10 CFR 63.16 - Review of site characterization activities. 2
Code of Federal Regulations, 2012 CFR
2012-01-01
... which such activities are carried out and to observe excavations, borings, and in situ tests, as they... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of site characterization activities. 2 2 In addition to the review of site characterization activities...
10 CFR 63.16 - Review of site characterization activities. 2
Code of Federal Regulations, 2011 CFR
2011-01-01
... which such activities are carried out and to observe excavations, borings, and in situ tests, as they... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of site characterization activities. 2 2 In addition to the review of site characterization activities...
10 CFR 63.16 - Review of site characterization activities. 2
Code of Federal Regulations, 2013 CFR
2013-01-01
... which such activities are carried out and to observe excavations, borings, and in situ tests, as they... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of site characterization activities. 2 2 In addition to the review of site characterization activities...
10 CFR 63.16 - Review of site characterization activities. 2
Code of Federal Regulations, 2010 CFR
2010-01-01
... which such activities are carried out and to observe excavations, borings, and in situ tests, as they... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of site characterization activities. 2 2 In addition to the review of site characterization activities...
10 CFR 63.16 - Review of site characterization activities. 2
Code of Federal Regulations, 2014 CFR
2014-01-01
... which such activities are carried out and to observe excavations, borings, and in situ tests, as they... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of site characterization activities. 2 2 In addition to the review of site characterization activities...
10 CFR 60.18 - Review of site characterization activities. 2
Code of Federal Regulations, 2011 CFR
2011-01-01
... developed, and on the progress of waste form and waste package research and development. The semiannual... of site characterization will be established. Other topics related to site characterization shall...
10 CFR 60.18 - Review of site characterization activities. 2
Code of Federal Regulations, 2012 CFR
2012-01-01
... developed, and on the progress of waste form and waste package research and development. The semiannual... of site characterization will be established. Other topics related to site characterization shall...
10 CFR 60.18 - Review of site characterization activities. 2
Code of Federal Regulations, 2013 CFR
2013-01-01
... developed, and on the progress of waste form and waste package research and development. The semiannual... of site characterization will be established. Other topics related to site characterization shall...
10 CFR 60.18 - Review of site characterization activities. 2
Code of Federal Regulations, 2014 CFR
2014-01-01
... developed, and on the progress of waste form and waste package research and development. The semiannual... of site characterization will be established. Other topics related to site characterization shall...
10 CFR 960.3-2-2-4 - The environmental assessment.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the site-characterization activities at the site on public health and safety and the environment; a discussion of alternative activities related to site characterization that may be taken to avoid such impact; and an assessment of the regional and local impacts of locating a repository at the site. The draft...
Yucca Mountain Biological Resources Monitoring Program; Annual report, FY91
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1992-01-01
The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a possible site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a repository. To ensure that site characterization activities (SCA) do not adversely affect the Yucca Mountain area, an environmental program has been implemented to monitor and mitigate potential impacts and to ensure that activities comply with applicable environmentalmore » regulations. This report describes the activities and accomplishments during fiscal year 1991 (FY91) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Activities Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.« less
Copéret, Christophe
2011-01-05
Stereoselectivity in alkene metathesis is a challenge and can be used as a tool to study active sites under working conditions. This review describes the stereochemical relevance and problems in alkene metathesis (kinetic vs. thermodynamic issues), the use of (E/Z) ratio at low conversions as a tool to characterize active sites of heterogeneous catalysts and finally to propose strategies to improve catalysts based on the current state of the art.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-12-01
The US Environmental Protection Agency (EPA) has established health and environmental protection regulations to correct and prevent groundwater contamination resulting from processing activities at inactive uranium milling sites. According to the Uranium Mill Tailings Radiation Control Act of 1978, (UMTRCA) the US Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has determined this assessment shall include information on hydrogeologic site characterization. The water resources protection strategy that describes how the proposed action will comply with the EPA groundwater protection standards is presented in Attachment 4. Site characterization activities discussed in this section include:more » Characterization of the hydrogeologic environment; characterization of existing groundwater quality; definition of physical and chemical characteristics of the potential contaminant source; and description of local water resources.« less
Yucca Mountain Biological Resources Monitoring Program. Progress report, January 1994--December 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-07-01
The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize the suitability of Yucca Mountain as a potential geological repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities do not adversely affect the environment at Yucca Mountain, a program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. Thismore » report describes the activities and accomplishments of EG and G Energy Measurements, Inc. (EG and G/EM) from January 1994 through December 1994 for six program areas within the Terrestrial Ecosystem component of the environmental program for the Yucca Mountain Site Characterization Project (YMP): Site Characterization Effects, Desert Tortoises (Gopherus agassizii), Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.« less
Recent Experience Using Active Love Wave Techniques to Characterize Seismographic Station Sites
NASA Astrophysics Data System (ADS)
Martin, A. J.; Yong, A.; Salomone, L.
2014-12-01
Active-source Love waves recorded by the multi-channel analysis of surface wave (MASLW) technique were recently analyzed in two site characterization projects. Between 2010 and 2011, the 2009 American Recovery and Reinvestment Act (ARRA) funded GEOVision to conduct geophysical investigations at 189 seismographic stations—185 in California and 4 in the Central Eastern U.S. (CEUS). The original project plan was to utilize active and passive Rayleigh wave-based techniques to obtain shear-wave velocity (VS) profiles to a minimum depth of 30 m and the time-averaged VS of the upper 30 meters (VS30). Early in the investigation it became evident that Rayleigh wave techniques, such as multi-channel analysis of surface waves (MASRW), were not effective at characterizing all sites. Shear-wave seismic refraction and MASLW techniques were therefore applied. The MASLW technique was deployed at a total of 38 sites, in addition to other methods, and used as the primary technique to characterize 22 sites, 5 of which were also characterized using Rayleigh wave techniques. In 2012, the Electric Power Research Institute funded characterization of 33 CEUS station sites. Based on experience from the ARRA investigation, both MASRW and MASLW data were acquired by GEOVision at 24 CEUS sites—the remaining 9 sites and 2 overlapping sites were characterized by University of Texas, Austin. Of the 24 sites characterized by GEOVision, 16 were characterized using MASLW data, 4 using both MASLW and MASRW data and 4 using MASRW data. Love wave techniques were often found to perform better, or at least yield phase velocity data that could be more readily modeled using the fundamental mode assumption, at shallow rock sites, sites with steep velocity gradients, and, sites with a thin, low velocity, surficial soil layer overlying stiffer sediments. These types of velocity structure often excite dominant higher modes in Rayleigh wave data, but not in Love wave data. At such sites, it may be possible to model Rayleigh wave data using multi- or effective-mode techniques; however, in many cases extraction of adequate Rayleigh wave dispersion data for modeling was difficult. These results imply that field procedures should include careful scrutiny of Rayleigh wave-based dispersion data in order to collect Love wave data when warranted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bevolo, A.J.; Kjartanson, B.H.; Wonder, J.D.
1996-03-01
The goal of the Ames Expedited Site Characterization (ESC) project is to evaluate and promote both innovative technologies (IT) and state-of-the-practice technologies (SOPT) for site characterization and monitoring. In April and May 1994, the ESC project conducted site characterization, technology comparison, and stakeholder demonstration activities at a former manufactured gas plant (FMGP) owned by Iowa Electric Services (IES) Utilities, Inc., in Marshalltown, Iowa. Three areas of technology were fielded at the Marshalltown FMGP site: geophysical, analytical and data integration. The geophysical technologies are designed to assess the subsurface geological conditions so that the location, fate and transport of the targetmore » contaminants may be assessed and forecasted. The analytical technologies/methods are designed to detect and quantify the target contaminants. The data integration technology area consists of hardware and software systems designed to integrate all the site information compiled and collected into a conceptual site model on a daily basis at the site; this conceptual model then becomes the decision-support tool. Simultaneous fielding of different methods within each of the three areas of technology provided data for direct comparison of the technologies fielded, both SOPT and IT. This document reports the results of the site characterization, technology comparison, and ESC demonstration activities associated with the Marshalltown FMGP site. 124 figs., 27 tabs.« less
10 CFR 60.18 - Review of site characterization activities. 2
Code of Federal Regulations, 2010 CFR
2010-01-01
... IN GEOLOGIC REPOSITORIES Licenses Preapplication Review § 60.18 Review of site characterization... its progress in developing the design of a geologic repository operations area appropriate for the...
Yucca Mountain biological resources monitoring program; Annual report FY92
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1993-02-01
The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a potential site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities (SCA) do not adversely affect the environment at Yucca Mountain, an environmental program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmentalmore » regulations. This report describes the activities and accomplishments of EG&G Energy Measurements, Inc. (EG&G/EM) during fiscal year 1992 (FY92) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.« less
10 CFR 60.7 - License not required for certain preliminary activities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... WASTES IN GEOLOGIC REPOSITORIES General Provisions § 60.7 License not required for certain preliminary... repository: (a) For purposes of site characterization; or (b) For use, during site characterization or...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoddard, Ethan G.; Killinger, Bryan J.; Nair, Reji N.
Glutathione S-transferases (GSTs) comprise a highly diverse family of phase II drug metabolizing enzymes whose shared function is the conjugation of reduced glutathione to various endo- and xenobiotics. Although the conglomerate activity of these enzymes can be measured by colorimetric assays, measurement of the individual contribution from specific isoforms and their contribution to the detoxification of xenobiotics in complex biological samples has not been possible. For this reason, we have developed two activity-based probes that characterize active glutathione transferases in mammalian tissues. The GST active site is comprised of a glutathione binding “G site” and a distinct substrate binding “Hmore » site”. Therefore, we developed (1) a glutathione-based photoaffinity probe (GSH-ABP) to target the “G site”, and (2) a probe designed to mimic a substrate molecule and show “H site” activity (GST-ABP). The GSH-ABP features a photoreactive moiety for UV-induced covalent binding to GSTs and glutathione-binding enzymes. The GST-ABP is a derivative of a known mechanism-based GST inhibitor that binds within the active site and inhibits GST activity. Validation of probe targets and “G” and “H” site specificity was carried out using a series of competitors in liver homogenates. Herein, we present robust tools for the novel characterization of enzyme- and active site-specific GST activity in mammalian model systems.« less
Wade, S.; Greenberg, S.
2009-01-01
This paper introduces the concept of social site characterization as a parallel effort to technical site characterization to be used in evaluating and planning carbon dioxides capture and storage (CCS) projects. Social site characterization, much like technical site characterization, relies on a series of iterative investigations into public attitudes towards a CCS project and the factors that will shape those views. This paper also suggests ways it can be used to design approaches for actively engaging stakeholders and communities in the deployment of CCS projects. This work is informed by observing the site selection process for FutureGen and the implementation of research projects under the Regional Carbon Sequestration Partnership Program. ?? 2009 Elsevier Ltd. All rights reserved.
This document presents results from site monitoring activities during calendar year 2008 at the EPA/ORD Red Cove Study Area relative to site characterization activities under Operable Units 01 (Shepley's Hill Landfill) and 11 (Plow Shop Pond) at the Fort Devens Superfund site. T...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desjardins, Morgan; Mak, Wai Shun; O’Brien, Terrence E.
Enzymes have been through millions of years of evolution during which their active-site microenvironments are fine-tuned. Active-site residues are commonly conserved within protein families, indicating their importance for substrate recognition and catalysis. In this work, we systematically mutated active-site residues of l-threonine dehydrogenase from Thermoplasma volcanium and characterized the mutants against a panel of substrate analogs. Our results demonstrate that only a subset of these residues plays an essential role in substrate recognition and catalysis and that the native enzyme activity can be further enhanced roughly 4.6-fold by a single point mutation. Kinetic characterization of mutants on substrate analogs showsmore » that l-threonine dehydrogenase possesses promiscuous activities toward other chemically similar compounds not previously observed. Quantum chemical calculations on the hydride-donating ability of these substrates also reveal that this enzyme did not evolve to harness the intrinsic substrate reactivity for enzyme catalysis. Our analysis provides insights into connections between the details of enzyme active-site structure and specific function. Finally, these results are directly applicable to rational enzyme design and engineering.« less
Desjardins, Morgan; Mak, Wai Shun; O’Brien, Terrence E.; ...
2017-07-07
Enzymes have been through millions of years of evolution during which their active-site microenvironments are fine-tuned. Active-site residues are commonly conserved within protein families, indicating their importance for substrate recognition and catalysis. In this work, we systematically mutated active-site residues of l-threonine dehydrogenase from Thermoplasma volcanium and characterized the mutants against a panel of substrate analogs. Our results demonstrate that only a subset of these residues plays an essential role in substrate recognition and catalysis and that the native enzyme activity can be further enhanced roughly 4.6-fold by a single point mutation. Kinetic characterization of mutants on substrate analogs showsmore » that l-threonine dehydrogenase possesses promiscuous activities toward other chemically similar compounds not previously observed. Quantum chemical calculations on the hydride-donating ability of these substrates also reveal that this enzyme did not evolve to harness the intrinsic substrate reactivity for enzyme catalysis. Our analysis provides insights into connections between the details of enzyme active-site structure and specific function. Finally, these results are directly applicable to rational enzyme design and engineering.« less
SITE CHARACTERIZATION AND MONITORING TECHNOLOGY VERIFICATION: PROGRESS AND RESULTS
The Site Characterization and Monitoring Technology Pilot of the U.S. Environmental Protection Agency's Environmental Technology Verification Program (ETV) has been engaged in verification activities since the fall of 1994 (U.S. EPA, 1997). The purpose of the ETV is to promote th...
Frederick, Thomas E; Peng, Jeffrey W
2018-01-01
Increasing evidence shows that active sites of proteins have non-trivial conformational dynamics. These dynamics include active site residues sampling different local conformations that allow for multiple, and possibly novel, inhibitor binding poses. Yet, active site dynamics garner only marginal attention in most inhibitor design efforts and exert little influence on synthesis strategies. This is partly because synthesis requires a level of atomic structural detail that is frequently missing in current characterizations of conformational dynamics. In particular, while the identity of the mobile protein residues may be clear, the specific conformations they sample remain obscure. Here, we show how an appropriate choice of ligand can significantly sharpen our abilities to describe the interconverting binding poses (conformations) of protein active sites. Specifically, we show how 2-(2'-carboxyphenyl)-benzoyl-6-aminopenicillanic acid (CBAP) exposes otherwise hidden dynamics of a protein active site that binds β-lactam antibiotics. When CBAP acylates (binds) the active site serine of the β-lactam sensor domain of BlaR1 (BlaRS), it shifts the time scale of the active site dynamics to the slow exchange regime. Slow exchange enables direct characterization of inter-converting protein and bound ligand conformations using NMR methods. These methods include chemical shift analysis, 2-d exchange spectroscopy, off-resonance ROESY of the bound ligand, and reduced spectral density mapping. The active site architecture of BlaRS is shared by many β-lactamases of therapeutic interest, suggesting CBAP could expose functional motions in other β-lactam binding proteins. More broadly, CBAP highlights the utility of identifying chemical probes common to structurally homologous proteins to better expose functional motions of active sites.
Site Characterization for a Deep Borehole Field Test
NASA Astrophysics Data System (ADS)
Kuhlman, K. L.; Hardin, E. L.; Freeze, G. A.; Sassani, D.; Brady, P. V.
2015-12-01
The US Department of Energy Office of Nuclear Energy is at the beginning of 5-year Deep Borehole Field Test (DBFT) to investigate the feasibility of constructing and characterizing two boreholes in crystalline basement rock to a depth of 5 km (16,400 ft). The concept of deep borehole disposal for radioactive waste has some advantages over mined repositories, including incremental construction and loading, the enhanced natural barriers provided by deep continental crystalline basement, and reduced site characterization. Site characterization efforts need to determine an eligible site that does not have the following disqualifying characteristics: greater than 2 km to crystalline basement, upward vertical fluid potential gradients, presence of economically exploitable natural resources, presence of high permeability connection to the shallow subsurface, and significant probability of future seismic or volcanic activity. Site characterization activities for the DBFT will include geomechanical (i.e., rock in situ stress state, and fluid pressure), geological (i.e., rock and fracture infill lithology), hydrological (i.e., quantity of fluid, fluid convection properties, and solute transport mechanisms), and geochemical (i.e., rock-water interaction and natural tracers) aspects. Both direct (i.e., sampling and in situ testing) and indirect (i.e., borehole geophysical) methods are planned for efficient and effective characterization of these site aspects and physical processes. Borehole-based characterization will be used to determine the variability of system state (i.e., stress, pressure, temperature, and chemistry) with depth, and interpretation of material and system parameters relevant to numerical site simulation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Measurement Sets and Sites Commonly Used for Characterization
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Holekamp, Kara; Ryan, Robert; Sellers, Richard; Davis, Bruce; Zanoni, Vicki
2002-01-01
Scientists at NASA's Earth Science Applications Directorate are creating a well-characterized Verification & Validation (V&V) site at the Stennis Space Center. This site enables the in-flight characterization of remote sensing systems and the data they acquire. The data are predominantly acquired by commercial, high spatial resolution satellite systems, such as IKONOS and QuickBird 2, and airborne systems. The smaller scale of these newer high resolution remote sensing systems allows scientists to characterize the geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active LIDAR systems. SSC employs geodetic targets, edge targets, radiometric tarps, and thermal calibration ponds to characterize remote sensing data products. This paper presents a proposed set of required measurements for visible through long-wave infrared remote sensing systems and a description of the Stennis characterization. Other topics discussed include: 1) The use of ancillary atmospheric and solar measurements taken at SSC that support various characterizations; 2) Additional sites used for radiometric, geometric, and spatial characterization in the continental United States; 3) The need for a standardized technique to be adopted by CEOS and other organizations.
The Wenatchee Tree Fruit Research and Extension Center site contained soils contaminated with organochlorine pesticides, organophosphorus pesticides, and other pesticides due to agriculture-related research activities conducted from 1966 until...
Baseline and premining geochemical characterization of mined sites
Nordstrom, D. Kirk
2015-01-01
A rational goal for environmental restoration of new, active, or inactive mine sites would be ‘natural background’ or the environmental conditions that existed before any mining activities or other related anthropogenic activities. In a strictly technical sense, there is no such thing as natural background (or entirely non-anthropogenic) existing today because there is no part of the planet earth that has not had at least some chemical disturbance from anthropogenic activities. Hence, the terms ‘baseline’ and ‘pre-mining’ are preferred to describe these conditions. Baseline conditions are those that existed at the time of the characterization which could be pre-mining, during mining, or post-mining. Protocols for geochemically characterizing pre-mining conditions are not well-documented for sites already mined but there are two approaches that seem most direct and least ambiguous. One is characterization of analog sites along with judicious application of geochemical modeling. The other is reactive-transport modeling (based on careful synoptic sampling with tracer-injection) and subtracting inputs from known mining and mineral processing. Several examples of acidic drainage are described from around the world documenting the range of water compositions produced from pyrite oxidation in the absence of mining. These analog sites provide insight to the processes forming mineralized waters in areas untouched by mining. Natural analog water-chemistry data is compared with the higher metal concentrations, metal fluxes, and weathering rates found in mined areas in the few places where comparisons are possible. The differences are generally 1–3 orders of magnitude higher for acid mine drainage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, J.R.; McDonald, J.R.; Russell, R.J.
1995-10-01
This report documents US Department of Energy (DOE)-funded activities that have adapted the US Navy`s Surface Towed Ordnance Locator System (STOLS) to meet DOE needs for a ``... better, faster, safer and cheaper ...`` system for characterizing inactive hazardous waste sites. These activities were undertaken by Sandia National Laboratories (Sandia), the Naval Research Laboratory, Geo-Centers Inc., New Mexico State University and others under the title of the Magnetometer Towed Array (MTA).
Measurement Sets and Sites Commonly used for Characterizations
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Holekamp, Kara; Ryan, Robert; Blonski, Slawomir; Sellers, Richard; Davis, Bruce; Zanoni, Vicki
2002-01-01
Scientists with NASA's Earth Science Applications Directorate are creating a well-characterized Verification & Validation (V&V) site at the Stennis Space Center (SSC). This site enables the in-flight characterization of remote sensing systems and the data that they require. The data are predominantly acquired by commercial, high-spatial resolution satellite systems, such as IKONOS and QuickBird 2, and airborne systems. The smaller scale of these newer high-resolution remote sensing systems allows scientists to characterize the geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active Light Detection and Ranging (LIDAR) systems. SSC employs geodetic targets, edge targets, radiometric tarps, and thermal calibration ponds to characterize remote sensing data products. This paper presents a proposed set of required measurements for visible-through-longwave infrared remote sensing systems, and a description of the Stennis characterization. Other topics discussed inslude: 1) use of ancillary atmospheric and solar measurements taken at SSC that support various characterizations, 2) other sites used for radiometric, geometric, and spatial characterization in the continental United States,a nd 3) the need for a standardized technique to be adopted by the Committee on Earth Observation Satellites (CEOS) and other organizations.
Active Site Characterization of Proteases Sequences from Different Species of Aspergillus.
Morya, V K; Yadav, Virendra K; Yadav, Sangeeta; Yadav, Dinesh
2016-09-01
A total of 129 proteases sequences comprising 43 serine proteases, 36 aspartic proteases, 24 cysteine protease, 21 metalloproteases, and 05 neutral proteases from different Aspergillus species were analyzed for the catalytically active site residues using MEROPS database and various bioinformatics tools. Different proteases have predominance of variable active site residues. In case of 24 cysteine proteases of Aspergilli, the predominant active site residues observed were Gln193, Cys199, His364, Asn384 while for 43 serine proteases, the active site residues namely Asp164, His193, Asn284, Ser349 and Asp325, His357, Asn454, Ser519 were frequently observed. The analysis of 21 metalloproteases of Aspergilli revealed Glu298 and Glu388, Tyr476 as predominant active site residues. In general, Aspergilli species-specific active site residues were observed for different types of protease sequences analyzed. The phylogenetic analysis of these 129 proteases sequences revealed 14 different clans representing different types of proteases with diverse active site residues.
Zaman, Junaid A B; Sauer, William H; Alhusseini, Mahmood I; Baykaner, Tina; Borne, Ryan T; Kowalewski, Christopher A B; Busch, Sonia; Zei, Paul C; Park, Shirley; Viswanathan, Mohan N; Wang, Paul J; Brachmann, Johannes; Krummen, David E; Miller, John M; Rappel, Wouter Jan; Narayan, Sanjiv M; Peters, Nicholas S
2018-01-01
The mechanisms by which persistent atrial fibrillation (AF) terminates via localized ablation are not well understood. To address the hypothesis that sites where localized ablation terminates persistent AF have characteristics identifiable with activation mapping during AF, we systematically examined activation patterns acquired only in cases of unequivocal termination by ablation. We recruited 57 patients with persistent AF undergoing ablation, in whom localized ablation terminated AF to sinus rhythm or organized tachycardia. For each site, we performed an offline analysis of unprocessed unipolar electrograms collected during AF from multipolar basket catheters using the maximum -dV/dt assignment to construct isochronal activation maps for multiple cycles. Additional computational modeling and phase analysis were used to study mechanisms of map variability. At all sites of AF termination, localized repetitive activation patterns were observed. Partial rotational circuits were observed in 26 of 57 (46%) cases, focal patterns in 19 of 57 (33%), and complete rotational activity in 12 of 57 (21%) cases. In computer simulations, incomplete segments of partial rotations coincided with areas of slow conduction characterized by complex, multicomponent electrograms, and variations in assigning activation times at such sites substantially altered mapped mechanisms. Local activation mapping at sites of termination of persistent AF showed repetitive patterns of rotational or focal activity. In computer simulations, complete rotational activation sequence was observed but was sensitive to assignment of activation timing particularly in segments of slow conduction. The observed phenomena of repetitive localized activation and the mechanism by which local ablation terminates putative AF drivers require further investigation. © 2018 American Heart Association, Inc.
NASA Astrophysics Data System (ADS)
Komarneni, Mallikharjuna Rao
Surface science investigations of model catalysts have contributed significantly to heterogeneous catalysis over the past several decades. The unique properties of nanomaterials are being exploited in catalysis for the development of highly active and selective catalysts. Surface science investigations of model catalysts such as inorganic fullerene-like (IF) nanoparticles (NP), inorganic nanotubes (INT), and the oxide-supported nanoclusters are included in this dissertation. Thermal desorption spectroscopy and molecular beam scattering were respectively utilized to study the adsorption kinetics and dynamics of gas phase molecules on catalyst surfaces. In addition, ambient pressure kinetics experiments were performed to characterize the catalytic activity of hydrodesulfurization (HDS) nanocatalysts. The nanocatalysts were characterized with a variety of techniques, including Auger electron spectroscopy, x-ray photoelectron spectroscopy, electron microscopy, and x-ray diffraction. The adsorption kinetics studies of thiophene on novel HDS catalysts provided the first evidence for the presence of different adsorption sites on INT-WS2. Additionally, the adsorption sites on IF-MoS2 NP and silica-supported Mo clusters (Mo/silica) were characterized. Furthermore, the C-S bond activation energy of thiophene on Mo/silica was determined. These studies finally led to the fabrication of Ni/Co coated INT-WS2, which showed good catalytic activity towards HDS of thiophene. The studies of methanol synthesis catalysts include the adsorption kinetics and dynamics studies of CO and CO2 on Cu/silica and silica-supported EBL-fabricated Cu/CuOx nanoclusters. The adsorption dynamics of CO on Cu/silica are modeled within the frame work of the capture zone model (CZM), and the active sites of the silica-supported Au/Cu catalysts are successfully mapped. Studies on EBL model catalysts identify the rims of the CuOx nanoclusters as catalytically active sites. This observation has implications for new methanol catalyst design.
Stennis Space Center Verification & Validation Capabilities
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; ONeal, Duane; Knowlton, Kelly; Ross, Kenton; Blonski, Slawomir
2005-01-01
Scientists within NASA s Applied Sciences Directorate have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site enables the in-flight characterization of satellite and airborne high spatial and moderate resolution remote sensing systems and their products. The smaller scale of the newer high resolution remote sensing systems allows scientists to characterize geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active lidar systems. SSC employs geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment, and thermal calibration ponds to characterize remote sensing data products. The SSC Instrument Validation Lab is a key component of the V&V capability and is used to calibrate field instrumentation and to provide National Institute of Standards and Technology traceability. This poster presents a description of the SSC characterization capabilities and examples of calibration data.
Ecological Characterization Data for the 2004 Composite Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Downs, Janelle L.; Simmons, Mary A.; Stegen, Jennifer A.
2004-11-01
A composite analysis is required by U.S. Department of Energy (DOE) Order 435.1 to ensure public safety through the management of active and planned low-level radioactive waste disposal facilities associated with the Hanford Site. The original Hanford Site Composite Analysis of 1998 must be revised and submitted to DOE Headquarters (DOE-HQ) in 2004 because of revisions to waste site information in the 100, 200, and 300 Areas, updated performance assessments and environmental impact statements (EIS), changes in inventory estimates for key sites and constituents, and a change in the definition of offsite receptors. Beginning in fiscal year (FY) 2003, themore » DOE Richland Operations Office (DOE-RL) initiated activities, including the development of data packages, to support the 2004 Composite Analysis. This report describes the data compiled in FY 2003 to support ecological site assessment modeling for the 2004 Composite Analysis. This work was conducted as part of the Characterization of Systems Task of the Groundwater Remediation Project (formerly the Groundwater Protection Program) managed by Fluor Hanford, Inc., Richland, Washington. The purpose of this report is to provide summaries of the characterization information and available spatial data on the biological resources and ecological receptors found in the upland, riparian, aquatic, and island habitats on the Hanford Site. These data constitute the reference information used to establish parameters for the ecological risk assessment module of the System Assessment Capability and other assessment activities requiring information on the presence and distribution of biota on the Hanford Site.« less
Muzaffar, Razi; Frye, Sarah A; McMunn, Anna; Ryan, Kelley; Lattanze, Ron; Osman, Medhat M
2017-12-01
A novel quality control and quality assurance device provides time-activity curves that can identify and characterize PET/CT radiotracer infiltration at the injection site during the uptake phase. The purpose of this study was to compare rates of infiltration detected by the device with rates detected by physicians. We also assessed the value of using the device to improve injection results in our center. Methods: 109 subjects consented to the study. All had passive device sensors applied to their skin near the injection site and mirrored on the contralateral arm during the entire uptake period. Nuclear medicine physicians reviewed standard images for the presence of dose infiltration. Sensor-generated time-activity curves were independently examined and then compared with the physician reports. Injection data captured by the software were analyzed, and the results were provided to the technologists. Improvement measures were implemented, and rates were remeasured. Results: Physician review of the initial 40 head-to-toe field-of-view images identified 15 cases (38%) of dose infiltration (9 minor, 5 moderate, and 1 significant). Sensor time-activity curves on these 40 cases independently identified 22 cases (55%) of dose infiltration (16 minor, 5 moderate, and 1 significant). After the time-activity curve results and the contributing factor analysis were shared with technologists, injection techniques were modified and an additional 69 cases were studied. Of these, physician review identified 17 cases (25%) of infiltration (13 minor, 3 moderate, and 1 significant), a 34% decline. Sensor time-activity curves identified 4 cases (6%) of infiltration (2 minor and 2 moderate), an 89% decline. Conclusion: The device provides valuable quality control information for each subject. Time-activity curves can further characterize visible infiltration. Even when the injection site was out of the field of view, the time-activity curves could still detect and characterize infiltration. Our initial experience showed that the quality assurance information obtained from the device helped reduce the rate and severity of infiltration. The device revealed site-specific contributing factors that helped nuclear medicine physicians and technologists customize their quality improvement efforts to these site-specific issues. Reducing infiltration can improve image quality and SUV quantification, as well as the ability to minimize variability in a site's PET/CT results. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brechtel, C.E.; Lin, Ming; Martin, E.
1995-05-01
This report presents the results of the geological and geotechnical characterization of the Miocene volcanic tuff rocks of the Timber Mountain and Paintbrush groups that the tunnel boring machine will encounter during excavations of the Exploratory Studies Facility (ESF) North Ramp. The information in this report was developed to support the design of the ESF North Ramp. The ESF is being constructed by the DOE as part of the Yucca Mountain Project site characterization activities. The purpose of these activities is to evaluate the potential to locate the national high-level nuclear waste repository on land within and adjacent to themore » Nevada Test Site (NTS), Nye County, Nevada. This report was prepared as part of the Soil and Rock Properties Studies in accordance with the 8.3.1.14.2 Study Plan to Provide Soil and Rock Properties. This is volume 2 which contains NRG Corehole Data for each of the NRG Holes.« less
Investigations at hazardous waste sites and sites of chemical spills often require on-site measurements and sampling activities to assess the type and extent of contamination. This document is a compilation of sampling methods and materials suitable to address most needs that ari...
Discovery and characterization of a new family of lytic polysaccharide monooxygenases.
Hemsworth, Glyn R; Henrissat, Bernard; Davies, Gideon J; Walton, Paul H
2014-02-01
Lytic polysaccharide monooxygenases (LPMOs) are a recently discovered class of enzymes capable of oxidizing recalcitrant polysaccharides. They are attracting considerable attention owing to their potential use in biomass conversion, notably in the production of biofuels. Previous studies have identified two discrete sequence-based families of these enzymes termed AA9 (formerly GH61) and AA10 (formerly CBM33). Here, we report the discovery of a third family of LPMOs. Using a chitin-degrading exemplar from Aspergillus oryzae, we show that the three-dimensional structure of the enzyme shares some features of the previous two classes of LPMOs, including a copper active center featuring the 'histidine brace' active site, but is distinct in terms of its active site details and its EPR spectroscopy. The newly characterized AA11 family expands the LPMO clan, potentially broadening both the range of potential substrates and the types of reactive copper-oxygen species formed at the active site of LPMOs.
NASA Astrophysics Data System (ADS)
Kumar, Gaurav; Tibbitts, Luke; Newell, Jaclyn; Panthi, Basu; Mukhopadhyay, Ahana; Rioux, Robert M.; Pursell, Christopher J.; Janik, Michael; Chandler, Bert D.
2018-03-01
Supported metal catalysts, which are composed of metal nanoparticles dispersed on metal oxides or other high-surface-area materials, are ubiquitous in industrially catalysed reactions. Identifying and characterizing the catalytic active sites on these materials still remains a substantial challenge, even though it is required to guide rational design of practical heterogeneous catalysts. Metal-support interactions have an enormous impact on the chemistry of the catalytic active site and can determine the optimum support for a reaction; however, few direct probes of these interactions are available. Here we show how benzyl alcohol oxidation Hammett studies can be used to characterize differences in the catalytic activity of Au nanoparticles hosted on various metal-oxide supports. We combine reactivity analysis with density functional theory calculations to demonstrate that the slope of experimental Hammett plots is affected by electron donation from the underlying oxide support to the Au particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Wei; Li, Yani; Yu, Bo
2015-01-15
A successive anchoring of Ti(NMe{sub 2}){sub 4}, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1′-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, {sup 13}C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-sitemore » silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands. - Graphical abstract: The ligand-tailored silica supported “single site” titanium complexes were synthesized by SOMC strategy and fully characterized. Their catalytic activity were evaluated by benzaldehyde silylcyanation. - Highlights: • Single-site silica supported Ti active species was prepared by SOMC technique. • O-donor ligand tailored Ti surface species was synthesized. • The surface species was characterized by XPS, {sup 13}C CP-MAS NMR, XANES etc. • Catalytic activity of the Ti active species in silylcyanation reaction was evaluated.« less
Wei, Jun-Ya; Li, An-Ming; Li, Yin; Wang, Jing; Liu, Xiao-Bin; Liu, Liang-Shi; Xu, Zeng-Fu
2006-04-01
RNase-related proteins (RRPs) are S- and S-like RNase homologs lacking the active site required for RNase activity. Here we describe the cloning and characterization of the rice (Oryza sativa) RRP gene (OsRRP). A single copy of OsRRP occurs in the rice genome. OsRRP contains three introns and an open reading frame encoding 252 amino acids, with the replacement of two histidines involved in the active site of RNase by lysine and tyrosine respectively. OsRRP is preferentially expressed in stems of wild-type rice and is significantly down-regulated in an increased tillering dwarf mutant ext37.
Using mass spectrometry to study the photo-affinity labeling of protein tyrosine phosphatase 1B
NASA Astrophysics Data System (ADS)
Leriche, Tammy; Skorey, Kathryn; Roy, Patrick; McKay, Dan; Bateman, Kevin P.
2004-11-01
Protein tyrosine phosphatase 1B (PTP1B) is a potential target for the treatment of Type II diabetes and several companies are developing small molecule inhibitors of this enzyme. Part of the characterization of these compounds as PTP1B inhibitors is the understanding of how they bind in the enzyme active site. The use of photo-activated inhibitors that target the active site can provide such insight. This paper describes the characterization of a photoprobe directed at the active site of PTP1B. Mass spectrometry revealed the specific binding of the probe to the intact protein. Digestion of the labeled protein followed by LC-MS and LC-MS/MS was used to show that the photoprobe binds to a specific active site amino acid. This was confirmed by comparison with the X-ray structure of PTP1B with a PTP1B inhibitor. The probe labels a conserved acidic residue (Asp) that is required for catalytic activity. This photoprobe may prove to be a useful tool for the development of a PTP1B inhibitor or for the study of PTPs in general.
Improving Sampling, Analysis, and Data Management for Site Investigation and Cleanup
The United States Environmental Protection Agency (EPA) supports the adoption of streamlined approaches to sampling, analysis, and data management activities conducted during site assessment, characterization, and cleanup.
Kassotis, Christopher D; Alvarez, David A; Taylor, Julia A; vom Saal, Frederick S; Nagel, Susan C; Tillitt, Donald E
2015-08-15
Surface water contamination by chemical pollutants increasingly threatens water quality around the world. Among the many contaminants found in surface water, there is growing concern regarding endocrine disrupting chemicals, based on their ability to interfere with some aspect of hormone action in exposed organisms, including humans. This study assessed water quality at several sites across Missouri (near wastewater treatment plants and airborne release sites of bisphenol A) based on hormone receptor activation potencies and chemical concentrations present in the surface water. We hypothesized that bisphenol A and ethinylestradiol would be greater in water near permitted airborne release sites and wastewater treatment plant inputs, respectively, and that these two compounds would be responsible for the majority of activities in receptor-based assays conducted with water collected near these sites. Concentrations of bisphenol A and ethinylestradiol were compared to observed receptor activities using authentic standards to assess contribution to total activities, and quantitation of a comprehensive set of wastewater compounds was performed to better characterize each site. Bisphenol A concentrations were found to be elevated in surface water near permitted airborne release sites, raising questions that airborne releases of BPA may influence nearby surface water contamination and may represent a previously underestimated source to the environment and potential for human exposure. Estrogen and androgen receptor activities of surface water samples were predictive of wastewater input, although the lower sensitivity of the ethinylestradiol ELISA relative to the very high sensitivity of the bioassay approaches did not allow a direct comparison. Wastewater-influenced sites also had elevated anti-estrogenic and anti-androgenic equivalence, while sites without wastewater discharges exhibited no antagonist activities. Published by Elsevier B.V.
Kassotis, Christopher D.; Alvarez, David A.; Taylor, Julia A.; vom Saal, Frederick S.; Nagel, Susan C.; Tillitt, Donald E.
2015-01-01
Surface water contamination by chemical pollutants increasingly threatens water quality around the world. Among the many contaminants found in surface water, there is growing concern regarding endocrine disrupting chemicals, based on their ability to interfere with some aspect of hormone action in exposed organisms, including humans. This study assessed water quality at several sites across Missouri (near wastewater treatment plants and airborne release sites of bisphenol A) based on hormone receptor activation potencies and chemical concentrationspresent in the surface water. We hypothesized that bisphenol A and ethinylestradiol would be greater in water near permitted airborne release sites and wastewater treatment plant inputs, respectively, and that these two compounds would be responsible for the majority of activities in receptor-based assays conducted with water collected near these sites. Concentrations of bisphenol A and ethinylestradiol were compared to observed receptor activities using authentic standards to assess contribution to total activities, and quantitation of a comprehensive set of wastewater compounds was performed to better characterize each site. Bisphenol A concentrations were found to be elevated in surface water near permitted airborne release sites, raising questions that airborne releases of BPA may influence nearby surface water contamination and may represent a previously underestimated source to the environment and potential for human exposure. Estrogen and androgen receptor activities of surface water samples were predictive of wastewater input, although the lower sensitivity of the ethinylestradiol ELISA relative to the very high sensitivity of the bioassay approaches did not allow a direct comparison. Wastewater-influenced sites also had elevated anti-estrogenic and anti-androgenic equivalence, while sites without wastewater discharges exhibited no antagonist activities.
10 CFR 960.3-1-4-2 - Site nomination for characterization.
Code of Federal Regulations, 2012 CFR
2012-01-01
... testing of core samples for the evaluation of geochemical and engineering rock properties, and chemical... industrial activities; and extrapolations of regional data to estimate site-specific characteristics and...
10 CFR 960.3-1-4-2 - Site nomination for characterization.
Code of Federal Regulations, 2013 CFR
2013-01-01
... testing of core samples for the evaluation of geochemical and engineering rock properties, and chemical... industrial activities; and extrapolations of regional data to estimate site-specific characteristics and...
10 CFR 960.3-1-4-2 - Site nomination for characterization.
Code of Federal Regulations, 2011 CFR
2011-01-01
... testing of core samples for the evaluation of geochemical and engineering rock properties, and chemical... industrial activities; and extrapolations of regional data to estimate site-specific characteristics and...
10 CFR 960.3-1-4-2 - Site nomination for characterization.
Code of Federal Regulations, 2014 CFR
2014-01-01
... testing of core samples for the evaluation of geochemical and engineering rock properties, and chemical... industrial activities; and extrapolations of regional data to estimate site-specific characteristics and...
Logging utilization in Idaho: Current and past trends
Eric A. Simmons; Todd A. Morgan; Erik C. Berg; Stanley J. Zarnoch; Steven W. Hayes; Mike T. Thompson
2014-01-01
A study of commercial timber-harvesting activities in Idaho was conducted during 2008 and 2011 to characterize current tree utilization, logging operations, and changes from previous Idaho logging utilization studies. A two-stage simple random sampling design was used to select sites and felled trees for measurement within active logging sites. Thirty-three logging...
Enzyme Active Site Interactions by Raman/FTIR, NMR, and Ab Initio Calculations
Deng, Hua
2017-01-01
Characterization of enzyme active site structure and interactions at high resolution is important for the understanding of the enzyme catalysis. Vibrational frequency and NMR chemical shift measurements of enzyme-bound ligands are often used for such purpose when X-ray structures are not available or when higher resolution active site structures are desired. This review is focused on how ab initio calculations may be integrated with vibrational and NMR chemical shift measurements to quantitatively determine high-resolution ligand structures (up to 0.001 Å for bond length and 0.01 Å for hydrogen bonding distance) and how interaction energies between bound ligand and its surroundings at the active site may be determined. Quantitative characterization of substrate ionic states, bond polarizations, tautomeric forms, conformational changes and its interactions with surroundings in enzyme complexes that mimic ground state or transition state can provide snapshots for visualizing the substrate structural evolution along enzyme-catalyzed reaction pathway. Our results have shown that the integration of spectroscopic studies with theoretical computation greatly enhances our ability to interpret experimental data and significantly increases the reliability of the theoretical analysis. PMID:24018325
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-04-01
During the second half of fiscal year 1996, activities at the Yucca Mountain Site Characterization Project (Project) supported the objectives of the revised Program Plan released this period by the Office of Civilian Radioactive Waste Management of the US Department of Energy (Department). Outlined in the revised plan is a focused, integrated program of site characterization, design, engineering, environmental, and performance assessment activities that will achieve key Program and statutory objectives. The plan will result in the development of a license application for repository construction at Yucca Mountain, if the site is found suitable. Activities this period focused on twomore » of the three near-term objectives of the revised plan: updating in 1997 the regulatory framework for determining the suitability of the site for the proposed repository concept and providing information for a 1998 viability assessment of continuing toward the licensing of a repository. The Project has also developed a new design approach that uses the advanced conceptual design published during the last reporting period as a base for developing a design that will support the viability assessment. The initial construction phase of the Thermal Testing Facility was completed and the first phase of the in situ heater tests began on schedule. In addition, phase-one construction was completed for the first of two alcoves that will provide access to the Ghost Dance fault.« less
Wu, R C-C; Cho, W-L
2014-10-01
Protein kinases are known to be involved in a number of signal transduction cascades. Both the stress-activated Jun N-terminal kinase (JNK) and mitogen-activated protein kinase (MAPK) p38 pathways have been shown to correlate with the insect immune response to microbial infection. MAP kinase kinase 4 (MEK4) is an upstream kinase of JNK and p38 kinase. The cDNA of AaMEK4 was cloned and characterized. AaMEK4 was activated by microbial lysates of Gram-positive, Gram-negative bacteria and yeast. The conserved lysine (K112 ) and the putative phosphorylation sites (S238 and T242 ) were shown to be important for kinase activity by site-directed mutagenesis. A common MAPK docking site (MAPK_dsA) was found and in addition, a new nearby docking site, MAPK_dsB, was identified in the N-terminal noncatalytic domain of AaMEK4. MAPK_dsB was shown to be a unique element in the MEK4 family. In this study, both MAPK_dsA and _dsB were demonstrated to be important to AaMEK4 enzymatic activity for the downstream protein kinase, Aap38. © 2014 The Royal Entomological Society.
The risk of photo-activated PAH toxicity in contaminated aquatic systems has not been well characterized. To better indicate this potential, amphipods (Gammarus spp.) were collected from two PAH contaminated sites (Hog Island and USX), as well as a reference site (Chipmunk Cove)...
Stennis Space Center Verification & Validation Capabilities
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; O'Neal, Duane; Knowlton, Kelly; Ross, Kenton; Blonski, Slawomir
2007-01-01
Scientists within NASA#s Applied Research & Technology Project Office (formerly the Applied Sciences Directorate) have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site enables the in-flight characterization of satellite and airborne high spatial resolution remote sensing systems and their products. The smaller scale of the newer high resolution remote sensing systems allows scientists to characterize geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists have used the SSC V&V site to characterize thermal infrared systems. Enhancements are being considered to characterize active lidar systems. SSC employs geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment, and thermal calibration ponds to characterize remote sensing data products. Similar techniques are used to characterize moderate spatial resolution sensing systems at selected nearby locations. The SSC Instrument Validation Lab is a key component of the V&V capability and is used to calibrate field instrumentation and to provide National Institute of Standards and Technology traceability. This poster presents a description of the SSC characterization capabilities and examples of calibration data.
Overview of the 2015 Algodones Sand Dunes field campaign to support sensor intercalibration
NASA Astrophysics Data System (ADS)
McCorkel, Joel; Bachmann, Charles M.; Coburn, Craig; Gerace, Aaron; Leigh, Larry; Czapla-Myers, Jeff; Helder, Dennis; Cook, Bruce
2018-01-01
Several sites from around the world are being used operationally and are suitable for vicarious calibration of space-borne imaging platforms. However, due to the proximity of these sites (e.g., Libya 4), a rigorous characterization of the landscape is not feasible, limiting their utility for sensor intercalibration efforts. Due to its accessibility and similarities to Libya 4, the Algodones Sand Dunes System in California, USA, was identified as a potentially attractive intercalibration site for space-borne, reflective instruments such as Landsat. In March 2015, a 4-day field campaign was conducted to develop an initial characterization of Algodones with a primary goal of assessing its intercalibration potential. Five organizations from the US and Canada collaborated to collect both active and passive airborne image data, spatial and temporal measurements of spectral bidirectional reflectance distribution function, and in-situ sand samples from several locations across the Algodones system. The collection activities conducted to support the campaign goal is summarized, including a summary of all instrumentation used, the data collected, and the experiments performed in an effort to characterize the Algodones site.
Soil gas screening for chlorinated solvents at three contaminated karst sites in Tennessee
Wolfe, W.J.; Williams, S.D.
2002-01-01
Soil gas was sampled using active sampling techniques and passive collectors at three sites in Tennessee to evaluate the effectiveness of these techniques for locating chlorinated solvent sources and flowpaths in karst aquifers. Actively collected soil gas samples were analyzed in the field with a portable gas chromatograph, and the passive soil gas collectors were analyzed in the lab with gas chromatography/mass spectrometry. Results of the sampling indicate that the effectiveness of both techniques is highly dependent on the distribution of the contaminants in the subsurface, the geomorphic and hydrogeologic characteristics of the site, and, in one case, on seasonal conditions. Both active and passive techniques identified areas of elevated subsurface chlorinated solvent concentrations at a landfill site where contamination remains concentrated in the regolith. Neither technique detected chlorinated solvents known to be moving in the bedrock at a manufacturing site characterized by thick regolith and an absence of surficial karst features. Passive soil gas sampling had varied success detecting flowpaths for chloroform in the bedrock at a train derailment site characterized by shallow regolith and abundant surficial karst features. At the train derailment site, delineation of the contaminant flowpath through passive soil gas sampling was stronger and more detailed under Winter conditions than summer.
NASA Astrophysics Data System (ADS)
Sheng, Chunquan; Ji, Haitao; Miao, Zhenyuan; Che, Xiaoyin; Yao, Jianzhong; Wang, Wenya; Dong, Guoqiang; Guo, Wei; Lü, Jiaguo; Zhang, Wannian
2009-06-01
Myristoyl-CoA:protein N-myristoyltransferase (NMT) is a cytosolic monomeric enzyme that catalyzes the transfer of the myristoyl group from myristoyl-CoA to the N-terminal glycine of a number of eukaryotic cellular and viral proteins. Recent experimental data suggest NMT from parasites could be a promising new target for the design of novel antiparasitic agents with new mode of action. However, the active site topology and inhibitor specificity of these enzymes remain unclear. In this study, three-dimensional models of NMT from Plasmodium falciparum (PfNMT), Leishmania major (LmNMT) and Trypanosoma brucei (TbNMT) were constructed on the basis of the crystal structures of fungal NMTs using homology modeling method. The models were further refined by energy minimization and molecular dynamics simulations. The active sites of PfNMT, LmNMT and TbNMT were characterized by multiple copy simultaneous search (MCSS). MCSS functional maps reveal that PfNMT, LmNMT and TbNMT share a similar active site topology, which is defined by two hydrophobic pockets, a hydrogen-bonding (HB) pocket, a negatively-charged HB pocket and a positively-charged HB pocket. Flexible docking approaches were then employed to dock known inhibitors into the active site of PfNMT. The binding mode, structure-activity relationships and selectivity of inhibitors were investigated in detail. From the results of molecular modeling, the active site architecture and certain key residues responsible for inhibitor binding were identified, which provided insights for the design of novel inhibitors of parasitic NMTs.
Martin, Antony; Yong, Alan K.; Salomone, Larry A.
2014-01-01
Active-source Love waves, recorded by the multi-channel analysis of surface wave (MASLW) technique, were recently analyzed in two site characterization projects. Between 2010 and 2012, the 2009 American Recovery and Reinvestment Act (ARRA) funded GEOVision to conduct geophysical investigations at 191 seismographic stations in California and the Central Eastern U.S. (CEUS). The original project plan was to utilize active and passive Rayleigh wave-based techniques to obtain shear-wave velocity (VS) profiles to a minimum depth of 30 m and the time-averaged VS of the upper 30 meters (VS30). Early in this investigation it became clear that Rayleigh wave techniques, such as multi-channel analysis of surface waves (MASRW), were not suited for characterizing all sites. Shear-wave seismic refraction and MASLW techniques were therefore applied. In 2012, the Electric Power Research Institute funded characterization of 33 CEUS station sites. Based on experience from the ARRA investigation, both MASRW and MASLW data were acquired by GEOVision at 24 CEUS sites. At shallow rock sites, sites with steep velocity gradients, and, sites with a thin, low velocity, surficial soil layer overlying stiffer sediments, Love wave techniques generally were found to be easier to interpret, i.e., Love wave data typically yielded unambiguous fundamental mode dispersion curves and thus, reduce uncertainty in the resultant VS model. These types of velocity structure often excite dominant higher modes in Rayleigh wave data, but not in the Love wave data. It is possible to model Rayleigh wave data using multi- or effective-mode techniques; however, extraction of Rayleigh wave dispersion data was found to be difficult in many cases. These results imply that field procedures should include careful scrutiny of Rayleigh wave-based dispersion data in order to also collect Love wave data when warranted.
10 CFR 960.3-1-4-2 - Site nomination for characterization.
Code of Federal Regulations, 2010 CFR
2010-01-01
... SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-4-2 Site nomination for... types under expected repository conditions; evaluations of natural and man-made analogs of the repository and its subsystems, such as geothermally active areas, underground excavations, and case histories...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Lei
2008-01-01
Open reading frame 11 (ORF11) of Kaposi's sarcoma-associated herpesvirus belongs to a herpesviral homologous protein family shared by some members of the gamma- herpesvirus subfamily. Little is known about this ORF11 homologous protein family. We have characterized an unknown open reading frame, ORF11, located adjacent and in the opposite orientation to a well-characterized viral IL-6 gene. Northern blot analysis reveals that ORF11 is expressed during the KSHV lytic cycle with delayed-early transcription kinetics. We have determined the 5{prime} and 3{prime} untranslated region of the unspliced ORF11 transcript and identified both the transcription start site and the transcription termination site. Coremore » promoter region, representing ORF11 promoter activity, was mapped to a 159nt fragment 5{prime} most proximal to the transcription start site. A functional TATA box was identified in the core promoter region. Interestingly, we found that ORF11 transcriptional activation is not responsive to Rta, the KSHV lytic switch protein. We also discovered that part of the ORF11 promoter region, the 209nt fragment upstream of the transcription start site, was repressed by phorbol esters. Our data help to understand transcription regulation of ORF11 and to elucidate roles of ORF11 in KSHV pathogenesis and life cycle.« less
The total number of mining sites, both active and inactive, in the United States has been estimated to be as high as 82,000. Approximately 80 percent of the current mining activity in this country is associated with the recovery of gold and copper. The quantity of mine wastes p...
Remediation of a Former USAF Radioactive Material Disposal Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, D. E.; Cushman, M; Tupyi, B.
2003-02-25
This paper describes the remediation of a low-level radiological waste burial site located at the former James Connally Air Force Base in Waco, Texas. Burial activities at the site occurred during the 1950's when the property was under the ownership of the United States Air Force. Included is a discussion of methods and strategies that were used to successfully exhume and characterize the wastes for proper disposal at offsite disposal facilities. Worker and environmental protection measures are also described. Information gained from this project may be used at other similar project sites. A total of nine burial tubes had beenmore » identified for excavation, characterization, and removal from the site. The disposal tubes were constructed of 4-ft lengths of concrete pipe buried upright with the upper ends flush with ground surface. Initial ground level observations of the burial tubes indicated that some weathering had occurred; however, the condition of the subsurface portions of the tubes was unknown. Soil excavation occurred in 1-foot lifts in order that the tubes could be inspected and to allow for characterization of the soils at each stage of the excavation. Due to the weight of the concrete pipe and the condition of the piping joints it was determined that special measures would be required to maintain the tubes intact during their removal. Special tube anchoring and handling methods were required to relocate the tubes from their initial positions to a staging area where they could be further characterized. Characterization of the disposal tubes was accomplished using a combination of gamma spectroscopy and activity mapping methods. Important aspects of the project included the use of specialized excavation and disposal tube reinforcement measures to maintain the disposal tubes intact during excavation, removal and subsequent characterization. The non-intrusive gamma spectroscopy and data logging methods allowed for effective characterization of the wastes while minimizing disposal costs. In addition, worker exposures were maintained ALARA as a result of the removal and characterization methods employed.« less
2013-01-01
hydrolase activity . These strains are Ammoniphilus oxalaticus, Haloarcula sp., and Micromonospora aurantiaca. Lysates from A. oxalaticus had...warfare agents [1–3]. OP nerve agents readily bind covalently to the active site serine in acetylcho- linesterase (AChE), thereby inhibiting the ability...muscarinic receptors, whereas 2-pralidoxime chloride, an oxime nucleophile, reactivates AChE by displacing the phospho- nyl group left on the active site
Exploitation of the Ornithine Effect Enhances Characterization of Stapled and Cyclic Peptides
NASA Astrophysics Data System (ADS)
Crittenden, Christopher M.; Parker, W. Ryan; Jenner, Zachary B.; Bruns, Kerry A.; Akin, Lucas D.; McGee, William M.; Ciccimaro, Eugene; Brodbelt, Jennifer S.
2016-05-01
A method to facilitate the characterization of stapled or cyclic peptides is reported via an arginine-selective derivatization strategy coupled with MS/MS analysis. Arginine residues are converted to ornithine residues through a deguanidination reaction that installs a highly selectively cleavable site in peptides. Upon activation by CID or UVPD, the ornithine residue cyclizes to promote cleavage of the adjacent amide bond. This Arg-specific process offers a unique strategy for site-selective ring opening of stapled and cyclic peptides. Upon activation of each derivatized peptide, site-specific backbone cleavage at the ornithine residue results in two complementary products: the lactam ring-containing portion of the peptide and the amine-containing portion. The deguanidination process not only provides a specific marker site that initiates fragmentation of the peptide but also offers a means to unlock the staple and differentiate isobaric stapled peptides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1988-12-01
This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Planmore » for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 68 figs., 102 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-08-01
During the first half of fiscal year 1995, most activities at the Yucca Mountain Site Characterization Project were directed at implementing the Program Plan developed by the Office of Civilian Radioactive Waste Management. The Plan is designed to enable the Office to make measurable and significant progress toward key objectives over the next five years within the financial resources that can be realistically expected. Activities this period focused on the immediate goal of determining by 1998 whether Yucca Mountain, Nevada, is technically suitable as a possible site for a geologic repository for the permanent disposal of spent nuclear fuel andmore » high-level radioactive waste. Work on the Project advanced in several critical areas, including programmatic activities such as issuing the Program Plan, completing the first technical basis report to support the assessment of three 10 CFR 960 guidelines, developing the Notice of Intent for the Environmental Impact Statement, submitting the License Application Annotated Outline, and beginning a rebaselining effort to conform with the goals of the Program Plan. Scientific investigation and analysis of the site and design and construction activities to support the evaluation of the technical suitability of the site also advanced. Specific details relating to all Project activities and reports generated are presented in this report.« less
2013-01-01
Background The ACVR1 gene encodes a type I receptor for bone morphogenetic proteins (BMPs). Mutations in the ACVR1 gene are associated with Fibrodysplasia Ossificans Progressiva (FOP), a rare and extremely disabling disorder characterized by congenital malformation of the great toes and progressive heterotopic endochondral ossification in muscles and other non-skeletal tissues. Several aspects of FOP pathophysiology are still poorly understood, including mechanisms regulating ACVR1 expression. This work aimed to identify regulatory elements that control ACVR1 gene transcription. Methods and results We first characterized the structure and composition of human ACVR1 gene transcripts by identifying the transcription start site, and then characterized a 2.9 kb upstream region. This region showed strong activating activity when tested by reporter gene assays in transfected cells. We identified specific elements within the 2.9 kb region that are important for transcription factor binding using deletion constructs, co-transfection experiments with plasmids expressing selected transcription factors, site-directed mutagenesis of consensus binding-site sequences, and by protein/DNA binding assays. We also characterized a GC-rich minimal promoter region containing binding sites for the Sp1 transcription factor. Conclusions Our results showed that several transcription factors such as Egr-1, Egr-2, ZBTB7A/LRF, and Hey1, regulate the ACVR1 promoter by binding to the -762/-308 region, which is essential to confer maximal transcriptional activity. The Sp1 transcription factor acts at the most proximal promoter segment upstream of the transcription start site. We observed significant differences in different cell types suggesting tissue specificity of transcriptional regulation. These findings provide novel insights into the molecular mechanisms that regulate expression of the ACVR1 gene and that could be targets of new strategies for future therapeutic treatments. PMID:24047559
Influenza B viruses with mutation in the neuraminidase active site, North Carolina, USA, 2010-11.
Sleeman, Katrina; Sheu, Tiffany G; Moore, Zack; Kilpatrick, Susan; Garg, Shikha; Fry, Alicia M; Gubareva, Larisa V
2011-11-01
Oseltamivir is 1 of 2 antiviral medications available for the treatment of influenza B virus infections. We describe and characterize a cluster of influenza B viruses circulating in North Carolina with a mutation in the neuraminidase active site that may reduce susceptibility to oseltamivir and the investigational drug peramivir but not to zanamivir.
NASA Astrophysics Data System (ADS)
Walters, R. J.; Zoback, M. D.; Gupta, A.; Baker, J.; Beroza, G. C.
2014-12-01
Regulatory and governmental agencies, individual companies and industry groups and others have recently proposed, or are developing, guidelines aimed at reducing the risk associated with earthquakes triggered by waste water injection or hydraulic fracturing. While there are a number of elements common to the guidelines proposed, not surprisingly, there are also some significant differences among them and, in a number of cases, important considerations that are not addressed. The goal of this work is to develop a comprehensive protocol for site characterization based on a rigorous scientific understanding of the responsible processes. Topics addressed will include the geologic setting (emphasizing faults that might be affected), historical seismicity, hydraulic characterization of injection and adjacent intervals, geomechanical characterization to identify potentially active faults, plans for seismic monitoring and reporting, plans for monitoring and reporting injection (pressure, volumes, and rates), other factors contributing to risk (potentially affected population centers, structures, and facilities), and implementing a modified Probabilistic Seismic Hazard Analysis (PSHA). The guidelines will be risk based and adaptable, rather than prescriptive, for a proposed activity and region of interest. They will be goal oriented and will rely, to the degree possible, on established best practice procedures, referring to existing procedures and recommendations. By developing a risk-based site characterization protocol, we hope to contribute to the development of rational and effective measures for reducing the risk posed by activities that potentially trigger earthquakes.
Ubarretxena-Belandia, I; Cox, R C; Dijkman, R; Egmond, M R; Verheij, H M; Dekker, N
1999-03-01
The reaction of a novel active-site-directed phospholipase A1 inhibitor with the outer-membrane phospholipase A (OMPLA) was investigated. The inhibitor 1-p-nitrophenyl-octylphosphonate-2-tridecylcarbamoyl-3-et hanesulfonyl -amino-3-deoxy-sn-glycerol irreversibly inactivated OMPLA. The inhibition reaction did not require the cofactor calcium or an unprotonated active-site His142. The inhibition of the enzyme solubilized in hexadecylphosphocholine micelles was characterized by a rapid (t1/2 = 20 min) and complete loss of enzymatic activity, concurrent with the covalent modification of 50% of the active-site serines, as judged from the amount of p-nitrophenolate (PNP) released. Modification of the remaining 50% occurred at a much lower rate, indicative of half-of-the-sites reactivity against the inhibitor of this dimeric enzyme. Inhibition of monomeric OMPLA solubilized in hexadecyl-N,N-dimethyl-1-ammonio-3-propanesulfonate resulted in an equimolar monophasic release of PNP, concurrent with the loss of enzymatic activity (t1/2 = 14 min). The half-of-the-sites reactivity is discussed in view of the dimeric nature of this enzyme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MYERS DA
This report documents the results of preliminary surface geophysical exploration activities performed between October and December 2006 at the B, BX, and BY tank farms (B Complex). The B Complex is located in the 200 East Area of the U. S. Department of Energy's Hanford Site in Washington State. The objective of the preliminary investigation was to collect background characterization information with magnetic gradiometry and electromagnetic induction to understand the spatial distribution of metallic objects that could potentially interfere with the results from high resolution resistivity survey. Results of the background characterization show there are several areas located around themore » site with large metallic subsurface debris or metallic infrastructure.« less
Baba, Shoib Ahmad; Vishwakarma, Ram A; Ashraf, Nasheeman
2017-03-17
Glycosylation and deglycosylation are impressive mechanisms that allow plants to regulate the biological activity of an array of secondary metabolites. Although glycosylation improves solubility and renders the metabolites suitable for transport and sequestration, deglycosylation activates them to carry out biological functions. Herein, we report the functional characterization of Cs BGlu12, a β-glucosidase from Crocus sativus. Cs BGlu12 has a characteristic glucoside hydrolase 1 family (α/β) 8 triose-phosphate isomerase (TIM) barrel structure with a highly conserved active site. In vitro enzyme activity revealed that Cs BGlu12 catalyzes the hydrolysis of flavonol β-glucosides and cello-oligosaccharides. Site-directed mutagenesis of any of the two conserved catalytic glutamic acid residues (Glu 200 and Glu 414 ) of the active site completely abolishes the β-glucosidase activity. Transcript analysis revealed that Csbglu12 is highly induced in response to UV-B, dehydration, NaCl, methyl jasmonate, and abscisic acid treatments indicating its possible role in plant stress response. Transient overexpression of Cs BGlu12 leads to the accumulation of antioxidant flavonols in Nicotiana benthamiana and confers tolerance to abiotic stresses. Antioxidant assays indicated that accumulation of flavonols alleviated the accretion of reactive oxygen species during abiotic stress conditions. β-Glucosidases are known to play a role in abiotic stresses, particularly dehydration through abscisic acid; however, their role through accumulation of reactive oxygen species (ROS) scavenging flavonols has not been established. Furthermore, only one β-glucosidase 12 homolog has been characterized so far. Therefore, this work presents an important report on characterization of Cs BGlu12 and its role in abiotic stress through ROS scavenging. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Baba, Shoib Ahmad; Vishwakarma, Ram A.; Ashraf, Nasheeman
2017-01-01
Glycosylation and deglycosylation are impressive mechanisms that allow plants to regulate the biological activity of an array of secondary metabolites. Although glycosylation improves solubility and renders the metabolites suitable for transport and sequestration, deglycosylation activates them to carry out biological functions. Herein, we report the functional characterization of CsBGlu12, a β-glucosidase from Crocus sativus. CsBGlu12 has a characteristic glucoside hydrolase 1 family (α/β)8 triose-phosphate isomerase (TIM) barrel structure with a highly conserved active site. In vitro enzyme activity revealed that CsBGlu12 catalyzes the hydrolysis of flavonol β-glucosides and cello-oligosaccharides. Site-directed mutagenesis of any of the two conserved catalytic glutamic acid residues (Glu200 and Glu414) of the active site completely abolishes the β-glucosidase activity. Transcript analysis revealed that Csbglu12 is highly induced in response to UV-B, dehydration, NaCl, methyl jasmonate, and abscisic acid treatments indicating its possible role in plant stress response. Transient overexpression of CsBGlu12 leads to the accumulation of antioxidant flavonols in Nicotiana benthamiana and confers tolerance to abiotic stresses. Antioxidant assays indicated that accumulation of flavonols alleviated the accretion of reactive oxygen species during abiotic stress conditions. β-Glucosidases are known to play a role in abiotic stresses, particularly dehydration through abscisic acid; however, their role through accumulation of reactive oxygen species (ROS) scavenging flavonols has not been established. Furthermore, only one β-glucosidase 12 homolog has been characterized so far. Therefore, this work presents an important report on characterization of CsBGlu12 and its role in abiotic stress through ROS scavenging. PMID:28154174
Patched bimetallic surfaces are active catalysts for ammonia decomposition.
Guo, Wei; Vlachos, Dionisios G
2015-10-07
Ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material's structure. Core-shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core-shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-H bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.
Patched bimetallic surfaces are active catalysts for ammonia decomposition
NASA Astrophysics Data System (ADS)
Guo, Wei; Vlachos, Dionisios G.
2015-10-01
Ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material's structure. Core-shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core-shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-H bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.
Ferreira, Alexandre H P; Terra, Walter R; Ferreira, Clélia
2003-02-01
The midgut of the yellow mealworm, Tenebrio molitor L. (Coleoptera: Tenebrionidae) larvae has four beta-glycosidases. The properties of two of these enzymes (betaGly1 and betaGly2) have been described elsewhere. In this paper, the characterization of the other two glycosidases (betaGly3 and betaGly4) is described. BetaGly3 has one active site, hydrolyzes disaccharides, cellodextrins, synthetic substrates and beta-glucosides produced by plants. The enzyme is inhibited by amygdalin, cellotriose, cellotetraose and cellopentaose in high concentrations, probably due to transglycosylation. betaGly3 hydrolyzes beta 1,4-glycosidic linkages with a catalytic rate independent of the substrate polymerization degree (k(int)) of 11.9 s(-1). Its active site is formed by four subsites, where subsites +1 and -1 bind glucose residues with higher affinity than subsite +2. The main role of betaGly3 seems to be disaccharide hydrolysis. BetaGly4 is a beta-galactosidase, since it has highest activity against beta-galactosides. It can also hydrolyze fucosides, but not glucosides, and has Triton X-100 as a non-essential activator (K(a)=15 microM, pH 4.5). betaGly4 has two active sites that can hydrolyze p-nitrophenyl beta-galactoside (NPbetaGal). The one hydrolyzing NPbetaGal with more efficiency is also active against methylumbellipheryl beta-D-galactoside and lactose. The other active site hydrolyzes NPbetaFucoside and binds NPbetaGal weakly. BetaGly4 hydrolyzes hydrophobic substrates with high catalytical efficiency and is able to bind octyl-beta-thiogalactoside in its active site with high affinity. The betaGly4 physiological role is supposed to be the hydrolysis of galactolipids that are found in membranes from vegetal tissues. As the enzyme has a hydrophobic site where Triton X-100 can bind, it might be activated by membrane lipids, thus becoming fully active only at the surface of cell membranes.
