mechanism by which catalysis is promoted in the PRC2 complex is unknown. We solved the 2.0 Å crystal structure of the EZH2 methyltransferase domain revealing that most of the canonical structural features of SET domain methyltransferase structures are conserved. The site of methyl transfer is in a catalytically competent state, and the structure clarifies the structural mechanism underlying oncogenic hyper-trimethylation of H3K27 in tumors harboring mutations at Y641 or A677. On the other hand, the I-SET and post-SET domains occupy atypical positions relative to the core SET domain resulting in incomplete formation of the cofactor binding site and occlusion of the substrate binding groove. A novel CXC domain N-terminal to the SET domain may contribute to the apparent inactive conformation. We propose that protein interactions within the PRC2 complex modulate the trajectory of the post-SET and I-SET domains of EZH2 in favor of a catalytically competent conformation. PMID:24367611

  13. Catalytic activities of Werner protein are affected by adduction with 4-hydroxy-2-nonenal.

    PubMed

    Czerwińska, Jolanta; Poznański, Jarosław; Dębski, Janusz; Bukowy, Zuzanna; Bohr, Vilhelm A; Tudek, Barbara; Speina, Elżbieta

    2014-01-01

    4-Hydroxy-2-nonenal (HNE) is a reactive α,β-unsaturated aldehyde generated during oxidative stress and subsequent peroxidation of polyunsaturated fatty acids. Here, Werner protein (WRN) was identified as a novel target for modification by HNE. Werner syndrome arises through mutations in the WRN gene that encodes the RecQ DNA helicase which is critical for maintaining genomic stability. This hereditary disease is associated with chromosomal instability, premature aging and cancer predisposition. WRN appears to participate in the cellular response to oxidative stress and cells devoid of WRN display elevated levels of oxidative DNA damage. We demonstrated that helicase/ATPase and exonuclease activities of HNE-modified WRN protein were inhibited both in vitro and in immunocomplexes purified from the cell extracts. Sites of HNE adduction in human WRN were identified at Lys577, Cys727, His1290, Cys1367, Lys1371 and Lys1389. We applied in silico modeling of the helicase and RQC domains of WRN protein with HNE adducted to Lys577 and Cys727 and provided a potential mechanism of the observed deregulation of the protein catalytic activities. In light of the obtained results, we postulate that HNE adduction to WRN is a post-translational modification, which may affect WRN conformational stability and function, contributing to features and diseases associated with premature senescence.

  14. Catalytic activities of Werner protein are affected by adduction with 4-hydroxy-2-nonenal

    PubMed Central

    Czerwińska, Jolanta; Poznański, Jarosław; Dębski, Janusz; Bukowy, Zuzanna; Bohr, Vilhelm A.; Tudek, Barbara; Speina, Elżbieta

    2014-01-01

    4-Hydroxy-2-nonenal (HNE) is a reactive α,β-unsaturated aldehyde generated during oxidative stress and subsequent peroxidation of polyunsaturated fatty acids. Here, Werner protein (WRN) was identified as a novel target for modification by HNE. Werner syndrome arises through mutations in the WRN gene that encodes the RecQ DNA helicase which is critical for maintaining genomic stability. This hereditary disease is associated with chromosomal instability, premature aging and cancer predisposition. WRN appears to participate in the cellular response to oxidative stress and cells devoid of WRN display elevated levels of oxidative DNA damage. We demonstrated that helicase/ATPase and exonuclease activities of HNE-modified WRN protein were inhibited both in vitro and in immunocomplexes purified from the cell extracts. Sites of HNE adduction in human WRN were identified at Lys577, Cys727, His1290, Cys1367, Lys1371 and Lys1389. We applied in silico modeling of the helicase and RQC domains of WRN protein with HNE adducted to Lys577 and Cys727 and provided a potential mechanism of the observed deregulation of the protein catalytic activities. In light of the obtained results, we postulate that HNE adduction to WRN is a post-translational modification, which may affect WRN conformational stability and function, contributing to features and diseases associated with premature senescence. PMID:25170083

  15. Increasing thermal stability and catalytic activity of glutamate decarboxylase in E. coli: An in silico study.

    PubMed

    Tavakoli, Yasaman; Esmaeili, Abolghasem; Saber, Hossein

    2016-10-01

    Glutamate decarboxylase (GAD) is an enzyme that converts l-glutamate to gamma amino butyric acid (GABA) that is a widely used drug to treat mental disorders like Alzheimer's disease. In this study for the first time point mutation was performed virtually in the active site of the E. coli GAD in order to increase thermal stability and catalytic activity of the enzyme. Energy minimization and addition of water box were performed using GROMACS 5.4.6 package. PoPMuSiC 2.1 web server was used to predict potential spots for point mutation and Modeller software was used to perform point mutation on three dimensional model. Molegro virtual docker software was used for cavity detection and stimulated docking study. Results indicate that performing mutation separately at positions 164, 302, 304, 393, 396, 398 and 410 increase binding affinity to substrate. The enzyme is predicted to be more thermo- stable in all 7 mutants based on ΔΔG value.

  16. Catalytic activity in lithium-treated core–shell MoOx/MoS2 nanowires

    DOE PAGES

    Cummins, Dustin R.; Martinez, Ulises; Kappera, Rajesh; ...

    2015-09-22

    Significant interest has grown in the development of earth-abundant and efficient catalytic materials for hydrogen generation. Layered transition metal dichalcogenides present opportunities for efficient electrocatalytic systems. Here, we report the modification of 1D MoOx/MoS2 core–shell nanostructures by lithium intercalation and the corresponding changes in morphology, structure, and mechanism of H2 evolution. The 1D nanowires exhibit significant improvement in H2 evolution properties after lithiation, reducing the hydrogen evolution reaction (HER) onset potential by ~50 mV and increasing the generated current density by ~600%. The high electrochemical activity in the nanowires results from disruption of MoS2 layers in the outer shell, leadingmore » to increased activity and concentration of defect sites. This is in contrast to the typical mechanism of improved catalysis following lithium exfoliation, i.e., crystal phase transformation. As a result, these structural changes are verified by a combination of Raman and X-ray photoelectron spectroscopy (XPS).« less

  17. Validated ligand mapping of ACE active site

    NASA Astrophysics Data System (ADS)

    Kuster, Daniel J.; Marshall, Garland R.

    2005-08-01

    Crystal structures of angiotensin-converting enzyme (ACE) complexed with three inhibitors (lisinopril, captopril, enalapril) provided experimental data for testing the validity of a prior active site model predicting the bound conformation of the inhibitors. The ACE active site model - predicted over 18 years ago using a series of potent ACE inhibitors of diverse chemical structure - was recreated using published data and commercial software. Comparison between the predicted structures of the three inhibitors bound to the active site of ACE and those determined experimentally yielded root mean square deviation (RMSD) values of 0.43-0.81 Å, among the distances defining the active site map. The bound conformations of the chemically relevant atoms were accurately deduced from the geometry of ligands, applying the assumption that the geometry of the active site groups responsible for binding and catalysis of amide hydrolysis was constrained. The mapping of bound inhibitors at the ACE active site was validated for known experimental compounds, so that the constrained conformational search methodology may be applied with confidence when no experimentally determined structure of the enzyme yet exists, but potent, diverse inhibitors are available.

  18. The pepsin residue glycine-76 contributes to active-site loop flexibility and participates in catalysis.

    PubMed Central

    Okoniewska, M; Tanaka, T; Yada, R Y

    2000-01-01

    Glycine residues are known to contribute to conformational flexibility of polypeptide chains, and have been found to contribute to flexibility of some loops associated with enzymic catalysis. A comparison of porcine pepsin in zymogen, mature and inhibited forms revealed that a loop (a flap), consisting of residues 71--80, located near the active site changed its position upon substrate binding. The loop residue, glycine-76, has been implicated in the catalytic process and thought to participate in a hydrogen-bond network aligning the substrate. This study investigated the role of glycine-76 using site-directed mutagenesis. Three mutants, G76A, G76V and G76S, were constructed to increase conformational restriction of a polypeptide chain. In addition, the serine mutant introduced a hydrogen-bonding potential at position 76 similar to that observed in human renin. All the mutants, regardless of amino acid size and polarity, had lower catalytic efficiency and activated more slowly than the wild-type enzyme. The slower activation process was associated directly with altered proteolytic activity. Consequently, it was proposed that a proteolytic cleavage represents a limiting step of the activation process. Lower catalytic efficiency of the mutants was explained as a decrease in the flap flexibility and, therefore, a different pattern of hydrogen bonds responsible for substrate alignment and flap conformation. The results demonstrated that flap flexibility is essential for efficient catalytic and activation processes. PMID:10861225

  19. The Role of Organic Capping Layers of Platinum Nanoparticles in Catalytic Activity of CO Oxidation

    SciTech Connect

    Park, Jeong Y.; Aliaga, Cesar; Renzas, J. Russell; Lee, Hyunjoo; Somorjai, Gabor A.

    2008-12-17

    We report the catalytic activity of colloid platinum nanoparticles synthesized with different organic capping layers. On the molecular scale, the porous organic layers have open spaces that permit the reactant and product molecules to reach the metal surface. We carried out CO oxidation on several platinum nanoparticle systems capped with various organic molecules to investigate the role of the capping agent on catalytic activity. Platinum colloid nanoparticles with four types of capping layer have been used: TTAB (Tetradecyltrimethylammonium Bromide), HDA (hexadecylamine), HDT (hexadecylthiol), and PVP (poly(vinylpyrrolidone)). The reactivity of the Pt nanoparticles varied by 30%, with higher activity on TTAB coated nanoparticles and lower activity on HDT, while the activation energy remained between 27-28 kcal/mol. In separate experiments, the organic capping layers were partially removed using ultraviolet light-ozone generation techniques, which resulted in increased catalytic activity due to the removal of some of the organic layers. These results indicate that the nature of chemical bonding between organic capping layers and nanoparticle surfaces plays a role in determining the catalytic activity of platinum colloid nanoparticles for carbon monoxide oxidation.

  20. Catalytic activity of metallic nanoisland coatings. The influence of size effects on the recombination properties

    NASA Astrophysics Data System (ADS)

    Tomilina, O. A.; Berzhansky, V. N.; Tomilin, S. V.; Shaposhnikov, A. N.

    2016-08-01

    The results of investigations of the quantum-size effects influence on selective properties of heterogeneous nanocatalysts are presents. As etalon exothermic reaction was used the reaction of atomic hydrogen recombination. The nanostructured Pd and Pt films on Teflon substrate were used as a samples of heterogeneous nanocatalysts. It was shown that for nanoparticles with various sizes the catalytic activity has the periodic dependence. It has been found that for certain sizes of nanoparticles their catalytic activity is less than that of Teflon substrate.

  1. Ag-Fe2O3 nanocomposites with enhanced catalytic activity for reduction of 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Liu, Shiben; Chen, Yingjie; Dong, Lifeng

    2016-07-01

    Hybrid nanostructures can be multifunctional and even possess enhanced properties. Ag-Fe2O3 nanocomposites and Ag nanoparticles (NPs) were fabricated and applied to catalyze the reduction of 4-nitrophenol. Compared with Ag NPs, Ag-Fe2O3 nanocomposites demonstrated enhanced catalytic activities. Furthermore, due to their magnetic properties, Ag-Fe2O3 nanocomposites could be easily separated from the reaction mixture and recycled through an external magnetic field. These findings will help us design hybrid nanostructures with catalytic activity and explore other potential applications of magnetic nanocomposites.

  2. A mutational analysis of the active site of human type II inosine 5'-monophosphate dehydrogenase.

    PubMed

    Futer, Olga; Sintchak, Michael D; Caron, Paul R; Nimmesgern, Elmar; DeCenzo, Maureen T; Livingston, David J; Raybuck, Scott A

    2002-01-31

    The oxidation of IMP to XMP is the rate-limiting step in the de novo synthesis of guanine ribonucleotides. This NAD-dependent reaction is catalyzed by the enzyme inosine monophosphate dehydrogenase (IMPDH). Based upon the recent structural determination of IMPDH complexed to oxidized IMP (XMP*) and the potent uncompetitive inhibitor mycophenolic acid (MPA), we have selected active site residues and prepared mutants of human type II IMPDH. The catalytic parameters of these mutants were determined. Mutations G326A, D364A, and the active site nucleophile C331A all abolish enzyme activity to less than 0.1% of wild type. These residues line the IMP binding pocket and are necessary for correct positioning of the substrate, Asp364 serving to anchor the ribose ring of the nucleotide. In the MPA/NAD binding site, significant loss of activity was seen by mutation of any residue of the triad Arg322, Asn303, Asp274 which form a hydrogen bonding network lining one side of this pocket. From a model of NAD bound to the active site consistent with the mutational data, we propose that these resides are important in binding the ribose ring of the nicotinamide substrate. Additionally, mutations in the pair Thr333, Gln441, which lies close to the xanthine ring, cause a significant drop in the catalytic activity of IMPDH. It is proposed that these residues serve to deliver the catalytic water molecule required for hydrolysis of the cysteine-bound XMP* intermediate formed after oxidation by NAD.

  3. Spectroscopic evidence for an engineered, catalytically active Trp radical that creates the unique reactivity of lignin peroxidase.

    PubMed

    Smith, Andrew T; Doyle, Wendy A; Dorlet, Pierre; Ivancich, Anabella

    2009-09-22

    The surface oxidation site (Trp-171) in lignin peroxidase (LiP) required for the reaction with veratryl alcohol a high-redox-potential (1.4 V) substrate, was engineered into Coprinus cinereus peroxidase (CiP) by introducing a Trp residue into a heme peroxidase that has similar protein fold but lacks this activity. To create the catalytic activity toward veratryl alcohol in CiP, it was necessary to reproduce the Trp site and its negatively charged microenvironment by means of a triple mutation. The resulting D179W+R258E+R272D variant was characterized by multifrequency EPR spectroscopy. The spectra unequivocally showed that a new Trp radical [g values of g(x) = 2.0035(5), g(y) = 2.0027(5), and g(z) = 2.0022(1)] was formed after the [Fe(IV)=O Por(*+)] intermediate, as a result of intramolecular electron transfer between Trp-179 and the porphyrin. Also, the EPR characterization crucially showed that [Fe(IV)=O Trp-179(*)] was the reactive intermediate with veratryl alcohol. Accordingly, our work shows that it is necessary to take into account the physicochemical properties of the radical, fine-tuned by the microenvironment, as well as those of the preceding [Fe(IV)=O Por(*+)] intermediate to engineer a catalytically competent Trp site for a given substrate. Manipulation of the microenvironment of the Trp-171 site in LiP allowed the detection by EPR spectroscopy of the Trp-171(*), for which direct evidence has been missing so far. Our work also highlights the role of Trp residues as tunable redox-active cofactors for enzyme catalysis in the context of peroxidases with a unique reactivity toward recalcitrant substrates that require oxidation potentials not realized at the heme site.

  4. Dissecting the Catalytic Mechanism of Betaine-Homocysteine S-Methyltransferase Using Intrinsic Tryptophan Fluorescence and Site-Directed Mutagenesis

    SciTech Connect

    Castro, C.; Gratson, A.A.; Evans, J.C.; Jiracek, J.; Collinsova, M.; Ludwig, M.L.; Garrow, T.A.

    2010-03-05

    Betaine-homocysteine S-methyltransferase (BHMT) is a zinc-dependent enzyme that catalyzes the transfer of a methyl group from glycine betaine (Bet) to homocysteine (Hcy) to form dimethylglycine (DMG) and methionine (Met). Previous studies in other laboratories have indicated that catalysis proceeds through the formation of a ternary complex, with a transition state mimicked by the inhibitor S-({delta}-carboxybutyl)-l-homocysteine (CBHcy). Using changes in intrinsic tryptophan fluorescence to determine the affinity of human BHMT for substrates, products, or CBHcy, we now demonstrate that the enzyme-substrate complex reaches its transition state through an ordered bi-bi mechanism in which Hcy is the first substrate to bind and Met is the last product released. Hcy, Met, and CBHcy bind to the enzyme to form binary complexes with K{sub d} values of 7.9, 6.9, and 0.28 {micro}M, respectively. Binary complexes with Bet and DMG cannot be detected with fluorescence as a probe, but Bet and DMG bind tightly to BHMT-Hcy to form ternary complexes with K{sub d} values of 1.1 and 0.73 {micro}M, respectively. Mutation of each of the seven tryptophan residues in human BHMT provides evidence that the enzyme undergoes two distinct conformational changes that are reflected in the fluorescence of the enzyme. The first is induced when Hcy binds, and the second, when Bet binds. As predicted by the crystal structure of BHMT, the amino acids Trp44 and Tyr160 are involved in binding Bet, and Glu159 in binding Hcy. Replacing these residues by site-directed mutagenesis significantly reduces the catalytic efficiency (V{sub max}/K{sub m}) of the enzyme. Replacing Tyr77 with Phe abolishes enzyme activity.

  5. CuO impregnated activated carbon for catalytic wet peroxide oxidation of phenol.

    PubMed

    Liou, Rey-May; Chen, Shih-Hsiung

    2009-12-15

    This paper presents an original approach to the removal of phenol in synthetic wastewater by catalytic wet peroxide oxidation with copper binding activated carbon (CuAC) catalysts. The characteristics and oxidation performance of CuAC in the wet hydrogen peroxide catalytic oxidation of phenol were studied in a batch reactor at 80 degrees C. Complete conversion of the oxidant, hydrogen peroxide, was observed with CuAC catalyst in 20 min oxidation, and a highly efficient phenol removal and chemical oxygen demand (COD) abatement were achieved in the first 30 min. The good oxidation performance of CuAC catalyst was contributed to the activity enhancement of copper oxide, which was binding in the carbon matrix. It can be concluded that the efficiency of oxidation dominated by the residual H2O2 in this study. An over 90% COD removal was achieved by using the multiple-step addition in this catalytic oxidation.

  6. Activated carbon and tungsten oxide supported on activated carbon catalysts for toluene catalytic combustion.

    PubMed

    Alvarez-Merino, M A; Ribeiro, M F; Silva, J M; Carrasco-Marín, F; Maldonado-Hódar, F J

    2004-09-01

    We have used activated carbon (AC) prepared from almond shells as a support for tungsten oxide to develop a series of WOx/AC catalysts for the catalytic combustion of toluene. We conducted the reaction between 300 and 350 degrees C, using a flow of 500 ppm of toluene in air and space velocity (GHSV) in the range 4000-7000 h(-1). Results show that AC used as a support is an appropriate material for removing toluene from dilute streams. By decreasing the GHSV and increasing the reaction temperature AC becomes a specific catalyst for the total toluene oxidation (SCO2 = 100%), but in less favorable conditions CO appears as reaction product and toluene-derivative compounds are retained inside the pores. WOx/AC catalysts are more selective to CO2 than AC due to the strong acidity of this oxide; this behavior improves with increased metal loading and reaction temperature and contact time. The catalytic performance depends on the nonstoichiometric tungsten oxide obtained during the pretreatment. In comparison with other supports the WOx/AC catalysts present, at low reaction temperatures, higher activity and selectivity than WO, supported on SiO2, TiO2, Al2O3, or Y zeolite. This is due to the hydrophobic character of the AC surface which prevents the adsorption of water produced from toluene combustion thus avoiding the deactivation of the active centers. However, the use of WOx/AC system is always restricted by its gasification temperature (around 400 degrees C), which limits the ability to increase the conversion values by increasing reaction temperatures.

  7. Observation of different catalytic activity of various 1-olefins during ethylene/1-olefin copolymerization with homogeneous metallocene catalysts.

    PubMed

    Wannaborworn, Mingkwan; Praserthdam, Piyasan; Jongsomjit, Bunjerd

    2011-01-07

    This research aimed to investigate the copolymerization of ethylene and various 1-olefins. The comonomer lengths were varied from 1-hexene (1-C₆) up to 1-octadecene (1-C₁₈) in order to study the effect of comonomer chain length on the activity and properties of the polymer in the metallocene/MAO catalyst system. The results indicated that two distinct cases can be described for the effect of 1-olefin chain length on the activity. Considering the short chain length comonomers, such as 1-hexene, 1-octene and 1-decene, it is obvious that the polymerization activity decreased when the length of comonomer was higher, which is probably due to increased steric hindrance at the catalytic center hindering the insertion of ethylene monomer to the active sites, hence, the polymerization rate decreased. On the contrary, for the longer chain 1-olefins, namely 1-dodecene, 1-tetradecene and 1-octadecene, an increase in the comonomer chain length resulted in better activity due to the opening of the gap aperture between C(p)(centroid)-M-C(p)-(centroid), which forced the coordination site to open more. This effect facilitated the polymerization of the ethylene monomer at the catalytic sites, and thus, the activity increased. The copolymers obtained were further characterized using thermal analysis, X-ray diffraction spectroscopy and ¹³C-NMR techniques. It could be seen that the melting temperature and comonomer distribution were not affected by the 1-olefin chain length. The polymer crystallinity decreased slightly with increasing comonomer chain length. Moreover, all the synthesized polymers were typical LLDPE having random comonomer distribution.

  8. Influenza C virus esterase: analysis of catalytic site, inhibition, and possible function

    SciTech Connect

    Vlasak, R.; Muster, T.; Lauro, A.M.; Powers, J.C.; Palese, P.

    1989-05-01

    The active site serine of the acetylesterase of influenza C virus was localized to amino acid 71 of the hemagglutinin-esterase protein by affinity labeling with /sup 3/H-labeled diisopropylfluorophosphate. This serine and the adjacent amino acids (Phe-Gly-Asp-Ser) are part of a consensus sequence motif found in serine hydrolases. Since comparative analysis failed to reveal esterase sequence similarities with other serine hydrolases, the authors suggest that this viral enzyme is a serine hydrolase constituting a new family of serine esterases. Furthermore, they found that the influenza C virus esterase was inhibited by isocoumarin derivatives, with 3,4-dichloroisocoumarin being the most potent inhibitor. Addition of this compound prevented elution of influenza C virus from erythrocytes and inhibited virus infectivity, possibly through inhibition of virus entry into cells.

  9. CLCAs - A Family of Metalloproteases of Intriguing Phylogenetic Distribution and with Cases of Substituted Catalytic Sites

    PubMed Central

    Lenart, Anna; Dudkiewicz, Małgorzata; Grynberg, Marcin; Pawłowski, Krzysztof

    2013-01-01

    The zinc-dependent metalloproteases with His-Glu-x-x-His (HExxH) active site motif, zincins, are a broad group of proteins involved in many metabolic and regulatory functions, and found in all forms of life. Human genome contains more than 100 genes encoding proteins with known zincin-like domains. A survey of all proteins containing the HExxH motif shows that approximately 52% of HExxH occurrences fall within known protein structural domains (as defined in the Pfam database). Domain families with majority of members possessing a conserved HExxH motif include, not surprisingly, many known and putative metalloproteases. Furthermore, several HExxH-containing protein domains thus identified can be confidently predicted to be putative peptidases of zincin fold. Thus, we predict zincin-like fold for eight uncharacterised Pfam families. Besides the domains with the HExxH motif strictly conserved, and those with sporadic occurrences, intermediate families are identified that contain some members with a conserved HExxH motif, but also many homologues with substitutions at the conserved positions. Such substitutions can be evolutionarily conserved and non-random, yet functional roles of these inactive zincins are not known. The CLCAs are a novel zincin-like protease family with many cases of substituted active sites. We show that this allegedly metazoan family has a number of bacterial and archaeal members. An extremely patchy phylogenetic distribution of CLCAs in prokaryotes and their conserved protein domain composition strongly suggests an evolutionary scenario of horizontal gene transfer (HGT) from multicellular eukaryotes to bacteria, providing an example of eukaryote-derived xenologues in bacterial genomes. Additionally, in a protein family identified here as closely homologous to CLCA, the CLCA_X (CLCA-like) family, a number of proteins is found in phages and plasmids, supporting the HGT scenario. PMID:23671590

  10. Single-molecule catalysis mapping quantifies site-specific activity and uncovers radial activity gradient on single 2D nanocrystals.

    PubMed

    Andoy, Nesha May; Zhou, Xiaochun; Choudhary, Eric; Shen, Hao; Liu, Guokun; Chen, Peng

    2013-02-06

    Shape-controlled metal nanocrystals are a new generation of nanoscale catalysts. Depending on their shapes, these nanocrystals exhibit various surface facets, and the assignments of their surface facets have routinely been used to rationalize or predict their catalytic activity in a variety of chemical transformations. Recently we discovered that for 1-dimensional (1D) nanocrystals (Au nanorods), the catalytic activity is not constant along the same side facets of single nanorods but rather differs significantly and further shows a gradient along its length, which we attributed to an underlying gradient of surface defect density resulting from their linear decay in growth rate during synthesis (Nat. Nanotechnol.2012, 7, 237-241). Here we report that this behavior also extends to 2D nanocrystals, even for a different catalytic reaction. By using super-resolution fluorescence microscopy to map out the locations of catalytic events within individual triangular and hexagonal Au nanoplates in correlation with scanning electron microscopy, we find that the catalytic activity within the flat {111} surface facet of a Au nanoplate exhibits a 2D radial gradient from the center toward the edges. We propose that this activity gradient results from a growth-dependent surface defect distribution. We also quantify the site-specific activity at different regions within a nanoplate: The corner regions have the highest activity, followed by the edge regions and then the flat surface facets. These discoveries highlight the spatial complexity of catalytic activity at the nanoscale as well as the interplay amid nanocrystal growth, morphology, and surface defects in determining nanocatalyst properties.

  11. Influence of surface modification on catalytic activity of activated carbon toward decomposition of hydrogen peroxide and 2-chlorophenol.

