Science.gov

Sample records for active site compared

  1. A comparative structure-function analysis of active-site inhibitors of Vibrio cholerae cholix toxin.

    PubMed

    Lugo, Miguel R; Merrill, A Rod

    2015-09-01

    Cholix toxin from Vibrio cholerae is a novel mono-ADP-ribosyltransferase (mART) toxin that shares structural and functional properties with Pseudomonas aeruginosa exotoxin A and Corynebacterium diphtheriae diphtheria toxin. Herein, we have used the high-resolution X-ray structure of full-length cholix toxin in the apo form, NAD(+) bound, and 10 structures of the cholix catalytic domain (C-domain) complexed with several strong inhibitors of toxin enzyme activity (NAP, PJ34, and the P-series) to study the binding mode of the ligands. A pharmacophore model based on the active pose of NAD(+) was compared with the active conformation of the inhibitors, which revealed a cationic feature in the side chain of the inhibitors that may determine the active pose. Moreover, a conformational search was conducted for the missing coordinates of one of the main active-site loops (R-loop). The resulting structural models were used to evaluate the interaction energies and for 3D-QSAR modeling. Implications for a rational drug design approach for mART toxins were derived.

  2. Ionospheric plasma deterioration in the area of enhanced seismic activity as compared to antipodal sites far from seismicity

    NASA Astrophysics Data System (ADS)

    Gulyaeva, Tamara; Arikan, Feza; Poustovalova, Ljubov; Stanislawska, Iwona

    2016-07-01

    The early magnetogram records from two nearly antipodal sites at Greenwich and Melbourne corresponding to the activity level at the invariant magnetic latitude of 50 deg give a long series of geomagnetic aa indices since 1868. The aa index derived from magnetic perturbation values at only two observatories (as distinct from the planetary ap index) experiences larger extreme values if either input site is well situated to the overhead ionospheric and/or field aligned current systems producing the magnetic storm effects. Analysis of the earthquakes catalogues since 1914 has shown the area of the peak global earthquake occurrence in the Pacific Ocean southwards from the magnetic equator, and, in particular, at Australia. In the present study the ionospheric critical frequency, foF2, is analyzed from the ionosonde measurements at the nearby observatories, Canberra and Slough (Chilton), and Moscow (control site) since 1944 to 2015. The daily-hourly-annual percentage occurrence of positive ionospheric W index (pW+) and negative index (pW-) is determined. It is found that the ionospheric plasma depletion pW- of the instant foF2 as compared to the monthly median is well correlated to the aa index at all three sites but the positive storm signatures show drastic difference at Canberra (no correlation of pW+ with aa index) as compared to two other sites where the high correlation is found of the ionospheric plasma density enhancement with the geomagnetic activity. A possible suppression of the enhanced ionospheric variability over the region of intense seismicity is discussed in the paper. This study is supported by TUBITAK EEEAG 115E915.

  3. 1H-NMR comparative study of the active site in shark (Galeorhinus japonicus), horse, and sperm whale deoxy myoglobins.

    PubMed

    Yamamoto, Y; Iwafune, K; Chûjô, R; Inoue, Y; Imai, K; Suzuki, T

    1992-09-01

    1H-NMR spectra of deoxy myoglobins (Mbs) from shark (Galeorhinus japonicus), horse, and sperm whale have been studied to gain insights into their active site structure. It has been demonstrated for the first time that nuclear Overhauser effect (NOE) can be observed between heme peripheral side-chain proton resonances of these paramagnetic complexes. Val-E11 methyl and His-F8 C delta H proton resonances of these Mbs were also assigned from the characteristic shift and line width. The hyperfine shift of the former resonance was used to calculate the magnetic anisotropy of the protein. The shift analysis of the latter resonance, together with the previously assigned His-F8 N delta H proton resonance, revealed that the strain on the Fe-N epsilon bond is in the order horse Mb approximately whale Mb < shark Mb and that the hydrogen bond strength of the His-F8 N delta H proton to the main-chain carbonyl oxygen in the preceding turn of the F helix is in the order shark Mb < horse Mb < whale Mb. Weaker Feporphyrin interaction in shark Mb was manifested in a smaller shift of the heme methyl proton resonance and appears to result from distortion of the coordination geometry in this Mb. Larger strain on the Fe-N epsilon bond in shark Mb should be to some extent attributed to its lowered O2 affinity (P50 = 1.1 mmHg at 20 degrees C), compared to whale and horse Mbs.

  4. Sulfated Low Molecular Weight Lignins, Allosteric Inhibitors of Coagulation Proteinases via the Heparin Binding Site, Significantly Alter the Active Site of Thrombin and Factor Xa Compared to Heparin

    PubMed Central

    Henry, Brian L.; Desai, Umesh R.

    2014-01-01

    Sulfated low molecular weight lignins (LMWLs) have been found to bind in the heparin binding sites of coagulation proteinases. LMWLs represent a library of diverse non-carbohydrate, aromatic molecules which are structures different from heparin, but still potently inhibit thrombin and factor Xa. To better understand their mechanism of action, we studied the effects of three sulfated LMWLs (CDSO3, FDSO3, and SDSO3) on the active sites of thrombin and factor Xa. LMWLs were found to uniformly inhibit the catalytic activity of thrombin and factor Xa, regardless of the substrate used. Michaelis-Menten kinetic studies indicate that maximal velocity of hydrolysis of each chromogenic substrate decreases significantly in the presence of sulfated LMWLs, while the effect on Michaelis constant is dependent on the nature of the substrate. These studies indicate that LMWLs inhibit thrombin and factor Xa through allosteric disruption of the catalytic apparatus, specifically through the catalytic step. As opposed to heparin, LMWLs significantly alter the binding of the active site fluorescent ligand p-aminobenzamidine. LMWLs also had a greater effect on the molecular orientation of fluorescein-labeled His 57 than heparin. The molecular geometry surrounding the most important catalytic amino acid, Ser 195, was significantly altered by the binding of LMWLs while heparin had no measurable effect on Ser 195. These results further advance the concept of sulfated LMWLs as heparin mimics and will aid the design of anticoagulants based on their novel scaffold. PMID:25242245

  5. Sulfated low molecular weight lignins, allosteric inhibitors of coagulation proteinases via the heparin binding site, significantly alter the active site of thrombin and factor xa compared to heparin.

    PubMed

    Henry, Brian L; Desai, Umesh R

    2014-11-01

    Sulfated low molecular weight lignins (LMWLs) have been found to bind in the heparin binding sites of coagulation proteinases. LMWLs represent a library of diverse non-carbohydrate, aromatic molecules which are structures different from heparin, but still potently inhibit thrombin and factor Xa. To better understand their mechanism of action, we studied the effects of three sulfated LMWLs (CDSO3, FDSO3, and SDSO3) on the active sites of thrombin and factor Xa. LMWLs were found to uniformly inhibit the catalytic activity of thrombin and factor Xa, regardless of the substrate used. Michaelis-Menten kinetic studies indicate that maximal velocity of hydrolysis of each chromogenic substrate decreases significantly in the presence of sulfated LMWLs, while the effect on Michaelis constant is dependent on the nature of the substrate. These studies indicate that LMWLs inhibit thrombin and factor Xa through allosteric disruption of the catalytic apparatus, specifically through the catalytic step. As opposed to heparin, LMWLs significantly alter the binding of the active site fluorescent ligand p-aminobenzamidine. LMWLs also had a greater effect on the molecular orientation of fluorescein-labeled His 57 than heparin. The molecular geometry surrounding the most important catalytic amino acid, Ser 195, was significantly altered by the binding of LMWLs while heparin had no measurable effect on Ser 195. These results further advance the concept of sulfated LMWLs as heparin mimics and will aid the design of anticoagulants based on their novel scaffold. PMID:25242245

  6. Influence of Human Activity Patterns, particle composition, and residential air exchange rates on modeled distributions of PM 2.5 exposure compared with central-site monitoring data

    EPA Science Inventory

    Central-site monitors do not account for factors such as outdoor-to-indoor transport and human activity patterns that influence personal exposures to ambient fine-particulate matter (PM2.5). We describe and compare different ambient PM2.5 exposure estimation...

  7. Serine proteinase inhibition by the active site titrant N alpha-(N, N-dimethylcarbamoyl)-alpha-azaornithine p-nitrophenyl ester. A comparative study.

    PubMed

    Ascenzi, P; Balliano, G; Gallina, C; Polticelli, F; Bolognesi, M

    2000-02-01

    Kinetics for the hydrolysis of the chromogenic active-site titrant N alpha-(N,N-dimethylcarbamoyl)-alpha-azaornithine p-nitrophenyl ester (Dmc-azaOrn-ONp) catalysed by bovine beta-trypsin, bovine alpha-thrombin, bovine Factor Xa, human alpha-thrombin, human Factor Xa, human Lys77-plasmin, human urinary kallikrein, Mr 33 000 and Mr 54 000 species of human urokinase, porcine pancreatic beta-kallikrein-A and -B and Ancrod (the coagulating serine proteinase from the Malayan pit viper Agkistrodon rhodostoma venom) have been obtained between pH 6.0 and 8.0, at 21.0 degrees C, and analysed in parallel with those for the enzymatic cleavage of N alpha-(N,N-dimethylcarbamoyl)-alpha-azalysine p-nitrophenyl ester (Dmc-azaLys-ONp). The enzyme kinetics are consistent with the minimum three-step catalytic mechanism of serine proteinases, the rate-limiting step being represented by the deacylation process. Bovine beta-trypsin kinetics are modulated by the acid-base equilibrium of the His57 catalytic residue (pKa approximately 6.9). Dmc-azaOrn-ONp and Dmc-azaLys-ONp bind stoichiometrically to the serine proteinase active site, and allow the reliable determination of the active enzyme concentration between 1.0 x 10-6 M and 3.0 x 10-4 M. The affinity and the reactivity for Dmc-azaOrn-ONp (expressed by Ks and k+2/Ks, respectively) of the serine proteinases considered are much lower than those for Dmc-azaLys-ONp. The very different affinity and reactivity properties for Dmc-azaOrn-ONp and Dmc-azaLys-ONp have been related to the different size of the ornithine/lysine side chains, and to the ensuing different positioning of the active-site titrants upon binding to the enzyme catalytic centre (i.e. to P1-S1 recognition). These data represent the first detailed comparative investigation on the catalytic properties of serine proteinases towards an ornithine derivative (i. e. Dmc-azaOrn-ONp).

  8. Salt site performance assessment activities

    SciTech Connect

    Kircher, J.F.; Gupta, S.K.

    1983-01-01

    During this year the first selection of the tools (codes) for performance assessments of potential salt sites have been tentatively selected and documented; the emphasis has shifted from code development to applications. During this period prior to detailed characterization of a salt site, the focus is on bounding calculations, sensitivity and with the data available. The development and application of improved methods for sensitivity and uncertainty analysis is a focus for the coming years activities and the subject of a following paper in these proceedings. Although the assessments to date are preliminary and based on admittedly scant data, the results indicate that suitable salt sites can be identified and repository subsystems designed which will meet the established criteria for protecting the health and safety of the public. 36 references, 5 figures, 2 tables.

  9. Active Sites Environmental Monitoring Program: Action levels

    SciTech Connect

    Ashwood, J.S.; Ashwood, T.L.

    1991-10-01

    The Active Sites Environmental Monitoring Program (ASEMP) was established at Oak Ridge National Laboratory to provide for early leak detection and to monitor performance of the active low-level waste disposal facilities in Solid Waste Storage Area (SWSA) 6 and the transuranic waste storage areas in SWSA 5 North. Early leak detection is accomplished by sampling runoff, groundwater, and perched water in burial trenches. Sample results are compared to action levels that represent background contamination by naturally occurring and fallout-derived radionuclides. 15 refs., 3 figs., 12 tabs.

  10. Comparative Structural Modeling of Six Old Yellow Enzymes (OYEs) from the Necrotrophic Fungus Ascochyta rabiei : Insight into Novel OYE Classes with Differences in Cofactor Binding, Organization of Active Site Residues and Stereopreferences

    PubMed Central

    Nizam, Shadab; Gazara, Rajesh Kumar; Verma, Sandhya; Singh, Kunal; Verma, Praveen Kumar

    2014-01-01

    Old Yellow Enzyme (OYE1) was the first flavin-dependent enzyme identified and characterized in detail by the entire range of physical techniques. Irrespective of this scrutiny, true physiological role of the enzyme remains a mystery. In a recent study, we systematically identified OYE proteins from various fungi and classified them into three classes viz. Class I, II and III. However, there is no information about the structural organization of Class III OYEs, eukaryotic Class II OYEs and Class I OYEs of filamentous fungi. Ascochyta rabiei, a filamentous phytopathogen which causes Ascochyta blight (AB) in chickpea possesses six OYEs (ArOYE1-6) belonging to the three OYE classes. Here we carried out comparative homology modeling of six ArOYEs representing all the three classes to get an in depth idea of structural and functional aspects of fungal OYEs. The predicted 3D structures of A. rabiei OYEs were refined and evaluated using various validation tools for their structural integrity. Analysis of FMN binding environment of Class III OYE revealed novel residues involved in interaction. The ligand para-hydroxybenzaldehyde (PHB) was docked into the active site of the enzymes and interacting residues were analyzed. We observed a unique active site organization of Class III OYE in comparison to Class I and II OYEs. Subsequently, analysis of stereopreference through structural features of ArOYEs was carried out, suggesting differences in R/S selectivity of these proteins. Therefore, our comparative modeling study provides insights into the FMN binding, active site organization and stereopreference of different classes of ArOYEs and indicates towards functional differences of these enzymes. This study provides the basis for future investigations towards the biochemical and functional characterization of these enigmatic enzymes. PMID:24776850

  11. Web Sites that Compare Loans Gain Users, Lose Lenders

    ERIC Educational Resources Information Center

    Norton, Ingrid

    2008-01-01

    Web sites that allow borrowers to compare student loans proliferated in the wake of last year's scandals that exposed conflicts of interest in the lending industry. Now the credit crunch is shifting demand for loan-comparison sites again, providing both new challenges and opportunities. More financial-aid officers are also pointing their students…

  12. Dissecting the active site of a photoreceptor protein

    NASA Astrophysics Data System (ADS)

    Hoff, Wouter; Hara, Miwa; Ren, Jie; Moghadam, Farzaneh; Xie, Aihua; Kumauchi, Masato

    While enzymes are quite large molecules, functionally important chemical events are often limited to a small region of the protein: the active site. The physical and chemical properties of residues at such active sites are often strongly altered compared to the same groups dissolved in water. Understanding such effects is important for unraveling the mechanisms underlying protein function and for protein engineering, but has proven challenging. Here we report on our ongoing efforts on using photoactive yellow protein (PYP), a bacterial photoreceptor, as a model system for such effects. We will report on the following questions: How many residues affect active site properties? Are these residues in direct physical contact with the active site? Can functionally important residues be recognized in the crystal structure of a protein? What structural resolution is needed to understand active sites? What spectroscopic techniques are most informative? Which weak interactions dominate active site properties?

  13. Active site of ribulosebisphosphate carboxylase/oxygenase

    SciTech Connect

    Hartman, F.C.; Stringer, C.D.; Milanez, S.; Lee, E.H.

    1985-01-01

    Previous affinity labeling studies and comparative sequence analyses have identified two different lysines at the active site of ribulosebisphosphate carboxylase/oxygenase and have suggested their essentiality to function. The essential lysines occupy positions 166 and 329 in the Rhodospirillum rubrum enzyme and positions 175 and 334 in the spinach enzyme. Based on the pH-dependencies of inactivations of the two enzymes by trinitrobenzene sulfonate, Lys-166 (R. rubrum enzyme) exhibits a pK/sub a/ of 7.9 and Lys-334 (spinach enzyme) exhibits a pK/sub a/ of 9.0. These low pK/sub a/ values as well as the enhanced nucleophilicities of the lysyl residues argue that both are important to catalysis rather than to substrate binding. Lys-166 may correspond to the essential base that initiates catalysis and that displays a pK/sub a/ of 7.5 in the pH-curve for V/sub max//K/sub m/. Cross-linking experiments with 4,4'-diisothiocyano-2,2'-disulfonate stilbene demonstrate that the two active-site lysines are within 12 A. 50 refs., 7 figs., 1 tab.

  14. Catalysis: Elusive active site in focus

    NASA Astrophysics Data System (ADS)

    Labinger, Jay A.

    2016-08-01

    The identification of the active site of an iron-containing catalyst raises hopes of designing practically useful catalysts for the room-temperature conversion of methane to methanol, a potential fuel for vehicles. See Letter p.317

  15. Low dielectric response in enzyme active site

    PubMed Central

    Mertz, Edward L.; Krishtalik, Lev I.

    2000-01-01

    The kinetics of charge transfer depend crucially on the dielectric reorganization of the medium. In enzymatic reactions that involve charge transfer, atomic dielectric response of the active site and of its surroundings determines the efficiency of the protein as a catalyst. We report direct spectroscopic measurements of the reorganization energy associated with the dielectric response in the active site of α-chymotrypsin. A chromophoric inhibitor of the enzyme is used as a spectroscopic probe. We find that water strongly affects the dielectric reorganization in the active site of the enzyme in solution. The reorganization energy of the protein matrix in the vicinity of the active site is similar to that of low-polarity solvents. Surprisingly, water exhibits an anomalously high dielectric response that cannot be described in terms of the dielectric continuum theory. As a result, sequestering the active site from the aqueous environment inside low-dielectric enzyme body dramatically reduces the dielectric reorganization. This reduction is particularly important for controlling the rate of enzymatic reactions. PMID:10681440

  16. The MicrobesOnline Web site for comparative genomics

    SciTech Connect

    Alm, Eric J.; Huang, Katherine H.; Price, Morgan N.; Koche,Richard P.; Keller, Keith; Dubchak, Inna L.; Arkin, Adam P.

    2004-11-05

    At present, hundreds of microbial genomes have been sequenced, and hundreds more are currently in the pipeline. The Virtual Institute for Microbial Stress and Survival has developed a publicly available suite of Web-based comparative genomic tools (http://www.microbesonline.org) designed to facilitate multispecies comparison among prokaryotes. Highlights of the Microbes Online Web site include operon and regulon predictions, a multispecies genome browser, a multispecies Gene Ontology browser, a comparative KEGG metabolic pathway viewer, a Bioinformatics Workbench for in-depth sequence analysis, and Gene Carts that allow users to save genes of interest for further study while they browse. In addition, we provide an interface for genome annotation, which like all of the tools reported here, is freely available to the scientific community.