Hanford Site Environmental Report for Calendar Year 2005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.
This report, published annually since 1958, includes information and summary analytical data that (1) provide an overview of activities at the Hanford Site during calendar year 2005; (2) demonstrate the site's compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and U.S. Department of Energy (DOE) policies and directives; (3) characterize Hanford Site environmental management performance; and (4) highlight significant environmental programs.
Hanford Site Environmental Report for Calendar Year 2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.
This report, published annually since 1958, includes information and summary analytical data that (1) provide an overview of activities at the Hanford Site during calendar year 2003; (2) demonstrate the site's compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and U.S. Department of Energy (DOE) policies and directives; (3) characterize Hanford Site environmental management performance; and (4) highlight significant environmental programs.
Nickel Superoxide Dismutase: Structural and Functional Roles of His1 and its H-bonding Network
Ryan, Kelly C.; Guce, Abigail I.; Johnson, Olivia E.; Brunold, Thomas C.; Cabelli, Diane E.; Garman, Scott C.; Maroney, Michael J.
2015-01-01
Crystal structures of nickel-dependent superoxide dismutases (NiSODs) reveal the presence of a H-bonding network formed between the N-H of the apical imidazole ligand from His1 and the Glu17 carboxylate from a neighboring subunit in the hexameric enzyme. This interaction is supported by another intra-subunit H-bond between Glu17 and Arg47. In this study, four mutant NiSOD proteins were produced to experimentally evaluate the roles of this H-bonding network, and compare the results with prior predictions from DFT calculations. H1A-NiSOD, which lacks the apical ligand entirely, was crystallographically characterized and reveals that in the absence of the Glu17-His1 H-bond, the active site is disordered. Subsequent characterization using X-ray absorption spectroscopy (XAS) shows that Ni(II) is bound in the expected N2S2 planar coordination site. Despite these structural perturbations, the H1A-NiSOD variant is an active catalyst with 4% of WT-NiSOD activity. Three other mutations were designed to preserve the apical imidazole ligand, but perturb the H-bonding network: R47A-NiSOD, lacks the intra-molecular H-bonding interaction, E17R/R47A-NiSOD, which retains the intra-molecular H-bond, but lacks the inter-molecular Glu17-His1 H-bond, and E17A/R47A-NiSOD, which lacks both H-bonding interactions. These variants were characterized by a combination of techniques including XAS characterization of the nickel site structure, kinetic studies employing pulse-radiolytic production of superoxide, and EPR and chemical probes of the redox activity. The results indicate that in addition to the roles in redox tuning suggested by the computational models, the Glu17-His1 H-bond plays an important structural role in the formation of the Ni-hook motif that is a critical feature of the active site. PMID:25580509
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Characterize the site in terms of mine drainage, active slides and slide-prone areas, erosion and sedimentation... the site; (iv) Current and historic coal production in the area; and (v) Any known or anticipated interest in mining the site. (2) You must determine the likelihood that nearby or adjacent mining...
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Characterize the site in terms of mine drainage, active slides and slide-prone areas, erosion and sedimentation... the site; (iv) Current and historic coal production in the area; and (v) Any known or anticipated interest in mining the site. (2) You must determine the likelihood that nearby or adjacent mining...
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Characterize the site in terms of mine drainage, active slides and slide-prone areas, erosion and sedimentation... the site; (iv) Current and historic coal production in the area; and (v) Any known or anticipated interest in mining the site. (2) You must determine the likelihood that nearby or adjacent mining...
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Characterize the site in terms of mine drainage, active slides and slide-prone areas, erosion and sedimentation... the site; (iv) Current and historic coal production in the area; and (v) Any known or anticipated interest in mining the site. (2) You must determine the likelihood that nearby or adjacent mining...
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Characterize the site in terms of mine drainage, active slides and slide-prone areas, erosion and sedimentation... the site; (iv) Current and historic coal production in the area; and (v) Any known or anticipated interest in mining the site. (2) You must determine the likelihood that nearby or adjacent mining...
NASA Astrophysics Data System (ADS)
Poggi, V.; Burjanek, J.; Michel, C.; Fäh, D.
2017-08-01
The Swiss Seismological Service (SED) has recently finalised the installation of ten new seismological broadband stations in northern Switzerland. The project was led in cooperation with the National Cooperative for the Disposal of Radioactive Waste (Nagra) and Swissnuclear to monitor micro seismicity at potential locations of nuclear-waste repositories. To further improve the quality and usability of the seismic recordings, an extensive characterization of the sites surrounding the installation area was performed following a standardised investigation protocol. State-of-the-art geophysical techniques have been used, including advanced active and passive seismic methods. The results of all analyses converged to the definition of a set of best-representative 1-D velocity profiles for each site, which are the input for the computation of engineering soil proxies (traveltime averaged velocity and quarter-wavelength parameters) and numerical amplification models. Computed site response is then validated through comparison with empirical site amplification, which is currently available for any station connected to the Swiss seismic networks. With the goal of a high-sensitivity network, most of the NAGRA stations have been installed on stiff-soil sites of rather high seismic velocity. Seismic characterization of such sites has always been considered challenging, due to lack of relevant velocity contrast and the large wavelengths required to investigate the frequency range of engineering interest. We describe how ambient vibration techniques can successfully be applied in these particular conditions, providing practical recommendations for best practice in seismic site characterization of high-velocity sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, S.C.
1993-08-01
This report discusses a field demonstration of a methodology for characterizing an aquifer's geohydrology in the detail required to design an optimum network of wells and/or infiltration galleries for bioreclamation systems. The project work was conducted on a 1-hectare test site at Columbus AFB, Mississippi. The technical report is divided into two volumes. Volume I describes the test site and the well network, the assumptions, and the application of equations that define groundwater flow to a well, the results of three large-scale aquifer tests, and the results of 160 single-pump tests. Volume II describes the bore hole flowmeter tests, themore » tracer tests, the geological investigations, the geostatistical analysis and the guidelines for using groundwater models to design bioreclamation systems. Site characterization, Hydraulic conductivity, Groundwater flow, Geostatistics, Geohydrology, Monitoring wells.« less
Site characterization of the national seismic network of Italy
NASA Astrophysics Data System (ADS)
Bordoni, Paola; Pacor, Francesca; Cultrera, Giovanna; Casale, Paolo; Cara, Fabrizio; Di Giulio, Giuseppe; Famiani, Daniela; Ladina, Chiara; PIschiutta, Marta; Quintiliani, Matteo
2017-04-01
The national seismic network of Italy (Rete Sismica Nazionale, RSN) run by Istituto Nazionale di Geofisica e Vulcanologia (INGV) consists of more than 400 seismic stations connected in real time to the institute data center in order to locate earthquakes for civil defense purposes. A critical issue in the performance of a network is the characterization of site condition at the recording stations. Recently INGV has started addressing this subject through the revision of all available geological and geophysical data, the acquisition of new information by means of ad-hoc field measurements and the analysis of seismic waveforms. The main effort is towards building a database, integrated with the other INGV infrastructures, designed to archive homogeneous parameters through the seismic network useful for a complete site characterization, including housing, geological, seismological and geotechnical features as well as the site class according to the European and Italian building codes. Here we present the ongoing INGV activities.
Lucas, James E; Siegel, Justin B
2015-01-01
Enzyme active site residues are often highly conserved, indicating a significant role in function. In this study we quantitate the functional contribution for all conserved molecular interactions occurring within a Michaelis complex for mannitol 2-dehydrogenase derived from Pseudomonas fluorescens (pfMDH). Through systematic mutagenesis of active site residues, we reveal that the molecular interactions in pfMDH mediated by highly conserved residues not directly involved in reaction chemistry can be as important to catalysis as those directly involved in the reaction chemistry. This quantitative analysis of the molecular interactions within the pfMDH active site provides direct insight into the functional role of each molecular interaction, several of which were unexpected based on canonical sequence conservation and structural analyses. PMID:25752240
NASA Astrophysics Data System (ADS)
Botchwey, Christian
This thesis summarizes the methods and major findings of Ni-W(P)/gamma-Al 2O3 nitride catalyst synthesis, characterization, hydrotreating activity, kinetic analysis and correlation of the catalysts' activities to their synthesis parameters and properties. The range of parameters for catalyst synthesis were W (15-40 wt%), Ni (0-8 wt%), P (0-5 wt%) and nitriding temperature (TN) (500-900 °C). Characterization techniques used included: N2 sorption studies, chemisorption, elemental analysis, temperature programmed studies, x-ray diffraction, scanning electron microscopy, energy dispersive x-ray, infrared spectroscopy, transmission electron microscopy and x-ray absorption near edge structure. Hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatization (HDA) were performed at: temperature (340-380 °C), pressure (6.2-9.0 MPa), liquid hourly space velocity (1-3 h-1) and hydrogen to oil ratio (600 ml/ml, STP). The predominant species on the catalyst surface were Ni3N, W2N and bimetallic Ni2W3N. The bimetallic Ni-W nitride species was more active than the individual activities of the Ni3N and W2N. P increased weak acid sites while nitriding temperature decreased amount of strong acid sites. Low nitriding temperature enhanced dispersion of metal particles. P interacted with Al 2O3 which increased the dispersion of metal nitrides on the catalyst surface. HDN activity increased with Ni and P loading but decreased with increase in nitriding temperature (optimum conversion; 60 wt%). HDS and HDA activities went through a maximum with increase in the synthesis parameters (optimum conversions; 88. wt% for HDS and 47 wt% for HDA). Increase in W loading led to increase in catalyst activity. The catalysts were stable to deactivation and had the nitride structure conserved during hydrotreating in the presence of hydrogen sulfide. The results showed good correlation between hydrotreating activities (HDS and HDN) and the catalyst nitrogen content, number of exposed active sites, catalyst particle size and BET surface area. HDS and HDN kinetic analyses, using Langmuir-Hinshelwood models, gave activation energies of 66 and 32 kJ/mol, respectively. There were no diffusion limitations in the reaction process. Two active sites were involved in HDS reaction while one site was used for HDN. HDS and HDN activities of the Ni-W(P)/gamma-Al 2O3 nitride catalysts were comparable to the corresponding sulfides.
Daniel, Bastian; Wallner, Silvia; Steiner, Barbara; Oberdorfer, Gustav; Kumar, Prashant; van der Graaff, Eric; Roitsch, Thomas; Sensen, Christoph W; Gruber, Karl; Macheroux, Peter
2016-01-01
Berberine bridge enzyme-like (BBE-like) proteins form a multigene family (pfam 08031), which is present in plants, fungi and bacteria. They adopt the vanillyl alcohol-oxidase fold and predominantly show bi-covalent tethering of the FAD cofactor to a cysteine and histidine residue, respectively. The Arabidopsis thaliana genome was recently shown to contain genes coding for 28 BBE-like proteins, while featuring four distinct active site compositions. We determined the structure of a member of the AtBBE-like protein family (termed AtBBE-like 28), which has an active site composition that has not been structurally and biochemically characterized thus far. The most salient and distinguishing features of the active site found in AtBBE-like 28 are a mono-covalent linkage of a histidine to the 8α-position of the flavin-isoalloxazine ring and the lack of a second covalent linkage to the 6-position, owing to the replacement of a cysteine with a histidine. In addition, the structure reveals the interaction of a glutamic acid (Glu426) with an aspartic acid (Asp369) at the active site, which appear to share a proton. This arrangement leads to the delocalization of a negative charge at the active site that may be exploited for catalysis. The structure also indicates a shift of the position of the isoalloxazine ring in comparison to other members of the BBE-like family. The dioxygen surrogate chloride was found near the C(4a) position of the isoalloxazine ring in the oxygen pocket, pointing to a rapid reoxidation of reduced enzyme by dioxygen. A T-DNA insertional mutant line for AtBBE-like 28 results in a phenotype, that is characterized by reduced biomass and lower salt stress tolerance. Multiple sequence analysis showed that the active site composition found in AtBBE-like 28 is only present in the Brassicaceae, suggesting that it plays a specific role in the metabolism of this plant family.
TECHNICAL APPROACHES TO CHARACTERIZING AND ...
The document provides brownfields planners with an overview of the technical methods that can be used to achieve successful site assessment and cleanup which are two key components of the brownfields redevelopment process. No two brownfields sites are identical and planners will need to base assessment and cleanup activities on the conditions of the particular sites with which they are dealing. A site assessment strategy should address: the type and extent of contamination, if any, that is present, the types of data needed to adequately assess the site; appropriate sampling and analytical methods to characterize the contamination; acceptable level of uncertainty and cleanup technologies that contain or treat the types of wastes present.This document includes references to state agency roles including the Voluntary Cleanup Program, public involvement and other guidances that may be used. Information
Basson, Marc D; Butler, Timothy
2006-11-01
Operating room (OR) activity transcends single ratios such as cases/room, but weighting multiple inputs and outputs may be arbitrary. Data-envelopment analysis (DEA) is a novel technique by which each facility is analyzed by the weightings that optimize its score. We performed DEA analysis of 23 Veterans Health Administration annual OR activity; 87,180 cases were performed, 24 publications generated, and 560 trainee-years of education delivered, in 168 ORs over 166,377 hours by 1,384 full-time equivalents of surgical and anesthesia providers and 523 nonproviders. Varying analyzed parameters produced similar efficiency rankings, with individual differences suggesting possible inefficiencies. We characterized returns to scale for efficient sites, suggesting whether patient flow might be efficiently further increased through these sites. We matched inefficient sites to similar efficient sites for comparison and suggested resource alterations to increase efficiency. Broader DEA application might characterize OR efficiency more informatively than conventional single-ratio rank ordering.
NASA Technical Reports Server (NTRS)
Johnson, Jill W. (Compiler)
2015-01-01
This Corrective Measures Implementation (CMI) Progress Report documents: (i) activities conducted as part of supplemental assessment activities completed from June 2009 through November 2014; (ii) Engineering Evaluation (EE) Advanced Data Packages (ADPs); and (iii) recommendations for future activities related to corrective measures at the Site. Applicable meeting minutes are provided as Appendix A. The following EE ADPs for CRHE are included with this CMI Progress Report: center dot Supplemental Site Characterization ADP (Step 1 EE) (Appendix B) center dot Site Characterization ADP (Step 1 EE) for Hot Spot 1 (HS1) (Appendix C) center dot Remedial Alternatives Evaluation (Step 2 EE) ADP for HS1 (Appendix D) center dot Interim Measures Work Plan (Step 3 EE) ADP for HS1 (Appendix E) center dot Site Characterization ADP (Step 1 EE) ADP for Hot Spot 2 (HS2), High Concentration Plume (HCP), and Low Concentration Plume (LCP) (Appendix F) A summary of direct-push technology (DPT) and groundwater monitoring well sampling results are provided in Appendices G and H, respectively. The Interim Land Use Control Implementation Plan (LUCIP) is provided as Appendix I. Monitoring well completion reports, other applicable field forms, survey data, and analytical laboratory reports are provided as Appendices J through M, respectively, in the electronic copy of this document. Selected Site photographs are provided in Appendix N. The interim groundwater monitoring plan and document revision log are included as Appendices O and P, respectively. KSC Electronic Data Deliverable (KEDD) files are provided on the attached compact disk.
ANALYSIS OF 2,3,7,8-TCDD TUMOR PROMOTION ACTIVITY ...
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has a high estimated cancer potency in animals which has been reasoned to imply that TCDD might be carcinogenic to man. The animal cancer data show that TCDD can act in a solitary manner causing tumors without the participation of other known factors. owever, there exist animal cancer data indicating that TCDD can act as a tumor-promoting compound. This analysis examines which type of carcinogen and which mechanism best characterize TCDD cancer activity. It is suggested that TCDD acts by a hormonal mechanism to cause cancer in solitary manner, at low doses, in two species, and in a number of different organs, including rare sites. These observations in toto characterize TCDD as a complete carcinogen, which by definition encompasses both initiation and promotion carcinogenic activities. This analysis examines which type of carcinogen and which mechanism best characterize TCDD cancer activity. It is suggested that TCDD acts by a hormonal mechanism to cause cancer in solitary manner, at low doses, in two species, and in a number of different organs, including rare sites
Keppetipola, Niroshika; Shuman, Stewart
2007-01-01
Clostridium thermocellum polynucleotide kinase-phosphatase (CthPnkp) catalyzes 5′ and 3′ end-healing reactions that prepare broken RNA termini for sealing by RNA ligase. The central phosphatase domain of CthPnkp belongs to the dinuclear metallophosphoesterase superfamily exemplified by bacteriophage λ phosphatase (λ-Pase). CthPnkp is a Ni2+/Mn2+-dependent phosphodiesterase-monoesterase, active on nucleotide and non-nucleotide substrates, that can be transformed toward narrower metal and substrate specificities via mutations of the active site. Here we characterize the Mn2+-dependent 2′,3′ cyclic nucleotide phosphodiesterase activity of CthPnkp, the reaction most relevant to RNA repair pathways. We find that CthPnkp prefers a 2′,3′ cyclic phosphate to a 3′,5′ cyclic phosphate. A single H189D mutation imposes strict specificity for a 2′,3′ cyclic phosphate, which is cleaved to form a single 2′-NMP product. Analysis of the cyclic phosphodiesterase activities of mutated CthPnkp enzymes illuminates the active site and the structural features that affect substrate affinity and kcat. We also characterize a previously unrecognized phosphodiesterase activity of λ-Pase, which catalyzes hydrolysis of bis-p-nitrophenyl phosphate. λ-Pase also has cyclic phosphodiesterase activity with nucleoside 2′,3′ cyclic phosphates, which it hydrolyzes to yield a mixture of 2′-NMP and 3′-NMP products. We discuss our results in light of available structural and functional data for other phosphodiesterase members of the binuclear metallophosphoesterase family and draw inferences about how differences in active site composition influence catalytic repertoire. PMID:17986465
Spontaneous and evoked release are independently regulated at individual active zones.
Melom, Jan E; Akbergenova, Yulia; Gavornik, Jeffrey P; Littleton, J Troy
2013-10-30
Neurotransmitter release from synaptic vesicle fusion is the fundamental mechanism for neuronal communication at synapses. Evoked release following an action potential has been well characterized for its function in activating the postsynaptic cell, but the significance of spontaneous release is less clear. Using transgenic tools to image single synaptic vesicle fusion events at individual release sites (active zones) in Drosophila, we characterized the spatial and temporal dynamics of exocytotic events that occur spontaneously or in response to an action potential. We also analyzed the relationship between these two modes of fusion at single release sites. A majority of active zones participate in both modes of fusion, although release probability is not correlated between the two modes of release and is highly variable across the population. A subset of active zones is specifically dedicated to spontaneous release, indicating a population of postsynaptic receptors is uniquely activated by this mode of vesicle fusion. Imaging synaptic transmission at individual release sites also revealed general rules for spontaneous and evoked release, and indicate that active zones with similar release probability can cluster spatially within individual synaptic boutons. These findings suggest neuronal connections contain two information channels that can be spatially segregated and independently regulated to transmit evoked or spontaneous fusion signals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nitao, J.J.; Buscheck, T.A.; Chesnut, D.A.
1992-04-01
We apply our work on fracture- and matrix-dominated flow to develop a conceptual model of hydrological flow processes in the unsaturated zone at Yucca Mountain. The possibility of fracture-dominated flow is discussed, and various deductions are made on its impact on natural and total system performance, site characterization activities, and site suitability determination.
NASA Astrophysics Data System (ADS)
Abed Gatea, Mezher; Ahmed, Anwar A.; jundee kadhum, Saad; Ali, Hasan Mohammed; Hussein Muheisn, Abbas
2018-05-01
The Safety Assessment Framework (SAFRAN) software has implemented here for radiological safety analysis; to verify that the dose acceptance criteria and safety goals are met with a high degree of confidence for dismantling of Tammuz-2 reactor core at Al-tuwaitha nuclear site. The activities characterizing, dismantling and packaging were practiced to manage the generated radioactive waste. Dose to the worker was considered an endpoint-scenario while dose to the public has neglected due to that Tammuz-2 facility is located in a restricted zone and 30m berm surrounded Al-tuwaitha site. Safety assessment for dismantling worker endpoint-scenario based on maximum external dose at component position level in the reactor pool and internal dose via airborne activity while, for characterizing and packaging worker endpoints scenarios have been done via external dose only because no evidence for airborne radioactivity hazards outside the reactor pool. The in-situ measurements approved that reactor core components are radiologically activated by Co-60 radioisotope. SAFRAN results showed that the maximum received dose for workers are (1.85, 0.64 and 1.3mSv/y) for activities dismantling, characterizing and packaging of reactor core components respectively. Hence, the radiological hazards remain below the low level hazard and within the acceptable annual dose for workers in radiation field
Chae, J P; Valeriano, V D; Kim, G-B; Kang, D-K
2013-01-01
To clone, characterize and compare the bile salt hydrolase (BSH) genes of Lactobacillus johnsonii PF01. The BSH genes were amplified by polymerase chain reaction (PCR) using specific oligonucleotide primers, and the products were inserted into the pET21b expression vector. Escherichia coli BLR (DE3) cells were transformed with pET21b vectors containing the BSH genes and induced using 0·1 mmol l(-1) isopropylthiolgalactopyranoside. The overexpressed BSH enzymes were purified using a nickel-nitrilotriacetic acid (Ni(2+) -NTA) agarose column and their activities characterized. BSH A hydrolysed tauro-conjugated bile salts optimally at pH 5·0 and 55°C, whereas BSH C hydrolysed glyco-conjugated bile salts optimally at pH 5·0 and 70°C. The enzymes had no preferential activities towards a specific cholyl moiety. BSH enzymes vary in their substrate specificities and characteristics to broaden its activity. Despite the lack of conservation in their putative substrate-binding sites, these remain functional through motif conservation. This is to our knowledge the first report of isolation of BSH enzymes from a single strain, showing hydrolase activity towards either glyco-conjugated or tauro-conjugated bile salts. Future structural homology studies and site-directed mutagenesis of sites associated with substrate specificity may elucidate specificities of BSH enzymes. © 2012 The Society for Applied Microbiology.
Tu, N; Chen, H; Winnikes, U; Reinert, I; Pirke, K M; Lentes, K U
2000-09-22
Uncoupling protein-3 (UCP3) is considered as an important regulator of energy expenditure and thermogenesis in humans. To get insight into the mechanisms regulating its expression we have cloned and characterized about 5 kb of the 5'-flanking region of the human UCP3 (hUCP3) gene. 5'-RACE analysis suggested a single transcription initiation site 187 bp upstream from the translational start site. The promoter region contains both TATA and CAAT boxes as well as consensus motifs for PPRE, TRE, CRE and muscle-specific factors like MyoD and MEF2 sites. Functional characterization of a 3 kb hUCP3 promoter fragment in multiple cell lines using a CAT-ELISA identified a cis-acting negative regulatory element between -2983 and -982 while the region between -982 and -284 showed greatly increased basal promoter activity suggesting the presence of a strong enhancer element. Promoter activity was particularly enhanced in the murine skeletal muscle cell line C2C12 reflecting the tissue-selective expression pattern of UCP3.
Williams, Linda A.; Guo, Neng; Motta, Alessandro; Delferro, Massimiliano; Fragalà, Ignazio L.; Miller, Jeffrey T.; Marks, Tobin J.
2013-01-01
Structural characterization of the catalytically significant sites on solid catalyst surfaces is frequently tenuous because their fraction, among all sites, typically is quite low. Here we report the combined application of solid-state 13C-cross-polarization magic angle spinning nuclear magnetic resonance (13C-CPMAS-NMR) spectroscopy, density functional theory (DFT), and Zr X-ray absorption spectroscopy (XAS) to characterize the adsorption products and surface chemistry of the precatalysts (η5-C5H5)2ZrR2 (R = H, CH3) and [η5-C5(CH3)5]Zr(CH3)3 adsorbed on Brønsted superacidic sulfated alumina (AlS). The latter complex is exceptionally active for benzene hydrogenation, with ∼100% of the Zr sites catalytically significant as determined by kinetic poisoning experiments. The 13C-CPMAS-NMR, DFT, and XAS data indicate formation of organozirconium cations having a largely electrostatic [η5-C5(CH3)5]Zr(CH3)2+···AlS− interaction with greatly elongated Zr···OAlS distances of ∼2.35(2) Å. The catalytic benzene hydrogenation cycle is stepwise understandable by DFT, and proceeds via turnover-limiting H2 delivery to surface [η5-C5(CH3)5]ZrH2(benzene)+···AlS− species, observable by solid-state NMR and XAS. PMID:23269836
Hoffmann, Jana; Altenbuchner, Josef
2015-01-01
A new pBBR1MCS-2-derived vector containing the Pseudomonas fluorescens DSM10506 mannitol promoter PmtlE and mtlR encoding its AraC/XylS type transcriptional activator was constructed and optimized for low basal expression. Mannitol, arabitol, and glucitol-inducible gene expression was demonstrated with Pseudomonas putida and eGFP as reporter gene. The new vector was applied for functional characterization of PmtlE. Identification of the DNA binding site of MtlR was achieved by in vivo eGFP measurement with PmtlE wild type and mutants thereof. Moreover, purified MtlR was applied for detailed in vitro investigations using electrophoretic mobility shift assays and DNaseI footprinting experiments. The obtained data suggest that MtlR binds to PmtlE as a dimer. The proposed DNA binding site of MtlR is AGTGC-N5-AGTAT-N7-AGTGC-N5-AGGAT. The transcription activation mechanism includes two binding sites with different binding affinities, a strong upstream binding site and a weaker downstream binding site. The presence of the weak downstream binding site was shown to be necessary to sustain mannitol-inducibility of PmtlE. Two possible functions of mannitol are discussed; the effector might stabilize binding of the second monomer to the downstream half site or promote transcription activation by inducing a conformational change of the regulator that influences the contact to the RNA polymerase. PMID:26207762
U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1983, 1984, and 1985
Dinwiddie, G.A.; Trask, N.J.
1986-01-01
The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research is described according to whether it is related most directly to: (1) high-level and transuranic wastes, (2) low-level wastes, or (3) uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, and to studies of regions or environments where waste-disposal sites might be located. A significant part of the activity is concerned with techniques and methods for characterizing disposal sites and studies of geologic and hydrologic processes related to the transport and (or) retention of waste radionuclides.
Hu, Heidi Q; Johnson, Ryan C; Merrell, D Scott; Maroney, Michael J
2017-02-28
The human pathogen Helicobacter pylori requires nickel for colonization of the acidic environment of the stomach. HypA, a Ni metallochaperone that is typically associated with hydrogenase maturation, is also required for urease maturation and acid survival of H. pylori. There are two proposed Ni site structures for HypA; one is a paramagnetic six-coordinate site characterized by X-ray absorption spectroscopy (XAS) in unmodified HypA, while another is a diamagnetic four-coordinate planar site characterized by solution nuclear magnetic resonance in an N-terminally modified HypA construct. To determine the role of the N-terminal amine in Ni binding of HypA, an N-terminal extension variant, L2*-HypA, in which a leucine residue was inserted into the second position of the amino acid sequence in the proposed Ni-binding motif, was characterized in vitro and in vivo. Structural characterization of the Ni site using XAS showed a coordination change from six-coordinate in wild-type HypA (WT-HypA) to five-coordinate pyramidal in L2*-HypA, which was accompanied by the loss of two N/O donor protein ligands and the addition of an exogenous bromide ligand from the buffer. The magnetic properties of the Ni sites in WT-HypA compared to those of the Ni sites in L2*-HypA confirmed that a spin-state change from high to low spin accompanied this change in structure. The L2*-HypA H. pylori strain was shown to be acid sensitive and deficient in urease activity in vivo. In vitro characterization showed that L2*-HypA did not disrupt the HypA-UreE interaction that is essential for urease maturation but was at least 20-fold weaker in Ni binding than WT-HypA. Characterization of the L2*-HypA variant clearly demonstrates that the N-terminal amine of HypA is involved in proper Ni coordination and is necessary for urease activity and acid survival.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Heidi Q.; Johnson, Ryan C.; Merrell, D. Scott
The human pathogen Helicobacter pylori requires nickel for colonization of the acidic environment of the stomach. HypA, a Ni metallochaperone that is typically associated with hydrogenase maturation, is also required for urease maturation and acid survival of H. pylori. There are two proposed Ni site structures for HypA; one is a paramagnetic six-coordinate site characterized by X-ray absorption spectroscopy (XAS) in unmodified HypA, while another is a diamagnetic four-coordinate planar site characterized by solution nuclear magnetic resonance in an N-terminally modified HypA construct. To determine the role of the N-terminal amine in Ni binding of HypA, an N-terminal extension variant,more » L2*-HypA, in which a leucine residue was inserted into the second position of the amino acid sequence in the proposed Ni-binding motif, was characterized in vitro and in vivo. Structural characterization of the Ni site using XAS showed a coordination change from six-coordinate in wild-type HypA (WT-HypA) to five-coordinate pyramidal in L2*-HypA, which was accompanied by the loss of two N/O donor protein ligands and the addition of an exogenous bromide ligand from the buffer. The magnetic properties of the Ni sites in WT-HypA compared to those of the Ni sites in L2*-HypA confirmed that a spin-state change from high to low spin accompanied this change in structure. The L2*-HypA H. pylori strain was shown to be acid sensitive and deficient in urease activity in vivo. In vitro characterization showed that L2*-HypA did not disrupt the HypA–UreE interaction that is essential for urease maturation but was at least 20-fold weaker in Ni binding than WT-HypA. Characterization of the L2*-HypA variant clearly demonstrates that the N-terminal amine of HypA is involved in proper Ni coordination and is necessary for urease activity and acid survival.« less
Ren, Wei; Zhu, Liang-Hua; Xu, Hua-Guo; Jin, Rui; Zhou, Guo-Ping
2012-06-01
Interferon regulatory factor 3 (IRF-3), an essential transcriptional regulator of the interferon genes, plays an important role in host defense against viral and microbial infection as well as in cell growth regulation. Promoter plays a crucial role in gene transcription. We have reported the characterization of the wide type of human IRF-3 promoter, but the characterization of the spliced variant of human IRF-3 Int2V1 promoter has not been systematically analyzed. To observe the spliced variant of human IRF-3 promoter, we have cloned the human IRF-3 gene promoter region containing 300 nucleotides upstream the transcription start site (TSS). Transient transfection of 5' deleted promoter-reporter constructs and luciferase assay illustrated the region -159/-100 relative to the TSS is sufficient for full promoter activity. This region contains GATA1 and specific protein-1 (Sp1) transcription factor binding sites. Interestingly, mutation of this Sp1 site reduced the promoter activity by 50%. However, overexpression of Sp1 increased the transcription activity by 2.4-fold. These results indicated that the spliced variant of human IRF-3 gene core promoter was located within the region -159/-100 relative to the TSS. Sp1 transcription factor upregulates the spliced variant of human IRF-3 gene promoter.
Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Serrano-Posada, Hugo; González-Valdez, Abigail; Martínez-Rosas, Víctor; Hernández-Ochoa, Beatriz; Sierra-Palacios, Edgar; Castillo-Rodríguez, Rosa Angélica; Cuevas-Cruz, Miguel; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto
2016-05-21
Glucose-6-phosphate dehydrogenase (G6PD) deficiency in humans causes severe disease, varying from mostly asymptomatic individuals to patients showing neonatal jaundice, acute hemolysis episodes or chronic nonspherocytic hemolytic anemia. In order to understand the effect of the mutations in G6PD gene function and its relation with G6PD deficiency severity, we report the construction, cloning and expression as well as the detailed kinetic and stability characterization of three purified clinical variants of G6PD that present in the Mexican population: G6PD Zacatecas (Class I), Vanua-Lava (Class II) and Viangchan (Class II). For all the G6PD mutants, we obtained low purification yield and altered kinetic parameters compared with Wild Type (WT). Our results show that the mutations, regardless of the distance from the active site where they are located, affect the catalytic properties and structural parameters and that these changes could be associated with the clinical presentation of the deficiency. Specifically, the structural characterization of the G6PD Zacatecas mutant suggests that the R257L mutation have a strong effect on the global stability of G6PD favoring an unstable active site. Using computational analysis, we offer a molecular explanation of the effects of these mutations on the active site.
Patched bimetallic surfaces are active catalysts for ammonia decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Wei; Vlachos, Dionisios G.
In this study, ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material’s structure. Core–shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core–shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-Hmore » bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.« less
Patched bimetallic surfaces are active catalysts for ammonia decomposition
Guo, Wei; Vlachos, Dionisios G.
2015-10-07
In this study, ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material’s structure. Core–shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core–shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-Hmore » bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.« less
10 CFR 60.151 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Applicability. 60.151 Section 60.151 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Quality... to activities related thereto. These activities include: site characterization, facility and...
10 CFR 60.151 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Applicability. 60.151 Section 60.151 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Quality... to activities related thereto. These activities include: site characterization, facility and...
USDA-ARS?s Scientific Manuscript database
Lipase gene (lip) of a biodegradable polyhydroxyalkanoate- (PHA-) synthesizing bacterium P. resinovorans NRRL B-2649 was cloned, sequenced and characterized by using consensus primers and PCR-based genome walking method. The ORF of the putative Lip (314 amino acids) and its active site (Ser111, Asp...
Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase.
Fenwick, Michael K; Mehta, Angad P; Zhang, Yang; Abdelwahed, Sameh H; Begley, Tadhg P; Ealick, Steven E
2015-03-27
Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active site metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.
Hydroisomerization of n-Hexane Using Acidified Metal-Organic Framework and Platinum Nanoparticles.
Sabyrov, Kairat; Jiang, Juncong; Yaghi, Omar M; Somorjai, Gabor A
2017-09-13
Exceptionally high surface area and ordered nanopores of a metal-organic framework (MOF) are exploited to encapsulate and homogeneously disperse a considerable amount of phosphotungstic acid (PTA). When combined with platinum nanoparticles positioned on the external surface of the MOF, the construct shows a high catalytic activity for hydroisomerization of n-hexane, a reaction requiring hydrogenation/dehydrogenation and moderate to strong Brønsted acid sites. Characterization of the catalytic activity and acidic sites as a function of PTA loading demonstrates that both the concentration and strength of acidic sites are highest for the catalyst with the largest amount of PTA. The MOF construct containing 60% PTA by weight produces isoalkanes with 100% selectivity and 9-fold increased mass activity as compared to a more traditional aluminosilicate catalyst, further demonstrating the capacity of the MOF to contain a high concentration of active sites necessary for the isomerization reaction.
Mizrahi, V; Usdin, M T; Harington, A; Dudding, L R
1990-01-01
Substitution of the conserved Asp-443 residue of HIV-1 reverse transcriptase by asparagine specifically suppressed the ribonuclease H activity of the enzyme without affecting the reverse transcriptase activity, suggesting involvement of this ionizable residue at the ribonuclease H active site. An analogous asparagine substitution of the Asp-498 residue yielded an unstable enzyme that was difficult to enzymatically characterize. However, the instability caused by the Asn-498 mutation was relieved by the introduction of a second distal Asn-443 substitution, yielding an enzyme with wild type reverse transcriptase activity, but lacking ribonuclease H activity. Images PMID:1699202
NASA Astrophysics Data System (ADS)
Sumida, John P.; Forsythe, Elizabeth L.; Pusey, Marc L.
2001-11-01
Fluorescence is one of the most versatile and powerful tools for the study of macromolecules. While most proteins are intrinsically fluorescent, working at crystallization concentrations require the use of covalently prepared derivatives added as tracers. This approach requires derivatives that do not markedly affect the crystal packing. We have prepared fluorescent derivatives of chicken egg white lysozyme with probes bound to one of two different sites on the protein molecule. Lucifer yellow and 5-(2-aminoethyl)aminonapthalene-1-sulfonic acid (EDANS) have been attached to the side chain carboxyl of Asp 101 using a carbodiimide coupling procedure. Asp 101 lies within the active site cleft, and it is believed that the probes are "buried" within that cleft. Lucifer yellow and EDANS probes with iodoacetamide reactive groups have been bound to His 15, located on the "back side" of the molecule relative to the active site. All the derivatives fluoresce in the solution and the crystalline states. Fluorescence characterization has focused on determination of binding effects on the probe quantum yield, lifetime, absorption and emission spectra, and quenching by added solutes. Quenching studies show that, as postulated, the Asp 101-bound probes are partially sheltered from the bulk solution by their location within the active site cleft. Probes bound to His 15 have quenching constants about equal to those for the free probes, indicating that this site is highly exposed to the bulk solution.
Ground water hydrology report: Revision 1, Attachment 3. Final
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-01
This report presents ground water hydrogeologic activities for the Maybell, Colorado, Uranium Mill Tailings Remedial Action Project site. The Department of Energy has characterized the hydrogeology, water quality, and water resources at the site and determined that the proposed remedial action would comply with the requirements of the EPA ground water protection standards.
This work will complete work began under Identifying and Predicting Plume Diving Behavior at Groundwater Sites Containing MTBE: Part 1. As of September 2001, ORD Staff and ORD Contractors have characterized dividing MTBE plumes at Spring Green, Wisconsin; Milford, Michigan; and ...
Site Characterization Report (Building 202). Volume 2. Appendicies A-H.
1996-04-01
Bionetics,Groundwater and Wells, Environmental Science and Engineering, Inc., Installation Assessment of ERADCOM Activities, Environmental Science and...Engineering, Inc., Plan for the Assessment of Contamination at Woodbridge Research Facility, Environmental Science and Engineering, Inc., Remedial...Action Plan for the Woodbridge Research Facility PCB Disposal Site, Environmental Science and Engineering, Inc., Remedial Investigation and
NASA Astrophysics Data System (ADS)
Bour, O.; Le Borgne, T.; Longuevergne, L.; Lavenant, N.; Jimenez-Martinez, J.; De Dreuzy, J. R.; Schuite, J.; Boudin, F.; Labasque, T.; Aquilina, L.
2014-12-01
Characterizing the hydraulic properties of heterogeneous and complex aquifers often requires field scale investigations at multiple space and time scales to better constrain hydraulic property estimates. Here, we present and discuss results from the site of Ploemeur (Brittany, France) where complementary hydrological and geophysical approaches have been combined to characterize the hydrogeological functioning of this highly fractured crystalline rock aquifer. In particular, we show how cross-borehole flowmeter tests, pumping tests and frequency domain analysis of groundwater levels allow quantifying the hydraulic properties of the aquifer at different scales. In complement, we used groundwater temperature as an excellent tracer for characterizing groundwater flow. At the site scale, measurements of ground surface deformation through long-base tiltmeters provide robust estimates of aquifer storage and allow identifying the active structures where groundwater pressure changes occur, including those acting during recharge process. Finally, a numerical model of the site that combines hydraulic data and groundwater ages confirms the geometry of this complex aquifer and the consistency of the different datasets. The Ploemeur site, which has been used for water supply at a rate of about 106 m3 per year since 1991, belongs to the French network of hydrogeological sites H+ and is currently used for monitoring groundwater changes and testing innovative field methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Rong; Pineda, Marco; Ajamian, Eunice
2009-01-15
Three catabolic enzymes, UlaD, UlaE, and UlaF, are involved in a pathway leading to fermentation of L-ascorbate under anaerobic conditions. UlaD catalyzes a {beta}-keto acid decarboxylation reaction to produce L-xylulose-5-phosphate, which undergoes successive epimerization reactions with UlaE (L-xylulose-5-phosphate 3-epimerase) and UlaF (L-ribulose-5-phosphate 4-epimerase), yielding D-xylulose-5-phosphate, an intermediate in the pentose phosphate pathway. We describe here crystallographic studies of UlaE from Escherichia coli O157:H7 that complete the structural characterization of this pathway. UlaE has a triosephosphate isomerase (TIM) barrel fold and forms dimers. The active site is located at the C-terminal ends of the parallel {beta}-strands. The enzyme binds Zn{sup 2+},more » which is coordinated by Glu155, Asp185, His211, and Glu251. We identified a phosphate-binding site formed by residues from the {beta}1/{alpha}1 loop and {alpha}3' helix in the N-terminal region. This site differs from the well-characterized phosphate-binding motif found in several TIM barrel superfamilies that is located at strands {beta}7 and {beta}8. The intrinsic flexibility of the active site region is reflected by two different conformations of loops forming part of the substrate-binding site. Based on computational docking of the L-xylulose 5-phosphate substrate to UlaE and structural similarities of the active site of this enzyme to the active sites of other epimerases, a metal-dependent epimerization mechanism for UlaE is proposed, and Glu155 and Glu251 are implicated as catalytic residues. Mutation and activity measurements for structurally equivalent residues in related epimerases supported this mechanistic proposal.« less
Site-directed mutagenesis and PBAN activation of the Helicoverpa zea PBAN-receptor
USDA-ARS?s Scientific Manuscript database
Insect neuropeptides are produced in the central or peripheral nerve tissues, and released to regulate various physiological and behavioral actions during development and reproduction. Pheromone biosynthesis-activating neuropeptide (PBAN)/Pyrokinin is a major neuropeptide family characterized with a...
In situ radiological surveying at the Double Tracks site, Nellis Air Force Range, Tonopah, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riedhauser, S.R.; Tipton, W.J.
1996-04-01
A team from the Remote Sensing Laboratory conducted a series of in situ radiological measurements at the Double Tracks site on the Nellis Air Force Range just east of Goldfield, Nevada, during the periods of April 10-13 and June 5-9, 1995. The survey team measured the terrestrial gamma radiation at the site to determine the levels of natural and man-made radiation. This site includes the areas covered by previous surveys conducted from 1962 through 1993. The main purpose of the first expedition was to assess several new techniques for characterizing sites with dispersed plutonium. The two purposes of the secondmore » expedition were to characterize the distribution of transuranic contamination (primarily plutonium) at the site by measuring the gamma rays from americium-241 and to assess the performance of the two new detector platforms. Both of the new platforms performed well, and the characterization of the americium-241 activity at the site was completed. Several plots compare these ground-based system measurements and the 1993 aerial data. The agreement is good considering the systems are characterized and calibrated through independent means. During the April expedition, several methods for measuring the depth distribution of americium-241 in the field were conducted as a way of quickly and reliably obtaining depth profiles without the need to wait for laboratory analysis. Two of the methods were not very effective, but the results of the third method appear very promising.« less
Li, Weichao; Zhou, Yiqing; Tang, Guanghui; Xiao, Youli
2016-12-21
Despite the fact that multiple artemisinin-alkylated proteins in Plasmodium falciparum have been identified in recent studies, the alkylation mechanism and accurate binding site of artemisinin-protein interaction have remained elusive. Here, we report the chemical-probe-based enrichment of the artemisinin-binding peptide and characterization of the artemisinin-binding site of P. falciparum translationally controlled tumor protein (TCTP). A peptide fragment within the N-terminal region of TCTP was enriched and found to be alkylated by an artemisinin-derived probe. MS2 fragments showed that artemisinin could alkylate multiple amino acids from Phe12 to Tyr22 of TCTP, which was supported by labeling experiments upon site-directed mutagenesis and computational modeling studies. Taken together, the "capture-and-release" strategy affords consolidated advantages previously unavailable in artemisinin-protein binding site studies, and our results deepened the understanding of the mechanism of protein alkylation via heme-activated artemisinin.
Hanford Site Environmental Report for Calendar Year 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.
The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the Hanford Site; demonstrates the status of the site's compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2011 information is included where appropriate.
Pratap, Shivendra; Katiki, Madhusudhanarao; Gill, Preet; Kumar, Pravindra; Golemi-Kotra, Dasantila
2016-01-01
Carbapenem-hydrolyzing class D β-lactamases (CHDLs) are a subgroup of class D β-lactamases, which are enzymes that hydrolyze β-lactams. They have attracted interest due to the emergence of multidrug-resistant Acinetobacter baumannii, which is not responsive to treatment with carbapenems, the usual antibiotics of choice for this bacterium. Unlike other class D β-lactamases, these enzymes efficiently hydrolyze carbapenem antibiotics. To explore the structural requirements for the catalysis of carbapenems by these enzymes, we determined the crystal structure of the OXA-58 CHDL of A. baumannii following acylation of its active-site serine by a 6α-hydroxymethyl penicillin derivative that is a structural mimetic for a carbapenem. In addition, several point mutation variants of the active site of OXA-58, as identified by the crystal structure analysis, were characterized kinetically. These combined studies confirm the mechanistic relevance of a hydrophobic bridge formed over the active site. This structural feature is suggested to stabilize the hydrolysis-productive acyl-enzyme species formed from the carbapenem substrates of this enzyme. Furthermore, our structural studies provide strong evidence that the hydroxyethyl group of carbapenems samples different orientations in the active sites of CHDLs, and the optimum orientation for catalysis depends on the topology of the active site allowing proper closure of the active site. We propose that CHDLs use the plasticity of the active site to drive the mechanism of carbapenem hydrolysis toward efficiency. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Hanford Site Environmental Report for Calendar Year 2002
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.
This report is prepared annually to satisfy the requirements of DOE Orders. The report provides an overview of activities at the Hanford Site during 2002 and demonstrates the site's compliance with applicable federal, state, and local environmental laws, regulations, executive orders, and DOE policies; and to summarize environmental data that characterize Hanford Site environmental management performance. The purpose of the report is to provide useful summary information to members of the public, public officials, regulators, Hanford contractors, and elected representatives.
NASA Astrophysics Data System (ADS)
Michaelides, R. J.; Schaefer, K. M.; Zebker, H. A.; Liu, L.; Chen, J.; Parsekian, A.
2017-12-01
In permafrost regions, the active layer is defined as the uppermost portion of the permafrost table that is subject to annual freeze/thaw cycles. The active layer plays a crucial role in surface processes, surface hydrology, and vegetation succession; furthermore, trapped methane, carbon dioxide, and other greenhouse gases in permafrost are released into the atmosphere as permafrost thaws. A detailed understanding of active layer dynamics is therefore critical towards understanding the interactions between permafrost surface processes, freeze/thaw cycles, and climate-especially in regions across the Arctic subject to long-term permafrost degradation. The Yukon-Kuskokwim (YK) delta in southwestern Alaska is a region of discontinuous permafrost characterized by surface lakes, wetlands, and thermokarst depressions. Furthermore, extensive wildfires have burned across the YK delta in 2006, 2007, and 2015, impacting vegetation cover, surface soil moisture, and the active layer. Using data from the ALOS PALSAR, ALOS-2 PALSAR-2, and Sentinel-1A/B space borne synthetic aperture radar (SAR) systems, we generate a series of interferograms over a study site in the YK delta spanning 2007-2011, and 2014-present. Using the ReSALT (Remotely-Sensed Active Layer Thickness) technique, we demonstrate that active layer can be characterized over most of the site from the relative interferometric phase difference due to ground subsidence and rebound associated with the seasonal active layer freeze/thaw cycle. Additionally, we show that this technique successfully discriminates between burned and unburned regions, and can resolve increases in active layer thickness in burned regions on the order of 10's of cms. We use the time series of interferograms to discuss permafrost recovery following wildfire burn, and compare our InSAR observations with GPR and active layer probing data from a 2016 summer field campaign to the study site. Finally, we compare the advantages and disadvantages of the ALOS, ALOS-2, and Sentinel systems for characterizing permafrost dynamics.
Characterizing multiple metal ion binding sites within a ribozyme by cadmium-induced EPR silencing
Kisseleva, Natalia; Kraut, Stefanie; Jäschke, Andres; Schiemann, Olav
2007-01-01
In ribozyme catalysis, metal ions are generally known to make structural and∕or mechanistic contributions. The catalytic activity of a previously described Diels-Alderase ribozyme was found to depend on the concentration of divalent metal ions, and crystallographic data revealed multiple binding sites. Here, we elucidate the interactions of this ribozyme with divalent metal ions in solution using electron paramagnetic resonance (EPR) spectroscopy. Manganese ion titrations revealed five high-affinity Mn2+ binding sites with an upper Kd of 0.6±0.2 μM. In order to characterize each binding site individually, EPR-silent Cd2+ ions were used to saturate the other binding sites. This cadmium-induced EPR silencing showed that the Mn2+ binding sites possess different affinities. In addition, these binding sites could be assigned to three different types, including innersphere, outersphere, and a Mn2+ dimer. Based on simulations, the Mn2+-Mn2+ distance within the dimer was found to be ∼6 Å, which is in good agreement with crystallographic data. The EPR-spectroscopic characterization reveals no structural changes upon addition of a Diels-Alder product, supporting the concept of a preorganized catalytic pocket in the Diels-Alder ribozyme and the structural role of these ions. PMID:19404418
Panwar, Preety; Law, Simon; Jamroz, Andrew; Azizi, Pouya; Zhang, Dongwei; Ciufolini, Marco; Brömme, Dieter
2018-03-01
Attempts to generate active site-directed cathepsin K (CatK) inhibitors for the treatment of osteoporosis have failed because of side effects. We have previously shown that an ectosteric tanshinone CatK inhibitor isolated from Salvia miltiorrhiza blocked, selectively, the collagenase activity of CatK, without affecting the active site and demonstrated its bone-preserving activity in vivo. Here, we have characterize the antiresorptive potential of other tanshinones, which may provide a scaffold for side effect-free CatK inhibitors. Thirty-one tanshinones were tested for their activity against CatK in enzymic and cell-based assays. The inhibitory potency against triple helical and fibrillar collagen degradation was determined in enzymic assays, by scanning electron microscopy and mechanical strength measurements. Human osteoclast assays were used to determine the effects of the inhibitors on bone resorption, its reversibility and osteoclastogenesis. Binding sites were characterized by molecular docking. Twelve compounds showed highly effective anti-collagenase activity and protected collagen against destruction and mechanical instability without inhibiting the hydrolysis of non-collagenous substrates. Six compounds were highly effective in osteoclast bone resorption assays with IC 50 values of <500 nM. None of these tanshinones had effects on cell viability, reversibility of bone resorption inhibition and osteoclastogenesis. The core pharmacophore of the tanshinones appears to be the three-ring system with either a para- or ortho-quinone entity. Our study identified several potent ectosteric antiresorptive CatK inhibitors from the medicinal plant, S. miltiorrhiza, which may avoid side effects seen with active site-directed inhibitors in clinical trials. © 2017 The British Pharmacological Society.
Malur, Achut G.; Gupta, Neera K.; De, Bishnu P.; Banerjee, Amiya K.
2002-01-01
The large protein (L) of the human parainfluenza virus type 3 (HPIV3) is the functional RNA-dependent RNA polymerase, which possesses highly conserved residues QGDNQ located within motif C of domain III comprising the putative polymerase active site. We have characterized the role of the QGDNQ residues as well as the residues flanking this region in the polymerase activity of the L protein by site-directed mutagenesis and examining the polymerase activity of the wild-type and mutant L proteins by an in vivo minigenome replication assay and an in vitro mRNA transcription assay. All mutations in the QGDNQ residues abolished transcription while mutations in the flanking residues gave rise to variable polymerase activities. These observations support the contention that the QGDNQ sequence is absolutely required for the polymerase activity of the HPIV3 RNA-dependent RNA polymerase. PMID:12064576
Martin, David P; Blachly, Patrick G; Marts, Amy R; Woodruff, Tessa M; de Oliveira, César A F; McCammon, J Andrew; Tierney, David L; Cohen, Seth M
2014-04-09
The binding of three closely related chelators: 5-hydroxy-2-methyl-4H-pyran-4-thione (allothiomaltol, ATM), 3-hydroxy-2-methyl-4H-pyran-4-thione (thiomaltol, TM), and 3-hydroxy-4H-pyran-4-thione (thiopyromeconic acid, TPMA) to the active site of human carbonic anhydrase II (hCAII) has been investigated. Two of these ligands display a monodentate mode of coordination to the active site Zn(2+) ion in hCAII that is not recapitulated in model complexes of the enzyme active site. This unprecedented binding mode in the hCAII-thiomaltol complex has been characterized by both X-ray crystallography and X-ray spectroscopy. In addition, the steric restrictions of the active site force the ligands into a 'flattened' mode of coordination compared with inorganic model complexes. This change in geometry has been shown by density functional computations to significantly decrease the strength of the metal-ligand binding. Collectively, these data demonstrate that the mode of binding by small metal-binding groups can be significantly influenced by the protein active site. Diminishing the strength of the metal-ligand bond results in unconventional modes of metal coordination not found in typical coordination compounds or even carefully engineered active site models, and understanding these effects is critical to the rational design of inhibitors that target clinically relevant metalloproteins.
Nelson, Nicholas C.; Boote, Brett W.; Naik, Pranjali; ...
2017-01-17
Ceria (CeO 2) and sodium-modified ceria (Ce-Na) were prepared through combustion synthesis. Palladium was deposited onto the supports (Pd/CeO 2 and Pd/Ce-Na) and their activity for the aqueous-phase transfer hydrogenation of phenol using 2-propanol under liquid flow conditions was studied. Pd/Ce-Na showed a marked increase (6×) in transfer hydrogenation activity over Pd/CeO 2. Material characterization indicated that water-stable sodium species were not doped into the ceria lattice, but rather existed as subsurface carbonates. Modification of ceria by sodium provided more adsorption and redox active sites (i.e. defects) for 2-propanol dehydrogenation. This effect was an intrinsic property of the Ce-Na supportmore » and independent of Pd. The redox sites active for 2-propanol dehydrogenation were thermodynamically equivalent on both supports/catalysts. At high phenol concentrations, the reaction was limited by 2-propanol adsorption. Furthermore, the difference in catalytic activity was attributed to the different numbers of 2-propanol adsorption and redox active sites on each catalyst.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, S.K.
1987-01-01
Because arginine vasotocin (AVT) activates male sexual behaviors in the rough-skinned newt (Taricha granulosa), quantitative autoradiography with radiolabeled arginine vasopressin (/sup 3/H-AVP) was used to localize and characterize putative AVT receptors in the brain of this amphibian. Binding of /sup 3/H-AVP to sites within the medial pallium was saturable, specific, reversible, of high affinity and low capacity. These binding sites appear to represent authentic central nervous system receptors for AVT. Furthermore, ligand specificity for the binding sites in this amphibian differs from that reported for AVP binding sites in rat brains. Dense concentrations of specific binding sites were located inmore » the olfactory nerve as it entered the olfactory bulb within the medial pallium, dorsal pallium, and amygdala pars lateralis of the telencephalon, and in the tegmental region of the medulla. Concentrations of binding sites differed significantly among various brain regions. A comparison of male and female newts collected during the breeding season revealed no sexual dimorphism. These areas may represent site(s) of action where AVT elicits sexual behaviors in male T. granulosa.« less
Liszewski, M. Kathryn; Leung, Marilyn K.; Hauhart, Richard; Fang, Celia J.; Bertram, Paula; Atkinson, John P.
2010-01-01
Although smallpox was eradicated as a global illness more than 30 years ago, variola virus and other related pathogenic poxviruses, such as monkeypox, remain potential bioterrorist weapons or could re-emerge as natural infections. Poxviruses express virulence factors that down-modulate the host’s immune system. We previously compared functional profiles of the poxviral complement inhibitors of smallpox, vaccinia, and monkeypox known as SPICE, VCP (or VICE), and MOPICE, respectively. SPICE was the most potent regulator of human complement and attached to cells via glycosaminoglycans. The major goals of the present study were to further characterize the complement regulatory and heparin binding sites of SPICE and to evaluate a mAb that abrogates its function. Using substitution mutagenesis, we established that (1) elimination of the three heparin binding sites severely decreases but does not eliminate glycosaminoglycan binding, (2) there is a hierarchy of activity for heparin binding among the three sites, and (3) complement regulatory sites overlap with each of the three heparin binding motifs. By creating chimeras with interchanges of SPICE and VCP residues, a combination of two SPICE amino acids (H77 plus K120) enhances VCP activity ~200-fold. Also, SPICE residue L131 is critical for both complement regulatory function and accounts for the electrophoretic differences between SPICE and VCP. An evolutionary history for these structure-function adaptations of SPICE is proposed. Finally, we identified and characterized a mAb that inhibits the complement regulatory activity of SPICE, MOPICE, and VCP and thus could be used as a therapeutic agent. PMID:19667083
Hanford Site Environmental Report for Calender Year 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poston, Ted M.; Hanf, Robert W.; Duncan, Joanne P.
This report is prepared annually for DOE and provides an overview of activities at the Hanford Site. The report summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Although this report is primarily written to meet DOE reporting requirements and guidelines, it also provides useful summary information for the public, Indian tribes, public officials, regulatory agencies, Hanford contractors, and public officials.
Rational analyses of information foraging on the web.
Pirolli, Peter
2005-05-06
This article describes rational analyses and cognitive models of Web users developed within information foraging theory. This is done by following the rational analysis methodology of (a) characterizing the problems posed by the environment, (b) developing rational analyses of behavioral solutions to those problems, and (c) developing cognitive models that approach the realization of those solutions. Navigation choice is modeled as a random utility model that uses spreading activation mechanisms that link proximal cues (information scent) that occur in Web browsers to internal user goals. Web-site leaving is modeled as an ongoing assessment by the Web user of the expected benefits of continuing at a Web site as opposed to going elsewhere. These cost-benefit assessments are also based on spreading activation models of information scent. Evaluations include a computational model of Web user behavior called Scent-Based Navigation and Information Foraging in the ACT Architecture, and the Law of Surfing, which characterizes the empirical distribution of the length of paths of visitors at a Web site. 2005 Lawrence Erlbaum Associates, Inc.
Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts
Matsubu, John C.; Zhang, Shuyi; DeRita, Leo; ...
2016-09-19
The optimization of supported metal catalysts predominantly focuses on engineering the metal site, for which physical insights based on extensive theoretical and experimental contributions have enabled the rational design of active sites. Although it is well known that supports can influence the catalytic properties of metals, insights into how metal–support interactions can be exploited to optimize metal active-site properties are lacking. Here in this paper, we utilize in situ spectroscopy and microscopy to identify and characterize a support effect in oxide-supported heterogeneous Rh catalysts. This effect is characterized by strongly bound adsorbates (HCO x) on reducible oxide supports (TiO 2more » and Nb 2O 5) that induce oxygen-vacancy formation in the support and cause HCO x-functionalized encapsulation of Rh nanoparticles by the support. The encapsulation layer is permeable to reactants, stable under the reaction conditions and strongly influences the catalytic properties of Rh, which enables rational and dynamic tuning of CO 2-reduction selectivity.« less
NASA Astrophysics Data System (ADS)
Xu, Wei; Li, Yani; Yu, Bo; Yang, Jindou; Zhang, Ying; Chen, Xi; Zhang, Guofang; Gao, Ziwei
2015-01-01
A successive anchoring of Ti(NMe2)4, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1‧-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, 13C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-site silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false General license for custody and long-term care of residual... residual radioactive material disposal sites. (a) A general license is issued for the custody of and long... water characterization and any necessary ground water protection activities or strategies. This...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-04-01
This report presents the findings of Remedial Investigations and Feasibility Studies at sites located at the Point Lonely radar installation in northern Alaska. The sites were characterized based on sampling and analyses conducted during Remedial Investigation activities performed during August and September 1993.
Loewen, Peter C; Villanueva, Jacylyn; Switala, Jacek; Donald, Lynda J; Ivancich, Anabella
2015-05-01
Heme-containing catalases and catalase-peroxidases catalyze the dismutation of hydrogen peroxide as their predominant catalytic activity, but in addition, individual enzymes support low levels of peroxidase and oxidase activities, produce superoxide, and activate isoniazid as an antitubercular drug. The recent report of a heme enzyme with catalase, peroxidase and penicillin oxidase activities in Bacillus pumilus and its categorization as an unusual catalase-peroxidase led us to investigate the enzyme for comparison with other catalase-peroxidases, catalases, and peroxidases. Characterization revealed a typical homotetrameric catalase with one pentacoordinated heme b per subunit (Tyr340 being the axial ligand), albeit in two orientations, and a very fast catalatic turnover rate (kcat = 339,000 s(-1) ). In addition, the enzyme supported a much slower (kcat = 20 s(-1) ) peroxidatic activity utilizing substrates as diverse as ABTS and polyphenols, but no oxidase activity. Two binding sites, one in the main access channel and the other on the protein surface, accommodating pyrogallol, catechol, resorcinol, guaiacol, hydroquinone, and 2-chlorophenol were identified in crystal structures at 1.65-1.95 Å. A third site, in the heme distal side, accommodating only pyrogallol and catechol, interacting with the heme iron and the catalytic His and Arg residues, was also identified. This site was confirmed in solution by EPR spectroscopy characterization, which also showed that the phenolic oxygen was not directly coordinated to the heme iron (no low-spin conversion of the Fe(III) high-spin EPR signal upon substrate binding). This is the first demonstration of phenolic substrates directly accessing the heme distal side of a catalase. © 2015 Wiley Periodicals, Inc.
Lee, Seungyup; Sahadevan, Jayakumar; Khrestian, Celeen M; Markowitz, Alan; Waldo, Albert L
2017-03-17
We previously demonstrated that persistent and long-standing persistent atrial fibrillation is maintained by activation emanating from foci and breakthrough sites of different cycle lengths (CLs). The purpose of this study was to characterize the behavior of focal and nonrandom breakthrough activation identified during high-density mapping of atrial fibrillation in these patients. During open heart surgery, we recorded activation from both atria simultaneously using 510 to 512 epicardial electrodes along with ECG lead II in 12 patients with persistent and long-standing persistent atrial fibrillation. For each patient, analysis of 32 consecutive seconds of activation from identified focal (sustained and/or intermittent) and nonrandom breakthrough sites was performed. Multiple foci (sustained and/or intermittent) of different CLs were present in both atria in 11 of 12 patients; 8 foci were sustained, and 22 were intermittent. Temporal CL behavior of sustained foci varied over time (≤20 ms of the mean CL). For intermittent foci, no activation periods were due to a spontaneous pause (18 of 22) or activation of the focus by another wave front (11 of 22). All patients had breakthrough activation. Seven patients had 12 nonrandom breakthrough sites. Periods of no breakthrough activation were caused by a spontaneous pause (6 of 12 patients) or activation from another wave front (4 of 12) or were uncertain (5 of 12). Focal and nonrandom breakthrough activation sometimes produced repetitive "wannabe" (incomplete) reentry in 6 of 12 patients. During persistent and long-standing persistent atrial fibrillation, sustained foci manifested variable CLs. Spontaneous pauses or activation from other wave fronts explained the intermittency of foci and nonrandom breakthrough. Focal and nonrandom breakthrough activation occasionally produced wannabe reentry. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Grönberg, Karin L C; Watmough, Nicholas J; Thomson, Andrew J; Richardson, David J; Field, Sarah J
2004-04-23
The bacterial respiratory nitric-oxide reductase (NOR) catalyzes the respiratory detoxification of nitric oxide in bacteria and Archaea. It is a member of the well known super-family of heme-copper oxidases but has a [heme Fe-non-heme Fe] active site rather than the [heme Fe-Cu(B)] active site normally associated with oxygen reduction. Paracoccus denitrificans NOR is spectrally characterized by a ligand-to-metal charge transfer absorption band at 595 nm, which arises from the high spin ferric heme iron of a micro-oxo-bridged [heme Fe(III)-O-Fe(III)] active site. On reduction of the nonheme iron, the micro-oxo bridge is broken, and the ferric heme iron is hydroxylated or hydrated, depending on the pH. At present, the catalytic cycle of NOR is a matter of much debate, and it is not known to which redox state(s) of the enzyme nitric oxide can bind. This study has used cyanide to probe the nature of the active site in a number of different redox states. Our observations suggest that the micro-oxo-bridged [heme Fe(III)-O-Fe(III)] active site represents a closed or resting state of NOR that can be opened by reduction of the non-heme iron.
IMPLEMENTATION OF NATURAL ATTENUATION AT A JP-4 JET FUEL RELEASE AFTER ACTIVE REMEDIATION
After eighteen months of active remediation at a JP-4 jet-fuel spill, a residual of unremediated hydrocarbon remained. Further site characterization was conducted to evaluate the contribution of natural attenuation to control exposure to hazards associated with the residual cont...
Monitoring groundwater and river interaction along the Hanford reach of the Columbia River
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, M.D.