    PubMed

    Huang, Hsu-Hui; Lu, Ming-Chun; Chen, Jong-Nan; Lee, Cheng-Te

    2003-07-01

    The objective of this research was to investigate the influence of the activated carbons modified by chemical treatment on the surface catalyzed loss of H2O2 and 2-CP. The characteristics of the modified activated carbons were examined by several techniques including nitrogen adsorption, SEM, and EDS. The H2O2 decomposition rate would be suppressed significantly either by the change of surface properties modified with chemical treatment or the reduction of active sites occupied with the adsorption of 2-CP. In addition, the H2O2 decomposition rate with activated carbons within a specific time can be described by a second-order kinetic expression with respect to the concentration of GAC and H2O2 in the absence or presence of 2-CP. The catalytic activities of the three activated carbons toward 2-CP reduction followed the inverse sequence of those toward H2O2 loss, implying that acidic surface functional group could retard the H2O2 loss and reduce the effect of surface scavenging resulting in increasing the reduction efficiency of 2-CP. By the detection of chloride ions in reaction mixture, it can be demonstrated that the reduction of 2-CP was not only attributed to the advanced adsorption but also the oxidation of the 2-CP with effective radicals. The real oxidation efficiency of 2-CP for the activated carbon modified with hot nitric acid was observed between 0.04 and 0.01 (mol/mol), offering a comparable efficiency to that of the other oxidation system using metal oxide as catalyst.

  12. Active Site Loop Conformation Regulates Promiscuous Activity in a Lactonase from Geobacillus kaustophilus HTA426

    PubMed Central

    Zhang, Yu; An, Jiao; Yang, Guang-Yu; Bai, Aixi; Zheng, Baisong; Lou, Zhiyong; Wu, Geng; Ye, Wei; Chen, Hai-Feng; Feng, Yan; Manco, Giuseppe

    2015-01-01

    Enzyme promiscuity is a prerequisite for fast divergent evolution of biocatalysts. A phosphotriesterase-like lactonase (PLL) from Geobacillus kaustophilus HTA426 (GkaP) exhibits main lactonase and promiscuous phosphotriesterase activities. To understand its catalytic and evolutionary mechanisms, we investigated a “hot spot” in the active site by saturation mutagenesis as well as X-ray crystallographic analyses. We found that position 99 in the active site was involved in substrate discrimination. One mutant, Y99L, exhibited 11-fold improvement over wild-type in reactivity (kcat/Km) toward the phosphotriesterase substrate ethyl-paraoxon, but showed 15-fold decrease toward the lactonase substrate δ-decanolactone, resulting in a 157-fold inversion of the substrate specificity. Structural analysis of Y99L revealed that the mutation causes a ∼6.6 Å outward shift of adjacent loop 7, which may cause increased flexibility of the active site and facilitate accommodation and/or catalysis of organophosphate substrate. This study provides for the PLL family an example of how the evolutionary route from promiscuity to specificity can derive from very few mutations, which promotes alteration in the conformational adjustment of the active site loops, in turn draws the capacity of substrate binding and activity. PMID:25706379

  13. HIGH-THROUGHPUT IDENTIFICATION OF CATALYTIC REDOX-ACTIVE CYSTEINE RESIDUES

    EPA Science Inventory

    Cysteine (Cys) residues often play critical roles in proteins; however, identification of their specific functions has been limited to case-by-case experimental approaches. We developed a procedure for high-throughput identification of catalytic redox-active Cys in proteins by se...

  14. Temperature-responsive enzyme-polymer nanoconjugates with enhanced catalytic activities in organic media.

    PubMed

    Zhu, Jingying; Zhang, Yifei; Lu, Diannan; Zare, Richard N; Ge, Jun; Liu, Zheng

    2013-07-11

    A general approach for preparing enzyme-polymer nanoconjugates that respond to temperature in organic media is presented. These nanoconjugates readily dissolve in organic solvents for homogenous catalysis at 40 °C and showed greatly enhanced apparent catalytic activities. The recovery of the soluble enzyme-polymer nanoconjugates is accomplished by temperature-induced precipitation.

  15. Enantioselective Synthesis of a PKC Inhibitor via Catalytic C-HBond Activation

    SciTech Connect

    Wilson, Rebecca M.; Thalji, Reema K.; Bergman, Robert G.; Ellman,Jonathan A.

    2006-02-26

    The syntheses of two biologically active molecules possessing dihydropyrroloindole cores (1 and 2) were completed using rhodium-catalyzed imine-directed C-H bond functionalization, with the second of these molecules containing a stereocenter that can be set with 90% ee during cyclization using chiral nonracemic phosphoramidite ligands. Catalytic decarbonylation and direct indole/maleimide coupling provide efficient access to 2.

  16. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    DOEpatents

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2010-08-03

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  17. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution

    PubMed Central

    Bergmann, Arno; Martinez-Moreno, Elias; Teschner, Detre; Chernev, Petko; Gliech, Manuel; de Araújo, Jorge Ferreira; Reier, Tobias; Dau, Holger; Strasser, Peter

    2015-01-01

    Water splitting catalysed by earth-abundant materials is pivotal for global-scale production of non-fossil fuels, yet our understanding of the active catalyst structure and reactivity is still insufficient. Here we report on the structurally reversible evolution of crystalline Co3O4 electrocatalysts during oxygen evolution reaction identified using advanced in situ X-ray techniques. At electrode potentials facilitating oxygen evolution, a sub-nanometre shell of the Co3O4 is transformed into an X-ray amorphous CoOx(OH)y which comprises di-μ-oxo-bridged Co3+/4+ ions. Unlike irreversible amorphizations, here, the formation of the catalytically-active layer is reversed by re-crystallization upon return to non-catalytic electrode conditions. The Co3O4 material thus combines the stability advantages of a controlled, stable crystalline material with high catalytic activity, thanks to the structural flexibility of its active amorphous oxides. We propose that crystalline oxides may be tailored for generating reactive amorphous surface layers at catalytic potentials, just to return to their stable crystalline state under rest conditions. PMID:26456525

  18. Preparation, characterization, and catalytic activity of zirconocene bridged on surface of silica gel

    NASA Astrophysics Data System (ADS)

    El Majdoub, Lotfia; Shi, Yasai; Yuan, Yuan; Zhou, Annan; Abutartour, Abubaker; Xu, Qinghong

    2015-10-01

    Zirconocene catalyst supported on silica gel was prepared for olefin polymerization by surface modification of calcined silica with SiCl4, and the reaction between the modified silica and cyclopentadienyl sodium and ZrCl4. The catalyst was characterized by using Fourier-transform infrared (FT-IR) spectrometer, thermogravimetric (TG), and differential scanning calorimetric (DSC) analytic spectrometer. It was found that the metallocene structure could be formed and connected on silica surface by chemical bond. Initial catalytic tests showed that the supported metallocene was catalytically active (methylaluminoxane as a cocatalyst), producing polymer with higher molecular weight than the metallocene just immobilized on the surface of silica gel.

  19. Self-propulsion and interactions of catalytic particles in a chemically active medium

    NASA Astrophysics Data System (ADS)

    Banigan, Edward J.; Marko, John F.

    2016-01-01

    Enzymatic "machines," such as catalytic rods or colloids, can self-propel and interact by generating gradients of their substrates. We theoretically investigate the behaviors of such machines in a chemically active environment where their catalytic substrates are continuously synthesized and destroyed, as occurs in living cells. We show how the kinetic properties of the medium modulate self-propulsion and pairwise interactions between machines, with the latter controlled by a tunable characteristic interaction range analogous to the Debye screening length in an electrolytic solution. Finally, we discuss the effective force arising between interacting machines and possible biological applications, such as partitioning of bacterial plasmids.

  20. Activity prediction of substrates in NADH-dependent carbonyl reductase by docking requires catalytic constraints and charge parameterization of catalytic zinc environment

    NASA Astrophysics Data System (ADS)

    Dhoke, Gaurao V.; Loderer, Christoph; Davari, Mehdi D.; Ansorge-Schumacher, Marion; Schwaneberg, Ulrich; Bocola, Marco

    2015-11-01

    Molecular docking of substrates is more challenging compared to inhibitors as the reaction mechanism has to be considered. This becomes more pronounced for zinc-dependent enzymes since the coordination state of the catalytic zinc ion is of greater importance. In order to develop a predictive substrate docking protocol, we have performed molecular docking studies of diketone substrates using the catalytic state of carbonyl reductase 2 from Candida parapsilosis (CPCR2). Different docking protocols using two docking methods (AutoDock Vina and AutoDock4.2) with two different sets of atomic charges (AM1-BCC and HF-RESP) for catalytic zinc environment and substrates as well as two sets of vdW parameters for zinc ion were examined. We have selected the catalytic binding pose of each substrate by applying mechanism based distance criteria. To compare the performance of the docking protocols, the correlation plots for the binding energies of these catalytic poses were obtained against experimental Vmax values of the 11 diketone substrates for CPCR2. The best correlation of 0.73 was achieved with AutoDock4.2 while treating catalytic zinc ion in optimized non-bonded (NBopt) state with +1.01 charge on the zinc ion, compared to 0.36 in non-bonded (+2.00 charge on the zinc ion) state. These results indicate the importance of catalytic constraints and charge parameterization of catalytic zinc environment for the prediction of substrate activity in zinc-dependent enzymes by molecular docking. The developed predictive docking protocol described here is in principle generally applicable for the efficient in silico substrate spectra characterization of zinc-dependent ADH.

  1. Bacterial lipopolysaccharide suppresses the production of catalytically active lysosomal acid hydrolases in human macrophages

    PubMed Central

    1986-01-01

    Sub-microgram quantities of bacterial lipopolysaccharide (LPS) have been found to substantially reduce the intracellular catalytic activities of three representative lysosomal enzymes (namely, acid phosphatase, hexosaminidase, and beta-glucuronidase) in human monocyte- derived macrophages. This response was not associated with a concurrent increase in enzyme catalytic activity in the culture supernatant, and hence, could not be explained by mobilization of preformed material. By conducting experiments in the presence and absence of indomethacin, a cyclooxygenase inhibitor, the reduction in lysosomal enzyme catalytic activities was shown not to be dependent on the ability of LPS to induce prostaglandin E2 production. The response was not found to be the result of a more generalized LPS-dependent reduction in the ability of the cells to synthesize protein, since the presence of LPS in macrophage cultures did not appreciably affect the amount of [35S]methionine incorporated into total cellular proteins. A kinetic analysis of the effect of LPS on the down-regulation of enzyme catalytic activities indicated that this was an early response of the cells to LPS exposure. An investigation of the effects of blockade of enzyme catabolism (using the lysosomotropic weak-base, methylamine) indicated that the reduction of catalytic enzyme activities in response to LPS was probably due to a decreased rate of production of active product, rather than an enhanced rate of enzyme catabolism. This suggestion was confirmed by experiments in which the synthesis of pro- hexosaminidase (measured by biosynthetic labeling with [35S]methionine and specific immunoprecipitation of labeled pro-hexosaminidase) was found to be reduced by 42% after a 24-h exposure to LPS (although the synthesis of complement component C3 was stimulated by a factor of 4.5). It is suggested that the ability of LPS to regulate the functional expression of protein products contributes to changes in the overall

  2. Magnesium-Dependent Active-Site Conformational Selection in the Diels-Alderase Ribozyme

    SciTech Connect

    Berezniak, Tomasz; Zahran, Mai; Imhof, Petra; Jaeschke, Andres; Smith, Jeremy C

    2010-10-01

    The Diels-Alderase ribozyme, an in vitro-evolved ribonucleic acid enzyme, accelerates the formation of carbon-carbon bonds between an anthracene diene and a maleimide dienophile in a [4 + 2] cycloaddition, a reaction with broad application in organic chemistry. Here, the Diels-Alderase ribozyme is examined via molecular dynamics (MD) simulations in both crystalline and aqueous solution environments. The simulations indicate that the catalytic pocket is highly dynamic. At low Mg(2+) ion concentrations, inactive states with the catalytic pocket closed dominate. Stabilization of the enzymatically active, open state of the catalytic pocket requires a high concentration of Mg(2+) ions (e.g., 54 mM), with cations binding to specific phosphate sites on the backbone of the residues bridging the opposite strands of the pocket. The free energy profile for pocket opening at high Mg(2+) cation concentration exhibits a double minimum, with a barrier to opening of approximately 5.5 kJ/mol and the closed state approximately 3 kJ/mol lower than the open state. Selection of the open state on substrate binding leads to the catalytic activity of the ribozyme. The simulation results explain structurally the experimental observation that full catalytic activity depends on the Mg(2+) ion concentration

  3. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst.

    PubMed

    Cao, Xinrui; Fu, Qiang; Luo, Yi

    2014-05-14

    The single atom alloy of extended surfaces is known to provide remarkably enhanced catalytic performance toward heterogeneous hydrogenation. Here we demonstrate from first principles calculations that this approach can be extended to nanostructures, such as bimetallic nanoparticles. The catalytic properties of the single-Pd-doped Cu55 nanoparticles have been systemically examined for H2 dissociation as well as H atom adsorption and diffusion, following the concept of single atom alloy. It is found that doping a single Pd atom at the edge site of the Cu55 shell can considerably reduce the activation energy of H2 dissociation, while the single Pd atom doped at the top site or in the inner layers is much less effective. The H atom adsorption on Cu55 is slightly stronger than that on the Cu(111) surface; however, a larger nanoparticle that contains 147 atoms could effectively recover the weak binding of the H atoms. We have also investigated the H atom diffusion on the 55-atom nanoparticle and found that spillover of the produced H atoms could be a feasible process due to the low diffusion barriers. Our results have demonstrated that facile H2 dissociation and weak H atom adsorption could be combined at the nanoscale. Moreover, the effects of doping one more Pd atom on the H2 dissociation and H atom adsorption have also been investigated. We have found that both the doping Pd atoms in the most stable configuration could independently exhibit their catalytic activity, behaving as two single-atom-alloy catalysts.

  4. Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations

    PubMed Central

    Steinkellner, Georg; Gruber, Christian C.; Pavkov-Keller, Tea; Binter, Alexandra; Steiner, Kerstin; Winkler, Christoph; Łyskowski, Andrzej; Schwamberger, Orsolya; Oberer, Monika; Schwab, Helmut; Faber, Kurt; Macheroux, Peter; Gruber, Karl

    2014-01-01

    The exploitation of catalytic promiscuity and the application of de novo design have recently opened the access to novel, non-natural enzymatic activities. Here we describe a structural bioinformatic method for predicting catalytic activities of enzymes based on three-dimensional constellations of functional groups in active sites (‘catalophores’). As a proof-of-concept we identify two enzymes with predicted promiscuous ene-reductase activity (reduction of activated C–C double bonds) and compare them with known ene-reductases, that is, members of the Old Yellow Enzyme family. Despite completely different amino acid sequences, overall structures and protein folds, high-resolution crystal structures reveal equivalent binding modes of typical Old Yellow Enzyme substrates and ligands. Biochemical and biocatalytic data show that the two enzymes indeed possess ene-reductase activity and reveal an inverted stereopreference compared with Old Yellow Enzymes for some substrates. This method could thus be a tool for the identification of viable starting points for the development and engineering of novel biocatalysts. PMID:24954722

  5. MSK1 activity is controlled by multiple phosphorylation sites

    PubMed Central

    McCOY, Claire E.; Campbell, David G.; Deak, Maria; Bloomberg, Graham B.; Arthur, J. Simon C.

    2004-01-01

    MSK1 (mitogen- and stress-activated protein kinase) is a kinase activated in cells downstream of both the ERK1/2 (extracellular-signal-regulated kinase) and p38 MAPK (mitogen-activated protein kinase) cascades. In the present study, we show that, in addition to being phosphorylated on Thr-581 and Ser-360 by ERK1/2 or p38, MSK1 can autophosphorylate on at least six sites: Ser-212, Ser-376, Ser-381, Ser-750, Ser-752 and Ser-758. Of these sites, the N-terminal T-loop residue Ser-212 and the ‘hydrophobic motif’ Ser-376 are phosphorylated by the C-terminal kinase domain of MSK1, and their phosphorylation is essential for the catalytic activity of the N-terminal kinase domain of MSK1 and therefore for the phosphorylation of MSK1 substrates in vitro. Ser-381 is also phosphorylated by the C-terminal kinase domain, and mutation of Ser-381 decreases MSK1 activity, probably through the inhibition of Ser-376 phosphorylation. Ser-750, Ser-752 and Ser-758 are phosphorylated by the N-terminal kinase domain; however, their function is not known. The activation of MSK1 in cells therefore requires the activation of the ERK1/2 or p38 MAPK cascades and does not appear to require additional signalling inputs. This is in contrast with the closely related RSK (p90 ribosomal S6 kinase) proteins, whose activity requires phosphorylation by PDK1 (3-phosphoinositide-dependent protein kinase 1) in addition to phosphorylation by ERK1/2. PMID:15568999

  6. A computational analysis of the structural determinants of APOBEC3's catalytic activity and vulnerability to HIV-1 Vif

    PubMed Central

    Shandilya, M.D. Shivender; Bohn, Markus-Frederik; Schiffer, Celia A.

    2016-01-01

    APOBEC3s (A3) are Zn2+ dependent cytidine deaminases with diverse biological functions and implications for cancer and immunity. Four of the seven human A3s restrict HIV by 'hypermutating' the reverse-transcribed viral genomic DNA. HIV Virion Infectivity Factor (Vif) counters this restriction by targeting A3s to proteasomal degradation. However, there is no apparent correlation between catalytic activity, Vif binding, and sequence similarity between A3 domains. Our comparative structural analysis reveals features required for binding Vif and features influencing polynucleotide deaminase activity in A3 proteins. All Vif-binding A3s share a negatively charged surface region that includes residues previously implicated in binding the highly-positively charged Vif. Additionally, catalytically active A3s share a positively charged groove near the Zn2+ coordinating active site, which may accommodate the negatively charged polynucleotide substrate. Our findings suggest surface electrostatics, as well as the spatial extent of substrate accommodating region, are critical determinants of substrate and Vif binding across A3 proteins with implications for anti-retroviral and anti-cancer therapeutic design. PMID:25461536

  7. Preparation and Catalytic Activity for Aerobic Glucose Oxidation of Crown Jewel Structured Pt/Au Bimetallic Nanoclusters.

    PubMed

    Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki

    2016-08-01

    Understanding of the "structure-activity" relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au(3+) ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size.

  8. A facile reflux procedure to increase active surface sites form highly active and durable supported palladium@platinum bimetallic nanodendrites

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Li, Yingjun; Liu, Baocang; Xu, Guangran; Zhang, Geng; Zhao, Qi; Zhang, Jun

    2015-11-01

    A series of well-dispersed bimetallic Pd@Pt nanodendrites uniformly supported on XC-72 carbon black are fabricated by using different capping agents. These capping agents are essential for the branched morphology control. However, the surfactant adsorbed on the nanodendrites surface blocks the access of reactant molecules to the active surface sites, and the catalytic activities of these bimetallic nanodendrites are significantly restricted. Herein, a facile reflux procedure to effectively remove the capping agent molecules without significantly affecting their sizes is reported for activating supported nanocatalysts. More significantly, the structure and morphology of the nanodendrites can also be retained, enhancing the numbers of active surface sites, catalytic activity and stability toward methanol and ethanol electro-oxidation reactions. The as-obtained hot water reflux-treated Pd@Pt/C catalyst manifests superior catalytic activity and stability both in terms of surface and mass specific activities, as compared to the untreated catalysts and the commercial Pt/C and Pd/C catalysts. We anticipate that this effective and facile removal method has more general applicability to highly active nanocatalysts prepared with various surfactants, and should lead to improvements in environmental protection and energy production.

  9. Crystal structure and site-directed mutagenesis of 3-ketosteroid Δ1-dehydrogenase from Rhodococcus erythropolis SQ1 explain its catalytic mechanism.

    PubMed

    Rohman, Ali; van Oosterwijk, Niels; Thunnissen, Andy-Mark W H; Dijkstra, Bauke W

    2013-12-06

    3-Ketosteroid Δ(1)-dehydrogenases are FAD-dependent enzymes that catalyze the 1,2-desaturation of 3-ketosteroid substrates to initiate degradation of the steroid nucleus. Here we report the 2.0 Å resolution crystal structure of the 56-kDa enzyme from Rhodococcus erythropolis SQ1 (Δ(1)-KSTD1). The enzyme contains two domains: an FAD-binding domain and a catalytic domain, between which the active site is situated as evidenced by the 2.3 Å resolution structure of Δ(1)-KSTD1 in complex with the reaction product 1,4-androstadiene-3,17-dione. The active site contains four key residues: Tyr(119), Tyr(318), Tyr(487), and Gly(491). Modeling of the substrate 4-androstene-3,17-dione at the position of the product revealed its interactions with these residues and the FAD. The C1 and C2 atoms of the substrate are at reaction distance to the N5 atom of the isoalloxazine ring of FAD and the hydroxyl group of Tyr(318), respectively, whereas the C3 carbonyl group is at hydrogen bonding distance from the hydroxyl group of Tyr(487) and the backbone amide of Gly(491). Site-directed mutagenesis of the tyrosines to phenylalanines confirmed their importance for catalysis. The structural features and the kinetic properties of the mutants suggest a catalytic mechanism in which Tyr(487) and Gly(491) work in tandem to promote keto-enol tautomerization and increase the acidity of the C2 hydrogen atoms of the substrate. With assistance of Tyr(119), the general base Tyr(318) abstracts the axial β-hydrogen from C2 as a proton, whereas the FAD accepts the axial α-hydrogen from the C1 atom of the substrate as a hydride ion.

  10. Temperature and the catalytic activity of enzymes: a fresh understanding.

    PubMed

    Daniel, Roy M; Danson, Michael J

    2013-09-02

    The discovery of an additional step in the progression of an enzyme from the active to inactive state under the influence of temperature has led to a better match with experimental data for all enzymes that follow Michaelis-Menten kinetics, and to an increased understanding of the process. The new model of the process, the Equilibrium Model, describes an additional mechanism by which temperature affects the activity of enzymes, with implications for ecological, metabolic, structural, and applied studies of enzymes.

  11. Impact of active phase chemical composition and dispersity on catalytic behavior in PROX reaction

    NASA Astrophysics Data System (ADS)

    Cherkezova-Zheleva, Z.; Paneva, D.; Todorova, S.; Kolev, H.; Shopska, M.; Yordanova, I.; Mitov, I.

    2014-04-01

    Iron and iron-platinum catalysts supported on activated carbon have been successfully synthesized by wet impregnation method and low-temperature treatment in inert atmosphere. The content of the supported phases corresponds to 10 wt % Fe and 0.5 wt % Pt. Four catalytic samples were synthesized: Sample A—activated carbon impregnated with Fe nitrate; Sample B—activated carbon impregnated with Pt salt; Sample C—activated carbon impregnated consequently with Fe and Pt salts; Sample D—activated carbon impregnated simultaneously with Fe and Pt salts. The as-prepared materials were characterized by Mössbauer spectroscopy, X-ray diffraction, infrared and X-ray photoelectron spectroscopy. The spectra show that the activated carbon support and the preparation procedure give rise to the synthesis of isolated metal Pt ions and ultradispersed Fe and Pt oxide species. Probably the presence of different functional groups of activated carbon gives rise to registered very high dispersion of loaded species on support. The catalytic tests were carried out in PROX reaction. A lower activity of bimetallic Pt-Fe samples was explained with the increase in surface oxygen species as a result of predomination of iron oxide on the support leading to the increase in selectivity to the H2 oxidation. Partial agglomeration of supported iron oxide phase was registered after catalytic tests.

  12. One-step preparation of magnetic recyclable quinary graphene hydrogels with high catalytic activity.

    PubMed

    Zhang, Junshuai; Yao, Tongjie; Guan, Chenchen; Zhang, Nanxi; Huang, Xin; Cui, Tieyu; Wu, Jie; Zhang, Xiao

    2017-04-01

    Metal nanoparticles (NPs) displayed overwhelming superiority in catalysis towards the corresponding bulk-phase materials; nevertheless, how to further improve catalytic activity was still an ongoing subject. Herein, we have combined one-step redox reaction and following freeze-dried technology to construct the quinary reduced graphene oxide nanosheets (rGS)/Fe2O3-PdPt/polypyrrole (PPy) hydrogels. Compared with traditional catalysts, their catalytic property was improved via two ways: construction of three-dimensional (3D) rGS hydrogels instead of two-dimensional rGS and synthesis of bimetallic alloys instead of monometallic NPs. The highly dispersed PdPt with diameter as small as 3.2nm uniformly loaded on hydrogel surface. Due to special interconnected and porous structure, the reactants were easily adsorbed in hydrogels and contacted with PdPt alloys. To explain the contributions of bimetallic alloys and 3D rGS structure on enhanced catalytic activity, the catalytic property of quinary hydrogels was compared with reference samples. Besides superior activity, they also displayed good reusability, since hydrogels could be magnetically recycled owing to the existence of Fe2O3 NPs.