  17. The MicrobesOnline Web site for comparative genomics

    PubMed Central

    Alm, Eric J.; Huang, Katherine H.; Price, Morgan N.; Koche, Richard P.; Keller, Keith; Dubchak, Inna L.; Arkin, Adam P.

    2005-01-01

    At present, hundreds of microbial genomes have been sequenced, and hundreds more are currently in the pipeline. The Virtual Institute for Microbial Stress and Survival has developed a publicly available suite of Web-based comparative genomic tools (http://www.microbesonline.org) designed to facilitate multispecies comparison among prokaryotes. Highlights of the MicrobesOnline Web site include operon and regulon predictions, a multispecies genome browser, a multispecies Gene Ontology browser, a comparative KEGG metabolic pathway viewer, a Bioinformatics Workbench for in-depth sequence analysis, and Gene Carts that allow users to save genes of interest for further study while they browse. In addition, we provide an interface for genome annotation, which like all of the tools reported here, is freely available to the scientific community. PMID:15998914

  18. Comparative ecostratigraphy of Pleistocene: ODP site 625 and DSDP site 502

    SciTech Connect

    Martin, R.E.; Johnson, G.W.

    1989-03-01

    Sediments of Ocean Drilling Program's hole 625B (Leg 100, northeastern Gulf of Mexico) represent a continuous record of Pleistocene paleo-oceanographic development associated with the Florida Loop Current. Planktonic foraminiferal abundances from the Quaternary section of hole 625B have been used to construct a high-resolution ecostratigraphic zonation (calibrated against standard industry markers and magnetostratigraphy) that subdivides the Pleistocene into 21 stratigraphic units. The zonation has been tested successfully against Eureka core E67-135. The zonation was erected using only four species and operational taxonomic groups (OTGs) of planktonic foraminifera: the Globorotalia menardii complex, Globorotalia inflata, and left- and right-coiling varieties of Globorotalia truncatulinoides. Vector analysis of census data indicates that planktonic foraminiferal species are reacting independent to ecological conditions associated with the Florida Loop Current. A four-end-member mixing model is proposed that allows differentiation of the dominant climatic controls on the planktonic fauna; temperature, salinity, and productivity. Ecological factors may, however, be estimated just as accurately by the use of a few key species and OTGs. An ecostratigraphic zonation for the Pleistocene of Deep Sea Drilling Project Site 502 (Colombia basin) has also been constructed and is compared to that of Site 625. Site 502 is linked to Site 625 via the Caribbean and Florida Loop Currents and is fed, in turn, by the North Atlantic Equatorial and Guiana currents. Hence, comparison of the two sites provides further tests of ecostratigraphic zonations and the influence of global vs. regional ecosystems on their formation.

  19. Comparative toxicology of laboratory organisms for assessing hazardous waste sites

    SciTech Connect

    Miller, W.E.; Peterson, S.A.; Greene, J.C.; Callahan, C.A.

    1985-01-01

    Multi-media/multi-trophic level bioassays have been proposed to determine the extent and severity of environmental contamination at hazardous waste sites. Comparative toxicological profiles for algae (Selenastrum capricornutum), daphnia (Daphnia magna), earthworms (Eisenia foetida), microbes (Photobacterium fisherii, mixed sewage microorganisms) and plants; wheat Stephens, (Triticum aestivum), lettuce, butter crunch, (Lactuca sativa L.) radish, Cherry Belle, (Raphanus sativa L.), red clover, Kenland, (Trifolium pratense L.) and cucumber, Spartan Valor, (Cucumis sativa L.) are presented for selected heavy metals, herbicides and insecticides. Specific chemical EC/sub 50/ values are presented for each test organism. Differences in standard deviations were compared between each individual test organism, as well as for the chemical subgroup assayed. Algae and daphnia are the most sensitive test organisms to heavy metals and insecticides followed in order of decreasing sensitivity by Microtox (Photobacterium fisherii), DO depletion rate, seed germination and earthworms. Higher plants were most sensitive to 2,4-D, (2,4-Dichlorophenoxy acetic acid) followed by algae, Microtox, daphnia and earthworms. Differences in toxicity of 2,4-D chemical formulations and commercial sources of insecticides were observed with algae and daphia tests.

  20. Characterization of active sites in zeolite catalysts

    SciTech Connect

    Eckert, J.; Bug, A.; Nicol, J.M.

    1997-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Atomic-level details of the interaction of adsorbed molecules with active sites in catalysts are urgently needed to facilitate development of more effective and/or environmentally benign catalysts. To this end the authors have carried out neutron scattering studies combined with theoretical calculations of the dynamics of small molecules inside the cavities of zeolite catalysts. The authors have developed the use of H{sub 2} as a probe of adsorption sites by observing the hindered rotations of the adsorbed H{sub 2} molecule, and they were able to show that an area near the four-rings is the most likely adsorption site for H{sub 2} in zeolite A while adsorption of H{sub 2} near cations located on six-ring sites decreases in strength as Ni {approximately} Co > Ca > Zn {approximately} Na. Vibrational and rotational motions of ethylene and cyclopropane adsorption complexes were used as a measure for zeolite-adsorbate interactions. Preliminary studies of the binding of water, ammonia, and methylamines were carried out in a number of related guest-host materials.

  1. Studies on the active site of pig plasma amine oxidase.

    PubMed Central

    Collison, D; Knowles, P F; Mabbs, F E; Rius, F X; Singh, I; Dooley, D M; Cote, C E; McGuirl, M

    1989-01-01

    Amine oxidase from pig plasma (PPAO) has two bound Cu2+ ions and at least one pyrroloquinoline quinone (PQQ) moiety as cofactors. It is shown that recovery of activity by copper-depleted PPAO is linear with respect to added Cu2+ ions. Recovery of e.s.r. and optical spectral characteristics of active-site copper parallel the recovery of catalytic activity. These results are consistent with both Cu2+ ions contributing to catalysis. Further e.s.r. studies indicate that the two copper sites in PPAO, unlike those in amine oxidases from other sources, are chemically distinct. These comparative studies establish that non-identity of the Cu2+ ions in PPAO is not a requirement for amine oxidase activity. It is shown through the use of a new assay procedure that there are two molecules of PQQ bound per molecule of protein in PPAO; only the more reactive of these PQQ moieties is required for activity. PMID:2559715

  2. Mars Polar Lander Site Compared With Washington, D.C.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This figure compares five representative views of the Mars Polar Lander primary ellipse near 76oS, 195oW, with a similar-sized view of the U.S. capital for scale. Each box is approximately 1.2 km (0.75 mi) on a side. The brightness variations from one box to another among the Mars images reflects different amounts of frost cover, and possibly the differing compositions of frost (i.e., carbon dioxide vs. water ice). The brightness also depends upon surface texture both above and below the scale of these images (about 5.5 meters--18 feet--per pixel). These pictures show the range of surface texture and morphology that is found within the landing ellipse. Mounds and valleys that range from a few meters to as much as one hundred meters (328 ft) across--with relief of a few meters--dominate the landing site. All of the frost seen here is expected to be gone by the time the Mars Polar Lander arrives in December 1999. The Mars images are illuminated from the lower right. The view of Washington D.C. shows the Capitol Building at the center right and the National Air and Space Museum at center left (immediately below the grassy rectangles of the Mall).

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  3. Active Sites Environmental Monitoring Program: Program plan

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  4. Resonant active sites in catalytic ammonia synthesis: A structural model

    NASA Astrophysics Data System (ADS)

    Cholach, Alexander R.; Bryliakova, Anna A.; Matveev, Andrey V.; Bulgakov, Nikolai N.

    2016-03-01

    Adsorption sites Mn consisted of n adjacent atoms M, each bound to the adsorbed species, are considered within a realistic model. The sum of bonds Σ lost by atoms in a site in comparison with the bulk atoms was used for evaluation of the local surface imperfection, while the reaction enthalpy at that site was used as a measure of activity. The comparative study of Mn sites (n = 1-5) at basal planes of Pt, Rh, Ir, Fe, Re and Ru with respect to heat of N2 dissociative adsorption QN and heat of Nad + Had → NHad reaction QNH was performed using semi-empirical calculations. Linear QN(Σ) increase and QNH(Σ) decrease allowed to specify the resonant Σ for each surface in catalytic ammonia synthesis at equilibrium Nad coverage. Optimal Σ are realizable for Ru2, Re2 and Ir4 only, whereas other centers meet steric inhibition or unreal crystal structure. Relative activity of the most active sites in proportion 5.0 × 10- 5: 4.5 × 10- 3: 1: 2.5: 3.0: 1080: 2270 for a sequence of Pt4, Rh4, Fe4(fcc), Ir4, Fe2-5(bcc), Ru2, Re2, respectively, is in agreement with relevant experimental data. Similar approach can be applied to other adsorption or catalytic processes exhibiting structure sensitivity.

  5. Comparative hydrogen-deuterium exchange for a mesophilic vs thermophilic dihydrofolate reductase at 25 °C: identification of a single active site region with enhanced flexibility in the mesophilic protein.

    PubMed

    Oyeyemi, Olayinka A; Sours, Kevin M; Lee, Thomas; Kohen, Amnon; Resing, Katheryn A; Ahn, Natalie G; Klinman, Judith P

    2011-09-27

    The technique of hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) has been applied to a mesophilic (E. coli) dihydrofolate reductase under conditions that allow direct comparison to a thermophilic (B. stearothermophilus) ortholog, Ec-DHFR and Bs-DHFR, respectively. The analysis of hydrogen-deuterium exchange patterns within proteolytically derived peptides allows spatial resolution, while requiring a series of controls to compare orthologous proteins with only ca. 40% sequence identity. These controls include the determination of primary structure effects on intrinsic rate constants for HDX as well as the use of existing 3-dimensional structures to evaluate the distance of each backbone amide hydrogen to the protein surface. Only a single peptide from the Ec-DHFR is found to be substantially more flexible than the Bs-DHFR at 25 °C in a region located within the protein interior at the intersection of the cofactor and substrate-binding sites. The surrounding regions of the enzyme are either unchanged or more flexible in the thermophilic DHFR from B. stearothermophilus. The region with increased flexibility in Ec-DHFR corresponds to one of two regions previously proposed to control the enthalpic barrier for hydride transfer in Bs-DHFR [Oyeyemi et al. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 10074]. PMID:21859100

  6. Water in the Active Site of Ketosteroid Isomerase

    PubMed Central

    Hanoian, Philip; Hammes-Schiffer, Sharon

    2011-01-01

    Classical molecular dynamics simulations were utilized to investigate the structural and dynamical properties of water in the active site of ketosteroid isomerase (KSI) to provide insight into the role of these water molecules in the enzyme-catalyzed reaction. This reaction is thought to proceed via a dienolate intermediate that is stabilized by hydrogen bonding with residues Tyr16 and Asp103. A comparative study was performed for the wild-type (WT) KSI and the Y16F, Y16S, and Y16F/Y32F/Y57F (FFF) mutants. These systems were studied with three different bound ligands: equilenin, which is an intermediate analog, and the intermediate states of two steroid substrates. Several distinct water occupation sites were identified in the active site of KSI for the WT and mutant systems. Three additional sites were identified in the Y16S mutant that were not occupied in WT KSI or the other mutants studied. The number of water molecules directly hydrogen bonded to the ligand oxygen was approximately two waters in the Y16S mutant, one water in the Y16F and FFF mutants, and intermittent hydrogen bonding of one water molecule in WT KSI. The molecular dynamics trajectories of the Y16F and FFF mutants reproduced the small conformational changes of residue 16 observed in the crystal structures of these two mutants. Quantum mechanical/molecular mechanical calculations of 1H NMR chemical shifts of the protons in the active site hydrogen-bonding network suggest that the presence of water in the active site does not prevent the formation of short hydrogen bonds with far-downfield chemical shifts. The molecular dynamics simulations indicate that the active site water molecules exchange much more frequently for WT KSI and the FFF mutant than for the Y16F and Y16S mutants. This difference is most likely due to the hydrogen-bonding interaction between Tyr57 and an active site water molecule that is persistent in the Y16F and Y16S mutants but absent in the FFF mutant and significantly less

  7. Comparative Sensitivity Analysis of Muscle Activation Dynamics.

    PubMed

    Rockenfeller, Robert; Günther, Michael; Schmitt, Syn; Götz, Thomas

    2015-01-01

    We mathematically compared two models of mammalian striated muscle activation dynamics proposed by Hatze and Zajac. Both models are representative for a broad variety of biomechanical models formulated as ordinary differential equations (ODEs). These models incorporate parameters that directly represent known physiological properties. Other parameters have been introduced to reproduce empirical observations. We used sensitivity analysis to investigate the influence of model parameters on the ODE solutions. In addition, we expanded an existing approach to treating initial conditions as parameters and to calculating second-order sensitivities. Furthermore, we used a global sensitivity analysis approach to include finite ranges of parameter values. Hence, a theoretician striving for model reduction could use the method for identifying particularly low sensitivities to detect superfluous parameters. An experimenter could use it for identifying particularly high sensitivities to improve parameter estimation. Hatze's nonlinear model incorporates some parameters to which activation dynamics is clearly more sensitive than to any parameter in Zajac's linear model. Other than Zajac's model, Hatze's model can, however, reproduce measured shifts in optimal muscle length with varied muscle activity. Accordingly we extracted a specific parameter set for Hatze's model that combines best with a particular muscle force-length relation. PMID:26417379

  8. Control of active sites in flocculation: Concept of equivalent active sites''

    SciTech Connect

    Behl, S.; Moudgil, B.M. . Dept. of Materials Science and Engineering)

    1993-12-01

    Flocculation and dispersion of solids are strong functions of the amount and conformation of the adsorbed polymer. Regions of dispersion and flocculation of solids with particular polymer molecules may be deduced from saturation adsorption data. The concept of equivalent active sites'' is proposed to explain flocculation and dispersion behavior irrespective of the amount or conformation of the adsorbed polymer. The concept has been further extended to study the selective flocculation process.

  9. Active sites in char gasification: Final technical report

    SciTech Connect

    Wojtowicz, M.; Lilly, W.D.; Perkins, M.T.; Hradil, G.; Calo, J.M.; Suuberg, E.M.

    1987-09-01

    Among the key variables in the design of gasifiers and combustors is the reactivity of the chars which must be gasified or combusted. Significant loss of unburned char is unacceptable in virtually any process; the provision of sufficient residence time for complete conversion is essential. A very wide range of reactivities are observed, depending upon the nature of the char in a process. The current work focuses on furthering the understanding of gasification reactivities of chars. It has been well established that the reactivity of char to gasification generally depends upon three principal factors: (1) the concentration of ''active sites'' in the char; (2) mass transfer within the char; and (3) the type and concentration of catalytic impurities in the char. The present study primarily addresses the first factor. The subject of this research is the origin, nature, and fate of active sites in chars derived from parent hydrocarbons with coal-like structure. The nature and number of the active sites and their reactivity towards oxygen are examined in ''model'' chars derived from phenol-formaldehyde type resins. How the active sites are lost by the process of thermal annealing during heat treatment of chars are studied, and actual rate for the annealing process is derived. Since intrinsic char reactivities are of primary interest in the present study, a fair amount of attention was given to the model char synthesis and handling so that the effect of catalytic impurities and oxygen-containing functional groups in the chemical structure of the material were minimized, if not completely eliminated. The project would not be considered complete without comparing characteristic features of synthetic chars with kinetic behavior exhibited by natural chars, including coal chars.

  10. The Tale of Hyper-arid Pedogenesis-Two Comparing Sites in the Atacama Desert, Chile

    NASA Astrophysics Data System (ADS)

    Wang, F.; Seo, J.; Bowen, B.; Ochoa, R.; Michalski, G.

    2010-12-01

    The hyper-arid core of the Atacama Desert, Chile contains Mars-like soils that have extremely low levels of microorganisms and organic materials but high concentrations of unusual salts, providing an excellent terrestrial analog to Martian surface. This study presents two comparing sites: a 4 m-high incised paleosol at Chug-Chug field site and a 2 m-deep mining trench in the Baquedano region, to investigate pedogenic development in hyper-arid regions by performing geochemical and stable oxygen isotopic analysis on the whole set of profile samples collected at 4~5 cm vertical resolution. Geochemical data shows that both of these two sites are rich in chloride, nitrate and sulfate anions as well as sodium and calcium cations with molar ratios of Ca2+/SO42- and Na+/(NO3-+Cl-) close to 1, suggesting the common minerals are soda niter (NaNO3), halite (NaCl), gypsum (CaSO42H2O) and anhydrite (CaSO4). Significant Δ17O anomalies (17.0-20.4‰) are both observed in the NO3- salts from the two sites, indicating nitrate is mainly originated from the photochemically produced nitric acid in the atmosphere and pedogenic development may be dominated by the simple accumulation of atmospheric derived particles in a layer like fashion due to hyper-aridity. The average NO3-/Cl- molar ratio of 0.89 in the Baquedano site is lower than that of 1.13 in the Chug-Chug site, probably because the Baquedano site is closer to the ocean and submicron aerosols in clean marine air have lower NO3-/Cl- ratio than in preanthroprogenic continental aerosols. However, small aqueous activities like decadal rainfall and daily fog events may punctuate the accumulation and have a large influence on the evolution of saline minerals. For example, the most soluble ions, NO3-, Cl-, and Na+, are mostly conservative with depth, but their high concentration peaks are both observed at a depth of ~2 m in both sites, which can be due to the accumulation of atmospheric salts without leaching in an extremely dry

  11. Mars Surveyor Project Landing Site Activities

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C.; Briggs, Geoffrey; Saunders, R. Stephen; Gilmore, Martha; Soderblom, Larry

    1999-01-01

    The Mars Surveyor Program --now a cooperative program led by NASA and CNES along with other international partners -- is underway. It has the primary science objective of furthering our understanding of the biological potential and possible biological history of Mars and has the complementary objective of improving our understanding of martian climate evolution and planetary history The missions will develop technology and acquire data necessary for eventual human Exploration. Launches of orbiters, landers and rovers will take place in 2001 and in 2003; in 2005 a complete system will be launched capable of returning samples to Earth by 2008. A key aspect of the program is the selection of landing sites. This abstract 1) reports on the status of the landing site selection process that begins with the 2001 lander mission and 2) outlines be opportunities for the Mars community to provide input into the landing site selection process.