1994-04-01
As an adjunct to efficient Hanford Site characterization and remediation of groundwater contamination, an automatic monitor network has been used to measure Columbia River and adjacent groundwater levels in several areas of the Hanford Site since 1991. Water levels, temperatures, and electrical conductivity measured by the automatic monitor network provided an initial database with which to calibrate models and from which to infer ground and river water interactions for site characterization and remediation activities. Measurements of the dynamic river/aquifer system have been simultaneous at 1-hr intervals, with a quality suitable for hydrologic modeling and for computer model calibration and testing.more » This report describes the equipment, procedures, and results from measurements done in 1993.« less
Wu, Shiaw-Lin; Hühmer, Andreas F R; Hao, Zhiqi; Karger, Barry L
2007-11-01
We have expanded our recent on-line LC-MS platform for large peptide analysis to combine collision-induced dissociation (CID), electron-transfer dissociation (ETD), and CID of an isolated charge-reduced (CRCID) species derived from ETD to determine sites of phosphorylation and glycosylation modifications, as well as the sequence of large peptide fragments (i.e., 2000-10,000 Da) from complex proteins, such as beta-casein, epidermal growth factor receptor (EGFR), and tissue plasminogen activator (t-PA) at the low femtomol level. The incorporation of an additional CID activation step for a charge-reduced species, isolated from ETD fragment ions, improved ETD fragmentation when precursor ions with high m/z (approximately >1000) were automatically selected for fragmentation. Specifically, the identification of the exact phosphorylation sites was strengthened by the extensive coverage of the peptide sequence with a near-continuous product ion series. The identification of N-linked glycosylation sites in EGFR and an O-linked glycosylation site in t-PA were also improved through the enhanced identification of the peptide backbone sequence of the glycosylated precursors. The new strategy is a good starting survey scan to characterize enzymatic peptide mixtures over a broad range of masses using LC-MS with data-dependent acquisition, as the three activation steps can provide complementary information to each other. In general, large peptides can be extensively characterized by the ETD and CRCID steps, including sites of modification from the generated, near-continuous product ion series, supplemented by the CID-MS2 step. At the same time, small peptides (e.g.,
NASA Astrophysics Data System (ADS)
Grecu, Bogdan; Zahria, Bogdan; Manea, Elena; Neagoe, Cristian; Borleanu, Felix; Diaconescu, Mihai; Constantinescu, Eduard; Bala, Andrei
2017-04-01
The seismic activity in Romania is dominated by the intermediate-depth earthquakes occurring in Vrancea region, although weak to moderate crustal earthquakes are produced regularly in different areas of the country. The National Institute for Earth Physics (NIEP) built in the last years an impressive infrastructure for monitoring this activity, known as the Romanian Seismic Network (RSN). At present, RSN consists of 122 seismic stations, of which 70 have broadband velocity sensors and 42 short period sensors. One hundred and eleven stations out of 122 have accelerometer sensors collocated with velocity sensors and only 10 stations have only accelerometers. All the stations record continuously the ground motion and the data are transmitted in real-time to the Romanian National Data Center (RoNDC), in Magurele. Last year, NIEP has started a national project that addresses the characterization of all real-time seismic stations that constitute the RSN. We present here the steps that were undertaken and the preliminary results obtained since the beginning the project. The first two activities consisted of collecting all the existent technical and geological data, with emphasize on the latter. Then, we performed station noise investigations and analyses in order to characterize the noise level and estimate the resonances of the sites. The computed H/V ratios showed clear resonant peaks at different frequencies which correlate relatively well with the thickness of the sedimentary package beneath the stations. The polarization analysis of the H/V ratios indicates for some stations a strong directivity of the resonance peak which suggests possible topographic effects at the stations. At the same time, special attention was given to the estimation of the site amplification from earthquake data. The spectral ratios obtained from the analysis of more than 50 earthquakes with magnitudes (Mw) larger than 4.1 are characterized by similar resonance peaks as those obtained from noise H/V ratios in case of the stations with strong site effects. On the contrary, the spectral curves are flat for some stations located on hard rock or show amplifications around two on wide frequency band for stations located on deep sediments. Finally, both active (MASW) and passive (ReMi) surface waves surveys were performed at several sites to estimate the shallow velocity structure beneath the stations.
Karin, Michael; Hibi, Masahiko; Lin, Anning
1997-01-01
An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.
Oncoprotein protein kinase antibody kit
Karin, Michael [San Diego, CA; Hibi, Masahiko [San Diego, CA; Lin, Anning [La Jolla, CA
2008-12-23
An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.
Karin, Michael; Hibi, Masahiko; Lin, Anning; Davis, Roger; Derijard, Benoit
2003-02-04
An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.
Karin, Michael; Hibi, Masahiko; Lin, Anning
1997-01-01
An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.
Karin, Michael; Hibi, Masahiko; Lin, Anning
1998-01-01
An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.
Structural characterization of a non-heme iron active site in zeolites that hydroxylates methane
Snyder, Benjamin E. R.; Bottger, Lars H.; Bols, Max L.; ...
2018-04-02
Iron-containing zeolites exhibit unprecedented reactivity in the low-temperature hydroxylation of methane to form methanol. Reactivity occurs at a mononuclear ferrous active site, α-Fe(II), that is activated by N 2O to form the reactive intermediate α-O. This has been defined as an Fe(IV)=O species. Using nuclear resonance vibrational spectroscopy coupled to X-ray absorption spectroscopy, we probe the bonding interaction between the iron center, its zeolite lattice-derived ligands, and the reactive oxygen. α-O is found to contain an unusually strong Fe(IV)=O bond resulting from a constrained coordination geometry enforced by the zeolite lattice. As a result, density functional theory calculations clarify howmore » the experimentally determined geometric structure of the active site leads to an electronic structure that is highly activated to perform H-atom abstraction.« less
Structural characterization of a non-heme iron active site in zeolites that hydroxylates methane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, Benjamin E. R.; Bottger, Lars H.; Bols, Max L.
Iron-containing zeolites exhibit unprecedented reactivity in the low-temperature hydroxylation of methane to form methanol. Reactivity occurs at a mononuclear ferrous active site, α-Fe(II), that is activated by N 2O to form the reactive intermediate α-O. This has been defined as an Fe(IV)=O species. Using nuclear resonance vibrational spectroscopy coupled to X-ray absorption spectroscopy, we probe the bonding interaction between the iron center, its zeolite lattice-derived ligands, and the reactive oxygen. α-O is found to contain an unusually strong Fe(IV)=O bond resulting from a constrained coordination geometry enforced by the zeolite lattice. As a result, density functional theory calculations clarify howmore » the experimentally determined geometric structure of the active site leads to an electronic structure that is highly activated to perform H-atom abstraction.« less
Characterization and function of Mycobacterium tuberculosis H37Rv Lipase Rv1076 (LipU).
Li, Chunyan; Li, Qiming; Zhang, Yuan; Gong, Zhen; Ren, Sai; Li, Ping; Xie, Jianping
2017-03-01
Lipids and lipases/esterases are essential for Mycobacterium tuberculosis (Mtb) survival and persistence, even virulence. Mycobacterium tuberculosis H37Rv Rv1076 (LipU), a member of lipase family, is homologous to the human Hormone Sensitive Lipase (HSL) based on the presence of conserved motif 'GXSXG'. To define the enzymatic characteristics of rv1076, the gene was cloned, and expressed in Escherichia coli. The protein was purified for enzymatic characterization. LipU showed high specific activity for the hydrolysis of short carbon chain substrates with optimal activity at 40°C/pH 8.0 and stability at low temperature and near-neutral pH. The specific activity, Km and Vmax of LipU was calculated to 176.7U/mg, 1.73μM and 62.24μM/min respectively. Ionic detergents can inhibit its activity. The active-site residues of LipU were determined to be Ser140, Asp244 and His269 by site-directed mutagenesis. The upregulation of Mycobacterium tuberculosis rv1076 under nutritive stress implicates a role in starvation. Copyright © 2016 Elsevier GmbH. All rights reserved.
Geochemical investigation of UMTRAP designated site at Durango, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markos, G.; Bush, K.J.
1983-09-01
This report is the result of a geochemical investigation of the former uranium mill and tailings site at Durango, Colorado. This is one in a series of site specific geochemical investigations performed on the inactive uranium mill tailings included in the UMTRA Project. The objectives of the investigation are to characterize the geochemistry, to determine the contaminant distribution resulting from the former milling activities and tailings, and to infer chemical pathways and transport mechanisms from the contaminant distribution. The results will be used to model contaminant migration and to develop criteria for long-term containment media such as a cover systemmore » which is impermeable to contaminant migration. This report assumes a familiarity with the hydrologic conditions of the site and the geochemical concepts underlying the investigation. The results reported are based on a one-time sampling of waters and solid material from the background, the area adjacent to the site, and the site. The solid samples are water extracted remove easily soluble salts and acids extracted to remove cabonates and hydroxides. The water extracts and solid samples were analyzed for the major and trace elements. A limited number of samples were analyzed for radiological components. The report includes the methods of sampling, sample processing, analysis, and data interpretation. Three major conclusions are: (1) carbonate salts and low TDS characterize the tailings; (2) the adjacent area and raffinate ponds contain contaminants deposited by a single event of fluid permeation of the soils; and (3) the Animas River adjacent to the site has elevated gross alpha activity attributed to /sup 226/Ra in the sediments derived from the tailings or milling activities.« less
Discovery of HDAC Inhibitors That Lack an Active Site Zn(2+)-Binding Functional Group.
Vickers, Chris J; Olsen, Christian A; Leman, Luke J; Ghadiri, M Reza
2012-06-14
Natural and synthetic histone deacetylase (HDAC) inhibitors generally derive their strong binding affinity and high potency from a key functional group that binds to the Zn(2+) ion within the enzyme active site. However, this feature is also thought to carry the potential liability of undesirable off-target interactions with other metalloenzymes. As a step toward mitigating this issue, here, we describe the design, synthesis, and structure-activity characterizations of cyclic α3β-tetrapeptide HDAC inhibitors that lack the presumed indispensable Zn(2+)-binding group. The lead compounds (e.g., 15 and 26) display good potency against class 1 HDACs and are active in tissue culture against various human cancer cell lines. Importantly, enzymological analysis of 26 indicates that the cyclic α3β-tetrapeptide is a fast-on/off competitive inhibitor of HDACs 1-3 with K i values of 49, 33, and 37 nM, respectively. Our proof of principle study supports the idea that novel classes of HDAC inhibitors, which interact at the active-site opening, but not with the active site Zn(2+), can have potential in drug design.
NASA Technical Reports Server (NTRS)
Sumida, John; Forsythe, Elizabeth L.; Pusey, Marc L.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Fluorescence is one of the most versatile and powerful tools for the study of macromolecules. While most proteins are intrinsically fluorescent, working at crystallization concentrations require the use of covalently prepared derivatives added as tracers. This approach requires derivatives that do not markedly affect the crystal packing. We have prepared fluorescent derivatives of chicken egg white lysozyme with probes bound to one of two different sites on the protein molecule. Lucifer yellow and 5-(2-aminoethyl)aminonapthalene-1-sulfonic acid (EDANS) have been attached to the side chain carboxyl of Asp(sup 101) using a carbodiimide coupling procedure. Asp(sup 101) lies within the active site cleft, and it is believed that the probes are "buried" within that cleft. Lucifer yellow and MANS probes with iodoacetamide reactive groups have been bound to His(sup 15), located on the "back side" of the molecule relative to the active site. All the derivatives fluoresce in the solution and the crystalline states. Fluorescence characterization has focused on determination of binding effects on the probe quantum yield, lifetime, absorption and emission spectra, and quenching by added solutes. Quenching studies show that, as postulated, the Asp(sup 101)-bound probes are partially sheltered from the bulk solution by their location within the active site cleft. Probes bound to His(sup 15) have quenching constants about equal to those for the free probes, indicating that this site is highly exposed to the bulk solution.
NASA Technical Reports Server (NTRS)
Sumida, John P.; Forsythe, Elizabeth L.; Pusey, Marc L.
2001-01-01
Fluorescence is one of the most versatile and powerful tools for the study of macromolecules. While most proteins are intrinsically fluorescent, working at crystallization concentrations require the use of covalently prepared derivatives added as tracers. This approach requires derivatives that do not markedly affect the crystal packing. We have prepared fluorescent derivatives of chicken egg white lysozyme with probes bound to one of two different sites on the protein molecule. Lucifer yellow and 5-(2-aminoethyl)aminonapthalene-i-sulfonic acid (EDANS) have been attached to the side chain carboxyl of Asp(sup 101) using a carbodiimide coupling procedure. Asp(sup 101) lies within the active site cleft, and it is believed that the probes are 'buried' within that cleft. Lucifer yellow and MANS probes with iodoacetamide reactive five groups have been bound to His(sup 15), located on the 'back side' of the molecule relative to the active site. All the derivatives fluoresce in the solution and the crystalline states. Fluorescence characterization has focused on determination of binding effects on the probe quantum yield, lifetime, absorption and emission spectra, and quenching by added solutes. Quenching studies show that, as postulated, the Asp(sup 101)-bound probes are partially sheltered from the bulk solution by their location within the active site cleft. Probes bound to His(sup 15) have quenching constants about equal to those for the free probes, indicating that this site is highly exposed to the bulk solution.
Enthalpic Breakdown of Water Structure on Protein Active-Site Surfaces
Haider, Kamran; Wickstrom, Lauren; Ramsey, Steven; Gilson, Michael K.; Kurtzman, Tom
2016-01-01
The principles underlying water reorganization around simple non-polar solutes are well understood and provide the framework for classical hydrophobic effect, whereby water molecules structure themselves around solutes so that they maintain favorable energetic contacts with both the solute and with other water molecules. However, for certain solute surface topographies, water molecules, due to their geometry and size, are unable to simultaneously maintain favorable energetic contacts with both the surface and neighboring water molecules. In this study, we analyze the solvation of ligand-binding sites for six structurally diverse proteins using hydration site analysis and measures of local water structure, in order to identify surfaces at which water molecules are unable to structure themselves in a way that maintains favorable enthalpy relative to bulk water. These surfaces are characterized by a high degree of enclosure, weak solute-water interactions, and surface constraints that induce unfavorable pair interactions between neighboring water molecules. Additionally, we find that the solvation of charged side-chains in an active site generally results in favorable enthalpy but can also lead to pair interactions between neighboring water molecules that are significantly unfavorable relative to bulk water. We find that frustrated local structure can occur not only in apolar and weakly polar pockets, where overall enthalpy tends to be unfavorable, but also in charged pockets, where overall water enthalpy tends to be favorable. The characterization of local water structure in these terms may prove useful for evaluating the displacement of water from diverse protein active-site environments. PMID:27169482
NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE
This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.
UMTRA project water sampling and analysis plan, Durango, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-01-01
Surface remedial action has been completed at the Uranium Mill Tailings Remedial Action Project in Durango, Colorado. Contaminated soil and debris have been removed from the former processing site and placed in the Bodo Canyon disposal cell. Ground water at the former uranium mill/tailings site and raffinate pond area has been contaminated by the former milling operations. The ground water at the disposal site was not impacted by the former milling operations at the time of the cell`s construction. Activities for fiscal 1994 involve ground water sampling and site characterization of the disposal site.
Miscellaneous chemical basin expedited site characterization report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riha, B.D.; Pemberton, B.E.; Rossabi, J.
1996-12-01
A total of twenty nine cone penetrometer test (CPT) pushes in three weeks were conducted for vadose zone characterization of the Miscellaneous Chemical Basin (MCB) waste unit at the Savannah River Site. The shallow, unlined basin received liquid chemical wastes over an 18 year period beginning in 1956. This characterization was initiated to determine the vertical and lateral extent of contamination in the vadose zone and to install vadose zone wells for remediation by barometric pumping or active vapor extraction to help prevent further contamination of groundwater. The CPT locations within the waste site were selected based on results frommore » previous shallow soil gas surveys, groundwater contamination data, and the suspected basin center. Geophysical data and soil gas samples were collected at twenty five locations and twenty five vadose zone wells were installed. The wells were screened to target the clay zones and areas of higher soil gas concentrations. The well construction diagrams are provided in Appendix B. Baro-Ball{trademark} valves for enhanced barometric pumping were installed on each well upon completion to immediately begin the remediation treatability study at the site.« less
A science-based, watershed strategy to support effective remediation of abandoned mine lands
Buxton, Herbert T.; Nimick, David A.; Von Guerard, Paul; Church, Stan E.; Frazier, Ann G.; Gray, John R.; Lipin, Bruce R.; Marsh, Sherman P.; Woodward, Daniel F.; Kimball, Briant A.; Finger, Susan E.; Ischinger, Lee S.; Fordham, John C.; Power, Martha S.; Bunch, Christine M.; Jones, John W.
1997-01-01
A U.S. Geological Survey Abandoned Mine Lands Initiative will develop a strategy for gathering and communicating the scientific information needed to formulate effective and cost-efficient remediation of abandoned mine lands. A watershed approach will identify, characterize, and remediate contaminated sites that have the most profound effect on water and ecosystem quality within a watershed. The Initiative will be conducted during 1997 through 2001 in two pilot watersheds, the Upper Animas River watershed in Colorado and the Boulder River watershed in Montana. Initiative efforts are being coordinated with the U.S. Forest Service, Bureau of Land Management, National Park Service, and other stakeholders which are using the resulting scientific information to design and implement remediation activities. The Initiative has the following eight objective-oriented components: estimate background (pre-mining) conditions; define baseline (current) conditions; identify target sites (major contaminant sources); characterize target sites and processes affecting contaminant dispersal; characterize ecosystem health and controlling processes at target sites; develop remediation goals and monitoring network; provide an integrated, quality-assured and accessible data network; and document lessons learned for future applications of the watershed approach.
Geo-Statistical Approach to Estimating Asteroid Exploration Parameters
NASA Technical Reports Server (NTRS)
Lincoln, William; Smith, Jeffrey H.; Weisbin, Charles
2011-01-01
NASA's vision for space exploration calls for a human visit to a near earth asteroid (NEA). Potential human operations at an asteroid include exploring a number of sites and analyzing and collecting multiple surface samples at each site. In this paper two approaches to formulation and scheduling of human exploration activities are compared given uncertain information regarding the asteroid prior to visit. In the first approach a probability model was applied to determine best estimates of mission duration and exploration activities consistent with exploration goals and existing prior data about the expected aggregate terrain information. These estimates were compared to a second approach or baseline plan where activities were constrained to fit within an assumed mission duration. The results compare the number of sites visited, number of samples analyzed per site, and the probability of achieving mission goals related to surface characterization for both cases.
Characterization of Soil Samples of Enzyme Activity
ERIC Educational Resources Information Center
Freeland, P. W.
1977-01-01
Described are nine enzyme essays for distinguishing soil samples. Colorimetric methods are used to compare enzyme levels in soils from different sites. Each soil tested had its own spectrum of activity. Attention is drawn to applications of this technique in forensic science and in studies of soil fertility. (Author/AJ)
Hanford Site Environmental Report for Calendar Year 2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.
The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the Hanford Site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2009 information is included where appropriate.
Hanford Site Environmental Report for Calendar Year 2009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.
The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the Hanford Site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2010 information is included where appropriate.
Hanford Site Environmental Report for Calendar Year 2007
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.
The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights signifi cant environmental and public protection programs and efforts. Some historical and early 2008 information is included where appropriate.
Rinaldi, Fábio C; Meza, Andréia N; Guimarães, Beatriz G
2009-04-21
Disulfide oxidoreductase DsbA catalyzes disulfide bond formation in proteins secreted to the periplasm and has been related to the folding process of virulence factors in many organisms. It is among the most oxidizing of the thioredoxin-like proteins, and DsbA redox power is understood in terms of the electrostatic interactions involving the active site motif CPHC. The plant pathogen Xylella fastidiosa has two chromosomal genes encoding two oxidoreductases belonging to the DsbA family, and in one of them, the canonical motif CPHC is replaced by CPAC. Biochemical assays showed that both X. fastidiosa homologues have similar redox properties and the determination of the crystal structure of XfDsbA revealed substitutions in the active site of X. fastidiosa enzymes, which are proposed to compensate for the lack of the conserved histidine in XfDsbA2. In addition, electron density maps showed a ligand bound to the XfDsbA active site, allowing the characterization of the enzyme interaction with an 8-mer peptide. Finally, surface analysis of XfDsbA and XfDsbA2 suggests that X. fastidiosa enzymes may have different substrate specificities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinaldi, F.; Meza, A; Gulmarges, B
2009-01-01
Disulfide oxidoreductase DsbA catalyzes disulfide bond formation in proteins secreted to the periplasm and has been related to the folding process of virulence factors in many organisms. It is among the most oxidizing of the thioredoxin-like proteins, and DsbA redox power is understood in terms of the electrostatic interactions involving the active site motif CPHC. The plant pathogen Xylella fastidiosa has two chromosomal genes encoding two oxidoreductases belonging to the DsbA family, and in one of them, the canonical motif CPHC is replaced by CPAC. Biochemical assays showed that both X. fastidiosa homologues have similar redox properties and the determinationmore » of the crystal structure of XfDsbA revealed substitutions in the active site of X. fastidiosa enzymes, which are proposed to compensate for the lack of the conserved histidine in XfDsbA2. In addition, electron density maps showed a ligand bound to the XfDsbA active site, allowing the characterization of the enzyme interaction with an 8-mer peptide. Finally, surface analysis of XfDsbA and XfDsbA2 suggests that X. fastidiosa enzymes may have different substrate specificities.« less
Herrera, Alfa; Vu, Bao G; Stach, Christopher S; Merriman, Joseph A; Horswill, Alexander R; Salgado-Pabón, Wilmara; Schlievert, Patrick M
2016-05-03
β-Toxin is an important virulence factor of Staphylococcus aureus, contributing to colonization and development of disease [Salgado-Pabon, W., et al. (2014) J. Infect. Dis. 210, 784-792; Huseby, M. J., et al. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 14407-14412; Katayama, Y., et al. (2013) J. Bacteriol. 195, 1194-1203]. This cytotoxin has two distinct mechanisms of action: sphingomyelinase activity and DNA biofilm ligase activity. However, the distinct mechanism that is most important for its role in infective endocarditis is unknown. We characterized the active site of β-toxin DNA biofilm ligase activity by examining deficiencies in site-directed mutants through in vitro DNA precipitation and biofilm formation assays. Possible conformational changes in mutant structure compared to that of wild-type toxin were assessed preliminarily by trypsin digestion analysis, retention of sphingomyelinase activity, and predicted structures based on the native toxin structure. We addressed the contribution of each mechanism of action to producing infective endocarditis and sepsis in vivo in a rabbit model. The H289N β-toxin mutant, lacking sphingomyelinase activity, exhibited lower sepsis lethality and infective endocarditis vegetation formation compared to those of the wild-type toxin. β-Toxin mutants with disrupted biofilm ligase activity did not exhibit decreased sepsis lethality but were deficient in infective endocarditis vegetation formation compared to the wild-type protein. Our study begins to characterize the DNA biofilm ligase active site of β-toxin and suggests β-toxin functions importantly in infective endocarditis through both of its mechanisms of action.
Active Site Gate Dynamics Modulate the Catalytic Activity of the Ubiquitination Enzyme E2-25K.
Rout, Manoj K; Lee, Brian L; Lin, Aiyang; Xiao, Wei; Spyracopoulos, Leo
2018-05-03
The ubiquitin proteasome system (UPS) signals for degradation of proteins through attachment of K48-linked polyubiquitin chains, or alterations in protein-protein recognition through attachment of K63-linked chains. Target proteins are ubiquitinated in three sequential chemical steps by a three-component enzyme system. Ubiquitination, or E2 enzymes, catalyze the central step by facilitating reaction of a target protein lysine with the C-terminus of Ub that is attached to the active site cysteine of the E2 through a thioester bond. E2 reactivity is modulated by dynamics of an active site gate, whose central residue packs against the active site cysteine in a closed conformation. Interestingly, for the E2 Ubc13, which specifically catalyzes K63-linked ubiquitination, the central gate residue adopts an open conformation. We set out to determine if active site gate dynamics play a role in catalysis for E2-25K, which adopts the canonical, closed gate conformation, and which selectively synthesizes K48-linked ubiquitin chains. Gate dynamics were characterized using mutagenesis of key residues, combined with enzyme kinetics measurements, and main chain NMR relaxation. The experimental data were interpreted with all atom MD simulations. The data indicate that active site gate opening and closing rates for E2-25K are precisely balanced.
[Environmental characterization of the National Contaminated Sites in SENTIERI project].
Musmeci, L; Bellino, M; Falleni, F; Piccardi, A
2011-01-01
The concept of "polluted site" was firstly introduced in Italy with the definition of "environmental high risk areas" (Rule 349/86). Later, the decree 471/99 stated that a site is considered polluted if the concentration of even just one index pollutant in anyone of the matrices (soil or subsoil, surface or ground waters) exceeds the allowable threshold limit concentration. The boundaries of Italian polluted sites (IPS) were defined (Decree 152/06) on the basis of health, environmental and social criteria. SENTIERI Project includes 44 out of the 57 sites comprised in the "National environmental remediation program"; they correspond to the largest national industrial agglomerates. For each site, characterization data were collected, classified and arranged in tables. A great part of collected data came also from the environmental remediation programmes planned for the sites. These plans show that characterization and risk assessment activities were mainly undertaken for private industrial areas, as they were considered source of pollution. On the other hand, municipal and/or green and agricultural areas included in IPSs were poorly studied. Therefore, it is difficult to assess the exposure of the populations living inside and/or near the IPSs. The most probable population exposure come from the contamination of ground waters utilized for irrigation, or industrial emissions. For a description of SENTIERI, refer to the 2010 Supplement of Epidemiology & Prevention devoted to SENTIERI Project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burton, J. C.; Environmental Research
The Commodity Credit Corporation (CCC) of the U.S. Department of Agriculture (USDA) has entered into an interagency agreement with the U.S. Department of Energy (DOE) under which Argonne National Laboratory provides technical assistance for hazardous waste site characterization and remediation for the CCC/USDA. Carbon tetrachloride is the contaminant of primary concern at sites in Kansas where former CCC/USDA grain storage facilities were located. Argonne applies its QuickSite(reg sign) Expedited Site Characterization (ESC) approach to these former facilities. The QuickSite environmental site characterization methodology is Argonne's proprietary implementation of the ESC process (ASTM 1998). Argonne has used this approach at severalmore » former CCC/USDA facilities in Kansas, including Agenda, Agra, Everest, and Frankfort. The Argonne ESC approach revolves around a multidisciplinary, team-oriented approach to problem solving. The basic features and steps of the QuickSite methodology are as follows: (1) A team of scientists with diverse expertise and strong field experience is required to make the process work. The Argonne team is composed of geologists, geochemists, geophysicists, hydrogeologists, chemists, biologists, engineers, computer scientists, health and safety personnel, and regulatory staff, as well as technical support staff. Most of the staff scientists are at the Ph.D. level; each has on average, more than 15 years of experience. The technical team works together throughout the process. In other words, the team that plans the program also implements the program in the field and writes the reports. More experienced scientists do not remain in the office while individuals with lesser degrees or experience carry out the field work. (2) The technical team reviews, evaluates, and interprets existing data for the site and the contaminants there to determine which data sets are technically valid and can be used in initially designing the field program. A basic mistake sometimes made in the site characterization process is failure to use technically sound available data to form working hypotheses on hydrogeology, contaminant distribution, etc. for initial testing. (3) After assembling and interpreting existing data for the site, the entire technical team visits the site to identify as a group the site characteristics that might prohibit or enhance any particular technological approach. Logistic and community constraints are also identified at this point. (4) After the field visit, the team selects a suite of technologies appropriate to the problem and completes the design of the field program. No one technique works well at all sites, and a suite of techniques is necessary to delineate site features fully. In addition, multiple technologies are employed to increase confidence in conclusions about site features. Noninvasive and minimally invasive technologies are emphasized to minimize risk to the environment, the community, and the staff. In no case is the traditional approach of installing a massive number of monitoring wells followed. A dynamic work plan that outlines the program is produced for the sponsoring and regulatory agencies. The word ''dynamic'' is emphasized because the work plan is viewed as a guide, subject to modification, for the site characterization activity, rather than a document that is absolute and unchangeable. Therefore, the health and safety plan and the quality assurance/quality control plan must be broad and encompass all possible alterations to the plan. The cooperation of the regulating agency is essential in successful implementation of this process. The sponsoring and regulatory agencies are notified if significant changes to the site-specific work plan are necessary. (5) The entire team participates in the technical field program. Several technical activities are undertaken simultaneously. These may range from different surface geophysics investigations to vegetation sampling. Data from the various activities are reduced and interpreted each day by the technical staff. Various computer programs are used to visualize and integrate the data. However, people do the data interpretation and integration, not the computers, which are just one more tool at the site. At the end of the day, the staff members meet, review results, and modify the next day's program as necessary to optimize activities that are generating overlapping or confirming site details. Data are not arbitrarily discarded -- each finding must be explained and understood. Anomalous readings may be due to equipment malfunctions, laboratory error, or the inability of a technique to work in a given setting. The suite of selected technologies is adjusted in the field if necessary. (6) The end result of this process is the optimization of the field activity to produce a high-quality technical product that is cost and time effective.« less
Lipchock, James M; Hendrickson, Heidi P; Douglas, Bonnie B; Bird, Kelly E; Ginther, Patrick S; Rivalta, Ivan; Ten, Nicholas S; Batista, Victor S; Loria, J Patrick
2017-01-10
Protein tyrosine phosphatase 1B (PTP1B) is a known regulator of the insulin and leptin signaling pathways and is an active target for the design of inhibitors for the treatment of type II diabetes and obesity. Recently, cichoric acid (CHA) and chlorogenic acid (CGA) were predicted by docking methods to be allosteric inhibitors that bind distal to the active site. However, using a combination of steady-state inhibition kinetics, solution nuclear magnetic resonance experiments, and molecular dynamics simulations, we show that CHA is a competitive inhibitor that binds in the active site of PTP1B. CGA, while a noncompetitive inhibitor, binds in the second aryl phosphate binding site, rather than the predicted benzfuran binding pocket. The molecular dynamics simulations of the apo enzyme and cysteine-phosphoryl intermediate states with and without bound CGA suggest CGA binding inhibits PTP1B by altering hydrogen bonding patterns at the active site. This study provides a mechanistic understanding of the allosteric inhibition of PTP1B.
Active sites for CO 2 hydrogenation to methanol on Cu/ZnO catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kattel, Shyam; Ramírez, Pedro J.; Chen, Jingguang G.
The active sites over commercial copper/zinc oxide/aluminum oxide (Cu/ZnO/Al 2O 3) catalysts for carbon dioxide (CO 2) hydrogenation to methanol, the Zn-Cu bimetallic sites or ZnO-Cu interfacial sites, have recently been the subject of intense debate. Here, we report a direct comparison between the activity of ZnCu and ZnO/Cu model catalysts for methanol synthesis. By combining x-ray photoemission spectroscopy, density functional theory, and kinetic Monte Carlo simulations, we can identify and characterize the reactivity of each catalyst. Both experimental and theoretical results agree that ZnCu undergoes surface oxidation under the reaction conditions so that surface Zn transforms into ZnO andmore » allows ZnCu to reach the activity of ZnO/Cu with the same Zn coverage. These results highlight a synergy of Cu and ZnO at the interface that facilitates methanol synthesis via formate intermediates.« less
Active sites for CO 2 hydrogenation to methanol on Cu/ZnO catalysts
Kattel, Shyam; Ramírez, Pedro J.; Chen, Jingguang G.; ...
2017-03-23
The active sites over commercial copper/zinc oxide/aluminum oxide (Cu/ZnO/Al 2O 3) catalysts for carbon dioxide (CO 2) hydrogenation to methanol, the Zn-Cu bimetallic sites or ZnO-Cu interfacial sites, have recently been the subject of intense debate. Here, we report a direct comparison between the activity of ZnCu and ZnO/Cu model catalysts for methanol synthesis. By combining x-ray photoemission spectroscopy, density functional theory, and kinetic Monte Carlo simulations, we can identify and characterize the reactivity of each catalyst. Both experimental and theoretical results agree that ZnCu undergoes surface oxidation under the reaction conditions so that surface Zn transforms into ZnO andmore » allows ZnCu to reach the activity of ZnO/Cu with the same Zn coverage. These results highlight a synergy of Cu and ZnO at the interface that facilitates methanol synthesis via formate intermediates.« less
Erdemir, Aysegul; Mutlu, Ozal
2017-06-01
Lactate dehydrogenase (LDH) is an important metabolic enzyme in glycolysis and it has been considered as the main energy source in many organisms including apicomplexan parasites. Differences at the active site loop of the host and parasite LDH's makes this enzyme an attractive target for drug inhibitors. In this study, five amino acid insertions in the active site pocket of Theileria annulata LDH (TaLDH) were deleted by PCR-based site-directed mutagenesis, expression and activity analysis of mutant and wild type TaLDH enzymes were performed. Removal of the insertion at the active site loop caused production of an inactive enzyme. Furthermore, structures of wild and mutant enzymes were predicted by comparative modeling and the importance of the insertions at the active site loop were also assigned by molecular docking and dynamics simulations in order to evaluate essential role of this loop for the enzymatic activity. Pentapeptide insertion removal resulted in loss of LDH activity due to deletion of Trp96 and conformational change of Arg98 because of loop instability. Analysis of wild type and mutant enzymes with comparative molecular dynamics simulations showed that the fluctuations of the loop residues increase in mutant enzyme. Together with in silico studies, in vitro results revealed that active site loop has a vital role in the enzyme activity and our findings promise hope for the further drug design studies against theileriosis and other apicomplexan parasite diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
Importance of structural stability to success of mourning dove nests
Coon, R.A.; Nichols, J.D.; Percival, H.F.
1981-01-01
Studies of nest-site selection and nesting habitats often involve a "characterization" of nests and of habitats in which nests are found. Our objective in the present work is to identify nest-site characteristics that are associated with variation in components of Mourning Dove (Zenaida macroura) fitness (e.g. the probability of a nest succeeding), as opposed to simply "characterizing" dove nest sites. If certain nest- site characteristics affect the probability that a nest will succeed, then we suspect that these characteristics will be associated with either concealment (the probability of detection by certain predators) or structural stability (the probability of eggs or entire nests falling to the ground as a result of wind, rain storms, parental activity, etc.). Although other workers agree that structural stability is an important determinant of Mourning Dove nesting success (e.g. McClure 1944: 384; Woolfenden and Rohwer 1969: 59), we are aware of no actual tests of this hypothesis.
Kojima-ishii, Kanako; Kure, Shigeo; Ichinohe, Akiko; Shinka, Toshikatsu; Narisawa, Ayumi; Komatsuzaki, Shoko; Kanno, Junnko; Kamada, Fumiaki; Aoki, Yoko; Yokoyama, Hiroyuki; Oda, Masaya; Sugawara, Taku; Mizoi, Kazuo; Nakahara, Daiichiro; Matsubara, Yoichi
2008-09-01
Glycine encephalopathy (GE) is caused by an inherited deficiency of the glycine cleavage system (GCS) and characterized by accumulation of glycine in body fluids and various neurologic symptoms. Coma and convulsions develop in neonates in typical GE while psychomotor retardation and behavioral abnormalities in infancy and childhood are observed in mild GE. Recently, we have established a transgenic mouse line (low-GCS) with reduced GCS activity (29% of wild-type (WT) C57BL/6) and accumulation of glycine in the brain (Stroke, 2007; 38:2157). The purpose of the present study is to characterize behavioral features of the low-GCS mouse as a model of mild GE. Two other transgenic mouse lines were also analyzed: high-GCS mice with elevated GCS activity and low-GCS-2 mice with reduced GCS activity. As compared with controls, low-GCS mice manifested increased seizure susceptibility, aggressiveness and anxiety-like activity, which resembled abnormal behaviors reported in mild GE, whereas high-GCS mice were less sensitive to seizures, hypoactive and less anxious. Antagonists for the glycine-binding site of the N-methyl-D-aspartate receptor significantly ameliorated elevated locomotor activity and seizure susceptibility in the low-GCS mice. Our results suggest the usefulness of low-GCS mice as a mouse model for mild GE and a novel therapeutic strategy.
Efficacy of function specific 3D-motifs in enzyme classification according to their EC-numbers.
Rahimi, Amir; Madadkar-Sobhani, Armin; Touserkani, Rouzbeh; Goliaei, Bahram
2013-11-07
Due to the increasing number of protein structures with unknown function originated from structural genomics projects, protein function prediction has become an important subject in bioinformatics. Among diverse function prediction methods, exploring known 3D-motifs, which are associated with functional elements in unknown protein structures is one of the most biologically meaningful methods. Homologous enzymes inherit such motifs in their active sites from common ancestors. However, slight differences in the properties of these motifs, results in variation in the reactions and substrates of the enzymes. In this study, we examined the possibility of discriminating highly related active site patterns according to their EC-numbers by 3D-motifs. For each EC-number, the spatial arrangement of an active site, which has minimum average distance to other active sites with the same function, was selected as a representative 3D-motif. In order to characterize the motifs, various points in active site elements were tested. The results demonstrated the possibility of predicting full EC-number of enzymes by 3D-motifs. However, the discriminating power of 3D-motifs varies among different enzyme families and depends on selecting the appropriate points and features. © 2013 Elsevier Ltd. All rights reserved.
Petitjean, Michel
2017-10-01
Some major proteins families, such as carbonic anhydrases (CAs), have a conical cavity at the active site. No algorithm was available to compute conical cavities, so we needed to design one. The fast algorithm we designed let us show on a set of 717 CAs extracted from the PDB database that γ-CAs are characterized by active site cavity cone angles significantly larger than those of α-CAs and β-CAs: the generatrix-axis angles are greater than 60° for the γ-CAs while they are smaller than 50° for the other CAs. Free binaries of the CONICA software implementing the algorithm are available through a software repository at http://petitjeanmichel.free.fr/itoweb.petitjean.freeware.html. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cloning and characterization of the gene encoding IMP dehydrogenase from Arabidopsis thaliana.
Collart, F R; Osipiuk, J; Trent, J; Olsen, G J; Huberman, E
1996-10-03
We have cloned and characterized the gene encoding inosine monophosphate dehydrogenase (IMPDH) from Arabidopsis thaliana (At). The transcription unit of the At gene spans approximately 1900 bp and specifies a protein of 503 amino acids with a calculated relative molecular mass (M(r)) of 54,190. The gene is comprised of a minimum of four introns and five exons with all donor and acceptor splice sequences conforming to previously proposed consensus sequences. The deduced IMPDH amino-acid sequence from At shows a remarkable similarity to other eukaryotic IMPDH sequences, with a 48% identity to human Type II enzyme. Allowing for conservative substitutions, the enzyme is 69% similar to human Type II IMPDH. The putative active-site sequence of At IMPDH conforms to the IMP dehydrogenase/guanosine monophosphate reductase motif and contains an essential active-site cysteine residue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooke, H.; Guenther, E; Luo, Y
2009-01-01
The small molecule component of chromoprotein enediyne antitumor antibiotics is biosynthesized through a convergent route, incorporating amino acid, polyketide, and carbohydrate building blocks around a central enediyne hydrocarbon core. The naphthoic acid moiety of the enediyne neocarzinostatin plays key roles in the biological activity of the natural product by interacting with both the carrier protein and duplex DNA at the site of action. We have previously described the in vitro characterization of an S-adenosylmethionine-dependent O-methyltransferase (NcsB1) in the neocarzinostatin biosynthetic pathway [Luo, Y., Lin, S., Zhang, J., Cooke, H. A., Bruner, S. D., and Shen, B. (2008) J. Biol. Chem.more » 283, 14694-14702]. Here we provide a structural basis for NcsB1 activity, illustrating that the enzyme shares an overall architecture with a large family of S-adenosylmethionine-dependent proteins. In addition, NcsB1 represents the first enzyme to be structurally characterized in the biosynthetic pathway of neocarzinostatin. By cocrystallizing the enzyme with various combinations of the cofactor and substrate analogues, details of the active site structure have been established. Changes in subdomain orientation were observed via comparison of structures in the presence and absence of substrate, suggesting that reorientation of the enzyme is involved in binding of the substrate. In addition, residues important for substrate discrimination were predicted and probed through site-directed mutagenesis and in vitro biochemical characterization.« less
Wahba, Haytham M; Lecoq, Lauriane; Stevenson, Michael; Mansour, Ahmed; Cappadocia, Laurent; Lafrance-Vanasse, Julien; Wilkinson, Kevin J; Sygusch, Jurgen; Wilcox, Dean E; Omichinski, James G
2016-02-23
In bacterial resistance to mercury, the organomercurial lyase (MerB) plays a key role in the detoxification pathway through its ability to cleave Hg-carbon bonds. Two cysteines (C96 and C159; Escherichia coli MerB numbering) and an aspartic acid (D99) have been identified as the key catalytic residues, and these three residues are conserved in all but four known MerB variants, where the aspartic acid is replaced with a serine. To understand the role of the active site serine, we characterized the structure and metal binding properties of an E. coli MerB mutant with a serine substituted for D99 (MerB D99S) as well as one of the native MerB variants containing a serine residue in the active site (Bacillus megaterium MerB2). Surprisingly, the MerB D99S protein copurified with a bound metal that was determined to be Cu(II) from UV-vis absorption, inductively coupled plasma mass spectrometry, nuclear magnetic resonance, and electron paramagnetic resonance studies. X-ray structural studies revealed that the Cu(II) is bound to the active site cysteine residues of MerB D99S, but that it is displaced following the addition of either an organomercurial substrate or an ionic mercury product. In contrast, the B. megaterium MerB2 protein does not copurify with copper, but the structure of the B. megaterium MerB2-Hg complex is highly similar to the structure of the MerB D99S-Hg complexes. These results demonstrate that the active site aspartic acid is crucial for both the enzymatic activity and metal binding specificity of MerB proteins and suggest a possible functional relationship between MerB and its only known structural homologue, the copper-binding protein NosL.
ORNL Remedial Action Program strategy (FY 1987-FY 1992)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trabalka, J.R.; Myrick, T.E.
1987-12-01
Over 40 years of Oak Ridge National Laboratory (ORNL) operations have produced a diverse legacy of contaminated inactive facilities, research areas, and waste disposal areas that are potential candidates for remedial action. The ORNL Remedial Action Program (RAP) represents a comprehensive effort to meet new regulatory requirements and ensure adequate protection of on-site workers, the public, and the environment by providing appropriate corrective measures at over 130 sites contaminated historically with radioactive, hazardous chemical, or mixed wastes. A structured path of program planning, site characterization, alternatives assessment, technology development, engineering design, continued site maintenance and surveillance, interim corrective action, andmore » eventual site closure or decommissioning is required to meet these objectives. This report documents the development of the Remedial Action Program, through its preliminary characterization, regulatory interface, and strategy development activities. It provides recommendations for a comprehensive, long-term strategy consistent with existing technical, institutional, and regulatory information, along with a six-year plan for achieving its initial objectives. 53 refs., 8 figs., 12 tabs.« less
Saavedra, Juan M; Azócar, Mauricio A; Rodríguez, Vida; Ramírez-Sarmiento, César A; Andrews, Barbara A; Asenjo, Juan A; Parra, Loreto P
2018-03-25
Detailed molecular mechanisms underpinning enzymatic reactions are still a central problem in biochemistry. The need for active site flexibility to sustain catalytic activity constitutes a notion of wide acceptance, although its direct influence remains to be fully understood. With the aim of studying the relationship between structural dynamics and enzyme catalysis, the cellulase Cel5A from Bacillus agaradherans is used as a model for in silico comparative analysis with mesophilic and psychrophilic counterparts. Structural features that determine flexibility are related to kinetic and thermodynamic parameters of catalysis. As a result, three specific positions in the vicinity of the active site of Cel5A are selected for protein engineering via site-directed mutagenesis. Three Cel5A variants are generated, N141L, A137Y and I102A/A137Y, showing a concomitant increase in the catalytic activity at low temperatures and a decrease in activation energy and activation enthalpy, similar to cold-active enzymes. These results are interpreted in structural terms by molecular dynamics simulations, showing that disrupting a hydrogen bond network in the vicinity of the active site increases local flexibility. These results provide a structural framework for explaining the changes in thermodynamic parameters observed between homologous enzymes with varying temperature adaptations. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Botvinick, E.H.; Frais, M.A.; Shosa, D.W.
1982-08-01
The ability of scintigraphic phase image analysis to characterize patterns of abnormal ventricular activation was investigated. The pattern of phase distribution and sequential phase changes over both right and left ventricular regions of interest were evaluated in 16 patients with normal electrical activation and wall motion and compared with those in 8 patients with an artificial pacemaker and 4 patients with sinus rhythm with the Wolff-Parkinson-White syndrome and delta waves. Normally, the site of earliest phase angle was seen at the base of the interventricular septum, with sequential change affecting the body of the septum and the cardiac apex andmore » then spreading laterally to involve the body of both ventricles. The site of earliest phase angle was located at the apex of the right ventricle in seven patients with a right ventricular endocardial pacemaker and on the lateral left ventricular wall in one patient with a left ventricular epicardial pacemaker. In each case the site corresponded exactly to the position of the pacing electrode as seen on posteroanterior and left lateral chest X-ray films, and sequential phase changes spread from the initial focus to affect both ventricles. In each of the patients with the Wolff-Parkinson-White syndrome, the site of earliest ventricular phase angle was located, and it corresponded exactly to the site of the bypass tract as determined by endocardial mapping. In this way, four bypass pathways, two posterior left paraseptal, one left lateral and one right lateral, were correctly localized scintigraphically. On the basis of the sequence of mechanical contraction, phase image analysis provides an accurate noninvasive method of detecting abnormal foci of ventricular activation.« less
Smith, Andrew T; Doyle, Wendy A; Dorlet, Pierre; Ivancich, Anabella
2009-09-22
The surface oxidation site (Trp-171) in lignin peroxidase (LiP) required for the reaction with veratryl alcohol a high-redox-potential (1.4 V) substrate, was engineered into Coprinus cinereus peroxidase (CiP) by introducing a Trp residue into a heme peroxidase that has similar protein fold but lacks this activity. To create the catalytic activity toward veratryl alcohol in CiP, it was necessary to reproduce the Trp site and its negatively charged microenvironment by means of a triple mutation. The resulting D179W+R258E+R272D variant was characterized by multifrequency EPR spectroscopy. The spectra unequivocally showed that a new Trp radical [g values of g(x) = 2.0035(5), g(y) = 2.0027(5), and g(z) = 2.0022(1)] was formed after the [Fe(IV)=O Por(*+)] intermediate, as a result of intramolecular electron transfer between Trp-179 and the porphyrin. Also, the EPR characterization crucially showed that [Fe(IV)=O Trp-179(*)] was the reactive intermediate with veratryl alcohol. Accordingly, our work shows that it is necessary to take into account the physicochemical properties of the radical, fine-tuned by the microenvironment, as well as those of the preceding [Fe(IV)=O Por(*+)] intermediate to engineer a catalytically competent Trp site for a given substrate. Manipulation of the microenvironment of the Trp-171 site in LiP allowed the detection by EPR spectroscopy of the Trp-171(*), for which direct evidence has been missing so far. Our work also highlights the role of Trp residues as tunable redox-active cofactors for enzyme catalysis in the context of peroxidases with a unique reactivity toward recalcitrant substrates that require oxidation potentials not realized at the heme site.
Karin, M.; Hibi, M.; Lin, A.
1997-02-25
An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE is disclosed. The polypeptide has serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences. The method of detection of JNK is also provided. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites. 44 figs.
Li, Wei; Yang, Huaqin; Zhang, Jingjing; Mu, Jingshan; Gong, Dirong; Wang, Xiaodong
2016-09-25
Polyhedral oligomeric silsesquioxanes (POSSs) were adsorbed on methylaluminoxane-activated silica for the immobilization of fluorinated bis(phenoxyimine)Ti complexes (FI catalyst). These POSSs have been characterized as horizontal spacers isolating the active sites and hindering the chain overlap in polymerization. The heterogeneous catalyst exhibits considerable activity in the synthesis of weakly entangled polyethylene.
Karin, Michael; Hibi, Masahiko; Lin, Anning
2001-02-27
An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.
Karin, Michael; Hibi, Masahiko; Lin, Anning
1999-01-01
An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.
NASA Astrophysics Data System (ADS)
Meygret, Aimé; Santer, Richard P.; Berthelot, Béatrice
2011-10-01
La Crau test site is used by CNES since 1987 for vicarious calibration of SPOT cameras. The former calibration activities were conducted during field campaigns devoted to the characterization of the atmosphere and the site reflectances. Since 1997, au automatic photometric station (ROSAS) was set up on the site on a 10m height pole. This station measures at different wavelengths, the solar extinction and the sky radiances to fully characterize the optical properties of the atmosphere. It also measures the upwelling radiance over the ground to fully characterize the surface reflectance properties. The photometer samples the spectrum from 380nm to 1600nm with 9 narrow bands. Every non cloudy days the photometer automatically and sequentially performs its measurements. Data are transmitted by GSM (Global System for Mobile communications) to CNES and processed. The photometer is calibrated in situ over the sun for irradiance and cross-band calibration, and over the Rayleigh scattering for the short wavelengths radiance calibration. The data are processed by an operational software which calibrates the photometer, estimates the atmosphere properties, computes the bidirectional reflectance distribution function of the site, then simulates the top of atmosphere radiance seen by any sensor over-passing the site and calibrates it. This paper describes the instrument, its measurement protocol and its calibration principle. Calibration results are discussed and compared to laboratory calibration. It details the surface reflectance characterization and presents SPOT4 calibration results deduced from the estimated TOA radiance. The results are compared to the official calibration.
Iron loading site on the Fe-S cluster assembly scaffold protein is distinct from the active site.
Rodrigues, Andria V; Kandegedara, Ashoka; Rotondo, John A; Dancis, Andrew; Stemmler, Timothy L
2015-06-01
Iron-sulfur (Fe-S) cluster containing proteins are utilized in almost every biochemical pathway. The unique redox and coordination chemistry associated with the cofactor allows these proteins to participate in a diverse set of reactions, including electron transfer, enzyme catalysis, DNA synthesis and signaling within several pathways. Due to the high reactivity of the metal, it is not surprising that biological Fe-S cluster assembly is tightly regulated within cells. In yeast, the major assembly pathway for Fe-S clusters is the mitochondrial ISC pathway. Yeast Fe-S cluster assembly is accomplished using the scaffold protein (Isu1) as the molecular foundation, with assistance from the cysteine desulfurase (Nfs1) to provide sulfur, the accessory protein (Isd11) to regulate Nfs1 activity, the yeast frataxin homologue (Yfh1) to regulate Nfs1 activity and participate in Isu1 Fe loading possibly as a chaperone, and the ferredoxin (Yah1) to provide reducing equivalents for assembly. In this report, we utilize calorimetric and spectroscopic methods to provide molecular insight into how wt-Isu1 from S. cerevisiae becomes loaded with iron. Isothermal titration calorimetry and an iron competition binding assay were developed to characterize the energetics of protein Fe(II) binding. Differential scanning calorimetry was used to identify thermodynamic characteristics of the protein in the apo state or under iron loaded conditions. Finally, X-ray absorption spectroscopy was used to characterize the electronic and structural properties of Fe(II) bound to Isu1. Current data are compared to our previous characterization of the D37A Isu1 mutant, and these suggest that when Isu1 binds Fe(II) in a manner not perturbed by the D37A substitution, and that metal binding occurs at a site distinct from the cysteine rich active site in the protein.
Nemo:. a Project for a KM3 Underwater Detector for Astrophysical Neutrinos in the Mediterranean Sea
NASA Astrophysics Data System (ADS)
Amore, I.; Aiello, S.; Ambriola, M.; Ameli, F.; Anghinolfi, M.; Anzalone, A.; Barbarino, G.; Barbarito, E.; Battaglieri, M.; Bellotti, R.; Beverini, N.; Bonori, M.; Bouhadef, B.; Brescia, M.; Cacopardo, G.; Cafagna, F.; Capone, A.; Caponetto, L.; Castorina, E.; Ceres, A.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Cordelli, M.; Costa, M.; Cuneo, S.; D'Amico, A.; de Bonis, G.; de Marzo, C.; de Rosa, G.; de Vita, R.; Distefano, C.; Falchini, E.; Fiorello, C.; Flaminio, V.; Fratini, K.; Gabrielli, A.; Galeotti, S.; Gandolfi, E.; Giacomelli, G.; Giorgi, F.; Grimaldi, A.; Habel, R.; Leonora, E.; Lonardo, A.; Longo, G.; Lo Presti, D.; Lucarelli, F.; Maccioni, E.; Margiotta, A.; Martini, A.; Masullo, R.; Megna, R.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Musumeci, M. S.; Nicolau, C. A.; Orlando, A.; Osipenko, M.; Osteria, G.; Papaleo, R.; Pappalardo, V.; Petta, C.; Piattelli, P.; Raia, G.; Randazzo, N.; Reito, S.; Ricco, G.; Riccobene, G.; Ripani, M.; Rovelli, A.; Ruppi, M.; Russo, G. V.; Russo, S.; Sapienza, P.; Sedita, M.; Shirokov, E.; Simeone, F.; Sipala, V.; Spurio, M.; Taiuti, M.; Terreni, G.; Trasatti, L.; Urso, S.; Valente, V.; Vicini, P.
The status of the project is described: the activity on long term characterization of water optical and oceanographic parameters at the Capo Passero site candidate for the Mediterranean km3 neutrino telescope; the feasibility study; the physics performances and underwater technology for the km3; the activity on NEMO Phase 1, a technological demonstrator that has been deployed at 2000 m depth 25 km offshore Catania; the realization of an underwater infrastructure at 3500 m depth at the candidate site (NEMO Phase 2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holloway, Lawrence E.; Qu, Zhihua; Mohr-Schroeder, Margaret J.
In this study, we consider collaborative power systems education through the FEEDER consortium. To increase students' access to power engineering educational content, the consortium of seven universities was formed. A framework is presented to characterize different collaborative education activities among the universities. Three of these approaches of collaborative educational activities are presented and discussed. These include 1) cross-institutional blended courses ("MS-MD''); 2) cross-institutional distance courses ("SS-MD''); and 3) single-site special experiential courses and concentrated on-site programs available to students across consortium institutions ("MS-SD''). As a result, this paper presents the advantages and disadvantages of each approach.
Distribution of diffuse flow megafauna in two sites on the Eastern Lau Spreading Center, Tonga
NASA Astrophysics Data System (ADS)
Podowski, Elizabeth L.; Moore, Tom S.; Zelnio, Kevin A.; Luther, George W., III; Fisher, Charles R.
2009-11-01
Hydrothermal vent environments are characterized by large gradients of toxic chemicals and high temperatures, which play a significant role in defining species' distributions. We used high-resolution imagery and spatially explicit in-situ physico-chemical measurements analyzed within a Geographic Information System (GIS) in order to characterize the spatial relations among different groups of megafauna, temperature, and chemistry within two discrete vent communities (40 and 50 m 2) on the Eastern Lau Spreading Center (ELSC). Chemical (sulfide and O 2 concentrations) and temperature data were obtained from approximately 75 different locations within each community using in-situ instruments. All data were integrated into a GIS, which served as a visualization tool and enabled the data to be analyzed in a spatial context. Our results confirm the importance of abiotic variables in defining the distributions of some fauna and elucidate several biological associations that are consistent between the two communities. The provannid snail, Alviniconcha spp., appears to actively avoid temperatures above 32-46 °C and/or sulfide concentrations exceeding approximately 260 μM. Slightly higher average sulfide concentrations and temperatures were measured among aggregations of Ifremeria nautilei compared to aggregations of the mussel Bathymodiolus brevior; however, the presence of mixed aggregations of the two species indicates an overlap in requirements. The brachyuran crab, Austinograea spp., was consistently observed directly on symbiont-containing species, particularly Alviniconcha spp. The solitary snail, Eosipho desbruyeresi, was rarely observed on biological substrata, but was often (60% of its population at the most active site) within 5 cm of symbiont-containing fauna, indicating a tolerance and preference for proximity to areas of high productivity. Densities and coverage of species differed substantially between the two communities despite high species overlap. Symbiont-containing species covered much larger areas at the more hydrothermally active site, ABE1, while shrimp and anemones occurred in relatively higher densities within the less-active site, TM1. This is the first study to thoroughly characterize realized distributions of megafauna at vent sites along the ELSC.
Schuetz, Anja; Min, Jinrong; Allali-Hassani, Abdellah; Schapira, Matthieu; Shuen, Michael; Loppnau, Peter; Mazitschek, Ralph; Kwiatkowski, Nick P.; Lewis, Timothy A.; Maglathin, Rebecca L.; McLean, Thomas H.; Bochkarev, Alexey; Plotnikov, Alexander N.; Vedadi, Masoud; Arrowsmith, Cheryl H.
2008-01-01
Histone deacetylases (HDACs) are protein deacetylases that play a role in repression of gene transcription and are emerging targets in cancer therapy. Here, we characterize the structure and enzymatic activity of the catalytic domain of human HDAC7 (cdHDAC7). Although HDAC7 normally exists as part of a multiprotein complex, we show that cdHDAC7 has a low level of deacetylase activity which can be inhibited by known HDAC inhibitors. The crystal structures of human cdHDAC7 and its complexes with two hydroxamate inhibitors are the first structures of the catalytic domain of class IIa HDACs and demonstrate significant differences with previously reported class I and class IIb-like HDAC structures. We show that cdHDAC7 has an additional class IIa HDAC-specific zinc binding motif adjacent to the active site which is likely to participate in substrate recognition and protein-protein interaction and may provide a site for modulation of activity. Furthermore, a different active site topology results in modified catalytic properties and in an enlarged active site pocket. Our studies provide mechanistic insights into class IIa HDACs and facilitate the design of specific modulators. PMID:18285338
Schuetz, Anja; Min, Jinrong; Allali-Hassani, Abdellah; Schapira, Matthieu; Shuen, Michael; Loppnau, Peter; Mazitschek, Ralph; Kwiatkowski, Nick P; Lewis, Timothy A; Maglathin, Rebecca L; McLean, Thomas H; Bochkarev, Alexey; Plotnikov, Alexander N; Vedadi, Masoud; Arrowsmith, Cheryl H
2008-04-25
Histone deacetylases (HDACs) are protein deacetylases that play a role in repression of gene transcription and are emerging targets in cancer therapy. Here, we characterize the structure and enzymatic activity of the catalytic domain of human HDAC7 (cdHDAC7). Although HDAC7 normally exists as part of a multiprotein complex, we show that cdHDAC7 has a low level of deacetylase activity which can be inhibited by known HDAC inhibitors. The crystal structures of human cdHDAC7 and its complexes with two hydroxamate inhibitors are the first structures of the catalytic domain of class IIa HDACs and demonstrate significant differences with previously reported class I and class IIb-like HDAC structures. We show that cdHDAC7 has an additional class IIa HDAC-specific zinc binding motif adjacent to the active site which is likely to participate in substrate recognition and protein-protein interaction and may provide a site for modulation of activity. Furthermore, a different active site topology results in modified catalytic properties and in an enlarged active site pocket. Our studies provide mechanistic insights into class IIa HDACs and facilitate the design of specific modulators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowson, D.; Gibson, J.D.; Haase, C.S.
1993-10-01
The Sandia National Laboratories, New Mexico (SNL/NM) Site-Wide Hydrogeologic Characterization (SWHC) project has been implemented as part of the SNL/NM Environmental Restoration (ER) Program to develop the regional hydrogeologic framework and baseline for the approximately 100 mi of Kirtland Air Force Base (KAFB) and adjacent withdrawn public lands upon which SNL/NM has performed research and development activities. Additionally, the SWHC project will investigate and characterize generic hydrogeologic issues associated with the 172 ER sites owned by SNL/NM across its facilities on KAFB. As called for in the Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Actmore » (RCRA) Part B permit agreement between the U.S. Environmental Protection Agency (EPA) as the permitter and the U.S. Department of Energy (DOE) and SNL/NM as the permittees, an annual report is to be prepared by the SWHC project team. This document serves two primary purposes: (1) to identify and describe the conceptual framework for the hydrogeologic system underlying SNL/NM and (2) to describe characterization activities undertaken in the preceding year that add to our understanding (reduce our uncertainties) regarding the conceptual and quantitative hydrogeologic framework. This SWHC project annual report focuses primarily on purpose 1, providing a summary description of the current {open_quotes}state of knowledge{close_quotes} of the Sandia National Laboratories/Kirtland Air Force Base (SNL/KAFB) hydrogeologic setting.« less
Sohn, H.; Camacho-Bunquin, J.; Langeslay, R. R.; ...
2017-05-03
Well-defined, isolated, single-site organovanadium(III) catalyst on SiO 2 [(SiO 2)V(Mes)(THF)] were synthesized via surface organometallic chemistry, and fully characterized using a combination of analytical and spectroscopic techniques (EA, ICP, 1H NMR, TGA-MS, EPR, XPS, DR-UV/Vis, UV-Raman, DRIFTS, XAS). The catalysts exhibit unprecedented reactivity in liquid- and gas-phase alkene/alkyne hydrogenation. Catalyst poisoning experiments revealed that 100% of the V sites are active for hydrogenation.
Narczyk, Marta; Bertoša, Branimir; Papa, Lucija; Vuković, Vedran; Leščić Ašler, Ivana; Wielgus-Kutrowska, Beata; Bzowska, Agnieszka; Luić, Marija; Štefanić, Zoran
2018-04-01
Even with decades of research, purine nucleoside phosphorylases (PNPs) are enzymes whose mechanism is yet to be fully understood. This is especially true in the case of hexameric PNPs, and is probably, in part, due to their complex oligomeric nature and a whole spectrum of active site conformations related to interactions with different ligands. Here we report an extensive structural characterization of the apo forms of hexameric PNP from Helicobacter pylori (HpPNP), as well as its complexes with phosphate (P i ) and an inhibitor, formycin A (FA), together with kinetic, binding, docking and molecular dynamics studies. X-ray structures show previously unseen distributions of open and closed active sites. Microscale thermophoresis results indicate that a two-site model describes P i binding, while a three-site model is needed to characterize FA binding, irrespective of P i presence. The latter may be related to the newly found nonstandard mode of FA binding. The ternary complex of the enzyme with P i and FA shows, however, that P i binding stabilizes the standard mode of FA binding. Surprisingly, HpPNP has low affinity towards the natural substrate adenosine. Molecular dynamics simulations show that P i moves out of most active sites, in accordance with its weak binding. Conformational changes between nonstandard and standard binding modes of nucleoside are observed during the simulations. Altogether, these findings show some unique features of HpPNP and provide new insights into the functioning of the active sites, with implications for understanding the complex mechanism of catalysis of this enzyme. The atomic coordinates and structure factors have been deposited in the Protein Data Bank: with accession codes 6F52 (HpPNPapo_1), 6F5A (HpPNPapo_2), 6F5I (HpPNPapo_3), 5LU0 (HpPNP_PO4), 6F4W (HpPNP_FA) and 6F4X (HpPNP_PO4_FA). Purine nucleoside orthophosphate ribosyl transferase, EC2.4.2.1, UniProtID: P56463. © 2018 Federation of European Biochemical Societies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Jesse R.; Donini, Stefano; Kappock, T. Joseph, E-mail: kappock@purdue.edu
2015-09-23
Citrate synthase from the thermophilic euryarchaeon T. acidophilum fused to a hexahistidine tag was purified and biochemically characterized. The structure of the unliganded enzyme at 2.2 Å resolution contains tail–active site contacts in half of the active sites. Citrate synthase (CS) plays a central metabolic role in aerobes and many other organisms. The CS reaction comprises two half-reactions: a Claisen aldol condensation of acetyl-CoA (AcCoA) and oxaloacetate (OAA) that forms citryl-CoA (CitCoA), and CitCoA hydrolysis. Protein conformational changes that ‘close’ the active site play an important role in the assembly of a catalytically competent condensation active site. CS from themore » thermoacidophile Thermoplasma acidophilum (TpCS) possesses an endogenous Trp fluorophore that can be used to monitor the condensation reaction. The 2.2 Å resolution crystal structure of TpCS fused to a C-terminal hexahistidine tag (TpCSH6) reported here is an ‘open’ structure that, when compared with several liganded TpCS structures, helps to define a complete path for active-site closure. One active site in each dimer binds a neighboring His tag, the first nonsubstrate ligand known to occupy both the AcCoA and OAA binding sites. Solution data collectively suggest that this fortuitous interaction is stabilized by the crystalline lattice. As a polar but almost neutral ligand, the active site–tail interaction provides a new starting point for the design of bisubstrate-analog inhibitors of CS.« less
Ealy, Julie B.; Sudol, Malgorzata; Krzeminski, Jacek; Amin, Shantu; Katzman, Michael
2012-01-01
Retroviral integrase can use water or some small alcohols as the attacking nucleophile to nick DNA. To characterize the range of compounds that human immunodeficiency virus type 1 integrase can accommodate for its endonuclease activities, we tested 45 potential electron donors (having varied size and number or spacing of nucleophilic groups) as substrates during site-specific nicking at viral DNA ends and during nonspecific nicking reactions. We found that integrase used 22 of the 45 compounds to nick DNA, but not all active compounds were used for both activities. In particular, 13 compounds were used for site-specific and nonspecific nicking, 5 only for site-specific nicking, and 4 only for nonspecific nicking; 23 other compounds were not used for either activity. Thus, integrase can accommodate a large number of nucleophilic substrates but has selective requirements for its different activities, underscoring its dynamic properties and providing new information for modeling and understanding integrase. PMID:22910593
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Nicholas C.; Boote, Brett W.; Naik, Pranjali
Ceria (CeO 2) and sodium-modified ceria (Ce-Na) were prepared through combustion synthesis. Palladium was deposited onto the supports (Pd/CeO 2 and Pd/Ce-Na) and their activity for the aqueous-phase transfer hydrogenation of phenol using 2-propanol under liquid flow conditions was studied. Pd/Ce-Na showed a marked increase (6×) in transfer hydrogenation activity over Pd/CeO 2. Material characterization indicated that water-stable sodium species were not doped into the ceria lattice, but rather existed as subsurface carbonates. Modification of ceria by sodium provided more adsorption and redox active sites (i.e. defects) for 2-propanol dehydrogenation. This effect was an intrinsic property of the Ce-Na supportmore » and independent of Pd. The redox sites active for 2-propanol dehydrogenation were thermodynamically equivalent on both supports/catalysts. At high phenol concentrations, the reaction was limited by 2-propanol adsorption. Furthermore, the difference in catalytic activity was attributed to the different numbers of 2-propanol adsorption and redox active sites on each catalyst.« less
NASA Technical Reports Server (NTRS)
Stoker, C. R.; Clarke, J. D. A.; Direito, S.; Foing, B.
2011-01-01
The DOMEX program is a NASA-MMAMA funded project featuring simulations of human crews on Mars focused on science activities that involve collecting samples from the subsurface using both manual and robotic equipment methods and analyzing them in the field and post mission. A crew simulating a human mission to Mars performed activities focused on subsurface science for 2 weeks in November 2009 at Mars Desert Research Station near Hanksville, Utah --an important chemical and morphological Mars analog site. Activities performed included 1) survey of the area to identify geologic provinces, 2) obtaining soil and rock samples from each province and characterizing their mineralogy, chemistry, and biology; 3) site selection and reconnaissance for a future drilling mission; 4) deployment and testing of Mars Underground Mole, a percussive robotic soil sampling device; and 5) recording and analyzing how crew time was used to accomplish these tasks. This paper summarizes results from analysis of soil cores
NASA Astrophysics Data System (ADS)
Bour, Olivier; Longuervergne, Laurent; Le Borgne, Tanguy; Lavenant, Nicolas; de Dreuzy, Jean-Raynald; Schuite, Jonathan; Labasque, Thierry; Aquilina, Luc; Davy, Philippe
2017-04-01
Characterizing groundwater flows and surface interactions in heterogeneous groundwater systems such as crystalline fractured rock is often extremely complex. In particular, hydraulic properties are highly variable while groundwater chemical properties may vary both in space and time, especially due to the impact of groundwater abstraction. Here, we show the interest of hydrological observatories and long-term monitoring for characterizing hydrological processes occurring in a crystalline rock aquifer. We present results from the site of Ploemeur (French Brittany) that belongs to the network of hydrogeological sites H+ and the research infrastructure OZCAR, and where interdisciplinary and integrated research at multiple temporal and spatial scales has been developed for almost twenty years. This outstandingly heterogeneous crystalline rock aquifer is also used for groundwater supply since 1991. In particular, we show how cross-borehole flowmeter tests, pumping tests and a frequency domain analysis of groundwater levels allow quantifying the hydraulic properties of the aquifer at different scales. In addition, groundwater temperature evolution was used as an excellent tracer for characterizing groundwater flow. At the site scale, measurements of ground surface deformation through long-base tiltmeters provide robust estimates of aquifer storage and allow identifying the active structures, including those acting during recharge process. Finally, a numerical model of the watershed scale that combines hydraulic data and groundwater ages confirms the geometry of this complex aquifer and the consistency of the different datasets. In parallel, this hydrological observatory is also used for developing hydrogeophysical methods and to characterize groundwater transport and biogeochemical reactivity in the sub-surface. The Ploemeur hydrogeological observatory is a good example of the interest of focusing research activities on a site during long-term as it provides a thorough understanding of both hydrological and biogeochemical processes that can be extended to many heterogeneous aquifers.