  13. Role of α-Subunit VISIT-DG Sequence Residues Ser-347 and Gly-351 in the Catalytic Sites of Escherichia coli ATP Synthase*

    PubMed Central

    Li, Wenzong; Brudecki, Laura E.; Senior, Alan E.; Ahmad, Zulfiqar

    2009-01-01

    This paper describes the role of α-subunit VISIT-DG sequence residues αSer-347 and αGly-351 in catalytic sites of Escherichia coli F1Fo ATP synthase. X-ray structures show the very highly conserved α-subunit VISIT-DG sequence in close proximity to the conserved phosphate-binding residues αArg-376, βArg-182, βLys-155, and βArg-246 in the phosphate-binding subdomain. Mutations αS347Q and αG351Q caused loss of oxidative phosphorylation and reduced ATPase activity of F1Fo in membranes by 100- and 150-fold, respectively, whereas αS347A mutation showed only a 13-fold loss of activity and also retained some oxidative phosphorylation activity. The ATPase of αS347Q mutant was not inhibited, and the αS347A mutant was slightly inhibited by MgADP-azide, MgADP-fluoroaluminate, or MgADP-fluoroscandium, in contrast to wild type and αG351Q mutant. Whereas 7-chloro-4-nitrobenzo-2-oxa-1, 3-diazole (NBD-Cl) inhibited wild type and αG351Q mutant ATPase essentially completely, ATPase in αS347A or αS347Q mutant was inhibited maximally by ∼80–90%, although reaction still occurred at residue βTyr-297, proximal to the α-subunit VISIT-DG sequence, near the phosphate-binding pocket. Inhibition characteristics supported the conclusion that NBD-Cl reacts inβE (empty) catalytic sites, as shown previously by x-ray structure analysis. Phosphate protected against NBD-Cl inhibition in wild type and αG351Q mutant but not in αS347Q or αS347A mutant. The results demonstrate that αSer-347 is an additional residue involved in phosphate-binding and transition state stabilization in ATP synthase catalytic sites. In contrast, αGly-351, although strongly conserved and clearly important for function, appears not to play a direct role. PMID:19240022

  14. The yeast regulator of transcription protein Rtr1 lacks an active site and phosphatase activity.

    PubMed

    Xiang, Kehui; Manley, James L; Tong, Liang

    2012-07-10

    The activity of RNA polymerase II (Pol II) is controlled in part by the phosphorylation state of the C-terminal domain (CTD) of its largest subunit. Recent reports have suggested that yeast regulator of transcription protein, Rtr1, and its human homologue RPAP2, possess Pol II CTD Ser5 phosphatase activity. Here we report the crystal structure of Kluyveromyces lactis Rtr1, which reveals a new type of zinc finger protein and does not have any close structural homologues. Importantly, the structure does not show evidence of an active site, and extensive experiments to demonstrate its CTD phosphatase activity have been unsuccessful, suggesting that Rtr1 has a non-catalytic role in CTD dephosphorylation.

  15. Enhancing the catalytic activity of hydronium ions through constrained environments

    NASA Astrophysics Data System (ADS)

    Liu, Yuanshuai; Vjunov, Aleksei; Shi, Hui; Eckstein, Sebastian; Camaioni, Donald M.; Mei, Donghai; Baráth, Eszter; Lercher, Johannes A.

    2017-03-01

    The dehydration of alcohols is involved in many organic conversions but has to overcome high free-energy barriers in water. Here we demonstrate that hydronium ions confined in the nanopores of zeolite HBEA catalyse aqueous phase dehydration of cyclohexanol at a rate significantly higher than hydronium ions in water. This rate enhancement is not related to a shift in mechanism; for both cases, the dehydration of cyclohexanol occurs via an E1 mechanism with the cleavage of Cβ-H bond being rate determining. The higher activity of hydronium ions in zeolites is caused by the enhanced association between the hydronium ion and the alcohol, as well as a higher intrinsic rate constant in the constrained environments compared with water. The higher rate constant is caused by a greater entropy of activation rather than a lower enthalpy of activation. These insights should allow us to understand and predict similar processes in confined spaces.

  16. Enhancing the catalytic activity of hydronium ions through constrained environments

    PubMed Central

    Liu, Yuanshuai; Vjunov, Aleksei; Shi, Hui; Eckstein, Sebastian; Camaioni, Donald M.; Mei, Donghai; Baráth, Eszter; Lercher, Johannes A.

    2017-01-01

    The dehydration of alcohols is involved in many organic conversions but has to overcome high free-energy barriers in water. Here we demonstrate that hydronium ions confined in the nanopores of zeolite HBEA catalyse aqueous phase dehydration of cyclohexanol at a rate significantly higher than hydronium ions in water. This rate enhancement is not related to a shift in mechanism; for both cases, the dehydration of cyclohexanol occurs via an E1 mechanism with the cleavage of Cβ–H bond being rate determining. The higher activity of hydronium ions in zeolites is caused by the enhanced association between the hydronium ion and the alcohol, as well as a higher intrinsic rate constant in the constrained environments compared with water. The higher rate constant is caused by a greater entropy of activation rather than a lower enthalpy of activation. These insights should allow us to understand and predict similar processes in confined spaces. PMID:28252021

  17. Triosephosphate isomerase I170V alters catalytic site, enhances stability and induces pathology in a Drosophila model of TPI deficiency

    DOE PAGES

    Roland, Bartholomew P.; Amrich, Christopher G.; Kammerer, Charles J.; ...

    2014-10-16

    Triosephosphate isomerase (TPI) is a glycolytic enzyme which homodimerizes for full catalytic activity. Mutations of the TPI gene elicit a disease known as TPI Deficiency, a glycolytic enzymopathy noted for its unique severity of neurological symptoms. Evidence suggests that TPI Deficiency pathogenesis may be due to conformational changes of the protein, likely affecting dimerization and protein stability. In this report, we genetically and physically characterize a human disease-associated TPI mutation caused by an I170V substitution. Human TPII170V elicits behavioral abnormalities in Drosophila. An examination of hTPII170V enzyme kinetics revealed this substitution reduced catalytic turnover, while assessments of thermal stability demonstratedmore » an increase in enzyme stability. Furthermore, the crystal structure of the homodimeric I170V mutant reveals changes in the geometry of critical residues within the catalytic pocket. In the end, collectively these data reveal new observations of the structural and kinetic determinants of TPI deficiency pathology, providing new insights into disease pathogenesis.« less

  18. Structural and Kinetic Analyses of Macrophage Migration Inhibitory Factor Active Site Interactions

    SciTech Connect

    Crichlow, G.; Lubetsky, J; Leng, L; Bucala, R; Lolis, E

    2009-01-01

    Macrophage migration inhibitory factor (MIF) is a secreted protein expressed in numerous cell types that counters the antiinflammatory effects of glucocorticoids and has been implicated in sepsis, cancer, and certain autoimmune diseases. Interestingly, the structure of MIF contains a catalytic site resembling the tautomerase/isomerase sites of microbial enzymes. While bona fide physiological substrates remain unknown, model substrates have been identified. Selected compounds that bind in the tautomerase active site also inhibit biological functions of MIF. It had previously been shown that the acetaminophen metabolite, N-acetyl-p-benzoquinone imine (NAPQI), covalently binds to the active site of MIF. In this study, kinetic data indicate that NAPQI inhibits MIF both covalently and noncovalently. The structure of MIF cocrystallized with NAPQI reveals that the NAPQI has undergone a chemical alteration forming an acetaminophen dimer (bi-APAP) and binds noncovalently to MIF at the mouth of the active site. We also find that the commonly used protease inhibitor, phenylmethylsulfonyl fluoride (PMSF), forms a covalent complex with MIF and inhibits the tautomerase activity. Crystallographic analysis reveals the formation of a stable, novel covalent bond for PMSF between the catalytic nitrogen of the N-terminal proline and the sulfur of PMSF with complete, well-defined electron density in all three active sites of the MIF homotrimer. Conclusions are drawn from the structures of these two MIF-inhibitor complexes regarding the design of novel compounds that may provide more potent reversible and irreversible inhibition of MIF.

  19. Toward the identification of the cardiac cGMP inhibited-phosphodiesterase catalytic site

    NASA Astrophysics Data System (ADS)

    Fossa, Paola; Boggia, Raffaella; Mosti, Luisa

    1998-07-01

    Cyclic nucleotide phosphodiesterases (PDEs) comprise a complex group of enzymes; five major PDE families or classes with distinctive properties have been identified. Among these a great deal of interest has recently been focused on the so called cGMP-inhibited low Km cAMP phosphodiesterase (cGI PDE) or PDE III. A number of positive inotropic agents, including the well-known milrinone, display a specific inhibition of PDE III as primary mechanism of action. Recent studies have been carried out to develop a pharmacophore model of the PDE III active site. We therefore performed molecular modelling and 3D-SAR studies so as to better define structural requirements for potent and selective enzymatic inhibition. The DISCO (DIStance COmparison) strategy has been applied on a set of compounds taken from literature and a milrinone analogue previously synthesized by us, all of which are characterized by a marked inotropic effect but with varying degrees of enzyme selectivity. A common pharmacophoric model was derived, validated and considered as starting point to perform a 3D-SAR study using the GRID force field and PCA (Principal Component Analysis) with the aim of rationally designing more selective inhibitors. This paper presents the results of this theoretical approach.

  20. A strong support-effect on the catalytic activity of gold nanoparticles for hydrogen peroxide decomposition.

    PubMed

    Naya, Shin-ichi; Teranishi, Miwako; Kimura, Keisuke; Tada, Hiroaki

    2011-03-21

    Catalytic activity of gold nanoparticle (NP)-loaded metal oxide semiconductors (Au/MOs) for H(2)O(2) decomposition and chemoselective oxidation of cinnamyl alcohol to cinnamaldehyde strongly depends on both the kind of the MO-supports and the Au particle size, and Au/SrTiO(3) exhibits an extraordinary high level of activity for the H(2)O(2) decomposition exceeding that of Pt/TiO(2).

  1. Preparation and Catalytic Activity for Aerobic Glucose Oxidation of Crown Jewel Structured Pt/Au Bimetallic Nanoclusters

    PubMed Central

    Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki

    2016-01-01

    Understanding of the “structure-activity” relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au3+ ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size. PMID:27476577

  2. Preparation and Catalytic Activity for Aerobic Glucose Oxidation of Crown Jewel Structured Pt/Au Bimetallic Nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki

    2016-08-01

    Understanding of the “structure-activity” relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au3+ ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size.

  3. Role of hydroxyl groups on the stability and catalytic activity of Au clusters on rutile surface

    SciTech Connect

    Kent, Paul R

    2011-01-01

    Hydroxyls are present as surface terminations of transition metal oxides under ambient conditions and may modify the properties of supported catalysts. We perform first-principles density functional theory calculations to investigate the role of hydroxyls on the catalytic activity of supported gold clusters on TiO{sub 2} (rutile). We find that they have a long-range effect increasing the adhesion of gold clusters on rutile. While hydroxyls make one gold atom more electronegative, a more complex charge-transfer scenario is observed on larger clusters which are important for catalytic applications. This enhances the molecular adsorption and coadsorption energies of CO and O{sub 2}, thereby increasing the catalytic activity of gold clusters for CO oxidation, consistent with reported experiments. Hydroxyls at the interface between gold and rutile surface are most important to this process, even when not directly bound to gold. As such, accurate models of catalytic processes on gold and other catalysts should include the effect of surface hydroxyls.

  4. An ultra-low Pd loading nanocatalyst with efficient catalytic activity

    NASA Astrophysics Data System (ADS)

    Jin, Yunxia; Xi, Jiangbo; Zhang, Zheye; Xiao, Junwu; Xiao, Fei; Qian, Lihua; Wang, Shuai

    2015-03-01

    An ultra-low Pd loading nanocatalyst is synthesized by a convenient solution route of photochemical reduction and aqueous chemical growth. The modification of nanocatalyst structures is investigated through changing morphologies of Pd nanoclusters on the surface of ZnO nanorods. A significant enhancement in photocatalytic properties has been achieved by decorating a trace amount of Pd clusters (0.05 at%) on the surface of ZnO nanorods. The reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) is applied to demonstrate multiple catalytic activities in the Pd-ZnO hybrid nanocatalyst, which also provides a better understanding of the relationship between the unique nanoconfigured structure and catalytic performance.An ultra-low Pd loading nanocatalyst is synthesized by a convenient solution route of photochemical reduction and aqueous chemical growth. The modification of nanocatalyst structures is investigated through changing morphologies of Pd nanoclusters on the surface of ZnO nanorods. A significant enhancement in photocatalytic properties has been achieved by decorating a trace amount of Pd clusters (0.05 at%) on the surface of ZnO nanorods. The reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) is applied to demonstrate multiple catalytic activities in the Pd-ZnO hybrid nanocatalyst, which also provides a better understanding of the relationship between the unique nanoconfigured structure and catalytic performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00599j

  5. Reconstitution of active catalytic trimer of aspartate transcarbamoylase from proteolytically cleaved polypeptide chains.

    PubMed Central

    Powers, V. M.; Yang, Y. R.; Fogli, M. J.; Schachman, H. K.

    1993-01-01

    Treatment of the catalytic (C) trimer of Escherichia coli aspartate transcarbamoylase (ATCase) with alpha-chymotrypsin by a procedure similar to that used by Chan and Enns (1978, Can. J. Biochem. 56, 654-658) has been shown to yield an intact, active, proteolytically cleaved trimer containing polypeptide fragments of 26,000 and 8,000 MW. Vmax of the proteolytically cleaved trimer (CPC) is 75% that of the wild-type C trimer, whereas Km for aspartate and Kd for the bisubstrate analog, N-(phosphonacetyl)-L-aspartate, are increased about 7- and 15-fold, respectively. CPC trimer is very stable to heat denaturation as shown by differential scanning microcalorimetry. Amino-terminal sequence analyses as well as results from electrospray ionization mass spectrometry indicate that the limited chymotryptic digestion involves the rupture of only a single peptide bond leading to the production of two fragments corresponding to residues 1-240 and 241-310. This cleavage site involving the bond between Tyr 240 and Ala 241 is in a surface loop known to be involved in intersubunit contacts between the upper and lower C trimers in ATCase when it is in the T conformation. Reconstituted holoenzyme comprising two CPC trimers and three wild-type regulatory (R) dimers was shown by enzyme assays to be devoid of the homotropic and heterotropic allosteric properties characteristic of wild-type ATCase. Moreover, sedimentation velocity experiments demonstrate that the holoenzyme reconstituted from CPC trimers is in the R conformation. These results indicate that the intact flexible loop containing Tyr 240 is essential for stabilizing the T conformation of ATCase. Following denaturation of the CPC trimer in 4.7 M urea and dilution of the solution, the separate proteolytic fragments re-associate to form active trimers in about 60% yield. How this refolding of the fragments, docking, and association to form trimers are achieved is not known. PMID:8318885

  6. The doping effect on the catalytic activity of graphene for oxygen evolution reaction in a lithium-air battery: a first-principles study.

    PubMed

    Ren, Xiaodong; Wang, Beizhou; Zhu, Jinzhen; Liu, Jianjun; Zhang, Wenqing; Wen, Zhaoyin

    2015-06-14

    A lithium-air battery as an energy storage technology can be used in electric vehicles due to its large energy density. However, its poor rate capability, low power density and large overpotential problems limit its practical usage. In this paper, the first-principles thermodynamic calculations were performed to study the catalytic activity of X-doped graphene (X = B, N, Al, Si, and P) materials as potential cathodes to enhance charge reactions in a lithium-air battery. Among these materials, P-doped graphene exhibits the highest catalytic activity in reducing the charge voltage by 0.25 V, while B-doped graphene has the highest catalytic activity in decreasing the oxygen evolution barrier by 0.12 eV. By combining these two catalytic effects, B,P-codoped graphene was demonstrated to have an enhanced catalytic activity in reducing the O2 evolution barrier by 0.70 eV and the charge voltage by 0.13 V. B-doped graphene interacts with Li2O2 by Li-sited adsorption in which the electron-withdrawing center can enhance charge transfer from Li2O2 to the substrate, facilitating reduction of O2 evolution barrier. In contrast, X-doped graphene (X = N, Al, Si, and P) prefers O-sited adsorption toward Li2O2, forming a X-O2(2-)···Li(+) interface structure between X-O2(2-) and the rich Li(+) layer. The active structure of X-O2(2-) can weaken the surrounding Li-O2 bonds and significantly reduce Li(+) desorption energy at the interface. Our investigation is helpful in developing a novel catalyst to enhance oxygen evolution reaction (OER) in Li-air batteries.

  7. Catalytic activity enhancement by thermal treatment and re-swelling process of natural containing iron-clay for Fenton oxidation.

    PubMed

    Ausavasukhi, Artit; Sooknoi, Tawan

    2014-12-15

    In this research, catalytic activity of the modified natural containing Fe-clay, Fenton-like catalyst, toward successful decolorization of methylene blue (MB) and degradation of phenol (PhOH) was demonstrated. Among the natural containing Fe-clay prepared only by thermal treatment, the sample treated at 500°C provides a high Fenton oxidation activity presumably due to high number of available Fe active sites. However, the efficient use of treated natural containing Fe-clay is restricted due to the loss in BET surface area during thermal treatment process. Interestingly, modification by the thermal treatment and subsequent re-swelling cannot only generate the active Fe species, but also enhance the basal space that facilitates diffusion of the reagents toward the active sites within the clay layers. It is expected that the active Fe species formed and retained by thermal treatment and re-swelling process which is on the surface of the catalyst reacts with hydrogen peroxide and leads to the formation of active oxidant that remove the MB and PhOH.

  8. Structure and nuclearity of active sites in Fe-zeolites: comparison with iron sites in enzymes and homogeneous catalysts.

    PubMed

    Zecchina, Adriano; Rivallan, Mickaël; Berlier, Gloria; Lamberti, Carlo; Ricchiardi, Gabriele

    2007-07-21

    Fe-ZSM-5 and Fe-silicalite zeolites efficiently catalyse several oxidation reactions which find close analogues in the oxidation reactions catalyzed by homogeneous and enzymatic compounds. The iron centres are highly dispersed in the crystalline matrix and on highly diluted samples, mononuclear and dinuclear structures are expected to become predominant. The crystalline and robust character of the MFI framework has allowed to hypothesize that the catalytic sites are located in well defined crystallographic positions. For this reason these catalysts have been considered as the closest and best defined heterogeneous counterparts of heme and non heme iron complexes and of Fenton type Fe(2+) homogeneous counterparts. On this basis, an analogy with the methane monooxygenase has been advanced several times. In this review we have examined the abundant literature on the subject and summarized the most widely accepted views on the structure, nuclearity and catalytic activity of the iron species. By comparing the results obtained with the various characterization techniques, we conclude that Fe-ZSM-5 and Fe-silicalite are not the ideal samples conceived before and that many types of species are present, some active and some other silent from adsorptive and catalytic point of view. The relative concentration of these species changes with thermal treatments, preparation procedures and loading. Only at lowest loadings the catalytically active species become the dominant fraction of the iron species. On the basis of the spectroscopic titration of the active sites by using NO as a probe, we conclude that the active species on very diluted samples are isolated and highly coordinatively unsaturated Fe(2+) grafted to the crystalline matrix. Indication of the constant presence of a smaller fraction of Fe(2+) presumably located on small clusters is also obtained. The nitrosyl species formed upon dosing NO from the gas phase on activated Fe-ZSM-5 and Fe-silicalite, have been analyzed

  9. Comparative catalytic activity of PET track-etched membranes with embedded silver and gold nanotubes

    NASA Astrophysics Data System (ADS)

    Mashentseva, Anastassiya; Borgekov, Daryn; Kislitsin, Sergey; Zdorovets, Maxim; Migunova, Anastassiya

    2015-12-01

    Irradiated by heavy ions nanoporous polyethylene terephthalate track-etched membranes (PET TeMs) after +15Kr84 ions bombardment (1.75 MeV/nucl with the ion fluency of 1 × 109 cm-2) and sequential etching was applied in this research as a template for development of composites with catalytically enriched properties. A highly ordered silver and gold nanotubes arrays were embedded in 100 nm pores of PET TeMs via electroless deposition technique at 4 °C during 1 h. All "as-prepared" composites were examined for catalytic activity using reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride as a common reaction to test metallic nanostructures catalysts. The effect of temperature on the catalytic activity was investigated in range of 292-313 K and activation energy were calculated. Kapp of Ag/PET composites linearly increase with an increase of the temperature thus normal Arrhenius behavior have been seen and the activation energy was calculated to be 42.13 kJ/mol. Au/PET composites exhibit not only more powerful catalytic activity but also non-linear dependence of rate constant from temperature. Kapp increased with increasing temperature throughout the 292-308 K temperature range; the reaction had an activation energy 65.32 kJ/mol. In range 311-313 K rate constant dramatically decreased and the apparent activation energy at this temperature rang was -91.44 kJ/mol due some structural changes, i.e. agglomeration of Au nanoparticles on the surface of composite.

  10. Dual Role of Zirconium Oxoclusters in Hybrid Nanoparticles: Cross-Linkers and Catalytic Sites.

    PubMed

    Benedetti, Cesare; Cazzolaro, Alessandro; Carraro, Mauro; Graf, Robert; Landfester, Katharina; Gross, Silvia; Muñoz-Espí, Rafael

    2016-10-05

    Organic-inorganic hybrid nanoparticles are prepared by free-radical copolymerization of methyl methacrylate (MMA) with the structurally well-defined methacrylate-functionalized zirconium oxocluster Zr4O2(methacrylate)12. The polymerization process occurs in the confined space of miniemulsion droplets. The formation of covalent chemical bonds between the organic and the inorganic counterparts improves the distribution of the guest species (oxoclusters) in the polymer particles, overcoming problems related to migration, leaching, and stability. Because of the presence of a high number of double bonds (12 per oxocluster), the oxoclusters act as efficient cross-linking units for the resulting polymer matrix, thus ruling its swelling behavior in organic solvents. The synthesized hybrid nanostructures are applied as heterogeneous systems in the catalytic oxidation of an organic sulfide to the corresponding sulfoxide and sulfone by hydrogen peroxide, displaying quantitative sulfide conversion in 4-24 h, with overall turnover numbers (TON) up to 8000 after 4 cycles.

  11. Stability and phase transfer of catalytically active platinum nanoparticle suspensions

    NASA Astrophysics Data System (ADS)

    Sriram, Indira; Curtin, Alexandra E.; Chiaramonti, Ann N.; Cuchiaro, J. Hunter; Weidner, Andrew R.; Tingley, Tegan M.; Greenlee, Lauren F.; Jeerage, Kavita M.

    2015-05-01

    In this work, we present a robust synthesis protocol for platinum nanoparticles that yields a monomodal dispersion of particles that are approximately 100 nm in diameter. We determine that these particles are actually agglomerates of much smaller particles, creating a "raspberry" morphology. We demonstrate that these agglomerates are stable at room temperature for at least 8 weeks by dynamic light scattering. Furthermore, we demonstrate consistent electrocatalytic activity for methanol oxidation. Finally, we quantitatively explore the relationship between dispersion solvent and particle agglomeration; specifically, particles are found to agglomerate abruptly as solvent polarity decreases.

  12. Mechanism of activation of elongation factor Tu by ribosome: catalytic histidine activates GTP by protonation.

    PubMed

    Aleksandrov, Alexey; Field, Martin

    2013-09-01

    Elongation factor Tu (EF-Tu) is central to prokaryotic protein synthesis as it has the role of delivering amino-acylated tRNAs to the ribosome. Release of EF-Tu, after correct binding of the EF-Tu:aa-tRNA complex to the ribosome, is initiated by GTP hydrolysis. This reaction, whose mechanism is uncertain, is catalyzed by EF-Tu, but requires activation by the ribosome. There have been a number of mechanistic proposals, including those spurred by a recent X-ray crystallographic analysis of a ribosome:EF-Tu:aa-tRNA:GTP-analog complex. In this work, we have investigated these and alternative hypotheses, using high-level quantum chemical/molecular mechanical simulations for the wild-type protein and its His85Gln mutant. For both proteins, we find previously unsuggested mechanisms as being preferred, in which residue 85, either His or Gln, directly assists in the reaction. Analysis shows that the RNA has a minor catalytic effect in the wild-type reaction, but plays a significant role in the mutant by greatly stabilizing the reaction's transition state. Given the similarity between EF-Tu and other members of the translational G-protein family, it is likely that these mechanisms of ribosome-activated GTP hydrolysis are pertinent to all of these proteins.

  13. Factor IX Amagasaki: A new mutation in the catalytic domain resulting in the loss of both coagulant and esterase activities

    SciTech Connect

    Miyata, Toshiyuki; Iwanaga, Sadaaki ); Sakai, Toshiyuki; Sugimoto, Mitsuhiko; Naka, Hiroyuki; Yamamoto, Kazukuni; Yoshioka, Akira; Fukui, Hiromu ); Mitsui, Kotoko; Kamiya, Kensyu; Umeyama, Hideaki )

    1991-11-26

    Factor IX Amagasaki (AMG) is a naturally occurring mutant of factor IX having essentially no coagulant activity, even though normal levels of antigen are detected in plasma. Factor IX AMG was purified from the patient's plasma by immunoaffinity chromatography with an anti-factor IX monoclonal antibody column. Factor IX AMG was cleaved normally by factor VIIa-tissue factor complex, yielding a two-chain factor IXa. Amino acid composition and sequence analysis of one of the tryptic peptides isolated from factor IX AMG revealed that Gly-311 had been replaced by Glu. The authors identified a one-base substitution of guanine to adenine in exon VIII by amplifying exon VIII using the polymerase chain reaction method and sequencing the product. This base mutation also supported the replacement of Gly-311 by Glu. In the purified system, factor IXa AMG did not activate for factor X in the presence of factor VIII, phospholipids, and Ca{sup 2+}, and no esterase activity toward Z-Arg-p-nitrobenzyl ester was observed. The model building of the serine protease domain of factor IXa suggests that the Gly-311 {yields} Glu exchange would disrupt the specific conformational state in the active site environment, resulting in the substrate binding site not forming properly. This is the first report to show the experimental evidence for importance of a highly conserved Gly-142 (chymotrypsinogen numbering) located in the catalytic site of mammalian serine proteases so far known.