  12. Mars Surveyor Project Landing Site Activities

    NASA Technical Reports Server (NTRS)

    Gulick, V. C.; Briggs, Geoffrey; Saunders, R. Stephen; Gilmore, Martha; Soderblom, Larry

    1999-01-01

    The Mars Surveyor Program -- now a cooperative program led by NASA and CNES along with other international partners -- is underway. It has the primary science objective of furthering our understanding of the biological potential and possible biological history of Mars and has the complementary objective of improving our understanding of martian climate evolution and planetary history. The missions will develop technology and acquire data necessary for eventual human exploration. Launches of orbiters, landers and rovers will take place in 2001 and in 2003; in 2005 a complete system will be launched capable of returning samples to Earth by 2008. A key aspect of the program is the selection of landing sites. This abstract 1) reports on the status of the landing site selection process that begins with the 2001 lander mission and 2) outlines the opportunities for the Mars community to provide input into the landing site selection process.

  13. Druggability analysis and classification of protein tyrosine phosphatase active sites

    PubMed Central

    Ghattas, Mohammad A; Raslan, Noor; Sadeq, Asil; Al Sorkhy, Mohammad; Atatreh, Noor

    2016-01-01

    Protein tyrosine phosphatases (PTP) play important roles in the pathogenesis of many diseases. The fact that no PTP inhibitors have reached the market so far has raised many questions about their druggability. In this study, the active sites of 17 PTPs were characterized and assessed for its ability to bind drug-like molecules. Consequently, PTPs were classified according to their druggability scores into four main categories. Only four members showed intermediate to very druggable pocket; interestingly, the rest of them exhibited poor druggability. Particularly focusing on PTP1B, we also demonstrated the influence of several factors on the druggability of PTP active site. For instance, the open conformation showed better druggability than the closed conformation, while the tight-bound water molecules appeared to have minimal effect on the PTP1B druggability. Finally, the allosteric site of PTP1B was found to exhibit superior druggability compared to the catalytic pocket. This analysis can prove useful in the discovery of new PTP inhibitors by assisting researchers in predicting hit rates from high throughput or virtual screening and saving unnecessary cost, time, and efforts via prioritizing PTP targets according to their predicted druggability. PMID:27757011

  14. Activation of Inhibitors by Sortase Triggers Irreversible Modification of the Active Site*S

    PubMed Central

    Maresso, Anthony W.; Wu, Ruiying; Kern, Justin W.; Zhang, Rongguang; Janik, Dorota; Missiakas, Dominique M.; Duban, Mark-Eugene; Joachimiak, Andrzej; Schneewind, Olaf

    2011-01-01

    Sortases anchor surface proteins to the cell wall of Gram-positive pathogens through recognition of specific motif sequences. Loss of sortase leads to large reductions in virulence, which identifies sortase as a target for the development of antibacterials. By screening 135,625 small molecules for inhibition, we report here that aryl (β-amino)ethyl ketones inhibit sortase enzymes from staphylococci and bacilli. Inhibition of sortases occurs through an irreversible, covalent modification of their active site cysteine. Sortases specifically activate this class of molecules via β-elimination, generating a reactive olefin intermediate that covalently modifies the cysteine thiol. Analysis of the three-dimensional structure of Bacillus anthracis sortase B with and without inhibitor provides insights into the mechanism of inhibition and reveals binding pockets that can be exploited for drug discovery. PMID:17545669

  15. The bifunctional active site of s-adenosylmethionine synthetase. Roles of the active site aspartates.

    PubMed

    Taylor, J C; Markham, G D

    1999-11-12

    S-Adenosylmethionine (AdoMet) synthetase catalyzes the biosynthesis of AdoMet in a unique enzymatic reaction. Initially the sulfur of methionine displaces the intact tripolyphosphate chain (PPP(i)) from ATP, and subsequently PPP(i) is hydrolyzed to PP(i) and P(i) before product release. The crystal structure of Escherichia coli AdoMet synthetase shows that the active site contains four aspartate residues. Aspartate residues Asp-16* and Asp-271 individually provide the sole protein ligand to one of the two required Mg(2+) ions (* denotes a residue from a second subunit); aspartates Asp-118 and Asp-238* are proposed to interact with methionine. Each aspartate has been changed to an uncharged asparagine, and the metal binding residues were also changed to alanine, to assess the roles of charge and ligation ability on catalytic efficiency. The resultant enzyme variants all structurally resemble the wild type enzyme as indicated by circular dichroism spectra and are tetramers. However, all have k(cat) reductions of approximately 10(3)-fold in AdoMet synthesis, whereas the MgATP and methionine K(m) values change by less than 3- and 8-fold, respectively. In the partial reaction of PPP(i) hydrolysis, mutants of the Mg(2+) binding residues have >700-fold reduced catalytic efficiency (k(cat)/K(m)), whereas the D118N and D238*N mutants are impaired less than 35-fold. The catalytic efficiency for PPP(i) hydrolysis by Mg(2+) site mutants is improved by AdoMet, like the wild type enzyme. In contrast AdoMet reduces the catalytic efficiency for PPP(i) hydrolysis by the D118N and D238*N mutants, indicating that the events involved in AdoMet activation are hindered in these methionyl binding site mutants. Ca(2+) uniquely activates the D271A mutant enzyme to 15% of the level of Mg(2+), in contrast to the approximately 1% Ca(2+) activation of the wild type enzyme. This indicates that the Asp-271 side chain size is a discriminator between the activating ability of Ca(2+) and the

  16. The active site of ribulose-bisphosphate carboxylase/oxygenase

    SciTech Connect

    Hartman, F.C.

    1991-01-01

    The active site of ribulose-bisphosphate carboxylase/oxygenase requires interacting domains of adjacent, identical subunits. Most active-site residues are located within the loop regions of an eight-stranded {beta}/{alpha}-barrel which constitutes the larger C-terminal domain; additional key residues are located within a segment of the smaller N-terminal domain which partially covers the mouth of the barrel. Site-directed mutagenesis of the gene encoding the enzyme from Rhodospirillum rubrum has been used to delineate functions of active-site residues. 6 refs., 2 figs.

  17. A Comparative Approach for Ranking Contaminated Sites Based on the Risk Assessment Paradigm Using Fuzzy PROMETHEE

    NASA Astrophysics Data System (ADS)

    Zhang, Kejiang; Kluck, Cheryl; Achari, Gopal

    2009-11-01

    A ranking system for contaminated sites based on comparative risk methodology using fuzzy Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE) was developed in this article. It combines the concepts of fuzzy sets to represent uncertain site information with the PROMETHEE, a subgroup of Multi-Criteria Decision Making (MCDM) methods. Criteria are identified based on a combination of the attributes (toxicity, exposure, and receptors) associated with the potential human health and ecological risks posed by contaminated sites, chemical properties, site geology and hydrogeology and contaminant transport phenomena. Original site data are directly used avoiding the subjective assignment of scores to site attributes. When the input data are numeric and crisp the PROMETHEE method can be used. The Fuzzy PROMETHEE method is preferred when substantial uncertainties and subjectivities exist in site information. The PROMETHEE and fuzzy PROMETHEE methods are both used in this research to compare the sites. The case study shows that this methodology provides reasonable results.

  18. Savannah River Site prioritization of transition activities

    SciTech Connect

    Finley, R.H.

    1993-11-01

    Effective management of SRS conversion from primarily a production facility to other missions (or Decontamination and Decommissioning (D&D)) requires a systematic and consistent method of prioritizing the transition activities. This report discusses the design of a prioritizing method developed to achieve systematic and consistent methods of prioritizing these activities.

  19. DOE site performance assessment activities. Radioactive Waste Technical Support Program

    SciTech Connect

    Not Available

    1990-07-01

    Information on performance assessment capabilities and activities was collected from eight DOE sites. All eight sites either currently dispose of low-level radioactive waste (LLW) or plan to dispose of LLW in the near future. A survey questionnaire was developed and sent to key individuals involved in DOE Order 5820.2A performance assessment activities at each site. The sites surveyed included: Hanford Site (Hanford), Idaho National Engineering Laboratory (INEL), Los Alamos National Laboratory (LANL), Nevada Test Site (NTS), Oak Ridge National Laboratory (ORNL), Paducah Gaseous Diffusion Plant (Paducah), Portsmouth Gaseous Diffusion Plant (Portsmouth), and Savannah River Site (SRS). The questionnaire addressed all aspects of the performance assessment process; from waste source term to dose conversion factors. This report presents the information developed from the site questionnaire and provides a comparison of site-specific performance assessment approaches, data needs, and ongoing and planned activities. All sites are engaged in completing the radioactive waste disposal facility performance assessment required by DOE Order 5820.2A. Each site has achieved various degrees of progress and have identified a set of critical needs. Within several areas, however, the sites identified common needs and questions.

  20. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    SciTech Connect

    Zull, Lawrence M.; Yeniscavich, William

    2008-01-15

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

  1. Mutations of fumarase that distinguish between the active site and a nearby dicarboxylic acid binding site.

    PubMed Central

    Weaver, T.; Lees, M.; Banaszak, L.

    1997-01-01

    Two mutant forms of fumarase C from E. coli have been made using PCR and recombinant DNA. The recombinant form of the protein included a histidine arm on the C-terminal facilitating purification. Based on earlier studies, two different carboxylic acid binding sites, labeled A- and B-, were observed in crystal structures of the wild type and inhibited forms of the enzyme. A histidine at each of the sites was mutated to an asparagine. H188N at the A-site resulted in a large decrease in specific activity, while the H129N mutation at the B-site had essentially no effect. From the results, we conclude that the A-site is indeed the active site, and a dual role for H188 as a potential catalytic base is proposed. Crystal structures of the two mutant proteins produced some unexpected results. Both mutations reduced the affinity for the carboxylic acids at their respective sites. The H129N mutant should be particularly useful in future kinetic studies because it sterically blocks the B-site with the carboxyamide of asparagine assuming the position of the ligand's carboxylate. In the H188N mutation at the active site, the new asparagine side chain still interacts with an active site water that appears to have moved slightly as a result of the mutation. PMID:9098893

  2. Ionizable Side Chains at Catalytic Active Sites of Enzymes

    PubMed Central

    Jimenez-Morales, David; Liang, Jie

    2012-01-01

    Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1072 Å3. The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes. PMID:22484856

  3. Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues.

    PubMed

    Youngblut, Matthew D; Tsai, Chi-Lin; Clark, Iain C; Carlson, Hans K; Maglaqui, Adrian P; Gau-Pan, Phonchien S; Redford, Steven A; Wong, Alan; Tainer, John A; Coates, John D

    2016-04-22

    Perchlorate is an important ion on both Earth and Mars. Perchlorate reductase (PcrAB), a specialized member of the dimethylsulfoxide reductase superfamily, catalyzes the first step of microbial perchlorate respiration, but little is known about the biochemistry, specificity, structure, and mechanism of PcrAB. Here we characterize the biophysics and phylogeny of this enzyme and report the 1.86-Å resolution PcrAB complex crystal structure. Biochemical analysis revealed a relatively high perchlorate affinity (Km = 6 μm) and a characteristic substrate inhibition compared with the highly similar respiratory nitrate reductase NarGHI, which has a relatively much lower affinity for perchlorate (Km = 1.1 mm) and no substrate inhibition. Structural analysis of oxidized and reduced PcrAB with and without the substrate analog SeO3 (2-) bound to the active site identified key residues in the positively charged and funnel-shaped substrate access tunnel that gated substrate entrance and product release while trapping transiently produced chlorate. The structures suggest gating was associated with shifts of a Phe residue between open and closed conformations plus an Asp residue carboxylate shift between monodentate and bidentate coordination to the active site molybdenum atom. Taken together, structural and mutational analyses of gate residues suggest key roles of these gate residues for substrate entrance and product release. Our combined results provide the first detailed structural insight into the mechanism of biological perchlorate reduction, a critical component of the chlorine redox cycle on Earth.

  4. Eel calcitonin binding site distribution and antinociceptive activity in rats

    SciTech Connect

    Guidobono, F.; Netti, C.; Sibilia, V.; Villa, I.; Zamboni, A.; Pecile, A.

    1986-03-01

    The distribution of binding site for (/sup 125/I)-eel-calcitonin (ECT) to rat central nervous system, studied by an autoradiographic technique, showed concentrations of binding in the diencephalon, the brain stem and the spinal cord. Large accumulations of grains were seen in the hypothalamus, the amygdala, in the fasciculus medialis prosencephali, in the fasciculus longitudinalis medialis, in the ventrolateral part of the periventricular gray matter, in the lemniscus medialis and in the raphe nuclei. The density of grains in the reticular formation and in the nucleus tractus spinalis nervi trigemini was more moderate. In the spinal cord, grains were scattered throughout the dorsal horns. Binding of the ligand was displaced equally by cold ECT and by salmon CT(sCT), indicating that both peptides bind to the same receptors. Human CT was much weaker than sCT in displacing (/sup 125/I)-ECT binding. The administration of ECT into the brain ventricles of rats dose-dependently induced a significant and long-lasting enhancement of hot-plate latencies comparable with that obtained with sCT. The antinociceptive activity induced by ECT is compatible with the topographical distribution of binding sites for the peptide and is a further indication that fish CTs are active in the mammalian brain.

  5. Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues.

    PubMed

    Youngblut, Matthew D; Tsai, Chi-Lin; Clark, Iain C; Carlson, Hans K; Maglaqui, Adrian P; Gau-Pan, Phonchien S; Redford, Steven A; Wong, Alan; Tainer, John A; Coates, John D

    2016-04-22

    Perchlorate is an important ion on both Earth and Mars. Perchlorate reductase (PcrAB), a specialized member of the dimethylsulfoxide reductase superfamily, catalyzes the first step of microbial perchlorate respiration, but little is known about the biochemistry, specificity, structure, and mechanism of PcrAB. Here we characterize the biophysics and phylogeny of this enzyme and report the 1.86-Å resolution PcrAB complex crystal structure. Biochemical analysis revealed a relatively high perchlorate affinity (Km = 6 μm) and a characteristic substrate inhibition compared with the highly similar respiratory nitrate reductase NarGHI, which has a relatively much lower affinity for perchlorate (Km = 1.1 mm) and no substrate inhibition. Structural analysis of oxidized and reduced PcrAB with and without the substrate analog SeO3 (2-) bound to the active site identified key residues in the positively charged and funnel-shaped substrate access tunnel that gated substrate entrance and product release while trapping transiently produced chlorate. The structures suggest gating was associated with shifts of a Phe residue between open and closed conformations plus an Asp residue carboxylate shift between monodentate and bidentate coordination to the active site molybdenum atom. Taken together, structural and mutational analyses of gate residues suggest key roles of these gate residues for substrate entrance and product release. Our combined results provide the first detailed structural insight into the mechanism of biological perchlorate reduction, a critical component of the chlorine redox cycle on Earth. PMID:26940877

  6. Trichodiene synthase. Identification of active site residues by site-directed mutagenesis.

    PubMed

    Cane, D E; Shim, J H; Xue, Q; Fitzsimons, B C; Hohn, T M

    1995-02-28

    Derivatization of 5,5'-dithiobis(2-nitrobenzoic acid)-treated trichodiene synthase with [methyl-14C]methyl methanethiosulfonate and analysis of the derived tryptic peptides suggested the presence of two cysteine residues at the active site. The corresponding C146A and C190A mutants were constructed by site-directed mutagenesis. The C190A mutant displayed partial but significantly reduced activity, with a reduction in kcat/Km of 3000 compared to the wild-type trichodiene synthase, while the C146A mutant was essentially inactive. A hybrid trichodiene synthase, constructed from amino acids 1-309 of the Fusarium sporotrichioides enzyme and amino acids 310-383 of the Gibberella pulicaris cyclase, had steady state kinetic parameters nearly identical to those of the wild-type F. sporotrichioides enzyme. From this parent hybrid, a series of mutants was constructed by site-directed mutagenesis in which the amino acids in the base-rich region, 302-306 (DRRYR), were systematically modified. Three of these mutants were overexpressed and purified to homogeneity. The importance of Arg304 for catalysis was established by the observation that the R304K mutant showed a more than 25-fold increase in Km, as well as a 200-fold reduction in kcat. In addition, analysis of the incubation products of the R304K mutant by gas chromatography-mass spectrometry (GC-MS) indicated that farnesyl diphosphate was converted not only to trichodiene but to at least two additional C15H24 hydrocarbons, mle 204. Replacement of the Tyr305 residue of trichodiene synthase with Phe had little effect on kcat, while increasing the Km by a factor of ca. 7-8.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7873527

  7. Comparative approaches to siting low-level radioactive waste disposal facilities

    SciTech Connect

    Newberry, W.F.

    1994-07-01

    This report describes activities in nine States to select site locations for new disposal facilities for low-level radioactive waste. These nine States have completed processes leading to identification of specific site locations for onsite investigations. For each State, the status, legal and regulatory framework, site criteria, and site selection process are described. In most cases, States and compact regions decided to assign responsibility for site selection to agencies of government and to use top-down mapping methods for site selection. The report discusses quantitative and qualitative techniques used in applying top-down screenings, various approaches for delineating units of land for comparison, issues involved in excluding land from further consideration, and different positions taken by the siting organizations in considering public acceptance, land use, and land availability as factors in site selection.