Chromatin insulation by a transcriptional activator
Sutter, Nathan B.; Scalzo, David; Fiering, Steven; Groudine, Mark; Martin, David I. K.
2003-01-01
In eukaryotic genomes, transcriptionally active regions are interspersed with silent chromatin that may repress genes in its vicinity. Chromatin insulators are elements that can shield a locus from repressive effects of flanking chromatin. Few such elements have been characterized in higher eukaryotes, but transcriptional activating elements are an invariant feature of active loci and have been shown to suppress transgene silencing. Hence, we have assessed the ability of a transcriptional activator to cause chromatin insulation, i.e., to relieve position effects at transgene integration sites in cultured cells. The transgene contained a series of binding sites for the metal-inducible transcriptional activator MTF, linked to a GFP reporter. Clones carrying single integrated transgenes were derived without selection for expression, and in most clones the transgene was silent. Induction of MTF resulted in transition of the transgene from the silent to the active state, prolongation of the active state, and a marked narrowing of the range of expression levels at different genomic sites. At one genomic site, prolonged induction of MTF resulted in suppression of transgene silencing that persisted after withdrawal of the induction stimulus. These results are consistent with MTF acting as a chromatin insulator and imply that transcriptional activating elements can insulate active loci against chromatin repression. PMID:12547916
Cameranesi, María M.; Morán-Barrio, Jorgelina; Limansky, Adriana S.; Repizo, Guillermo D.; Viale, Alejandro M.
2018-01-01
Members of the genus Acinetobacter possess distinct plasmid types which provide effective platforms for the acquisition, evolution, and dissemination of antimicrobial resistance structures. Many plasmid-borne resistance structures are bordered by short DNA sequences providing potential recognition sites for the host XerC and XerD site-specific tyrosine recombinases (XerC/D-like sites). However, whether these sites are active in recombination and how they assist the mobilization of associated resistance structures is still poorly understood. Here we characterized the plasmids carried by Acinetobacter baumannii Ab242, a multidrug-resistant clinical strain belonging to the ST104 (Oxford scheme) which produces an OXA-58 carbapenem-hydrolyzing class-D β-lactamase (CHDL). Plasmid sequencing and characterization of replication, stability, and adaptive modules revealed the presence in Ab242 of three novel plasmids lacking self-transferability functions which were designated pAb242_9, pAb242_12, and pAb242_25, respectively. Among them, only pAb242_25 was found to carry an adaptive module encompassing an ISAba825-blaOXA-58 arrangement accompanied by a TnaphA6 transposon, the whole structure conferring simultaneous resistance to carbapenems and aminoglycosides. Ab242 plasmids harbor several XerC/D-like sites, with most sites found in pAb242_25 located in the vicinity or within the adaptive module described above. Electrotransformation of susceptible A. nosocomialis cells with Ab242 plasmids followed by imipenem selection indicated that the transforming plasmid form was a co-integrate resulting from the fusion of pAb242_25 and pAb242_12. Further characterization by cloning and sequencing studies indicated that a XerC/D site in pAb242_25 and another in pAb242_12 provided the active sister pair for the inter-molecular site-specific recombination reaction mediating the fusion of these two plasmids. Moreover, the resulting co-integrate was found also to undergo intra-molecular resolution at the new pair of XerC/D sites generated during fusion thus regenerating the original pAb242_25 and pAb242_12 plasmids. These observations provide the first evidence indicating that XerC/D-like sites in A. baumannii plasmids can provide active pairs for site-specific recombination mediating inter-molecular fusions and intra-molecular resolutions. The overall results shed light on the evolutionary dynamics of A. baumannii plasmids and the underlying mechanisms of dissemination of genetic structures responsible for carbapenem and other antibiotics resistance among the Acinetobacter clinical population. PMID:29434581
Population and clinical genetics of human transposable elements in the (post) genomic era
Rishishwar, Lavanya; Wang, Lu; Clayton, Evan A.; Mariño-Ramírez, Leonardo; McDonald, John F.; Jordan, I. King
2017-01-01
ABSTRACT Recent technological developments—in genomics, bioinformatics and high-throughput experimental techniques—are providing opportunities to study ongoing human transposable element (TE) activity at an unprecedented level of detail. It is now possible to characterize genome-wide collections of TE insertion sites for multiple human individuals, within and between populations, and for a variety of tissue types. Comparison of TE insertion site profiles between individuals captures the germline activity of TEs and reveals insertion site variants that segregate as polymorphisms among human populations, whereas comparison among tissue types ascertains somatic TE activity that generates cellular heterogeneity. In this review, we provide an overview of these new technologies and explore their implications for population and clinical genetic studies of human TEs. We cover both recent published results on human TE insertion activity as well as the prospects for future TE studies related to human evolution and health. PMID:28228978
Valimberti, Ilaria; Tiberti, Matteo; Lambrughi, Matteo; Sarcevic, Boris; Papaleo, Elena
2015-10-14
Protein phosphorylation is a modification that offers a dynamic and reversible mechanism to regulate the majority of cellular processes. Numerous diseases are associated with aberrant regulation of phosphorylation-induced switches. Phosphorylation is emerging as a mechanism to modulate ubiquitination by regulating key enzymes in this pathway. The molecular mechanisms underpinning how phosphorylation regulates ubiquitinating enzymes, however, are elusive. Here, we show the high conservation of a functional site in E2 ubiquitin-conjugating enzymes. In catalytically active E2s, this site contains aspartate or a phosphorylatable serine and we refer to it as the conserved E2 serine/aspartate (CES/D) site. Molecular simulations of substrate-bound and -unbound forms of wild type, mutant and phosphorylated E2s, provide atomistic insight into the role of the CES/D residue for optimal E2 activity. Both the size and charge of the side group at the site play a central role in aligning the substrate lysine toward E2 catalytic cysteine to control ubiquitination efficiency. The CES/D site contributes to the fingerprint of the E2 superfamily. We propose that E2 enzymes can be divided into constitutively active or regulated families. E2s characterized by an aspartate at the CES/D site signify constitutively active E2s, whereas those containing a serine can be regulated by phosphorylation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-06-01
This report has been prepared to provide information about the public safety and environmental protection programs conducted by the Weldon Spring Site Remedial Action Project. The Weldon Spring site is located in southern St. Charles County, Missouri, approximately 48 km (30 mi) west of St. Louis. The site consists of two main areas, the Weldon Spring Chemical Plant and raffinate pits and the Weldon Spring Quarry. The objectives of the Site Environmental Report are to present a summary of data from the environmental monitoring program, to characterize trends and environmental conditions at the site, and to confirm compliance with environmentalmore » and health protection standards and requirements. The report also presents the status of remedial activities and the results of monitoring these activities to assess their impacts on the public and environment. The scope of the environmental monitoring program at the Weldon Spring site has changed since it was initiated. Previously, the program focused on investigations of the extent and level of contaminants in the groundwater, surface waters, buildings, and air at the site. In 1992, the level of remedial activities required monitoring for potential impacts of those activities, particularly on surface water runoff and airborne effluents. This report includes monitoring data from routine radiological and nonradiological sampling activities. These data include estimates of dose to the public from the Weldon Spring site; estimates of effluent releases; and trends in groundwater contaminant levels. Also, applicable compliance requirements, quality assurance programs, and special studies conducted in 1992 to support environmental protection programs are reviewed.« less
An Evaluation of Diet and Physical Activity Messaging in African American Churches
ERIC Educational Resources Information Center
Harmon, Brook E.; Blake, Christine E.; Thrasher, James F.; Hébert, James R.
2014-01-01
The use of faith-based organizations as sites to deliver diet and physical activity interventions is increasing. Methods to assess the messaging environment within churches are limited. Our research aimed to develop and test an objective assessment methodology to characterize health messages, particularly those related to diet and physical…
Characterizing SHP2 as a Novel Therapeutic Target in Breast Cancer
2013-02-01
attempted to elucidate interactions with molecular docking (5). The peptide was docked into the SH2 active site of 2SHP.pdb (with SH2 domains...activated protein kinase (MAPK) pathway, which is read as a drop in phosphorylated ERK protein(3). 5 First, the problem of cell permeability
Neff, Hector; Bigney, Scott J; Sakai, Sachiko; Burger, Paul R; Garfin, Timothy; George, Richard G; Culleton, Brendan J; Kennett, Douglas J
2016-01-01
Archaeological sediments from mounds within the mangrove zone of far-southern Pacific coastal Chiapas, Mexico, are characterized in order to test the hypothesis that specialized pyro-technological activities of the region's prehistoric inhabitants (salt and ceramic production) created the accumulations visible today. Fourier transform infrared spectroscopy (FT-IR) is used to characterize sediment mineralogy, while portable X-ray fluorescence (pXRF) is used to determine elemental concentrations. Elemental characterization of natural sediments by both instrumental neutron activation analysis (INAA) and pXRF also contribute to understanding of processes that created the archaeological deposits. Radiocarbon dates combined with typological analysis of ceramics indicate that pyro-industrial activity in the mangrove zone peaked during the Late Formative and Terminal Formative periods, when population and monumental activity on the coastal plain and piedmont were also at their peaks. © The Author(s) 2015.
Stephenson, William J.; Odum, Jackson K.; McNamara, Daniel E.; Williams, Robert A.; Angster, Stephen J
2014-01-01
We characterize shear-wave velocity versus depth (Vs profile) at 16 portable seismograph sites through the epicentral region of the 2011 Mw 5.8 Mineral (Virginia, USA) earthquake to investigate ground-motion site effects in the area. We used a multimethod acquisition and analysis approach, where active-source horizontal shear (SH) wave reflection and refraction as well as active-source multichannel analysis of surface waves (MASW) and passive-source refraction microtremor (ReMi) Rayleigh wave dispersion were interpreted separately. The time-averaged shear-wave velocity to a depth of 30 m (Vs30), interpreted bedrock depth, and site resonant frequency were estimated from the best-fit Vs profile of each method at each location for analysis. Using the median Vs30 value (270–715 m/s) as representative of a given site, we estimate that all 16 sites are National Earthquake Hazards Reduction Program (NEHRP) site class C or D. Based on a comparison of simplified mapped surface geology to median Vs30 at our sites, we do not see clear evidence for using surface geologic units as a proxy for Vs30 in the epicentral region, although this may primarily be because the units are similar in age (Paleozoic) and may have similar bulk seismic properties. We compare resonant frequencies calculated from ambient noise horizontal:vertical spectral ratios (HVSR) at available sites to predicted site frequencies (generally between 1.9 and 7.6 Hz) derived from the median bedrock depth and average Vs to bedrock. Robust linear regression of HVSR to both site frequency and Vs30 demonstrate moderate correlation to each, and thus both appear to be generally representative of site response in this region. Based on Kendall tau rank correlation testing, we find that Vs30 and the site frequency calculated from average Vs to median interpreted bedrock depth can both be considered reliable predictors of weak-motion site effects in the epicentral region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rautman, Christopher Arthur; Stein, Joshua S.
2003-01-01
Existing paper-based site characterization models of salt domes at the four active U.S. Strategic Petroleum Reserve sites have been converted to digital format and visualized using modern computer software. The four sites are the Bayou Choctaw dome in Iberville Parish, Louisiana; the Big Hill dome in Jefferson County, Texas; the Bryan Mound dome in Brazoria County, Texas; and the West Hackberry dome in Cameron Parish, Louisiana. A new modeling algorithm has been developed to overcome limitations of many standard geological modeling software packages in order to deal with structurally overhanging salt margins that are typical of many salt domes. Thismore » algorithm, and the implementing computer program, make use of the existing interpretive modeling conducted manually using professional geological judgement and presented in two dimensions in the original site characterization reports as structure contour maps on the top of salt. The algorithm makes use of concepts of finite-element meshes of general engineering usage. Although the specific implementation of the algorithm described in this report and the resulting output files are tailored to the modeling and visualization software used to construct the figures contained herein, the algorithm itself is generic and other implementations and output formats are possible. The graphical visualizations of the salt domes at the four Strategic Petroleum Reserve sites are believed to be major improvements over the previously available two-dimensional representations of the domes via conventional geologic drawings (cross sections and contour maps). Additionally, the numerical mesh files produced by this modeling activity are available for import into and display by other software routines. The mesh data are not explicitly tabulated in this report; however an electronic version in simple ASCII format is included on a PC-based compact disk.« less
McCormick, Michael S.; Lippard, Stephen J.
2011-01-01
In all structurally characterized bacterial multicomponent monooxygenase (BMM) hydroxylase proteins, a series of hydrophobic cavities in the α-subunit trace a conserved path from the protein exterior to the carboxylate-bridged diiron active site. The present study examines these cavities as a potential route for dioxygen transport to the active site by crystallographic characterization of a xenon-pressurized sample of the hydroxylase component of phenol hydroxylase from Pseudomonas sp. OX1. Computational analyses of the hydrophobic cavities in the hydroxylase α-subunits of phenol hydroxylase (PHH), toluene/o-xylene monooxygenase (ToMOH), and soluble methane monooxygenase (sMMOH) are also presented. The results, together with previous findings from crystallographic studies of xenon-pressurized sMMO hydroxylase, clearly identify the propensity for these cavities to bind hydrophobic gas molecules in the protein interior. This proposed functional role is supported by recent stopped flow kinetic studies of ToMOH variants (Song, et al., 2011). In addition to information about the Xe sites, the structure determination revealed significantly reduced regulatory protein binding to the hydroxylase in comparison to the previously reported structure of PHH, as well as the presence of a newly identified metal binding site in the α-subunit that adopts a linear coordination environment consistent with Cu(I), and a glycerol molecule bound to Fe1 in a fashion that is unique among hydrocarbon-diiron site adducts reported to date in BMM hydroxylase structures. Finally, a comparative analysis of the α-subunit structures of MMOH, ToMOH, and PHH details proposed routes for the other three BMM substrates, the hydrocarbon, electrons, and protons, comprising cavities, channels, hydrogen-bonding networks, and pores in the structures of their α-subunits. PMID:22136180
An additional substrate binding site in a bacterial phenylalanine hydroxylase
Ronau, Judith A.; Paul, Lake N.; Fuchs, Julian E.; Corn, Isaac R.; Wagner, Kyle T.; Liedl, Klaus R.; Abu-Omar, Mahdi M.; Das, Chittaranjan
2014-01-01
Phenylalanine hydroxylase (PAH) is a non-heme iron enzyme that catalyzes phenylalanine oxidation to tyrosine, a reaction that must be kept under tight regulatory control. Mammalian PAH features a regulatory domain where binding of the substrate leads to allosteric activation of the enzyme. However, existence of PAH regulation in evolutionarily distant organisms, such as certain bacteria in which it occurs, has so far been underappreciated. In an attempt to crystallographically characterize substrate binding by PAH from Chromobacterium violaceum (cPAH), a single-domain monomeric enzyme, electron density for phenylalanine was observed at a distal site, 15.7Å from the active site. Isothermal titration calorimetry (ITC) experiments revealed a dissociation constant of 24 ± 1.1 µM for phenylalanine. Under the same conditions, no detectable binding was observed in ITC for alanine, tyrosine, or isoleucine, indicating the distal site may be selective for phenylalanine. Point mutations of residues in the distal site that contact phenylalanine (F258A, Y155A, T254A) lead to impaired binding, consistent with the presence of distal site binding in solution. Kinetic analysis reveals that the distal site mutants suffer a discernible loss in their catalytic activity. However, x-ray structures of Y155A and F258A, two of the mutants showing more noticeable defect in their activity, show no discernible change in their active site structure, suggesting that the effect of distal binding may transpire through protein dynamics in solution. PMID:23860686
Identification and characterization of Hoxa9 binding sites in hematopoietic cells
Huang, Yongsheng; Sitwala, Kajal; Bronstein, Joel; Sanders, Daniel; Dandekar, Monisha; Collins, Cailin; Robertson, Gordon; MacDonald, James; Cezard, Timothee; Bilenky, Misha; Thiessen, Nina; Zhao, Yongjun; Zeng, Thomas; Hirst, Martin; Hero, Alfred; Jones, Steven
2012-01-01
The clustered homeobox proteins play crucial roles in development, hematopoiesis, and leukemia, yet the targets they regulate and their mechanisms of action are poorly understood. Here, we identified the binding sites for Hoxa9 and the Hox cofactor Meis1 on a genome-wide level and profiled their associated epigenetic modifications and transcriptional targets. Hoxa9 and the Hox cofactor Meis1 cobind at hundreds of highly evolutionarily conserved sites, most of which are distant from transcription start sites. These sites show high levels of histone H3K4 monomethylation and CBP/P300 binding characteristic of enhancers. Furthermore, a subset of these sites shows enhancer activity in transient transfection assays. Many Hoxa9 and Meis1 binding sites are also bound by PU.1 and other lineage-restricted transcription factors previously implicated in establishment of myeloid enhancers. Conditional Hoxa9 activation is associated with CBP/P300 recruitment, histone acetylation, and transcriptional activation of a network of proto-oncogenes, including Erg, Flt3, Lmo2, Myb, and Sox4. Collectively, this work suggests that Hoxa9 regulates transcription by interacting with enhancers of genes important for hematopoiesis and leukemia. PMID:22072553
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, K.A.; Mitchell, M.M.; Jean, D.
1997-09-01
This report contains the Appendices A-L including Voluntary Corrective Measure Plans, Waste Management Plans, Task-Specific Health and Safety Plan, Analytical Laboratory Procedures, Soil Sample Results, In-Situ Gamma Spectroscopy Results, Radionuclide Activity Summary, TCLP Soil Sample Results, Waste Characterization Memoranda, Waste Drum Inventory Data, Radiological Risk Assessment, and Summary of Site-Specific Recommendations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-04-15
This report presents the findings of Remedial Investigations and Feasibility Studies at sites located at the Oliktok Point radar installation in northern Alaska. The sites were characterized based on sampling and analyses conducted during Remedial Investigation activities performed during August and September 1993.
Field, Jessica J; Pera, Benet; Gallego, Juan Estévez; Calvo, Enrique; Rodríguez-Salarichs, Javier; Sáez-Calvo, Gonzalo; Zuwerra, Didier; Jordi, Michel; Andreu, José M; Prota, Andrea E; Ménchon, Grégory; Miller, John H; Altmann, Karl-Heinz; Díaz, J Fernando
2018-03-23
The marine natural product zampanolide and analogues thereof constitute a new chemotype of taxoid site microtubule-stabilizing agents with a covalent mechanism of action. Zampanolide-ligated tubulin has the switch-activation loop (M-loop) in the assembly prone form and, thus, represents an assembly activated state of the protein. In this study, we have characterized the biochemical properties of the covalently modified, activated tubulin dimer, and we have determined the effect of zampanolide on tubulin association and the binding of tubulin ligands at other binding sites. Tubulin activation by zampanolide does not affect its longitudinal oligomerization but does alter its lateral association properties. The covalent binding of zampanolide to β-tubulin affects both the colchicine site, causing a change of the quantum yield of the bound ligand, and the exchangeable nucleotide binding site, reducing the affinity for the nucleotide. While these global effects do not change the binding affinity of 2-methoxy-5-(2,3,4-trimethoxyphenyl)-2,4,6-cycloheptatrien-1-one (MTC) (a reversible binder of the colchicine site), the binding affinity of a fluorescent analogue of GTP (Mant-GTP) at the nucleotide E-site is reduced from 12 ± 2 × 10 5 M -1 in the case of unmodified tubulin to 1.4 ± 0.3 × 10 5 M -1 in the case of the zampanolide tubulin adduct, indicating signal transmission between the taxane site and the colchicine and nucleotide sites of β-tubulin.
Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes.
Cockburn, Darrell; Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte
2016-01-01
Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data.
Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes
Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte
2016-01-01
Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data. PMID:27504624
DeRita, Leo; Dai, Sheng; Lopez-Zepeda, Kimberly; Pham, Nicholas; Graham, George W; Pan, Xiaoqing; Christopher, Phillip
2017-10-11
Oxide-supported precious metal nanoparticles are widely used industrial catalysts. Due to expense and rarity, developing synthetic protocols that reduce precious metal nanoparticle size and stabilize dispersed species is essential. Supported atomically dispersed, single precious metal atoms represent the most efficient metal utilization geometry, although debate regarding the catalytic activity of supported single precious atom species has arisen from difficulty in synthesizing homogeneous and stable single atom dispersions, and a lack of site-specific characterization approaches. We propose a catalyst architecture and characterization approach to overcome these limitations, by depositing ∼1 precious metal atom per support particle and characterizing structures by correlating scanning transmission electron microscopy imaging and CO probe molecule infrared spectroscopy. This is demonstrated for Pt supported on anatase TiO 2 . In these structures, isolated Pt atoms, Pt iso , remain stable through various conditions, and spectroscopic evidence suggests Pt iso species exist in homogeneous local environments. Comparing Pt iso to ∼1 nm preoxidized (Pt ox ) and prereduced (Pt metal ) Pt clusters on TiO 2 , we identify unique spectroscopic signatures of CO bound to each site and find CO adsorption energy is ordered: Pt iso ≪ Pt metal < Pt ox . Pt iso species exhibited a 2-fold greater turnover frequency for CO oxidation than 1 nm Pt metal clusters but share an identical reaction mechanism. We propose the active catalytic sites are cationic interfacial Pt atoms bonded to TiO 2 and that Pt iso exhibits optimal reactivity because every atom is exposed for catalysis and forms an interfacial site with TiO 2 . This approach should be generally useful for studying the behavior of supported precious metal atoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comess, Kenneth M.; Sun, Chaohong; Abad-Zapatero, Cele
Inhibition of protein kinases has validated therapeutic utility for cancer, with at least seven kinase inhibitor drugs on the market. Protein kinase inhibition also has significant potential for a variety of other diseases, including diabetes, pain, cognition, and chronic inflammatory and immunologic diseases. However, as the vast majority of current approaches to kinase inhibition target the highly conserved ATP-binding site, the use of kinase inhibitors in treating nononcology diseases may require great selectivity for the target kinase. As protein kinases are signal transducers that are involved in binding to a variety of other proteins, targeting alternative, less conserved sites onmore » the protein may provide an avenue for greater selectivity. Here we report an affinity-based, high-throughput screening technique that allows nonbiased interrogation of small molecule libraries for binding to all exposed sites on a protein surface. This approach was used to screen both the c-Jun N-terminal protein kinase Jnk-1 (involved in insulin signaling) and p38{alpha} (involved in the formation of TNF{alpha} and other cytokines). In addition to canonical ATP-site ligands, compounds were identified that bind to novel allosteric sites. The nature, biological relevance, and mode of binding of these ligands were extensively characterized using two-dimensional {sup 1}H/{sup 13}C NMR spectroscopy, protein X-ray crystallography, surface plasmon resonance, and direct enzymatic activity and activation cascade assays. Jnk-1 and p38{alpha} both belong to the MAP kinase family, and the allosteric ligands for both targets bind similarly on a ledge of the protein surface exposed by the MAP insertion present in the CMGC family of protein kinases and distant from the active site. Medicinal chemistry studies resulted in an improved Jnk-1 ligand able to increase adiponectin secretion in human adipocytes and increase insulin-induced protein kinase PKB phosphorylation in human hepatocytes, in similar fashion to Jnk-1 siRNA and to rosiglitazone treatment. Together, the data suggest that these new ligand series bind to a novel, allosteric, and physiologically relevant site and therefore represent a unique approach to identify kinase inhibitors.« less
Tilley, Sloane K; Reif, David M; Fry, Rebecca C
2017-04-01
The Superfund program of the Environmental Protection Agency (EPA) was established in 1980 to address public health concerns posed by toxic substances released into the environment in the United States. Forty-two of the 1328 hazardous waste sites that remain on the Superfund National Priority List are located in the state of North Carolina. We set out to develop a database that contained information on both the prevalence and biological activity of chemicals present at Superfund sites in North Carolina. A chemical characterization tool, the Toxicological Priority Index (ToxPi), was used to rank the biological activity of these chemicals based on their predicted bioavailability, documented associations with biological pathways, and activity in in vitro assays of the ToxCast and Tox21 programs. The ten most prevalent chemicals found at North Carolina Superfund sites were chromium, trichloroethene, lead, tetrachloroethene, arsenic, benzene, manganese, 1,2-dichloroethane, nickel, and barium. For all chemicals found at North Carolina Superfund sites, ToxPi analysis was used to rank their biological activity. Through this data integration, residual pesticides and organic solvents were identified to be some of the most highly-ranking predicted bioactive chemicals. This study provides a novel methodology for creating state or regional databases of biological activity of contaminants at Superfund sites. These data represent a novel integrated profile of the most prevalent chemicals at North Carolina Superfund sites. This information, and the associated methodology, is useful to toxicologists, risk assessors, and the communities living in close proximity to these sites. Copyright © 2016. Published by Elsevier Ltd.
Relocating the Active-Site Lysine in Rhodopsin: 2. Evolutionary Intermediates.
Devine, Erin L; Theobald, Douglas L; Oprian, Daniel D
2016-08-30
The visual pigment rhodopsin is a G protein-coupled receptor that covalently binds its retinal chromophore via a Schiff base linkage to an active-site Lys residue in the seventh transmembrane helix. Although this residue is strictly conserved among all type II retinylidene proteins, we found previously that the active-site Lys in bovine rhodopsin (Lys296) can be moved to three other locations (G90K, T94K, S186K) while retaining the ability to form a pigment with retinal and to activate transducin in a light-dependent manner [ Devine et al. ( 2013 ) Proc. Natl. Acad. Sci. USA 110 , 13351 - 13355 ]. Because the active-site Lys is not functionally constrained to be in helix seven, it is possible that it could relocate within the protein, most likely via an evolutionary intermediate with two active-site Lys. Therefore, in this study we characterized potential evolutionary intermediates with two Lys in the active site. Four mutant rhodopsins were prepared in which the original Lys296 was left untouched and a second Lys residue was substituted for G90K, T94K, S186K, or F293K. All four constructs covalently bind 11-cis-retinal, form a pigment, and activate transducin in a light-dependent manner. These results demonstrate that rhodopsin can tolerate a second Lys in the retinal binding pocket and suggest that an evolutionary intermediate with two Lys could allow migration of the Schiff base Lys to a position other than the observed, highly conserved location in the seventh TM helix. From sequence-based searches, we identified two groups of natural opsins, insect UV cones and neuropsins, that contain Lys residues at two positions in their active sites and also have intriguing spectral similarities to the mutant rhodopsins studied here.
Enhanced enzyme kinetic stability by increasing rigidity within the active site.
Xie, Yuan; An, Jiao; Yang, Guangyu; Wu, Geng; Zhang, Yong; Cui, Li; Feng, Yan
2014-03-14
Enzyme stability is an important issue for protein engineers. Understanding how rigidity in the active site affects protein kinetic stability will provide new insight into enzyme stabilization. In this study, we demonstrated enhanced kinetic stability of Candida antarctica lipase B (CalB) by mutating the structurally flexible residues within the active site. Six residues within 10 Å of the catalytic Ser(105) residue with a high B factor were selected for iterative saturation mutagenesis. After screening 2200 colonies, we obtained the D223G/L278M mutant, which exhibited a 13-fold increase in half-life at 48 °C and a 12 °C higher T50(15), the temperature at which enzyme activity is reduced to 50% after a 15-min heat treatment. Further characterization showed that global unfolding resistance against both thermal and chemical denaturation also improved. Analysis of the crystal structures of wild-type CalB and the D223G/L278M mutant revealed that the latter formed an extra main chain hydrogen bond network with seven structurally coupled residues within the flexible α10 helix that are primarily involved in forming the active site. Further investigation of the relative B factor profile and molecular dynamics simulation confirmed that the enhanced rigidity decreased fluctuation of the active site residues at high temperature. These results indicate that enhancing the rigidity of the flexible segment within the active site may provide an efficient method for improving enzyme kinetic stability.
Prado, R A; Barbosa, J A; Ohmiya, Y; Viviani, V R
2011-07-01
The structural origin and evolution of bioluminescent activity of beetle luciferases from AMP/CoA ligases remains a mystery. Previously we cloned the luciferase-like enzyme from Zophobas morio mealworm, a reasonable protoluciferase model that could shine light on this mystery. Kinetic characterization and studies with D- and L-luciferin and their adenylates showed that stereoselectivity constitutes a critical feature for the origin of luciferase activity in AMP/CoA ligases. Comparison of the primary structures and modeling studies of this protoluciferase and the three main families of beetle luciferases showed that the carboxylic acid substrate binding site of this enzyme is smaller and more hydrophobic than the luciferin binding site of beetle luciferases, showing several substitutions of otherwise conserved residues. Thus, here we performed a site-directed mutagenesis survey of the carboxylic binding site motifs of the protoluciferase by replacing their residues by the respective conserved ones found in beetle luciferases in order to identify the structural determinants of luciferase/oxygenase activity. Although most of the substitutions had negative impact on the luminescence activity of the protoluciferase, only the substitution I327T improved the luminescence activity, resulting in a broad and 15 nm blue-shifted luminescence spectrum. Such substitution indicates the importance of the loop motif 322YGMSEI327 (341YGLTETT347 in Photinus pyralis luciferase) for luciferase activity, and indicates a possible route for the evolution of bioluminescence function of beetle luciferases.
Gong, Gyeongtaek; Lee, Sun-Mi; Woo, Han Min; Park, Tai Hyun; Um, Youngsoon
2017-11-01
Efficient isolation of lignocellulolytic bacteria is essential for the utilization of lignocellulosic biomass. In this study, bacteria with cellulolytic, xylanolytic, and lignolytic activities were isolated from environmental sites such as mountain, wetland, and mudflat using isolation media containing the combination of lignocellulose components (cellulose, xylan, and lignin). Eighty-nine isolates from the isolation media were characterized by analyzing taxonomic ranks and cellulolytic, xylanolytic, and lignolytic activities. Most of the cellulolytic bacteria showed multienzymatic activities including xylanolytic activity. The isolation media without lignin were efficient in isolating bacteria exhibiting multienzymatic activities even including lignolytic activity, whereas a lignin-containing medium was effective to isolate bacteria exhibiting lignolytic activity only. Multienzymatic activities were mainly observed in Bacillus and Streptomyces, while Burkholderia was the most abundant genus with lignolytic activity only. This study provides insight into isolation medium for efficient isolation of lignocellulose-degrading microorganisms.
Yu, Deyang; Peng, Ying; Ayaz-Guner, Serife; Gregorich, Zachery R.; Ge, Ying
2015-01-01
AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that is essential in regulating energy metabolism in all eukaryotic cells. It is a heterotrimeric protein complex composed of a catalytic subunit (α) and two regulatory subunits (β and γ. C-terminal truncation of AMPKα at residue 312 yielded a protein that is active upon phosphorylation of Thr172 in the absence of β and γ subunits, which is refered to as the AMPK catalytic domain and commonly used to substitute for the AMPK heterotrimeric complex in in vitro kinase assays. However, a comprehensive characterization of the AMPK catalytic domain is lacking. Herein, we expressed a His-tagged human AMPK catalytic domin (denoted as AMPKΔ) in E. coli, comprehensively characterized AMPKΔ in its basal state and after in vitro phosphorylation using top-down mass spectrometry (MS), and assessed how phosphorylation of AMPKΔ affects its activity. Unexpectedly, we found that bacterially-expressed AMPKΔ was basally phosphorylated and localized the phosphorylation site to the His-tag. We found that AMPKΔ has noticeable basal activity and was capable of phosphorylating itself and its substrates without activating phosphorylation at Thr172. Moreover, our data suggested that Thr172 is the only site phosphorylated by its upstream kinase, liver kinase B1, and that this phosphorylation dramatically increases the kinase activity of AMPKΔ. Importantly, we demonstrated that top-down MS in conjunction with in vitro phosphorylation assay is a powerful approach for monitoring phosphorylation reaction and determining sequential order of phosphorylation events in kinase-substrate systems. PMID:26489410
NASA Astrophysics Data System (ADS)
Liasi, Faezeh Talebi; Samatham, Ravikant; Jacques, Steven L.
2017-11-01
Assessing the metabolic activity of a tissue, whether normal, damaged, aged, or pathologic, is useful for diagnosis and evaluating the effects of drugs. This report describes a handheld optical fiber probe that contacts the skin, applies pressure to blanch the superficial vascular plexus of the skin, then releases the pressure to allow refill of the plexus. The optical probe uses white light spectroscopy to record the time dynamics of blanching and refilling. The magnitude and dynamics of changes in blood content and hemoglobin oxygen saturation yield an estimate of the oxygen consumption rate (OCR) in units of attomoles per cell per second. The average value of OCR on nine forearm sites on five subjects was 10±5 (amol/cell/s). This low-cost, portable, rapid, noninvasive optical probe can characterize the OCR of a skin site to assess the metabolic activity of the epidermis or a superficial lesion.
Chakraborty, Sandeep; Minda, Renu; Salaye, Lipika; Bhattacharjee, Swapan K.; Rao, Basuthkar J.
2011-01-01
Computational methods are increasingly gaining importance as an aid in identifying active sites. Mostly these methods tend to have structural information that supplement sequence conservation based analyses. Development of tools that compute electrostatic potentials has further improved our ability to better characterize the active site residues in proteins. We have described a computational methodology for detecting active sites based on structural and electrostatic conformity - C ata L ytic A ctive S ite P rediction (CLASP). In our pipelined model, physical 3D signature of any particular enzymatic function as defined by its active sites is used to obtain spatially congruent matches. While previous work has revealed that catalytic residues have large pKa deviations from standard values, we show that for a given enzymatic activity, electrostatic potential difference (PD) between analogous residue pairs in an active site taken from different proteins of the same family are similar. False positives in spatially congruent matches are further pruned by PD analysis where cognate pairs with large deviations are rejected. We first present the results of active site prediction by CLASP for two enzymatic activities - β-lactamases and serine proteases, two of the most extensively investigated enzymes. The results of CLASP analysis on motifs extracted from Catalytic Site Atlas (CSA) are also presented in order to demonstrate its ability to accurately classify any protein, putative or otherwise, with known structure. The source code and database is made available at www.sanchak.com/clasp/. Subsequently, we probed alkaline phosphatases (AP), one of the well known promiscuous enzymes, for additional activities. Such a search has led us to predict a hitherto unknown function of shrimp alkaline phosphatase (SAP), where the protein acts as a protease. Finally, we present experimental evidence of the prediction by CLASP by showing that SAP indeed has protease activity in vitro. PMID:22174814
SITE CHARACTERIZATION LIBRARY VERSION 3.0
The Site Characterization Library is a CD that provides a centralized, field-portable source for site characterization information. Version 3 of the Site Characterization Library contains additional (from earlier versions) electronic documents and computer programs related to th...
Characterization of Rous sarcoma virus polyadenylation site use in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maciolek, Nicole L.; McNally, Mark T.
2008-05-10
Polyadenylation of Rous sarcoma virus (RSV) RNA is inefficient, as approximately 15% of RSV RNAs represent read-through transcripts that use a downstream cellular polyadenylation site (poly(A) site). Read-through transcription has implications for the virus and the host since it is associated with oncogene capture and tumor induction. To explore the basis of inefficient RSV RNA 3'-end formation, we characterized RSV polyadenylation in vitro using HeLa cell nuclear extracts and HEK293 whole cell extracts. RSV polyadenylation substrates composed of the natural 3' end of viral RNA and various lengths of upstream sequence showed little or no polyadenylation, indicating that the RSVmore » poly(A) site is suboptimal. Efficiently used poly(A) sites often have identifiable upstream and downstream elements (USEs and DSEs) in close proximity to the conserved AAUAAA signal. The sequences upstream and downstream of the RSV poly(A) site deviate from those found in efficiently used poly(A) sites, which may explain inefficient RSV polyadenylation. To assess the quality of the RSV USEs and DSEs, the well-characterized SV40 late USEs and/or DSEs were substituted for the RSV elements and vice versa, which showed that the USEs and DSEs from RSV are suboptimal but functional. CstF interacted poorly with the RSV polyadenylation substrate, and the inactivity of the RSV poly(A) site was at least in part due to poor CstF binding since tethering CstF to the RSV substrate activated polyadenylation. Our data are consistent with poor polyadenylation factor binding sites in both the USE and DSE as the basis for inefficient use of the RSV poly(A) site and point to the importance of additional elements within RSV RNA in promoting 3' end formation.« less
Tricyclic Covalent Inhibitors Selectively Target Jak3 through an Active Site Thiol*
Goedken, Eric R.; Argiriadi, Maria A.; Banach, David L.; Fiamengo, Bryan A.; Foley, Sage E.; Frank, Kristine E.; George, Jonathan S.; Harris, Christopher M.; Hobson, Adrian D.; Ihle, David C.; Marcotte, Douglas; Merta, Philip J.; Michalak, Mark E.; Murdock, Sara E.; Tomlinson, Medha J.; Voss, Jeffrey W.
2015-01-01
The action of Janus kinases (JAKs) is required for multiple cytokine signaling pathways, and as such, JAK inhibitors hold promise for treatment of autoimmune disorders, including rheumatoid arthritis, inflammatory bowel disease, and psoriasis. However, due to high similarity in the active sites of the four members (Jak1, Jak2, Jak3, and Tyk2), developing selective inhibitors within this family is challenging. We have designed and characterized substituted, tricyclic Jak3 inhibitors that selectively avoid inhibition of the other JAKs. This is accomplished through a covalent interaction between an inhibitor containing a terminal electrophile and an active site cysteine (Cys-909). We found that these ATP competitive compounds are irreversible inhibitors of Jak3 enzyme activity in vitro. They possess high selectivity against other kinases and can potently (IC50 < 100 nm) inhibit Jak3 activity in cell-based assays. These results suggest irreversible inhibitors of this class may be useful selective agents, both as tools to probe Jak3 biology and potentially as therapies for autoimmune diseases. PMID:25552479
Ramos, M.; Vieira, G.; Blanco, J.J.; Hauck, C.; Hidalgo, M.A.; Tome, D.; Nevers, M.; Trindade, A.
2007-01-01
This paper describes results obtained from scientific work and experiments performed on Livingston and Deception Islands. Located in the South Shetland Archipelago, these islands have been some of the most sensitive regions over the last 50 years with respect to climate change with a Mean Annual Air Temperature (MAAT) close to -2 ºC. Three Circumpolar Active Layer Monitoring (CALM) sites were installed to record the thermal regime and the behaviour of the active layer in different places with similar climate, but with different soil composition, porosity, and water content. The study’s ultimate aim is to document the influence of climate change on permafrost degradation. Preliminary results, obtained in 2006, on maximum active-layer thickness (around 40 cm in the CALM of Deception Island), active layer temperature evolution, snow thickness, and air temperatures permit early characterization of energy exchange mechanisms between the ground and the atmosphere in the CALM-S sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-06-01
The U.S. Environmental Protection Agency (EPA) has established health and environmental regulations to correct and prevent ground water contamination resulting from former uranium processing activities at inactive uranium processing sites (40 CFR Part 192 (1993)) (52 FR 36000 (1978)). According to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (42 USC {section} 7901 et seq.), the U.S. Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has decided that each assessment will include information on hydrogeologic site characterization. The water resources protection strategy that describes the proposed action compliance with the EPAmore » ground water protection standards is presented in Attachment 4, Water Resources Protection Strategy. Site characterization activities discussed in this section include the following: (1) Definition of the hydrogeologic characteristics of the environment, including hydrostratigraphy, aquifer parameters, areas of aquifer recharge and discharge, potentiometric surfaces, and ground water velocities. (2) Definition of background ground water quality and comparison with proposed EPA ground water protection standards. (3) Evaluation of the physical and chemical characteristics of the contaminant source and/or residual radioactive materials. (4) Definition of existing ground water contamination by comparison with the EPA ground water protection standards. (5) Description of the geochemical processes that affect the migration of the source contaminants at the processing site. (6) Description of water resource use, including availability, current and future use and value, and alternate water supplies.« less
Phosphatase activity in Antarctica soil samples as a biosignature of extant life
NASA Astrophysics Data System (ADS)
Sato, Shuji; Itoh, Yuki; Takano, Yoshinori; Fukui, Manabu; Kaneko, Takeo; Kobayashi, Kensei
Microbial activities have been detected in such extreme terrestrial environments as deep lithosphere, a submarine hydrothermal systems, stratosphere, and Antarctica. Microorganisms have adapted to such harsh environments by evolving their biomolecules. Some of these biomolecules such as enzymes might have different characteristics from those of organisms in ordinary environments. Many biosignatures (or biomarkers) have been proposed to detect microbial activities in such extreme environments. A number of techniques are proposed to evaluate biological activities in extreme environments including cultivation methods, assay of metabolism, and analysis of bioorganic compounds like amino acids and DNA. Enzyme activities are useful signature of extant life in extreme environments. Among many enzymes, phosphatase could be a good indicator of biological activities, since phosphate esters are essential for all the living terrestrial organisms. In addition, alkaline phosphatase is known as a typical zinc-containing metalloenzyme and quite stable in environments. We analyzed phosphatase activities in Antarctica soil samples to see whether they can be used as biosignatures for extant life. In addition, we characterized phosphatases extracted from the Antarctica soil samples, and compared with those obtained from other types of environments. Antarctica surface environments are quite severe environments for life since it is extremely cold and dry and exposed to strong UV and cosmic rays. We tried to evaluate biological activities in Antarctica by measuring phosphatase activities. Surface soil samples are obtained at the Sites 1-8 near Showa Base in Antarctica during the 47th Japan Antarctic exploration mission in 2005-6. Activities of acid phosphatase (ACP) and alkaline phosphatase (ALP) are measured spectrophotometrically after mixing the powdered sample and p-nitrophenyl phosphate solution (pH 6.5 for ACP, pH 8.0 for ALP). ALP was characterized after extraction from soils with Tris-HCl buffer (pH 9.0), where the activity was measured fluorometrically with 4-methylumbelliferyl phosphate (pH 8.0) as a substance. The soil of Site 8 (near a penguin rookery) showed almost the same level of ACP and ALP activities as usual surface soil sampled in YNU campus, while the soil of Sites 1-7 showed much less activities. ALP in the extract from the soil of Site 8 was characterized. It showed the maximal at 338 K, while ALP from the campus soil showed the maximal at 358 K. Gel filtration chromatography showed that the ALP activity was found only in the fraction whose molecular weights were over 60000. The ALP activity was diminished with EDTA and was recovered with addition of zinc ion. The present results showed that zinc-containing metalloenzymes, which had lower optimum temperature than those in usual environments, are present in Antarctica soil. It was suggested that phosphatases are good bio-signatures for extant life in extreme environments.
Tomanicek, Stephen J.; Hughes, Ronny C.; Ng, Joseph D.; Coates, Leighton
2010-01-01
The most frequent lesion in DNA is at apurinic/apyrimidinic (AP) sites resulting from DNA-base losses. These AP-site lesions can stall DNA replication and lead to genome instability if left unrepaired. The AP endonucleases are an important class of enzymes that are involved in the repair of AP-site intermediates during damage-general DNA base-excision repair pathways. These enzymes hydrolytically cleave the 5′-phosphodiester bond at an AP site to generate a free 3′-hydroxyl group and a 5′-terminal sugar phosphate using their AP nuclease activity. Specifically, Thermotoga maritima endonuclease IV is a member of the second conserved AP endonuclease family that includes Escherichia coli endonuclease IV, which is the archetype of the AP endonuclease superfamily. In order to more fully characterize the AP endonuclease family of enzymes, two X-ray crystal structures of the T. maritima endonuclease IV homologue were determined in the presence of divalent metal ions bound in the active-site region. These structures of the T. maritima endonuclease IV homologue further revealed the use of the TIM-barrel fold and the trinuclear metal binding site as important highly conserved structural elements that are involved in DNA-binding and AP-site repair processes in the AP endonuclease superfamily. PMID:20823514
NASA Astrophysics Data System (ADS)
Yu, Xiaofang; Yu, Xiaobo; Wu, Shujie; Liu, Bo; Liu, Heng; Guan, Jingqi; Kan, Qiubin
2011-02-01
Acid-base bifunctional heterogeneous catalysts containing carboxylic and amine groups, which were immobilized at defined distance from one another on the mesoporous solid were synthesized by immobilizing lysine onto carboxyl-SBA-15. The obtained materials were characterized by X-ray diffraction (XRD), N 2 adsorption, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron micrographs (SEM), transmission electron micrographs (TEM), elemental analysis, and back titration. Proximal-C-A-SBA-15 with a proximal acid-base distance was more active than maximum-C-A-SBA-15 with a maximum acid-base distance in aldol condensation reaction between acetone and various aldehydes. It appears that the distance between acidic site and basic site immobilized on mesoporous solid should be an essential factor for catalysis optimization.
Murray, David S.; Chinnam, Nagababu; Tonthat, Nam Ky; Whitfill, Travis; Wray, Lewis V.; Fisher, Susan H.; Schumacher, Maria A.
2013-01-01
Glutamine synthetase (GS), which catalyzes the production of glutamine, plays essential roles in nitrogen metabolism. There are two main bacterial GS isoenzymes, GSI-α and GSI-β. GSI-α enzymes, which have not been structurally characterized, are uniquely feedback-inhibited by Gln. To gain insight into GSI-α function, we performed biochemical and cellular studies and obtained structures for all GSI-α catalytic and regulatory states. GSI-α forms a massive 600-kDa dodecameric machine. Unlike other characterized GS, the Bacillus subtilis enzyme undergoes dramatic intersubunit conformational alterations during formation of the transition state. Remarkably, these changes are required for active site construction. Feedback inhibition arises from a hydrogen bond network between Gln, the catalytic glutamate, and the GSI-α-specific residue, Arg62, from an adjacent subunit. Notably, Arg62 must be ejected for proper active site reorganization. Consistent with these findings, an R62A mutation abrogates Gln feedback inhibition but does not affect catalysis. Thus, these data reveal a heretofore unseen restructuring of an enzyme active site that is coupled with an isoenzyme-specific regulatory mechanism. This GSI-α-specific regulatory network could be exploited for inhibitor design against Gram-positive pathogens. PMID:24158439
Konrad, Christopher; Sevier, Maria
2014-01-01
Geospatial information for the active streamflow gaging network in the Puget Sound Basin was compiled to support regional monitoring of stormwater effects to small streams. The compilation includes drainage area boundaries and physiographic and land use attributes that affect hydrologic processes. Three types of boundaries were used to tabulate attributes: Puget Sound Watershed Characterization analysis units (AU); the drainage area of active streamflow gages; and the catchments of Regional Stream Monitoring Program (RSMP) sites. The active streamflow gaging network generally includes sites that represent the ranges of attributes for lowland AUs, although there are few sites with low elevations (less than 60 meters), low precipitation (less than 1 meter year), or high stream density (greater than 5 kilometers per square kilometers). The active streamflow gaging network can serve to provide streamflow information in some AUs and RSMP sites, particularly where the streamflow gage measures streamflow generated from a part of the AU or that drains to the RSMP site, and that part of the AU or RSMP site is a significant fraction of the drainage area of the streamgage. The maximum fraction of each AU or RSMP catchment upstream of a streamflow gage and the maximum fraction of any one gaged basin in an AU or RSMP along with corresponding codes are provided in the attribute tables.
Sikowitz, Megan D; Shome, Brateen; Zhang, Yang; Begley, Tadhg P; Ealick, Steven E
2013-11-05
Thiaminases are responsible for the degradation of thiamin and its metabolites. Two classes of thiaminases have been identified based on their three-dimensional structures and their requirements for a nucleophilic second substrate. Although the reactions of several thiaminases have been characterized, the physiological role of thiamin degradation is not fully understood. We have determined the three-dimensional X-ray structure of an inactive C143S mutant of Clostridium botulinum (Cb) thiaminase I with bound thiamin at 2.2 Å resolution. The C143S/thiamin complex provides atomic level details of the orientation of thiamin upon binding to Cb-thiaminase I and the identity of active site residues involved in substrate binding and catalysis. The specific roles of active site residues were probed by using site directed mutagenesis and kinetic analyses, leading to a detailed mechanism for Cb-thiaminase I. The structure of Cb-thiaminase I is also compared to the functionally similar but structurally distinct thiaminase II.
Sugrue, Elena; Carr, Paul D; Scott, Colin; Jackson, Colin J
2016-11-15
The desolvation of ionizable residues in the active sites of enzymes and the subsequent effects on catalysis and thermostability have been studied in model systems, yet little about how enzymes can naturally evolve to include active sites with highly reactive and desolvated charges is known. Variants of triazine hydrolase (TrzN) with significant differences in their active sites have been isolated from different bacterial strains: TrzN from Nocardioides sp. strain MTD22 contains a catalytic glutamate residue (Glu241) that is surrounded by hydrophobic and aromatic second-shell residues (Pro214 and Tyr215), whereas TrzN from Nocardioides sp. strain AN3 has a noncatalytic glutamine residue (Gln241) at an equivalent position, surrounded by hydrophilic residues (Thr214 and His215). To understand how and why these variants have evolved, a series of TrzN mutants were generated and characterized. These results show that desolvation by second-shell residues increases the pK a of Glu241, allowing it to act as a general acid at neutral pH. However, significant thermostability trade-offs are required to incorporate the ionizable Glu241 in the active site and to then enclose it in a hydrophobic microenvironment. Analysis of high-resolution crystal structures shows that there are almost no structural changes to the overall configuration of the active site due to these mutations, suggesting that the changes in activity and thermostability are purely based on the altered electrostatics. The natural evolution of these enzyme isoforms provides a unique system in which to study the fundamental process of charged residue desolvation in enzyme catalysis and its relative contribution to the creation and evolution of an enzyme active site.
Structure of choline oxidase in complex with the reaction product glycine betaine.
Salvi, Francesca; Wang, Yuan-Fang; Weber, Irene T; Gadda, Giovanni
2014-02-01
Choline oxidase from Arthrobacter globiformis, which is involved in the biosynthesis of glycine betaine from choline, has been extensively characterized in its mechanistic and structural properties. Despite the knowledge gained on the enzyme, the details of substrate access to the active site are not fully understood. The `loop-and-lid' mechanism described for the glucose-methanol-choline enzyme superfamily has not been confirmed for choline oxidase. Instead, a hydrophobic cluster on the solvent-accessible surface of the enzyme has been proposed by molecular dynamics to control substrate access to the active site. Here, the crystal structure of the enzyme was solved in complex with glycine betaine at pH 6.0 at 1.95 Å resolution, allowing a structural description of the ligand-enzyme interactions in the active site. This structure is the first of choline oxidase in complex with a physiologically relevant ligand. The protein structures with and without ligand are virtually identical, with the exception of a loop at the dimer interface, which assumes two distinct conformations. The different conformations of loop 250-255 define different accessibilities of the proposed active-site entrance delimited by the hydrophobic cluster on the other subunit of the dimer, suggesting a role in regulating substrate access to the active site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sohn, H.; Camacho-Bunquin, J.; Langeslay, R. R.
Well-defined, isolated, single-site organovanadium(III) catalyst on SiO 2 [(SiO 2)V(Mes)(THF)] were synthesized via surface organometallic chemistry, and fully characterized using a combination of analytical and spectroscopic techniques (EA, ICP, 1H NMR, TGA-MS, EPR, XPS, DR-UV/Vis, UV-Raman, DRIFTS, XAS). The catalysts exhibit unprecedented reactivity in liquid- and gas-phase alkene/alkyne hydrogenation. Catalyst poisoning experiments revealed that 100% of the V sites are active for hydrogenation.
2012-10-01
Nairobi, Kericho, and Kisumu, including the National Influenza Center (NIC), the arbovirus reference laboratory, the antimalarial resistance...establish the pattern of antimalarial resistance across Kenya. An outbreak of dengue was investigated on the coast. Initial work to characterize...baseline activities . The lab has achieved most of its objectives by establishing six sand fly sampling sites in Kenya, one site in Ethiopia and four
Impact of dissolution on the sedimentary record of the Paleocene-Eocene thermal maximum
NASA Astrophysics Data System (ADS)
Bralower, Timothy J.; Kelly, D. Clay; Gibbs, Samantha; Farley, Kenneth; Eccles, Laurie; Lindemann, T. Logan; Smith, Gregory J.
2014-09-01
The input of massive amounts of carbon to the atmosphere and ocean at the Paleocene-Eocene Thermal Maximum (PETM; ˜55.53 Ma) resulted in pervasive carbonate dissolution at the seafloor. At many sites this dissolution also penetrated into the underlying sediment column. The magnitude of dissolution at and below the seafloor, a process known as chemical erosion, and its effect on the stratigraphy of the PETM, are notoriously difficult to constrain. Here, we illuminate the impact of dissolution by analyzing the complete spectrum of sedimentological grain sizes across the PETM at three deep-sea sites characterized by a range of bottom water dissolution intensity. We show that the grain size spectrum provides a measure of the sediment fraction lost during dissolution. We compare these data with dissolution and other proxy records, electron micrograph observations of samples and lithology. The complete data set indicates that the two sites with slower carbonate accumulation, and less active bioturbation, are characterized by significant chemical erosion. At the third site, higher carbonate accumulation rates, more active bioturbation, and possibly winnowing have limited the impacts of dissolution. However, grain size data suggest that bioturbation and winnowing were not sufficiently intense to diminish the fidelity of isotopic and microfossil assemblage records.
Selection and Characterization of Landing Sites for Chandrayaan-2 Lander
NASA Astrophysics Data System (ADS)
Gopala Krishna, Barla; Amitabh, Amitabh; Srinivasan, T. P.; Karidhal, Ritu; Nagesh, G.; Manjusha, N.
2016-07-01
Indian Space Research Organisation has planned the second mission to moon known as Chandrayaan-2, which consists of an Orbiter, a Lander and a Rover. This will be the first soft landing mission of India on lunar surface. The Orbiter, Lander and Rover individually will carry scientific payloads that enhance the scientific objectives of Chandrayaan-2. The Lander soft lands on the lunar surface and subsequently Lander & Rover will carry on with the payload activities on the moon surface. Landing Site identification based on the scientific and engineering constrains of lander plays an important role in success of a mission. The Lander poses some constraints because of its engineering design for the selection of the landing site and on the other hand the landing site / region imparts some constrain on the Lander. The various constraints that have to be considered for the study of the landing site are Local slope, Sun illumination during mission life, Radio communication with the Earth, Global slope towards equator, Boulders size, Crater density and boulder distribution. This paper describes the characterization activities of the different landing locations which have been studied for Chandrayaan-2 Lander. The sites have been studied both in the South Polar and North Polar regions of the moon on the near side. The Engineering Constraints at the sites due to the Lander, Factors that affect mission life (i.e. illumination at the location), Factors influencing communication to earth (i.e. RF visibility) & Shadow movements have been studied at these locations and zones that are favourable for landing have been short listed. This paper gives methodology of these studies along with the results of the characteristics of all the sites and the recommendations for further action in finalizing the landing area.
van Hazel, Ilke; Dungan, Sarah Z; Hauser, Frances E; Morrow, James M; Endler, John A; Chang, Belinda S W
2016-07-01
Rhodopsin is the visual pigment responsible for initiating the phototransduction cascade in vertebrate rod photoreceptors. Although well-characterized in a few model systems, comparative studies of rhodopsin function, particularly for nonmammalian vertebrates are comparatively lacking. Bowerbirds are rare among passerines in possessing a key substitution, D83N, at a site that is otherwise highly conserved among G protein-coupled receptors. While this substitution is present in some dim-light adapted vertebrates, often accompanying another unusual substitution, A292S, its functional relevance in birds is uncertain. To investigate functional effects associated with these two substitutions, we use the rhodopsin gene from the great bowerbird (Ptilonorhynchus nuchalis) as a background for site-directed mutagenesis, in vitro expression and functional characterization. We also mutated these sites in two additional rhodopsins that do not naturally possess N83, chicken and bovine, for comparison. Both sites were found to contribute to spectral blue-shifts, but had opposing effects on kinetic rates. Substitutions at site 83 were found to primarily affect the kinetics of light-activated rhodopsin, while substitutions at site 292 had a larger impact on spectral tuning. The contribution of substitutions at site 83 to spectral tuning in particular depended on genetic background, but overall, the effects of substitutions were otherwise surprisingly additive, and the magnitudes of functional shifts were roughly similar across all three genetic backgrounds. By employing a comparative approach with multiple species, our study provides new insight into the joint impact of sites 83 and 292 on rhodopsin structure-function as well as their evolutionary significance for dim-light vision across vertebrates. © 2016 The Protein Society.
Juárez, Oscar; Shea, Michael E.; Makhatadze, George I.; Barquera, Blanca
2011-01-01
The Na+-translocating NADH:quinone oxidoreductase is the entry site for electrons into the respiratory chain and the main sodium pump in Vibrio cholerae and many other pathogenic bacteria. In this work, we have employed steady-state and transient kinetics, together with equilibrium binding measurements to define the number of cation-binding sites and characterize their roles in the enzyme. Our results show that sodium and lithium ions stimulate enzyme activity, and that Na+-NQR enables pumping of Li+, as well as Na+ across the membrane. We also confirm that the enzyme is not able to translocate other monovalent cations, such as potassium or rubidium. Although potassium is not used as a substrate, Na+-NQR contains a regulatory site for this ion, which acts as a nonessential activator, increasing the activity and affinity for sodium. Rubidium can bind to the same site as potassium, but instead of being activated, enzyme turnover is inhibited. Activity measurements in the presence of both sodium and lithium indicate that the enzyme contains at least two functional sodium-binding sites. We also show that the binding sites are not exclusively responsible for ion selectivity, and other steps downstream in the mechanism also play a role. Finally, equilibrium-binding measurements with 22Na+ show that, in both its oxidized and reduced states, Na+-NQR binds three sodium ions, and that the affinity for sodium is the same for both of these states. PMID:21652714
Vo, Uybach; Vajpai, Navratna; Flavell, Liz; Bobby, Romel; Breeze, Alexander L.; Embrey, Kevin J.; Golovanov, Alexander P.
2016-01-01
The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly 15N-labeled Ras as well as [13C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions. PMID:26565026
Whitney, J.W.; Keefer, W.R.
2000-01-01
In recognition of a critical national need for permanent radioactive-waste storage, Yucca Mountain in southwestern Nevada has been investigated by Federal agencies since the 1970's, as a potential geologic disposal site. In 1987, Congress selected Yucca Mountain for an expanded and more detailed site characterization effort. As an integral part of this program, the U.S. Geological Survey began a series of detailed geologic, geophysical, and related investigations designed to characterize the tectonic setting, fault behavior, and seismicity of the Yucca Mountain area. This document presents the results of 13 studies of the tectonic environment of Yucca Mountain, in support of a broad goal to assess the effects of future seismic and fault activity in the area on design, long-term performance, and safe operation of the potential surface and subsurface repository facilities.
Zhang, Wenhua; Chen, Zhihao; Al-Naji, Majd; Guo, Penghu; Cwik, Stefan; Halbherr, Olesia; Wang, Yuemin; Muhler, Martin; Wilde, Nicole; Gläser, Roger; Fischer, Roland A
2016-10-14
Simultaneous incorporation of palladium within Pd-Pd and/or Pd-Cu paddlewheels as framework-nodes and Pd nanoparticle (NP) dispersion into MOF have been achieved for the first time via one-pot synthesis. In particular, the framework substitution of Cu(2+) by Pd(2+) as well as the pore loading with PdNPs have been confirmed and characterized by XPS. The obtained solids featuring such multiple Pd-sites show enhanced catalytic activity in the aqueous-phase hydrogenation of p-nitrophenol (PNP) with NaBH4 to p-aminophenol (PAP).
Considering Traditional Ecological Knowledge (TEK) During the Cleanup Process
This memorandum provides direction to improve the decision-making process as it relates to site assessment, characterization, and cleanup activities, to ensure EPA's Office of Land and Emergency Management is considering TEK when tribes provide it to EPA.
SCO shipments from Rocky Flats : experience and current practice
DOT National Transportation Integrated Search
2002-01-01
Decommissioning activities at Rocky Flats Environmental Technology Site (RFETS) are expected to generate approximately 251,000 cubic meters of low-level radioactive waste. Almost half of this will be characterized and shipped as the Department of Tra...
Exploring the Active Site of the Tungsten, Iron-Sulfur Enzyme Acetylene Hydratase▿ †
tenBrink, Felix; Schink, Bernhard; Kroneck, Peter M. H.
2011-01-01
The soluble tungsten, iron-sulfur enzyme acetylene hydratase (AH) from mesophilic Pelobacter acetylenicus is a member of the dimethyl sulfoxide (DMSO) reductase family. It stands out from its class as it catalyzes a nonredox reaction, the addition of H2O to acetylene (H—C☰C—H) to form acetaldehyde (CH3CHO). Caught in its active W(IV) state, the high-resolution three-dimensional structure of AH offers an excellent starting point to tackle its unique chemistry and to identify catalytic amino acid residues within the active site cavity: Asp13 close to W(IV) coordinated to two molybdopterin-guanosine-dinucleotide ligands, Lys48 which couples the [4Fe-4S] cluster to the W site, and Ile142 as part of a hydrophobic ring at the end of the substrate access channel designed to accommodate the substrate acetylene. A protocol was developed to express AH in Escherichia coli and to produce active-site variants which were characterized with regard to activity and occupancy of the tungsten and iron-sulfur centers. By this means, fusion of the N-terminal chaperone binding site of the E. coli nitrate reductase NarG to the AH gene improved the yield and activity of AH and its variants significantly. Results from site-directed mutagenesis of three key residues, Asp13, Lys48, and Ile142, document their important role in catalysis of this unusual tungsten enzyme. PMID:21193613
Sayer, Christopher; Finnigan, William; Isupov, Michail N; Levisson, Mark; Kengen, Servé W M; van der Oost, John; Harmer, Nicholas J; Littlechild, Jennifer A
2016-05-10
A new carboxyl esterase, AF-Est2, from the hyperthermophilic archaeon Archaeoglobus fulgidus has been cloned, over-expressed in Escherichia coli and biochemically and structurally characterized. The enzyme has high activity towards short- to medium-chain p-nitrophenyl carboxylic esters with optimal activity towards the valerate ester. The AF-Est2 has good solvent and pH stability and is very thermostable, showing no loss of activity after incubation for 30 min at 80 °C. The 1.4 Å resolution crystal structure of AF-Est2 reveals Coenzyme A (CoA) bound in the vicinity of the active site. Despite the presence of CoA bound to the AF-Est2 this enzyme has no CoA thioesterase activity. The pantetheine group of CoA partially obstructs the active site alcohol pocket suggesting that this ligand has a role in regulation of the enzyme activity. A comparison with closely related α/β hydrolase fold enzyme structures shows that the AF-Est2 has unique structural features that allow CoA binding. A comparison of the structure of AF-Est2 with the human carboxyl esterase 1, which has CoA thioesterase activity, reveals that CoA is bound to different parts of the core domain in these two enzymes and approaches the active site from opposite directions.
Sayer, Christopher; Finnigan, William; Isupov, Michail N.; Levisson, Mark; Kengen, Servé W. M.; van der Oost, John; Harmer, Nicholas J.; Littlechild, Jennifer A.
2016-01-01
A new carboxyl esterase, AF-Est2, from the hyperthermophilic archaeon Archaeoglobus fulgidus has been cloned, over-expressed in Escherichia coli and biochemically and structurally characterized. The enzyme has high activity towards short- to medium-chain p-nitrophenyl carboxylic esters with optimal activity towards the valerate ester. The AF-Est2 has good solvent and pH stability and is very thermostable, showing no loss of activity after incubation for 30 min at 80 °C. The 1.4 Å resolution crystal structure of AF-Est2 reveals Coenzyme A (CoA) bound in the vicinity of the active site. Despite the presence of CoA bound to the AF-Est2 this enzyme has no CoA thioesterase activity. The pantetheine group of CoA partially obstructs the active site alcohol pocket suggesting that this ligand has a role in regulation of the enzyme activity. A comparison with closely related α/β hydrolase fold enzyme structures shows that the AF-Est2 has unique structural features that allow CoA binding. A comparison of the structure of AF-Est2 with the human carboxyl esterase 1, which has CoA thioesterase activity, reveals that CoA is bound to different parts of the core domain in these two enzymes and approaches the active site from opposite directions. PMID:27160974
NASA Astrophysics Data System (ADS)
Mohanapriya, S.; Renuka devi, R.; Raj, V.
2018-02-01
Mesoporous Nickel has been prepared by electrodeposition using non-ionic surfactant based liquid crystalline template under optimized processing conditions. Physico-chemical properties of mesoporous nickel is systematically characterized through XRD, SEM and AFM analyses. Comparison of electrocatalytic activity of mesoporous nickel with smooth nickel was interrogated using cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) analyses. Distinctly enhanced electrocatalytic activity with improved surface poisoning resistance related to mesoporous nickel electrode towards methanol oxidation stems from unique mesoporous morphology. This mesoporous morphology with high surface to volume ratio is highly beneficial to promote active catalytic centers to offer readily accessible Pt catalytic sites for MOR, through facilitating mass and electron transports.
NASA Astrophysics Data System (ADS)
Bader, B. E.
1981-10-01
The principal activities of the Sandia National Laboratories in the Department of Energy Oil shale program during the period April 1 to June 30, 1981 are discussed. Currently, Sandia's activities are focused upon: the development and use of analytical and experimental modeling techniques to describe and predict the retort properties and retorting process parameters that are important to the preparation, operation, and stability of in situ retorts, and the development, deployment, and field use of instrumentation, data acquisition, and process monitoring systems to characterize and evaluate in site up shale oil recovery operations. In-house activities and field activities (at the Geokinetics Oil Shale Project and the Occidental Oil Shale Project) are described under the headings: bed preparation, bed characterization, retorting process, and structural stability.