  14. Quantitative and Temporal Requirements Revealed for Zap-70 Catalytic Activity During T Cell Development

    PubMed Central

    Au-Yeung, Byron B.; Melichar, Heather J.; Ross, Jenny O.; Cheng, Debra A.; Zikherman, Julie; Shokat, Kevan M.; Robey, Ellen A.; Weiss, Arthur

    2014-01-01

    The catalytic activity of Zap-70 is crucial for T cell receptor (TCR) signaling, but the quantitative and temporal requirements for its function in thymocyte development are not known. Using a chemical-genetic system to selectively and reversibly inhibit Zap-70 catalytic activity in a model of synchronized thymic selection, we showed that CD4+CD8+ thymocytes integrate multiple, transient, Zap-70-dependent signals over more than 36 h to reach a cumulative threshold for positive selection, whereas one hour of signaling was sufficient for negative selection. Titration of Zap-70 activity resulted in graded reductions in positive and negative selection but did not decrease the cumulative TCR signals integrated by positively selected OT-I cells, revealing heterogeneity, even among CD4+CD8+ thymocytes expressing identical TCRs undergoing positive selection. PMID:24908390

  15. Ethanol Electro-Oxidation on Ternary Platinum–Rhodium–Tin Nanocatalysts: Insights in the Atomic 3D Structure of the Active Catalytic Phase

    SciTech Connect

    Erini, Nina; Loukrakpam, Rameshwori; Petkov, Valeri; Baranova, Elena A.; Yang, Ruizhi; Teschner, Detre; Huang, Yunhui; Brankovic, Stanko R.; Strasser, Peter

    2014-04-25

    Novel insights in the synthesis–structure–catalytic activity relationships of nanostructured trimetallic Pt–Rh–Sn electrocatalysts for the electrocatalytic oxidation of ethanol are reported. In particular, we identify a novel single-phase Rh-doped Pt–Sn Niggliite mineral phase as the source of catalytically active sites for ethanol oxidation; we discuss its morphology, composition, chemical surface state, and the detailed 3D atomic arrangement using high-energy (HE-XRD), atomic pair distribution function (PDF) analysis, and X-ray photoelectron spectroscopy (XPS). The intrinsic ethanol oxidation activity of the active Niggliite phase exceeded those of earlier reports, lending support to the notion that the atomic-scale neighborhood of Pt, Rh, and Sn is conducive to the emergence of active surface catalytic sites under reaction conditions. In situ mechanistic Fourier transform infrared (in situ FTIR) analysis confirms an active 12 electron oxidation reaction channel to CO2 at electrode potentials as low as 450 mV/RHE, demonstrating the favorable efficiency of the PtRhSn Niggliite phase for C–C bond splitting.

  16. E. coli histidine triad nucleotide binding protein 1 (ecHinT) is a catalytic regulator of D-alanine dehydrogenase (DadA) activity in vivo.

    PubMed

    Bardaweel, Sanaa; Ghosh, Brahma; Chou, Tsui-Fen; Sadowsky, Michael J; Wagner, Carston R

    2011-01-01

    Histidine triad nucleotide binding proteins (Hints) are highly conserved members of the histidine triad (HIT) protein superfamily. Hints comprise the most ancient branch of this superfamily and can be found in Archaea, Bacteria, and Eukaryota. Prokaryotic genomes, including a wide diversity of both gram-negative and gram-positive bacteria, typically have one Hint gene encoded by hinT (ycfF in E. coli). Despite their ubiquity, the foundational reason for the wide-spread conservation of Hints across all kingdoms of life remains a mystery. In this study, we used a combination of phenotypic screening and complementation analyses with wild-type and hinT knock-out Escherichia coli strains to show that catalytically active ecHinT is required in E. coli for growth on D-alanine as a sole carbon source. We demonstrate that the expression of catalytically active ecHinT is essential for the activity of the enzyme D-alanine dehydrogenase (DadA) (equivalent to D-amino acid oxidase in eukaryotes), a necessary component of the D-alanine catabolic pathway. Site-directed mutagenesis studies revealed that catalytically active C-terminal mutants of ecHinT are unable to activate DadA activity. In addition, we have designed and synthesized the first cell-permeable inhibitor of ecHinT and demonstrated that the wild-type E. coli treated with the inhibitor exhibited the same phenotype observed for the hinT knock-out strain. These results reveal that the catalytic activity and structure of ecHinT is essential for DadA function and therefore alanine metabolism in E. coli. Moreover, they provide the first biochemical evidence linking the catalytic activity of this ubiquitous protein to the biological function of Hints in Escherichia coli.

  17. Effect of A-site deficiency in LaMn{sub 0.9}Co{sub 0.1}O{sub 3} perovskites on their catalytic performance for soot combustion

    SciTech Connect

    Dinamarca, Robinson; Garcia, Ximena; Jimenez, Romel; Fierro, J.L.G.; Pecchi, Gina

    2016-09-15

    Highlights: • A-site defective perovskites increases the oxidation state of the B-cation. • Not always non-stoichiometric perovskites exhibit higher catalytic activity in soot combustion. • The highly symmetric cubic crystalline structure diminishes the redox properties of perovskites. - Abstract: The influence of lanthanum stoichiometry in Ag-doped (La{sub 1-x}Ag{sub x}Mn{sub 0.9}Co{sub 0.1}O{sub 3}) and A-site deficient (La{sub 1-x}Mn{sub 0.9}Co{sub 0.1}O{sub 3-δ}) perovskites with x equal to 10, 20 and 30 at.% has been investigated in catalysts for soot combustion. The catalysts were prepared by the amorphous citrate method and characterized by XRD, nitrogen adsorption, XPS, O{sub 2}-TPD and TPR. The formation of a rhombohedral excess-oxygen perovskite for Ag-doped and a cubic perovskite structure for an A-site deficient series is confirmed. The efficient catalytic performance of the larger Ag-doped perovskite structure is attributed to the rhombohedral crystalline structure, Ag{sub 2}O segregated phases and the redox pair Mn{sup 4+}/Mn{sup 3+}. A poor catalytic activity for soot combustion was observed with A-site deficient perovskites, despite the increase in the redox pair Mn{sup 4+}/Mn{sup 3+}, which is attributed to the cubic crystalline structure.

  18. Human platelet heparanase: purification, characterization and catalytic activity.

    PubMed Central

    Freeman, C; Parish, C R

    1998-01-01

    Heparan sulphate (HS) is an important component of the extracellular matrix (ECM) and the vasculature basal lamina (BL) which functions as a barrier to the extravasation of metastatic and inflammatory cells. Platelet-tumour cell aggregation at the capillary endothelium results in activation and degranulation of platelets. Cleavage of HS by endoglycosidase or heparanase activity produced in relatively large amounts by the platelets and the invading cells may assist in the disassembly of the ECM and BL, and thereby facilitate cell migration. Using a recently published rapid, quantitative assay for heparanase activity towards HS [Freeman, C. and Parish, C.R. (1997), Biochem. J., 325, 229-237], human platelet heparanase has now been purified 1700-fold to homogeneity in 19% yield by a five column procedure, which consists of concanavalin A-Sepharose, Zn2+-chelating-Sepharose, Blue A-agarose, octyl-agarose and gel filtration chromatography. The enzyme, which was shown to be an endoglucuronidase that degrades both heparin and HS, has a native molecular mass of 50 kDa when analysed by gel filtration chromatography and by SDS/PAGE. Platelet heparanase degraded porcine mucosal HS in a stepwise fashion from a number average molecular mass of 18.5 to 13, to 8 and finally to 4.5 kDa fragments as determined by gel filtration analysis. Bovine lung heparin was degraded from 8.9 to 4.8 kDa while porcine mucosal heparin was degraded from 8.1 kDa to 3.8 and finally to 2.9 kDa fragments. Studies of the enzyme's substrate specificity using modified heparin analogues showed that substrate cleavage required the presence of carboxyl groups, but O- and N-sulphation were not essential. Inhibition studies demonstrated an absolute requirement for the presence of O-sulphate groups. Platelet heparanase was inhibited by heparin analogues which also inhibited tumour heparanase, suggesting that sulphated polysaccharides which inhibit tumour metastasis may act to prevent both tumour cell and

  19. Polymeric enzyme mimics: catalytic activity of ribose-containing polymers for a phosphate substrate.

    PubMed

    Han, Man Jung; Yoo, Kyung Soo; Kim, Young Heui; Chang, Ji Young

    2003-07-07

    The polymers containing ribose rings: poly(5'-acrylamido-5'-deoxy-1',2'-O-isopropylidene-alpha-D-ribose) (11), poly(5'-acrylamido-5'-deoxy-alpha-D-ribose) (12) and poly(5'-acrylamido-5'-deoxy-1'-O-methyl-D-ribose) (13) were prepared as enzyme mimics. Polymers 12 and 13 with free vic-cis-diol groups catalyzed the hydrolysis of phosphodiester (ethyl p-nitrophenyl phosphate and N-methylpyridinium 4-tert-butylcatechol cyclic phosphate) and phosphomonoester substrates with a rate acceleration of 10 approximately equal to 10(3) compared with the uncatalyzed reaction. They also catalyzed the reverse reactions, i.e., the esterification of phosphomonoester to phosphodiester and the phosphorylation of alcohols with phosphate ions. The catalytic activity was attributable to the vic-cis-diols of riboses on polymer chains, which formed hydrogen bonds with two phosphoryl oxygen atoms of phosphates so as to activate the phosphorus atoms to be attacked by nucleophiles. The catalytic activity was negligible for polymer 11 where vic-cis-diol groups were blocked with isopropylidene groups. The catalytic activity was attributable to the vic-cis-diols of riboses on polymer chains, which formed hydrogen bonds with two phosphoryl oxygen atoms of phosphates so as to activate the phosphorus atoms to be attacked by nucleophiles.

  20. Development of high catalytic activity disordered hydrogen-storage alloys for electrochemical application in nickel-metal hydride batterie

    NASA Astrophysics Data System (ADS)

    Ovshinsky, S. R.; Fetcenko, M. A.

    2001-04-01

    Multi-element, multiphase disordered metal hydride alloys have enabled the widespread commercialization of nickel-metal hydride (NiMH) batteries by allowing high capacity and good kinetics while overcoming the crucial barrier of unstable oxidation/corrosion behavior to obtain long cycle life. Alloy-formula optimization and advanced materials processing have been used to promote a high concentration of active hydrogen-storage sites vital for raising NiMH specific energy. New commercial applications demand fundamentally higher specific power and discharge-rate kinetics. Disorder at the metal/electrolyte interface has enabled a surface oxide with less than 70 Å metallic nickel alloy inclusions suspended within the oxide, which provide exceptional catalytic activity to the metal hydride electrode surface.

  1. Al-doped TiO2 mesoporous material supported Pd with enhanced catalytic activity for complete oxidation of ethanol

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Mu, Wentao; Su, Liqing; Li, Xingying; Guo, Yuyu; Zhang, Shen; Li, Zhe

    2017-04-01

    Pd catalysts supported on Al-doped TiO2 mesoporous materials were evaluated in complete oxidation of ethanol. The catalysts synthesized by wet impregnation based on evaporation-induced self-assembly were characterized by X-ray diffraction, measurement of pore structure, XPS, FT-IR, temperature programmed reduction and TEM. Characteristic results showed that the aluminium was doped into the lattice of mesoporous anatase TiO2 to form Al-O-Ti defect structure. Catalytic results revealed that Al-doped catalysts were much more active than the pristine one, especially at low temperature (≤200 °C). This should be ascribed to the introduction of aluminium ions that suppressed the strong metal-support interaction and increased the active sites of Pd oxides, enhanced the stabilized anatase TiO2, improved well dispersed high valence palladium species with high reducibility and enriched chemisorption oxygen.

  2. Characterization of the active site of ADP-ribosyl cyclase.

    PubMed

    Munshi, C; Thiel, D J; Mathews, I I; Aarhus, R; Walseth, T F; Lee, H C

    1999-10-22

    ADP-ribosyl cyclase synthesizes two Ca(2+) messengers by cyclizing NAD to produce cyclic ADP-ribose and exchanging nicotinic acid with the nicotinamide group of NADP to produce nicotinic acid adenine dinucleotide phosphate. Recombinant Aplysia cyclase was expressed in yeast and co-crystallized with a substrate, nicotinamide. x-ray crystallography showed that the nicotinamide was bound in a pocket formed in part by a conserved segment and was near the central cleft of the cyclase. Glu(98), Asn(107) and Trp(140) were within 3.5 A of the bound nicotinamide and appeared to coordinate it. Substituting Glu(98) with either Gln, Gly, Leu, or Asn reduced the cyclase activity by 16-222-fold, depending on the substitution. The mutant N107G exhibited only a 2-fold decrease in activity, while the activity of W140G was essentially eliminated. The base exchange activity of all mutants followed a similar pattern of reduction, suggesting that both reactions occur at the same active site. In addition to NAD, the wild-type cyclase also cyclizes nicotinamide guanine dinucleotide to cyclic GDP-ribose. All mutant enzymes had at least half of the GDP-ribosyl cyclase activity of the wild type, some even 2-3-fold higher, indicating that the three coordinating amino acids are responsible for positioning of the substrate but not absolutely critical for catalysis. To search for the catalytic residues, other amino acids in the binding pocket were mutagenized. E179G was totally devoid of GDP-ribosyl cyclase activity, and both its ADP-ribosyl cyclase and the base exchange activities were reduced by 10,000- and 18,000-fold, respectively. Substituting Glu(179) with either Asn, Leu, Asp, or Gln produced similar inactive enzymes, and so was the conversion of Trp(77) to Gly. However, both E179G and the double mutant E179G/W77G retained NAD-binding ability as shown by photoaffinity labeling with [(32)P]8-azido-NAD. These results indicate that both Glu(179) and Trp(77) are crucial for catalysis and

  3. When ruthenia met titania: Achieving extraordinary catalytic activity at low temperature by nanostructuring of oxides

    DOE PAGES

    Graciani, J.; Stacchiola, D.; Yang, F.; ...

    2015-09-09

    Nanostructured RuOx/TiO2(110) catalysts have a remarkable catalytic activity for CO oxidation at temperatures in the range of 350–375 K. Furthermore, the RuO2(110) surface has no activity. The state-of-the-art DFT calculations indicate that the main reasons for such an impressive improvement in the catalytic activity are: (i) a decrease of the diffusion barrier of adsorbed O atoms by around 40%, from 1.07 eV in RuO2(110) to 0.66 eV in RuOx/TiO2(110), which explains the shift of the activity to lower temperatures and (ii) a lowering of the barrier by 20% for the association of adsorbed CO and O species to give CO2more » (the main barrier for the CO oxidation reaction) passing from around 0.7 eV in RuO2(110) to 0.55 eV in RuOx/TiO2(110). We show that the catalytic properties of ruthenia are strongly modified when supported as nanostructures on titania, attaining higher activity at temperatures 100 K lower than that needed for pure ruthenia. As in other systems consisting of ceria nanostructures supported on titania, nanostructured ruthenia shows strongly modified properties compared to the pure oxide, consolidating the fact that the nanostructuring of oxides is a main way to attain higher catalytic activity at lower temperatures.« less

  4. When ruthenia met titania: Achieving extraordinary catalytic activity at low temperature by nanostructuring of oxides

    SciTech Connect

    Graciani, J.; Stacchiola, D.; Yang, F.; Evans, J.; Vidal, A. B.; Rodriguez, J. A.; Sanz, J. F.

    2015-09-09

    Nanostructured RuOx/TiO2(110) catalysts have a remarkable catalytic activity for CO oxidation at temperatures in the range of 350–375 K. Furthermore, the RuO2(110) surface has no activity. The state-of-the-art DFT calculations indicate that the main reasons for such an impressive improvement in the catalytic activity are: (i) a decrease of the diffusion barrier of adsorbed O atoms by around 40%, from 1.07 eV in RuO2(110) to 0.66 eV in RuOx/TiO2(110), which explains the shift of the activity to lower temperatures and (ii) a lowering of the barrier by 20% for the association of adsorbed CO and O species to give CO2 (the main barrier for the CO oxidation reaction) passing from around 0.7 eV in RuO2(110) to 0.55 eV in RuOx/TiO2(110). We show that the catalytic properties of ruthenia are strongly modified when supported as nanostructures on titania, attaining higher activity at temperatures 100 K lower than that needed for pure ruthenia. As in other systems consisting of ceria nanostructures supported on titania, nanostructured ruthenia shows strongly modified properties compared to the pure oxide, consolidating the fact that the nanostructuring of oxides is a main way to attain higher catalytic activity at lower temperatures.

  5. Bicarbonate Modulates Photoreceptor Guanylate Cyclase (ROS-GC) Catalytic Activity.

    PubMed

    Duda, Teresa; Wen, Xiao-Hong; Isayama, Tomoki; Sharma, Rameshwar K; Makino, Clint L

    2015-04-24

    By generating the second messenger cGMP in retinal rods and cones, ROS-GC plays a central role in visual transduction. Guanylate cyclase-activating proteins (GCAPs) link cGMP synthesis to the light-induced fall in [Ca(2+)]i to help set absolute sensitivity and assure prompt recovery of the response to light. The present report discloses a surprising feature of this system: ROS-GC is a sensor of bicarbonate. Recombinant ROS-GCs synthesized cGMP from GTP at faster rates in the presence of bicarbonate with an ED50 of 27 mM for ROS-GC1 and 39 mM for ROS-GC2. The effect required neither Ca(2+) nor use of the GCAPs domains; however, stimulation of ROS-GC1 was more powerful in the presence of GCAP1 or GCAP2 at low [Ca(2+)]. When applied to retinal photoreceptors, bicarbonate enhanced the circulating current, decreased sensitivity to flashes, and accelerated flash response kinetics. Bicarbonate was effective when applied either to the outer or inner segment of red-sensitive cones. In contrast, bicarbonate exerted an effect when applied to the inner segment of rods but had little efficacy when applied to the outer segment. The findings define a new regulatory mechanism of the ROS-GC system that affects visual transduction and is likely to affect the course of retinal diseases caused by cGMP toxicity.

  6. Bicarbonate Modulates Photoreceptor Guanylate Cyclase (ROS-GC) Catalytic Activity*

    PubMed Central

    Duda, Teresa; Wen, Xiao-Hong; Isayama, Tomoki; Sharma, Rameshwar K.; Makino, Clint L.

    2015-01-01

    By generating the second messenger cGMP in retinal rods and cones, ROS-GC plays a central role in visual transduction. Guanylate cyclase-activating proteins (GCAPs) link cGMP synthesis to the light-induced fall in [Ca2+]i to help set absolute sensitivity and assure prompt recovery of the response to light. The present report discloses a surprising feature of this system: ROS-GC is a sensor of bicarbonate. Recombinant ROS-GCs synthesized cGMP from GTP at faster rates in the presence of bicarbonate with an ED50 of 27 mm for ROS-GC1 and 39 mm for ROS-GC2. The effect required neither Ca2+ nor use of the GCAPs domains; however, stimulation of ROS-GC1 was more powerful in the presence of GCAP1 or GCAP2 at low [Ca2+]. When applied to retinal photoreceptors, bicarbonate enhanced the circulating current, decreased sensitivity to flashes, and accelerated flash response kinetics. Bicarbonate was effective when applied either to the outer or inner segment of red-sensitive cones. In contrast, bicarbonate exerted an effect when applied to the inner segment of rods but had little efficacy when applied to the outer segment. The findings define a new regulatory mechanism of the ROS-GC system that affects visual transduction and is likely to affect the course of retinal diseases caused by cGMP toxicity. PMID:25767116

  7. Engineering the active site of ascorbate peroxidase.

    PubMed

    Lloyd Raven, E; Celik, A; Cullis, P M; Sangar, R; Sutcliffe, M J

    2001-05-01

    Understanding the catalytic versatility of haem enzymes, and in particular the relationships that exist between different classes of haem-containing proteins and the mechanisms by which the apo-protein structure controls chemical reactivity, presents a major experimental and theoretical challenge. These issues are discussed in the general context of peroxidase and cytochrome P450 chemistry, and specific issues relating to the catalytic chemistry of ascorbate peroxidase are highlighted.

  8. Substrate shuttling between active sites of uroporphyrinogen decarboxylase is not required to generate coproporphyrinogen

    PubMed Central

    Phillips, John D.; Warby, Christy A.; Whitby, Frank G.; Kushner, James P.; Hill, Christopher P.

    2009-01-01

    Summary Uroporphyrinogen Decarboxylase (URO-D; EC 4.1.1.37), the fifth enzyme of the heme biosynthetic pathway, is required for the production of heme, vitamin B12, siroheme, and chlorophyll precursors. URO-D catalyzes the sequential decarboxylation of the four acetate side chains on the pyrrole groups of uroporphyrinogen to produce coproporphyrinogen. URO-D is a stable homodimer with the active site clefts of the two subunits adjacent to each other. It has been hypothesized that the two catalytic centers interact functionally, perhaps by shuttling of reaction intermediates between subunits. We tested this hypothesis by construction of a single chain protein (scURO-D) in which the two subunits were connected by a flexible linker. The crystal structure of this protein was shown to be superimposible with wild-type activity and have comparable catalytic activity. Mutations that impaired one or the other of the two active sites of scURO-D resulted in approximately half of wild-type activity. The distribution of reaction intermediates was the same for mutant and wild-type sequences, and was unaltered in a competition experiment using the I and III isomer substrates. These observations indicate that communication between active sites is not required for enzyme function, and suggest that the dimeric structure of URO-D is required to achieve conformational stability and create a large active site cleft. PMID:19362562

  9. Substrate Shuttling Between Active Sites of Uroporphyrinogen Decarboxylase in Not Required to Generate Coproporphyrinogen

    SciTech Connect

    Phillips, J.; Warby, C; Whitby, F; Kushner, J; Hill, C

    2009-01-01

    Uroporphyrinogen decarboxylase (URO-D; EC 4.1.1.37), the fifth enzyme of the heme biosynthetic pathway, is required for the production of heme, vitamin B12, siroheme, and chlorophyll precursors. URO-D catalyzes the sequential decarboxylation of four acetate side chains in the pyrrole groups of uroporphyrinogen to produce coproporphyrinogen. URO-D is a stable homodimer, with the active-site clefts of the two subunits adjacent to each other. It has been hypothesized that the two catalytic centers interact functionally, perhaps by shuttling of reaction intermediates between subunits. We tested this hypothesis by construction of a single-chain protein (single-chain URO-D) in which the two subunits were connected by a flexible linker. The crystal structure of this protein was shown to be superimposable with wild-type activity and to have comparable catalytic activity. Mutations that impaired one or the other of the two active sites of single-chain URO-D resulted in approximately half of wild-type activity. The distributions of reaction intermediates were the same for mutant and wild-type sequences and were unaltered in a competition experiment using I and III isomer substrates. These observations indicate that communication between active sites is not required for enzyme function and suggest that the dimeric structure of URO-D is required to achieve conformational stability and to create a large active-site cleft.

  10. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    SciTech Connect

    Islam, A. E.; Zakharov, D.; Stach, E. A.; Nikoleav, P.; Amama, P. B.; Sargent, G.; Saber, S.; Huffman, D.; Erford, M.; Semiatin, S. L.; Maruyama, B.

    2015-09-16

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only in the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. As a result, with the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.

  11. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    DOE PAGES

    Islam, A. E.; Zakharov, D.; Stach, E. A.; ...

    2015-09-16

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only inmore » the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. As a result, with the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.« less

  12. Chaperones are necessary for the expression of catalytically active potato apyrases in prokaryotic cells.

    PubMed

    Porowińska, Dorota; Czarnecka, Joanna; Komoszyński, Michał

    2014-07-01

    NTPDases (nucleoside triphosphate diphosphohydrolases) (also called in plants apyrases) hydrolyze nucleoside 5'-tri- and/or diphosphate bonds producing nucleosides di or monophosphate and inorganic phosphate. For years, studies have been carried out to use both plant and animal enzymes for medicine. Therefore, there is a need to develop an efficient method for the quick production of large amounts of homogeneous proteins with high catalytic activity. Expression of proteins in prokaryotic cells is the most common way for the protein production. The aim of our study was to develop a method of expression of potato apyrase (StAPY4, 5, and 6) genes in bacterial cells under conditions that allowed the production of catalytically active form of these enzymes. Apyrase 4 and 6 were overexpressed in BL21-CodonPlus (DE3) bacteria strain but they were accumulated in inclusion bodies, regardless of the culture conditions and induction method. Co-expression of potato apyrases with molecular chaperones allowed the expression of catalytically active apyrase 5. However, its high nucleotidase activity could be toxic for bacteria and is therefore synthesized in small amounts in cells. Our studies show that each protein requires other conditions for maturation and even small differences in amino acid sequence can essentially affect protein folding regardless of presence of chaperones.

  13. Enhanced catalytic activity of solid and hollow platinum-cobalt nanoparticles towards reduction of 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Krajczewski, Jan; Kołątaj, Karol; Kudelski, Andrzej

    2016-12-01

    Previous investigations of hollow platinum nanoparticles have shown that such nanostructures are more active catalysts than their solid counterparts towards the following electrochemical reactions: reduction of oxygen, evolution of hydrogen, and oxidation of borohydride, methanol and formic acid. In this work we show that synthesised using standard galvanic replacement reaction (with Co templates) hollow platinum nanoparticles exhibit enhanced catalytic activity also towards reduction of 4-nitrophenol by sodium borohydride in water. Unlike in the case of procedures involving hollow platinum catalysts employed so far to carry out this reaction it is not necessary to couple analysed platinum nanoparticles to the surface of an electrode. Simplification of the analyzed reaction may eliminate same experimental errors. We found that the enhanced catalytic activity of hollow Pt nanoparticles is not only connected with generally observed larger surface area of hollow nanostructures, but is also due to the contamination of formed hollow nanostructures with cobalt, from which sacrificial templates used in the synthesis of hollow Pt nanostrustures have been formed. Because using sacrificial templates is a typical method of synthesis of hollow metal nanostructures, formed hollow nanoparticles are probably often contaminated, which may significantly influence their catalytic activity.