  8. Mimicking enzymatic active sites on surfaces for energy conversion chemistry.

    PubMed

    Gutzler, Rico; Stepanow, Sebastian; Grumelli, Doris; Lingenfelder, Magalí; Kern, Klaus

    2015-07-21

    Metal-organic supramolecular chemistry on surfaces has matured to a point where its underlying growth mechanisms are well understood and structures of defined coordination environments of metal atoms can be synthesized in a controlled and reproducible procedure. With surface-confined molecular self-assembly, scientists have a tool box at hand which can be used to prepare structures with desired properties, as for example a defined oxidation number and spin state of the transition metal atoms within the organic matrix. From a structural point of view, these coordination sites in the supramolecular structure resemble the catalytically active sites of metallo-enzymes, both characterized by metal centers coordinated to organic ligands. Several chemical reactions take place at these embedded metal ions in enzymes and the question arises whether these reactions also take place using metal-organic networks as catalysts. Mimicking the active site of metal atoms and organic ligands of enzymes in artificial systems is the key to understanding the selectivity and efficiency of enzymatic reactions. Their catalytic activity depends on various parameters including the charge and spin configuration in the metal ion, but also on the organic environment, which can stabilize intermediate reaction products, inhibits catalytic deactivation, and serves mostly as a transport channel for the reactants and products and therefore ensures the selectivity of the enzyme. Charge and spin on the transition metal in enzymes depend on the one hand on the specific metal element, and on the other hand on its organic coordination environment. These two parameters can carefully be adjusted in surface confined metal-organic networks, which can be synthesized by virtue of combinatorial mixing of building synthons. Different organic ligands with varying functional groups can be combined with several transition metals and spontaneously assemble into ordered networks. The catalytically active metal

  9. Active-Site Hydration and Water Diffusion in Cytochrome P450cam: A Highly Dynamic Process

    SciTech Connect

    Miao, Yinglong; Baudry, Jerome Y

    2011-01-01

    Long-timescale molecular dynamics simulations (300 ns) are performed on both the apo- (i.e., camphor-free) and camphor-bound cytochrome P450cam (CYP101). Water diffusion into and out of the protein active site is observed without biased sampling methods. During the course of the molecular dynamics simulation, an average of 6.4 water molecules is observed in the camphor-binding site of the apo form, compared to zero water molecules in the binding site of the substrate-bound form, in agreement with the number of water molecules observed in crystal structures of the same species. However, as many as 12 water molecules can be present at a given time in the camphor-binding region of the active site in the case of apo-P450cam, revealing a highly dynamic process for hydration of the protein active site, with water molecules exchanging rapidly with the bulk solvent. Water molecules are also found to exchange locations frequently inside the active site, preferentially clustering in regions surrounding the water molecules observed in the crystal structure. Potential-of-mean-force calculations identify thermodynamically favored trans-protein pathways for the diffusion of water molecules between the protein active site and the bulk solvent. Binding of camphor in the active site modifies the free-energy landscape of P450cam channels toward favoring the diffusion of water molecules out of the protein active site.

  10. Comparative assessment of five potential sites for hydrothermal-magma systems: summary

    SciTech Connect

    Luth, W.C.; Hardee, H.C.

    1980-11-01

    A comparative assessment of five potential hydrothermal-magma sites for this facet of the Thermal Regimes part of the CSDP has been prepared for the DOE Office of Basic Energy Sciences. The five sites are: The Geysers-Clear Lake, CA, Long Valley, CA, Rio Grande Rift, NM, Roosevelt Hot Springs, UT, and Salton Trough, CA. This site assessment study has drawn together background information (geology, geochemistry, geophysics, and energy transport) on the five sites as a preliminary stage to site selection. Criteria for site selection are that potential sites have identifiable, or likely, hydrothermal systems and associated magma sources, and the important scientific questions can be identified and answered by deep scientific holes. Recommendations were made.

  11. Active site - a site of binding of affinity inhibitors in baker's yeast inorganic pyrophosphatase

    SciTech Connect

    Svyato, I.E.; Sklyankina, V.A.; Avaeva, S.M.

    1986-03-20

    The interaction of the enzyme-substrate complex with methyl phosphate, O-phosphoethanolamine, O-phosphopropanolamine, N-acetylphosphoserine, and phosphoglyolic acid, as well as pyrophosphatase, modified by monoesters of phosphoric acid, with pyrophosphate and tripolyphosphate, was investigated. It was shown that the enzyme containing the substrate in the active site does not react with monophosphates, but modified pyrophosphatase entirely retains the ability to bind polyanions to the regulatory site. It is concluded that the inactivation of baker's yeast inorganic pyrophosphatase by monoesters of phosphoric acid, which are affinity inhibitors of it, is the result of modification of the active site of the enzyme.

  12. 10 CFR 960.3-2-2-3 - Comparative evaluation of all sites proposed for nomination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Comparative evaluation of all sites proposed for nomination. 960.3-2-2-3 Section 960.3-2-2-3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines §...

  13. 10 CFR 960.3-2-2-3 - Comparative evaluation of all sites proposed for nomination.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Comparative evaluation of all sites proposed for nomination. 960.3-2-2-3 Section 960.3-2-2-3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines §...

  14. 10 CFR 960.3-2-2-3 - Comparative evaluation of all sites proposed for nomination.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Comparative evaluation of all sites proposed for nomination. 960.3-2-2-3 Section 960.3-2-2-3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines §...

  15. 10 CFR 960.3-2-2-3 - Comparative evaluation of all sites proposed for nomination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Comparative evaluation of all sites proposed for nomination. 960.3-2-2-3 Section 960.3-2-2-3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines §...

  16. 10 CFR 960.3-2-2-3 - Comparative evaluation of all sites proposed for nomination.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Comparative evaluation of all sites proposed for nomination. 960.3-2-2-3 Section 960.3-2-2-3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines §...

  17. A comparative study between the fluxes of trace elements in bulk atmospheric deposition at industrial, urban, traffic, and rural sites.

    PubMed

    Fernández-Olmo, I; Puente, M; Irabien, A

    2015-09-01

    The input of trace elements via atmospheric deposition towards industrial, urban, traffic, and rural areas is quite different and depends on the intensity of the anthropogenic activity. A comparative study between the element deposition fluxes in four sampling sites (industrial, urban, traffic, and rural) of the Cantabria region (northern Spain) has been performed. Sampling was carried out monthly using a bulk (funnel bottle) sampler. The trace elements, As, Cd, Cr, Cu, Mn, Mo, Ni, Pb, Ti, Zn, and V, were determined in the water soluble and insoluble fractions of bulk deposition samples. The element deposition fluxes at the rural, urban, and traffic sites followed a similar order (Zn > Mn> > Cu ≈ Ti > Pb > V ≈ Cr > Ni> > As ≈ Mo > Cd). The most enriched elements were Cd, Zn, and Cu, while V, Ni, and Cr were less enriched. An extremely high deposition of Mn was found at the industrial site, leading to high enrichment factor values, resulting from the presence of a ferro-manganese/silico-manganese production plant in the vicinity of the sampling site. Important differences were found in the element solubilities in the studied sites; the element solubilities were higher at the traffic and rural sites, and lower at the urban and industrial sites. For all sites, Zn and Cd were the most soluble elements, whereas Cr and Ti were less soluble. The inter-site correlation coefficients for each element were calculated to assess the differences between the sites. The rural and traffic sites showed some similarities in the sources of trace elements; however, the sources of these elements at the industrial and rural sites were quite different. Additionally, the element fluxes measured in the insoluble fraction of the bulk atmospheric deposition exhibited a good correlation with the daily traffic volume at the traffic site.

  18. A novel approach to predict active sites of enzyme molecules.

    PubMed

    Chou, Kuo-Chen; Cai, Yu-dong

    2004-04-01

    Enzymes are critical in many cellular signaling cascades. With many enzyme structures being solved, there is an increasing need to develop an automated method for identifying their active sites. However, given the atomic coordinates of an enzyme molecule, how can we predict its active site? This is a vitally important problem because the core of an enzyme molecule is its active site from the viewpoints of both pure scientific research and industrial application. In this article, a topological entity was introduced to characterize the enzymatic active site. Based on such a concept, the covariant discriminant algorithm was formulated for identifying the active site. As a paradigm, the serine hydrolase family was demonstrated. The overall success rate by jackknife test for a data set of 88 enzyme molecules was 99.92%, and that for a data set of 50 independent enzyme molecules was 99.91%. Meanwhile, it was shown through an example that the prediction algorithm can also be used to find any typographic error of a PDB file in annotating the constituent amino acids of catalytic triad and to suggest a possible correction. The very high success rates are due to the introduction of a covariance matrix in the prediction algorithm that makes allowance for taking into account the coupling effects among the key constituent atoms of active site. It is anticipated that the novel approach is quite promising and may become a useful high throughput tool in enzymology, proteomics, and structural bioinformatics. PMID:14997541

  19. Are participant characteristics from ISCOLE study sites comparable to the rest of their country?

    PubMed Central

    LeBlanc, A G; Katzmarzyk, P T; Barreira, T V; Broyles, S T; Chaput, J-P; Church, T S; Fogelholm, M; Harrington, D M; Hu, G; Kuriyan, R; Kurpad, A; Lambert, E V; Maher, C; Maia, J; Matsudo, V; Olds, T; Onywera, V; Sarmiento, O L; Standage, M; Tudor-Locke, C; Zhao, P; Tremblay, M S

    2015-01-01

    OBJECTIVES: The International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE) provides robust, multi-national information on physical activity, diet and weight status in 9–11-year-old children around the world. The purpose of this analysis was to examine the similarities and differences between participant characteristics from ISCOLE sites and data from nationally representative surveys from ISCOLE countries (Australia, Brazil, Canada, China, Colombia, Finland, Kenya, India, Portugal, South Africa, the United Kingdom and the United States). METHODS: Distributions of characteristics were assessed within each ISCOLE country-level database, and compared with published data from national or regional surveys, where available. Variables of comparison were identified a priori and included body mass index (BMI), physical activity (accelerometer-determined steps per day) and screen time (child-report). RESULTS: Of 12 countries, data on weight status (BMI) were available in 8 countries, data on measured physical activity (steps per day) were available in 5 countries and data on self-reported screen time were available in 9 countries. The five ISCOLE countries that were part of the Health Behaviour in School-aged Children Survey (that is, Canada, Finland, Portugal, the United Kingdom (England) and the United States) also provided comparable data on self-reported physical activity. Available country-specific data often used different measurement tools or cut-points, making direct comparisons difficult. Where possible, ISCOLE data were re-analyzed to match country-level data, but this step limited between-country comparisons. CONCLUSIONS: From the analyses performed, the ISCOLE data do not seem to be systematically biased; however, owing to limitations in data availability, data from ISCOLE should be used with appropriate caution when planning country-level population health interventions. This work highlights the need for harmonized measurement tools

  20. Growth exponents in surface models with non-active sites

    NASA Astrophysics Data System (ADS)

    Santos, M.; Figueiredo, W.; Aarão Reis, F. D. A.

    2006-11-01

    In this work, we studied the role played by the inactive sites present on the substrate of a growing surface. In our model, one particle sticks at the surface if the site where it falls is an active site. However, we allow the deposited particle to diffuse along the surface in accordance with some mechanism previously defined. Using Monte Carlo simulations, and some analytical results, we have investigated the model in (1+1) and (2+1) dimensions considering different relaxation mechanisms. We show that the consideration of non-active sites is a crucial point in the model. In fact, we have seen that the saturation regime is not observed for any value of the density of inactive sites. Besides, the growth exponent β turns to be one, at long times, whatever the mechanism of diffusion we consider in one and two dimensions.

  1. A small ribozyme with dual-site kinase activity

    PubMed Central

    Biondi, Elisa; Maxwell, Adam W.R.; Burke, Donald H.

    2012-01-01

    Phosphoryl transfer onto backbone hydroxyls is a recognized catalytic activity of nucleic acids. We find that kinase ribozyme K28 possesses an unusually complex active site that promotes (thio)phosphorylation of two residues widely separated in primary sequence. After allowing the ribozyme to radiolabel itself by phosphoryl transfer from [γ-32P]GTP, DNAzyme-mediated cleavage yielded two radiolabeled cleavage fragments, indicating phosphorylation sites within each of the two cleavage fragments. These sites were mapped by alkaline digestion and primer extension pausing. Enzymatic digestion and mutational analysis identified nucleotides important for activity and established the active structure as being a constrained pseudoknot with unusual connectivity that may juxtapose the two reactive sites. Nuclease sensitivities for nucleotides near the pseudoknot core were altered in the presence of GTPγS, indicating donor-induced folding. The 5′ target site was more strongly favored in full-length ribozyme K28 (128 nt) than in truncated RNAs (58 nt). Electrophoretic mobilities of self-thiophosphorylated products on organomercurial gels are distinct from the 5′ mono-thiophosphorylated product produced by reaction with polynucleotide kinase, potentially indicating simultaneous labeling of both sites within individual RNA strands. Our evidence supports a single, compact structure with local dynamics, rather than global rearrangement, as being responsible for dual-site phosphorylation. PMID:22618879

  2. Comparative assessment of five potential sites for hydrothermal-magma systems: energy transport

    SciTech Connect

    Hardee, H.C.

    1980-09-01

    A comparative assessment of five sites is being prepared as part of a Continental Scientific Drilling Program (CSDP) review of thermal regimes for the purpose of scoping areas for future research and drilling activities. This background report: discusses the various energy transport processes likely to be encountered in a hydrothermal-magma system, reviews related literature, discusses research and field data needs, and reviews the sites from an energy transport viewpoint. At least three major zones exist in the magma-hydrothermal transport system: the magma zone, the hydrothermal zone, and the transition zone between the two. Major energy transport questions relate to the nature and existence of these zones and their evolution with time. Additional energy transport questions are concerned with the possible existence of critical state and super-critical state permeable convection in deep geothermal systems. A review of thermal transport models emphasizes the fact that present transport models and computational techniques far outweigh the scarcity and quality of deep field data.

  3. Comparing communication technology on Chinese, English, and Spanish diabetes web sites.

    PubMed Central

    Michea, Yanko F.; Pancheri, Karen; Gong, Yang; Bernstam, Elmer

    2002-01-01

    Technological and cultural factors influence access to health information on the web in multifarious ways. We evaluated structural differences and availability of communication services on the web in three diverse language and cultural groups: Chinese, English, and Spanish. A total of 382 web sites were analyzed: 144 were English language sites (38%), 129 were Chinese language sites (34%), and 108 were Spanish language sites (28%). We did not find technical differences in the number of outgoing links per domain or the total availability of communication services between the three groups. There were differences in the distribution of available services between Chinese and English sites. In the Chinese sites, there were more communication services between consumers and health experts. Our results suggest that the health-related web presence of these three cultural groups is technologically comparable, but reflects differences that may be attributable to cultural factors. PMID:12463879

  4. Metavanadate at the active site of the phosphatase VHZ.

    PubMed

    Kuznetsov, Vyacheslav I; Alexandrova, Anastassia N; Hengge, Alvan C

    2012-09-01

    Vanadate is a potent modulator of a number of biological processes and has been shown by crystal structures and NMR spectroscopy to interact with numerous enzymes. Although these effects often occur under conditions where oligomeric forms dominate, the crystal structures and NMR data suggest that the inhibitory form is usually monomeric orthovanadate, a particularly good inhibitor of phosphatases because of its ability to form stable trigonal-bipyramidal complexes. We performed a computational analysis of a 1.14 Å structure of the phosphatase VHZ in complex with an unusual metavanadate species and compared it with two classical trigonal-bipyramidal vanadate-phosphatase complexes. The results support extensive delocalized bonding to the apical ligands in the classical structures. In contrast, in the VHZ metavanadate complex, the central, planar VO(3)(-) moiety has only one apical ligand, the nucleophilic Cys95, and a gap in electron density between V and S. A computational analysis showed that the V-S interaction is primarily ionic. A mechanism is proposed to explain the formation of metavanadate in the active site from a dimeric vanadate species that previous crystallographic evidence has shown to be able to bind to the active sites of phosphatases related to VHZ. Together, the results show that the interaction of vanadate with biological systems is not solely reliant upon the prior formation of a particular inhibitory form in solution. The catalytic properties of an enzyme may act upon the oligomeric forms primarily present in solution to generate species such as the metavanadate ion observed in the VHZ structure. PMID:22876963

  5. Architecture and active site of particulate methane monooxygenase

    PubMed Central

    Culpepper, Megen A.; Rosenzweig, Amy C.

    2012-01-01

    Particulate methane monooxygenase (pMMO) is an integral membrane metalloenzyme that oxidizes methane to methanol in methanotrophic bacteria, organisms that live on methane gas as their sole carbon source. Understanding pMMO function has important implications for bioremediation applications and for the development of new, environmentally friendly catalysts for the direct conversion of methane to methanol. Crystal structures of pMMOs from three different methanotrophs reveal a trimeric architecture, consisting of three copies each of the pmoB, pmoA, and pmoC subunits. There are three distinct metal centers in each protomer of the trimer, mononuclear and dinuclear copper sites in the periplasmic regions of pmoB and a mononuclear site within the membrane that can be occupied by copper or zinc. Various models for the pMMO active site have been proposed within these structural constraints, including dicopper, tricopper, and diiron centers. Biochemical and spectroscopic data on pMMO and recombinant soluble fragments, denoted spmoB proteins, indicate that the active site involves copper and is located at the site of the dicopper center in the pmoB subunit. Initial spectroscopic evidence for O2 binding at this site has been obtained. Despite these findings, questions remain about the active site identity and nuclearity and will be the focus of future studies. PMID:22725967

  6. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site.

    PubMed

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-04-20

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2 domains reveal that the (HhH)2 domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2 domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2 domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2 domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide. PMID:26908655

  7. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site

    PubMed Central

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-01-01

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2 domains reveal that the (HhH)2 domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2 domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2 domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2 domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide. PMID:26908655

  8. Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations

    PubMed Central

    Steinkellner, Georg; Gruber, Christian C.; Pavkov-Keller, Tea; Binter, Alexandra; Steiner, Kerstin; Winkler, Christoph; Łyskowski, Andrzej; Schwamberger, Orsolya; Oberer, Monika; Schwab, Helmut; Faber, Kurt; Macheroux, Peter; Gruber, Karl

    2014-01-01

    The exploitation of catalytic promiscuity and the application of de novo design have recently opened the access to novel, non-natural enzymatic activities. Here we describe a structural bioinformatic method for predicting catalytic activities of enzymes based on three-dimensional constellations of functional groups in active sites (‘catalophores’). As a proof-of-concept we identify two enzymes with predicted promiscuous ene-reductase activity (reduction of activated C–C double bonds) and compare them with known ene-reductases, that is, members of the Old Yellow Enzyme family. Despite completely different amino acid sequences, overall structures and protein folds, high-resolution crystal structures reveal equivalent binding modes of typical Old Yellow Enzyme substrates and ligands. Biochemical and biocatalytic data show that the two enzymes indeed possess ene-reductase activity and reveal an inverted stereopreference compared with Old Yellow Enzymes for some substrates. This method could thus be a tool for the identification of viable starting points for the development and engineering of novel biocatalysts. PMID:24954722

  9. A comparative study of 'Op-site' and 'Nobecutan gauze' dressings for central venous line care.

    PubMed

    Andersen, P T; Herlevsen, P; Schaumburg, H

    1986-03-01

    A comparative study of 'Op-site' and 'Nobecutan-gauze' dressings for central venous lines was performed. Seventy-seven long antebrachial and 68 infraclavicular subclavian catheters were studied. A statistically significant reduction in the incidence of positive cultures from the catheter tip and from the skin puncture site was found with the 'Nobecutan-gauze' dressing. No difference in the incidence of catheter-related septicaemia was found. The theoretical advantage of being able to observe signs of inflammation when 'Op-site' was used did not reduce the incidence of local infection at the skin puncture site. In conclusion we found that a 'Nobecutan-gauze' dressing was a satisfactory alternative to an 'Op-site' dressing.