Tilley, Sloane K.; Reif, David M.; Fry, Rebecca C.
2017-01-01
Background The Superfund program of the Environmental Protection Agency (EPA) was established in 1980 to address public health concerns posed by toxic substances released into the environment in the United States. Forty-two of the 1328 hazardous waste sites that remain on the Superfund National Priority List are located in the state of North Carolina. Methods We set out to develop a database that contained information on both the prevalence and biological activity of chemicals present at Superfund sites in North Carolina. A chemical characterization tool, the Toxicological Priority Index (ToxPi), was used to rank the biological activity of these chemicals based on their predicted bioavailability, documented associations with biological pathways, and activity in in vitro assays of the ToxCast and Tox21 programs. Results The ten most prevalent chemicals found at North Carolina Superfund sites were chromium, trichloroethene, lead, tetrachloroethene, arsenic, benzene, manganese, 1,2-dichloroethane, nickel, and barium. For all chemicals found at North Carolina Superfund sites, ToxPi analysis was used to rank their biological activity. Through this data integration, residual pesticides and organic solvents were identified to be some of the most highly-ranking predicted bioactive chemicals. This study provides a novel methodology for creating state or regional databases of Superfund sites. Conclusions These data represent a novel integrated profile of the most prevalent chemicals at North Carolina Superfund sites. This information, and the associated methodology, is useful to toxicologists, risk assessors, and the communities living in close proximity to these sites. PMID:28153528
Modulation of individual steps in group I intron catalysis by a peripheral metal ion.
Forconi, Marcello; Piccirilli, Joseph A; Herschlag, Daniel
2007-10-01
Enzymes are complex macromolecules that catalyze chemical reactions at their active sites. Important information about catalytic interactions is commonly gathered by perturbation or mutation of active site residues that directly contact substrates. However, active sites are engaged in intricate networks of interactions within the overall structure of the macromolecule, and there is a growing body of evidence about the importance of peripheral interactions in the precise structural organization of the active site. Here, we use functional studies, in conjunction with published structural information, to determine the effect of perturbation of a peripheral metal ion binding site on catalysis in a well-characterized catalytic RNA, the Tetrahymena thermophila group I ribozyme. We perturbed the metal ion binding site by site-specifically introducing a phosphorothioate substitution in the ribozyme's backbone, replacing the native ligands (the pro-R (P) oxygen atoms at positions 307 and 308) with sulfur atoms. Our data reveal that these perturbations affect several reaction steps, including the chemical step, despite the absence of direct contacts of this metal ion with the atoms involved in the chemical transformation. As structural probing with hydroxyl radicals did not reveal significant change in the three-dimensional structure upon phosphorothioate substitution, the effects are likely transmitted through local, rather subtle conformational rearrangements. Addition of Cd(2+), a thiophilic metal ion, rescues some reaction steps but has deleterious effects on other steps. These results suggest that native interactions in the active site may have been aligned by the naturally occurring peripheral residues and interactions to optimize the overall catalytic cycle.
Condie, Brian G; Urbanski, William M
2014-01-01
Effective tools for searching the biomedical literature are essential for identifying reagents or mouse strains as well as for effective experimental design and informed interpretation of experimental results. We have built the Textpresso Site Specific Recombinases (Textpresso SSR) Web server to enable researchers who use mice to perform in-depth searches of a rapidly growing and complex part of the mouse literature. Our Textpresso Web server provides an interface for searching the full text of most of the peer-reviewed publications that report the characterization or use of mouse strains that express Cre or Flp recombinase. The database also contains most of the publications that describe the characterization or analysis of strains carrying conditional alleles or transgenes that can be inactivated or activated by site-specific recombinases such as Cre or Flp. Textpresso SSR complements the existing online databases that catalog Cre and Flp expression patterns by providing a unique online interface for the in-depth text mining of the site specific recombinase literature.
Engineering peptide ligase specificity by proteomic identification of ligation sites.
Weeks, Amy M; Wells, James A
2018-01-01
Enzyme-catalyzed peptide ligation is a powerful tool for site-specific protein bioconjugation, but stringent enzyme-substrate specificity limits its utility. We developed an approach for comprehensively characterizing peptide ligase specificity for N termini using proteome-derived peptide libraries. We used this strategy to characterize the ligation efficiency for >25,000 enzyme-substrate pairs in the context of the engineered peptide ligase subtiligase and identified a family of 72 mutant subtiligases with activity toward N-terminal sequences that were previously recalcitrant to modification. We applied these mutants individually for site-specific bioconjugation of purified proteins, including antibodies, and in algorithmically selected combinations for sequencing of the cellular N terminome with reduced sequence bias. We also developed a web application to enable algorithmic selection of the most efficient subtiligase variant(s) for bioconjugation to user-defined sequences. Our methods provide a new toolbox of enzymes for site-specific protein modification and a general approach for rapidly defining and engineering peptide ligase specificity.
GAS HYDRATES AT TWO SITES OF AN ACTIVE CONTINENTAL MARGIN.
Kvenvolden, K.A.
1985-01-01
Sediment containing gas hydrates from two distant Deep Sea Drilling Project sites (565 and 568), located about 670 km apart on the landward flank of the Middle America Trench, was studied to determine the geochemical conditions that characterize the occurrence of gas hydrates. Site 565 was located in the Pacific Ocean offshore the Nicoya Peninsula of Costa Rica in 3,111 m of water. The depth of the hole at this site was 328 m, and gas hydrates were recovered from 285 and 319 m. Site 568 was located about 670 km to the northwest offshore Guatemala in 2,031 m of water. At this site the hole penetrated to 418 m, and gas hydrates were encountered at 404 m.
2011-01-01
Background Ambient particulate matter (PM) exposure is associated with respiratory and cardiovascular morbidity and mortality. To what extent such effects are different for PM obtained from different sources or locations is still unclear. This study investigated the in vitro toxicity of ambient PM collected at different sites in the Netherlands in relation to PM composition and oxidative potential. Method PM was sampled at eight sites: three traffic sites, an underground train station, as well as a harbor, farm, steelworks, and urban background location. Coarse (2.5-10 μm), fine (< 2.5 μm) and quasi ultrafine PM (qUF; < 0.18 μm) were sampled at each site. Murine macrophages (RAW 264.7 cells) were exposed to increasing concentrations of PM from these sites (6.25-12.5-25-50-100 μg/ml; corresponding to 3.68-58.8 μg/cm2). Following overnight incubation, MTT-reduction activity (a measure of metabolic activity) and the release of pro-inflammatory markers (Tumor Necrosis Factor-alpha, TNF-α; Interleukin-6, IL-6; Macrophage Inflammatory Protein-2, MIP-2) were measured. The oxidative potential and the endotoxin content of each PM sample were determined in a DTT- and LAL-assay respectively. Multiple linear regression was used to assess the relationship between the cellular responses and PM characteristics: concentration, site, size fraction, oxidative potential and endotoxin content. Results Most PM samples induced a concentration-dependent decrease in MTT-reduction activity and an increase in pro-inflammatory markers with the exception of the urban background and stop & go traffic samples. Fine and qUF samples of traffic locations, characterized by a high concentration of elemental and organic carbon, induced the highest pro-inflammatory activity. The pro-inflammatory response to coarse samples was associated with the endotoxin level, which was found to increase dramatically during a three-day sample concentration procedure in the laboratory. The underground samples, characterized by a high content of transition metals, showed the largest decrease in MTT-reduction activity. PM size fraction was not related to MTT-reduction activity, whereas there was a statistically significant difference in pro-inflammatory activity between Fine and qUF PM. Furthermore, there was a statistically significant negative association between PM oxidative potential and MTT-reduction activity. Conclusion The response of RAW264.7 cells to ambient PM was markedly different using samples collected at various sites in the Netherlands that differed in their local PM emission sources. Our results are in support of other investigations showing that the chemical composition as well as oxidative potential are determinants of PM induced toxicity in vitro. PMID:21888644
Evolution of a designed retro-aldolase leads to complete active site remodeling
Giger, Lars; Caner, Sami; Obexer, Richard; Kast, Peter; Baker, David; Ban, Nenad; Hilvert, Donald
2013-01-01
Evolutionary advances are often fueled by unanticipated innovation. Directed evolution of a computationally designed enzyme suggests that dramatic molecular changes can also drive the optimization of primitive protein active sites. The specific activity of an artificial retro-aldolase was boosted >4,400 fold by random mutagenesis and screening, affording catalytic efficiencies approaching those of natural enzymes. However, structural and mechanistic studies reveal that the engineered catalytic apparatus, consisting of a reactive lysine and an ordered water molecule, was unexpectedly abandoned in favor of a new lysine residue in a substrate binding pocket created during the optimization process. Structures of the initial in silico design, a mechanistically promiscuous intermediate, and one of the most evolved variants highlight the importance of loop mobility and supporting functional groups in the emergence of the new catalytic center. Such internal competition between alternative reactive sites may have characterized the early evolution of many natural enzymes. PMID:23748672
Bharadwaj, Vivek S; Dean, Anthony M; Maupin, C Mark
2013-08-21
The fumarate addition reaction, catalyzed by the enzyme benzylsuccinate synthase (BSS), is considered to be one of the most intriguing and energetically challenging reactions in biology. BSS belongs to the glycyl radical enzyme family and catalyzes the fumarate addition reaction, which enables microorganisms to utilize hydrocarbons as an energy source under anaerobic conditions. Unfortunately, the extreme sensitivity of the glycyl radical to oxygen has hampered the structural and kinetic characterization of BSS, thereby limiting our knowledge on this enzyme. To enhance our molecular-level understanding of BSS, a computational approach involving homology modeling, docking studies, and molecular dynamics (MD) simulations has been used to deduce the structure of BSS's catalytic subunit (BSSα) and illuminate the molecular basis for the fumarate addition reaction. We have identified two conserved and distinct binding pockets at the BSSα active site: a hydrophobic pocket for toluene binding and a polar pocket for fumaric acid binding. Subsequent dynamical and energetic evaluations have identified Glu509, Ser827, Leu390, and Phe384 as active site residues critical for substrate binding. The orientation of substrates at the active site observed in MD simulations is consistent with experimental observations of the syn addition of toluene to fumaric acid. It is also found that substrate binding tightens the active site and restricts the conformational flexibility of the thiyl radical, leading to hydrogen transfer distances conducive to the proposed reaction mechanism. The stability of substrates at the active site and the occurrence of feasible radical transfer distances between the thiyl radical, substrates, and the active site glycine indicate a substrate-assisted radical transfer pathway governing fumarate addition.
Papouin, Thomas; Dunphy, Jaclyn; Tolman, Michaela; Dineley, Kelly T.; Haydon, Philip G.
2017-01-01
Summary The activation of the N-methyl D-aspartate receptor (NMDAR) is controlled by a glutamate-binding site and a distinct, independently regulated, co-agonist-binding site. In most brain regions, the NMDAR co-agonist is the astrocyte-derived gliotransmitter D-serine. We found that D-serine levels oscillate in mouse hippocampus as a function of wakefulness, in vitro and in vivo. This causes a full saturation of the NMDAR co-agonist site in the dark (active)-phase that dissipates to sub-saturating levels during the light (sleep)-phase, and influences learning performance throughout the day. We demonstrate that hippocampal astrocytes sense the wakefulness-dependent activity of septal cholinergic fibers through the α7-nicotinic acetylcholine receptor (α7nAChR), whose activation drives D-serine release. We conclude that astrocytes tune the gating of synaptic NMDARs to the vigilance state and demonstrate that this is directly relevant to schizophrenia, a disorder characterized by NMDAR and cholinergic hypofunctions. Indeed, bypassing cholinergic activity with a clinically-tested α7nAChR agonist successfully enhances NMDARs activation. PMID:28479102
Peavey, Mary C; Reynolds, Corey L; Szwarc, Maria M; Gibbons, William E; Valdes, Cecilia T; DeMayo, Francesco J; Lydon, John P
2017-10-24
High-frequency ultrasonography (HFUS) is a common method to non-invasively monitor the real-time development of the human fetus in utero. The mouse is routinely used as an in vivo model to study embryo implantation and pregnancy progression. Unfortunately, such murine studies require pregnancy interruption to enable follow-up phenotypic analysis. To address this issue, we used three-dimensional (3-D) reconstruction of HFUS imaging data for early detection and characterization of murine embryo implantation sites and their individual developmental progression in utero. Combining HFUS imaging with 3-D reconstruction and modeling, we were able to accurately quantify embryo implantation site number as well as monitor developmental progression in pregnant C57BL6J/129S mice from 5.5 days post coitus (d.p.c.) through to 9.5 d.p.c. with the use of a transducer. Measurements included: number, location, and volume of implantation sites as well as inter-implantation site spacing; embryo viability was assessed by cardiac activity monitoring. In the immediate post-implantation period (5.5 to 8.5 d.p.c.), 3-D reconstruction of the gravid uterus in both mesh and solid overlay format enabled visual representation of the developing pregnancies within each uterine horn. As genetically engineered mice continue to be used to characterize female reproductive phenotypes derived from uterine dysfunction, this method offers a new approach to detect, quantify, and characterize early implantation events in vivo. This novel use of 3-D HFUS imaging demonstrates the ability to successfully detect, visualize, and characterize embryo-implantation sites during early murine pregnancy in a non-invasive manner. The technology offers a significant improvement over current methods, which rely on the interruption of pregnancies for gross tissue and histopathologic characterization. Here we use a video and text format to describe how to successfully perform ultrasounds of early murine pregnancy to generate reliable and reproducible data with reconstruction of the uterine form in mesh and solid 3-D images.
NASA Astrophysics Data System (ADS)
Moise, Adrian; Maeser, Stefan; Rawer, Stephan; Eggers, Frederike; Murphy, Mary; Bornheim, Jeff; Przybylski, Michael
2016-06-01
Fabry disease (FD) is a rare metabolic disorder of a group of lysosomal storage diseases, caused by deficiency or reduced activity of the enzyme α-galactosidase. Human α-galactosidase A (hαGAL) hydrolyses the terminal α-galactosyl moiety from glycosphingolipids, predominantly globotriaosylceramide (Gb3). Enzyme deficiency leads to incomplete or blocked breakdown and progressive accumulation of Gb3, with detrimental effects on normal organ functions. FD is successfully treated by enzyme replacement therapy (ERT) with purified recombinant hαGAL. An emerging treatment strategy, pharmacologic chaperone therapy (PCT), employs small molecules that can increase and/or reconstitute the activity of lysosomal enzyme trafficking by stabilizing misfolded isoforms. One such chaperone, 1-deoxygalactonojirimycin (DGJ), is a structural galactose analogue currently validated in clinical trials. DGJ is an active-site-chaperone that binds at the same or similar location as galactose; however, the molecular determination of chaperone binding sites in lysosomal enzymes represents a considerable challenge. Here we report the identification of the galactose and DGJ binding sites in recombinant α-galactosidase through a new affinity-mass spectrometry-based approach that employs selective proteolytic digestion of the enzyme-galactose or -inhibitor complex. Binding site peptides identified by mass spectrometry, [39-49], [83-100], and [141-168], contain the essential ligand-contacting amino acids, in agreement with the known X-ray crystal structures. The inhibitory effect of DGJ on galactose recognition was directly characterized through competitive binding experiments and mass spectrometry. The methods successfully employed in this study should have high potential for the characterization of (mutated) enzyme-substrate and -chaperone interactions, and for identifying chaperones without inhibitory effects.
SMARTe Site Characterization Tool. In: SMARTe20ll, EPA/600/C-10/007
The purpose of the Site Characterization Tool is to: (1) develop a sample design for collecting site characterization data and (2) perform data analysis on uploaded data. The sample design part helps to determine how many samples should be collected to characterize a site with ...
A measurement of the magnetic field direction at the site of major flares
NASA Technical Reports Server (NTRS)
Lundstedt, H.
1982-01-01
Lundstedt et al. (1981) showed that the direction of the photospheric magnetic field at the site of a flare is a good predictor of the solar wind velocity observed at earth four days later. It is described here how the field direction was obtained, and possible errors involved in the determination of the angle are discussed. The discussion also includes a characterization of the solar active regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karmi, S.; Madden, J.; Borsetti, R.
1996-01-05
This report presents the findings of Remedial Investigations and Feasibility Studies at sites located at the Barter Island radar installation in northern Alaska. The sites were characterized based on sampling and analyses conducted during Remedial Investigation activities performed during August and September 1993.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karmi, S.
1996-02-19
This report presents the findings of Remedial Investigations and Feasibility Studies at sites located at the Point Barrow radar installation in northern Alaska. The sites were characterized based on sampling and analyses conducted during Remedial Investigation activities performed during August and September 1993.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artavanis-Tsakonas, Katerina; Weihofen, Wilhelm A.; Antos, John M.
Like their human hosts, Plasmodium falciparum parasites rely on the ubiquitin-proteasome system for survival. We previously identified PfUCHL3, a deubiquitinating enzyme, and here we characterize its activity and changes in active site architecture upon binding to ubiquitin. We find strong evidence that PfUCHL3 is essential to parasite survival. The crystal structures of both PfUCHL3 alone and in complex with the ubiquitin-based suicide substrate UbVME suggest a rather rigid active site crossover loop that likely plays a role in restricting the size of ubiquitin adduct substrates. Molecular dynamics simulations of the structures and a model of the PfUCHL3-PfNedd8 complex allowed themore » identification of shared key interactions of ubiquitin and PfNedd8 with PfUCHL3, explaining the dual specificity of this enzyme. Distinct differences observed in ubiquitin binding between PfUCHL3 and its human counterpart make it likely that the parasitic DUB can be selectively targeted while leaving the human enzyme unaffected.« less
Yi, Y; Birks, S J; Cho, S; Gibson, J J
2015-06-15
This study was conducted to characterize the composition of dissolved organic compounds present in snow and surface waters in the Athabasca Oil Sands Region (AOSR) with the goal of identifying whether atmospherically-derived organic compounds present in snow are a significant contributor to the compounds detected in surface waters (i.e., rivers and lakes). We used electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR MS) to characterize the dissolved organic compound compositions of snow and surface water samples. The organic profiles obtained for the snow samples show compositional differences between samples from near-field sites (<5 km from oil sands activities) and those from more distant locations (i.e., far-field sites). There are also significant compositional differences between samples collected in near-field sites and surface water samples in the AOSR. The composition of dissolved organic compounds at the upstream Athabasca River site (i.e., Athabasca River at Athabasca) is found to be different from samples obtained from downstream sites in the vicinity of oil sands operations (i.e., Athabasca River at Fort McMurray and Athabasca River at Firebag confluence). The upstream Athabasca River sites tended to share some compositional similarities with far-field snow deposition, while the downstream Athabasca River sites are more similar to local lakes and tributaries. This contrast likely indicates the relative role of regional snowmelt contributions to the Athabasca River vs inputs from local catchments in the reach downstream of Fort McMurray. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
This work plan establishes the methods and requirements for performing a radiological survey at the David Witherspoon, Incorporated, Landfill-1630 Site, Knoxville, Tennessee (DWI 1630 Site) in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). The radiological survey will identify the radiological contamination level of the equipment and debris stored at the DWI 1630 Site. The data generated from the survey activities will support the decisions for characterization of the equipment/debris and aid in subsequent disposition and waste handling. The survey activities to be performed under this work plan include an equipment radiological survey,more » a walkover survey, and an immunoassay testing for polychlorinated biphenyls (PCBs). This work plan includes a quality assurance (QA)/quality control (QC) project plan, a health and safety (H&S) plan, and a waste management plan.« less
Epigenetic regulation of TTF-I-mediated promoter–terminator interactions of rRNA genes
Németh, Attila; Guibert, Sylvain; Tiwari, Vijay Kumar; Ohlsson, Rolf; Längst, Gernot
2008-01-01
Ribosomal RNA synthesis is the eukaryotic cell's main transcriptional activity, but little is known about the chromatin domain organization and epigenetics of actively transcribed rRNA genes. Here, we show epigenetic and spatial organization of mouse rRNA genes at the molecular level. TTF-I-binding sites subdivide the rRNA transcription unit into functional chromatin domains and sharply delimit transcription factor occupancy. H2A.Z-containing nucleosomes occupy the spacer promoter next to a newly characterized TTF-I-binding site. The spacer and the promoter proximal TTF-I-binding sites demarcate the enhancer. DNA from both the enhancer and the coding region is hypomethylated in actively transcribed repeats. 3C analysis revealed an interaction between promoter and terminator regions, which brings the beginning and end of active rRNA genes into close contact. Reporter assays show that TTF-I mediates this interaction, thereby linking topology and epigenetic regulation of the rRNA genes. PMID:18354495
Discovery and characterization of a new family of lytic polysaccharide mono-oxygenases
Hemsworth, Glyn R.; Henrissat, Bernard; Davies, Gideon J.; Walton, Paul H.
2014-01-01
Lytic polysaccharide mono-oxygenases (LPMOs) are a recently discovered class of enzymes capable of oxidizing recalcitrant polysaccharides. They currently attract much attention due to their potential use in biomass conversion, notably in the production of biofuels. Past work has identified two discrete sequence-based families of these enzymes termed AA9 (formerly GH61) and AA10 (formerly CBM33). Here we report the discovery of a third family of LPMOs. Using a chitin-degrading exemplar from Aspergillus oryzae, we show that the 3-D structure of the enzyme shares some features of the previous two classes of LPMOs, including a copper active centre featuring the histidine brace active site, but is distinct in terms of its active site details and its EPR spectroscopy. The new AA11 family expands the LPMO clan with the potential to broaden both the range of potential substrates and the types of reactive copper-oxygen species formed at the active site of LPMOs. PMID:24362702
Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase
Fenwick, Michael K.; Mehta, Angad P.; Zhang, Yang; ...
2015-03-27
Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active sitemore » metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.« less
Crystallographic structure of a small molecule SIRT1 activator-enzyme complex
NASA Astrophysics Data System (ADS)
Dai, Han; Case, April W.; Riera, Thomas V.; Considine, Thomas; Lee, Jessica E.; Hamuro, Yoshitomo; Zhao, Huizhen; Jiang, Yong; Sweitzer, Sharon M.; Pietrak, Beth; Schwartz, Benjamin; Blum, Charles A.; Disch, Jeremy S.; Caldwell, Richard; Szczepankiewicz, Bruce; Oalmann, Christopher; Yee Ng, Pui; White, Brian H.; Casaubon, Rebecca; Narayan, Radha; Koppetsch, Karsten; Bourbonais, Francis; Wu, Bo; Wang, Junfeng; Qian, Dongming; Jiang, Fan; Mao, Cheney; Wang, Minghui; Hu, Erding; Wu, Joe C.; Perni, Robert B.; Vlasuk, George P.; Ellis, James L.
2015-07-01
SIRT1, the founding member of the mammalian family of seven NAD+-dependent sirtuins, is composed of 747 amino acids forming a catalytic domain and extended N- and C-terminal regions. We report the design and characterization of an engineered human SIRT1 construct (mini-hSIRT1) containing the minimal structural elements required for lysine deacetylation and catalytic activation by small molecule sirtuin-activating compounds (STACs). Using this construct, we solved the crystal structure of a mini-hSIRT1-STAC complex, which revealed the STAC-binding site within the N-terminal domain of hSIRT1. Together with hydrogen-deuterium exchange mass spectrometry (HDX-MS) and site-directed mutagenesis using full-length hSIRT1, these data establish a specific STAC-binding site and identify key intermolecular interactions with hSIRT1. The determination of the interface governing the binding of STACs with human SIRT1 facilitates greater understanding of STAC activation of this enzyme, which holds significant promise as a therapeutic target for multiple human diseases.
Structure of a Thermobifida fusca lytic polysaccharide monooxygenase and mutagenesis of key residues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruer-Zerhusen, Nathan; Alahuhta, Markus; Lunin, Vladimir V.
Auxiliary activity (AA) enzymes are produced by numerous bacterial and fungal species to assist in the degradation of biomass. These enzymes are abundant but have yet to be fully characterized. Here, we report the X-ray structure of Thermobifida fusca AA10A (TfAA10A), investigate mutational characterization of key surface residues near its active site, and explore the importance of the various domains of Thermobifida fusca AA10B (TfAA10B). The structure of TfAA10A is similar to other bacterial LPMOs (lytic polysaccharide monooxygenases), including signs of photo-reduction and a distorted active site, with mixed features showing both type I and II copper coordination. The pointmore » mutation experiments of TfAA10A show that Trp82 and Asn83 are needed for binding, but only Trp82 affects activity. The TfAA10B domain truncation mutants reveal that CBM2 is crucial for the binding of substrate, but that the X1 module does not affect binding or activity. In TfAA10A, Trp82 and Asn83 are needed for binding, but only Trp82 affects activity. The TfAA10B domain truncation mutants reveal that CBM2 is crucial for substrate binding, but that the X1 module does not affect binding or activity. The structure of TfAA10A is similar to other bacterial lytic polysaccharide monooxygenases with mixed features showing both type I and II copper coordination. The role of LPMOs and the variability of abundance in genomes are not fully explored. LPMOs likely perform initial attacks into crystalline cellulose to allow larger processive cellulases to bind and attack, but the precise nature of their synergistic behavior remains to be definitively characterized.« less
Structure of a Thermobifida fusca lytic polysaccharide monooxygenase and mutagenesis of key residues
Kruer-Zerhusen, Nathan; Alahuhta, Markus; Lunin, Vladimir V.; ...
2017-11-30
Auxiliary activity (AA) enzymes are produced by numerous bacterial and fungal species to assist in the degradation of biomass. These enzymes are abundant but have yet to be fully characterized. Here, we report the X-ray structure of Thermobifida fusca AA10A (TfAA10A), investigate mutational characterization of key surface residues near its active site, and explore the importance of the various domains of Thermobifida fusca AA10B (TfAA10B). The structure of TfAA10A is similar to other bacterial LPMOs (lytic polysaccharide monooxygenases), including signs of photo-reduction and a distorted active site, with mixed features showing both type I and II copper coordination. The pointmore » mutation experiments of TfAA10A show that Trp82 and Asn83 are needed for binding, but only Trp82 affects activity. The TfAA10B domain truncation mutants reveal that CBM2 is crucial for the binding of substrate, but that the X1 module does not affect binding or activity. In TfAA10A, Trp82 and Asn83 are needed for binding, but only Trp82 affects activity. The TfAA10B domain truncation mutants reveal that CBM2 is crucial for substrate binding, but that the X1 module does not affect binding or activity. The structure of TfAA10A is similar to other bacterial lytic polysaccharide monooxygenases with mixed features showing both type I and II copper coordination. The role of LPMOs and the variability of abundance in genomes are not fully explored. LPMOs likely perform initial attacks into crystalline cellulose to allow larger processive cellulases to bind and attack, but the precise nature of their synergistic behavior remains to be definitively characterized.« less
Sádaba, Irantzu; Ojeda, Manuel; Mariscal, Rafael; Richards, Ryan; López Granados, Manuel
2012-10-08
A series of Mg-Zr mixed oxides with different nominal Mg/(Mg+Zr) atomic ratios, namely 0, 0.1, 0.2, 0.4, 0.85, and 1, is prepared by alcogel methodology and fundamental insights into the phases obtained and resulting active sites are studied. Characterization is performed by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, N(2) adsorption-desorption isotherms, and thermal and chemical analysis. Cubic Mg(x)Zr(1-x)O(2-x) solid solution, which results from the dissolution of Mg(2+) cations within the cubic ZrO(2) structure, is the main phase detected for the solids with theoretical Mg/(Mg+Zr) atomic ratio ≤0.4. In contrast, the cubic periclase (c-MgO) phase derived from hydroxynitrates or hydroxy precursors predominates in the solid with Mg/(Mg+Zr)=0.85. c-MgO is also incipiently detected in samples with Mg/(Mg+Zr)=0.2 and 0.4, but in these solids the c-MgO phase mostly arises from the segregation of Mg atoms out of the alcogel-derived c-Mg(x)Zr(1-x)O(2-x) phase during the calcination process, and therefore the species c-MgO and c-Mg(x)Zr(1-x)O(2-x) are in close contact. Regarding the intrinsic activity in furfural-acetone aldol condensation in the aqueous phase, these Mg-O-Zr sites located at the interface between c-Mg(x)Zr(1-x)O(2-x) and segregated c-MgO display a much larger intrinsic activity than the other noninterface sites that are present in these catalysts: Mg-O-Mg sites on c-MgO and Mg-O-Zr sites on c-Mg(x)Zr(1-x)O(2-x). The very active Mg-O-Zr sites rapidly deactivate in the furfural-acetone condensation due to the leaching of active phases, deposition of heavy hydrocarbonaceous compounds, and hydration of the c-MgO phase. Nonetheless, these Mg-Zr materials with very high specific surface areas would be suitable solid catalysts for other relevant reactions catalyzed by strong basic sites in nonaqueous environments. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, E.A.; Bannon, G.A.; Glenn, K.C.
2008-11-21
The lysine insensitive Corynebacterium glutamicum dihydrodipicolinate synthase enzyme (cDHDPS) was recently successfully introduced into maize plants to enhance the level of lysine in the grain. To better understand lysine insensitivity of the cDHDPS, we expressed, purified, kinetically characterized the protein, and solved its X-ray crystal structure. The cDHDPS enzyme has a fold and overall structure that is highly similar to other DHDPS proteins. A noteworthy feature of the active site is the evidence that the catalytic lysine residue forms a Schiff base adduct with pyruvate. Analyses of the cDHDPS structure in the vicinity of the putative binding site for S-lysinemore » revealed that the allosteric binding site in the Escherichia coli DHDPS protein does not exist in cDHDPS due to three non-conservative amino acids substitutions, and this is likely why cDHDPS is not feedback inhibited by lysine.« less
Open-access microfluidic patch-clamp array with raised lateral cell trapping sites.
Lau, Adrian Y; Hung, Paul J; Wu, Angela R; Lee, Luke P
2006-12-01
A novel open-access microfluidic patch-clamp array chip with lateral cell trapping sites raised above the bottom plane of the chip was developed by combining both a microscale soft-lithography and a macroscale polymer fabrication method. This paper demonstrates the capability of using such an open-access fluidic system for patch-clamp measurements. The surface of the open-access patch-clamp sites prepared by the macroscale hole patterning method of soft-state elastic polydimethylsiloxane (PDMS) is examined; the seal resistances are characterized and correlated with the aperture dimensions. Whole cell patch-clamp measurements are carried out with CHO cells expressing Kv2.1 ion channels. Kv2.1 ion channel blocker (TEA) dosage response is characterized and the binding activity is examined. The results demonstrate that the system is capable of performing whole cell measurements and drug profiling in a more efficient manner than the traditional patch-clamp set-up.
NASA Technical Reports Server (NTRS)
Rich, Paul M.; Fournier, Robert; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)
2000-01-01
The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-23 (Terrestrial Ecology) team collected map plot data in support of its efforts to characterize and interpret information on canopy architecture and understory cover at the BOREAS tower flux sites and selected auxiliary sites from May to August 1994. Mapped plots (typical dimensions 50 m x 60 m) were set up and characterized at all BOREAS forested tower flux and selected auxiliary sites. Detailed measurement of the mapped plots included: (1) stand characteristics (location, density, basal area); (2) map locations diameter at breast height (DBH) of all trees; (3) detailed geometric measures of a subset of trees (height, crown dimensions); and (4) understory cover maps. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
van der Merwe, Deon; Carpenter, James W; Nietfeld, Jerome C; Miesner, John F
2011-07-01
Lead and zinc poisoning have been recorded in a variety of bird species, including migrating waterfowl such as Canada Geese (Branta canadensis), at sites contaminated with mine waste from lead and zinc mines in the Tri-State Mining District, Kansas, Oklahoma, and Missouri, USA. The adverse health impacts from mine waste on these birds may, however, be more extensive than is apparent from incidental reports of clinical disease. To characterize health impacts from mine waste on Canada Geese that do not have observable signs of poisoning, four to eight apparently healthy birds per site were collected from four contaminated sites and an uncontaminated reference site, and examined for physical and physiologic evidence of metals poisoning. Tissue concentrations of silver, aluminum, arsenic, barium, cadmium, cobalt, chromium, copper, iron, magnesium, manganese, molybdenum, nickel, lead, selenium, thallium, vanadium, and zinc were determined by inductively coupled plasma mass spectroscopy. Adverse health effects due to lead were characterized by assessing blood δ-aminolevulinic acid dehydratase (ALAD) enzyme activity. Adverse effects associated with zinc poisoning were determined from histologic examination of pancreas tissues. Elevated tissue lead concentrations and inhibited blood ALAD enzyme activities were consistently found in birds at all contaminated sites. Histopathologic signs of zinc poisoning, including fibrosis and vacuolization, were associated with elevated pancreatic zinc concentrations at one of the study sites. Adverse health effects associated with other analyzed elements, or tissue concentrations indicating potentially toxic exposure levels to these elements, were not observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eddy Dilek, C.A.; Looney, B.B.; Hazen, T.C.
A full-scale demonstration of the use of horizontal wells for in situ air stripping for environment restoration was completed as part of the Savannah River Integrated Demonstration Program. The demonstration of in situ air stripping was the first in a series of demonstrations of innovative remediation technologies for the cleanup of sites contaminated with volatile organic contaminants. The in situ air stripping system consisted of two directionally drilled wells that delivered gases to and extract contamination from the subsurface. The demonstration was designed to remediate soils and sediments in the unsaturated and saturated zones as well as groundwater contaminated withmore » volatile organic compounds. The demonstration successfully removed significant quantities of solvent from the subsurface. The field site and horizontal wells were subsequently used for an in situ bioremediation demonstration during which methane was added to the injected air. The field conditions documented herein represent the baseline status of the site for evaluating the in situ bioremediation as well as the post-test conditions for the in situ air stripping demonstration. Characterization activities focused on documenting the nature and distribution of contamination in the subsurface. The post-test characterization activities discussed herein include results from the analysis of sediment samples, three-dimensional images of the pretest and post-test data, contaminant inventories estimated from pretest and post-test models, a detailed lithologic cross sections of the site, results of aquifer testing, and measurements of geotechnical parameters of undisturbed core sediments.« less
Molecular and functional characterization of the promoter of ETS2, the human c-ets-2 gene.
Mavrothalassitis, G J; Watson, D K; Papas, T S
1990-01-01
The 5' end of the human c-ets-2 gene, ETS2, was cloned and characterized. The major transcription initiation start sites were identified, and the pertinent sequences surrounding the ETS2 promoter were determined. The promoter region of ETS2 does not possess typical "TATA" and "CAAT" elements. However, this promoter contains several repeat regions, as well as two consensus AP2 binding sites and three putative Sp1 sites. There is also a palindromic region similar to the serum response element of the c-fos gene, located 1400 base pairs (bp) upstream from the first major transcription initiation site. A G + C-rich sequence (GC element) with dyad symmetry can be seen in the ETS2 promoter, immediately following an unusually long (approximately 250-bp) polypurine-polypyrimidine tract. A series of deletion fragments from the putative promoter region were ligated in front of the bacterial chloramphenicol acetyltransferase gene and tested for activity following transfection into HeLa cells. The 5' boundary of the region needed for maximum promoter activity was found to be 159 bp upstream of the major initiation site. This region of 159 bp contains putative binding sites for transcription factors Sp1 and AP2 (one for each), the GC element, one small forward repeat, one inverted repeat, and half of the polypurine-pyrimidine tract. The promoter of ETS2 (within the polypyrimidine tract) serves to illustrate an alternative structure that may be present in genes with "TATA-less" promoters. Images PMID:2405393
Janero, David R; Korde, Anisha; Makriyannis, Alexandros
2017-01-01
Detailed characterization of the ligand-binding motifs and structure-function correlates of the principal GPCRs of the endocannabinoid-signaling system, the cannabinoid 1 (CB1R) and cannabinoid 2 (CB2R) receptors, is essential to inform the rational design of drugs that modulate CB1R- and CB2R-dependent biosignaling for therapeutic gain. We discuss herein an experimental paradigm termed "ligand-assisted protein structure" (LAPS) that affords a means of characterizing, at the amino acid level, CB1R and CB2R structural features key to ligand engagement and receptor-dependent information transmission. For this purpose, LAPS integrates three key disciplines and methodologies: (a) medicinal chemistry: design and synthesis of high-affinity, pharmacologically active probes as reporters capable of reacting irreversibly with particular amino acids at (or in the immediate vicinity of) the ligand-binding domain of the functionally active receptor; (b) molecular and cellular biology: introduction of discrete, conservative point mutations into the target GPCR and determination of their effect on probe binding and pharmacological activity; (c) analytical chemistry: identification of the site(s) of probe-GPCR interaction through focused, bottom-up, amino acid-level proteomic identification of the probe-receptor complex using liquid chromatography tandem mass spectrometry. Subsequent in silico methods including ligand docking and computational modeling provide supplementary data on the probe-receptor interaction as defined by LAPS. Examples of LAPS as applied to human CB2R orthosteric binding site characterization for a biarylpyrazole antagonist/inverse agonist and a classical cannabinoid agonist belonging to distinct chemical classes of cannabinergic compounds are given as paradigms for further application of this methodology to other therapeutic protein targets. LAPS is well positioned to complement other experimental and in silico methods in contemporary structural biology such as X-ray crystallography. © 2017 Elsevier Inc. All rights reserved.
Modulation of Cardiac Ryanodine Receptor Channels by Alkaline Earth Cations
Diaz-Sylvester, Paula L.; Porta, Maura; Copello, Julio A.
2011-01-01
Cardiac ryanodine receptor (RyR2) function is modulated by Ca2+ and Mg2+. To better characterize Ca2+ and Mg2+ binding sites involved in RyR2 regulation, the effects of cytosolic and luminal earth alkaline divalent cations (M2+: Mg2+, Ca2+, Sr2+, Ba2+) were studied on RyR2 from pig ventricle reconstituted in bilayers. RyR2 were activated by M2+ binding to high affinity activating sites at the cytosolic channel surface, specific for Ca2+ or Sr2+. This activation was interfered by Mg2+ and Ba2+ acting at low affinity M2+-unspecific binding sites. When testing the effects of luminal M2+ as current carriers, all M2+ increased maximal RyR2 open probability (compared to Cs+), suggesting the existence of low affinity activating M2+-unspecific sites at the luminal surface. Responses to M2+ vary from channel to channel (heterogeneity). However, with luminal Ba2+or Mg2+, RyR2 were less sensitive to cytosolic Ca2+ and caffeine-mediated activation, openings were shorter and voltage-dependence was more marked (compared to RyR2 with luminal Ca2+or Sr2+). Kinetics of RyR2 with mixtures of luminal Ba2+/Ca2+ and additive action of luminal plus cytosolic Ba2+ or Mg2+ suggest luminal M2+ differentially act on luminal sites rather than accessing cytosolic sites through the pore. This suggests the presence of additional luminal activating Ca2+/Sr2+-specific sites, which stabilize high Po mode (less voltage-dependent) and increase RyR2 sensitivity to cytosolic Ca2+ activation. In summary, RyR2 luminal and cytosolic surfaces have at least two sets of M2+ binding sites (specific for Ca2+ and unspecific for Ca2+/Mg2+) that dynamically modulate channel activity and gating status, depending on SR voltage. PMID:22039534
van Hazel, Ilke; Dungan, Sarah Z.; Hauser, Frances E.; Morrow, James M.; Endler, John A.
2016-01-01
Abstract Rhodopsin is the visual pigment responsible for initiating the phototransduction cascade in vertebrate rod photoreceptors. Although well‐characterized in a few model systems, comparative studies of rhodopsin function, particularly for nonmammalian vertebrates are comparatively lacking. Bowerbirds are rare among passerines in possessing a key substitution, D83N, at a site that is otherwise highly conserved among G protein‐coupled receptors. While this substitution is present in some dim‐light adapted vertebrates, often accompanying another unusual substitution, A292S, its functional relevance in birds is uncertain. To investigate functional effects associated with these two substitutions, we use the rhodopsin gene from the great bowerbird (Ptilonorhynchus nuchalis) as a background for site‐directed mutagenesis, in vitro expression and functional characterization. We also mutated these sites in two additional rhodopsins that do not naturally possess N83, chicken and bovine, for comparison. Both sites were found to contribute to spectral blue‐shifts, but had opposing effects on kinetic rates. Substitutions at site 83 were found to primarily affect the kinetics of light‐activated rhodopsin, while substitutions at site 292 had a larger impact on spectral tuning. The contribution of substitutions at site 83 to spectral tuning in particular depended on genetic background, but overall, the effects of substitutions were otherwise surprisingly additive, and the magnitudes of functional shifts were roughly similar across all three genetic backgrounds. By employing a comparative approach with multiple species, our study provides new insight into the joint impact of sites 83 and 292 on rhodopsin structure‐function as well as their evolutionary significance for dim‐light vision across vertebrates. PMID:26889650
Characterization of surface complexes in enhanced Raman scattering
NASA Astrophysics Data System (ADS)
Roy, D.; Furtak, T. E.
1984-11-01
An indicator molecule, para-nitrosodimethylanaline (p-NDMA), has been used to study the chemical nature of surface complexes involving the active site for SERS in the electrochemical environment. We present evidence for positively charged Ag atoms stabilized by coadsorbed Cl- ions as the primary sites which are produced during the oxidation reduction cycle treatment of an Ag electrode. Depending on the relative number of Cl- ions which influence the Ag site the active site demonstrates a greater or lesser electron accepting character toward p-NDMA. This character is influenced by the applied voltage and by the presence of Tl+ ions in the bulk of the solution near the surface. As in previously studied systems p-NDMA/Cl-/Ag complexes demonstrate charge transfer excitation which in this case is from the p-NDMA to the Ag site. These results further solidify the importance of complex formation in electrochemical SERS and suggest that caution should be applied when using SERS as a quantitative measure of surface coverage.
Characterization of a native hammerhead ribozyme derived from schistosomes
OSBORNE, EDITH M.; SCHAAK, JANELL E.; DEROSE, VICTORIA J.
2005-01-01
A recent re-examination of the role of the helices surrounding the conserved core of the hammerhead ribozyme has identified putative loop–loop interactions between stems I and II in native hammerhead sequences. These extended hammerhead sequences are more active at low concentrations of divalent cations than are minimal hammerheads. The loop–loop interactions are proposed to stabilize a more active conformation of the conserved core. Here, a kinetic and thermodynamic characterization of an extended hammerhead sequence derived from Schistosoma mansoni is performed. Biphasic kinetics are observed, suggesting the presence of at least two conformers, one cleaving with a fast rate and the other with a slow rate. Replacing loop II with a poly(U) sequence designed to eliminate the interaction between the two loops results in greatly diminished activity, suggesting that the loop–loop interactions do aid in forming a more active conformation. Previous studies with minimal hammerheads have shown deleterious effects of Rp-phosphorothioate substitutions at the cleavage site and 5′ to A9, both of which could be rescued with Cd2+. Here, phosphorothioate modifications at the cleavage site and 5′ to A9 were made in the schistosome-derived sequence. In Mg2+, both phosphorothioate substitutions decreased the overall fraction cleaved without significantly affecting the observed rate of cleavage. The addition of Cd2+ rescued cleavage in both cases, suggesting that these are still putative metal binding sites in this native sequence. PMID:15659358
Study site characterization. Chapter 2
Chris Potter; Richard Birdsey
2008-01-01
This chapter is an overview of the main site characterization requirements at landscape-scale sampling locations. The overview is organized according to multiple "Site Attribute" headings that require descriptions throughout a given study site area, leading ultimately to a sufficient overall site characterization. Guidance is provided to describe the major...
NASA Astrophysics Data System (ADS)
Glass, J. B.; Stanton, C. L.; Ochoa, H.; Haslun, J. A.; Gandhi, H.; Taillefert, M.; Dichristina, T. J.; Stewart, F. J.; Klotz, M. G.; Ostrom, N. E.
2016-02-01
Marine emissions of nitrous oxide (N2O), a potent greenhouse gas, comprise approximately a third of global sources. Recent evidence suggests that the dominant source of N2O in seawater is the activity of ammonia-oxidizing Thaumarchaeota that lack characterized N2O-generating enzymes. Nitrous oxide may arise from a novel enzyme and/or abiotic reactions between nitrification intermediates, hydroxylamine (NH2OH) and nitric oxide (NO), and redox-active metals in seawater. Isotopic site preference, or difference in δ15N between the two nitrogen atoms in N2O, has been used as tracer for microbial N2O production pathways (-10 to 0‰ for nitrifier-denitrification and denitrification vs. 30-37‰ for nitrification via NH2OH oxidation). Seawater N2O site preference falls in between these two characterized end members, suggesting simultaneous production via a combination of both microbial pathways or via a novel mechanism with intermediate site preference. Here we show significant N2O production in abiotic experiments after addition of iron to seawater containing NH2OH and NO. The N2O produced from chemical reduction of NO by Fe(II) had a site preference of 16‰ whereas N2O produced from abiotic NH2OH oxidation had a site preference of 31‰. We propose that coupled biotic-abiotic N2O production pathways could contribute significant sources of N2O at marine oxic-anoxic interfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trujillo, P.A.; Anderson, K.D.
2007-07-01
This paper describes the challenges behind the implementation of the characterization, remediation, and the Site Closure for three 91b Radioactive Wastes under a Performance Based Contract at Lackland Air Force Base, San Antonio, Texas. The Defense Environmental Restoration Program (DERP) was established by Section 211 of the Superfund Amendments and Reauthorization Act of 1986 (SARA). A part of the DERP provides for the cleanup of hazardous substances associated with past Department of Defense (DoD) activities and is consistent with the provisions of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). It is the Air Force Installation Restoration Program (IRP)more » that has responsibility for the cleanup activities associated with CERCLA. Under contract to the Air Force Center for Environmental Excellence (AFCEE), the ECC Project Team, that included ECC, Cabrera Services, and Malcolm Pirnie, was responsible for the implementation of the actions at three sites. The three IRP (91b) sites included RW015, a 0.02 square kilometer (5.5 acre) site, RW017 a 0.003 square kilometer (0.9 acre) site, and RW033 an 0.356 square kilometer (88 acre) site. Adding to the complexities of the project were issues of archaeological areas of interest, jurisdictional wetlands, land open to hunting, issues of security as well as compliance to the myriad of air force base rules, regulations, and Air Force Instructions (AFI). The award of the project task order was July of 2005, the project plan phase started in July of 2005 followed by the remedy implementation that included characterization and remediation as required reached completion in June of 2006. The project closure including the development and approval final status survey reports, proposed plans, and decision documents that parallel the CERCLA process was initiated in June of 2006 and is expected to reach completion in August of 2007. This paper will focus on the issues of working to achieve radiological and chemical closure under a performance based contract vehicle and the challenges encountered while reaching this goal. (authors)« less
NASA Astrophysics Data System (ADS)
Yücel, Haluk; Budak, Mustafa Guray; Karadag, Mustafa; Yüksel, Alptuğ Özer
2014-11-01
For the applicability of instrumental neutron activation analysis (NAA) technique, an irradiation unit with a 37 GBq 241Am-Be neutron source was installed at Institute of Nuclear Sciences of Ankara University. Design and configuration properties of the irradiation unit are described. It has two different sample irradiation positions, one is called site #1 having a pneumatic sample transfer system and the other is site #2 having a location for manual use. In order to characterize neutron flux spectra in the irradiation sites, the measurement results were obtained for thermal (Vth) and epithermal neutron fluxes (Vepi), thermal to epithermal flux ratio (f) and epithermal spectrum shaping factors (α) by employing cadmium ratios of gold (Au) and molybdenum (Mo) monitors. The activities produced in these foils were measured by using a p-type, 44.8% relative efficiency HPGe well detector. For the measured γ-rays, self-absorption and true coincidence summing effects were taken into account. Additionally, thermal neutron self-shielding and resonance neutron self-shielding effects were taken into account in the measured results. For characterization of site #1, the required parameters were found to be Vth = (2.11 ± 0.05) × 103 n cm-2 s-1, Vepi = (3.32 ± 0.17) × 101 n cm-2 s-1, f = 63.6 ± 1.5, α = 0.045 ± 0.009, respectively. Similarly, those parameters were measured in site #2 as Vth = (1.49 ± 0.04) × 103 n cm-2 s-1, Vepi = (2.93 ± 0.15) × 101 n cm-2 s-1, f = 50.9 ± 1.3 and α = 0.038 ± 0.008. The results for f-values indicate that good thermalization of fast neutrons on the order of 98% was achieved in both sample irradiation sites. This is because an optimum combination of water and paraffin moderator is used in the present configuration. In addition, the shielding requirements are met by using natural boron oxide powder (5.5 cm) and boron loaded paraffin layers against neutrons, and a 15 cm thick lead bricks against gamma-rays from source and its surrounding materials.
Rakus, John F.; Kalyanaraman, Chakrapani; Fedorov, Alexander A.; Fedorov, Elena V.; Mills-Groninger, Fiona P.; Toro, Rafael; Bonanno, Jeffrey; Bain, Kevin; Sauder, J. Michael; Burley, Stephen K.; Almo, Steven C.; Jacobson, Matthew P.; Gerlt, John A.
2009-01-01
The structure of an uncharacterized member of the enolase superfamily from Oceanobacillus iheyensis (GI: 23100298; IMG locus tag Ob2843; PDB Code 2OQY) was determined by the New York SGX Research Center for Structural Genomics (NYSGXRC). The structure contained two Mg2+ ions located 10.4 Å from one another, with one located in the canonical position in the (β/α)7β-barrel domain (although the ligand at the end of the fifth β-strand is His, unprecedented in structurally characterized members of the superfamily); the second is located in a novel site within the capping domain. In silico docking of a library of mono- and diacid sugars to the active site predicted a diacid sugar as a likely substrate. Activity screening of a physical library of acid sugars identified galactarate as the substrate (kcat = 6.8 s−1, KM = 620 μM; kcat/KM = 1.1 × 104 M−1 s−1), allowing functional assignment of Ob2843 as galactarate dehydratase (GalrD-II) The structure of a complex of the catalytically impaired Y90F mutant with Mg2+ and galactarate allowed identification of a Tyr 164-Arg 162 dyad as the base that initiates the reaction by abstraction of the α-proton and Tyr 90 as the acid that facilitates departure of the β-OH leaving group. The enzyme product is 2-keto-3-deoxy-D-threo-4,5-dihydroxyadipate, the enantiomer of the product obtained in the GalrD reaction catalyzed by a previously characterized bifunctional L-talarate/galactarate dehydratase (TalrD/GalrD). On the basis of the different active site structures and different regiochemistries, we recognize that these functions represent an example of apparent, not actual, convergent evolution of function. The structure of GalrD-II and its active site architecture allow identification of the seventh functionally and structurally characterized subgroup in the enolase superfamily. This study provides an additional example that an integrated sequence/structure-based strategy employing computational approaches is a viable approach for directing functional assignment of unknown enzymes discovered in genome projects. PMID:19883118
NASA Astrophysics Data System (ADS)
Karami, Kazem; Rafiee, Mina; Lighvan, Zohreh Mehri; Zakariazadeh, Mostafa; Faal, Ali Yeganeh; Esmaeili, Seyed-Alireza; Momtazi-Borojeni, Amir Abbas
2018-02-01
[Pd{(C,N)sbnd C6H4CH (CH3)NH}(CUR)] (3) and [Pd2{(C,N)sbnd C6H4CH(CH3)NH2}2(μ-N3CS2)] (4) [cur = 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dion] novel organometallic complexes with biologically active ligands have been prepared and characterized via elemental analysis, multinuclear spectroscopic techniques (1H, and 13C NMR and IR) and their biological activities, including antitumoral activity and DNA-protein interactions have been investigated. Fluorescence spectroscopy used to study the interaction of the complexes with BSA have shown the affinity of the complexes for these proteins with relatively high binding constant values and the changed secondary structure of BSA in the presence of the complexes. In the meantime, spectroscopy and competitive titration have been applied to investigate the interaction of complexes with Warfarin and Ibuprofen site markers for sites I and II, respectively, with BSA. The results have suggested that the locations of complexes 3 and 4 are sites II and I, respectively. UV-Vis spectroscopy, emission titration and helix melting methods have been used to study the interaction of these complexes with CT-DNA, indicating that complexes are bound to CT-DNA by intercalation binding mode. In addition, good cytotoxic activity against MCF-7 (human breast cancer) and JURKAT (human leukemia) cell line has been shown by both complexes whereas low cytotoxicity was exerted on normal peripheral blood mononuclear cells.
Tu, N; Chen, H; Winnikes, U; Reinert, I; Marmann, G; Pirke, K M; Lentes, K U
1999-11-19
As a member of the uncoupling protein family, UCP2 is ubiquitously expressed in rodents and humans, implicating a major role in thermogenesis. To analyze promoter function and regulatory motifs involved in the transcriptional regulation of UCP2 gene expression, 3.3 kb of 5'-flanking region of the human UCP2 (hUCP2) gene have been cloned. Sequence analysis showed that the promoter region of hUCP2 lacks a classical TATA or CAAT box, however, appeared GC-rich resulting in the presence of several Sp-1 motifs and Ap-1/-2 binding sites near the transcription initiation site. Functional characterization of human UCP2 promoter-CAT fusion constructs in transient expression assays showed that minimal promoter activity was observed within 65 bp upstream of the transcriptional start site (+1). 75 bp further upstream (from nt -141 to -66) a strong cis-acting regulatory element (or enhancer) was identified, which significantly enhanced basal promoter activity. The regulation of human UCP2 gene expression involves complex interactions among positive and negative regulatory elements distributed over a minimum of 3.3 kb of the promoter region. Copyright 1999 Academic Press.
Unciuleac, Mihaela-Carmen; Smith, Paul C; Shuman, Stewart
2016-05-15
AAA proteins (ATPases associated with various cellular activities) use the energy of ATP hydrolysis to drive conformational changes in diverse macromolecular targets. Here, we report the biochemical characterization and 2.5-Å crystal structure of a Mycobacterium smegmatis AAA protein Msm0858, the ortholog of Mycobacterium tuberculosis Rv0435c. Msm0858 is a magnesium-dependent ATPase and is active with all nucleoside triphosphates (NTPs) and deoxynucleoside triphosphates (dNTPs) as substrates. The Msm0858 structure comprises (i) an N-terminal domain (amino acids [aa] 17 to 201) composed of two β-barrel modules and (ii) two AAA domains, D1 (aa 212 to 473) and D2 (aa 476 to 744), each of which has ADP in the active site. Msm0858-ADP is a monomer in solution and in crystallized form. Msm0858 domains are structurally homologous to the corresponding modules of mammalian p97. However, the position of the N-domain modules relative to the AAA domains in the Msm0858-ADP tertiary structure is different and would impede the formation of a p97-like hexameric quaternary structure. Mutational analysis of the A-box and B-box motifs indicated that the D1 and D2 AAA domains are both capable of ATP hydrolysis. Simultaneous mutations of the D1 and D2 active-site motifs were required to abolish ATPase activity. ATPase activity was effaced by mutation of the putative D2 arginine finger, suggesting that Msm0858 might oligomerize during the ATPase reaction cycle. A truncated variant Msm0858 (aa 212 to 745) that lacks the N domain was characterized as a catalytically active homodimer. Recent studies have underscored the importance of AAA proteins (ATPases associated with various cellular activities) in the physiology of mycobacteria. This study reports the ATPase activity and crystal structure of a previously uncharacterized mycobacterial AAA protein, Msm0858. Msm0858 consists of an N-terminal β-barrel domain and two AAA domains, each with ADP bound in the active site. Msm0858 is a structural homolog of mammalian p97, with respect to the linear order and tertiary structures of their domains. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senko, John M.; Wanjugi, Pauline; Lucas, Melanie
2008-06-12
We characterized the microbiologically mediated oxidative precipitation of Fe(II) from coalminederived acidic mine drainage (AMD) along flow-paths at two sites in northern Pennsylvania. At the Gum Boot site, dissolved Fe(II) was efficiently removed from AMD whereas minimal Fe(II) removal occurred at the Fridays-2 site. Neither site received human intervention to treat the AMD. Culturable Fe(II) oxidizing bacteria were most abundant at sampling locations along the AMD flow path corresponding to greatest Fe(II) removal and where overlying water contained abundant dissolved O2. Rates of Fe(II) oxidation determined in laboratory-based sediment incubations were also greatest at these sampling locations. Ribosomal RNA intergenicmore » spacer analysis and sequencing of partial 16S rRNA genes recovered from sediment bacterial communities revealed similarities among populations at points receiving regular inputs of Fe(II)-rich AMD and provided evidence for the presence of bacterial lineages capable of Fe(II) oxidation. A notable difference between bacterial communities at the two sites was the abundance of Chloroflexi-affiliated 16S rRNA gene sequences in clone libraries derived from the Gum Boot sediments. Our results suggest that inexpensive and reliable AMD treatment strategies can be implemented by mimicking the conditions present at the Gum Boot field site.« less
LIMITED-USE CHEMICAL PROTECTIVE CLOTHING FOR EPA SUPERFUND ACTIVITIES
Because contractor field personnel complained about the poor durability and fit of limited-use chemical protective clothing (CPC) most commonly used at hazardous waste site operations, the U.S. Environmental Protection Agency (EPA) initiated a study to characterize use of CPC; de...
Biophysical characterization of higher plant Rubisco activase
USDA-ARS?s Scientific Manuscript database
Rubisco activase (Rca) is a chaperone-like protein of the AAA+ family, which uses mechanochemical energy derived from ATP hydrolysis to release tightly bound inhibitors from the active site of the primary carbon fixing enzyme ribulose 1,5-bisphosphate oxygenase/carboxylase (Rubisco). Mechanistic and...
LIMITED-USE CHEMICAL PROTECTIVE CLOTHING FOR EPA SUPERFUND ACTIVITIES
Because contractor field personnel complained about the poor durability and fit of limited-use chemical protective clothing (CPC) most commonly used at hazardous waste site operations, the U.S. Environmental Protection Agency (EPA) initiated a study to • characterize use of CPC...
A Measure of the Broad Substrate Specificity of Enzymes Based on ‘Duplicate’ Catalytic Residues
Chakraborty, Sandeep; Ásgeirsson, Bjarni; Rao, Basuthkar J.
2012-01-01
The ability of an enzyme to select and act upon a specific class of compounds with unerring precision and efficiency is an essential feature of life. Simultaneously, these enzymes often catalyze the reaction of a range of similar substrates of the same class, and also have promiscuous activities on unrelated substrates. Previously, we have established a methodology to quantify promiscuous activities in a wide range of proteins. In the current work, we quantitatively characterize the active site for the ability to catalyze distinct, yet related, substrates (BRASS). A protein with known structure and active site residues provides the framework for computing ‘duplicate’ residues, each of which results in slightly modified replicas of the active site scaffold. Such spatial congruence is supplemented by Finite difference Poisson Boltzmann analysis which filters out electrostatically unfavorable configurations. The congruent configurations are used to compute an index (BrassIndex), which reflects the broad substrate profile of the active site. We identify an acetylhydrolase and a methyltransferase as having the lowest and highest BrassIndex, respectively, from a set of non-homologous proteins extracted from the Catalytic Site Atlas. The acetylhydrolase, a regulatory enzyme, is known to be highly specific for platelet-activating factor. In the methyltransferase (PDB: 1QAM), various combinations of glycine (Gly38/40/42), asparagine (Asn101/11) and glutamic acid (Glu59/36) residues having similar spatial and electrostatic profiles with the specified scaffold (Gly38, Asn101 and Glu59) exemplifies the broad substrate profile such an active site may provide. ‘Duplicate’ residues identified by relaxing the spatial and/or electrostatic constraints can be the target of directed evolution methodologies, like saturation mutagenesis, for modulating the substrate specificity of proteins. PMID:23166637
Identification and characterization of the sodium-binding site of activated protein C.
He, X; Rezaie, A R
1999-02-19
Activated protein C (APC) requires both Ca2+ and Na+ for its optimal catalytic function. In contrast to the Ca2+-binding sites, the Na+-binding site(s) of APC has not been identified. Based on a recent study with thrombin, the 221-225 loop is predicted to be a potential Na+-binding site in APC. The sequence of this loop is not conserved in trypsin. We engineered a Gla domainless form of protein C (GDPC) in which the 221-225 loop was replaced with the corresponding loop of trypsin. We found that activated GDPC (aGDPC) required Na+ (or other alkali cations) for its amidolytic activity with dissociation constant (Kd(app)) = 44.1 +/- 8.6 mM. In the presence of Ca2+, however, the requirement for Na+ by aGDPC was eliminated, and Na+ stimulated the cleavage rate 5-6-fold with Kd(app) = 2.3 +/- 0.3 mM. Both cations were required for efficient factor Va inactivation by aGDPC. In the presence of Ca2+, the catalytic function of the mutant was independent of Na+. Unlike aGDPC, the mutant did not discriminate among monovalent cations. We conclude that the 221-225 loop is a Na+-binding site in APC and that an allosteric link between the Na+ and Ca2+ binding loops modulates the structure and function of this anticoagulant enzyme.
Vo, Uybach; Vajpai, Navratna; Flavell, Liz; Bobby, Romel; Breeze, Alexander L; Embrey, Kevin J; Golovanov, Alexander P
2016-01-22
The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly (15)N-labeled Ras as well as [(13)C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Michel, Clotaire; Hobiger, Manuel; Edwards, Benjamin; Poggi, Valerio; Burjanek, Jan; Cauzzi, Carlo; Kästli, Philipp; Fäh, Donat
2016-04-01
The Swiss Seismological Service operates one of the densest national seismic networks in the world, still rapidly expanding (see http://www.seismo.ethz.ch/monitor/index_EN). Since 2009, every newly instrumented site is characterized following an established procedure to derive realistic 1D VS velocity profiles. In addition, empirical Fourier spectral modeling is performed on the whole network for each recorded event with sufficient signal-to-noise ratio. Besides the source characteristics of the earthquakes, statistical real time analyses of the residuals of the spectral modeling provide a seamlessly updated amplification function w.r. to Swiss rock conditions at every station. Our site characterization procedure is mainly based on the analysis of surface waves from passive experiments and includes cross-checks of the derived amplification functions with those obtained through spectral modeling. The systematic use of three component surface-wave analysis, allowing the derivation of both Rayleigh and Love waves dispersion curves, also contributes to the improved quality of the retrieved profiles. The results of site characterisation activities at recently installed strong-motion stations depict the large variety of possible effects of surface geology on ground motion in the Alpine context. Such effects range from de-amplification at hard-rock sites to amplification up to a factor of 15 in lacustrine sediments with respect to the Swiss reference rock velocity model. The derived velocity profiles are shown to reproduce observed amplification functions from empirical spectral modeling. Although many sites are found to exhibit 1D behavior, our procedure allows the detection and qualification of 2D and 3D effects. All data collected during the site characterization procedures in the last 20 years are gathered in a database, implementing a data model proposed for community use at the European scale through NERA and EPOS (www.epos-eu.org). A web stationbook derived from it can be accessed through the interface www.stations.seismo.ethz.ch.
Highly dispersed SiO x/Al 2O 3 catalysts illuminate the reactivity of isolated silanol sites
Mouat, Aidan R.; George, Cassandra; Kobayashi, Takeshi; ...
2015-09-23
The reaction of γ-alumina with tetraethylorthosilicate (TEOS) vapor at low temperatures selectively yields monomeric SiO x species on the alumina surface. These isolated (-AlO) 3Si(OH) sites are characterized by PXRD, XPS, DRIFTS of adsorbed NH 3, CO, and pyridine, and 29Si and 27Al DNP-enhanced solid-state NMR spectroscopy. The formation of isolated sites suggests that TEOS reacts preferentially at strong Lewis acid sites on the γ-Al 2O 3 surface, functionalizing the surface with “mild” Brønsted acid sites. As a result, for liquid-phase catalytic cyclohexanol dehydration, these SiO x sites exhibit up to 3.5-fold higher specific activity than the parent alumina withmore » identical selectivity.« less
NASA Astrophysics Data System (ADS)
Ernst, E. J.; Bourgeau-Chavez, L. L.; Kane, E. S.; Wagenbrenner, J. W.; Endres, S.
2016-12-01
The Arctic-boreal region is experiencing changes in climate, trending toward warmer summers, resulting in a greater occurrence of wildfires with longer burning periods and higher intensities. Drought-like conditions have dried surface fuels, leading to a higher probability of ignition, even in lowland peatlands. Previous work has been done to characterize post-fire succession rates in Arctic-boreal upland sites, but much less is known of fire effects and early successional dynamics in lowlands. Wildland fires are the number one disturbance in Canada's Northwest Territories (NWT), which characteristically burn at high intensities with large flame fronts, and result in some of the biggest wildfires in the world. Areas surrounding the Great Slave Lake, NWT—including parts of the Taiga Plains, Taiga Shield, and Boreal Plains ecozones—experienced exceptional wildfire activity in 2014 and 2015. We characterized burn severity of the bog and fen peat surface and canopy layers at several burned sites. To determine if the severe ground or crown wildfires were stand-replacing events, we characterized post-fire vegetation in peatlands in 2015 and 2016 based on seedling regeneration. We stratified sites according to estimated water residence times across the three ecozones and made comparisons between data collected at the same sites across years. This work adds much needed context for post-fire succession in boreal peatland ecosystems, as the susceptibility of these systems to burning will continue to increase with a warming climate.
Holloway, Lawrence E.; Qu, Zhihua; Mohr-Schroeder, Margaret J.; ...