  14. [Mechanism of catalytic ozonation for the degradation of paracetamol by activated carbon].

    PubMed

    Wang, Jia-Yu; Dai, Qi-Zhou; Yu, Jie; Yan, Yi-Zhou; Chen, Jian-Meng

    2013-04-01

    The degradation of paracetamol (APAP) in aqueous solution was studied with ozonation integrated with activated carbon (AC). The synergistic effect of ozonation/AC process was explored by comparing the degradation efficiency of APAP in three processes (ozonation alone, activated carbon alone and ozonation integrated with activated carbon). The operational parameters that affected the reaction rate were carefully optimized. Based on the intermediates detected, the possible pathway for catalytic degradation was discussed and the reaction mechanism was also investigated. The results showed that the TOC removal reached 55.11% at 60 min in the AC/O3 system, and was significantly better than the sum of ozonation alone (20.22%) and activated carbon alone (27.39%), showing the great synergistic effect. And the BOD5/COD ratio increased from 0.086 (before reaction) to 0.543 (after reaction), indicating that the biodegradability was also greatly improved. The effects of the initial concentration of APAP, pH value, ozone dosage and AC dosage on the variation of reaction rate were carefully discussed. The catalytic reaction mechanism was different at different pH values: the organic pollutions were removed by adsorption and direct ozone oxidation at acidic pH, and mainly by catalytic ozonation at alkaline pH.

  15. Enzymatic Detoxication, Conformational Selection, and the Role of Molten Globule Active Sites*

    PubMed Central

    Honaker, Matthew T.; Acchione, Mauro; Zhang, Wei; Mannervik, Bengt; Atkins, William M.

    2013-01-01

    The role of conformational ensembles in enzymatic reactions remains unclear. Discussion concerning “induced fit” versus “conformational selection” has, however, ignored detoxication enzymes, which exhibit catalytic promiscuity. These enzymes dominate drug metabolism and determine drug-drug interactions. The detoxication enzyme glutathione transferase A1–1 (GSTA1–1), exploits a molten globule-like active site to achieve remarkable catalytic promiscuity wherein the substrate-free conformational ensemble is broad with barrierless transitions between states. A quantitative index of catalytic promiscuity is used to compare engineered variants of GSTA1–1 and the catalytic promiscuity correlates strongly with characteristics of the thermodynamic partition function, for the substrate-free enzymes. Access to chemically disparate transition states is encoded by the substrate-free conformational ensemble. Pre-steady state catalytic data confirm an extension of the conformational selection model, wherein different substrates select different starting conformations. The kinetic liability of the conformational breadth is minimized by a smooth landscape. We propose that “local” molten globule behavior optimizes detoxication enzymes. PMID:23649628

  16. ALD Functionalized Nanoporous Gold: Thermal Stability, Mechanical Properties, and Catalytic Activity

    SciTech Connect

    Biener, M M; Biener, J; Wichmann, A; Wittstock, A; Baumann, T F; Baeumer, M; Hamza, A V

    2011-03-24

    Nanoporous metals have many technologically promising applications but their tendency to coarsen limits their long-term stability and excludes high temperature applications. Here, we demonstrate that atomic layer deposition (ALD) can be used to stabilize and functionalize nanoporous metals. Specifically, we studied the effect of nanometer-thick alumina and titania ALD films on thermal stability, mechanical properties, and catalytic activity of nanoporous gold (np-Au). Our results demonstrate that even only one-nm-thick oxide films can stabilize the nanoscale morphology of np-Au up to 1000 C, while simultaneously making the material stronger and stiffer. The catalytic activity of np-Au can be drastically increased by TiO{sub 2} ALD coatings. Our results open the door to high temperature sensor, actuator, and catalysis applications and functionalized electrodes for energy storage and harvesting applications.

  17. An improved d-band model of the catalytic activity of magnetic transition metal surfaces

    PubMed Central

    Bhattacharjee, Satadeep; Waghmare, Umesh V.; Lee, Seung-Cheol

    2016-01-01

    The d-band center model of Hammer and Nørskov is widely used in understanding and predicting catalytic activity on transition metal (TM) surfaces. Here, we demonstrate that this model is inadequate for capturing the complete catalytic activity of the magnetically polarized TM surfaces and propose its generalization. We validate the generalized model through comparison of adsorption energies of the NH3 molecule on the surfaces of 3d TMs (V, Cr, Mn, Fe, Co, Ni, Cu and Zn) determined with spin-polarized density functional theory (DFT)-based methods with the predictions of our model. Compared to the conventional d-band model, where the nature of the metal-adsorbate interaction is entirely determined through the energy and the occupation of the d-band center, we emphasize that for the surfaces with high spin polarization, the metal-adsorbate system can be stabilized through a competition of the spin-dependent metal-adsorbate interactions. PMID:27808100

  18. An improved d-band model of the catalytic activity of magnetic transition metal surfaces

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Satadeep; Waghmare, Umesh V.; Lee, Seung-Cheol

    2016-11-01

    The d-band center model of Hammer and Nørskov is widely used in understanding and predicting catalytic activity on transition metal (TM) surfaces. Here, we demonstrate that this model is inadequate for capturing the complete catalytic activity of the magnetically polarized TM surfaces and propose its generalization. We validate the generalized model through comparison of adsorption energies of the NH3 molecule on the surfaces of 3d TMs (V, Cr, Mn, Fe, Co, Ni, Cu and Zn) determined with spin-polarized density functional theory (DFT)-based methods with the predictions of our model. Compared to the conventional d-band model, where the nature of the metal-adsorbate interaction is entirely determined through the energy and the occupation of the d-band center, we emphasize that for the surfaces with high spin polarization, the metal-adsorbate system can be stabilized through a competition of the spin-dependent metal-adsorbate interactions.

  19. Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging.

    PubMed

    He, Weiwei; Zhou, Yu-Ting; Wamer, Wayne G; Hu, Xiaona; Wu, Xiaochun; Zheng, Zhi; Boudreau, Mary D; Yin, Jun-Jie

    2013-01-01

    Gold nanoparticles have received a great deal of interest due to their unique optical and catalytic properties and biomedical applications. Developing applications as well as assessing associated risks requires an understanding of the interactions between Au nanoparticles (NPs) and biologically active substances. In this paper, electron spin resonance spectroscopy (ESR) was used to investigate the catalytic activity of Au NPs in biologically relevant reactions. We report here that Au NPs can catalyze the rapid decomposition of hydrogen peroxide. Decomposition of hydrogen peroxide is accompanied by the formation of hydroxyl radicals at lower pH and oxygen at higher pH. In addition, we found that, mimicking SOD, Au NPs efficiently catalyze the decomposition of superoxide. These results demonstrate that Au NPs can act as SOD and catalase mimetics. Since reactive oxygen species are biologically relevant products being continuously generated in cells, these results obtained under conditions resembling different biological microenvironments may provide insights for evaluating risks associated with Au NPs.

  20. High catalytic activity of anatase titanium dioxide for decomposition of electrolyte solution in lithium ion battery

    NASA Astrophysics Data System (ADS)

    Liu, Ming; He, Yan-Bing; Lv, Wei; Zhang, Chen; Du, Hongda; Li, Baohua; Yang, Quan-Hong; Kang, Feiyu

    2014-12-01

    It has been indicated that anatase TiO2 is a promising anode material for lithium ion power battery from many previous researches. Whereas, in this work, we find that the anatase TiO2, when used as an anode for lithium ion battery, has high catalytic activity to initiate the decarboxylation reaction of electrolyte solution, resulting in the large generation of sole gaseous component, CO2. The ROLi species and the new phase of flake-like Li2TiF6 material are the main reaction products between anatase TiO2 and LiPF6 based electrolyte solution. This work provides important and urgent information that the surface chemistry of anatase TiO2 used as the anode material of lithium ion battery must be modified to suppress its catalytic activity for the decomposition of solvents.

  1. Catalytically Active and Spectator Ce(3+) in Ceria-Supported Metal Catalysts.

    PubMed

    Kopelent, René; van Bokhoven, Jeroen A; Szlachetko, Jakub; Edebeli, Jacinta; Paun, Cristina; Nachtegaal, Maarten; Safonova, Olga V

    2015-07-20

    Identification of active species and the rate-determining reaction steps are crucial for optimizing the performance of oxygen-storage materials, which play an important role in catalysts lowering automotive emissions, as electrode materials for fuel cells, and as antioxidants in biomedicine. We demonstrated that active Ce(3+) species in a ceria-supported platinum catalyst during CO oxidation are short-lived and therefore cannot be observed under steady-state conditions. Using time-resolved resonant X-ray emission spectroscopy, we quantitatively correlated the initial rate of Ce(3+) formation under transient conditions to the overall rate of CO oxidation under steady-state conditions and showed that ceria reduction is a kinetically relevant step in CO oxidation, whereas a fraction of Ce(3+) was present as spectators. This approach can be applied to various catalytic processes involving oxygen-storage materials and reducible oxides to distinguish between redox and nonredox catalytic mechanisms.

  2. Briefly Bound to Activate: Transient Binding of a Second Catalytic Magnesium Activates the Structure and Dynamics of CDK2 Kinase for Catalysis

    SciTech Connect

    Bao, Zhao Qin; Jacobsen, Douglas M.; Young, Matthew A.

    2014-10-02

    We have determined high-resolution crystal structures of a CDK2/Cyclin A transition state complex bound to ADP, substrate peptide, and MgF{sub 3}{sup -}. Compared to previous structures of active CDK2, the catalytic subunit of the kinase adopts a more closed conformation around the active site and now allows observation of a second Mg{sup 2+} ion in the active site. Coupled with a strong [Mg{sup 2+}] effect on in vitro kinase activity, the structures suggest that the transient binding of the second Mg{sup 2+} ion is necessary to achieve maximum rate enhancement of the chemical reaction, and Mg{sup 2+} concentration could represent an important regulator of CDK2 activity in vivo. Molecular dynamics simulations illustrate how the simultaneous binding of substrate peptide, ATP, and two Mg{sup 2+} ions is able to induce a more rigid and closed organization of the active site that functions to orient the phosphates, stabilize the buildup of negative charge, and shield the subsequently activated {gamma}-phosphate from solvent.

  3. An Iron Reservoir to the Catalytic Metal

    PubMed Central

    Liu, Fange; Geng, Jiafeng; Gumpper, Ryan H.; Barman, Arghya; Davis, Ian; Ozarowski, Andrew; Hamelberg, Donald; Liu, Aimin

    2015-01-01

    The rubredoxin motif is present in over 74,000 protein sequences and 2,000 structures, but few have known functions. A secondary, non-catalytic, rubredoxin-like iron site is conserved in 3-hydroxyanthranilate 3,4-dioxygenase (HAO), from single cellular sources but not multicellular sources. Through the population of the two metal binding sites with various metals in bacterial HAO, the structural and functional relationship of the rubredoxin-like site was investigated using kinetic, spectroscopic, crystallographic, and computational approaches. It is shown that the first metal presented preferentially binds to the catalytic site rather than the rubredoxin-like site, which selectively binds iron when the catalytic site is occupied. Furthermore, an iron ion bound to the rubredoxin-like site is readily delivered to an empty catalytic site of metal-free HAO via an intermolecular transfer mechanism. Through the use of metal analysis and catalytic activity measurements, we show that a downstream metabolic intermediate can selectively remove the catalytic iron. As the prokaryotic HAO is often crucial for cell survival, there is a need for ensuring its activity. These results suggest that the rubredoxin-like site is a possible auxiliary iron source to the catalytic center when it is lost during catalysis in a pathway with metabolic intermediates of metal-chelating properties. A spare tire concept is proposed based on this biochemical study, and this concept opens up a potentially new functional paradigm for iron-sulfur centers in iron-dependent enzymes as transient iron binding and shuttling sites to ensure full metal loading of the catalytic site. PMID:25918158

  4. Corrosion Research And Web Site Activities

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2001-01-01

    This report covers corrosion-related activities at the NASA Kennedy Space Center during the summer of 2000. The NASA Kennedy Space Center's corrosion web site, corrosion.ksc.nasa.gov, was updated with new information based on feedback over the past two years. The methodology for a two-year atmospheric exposure testing program to study the effectiveness of commercial chemicals sold for rinsing aircraft and other equipment was developed and some preliminary laboratory chemical analyses are presented.

  5. Corrosion Research and Web Site Activities

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2002-01-01

    This report covers corrosion-related activities at the NASA Kennedy Space Center during the summer of 2000. The NASA Kennedy Space Center's corrosion web site, corrosion.ksc.nasa.gov, was updated with new information based on feedback over the past two years. The methodology for a two-year atmospheric exposure testing program to study the effectiveness of commercial chemicals sold for rinsing aircraft and other equipment was developed and some preliminary laboratory chemical analyses are presented.

  6. Asp120Asn mutation impairs the catalytic activity of NDM-1 metallo-β-lactamase: experimental and computational study.

    PubMed

    Chen, Jiao; Chen, Hui; Zhu, Tong; Zhou, Dandan; Zhang, Fang; Lao, Xingzhen; Zheng, Heng

    2014-04-14

    New Delhi metallo-β-lactamase-1 (NDM-1) has attracted extensive attention in recent years for its high activity for hydrolyzing almost all β-lactam antibiotics. Like other metallo-β-lactamases (MβLs), NDM-1 features an invariant Asp120 that ligates the zinc ion (ZN2) in the active site. Previous studies showed that substitutions of Asp120 with residues such as Ala, Ser, Asn and Glu dramatically impaired the MβL (BcII, IMP-1, L1) activity, but no consensus about the exact role of Asp120 has reached. Here we constructed D120N mutant of NDM-1 by site-directed mutagenesis. The replacement of Asp120 with Asn, which has much weaker metal ligating capabilities than Asp, severely impaired the lactamase activity without abolishing the ZN2 site. Molecular dynamics simulations suggested that the ZN1-ZN2 distance increased because of mutation, leading to a rearrangement of the active site, including the bridging OH(-). Thereby, the Mulliken charges of ZN1 and ZN2 redistributed, especially for ZN2, which might be the major cause of the impaired activity. Reducing the point charges of Asp120 carboxyl oxygens weakened the ionic interactions between Asp120 and ZN2, and the positions of the zinc ions were also changed as a result. It is proposed that Asp120 acts as a strong ZN2 ligand, positioning ZN2 for catalytically important interactions with the substrate, stabilizing the negatively charged amide nitrogen of the hydrolyzed intermediate, and more importantly, orienting the ZN-bound OH(-) for nucleophilic attacks and protonation. These functions are of general importance for catalyzing β-lactam antibiotics by NDM-1 as well as other MβLs.

  7. Molecular dynamics simulation and conformational analysis of some catalytically active peptides.

    PubMed

    Honarparvar, Bahareh; Skelton, Adam A

    2015-04-01

    The design of stable and inexpensive artificial enzymes with potent catalytic activity is a growing field in peptide science. The first step in this design process is to understand the key factors that can affect the conformational preference of an enzyme and correlate them with its catalytic activity. In this work, molecular dynamics simulations in explicit water of two catalytically active peptides (peptide 1: Fmoc-Phe1-Phe2-His-CONH2; peptide 2: Fmoc-Phe1-Phe2-Arg-CONH2) were performed at temperatures of 300, 400, and 500 K. Conformational analysis of these peptides using Ramachandran plots identified the secondary structures of the amino acid residues involved (Phe1, Phe2, His, Arg) and confirmed their conformational flexibility in solution. Furthermore, Ramachandran maps revealed the intrinsic preference of the constituent residues of these compounds for a helical conformation. Long-range interaction distances and radius of gyration (R g) values obtained during 20 ns MD simulations confirmed their tendency to form folded conformations. Results showed a decrease in side-chain (Phe1, Phe2, His ring, and Arg) contacts as the temperature was raised from 300 to 400 K and then to 500 K. Finally, the radial distribution functions (RDF) of the water molecules around the nitrogen atoms in the catalytically active His and Arg residues of peptide 1 and peptide 2 revealed that the strongest water-peptide interaction occurred with the arginine nitrogen atoms in peptide 2. Our results highlight differences in the secondary structures of the two peptides that can be explained by the different arrangement of water molecules around the nitrogen atoms of Arg in peptide 2 as compared to the arrangement of water molecules around the nitrogen atoms of His in peptide 1. The results of this work thus provide detailed insight into peptide conformations which can be exploited in the future design of peptide analogs.

  8. A Disintegrin and Metalloproteinase with Thrombospondin Motifs-5 (ADAMTS-5) Forms Catalytically Active Oligomers*

    PubMed Central

    Kosasih, Hansen J.; Last, Karena; Rogerson, Fraser M.; Golub, Suzanne B.; Gauci, Stephanie J.; Russo, Vincenzo C.; Stanton, Heather; Wilson, Richard; Lamande, Shireen R.; Holden, Paul; Fosang, Amanda J.

    2016-01-01

    The metalloproteinase ADAMTS-5 (A disintegrin and metalloproteinase with thrombospondin motifs) degrades aggrecan, a proteoglycan essential for cartilage structure and function. ADAMTS-5 is the major aggrecanase in mouse cartilage, and is also likely to be the major aggrecanase in humans. ADAMTS-5 is a multidomain enzyme, but the function of the C-terminal ancillary domains is poorly understood. We show that mutant ADAMTS-5 lacking the catalytic domain, but with a full suite of ancillary domains inhibits wild type ADAMTS activity, in vitro and in vivo, in a dominant-negative manner. The data suggest that mutant ADAMTS-5 binds to wild type ADAMTS-5; thus we tested the hypothesis that ADAMTS-5 associates to form oligomers. Co-elution, competition, and in situ PLA experiments using full-length and truncated recombinant ADAMTS-5 confirmed that ADAMTS-5 molecules interact, and showed that the catalytic and disintegrin-like domains support these intermolecular interactions. Cross-linking experiments revealed that recombinant ADAMTS-5 formed large, reduction-sensitive oligomers with a nominal molecular mass of ∼400 kDa. The oligomers were unimolecular and proteolytically active. ADAMTS-5 truncates comprising the disintegrin and/or catalytic domains were able to competitively block full-length ADAMTS-5-mediated aggrecan cleavage, measured by production of the G1-EGE373 neoepitope. These results show that ADAMTS-5 oligomerization is required for full aggrecanase activity, and they provide evidence that blocking oligomerization inhibits ADAMTS-5 activity. The data identify the surface provided by the catalytic and disintegrin-like domains of ADAMTS-5 as a legitimate target for the design of aggrecanase inhibitors. PMID:26668318

  9. New water-soluble Mn-porphyrin with catalytic activity for superoxide dismutation and peroxynitrite decomposition.

    PubMed

    Asayama, Shoichiro; Nakajima, Takumi; Kawakami, Hiroyoshi

    2011-07-01

    We have synthesized a new water-soluble cationic Mn-porphyrin with catalytic activity for both superoxide dismutation and peroxynitrite decomposition. The resulting Mn-porphyrin also showed higher stability for reactive oxygen species such as hydrogen peroxide and lower cytotoxicity, when compared with a control normal Mn-porphyrin. Furthermore, the new porphyrin recovered the viability of lipopolysaccharide-stimulated macrophage RAW 264.7 cells but the control Mn-porphyrin did not.

  10. Methods and apparatuses for preparing a surface to have catalytic activity

    DOEpatents

    Cooks, Robert G.; Peng, Wen-Ping; Ouyang, Zheng; Goodwin, Michael P.

    2011-03-22

    The invention provides methods and apparatuses that utilize mass spectrometry for preparation of a surface to have catalytic activity through molecular soft-landing of mass selected ions. Mass spectrometry is used to generate combinations of atoms in a particular geometrical arrangement, and ion soft-landing selects this molecular entity or combination of entities and gently deposits the entity or combination intact onto a surface.

  11. Synthesis of Pt-Mo-N Thin Film and Catalytic Activity for Fuel Cells

    SciTech Connect

    Miura, Akira; Tague, Michele E.; Gregoire, John M.; Wen, Xiao-Dong; van Dover, R. Bruce; Abruña, Héctor D.; DiSalvo, Francis J.

    2010-05-13

    Pt-Mo-N composition gradient film was synthesized by combining thin-film deposition techniques and subsequent thermal nitridation. A ternary platinum-based nitride, Pt2Mo3N, showed catalytic activities for fuel cell applications and higher electrochemical stability when it was compared with a PtMo alloy with the same Pt:Mo ratio.

  12. Hierarchically nanoporous ceria nanoparticles with a high-surface area: synthesis, characterization, and their catalytic activity.

    PubMed

    Ge, Jiechao; Zhong, Liangshu; Zhuo, Linhai; Tang, Bo; Song, Weiguo

    2011-01-01

    A redox route based on ethylene glycol mediated process was developed to synthesize hierarchically nanoporpous ceria nanoparticles (ceria HNPNPs). The synthesized ceria HNPNPs are composed of building blocks fabricated with cubic ceria nanocrystals of several nanometers in diameter. Scanning electron microscopy was performed to investigate the evolution process of ceria precursor, and a two-step growth process was suggested for the morphology evolution. The synthesized ceria HNPNPs exhibit high surface area, which lead to high catalytic activity for CO oxidation.

  13. Identification of Phosphorylation Sites Altering Pollen Soluble Inorganic Pyrophosphatase Activity.

    PubMed

    Eaves, Deborah J; Haque, Tamanna; Tudor, Richard L; Barron, Yoshimi; Zampronio, Cleidiane G; Cotton, Nicholas P J; de Graaf, Barend H J; White, Scott A; Cooper, Helen J; Franklin, F Christopher H; Harper, Jeffery F; Franklin-Tong, Vernonica E

    2017-03-01

    Protein phosphorylation regulates numerous cellular processes. Identifying the substrates and protein kinases involved is vital to understand how these important posttranslational modifications modulate biological function in eukaryotic cells. Pyrophosphatases catalyze the hydrolysis of inorganic phosphate (PPi) to inorganic phosphate Pi, driving biosynthetic reactions; they are essential for low cytosolic inorganic phosphate. It was suggested recently that posttranslational regulation of Family I soluble inorganic pyrophosphatases (sPPases) may affect their activity. We previously demonstrated that two pollen-expressed sPPases, Pr-p26.1a and Pr-p26.1b, from the flowering plant Papaver rhoeas were inhibited by phosphorylation. Despite the potential significance, there is a paucity of data on sPPase phosphorylation and regulation. Here, we used liquid chromatographic tandem mass spectrometry to map phosphorylation sites to the otherwise divergent amino-terminal extensions on these pollen sPPases. Despite the absence of reports in the literature on mapping phosphorylation sites on sPPases, a database survey of various proteomes identified a number of examples, suggesting that phosphorylation may be a more widely used mechanism to regulate these enzymes. Phosphomimetic mutants of Pr-p26.1a/b significantly and differentially reduced PPase activities by up to 2.5-fold at pH 6.8 and 52% in the presence of Ca(2+) and hydrogen peroxide over unmodified proteins. This indicates that phosphoregulation of key sites can inhibit the catalytic responsiveness of these proteins in concert with key intracellular events. As sPPases are essential for many metabolic pathways in eukaryotic cells, our findings identify the phosphorylation of sPPases as a potential master regulatory mechanism that could be used to attenuate metabolism.

  14. Structural and Biochemical Characterization of an Active Arylamine N-Acetyltransferase Possessing a Non-canonical Cys-His-Glu Catalytic Triad*

    PubMed Central

    Kubiak, Xavier; Li de la Sierra-Gallay, Inès; Chaffotte, Alain F.; Pluvinage, Benjamin; Weber, Patrick; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2013-01-01

    Arylamine N-acetyltransferases (NATs), a class of xenobiotic-metabolizing enzymes, catalyze the acetylation of aromatic amine compounds through a strictly conserved Cys-His-Asp catalytic triad. Each residue is essential for catalysis in both prokaryotic and eukaryotic NATs. Indeed, in (HUMAN)NAT2 variants, mutation of the Asp residue to Asn, Gln, or Glu dramatically impairs enzyme activity. However, a putative atypical NAT harboring a catalytic triad Glu residue was recently identified in Bacillus cereus ((BACCR)NAT3) but has not yet been characterized. We report here the crystal structure and functional characterization of this atypical NAT. The overall fold of (BACCR)NAT3 and the geometry of its Cys-His-Glu catalytic triad are similar to those present in functional NATs. Importantly, the enzyme was found to be active and to acetylate prototypic arylamine NAT substrates. In contrast to (HUMAN) NAT2, the presence of a Glu or Asp in the triad of (BACCR)NAT3 did not significantly affect enzyme structure or function. Computational analysis identified differences in residue packing and steric constraints in the active site of (BACCR)NAT3 that allow it to accommodate a Cys-His-Glu triad. These findings overturn the conventional view, demonstrating that the catalytic triad of this family of acetyltransferases is plastic. Moreover, they highlight the need for further study of the evolutionary history of NATs and the functional significance of the predominant Cys-His-Asp triad in both prokaryotic and eukaryotic forms. PMID:23770703

  15. N-glycosylation influences the catalytic activity of mosquito α-glucosidases associated with susceptibility or refractoriness to Lysinibacillus sphaericus.