  10. Active Sites Environmental Monitoring Program: Mid-FY 1991 report

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1991-10-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1990 through March 1991. The ASEMP was established in 1989 by Solid Waste Operations and the Environmental Sciences Division to provide early detection and performance monitoring at active low-level radioactive waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. Monitoring results continue to demonstrate the no LLW is being leached from the storage vaults on the tumulus pads. Loading of vaults on Tumulus II began during this reporting period and 115 vaults had been loaded by the end of March 1991.

  11. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    PubMed

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined.

  12. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    PubMed

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined. PMID:27243042

  13. Single site and conventional totally extraperitoneal techniques for uncomplicated inguinal hernia repair: A comparative study

    PubMed Central

    de Araújo, Felipe Brandão Corrêa; Starling, Eduardo Simão; Maricevich, Marco; Tobias-Machado, Marcos

    2014-01-01

    OBJECTIVE: To demonstrate the feasibility of endoscopic extraperitoneal single site (EESS) inguinal hernia repair and compare it outcomes with the conventional totally extraperitoneal (TEP) technique. BACKGROUND: TEP inguinal hernia repair is a widely accepted alternative to conventional open technique with several perioperative advantages. Transumbilical laparoendoscopic singlesite surgery (LESS) is an emerging approach and has been reported for a number of surgical procedures with superior aesthetic results but other advantages need to be proven. PATIENTS AND METHODS: Thirty-eight uncomplicated inguinal hernias were repaired by EESS approach between January 2010 and January 2011. All procedures were performed through a 25 cm infraumbilical incision using the Alexis wound retractor attached to a surgical glove and three trocars. Body mass index, age, operative time, blood loss, complications, conversion rate, analgesia requirement, hospital stay, return to normal activities and patient satisfaction with aesthetic results were analysed and compared with the last 38 matched-pair group of patients who underwent a conventional TEP inguinal hernia repair by the same surgeon. RESULTS: All procedures were performed successfully with no conversion. In both unilateral and bilateral EESS inguinal repairs, the mean operative time was longer than conventional TEP (55± 20 vs. 40± 15 min, P = 0.049 and 70± 15 vs. 55± 10 min, P = 0.014). Aesthetic result was superior in the EESS group (2.88± 0.43 vs. 2.79± 0.51, P = 0.042). There was no difference between the two approaches regarding blood loss, complications, hospital stay, time until returns to normal activities and analgesic requirement. CONCLUSION: EESS inguinal hernia repair is safe and effective, with superior cosmetic results in the treatment of uncomplicated inguinal hernias. Other advantages of this new technique still need to be proven. PMID:25336820

  14. Comparative modeling of an in situ diffusion experiment in granite at the Grimsel Test Site.

    PubMed

    Soler, Josep M; Landa, Jiri; Havlova, Vaclava; Tachi, Yukio; Ebina, Takanori; Sardini, Paul; Siitari-Kauppi, Marja; Eikenberg, Jost; Martin, Andrew J

    2015-08-01

    An in situ diffusion experiment was performed at the Grimsel Test Site (Switzerland). Several tracers ((3)H as HTO, (22)Na(+), (134)Cs(+), (131)I(-) with stable I(-) as carrier) were continuously circulated through a packed-off borehole and the decrease in tracer concentrations in the liquid phase was monitored for a period of about 2years. Subsequently, the borehole section was overcored and the tracer profiles in the rock analyzed ((3)H, (22)Na(+), (134)Cs(+)). (3)H and (22)Na(+) showed a similar decrease in activity in the circulation system (slightly larger drop for (3)H). The drop in activity for (134)Cs(+) was much more pronounced. Transport distances in the rock were about 20cm for (3)H, 10cm for (22)Na(+), and 1cm for (134)Cs(+). The dataset (except for (131)I(-) because of complete decay at the end of the experiment) was analyzed with different diffusion-sorption models by different teams (IDAEA-CSIC, UJV-Rez, JAEA) using different codes, with the goal of obtaining effective diffusion coefficients (De) and porosity (ϕ) or rock capacity (α) values. From the activity measurements in the rock, it was observed that it was not possible to recover the full tracer activity in the rock (no activity balance when adding the activities in the rock and in the fluid circulation system). A Borehole Disturbed Zone (BDZ) had to be taken into account to fit the experimental observations. The extension of the BDZ (1-2mm) is about the same magnitude than the mean grain size of the quartz and feldspar grains. IDAEA-CSIC and UJV-Rez tried directly to match the results of the in situ experiment, without forcing any laboratory-based parameter values into the models. JAEA conducted a predictive modeling based on laboratory diffusion data and their scaling to in situ conditions. The results from the different codes have been compared, also with results from small-scale laboratory experiments. Outstanding issues to be resolved are the need for a very large capacity factor in the

  15. Comparative modeling of an in situ diffusion experiment in granite at the Grimsel Test Site.

    PubMed

    Soler, Josep M; Landa, Jiri; Havlova, Vaclava; Tachi, Yukio; Ebina, Takanori; Sardini, Paul; Siitari-Kauppi, Marja; Eikenberg, Jost; Martin, Andrew J

    2015-08-01

    An in situ diffusion experiment was performed at the Grimsel Test Site (Switzerland). Several tracers ((3)H as HTO, (22)Na(+), (134)Cs(+), (131)I(-) with stable I(-) as carrier) were continuously circulated through a packed-off borehole and the decrease in tracer concentrations in the liquid phase was monitored for a period of about 2years. Subsequently, the borehole section was overcored and the tracer profiles in the rock analyzed ((3)H, (22)Na(+), (134)Cs(+)). (3)H and (22)Na(+) showed a similar decrease in activity in the circulation system (slightly larger drop for (3)H). The drop in activity for (134)Cs(+) was much more pronounced. Transport distances in the rock were about 20cm for (3)H, 10cm for (22)Na(+), and 1cm for (134)Cs(+). The dataset (except for (131)I(-) because of complete decay at the end of the experiment) was analyzed with different diffusion-sorption models by different teams (IDAEA-CSIC, UJV-Rez, JAEA) using different codes, with the goal of obtaining effective diffusion coefficients (De) and porosity (ϕ) or rock capacity (α) values. From the activity measurements in the rock, it was observed that it was not possible to recover the full tracer activity in the rock (no activity balance when adding the activities in the rock and in the fluid circulation system). A Borehole Disturbed Zone (BDZ) had to be taken into account to fit the experimental observations. The extension of the BDZ (1-2mm) is about the same magnitude than the mean grain size of the quartz and feldspar grains. IDAEA-CSIC and UJV-Rez tried directly to match the results of the in situ experiment, without forcing any laboratory-based parameter values into the models. JAEA conducted a predictive modeling based on laboratory diffusion data and their scaling to in situ conditions. The results from the different codes have been compared, also with results from small-scale laboratory experiments. Outstanding issues to be resolved are the need for a very large capacity factor in the

  16. Computer simulation of the active site of human serum cholinesterase

    SciTech Connect

    Kefang Jiao; Song Li; Zhengzheng Lu

    1996-12-31

    The first 3D-structure of acetylchelinesterase from Torpedo California electric organ (T.AChE) was published by JL. Sussman in 1991. We have simulated 3D-structure of human serum cholinesterase (H.BuChE) and the active site of H.BuChE. It is discovered by experiment that the residue of H.BuChE is still active site after a part of H.BuChE is cut. For example, the part of 21KD + 20KD is active site of H.BuChE. The 20KD as it is. Studies on these peptides by Hemelogy indicate that two active peptides have same negative electrostatic potential maps diagram. These negative electrostatic areas attached by acetyl choline with positive electrostatic potency. We predict that 147...236 peptide of AChE could be active site because it was as 20KD as with negative electrostatic potential maps. We look forward to proving from other ones.

  17. Multi-site Phosphorylation Regulates Bim Stability and Apoptotic Activity

    PubMed Central

    Hübner, Anette; Barrett, Tamera; Flavell, Richard A.; Davis, Roger J.

    2008-01-01

    The pro-apoptotic BH3-only protein Bim is established to be an important mediator of signaling pathways that induce cell death. Multi-site phosphorylation of Bim by several members of the MAP kinase group is implicated as a regulatory mechanism that controls the apoptotic activity of Bim. To test the role of Bim phosphorylation in vivo, we constructed mice with a series of mutant alleles that express phosphorylation-defective Bim proteins. We show that mutation of the phosphorylation site Thr-112 causes decreased binding of Bim to the anti-apoptotic protein Bcl2 and can increase cell survival. In contrast, mutation of the phosphorylation sites Ser-55, Ser-65, and Ser-73 can cause increased apoptosis because of reduced proteasomal degradation of Bim. Together, these data indicate that phosphorylation can regulate Bim by multiple mechanisms and that the phosphorylation of Bim on different sites can contribute to the sensitivity of cellular apoptotic responses. PMID:18498746

  18. Activation of phenylalanine hydroxylase by phenylalanine does not require binding in the active site.

    PubMed

    Roberts, Kenneth M; Khan, Crystal A; Hinck, Cynthia S; Fitzpatrick, Paul F

    2014-12-16

    Phenylalanine hydroxylase (PheH), a liver enzyme that catalyzes the hydroxylation of excess phenylalanine in the diet to tyrosine, is activated by phenylalanine. The lack of activity at low levels of phenylalanine has been attributed to the N-terminus of the protein's regulatory domain acting as an inhibitory peptide by blocking substrate access to the active site. The location of the site at which phenylalanine binds to activate the enzyme is unknown, and both the active site in the catalytic domain and a separate site in the N-terminal regulatory domain have been proposed. Binding of catecholamines to the active-site iron was used to probe the accessibility of the active site. Removal of the regulatory domain increases the rate constants for association of several catecholamines with the wild-type enzyme by ∼2-fold. Binding of phenylalanine in the active site is effectively abolished by mutating the active-site residue Arg270 to lysine. The k(cat)/K(phe) value is down 10⁴ for the mutant enzyme, and the K(m) value for phenylalanine for the mutant enzyme is >0.5 M. Incubation of the R270K enzyme with phenylalanine also results in a 2-fold increase in the rate constants for catecholamine binding. The change in the tryptophan fluorescence emission spectrum seen in the wild-type enzyme upon activation by phenylalanine is also seen with the R270K mutant enzyme in the presence of phenylalanine. Both results establish that activation of PheH by phenylalanine does not require binding of the amino acid in the active site. This is consistent with a separate allosteric site, likely in the regulatory domain.

  19. Chemical Modification of Papain and Subtilisin: An Active Site Comparison

    ERIC Educational Resources Information Center

    St-Vincent, Mireille; Dickman, Michael

    2004-01-01

    An experiment using methyle methanethiosulfonate (MMTS) and phenylmethylsulfonyl flouride (PMSF) to specifically modify the cysteine and serine residues in the active sites of papain and subtilism respectively is demonstrated. The covalent modification of these enzymes and subsequent rescue of papain shows the beginning biochemist that proteins…

  20. Energy transfer at the active sites of heme proteins

    SciTech Connect

    Dlott, D.D.; Hill, J.R.

    1995-12-31

    Experiments using a picosecond pump-probe apparatus at the Picosecond Free-electron Laser Center at Stanford University, were performed to investigate the relaxation of carbon monoxide bound to the active sites of heme proteins. The significance of these experiments is two-fold: (1) they provide detailed information about molecular dynamics occurring at the active sites of proteins; and (2) they provide insight into the nature of vibrational relaxation processes in condensed matter. Molecular engineering is used to construct various molecular systems which are studied with the FEL. We have studied native proteins, mainly myoglobin obtained from different species, mutant proteins produced by genetic engineering using recombinant DNA techniques, and a variety of model systems which mimic the structures of the active sites of native proteins, which are produced using molecular synthesis. Use of these different systems permits us to investigate how specific molecular structural changes affect dynamical processes occurring at the active sites. This research provides insight into the problems of how different species needs are fulfilled by heme proteins which have greatly different functionality, which is induced by rather small structural changes.

  1. Is mate fidelity related to site fidelity? A comparative analysis in Ciconiiforms.

    PubMed

    Cézilly; Dubois; Pagel

    2000-06-01

    We tested for an association between divorce rate and site fidelity in 42 avian species belonging to the order Ciconiiforms, using comparative methods that account for the influences of phylogenetic relationships on the data. Our methods enabled us to detect evidence of correlated evolution and provided information on the temporal ordering of evolutionary changes in these two variables. We found a significant correlation between divorce rate and site fidelity, indicating that species with little or no site fidelity are more likely to divorce. Our data suggest that the coupled evolution of divorce and site fidelity can be summarized by three major events. The first event corresponds to a transition from species showing high divorce rate and low or no site fidelity to species that tended to reuse the same nests over consecutive breeding seasons. This was followed by a transition towards higher mate fidelity, with the preservation of pair bonds over consecutive breeding attempts. In a third stage, divorce rate and the rate of site fidelity varied, independently of each other. We discuss our results within the context of the ancestor species and the past environments in which the traits originated, and address the importance of the potential for individual recognition in shaping the observed patterns of covariation between mate fidelity and site fidelity in Ciconiiforms. Copyright 2000 The Association for the Study of Animal Behaviour. PMID:10877893

  2. Changes in active site histidine hydrogen bonding trigger cryptochrome activation.

    PubMed

    Ganguly, Abir; Manahan, Craig C; Top, Deniz; Yee, Estella F; Lin, Changfan; Young, Michael W; Thiel, Walter; Crane, Brian R

    2016-09-01

    Cryptochrome (CRY) is the principal light sensor of the insect circadian clock. Photoreduction of the Drosophila CRY (dCRY) flavin cofactor to the anionic semiquinone (ASQ) restructures a C-terminal tail helix (CTT) that otherwise inhibits interactions with targets that include the clock protein Timeless (TIM). All-atom molecular dynamics (MD) simulations indicate that flavin reduction destabilizes the CTT, which undergoes large-scale conformational changes (the CTT release) on short (25 ns) timescales. The CTT release correlates with the conformation and protonation state of conserved His378, which resides between the CTT and the flavin cofactor. Poisson-Boltzmann calculations indicate that flavin reduction substantially increases the His378 pKa Consistent with coupling between ASQ formation and His378 protonation, dCRY displays reduced photoreduction rates with increasing pH; however, His378Asn/Arg variants show no such pH dependence. Replica-exchange MD simulations also support CTT release mediated by changes in His378 hydrogen bonding and verify other responsive regions of the protein previously identified by proteolytic sensitivity assays. His378 dCRY variants show varying abilities to light-activate TIM and undergo self-degradation in cellular assays. Surprisingly, His378Arg/Lys variants do not degrade in light despite maintaining reactivity toward TIM, thereby implicating different conformational responses in these two functions. Thus, the dCRY photosensory mechanism involves flavin photoreduction coupled to protonation of His378, whose perturbed hydrogen-bonding pattern alters the CTT and surrounding regions. PMID:27551082

  3. Conformational Transitions in Human AP Endonuclease 1 and Its Active Site Mutant during Abasic Site Repair†

    PubMed Central

    Kanazhevskaya, Lyubov Yu.; Koval, Vladimir V.; Zharkov, Dmitry O.; Strauss, Phyllis R.; Fedorova, Olga S.

    2010-01-01

    AP endonuclease 1 (APE 1) is a crucial enzyme of the base excision repair pathway (BER) in human cells. APE1 recognizes apurinic/apyrimidinic (AP) sites and makes a nick in the phosphodiester backbone 5′ to them. The conformational dynamics and presteady-state kinetics of wild-type APE1 and its active site mutant, Y171F-P173L-N174K, have been studied. To observe conformational transitions occurring in the APE1 molecule during the catalytic cycle, we detected intrinsic tryptophan fluorescence of the enzyme under single turnover conditions. DNA duplexes containing a natural AP site, its tetrahydrofuran analogue, or a 2′-deoxyguanosine residue in the same position were used as specific substrates or ligands. The stopped-flow experiments have revealed high flexibility of the APE1 molecule and the complexity of the catalytic process. The fluorescent traces indicate that wild-type APE1 undergoes at least four conformational transitions during the processing of abasic sites in DNA. In contrast, nonspecific interactions of APE1 with undamaged DNA can be described by a two-step kinetic scheme. Rate and equilibrium constants were extracted from the stopped-flow and fluorescence titration data for all substrates, ligands, and products. A replacement of three residues at the enzymatic active site including the replacement of tyrosine 171 with phenylalanine in the enzyme active site resulted in a 2 × 104-fold decrease in the reaction rate and reduced binding affinity. Our data indicate the important role of conformational changes in APE1 for substrate recognition and catalysis. PMID:20575528

  4. Comparative in vitro activity of faropenem against staphylococci.

    PubMed

    von Eiff, Christof; Schepers, Sven; Peters, Georg

    2002-08-01

    The anti-staphylococcal activity of faropenem, a novel beta-lactam, was examined and compared with that of amoxicillin, cefuroxime, clindamycin and vancomycin using the agar dilution method. A total of 234 staphylococci, including a large number of clonally different methicillin-resistant strains and a representative number of Staphylococcus aureus small colony variants, were tested. While the activity of faropenem was independent of the staphylococcal phenotype, the novel penem was up to eight times more active against methicillin-susceptible strains compared with the other agents tested. In addition, faropenem was active against many methicillin-resistant strains of S. aureus and coagulase-negative staphylococci. PMID:12161412

  5. N-methyl-D-aspartate recognition site ligands modulate activity at the coupled glycine recognition site.

    PubMed

    Hood, W F; Compton, R P; Monahan, J B

    1990-03-01

    In synaptic plasma membranes from rat forebrain, the potencies of glycine recognition site agonists and antagonists for modulating [3H]1-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP) binding and for displacing strychnine-insensitive [3H]glycine binding are altered in the presence of N-methyl-D-aspartate (NMDA) recognition site ligands. The NMDA competitive antagonist, cis-4-phosphonomethyl-2-piperidine carboxylate (CGS 19755), reduces [3H]glycine binding, and the reduction can be fully reversed by the NMDA recognition site agonist, L-glutamate. Scatchard analysis of [3H]glycine binding shows that in the presence of CGS 19755 there is no change in Bmax (8.81 vs. 8.79 pmol/mg of protein), but rather a decrease in the affinity of glycine (KD of 0.202 microM vs. 0.129 microM). Similar decreases in affinity are observed for the glycine site agonists, D-serine and 1-aminocyclopropane-1-carboxylate, in the presence of CGS 19755. In contrast, the affinity of glycine antagonists, 1-hydroxy-3-amino-2-pyrrolidone and 1-aminocyclobutane-1-carboxylate, at this [3H]glycine recognition site increases in the presence of CGS 19755. The functional consequence of this change in affinity was addressed using the modulation of [3H]TCP binding. In the presence of L-glutamate, the potency of glycine agonists for the stimulation of [3H]TCP binding increases, whereas the potency of glycine antagonists decreases. These data are consistent with NMDA recognition site ligands, through their interactions at the NMDA recognition site, modulating activity at the associated glycine recognition site.