2017-02-06
In this study, we consider collaborative power systems education through the FEEDER consortium. To increase students' access to power engineering educational content, the consortium of seven universities was formed. A framework is presented to characterize different collaborative education activities among the universities. Three of these approaches of collaborative educational activities are presented and discussed. These include 1) cross-institutional blended courses ("MS-MD''); 2) cross-institutional distance courses ("SS-MD''); and 3) single-site special experiential courses and concentrated on-site programs available to students across consortium institutions ("MS-SD''). As a result, this paper presents the advantages and disadvantages of each approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasala, Sami; Yamauchi, Hisao; Karppinen, Maarit, E-mail: maarit.karppinen@aalto.fi
2014-12-15
Here we synthesize and characterize a new double-perovskite oxide Sr{sub 2}CuIrO{sub 6}. The synthesis requires the use of high oxygen pressure to stabilize the VI oxidation state of iridium. The compound has a tetragonally-distorted crystal structure due to the Jahn–Teller active Cu{sup II} ion, and a high degree of B-site cation order. Magnetic transition is apparent at 15 K, but the zero-field-cooled and field-cooled susceptibilities diverge below this temperature. The high degree of cation order would exclude the possibility of a typical spin-glass, indicating that the divergence is probably due to a frustration of the magnetic interactions between Cu andmore » Ir, with a high frustration factor of f≈25. - Graphical abstract: A new member of the A{sub 2}B′B″O{sub 6} double-perovskite family with JT-active Cu{sup II} at the B′ site and Ir{sup VI} at the B″ site is synthesized through high pressure synthesis and characterized for the structural and magnetic properties. - Highlights: • New member of the A{sub 2}CuB″O{sub 6} double-perovskite family is synthesized with B″=Ir. • Stabilization of Ir{sup VI} requires the use of high oxygen pressure synthesis. • Crystal structure is tetragonally distorted due to JT-active Cu{sup II}. • Divergence of ZFC and FC curves is seen below the T{sub N} of 15 K. • This is presumably due to a frustration effect.« less
Rodríguez-Romero, Alexis Joseph; Rico-Sánchez, Axel Eduardo; Catalá, Myriam; Sedeño-Díaz, Jacinto Elías; López-López, Eugenia
2017-12-01
Early-warning biomarkers, such as mitochondrial activity, have become a key tool in ecosystem assessment. This study aims to evaluate the response of mitochondrial activity in spores of the autochthonous fern Cyathea costaricensis as a bioassessment tool concurrently with land use and physicochemical evaluation in 11 sites along Bobos River, Veracruz, Mexico, to assess river water quality. Bobos River is located in the Nautla basin, northeastern Veracruz (Mexico); the upper river runs through a protected natural area (Filobobos River and adjacent areas). The study involved three monitoring periods: February, June and September 2014. In each study site, physicochemical water quality parameters were recorded to calculate the Water Quality Index (WQI); also, study sites were characterized in terms of land use. Water samples were collected to perform bioassays where spores of C. costaricensis were exposed to samples to assess mitochondrial activity; a positive control exposure test was run under controlled conditions to maximize mitochondrial activity. A Principal Component Analysis was performed to correlate land-use attributes with environmental variables and mitochondrial activity. Three river sections were identified: the upper portion was characterized by the dominance of native vegetation, the highest WQI (in September), and the lowest mitochondrial activity (63.87%-77.47%), related to the geological nature of the basin and high hardness levels. Mitochondrial activity peaked in September (98.32% ± 9.01), likely resulting from nutrient enrichment in the rainy season, and was lowest in February (74.54% ± 1.60) (p < 0.05). Mitochondrial activity was found to be a good benchmark for the assessment of water quality, reflecting the effects of physicochemical characteristics. Mitochondrial activity showed changes along the river and between seasons, associated with environmental characteristics such as land use and the geological nature of the basin, as well as with those related to human impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tricyclic Covalent Inhibitors Selectively Target Jak3 through an Active Site Thiol
Goedken, Eric R.; Argiriadi, Maria A.; Banach, David L.; ...
2014-12-31
The action of Janus kinases (JAKs) is required for multiple cytokine signaling pathways, and as such, JAK inhibitors hold promise for treatment of autoimmune disorders, including rheumatoid arthritis, inflammatory bowel disease, and psoriasis. However, due to high similarity in the active sites of the four members (Jak1, Jak2, Jak3, and Tyk2), developing selective inhibitors within this family is challenging. In this paper, we have designed and characterized substituted, tricyclic Jak3 inhibitors that selectively avoid inhibition of the other JAKs. This is accomplished through a covalent interaction between an inhibitor containing a terminal electrophile and an active site cysteine (Cys-909). Wemore » found that these ATP competitive compounds are irreversible inhibitors of Jak3 enzyme activity in vitro. They possess high selectivity against other kinases and can potently (IC 50 < 100 nM) inhibit Jak3 activity in cell-based assays. Finally, these results suggest irreversible inhibitors of this class may be useful selective agents, both as tools to probe Jak3 biology and potentially as therapies for autoimmune diseases.« less
Tricyclic Covalent Inhibitors Selectively Target Jak3 through an Active Site Thiol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goedken, Eric R.; Argiriadi, Maria A.; Banach, David L.
The action of Janus kinases (JAKs) is required for multiple cytokine signaling pathways, and as such, JAK inhibitors hold promise for treatment of autoimmune disorders, including rheumatoid arthritis, inflammatory bowel disease, and psoriasis. However, due to high similarity in the active sites of the four members (Jak1, Jak2, Jak3, and Tyk2), developing selective inhibitors within this family is challenging. In this paper, we have designed and characterized substituted, tricyclic Jak3 inhibitors that selectively avoid inhibition of the other JAKs. This is accomplished through a covalent interaction between an inhibitor containing a terminal electrophile and an active site cysteine (Cys-909). Wemore » found that these ATP competitive compounds are irreversible inhibitors of Jak3 enzyme activity in vitro. They possess high selectivity against other kinases and can potently (IC 50 < 100 nM) inhibit Jak3 activity in cell-based assays. Finally, these results suggest irreversible inhibitors of this class may be useful selective agents, both as tools to probe Jak3 biology and potentially as therapies for autoimmune diseases.« less
Cui, Xiaoju; Xiao, Jianping; Wu, Yihui; Du, Peipei; Si, Rui; Yang, Huaixin; Tian, Huanfang; Li, Jianqi; Zhang, Wen-Hua; Deng, Dehui; Bao, Xinhe
2016-06-01
The design of catalysts that are both highly active and stable is always challenging. Herein, we report that the incorporation of single metal active sites attached to the nitrogen atoms in the basal plane of graphene leads to composite materials with superior activity and stability when used as counter electrodes in dye-sensitized solar cells (DSSCs). A series of composite materials based on different metals (Mn, Fe, Co, Ni, and Cu) were synthesized and characterized. Electrochemical measurements revealed that CoN4 /GN is a highly active and stable counter electrode for the interconversion of the redox couple I(-) /I3 (-) . DFT calculations revealed that the superior properties of CoN4 /GN are due to the appropriate adsorption energy of iodine on the confined Co sites, leading to a good balance between adsorption and desorption processes. Its superior electrochemical performance was further confirmed by fabricating DSSCs with CoN4 /GN electrodes, which displayed a better power conversion efficiency than the Pt counterpart. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sintering-resistant Single-Site Nickel Catalyst Supported by Metal-Organic Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhanyong; Schweitzer, Neil; League, Aaron
2016-02-17
Developing supported single-site catalysts is an important goal in heterogeneous catalysis, since the well-defined active sites afford opportunities for detailed mechanistic studies, thereby facilitating the design of improved catalysts. We present herein a method for installing Ni ions uniformly and precisely on the node of a Zr-based MOF, NU-1000, in high density and large quantity (denoted as Ni-AIM) using atomic layer deposition (ALD) in a metal–organic framework (MOF) (AIM). Ni-AIM is demonstrated to be an efficient gas-phase hydrogenation catalyst upon activation. The structure of the active sites in Ni-AIM is proposed, revealing its single-site nature. More importantly, due to themore » organic linker used to construct the MOF support, the Ni ions stay isolated throughout the hydrogenation catalysis, in accord with its long-term stability. A quantum chemical characterization of the catalyst and the catalytic process complements the experimental results. With validation of computational modeling protocols, we further targeted ethylene oligomerization catalysis by Ni-AIM guided by theoretical prediction. Given the generality of the AIM methodology, this emerging class of materials should prove ripe for the discovery of new catalysts for the transformation of volatile substrates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helmich, Kate E.; Pereira, Jose Henrique; Gall, Daniel L.
Here, lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via β-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, wemore » present x-ray crystal structures and biochemical characterization of the glutathione-dependent β-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because β-aryl ether bonds account for 50–70% of all interunit linkages in lignin, understanding the mechanism of enzymatic β-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin.« less
10 CFR 960.3-2-3 - Recommendation of sites for characterization.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Recommendation of sites for characterization. 960.3-2-3... POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-3 Recommendation of sites... President not less than three candidate sites for such characterization. The recommendation decision shall...
10 CFR 960.3-1-4-3 - Site recommendation for characterization.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Site recommendation for characterization. 960.3-1-4-3... POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-4-3 Site recommendation for characterization. The evidence required to support the recommendation of a site as a candidate...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, Alexander
2014-04-24
This document describes the development and approach for the radiological characterization of Cf-252 sealed sources for shipment to the Waste Isolation Pilot Plant. The report combines information on the nuclear material content of each individual source (mass or activity and date of manufacture) with information and data on the radionuclide distributions within the originating nuclear material. This approach allows for complete and accurate characterization of the waste container without the need to take additional measurements. The radionuclide uncertainties, developed from acceptable knowledge (AK) information regarding the source material, are applied to the summed activities in the drum. The AK informationmore » used in the characterization of Cf-252 sealed sources has been qualified by the peer review process, which has been reviewed and accepted by the Environmental Protection Agency.« less
Structural characterization of nonactive site, TrkA-selective kinase inhibitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Hua-Poo; Rickert, Keith; Burlein, Christine
Current therapies for chronic pain can have insufficient efficacy and lead to side effects, necessitating research of novel targets against pain. Although originally identified as an oncogene, Tropomyosin-related kinase A (TrkA) is linked to pain and elevated levels of NGF (the ligand for TrkA) are associated with chronic pain. Antibodies that block TrkA interaction with its ligand, NGF, are in clinical trials for pain relief. Here, we describe the identification of TrkA-specific inhibitors and the structural basis for their selectivity over other Trk family kinases. The X-ray structures reveal a binding site outside the kinase active site that uses residuesmore » from the kinase domain and the juxtamembrane region. Three modes of binding with the juxtamembrane region are characterized through a series of ligand-bound complexes. The structures indicate a critical pharmacophore on the compounds that leads to the distinct binding modes. The mode of interaction can allow TrkA selectivity over TrkB and TrkC or promiscuous, pan-Trk inhibition. This finding highlights the difficulty in characterizing the structure-activity relationship of a chemical series in the absence of structural information because of substantial differences in the interacting residues. These structures illustrate the flexibility of binding to sequences outside of—but adjacent to—the kinase domain of TrkA. This knowledge allows development of compounds with specificity for TrkA or the family of Trk proteins.« less
Thule AB, Greenland, Mosquito Survey and Arbovirus Surveillance, 2012
2013-11-21
July 2012. One species of mosquitoes, Aedes impiger, was collected and more than 3000 were processed for virus testing. Active mosquito breeding...of mosquitoes, Aedes impiger, was collected and more than 3000 were processed for virus testing. Active mosquito breeding sites were located...were characterized by DNA sequencing. 4. FINDINGS: a. One species of mosquito, Aedes impiger, was found throughout the Thule area
Minkoff, Benjamin B; Makino, Shin-Ichi; Haruta, Miyoshi; Beebe, Emily T; Wrobel, Russell L; Fox, Brian G; Sussman, Michael R
2017-04-07
There are more than 600 receptor-like kinases (RLKs) in Arabidopsis , but due to challenges associated with the characterization of membrane proteins, only a few have known biological functions. The plant RLK FERONIA is a peptide receptor and has been implicated in plant growth regulation, but little is known about its molecular mechanism of action. To investigate the properties of this enzyme, we used a cell-free wheat germ-based expression system in which mRNA encoding FERONIA was co-expressed with mRNA encoding the membrane scaffold protein variant MSP1D1. With the addition of the lipid cardiolipin, assembly of these proteins into nanodiscs was initiated. FERONIA protein kinase activity in nanodiscs was higher than that of soluble protein and comparable with other heterologously expressed protein kinases. Truncation experiments revealed that the cytoplasmic juxtamembrane domain is necessary for maximal FERONIA activity, whereas the transmembrane domain is inhibitory. An ATP analogue that reacts with lysine residues inhibited catalytic activity and labeled four lysines; mutagenesis demonstrated that two of these, Lys-565 and Lys-663, coordinate ATP in the active site. Mass spectrometric phosphoproteomic measurements further identified phosphorylation sites that were examined using phosphomimetic mutagenesis. The results of these experiments are consistent with a model in which kinase-mediated phosphorylation within the C-terminal region is inhibitory and regulates catalytic activity. These data represent a step further toward understanding the molecular basis for the protein kinase catalytic activity of FERONIA and show promise for future characterization of eukaryotic membrane proteins. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Buryska, Tomas; Babkova, Petra; Vavra, Ondrej; Damborsky, Jiri; Prokop, Zbynek
2018-01-15
The haloalkane dehalogenase enzyme DmmA was identified by marine metagenomic screening. Determination of its crystal structure revealed an unusually large active site compared to those of previously characterized haloalkane dehalogenases. Here we present a biochemical characterization of this interesting enzyme with emphasis on its structure-function relationships. DmmA exhibited an exceptionally broad substrate specificity and degraded several halogenated environmental pollutants that are resistant to other members of this enzyme family. In addition to having this unique substrate specificity, the enzyme was highly tolerant to organic cosolvents such as dimethyl sulfoxide, methanol, and acetone. Its broad substrate specificity, high overexpression yield (200 mg of protein per liter of cultivation medium; 50% of total protein), good tolerance to organic cosolvents, and a broad pH range make DmmA an attractive biocatalyst for various biotechnological applications. IMPORTANCE We present a thorough biochemical characterization of the haloalkane dehalogenase DmmA from a marine metagenome. This enzyme with an unusually large active site shows remarkably broad substrate specificity, high overexpression, significant tolerance to organic cosolvents, and activity under a broad range of pH conditions. DmmA is an attractive catalyst for sustainable biotechnology applications, e.g., biocatalysis, biosensing, and biodegradation of halogenated pollutants. We also report its ability to convert multiple halogenated compounds to corresponding polyalcohols. Copyright © 2018 American Society for Microbiology.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-12
.... The purpose of this notice is to inform the public of the availability of the draft EA for review and... Impact Statement (EIS) would need to be prepared. The draft EA can be accessed online at: http://www...
EMISSION MEASUREMENTS OF PARTICLE MASS AND SIZE EMISSION PROFILES FROM CONSTRUCTION ACTIVITIES
The report gives results from field tests that characterize the amount and size distribution of particulate matter (PM) emissions from operations at construction sites. Of particular interest is the movement of earth by scraper loading and unloading, grading, transit vehicular m...
NASA Astrophysics Data System (ADS)
Bhattacharyya, Dhiman; Depci, Tolga; Prisbrey, Keith; Miller, Jan D.
Despite tremendous developments in industrial use of activated carbon (AC) for gold adsorption, specific aurodicyanide [Au(CN)2-] adsorption sites on the carbon have intrigued researchers. The graphitic structure of AC has been well established. Previously radiochemical and now, XPS and Raman characterizations have demonstrated higher site-specific gold adsorption on graphitic edges. Morphological characterizations have revealed the presence of slit-pores (5-10 Å). Molecular-dynamics-simulation (MDS) performed on graphitic slit-pores illustrated gold-cyanide ion-pair preferentially adsorbs on edges. Ab-initio simulations predicted lower barrier for electron sharing in pores with aurodic yanide, indicating tighter bonding than graphitic surface and was well supported by Gibbs energy calculations too. Interaction energy as function of the separation distance indicated tighter bonding of gold cyanide to the graphite edges than water molecules. Selective adsorption of aurodicyanide ion-pair seems to be related to low polarity of gold complex and its accommodation at graphitic edges.
Active Site Sharing and Subterminal Hairpin Recognition in a New Class of DNA Transposases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronning, Donald R.; Guynet, Catherine; Ton-Hoang, Bao
2010-07-20
Many bacteria harbor simple transposable elements termed insertion sequences (IS). In Helicobacter pylori, the chimeric IS605 family elements are particularly interesting due to their proximity to genes encoding gastric epithelial invasion factors. Protein sequences of IS605 transposases do not bear the hallmarks of other well-characterized transposases. We have solved the crystal structure of full-length transposase (TnpA) of a representative member, ISHp608. Structurally, TnpA does not resemble any characterized transposase; rather, it is related to rolling circle replication (RCR) proteins. Consistent with RCR, Mg{sup 2+} and a conserved tyrosine, Tyr127, are essential for DNA nicking and the formation of a covalentmore » intermediate between TnpA and DNA. TnpA is dimeric, contains two shared active sites, and binds two DNA stem loops representing the conserved inverted repeats near each end of ISHp608. The cocrystal structure with stem-loop DNA illustrates how this family of transposases specifically recognizes and pairs ends, necessary steps during transposition.« less
Collart, F R; Osipiuk, J; Trent, J; Olsen, G J; Huberman, E
1996-10-03
We have cloned and characterized the gene encoding inosine monophosphate dehydrogenase (IMPDH) from Pyrococcus furiosus (Pf), a hyperthermophillic archeon. Sequence analysis of the Pf gene indicated an open reading frame specifying a protein of 485 amino acids (aa) with a calculated M(r) of 52900. Canonical Archaea promoter elements, Box A and Box B, are located -49 and -17 nucleotides (nt), respectively, upstream of the putative start codon. The sequence of the putative active-site region conforms to the IMPDH signature motif and contains a putative active-site cysteine. Phylogenetic relationships derived by using all available IMPDH sequences are consistent with trees developed for other molecules; they do not precisely resolve the history of Pf IMPDH but indicate a close similarity to bacterial IMPDH proteins. The phylogenetic analysis indicates that a gene duplication occurred prior to the division between rodents and humans, accounting for the Type I and II isoforms identified in mice and humans.
Surface Characterization of Mesoporous CoOx/SBA-15 Catalyst upon 1,2-Dichloropropane Oxidation.
Finocchio, Elisabetta; Gonzalez-Prior, Jonatan; Gutierrez-Ortiz, Jose Ignacio; Lopez-Fonseca, Ruben; Busca, Guido; de Rivas, Beatriz
2018-05-29
The active combustion catalyst that is based on 30 wt % cobalt oxide on mesoporous SBA-15 has been tested in 1,2-dichloropropane oxidation and is characterized by means of FT-IR (Fourier transform infrared spectroscopy) and ammonia-TPD (temperature-programmed desorption). In this work, we report the spectroscopic evidence for the role of surface acidity in chloroalkane conversion. Both Lewis acidity and weakly acidic silanol groups from SBA support are involved in the adsorption and initial conversion steps. Moreover, total oxidation reaction results in the formation of new Bronsted acidic sites, which are likely associated with the generation of HCl at high temperature and its adsorption at the catalyst surface. Highly dispersed Co oxide on the mesoporous support and Co-chloride or oxychloride particles, together with the presence of several families of acidic sites originated from the conditioning effect of reaction products may explain the good activity of this catalyst in the oxidation of Chlorinated Volatile Organic Compounds.
Atomistic characterization of the active-site solvation dynamics of a model photocatalyst
van Driel, Tim B.; Kjær, Kasper S.; Hartsock, Robert W.; ...
2016-11-28
The interactions between the reactive excited state of molecular photocatalysts and surrounding solvent dictate reaction mechanisms and pathways, but are not readily accessible to conventional optical spectroscopic techniques. Here we report an investigation of the structural and solvation dynamics following excitation of a model photocatalytic molecular system [Ir 2(dimen) 4] 2+, where dimen is para-diisocyanomenthane. The time-dependent structural changes in this model photocatalyst, as well as the changes in the solvation shell structure, have been measured with ultrafast diffuse X-ray scattering and simulated with Born-Oppenheimer Molecular Dynamics. Both methods provide direct access to the solute–solvent pair distribution function, enabling themore » solvation dynamics around the catalytically active iridium sites to be robustly characterized. Our results provide evidence for the coordination of the iridium atoms by the acetonitrile solvent and demonstrate the viability of using diffuse X-ray scattering at free-electron laser sources for studying the dynamics of photocatalysis.« less
Kurth, Fabian; Duprez, Wilko; Premkumar, Lakshmanane; Schembri, Mark A.; Fairlie, David P.; Martin, Jennifer L.
2014-01-01
The disulfide bond forming DsbA enzymes and their DsbB interaction partners are attractive targets for development of antivirulence drugs because both are essential for virulence factor assembly in Gram-negative pathogens. Here we characterize PmDsbA from Proteus mirabilis, a bacterial pathogen increasingly associated with multidrug resistance. PmDsbA exhibits the characteristic properties of a DsbA, including an oxidizing potential, destabilizing disulfide, acidic active site cysteine, and dithiol oxidase catalytic activity. We evaluated a peptide, PWATCDS, derived from the partner protein DsbB and showed by thermal shift and isothermal titration calorimetry that it binds to PmDsbA. The crystal structures of PmDsbA, and the active site variant PmDsbAC30S were determined to high resolution. Analysis of these structures allows categorization of PmDsbA into the DsbA class exemplified by the archetypal Escherichia coli DsbA enzyme. We also present a crystal structure of PmDsbAC30S in complex with the peptide PWATCDS. The structure shows that the peptide binds non-covalently to the active site CXXC motif, the cis-Pro loop, and the hydrophobic groove adjacent to the active site of the enzyme. This high-resolution structural data provides a critical advance for future structure-based design of non-covalent peptidomimetic inhibitors. Such inhibitors would represent an entirely new antibacterial class that work by switching off the DSB virulence assembly machinery. PMID:24831013
Kneebone, Jared L.; Daifuku, Stephanie L.; Kehl, Jeffrey A.; ...
2017-07-06
While non-precious metal M-N-C (M = Fe or Co) catalysts have been developed that are effective for the oxygen reduction reaction in polymer electrolyte fuel cells, no consensus has yet been reached regarding the nature of the M sites in these heterogeneous catalysts that are responsible for reaction with dioxygen (O 2). While multiple studies have developed correlations between Fe distributions in as-prepared catalysts and ORR activity, the direct identification of sites reactive towards O 2 or O 2-analog molecules remains a significant challenge. In the present study, we demonstrate a new approach to identifying and characterizing potential Fe activemore » sites in complex ORR catalysts that combines an effective probe molecule (NO (g)) Mössbauer spectroscopy and nuclear resonance vibrational spectroscopy (NRVS) with density functional theory (DFT) calculations. Mössbauer spectroscopic studies demonstrate that NO (g) treatment of electrochemically reduced PANI-57Fe-C leads to selective reaction with only a sub-set of the Fe species present. Nuclear resonance vibrational spectroscopic studies identified new Fe-ligand vibrations associated with the site reactive towards NO (g). DFT calculations of vibrational properties of a small selection of previously proposed active site structures suggest that graphene zig-zag edge hosted Fe-N structures may be responsible for the observed vibrational behavior with NO (g) probe molecules. Moreover, such sites are likely also reactive to O 2, possibly serving as the ORR active sites in the synthesized materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kneebone, Jared L.; Daifuku, Stephanie L.; Kehl, Jeffrey A.
While non-precious metal M-N-C (M = Fe or Co) catalysts have been developed that are effective for the oxygen reduction reaction in polymer electrolyte fuel cells, no consensus has yet been reached regarding the nature of the M sites in these heterogeneous catalysts that are responsible for reaction with dioxygen (O 2). While multiple studies have developed correlations between Fe distributions in as-prepared catalysts and ORR activity, the direct identification of sites reactive towards O 2 or O 2-analog molecules remains a significant challenge. In the present study, we demonstrate a new approach to identifying and characterizing potential Fe activemore » sites in complex ORR catalysts that combines an effective probe molecule (NO (g)) Mössbauer spectroscopy and nuclear resonance vibrational spectroscopy (NRVS) with density functional theory (DFT) calculations. Mössbauer spectroscopic studies demonstrate that NO (g) treatment of electrochemically reduced PANI-57Fe-C leads to selective reaction with only a sub-set of the Fe species present. Nuclear resonance vibrational spectroscopic studies identified new Fe-ligand vibrations associated with the site reactive towards NO (g). DFT calculations of vibrational properties of a small selection of previously proposed active site structures suggest that graphene zig-zag edge hosted Fe-N structures may be responsible for the observed vibrational behavior with NO (g) probe molecules. Moreover, such sites are likely also reactive to O 2, possibly serving as the ORR active sites in the synthesized materials.« less
Maugeri, Pearson T; Griese, Julia J; Branca, Rui M; Miller, Effie K; Smith, Zachary R; Eirich, Jürgen; Högbom, Martin; Shafaat, Hannah S
2018-01-31
The heterobimetallic R2lox protein binds both manganese and iron ions in a site-selective fashion and activates oxygen, ultimately performing C-H bond oxidation to generate a tyrosine-valine cross-link near the active site. In this work, we demonstrate that, following assembly, R2lox undergoes photoinduced changes to the active site geometry and metal coordination motif. Through spectroscopic, structural, and mass spectrometric characterization, the photoconverted species is found to consist of a tyrosinate-bound iron center following light-induced decarboxylation of a coordinating glutamate residue and cleavage of the tyrosine-valine cross-link. This process occurs with high quantum efficiencies (Φ = 3%) using violet and near-ultraviolet light, suggesting that the photodecarboxylation is initiated via ligand-to-metal charge transfer excitation. Site-directed mutagenesis and structural analysis suggest that the cross-linked tyrosine-162 is the coordinating residue. One primary product is observed following irradiation, indicating potential use of this class of proteins, which contains a putative substrate channel, for controlled photoinduced decarboxylation processes, with relevance for in vivo functionality of R2lox as well as application in environmental remediation.
Ahn, Young O; Mahinthichaichan, Paween; Lee, Hyun Ju; Ouyang, Hanlin; Kaluka, Daniel; Yeh, Syun-Ru; Arjona, Davinia; Rousseau, Denis L; Tajkhorshid, Emad; Adelroth, Pia; Gennis, Robert B
2014-10-21
The respiratory chains of nearly all aerobic organisms are terminated by proton-pumping heme-copper oxygen reductases (HCOs). Previous studies have established that C-family HCOs contain a single channel for uptake from the bacterial cytoplasm of all chemical and pumped protons, and that the entrance of the K(C)-channel is a conserved glutamate in subunit III. However, the majority of the K(C)-channel is within subunit I, and the pathway from this conserved glutamate to subunit I is not evident. In the present study, molecular dynamics simulations were used to characterize a chain of water molecules leading from the cytoplasmic solution, passing the conserved glutamate in subunit III and extending into subunit I. Formation of the water chain, which controls the delivery of protons to the K(C)-channel, was found to depend on the conformation of Y241(Vc), located in subunit I at the interface with subunit III. Mutations of Y241(Vc) (to A/F/H/S) in the Vibrio cholerae cbb3 eliminate catalytic activity, but also cause perturbations that propagate over a 28-Å distance to the active site heme b3. The data suggest a linkage between residues lining the K(C)-channel and the active site of the enzyme, possibly mediated by transmembrane helix α7, which contains both Y241(Vc) and the active site cross-linked Y255(Vc), as well as two CuB histidine ligands. Other mutations of residues within or near helix α7 also perturb the active site, indicating that this helix is involved in modulation of the active site of the enzyme.
NASA Astrophysics Data System (ADS)
Levin, Lisa A.; Mendoza, Guillermo F.; Grupe, Benjamin M.
2017-03-01
Authigenic carbonate rocks at methane seeps are recognized as hosting diverse and abundant invertebrate assemblages, with potential forcing from fluid seepage and hydrography. Mensurative studies of carbonate macrofauna (>0.3 mm) at Hydrate Ridge, OR revealed little effect of water depth and overlying oxygenation (at 600 m and 800 m) but a large influence of seepage activity on density, taxonomic composition, diversity, and biological traits (feeding, lifestyle, motility, size and calcification). Rocks exposed to active seepage had 3-4× higher total macrofaunal densities than under inactive conditions. Assemblages exhibited higher species richness and reduced evenness (greater dominance) under active seepage than inactive conditions, but no difference in H‧ or rarefaction diversity. Actively seeping sites were characterized by errant (motile), bacterial grazing, small- and medium-sized, heavily calcified species, whereas inactive sites exhibited a greater diversity of feeding modes and more burrowers, sessile, large and lightly calcified species. Active rocks supported more exogonid (Syllidae), ampharetid, and cirratulid polychaetes, provannid snails, pyropeltid limpets, nemerteans, and sponges; whereas inactive rocks supported higher densities of ophiuroids, isopods, gammarid amphipods, hydroids, Typosyllis (Syllidae) and tanaids. Transplant experiments, in which rocks were transferred between active and inactive sites at Hydrate Ridge North (600 m), revealed that assemblages respond within 13 months to increase or cessation of seepage, taking on the feeding, size and calcification characteristics of the background fauna at the new site. Lifestyles and motility patterns shifted more slowly as the sessile, attached species did not track seepage as quickly. Provannid snails and pyropeltid limpets rapidly colonized rocks transplanted to active sites and disappeared when transplanted to inactive sites. Given the known variability of fluid fluxes and rapid community response, a mosaic of communities changing in space and time is hypothesized to generate the relatively high species diversity at methane seeps.
A progress report on the ARRA-funded geotechnical site characterization project
NASA Astrophysics Data System (ADS)
Martin, A. J.; Yong, A.; Stokoe, K.; Di Matteo, A.; Diehl, J.; Jack, S.
2011-12-01
For the past 18 months, the 2009 American Recovery and Reinvestment Act (ARRA) has funded geotechnical site characterizations at 189 seismographic station sites in California and the central U.S. This ongoing effort applies methods involving surface-wave techniques, which include the horizontal-to-vertical spectral ratio (HVSR) technique and one or more of the following: spectral analysis of surface wave (SASW), active and passive multi-channel analysis of surface wave (MASW) and passive array microtremor techniques. From this multi-method approach, shear-wave velocity profiles (VS) and the time-averaged shear-wave velocity of the upper 30 meters (VS30) are estimated for each site. To accommodate the variability in local conditions (e.g., rural and urban soil locales, as well as weathered and competent rock sites), conventional field procedures are often modified ad-hoc to fit the unanticipated complexity at each location. For the majority of sites (>80%), fundamental-mode Rayleigh wave dispersion-based techniques are deployed and where complex geology is encountered, multiple test locations are made. Due to the presence of high velocity layers, about five percent of the locations require multi-mode inversion of Rayleigh wave (MASW-based) data or 3-D array-based inversion of SASW dispersion data, in combination with shallow P-wave seismic refraction and/or HVSR results. Where a strong impedance contrast (i.e. soil over rock) exists at shallow depth (about 10% of sites), dominant higher modes limit the use of Rayleigh wave dispersion techniques. Here, use of the Love wave dispersion technique, along with seismic refraction and/or HVSR data, is required to model the presence of shallow bedrock. At a small percentage of the sites, surface wave techniques are found not suitable for stand-alone deployment and site characterization is limited to the use of the seismic refraction technique. A USGS Open File Report-describing the surface geology, VS profile and the calculated VS30 for each site-will be prepared after the completion of the project in November 2011.
Parmodulins inhibit thrombus formation without inducing endothelial injury caused by vorapaxar.
Aisiku, Omozuanvbo; Peters, Christian G; De Ceunynck, Karen; Ghosh, Chandra C; Dilks, James R; Fustolo-Gunnink, Susanna F; Huang, Mingdong; Dockendorff, Chris; Parikh, Samir M; Flaumenhaft, Robert
2015-03-19
Protease-activated receptor-1 (PAR1) couples the coagulation cascade to platelet activation during myocardial infarction and to endothelial inflammation during sepsis. This receptor demonstrates marked signaling bias. Its activation by thrombin stimulates prothrombotic and proinflammatory signaling, whereas its activation by activated protein C (APC) stimulates cytoprotective and antiinflammatory signaling. A challenge in developing PAR1-targeted therapies is to inhibit detrimental signaling while sparing beneficial pathways. We now characterize a novel class of structurally unrelated small-molecule PAR1 antagonists, termed parmodulins, and compare the activity of these compounds to previously characterized compounds that act at the PAR1 ligand-binding site. We find that parmodulins target the cytoplasmic face of PAR1 without modifying the ligand-binding site, blocking signaling through Gαq but not Gα13 in vitro and thrombus formation in vivo. In endothelium, parmodulins inhibit prothrombotic and proinflammatory signaling without blocking APC-mediated pathways or inducing endothelial injury. In contrast, orthosteric PAR1 antagonists such as vorapaxar inhibit all signaling downstream of PAR1. Furthermore, exposure of endothelial cells to nanomolar concentrations of vorapaxar induces endothelial cell barrier dysfunction and apoptosis. These studies demonstrate how functionally selective antagonism can be achieved by targeting the cytoplasmic face of a G-protein-coupled receptor to selectively block pathologic signaling while preserving cytoprotective pathways. © 2015 by The American Society of Hematology.
The Design, Synthesis, and Characterization of Open Sites on Metal Clusters
NASA Astrophysics Data System (ADS)
Nigra, Michael Mark
Coordinatively unsaturated corner and edge atoms have been hypothesized to have the highest activity of sites responsible for many catalytic reactions on a metal surface. Recent studies have validated this hypothesis in varied reaction systems. However, quantification of different types of coordinatively unsaturated sites, and elucidation of their individual catalytic rates has remained a largely unresolved challenge when understanding catalysis on metal surfaces. Yet such structure-function knowledge would be invaluable to the design of more active and selective metal-surface catalysts in the future. I investigated the catalytic contributions of undercoordinated sites such as corner and edge atoms are investigated in a model reaction system using organic ligands bound to the gold nanoparticle surface. The catalyst consisted of 4 nm gold nanoparticles on a metal oxide support, using resazurin to resorufin as a model reaction system. My results demonstrate that in this system, corner atom sites are the most undercoordinated sites, and are over an order of magnitude more active when compared to undercoordinated edge atom sites, while terrace sites remain catalytically inactive for the reduction reaction of resazurin to resorufin. Catalytic activity has been also demonstrated for calixarene-bound gold nanoparticles using the reduction of 4-nitrophenol. With the 4-nitrophenol reduction reaction, a comparative study was undertaken to compare calixarene phosphine and calixarene thiol bound 4 nm gold particles. The results of the study suggested that a leached site was responsible for catalysis and not sites on the original gold nanoparticles. Future experiments with calixarene bound gold clusters could investigate ligand effects in reactions where the active site is not a leached or aggregated gold species, possibly in oxidation reactions, where electron-rich gold is hypothesized to be a good catalyst. The results that emphasize the enhanced catalytic activity of undercoordinated sites led me to synthesize small gold clusters consisting of a high fraction of coordinatively unsaturated open sites. This was enabled through an approach that utilized bulky calix[4]arene ligands that are bound to a gold core. Since the size of the calix[4]arene ligand is commensurate with the size of the gold cluster core, the calix[4]arene ligand does not pack closely together on the gold cluster surface. This in turn results in areas of accessible gold atom sites between ligands. Additionally, these calix[4]arene ligands prevent cluster aggregation and electronically tune the gold core in a manner conceptually similar to enzymes affecting reactivity through organic side-chains acting as ligands. I quantified the number of open sites that result from this packing problem on the gold cluster surface, using fluorescence probe chemisorption experiments. The results of these chemisorption measurements support the mechanical model of accessibility whereby accessibility is not dependent on the identity of the functional group, whether it be calixarene phosphines or N-heterocyclic carbenes, bound to the gold surface, but rather to the relative radii of curvature of bound ligands and the gold cluster core. Additional materials characterization was completed with transmission electron microscopy in both bright-field imaging of zeolites, in MCM-22 and delaminated ITQ-2 and UCB-1 materials, and in dark field imaging of glucan coatings on oxide particles. These materials could prove to be interesting materials as to use as supports for the calixarene-bound metal clusters described above or for other metal clusters.
Maruthamuthu, Mukil; van Elsas, Jan Dirk
2017-01-01
Enzyme discovery is a promising approach to aid in the deconstruction of recalcitrant plant biomass in an industrial process. Novel enzymes can be readily discovered by applying metagenomics on whole microbiomes. Our goal was to select, examine, and characterize eight novel glycoside hydrolases that were previously detected in metagenomic libraries, to serve biotechnological applications with high performance. Here, eight glycosyl hydrolase family candidate genes were selected from metagenomes of wheat straw-degrading microbial consortia using molecular cloning and subsequent gene expression studies in Escherichia coli. Four of the eight enzymes had significant activities on either p NP-β-d-galactopyranoside, p NP-β-d-xylopyranoside, p NP-α-l-arabinopyranoside or p NP-α-d-glucopyranoside. These proteins, denoted as proteins 1, 2, 5 and 6, were his-tag purified and their nature and activities further characterized using molecular and activity screens with the p NP-labeled substrates. Proteins 1 and 2 showed high homologies with (1) a β-galactosidase (74%) and (2) a β-xylosidase (84%), whereas the remaining two (5 and 6) were homologous with proteins reported as a diguanylate cyclase and an aquaporin, respectively. The β-galactosidase- and β-xylosidase-like proteins 1 and 2 were confirmed as being responsible for previously found thermo-alkaliphilic glycosidase activities of extracts of E. coli carrying the respective source fosmids. Remarkably, the β-xylosidase-like protein 2 showed activities with both p NP-Xyl and p NP-Ara in the temperature range 40-50 °C and pH range 8.0-10.0. Moreover, proteins 5 and 6 showed thermotolerant α-glucosidase activity at pH 10.0. In silico structure prediction of protein 5 revealed the presence of a potential "GGDEF" catalytic site, encoding α-glucosidase activity, whereas that of protein 6 showed a "GDSL" site, encoding a 'new family' α-glucosidase activity. Using a rational screening approach, we identified and characterized four thermo-alkaliphilic glycosyl hydrolases that have the potential to serve as constituents of enzyme cocktails that produce sugars from lignocellulosic plant remains.
Zhang, Weimin; Lu, Huijie; Jiang, Haiyan; Li, Mu; Zhang, Shen; Liu, Qiongyou; Zhang, Lihong
2012-02-01
Aromatase (CYP19A1) catalyzes the conversion of androgens to estrogens. In teleosts, duplicated copies of cyp19a1 genes, namely cyp19a1a and cyp19a1b, were identified, however, the transcriptional regulation of these two genes remains poorly understood. In the present study, the 5'-flanking regions of the orange-spotted grouper cyp19a1a (gcyp19a1a) and cyp19a1b (gcyp19a1b) genes were isolated and characterized. The proximal promoter regions of both genes were relatively conserved when compared to those of the other teleosts. Notably, a conserved FOXO transcriptional factor binding site was firstly reported in the proximal promoter of gcyp19a1a, and deletion of the region (-112 to -60) containing this site significantly decreased the promoter activities. The deletion of the region (-246 to -112) containing the two conserved FTZ-F1 sites also dramatically decreased the transcriptional activities of gcyp19a1a promoter, and both two FTZ-F1 sites were shown to be stimulatory cis-acting elements. A FTZ-F1 homologue isolated from ricefield eel (eFTZ-F1) up-regulated gcyp19a1a promoter activities possibly via the FTZ-F1 sites, however, a previously identified orange-spotted grouper FTZ-F1 homologue (gFTZ-F1) did not activate the transcription of gcyp19a1a promoter unexpectedly. As to gcyp19a1b promoter, all the deletion constructs did not show good promoter activities in either TM4 or U251-MG cells. Estradiol (100nM) up-regulated gcyp19a1b promoter activities by about 13- and 36-fold in TM4 and U251-MG cells, respectively, via the conserved ERE motif, but did not stimulate gcyp19a1a promoter activities. These results are helpful to further elucidate the regulatory mechanisms of cyp19a1a and cyp19a1b expression in the orange-spotted grouper as well as other teleosts. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, J.D.; Pratt, G.; Davidson, H.
This paper presents results of preliminary geologic site characterization and hydrogeologic conceptual model development for the 250-km{sup 2} Kirtland Air Force Base (KAFB) and associated lands in central New Mexico. The research, development, and other operational activities of the Department of Defense (DoD) and Department of Energy (DOE) on KAFB over the last 50 years have resulted in diverse hazardous, radioactive, and mixed-waste environmental concerns. Because multiple federal, state, and local agencies are responsible for administrating the involved lands and because of the nature of many U.S. environmental regulations, individual contaminated and potentially contaminated DoD and DOE environmental restoration (ER)more » sites on KAFB are commonly handled as distinct entities with little consideration for the cumulative environmental and health risk from all sites. A site-wide characterization program has been undertaken at Sandia National Laboratories/New Mexico (SNL/NM), under the auspices of the DOE, to construct a conceptual hydrogeologic model for the base. This conceptual model serves as the basis for placing each ER site into a broader context for evaluating background (i.e., non-contaminated) conditions and for modeling of possible contaminant pathways and travel-times. Regional and local hydrogeologic investigations from KAFB can be used as models for characterizing and evaluating other sites around the world where combined civilian and military environmental programs must work together to resolve environmental problems that may present health risks to workers and the general public.« less
Activity screening of environmental metagenomic libraries reveals novel carboxylesterase families
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popovic, Ana; Hai, Tran; Tchigvintsev, Anatoly
Metagenomics has made accessible an enormous reserve of global biochemical diversity. In order to tap into this vast resource of novel enzymes, we have screened over one million clones from metagenome DNA libraries derived from sixteen different environments for carboxylesterase activity and identified 714 positive hits. Here, we validated the esterase activity of 80 selected genes, which belong to 17 different protein families including unknown and cyclase-like proteins. Three metagenomic enzymes exhibited lipase activity, and seven proteins showed polyester depolymerization activity against polylactic acid and polycaprolactone. Detailed biochemical characterization of four new enzymes revealed their substrate preference, whereas their catalyticmore » residues were identified using site-directed mutagenesis. The crystal structure of the metal-ion dependent esterase MGS0169 from the amidohydrolase superfamily revealed a novel active site with a bound unknown ligand. Thus, activity-centered metagenomics has revealed diverse enzymes and novel families of microbial carboxylesterases, whose activity could not have been predicted using bioinformatics tools.« less
Activity screening of environmental metagenomic libraries reveals novel carboxylesterase families
Popovic, Ana; Hai, Tran; Tchigvintsev, Anatoly; ...
2017-03-08
Metagenomics has made accessible an enormous reserve of global biochemical diversity. In order to tap into this vast resource of novel enzymes, we have screened over one million clones from metagenome DNA libraries derived from sixteen different environments for carboxylesterase activity and identified 714 positive hits. Here, we validated the esterase activity of 80 selected genes, which belong to 17 different protein families including unknown and cyclase-like proteins. Three metagenomic enzymes exhibited lipase activity, and seven proteins showed polyester depolymerization activity against polylactic acid and polycaprolactone. Detailed biochemical characterization of four new enzymes revealed their substrate preference, whereas their catalyticmore » residues were identified using site-directed mutagenesis. The crystal structure of the metal-ion dependent esterase MGS0169 from the amidohydrolase superfamily revealed a novel active site with a bound unknown ligand. Thus, activity-centered metagenomics has revealed diverse enzymes and novel families of microbial carboxylesterases, whose activity could not have been predicted using bioinformatics tools.« less
Gao, Jinxu; Mfuh, Adelphe; Amako, Yuka; Woo, Christina M
2018-03-28
Many therapeutics elicit cell-type specific polypharmacology that is executed by a network of molecular recognition events between a small molecule and the whole proteome. However, measurement of the structures that underpin the molecular associations between the proteome and even common therapeutics, such as the nonsteroidal anti-inflammatory drugs (NSAIDs), is limited by the inability to map the small molecule interactome. To address this gap, we developed a platform termed small molecule interactome mapping by photoaffinity labeling (SIM-PAL) and applied it to the in cellulo direct characterization of specific NSAID binding sites. SIM-PAL uses (1) photochemical conjugation of NSAID derivatives in the whole proteome and (2) enrichment and isotope-recoding of the conjugated peptides for (3) targeted mass spectrometry-based assignment. Using SIM-PAL, we identified the NSAID interactome consisting of over 1000 significantly enriched proteins and directly characterized nearly 200 conjugated peptides representing direct binding sites of the photo-NSAIDs with proteins from Jurkat and K562 cells. The enriched proteins were often identified as parts of complexes, including known targets of NSAID activity (e.g., NF-κB) and novel interactions (e.g., AP-2, proteasome). The conjugated peptides revealed direct NSAID binding sites from the cell surface to the nucleus and a specific binding site hotspot for the three photo-NSAIDs on histones H2A and H2B. NSAID binding stabilized COX-2 and histone H2A by cellular thermal shift assay. Since small molecule stabilization of protein complexes is a gain of function regulatory mechanism, it is conceivable that NSAIDs affect biological processes through these broader proteomic interactions. SIM-PAL enabled characterization of NSAID binding site hotspots and is amenable to map global binding sites for virtually any molecule of interest.
New experimental sites for borehole geophysics, hydrodynamics and long-term monitoringITORING
NASA Astrophysics Data System (ADS)
Pezard, P.; Aliance/Saltrans Team
2003-04-01
In order to provide platforms for the development of new downhole geophysical and hydrodynamic sensors, 4 sites are being developped with a series of nearby 100 m deep boreholes located with a few meters to 100 meters, at the most. The objective is to set-up a cluster of extremely well characterized in-situ laboratories at scales where experiments cannot be conducted in traditionnal labs. At least one borehole is continuously cored at each of the sites, and the core is fully characterized in petrological, petrophysical and geochemical terms. An emphasis is placed on fundamental and environmental applications such as hydrogeology, waste storage or the study of seismogenic faults, whether for characterization purposes or the development of long-term monitoring sensors and methods. These sites are developped with the support of CNRS, the University of Montpellier and the ALIANCE program financed by the European Commission. The 4 sites span different lithologies with granite at Ploemeur (Brittany, France), Miocene carbonates from a reefal platform in south Mallorca (Baleares, Spain), Valanginian marly limestone at Lavalette, near Montpellier (Languedoc, France), and unconsolidated sands in a coastal setting also near Montpellier. In the context of ALIANCE, the goal is to improve the investigation, characterisation and monitoring of coastal aquifers for vulnerability assessment. For this, a set of geophysical approaches for the quantitative evaluation of brine intrusion will be developped. This includes the design of 5 new geophysical and hydrodynamical logging/testing sensors. Two end-member sites in terms of hydrogeological behavior will be set up for long-term experimentation, the testing of the new tools, and the validation of site-specific experimental and modelling protocols from µm- to 100 m-scale. Active in-situ testing from short and longer-term injections with variable salinity fluids will simulate overdrafting or saline water intrusion.
Sneve, M K; Kiselev, M; Shandala, N K
2014-05-01
The Norwegian Radiation Protection Authority has been implementing a regulatory cooperation program in the Russian Federation for over 10 years, as part of the Norwegian government's Plan of Action for enhancing nuclear and radiation safety in northwest Russia. The overall long-term objective has been the enhancement of safety culture and includes a special focus on regulatory supervision of nuclear legacy sites. The initial project outputs included appropriate regulatory threat assessments, to determine the hazardous situations and activities which are most in need of enhanced regulatory supervision. In turn, this has led to the development of new and updated norms and standards, and related regulatory procedures, necessary to address the often abnormal conditions at legacy sites. This paper presents the experience gained within the above program with regard to radio-ecological characterization of Sites of Temporary Storage for spent nuclear fuel and radioactive waste at Andreeva Bay and Gremikha in the Kola Peninsula in northwest Russia. Such characterization is necessary to support assessments of the current radiological situation and to support prospective assessments of its evolution. Both types of assessments contribute to regulatory supervision of the sites. Accordingly, they include assessments to support development of regulatory standards and guidance concerning: control of radiation exposures to workers during remediation operations; emergency preparedness and response; planned radionuclide releases to the environment; development of site restoration plans, and waste treatment and disposal. Examples of characterization work are presented which relate to terrestrial and marine environments at Andreeva Bay. The use of this data in assessments is illustrated by means of the visualization and assessment tool (DATAMAP) developed as part of the regulatory cooperation program, specifically to help control radiation exposure in operations and to support regulatory analysis of management options. For assessments of the current radiological situation, the types of data needed include information about the distribution of radionuclides in environmental media. For prognostic assessments, additional data are needed about the landscape features, on-shore and off-shore hydrology, geochemical properties of soils and sediments, and possible continuing source terms from continuing operations and on-site disposal. It is anticipated that shared international experience in legacy site characterization can be useful in the next steps. Although the output has been designed to support regulatory evaluation of these particular sites in northwest Russia, the methods and techniques are considered useful examples for application elsewhere, as well as providing relevant input to the International Atomic Energy Agency's international Working Forum for the Regulatory Supervision of Legacy Sites. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lohning, Anna E; Marx, Wolfgang; Isenring, Liz
2016-11-01
Gingerols and shogaols are the primary non-volatile actives within ginger (Zingiber officinale). These compounds have demonstrated in vitro to exert 5-HT 3 receptor antagonism which could benefit chemotherapy-induced nausea and vomiting (CINV). The site and mechanism of action by which these compounds interact with the 5-HT 3 receptor is not fully understood although research indicates they may bind to a currently unidentified allosteric binding site. Using in silico techniques, such as molecular docking and GRID analysis, we have characterized the recently available murine 5-HT 3 receptor by identifying sites of strong interaction with particular functional groups at both the orthogonal (serotonin) site and a proposed allosteric binding site situated at the interface between the transmembrane region and the extracellular domain. These were assessed concurrently with the top-scoring poses of the docked ligands and included key active gingerols, shogaols and dehydroshogaols as well as competitive antagonists (e.g. setron class of pharmacologically active drugs), serotonin and its structural analogues, curcumin and capsaicin, non-competitive antagonists and decoys. Unexpectedly, we found that the ginger compounds and their structural analogs generally outscored other ligands at both sites. Our results correlated well with previous site-directed mutagenesis studies in identifying key binding site residues. We have identified new residues important for binding the ginger compounds. Overall, the results suggest that the ginger compounds and their structural analogues possess a high binding affinity to both sites. Notwithstanding the limitations of such theoretical analyses, these results suggest that the ginger compounds could act both competitively or non-competitively as has been shown for palonosetron and other modulators of CYS loop receptors. Copyright © 2016 Elsevier Inc. All rights reserved.
Optimization of Biofuel Production from Transgenic Microalgae
2008-05-31
are ready to transform. We are nearing completion of a Rubisco construct linked to carbonic anhydrase to increase the C02 concentration near the active...site of Rubisco to inhibit photorespiration. In addition, we have started a project on characterizing the proteomes of cells induced to produce
Characterization of a Wide Array of Fluorinated Organic Compounds in Contaminated Soils
Herein we report the results of analyses on the concentrations of perfluorinated compounds (PFCs) and fluorotelomer alcohols (FTOHs) in soils from a site that has been impacted by human activities. Soil samples were collected from several locations that had been impacted and one...
The Joint Agency Commercial Imagery Evaluation Team and Product Characterization Approach
NASA Technical Reports Server (NTRS)
Zanoni, Vicki; Pagnutti, Mary; Ryan, Robert E.; Snyder, Greg; Lehman, William; Roylance, Spencer
2003-01-01
The Joint Agency Commercial Imagery Evaluation (JACIE) team is a collaborative interagency group focused on the characterization of commercial remote sensing data products. The team members - the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA), and the U.S. Geological Survey (USGS) - each have a vested interest in the purchase and use of commercial imagery to support government research and operational applications. For both research and applications, commercial products must be well characterized for precision, accuracy, and repeatability. Since commercial systems are built and operated with no government insight or oversight, the JACIE team provides an independent product characterization of delivered image and image-derived end products. End product characterization differs from the systems calibration approach that is typically used with government systems, where detailed system design information is available. The product characterization approach addresses three primary areas of product performance: geopositional accuracy, image quality, and radiometric accuracy. The JACIE team utilizes well-characterized test sites to support characterization activities. To characterize geopositional accuracy, the team utilizes sites containing several "photo-identifiable" targets and compares their precisely known locations with those defined by the commercial image product. In the area of image quality, spatial response is characterized using edge targets and pulse targets to measure edge response and to estimate image modulation transfer function. Additionally, imagery is also characterized using the National Imagery Interpretability Rating Scale, a means of quantifying the ability to identify certain targets (e.g., rail-cars, airplanes) within an image product. Radiometric accuracy is characterized using reflectance-based vicarious calibration methods at several uniform sites. Each JACIE agency performs an aspect of product characterization based on its area of expertise, thus minimizing duplication of effort. The JACIE team collaborated to perform comprehensive characterization of products from Space Imaging Inc.'s IKONOS satellite and from DigitalGlobe's QuickBird satellite and is currently characterizing products from OrbImage s OrbView-3. JACIE assessments have resulted in several improvements to commercial image product quality and have enhanced working relationships between government and industry. Assessment results are presented at an annual JACIE High Spatial Resolution Commercial Imagery Workshop.
Impact of bottom trawling on deep-sea sediment properties along the flanks of a submarine canyon.
Martín, Jacobo; Puig, Pere; Masqué, Pere; Palanques, Albert; Sánchez-Gómez, Anabel
2014-01-01
The offshore displacement of commercial bottom trawling has raised concerns about the impact of this destructive fishing practice on the deep seafloor, which is in general characterized by lower resilience than shallow water regions. This study focuses on the flanks of La Fonera (or Palamós) submarine canyon in the Northwestern Mediterranean, where an intensive bottom trawl fishery has been active during several decades in the 400-800 m depth range. To explore the degree of alteration of surface sediments (0-50 cm depth) caused by this industrial activity, fishing grounds and control (untrawled) sites were sampled along the canyon flanks with an interface multicorer. Sediment cores were analyzed to obtain vertical profiles of sediment grain-size, dry bulk density, organic carbon content and concentration of the radionuclide 210Pb. At control sites, surface sediments presented sedimentological characteristics typical of slope depositional systems, including a topmost unit of unconsolidated and bioturbated material overlying sediments progressively compacted with depth, with consistently high 210Pb inventories and exponential decaying profiles of 210Pb concentrations. Sediment accumulation rates at these untrawled sites ranged from 0.3 to 1.0 cm y-1. Sediment properties at most trawled sites departed from control sites and the sampled cores were characterized by denser sediments with lower 210Pb surface concentrations and inventories that indicate widespread erosion of recent sediments caused by trawling gears. Other alterations of the physical sediment properties, including thorough mixing or grain-size sorting, as well as organic carbon impoverishment, were also visible at trawled sites. This work contributes to the growing realization of the capacity of bottom trawling to alter the physical properties of surface sediments and affect the seafloor integrity over large spatial scales of the deep-sea.
Impact of Bottom Trawling on Deep-Sea Sediment Properties along the Flanks of a Submarine Canyon
Martín, Jacobo; Puig, Pere; Masqué, Pere; Palanques, Albert; Sánchez-Gómez, Anabel
2014-01-01
The offshore displacement of commercial bottom trawling has raised concerns about the impact of this destructive fishing practice on the deep seafloor, which is in general characterized by lower resilience than shallow water regions. This study focuses on the flanks of La Fonera (or Palamós) submarine canyon in the Northwestern Mediterranean, where an intensive bottom trawl fishery has been active during several decades in the 400–800 m depth range. To explore the degree of alteration of surface sediments (0–50 cm depth) caused by this industrial activity, fishing grounds and control (untrawled) sites were sampled along the canyon flanks with an interface multicorer. Sediment cores were analyzed to obtain vertical profiles of sediment grain-size, dry bulk density, organic carbon content and concentration of the radionuclide 210Pb. At control sites, surface sediments presented sedimentological characteristics typical of slope depositional systems, including a topmost unit of unconsolidated and bioturbated material overlying sediments progressively compacted with depth, with consistently high 210Pb inventories and exponential decaying profiles of 210Pb concentrations. Sediment accumulation rates at these untrawled sites ranged from 0.3 to 1.0 cm y−1. Sediment properties at most trawled sites departed from control sites and the sampled cores were characterized by denser sediments with lower 210Pb surface concentrations and inventories that indicate widespread erosion of recent sediments caused by trawling gears. Other alterations of the physical sediment properties, including thorough mixing or grain-size sorting, as well as organic carbon impoverishment, were also visible at trawled sites. This work contributes to the growing realization of the capacity of bottom trawling to alter the physical properties of surface sediments and affect the seafloor integrity over large spatial scales of the deep-sea. PMID:25111298
Han, Chengzong; Pogwizd, Steven M; Killingsworth, Cheryl R; Zhou, Zhaoye; He, Bin
2013-10-01
Imaging myocardial activation from noninvasive body surface potentials promises to aid in both cardiovascular research and clinical medicine. To investigate the ability of a noninvasive 3-dimensional cardiac electrical imaging technique for characterizing the activation patterns of dynamically changing ventricular arrhythmias during drug-induced QT prolongation in rabbits. Simultaneous body surface potential mapping and 3-dimensional intracardiac mapping were performed in a closed-chest condition in 8 rabbits. Data analysis was performed on premature ventricular complexes, couplets, and torsades de pointes (TdP) induced during intravenous administration of clofilium and phenylephrine with combinations of various infusion rates. The drug infusion led to a significant increase in the QT interval (from 175 ± 7 to 274 ± 31 ms) and rate-corrected QT interval (from 183 ± 5 to 262 ± 21 ms) during the first dose cycle. All the ectopic beats initiated by a focal activation pattern. The initial beat of TdPs arose at the focal site, whereas the subsequent beats were due to focal activity from different sites or 2 competing focal sites. The imaged results captured the dynamic shift of activation patterns and were in good correlation with the simultaneous measurements, with a correlation coefficient of 0.65 ± 0.02 averaged over 111 ectopic beats. Sites of initial activation were localized to be ~5 mm from the directly measured initiation sites. The 3-dimensional cardiac electrical imaging technique could localize the origin of activation and image activation sequence of TdP during QT prolongation induced by clofilium and phenylephrine in rabbits. It offers the potential to noninvasively investigate the proarrhythmic effects of drug infusion and assess the mechanisms of arrhythmias on a beat-to-beat basis. © 2013 Heart Rhythm Society. All rights reserved.
SMARTE'S SITE CHARACTERIZATION TOOL
Site Characterization involves collecting environmental data to evaluate the nature and extent of contamination. Environmental data could consist of chemical analyses of soil, sediment, water or air samples. Typically site characterization data are statistically evaluated for thr...
Site characterization report for the basalt waste isolation project. Volume II
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1982-11-01
The reference location for a repository in basalt for the terminal storage of nuclear wastes on the Hanford Site and the candidate horizons within this reference repository location have been identified and the preliminary characterization work in support of the site screening process has been completed. Fifteen technical questions regarding the qualification of the site were identified to be addressed during the detailed site characterization phase of the US Department of Energy-National Waste Terminal Storage Program site selection process. Resolution of these questions will be provided in the final site characterization progress report, currently planned to be issued in 1987,more » and in the safety analysis report to be submitted with the License Application. The additional information needed to resolve these questions and the plans for obtaining the information have been identified. This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues. Volume 2 contains chapters 6 through 12: geochemistry; surface hydrology; climatology, meteorology, and air quality; environmental, land-use, and socioeconomic characteristics; repository design; waste package; and performance assessment.« less
40 CFR 280.63 - Initial site characterization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Initial site characterization. 280.63... Hazardous Substances § 280.63 Initial site characterization. (a) Unless directed to do otherwise by the implementing agency, owners and operators must assemble information about the site and the nature of the...
A New Type of Heterogeneous Catalyst with Isolated FE-RH Diatomic Sites
1988-06-01
the logical step was to take advantage of the hoped-for changes in reactivity and selectivity of the new sites. They showed that characterization can...These gases were further purified by passing through Oxy-traps ( Alltech Associates) and molecular sieve traps (Linde 4A) to remove any remainin oxygen or...on a support surface. One of the advantages of the N Mossbauer Effect is that only certain atoms are Mossbauer active and the source used will dictate
Rajan, Rakhi; Prasad, Rajendra; Taneja, Bhupesh; Wilson, Samuel H.; Mondragón, Alfonso
2013-01-01
Topoisomerase V (Topo-V) is the only member of a novel topoisomerase subtype. Topo-V is unique because it is a bifunctional enzyme carrying both topoisomerase and DNA repair lyase activities within the same protein. Previous studies had shown that the topoisomerase domain spans the N-terminus of the protein and is followed by 12 tandem helix–hairpin–helix [(HhH)2] domains. There are at least two DNA repair lyase active sites for apurinic/apyrimidinic (AP) site processing, one within the N-terminal region and the second within the C-terminal domain of Topo-V, but their exact locations and characteristics are unknown. In the present study, the N-terminal 78-kDa fragment of Topo-V (Topo-78), containing the topoisomerase domain and one of the lyase DNA repair domains, was characterized by structural and biochemical studies. The results show that an N-terminal 69-kDa fragment is the minimal fragment with both topoisomerase and AP lyase activities. The lyase active site of Topo-78 is at the junction of the fifth and sixth (HhH)2 domains. From the biochemical and structural data, it appears that Lys571 is the most probable nucleophile responsible for the lyase activity. Our experiments also suggest that Topo-V most likely acts as a Class I AP endonuclease in vivo. PMID:23125368
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorontsov, Ivan I.; Minasov, George; Kiryukhina, Olga
2012-06-19
The EF1143 protein from Enterococcus faecalis is a distant homolog of deoxynucleotide triphosphate triphosphohydrolases (dNTPases) from Escherichia coli and Thermus thermophilus. These dNTPases are important components in the regulation of the dNTP pool in bacteria. Biochemical assays of the EF1143 dNTPase activity demonstrated nonspecific hydrolysis of all canonical dNTPs in the presence of Mn{sup 2+}. In contrast, with Mg{sup 2+} hydrolysis required the presence of dGTP as an effector, activating the degradation of dATP and dCTP with dGTP also being consumed in the reaction with dATP. The crystal structure of EF1143 and dynamic light scattering measurements in solution revealed amore » tetrameric oligomer as the most probable biologically active unit. The tetramer contains four dGTP specific allosteric regulatory sites and four active sites. Examination of the active site with the dATP substrate suggests an in-line nucleophilic attack on the {alpha}-phosphate center as a possible mechanism of the hydrolysis and two highly conserved residues, His-129 and Glu-122, as an acid-base catalytic dyad. Structural differences between EF1143 apo and holo forms revealed mobility of the {alpha}3 helix that can regulate the size of the active site binding pocket and could be stabilized in the open conformation upon formation of the tetramer and dGTP effector binding.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aurelio, Mario; Taguibao, Kristine Joy; Vargas, Edmundo
In the selection of sites for disposal facilities involving low- and intermediate-level radioactive waste (LILW), International Atomic Energy Agency (IAEA) recommendations require that 'the region in which the site is located shall be such that significant tectonic and surface processes are not expected to occur with an intensity that would compromise the required isolation capability of the repository'. Evaluating the appropriateness of a site therefore requires a deep understanding of the geological and tectonic setting of the area. The Philippines sits in a tectonically active region frequented by earthquakes and volcanic activity. Its highly variable morphology coupled with its locationmore » along the typhoon corridor in the west Pacific region subjects the country to surface processes often manifested in the form of landslides. The Philippine LILW near surface repository project site is located on the north eastern sector of the Island of Luzon in northern Philippines. This island is surrounded by active subduction trenches; to the east by the East Luzon Trough and to the west by the Manila Trench. The island is also traversed by several branches of the Philippine Fault System. The Philippine LILW repository project is located more than 100 km away from any of these major active fault systems. In the near field, the project site is located less than 10 km from a minor fault (Dummon River Fault) and more than 40 km away from a volcanic edifice (Mt. Caguas). This paper presents an analysis of the potential hazards that these active tectonic features may pose to the project site. The assessment of such geologic hazards is imperative in the characterization of the site and a crucial input in the design and safety assessment of the repository. (authors)« less
Carbinolamine Formation and Dehydration in a DNA Repair Enzyme Active Site
Dodson, M. L.; Walker, Ross C.; Lloyd, R. Stephen
2012-01-01
In order to suggest detailed mechanistic hypotheses for the formation and dehydration of a key carbinolamine intermediate in the T4 pyrimidine dimer glycosylase (T4PDG) reaction, we have investigated these reactions using steered molecular dynamics with a coupled quantum mechanics–molecular mechanics potential (QM/MM). We carried out simulations of DNA abasic site carbinolamine formation with and without a water molecule restrained to remain within the active site quantum region. We recovered potentials of mean force (PMF) from thirty replicate reaction trajectories using Jarzynski averaging. We demonstrated feasible pathways involving water, as well as those independent of water participation. The water–independent enzyme–catalyzed reaction had a bias–corrected Jarzynski–average barrier height of approximately for the carbinolamine formation reaction and ) for the reverse reaction at this level of representation. When the proton transfer was facilitated with an intrinsic quantum water, the barrier height was approximately in the forward (formation) reaction and for the reverse. In addition, two modes of unsteered (free dynamics) carbinolamine dehydration were observed: in one, the quantum water participated as an intermediate proton transfer species, and in the other, the active site protonated glutamate hydrogen was directly transferred to the carbinolamine oxygen. Water–independent unforced proton transfer from the protonated active site glutamate carboxyl to the unprotonated N–terminal amine was also observed. In summary, complex proton transfer events, some involving water intermediates, were studied in QM/MM simulations of T4PDG bound to a DNA abasic site. Imine carbinolamine formation was characterized using steered QM/MM molecular dynamics. Dehydration of the carbinolamine intermediate to form the final imine product was observed in free, unsteered, QM/MM dynamics simulations, as was unforced acid-base transfer between the active site carboxylate and the N–terminal amine. PMID:22384015
Health Risks to Ecological Workers on Contaminated Sites - the Department of Energy as a Case Study
Burger, Joanna; Gochfeld, Michael
2016-01-01
Background At most contaminated sites the risk to workers focuses on those ‘hazardous waste workers’ directly exposed to chemicals or radionuclides, and to the elaborate approaches implemented to protecting their health and safety. Ecological workers generally are not considered. Objectives To explore the risks to the health and safety of ecological workers on sites with potential chemical and radiological exposures before, during or after remediation of contamination. To use the U.S. Department of Energy as a case study, and to develop concepts that apply generally to sites contaminated with hazardous or nuclear wastes, Methods Develop categories of ecological workers, describe their usual jobs, and provide information on the kinds of risks they face. Ecological activities include continued surveillance and monitoring work on any sites with residual contamination, subject to institutional controls and engineered barriers following closure as well as the restoration. Results The categories of ecological workers and their tasks include 1) Ecological characterization, mapping and monitoring, 2) biodiversity studies, 2) Contaminant fate and transport, 3) On-going industrial activities 4) Remediation activities (environmental management), 5) Environmental restoration, 6) Post-cleanup surveillance and monitoring, and 7) Post-closure future site activities. There are a set of functional activities that can occur with different frequencies and intensities, including visual inspection, collecting biological samples, collecting media physical samples, collecting biological debris, restoration planting, and maintaining ecosystems. Conclusions Ecological workers face different exposures and risks than other environmental cleanup workers. Many of their tasks mimic shift work with long hours leading to fatigue, and they are exposed to biological as well as chemical/radiological hazards. DOE and other entities need to examine the risks to ecological workers on site with an eye to risk reduction. PMID:27668128
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biedscheid, J.; Stahl, S.; Devarakonda, M.