    PubMed

    Nascimento, Nathaly Alexandre do; Ferreira, Lígia Maria; Romão, Tatiany Patrícia; Correia, Darleide Maria da Conceição; Vasconcelos, Crhisllane Rafaele Dos Santos; Rezende, Antônio Mauro; Costa, Samara Graciane; Genta, Fernando Ariel; de-Melo-Neto, Osvaldo Pompílio; Silva-Filha, Maria Helena Neves Lobo

    2017-02-01

    Cqm1 and Aam1 are α-glucosidases (EC 3.2.1.20) expressed in Culex quinquefasciatus and Aedes aegypti larvae midgut, respectively. These orthologs share high sequence similarity but while Cqm1 acts as a receptor for the Binary (Bin) insecticidal toxin from Lysinibacillus sphaericus, Aam1 does not bind the toxin, rendering Ae. aegypti refractory to this bacterium. Aam1 is heavily glycosylated, contrasting to Cqm1, but little is known regarding how glycosylation impacts on its function. This study aimed to compare the N-glycosylation patterns and the catalytic activities of Aam1 and Cqm1. Mutant proteins were generated where predicted Aam1 N-glycosylation sites (N-PGS) were either inserted into Cqm1 or abrogated in Aam1. The mutants validated four N-PGS which were found to localize externally on the Aam1 structure. These Aam1 and Cqm1 mutants maintained their Bin binding properties, confirming that glycosylation has no role in this interaction. The α-glucosidase activity of both proteins was next investigated, with Aam1 having a remarkably higher catalytic efficiency, influenced by changes in glycosylation. Molecular dynamics showed that glycosylated and nonglycosylated Aam1 models displayed distinct patterns that could influence their catalytic activity. Differential N-glycosylation may then be associated with higher catalytic efficiency in Aam1, enhancing the functional diversity of related orthologs.

  16. A microreactor array for spatially resolved measurement of catalytic activity for high-throughput catalysis science

    SciTech Connect

    Kondratyuk, Petro; Gumuslu, Gamze; Shukla, Shantanu; Miller, James B; Morreale, Bryan D; Gellman, Andrew J

    2013-04-01

    We describe a 100 channel microreactor array capable of spatially resolved measurement of catalytic activity across the surface of a flat substrate. When used in conjunction with a composition spread alloy film (CSAF, e.g. Pd{sub x}Cu{sub y}Au{sub 1-x-y}) across which component concentrations vary smoothly, such measurements permit high-throughput analysis of catalytic activity and selectivity as a function of catalyst composition. In the reported implementation, the system achieves spatial resolution of 1 mm{sup 2} over a 10×10 mm{sup 2} area. During operation, the reactant gases are delivered at constant flow rate to 100 points of differing composition on the CSAF surface by means of a 100-channel microfluidic device. After coming into contact with the CSAF catalyst surface, the product gas mixture from each of the 100 points is withdrawn separately through a set of 100 isolated channels for analysis using a mass spectrometer. We demonstrate the operation of the device on a Pd{sub x}Cu{sub y}Au{sub 1-x-y} CSAF catalyzing the H{sub 2}-D{sub 2} exchange reaction at 333 K. In essentially a single experiment, we measured the catalytic activity over a broad swathe of concentrations from the ternary composition space of the Pd{sub x}Cu{sub y}Au{sub 1-x-y} alloy.

  17. Insight into the Mechanism of Intramolecular Inhibition of the Catalytic Activity of Sirtuin 2 (SIRT2).

    PubMed

    Li, Jinyu; Flick, Franziska; Verheugd, Patricia; Carloni, Paolo; Lüscher, Bernhard; Rossetti, Giulia

    2015-01-01

    Sirtuin 2 (SIRT2) is a NAD+-dependent deacetylase that has been associated with neurodegeneration and cancer. SIRT2 is composed of a central catalytic domain, the structure of which has been solved, and N- and C-terminal extensions that are thought to control SIRT2 function. However structural information of these N- and C-terminal regions is missing. Here, we provide the first full-length molecular models of SIRT2 in the absence and presence of NAD+. We also predict the structural alterations associated with phosphorylation of SIRT2 at S331, a modification that inhibits catalytic activity. Bioinformatics tools and molecular dynamics simulations, complemented by in vitro deacetylation assays, provide a consistent picture based on which the C-terminal region of SIRT2 is suggested to function as an autoinhibitory region. This has the capacity to partially occlude the NAD+ binding pocket or stabilize the NAD+ in a non-productive state. Furthermore, our simulations suggest that the phosphorylation at S331 causes large conformational changes in the C-terminal region that enhance the autoinhibitory activity, consistent with our previous findings that phosphorylation of S331 by cyclin-dependent kinases inhibits SIRT2 catalytic activity. The molecular insight into the role of the C-terminal region in controlling SIRT2 function described in this study may be useful for future design of selective inhibitors targeting SIRT2 for therapeutic applications.

  18. Supercritical CO{sub 2} mediated synthesis and catalytic activity of graphene/Pd nanocomposites

    SciTech Connect

    Tang, Lulu; Nguyen, Van Hoa; Shim, Jae-Jin

    2015-11-15

    Highlights: • RGO/Pd composite was efficiently prepared via a facile method in supercritical CO{sub 2}. • Graphene sheets were coated uniformly with Pd nanoparticles with a size of ∼8 nm. • Composites exhibited excellent catalytic activity in the Suzuki reaction even after 10 cycles. - Abstract: Graphene sheets were decorated with palladium nanoparticles using a facile and efficient method in supercritical CO{sub 2}. The nanoparticles were formed on the graphene sheets by the simple hydrogen reduction of palladium(II) hexafluoroacetylacetonate precursor in supercritical CO{sub 2}. The product was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. Highly dispersed nanoparticles with various sizes and shapes adhered well to the graphene sheets. The composites showed high catalytic activities for the Suzuki reaction under aqueous and aerobic conditions within 5 min. The effects of the different Pd precursor loadings on the catalytic activities of the composites were also examined.

  19. Effect of the synthetic method on the catalytic activity of alumina: Epoxidation of cyclohexene

    SciTech Connect

    Valderruten, N.E.; Peña, W.F.; Ramírez, A.E.; Rodríguez-Páez, J.E.

    2015-02-15

    Graphical abstract: Temperature influence on percent conversion and selectivity in the epoxidation of cyclohexene using commercial alumina as a catalyst. - Highlights: • Aluminum oxide was synthesized using Pechini method. • The alumina obtained showed a mix of boehmite and γ-alumina phases. • We research an economically feasible method to obtain alumina for use as a catalyst. • Alumina obtained by Pechini showed high percent conversion and/or selectivity. • The best results were 78% conversion and 78% selectivity to epoxidation reactions. - Abstract: Al{sub 2}O{sub 3} was prepared from different inorganic precursors via the Pechini method and compared with Al{sub 2}O{sub 3} prepared by the sol–gel method. Structural characterization of these materials was carried out by FTIR, X-ray diffraction (XRD), N{sub 2} adsorption at −196 °C and transmission electron microscopy (TEM). The solids were tested in the epoxidation of cyclohexene and a difference in their catalytic activities was observed. The characterization results indicate that the samples prepared by Pechini have a mixture of γ-alumina and boehmite, a condition favoring catalytic activity, whereas the sol–gel sample is less crystalline due to higher boehmite content. These results indicate that both the nature of the precursor and the method of synthesis strongly affect the catalytic activity of Al{sub 2}O{sub 3}.

  20. Catalytic activity of human carbonic anhydrase isoform IX is displayed both extra- and intracellularly.

    PubMed

    Klier, Michael; Jamali, Somayeh; Ames, Samantha; Schneider, Hans-Peter; Becker, Holger M; Deitmer, Joachim W

    2016-01-01

    Most carbonic anhydrases catalyse the reversible conversion of carbon dioxide to protons and bicarbonate, either as soluble cytosolic enzymes, in or at intracellular organelles, or at the extracellular face of the cell membrane as membrane-anchored proteins. Carbonic anhydrase isoform IX (CA IX), a membrane-bound enzyme with catalytic activity at the extracellular membrane surface, has come to prominence in recent years because of its association with hypoxic tissue, particularly tumours, often indicating poor prognosis. We have evaluated the catalytic activity of CA IX heterologously expressed in Xenopus laevis oocytes by measuring the amplitude and rate of cytosolic pH changes as well as pH changes at the outer membrane surface (pHs ) during addition and removal of 5% CO2 /25 mm HCO3-, and by mass spectrometry. Our results indicate both extracellular and intracellular catalytic activity of CA IX. Reduced rates of CO2 -dependent intracellular pH changes after knockdown of CA IX confirmed these findings in two breast cancer cell lines: MCF-7 and MDA-MB-231. Our results demonstrate a new function of CA IX that may be important in the search for therapeutic cancer drugs targeting CA IX.

  1. Silver residues as a possible key to a remarkable oxidative catalytic activity of nanoporous gold.

    PubMed

    Moskaleva, Lyudmila V; Röhe, Sarah; Wittstock, Arne; Zielasek, Volkmar; Klüner, Thorsten; Neyman, Konstantin M; Bäumer, Marcus

    2011-03-14

    Recently, several forms of unsupported gold were shown to display a remarkable activity to catalyze oxidation reactions. Experimental evidence points to the crucial role of residual silver present in very small concentrations in these novel catalysts. We focus on the catalytic properties of nanoporous gold (np-Au) foams probed via CO and oxygen adsorption/co-adsorption. Experimental results are analyzed using theoretical models represented by the flat Au(111) and the kinked Au(321) slabs with Ag impurities. We show that Ag atoms incorporated into gold surfaces can facilitate the adsorption and dissociation of molecular oxygen on them. CO adsorbed on top of 6-fold coordinated Au atoms can in turn be stabilized by co-adsorbed atomic oxygen by up to 0.2 eV with respect to the clean unsubstituted gold surface. Our experiments suggest a linking of that most strongly bound CO adsorption state to the catalytic activity of np-Au. Thus, our results shed light on the role of silver admixtures in the striking catalytic activity of unsupported gold nanostructures.

  2. Catalytic activity of rhodium complex immobilized on AN-31 ion exchanger

    SciTech Connect

    Parshikova, G.N.; Korneva, L.I.; Kononov, Yu.S.

    1995-08-10

    Immobilized platinum-metal complexes are of interest as heterogeneous catalysts. Ion-exchange resins may be used as supports for catalytically active complexes. However, immobilized metal complexes are often unstable, are washed out from supports, and are lost with reaction products. Secure immobilization of metal complexes on supports is possible, for example, via coordination of the central metal by electron-donor groups of the support. This is the case when platinum metals are sorbed from solutions by nitrogen-containing ion exchangers. Complexes thus immobilized have high catalytic activity. Previously the authors demonstrated that rhodium(III) is sorbed from solutions containing rhodium aqua-chloro complexes as stable complexes with AN-31. These complexes were not desorbed with 10 M hydrochloric acid. Stable amino complexes of transition metals sorbed on ion exchangers are known to be active in decomposition of hydrogen peroxide. In this work, the authors have studied catalytic properties of rhodium complex with the ion exchanger under atmospheric pressure at 25-80{degrees}C.

  3. Direct Single-Enzyme Biomineralization of Catalytically Active Ceria and Ceria-Zirconia Nanocrystals.

    PubMed

    Curran, Christopher D; Lu, Li; Jia, Yue; Kiely, Christopher J; Berger, Bryan W; McIntosh, Steven

    2017-02-21

    Biomineralization is an intriguing approach to the synthesis of functional inorganic materials for energy applications whereby biological systems are engineered to mineralize inorganic materials and control their structure over multiple length scales under mild reaction conditions. Herein we demonstrate a single-enzyme-mediated biomineralization route to synthesize crystalline, catalytically active, quantum-confined ceria (CeO2-x) and ceria-zirconia (Ce1-yZryO2-x) nanocrystals for application as environmental catalysts. In contrast to typical anthropogenic synthesis routes, the crystalline oxide nanoparticles are formed at room temperature from an otherwise inert aqueous solution without the addition of a precipitant or additional reactant. An engineered form of silicatein, rCeSi, as a single enzyme not only catalyzes the direct biomineralization of the nanocrystalline oxides but also serves as a templating agent to control their morphological structure. The biomineralized nanocrystals of less than 3 nm in diameter are catalytically active toward carbon monoxide oxidation following an oxidative annealing step to remove carbonaceous residue. The introduction of zirconia into the nanocrystals leads to an increase in Ce(III) concentration, associated catalytic activity, and the thermal stability of the nanocrystals.

  4. Molecular dynamics explorations of active site structure in designed and evolved enzymes.

    PubMed

    Osuna, Sílvia; Jiménez-Osés, Gonzalo; Noey, Elizabeth L; Houk, K N

    2015-04-21

    This Account describes the use of molecular dynamics (MD) simulations to reveal how mutations alter the structure and organization of enzyme active sites. As proposed by Pauling about 70 years ago and elaborated by many others since then, biocatalysis is efficient when functional groups in the active site of an enzyme are in optimal positions for transition state stabilization. Changes in mechanism and covalent interactions are often critical parts of enzyme catalysis. We describe our explorations of the dynamical preorganization of active sites using MD, studying the fluctuations between active and inactive conformations normally concealed to static crystallography. MD shows how the various arrangements of active site residues influence the free energy of the transition state and relates the populations of the catalytic conformational ensemble to the enzyme activity. This Account is organized around three case studies from our laboratory. We first describe the importance of dynamics in evaluating a series of computationally designed and experimentally evolved enzymes for the Kemp elimination, a popular subject in the enzyme design field. We find that the dynamics of the active site is influenced not only by the original sequence design and subsequent mutations but also by the nature of the ligand present in the active site. In the second example, we show how microsecond MD has been used to uncover the role of remote mutations in the active site dynamics and catalysis of a transesterase, LovD. This enzyme was evolved by Tang at UCLA and Codexis, Inc., and is a useful commercial catalyst for the production of the drug simvastatin. X-ray analysis of inactive and active mutants did not reveal differences in the active sites, but relatively long time scale MD in solution showed that the active site of the wild-type enzyme preorganizes only upon binding of the acyl carrier protein (ACP) that delivers the natural acyl group to the active site. In the absence of bound ACP

  5. Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site

    SciTech Connect

    Grossman, Moran; Born, Benjamin; Heyden, Matthias; Tworowski, Dmitry; Fields, Gregg B.; Sagi, Irit; Havenith, Martina

    2011-09-18

    Solvent dynamics can play a major role in enzyme activity, but obtaining an accurate, quantitative picture of solvent activity during catalysis is quite challenging. Here, we combine terahertz spectroscopy and X-ray absorption analyses to measure changes in the coupled water-protein motions during peptide hydrolysis by a zinc-dependent human metalloprotease. These changes were tightly correlated with rearrangements at the active site during the formation of productive enzyme-substrate intermediates and were different from those in an enzyme–inhibitor complex. Molecular dynamics simulations showed a steep gradient of fast-to-slow coupled protein-water motions around the protein, active site and substrate. Our results show that water retardation occurs before formation of the functional Michaelis complex. We propose that the observed gradient of coupled protein-water motions may assist enzyme-substrate interactions through water-polarizing mechanisms that are remotely mediated by the catalytic metal ion and the enzyme active site.

  6. [Role of antioxidants in electro catalytic activity of cytochrome P450 3A4].

    PubMed

    Shumiantseva, V V; Makhova, A A; Bulko, T V; Shikh, E V; Kukes, V G; Usanov, S A; Archakov, A I

    2014-01-01

    The electrochemical analysis of cytochrome Р450 3А4 catalytic activity has shown that vitamins C, A and Е influence on electron transfer and Fe3+/Fe2+ reduction process of cytochrome Р450 3А4. These data allow to assume possibility of cross effects and interference of vitamins-antioxidants with drugs metabolised by cytochrome Р450 3А4, at carrying out of complex therapy. This class of vitamins shows antioxidant properties that lead to increase of the cathodic current corresponding to heme reduction of this functionally significant haemoprotein. Ascorbic acid of 0.028-0.56 mM concentration stimulates cathodic peak (an electrochemical signal) of cytochrome Р450 3А4. At the presence of diclofenac (Voltaren) - a typical substrate of cytochrome Р450 3А4 - the increase growth of a catalytic current testifying to an electrocatalysis and stimulating action of ascorbic acid is observed. In the presence of vitamins A and Е also is registered dose-dependent (in a range of 10-100 M) increase in a catalytic current of cytochrome Р450 3А4: the maximum increase corresponds to 229 ± 20% for 100 M of vitamin A, and 162±10% for 100 M of vitamin E. Vitamin E in the presence of P450's inhibitor itraconazole doesn't give essential increase in a reductive current, unlike retinol (vitamin A). This effect can manifest substrate properties of tocopherol (vitamin E). The electrochemical approach for the analysis of catalytic activity of cytochrome Р450 3А4 and studies of influence of biologically active compounds on an electrocatalysis is the sensitive and effective sensor approach, allowing to use low concentration of protein on an electrode (till 10-15 mol/electrode), to carry out the analysis without participation of protein redox partners, and to reveal drug-drug or drug-vitamins interaction in pre-clinical experiments.

  7. Nanorods, nanospheres, nanocubes: Synthesis, characterization and catalytic activity of nanoferrites of Mn, Co, Ni, Part-89

    SciTech Connect

    Singh, Supriya; Srivastava, Pratibha; Singh, Gurdip

    2013-02-15

    Graphical abstract: Prepared nanoferrites were characterized by FE-SEM and bright field TEM micrographs. The catalytic effect of these nanoferrites was evaluated on the thermal decomposition of ammonium perchlorate using TG and TG–DSC techniques. The kinetics of thermal decomposition of AP was evaluated using isothermal TG data by model fitting as well as isoconversional method. Display Omitted Highlights: ► Synthesis of ferrite nanostructures (∼20.0 nm) by wet-chemical method under different synthetic conditions. ► Characterization using XRD, FE-SEM, EDS, TEM, HRTEM and SAED pattern. ► Catalytic activity of ferrite nanostructures on AP thermal decomposition by thermal techniques. ► Burning rate measurements of CSPs with ferrite nanostructures. ► Kinetics of thermal decomposition of AP + nanoferrites. -- Abstract: In this paper, the nanoferrites of Mn, Co and Ni were synthesized by wet chemical method and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive, X-ray spectra (EDS), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HR-TEM). It is catalytic activity were investigated on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellants (CSPs) using thermogravimetry (TG), TG coupled with differential scanning calorimetry (TG–DSC) and ignition delay measurements. Kinetics of thermal decomposition of AP + nanoferrites have also been investigated using isoconversional and model fitting approaches which have been applied to data for isothermal TG decomposition. The burning rate of CSPs was considerably enhanced by these nanoferrites. Addition of nanoferrites to AP led to shifting of the high temperature decomposition peak toward lower temperature. All these studies reveal that ferrite nanorods show the best catalytic activity superior to that of nanospheres and nanocubes.

  8. Operando atomic structure and active sites of TiO2(110)-supported gold nanoparticles during carbon monoxide oxidation.

    PubMed

    Saint-Lager, Marie-Claire; Laoufi, Issam; Bailly, Aude

    2013-01-01

    It is well known that gold nanoparticles supported on TiO2 act as a catalyst for CO oxidation, even below room temperature. Despite extensive studies, the origin of this catalytic activity remains under debate. Indeed, when the particle size decreases, many changes may occur; thus modifying the nanoparticles' electronic properties and consequently their catalytic performances. Thanks to a state-of-the-art home-developed setup, model catalysts can be prepared in ultra-high vacuum and their morphology then studied in operando conditions by Grazing Incidence Small Angle X-ray Scattering, as well as their atomic structure by Grazing Incidence X-ray Diffraction as a function of their catalytic activity. We previously reported on the existence of a catalytic activity maximum observed for three-dimensional gold nanoparticles with a diameter of 2-3 nm and a height of 6-7 atomic planes. In the present work we correlate this size dependence of the catalytic activity to the nanoparticles' atomic structure. We show that even when their size decreases below the optimum diameter, the gold nanoparticles keep the face-centered cubic structure characteristic of bulk gold. Nevertheless, for these smallest nanoparticles, the lattice parameter presents anisotropic strains with a larger contraction in the direction perpendicular to the surface. Moreover a careful analysis of the atomic-scale morphology around the catalytic activity maximum tends to evidence the role of sites with a specific geometry at the interface between the nanoparticles and the substrate. This argues for models where atoms at the interface periphery act as catalytically active sites for carbon monoxide oxidation.

  9. Active sites in Cu-SSZ-13 deNOx catalyst under reaction conditions: a XAS/XES perspective

    NASA Astrophysics Data System (ADS)

    Lomachenko, Kirill A.; Borfecchia, Elisa; Bordiga, Silvia; Soldatov, Alexander V.; Beato, Pablo; Lamberti, Carlo

    2016-05-01

    Cu-SSZ-13 is a highly active catalyst for the NH3-assisted selective catalytic reduction (SCR) of the harmful nitrogen oxides (NOx, x=1, 2). Since the catalytically active sites for this reaction are mainly represented by isolated Cu ions incorporated into the zeolitic framework, element-selective studies of Cu local environment are crucial to fully understand the enhanced catalytic properties of this material. Herein, we highlight the recent advances in the characterization of the most abundant Cu-sites in Cu-SSZ-13 upon different reaction-relevant conditions made employing XAS and XES spectroscopies, complemented by computational analysis. A concise review of the most relevant literature is also presented.

  10. Active Site and Laminarin Binding in Glycoside Hydrolase Family 55*

    PubMed Central

    Bianchetti, Christopher M.; Takasuka, Taichi E.; Deutsch, Sam; Udell, Hannah S.; Yik, Eric J.; Bergeman, Lai F.; Fox, Brian G.

    2015-01-01

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100–10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. PMID:25752603

  11. Biochemical Characterization and Validation of a Catalytic Site of a Highly Thermostable Ts2631 Endolysin from the Thermus scotoductus Phage vB_Tsc2631

    PubMed Central

    Plotka, Magdalena; Kaczorowska, Anna-Karina; Morzywolek, Agnieszka; Makowska, Joanna; Kozlowski, Lukasz P.; Thorisdottir, Audur; Skírnisdottir, Sigurlaug; Hjörleifsdottir, Sigridur; Fridjonsson, Olafur H.; Hreggvidsson, Gudmundur O.; Kristjansson, Jakob K.; Dabrowski, Slawomir; Bujnicki, Janusz M.; Kaczorowski, Tadeusz

    2015-01-01

    Phage vB_Tsc2631 infects the extremophilic bacterium Thermus scotoductus MAT2631 and uses the Ts2631 endolysin for the release of its progeny. The Ts2631 endolysin is the first endolysin from thermophilic bacteriophage with an experimentally validated catalytic site. In silico analysis and computational modelling of the Ts2631 endolysin structure revealed a conserved Zn2+ binding site (His30, Tyr58, His131 and Cys139) similar to Zn2+ binding site of eukaryotic peptidoglycan recognition proteins (PGRPs). We have shown that the Ts2631 endolysin lytic activity is dependent on divalent metal ions (Zn2+ and Ca2+). The Ts2631 endolysin substitution variants H30N, Y58F, H131N and C139S dramatically lost their antimicrobial activity, providing evidence for the role of the aforementioned residues in the lytic activity of the enzyme. The enzyme has proven to be not only thermoresistant, retaining 64.8% of its initial activity after 2 h at 95°C, but also highly thermodynamically stable (Tm = 99.82°C, ΔHcal = 4.58 × 104 cal mol-1). Substitutions of histidine residues (H30N and H131N) and a cysteine residue (C139S) resulted in variants aggregating at temperatures ≥75°C, indicating a significant role of these residues in enzyme thermostability. The substrate spectrum of the Ts2631 endolysin included extremophiles of the genus Thermus but also Gram-negative mesophiles, such as Escherichia coli, Salmonella panama, Pseudomonas fluorescens and Serratia marcescens. The broad substrate spectrum and high thermostability of this endolysin makes it a good candidate for use as an antimicrobial agent to combat Gram-negative pathogens. PMID:26375388

  12. Modulated mechanism of phosphatidylserine on the catalytic activity of Naja naja atra phospholipase A2 and Notechis scutatus scutatus notexin.

    PubMed

    Chiou, Yi-Ling; Lin, Shinne-Ren; Hu, Wan-Ping; Chang, Long-Sen

    2014-12-15

    Phosphatidylserine (PS) externalization is a hallmark for apoptotic death of cells. Previous studies showed that Naja naja atra phospholipase A2 (NnaPLA2) and Notechis scutatus scutatus notexin induced apoptosis of human cancer cells. However, NnaPLA2 and notexin did not markedly disrupt the integrity of cellular membrane as evidenced by membrane permeability of propidium iodide. These findings reflected that the ability of NnaPLA2 and notexin to hydrolyze membrane phospholipids may be affected by PS externalization. To address that question, this study investigated the membrane-interacted mode and catalytic activity of NnaPLA2 and notexin toward outer leaflet (phosphatidylcholine/sphingomyelin/cholesterol, PC/SM/Chol) and inner leaflet (phosphatidylserine/phosphatidylethanolamine/cholesterol, PS/PE/Chol) of plasma membrane-mimicking vesicles. PS incorporation promoted enzymatic activity of NnaPLA2 and notexin on PC and PC/SM vesicles, but suppressed NnaPLA2 and notexin activity on PC/SM/Chol and PE/Chol vesicles. PS incorporation increased the membrane fluidity of PC vesicles but reduced membrane fluidity of PC/SM, PC/SM/Chol and PE/Chol vesicles. PS increased the phospholipid order of all the tested vesicles. Moreover, PS incorporation did not greatly alter the binding affinity of notexin and NnaPLA2 with phospholipid vesicles. Acrylamide quenching studies and trinitrophenylation of Lys residues revealed that membrane-bound mode of notexin and NnaPLA2 varied with the targeted membrane compositions. The fine structure of catalytic site in NnaPLA2 and notexin in all the tested vesicles showed different changes. Collectively, the present data suggest that membrane-inserted PS modulates PLA2 interfacial activity via its effects on membrane structure and membrane-bound mode of NnaPLA2 and notexin, and membrane compositions determine the effect of PS on PLA2 activity.