  6. 'Unconventional' coordination chemistry by metal chelating fragments in a metalloprotein active site.

    PubMed

    Martin, David P; Blachly, Patrick G; Marts, Amy R; Woodruff, Tessa M; de Oliveira, César A F; McCammon, J Andrew; Tierney, David L; Cohen, Seth M

    2014-04-01

    The binding of three closely related chelators: 5-hydroxy-2-methyl-4H-pyran-4-thione (allothiomaltol, ATM), 3-hydroxy-2-methyl-4H-pyran-4-thione (thiomaltol, TM), and 3-hydroxy-4H-pyran-4-thione (thiopyromeconic acid, TPMA) to the active site of human carbonic anhydrase II (hCAII) has been investigated. Two of these ligands display a monodentate mode of coordination to the active site Zn(2+) ion in hCAII that is not recapitulated in model complexes of the enzyme active site. This unprecedented binding mode in the hCAII-thiomaltol complex has been characterized by both X-ray crystallography and X-ray spectroscopy. In addition, the steric restrictions of the active site force the ligands into a 'flattened' mode of coordination compared with inorganic model complexes. This change in geometry has been shown by density functional computations to significantly decrease the strength of the metal-ligand binding. Collectively, these data demonstrate that the mode of binding by small metal-binding groups can be significantly influenced by the protein active site. Diminishing the strength of the metal-ligand bond results in unconventional modes of metal coordination not found in typical coordination compounds or even carefully engineered active site models, and understanding these effects is critical to the rational design of inhibitors that target clinically relevant metalloproteins.

  7. Control of active sites in selective flocculation: I -- Mathematical model

    SciTech Connect

    Behl, S.; Moudgil, B.M.; Prakash, T.S. . Dept. of Materials Science and Engineering)

    1993-12-01

    Heteroflocculation has been determined to be another major reason for loss in selectivity for flocculation process. In a mathematical model developed earlier, conditions for controlling heteroflocculation were discussed. Blocking active sites to control selective adsorption of a flocculant oil a desirable solid surface is discussed. It has been demonstrated that the lower molecular weight fraction of a flocculant which is incapable of flocculating the particles is an efficient site blocking agent. The major application of selective flocculation has been in mineral processing but many potential uses exist in biological and other colloidal systems. These include purification of ceramic powders, separating hazardous solids from chemical waste, and removal of deleterious components from paper pulp.

  8. Anisotropic Covalency Contributions to Superexchange Pathways in Type One Copper Active Sites

    PubMed Central

    2015-01-01

    Type one (T1) Cu sites deliver electrons to catalytic Cu active sites: the mononuclear type two (T2) Cu site in nitrite reductases (NiRs) and the trinuclear Cu cluster in the multicopper oxidases (MCOs). The T1 Cu and the remote catalytic sites are connected via a Cys-His intramolecular electron-transfer (ET) bridge, which contains two potential ET pathways: P1 through the protein backbone and P2 through the H-bond between the Cys and the His. The high covalency of the T1 Cu–S(Cys) bond is shown here to activate the T1 Cu site for hole superexchange via occupied valence orbitals of the bridge. This covalency-activated electronic coupling (HDA) facilitates long-range ET through both pathways. These pathways can be selectively activated depending on the geometric and electronic structure of the T1 Cu site and thus the anisotropic covalency of the T1 Cu–S(Cys) bond. In NiRs, blue (π-type) T1 sites utilize P1 and green (σ-type) T1 sites utilize P2, with P2 being more efficient. Comparing the MCOs to NiRs, the second-sphere environment changes the conformation of the Cys-His pathway, which selectively activates HDA for superexchange by blue π sites for efficient turnover in catalysis. These studies show that a given protein bridge, here Cys-His, provides different superexchange pathways and electronic couplings depending on the anisotropic covalencies of the donor and acceptor metal sites. PMID:25310460

  9. The site of activation of factor X by cancer procoagulant.

    PubMed

    Gordon, S G; Mourad, A M

    1991-12-01

    Cancer procoagulant (CP) is a cysteine proteinase found in a variety of malignant cells and tissues and in human amnion-chorion tissue. It initiates coagulation by activating factor X. However, the amino acid sequence of the substrate protein that determines the cleavage site of cysteine proteinases is different from that of the serine proteinases that normally activate factor X, such as factor IXa, VIIa and Russell's Viper Venom (RVV). Therefore, it was of interest to determine the site of cleavage of human factor X by CP. Purified CP was incubated with purified factor X and the reaction mixture was electrophoresed on a 10% Tris-tricine SDS-PAGE gel. The proteins were electroeluted on to a polyvinylidene difluoride (PVDF) membrane, and stained with Coomassie blue. The heavy chain of activated factor X was cut out of the PVDF membrane and sequenced with an Applied Biosystems 477A with on-line HPLC. The primary cleavage sequence was Asp-Ala-Ala-Asp-Leu-Asp-Pro-; two other secondary sequences Ser-Ile-Thr-Trp-Lys-Pro- and Glu-Asn-Pro-Phe-Asp-Leu were found. The penultimate amino acid on the carbonyl side of the hydrolysed amide bond plays a critical role for the recognition of the cleavage site of cysteine proteinases. These data indicate that the penultimate amino acid for the primary cleavage site of factor X by CP is proline-20 and for the secondary sites, proline-13 and proline-28. This is in contrast to arginine-52 that determines the specificity of the cleavage by normal serine proteinase activation.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Comparative microhabitat characteristics at oviposition sites of the California red-legged frog (Rana draytonii)

    USGS Publications Warehouse

    Alvarez, Jeff A.; Cook, David G.; Yee, Julie L.; van Hattem, Michael G.; Fong, Darren R.; Fisher, Robert N.

    2013-01-01

    We studied the microhabitat characteristics of 747 egg masses of the federally-threatened Rana draytonii (California red-legged frog) at eight sites in California. our study showed that a broad range of aquatic habitats are utilized by ovipositing R. draytonii, including sites with perennial and ephemeral water sources, natural and constructed wetlands, lentic and lotic hydrology, and sites surrounded by protected lands and nested within modified urban areas. We recorded 45 different egg mass attachment types, although the use of only a few types was common at each site. These attachment types ranged from branches and roots of riparian trees, emergent and submergent wetland vegetation, flooded upland grassland/ruderal vegetation, and debris. eggs were deposited in relatively shallow water (mean 39.7 cm) when compared to maximum site depths. We found that most frogs in artificial pond, natural creek, and artificial channel habitats deposited egg masses within one meter of the shore, while egg masses in a seasonal marsh averaged 27.3 m from the shore due to extensive emergent vegetation. Rana draytonii appeared to delay breeding in lotic habitats and in more inland sites compared to lentic habitats and coastal sites. eggs occurred as early as mid-december at a coastal artificial pond and as late as mid-April in an inland natural creek. We speculate that this delay in breeding may represent a method of avoiding high-flow events and/or freezing temperatures. Understanding the factors related to the reproductive needs of this species can contribute to creating, managing, or preserving appropriate habitat, and promoting species recovery.

  11. Physical activity changes during pregnancy in a comparative impact trail

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Delta Healthy Sprouts was designed to test the comparative impact of two home visiting programs on weight status, dietary intake, physical activity, and other health behaviors of rural, Southern African American women and their infants. Results pertaining to physical activity outcomes in the gestat...

  12. Comparative assessment of five potential sites for magma: hydrothermal systems - geophysics

    SciTech Connect

    Kasameyer, P.

    1980-09-02

    As part of a comparative assessment for the Continental Scientific Drilling Program, geophysical data were used, to characterize and evaluate potential magma-hydrothermal targets at five drill sites in the western United States. The sites include Roosevelt Hot Springs, Utah, the Rio Grande Rift, New Mexico, and The Geysers-Clear Lake, Long Valley, and Salton Trough areas, California. This summary discusses the size, depth, temperature, and setting of each potential target, as well as relvant scientific questions about their natures and the certainty of their existence.

  13. Active-Site-Accessible, Porphyrinic Metal;#8722;Organic Framework Materials

    SciTech Connect

    Farha, Omar K.; Shultz, Abraham M.; Sarjeant, Amy A.; Nguyen, SonBinh T.; Hupp, Joseph T.

    2012-02-06

    On account of their structural similarity to cofactors found in many metallo-enzymes, metalloporphyrins are obvious potential building blocks for catalytically active, metal-organic framework (MOF) materials. While numerous porphyrin-based MOFs have already been described, versions featuring highly accessible active sites and permanent microporosity are remarkably scarce. Indeed, of the more than 70 previously reported porphyrinic MOFs, only one has been shown to be both permanently microporous and contain internally accessible active sites for chemical catalysis. Attempts to generalize the design approach used in this single successful case have failed. Reported here, however, is the synthesis of an extended family of MOFs that directly incorporate a variety of metalloporphyrins (specifically Al{sup 3+}, Zn{sup 2+}, Pd{sup 2+}, Mn{sup 3+}, and Fe{sup 3+} complexes). These robust porphyrinic materials (RPMs) feature large channels and readily accessible active sites. As an illustrative example, one of the manganese-containing RPMs is shown to be catalytically competent for the oxidation of alkenes and alkanes.

  14. Comparing the Chemistry for the Pathfinder, MER and MSL Martian Landing Sites with APXS

    NASA Astrophysics Data System (ADS)

    Gellert, R.; Arvidson, R. E.; Clark, B. C.; Grotzinger, J. P.; Squyres, S. W.; Yen, A. S.

    2013-12-01

    The Alpha-Particle-X-ray Spectrometer is part of the science payload of all recent NASA Mars rover missions. It allows detailed comparison of the chemical composition and overall findings from rocks and soils at 4 landing sites. It can be even extended to the soil measurements performed with XRF on the two Viking landers. Typical soils at all 6 landing sites are very similar in chemical composition as well as mineralogy from instruments like Moessbauer on MER and CHEMIN on MSL. Beside a dominant basaltic composition the soil contains a significant altered and volatile rich component that is characterized by a constant S/Cl ratio in the APXS data. The overall similarity of the soils as well as the finding that soils around the 30 wt % SO3 rich bedrocks at Meridiani are not elevated in S, indicates the presence of a global distributed or at least large scale homogenized component in the Martian soil. This allows extending the SAM and CHEMIN findings in the altered and volatile components in the Gale Rocknest soils to other landing sites. However, in Gusev Crater anomalous subsurface soils were found - silica and hydrated ferric sulfate rich - that could indicate local fumarole and leaching activities. The sulfate rich Meridiani bedrock, called Burns formations, was documented to be remarkably homogeneous over the ~ 15 miles from the landing site at Eagle Crater to the base of the rim at Endurance Crater. Here for the first time a rover entered an area where evidence for clays is given by orbital CRISM data. With Opportunity's mineralogy instruments out of commission, the APXS was used to document the chemistry of the encountered outcrops. Having a composition close to the average Mars, one main characteristic feature of rocks at the rim is the low sulfur content compared to the younger Meridiani bedrock. The outcrops show post depositional cracks and veins filled with Calciumsulfate and Chlorine rich surface alteration rinds. A smaller outcrop called Esperance has

  15. Functional constituents of the active site of human neutrophil collagenase.

    PubMed

    Mookhtiar, K A; Wang, F; Van Wart, H E

    1986-05-01

    A series of chemical modification reactions has been carried out to identify functional constituents of the active site of human neutrophil collagenase. The enzyme is reversibly inhibited by the transition metal chelating agent 1,10-phenanthroline, and inhibition is fully reversed by zinc. Removal of weakly bound metal ions by gel filtration inactivates collagenase, and activity is fully restored on immediate readdition of calcium. The enzyme is unaffected by reagents that modify serine, cysteine, and arginine residues. However, reaction with the carboxyl reagents cyclohexylmorpholinocarbodiimide and Woodward's Reagent K lowers the activity of the enzyme substantially. Acetylimidazole inactivates the enzyme, but activity is completely restored on addition of hydroxylamine. The enzyme is also inactivated by tetranitromethane, indicating that it contains an essential tyrosine residue. Acylation of collagenase with diethyl pyrocarbonate, diketene, acetic anhydride, or trinitrobenzenesulfonate inactivates the enzyme, and activity is not restored on addition of hydroxylamine, indicating the presence of an essential lysine residue.

  16. Nest predation increases with parental activity: Separating nest site and parental activity effects

    USGS Publications Warehouse

    Martin, T.E.; Scott, J.; Menge, C.

    2000-01-01

    Alexander Skutch hypothesized that increased parental activity can increase the risk of nest predation. We tested this hypothesis using ten open-nesting bird species in Arizona, USA. Parental activity was greater during the nestling than incubation stage because parents visited the nest frequently to feed their young during the nestling stage. However, nest predation did not generally increase with parental activity between nesting stages across the ten study species. Previous investigators have found similar results. We tested whether nest site effects might yield higher predation during incubation because the most obvious sites are depredated most rapidly. We conducted experiments using nest sites from the previous year to remove parental activity. Our results showed that nest sites have highly repeatable effects on nest predation risk; poor nest sites incurred rapid predation and caused predation rates to be greater during the incubation than nestling stage. This pattern also was exhibited in a bird species with similar (i.e. controlled) parental activity between nesting stages. Once nest site effects are taken into account, nest predation shows a strong proximate increase with parental activity during the nestling stage within and across species. Parental activity and nest sites exert antagonistic influences on current estimates of nest predation between nesting stages and both must be considered in order to understand current patterns of nest predation, which is an important source of natural selection.

  17. Brownian aggregation rate of colloid particles with several active sites

    SciTech Connect

    Nekrasov, Vyacheslav M.; Yurkin, Maxim A.; Chernyshev, Andrei V.; Polshchitsin, Alexey A.; Yakovleva, Galina E.; Maltsev, Valeri P.

    2014-08-14

    We theoretically analyze the aggregation kinetics of colloid particles with several active sites. Such particles (so-called “patchy particles”) are well known as chemically anisotropic reactants, but the corresponding rate constant of their aggregation has not yet been established in a convenient analytical form. Using kinematic approximation for the diffusion problem, we derived an analytical formula for the diffusion-controlled reaction rate constant between two colloid particles (or clusters) with several small active sites under the following assumptions: the relative translational motion is Brownian diffusion, and the isotropic stochastic reorientation of each particle is Markovian and arbitrarily correlated. This formula was shown to produce accurate results in comparison with more sophisticated approaches. Also, to account for the case of a low number of active sites per particle we used Monte Carlo stochastic algorithm based on Gillespie method. Simulations showed that such discrete model is required when this number is less than 10. Finally, we applied the developed approach to the simulation of immunoagglutination, assuming that the formed clusters have fractal structure.

  18. Active Sites Environmental Monitoring Program: FY 1991 report

    SciTech Connect

    Ashwood, T.L.; Hicks, D.S.; Morrissey, C.M.

    1992-11-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from April 1991 through September 1991. The ASEMP was established in 1989 by Solid Waste Operations (SWO) and the Environmental Sciences Division, both of Oak Ridge National Laboratory, to provide early detection and performance monitoring at active low-level (radioactive) waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. A new set of action levels was developed on the basis of a statistical analysis of background contamination. These new action levels have been used to evaluate results in this report. Results of ASEMP monitoring continue to demonstrate that no LLW (except [sup 3]H) is being leached from the storage vaults on the tumulus pads. Loading of vaults on Tumulus II, which began in early FY 1991, was >90% complete at the end of September 1991. Results of sampling of groundwater and surface waters is presented.