2002-02-26
The first remote-handled transuranic (RH-TRU) waste is expected to be permanently disposed of at the Waste Isolation Pilot Plant (WIPP) during Fiscal Year (FY) 2003. The first RH-TRU waste shipments are scheduled from the Battelle Columbus Laboratories (BCL) to WIPP in order to facilitate compliance with BCL Decommissioning Project (BCLDP) milestones. Milestones requiring RH-TRU waste containerization and removal from the site by 2004 in order to meet a 2006 site closure goal, established by Congress in the Defense Facilities Closure Projects account, necessitated the establishment and implementation of a site-specific program to direct the packaging of BCLDP RH-TRU waste priormore » to the finalization of WIPP RH-TRU waste characterization requirements. The program was designed to collect waste data, including audio and videotape records of waste packaging, such that upon completion of waste packaging, comprehensive data records exist from which compliance with final WIPP RH-TRU waste characterization requirements can be demonstrated. With the BCLDP data records generated to date and the development by the U.S. Department of Energy (DOE)-Carlsbad Field Office (CBFO) of preliminary documents proposing the WIPP RH-TRU waste characterization program, it is possible to evaluate the adequacy of the BCLDP program with respect to meeting proposed characterization objectives. The BCLDP characterization program uses primarily acceptable knowledge (AK) and visual examination (VE) during waste packaging to characterize RH-TRU waste. These methods are used to estimate physical waste parameters, including weight percentages of metals, cellulosics, plastics, and rubber in the waste, and to determine the absence of prohibited items, including free liquids. AK combined with computer modeling is used to estimate radiological waste parameters, including total activity on a waste container basis, for the majority of BCLDP RH-TRU waste. AK combined with direct analysis is used to characterize radiological parameters for the small populations of the RH-TRU waste generated by the BCLDP. All characterization based on AK is verified. Per its design for comprehensive waste data collection, the BCLDP characterization program using AK and waste packaging procedures, including VE during packaging, meets the proposed WIPP RH-TRU waste characterization objectives. The conservative program design implemented generates certification data that will be adequate to meet any additional program requirements that may be imposed by the CBFO.« less
Rivers, James W; Gipson, Philip S; Althoff, Donald P; Pontius, Jeffrey S
2010-02-01
Military training activities are known to impact individual species, yet our understanding of how such activities influence animal communities is limited. In this study, we used long-term data in a case study approach to examine the extent to which the local small landbird community differed between a site in northeast Kansas that experienced intensive disturbance from military training activities (Ft. Riley Military Installation) and a similar, nearby site that experienced minimal human disturbance (Konza Prairie Biological Station). In addition, we characterized how the regional pool of potential colonizers influenced local community dynamics using Breeding Bird Survey data. From 1991 to 2001, most species of small terrestrial landbirds (73%) recorded during breeding surveys were found at both sites and the mean annual richness at Ft. Riley (39.0 +/- 2.86 [SD]) was very similar to that of Konza Prairie (39.4 +/- 2.01). Richness was maintained at relatively constant levels despite compositional changes because colonizations compensated local extinctions at both sites. These dynamics were driven primarily by woodland species that exhibited stochastic losses and gains and were present at a low local and regional abundance. Our results suggest that military training activities may mimic natural disturbances for some species in this area because the small landbird community did not differ markedly between sites with and sites without extensive human disturbance. Although our results suggest that military training is not associated with large changes in the avian community, additional studies are needed to determine if this pattern is found in other ecological communities.
Computational characterization of how the VX nerve agent binds human serum paraoxonase 1.
Fairchild, Steven Z; Peterson, Matthew W; Hamza, Adel; Zhan, Chang-Guo; Cerasoli, Douglas M; Chang, Wenling E
2011-01-01
Human serum paraoxonase 1 (HuPON1) is an enzyme that can hydrolyze various chemical warfare nerve agents including VX. A previous study has suggested that increasing HuPON1's VX hydrolysis activity one to two orders of magnitude would make the enzyme an effective countermeasure for in vivo use against VX. This study helps facilitate further engineering of HuPON1 for enhanced VX-hydrolase activity by computationally characterizing HuPON1's tertiary structure and how HuPON1 binds VX. HuPON1's structure is first predicted through two homology modeling procedures. Docking is then performed using four separate methods, and the stability of each bound conformation is analyzed through molecular dynamics and solvated interaction energy calculations. The results show that VX's lone oxygen atom has a strong preference for forming a direct electrostatic interaction with HuPON1's active site calcium ion. Various HuPON1 residues are also detected that are in close proximity to VX and are therefore potential targets for future mutagenesis studies. These include E53, H115, N168, F222, N224, L240, D269, I291, F292, and V346. Additionally, D183 was found to have a predicted pKa near physiological pH. Given D183's location in HuPON1's active site, this residue could potentially act as a proton donor or accepter during hydrolysis. The results from the binding simulations also indicate that steered molecular dynamics can potentially be used to obtain accurate binding predictions even when starting with a closed conformation of a protein's binding or active site.
IODP Expedition 338: NanTroSEIZE Stage 3: NanTroSEIZE plate boundary deep riser 2
NASA Astrophysics Data System (ADS)
Moore, G. F.; Kanagawa, K.; Strasser, M.; Dugan, B.; Maeda, L.; Toczko, S.
2014-01-01
The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is designed to investigate fault mechanics and seismogenesis along a subduction megathrust, with objectives that include characterizing fault slip, strain accumulation, fault and wall rock composition, fault architecture, and state variables throughout an active plate boundary system. Integrated Ocean Drilling Program (IODP) Expedition 338 was planned to extend and case riser Hole C0002F from 856 to 3600 meters below the seafloor (m b.s.f.). Riser operations extended the hole to 2005.5 m b.s.f., collecting logging-while-drilling (LWD) and measurement-while-drilling, mud gas, and cuttings data. Results reveal two lithologic units within the inner wedge of the accretionary prism that are separated by a prominent fault zone at ~ 1640 m b.s.f. Due to damage to the riser during unfavorable winds and strong currents, riser operations were suspended, and Hole C0002F left for re-entry during future riser drilling operations. Contingency riserless operations included coring at the forearc basin site (C0002) and at two slope basin sites (C0021 and C0022), and LWD at one input site (C0012) and at three slope basin sites (C0018, C0021 and C0022). Cores and logs from these sites comprehensively characterize the alteration stage of the oceanic basement input to the subduction zone, the early stage of Kumano Basin evolution, gas hydrates in the forearc basin, and recent activity of the shallow megasplay fault zone system and associated submarine landslides.
Hot Dry Rock Geothermal Energy Development Program. Annual report, fiscal year 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cremer, G.M.; Duffield, R.B.; Smith, M.C.
1980-08-01
The Fenton Hill Project is still the principal center for developing methods, equipment, and instrumentation for creating and utilizing HDR geothermal reservoirs. The search for a second site for a similar experimental system in a different geological environment has been intensified, as have the identification and characterization of other HDR areas that may prove suitable for either experimental or commercial development. The Phase I fracture system was enlarged during FY79. Drilling of the injection well of the Phase II system began at Fenton Hill in April 1979. Environmental monitoring of the Fenton Hill area continued through FY79. The environmental studiesmore » indicate that the hot dry rock operations have caused no significant environmental impact. Other supporting activities included rock physics, rock mechanics, fracture mapping, and instrumentation development. Two closely related activities - evaluation of the potential HDR energy resource of the US and the selection of a site for development of a second experimental heat-extraction system generally similar to that at Fenton Hill - have resulted in the collection of geology, hydrology, and heat-flow data on some level of field activity in 30 states. The resource-evaluation activity included reconnaissance field studies and a listing and preliminary characterization of US geothermal areas in which HDR energy extraction methods may be applicable. The selection of Site 2 has taken into account such legal, institutional, and economic factors as land ownership and use, proximity to possible users, permitting and licensing requirements and procedures, environmental issues, areal extent of the geothermal area, and visibility to and apparent interest by potential industrial developers.« less
Tavares, D; Tully, K; Dobner, P R
1999-10-15
The promoter region of the mouse high affinity neurotensin receptor (Ntr-1) gene was characterized, and sequences required for expression in neuroblastoma cell lines that express high affinity NT-binding sites were characterized. Me(2)SO-induced neuronal differentiation of N1E-115 neuroblastoma cells increased both the expression of the endogenous Ntr-1 gene and reporter genes driven by NTR-1 promoter sequences by 3-4-fold. Deletion analysis revealed that an 83-base pair promoter region containing the transcriptional start site is required for Me(2)SO activation. Detailed mutational analysis of this region revealed that a CACCC box and the central region of a large GC-rich palindrome are the crucial cis-regulatory elements required for Me(2)SO induction. The CACCC box is bound by at least one factor that is induced upon Me(2)SO treatment of N1E-115 cells. The Me(2)SO effect was found to be both selective and cell type-restricted. Basal expression in the neuroblastoma cell lines required a distinct set of sequences, including an Sp1-like sequence, and a sequence resembling an NGFI-A-binding site; however, a more distal 5' sequence was found to repress basal activity in N1E-115 cells. These results provide evidence that Ntr-1 gene regulation involves both positive and negative regulatory elements located in the 5'-flanking region and that Ntr-1 gene activation involves the coordinate activation or induction of several factors, including a CACCC box binding complex.
Efficacy of Lysine-Specific Demethylase 1 Inhibition in PCa
2016-08-01
specific demethylase 1 (LSD1) forms a complex with CoREST and has been well-characterized as an epigenetic regulator that mediates transcriptional...castration-resistant prostate cancer (CRPC), where AR activity persists and its function may be altered by epigenetic mechanisms. Specifically, we...hypothesized that LSD1 activity in PCa may allow tumor cells to epigenetically reprogram the AR cistrome by closing AR binding sites through which AR
Metal–organic and covalent organic frameworks as single-site catalysts
Rogge, S. M. J.; Bavykina, A.; Hajek, J.; Garcia, H.; Olivos-Suarez, A. I.; Sepúlveda-Escribano, A.; Vimont, A.; Clet, G.; Bazin, P.; Kapteijn, F.
2017-01-01
Heterogeneous single-site catalysts consist of isolated, well-defined, active sites that are spatially separated in a given solid and, ideally, structurally identical. In this review, the potential of metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) as platforms for the development of heterogeneous single-site catalysts is reviewed thoroughly. In the first part of this article, synthetic strategies and progress in the implementation of such sites in these two classes of materials are discussed. Because these solids are excellent playgrounds to allow a better understanding of catalytic functions, we highlight the most important recent advances in the modelling and spectroscopic characterization of single-site catalysts based on these materials. Finally, we discuss the potential of MOFs as materials in which several single-site catalytic functions can be combined within one framework along with their potential as powerful enzyme-mimicking materials. The review is wrapped up with our personal vision on future research directions. PMID:28338128
NASA Astrophysics Data System (ADS)
Kaur, Jasmit; Walia, Harpreet; Mabwoga, Samson Okongo; Arora, Saroj
2017-06-01
The present study entails the investigation of mutagenic and genotoxic effect of surface water samples collected from 13 different sites of the Harike wetland using the histidine reversion point mutation assay in Salmonella typhimurium (TA98) strain and plasmid nicking assay using pBR322, respectively. The physicochemical characterization of water samples using different parameters was conducted for water quality monitoring. Heavy metal analysis was performed to quantify the toxic components present in water samples. It was observed that although the water samples of all the sites demonstrated mutagenic as well as genotoxic activity, the effect was quite significant with the water samples from sites containing water from river Satluj, i.e., site 1 (upstream Satluj river), site 2 (Satluj river) and site 3 (reservoir Satluj). The high level of pollution due to industrial effluents and agricultural run-off at these sites may engender the genotoxicity and mutagenicity of water samples.
Source apportionment of particulate organic matter using infrared spectra at multiple IMPROVE sites
NASA Astrophysics Data System (ADS)
Kuzmiakova, A.; Dillner, A. M.; Takahama, S.
2016-12-01
As organic aerosol is a dominant contributor to air pollution and radiative forcing in many regions in the United States, characterizing its composition and apportioning the organic mass to its major sources provides insight into atmospheric processes and guidance for decreasing its abundance. National networks, such as Interagency Monitoring of Protected Visual Environment (IMPROVE), provide multi-site and multi-year particulate matter samples useful for evaluating sources over all four seasons. To this end, our study focuses on apportioning the particulate organic matter (OM) to specific anthropogenic and biological processes from year-long infrared aerosol measurements collected at six IMPROVE sites (five national park sites and one urban site) during 2011. Pooling these organic aerosol samples into one dataset, we apply factor and cluster analyses to extract four chemical factors (two dominated by processed emissions, one dominated by hydroxyl groups, and one by hydrocarbons) and ascribe each factor to a specific source depending on the site and season. We also present a method to characterize measurement uncertainty in infrared instrumental analysis and investigate sensitivity analysis in generated factors. In Phoenix (the urban site) we find the majority (80-95%) of the OM consisted of anthropogenic activities, such as traffic emissions, fossil fuel combustion (both all year long), and residential wood burning (fall to winter). Mineral dust emissions accounted for the rest of OM (5-20%). At the National Park sites the OM concentration was lower on average and consisted of marine and dust aerosols, summertime biomass burning and biogenic aerosols, processed fossil fuel combustion, and emissions from ships and oil refineries. Our study highlights the potential for further site-specific or multi-year aerosol characterization in the context of a long-term atmospheric sampling program to quantify sources of organic particles impacting air quality, aid in policy-making, and assess which (trans)formation mechanisms proposed in laboratory studies are consistent with observations.
Mars Exploration Rovers Launch Performance and TCM-1 Maneuver Design
NASA Technical Reports Server (NTRS)
Kangas, Julie A.; Potts, Christopher L.; Raofi, Behzad
2004-01-01
The Mars Exploration Rover (MER) project successfully landed two identical rovers on Mars in order to remotely conduct geologic investigations, including characterization of rocks and soils that may hold clues to past water activity. Two landing sites, Gusev crater and Meridiani Planum, were selected out of nearly 200 candidate sites after balancing science returns and flight system engineering and safety. Precise trajectory targeting and control was necessary to achieve the atmospheric entry requirements for the selected landing sites within the flight system constraints. This paper discusses the expected and achieved launch vehicle performance and the impacts of that performance on the first Trajectory Correction Maneuver (TCM-1) while maintaining targeting flexibility in accommodating additional project concerns about landing site safety and possible in-flight retargeting to alternate landing sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. Ladwig; B. Hensel; D. Wallschlager
2005-10-18
Following completion of contracting activities, sites were identified for the field leachate characterization study. Sampling and Analyses Plans (SAPs) and Site Access Agreements (SAAs) were developed for each site. A total of ten sites were sampled during this reporting period. Among the trace constituents, boron, silicon, and strontium were present in highest concentrations, with median values above 1 mg/L (1,000 {micro}g/L). Work on the first of three sites for the detailed arsenic and selenium adsorption studies began in 2002, prior to completion of the final DOE award. Kd values ranged from 100 to 12,000 L/kg for arsenic (V), 15 tomore » 160 L.kg for As(III), and 5 to 25 L/kg for Se(VI).« less
Defining NADH-Driven Allostery Regulating Apoptosis-Inducing Factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brosey, Chris A.; Ho, Chris; Long, Winnie Z.
Apoptosis-inducing factor (AIF) is critical for mitochondrial respiratory complex biogenesis and for mediating necroptotic parthanatos; these functions are seemingly regulated by enigmatic allosteric switching driven by NADH charge-transfer complex (CTC) formation. In this paper, we define molecular pathways linking AIF's active site to allosteric switching regions by characterizing dimer-permissive mutants using small-angle X-ray scattering (SAXS) and crystallography and by probing AIF-CTC communication networks using molecular dynamics simulations. Collective results identify two pathways propagating allostery from the CTC active site: (1) active-site H454 links to S480 of AIF's central β-strand to modulate a hydrophobic border at the dimerization interface, and (2)more » an interaction network links AIF's FAD cofactor, central β-strand, and Cβ-clasp whereby R529 reorientation initiates C-loop release during CTC formation. Finally, this knowledge of AIF allostery and its flavoswitch mechanism provides a foundation for biologically understanding and biomedically controlling its participation in mitochondrial homeostasis and cell death.« less
Waste Isolation Pilot Plant Site Environmental Report for 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooda, Balwan S.; Allen, Vivian L.
This 1998 annual Site Environmental Report (SER) was prepared in accordance with U.S. Department of Energy (DOE) Order 5400.1, ''General Environmental Protection Program''; DOE Order 231.1, ''Environmental Safety and Health Reporting''; the ''Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance'' (DOE/EH-0173T); and the Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an SER to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of the SER is to provide a comprehensive description of operational environmental monitoring activities, an abstract of environmental activities conducted tomore » characterize site environmental management performance, to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during calendar year ( CY) 1998. The content of this SER is not restricted to a synopsis of the required data. Information pertaining to new and continued monitoring and compliance activities during CY 1998 are also included.« less
Defining NADH-Driven Allostery Regulating Apoptosis-Inducing Factor
Brosey, Chris A.; Ho, Chris; Long, Winnie Z.; ...
2016-11-03
Apoptosis-inducing factor (AIF) is critical for mitochondrial respiratory complex biogenesis and for mediating necroptotic parthanatos; these functions are seemingly regulated by enigmatic allosteric switching driven by NADH charge-transfer complex (CTC) formation. In this paper, we define molecular pathways linking AIF's active site to allosteric switching regions by characterizing dimer-permissive mutants using small-angle X-ray scattering (SAXS) and crystallography and by probing AIF-CTC communication networks using molecular dynamics simulations. Collective results identify two pathways propagating allostery from the CTC active site: (1) active-site H454 links to S480 of AIF's central β-strand to modulate a hydrophobic border at the dimerization interface, and (2)more » an interaction network links AIF's FAD cofactor, central β-strand, and Cβ-clasp whereby R529 reorientation initiates C-loop release during CTC formation. Finally, this knowledge of AIF allostery and its flavoswitch mechanism provides a foundation for biologically understanding and biomedically controlling its participation in mitochondrial homeostasis and cell death.« less
Hierarchy within the mammary STAT5-driven Wap super-enhancer
Zeng, Xianke; Wang, Chaochen; Metser, Gil; Hennighausen, Lothar
2016-01-01
Super-enhancers comprise of dense transcription factor platforms highly enriched for active chromatin marks. A paucity of functional data led us to investigate their role in the mammary gland, an organ characterized by exceptional gene regulatory dynamics during pregnancy. ChIP-Seq for the master regulator STAT5, the glucocorticoid receptor, H3K27ac and MED1, identified 440 mammary-specific super-enhancers, half of which were associated with genes activated during pregnancy. We interrogated the Wap super-enhancer, generating mice carrying mutations in STAT5 binding sites within its three constituent enhancers. Individually, only the most distal site displayed significant enhancer activity. However, combinatorial mutations showed that the 1,000-fold gene induction relied on all enhancers. Disabling the binding sites of STAT5, NFIB and ELF5 in the proximal enhancer incapacitated the entire super-enhancer, suggesting an enhancer hierarchy. The identification of mammary-specific super-enhancers and the mechanistic exploration of the Wap locus provide insight into the complexity of cell-specific and hormone-regulated genes. PMID:27376239
Castaneda, Carol Ann; Lopez, Jeffrey E; Joseph, Caleb G; Scholle, Michael D; Mrksich, Milan; Fierke, Carol A
2017-10-24
Histone deacetylase 8 (HDAC8) is a well-characterized member of the class I acetyl-lysine deacetylase (HDAC) family. Previous work has shown that the efficiency of HDAC8-catalyzed deacetylation of a methylcoumarin peptide varies depending on the identity of the divalent metal ion in the HDAC8 active site. Here we demonstrate that both HDAC8 activity and substrate selectivity for a diverse range of peptide substrates depend on the identity of the active site metal ion. Varied deacetylase activities of Fe(II)- and Zn(II)-HDAC8 toward an array of peptide substrates were identified using self-assembled monolayers for matrix-assisted laser desorption ionization (SAMDI) mass spectrometry. Subsequently, the metal dependence of deacetylation of peptides of biological interest was measured using an in vitro peptide assay. While Fe(II)-HDAC8 is generally more active than Zn(II)-HDAC8, the Fe(II)/Zn(II) HDAC8 activity ratio varies widely (from 2 to 150) among the peptides tested. These data provide support for the hypothesis that HDAC8 may undergo metal switching in vivo that, in turn, may regulate its activity. However, future studies are needed to explore the identity of the metal ion bound to HDAC8 in cells under varied conditions.
Trexler, Ryan; Solomon, Caroline; Brislawn, Colin J.; Wright, Justin R.; Rosenberger, Abigail; McClure, Erin E.; Grube, Alyssa M.; Peterson, Mark P.; Keddache, Mehdi; Mason, Olivia U.; Hazen, Terry C.; Grant, Christopher J.; Lamendella, Regina
2014-01-01
Hydraulic fracturing and horizontal drilling have increased dramatically in Pennsylvania Marcellus shale formations, however the potential for major environmental impacts are still incompletely understood. High-throughput sequencing of the 16S rRNA gene was performed to characterize the microbial community structure of water, sediment, bryophyte, and biofilm samples from 26 headwater stream sites in northwestern Pennsylvania with different histories of fracking activity within Marcellus shale formations. Further, we describe the relationship between microbial community structure and environmental parameters measured. Approximately 3.2 million 16S rRNA gene sequences were retrieved from a total of 58 samples. Microbial community analyses showed significant reductions in species richness as well as evenness in sites with Marcellus shale activity. Beta diversity analyses revealed distinct microbial community structure between sites with and without Marcellus shale activity. For example, operational taxonomic units (OTUs) within the Acetobacteracea, Methylocystaceae, Acidobacteriaceae, and Phenylobacterium were greater than three log-fold more abundant in MSA+ sites as compared to MSA− sites. Further, several of these OTUs were strongly negatively correlated with pH and positively correlated with the number of wellpads in a watershed. It should be noted that many of the OTUs enriched in MSA+ sites are putative acidophilic and/or methanotrophic populations. This study revealed apparent shifts in the autochthonous microbial communities and highlighted potential members that could be responding to changing stream conditions as a result of nascent industrial activity in these aquatic ecosystems. PMID:25408683
Reliability of an fMRI Paradigm for Emotional Processing in a Multisite Longitudinal Study
Gee, Dylan G.; McEwen, Sarah C.; Forsyth, Jennifer K.; Haut, Kristen M.; Bearden, Carrie E.; Addington, Jean; Goodyear, Bradley; Cadenhead, Kristin S.; Mirzakhanian, Heline; Cornblatt, Barbara A.; Olvet, Doreen; Mathalon, Daniel H.; McGlashan, Thomas H.; Perkins, Diana O.; Belger, Aysenil; Seidman, Larry J.; Thermenos, Heidi; Tsuang, Ming T.; van Erp, Theo G.M.; Walker, Elaine F.; Hamann, Stephan; Woods, Scott W.; Constable, Todd; Cannon, Tyrone D.
2015-01-01
Multisite neuroimaging studies can facilitate the investigation of brain-related changes in many contexts, including patient groups that are relatively rare in the general population. Though multisite studies have characterized the reliability of brain activation during working memory and motor functional magnetic resonance imaging tasks, emotion processing tasks, pertinent to many clinical populations, remain less explored. A traveling participants study was conducted with eight healthy volunteers scanned twice on consecutive days at each of the eight North American Longitudinal Prodrome Study sites. Tests derived from generalizability theory showed excellent reliability in the amygdala (Eρ2=0.82), inferior frontal gyrus (IFG;Eρ2=0.83), anterior cingulate cortex (ACC;Eρ2=0.76), insula (Eρ2=0.85), and fusiform gyrus (Eρ2=0.91) for maximum activation and fair to excellent reliability in the amygdala (Eρ2=0.44), IFG (Eρ2=0.48), ACC (Eρ2=0.55), insula (Eρ2=0.42), and fusiform gyrus (Eρ2=0.83) for mean activation across sites and test days. For the amygdala, habituation (Eρ2=0.71) was more stable than mean activation. In a second investigation, data from 111 healthy individuals across sites were aggregated in a voxelwise, quantitative meta-analysis. When compared with a mixed effects model controlling for site, both approaches identified robust activation in regions consistent with expected results based on prior single-site research. Overall, regions central to emotion processing showed strong reliability in the traveling participants study and robust activation in the aggregation study. These results support the reliability of blood oxygen level-dependent signal in emotion processing areas across different sites and scanners and may inform future efforts to increase efficiency and enhance knowledge of rare conditions in the population through multisite neuroimaging paradigms. PMID:25821147
2015-01-01
The class I terpenoid cyclase epi-isozizaene synthase (EIZS) utilizes the universal achiral isoprenoid substrate, farnesyl diphosphate, to generate epi-isozizaene as the predominant sesquiterpene cyclization product and at least five minor sesquiterpene products, making EIZS an ideal platform for the exploration of fidelity and promiscuity in a terpenoid cyclization reaction. The hydrophobic active site contour of EIZS serves as a template that enforces a single substrate conformation, and chaperones subsequently formed carbocation intermediates through a well-defined mechanistic sequence. Here, we have used the crystal structure of EIZS as a guide to systematically remold the hydrophobic active site contour in a library of 26 site-specific mutants. Remolded cyclization templates reprogram the reaction cascade not only by reproportioning products generated by the wild-type enzyme but also by generating completely new products of diverse structure. Specifically, we have tripled the overall number of characterized products generated by EIZS. Moreover, we have converted EIZS into six different sesquiterpene synthases: F96A EIZS is an (E)-β-farnesene synthase, F96W EIZS is a zizaene synthase, F95H EIZS is a β-curcumene synthase, F95M EIZS is a β-acoradiene synthase, F198L EIZS is a β-cedrene synthase, and F96V EIZS and W203F EIZS are (Z)-γ-bisabolene synthases. Active site aromatic residues appear to be hot spots for reprogramming the cyclization cascade by manipulating the stability and conformation of critical carbocation intermediates. A majority of mutant enzymes exhibit only relatively modest 2–100-fold losses of catalytic activity, suggesting that residues responsible for triggering substrate ionization readily tolerate mutations deeper in the active site cavity. PMID:24517311
Bihani, Subhash C; Chakravarty, Dhiman; Ballal, Anand
2016-04-01
Manganese catalases (Mn-catalases), a class of H2O2 detoxifying proteins, are structurally and mechanistically distinct from the commonly occurring catalases, which contain heme. Active site of Mn-catalases can serve as template for the synthesis of catalase mimetics for therapeutic intervention in oxidative stress related disorders. However, unlike the heme catalases, structural aspects of Mn-catalases remain inadequately explored. The genome of the ancient cyanobacterium Anabaena PCC7120, shows the presence of two Mn-catalases, KatA and KatB. Here, we report the biochemical and structural characterization of KatB. The KatB protein (with a C-terminal his-tag) was over-expressed in Escherichia coli and purified by affinity chromatography. On the addition of Mn(2+) to the E. coli growth medium, a substantial increase in production of the soluble KatB protein was observed. The purified KatB protein was an efficient catalase, which was relatively insensitive to inhibition by azide. Crystal structure of KatB showed a hexameric assembly with four-helix bundle fold, characteristic of the Ferritin-like superfamily. With canonical Glu4His2 coordination geometry and two terminal water ligands, the KatB active site was distinctly different from that of other Mn-catalases. Interestingly, the KatB active site closely resembled the active sites of ruberythrin/bacterioferritin, bi-iron members of the Ferritin-like superfamily. The KatB crystal structure provided fundamental insights into the evolutionary relationship within the Ferritin-like superfamily and further showed that Mn-catalases can be sub-divided into two groups, each with a distinct active site configuration. Copyright © 2016 Elsevier Inc. All rights reserved.
2010-01-01
purified from Trichoplusia ni (T. ni) larvae infected with an orally active form of bac- ulovirus. SDS-PAGE and anti-HuPON1 Western blot analyses yielded...Organophosphorus (OP) nerve agents readily bind covalently o acetylcholinesterase (AChE) at the active site serine and inhibit he ability of AChE to terminate...The results demon- trate that T. ni larvae are capable of producing high quantities of unctionally active recombinant HuPON1, and larvae expressing
Install active/passive neutron examination and assay (APNEA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1996-04-01
This document describes activities pertinent to the installation of the prototype Active/Passive Neutron Examination and Assay (APNEA) system built in Area 336 into its specially designed trailer. It also documents the basic theory of operation, design and protective features, basic personnel training, and the proposed characterization site location at Lockheed Martin Specialty Components, Inc., (Specialty Components) with the estimated 10 mrem/year boundary. Additionally, the document includes the Preventive Change Analysis (PCA) form, and a checklist of items for verification prior to unrestricted system use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtin, Michael L.; Heyman, H. Robin; Clark, Richard F.
Herein we disclose SAR studies that led to a series of isoindoline ureas which we recently reported were first-in-class, non-substrate nicotinamide phosphoribosyltransferase (NAMPT) inhibitors. Modification of the isoindoline and/or the terminal functionality of screening hit 5 provided inhibitors such as 52 and 58 with nanomolar antiproliferative activity and preclinical pharmacokinetics properties which enabled potent antitumor activity when dosed orally in mouse xenograft models. X-ray crystal structures of two inhibitors bound in the NAMPT active-site are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, Griffin John
Here, kinetic measurements are paired with in-situ spectroscopic characterization tools to investigate colloidally based, supported Pt catalytic model systems in order to elucidate the mechanisms by which metal and support work in tandem to dictate activity and selectivity. The results demonstrate oxide support materials, while inactive in absence of Pt nanoparticles, possess unique active sites for the selective conversion of gas phase molecules when paired with an active metal catalyst.
Lee, Casey J.; Ziegler, Andrew C.
2010-01-01
The U.S. Geological Survey, in cooperation with the Johnson County, Kansas, Stormwater Management Program, investigated the effects of urbanization, construction activity, management practices, and impoundments on suspended-sediment transport in Johnson County from February 2006 through November 2008. Streamgages and continuous turbidity sensors were operated at 15 sites within the urbanizing 57-square-mile Mill Creek Basin, and 4 sites downstream from the other largest basins (49 to 66 square miles) in Johnson County. The largest sediment yields in Johnson County were observed downstream from basins with increased construction activity. Sediment yields attributed to the largest (68 acre) active construction site in the study area were 9,300 tons per square mile in 2007 and 12,200 tons per square mile in 2008; 5 to 55 times larger than yields observed at other sampling sites. However, given erodible soils and steep slopes at this site, sediment yields were relatively small compared to the range in historic values from construction sites without erosion and sediment controls in the United States (2,300 to 140,000 tons per square mile). Downstream from this construction site, a sediment forebay and wetland were constructed in series upstream from Shawnee Mission Lake, a 120-acre reservoir within Shawnee Mission Park. Although the original intent of the sediment forebay and constructed wetland were unrelated to upstream construction, they were nonetheless evaluated in 2008 to characterize sediment removal before stream entry into the lake. The sediment forebay was estimated to reduce 33 percent of sediment transported to the lake, whereas the wetland did not appear to decrease downstream sediment transport. Comparisons of time-series data and relations between turbidity and sediment concentration indicate that larger silt-sized particles were deposited within the sediment forebay, whereas smaller silt and clay-sized sediments were transported through the wetland and into the lake. Data collected at sites up and downstream from the constructed wetland indicated that hydraulic retention alone did not substantially reduce sediment loading to Shawnee Mission Lake. Mean-daily turbidity values at sampling sites downstream from basins with increased construction activity were compared to U.S. Environmental Protection Agency turbidity criteria designed to reduce discharge of pollutants from construction sites. The U.S. Environmental Protection Agency numeric turbidity criteria specifies that effluent from construction sites greater than 20 acres not exceed a mean-daily turbidity value of 280 nephelometric turbidity units beginning in 2011; this criteria will apply to sites greater than 10 acres beginning in 2014. Although numeric criteria would not have been applicable to data from sampling sites in Johnson County because they were not directly downstream from construction sites and because individual states still have to determine additional details as to how this criteria will be enforced, comparisons were made to characterize the potential of construction site effluent in Johnson County to exceed U.S. Environmental Protection Agency Criteria, even under extensive erosion and sediment controls. Numeric criteria were exceeded at sampling sites downstream from basins with increased construction activity for multiple days during the study period, potentially indicating the need for additional erosion and sediment controls and (or) treatment to bring discharges from construction sites into compliance with future numeric turbidity criteria. Among sampling sites in the Mill Creek Basin, sediment yields from the urbanizing Clear Creek Basin were approximately 2 to 3 times those from older, more stable urban or rural basins. Sediments eroded from construction sites adjacent to or surrounding streams appear to be more readily transported downstream, whereas sediments eroded from construction sites in headwater areas are more likely to
The pimeloyl-CoA synthetase BioW defines a new fold for adenylate-forming enzymes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estrada, Paola; Manandhar, Miglena; Dong, Shi-Hui
Reactions that activate carboxylates through acyl-adenylate intermediates are found throughout biology and include acyl- and aryl-CoA synthetases and tRNA synthetases. Here we describe the characterization of Aquifex aeolicus BioW, which represents a new protein fold within the superfamily of adenylating enzymes. Substrate-bound structures identified the enzyme active site and elucidated the mechanistic strategy for conjugating CoA to the seven-carbon α,ω-dicarboxylate pimelate, a biotin precursor. Proper position of reactive groups for the two half-reactions is achieved solely through movements of active site residues, as confirmed by site-directed mutational analysis. The ability of BioW to hydrolyze adenylates of noncognate substrates is reminiscentmore » of pre-transfer proofreading observed in some tRNA synthetases, and we show that this activity can be abolished by mutation of a single residue. These studies illustrate how BioW can carry out three different biologically prevalent chemical reactions (adenylation, thioesterification, and proofreading) in the context of a new protein fold.« less
CHARACTERIZATION OF PARTICULATE EMISSIONS FROM CONTROLLED CONSTRUCTION ACTIVITIES: MUD/DIRT CARRYOUT
The report describes a field study of PM-2.5 and PM-10 (particulate matter with aerodynamic diameter less than 2.5 and 10 micrometers, respectively) emissions from a public paved road in Overland Park, Kansas, adjacent to a 200-acre construction site which will ultimately have 4 ...
Zerbe, Philipp; Chiang, Angela; Yuen, Macaire; Hamberger, Björn; Hamberger, Britta; Draper, Jason A.; Britton, Robert; Bohlmann, Jörg
2012-01-01
The labdanoid diterpene alcohol cis-abienol is a major component of the aromatic oleoresin of balsam fir (Abies balsamea) and serves as a valuable bioproduct material for the fragrance industry. Using high-throughput 454 transcriptome sequencing and metabolite profiling of balsam fir bark tissue, we identified candidate diterpene synthase sequences for full-length cDNA cloning and functional characterization. We discovered a bifunctional class I/II cis-abienol synthase (AbCAS), along with the paralogous levopimaradiene/abietadiene synthase and isopimaradiene synthase, all of which are members of the gymnosperm-specific TPS-d subfamily. The AbCAS-catalyzed formation of cis-abienol proceeds via cyclization and hydroxylation at carbon C-8 of a postulated carbocation intermediate in the class II active site, followed by cleavage of the diphosphate group and termination of the reaction sequence without further cyclization in the class I active site. This reaction mechanism is distinct from that of synthases of the isopimaradiene- or levopimaradiene/abietadiene synthase type, which employ deprotonation reactions in the class II active site and secondary cyclizations in the class I active site, leading to tricyclic diterpenes. Comparative homology modeling suggested the active site residues Asp-348, Leu-617, Phe-696, and Gly-723 as potentially important for the specificity of AbCAS. As a class I/II bifunctional enzyme, AbCAS is a promising target for metabolic engineering of cis-abienol production. PMID:22337889
The Energy Landscape Analysis of Cancer Mutations in Protein Kinases
Dixit, Anshuman; Verkhivker, Gennady M.
2011-01-01
The growing interest in quantifying the molecular basis of protein kinase activation and allosteric regulation by cancer mutations has fueled computational studies of allosteric signaling in protein kinases. In the present study, we combined computer simulations and the energy landscape analysis of protein kinases to characterize the interplay between oncogenic mutations and locally frustrated sites as important catalysts of allostetric kinase activation. While structurally rigid kinase core constitutes a minimally frustrated hub of the catalytic domain, locally frustrated residue clusters, whose interaction networks are not energetically optimized, are prone to dynamic modulation and could enable allosteric conformational transitions. The results of this study have shown that the energy landscape effect of oncogenic mutations may be allosteric eliciting global changes in the spatial distribution of highly frustrated residues. We have found that mutation-induced allosteric signaling may involve a dynamic coupling between structurally rigid (minimally frustrated) and plastic (locally frustrated) clusters of residues. The presented study has demonstrated that activation cancer mutations may affect the thermodynamic equilibrium between kinase states by allosterically altering the distribution of locally frustrated sites and increasing the local frustration in the inactive form, while eliminating locally frustrated sites and restoring structural rigidity of the active form. The energy landsape analysis of protein kinases and the proposed role of locally frustrated sites in activation mechanisms may have useful implications for bioinformatics-based screening and detection of functional sites critical for allosteric regulation in complex biomolecular systems. PMID:21998754
New fluorescent reagents specific for Ca{sup 2+}-binding proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben-Hail, Danya; Lemelson, Daniela; Israelson, Adrian
2012-09-14
Highlights: Black-Right-Pointing-Pointer New reagents specifically inhibit the activity of Ca{sup 2+}-dependent proteins. Black-Right-Pointing-Pointer FITC-Ru and EITC-Ru allow for mechanism-independent probing of Ca{sup 2+}-binding proteins. Black-Right-Pointing-Pointer Changes in reagents fluorescence allow characterization of protein Ca{sup 2+}-binding properties. -- Abstract: Ca{sup 2+} carries information pivotal to cell life and death via its interactions with specific binding sites in a protein. We previously developed a novel photoreactive reagent, azido ruthenium (AzRu), which strongly inhibits Ca{sup 2+}-dependent activities. Here, we synthesized new fluorescent ruthenium-based reagents containing FITC or EITC, FITC-Ru and EITC-Ru. These reagents were purified, characterized and found to specifically interact with andmore » markedly inhibit Ca{sup 2+}-dependent activities but not the activity of Ca{sup 2+}-independent reactions. In contrast to many reagents that serve as probes for Ca{sup 2+}, FITC-Ru and EITC-Ru are the first fluorescent divalent cation analogs to be synthesized and characterized that specifically bind to Ca{sup 2+}-binding proteins and inhibit their activity. Such reagents will assist in characterizing Ca{sup 2+}-binding proteins, thereby facilitating better understanding of the function of Ca{sup 2+} as a key bio-regulator.« less
Negative impact of surface Ti3+ defects on the photocatalytic hydrogen evolution activity of SrTiO3
NASA Astrophysics Data System (ADS)
Chen, Haidong; Zhang, Feng; Zhang, Weifeng; Du, Yingge; Li, Guoqiang
2018-01-01
Defects play an important and in many cases dominant role in the physical and chemical properties of many oxide materials. In this work, we show that the surface Ti3+ defects in SrTiO3 (STO), characterized by electron paramagnetic resonance and X-ray photoelectron spectroscopy, directly impact the photocatalytic activity of STO. O2 species are found to absorb preferentially on Ti3+ defect sites. Hydrogen evolution under ambient air diminishes with the increase in the concentration of surface Ti3+. This is explained by the over-accumulation of Pt cocatalysts on the site of surface Ti3+ defects after the removal of adsorbed O2.
Andrade, Sonia A; Santomauro-Vaz, Eugênio M; Lopes, Adriana R; Chudzinski-Tavassi, Ana M; Juliano, Maria A; Terra, Walter R; Sampaio, Misako U; Sampaio, Claudio A M; Oliva, Maria Luiza V
2003-03-01
Bauhinia ungulata factor Xa inhibitor (BuXI) inactivates factor Xa and LOPAP, a prothrombin activator proteinase isolated from the venom of Lonomia obliqua caterpillar bristles. The reactive site of the enzyme-inhibitor interaction was explored to design specific substrates for both enzymes. Methionine is crucial for LOPAP and factor Xa substrate interaction, since the change of both Met residues in the substrates abolished the hydrolysis. Synthetic substrates containing the sequence around the reactive site of BbKI, a plasma kallikrein inhibitor, were shown to be specific for trypsin hydrolysis. Therefore, these substrates may be an alternative in studies aiming at a characterization of trypsin-like enzyme activities, especially non-mammalian enzymes.
Evaluation of the TOPSAR performance by using passive and active calibrators
NASA Technical Reports Server (NTRS)
Alberti, G.; Moccia, A.; Ponte, S.; Vetrella, S.
1992-01-01
The preliminary analysis of the C-band cross-track interferometric data (XTI) acquired during the MAC Europe 1991 campaign over the Matera test site, in Southern Italy is presented. Twenty three passive calibrators (Corner Reflector, CR) and 3 active calibrators (Active Radar Calibrator, ARC) were deployed over an area characterized by homogeneous background. Contemporaneously to the flight, a ground truth data collection campaign was carried out. The research activity was focused on the development of motion compensation algorithms, in order to improve the height measurement accuracy of the TOPSAR system.
NASA Astrophysics Data System (ADS)
Kumbar, Mahadev N.; Kamble, Ravindra R.; Dasappa, Jagadeesh Prasad; Bayannavar, Praveen K.; Khamees, Hussien Ahmed; Mahendra, M.; Joshi, Shrinivas D.; Dodamani, Suneel; Rasal, V. P.; Jalalpure, Sunil
2018-05-01
A series of novel 5-(1-aryl-3-(thiophen-2-yl)-1H-pyrazol-4-yl)-1H-tetrazoles 7(h-s) were designed and synthesized. Structural characterization was done by spectral and single crystal X-ray studies. The intermolecular interactions of compound 7n were quantified and visualized using Hirshfeld surface analysis. Structures of newly synthesized compounds were docked into active site of COX-2 enzyme PDB:
SEMINAR PUBLICATION: SITE CHARACTERIZATION FOR SUBSURFACE REMEDIATION
This seminar publication provides a comprehensive approach to site characterization for subsurface remediation. Chapter 1 describes a methodology for integrating site characterization with subsurface remediation. The rest of the handbook is divided into three parts. Part I covers...
Ethenoguanines Undergo Glycosylation by Nucleoside 2′-Deoxyribosyltransferases at Non-Natural Sites
Ye, Wenjie; Paul, Debamita; Gao, Lina; Seckute, Jolita; Jayaraj, Karupiah; Zhang, Zhenfa; Kaminski, P. Alexandre
2014-01-01
Deoxyribosyl transferases and functionally related purine nucleoside phosphorylases are used extensively for synthesis of non-natural deoxynucleosides as pharmaceuticals or standards for characterizing and quantitating DNA adducts. Hence exploring the conformational tolerance of the active sites of these enzymes is of considerable practical interest. We have determined the crystal structure at 2.1 Å resolution of Lactobacillus helveticus purine deoxyribosyl transferase (PDT) with the tricyclic purine 8,9-dihydro-9-oxoimidazo[2,1-b]purine (N 2,3-ethenoguanine) at the active site. The active site electron density map was compatible with four orientations, two consistent with sites for deoxyribosylation and two appearing to be unproductive. In accord with the crystal structure, Lactobacillus helveticus PDT glycosylates the 8,9-dihydro-9-oxoimidazo[2,1-b]purine at N7 and N1, with a marked preference for N7. The activity of Lactobacillus helveticus PDT was compared with that of the nucleoside 2′-deoxyribosyltransferase enzymes (DRT Type II) from Lactobacillus leichmannii and Lactobacillus fermentum, which were somewhat more effective in the deoxyribosylation than Lactobacillus helveticus PDT, glycosylating the substrate with product profiles dependent on the pH of the incubation. The purine nucleoside phosphorylase of Escherichia coli, also commonly used in ribosylation of non-natural bases, was an order of magnitude less efficient than the transferase enzymes. Modeling based on published active-site structures as templates suggests that in all cases, an active site Phe is critical in orienting the molecular plane of the purine derivative. Adventitious hydrogen bonding with additional active site residues appears to result in presentation of multiple nucleophilic sites on the periphery of the acceptor base for ribosylation to give a distribution of nucleosides. Chemical glycosylation of O 9-benzylated 8,9-dihydro-9-oxoimidazo[2,1-b]purine also resulted in N7 and N1 ribosylation. Absent from the enzymatic and chemical glycosylations is the natural pattern of N3 ribosylation, verified by comparison of spectroscopic and chromatographic properties with an authentic standard synthesized by an unambiguous route. PMID:25521390
Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme.
Shisler, Krista A; Hutcheson, Rachel U; Horitani, Masaki; Duschene, Kaitlin S; Crain, Adam V; Byer, Amanda S; Shepard, Eric M; Rasmussen, Ashley; Yang, Jian; Broderick, William E; Vey, Jessica L; Drennan, Catherine L; Hoffman, Brian M; Broderick, Joan B
2017-08-30
Pyruvate formate-lyase activating enzyme (PFL-AE) is a radical S-adenosyl-l-methionine (SAM) enzyme that installs a catalytically essential glycyl radical on pyruvate formate-lyase. We show that PFL-AE binds a catalytically essential monovalent cation at its active site, yet another parallel with B 12 enzymes, and we characterize this cation site by a combination of structural, biochemical, and spectroscopic approaches. Refinement of the PFL-AE crystal structure reveals Na + as the most likely ion present in the solved structures, and pulsed electron nuclear double resonance (ENDOR) demonstrates that the same cation site is occupied by 23 Na in the solution state of the as-isolated enzyme. A SAM carboxylate-oxygen is an M + ligand, and EPR and circular dichroism spectroscopies reveal that both the site occupancy and the identity of the cation perturb the electronic properties of the SAM-chelated iron-sulfur cluster. ENDOR studies of the PFL-AE/[ 13 C-methyl]-SAM complex show that the target sulfonium positioning varies with the cation, while the observation of an isotropic hyperfine coupling to the cation by ENDOR measurements establishes its intimate, SAM-mediated interaction with the cluster. This monovalent cation site controls enzyme activity: (i) PFL-AE in the absence of any simple monovalent cations has little-no activity; and (ii) among monocations, going down Group 1 of the periodic table from Li + to Cs + , PFL-AE activity sharply maximizes at K + , with NH 4 + closely matching the efficacy of K + . PFL-AE is thus a type I M + -activated enzyme whose M + controls reactivity by interactions with the cosubstrate, SAM, which is bound to the catalytic iron-sulfur cluster.
Wang, Yu-Ling; Kuo, Je-Hung; Lee, Shao-Chen; Liu, Jai-Shin; Hsieh, Yin-Cheng; Shih, Yu-Tsung; Chen, Chun-Jung; Chiu, Jeng-Jiann; Wu, Wen-Guey
2010-11-26
Cysteine-rich secretory proteins (CRISPs) have been identified as a toxin family in most animal venoms with biological functions mainly associated with the ion channel activity of cysteine-rich domain (CRD). CRISPs also bind to Zn(2+) at their N-terminal pathogenesis-related (PR-1) domain, but their function remains unknown. Interestingly, similar the Zn(2+)-binding site exists in all CRISP family, including those identified in a wide range of organisms. Here, we report that the CRISP from Naja atra (natrin) could induce expression of vascular endothelial cell adhesion molecules, i.e. intercellular adhesion molecule-1, vascular adhesion molecule-1, and E-selectin, to promote monocytic cell adhesion in a heparan sulfate (HS)- and Zn(2+)-dependent manner. Using specific inhibitors and small interfering RNAs, the activation mechanisms are shown to involve both mitogen-activated protein kinases and nuclear factor-κB. Biophysical characterization of natrin by using fluorescence, circular dichroism, and x-ray crystallographic methods further reveals the presence of two Zn(2+)-binding sites for natrin. The strong binding site is located near the putative Ser-His-Glu catalytic triad of the N-terminal domain. The weak binding site remains to be characterized, but it may modulate HS binding by enhancing its interaction with long chain HS. Our results strongly suggest that natrin may serve as an inflammatory modulator that could perturb the wound-healing process of the bitten victim by regulating adhesion molecule expression in endothelial cells. Our finding uncovers a new aspect of the biological role of CRISP family in immune response and is expected to facilitate future development of new therapeutic strategy for the envenomed victims.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossabi, J.; Jenkins, R.A.; Wise, M.B.
1993-12-31
The Department of Energy`s Office of Technology Development initiated an Integrated Demonstration Program at the Savannah River Site in 1989. The objective of this program is to develop, demonstrate, and evaluate innovative technologies that can improve present-day environmental restoration methods. The Integrated Demonstration Program at SRS is entitled ``Cleanup of Organics in Soils and Groundwater at Non-Arid Sites.`` New technologies in the areas of drilling, characterization, monitoring, and remediation are being demonstrated and evaluated for their technical performance and cost effectiveness in comparison with baseline technologies. Present site characterization and monitoring methods are costly, time-consuming, overly invasive, and often imprecise.more » Better technologies are required to accurately describe the subsurface geophysical and geochemical features of a site and the nature and extent of contamination. More efficient, nonintrusive characterization and monitoring techniques are necessary for understanding and predicting subsurface transport. More reliable procedures are also needed for interpreting monitoring and characterization data. Site characterization and monitoring are key elements in preventing, identifying, and restoring contaminated sites. The remediation of a site cannot be determined without characterization data, and monitoring may be required for 30 years after site closure.« less
NASA Astrophysics Data System (ADS)
Eisen, O.; Bohleber, P.; Drews, R.; Heilig, A.; Hofstede, C.
2009-04-01
The cold alpine saddle Colle Gnifetti, Monte Rosa, Swiss-Italian Alps resembles very much polar and subpolar ice masses in terms of glaciological conditions. It has been the site for several ice-core drilling campaigns over more than 20 years to determine paleoclimatological and glaciological conditions. To investigate the feasibility of geophysical methods for improved characterization of ice masses surrounding borehole and ice-core sites, a combined active reflection seismic and ground-penetrating radar pilot study has been carried out in summer 2008. Aims are the characterization of density, internal layering, seismic and radar wave speed and attenuation, identification of anisotropic features (like crystal orientation or bubble content and shape). Here we present the overall setup and first results. Seismic and GPR profiles were centered on an existing borehole location covering the full ice thickness of 62 m. Active seismics was carried out with 24-channel 3-m spacing recording, using a Seismic Impulse Source System (SISSY) along two profiles parallel and perpendicular to the ice-flow direction. The same profiles were complemented with GPR measurements utilizing 250, 500 MHz frequencies. Additionally, circular profiles with 250, 500 and 800 MHz were carried out circumferencing the borehole to detect anisotropic features.
Characterization of the mouse junD promoter--high basal level activity due to an octamer motif.
de Groot, R P; Karperien, M; Pals, C; Kruijer, W
1991-01-01
The product of the junD gene belongs to the Jun/Fos family of nuclear DNA binding transcription factors. This family regulates the expression of TPA responsive genes by binding to the TPA responsive element (TRE). Unlike its counterparts c-jun and junB, junD expression is hardly inducible by growth factors and phorbol esters. In fact, junD is constitutively expressed at high levels in a wide variety of cells. To unravel the molecular mechanisms underlying constitutive junD expression, we have cloned and characterized the mouse junD promoter. We show that the high constitutive expression is caused by multiple cis-acting elements in its promoter, including an SP1 binding site, an octamer motif, a CAAT box, a Zif268 binding site and a TRE-like sequence. The octamer motif is the major determinant of junD promoter activity, while somewhat smaller contributions are made by the TRE and Zif268 binding site. The SP1 and CAAT box are shown to be of minor importance. The junD TRE is in its behavior indistinguishable from previously identified TREs. However, the junD promoter is not TPA inducible due to the presence of the octamer motif. Images PMID:1714380
Different specificities of two aldehyde dehydrogenases from Saccharomyces cerevisiae var. boulardii.
Datta, Suprama; Annapure, Uday S; Timson, David J
2017-04-30
Aldehyde dehydrogenases play crucial roles in the detoxification of exogenous and endogenous aldehydes by catalysing their oxidation to carboxylic acid counterparts. The present study reports characterization of two such isoenzymes from the yeast Saccharomyces cerevisiae var. boulardii (NCYC 3264), one mitochondrial (Ald4p) and one cytosolic (Ald6p). Both Ald4p and Ald6p were oligomeric in solution and demonstrated positive kinetic cooperativity towards aldehyde substrates. Wild-type Ald6p showed activity only with aliphatic aldehydes. Ald4p, on the contrary, showed activity with benzaldehyde along with a limited range of aliphatic aldehydes. Inspection of modelled structure of Ald6p revealed that a bulky amino acid residue (Met 177 , compared with the equivalent residue Leu 196 in Ald4p) might cause steric hindrance of cyclic substrates. Therefore, we hypothesized that specificities of the two isoenzymes towards aldehyde substrates were partly driven by steric hindrance in the active site. A variant of wild-type Ald6p with the Met 177 residue replaced by a valine was also characterized to address to the hypothesis. It showed an increased specificity range and a gain of activity towards cyclohexanecarboxaldehyde. It also demonstrated an increased thermal stability when compared with both the wild-types. These data suggest that steric bulk in the active site of yeast aldehyde dehydrogenases is partially responsible for controlling specificity. © 2017 The Author(s).
Maize centromeres: structure, function, epigenetics.
Birchler, James A; Han, Fangpu
2009-01-01
The ability of centromeres to organize the kinetochore has an epigenetic component in that DNA sequence alone does not necessarily serve as the determinant of activity. The centromeres of maize have been well characterized with regard to the sequence repeats present at all primary constrictions. The supernumerary B chromosome centromere contains an additional specific repeat that is represented in the active core and that allows it to be studied against the background of the other centromeres. The foundational proteins of the kinetochore have been characterized, and an RNA component has been defined. Numerous examples of inactive centromeres have been characterized for both A and B chromosomal centromeres indicating the ease with which plant centromeres become inactive. Under some circumstances, inactive centromeres can exhibit reactivation at their formerly inactive sites. This observation suggests that a DNA-based topological component also operates for centromere identity.
Emergence of Secondary Trigger Sites after Primary Migraine Surgery.
Punjabi, Ayesha; Brown, Matthew; Guyuron, Bahman
2016-04-01
Surgical decompression of a migraine headache may unmask headaches originating from secondary sites. A retrospective chart review investigated the incidence and characteristics of secondary trigger sites to identify clinical patterns that could aid in predicting and perhaps reducing postoperative migraines. One hundred eighty-five charts for migraine patients who underwent surgery at the senior author's (B.G.) practice were reviewed. Sites from which migraine headaches initiated or occurred independently were considered primary. The sites that were not active at the time of preoperative evaluation but became active after surgery were considered secondary. Bivariate analysis was performed to characterize postoperative migraines. Of 185 patients, 33 (17.8 percent) developed secondary migraine headache trigger sites. Of patients with primary site I (frontal) symptoms, 20.83 percent had site III (septonasal) symptoms unmasked after surgery (versus 7 percent for patients with other primary sites; p = 0.04). Of the patients with site II (temporal) migraines, 17.14 percent had secondary frontal symptoms (versus 5.68 percent; p = 0.04). Primary site II symptoms predicted postoperative site IV (occipital) symptoms (11.43 versus 1.1 percent; p = 0.008), and primary occipital symptoms predicted postoperative temporal symptoms (11.1 versus 2.33 percent; p = 0.04). The authors observed that 17.8 percent of patients develop postoperative migraine headache triggers that are not reported during the initial assessment. Knowledge of secondary migraine emergence patterns, and the presence of some preoperative symptoms, can aid in predicting the migraines that will arise from a new site postoperatively. Therapeutic, IV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levander, Alan Richard; Zelt, Colin A.
2015-03-17
The work plan for this project was to develop and apply advanced seismic reflection and wide-angle processing and inversion techniques to high resolution seismic data for the shallow subsurface to seismically characterize the shallow subsurface at hazardous waste sites as an aid to containment and cleanup activities. We proposed to continue work on seismic data that we had already acquired under a previous DoE grant, as well as to acquire additional new datasets for analysis. The project successfully developed and/or implemented the use of 3D reflection seismology algorithms, waveform tomography and finite-frequency tomography using compressional and shear waves for highmore » resolution characterization of the shallow subsurface at two waste sites. These two sites have markedly different near-surface structures, groundwater flow patterns, and hazardous waste problems. This is documented in the list of refereed documents, conference proceedings, and Rice graduate theses, listed below.« less
Mohanram, Rajamani; Jagtap, Chandrakant; Kumar, Pradeep
2016-04-15
Diverse marine bacterial species predominantly found in oil-polluted seawater produce diverse surface-active agents. Surface-active agents produced by bacteria are classified into two groups based on their molecular weights, namely biosurfactants and bioemulsifiers. In this study, surface-active agent-producing, oil-degrading marine bacteria were isolated using a modified Bushnell-Haas medium with high-speed diesel as a carbon source from three oil-polluted sites of Mumbai Harbor. Surface-active agent-producing bacterial strains were screened using nine widely used methods. The nineteen bacterial strains showed positive results for more than four surface-active agent screening methods; further, these strains were characterized using biochemical and nucleic acid sequencing methods. Based on the results, the organisms belonged to the genera Acinetobacter, Alcanivorax, Bacillus, Comamonas, Chryseomicrobium, Halomonas, Marinobacter, Nesterenkonia, Pseudomonas, and Serratia. The present study confirmed the prevalence of surface-active agent-producing bacteria in the oil-polluted waters of Mumbai Harbor. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kurth, Fabian; Duprez, Wilko; Premkumar, Lakshmanane; Schembri, Mark A; Fairlie, David P; Martin, Jennifer L
2014-07-11
The disulfide bond forming DsbA enzymes and their DsbB interaction partners are attractive targets for development of antivirulence drugs because both are essential for virulence factor assembly in Gram-negative pathogens. Here we characterize PmDsbA from Proteus mirabilis, a bacterial pathogen increasingly associated with multidrug resistance. PmDsbA exhibits the characteristic properties of a DsbA, including an oxidizing potential, destabilizing disulfide, acidic active site cysteine, and dithiol oxidase catalytic activity. We evaluated a peptide, PWATCDS, derived from the partner protein DsbB and showed by thermal shift and isothermal titration calorimetry that it binds to PmDsbA. The crystal structures of PmDsbA, and the active site variant PmDsbAC30S were determined to high resolution. Analysis of these structures allows categorization of PmDsbA into the DsbA class exemplified by the archetypal Escherichia coli DsbA enzyme. We also present a crystal structure of PmDsbAC30S in complex with the peptide PWATCDS. The structure shows that the peptide binds non-covalently to the active site CXXC motif, the cis-Pro loop, and the hydrophobic groove adjacent to the active site of the enzyme. This high-resolution structural data provides a critical advance for future structure-based design of non-covalent peptidomimetic inhibitors. Such inhibitors would represent an entirely new antibacterial class that work by switching off the DSB virulence assembly machinery. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Role of pioneer species in revegetation of disturbed desert areas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, A.; Romney, E.M.
1980-01-01
The northern Mojave Desert, as are many deserts, is characterized in part by small fertile islands in which exist individual shrub clumps each containing two or more plants. These fertile sites promote characteristic organization of both plant and animal activity in the desert. Destruction of these fertile sites make revegetation extremely difficult because most seedlings germinate in these sites. Some pioneer species do, however, germinate and survive in the bare areas between the fertile sites. Four such species in the northern Mojave Desert are Acamptopappus shockleyi Gray, Lepidium fremontii Wats., Sphaeralcea ambigua Gray, and Atriplex confertifolia (Torr. and Frem.) Wats.more » These four-species may have a role in starting new fertile islands.« less
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Varem-Sanders, T. M. L.; Campbell, I. D.
2000-01-01
The BOREAS TE-7 team collected data sets in support of its efforts to characterize and interpret information on the sapflow and dendrology of boreal vegetation. This data set contains dendrology measurements, consisting of tree ring width and density taken at several points within each ring,.Measurements were taken near the TE towers at the OJP and OBS sites in NSA. In the SSA, measurements were taken near the TE towers at the MIX, OBS, and OJP sites; at the AIM- 1 3 and BMH-9 sites; and near the TF-YJP site. All data were collected during the summer of 1994. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
Morales, Renaud; Watier, Yves; Böcskei, Zsolt
2012-08-03
Antibodies and prorenin mutants have long been used to structurally characterize prorenin, the inactive proenzyme form of renin. They were designed on the basis of homology models built using other aspartyl protease proenzyme structures since no structure was available for prorenin. Here, we present the first X-ray structure of a prorenin. The current structure of prorenin reveals that, in this zymogene, the active site of renin is blocked by the N-terminal residues of the mature version of the renin molecule, which are, in turn, covered by an Ω-shaped prosegment. This prevents access of substrates to the active site. The departure of the prosegment on activation induces an important global conformational change in the mature renin molecule with respect to prorenin: similar to other related enzymes such as pepsin or gastricsin, the segment that constitutes the N-terminal β-strand in renin is displaced from the renin active site by about 180° straight into the position that corresponds to the N-terminal β-strand of the prorenin prosegment. This way, the renin active site will become completely exposed and capable of carrying out its catalytic functions. A unique inactivation mechanism is also revealed, which does not make use of a lysine against the catalytic aspartates, probably in order to facilitate pH-independent activation [e.g., by the (pro)renin receptor]. Copyright © 2012 Elsevier Ltd. All rights reserved.
Petrera, Agnese; Amstutz, Beat; Gioia, Magda; Hähnlein, Janine; Baici, Antonio; Selchow, Petra; Ferraris, Davide M; Rizzi, Menico; Sbardella, Diego; Marini, Stefano; Coletta, Massimo; Sander, Peter
2012-07-01
Zinc metallopeptidases of bacterial pathogens are widely distributed virulence factors and represent promising pharmacological targets. In this work, we have characterized Zmp1, a zinc metallopeptidase identified as a virulence factor of Mycobacterium tuberculosis and belonging to the neprilysin (NEP; M13) family, whose X-ray structure has been recently solved. Interestingly, this enzyme shows an optimum activity toward a fluorogenic substrate at moderately acidic pH values (i.e., 6.3), which corresponds to those reported for the Mtb phagosome where this enzyme should exert its pathological activity. Substrate specificity of Zmp1 was investigated by screening a peptide library. Several sequences derived from biologically relevant proteins were identified as possible substrates, including the neuropeptides bradykinin, neurotensin, and neuropeptide FF. Further, subsequences of other small bioactive peptides were found among most frequently cleaved sites, e.g., apelin-13 and substance P. We determined the specific cleavage site within neuropeptides by mass spectrometry, observing that hydrophobic amino acids, mainly phenylalanine and isoleucine, are overrepresented at position P1'. In addition, the enzymatic mechanism of Zmp1 toward these neuropeptides has been characterized, displaying some differences with respect to the synthetic fluorogenic substrate and indicating that the enzyme adapts its enzymatic action to different substrates.
Amelio, Antonio L; Caputi, Massimo; Conkright, Michael D
2009-01-01
The CREB regulated transcription co-activators (CRTCs) regulate many biological processes by integrating and converting environmental inputs into transcriptional responses. Although the mechanisms by which CRTCs sense cellular signals are characterized, little is known regarding how CRTCs contribute to the regulation of cAMP inducible genes. Here we show that these dynamic regulators, unlike other co-activators, independently direct either pre-mRNA splice-site selection or transcriptional activation depending on the cell type or promoter context. Moreover, in other scenarios, the CRTC co-activators coordinately regulate transcription and splicing. Mutational analyses showed that CRTCs possess distinct functional domains responsible for regulating either pre-mRNA splicing or transcriptional activation. Interestingly, the CRTC1–MAML2 oncoprotein lacks the splicing domain and is incapable of altering splice-site selection despite robustly activating transcription. The differential usage of these distinct domains allows CRTCs to selectively mediate multiple facets of gene regulation, indicating that co-activators are not solely restricted to coordinating alternative splicing with increase in transcriptional activity. PMID:19644446
Hanford Site Groundwater Monitoring for Fiscal Year 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, Mary J.; Morasch, Launa F.; Webber, William D.
2001-03-01
This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2000 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath each of the reactor areas, and technetium-99 and uraniummore » are present in the 200 Areas. RCRA groundwater monitoring continued during fiscal year 2000. Vadose zone monitoring, characterization, remediation, and several technical demonstrations were conducted in fiscal year 2000. Soil gas monitoring at the 618-11 burial ground provided a preliminary indication of the location of tritium in the vadose zone and in groundwater. Groundwater modeling efforts focused on 1) identifying and characterizing major uncertainties in the current conceptual model and 2) performing a transient inverse calibration of the existing site-wide model. Specific model applications were conducted in support of the Hanford Site carbon tetrachloride Innovative Treatment Remediation Technology; to support the performance assessment of the Immobilized Low-Activity Waste Disposal Facility; and in development of the System Assessment Capability, which is intended to predict cumulative site-wide effects from all significant Hanford Site contaminants.« less
Bruce, James F.
2002-01-01
The Fountain Creek Basin in and around Colorado Springs, Colorado, is affected by various land- and water-use activities. Biological, hydrological, water-quality, and land-use data were collected at 10 sites in the Fountain Creek Basin from April 1998 through April 2001 to provide a baseline characterization of macroinvertebrate communities and habitat conditions for comparison in subsequent studies; and to assess variation in macroinvertebrate community structure relative to habitat quality. Analysis of variance results indicated that instream and riparian variables were not affected by season, but significant differences were found among sites. Nine metrics were used to describe and evaluate macroinvertebrate community structure. Statistical analysis indicated that for six of the nine metrics, significant variability occurred between spring and fall seasons for 60 percent of the sites. Cluster analysis (unweighted pair group method average) using macroinvertebrate presence-absence data showed a well-defined separation between spring and fall samples. Six of the nine metrics had significant spatial variation. Cluster analysis using Sorenson?s Coefficient of Community values computed from macroinvertebrate density (number of organisms per square meter) data showed that macroinvertebrate community structure was more similar among tributary sites than main-stem sites. Canonical correspondence analysis identified a substrate particle-size gradient from site-specific species-abundance data and environmental correlates that decreased the 10 sites to 5 site clusters and their associated taxa.
Giresi, Paul G.; Kim, Jonghwan; McDaniell, Ryan M.; Iyer, Vishwanath R.; Lieb, Jason D.
2007-01-01
DNA segments that actively regulate transcription in vivo are typically characterized by eviction of nucleosomes from chromatin and are experimentally identified by their hypersensitivity to nucleases. Here we demonstrate a simple procedure for the isolation of nucleosome-depleted DNA from human chromatin, termed FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements). To perform FAIRE, chromatin is crosslinked with formaldehyde in vivo, sheared by sonication, and phenol-chloroform extracted. The DNA recovered in the aqueous phase is fluorescently labeled and hybridized to a DNA microarray. FAIRE performed in human cells strongly enriches DNA coincident with the location of DNaseI hypersensitive sites, transcriptional start sites, and active promoters. Evidence for cell-type–specific patterns of FAIRE enrichment is also presented. FAIRE has utility as a positive selection for genomic regions associated with regulatory activity, including regions traditionally detected by nuclease hypersensitivity assays. PMID:17179217
Helmich, Kate E.; Pereira, Jose Henrique; Gall, Daniel L.; ...