  13. Identification of amino acids related to catalytic function of Sulfolobus solfataricus P1 carboxylesterase by site-directed mutagenesis and molecular modeling

    PubMed Central

    Choi, Yun-Ho; Lee, Ye-Na; Park, Young-Jun; Yoon, Sung-Jin; Lee, Hee-Bong

    2016-01-01

    The archaeon Sulfolobus solfataricus P1 carboxylesterase is a thermostable enzyme with a molecular mass of 33.5 kDa belonging to the mammalian hormone-sensitive lipase (HSL) family. In our previous study, we purified the enzyme and suggested the expected amino acids related to its catalysis by chemical modification and a sequence homology search. For further validating these amino acids in this study, we modified them using site-directed mutagenesis and examined the activity of the mutant enzymes using spectrophotometric analysis and then estimated by homology modeling and fluorescence analysis. As a result, it was identified that Ser151, Asp244, and His274 consist of a catalytic triad, and Gly80, Gly81, and Ala152 compose an oxyanion hole of the enzyme. In addition, it was also determined that the cysteine residues are located near the active site or at the positions inducing any conformational changes of the enzyme by their replacement with serine residues. [BMB Reports 2016; 49(6): 349-354] PMID:27222124

  14. Active-Site Monovalent Cations Revealed in a 1.55 Å Resolution Hammerhead Ribozyme Structure

    PubMed Central

    Anderson, Michael; Schultz, Eric P.; Martick, Monika; Scott, William G.

    2013-01-01

    We have obtained a 1.55 Å crystal structure of a hammerhead ribozyme derived from Schistosoma mansoni in conditions that permit detailed observations of Na+ ion binding in the ribozyme's active site. At least two such Na+ ions are observed. The first Na+ ion binds to the N7 of G10.1 and the adjacent A9 phosphate in a manner identical to that previously observed for divalent cations. A second Na+ ion binds to the Hoogsteen face of G12, the general base in the hammerhead cleavage reaction, thereby potentially dissipating the negative charge of the catalytically active enolate form of the nucleotide base. A potential but more ambiguous third site bridges the A9 and scissile phosphates in a manner consistent with previous predictions. Hammerhead ribozymes have been observed to be active in the presence of high concentrations of monovalent cations, including Na+, but the mechanism by which monovalent cations substitute for divalent cations in hammerhead catalysis remains unclear. Our results enable us to suggest that Na+ directly and specifically substitutes for divalent cations in the hammerhead active site. The detailed geometry of the pre-catalytic active site complex is also revealed with a new level of precision, thanks to the quality of the electron density maps obtained from what is currently the highest resolution ribozyme structure in the protein data bank. PMID:23711504

  15. Tuned by metals: the TET peptidase activity is controlled by 3 metal binding sites.

    PubMed

    Colombo, Matteo; Girard, Eric; Franzetti, Bruno

    2016-02-08

    TET aminopeptidases are dodecameric particles shared in the three life domains involved in various biological processes, from carbon source provider in archaea to eye-pressure regulation in humans. Each subunit contains a dinuclear metal site (M1 and M2) responsible for the enzyme catalytic activity. However, the role of each metal ion is still uncharacterized. Noteworthy, while mesophilic TETs are activated by Mn(2+), hyperthermophilic TETs prefers Co(2+). Here, by means of anomalous x-ray crystallography and enzyme kinetics measurements of the TET3 aminopeptidase from the hyperthermophilic organism Pyrococcus furiosus (PfTET3), we show that M2 hosts the catalytic activity of the enzyme, while M1 stabilizes the TET3 quaternary structure and controls the active site flexibility in a temperature dependent manner. A new third metal site (M3) was found in the substrate binding pocket, modulating the PfTET3 substrate preferences. These data show that TET activity is tuned by the molecular interplay among three metal sites.

  16. Structural, optical and photo-catalytic activity of nanocrystalline NiO thin films

    SciTech Connect

    Al-Ghamdi, Attieh A.; Abdel-wahab, M. Sh.; Farghali, A.A.; Hasan, P.M.Z.

    2016-03-15

    Highlights: • Synthesis of nanocrystalline NiO thin films with different thicknesses using DC magnetron sputtering technique. • Effect of film thickness and particle size on photo-catalytic degradation of methyl green dye under UV light was studied. • The deposited NiO thin films are efficient, stable and possess high photo-catalytic activity upon reuse. - Abstract: Physical deposition of nanocrystalline nickel oxide (NiO) thin films with different thickness 30, 50 and 80 nm have been done on glass substrate by DC magnetron sputtering technique and varying the deposition time from 600, 900 to 1200 s. The results of surface morphology and optical characterization of these films obtained using different characterization techniques such as X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), photoluminescence (PL) and UV–vis spectrophotometry provide important information like formation of distinct nanostructures in different films and its effect on their optical band gap which has decreased from 3.74 to 3.37 eV as the film thickness increases. Most importantly these films have shown very high stability and a specialty to be recycled without much loss of their photo-catalytic activity, when tested as photo-catalysts for the degradation of methyl green dye (MG) from the wastewater under the exposure of 18 W energy of UV lamp.

  17. Tough and catalytically active hybrid biofibers wet-spun from nanochitin hydrogels.

    PubMed

    Das, Paramita; Heuser, Thomas; Wolf, Andrea; Zhu, Baolei; Demco, Dan Eugen; Ifuku, Shinsuke; Walther, Andreas

    2012-12-10

    Sustainable alternatives for high-performance and functional materials based on renewable resources are intensely needed as future alternatives for present-day, fossil-based materials. Nanochitin represents an emerging class of highly crystalline bionanoparticles with high intrinsic mechanical properties and the ability for conjugation into functional materials owing to reactive amine and hydroxyl groups. Herein we demonstrate that hydrogels containing surface-deacetylated chitin nanofibrils of micrometer length and average diameters of 9 nm, as imaged by cryogenic transmission electron microscopy, can be wet-spun into macrofibers via extrusion in a coagulation bath, a simple low energy and large-scale processing route. The resulting biofibers display attractive mechanical properties with a large plastic region of about 12% in strain, in which frictional sliding of nanofibrils allows dissipation of fracture energy and enables a high work-of-fracture of near 10 MJ/m3. We further show how to add functionality to these macrofibers by exploiting the amine functions of the surface chitosan groups to host catalytically active noble metal nanoparticles, furnishing biobased, renewable catalytic hybrids. These inorganic/organic macrofibers can be used repeatedly for fast catalytic reductions of model compounds without loss of activity, rendering the concept of hybridized chitin materials interesting as novel bioderived supports for nanoparticle catalysts.

  18. Facile and green synthesis of cellulose nanocrystal-supported gold nanoparticles with superior catalytic activity.

    PubMed

    Yan, Wei; Chen, Chang; Wang, Ling; Zhang, Dan; Li, Ai-Jun; Yao, Zheng; Shi, Li-Yi

    2016-04-20

    The emphasis of science and technology shifts toward environmentally friendly and sustainable resources and processes. Herein, we report a facile, one-pot and green synthesis of biomaterial-supported gold nanoparticles (AuNPs) with superior catalytic activity. Cellulose nanocrystal (CNC)-supported AuNPs were prepared by heating the aqueous mixture of HAuCl4, CNCs and polyethylene glycol, avoiding toxic chemicals, extreme condition and complicated procedure. The resultant CNC-supported AuNPs exhibited catalytic activities for the reduction of 4-nitrophenol by sodium borohydride. The maximum apparent rate constant reached 1.47×10(-2)s(-1), and the turnover frequency reached 641h(-1). The superior catalytic performance can be ascribed to the large amount of highly dispersed AuNPs with few nanometers in size which are loaded on CNCs. About 90% of the AuNPs are smaller than 10nm, and nearly 60% of the AuNPs are smaller than 5nm. The synthesis is eco-friendly, facile and low-cost, thus has great potential for industrial and medical applications.

  19. Co-Cu Nanoparticles: Synthesis by Galvanic Replacement and Phase Rearrangement during Catalytic Activation.

    PubMed

    Nafria, Raquel; Genç, Aziz; Ibáñez, Maria; Arbiol, Jordi; de la Piscina, Pilar Ramírez; Homs, Narcís; Cabot, Andreu

    2016-03-08

    The control of the phase distribution in multicomponent nanomaterials is critical to optimize their catalytic performance. In this direction, while impressive advances have been achieved in the past decade in the synthesis of multicomponent nanoparticles and nanocomposites, element rearrangement during catalyst activation has been frequently overseen. Here, we present a facile galvanic replacement-based procedure to synthesize Co@Cu nanoparticles with narrow size and composition distributions. We further characterize their phase arrangement before and after catalytic activation. When oxidized at 350 °C in air to remove organics, Co@Cu core-shell nanostructures oxidize to polycrystalline CuO-Co3O4 nanoparticles with randomly distributed CuO and Co3O4 crystallites. During a posterior reduction treatment in H2 atmosphere, Cu precipitates in a metallic core and Co migrates to the nanoparticle surface to form Cu@Co core-shell nanostructures. The catalytic behavior of such Cu@Co nanoparticles supported on mesoporous silica was further analyzed toward CO2 hydrogenation in real working conditions.

  20. Block copolymer hollow fiber membranes with catalytic activity and pH-response.

    PubMed

    Hilke, Roland; Pradeep, Neelakanda; Madhavan, Poornima; Vainio, Ulla; Behzad, Ali Reza; Sougrat, Rachid; Nunes, Suzana P; Peinemann, Klaus-Viktor

    2013-08-14

    We fabricated block copolymer hollow fiber membranes with self-assembled, shell-side, uniform pore structures. The fibers in these membranes combined pores able to respond to pH and acting as chemical gates that opened above pH 4, and catalytic activity, achieved by the incorporation of gold nanoparticles. We used a dry/wet spinning process to produce the asymmetric hollow fibers and determined the conditions under which the hollow fibers were optimized to create the desired pore morphology and the necessary mechanical stability. To induce ordered micelle assembly in the doped solution, we identified an ideal solvent mixture as confirmed by small-angle X-ray scattering. We then reduced p-nitrophenol with a gold-loaded fiber to confirm the catalytic performance of the membranes.

  1. Layered Double Hydroxide Nanoclusters: Aqueous, Concentrated, Stable, and Catalytically Active Colloids toward Green Chemistry.

    PubMed

    Tokudome, Yasuaki; Morimoto, Tsuyoshi; Tarutani, Naoki; Vaz, Pedro D; Nunes, Carla D; Prevot, Vanessa; Stenning, Gavin B G; Takahashi, Masahide

    2016-05-24

    Increasing attention has been dedicated to the development of nanomaterials rendering green and sustainable processes, which occur in benign aqueous reaction media. Herein, we demonstrate the synthesis of another family of green nanomaterials, layered double hydroxide (LDH) nanoclusters, which are concentrated (98.7 g/L in aqueous solvent), stably dispersed (transparent sol for >2 weeks), and catalytically active colloids of nano LDHs (isotropic shape with the size of 7.8 nm as determined by small-angle X-ray scattering). LDH nanoclusters are available as colloidal building blocks to give access to meso- and macroporous LDH materials. Proof-of-concept applications revealed that the LDH nanocluster works as a solid basic catalyst and is separable from solvents of catalytic reactions, confirming the nature of nanocatalysts. The present work closely investigates the unique physical and chemical features of this colloid, the formation mechanism, and the ability to act as basic nanocatalysts in benign aqueous reaction systems.

  2. A very active cu-catalytic system for the synthesis of aryl, heteroaryl, and vinyl sulfides.

    PubMed

    Kabir, M Shahjahan; Lorenz, Michael; Van Linn, Michael L; Namjoshi, Ojas A; Ara, Shamim; Cook, James M

    2010-06-04

    cis-1,2-Cyclohexanediol (L3) has been shown to be an efficient and versatile bidentate O-donor ligand that provides a highly active Cu-catalytic system. It was more effective than diols such as trans-1,2-cyclohexanediol or ethylene glycol. This commercially available cis-1,2-cyclohexanediol ligand facilitated the Cu-catalyzed cross-coupling reactions of alkyl, aryl, or heterocyclic thiols with either alkyl, aryl, heterocyclic, or substituted vinyl halides. This new catalytic system promoted the mild and efficient stereo- and regiospecific synthesis of biologically important vinyl sulfides. The yields obtained using electron-rich substituted vinyl sulfides with this catalyst system are generally 75-98%. Most importantly, this singular catalyst system is extremely versatile and provides entry into a wide range of sulfides. This method is particularly noteworthy given its mild reaction conditions, simplicity, generality, and exceptional level of functional group tolerance.

  3. Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity.

    PubMed

    Qi, Hetong; Yu, Ping; Wang, Yuexiang; Han, Guangchao; Liu, Huibiao; Yi, Yuanping; Li, Yuliang; Mao, Lanqun

    2015-04-29

    Graphdiyne (GDY), a novel kind of two-dimensional carbon allotrope consisting of sp- and sp(2)-hybridized carbon atoms, is found to be able to serve as the reducing agent and stabilizer for electroless deposition of highly dispersed Pd nanoparticles owing to its low reduction potential and highly conjugated electronic structure. Furthermore, we observe that graphdiyne oxide (GDYO), the oxidation form of GDY, can be used as an even excellent substrate for electroless deposition of ultrafine Pd clusters to form Pd/GDYO nanocomposite that exhibits a high catalytic performance toward the reduction of 4-nitrophenol. The high catalytic performance is considered to benefit from the rational design and electroless deposition of active metal catalysts with GDYO as the support.

  4. Interaction of aspartic acid-104 and proline-287 with the active site of m-calpain.

    PubMed Central

    Arthur, J S; Elce, J S

    1996-01-01

    In an ongoing study of the mechanisms of calpain catalysis and Ca(2+)-induced activation, the effects of Asp-104-->Ser and Pro-287-->Ser large subunit mutations on m-calpain activity, the pH-activity profile, Ca(2+)-sensitivity, and autolysis were measured. The importance of these positions was suggested by sequence comparisons between the calpain and papain families of cysteine proteinases. Asp-104 is adjacent to the active-site Cys-105, and Pro-287 is adjacent to the active-site Asn-286 and probably to the active-site His-262; both Asp-104 and Pro-287 are absolutely conserved in the known calpains, but are replaced by highly conserved serine residues in the papains. The single mutants had approx. 10-15% of wild-type activity, due mainly to a decrease in kcat, since Km was only slightly increased. The Pro-287-->Ser mutation appeared to cause a local perturbation of the catalytic Cys-105/His-262 catalytic ion pair, reducing its efficiency without major effect on the conformation and stability of the enzyme. The Asp-104-->Ser mutation caused a marked narrowing of the pH-activity curve, a 9-fold increase in Ca2+ requirement, and an acceleration of autolysis, when compared with the wild-type enzyme. The results indicated that Asp-104 alters the nature of its interaction with the catalytic ion pair during Ca(2+)-induced conformational change in calpain. This interaction may be direct or indirect, but is important in activation of the enzyme. PMID:8912692

  5. Saccharomyces cerevisiae DNA ligase IV supports imprecise end joining independently of its catalytic activity.

    PubMed

    Chiruvella, Kishore K; Liang, Zhuobin; Birkeland, Shanda R; Basrur, Venkatesha; Wilson, Thomas E

    2013-06-01

    DNA ligase IV (Dnl4 in budding yeast) is a specialized ligase used in non-homologous end joining (NHEJ) of DNA double-strand breaks (DSBs). Although point and truncation mutations arise in the human ligase IV syndrome, the roles of Dnl4 in DSB repair have mainly been examined using gene deletions. Here, Dnl4 catalytic point mutants were generated that were severely defective in auto-adenylation in vitro and NHEJ activity in vivo, despite being hyper-recruited to DSBs and supporting wild-type levels of Lif1 interaction and assembly of a Ku- and Lif1-containing complex at DSBs. Interestingly, residual levels of especially imprecise NHEJ were markedly higher in a deletion-based assay with Dnl4 catalytic mutants than with a gene deletion strain, suggesting a role of DSB-bound Dnl4 in supporting a mode of NHEJ catalyzed by a different ligase. Similarly, next generation sequencing of repair joints in a distinct single-DSB assay showed that dnl4-K466A mutation conferred a significantly different imprecise joining profile than wild-type Dnl4 and that such repair was rarely observed in the absence of Dnl4. Enrichment of DNA ligase I (Cdc9 in yeast) at DSBs was observed in wild-type as well as dnl4 point mutant strains, with both Dnl4 and Cdc9 disappearing from DSBs upon 5' resection that was unimpeded by the presence of catalytically inactive Dnl4. These findings indicate that Dnl4 can promote mutagenic end joining independently of its catalytic activity, likely by a mechanism that involves Cdc9.

  6. Site-selective C-H arylation of primary aliphatic amines enabled by a catalytic transient directing group

    NASA Astrophysics Data System (ADS)

    Liu, Yongbing; Ge, Haibo

    2017-01-01

    Transition-metal-catalysed direct C-H bond functionalization of aliphatic amines is of great importance in organic and medicinal chemistry research. Several methods have been developed for the direct sp3 C-H functionalization of secondary and tertiary aliphatic amines, but site-selective functionalization of primary aliphatic amines in remote positions remains a challenge. Here, we report the direct, highly site-selective γ-arylation of primary alkylamines via a palladium-catalysed C-H bond functionalization process on unactivated sp3 carbons. Using glyoxylic acid as an inexpensive, catalytic and transient directing group, a wide array of γ-arylated primary alkylamines were prepared without any protection or deprotection steps. This approach provides straightforward access to important structural motifs in organic and medicinal chemistry without the need for pre-functionalized substrates or stoichiometric directing groups and is demonstrated here in the synthesis of analogues of the immunomodulatory drug fingolimod directly from commercially available 2-amino-2-propylpropane-1,3-diol.

  7. Modulation of Active Site Electronic Structure by the Protein Matrix to Control [NiFe] Hydrogenase Reactivity

    SciTech Connect

    Smith, Dayle MA; Raugei, Simone; Squier, Thomas C.

    2014-09-30

    Control of the reactivity of the nickel center of the [NiFe] hydrogenase and other metalloproteins commonly involves outer coordination sphere ligands that act to modify the geometry and physical properties of the active site metal centers. We carried out a combined set of classical molecular dynamics and quantum/classical mechanics calculations to provide quantitative estimates of how dynamic fluctuations of the active site within the protein matrix modulate the electronic structure at the catalytic center. Specifically we focused on the dynamics of the inner and outer coordination spheres of the cysteinate-bound Ni–Fe cluster in the catalytically active Ni-C state. There are correlated movements of the cysteinate ligands and the surrounding hydrogen-bonding network, which modulate the electron affinity at the active site and the proton affinity of a terminal cysteinate. On the basis of these findings, we hypothesize a coupling between protein dynamics and electron and proton transfer reactions critical to dihydrogen production.

  8. Catalytically active lead(ii)-imidazolium coordination assemblies with diversified lead(ii) coordination geometries.

    PubMed

    Naga Babu, Chatla; Suresh, Paladugu; Srinivas, Katam; Sathyanarayana, Arruri; Sampath, Natarajan; Prabusankar, Ganesan

    2016-05-10

    Five Pb(ii)-imidazolium carboxylate coordination assemblies with novel structural motifs were derived from the reaction between the corresponding flexible, semi flexible or rigid imidazolium carboxylic acid ligands and lead nitrate. The imidazolium linker present in these molecules likely plays a triple role such as the counter ion to balance the metal charge, the ligand being an integral part of the final product and the catalyst facilitating carbon-carbon bond formation reaction. These lead-imidazolium coordination assemblies exhibit, variable chemical and thermal stabilities, as well as catalytic activity. These newly prepared catalysts are highly active towards benzoin condensation reactions with good functional group tolerance.

  9. DNA binding residues in the RQC domain of Werner protein are critical for its catalytic activities.

    PubMed

    Tadokoro, Takashi; Kulikowicz, Tomasz; Dawut, Lale; Croteau, Deborah L; Bohr, Vilhelm A

    2012-06-01

    Werner protein (WRN), member of the RecQ helicase family, is a helicase and exonuclease, and participates in multiple DNA metabolic processes including DNA replication, recombination and DNA repair. Mutations in the WRN gene cause Werner syndrome, associated with premature aging, genome instability and cancer predisposition. The RecQ C-terminal (RQC) domain of WRN, containing α2-α3 loop and β-wing motifs, is important for DNA binding and for many protein interactions. To better understand the critical functions of this domain, we generated recombinant WRN proteins (using a novel purification scheme) with mutations in Arg-993 within the α2-α3 loop of the RQC domain and in Phe-1037 of the -wing motif. We then studied the catalytic activities and DNA binding of these mutant proteins as well as some important functional protein interactions. The mutant proteins were defective in DNA binding and helicase activity, and interestingly, they had deficient exonuclease activity and strand annealing function. The RQC domain of WRN has not previously been implicated in exonuclease or annealing activities. The mutant proteins could not stimulate NEIL1 incision activity as did the wild type. Thus, the Arg-993 and Phe-1037 in the RQC domain play essential roles in catalytic activity, and in functional interactions mediated by WRN.

  10. Characterization of ferromagnetic sludge-based activated carbon and its application in catalytic ozonation of p-chlorobenzoic acid.

    PubMed

    Lu, Siying; Liu, Yongze; Feng, Li; Sun, Zhongen; Zhang, Liqiu

    2017-03-09

    In order to solve the separation problem of powdered sludge-based activated carbon (SAC), a series of novel ferromagnetic sludge-based activated carbons (FMSACs, with different iron content 2.3, 4.3, and 9.5 wt%) with a good magnetic separation ability were prepared through co-precipitation method in this study. The structure and physicochemical properties of FMSACs and their catalytic ozonation performance on the removal of p-chlorobenzoic acid (p-CBA) were investigated. The saturation magnetization (Ms) of FMSACs was determined in the range of 0.3674-5.7992 emu g(-1), and experiments confirmed that these FMSACs could be easily separated by magnetic fields. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis indicated that magnetite and maghemite were the main magnetic phases in FMSACs. Comparing with ozonation alone and SAC catalytic ozonation, the presence of 2.3 wt% - FMSAC improved the degradation of p-CBA during catalytic ozonation from 44 and 70 to 80%. The tertiary butanol inhibition experiment indicated that FMSACs catalytic ozonation process followed hydroxyl radical reaction mechanism. Furthermore, after six repetitive catalytic ozonation runs, 2.3 wt% - FMSAC still showed relatively high catalytic activity for the removal of p-CBA. Consequently, the novel FMSACs with magnetic separation ability and catalytic performance provide a practical pathway for the sludge utilization.

  11. Energy Efficient Catalytic Activation of Hydrogen peroxide for Green Chemical Processes: Final Report

    SciTech Connect

    Collins, Terrence J.; Horwitz, Colin

    2004-11-12

    A new, highly energy efficient approach for using catalytic oxidation chemistry in multiple fields of technology has been pursued. The new catalysts, called TAML® activators, catalyze the reactions of hydrogen peroxide and other oxidants for the exceptionally rapid decontamination of noninfectious simulants (B. atrophaeus) of anthrax spores, for the energy efficient decontamination of thiophosphate pesticides, for the facile, low temperature removal of color and organochlorines from pulp and paper mill effluent, for the bleaching of dyes from textile mill effluents, and for the removal of recalcitrant dibenzothiophene compounds from diesel and gasoline fuels. Highlights include the following: 1) A 7-log kill of Bacillus atrophaeus spores has been achieved unambiguously in water under ambient conditions within 15 minutes. 2) The rapid total degradation under ambient conditions of four thiophosphate pesticides and phosphonate degradation intermediates has been achieved on treatment with TAML/peroxide, opening up potential applications of the decontamination system for phosphonate structured chemical warfare agents, for inexpensive, easy to perform degradation of stored and aged pesticide stocks (especially in Africa and Asia), for remediation of polluted sites and water bodies, and for the destruction of chemical warfare agent stockpiles. 3) A mill trial conducted in a Pennsylvanian bleached kraft pulp mill has established that TAML catalyst injected into an alkaline peroxide bleach tower can significantly lower color from the effluent stream promising a new, more cost effective, energy-saving approach for color remediation adding further evidence of the value and diverse engineering capacity of the approach to other field trials conducted on effluent streams as they exit the bleach plant. 4) Dibenzothiophenes (DBTs), including 4,6-dimethyldibenzothiophene, the most recalcitrant sulfur compounds in diesel and gasoline, can be completely removed from model gasoline

  12. The Contribution of Non-catalytic Carbohydrate Binding Modules to the Activity of Lytic Polysaccharide Monooxygenases*

    PubMed Central

    Crouch, Lucy I.; Labourel, Aurore; Walton, Paul H.; Davies, Gideon J.; Gilbert, Harry J.

    2016-01-01

    Lignocellulosic biomass is a sustainable industrial substrate. Copper-dependent lytic polysaccharide monooxygenases (LPMOs) contribute to the degradation of lignocellulose and increase the efficiency of biofuel production. LPMOs can contain non-catalytic carbohydrate binding modules (CBMs), but their role in the activity of these enzymes is poorly understood. Here we explored the importance of CBMs in LPMO function. The family 2a CBMs of two monooxygenases, CfLPMO10 and TbLPMO10 from Cellulomonas fimi and Thermobispora bispora, respectively, were deleted and/or replaced with CBMs from other proteins. The data showed that the CBMs could potentiate and, surprisingly, inhibit LPMO activity, and that these effects were both enzyme-specific and substrate-specific. Removing the natural CBM or introducing CtCBM3a, from the Clostridium thermocellum cellulosome scaffoldin CipA, almost abolished the catalytic activity of the LPMOs against the cellulosic substrates. The deleterious effect of CBM removal likely reflects the importance of prolonged presentation of the enzyme on the surface of the substrate for efficient catalytic activity, as only LPMOs appended to CBMs bound tightly to cellulose. The negative impact of CtCBM3a is in sharp contrast with the capacity of this binding module to potentiate the activity of a range of glycoside hydrolases including cellulases. The deletion of the endogenous CBM from CfLPMO10 or the introduction of a family 10 CBM from Cellvibrio japonicus LPMO10B into TbLPMO10 influenced the quantity of non-oxidized products generated, demonstrating that CBMs can modulate the mode of action of LPMOs. This study demonstrates that engineered LPMO-CBM hybrids can display enhanced industrially relevant oxygenations. PMID:26801613

  13. Substitution scanning identifies a novel, catalytically active ibrutinib-resistant BTK cysteine 481 to threonine (C481T) variant.