  19. Inhibition and active-site modelling of prolidase.

    PubMed

    King, G F; Crossley, M J; Kuchel, P W

    1989-03-15

    Consideration of the active-site model of prolidase led us to examine azetidine, pyrrolidine and piperidine substrate analogs as potential in vivo inhibitors of the enzyme. One of these, N-benzyloxycarbonyl-L-proline, was shown to be a potent competitive inhibitor of porcine kidney prolidase (Ki = 90 microM); its rapid protein-mediated permeation of human and sheep erythrocytes suggests that it may be effective in vivo. The higher homolog, N-benzyloxycarbonyl-L-pipecolic acid, was also a potent inhibitor of the enzyme while the antihypertensive drugs, captopril and enalaprilat, were shown to have mild and no inhibitory effects, respectively. Analysis of inhibitor action and consideration of X-ray crystallographic data of relevant Mn2+ complexes allowed the active-site model of prolidase to be further refined; a new model is presented in which the substrate acts as a bidentate ligand towards the active-site manganous ion. Various aspects of the new model help to explain why Mn2+ has been 'chosen' by the enzyme in preference to other biologically available metal ions. PMID:2924773

  20. Outside-binding site mutations modify the active site's shapes in neuraminidase from influenza A H1N1.

    PubMed

    Tolentino-Lopez, Luis; Segura-Cabrera, Aldo; Reyes-Loyola, Paola; Zimic, Mirko; Quiliano, Miguel; Briz, Veronica; Muñoz-Fernández, Angeles; Rodríguez-Pérez, Mario; Ilizaliturri-Flores, Ian; Correa-Basurto, Jose

    2013-01-01

    The recent occurrence of 2009 influenza A (H1N1) pandemic as well as others has raised concern of a far more dangerous outcome should this virus becomes resistant to current drug therapies. The number of clinical cases that are resistant to oseltamivir (Tamiflu®) is larger than the limited number of neuraminidase (NA) mutations (H275Y, N295S, and I223R) that have been identified at the active site and that are associated to oseltamivir resistance. In this study, we have performed a comparative analysis between a set of NAs that have the most representative mutations located outside the active site. The recently crystallized NA-oseltamivir complex (PDB ID: 3NSS) was used as a wild-type structure. After selecting the target NA sequences, their three-dimensional (3D) structure was built using 3NSS as a template by homology modeling. The 3D NA models were refined by molecular dynamics (MD) simulations. The refined models were used to perform a docking study, using oseltamivir as a ligand. Furthermore, the docking results were refined by free-energy analysis using the MM-PBSA method. The analysis of the MD simulation results showed that the NA models reached convergence during the first 10 ns. Visual inspection and structural measures showed that the mutated NA active sites show structural variations. The docking and MM-PBSA results from the complexes showed different binding modes and free energy values. These results suggest that distant mutations located outside the active site of NA affect its structure and could be considered to be a new source of resistance to oseltamivir, which agrees with reports in the clinical literature.

  1. Substrate Shuttling Between Active Sites of Uroporphyrinogen Decarboxylase in Not Required to Generate Coproporphyrinogen

    SciTech Connect

    Phillips, J.; Warby, C; Whitby, F; Kushner, J; Hill, C

    2009-01-01

    Uroporphyrinogen decarboxylase (URO-D; EC 4.1.1.37), the fifth enzyme of the heme biosynthetic pathway, is required for the production of heme, vitamin B12, siroheme, and chlorophyll precursors. URO-D catalyzes the sequential decarboxylation of four acetate side chains in the pyrrole groups of uroporphyrinogen to produce coproporphyrinogen. URO-D is a stable homodimer, with the active-site clefts of the two subunits adjacent to each other. It has been hypothesized that the two catalytic centers interact functionally, perhaps by shuttling of reaction intermediates between subunits. We tested this hypothesis by construction of a single-chain protein (single-chain URO-D) in which the two subunits were connected by a flexible linker. The crystal structure of this protein was shown to be superimposable with wild-type activity and to have comparable catalytic activity. Mutations that impaired one or the other of the two active sites of single-chain URO-D resulted in approximately half of wild-type activity. The distributions of reaction intermediates were the same for mutant and wild-type sequences and were unaltered in a competition experiment using I and III isomer substrates. These observations indicate that communication between active sites is not required for enzyme function and suggest that the dimeric structure of URO-D is required to achieve conformational stability and to create a large active-site cleft.

  2. 75 FR 58411 - Medicare Program; Town Hall Meeting on the Physician Compare Web Site, October 27, 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... Physician Compare Web Site, October 27, 2010 AGENCY: Centers for Medicare & Medicaid Services (CMS), HHS... 2010, ``Public Reporting of Performance Information'' requires CMS to establish a Physician Compare Web site by January 1, 2011. This notice announces a Town Hall meeting to discuss the Physician Compare...

  3. Current activities handbook: formerly utilized sites remedial action program

    SciTech Connect

    1981-02-27

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the activities each of the thirteen state legislatures potentially affected by the Formerly Utilized Sites Remedial Action Program. It contains a description of the state legislative procedural rules and a schedule of each legislative session; a summary of pending relevant legislation; the name and telephone number of legislative and state agency contacts; and the full text of all bills identified.

  4. Human macrophage polarization in vitro: maturation and activation methods compared.

    PubMed

    Vogel, Daphne Y S; Glim, Judith E; Stavenuiter, Andrea W D; Breur, Marjolein; Heijnen, Priscilla; Amor, Sandra; Dijkstra, Christine D; Beelen, Robert H J

    2014-09-01

    Macrophages form a heterogeneous cell population displaying multiple functions, and can be polarized into pro- (M1) or anti-inflammatory (M2) macrophages, by environmental factors. Their activation status reflects a beneficial or detrimental role in various diseases. Currently several in vitro maturation and activation protocols are used to induce an M1 or M2 phenotype. Here, the impact of different maturation factors (NHS, M-CSF, or GM-CSF) and activation methods (IFN-γ/LPS, IL-4, dexamethason, IL-10) on the macrophage phenotype was determined. Regarding macrophage morphology, pro-inflammatory (M1) activation stimulated cell elongation, and anti-inflammatory (M2) activation induced a circular appearance. Activation with pro-inflammatory mediators led to increased CD40 and CD64 expression, whereas activation with anti-inflammatory factors resulted in increased levels of MR and CD163. Production of pro-inflammatory cytokines was induced by activation with IFN-γ/LPS, and TGF-β production was enhanced by the maturation factors M-CSF and GM-CSF. Our data demonstrate that macrophage marker expression and cytokine production in vitro is highly dependent on both maturation and activation methods. In vivo macrophage activation is far more complex, since a plethora of stimuli are present. Hence, defining the macrophage activation status ex vivo on a limited number of markers could be indecisive. From this study we conclude that maturation with M-CSF or GM-CSF induces a moderate anti- or pro-inflammatory state respectively, compared to maturation with NHS. CD40 and CD64 are the most distinctive makers for human M1 and CD163 and MR for M2 macrophage activation and therefore can be helpful in determining the activation status of human macrophages ex vivo.

  5. Traditional versus single-site placement of adjustable gastric banding: a comparative study and cost analysis.

    PubMed

    Ayloo, Subhashini M; Buchs, Nicolas C; Addeo, Pietro; Bianco, Francesco M; Giulianotti, Pier C

    2011-07-01

    In bariatric surgery, laparoscopic adjustable gastric banding (LAGB) has proven effective in reducing weight and improving obesity-associated comorbidities. Recently, however, laparoendoscopic single-site (LESS) surgery has been proposed to minimize the invasiveness of laparoscopic surgery. The aim of this study is to compare the operative cost and peri-operative outcomes of these two approaches. We undertook a retrospective review of a prospectively maintained database of patients undergoing either LAGB or LESS between March 2006 and October 2009. The outcomes and cost of 25 LESS gastric bandings were compared to 121 standard LAGB. Costs included operative time, consumables, and laparoscopic tower depreciation. Both groups had similar patient demographics, body mass index, and comorbidities; with the exception of age (37 year for single site vs. 44 years for standard; P=0.002). There were no statistical differences for operative time (78 vs. 76 min, P=0.69), blood loss (8.4 vs. 9 ml, P=0.76), pain score (0.81 vs. 0.84 at 1 week, P=0.95) or complication rates (12% vs. 14%, P=1). Length of stay was shorter for the LESS group (0.5 day vs. 1.5 days, P=0.02). The mean operative cost for the LESS banding was $20,502/case vs. $20,346/case for the standard LAGB, with no statistically significant difference between the approaches (P=0.73). Operative costs and peri-operative outcomes of LESS gastric banding are comparable with those of the standard LAGB procedure. As a result, single-site surgery can be proposed as a valid alternative to the standard procedure with cosmetic advantage and comparable complication rate. PMID:20809350

  6. Comparing Theoretical Perspectives in Describing Mathematics Departments: Complexity and Activity

    ERIC Educational Resources Information Center

    Beswick, Kim; Watson, Anne; De Geest, Els

    2010-01-01

    We draw on two studies of mathematics departments in 11-18 comprehensive maintained schools in England to compare and contrast the insights provided by differing theoretical perspectives. In one study, activity theory was used to describe common features of the work of three departments. In the other, a mathematics department was viewed and…

  7. Comparing Participation in Activities among Children with Disabilities

    ERIC Educational Resources Information Center

    Masse, Louise C.; Miller, Anton R.; Shen, Jane; Schiariti, Veronica; Roxborough, Lori

    2012-01-01

    Introduction: Compared to typically developing peers, children with disabilities due to neurodevelopmental disorders and disabilities (NDD/D) and to chronic medical conditions (CMC) have reduced participation in activities. The extent to which these two groups of children have different levels of participation is unknown and was examined in this…

  8. Comparative analysis of effluent water quality from a municipal treatment plant and two on-site wastewater treatment systems.

    PubMed

    Garcia, Santos N; Clubbs, Rebekah L; Stanley, Jacob K; Scheffe, Brian; Yelderman, Joe C; Brooks, Bryan W

    2013-06-01

    Though decentralized on-site technologies are extensively employed for wastewater treatment around the globe, an understanding of effluent water quality impairments associated with these systems remain less understood than effluent discharges from centralized municipal wastewater treatment facilities. Using a unique experimental facility, a novel comparative analysis of effluent water quality was performed from model decentralized aerobic (ATS) and septic (STS) on-site wastewater treatment systems and a centralized municipal wastewater treatment plant (MTP). The ATS and STS units did not benefit from further soil treatment. Each system received common influent wastewater from the Waco, Texas, USA Metropolitan Area Regional Sewerage System. We tested the hypothesis that MTP effluent would exhibit higher water quality than on-site effluents, based on parameters selected for study. A tiered testing approach was employed to assess the three effluent discharges: select routine water quality parameters (Tier I), whole effluent toxicity (Tier II), and select endocrine-active compounds (Tier III). Contrary to our hypothesis, ATS effluent was not statistically different from MTP effluents, based on Tier I and III parameters, but reproductive responses of Daphnia magna were slightly more sensitive to ATS than MTP effluents. STS effluent water quality was identified as most degraded of the three wastewater treatment systems. Parameters used to assess centralized wastewater treatment plant effluent water quality such as whole effluent toxicity and endocrine active substances appear useful for water quality assessments of decentralized discharges. Aerobic on-site wastewater treatment systems may represent more robust options than traditional septic systems for on-site wastewater treatment in watersheds with appreciable groundwater - surface water exchange.

  9. Comparative analysis of effluent water quality from a municipal treatment plant and two on-site wastewater treatment systems.

    PubMed

    Garcia, Santos N; Clubbs, Rebekah L; Stanley, Jacob K; Scheffe, Brian; Yelderman, Joe C; Brooks, Bryan W

    2013-06-01

    Though decentralized on-site technologies are extensively employed for wastewater treatment around the globe, an understanding of effluent water quality impairments associated with these systems remain less understood than effluent discharges from centralized municipal wastewater treatment facilities. Using a unique experimental facility, a novel comparative analysis of effluent water quality was performed from model decentralized aerobic (ATS) and septic (STS) on-site wastewater treatment systems and a centralized municipal wastewater treatment plant (MTP). The ATS and STS units did not benefit from further soil treatment. Each system received common influent wastewater from the Waco, Texas, USA Metropolitan Area Regional Sewerage System. We tested the hypothesis that MTP effluent would exhibit higher water quality than on-site effluents, based on parameters selected for study. A tiered testing approach was employed to assess the three effluent discharges: select routine water quality parameters (Tier I), whole effluent toxicity (Tier II), and select endocrine-active compounds (Tier III). Contrary to our hypothesis, ATS effluent was not statistically different from MTP effluents, based on Tier I and III parameters, but reproductive responses of Daphnia magna were slightly more sensitive to ATS than MTP effluents. STS effluent water quality was identified as most degraded of the three wastewater treatment systems. Parameters used to assess centralized wastewater treatment plant effluent water quality such as whole effluent toxicity and endocrine active substances appear useful for water quality assessments of decentralized discharges. Aerobic on-site wastewater treatment systems may represent more robust options than traditional septic systems for on-site wastewater treatment in watersheds with appreciable groundwater - surface water exchange. PMID:23557723

  10. Electrostatic fields in the active sites of lysozymes.

    PubMed

    Sun, D P; Liao, D I; Remington, S J

    1989-07-01

    Considerable experimental evidence is in support of several aspects of the mechanism that has been proposed for the catalytic activity of lysozyme. However, the enzymatically catalyzed hydrolysis of polysaccharides proceeds over 5 orders of magnitude faster than that of model compounds that mimic the configuration of the substrate in the active site of the enzyme. Although several possible explanations for this rate enhancement have been discussed elsewhere, a definitive mechanism has not emerged. Here we report striking results obtained by classical electrodynamics, which suggest that bond breakage and the consequent separation of charge in lysozyme is promoted by a large electrostatic field across the active site cleft, produced in part by a very asymmetric distribution of charged residues on the enzyme surface. Lysozymes unrelated in amino acid sequence have similar distributions of charged residues and electric fields. The results reported here suggest that the electrostatic component of the rate enhancement is greater than 9 kcal.mol-1. Thus, electrostatic interactions may play a more important role in the enzymatic mechanism than has generally been appreciated.

  11. Histidine at the active site of Neurospora tyrosinase.

    PubMed

    Pfiffner, E; Lerch, K

    1981-10-13

    The involvement of histidyl residues as potential ligands to the binuclear active-site copper of Neurospora tyrosinase was explored by dye-sensitized photooxidation. The enzymatic activity of the holoenzyme was shown to be unaffected by exposure to light in the presence of methylene blue; however, irradiation of the apoenzyme under the same conditions led to a progressive loss of its ability to be reactivated with Cu2+. This photoinactivation was paralleled by a decrease in the histidine content whereas the number of histidyl residues in the holoenzyme remained constant. Copper measurements of photooxidized, reconstituted apoenzyme demonstrated the loss of binding of one copper atom per mole of enzyme as a consequence of photosensitized oxidation of three out of nine histidine residues. Their sequence positions were determined by a comparison of the relative yields of the histidine containing peptides of photooxidized holo- and apotyrosinases. The data obtained show the preferential modification of histidyl residues 188, 193, and 289 and suggest that they constitute metal ligands to one of the two active-site copper atoms. Substitution of copper by cobalt was found to afford complete protection of the histidyl residues from being modified by dye-sensitized photooxidation. PMID:6458322

  12. Comparative conventional- and quantum dot-labeling strategies for LPS binding site detection in Arabidopsis thaliana mesophyll protoplasts

    PubMed Central

    Mgcina, Londiwe S.; Dubery, Ian A.; Piater, Lizelle A.

    2015-01-01

    Lipopolysaccharide (LPS) from Gram-negative bacteria is recognized as a microbe-associated molecular pattern (MAMP) and not only induces an innate immune response in plants, but also stimulates the development of characteristic defense responses. However, identification and characterization of a cell surface LPS-receptor/binding site, as described in mammals, remains elusive in plants. As an amphiphilic, macromolecular lipoglycan, intact LPS potentially contains three MAMP-active regions, represented by the O-polysaccharide chain, the core and the lipid A. Binding site studies with intact labeled LPS were conducted in Arabidopsis thaliana protoplasts and quantified using flow cytometry fluorescence changes. Quantum dots (Qdots), which allow non-covalent, hydrophobic labeling were used as a novel strategy in this study and compared to covalent, hydrophilic labeling with Alexa 488. Affinity for LPS-binding sites was clearly demonstrated by concentration-, temperature-, and time-dependent increases in protoplast fluorescence following treatment with the labeled LPS. Moreover, this induced fluorescence increase was convincingly reduced following pre-treatment with excess unlabeled LPS, thereby indicating reversibility of LPS binding. Inhibition of the binding process is also reported using endo- and exocytosis inhibitors. Here, we present evidence for the anticipated presence of LPS-specific binding sites in Arabidopsis protoplasts, and furthermore propose Qdots as a more sensitive LPS-labeling strategy in comparison to the conventional Alexa 488 hydrazide label for binding studies. PMID:26029233

  13. Threatened and endangered wildlife species of the Hanford Site related to CERCLA characterization activities

    SciTech Connect

    Fitzner, R.E.; Weiss, S.G.; Stegen, J.A.

    1994-06-01

    The US Department of Energy`s (DOE) Hanford Site has been placed on the National Priorities List, which requires that it be remediated under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) or Superfund. Potentially contaminated areas of the Hanford Site were grouped into operable units, and detailed characterization and investigation plans were formulated. The DOE Richland Operations Office requested Westinghouse Hanford Company (WHC) to conduct a biological assessment of the potential impact of these characterization activities on the threatened, endangered, and sensitive wildlife species of the Hanford Site. Additional direction for WHC compliances with wildlife protection can be found in the Environmental Compliance Manual. This document is intended to meet these requirements, in part, for the CERCLA characterization activities, as well as for other work comparable in scope. This report documents the biological assessment and describes the pertinent components of the Hanford Site as well as the planned characterization activities. Also provided are accounts of endangered, threatened, and federal candidate wildlife species on the Hanford Site and information as to how human disturbances can affect these species. Potential effects of the characterization activities are described with recommendations for mitigation measures.