2015-12-04
Here, lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via β-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, wemore » present x-ray crystal structures and biochemical characterization of the glutathione-dependent β-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because β-aryl ether bonds account for 50–70% of all interunit linkages in lignin, understanding the mechanism of enzymatic β-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin.« less
Traffic-based feedback on the web.
Aizen, Jonathan; Huttenlocher, Daniel; Kleinberg, Jon; Novak, Antal
2004-04-06
Usage data at a high-traffic web site can expose information about external events and surges in popularity that may not be accessible solely from analyses of content and link structure. We consider sites that are organized around a set of items available for purchase or download, consider, for example, an e-commerce site or collection of online research papers, and we study a simple indicator of collective user interest in an item, the batting average, defined as the fraction of visits to an item's description that result in an acquisition of that item. We develop a stochastic model for identifying points in time at which an item's batting average experiences significant change. In experiments with usage data from the Internet Archive, we find that such changes often occur in an abrupt, discrete fashion, and that these changes can be closely aligned with events such as the highlighting of an item on the site or the appearance of a link from an active external referrer. In this way, analyzing the dynamics of item popularity at an active web site can help characterize the impact of a range of events taking place both on and off the site.
Traffic-based feedback on the web
Aizen, Jonathan; Huttenlocher, Daniel; Kleinberg, Jon; Novak, Antal
2004-01-01
Usage data at a high-traffic web site can expose information about external events and surges in popularity that may not be accessible solely from analyses of content and link structure. We consider sites that are organized around a set of items available for purchase or download, consider, for example, an e-commerce site or collection of online research papers, and we study a simple indicator of collective user interest in an item, the batting average, defined as the fraction of visits to an item's description that result in an acquisition of that item. We develop a stochastic model for identifying points in time at which an item's batting average experiences significant change. In experiments with usage data from the Internet Archive, we find that such changes often occur in an abrupt, discrete fashion, and that these changes can be closely aligned with events such as the highlighting of an item on the site or the appearance of a link from an active external referrer. In this way, analyzing the dynamics of item popularity at an active web site can help characterize the impact of a range of events taking place both on and off the site. PMID:14709676
Searles, Keith; Siddiqi, Georges; Safonova, Olga V.
2017-01-01
Single-site gallium centers on the surface of silica are prepared via grafting of [Ga(OSi(OtBu)3)3(THF)] on SiO2–700 followed by a thermolysis step. The resulting surface species corresponds to well-defined tetra-coordinate gallium single-sites, [( 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 SiO)3Ga(XOSi)] (X = –H or Si) according to IR, X-ray absorption near-edge structure and extended X-ray absorption fine structure analysis. These gallium sites show high activity, selectivity and stability for propane dehydrogenation with an initial turnover frequency of 20 per h per gallium center, propylene selectivity of ≥93% and remarkable stability over 20 h. The stability of the catalyst probably results from site-isolation of the active site on a non-reducible support such as silica, diminishing facile reduction typical of Ga2O3-based catalysts. PMID:28553501
Osipiuk, Jerzy; Mulligan, Rory; Bargassa, Monireh; Hamilton, John E; Cunningham, Mark A; Joachimiak, Andrzej
2012-06-01
The crystal structure of SO1698 protein from Shewanella oneidensis was determined by a SAD method and refined to 1.57 Å. The structure is a β sandwich that unexpectedly consists of two polypeptides; the N-terminal fragment includes residues 1-116, and the C-terminal one includes residues 117-125. Electron density also displayed the Lys-98 side chain covalently linked to Asp-116. The putative active site residues involved in self-cleavage were identified; point mutants were produced and characterized structurally and in a biochemical assay. Numerical simulations utilizing molecular dynamics and hybrid quantum/classical calculations suggest a mechanism involving activation of a water molecule coordinated by a catalytic aspartic acid.
Crystal structure and DNA repair activities of the AP endonuclease from Leishmania major.
Vidal, Antonio E; Harkiolaki, Maria; Gallego, Claribel; Castillo-Acosta, Victor M; Ruiz-Pérez, Luis M; Wilson, Keith; González-Pacanowska, Dolores
2007-11-02
Apurinic/apyrimidinic endonucleases initiate the repair of abasic sites produced either spontaneously, from attack of bases by reactive oxygen species or as intermediates during base excision repair. The catalytic properties and crystal structure of Leishmania major apurinic/apyrimidinic endonuclease are described and compared with those of human APE1 and bacterial exonuclease III. The purified enzyme is shown to possess apurinic/apyrimidinic endonuclease activity of the same order as eukaryotic and prokaryotic counterparts and an equally robust 3'-phosphodiesterase activity. Consistent with this, expression of the L. major endonuclease confers resistance to both methyl methane sulphonate and H2O2 in Escherichia coli repair-deficient mutants while expression of the human homologue only reverts methyl methane sulphonate sensitivity. Structural analyses and modelling of the enzyme-DNA complex demonstrates a high degree of conservation to previously characterized homologues, although subtle differences in the active site geometry might account for the high 3'-phosphodiesterase activity. Our results confirm that the L. major's enzyme is a key element in mediating repair of apurinic/apyrimidinic sites and 3'-blocked termini and therefore must play an important role in the survival of kinetoplastid parasites after exposure to the highly oxidative environment within the host macrophage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ludlam, J.R.
1985-01-01
This radiologic characterization of the inactive uranium millsite at Mexican Hat, Utah, was conducted by Bendix Field Engineering Corporation foe the US Department of Energy (DOE), Grand Junction Project Office, in response to and in accord with a Statement of Work prepared by the DOE Uranium Mill tailings Remedial Action Project (UMTRAP) Technical Assistance Contractor, Jacobs Engineering Group, Inc. the objective of this project was to determine the horizontal and vertical extent of contamination that exceeds the US Environmental Protection Agency (EPA) standards at the Mexican Hat site. The data presented in this report are required for characterization of themore » areas adjacent to the Mexican Hat tailings piles and for the subsequent design of cleanup activities. Some on-pile sampling was required to determine the depth of the 15-pCi/g Ra-226 interface in an area where wind and water erosion has taken place.« less
SITE CHARACTERIZATION LIBRARY: VOLUMN 1 (RELEASE 2.5)
This CD-ROM, Volume 1, Release 2.5, of EPA's National Exposure Research Laboratory (NERL - Las Vegas) Site Characterization Library, contains additional electronic documents and computer programs related to the characterization of hazardous waste sites. EPA has produced this libr...
Field, Jessica J; Kanakkanthara, Arun; Brooke, Darby G; Sinha, Saptarshi; Pillai, Sushila D; Denny, William A; Butt, Alison J; Miller, John H
2016-06-01
The avocado toxin (+)-R-persin (persin) is active at low micromolar concentrations against breast cancer cells and synergizes with the estrogen receptor modulator 4-hydroxytamoxifen. Previous studies in the estrogen receptor-positive breast cancer cell line MCF-7 indicate that persin acts as a microtubule-stabilizing agent. In the present study, we further characterize the properties of persin and several new synthetic analogues in human ovarian cancer cells. Persin and tetrahydropersin cause G2M cell cycle arrest and increase intracellular microtubule polymerization. One analog (4-nitrophenyl)-deshydroxypersin prevents cell proliferation and blocks cells in G1 of the cell cycle rather than G2M, suggesting an additional mode of action of these compounds independent of microtubules. Persin can synergize with other microtubule-stabilizing agents, and is active against cancer cells that overexpress the P-glycoprotein drug efflux pump. Evidence from Flutax-1 competition experiments suggests that while the persin binding site on β-tubulin overlaps the classical taxoid site where paclitaxel and epothilone bind, persin retains activity in cell lines with single amino acid mutations that affect these other taxoid site ligands. This implies the existence of a unique binding location for persin at the taxoid site.
Viral proteases: an emerging therapeutic target.
Korant, B D
1988-01-01
Only a few viral diseases are presently treatable because of our limited knowledge of specific viral target molecules. An attractive class of viral molecules toward which chemotherapeutic agents could be aimed are proteases coded by some virus groups such as retro- or picornaviruses (poliomyelitis, common cold virus). The picornavirus enzymes were discovered first, and they have now been characterized by a combination of molecular-genetic and biochemical approaches. Several laboratories have expressed the picornaviral enzymes in heterologous systems and have reported proteolytic activity, as well as the high cleavage fidelity diagnostic of the viral proteases. After dealing with several technical difficulties often encountered in standard genetic engineering approaches, one viral protease is now available to us in quantity and is amendable to mutagenic procedures. The initial outcome of the mutagenesis studies has been the confirmation of our earlier work with inhibitors, which suggested a cysteine active-site class. There is a clustering of active-site residues which may be unique to these viruses. The requirement for an active-site cysteine-histidine pair in combination with detailed information on the viral cleavage sites has permitted design of selective inhibitors with attractive antiviral properties. Future goals include investigation of the structural basis for selective processing and application of the cleavage specificity to general problems in genetic engineering.
NASA Astrophysics Data System (ADS)
Lim, McKenzie C. H.; Ayoko, Godwin A.; Morawska, Lidia
Characterization of the elemental and polycyclic aromatic hydrocarbons (PAHs) compositions of urban air was undertaken at three major sites in Brisbane, Australia. 17 elements and 16 US EPA priority PAHs were quantified at the sites. The most commonly detected elements in the TSP and PM 2.5 fractions were Al, Cd, Co, Cr, Cu, Fe, Mn, Mo, Si, Sn, Sr and Zn. Compared to the two other sites, PM 2.5 was found to contain higher concentrations of Zr, Mo, V, Al, Mn and Sr at the Queensland University of Technology (QUT) site. In contrast, the Woolloongabba sampling site, which was highly influenced by the vehicular emission and local industrial activities, has higher concentrations of Co, Sn, Cu, Zn and Mg while ANZ site has significantly lower concentration levels of most elements than the other sites; possibly due to the shielding effect of the nearby bush and forest. NAP, PHE, ANT, FLT, PYR and CRY were the most widespread PAHs found in all sites. But only QUT and Woolloongabba bus platform sites had detectable levels of the most carcinogenic US EPA PAH, BAP. The multi-criteria decision making procedures, Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE) and Geometrical Analysis for Interactive Aid (GAIA) were used to rank the air samples and to identify the sources of the pollutants. Thus Woolloongabba bus platform was ranked as the most polluted site on the basis of the elemental and PAH compositions of its air samples while Woolloongabba bus platform and QUT sites were ranked as the worst polluted sites in terms of PAHs and PM 2.5 elemental contents, respectively.
Oak Ridge Reservation: Annual Site Environmental Report for 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rochelle, James; Rogers, Ben; Roche, Paula R.
The Oak Ridge Reservation Annual Site Environmental Report is prepared annually and presents summary environmental data to (1) characterize environmental performance, (2) summarize environmental occurrences reported during the year, (3) confirm compliance with environmental standards and requirements, and (4) highlight significant program activities. The report fulfills the requirement contained in DOE Order 231.1A, Environment, Safety and Health Reporting (DOE 2004) that an integrated annual site environmental report be prepared. The results summarized in this report are based on data collected prior to and through 2015. This report is not intended to nor does it present the results of all environmentalmore » monitoring associated with the ORR. Data collected for other site and regulatory purposes, such as environmental restoration/remedial investigation reports, waste management characterization sampling data, and environmental permit compliance data, are presented in other documents that have been prepared in accordance with applicable DOE guidance and/or laws and are referenced herein as appropriate. Environmental monitoring on the ORR consists primarily of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring involves the collection and analysis of samples or measurements of liquid and gaseous effluents at the points of release to the environment; these measurements allow the quantification and official reporting of contaminant levels, assessment of radiation and chemical exposures to the public, and demonstration of compliance with applicable standards and permit requirements. Environmental surveillance consists of direct measurements and collection and analysis of samples taken from the site and its environs exclusive of effluents; these activities provide information on contaminant concentrations in air, water, groundwater, soil, foods, biota, and other media. Environmental surveillance data support determinations regarding environmental compliance and, when combined with data from effluent monitoring, support chemical and radiation dose and exposure assessments of the potential effects of ORR operations, if any, on the local environment.« less
Smith, Scott A; Kalcic, Christine L; Safran, Kyle A; Stemmer, Paul M; Dantus, Marcos; Reid, Gavin E
2010-12-01
To develop an improved understanding of the regulatory role that post-translational modifications (PTMs) involving phosphorylation play in the maintenance of normal cellular function, tandem mass spectrometry (MS/MS) strategies coupled with ion activation techniques such as collision-induced dissociation (CID) and electron-transfer dissociation (ETD) are typically employed to identify the presence and site-specific locations of the phosphate moieties within a given phosphoprotein of interest. However, the ability of these techniques to obtain sufficient structural information for unambiguous phosphopeptide identification and characterization is highly dependent on the ion activation method employed and the properties of the precursor ion that is subjected to dissociation. Herein, we describe the application of a recently developed alternative ion activation technique for phosphopeptide analysis, termed femtosecond laser-induced ionization/dissociation (fs-LID). In contrast to CID and ETD, fs-LID is shown to be particularly suited to the analysis of singly protonated phosphopeptide ions, yielding a wide range of product ions including a, b, c, x, y, and z sequence ions, as well as ions that are potentially diagnostic of the positions of phosphorylation (e.g., 'a(n)+1-98'). Importantly, the lack of phosphate moiety losses or phosphate group 'scrambling' provides unambiguous information for sequence identification and phosphorylation site characterization. Therefore, fs-LID-MS/MS can serve as a complementary technique to established methodologies for phosphoproteomic analysis. Copyright © 2010. Published by Elsevier Inc.
Nam, Yeon-Ju; Cheon, Hyo-Soon; Choi, Young-Ki; Kim, Seok-Yong; Shin, Eun-Young; Kim, Eung-Gook; Kim, Hyong Kyu
2008-08-08
Although transport and subsequent translation of dendritic mRNA play an important role in neuronal synaptic plasticity, the underlying mechanisms for modulating dendritic mRNA transport are almost completely unknown. In this study, we identified and characterized an interaction between Staufen2 and mitogen-activated protein kinase (MAPK) with co-immunoprecipitation assays. Staufen2 utilized a docking (D) site to interact with ERK1/2; deleting the D-site decreased colocalization of Staufen2 with immunoreactive ERK1/2 in the cell body regions of cultured hippocampal neurons, and it reduced the amount of Staufen2-containing RNP complexes in the distal dendrites. In addition, the deletion completely abolished the depolarization-induced increase of Staufen2-containing RNP complexes. These results suggest that the MAPK pathway could modulate dendritic mRNA transport through its interaction with Staufen2.
NASA Astrophysics Data System (ADS)
Jabeen, Erum; Janjua, Naveed Kausar; Ahmed, Safeer; Murtaza, Iram; Ali, Tahir; Masood, Nosheen; Rizvi, Aysha Sarfraz; Murtaza, Gulam
2017-12-01
The current study is aimed at the synthesis of Cu (II) and Fe (III) complexes of three flavonoids {morin (mor), quercetin (quer) and primuletin (prim)} and characterization through UV-Vis spectroscopy, cyclic voltammetry, FTIR, and thermal analysis. Structure prediction through DFT calculation was supported by experimental data. Benesi-Hildebrand equation was modified to function for 1:2 Cu-flavonoid and 1:3 Fe-flavonoid complexes. DFT predictions revealed that out of poly chelation sites present in morin and quercetin, 3-OH site was utilized as preferable chelation site while primuletin chelated through 5-OH position. In-vivo trials revealed the complexes to have better anti-diabetic potential than respective flavonoid. Fls/M-Fls proved as antagonistic to Alloxan induced diabetes and also retained anti-diabetic activity even in the presence of (2-hydroxypropyl)-β-cyclodextrin (HPβCD).
A DNA enzyme with N-glycosylase activity
NASA Technical Reports Server (NTRS)
Sheppard, T. L.; Ordoukhanian, P.; Joyce, G. F.
2000-01-01
In vitro evolution was used to develop a DNA enzyme that catalyzes the site-specific depurination of DNA with a catalytic rate enhancement of about 10(6)-fold. The reaction involves hydrolysis of the N-glycosidic bond of a particular deoxyguanosine residue, leading to DNA strand scission at the apurinic site. The DNA enzyme contains 93 nucleotides and is structurally complex. It has an absolute requirement for a divalent metal cation and exhibits optimal activity at about pH 5. The mechanism of the reaction was confirmed by analysis of the cleavage products by using HPLC and mass spectrometry. The isolation and characterization of an N-glycosylase DNA enzyme demonstrates that single-stranded DNA, like RNA and proteins, can form a complex tertiary structure and catalyze a difficult biochemical transformation. This DNA enzyme provides a new approach for the site-specific cleavage of DNA molecules.
2004-11-05
perchloroethylene) PCR polymerase chain reaction SERDP Strategic Environmental Research and Development Program TCE trichloroethene VC vinyl chloride iv...from one of the enrichments, which was inoculated with activated carbon from a pump-and-treat plant (Dortmund, Germany) processing chloroethene...dependent enzyme activity in extracts from VC and ethene-grown cells 8 (Coleman and Spain, 2003a). PCR amplifications using primers targeted at
NASA Astrophysics Data System (ADS)
Kayen, R.; Carkin, B.; Minasian, D.
2006-12-01
Strong motion recording (SMR) networks often have little or no shear wave velocity measurements at stations where characterization of site amplification and site period effects is needed. Using the active Spectral Analysis of Surface Waves (SASW) method, and passive H/V microtremor method we have investigated nearly two hundred SMR sites in California, Alaska, Japan, Australia, China and Taiwan. We are conducting these studies, in part, to develop a new hybridized method of site characterization that utilizes a parallel array of harmonic-wave sources for active-source SASW, and a single long period seismometer for passive-source microtremor measurement. Surface wave methods excel in their ability to non-invasively and rapidly characterize the variation of ground stiffness properties with depth below the surface. These methods are lightweight, inexpensive to deploy, and time-efficient. They have been shown to produce accurate and deep soil stiffness profiles. By placing and wiring shakers in a large parallel circuit, either side-by-side on the ground or in a trailer-mounted array, a strong in-phase harmonic wave can be produced. The effect of arraying many sources in parallel is to increase the amplitude of waves received at far-away spaced seismometers at low frequencies so as to extend the longest wavelengths of the captured dispersion curve. The USGS system for profiling uses this concept by arraying between two and eight electro-mechanical harmonic-wave shakers. With large parallel arrays of vibrators, a dynamic force in excess of 1000 lb can be produced to vibrate the ground and produce surface waves. We adjust the harmonic wave through a swept-sine procedure to profile surface wave dispersion down to a frequency of 1 Hz and out to surface wave-wavelengths of 200-1000 meters, depending on the site stiffness. The parallel-array SASW procedure is augmented using H/V microtremor data collected with the active source turned off. Passive array microtremor data reveal the natural and resonance characteristics of the ground by capturing persistent natural vibrations. These microtremors are the result of the interaction of surface waves arriving from distant sources and the stiffness structure of the site under investigation. As such, these resonance effects are effective in constraining the layer thicknesses of the SASW shear wave velocity structure and aid in determining the depth of the deepest layer. Together, the hybridized SASW and H/V procedure provides a complete data set for modeling the geotechnical aspects of ground amplification of earthquake motions. Data from these investigations are available at http://walrus.wr.usgs.gov/geotech.
Adachi, Mariya S.; Taylor, Alexander B.; Hart, P. John; Fitzpatrick, Paul F.
2012-01-01
The flavoprotein Fms1 from Saccharomyces cerevisiae catalyzes the oxidation of spermine in the biosynthetic pathway for pantothenic acid. The same reaction is catalyzed by the mammalian polyamine and spermine oxidases. The active site of Fms1 contains three amino acid residues positioned to interact with the polyamine substrate, His67, Asn195, and Asp94. These three residues form a hydrogen-bonding triad with Asn195 the central residue. Previous studies of the effects of mutating His67 are consistent with that residue being important both for interacting with the substrate and for maintaining the hydrogen bonds in the triad (Adachi, M. S., Taylor, A. B., Hart, P. J., and Fitzpatrick, P. F. (2012) Biochemistry 51, 4888-4897). The N195A and D94N enzymes have now been characterized to evaluate their roles in catalysis. Both mutations primarily affect the reductive half-reaction. With N1-acetylspermine as substrate, the rate constant for flavin reduction decreases ~450-fold for both mutations; the effects with spermine as substrate are smaller, 20- to 40-fold. The kcat/Kamine and kcat pH profiles with N1acetylspermine are only slightly changed from the profiles for the wild-type enzyme, consistent with the pKa values arising from the amine substrate or product and not from active site residues. The structure of the N195A enzyme was determined at a resolution of 2.0 Å. The structure shows a molecule of tetraethylene glycol in the active site and establishes that the mutation has no effect on the protein structure. Overall, the results are consistent with the role of Asn195 and Asp94 being to properly position the polyamine substrate for oxidation. PMID:23034052
Nizam, Shadab; Gazara, Rajesh Kumar; Verma, Sandhya; Singh, Kunal; Verma, Praveen Kumar
2014-01-01
Old Yellow Enzyme (OYE1) was the first flavin-dependent enzyme identified and characterized in detail by the entire range of physical techniques. Irrespective of this scrutiny, true physiological role of the enzyme remains a mystery. In a recent study, we systematically identified OYE proteins from various fungi and classified them into three classes viz. Class I, II and III. However, there is no information about the structural organization of Class III OYEs, eukaryotic Class II OYEs and Class I OYEs of filamentous fungi. Ascochyta rabiei, a filamentous phytopathogen which causes Ascochyta blight (AB) in chickpea possesses six OYEs (ArOYE1-6) belonging to the three OYE classes. Here we carried out comparative homology modeling of six ArOYEs representing all the three classes to get an in depth idea of structural and functional aspects of fungal OYEs. The predicted 3D structures of A. rabiei OYEs were refined and evaluated using various validation tools for their structural integrity. Analysis of FMN binding environment of Class III OYE revealed novel residues involved in interaction. The ligand para-hydroxybenzaldehyde (PHB) was docked into the active site of the enzymes and interacting residues were analyzed. We observed a unique active site organization of Class III OYE in comparison to Class I and II OYEs. Subsequently, analysis of stereopreference through structural features of ArOYEs was carried out, suggesting differences in R/S selectivity of these proteins. Therefore, our comparative modeling study provides insights into the FMN binding, active site organization and stereopreference of different classes of ArOYEs and indicates towards functional differences of these enzymes. This study provides the basis for future investigations towards the biochemical and functional characterization of these enigmatic enzymes.
Adachi, Mariya S; Taylor, Alexander B; Hart, P John; Fitzpatrick, Paul F
2012-10-30
Flavoprotein Fms1 from Saccharomyces cerevisiae catalyzes the oxidation of spermine in the biosynthetic pathway for pantothenic acid. The same reaction is catalyzed by the mammalian polyamine and spermine oxidases. The active site of Fms1 contains three amino acid residues positioned to interact with the polyamine substrate, His67, Asn195, and Asp94. These three residues form a hydrogen-bonding triad with Asn195 being the central residue. Previous studies of the effects of mutating His67 are consistent with that residue being important both for interacting with the substrate and for maintaining the hydrogen bonds in the triad [Adachi, M. S., Taylor, A. B., Hart, P. J., and Fitzpatrick, P. F. (2012) Biochemistry 51, 4888-4897]. The N195A and D94N enzymes have now been characterized to evaluate their roles in catalysis. Both mutations primarily affect the reductive half-reaction. With N(1)-acetylspermine as the substrate, the rate constant for flavin reduction decreases ~450-fold for both mutations; the effects with spermine as the substrate are smaller, 20-40-fold. The k(cat)/K(amine)- and k(cat)-pH profiles with N(1)-acetylspermine are only slightly changed from the profiles for the wild-type enzyme, consistent with the pK(a) values arising from the amine substrate or product and not from active site residues. The structure of the N195A enzyme was determined at a resolution of 2.0 Å. The structure shows a molecule of tetraethylene glycol in the active site and establishes that the mutation has no effect on the protein structure. Overall, the results are consistent with the role of Asn195 and Asp94 being to properly position the polyamine substrate for oxidation.
Nickel superoxide dismutase: structural and functional roles of His1 and its H-bonding network
Maroney, Michael J.; Cabelli, Diane E.; Ryan, Kelly C.; ...
2015-01-21
Crystal structures of nickel-dependent superoxide dismutases (NiSODs) reveal the presence of a H-bonding network formed between the NH group of the apical imidazole ligand from His1 and the Glu17 carboxylate from a neighboring subunit in the hexameric enzyme. This interaction is supported by another intrasubunit H-bond between Glu17 and Arg47. In this study, four mutant NiSOD proteins were produced to experimentally evaluate the roles of this H-bonding network and compare the results with prior predictions from density functional theory calculations. The X-ray crystal structure of H1A-NiSOD, which lacks the apical ligand entirely, reveals that in the absence of the Glu17-His1more » H-bond, the active site is disordered. Characterization of this variant using X-ray absorption spectroscopy (XAS) shows that Ni(II) is bound in the expected N₂S₂ planar coordination site. Despite these structural perturbations, the H1A-NiSOD variant retains 4% of wild-type (WT) NiSOD activity. Three other mutations were designed to preserve the apical imidazole ligand but perturb the H-bonding network: R47A-NiSOD, which lacks the intramolecular H-bonding interaction; E17R/R47A-NiSOD, which retains the intramolecular H-bond but lacks the intermolecular Glu17-His1 H-bond; and E17A/R47ANiSOD, which lacks both H-bonding interactions. These variants were characterized by a combination of techniques, including XAS to probe the nickel site structure, kinetic studies employing pulse-radiolytic production of superoxide, and electron paramagnetic resonance to assess the Ni redox activity. The results indicate that in addition to the roles in redox tuning suggested on the basis of previous computational studies, the Glu17-His1 H-bond plays an important structural role in the proper folding of the “Ni-hook” motif that is a critical feature of the active site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahba, Haytham M.; Stevenson, Michael J.; Mansour, Ahmed
2017-01-03
The organomercurial lyase MerB has the unique ability to cleave carbon–Hg bonds, and structural studies indicate that three residues in the active site (C96, D99, and C159 in E. coli MerB) play important roles in the carbon–Hg bond cleavage. However, the role of each residue in carbon–metal bond cleavage has not been well-defined. To do so, we have structurally and biophysically characterized the interaction of MerB with a series of organotin and organolead compounds. Studies with two known inhibitors of MerB, dimethyltin (DMT) and triethyltin (TET), reveal that they inhibit by different mechanisms. In both cases the initial binding ismore » to D99, but DMT subsequently binds to C96, which induces a conformation change in the active site. In contrast, diethyltin (DET) is a substrate for MerB and the SnIV product remains bound in the active site in a coordination similar to that of HgII following cleavage of organomercurial compounds. The results with analogous organolead compounds are similar in that trimethyllead (TML) is not cleaved and binds only to D99, whereas diethyllead (DEL) is a substrate and the PbIV product remains bound in the active site. Binding and cleavage is an exothermic reaction, while binding to D99 has negligible net heat flow. These results show that initial binding of organometallic compounds to MerB occurs at D99 followed, in some cases, by cleavage and loss of the organic moieties and binding of the metal ion product to C96, D99, and C159. The N-terminus of MerA is able to extract the bound PbVI but not the bound SnIV. These results suggest that MerB could be utilized for bioremediation applications, but certain organolead and organotin compounds may present an obstacle by inhibiting the enzyme.« less
Electrical characterization of 6H crystalline silicon carbide. M.S. Thesis Final Report
NASA Technical Reports Server (NTRS)
Lempner, Stephen E.
1994-01-01
Crystalline silicon carbide (SiC) substrates and epilayers, undoped as well as n- and p-doped, have been electrically characterized by performing Hall effect and resistivity measurements (van der Pauw) over the temperature range of approximately 85 K to 650 K (200 K to 500 K for p-type sample). By fitting the measured temperature dependent carrier concentration data to the single activation energy theoretical model: (1) the activation energy for the nitrogen donor ranged from 0.078 eV to 0.101 eV for a doping concentration range of 10(exp 17) cm(exp -3) to 10(exp 18) cm(exp -3) and (2) the activation energy for the aluminum acceptor was 0.252 eV for a doping concentration of 4.6 x 10(exp 18) cm(exp -3). By fitting the measured temperature dependent carrier concentration data to the double activation energy level theoretical model for the nitrogen donor: (1) the activation energy for the hexagonal site was 0.056 eV and 0.093 eV corresponding to doping concentrations of 3.33 x 10 (exp 17) cm(exp -3) and 1.6 x 10(exp 18) cm(exp -3) and (2) the activation energy for the cubic site was 0.113 and 0.126 eV corresponding to doping concentrations of 4.2 x 10(exp 17) cm(exp -3) and 5.4 x 10(exp 18) cm(exp -3).
NASA Astrophysics Data System (ADS)
Batterman, Stuart; Cook, Richard; Justin, Thomas
2015-04-01
Traffic activity encompasses the number, mix, speed and acceleration of vehicles on roadways. The temporal pattern and variation of traffic activity reflects vehicle use, congestion and safety issues, and it represents a major influence on emissions and concentrations of traffic-related air pollutants. Accurate characterization of vehicle flows is critical in analyzing and modeling urban and local-scale pollutants, especially in near-road environments and traffic corridors. This study describes methods to improve the characterization of temporal variation of traffic activity. Annual, monthly, daily and hourly temporal allocation factors (TAFs), which describe the expected temporal variation in traffic activity, were developed using four years of hourly traffic activity data recorded at 14 continuous counting stations across the Detroit, Michigan, U.S. region. Five sites also provided vehicle classification. TAF-based models provide a simple means to apportion annual average estimates of traffic volume to hourly estimates. The analysis shows the need to separate TAFs for total and commercial vehicles, and weekdays, Saturdays, Sundays and observed holidays. Using either site-specific or urban-wide TAFs, nearly all of the variation in historical traffic activity at the street scale could be explained; unexplained variation was attributed to adverse weather, traffic accidents and construction. The methods and results presented in this paper can improve air quality dispersion modeling of mobile sources, and can be used to evaluate and model temporal variation in ambient air quality monitoring data and exposure estimates.
Batterman, Stuart; Cook, Richard; Justin, Thomas
2015-01-01
Traffic activity encompasses the number, mix, speed and acceleration of vehicles on roadways. The temporal pattern and variation of traffic activity reflects vehicle use, congestion and safety issues, and it represents a major influence on emissions and concentrations of traffic-related air pollutants. Accurate characterization of vehicle flows is critical in analyzing and modeling urban and local-scale pollutants, especially in near-road environments and traffic corridors. This study describes methods to improve the characterization of temporal variation of traffic activity. Annual, monthly, daily and hourly temporal allocation factors (TAFs), which describe the expected temporal variation in traffic activity, were developed using four years of hourly traffic activity data recorded at 14 continuous counting stations across the Detroit, Michigan, U.S. region. Five sites also provided vehicle classification. TAF-based models provide a simple means to apportion annual average estimates of traffic volume to hourly estimates. The analysis shows the need to separate TAFs for total and commercial vehicles, and weekdays, Saturdays, Sundays and observed holidays. Using either site-specific or urban-wide TAFs, nearly all of the variation in historical traffic activity at the street scale could be explained; unexplained variation was attributed to adverse weather, traffic accidents and construction. The methods and results presented in this paper can improve air quality dispersion modeling of mobile sources, and can be used to evaluate and model temporal variation in ambient air quality monitoring data and exposure estimates. PMID:25844042
Moeder, Katelyn E.; Ho, Chris M. W.; Zimmerman, Maxwell I.; Frederick, Thomas E.; Bowman, Gregory R.
2017-01-01
Allosteric drugs, which bind to proteins in regions other than their main ligand-binding or active sites, make it possible to target proteins considered “undruggable” and to develop new therapies that circumvent existing resistance. Despite growing interest in allosteric drug discovery, rational design is limited by a lack of sufficient structural information about alternative binding sites in proteins. Previously, we used Markov State Models (MSMs) to identify such “cryptic pockets,” and here we describe a method for identifying compounds that bind in these cryptic pockets and modulate enzyme activity. Experimental tests validate our approach by revealing both an inhibitor and two activators of TEM β-lactamase (TEM). To identify hits, a library of compounds is first virtually screened against either the crystal structure of a known cryptic pocket or an ensemble of structures containing the same cryptic pocket that is extracted from an MSM. Hit compounds are then screened experimentally and characterized kinetically in individual assays. We identify three hits, one inhibitor and two activators, demonstrating that screening for binding to allosteric sites can result in both positive and negative modulation. The hit compounds have modest effects on TEM activity, but all have higher affinities than previously identified inhibitors, which bind the same cryptic pocket but were found, by chance, via a computational screen targeting the active site. Site-directed mutagenesis of key contact residues predicted by the docking models is used to confirm that the compounds bind in the cryptic pocket as intended. Because hit compounds are identified from docking against both the crystal structure and structures from the MSM, this platform should prove suitable for many proteins, particularly targets whose crystal structures lack obvious druggable pockets, and for identifying both inhibitory and activating small-molecule modulators. PMID:28570708
NASA Astrophysics Data System (ADS)
Plaisant, A.; Maggio, E.; Pettinau, A.
2016-12-01
The deep aquifer located at a depth of about 1000-1500 m within fractured carbonate in the Sulcis coal basin (South-West Sardinia, Italy) constitutes a potential reservoir to develop a pilot-scale CO2 storage site. The occurrence of several coal mines and the geology of the basin also provide favourable condition to install a permanent infrastructures where advanced CO2 storage technologies can be developed. Overall, the Sulcis project will allow to characterize the Sulcis coal basin (South West Sardinia, Italy) and to develop a permanent infrastructure (know-how, equipment, laboratories, etc.) for advanced international studies on CO2 storage. The research activities are structured in two different phases: (i) site characterization, including the construction of an underground and a fault laboratories and (ii) the installation of a test site for small-scale injection of CO2. In particular, the underground laboratory will host geochemical and geophysical experiments on rocks, taking advantages of the buried environment and the very well confined conditions in the galleries; in parallel, the fault laboratory will be constructed to study CO2 leakage phenomena in a selected fault. The project is currently ongoing and some preliminary results will be presented in this work as well as the structure of the project as a whole. More in detail, preliminary activities comprise: (i) geochemical monitoring; (ii) the minero-petrographycal, physical and geophysical characterization of the rock samples; (iii) the development of both static and dynamic geological models of the reservoir; (iv) the structural geology and fault analysis; (v) the assessment of natural seismicity through a monitoring network (vi) the re-processing and the analysis of the reflection seismic data. Future activities will comprise: (i) the drilling of shallow exploration wells near the faults; (ii) the construction of both the above mentioned laboratories; (iii) drilling of a deep exploration well (1,500 m); (iv) injection tests. Preliminary analyses show that the rocks of the carbonate formation present a low porosity, but the formation is characterized by a good permeability for fractures and karst. The faults are typically sealed and petrophysical properties of caprock and reservoir are spatially heterogeneous.
Wang, Xiao-Yun; Meng, Fan-Guo; Zhou, Hai-Meng
2004-03-01
The thermostability of an enzyme that exhibits phytase and acid phosphatase activities was studied. Kinetics of inactivation and unfolding during thermal denaturation of the enzyme were compared. The loss of phytase activity on thermal denaturation is most suggestive of a reversible process. As for acid phosphatase activities, an interesting phenomenon was observed; there are two phases in thermal inactivation: when the temperature was between 45 and 50 degrees C, the thermal inactivation could be characterized as an irreversible inactivation which had some residual activity and when the temperature was above 55 degrees C, the thermal inactivation could be characterized as an irreversible process which had no residual activity. The microscopic rate constants for the free enzyme and substrate-enzyme complex were determined by Tsou's method [Adv. Enzymol. Relat. Areas Mol. Biol. 61 (1988) 381]. Fluorescence analyses indicate that when the enzyme was treated at temperatures below 60 degrees C for 60 min, the conformation of the enzyme had no detectable change; when the temperatures were above 60 degrees C, some fluorescence red-shift could be observed with a decrease in emission intensity. The inactivation rates (k(+0)) of free enzymes were faster than those of conformational changes during thermal denaturation at the same temperature. The rapid inactivation and slow conformational changes of phytase during thermal denaturation suggest that inactivation occurs before significant conformational changes of the enzyme, and the active site of this enzyme is situated in a relatively fragile region which makes the active site more flexible than the molecule as a whole.
Subramanyam, Subhashree; Smith, David F.; Clemens, James C.; Webb, Mary A.; Sardesai, Nagesh; Williams, Christie E.
2008-01-01
We previously cloned and characterized a novel jacalin-like lectin gene from wheat (Triticum aestivum) plants that responds to infestation by Hessian fly (Mayetiola destructor) larvae, a major dipteran pest of this crop. The infested resistant plants accumulated higher levels of Hfr-1 (for Hessian fly-responsive gene 1) transcripts compared with uninfested or susceptible plants. Here, we characterize the soluble and active recombinant His6-HFR1 protein isolated from Escherichia coli. Functional characterization of the protein using hemagglutination assays revealed lectin activity. Glycan microarray-binding assays indicated strong affinity of His6-HFR1 to Manα1-6(Manα1-3)Man trisaccharide structures. Resistant wheat plants accumulated high levels of HFR1 at the larval feeding sites, as revealed by immunodetection, but the avirulent larvae were deterred from feeding and consumed only small amounts of the lectin. Behavioral studies revealed that avirulent Hessian fly larvae on resistant plants exhibited prolonged searching and writhing behaviors as they unsuccessfully attempted to establish feeding sites. During His6-HFR1 feeding bioassays, Drosophila melanogaster larvae experienced significant delays in growth and pupation, while percentage mortality increased with progressively higher concentrations of His6-HFR1 in the diet. Thus, HFR1 is an antinutrient to dipteran larvae and may play a significant role in deterring Hessian fly larvae from feeding on resistant wheat plants. PMID:18467454
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, R.C.; Perkins, C.J.
1991-02-01
The 1301-N Liquid Waste Disposal Facility, located on the Hanford Site received N Reactor low-level radioactive liquid process effluent from 1962 to 1985. Radiation emanating from the top of the trench sections was not significant because of the sediments were normally under several meters of water, which provided the necessary shielding. Following retirement of the facility, the liquid in the trench sections percolated into the ground leaving the residual radioactively contaminated sediments unshielded along the bottom and sides of the trench sections. The radioactive constituents of the contaminated sediments include the gamma-emitting isotopes Co-60 and Cs-137. Because of the lackmore » of water covering, some of the gamma photons that were emitted upward were scattered downward due to Compton interaction with atmospheric constituents. This phenomenon is known as skyshine.'' A radiological characterization was required to provide guidance for determining the effectiveness of interim stabilization alternatives that would not adversely affect future Resource Conservation and Recovery Act site closure activities, (e.g., filling in trench sections with spoils from excavation activities). A noninvasive radiological characterization of this disposal facility and the affected area of the Columbia River shoreline was conducted. This characterization confirmed that skyshine is the cause of the elevated shoreline exposure rates and provided a model that could be used to rate the effectiveness of alternative interim stabilization measures. 4 refs., 5 figs.« less
Rodríguez-Fuentes, Gabriela; Marín-López, Valeria; Hernández-Márquez, Esperanza
2016-12-01
Since several reports have indicated that cholinesterases (ChE) type and distribution is species specific and that in some species there is a relationship among gender, size and ChE activities, characterization has been suggested. The aim of the present study was to characterize the ChE present in head and muscle of Gambusia yucatana (using selective substrates and inhibitors) and to find its relationship with total length or gender. Results indicated that the ChE present in G. yucatana is an acetylcholinesterase (AChE) with high sensitivity to BW284C51 and an atypical smaller Km with butyrylthiocholine. Scatterplots indicated that there is no linearity between total length and AChE in male or female wild mosquitofish. There were no sex differences in AChE activities. Results indicated significant differences between a single collection site in the Yucatan peninsula and depurated organisms. This study emphasized the importance of characterizing ChE before usage in biomonitoring.
Elucidation of the Hsp90 C-terminal Inhibitor Binding Site
Matts, Robert L.; Dixit, Anshuman; Peterson, Laura B.; Sun, Liang; Voruganti, Sudhakar; Kalyanaraman, Palgunan; Hartson, Steve D.; Verkhivker, Gennady M.; Blagg, Brian S. J.
2011-01-01
The Hsp90 chaperone machine is required for the folding, activation and/or stabilization of more than 50 proteins directly related to malignant progression. Hsp90 contains small molecule binding sites at both its N- and C-terminal domains, however, limited structural and biochemical data regarding the C-terminal binding site is available. In this report, the small molecule binding site in the Hsp90 C-terminal domain was revealed by protease fingerprinting and photoaffinity labeling utilizing LC-MS/MS. The identified site was characterized by generation of a homology model for hHsp90α using the SAXS open structure of HtpG and docking the bioactive conformation of NB into the generated model. The resulting model for the bioactive conformation of NB bound to Hsp90α is presented herein. PMID:21548602
Careful site characterization and implementation of quantitative monitoring methods are prerequisites for a convincing evaluation of enhanced biostimulation for aquifer restoration. his paper describes the characterization of a site at Moffett Naval Air Station, Mountain View, Ca...
The Consortium for Site Characterization Technology (CSCT) has established a formal program to accelerate acceptance and application of innovative monitoring and site characterization technologies that improve the way the nation manages its environmental problems. In 1995 the CS...
Characterization of the active site properties of CYP4F12.
Eksterowicz, John; Rock, Dan A; Rock, Brooke M; Wienkers, Larry C; Foti, Robert S
2014-10-01
Cytochrome P450 4F12 is a drug-metabolizing enzyme that is primarily expressed in the liver, kidney, colon, small intestine, and heart. The properties of CYP4F12 that may impart an increased catalytic selectivity (decreased promiscuity) were explored through in vitro metabolite elucidation, kinetic isotope effect experiments, and computational modeling of the CYP4F12 active site. By using astemizole as a probe substrate for CYP4F12 and CYP3A4, it was observed that although CYP4F12 favored astemizole O-demethylation as the primary route of metabolism, CYP3A4 was capable of metabolizing astemizole at multiple sites on the molecule. Deuteration of astemizole at the site of O-demethylation resulted in an isotope effect of 7.1 as well as an 8.3-fold decrease in the rate of clearance for astemizole by CYP4F12. Conversely, although an isotope effect of 3.8 was observed for the formation of the O-desmethyl metabolite when deuterated astemizole was metabolized by CYP3A4, there was no decrease in the clearance of astemizole. Development of a homology model of CYP4F12 based on the crystal structure of cytochrome P450 BM3 predicted an active site volume for CYP4F12 that was approximately 76% of the active site volume of CYP3A4. As predicted, multiple favorable binding orientations were available for astemizole docked into the active site of CYP3A4, but only a single binding orientation with the site of O-demethylation oriented toward the heme was identified for CYP4F12. Overall, it appears that although CYP4F12 may be capable of binding similar ligands to other cytochrome P450 enzymes such as CYP3A4, the ability to achieve catalytically favorable orientations may be inherently more difficult because of the increased steric constraints of the CYP4F12 active site. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.
Evseeva, T; Belykh, E; Geras'kin, S; Majstrenko, T
2012-07-01
In spite of the long history of the research, radioactive contamination of the Semipalatinsk nuclear test site (SNTS) in the Republic of Kazakhstan has not been adequately characterized. Our cartographic investigation has demonstrated highly variable radioactive contamination of the SNTS. The Cs-137, Sr-90, Eu-152, Eu-154, Co-60, and Am-241 activity concentrations in soil samples from the "Balapan" site were 42.6-17646, 96-18250, 1.05-11222, 0.6-4865, 0.23-4893, and 1.2-1037 Bq kg(-1), correspondingly. Cs-137 and Sr-90 activity concentrations in soil samples from the "Experimental field" site were varied from 87 up to 400 and from 94 up to 1000 Bq kg(-1), respectively. Activity concentrations of Co-60, Eu-152, and Eu-154 were lower than the minimum detectable activity of the method used. Concentrations of naturally occurring radionuclides (K-40, Ra-226, U-238, and Th-232) in the majority of soil samples from the "Balapan" and the "Experimental field" sites did not exceed typical for surrounding of the SNTS areas levels. Estimation of risks associated with radioactive contamination based on the IAEA clearance levels for a number of key radionuclides in solid materials shows that soils sampled from the "Balapan" and the "Experimental field" sites might be considered as radioactive wastes. Decrease in specific activity of soil from the sites studied up to safety levels due to Co-60, Cs-137, Sr-90, Eu-152, Eu-154 radioactive decay and Am-241 accumulation-decay will occur not earlier than 100 years. In contrast, soils from the "Experimental field" and the "Balapan" sites (except 0.5-2.5 km distance from the "Chagan" explosion point) cannot be regarded as the radioactive wastes according safety norms valid in Russia and Kazakhstan. Copyright © 2012 Elsevier Ltd. All rights reserved.
2015-01-01
The marine dinoflagellate Karenia brevis produces a family of neurotoxins known as brevetoxins. Brevetoxins elicit their effects by binding to and activating voltage-sensitive sodium channels (VSSCs) in cell membranes. K. brevis also produces brevenal, a brevetoxin antagonist, which is able to inhibit and/or negate many of the detrimental effects of brevetoxins. Brevenal binding to VSSCs has yet to be fully characterized, in part due to the difficulty and expense of current techniques. In this study, we have developed a novel fluorescence binding assay for the brevenal binding site. Several fluorescent compounds were conjugated to brevenal to assess their effects on brevenal binding. The assay was validated against the radioligand assay for the brevenal binding site and yielded comparable equilibrium inhibition constants. The fluorescence-based assay was shown to be quicker and far less expensive and did not generate radioactive waste or need facilities for handling radioactive materials. In-depth studies using the brevenal conjugates showed that, while brevenal conjugates do bind to a binding site in the VSSC protein complex, they are not displaced by known VSSC site specific ligands. As such, brevenal elicits its action through a novel mechanism and/or currently unknown receptor site on VSSCs. PMID:25226846
Electrogram morphology recurrence patterns during atrial fibrillation.
Ng, Jason; Gordon, David; Passman, Rod S; Knight, Bradley P; Arora, Rishi; Goldberger, Jeffrey J
2014-11-01
Traditional mapping of atrial fibrillation (AF) is limited by changing electrogram morphologies and variable cycle lengths. We tested the hypothesis that morphology recurrence plot analysis would identify sites of stable and repeatable electrogram morphology patterns. AF electrograms recorded from left atrial (LA) and right atrial (RA) sites in 19 patients (10 men; mean age 59 ± 10 years) before AF ablation were analyzed. Morphology recurrence plots for each electrogram recording were created by cross-correlation of each automatically detected activation with every other activation in the recording. A recurrence percentage, the percentage of the most common morphology, and the mean cycle length of activations with the most recurrent morphology were computed. The morphology recurrence plots commonly showed checkerboard patterns of alternating high and low cross-correlation values, indicating periodic recurrences in morphologies. The mean recurrence percentage for all sites and all patients was 38 ± 25%. The highest recurrence percentage per patient averaged 83 ± 17%. The highest recurrence percentage was located in the RA in 5 patients and in the LA in 14 patients. Patients with sites of shortest mean cycle length of activations with the most recurrent morphology in the LA and RA had ablation failure rates of 25% and 100%, respectively (hazard ratio 4.95; P = .05). A new technique to characterize electrogram morphology recurrence demonstrated that there is a distribution of sites with high and low repeatability of electrogram morphologies. Sites with rapid activation of highly repetitive morphology patterns may be critical to sustaining AF. Further testing of this approach to map and ablate AF sources is warranted. Copyright © 2014 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Ortega, Marcos E.; Gaussier, Helene; Catalano, Carlos E.
2007-01-01
Summary Terminase enzymes are common to double-stranded DNA (dsDNA) viruses and are responsible for packaging viral DNA into the confines of an empty capsid shell. In bacteriophage lambda the catalytic terminase subunit is gpA, which is responsible for maturation of the genome end prior to packaging and subsequent translocation of the matured DNA into the capsid. DNA packaging requires an ATPase catalytic site situated in the N-terminus of the protein. A second ATPase catalytic site associated with the DNA maturation activities of the protein has been proposed; however, direct demonstration of this putative second site is lacking. Here we describe biochemical studies that define protease-resistant peptides of gpA and expression of these putative domains in E. coli. Biochemical characterization of gpA-ΔN179, a construct in which the N-terminal 179 residues of gpA have been deleted, indicates that this protein encompasses the DNA maturation domain of gpA. The construct is folded, soluble and possesses an ATP-dependent nuclease activity. Moreover, the construct binds and hydrolyzes ATP despite the fact that the DNA packaging ATPase site in the N-terminus of gpA has been deleted. Mutation of lysine 497, which alters the conserved lysine in a predicted Walker A “P-loop” sequence, does not affect ATP binding but severely impairs ATP hydrolysis. Further, this mutation abrogates the ATP-dependent nuclease activity of the protein. These studies provide direct evidence for the elusive nucleotide-binding site in gpA that is directly associated with the DNA maturation activity of the protein. The implications of these results with respect to the two roles of the terminase holoenzyme – DNA maturation and DNA packaging – are discussed. PMID:17870092
Living with the Heat. Submarine Ring of Fire--Grades 5-6. Hydrothermal Vent Ecology.
ERIC Educational Resources Information Center
National Oceanic and Atmospheric Administration (DOC), Rockville, MD.
This activity is designed to teach about hydrothermal vent ecology. Students are expected to describe how hydrothermal vents are formed and characterize the physical conditions at these sites, explain chemosynthesis and contrast this process with photosynthesis, identify autotrophic bacteria as the basis for food webs in hydrothermal vent…
Logging utilization in Oregon and Washington, 2011–2015
Eric A. Simmons; Todd A. Morgan; Erik C. Berg; Steven W. Hayes; Glenn A. Christensen
2016-01-01
A study of commercial timber harvesting activities in Oregon and Washington was conducted from 2011 through 2015 to characterize current tree utilization, logging operations, and assist with estimating the amount of woody biomass left onsite after harvesting. Sample logging sites were selected within major geographic regions proportional to regional 5-year timber...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Bruce A.; Bjornstad, Bruce N.; Lanigan, David C.
2006-03-29
This report supplies the information obtained during drilling, characterization, and installation of the new groundwater monitoring well. This document also provides a compilation of hydrogeologic and well construction information obtained during drilling, well development, and sample collection/analysis activities.
Pedagogical Strategies for Work-Based Learning. IEE Working Paper No. 12.
ERIC Educational Resources Information Center
Hughes, Katherine L.; Moore, David Thornton
Fourteen school-to-work programs characterized by strong work-based learning components and solid employer involvement were examined in a 3-year study to identify pedagogical factors associated with successful work-based learning programs. The main data collection activities were as follows: site visits to the 15 programs to interview faculty,…
Mobile site safety review for the transuranic (TRU) waste characterization program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1996-11-01
This Safety Review Document (SRD) applies to the Active/Passive Neutron Examination and Assay (APNEA) system installed on a Lockheed Martin Specialty Components, Inc., (Specialty Components) trailer. The APNEA is designed to perform nuclear waste drum assay. The purpose of this document is to describe the safety features of the APNEA system.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-09
... Interior's (DOI) ``Smart from the Start'' wind energy initiative, to identify areas for wind energy leasing... November 23, 2010, Secretary of the Interior Ken Salazar announced the ``Smart from the Start'' renewable... the ``Smart from the Start'' initiative can be found at http://www.boemre.gov/offshore/RenewableEnergy...
Silvestri, Erin E.; Perkins, Sarah; Lordo, Robert; Kovacik, William; Nichols, Tonya L.; Bowling, Charlena Yoder; Griffin, Dale W.; Schaefer, Frank W.
2015-01-01
Bacillus species spores have the potential to remain viable in the soil for many years. Lasting environmental contamination following a release is a possibility, and planning for site characterization and remediation activities should consider both indoor-to-outdoor spore transport and outdoor soil as potential exposure pathways.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., and that are not in areas of known seismic activity, a standardized design earthquake ground motion... motion, tectonic surface deformation, nontectonic deformation, earthquake recurrence rates, fault... of the Design Earthquake Ground Motion (DE). The DE for the site is characterized by both horizontal...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., and that are not in areas of known seismic activity, a standardized design earthquake ground motion... motion, tectonic surface deformation, nontectonic deformation, earthquake recurrence rates, fault... of the Design Earthquake Ground Motion (DE). The DE for the site is characterized by both horizontal...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., and that are not in areas of known seismic activity, a standardized design earthquake ground motion... motion, tectonic surface deformation, nontectonic deformation, earthquake recurrence rates, fault... of the Design Earthquake Ground Motion (DE). The DE for the site is characterized by both horizontal...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., and that are not in areas of known seismic activity, a standardized design earthquake ground motion... motion, tectonic surface deformation, nontectonic deformation, earthquake recurrence rates, fault... of the Design Earthquake Ground Motion (DE). The DE for the site is characterized by both horizontal...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., and that are not in areas of known seismic activity, a standardized design earthquake ground motion... motion, tectonic surface deformation, nontectonic deformation, earthquake recurrence rates, fault... of the Design Earthquake Ground Motion (DE). The DE for the site is characterized by both horizontal...
Human tRNA genes function as chromatin insulators
Raab, Jesse R; Chiu, Jonathan; Zhu, Jingchun; Katzman, Sol; Kurukuti, Sreenivasulu; Wade, Paul A; Haussler, David; Kamakaka, Rohinton T
2012-01-01
Insulators help separate active chromatin domains from silenced ones. In yeast, gene promoters act as insulators to block the spread of Sir and HP1 mediated silencing while in metazoans most insulators are multipartite autonomous entities. tDNAs are repetitive sequences dispersed throughout the human genome and we now show that some of these tDNAs can function as insulators in human cells. Using computational methods, we identified putative human tDNA insulators. Using silencer blocking, transgene protection and repressor blocking assays we show that some of these tDNA-containing fragments can function as barrier insulators in human cells. We find that these elements also have the ability to block enhancers from activating RNA pol II transcribed promoters. Characterization of a putative tDNA insulator in human cells reveals that the site possesses chromatin signatures similar to those observed at other better-characterized eukaryotic insulators. Enhanced 4C analysis demonstrates that the tDNA insulator makes long-range chromatin contacts with other tDNAs and ETC sites but not with intervening or flanking RNA pol II transcribed genes. PMID:22085927
Neves, Fabiana; Abrantes, Joana; Esteves, Pedro J
2016-07-01
The interactions between chemokines and their receptors are crucial for differentiation and activation of inflammatory cells. CC chemokine ligand 11 (CCL11) binds to CCR3 and to CCR5 that in leporids underwent gene conversion with CCR2. Here, we genetically characterized CCL11 in lagomorphs (leporids and pikas). All lagomorphs have a potentially functional CCL11, and the Pygmy rabbit has a mutation in the stop codon that leads to a longer protein. Other mammals also have mutations at the stop codon that result in proteins with different lengths. By employing maximum likelihood methods, we observed that, in mammals, CCL11 exhibits both signatures of purifying and positive selection. Signatures of purifying selection were detected in sites important for receptor binding and activation. Of the three sites detected as under positive selection, two were located close to the stop codon. Our results suggest that CCL11 is functional in all lagomorphs, and that the signatures of purifying and positive selection in mammalian CCL11 probably reflect the protein's biological roles. © The Author(s) 2016.
Importance of geologic characterization of potential low-level radioactive waste disposal sites
Weibel, C.P.; Berg, R.C.
1991-01-01
Using the example of the Geff Alternative Site in Wayne County, Illinois, for the disposal of low-level radioactive waste, this paper demonstrates, from a policy and public opinion perspective, the importance of accurately determining site stratigraphy. Complete and accurate characterization of geologic materials and determination of site stratigraphy at potential low-level waste disposal sites provides the frame-work for subsequent hydrologic and geochemical investigations. Proper geologic characterization is critical to determine the long-term site stability and the extent of interactions of groundwater between the site and its surroundings. Failure to adequately characterize site stratigraphy can lead to the incorrect evaluation of the geology of a site, which in turn may result in a lack of public confidence. A potential problem of lack of public confidence was alleviated as a result of the resolution and proper definition of the Geff Alternative Site stratigraphy. The integrity of the investigation was not questioned and public perception was not compromised. ?? 1991 Springer-Verlag New York Inc.
Careful site characterization and implementation of quantitative monitoring methods are prerequisites for a convincing evaluation of enhanced biostimulation for aquifer restoration. This paper describes the characterization of a site at Moffett Naval Air Station, Mountain View, C...
10 CFR 60.16 - Site characterization plan required.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Site characterization plan required. 60.16 Section 60.16 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Licenses Preapplication Review § 60.16 Site characterization plan required. Before proceeding to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malik, Radhika; Viola, Ronald E.
2010-10-28
The first structure of an NAD-dependent tartrate dehydrogenase (TDH) has been solved to 2 {angstrom} resolution by single anomalous diffraction (SAD) phasing as a complex with the intermediate analog oxalate, Mg{sup 2+} and NADH. This TDH structure from Pseudomonas putida has a similar overall fold and domain organization to other structurally characterized members of the hydroxy-acid dehydrogenase family. However, there are considerable differences between TDH and these functionally related enzymes in the regions connecting the core secondary structure and in the relative positioning of important loops and helices. The active site in these complexes is highly ordered, allowing the identificationmore » of the substrate-binding and cofactor-binding groups and the ligands to the metal ions. Residues from the adjacent subunit are involved in both the substrate and divalent metal ion binding sites, establishing a dimer as the functional unit and providing structural support for an alternating-site reaction mechanism. The divalent metal ion plays a prominent role in substrate binding and orientation, together with several active-site arginines. Functional groups from both subunits form the cofactor-binding site and the ammonium ion aids in the orientation of the nicotinamide ring of the cofactor. A lysyl amino group (Lys192) is the base responsible for the water-mediated proton abstraction from the C2 hydroxyl group of the substrate that begins the catalytic reaction, followed by hydride transfer to NAD. A tyrosyl hydroxyl group (Tyr141) functions as a general acid to protonate the enolate intermediate. Each substrate undergoes the initial hydride transfer, but differences in substrate orientation are proposed to account for the different reactions catalyzed by TDH.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spalding, B.P.; Naney, M.T.
1995-06-01
This plan is to be implemented for Phase III ISV operations and post operations sampling. Two previous project phases involving site characterization have been completed and required their own site specific health and safety plans. Project activities will take place at Seepage Pit 1 in Waste Area Grouping 7 at ORNL, Oak Ridge, Tennessee. Purpose of this document is to establish standard health and safety procedures for ORNL project personnel and contractor employees in performance of this work. Site activities shall be performed in accordance with Energy Systems safety and health policies and procedures, DOE orders, Occupational Safety and Healthmore » Administration Standards 29 CFR Part 1910 and 1926; applicable United States Environmental Protection Agency requirements; and consensus standards. Where the word ``shall`` is used, the provisions of this plan are mandatory. Specific requirements of regulations and orders have been incorporated into this plan in accordance with applicability. Included from 29 CFR are 1910.120 Hazardous Waste Operations and Emergency Response; 1910.146, Permit Required - Confined Space; 1910.1200, Hazard Communication; DOE Orders requirements of 5480.4, Environmental Protection, Safety and Health Protection Standards; 5480.11, Radiation Protection; and N5480.6, Radiological Control Manual. In addition, guidance and policy will be followed as described in the Environmental Restoration Program Health and Safety Plan. The levels of personal protection and the procedures specified in this plan are based on the best information available from reference documents and site characterization data. Therefore, these recommendations represent the minimum health and safety requirements to be observed by all personnel engaged in this project.« less
Characterization of Two (3H) Ketanserin Recognition Sites in Rat Striatum
1987-01-01
autoradiography to be localized to The 5-HT, sites are proposed to activate adenylate layer IV of the cortex and striatum ( Pazos et al., cyclase (Barbaccia et al...Chuang (1987). assumption has not been completely tested. Since its introduction as a selective radioligand for Pazos et al. (1985) recently confirmed...cniorophenylalanine. 1833 B S-3 1834 B. L. ROT!! ET AL. enriched in striatum and cortex. Pazos et al. (1985) mAt Tris-Cl, pH 7.40 at 25°C) at 4C. A crude membrane
Closure Report for Corrective Action Unit 536: Area 3 Release Site, Nevada Test Site, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
Corrective Action Unit (CAU) 536 is located in Area 3 of the Nevada Test Site. CAU 536 is listed in the Federal Facility Agreement and Consent Order of 1996 as Area 3 Release Site, and comprises a single Corrective Action Site (CAS): {sm_bullet} CAS 03-44-02, Steam Jenny Discharge The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CAS 03-44-02 is clean closure. Closure activities included removing and disposing of total petroleum hydrocarbon (TPH)- and polyaromatic hydrocarbon (PAH)-impacted soil, soil impacted with plutonium (Pu)-239, and concrete pad debris. CAU 536 was closed in accordance with the NDEP-approved CAU 536more » Corrective Action Plan (CAP), with minor deviations as approved by NDEP. The closure activities specified in the CAP were based on the recommendations presented in the CAU 536 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2004). This Closure Report documents CAU 536 closure activities. During closure activities, approximately 1,000 cubic yards (yd3) of hydrocarbon waste in the form of TPH- and PAH-impacted soil and debris, approximately 8 yd3 of Pu-239-impacted soil, and approximately 100 yd3 of concrete debris were generated, managed, and disposed of appropriately. Additionally, a previously uncharacterized, buried drum was excavated, removed, and disposed of as hydrocarbon waste as a best management practice. Waste minimization techniques, such as the utilization of laboratory analysis to characterize and classify waste streams, were employed during the performance of closure« less
Electrogram Morphology Recurrence Patterns during Atrial Fibrillation
Ng, Jason; Gordon, David; Passman, Rod S.; Knight, Bradley P.; Arora, Rishi; Goldberger, Jeffrey J.
2014-01-01
Background Traditional mapping of atrial fibrillation (AF) is limited by changing electrogram morphologies and variable cycle lengths. Objective We tested the hypothesis that morphology recurrence plot analysis would identify sites of stable and repeatable electrogram morphology patterns. Methods AF electrograms recorded from left atrial (LA) and right atrial (RA) sites in 19 patients (10 male, 59±10 years old) prior to AF ablation were analyzed. Morphology recurrence plots for each electrogram recording were created by cross-correlation of each automatically detected activation with every other activation in the recording. A recurrence percentage, the percentage of the most common morphology, and the mean cycle length of activations with the most common morphology (CLR) were computed. Results The morphology recurrence plots commonly showed checkerboard patterns of alternating high and low cross correlation values indicating periodic recurrences in morphologies. The mean recurrence percentage for all sites and all patients was 38±25%. The highest recurrence percentage per patient averaged 83±17%. The highest recurrence percentage was located in the RA in 5 patients and in the LA in 14 patients. Patients with sites of shortest CLR in the LA and RA had ablation failure rates of 25% and 100%, respectively (HR=4.95; p=0.05). Conclusions A new technique to characterize electrogram morphology recurrence demonstrated that there is a distribution of sites with high and low repeatability of electrogram morphologies. Sites with rapid activation of highly repetitive morphology patterns may be critical to sustaining AF. Further testing of this approach to map and ablate AF sources is warranted. PMID:25101485
Mandali, Sridhar; Gupta, Kushol; Dawson, Anthony R; Van Duyne, Gregory D; Johnson, Reid C
2017-06-01
The serine integrase of phage A118 catalyzes integrative recombination between attP on the phage and a specific attB locus on the chromosome of Listeria monocytogenes , but it is unable to promote excisive recombination between the hybrid attL and attR sites found on the integrated prophage without assistance by a recombination directionality factor (RDF). We have identified and characterized the phage-encoded RDF Gp44, which activates the A118 integrase for excision and inhibits integration. Gp44 binds to the C-terminal DNA binding domain of integrase, and we have localized the primary binding site to be within the mobile coiled-coil (CC) motif but distinct from the distal tip of the CC that is required for recombination. This interaction is sufficient to inhibit integration, but a second interaction involving the N-terminal end of Gp44 is also required to activate excision. We provide evidence that these two contacts modulate the trajectory of the CC motifs as they extend out from the integrase core in a manner dependent upon the identities of the four att sites. Our results support a model whereby Gp44 shapes the Int-bound complexes to control which att sites can synapse and recombine. IMPORTANCE Serine integrases mediate directional recombination between bacteriophage and bacterial chromosomes. These highly regulated site-specific recombination reactions are integral to the life cycle of temperate phage and, in the case of Listeria monocytogenes lysogenized by A118 family phage, are an essential virulence determinant. Serine integrases are also utilized as tools for genetic engineering and synthetic biology because of their exquisite unidirectional control of the DNA exchange reaction. Here, we identify and characterize the recombination directionality factor (RDF) that activates excision and inhibits integration reactions by the phage A118 integrase. We provide evidence that the A118 RDF binds to and modulates the trajectory of the long coiled-coil motif that extends from the large carboxyl-terminal DNA binding domain and is postulated to control the early steps of recombination site synapsis. Copyright © 2017 American Society for Microbiology.
Rohena, Cristina C.; Telang, Nakul S.; Da, Chenxiao; Risinger, April L.; Sikorski, James A.; Kellogg, Glen E.; Gupton, John T.
2016-01-01
A refined model of the colchicine site on tubulin was used to design an improved analog of the pyrrole parent compound, JG-03-14. The optimized compound, NT-7-16, was evaluated in biological assays that confirm that it has potent activities as a new colchicine site microtubule depolymerizer. NT-7-16 exhibits antiproliferative and cytotoxic activities against multiple cancer cell lines, with IC50 values of 10–16 nM, and it is able to overcome drug resistance mediated by the expression of P-glycoprotein and the βIII isotype of tubulin. NT-7-16 initiated the concentration-dependent loss of cellular microtubules and caused the formation of abnormal mitotic spindles, leading to mitotic accumulation. The direct interaction of NT-7-16 with purified tubulin was confirmed, and it was more potent than combretastatin A-4 in these assays. Binding studies verified that NT-7-16 binds to tubulin within the colchicine site. The antitumor effects of NT-7-16 were evaluated in an MDA-MB-435 xenograft model and it had excellent activity at concentrations that were not toxic. A second compound, NT-9-21, which contains dichloro moieties in place of the 3,5-dibromo substituents of NT-7-16, had a poorer fit within the colchicine site as predicted by modeling and the Hydropathic INTeractions score. Biological evaluations showed that NT-9-21 has 10-fold lower potency than NT-7-16, confirming the modeling predictions. These studies highlight the value of the refined colchicine-site model and identify a new pyrrole-based colchicine-site agent with potent in vitro activities and promising in vivo antitumor actions. PMID:26655304