    PubMed

    Hamasy, A; Wang, Q; Blomberg, K E M; Mohammad, D K; Yu, L; Vihinen, M; Berglöf, A; Smith, C I E

    2017-01-01

    Irreversible Bruton tyrosine kinase (BTK) inhibitors, ibrutinib and acalabrutinib have demonstrated remarkable clinical responses in multiple B-cell malignancies. Acquired resistance has been identified in a sub-population of patients in which mutations affecting BTK predominantly substitute cysteine 481 in the kinase domain for catalytically active serine, thereby ablating covalent binding of inhibitors. Activating substitutions in the BTK substrate phospholipase Cγ2 (PLCγ2) instead confers resistance independent of BTK. Herein, we generated all six possible amino acid substitutions due to single nucleotide alterations for the cysteine 481 codon, in addition to threonine, requiring two nucleotide substitutions, and performed functional analysis. Replacement by arginine, phenylalanine, tryptophan or tyrosine completely inactivated the catalytic activity, whereas substitution with glycine caused severe impairment. BTK with threonine replacement was catalytically active, similar to substitution with serine. We identify three potential ibrutinib resistance scenarios for cysteine 481 replacement: (1) Serine, being catalytically active and therefore predominating among patients. (2) Threonine, also being catalytically active, but predicted to be scarce, because two nucleotide changes are needed. (3) As BTK variants replaced with other residues are catalytically inactive, they presumably need compensatory mutations, therefore being very scarce. Glycine and tryptophan variants were not yet reported but likely also provide resistance.

  14. Substitution scanning identifies a novel, catalytically active ibrutinib-resistant BTK cysteine 481 to threonine (C481T) variant

    PubMed Central

    Hamasy, A; Wang, Q; Blomberg, K E M; Mohammad, D K; Yu, L; Vihinen, M; Berglöf, A; Smith, C I E

    2017-01-01

    Irreversible Bruton tyrosine kinase (BTK) inhibitors, ibrutinib and acalabrutinib have demonstrated remarkable clinical responses in multiple B-cell malignancies. Acquired resistance has been identified in a sub-population of patients in which mutations affecting BTK predominantly substitute cysteine 481 in the kinase domain for catalytically active serine, thereby ablating covalent binding of inhibitors. Activating substitutions in the BTK substrate phospholipase Cγ2 (PLCγ2) instead confers resistance independent of BTK. Herein, we generated all six possible amino acid substitutions due to single nucleotide alterations for the cysteine 481 codon, in addition to threonine, requiring two nucleotide substitutions, and performed functional analysis. Replacement by arginine, phenylalanine, tryptophan or tyrosine completely inactivated the catalytic activity, whereas substitution with glycine caused severe impairment. BTK with threonine replacement was catalytically active, similar to substitution with serine. We identify three potential ibrutinib resistance scenarios for cysteine 481 replacement: (1) Serine, being catalytically active and therefore predominating among patients. (2) Threonine, also being catalytically active, but predicted to be scarce, because two nucleotide changes are needed. (3) As BTK variants replaced with other residues are catalytically inactive, they presumably need compensatory mutations, therefore being very scarce. Glycine and tryptophan variants were not yet reported but likely also provide resistance. PMID:27282255

  15. Stable and catalytically active iron porphyrin-based porous organic polymer: Activity as both a redox and Lewis acid catalyst

    PubMed Central

    Oveisi, Ali R.; Zhang, Kainan; Khorramabadi-zad, Ahmad; Farha, Omar K.; Hupp, Joseph T.

    2015-01-01

    A new porphyrin-based porous organic polymer (POP) with BET surface area ranging from 780 to 880 m2/g was synthesized in free-base form via the reaction of meso-tetrakis(pentafluorophenyl) porphyrin and a rigid trigonal building block, hexahydroxytriphenylene. The material was then metallated with Fe(III) imparting activity for Lewis acid catalysis (regioselective methanolysis ring-opening of styrene oxide), oxidative cyclization catalysis (conversion of bis(2-hydroxy-1-naphthyl)methanes to the corresponding spirodienone), and a tandem catalytic processes: an in situ oxidation-cyclic aminal formation-oxidation sequence, which selectively converts benzyl alcohol to 2-phenyl-quinazolin-4(3H)-one. Notably, the catalyst is readily recoverable and reusable, with little loss in catalytic activity. PMID:26177563

  16. Catalytic oxidation of pulping effluent by activated carbon-supported heterogeneous catalysts.

    PubMed

    Yadav, Bholu Ram; Garg, Anurag

    2016-01-01

    The present study deals with the non-catalytic and catalytic wet oxidation (CWO) for the removal of persistent organic compounds from the pulping effluent. Two activated carbon-supported heterogeneous catalysts (Cu/Ce/AC and Cu/Mn/AC) were used for CWO after characterization by the following techniques: temperature-programmed reduction, Fourier transform infrared spectroscopy and thermo-gravimetric analysis. The oxidation reaction was performed in a batch high-pressure reactor (capacity = 0.7  L) at moderate oxidation conditions (temperature = 190°C and oxygen pressure = 0.9 MPa). With Cu/Ce/AC catalyst, the maximum chemical oxygen demand (COD), total organic carbon (TOC) and lignin removals of 79%, 77% and 88% were achieved compared to only 50% removal during the non-catalytic process. The 5-day biochemical oxygen demand (BOD5) to COD ratio (a measure for biodegradability) of the pulping effluent was improved to 0.52 from an initial value of 0.16. The mass balance calculations for solid recovered after CWO reaction showed 8% and 10% deduction in catalyst mass primarily attributed to the loss of carbon and metal leaching. After the CWO process, carbon deposition was also observed on the recovered catalyst which was responsible for around 3-4% TOC reduction.

  17. Catalytic activity of silicon nanowires decorated with silver and copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Amdouni, Sonia; Coffinier, Yannick; Szunerits, Sabine; Zaïbi, Mohammed Ali; Oueslati, Meherzi; Boukherroub, Rabah

    2016-01-01

    The paper reports on the elaboration of silicon nanowires decorated with silver (SiNWs-Ag NPs) or copper (SiNWs-Cu NPs) nanoparticles and the investigation of their catalytic properties for the reduction of 4-nitrophenol to 4-aminophenol. The SiNW arrays were produced through chemical etching of crystalline silicon in HF/AgNO3 aqueous solution. The metal nanoparticles were deposited on the SiNW substrates through chemical bath immersion in a metal salt/hydrofluoric acid aqueous solution. The SiNWs decorated with Ag NPs and Cu NPs were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS). The catalytic activity of the SiNWs loaded with metal nanoparticles was evaluated for the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride (NaBH4). The substrates exhibited good catalytic performance toward nitrophenol with a full reduction in less than 30 s for the SiNWs-Cu NPs.

  18. Probing Substrate Interactions in the Active Tunnel of a Catalytically Deficient Cellobiohydrolase (Cel7)*

    PubMed Central

    Colussi, Francieli; Sørensen, Trine H.; Alasepp, Kadri; Kari, Jeppe; Cruys-Bagger, Nicolaj; Windahl, Michael S.; Olsen, Johan P.; Borch, Kim; Westh, Peter

    2015-01-01

    Cellobiohydrolases break down cellulose sequentially by sliding along the crystal surface with a single cellulose strand threaded through the catalytic tunnel of the enzyme. This so-called processive mechanism relies on a complex pattern of enzyme-substrate interactions, which need to be addressed in molecular descriptions of processivity and its driving forces. Here, we have used titration calorimetry to study interactions of cellooligosaccharides (COS) and a catalytically deficient variant (E212Q) of the enzyme Cel7A from Trichoderma reesei. This enzyme has ∼10 glucopyranose subsites in the catalytic tunnel, and using COS ligands with a degree of polymerization (DP) from 2 to 8, different regions of the tunnel could be probed. For COS ligands with a DP of 2–3 the binding constants were around 105 m−1, and for longer ligands (DP 5–8) this value was ∼107 m−1. Within each of these groups we did not find increased affinity as the ligands got longer and potentially filled more subsites. On the contrary, we found a small but consistent affinity loss as DP rose from 6 to 8, particularly at the higher investigated temperatures. Other thermodynamic functions (ΔH, ΔS, and ΔCp) decreased monotonously with both temperature and DP. Combined interpretation of these thermodynamic results and previously published structural data allowed assessment of an affinity profile along the length axis of the active tunnel. PMID:25477511

  19. A Processive Carbohydrate Polymerase That Mediates Bifunctional Catalysis Using a Single Active Site

    PubMed Central

    May, John F.; Levengood, Matthew R.; Splain, Rebecca A.; Brown, Christopher D.; Kiessling, Laura L.

    2012-01-01

    Even in the absence of a template, glycosyltransferases can catalyze the synthesis of carbohydrate polymers of specific sequence. The paradigm has been that one enzyme catalyzes the formation of one type of glycosidic linkage, yet certain glycosyltransferases generate polysaccharide sequences composed of two distinct linkage types. In principle, bifunctional glycosyltransferases can possess separate active sites for each catalytic activity or one active site with dual activities. We encountered the fundamental question of one or two distinct active sites in our investigation of the galactosyltransferase GlfT2. GlfT2 catalyzes the formation of mycobacterial galactan, a critical cell-wall polymer composed of galactofuranose residues connected with alternating, regioisomeric linkages. We found that GlfT2 mediates galactan polymerization using only one active site that manifests dual regioselectivity. Structural modeling of the bifunctional glycosyltransferases hyaluronan synthase and cellulose synthase suggests that these enzymes also generate multiple glycosidic linkages using a single active site. These results highlight the versatility of glycosyltransferases for generating polysaccharides of specific sequence. We postulate that a hallmark of processive elongation of a carbohydrate polymer by a bifunctional enzyme is that one active site can give rise to two separate types of glycosidic bonds. PMID:22217153

  20. Biosynthesised palladium nanoparticles using Eucommia ulmoides bark aqueous extract and their catalytic activity.

    PubMed

    Duan, Liansheng; Li, Ming; Liu, Huihong

    2015-12-01

    Palladium nanoparticles (PdNPs) are of great importance as catalytic materials. Their synthesis has been widely studied and interest in their properties is growing. Bio-based methods might be a greener option for designing the PdNPs with reduced environmental impacts. This study reports the synthesis of PdNPs by utilising the aqueous extract of medicinally important Eucommia ulmoides (E. Ulmoides) bark which functions as both reducing and capping agent in moderate reaction conditions. Reduction potential of E. Ulmoides bark aqueous extract was about -0.08 V vs. saturated calomel electrode by open-circuit voltage method and the rich polyphenolics was confirmed by cyclic voltammetry, which helps to reduce palladium ions to PdNPs. The characterisation through high-resolution transmission electron microscopic, energy dispersive X-ray spectroscopy and X-ray diffraction infer that the as-synthesised PdNPs were spherical in shape with a face cubic crystal structure. The results from dynamic light scattering suggest the PdNPs have the narrow size distribution with an average size of 12.6 nm. The lower zeta potential (-25.3 mV) and the Fourier transform infrared spectra indicate that the as-synthesised PdNPs keep remarkably stable for a long period due to the capped biomolecules on the nanoparticle surface. This method for synthesis of PdNPs is simple, economic, non-toxic and efficient. The PdNPs show excellent catalytic activity for the electro-catalytic oxidation of hydrazine and the catalytic reducing degradation of p-aminoazobenzene, a model compound of azo-dyes.

  1. [The state of phospholipase D in solution and its catalytic activity].

    PubMed

    Rakhimov, M M; Mad'iarov, Sh R

    1977-04-01

    Functioning of water-soluble phospholipase D from cotton seeds is studied on two phases contact area (liquid-liquid, liquid-solid substance) and on the surface of mixed lecitine and sodium dodecylsulphate micelles. It is found that water-soluble phospholipase D, which normally has no catalytic activity, is capable to hydrolyse its substrates in the presence of organic solvents, solid adsorbents and sodium dodecylsulphate. The data obtained show that in all the cases studied the activation observed is due to adsorption immobilization of the enzyme. K lambda and K alpha constants are introduced, which are characteristics of immobilyzing ability of agents-matrices for immobilization. Phase transitions, which take place in heterogenous system (enzyme-activator-substrate-water solution), are found to be a necessary condition for the enzyme activation. A hypothesis, that catalytical activity of water-soluble phospholipase D is inherent of the adsorbed enzyme, is discussed on the basis of the data on comparative study of adsorbed and water-soluble enzymes.

  2. Physics-based enzyme design: predicting binding affinity and catalytic activity.

    PubMed

    Sirin, Sarah; Pearlman, David A; Sherman, Woody

    2014-12-01

    Computational enzyme design is an emerging field that has yielded promising success stories, but where numerous challenges remain. Accurate methods to rapidly evaluate possible enzyme design variants could provide significant value when combined with experimental efforts by reducing the number of variants needed to be synthesized and speeding the time to reach the desired endpoint of the design. To that end, extending our computational methods to model the fundamental physical-chemical principles that regulate activity in a protocol that is automated and accessible to a broad population of enzyme design researchers is essential. Here, we apply a physics-based implicit solvent MM-GBSA scoring approach to enzyme design and benchmark the computational predictions against experimentally determined activities. Specifically, we evaluate the ability of MM-GBSA to predict changes in affinity for a steroid binder protein, catalytic turnover for a Kemp eliminase, and catalytic activity for α-Gliadin peptidase variants. Using the enzyme design framework developed here, we accurately rank the most experimentally active enzyme variants, suggesting that this approach could provide enrichment of active variants in real-world enzyme design applications.

  3. Active Site Hydrophobicity and the Convergent Evolution of Paraoxonase Activity in Structurally Divergent Enzymes: The Case of Serum Paraoxonase 1

    PubMed Central

    2016-01-01

    Serum paraoxonase 1 (PON1) is a native lactonase capable of promiscuously hydrolyzing a broad range of substrates, including organophosphates, esters, and carbonates. Structurally, PON1 is a six-bladed β-propeller with a flexible loop (residues 70–81) covering the active site. This loop contains a functionally critical Tyr at position 71. We have performed detailed experimental and computational analyses of the role of selected Y71 variants in the active site stability and catalytic activity in order to probe the role of Y71 in PON1’s lactonase and organophosphatase activities. We demonstrate that the impact of Y71 substitutions on PON1’s lactonase activity is minimal, whereas the kcat for the paraoxonase activity is negatively perturbed by up to 100-fold, suggesting greater mutational robustness of the native activity. Additionally, while these substitutions modulate PON1’s active site shape, volume, and loop flexibility, their largest effect is in altering the solvent accessibility of the active site by expanding the active site volume, allowing additional water molecules to enter. This effect is markedly more pronounced in the organophosphatase activity than the lactonase activity. Finally, a detailed comparison of PON1 to other organophosphatases demonstrates that either a similar “gating loop” or a highly buried solvent-excluding active site is a common feature of these enzymes. We therefore posit that modulating the active site hydrophobicity is a key element in facilitating the evolution of organophosphatase activity. This provides a concrete feature that can be utilized in the rational design of next-generation organophosphate hydrolases that are capable of selecting a specific reaction from a pool of viable substrates. PMID:28026940

  4. Regulation of active site coupling in glutamine-dependent NAD[superscript +] synthetase

    SciTech Connect

    LaRonde-LeBlanc, Nicole; Resto, Melissa; Gerratana, Barbara

    2009-05-21

    NAD{sup +} is an essential metabolite both as a cofactor in energy metabolism and redox homeostasis and as a regulator of cellular processes. In contrast to humans, Mycobacterium tuberculosis NAD{sup +} biosynthesis is absolutely dependent on the activity of a multifunctional glutamine-dependent NAD{sup +} synthetase, which catalyzes the ATP-dependent formation of NAD{sup +} at the synthetase domain using ammonia derived from L-glutamine in the glutaminase domain. Here we report the kinetics and structural characterization of M. tuberculosis NAD{sup +} synthetase. The kinetics data strongly suggest tightly coupled regulation of the catalytic activities. The structure, the first of a glutamine-dependent NAD{sup +} synthetase, reveals a homooctameric subunit organization suggesting a tight dependence of catalysis on the quaternary structure, a 40-{angstrom} intersubunit ammonia tunnel and structural elements that may be involved in the transfer of information between catalytic sites.

  5. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination.

    PubMed

    Rowley, Paul A; Kachroo, Aashiq H; Ma, Chien-Hui; Maciaszek, Anna D; Guga, Piotr; Jayaram, Makkuni

    2015-07-13

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5' to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions.

  6. Specificity and versatility of substrate binding sites in four catalytic domains of human N-terminal acetyltransferases.

    PubMed

    Grauffel, Cédric; Abboud, Angèle; Liszczak, Glen; Marmorstein, Ronen; Arnesen, Thomas; Reuter, Nathalie

    2012-01-01

    Nt-acetylation is among the most common protein modifications in eukaryotes. Although thought for a long time to protect proteins from degradation, the role of Nt-acetylation is still debated. It is catalyzed by enzymes called N-terminal acetyltransferases (NATs). In eukaryotes, several NATs, composed of at least one catalytic domain, target different substrates based on their N-terminal sequences. In order to better understand the substrate specificity of human NATs, we investigated in silico the enzyme-substrate interactions in four catalytic subunits of human NATs (Naa10p, Naa20p, Naa30p and Naa50p). To date hNaa50p is the only human subunit for which X-ray structures are available. We used the structure of the ternary hNaa50p/AcCoA/MLG complex and a structural model of hNaa10p as a starting point for multiple molecular dynamics simulations of hNaa50p/AcCoA/substrate (substrate=MLG, EEE, MKG), hNaa10p/AcCoA/substrate (substrate=MLG, EEE). Nine alanine point-mutants of the hNaa50p/AcCoA/MLG complex were also simulated. Homology models of hNaa20p and hNaa30p were built and compared to hNaa50p and hNaa10p. The simulations of hNaa50p/AcCoA/MLG reproduce the interactions revealed by the X-ray data. We observed strong hydrogen bonds between MLG and tyrosines 31, 138 and 139. Yet the tyrosines interacting with the substrate's backbone suggest that their role in specificity is limited. This is confirmed by the simulations of hNaa50p/AcCoA/EEE and hNaa10p/AcCoA/MLG, where these hydrogen bonds are still observed. Moreover these tyrosines are all conserved in hNaa20p and hNaa30p. Other amino acids tune the specificity of the S1' sites that is different for hNaa10p (acidic), hNaa20p (hydrophobic/basic), hNaa30p (basic) and hNaa50p (hydrophobic). We also observe dynamic correlation between the ligand binding site and helix [Formula: see text] that tightens under substrate binding. Finally, by comparing the four structures we propose maps of the peptide-enzyme interactions

  7. Facile route to hierarchical silver microstructures with high catalytic activity for the reduction of p-nitrophenol

    SciTech Connect

    Gu, Sasa; Wang, Wei Tan, Fatang; Gu, Jian; Qiao, Xueliang; Chen, Jianguo

    2014-01-01

    Graphical abstract: - Highlights: • A facile route was developed to prepare hierarchical silver microstructures. • The shape and size of secondary units can be tailed by varying reaction conditions. • Hierarchical silver microstructures have excellent catalytic activity. • The morphology and crystallinity of silver particles affect the catalytic activity. - Abstract: A facile, cost-effective and environmentally friendly route was developed to synthesize hierarchical silver microstructures consisting of different shaped secondary units through reducing concentrated silver nitrate with ascorbic acid in the absence of any surfactant. The as-obtained samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The investigation on the morphology evolution revealed that the molar ratio of ascorbic acid to silver nitrate was critical to control the shape of secondary structures. The length of plate-like secondary structures which composed hierarchical silver particles could be controlled by changing the reactant concentrations, and it had a key relationship with the catalytic activity for the reduction of p-nitrophenol by NaBH{sub 4}. The catalytic activity of these surfactant-free silver microstructures was about ten times higher than that of silver nanoparticles, and even comparable to that of gold nanoplates, which indicates that the as-obtained silver microstructures are very promising candidates for the catalytic reduction of p-nitrophenol due to the simple synthesis route and high catalytic activity.

  8. Active Sites Environmental Monitoring Program: Program plan

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  9. Evolution of anatase surface active sites probed by in situ sum-frequency phonon spectroscopy.

    PubMed

    Cao, Yue; Chen, Shiyou; Li, Yadong; Gao, Yi; Yang, Deheng; Shen, Yuen Ron; Liu, Wei-Tao

    2016-09-01

    Surface active sites of crystals often govern their relevant surface chemistry, yet to monitor them in situ in real atmosphere remains a challenge. Using surface-specific sum-frequency spectroscopy, we identified the surface phonon mode associated with the active sites of undercoordinated titanium ions and conjoint oxygen vacancies, and used it to monitor them on anatase (TiO2) (101) under ambient conditions. In conjunction with theory, we determined related surface structure around the active sites and tracked the evolution of oxygen vacancies under ultraviolet irradiation. We further found that unlike in vacuum, the surface oxygen vacancies, which dominate the surface reactivity, are strongly regulated by ambient gas molecules, including methanol and water, as well as weakly associated species, such as nitrogen and hydrogen. The result revealed a rich interplay between prevailing ambient species and surface reactivity, which can be omnipresent in environmental and catalytic applications of titanium dioxides.

  10. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase

    SciTech Connect

    Fenwick, Michael K.; Mehta, Angad P.; Zhang, Yang; Abdelwahed, Sameh H.; Begley, Tadhg P.; Ealick, Steven E.

    2015-03-27

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active site metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.

  11. Evolution of anatase surface active sites probed by in situ sum-frequency phonon spectroscopy

    PubMed Central

    Cao, Yue; Chen, Shiyou; Li, Yadong; Gao, Yi; Yang, Deheng; Shen, Yuen Ron; Liu, Wei-Tao

    2016-01-01

    Surface active sites of crystals often govern their relevant surface chemistry, yet to monitor them in situ in real atmosphere remains a challenge. Using surface-specific sum-frequency spectroscopy, we identified the surface phonon mode associated with the active sites of undercoordinated titanium ions and conjoint oxygen vacancies, and used it to monitor them on anatase (TiO2) (101) under ambient conditions. In conjunction with theory, we determined related surface structure around the active sites and tracked the evolution of oxygen vacancies under ultraviolet irradiation. We further found that unlike in vacuum, the surface oxygen vacancies, which dominate the surface reactivity, are strongly regulated by ambient gas molecules, including methanol and water, as well as weakly associated species, such as nitrogen and hydrogen. The result revealed a rich interplay between prevailing ambient species and surface reactivity, which can be omnipresent in environmental and catalytic applications of titanium dioxides. PMID:27704049

  12. Molecular Basis for Enzymatic Sulfite Oxidation -- HOW THREE CONSERVED ACTIVE SITE RESIDUES SHAPE ENZYME ACTIVITY

    SciTech Connect

    Bailey, Susan; Rapson, Trevor; Johnson-Winters, Kayunta; Astashkin, Andrei; Enemark, John; Kappler, Ulrike

    2008-11-10

    Sulfite dehydrogenases (SDHs) catalyze the oxidation and detoxification of sulfite to sulfate, a reaction critical to all forms of life. Sulfite-oxidizing enzymes contain three conserved active site amino acids (Arg-55, His-57, and Tyr-236) that are crucial for catalytic competency. Here we have studied the kinetic and structural effects of two novel and one previously reported substitution (R55M, H57A, Y236F) in these residues on SDH catalysis. Both Arg-55 and His-57 were found to have key roles in substrate binding. An R55M substitution increased Km(sulfite)(app) by 2-3 orders of magnitude, whereas His-57 was required for maintaining a high substrate affinity at low pH when the imidazole ring is fully protonated. This effect may be mediated by interactions of His-57 with Arg-55 that stabilize the position of the Arg-55 side chain or, alternatively, may reflect changes in the protonation state of sulfite. Unlike what is seen for SDHWT and SDHY236F, the catalytic turnover rates of SDHR55M and SDHH57A are relatively insensitive to pH (~;;60 and 200 s-1, respectively). On the structural level, striking kinetic effects appeared to correlate with disorder (in SDHH57A and SDHY236F) or absence of Arg-55 (SDHR55M), suggesting that Arg-55 and the hydrogen bonding interactions it engages in are crucial for substrate binding and catalysis. The structure of SDHR55M has sulfate bound at the active site, a fact that coincides with a significant increase in the inhibitory effect of sulfate in SDHR55M. Thus, Arg-55 also appears to be involved in enabling discrimination between the substrate and product in SDH.

  13. Kinetic and structural evaluation of selected active site mutants of the Aspergillus fumigatus KDNase (sialidase).

    PubMed

    Yeung, Juliana H F; Telford, Judith C; Shidmoossavee, Fahimeh S; Bennet, Andrew J; Taylor, Garry L; Moore, Margo M

    2013-12-23

    Aspergillus fumigatus is an airborne fungal pathogen. We previously cloned and characterized an exo-sialidase from A. fumigatus and showed that it preferred 2-keto-3-deoxynononic acid (KDN) as a substrate to N-acetylneuraminic acid (Neu5Ac). The purpose of this study was to investigate the structure-function relationships of critical catalytic site residues. Site-directed mutagenesis was used to create three mutant recombinant enzymes: the catalytic nucleophile (Y358H), the general acid/base catalyst (D84A), and an enlargement of the binding pocket to attempt to accommodate the N-acetyl group of Neu5Ac (R171L). Crystal structures for all enzymes were determined. The D84A mutation had an effect in decreasing the activity