  14. The copper active site of CBM33 polysaccharide oxygenases.

    PubMed

    Hemsworth, Glyn R; Taylor, Edward J; Kim, Robbert Q; Gregory, Rebecca C; Lewis, Sally J; Turkenburg, Johan P; Parkin, Alison; Davies, Gideon J; Walton, Paul H

    2013-04-24

    The capacity of metal-dependent fungal and bacterial polysaccharide oxygenases, termed GH61 and CBM33, respectively, to potentiate the enzymatic degradation of cellulose opens new possibilities for the conversion of recalcitrant biomass to biofuels. GH61s have already been shown to be unique metalloenzymes containing an active site with a mononuclear copper ion coordinated by two histidines, one of which is an unusual τ-N-methylated N-terminal histidine. We now report the structural and spectroscopic characterization of the corresponding copper CBM33 enzymes. CBM33 binds copper with high affinity at a mononuclear site, significantly stabilizing the enzyme. X-band EPR spectroscopy of Cu(II)-CBM33 shows a mononuclear type 2 copper site with the copper ion in a distorted axial coordination sphere, into which azide will coordinate as evidenced by the concomitant formation of a new absorption band in the UV/vis spectrum at 390 nm. The enzyme's three-dimensional structure contains copper, which has been photoreduced to Cu(I) by the incident X-rays, confirmed by X-ray absorption/fluorescence studies of both aqueous solution and intact crystals of Cu-CBM33. The single copper(I) ion is ligated in a T-shaped configuration by three nitrogen atoms from two histidine side chains and the amino terminus, similar to the endogenous copper coordination geometry found in fungal GH61. PMID:23540833

  15. Activation of muscarinic acetylcholine receptors via their allosteric binding sites.

    PubMed Central

    Jakubík, J; Bacáková, L; Lisá, V; el-Fakahany, E E; Tucek, S

    1996-01-01

    Ligands that bind to the allosteric-binding sites on muscarinic acetylcholine receptors alter the conformation of the classical-binding sites of these receptors and either diminish or increase their affinity for muscarinic agonists and classical antagonists. It is not known whether the resulting conformational change also affects the interaction between the receptors and the G proteins. We have now found that the muscarinic receptor allosteric modulators alcuronium, gallamine, and strychnine (acting in the absence of an agonist) alter the synthesis of cAMP in Chinese hamster ovary (CHO) cells expressing the M2 or the M4 subtype of muscarinic receptors in the same direction as the agonist carbachol. In addition, most of their effects on the production of inositol phosphates in CHO cells expressing the M1 or the M3 muscarinic receptor subtypes are also similar to (although much weaker than) those of carbachol. The agonist-like effects of the allosteric modulators are not observed in CHO cells that have not been transfected with the gene for any of the subtypes of muscarinic receptors. The effects of alcuronium on the formation of cAMP and inositol phosphates are not prevented by the classical muscarinic antagonist quinuclidinyl benzilate. These observations demonstrate for the first time that the G protein-mediated functional responses of muscarinic receptors can be evoked not only from their classical, but also from their allosteric, binding sites. This represents a new mechanism of receptor activation. PMID:8710935

  16. Comparative simulation studies of native and single-site mutant human beta-defensin-1 peptides.

    PubMed

    Toubar, Rabab A; Zhmurov, Artem; Barsegov, Valeri; Marx, Kenneth A

    2013-01-01

    Human defensins play important roles in a broad range of biological functions, such as microbial defense and immunity. Yet, little is known about their molecular properties, i.e. secondary structure stability, structural variability, important side chain interactions, surface charge distribution, and resistance to thermal fluctuations, and how these properties are related to their functions. To assess these factors, we studied the native human β-defensin-1 monomer and dimer as well as several single-site mutants using molecular dynamics simulations. The results showed that disulfide bonds are important determinants in maintaining the defensins' structural integrity, as no structural transitions were observed at 300 K and only minor structural unfolding was detected upon heating to 500 K. The α-helix was less thermally stable than the core β-sheet structure held together by hydrogen bonds and hydrophobic interactions. The monomer α-helix stability was directly correlated, whereas the end-to-end distance was inversely correlated to the experimentally measured β-defensin-1 chemotactic activity, in the order: mutant 2 (Gln24Glu) > mutant 3 (Lys31Ala) = wild type > mutant 1 (Asn4Ala). The structural stability of the β-defensin-1 dimer species exhibited an inverse correlation to their chemotactic activity. In dimers formed by mutants 2 and 3, we observed sliding of one monomer upon the surface of the other in the absence of unbinding. This dynamic sliding feature may enhance the molecular oligomerization of β-defensin-1 peptides contributing to their antibacterial activity. It could also help these peptides orient correctly in the CC chemokine receptor 6 binding site, thereby initiating their chemotactic activity. In agreement with this notion, the remarkable sliding behavior was observed only for the mutants with the highest chemotactic activity.

  17. Immobilization of alkaline phosphatase on solid surface through self-assembled monolayer and by active-site protection.

    PubMed

    Gao, En-Feng; Kang, Kyung Lhi; Kim, Jeong Hee

    2014-06-01

    Retaining biological activity of a protein after immobilization is an important issue and many studies reported to enhance the activity of proteins after immobilization. We recently developed a new immobilization method of enzyme using active-site protection and minimization of the cross-links between enzyme and surface with a DNA polymerase as a model system. In this study, we extended the new method to an enzyme with a small mono-substrate using alkaline phosphatase (AP) as another model system. A condition to apply the new method is that masking agents, in this case its own substrate needs to stay at the active-site of the enzyme to be immobilized in order to protect the active-site during the harsh immobilization process. This could be achieved by removal of essential divalent ion, Zn2+ that is required for full enzyme activity of AP from the masking solution while active-site of AP was protected with p-nitrophenyl phosphate (pNPP). Approximately 40% of the solution-phase activity was acquired with active-site protected immobilized AP. In addition to protection active-site of AP, the number of immobilization links was kinetically controlled. When the mole fraction of the activated carboxyl group of the linker molecule in self-assembled monolayer (SAM) of 12-mercaptododecanoic acid and 6-mercapto-1-ethanol was varied, 10% of 12-mercaptododecanoic acid gave the maximum enzyme activity. Approximately 51% increase in enzyme activity of the active-site protected AP was observed compared to that of the unprotected group. It was shown that the concept of active-site protection and kinetic control of the number of covalent immobilization bonds can be extended to enzymes with small mono-substrates. It opens the possibility of further extension of the new methods of active-site protection and kinetic control of immobilization bond to important enzymes used in research and industrial fields. PMID:24738440

  18. Radiation inactivation study of aminopeptidase: probing the active site

    NASA Astrophysics Data System (ADS)

    Jamadar, V. K.; Jamdar, S. N.; Mohan, Hari; Dandekar, S. P.; Harikumar, P.

    2004-04-01

    Ionizing radiation inactivated purified chicken intestinal aminopeptidase in media saturated with gases in the order N 2O>N 2>air. The D 37 values in the above conditions were 281, 210 and 198 Gy, respectively. OH radical scavengers such as t-butanol and isopropanol effectively nullified the radiation-induced damage in N 2O. The radicals (SCN) 2•-, Br 2•- and I 2•- inactivated the enzyme, pointing to the involvement of aromatic amino acids and cysteine in its catalytic activity. The enzyme exhibited fluorescence emission at 340 nm which is characteristic of tryptophan. The radiation-induced loss of activity was accompanied by a decrease in the fluorescence of the enzyme suggesting a predominant influence on tryptophan residues. The enzyme inhibition was associated with a marked increase in the Km and a decrease in the Vmax and kcat values, suggesting an irreversible alteration in the catalytic site. The above observations were confirmed by pulse radiolysis studies.

  19. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer

    NASA Astrophysics Data System (ADS)

    Dinpajooh, Mohammadhasan; Martin, Daniel R.; Matyushov, Dmitry V.

    2016-06-01

    Enzymes in biology’s energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work.

  20. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer

    PubMed Central

    Dinpajooh, Mohammadhasan; Martin, Daniel R.; Matyushov, Dmitry V.

    2016-01-01

    Enzymes in biology’s energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work. PMID:27306204

  1. Spectroscopic Definition of the Ferroxidase Site in M Ferritin: Comparison of Binuclear Substrate vs. Cofactor Active Sites

    PubMed Central

    Schwartz, Jennifer K.; Liu, Xiaofeng S.; Tosha, Takehiko; Theil, Elizabeth C.; Solomon, Edward I.

    2008-01-01

    Maxi ferritins, 24 subunit protein nanocages, are essential in humans, plants, bacteria, and other animals for the concentration and storage of iron as hydrated ferric oxide, while minimizing free radical generation or use by pathogens. Formation of the precursors to these ferric oxides is catalyzed at a non-heme biferrous substrate site, which has some parallels with the cofactor sites in other biferrous enzymes. A combination of circular dichroism (CD), magnetic circular dichroism (MCD), and variable-temperature, variable-field MCD (VTVH MCD) has been used to probe Fe(II) binding to the substrate active site in frog M ferritin. These data determined that the active site within each subunit consists of two inequivalent five-coordinate (5C) ferrous centers that are weakly anti-ferromagnetically coupled, consistent with a μ-1,3 carboxylate bridge. The active site ligand set is unusual and likely includes a terminal water bound to each Fe(II) center. The Fe(II) ions bind to the active sites in a concerted manner, and cooperativity among the sites in each subunit is observed, potentially providing a mechanism for the control of ferritin iron loading. Differences in geometric and electronic structure – including a weak ligand field, availability of two water ligands at the biferrous substrate site, and the single carboxylate bridge in ferritin – coincide with the divergent reaction pathways observed between this substrate site and the previously studied cofactor active sites. PMID:18576633

  2. An active-site lysine in avian liver phosphoenolpyruvate carboxykinase

    SciTech Connect

    Guidinger, P.F.; Nowak, T. )

    1991-09-10

    The participation of lysine in the catalysis by avian liver phosphoenolpyruvate carboxykinase was studied by chemical modification and by a characterization of the modified enzyme. The rate of inactivation by 2,4-pentanedione is pseudo-first-order and linearly dependent on reagent concentration with a second-order rate constant of 0.36 {plus minus} 0.025 M{sup {minus}1} min{sup {minus}1}. Inactivation by pyridoxal 5{prime}-phosphate of the reversible reaction catalyzed by phosphoenolpyruvate carboxykinase follows bimolecular kinetics with a second-order rate constant of 7,700 {plus minus} 860 m{sup {minus}1} min{sup {minus}1}. Treatment of the enzyme or one lysine residue modified concomitant with 100% loss in activity. A stoichiometry of 1:1 is observed when either the reversible or the irreversible reactions catalyzed by the enzyme are monitored. A study of k{sub obs} vs pH suggests this active-site lysine has a pK{sub a} of 8.1 and a pH-independent rate constant of inactivation of 47,700 m{sup {minus}1} min{sup {minus}1}. Proton relaxation rate measurements suggest that pyridoxal 5{prime}-phosphate modification alters binding of the phosphate-containing substrates. {sup 31}P NMR relaxation rate measurements show altered binding of the substrates in the ternary enzyme {center dot}Mn{sup 2+}{center dot}substrate complex. Circular dichroism studies show little change in secondary structure of pyridoxal 5{prime}-phosphate modified phosphoenolpyruvate carboxykinase. These results indicate that avian liver phosphoenolpyruvate carboxykinase has one reactive lysine at the active site and it is involved in the binding and activation of the phosphate-containing substrates.

  3. Stormwater management criteria for on-site pollution control: a comparative assessment of international practices.

    PubMed

    Sage, Jérémie; Berthier, Emmanuel; Gromaire, Marie-Christine

    2015-07-01

    Over the last decade, a growing interest has been shown toward innovative stormwater management practices, breaking away from conventional "end of pipe" approaches (based on conveying water offsite to centralized detention facilities). Innovative strategies, referred to as sustainable urban drainage systems, low impact development (LID) or green infrastructures, advocating for management of runoff as close to its origin as possible, have therefore gained a lot of popularity among practitioners and public authorities. However, while the need for pollution control is generally well accepted, there is no wide agreement about management criteria to be given to developers. This article hence aims to compare these criteria through literature analysis of different state or local stormwater management manuals or guidelines, investigating both their suitability for pollution control and their influence on best management practices selection and design. Four categories of criteria were identified: flow-rate limitations, "water quality volumes" (to be treated), volume reduction (through infiltration or evapotranspiration), and non-hydrologic criteria (such as loads reduction targets or maximum effluent concentrations). This study suggests that hydrologic criteria based on volume reduction (rather than treatment) might generally be preferable for on-site control of diffuse stormwater pollution. Nonetheless, determination of an appropriate management approach for a specific site is generally not straightforward and presents a variety of challenges for site designers seeking to satisfy local requirements in addressing stormwater quantity and quality issues. The adoption of efficient LID solution may therefore strongly depend on the guidance given to practitioners to account for these management criteria.

  4. Comparative binding character of two general anaesthetics for sites on human serum albumin.

    PubMed Central

    Liu, Renyu; Meng, Qingcheng; Xi, Jin; Yang, Jinsheng; Ha, Chung-Eun; Bhagavan, Nadhipuram V; Eckenhoff, Roderic G

    2004-01-01

    Propofol and halothane are clinically used general anaesthetics, which are transported primarily by HSA (human serum albumin) in the blood. Binding characteristics are therefore of interest for both the pharmacokinetics and pharmacodynamics of these drugs. We characterized anaesthetic-HSA interactions in solution using elution chromatography, ITC (isothermal titration calorimetry), hydrogen-exchange experiments and geometric analyses of high-resolution structures. Binding affinity of propofol to HSA was determined to have a K(d) of 65 microM and a stoichiometry of approx. 2, whereas the binding of halothane to HSA showed a K(d) of 1.6 mM and a stoichiometry of approx. 7. Anaesthetic-HSA interactions are exothermic, with propofol having a larger negative enthalpy change relative to halothane. Hydrogen-exchange studies in isolated recombinant domains of HSA showed that propofol-binding sites are primarily found in domain III, whereas halothane sites are more widely distributed. Both location and stoichiometry from these solution studies agree with data derived from X-ray crystal-structure studies, and further analyses of the architecture of sites from these structures suggested that greater hydrophobic contacts, van der Waals interactions and hydrogen-bond formation account for the stronger binding of propofol as compared with the less potent anaesthetic, halothane. PMID:14759223

  5. Stormwater Management Criteria for On-Site Pollution Control: A Comparative Assessment of International Practices

    NASA Astrophysics Data System (ADS)

    Sage, Jérémie; Berthier, Emmanuel; Gromaire, Marie-Christine

    2015-07-01

    Over the last decade, a growing interest has been shown toward innovative stormwater management practices, breaking away from conventional "end of pipe" approaches (based on conveying water offsite to centralized detention facilities). Innovative strategies, referred to as sustainable urban drainage systems, low impact development (LID) or green infrastructures, advocating for management of runoff as close to its origin as possible, have therefore gained a lot of popularity among practitioners and public authorities. However, while the need for pollution control is generally well accepted, there is no wide agreement about management criteria to be given to developers. This article hence aims to compare these criteria through literature analysis of different state or local stormwater management manuals or guidelines, investigating both their suitability for pollution control and their influence on best management practices selection and design. Four categories of criteria were identified: flow-rate limitations, "water quality volumes" (to be treated), volume reduction (through infiltration or evapotranspiration), and non-hydrologic criteria (such as loads reduction targets or maximum effluent concentrations). This study suggests that hydrologic criteria based on volume reduction (rather than treatment) might generally be preferable for on-site control of diffuse stormwater pollution. Nonetheless, determination of an appropriate management approach for a specific site is generally not straightforward and presents a variety of challenges for site designers seeking to satisfy local requirements in addressing stormwater quantity and quality issues. The adoption of efficient LID solution may therefore strongly depend on the guidance given to practitioners to account for these management criteria.

  6. Comparative toxicology of laboratory organisms for assessing hazardous-waste sites

    SciTech Connect

    Miller, W.E.; Peterson, S.A.; Greene, J.C.; Callahan, C.A.

    1985-01-01

    Multi-media/multi-trophic level bioassays have been proposed to determine the extent and severity of environmental contamination at hazardous waste sites. Comparative toxicological profiles for algae, daphnia, earthworms, microbes, mixed sewage and plants; wheat Stephens, lettuce, butter crunch, radish, Cherry Belle, red clover, Kenland, and cucumber, Spartan Valor are presented for selected heavy metals, herbicides and insecticides. Specific chemical EC50 values are presented for each test organism. Differences in standard deviations were compared between each individual test organism, as well as for the chemical subgroup assayed. Algae and daphnia are the most sensitive test organisms to heavy metals and insecticides followed in order of decreasing sensitivity by Microtox, DO depletion rate, seed germination and earthworms. Differences in toxicity of 2,4-D chemical formulations and commercial sources of insecticides were observed with algae and daphnia tests.

  7. An Active Site Water Network in the Plasminogen Activator Pla from Yersinia pestis

    SciTech Connect

    Eren, Elif; Murphy, Megan; Goguen, Jon; van den Berg, Bert

    2010-08-13

    The plasminogen activator Pla from Yersinia pestis is an outer membrane protease (omptin) that is important for the virulence of plague. Here, we present the high-resolution crystal structure of wild-type, enzymatically active Pla at 1.9 {angstrom}. The structure shows a water molecule located between active site residues D84 and H208, which likely corresponds to the nucleophilic water. A number of other water molecules are present in the active site, linking residues important for enzymatic activity. The R211 sidechain in loop L4 is close to the nucleophilic water and possibly involved in the stabilization of the oxyanion intermediate. Subtle conformational changes of H208 result from the binding of lipopolysaccharide to the outside of the barrel, explaining the unusual dependence of omptins on lipopolysaccharide for activity. The Pla structure suggests a model for the interaction with plasminogen substrate and provides a more detailed understanding of the catalytic mechanism of omptin proteases.

  8. Metal active site elasticity linked to activation of homocysteine in methionine synthases

    SciTech Connect

    Koutmos, Markos; Pejchal, Robert; Bomer, Theresa M.; Matthews, Rowena G.; Smith, Janet L.; Ludwig, Martha L.

    2008-04-02

    Enzymes possessing catalytic zinc centers perform a variety of fundamental processes in nature, including methyl transfer to thiols. Cobalamin-independent (MetE) and cobalamin-dependent (MetH) methionine synthases are two such enzyme families. Although they perform the same net reaction, transfer of a methyl group from methyltetrahydrofolate to homocysteine (Hcy) to form methionine, they display markedly different catalytic strategies, modular organization, and active site zinc centers. Here we report crystal structures of zinc-replete MetE and MetH, both in the presence and absence of Hcy. Structural investigation of the catalytic zinc sites of these two methyltransferases reveals an unexpected inversion of zinc geometry upon binding of Hcy and displacement of an endogenous ligand in both enzymes. In both cases a significant movement of the zinc relative to the protein scaffold accompanies inversion. These structures provide new information on the activation of thiols by zinc-containing enzymes and have led us to propose a paradigm for the mechanism of action of the catalytic zinc sites in these and related methyltransferases. Specifically, zinc is mobile in the active sites of MetE and MetH, and its dynamic nature helps facilitate the active site conformational changes necessary for thiol activation and methyl transfer.

  9. Active site proton delivery and the lyase activity of human CYP17A1

    SciTech Connect

    Khatri, Yogan; Gregory, Michael C.; Grinkova, Yelena V.; Denisov, Ilia G.; Sligar, Stephen G.

    2014-01-03

    Highlights: •The disruption of PREG/PROG hydroxylation activity by T306A showed the participation of Cpd I. •T306A supports the involvement of a nucleophilic peroxo-anion during lyase activity. •The presence of cytochrome b{sub 5} augments C–C lyase activity. •Δ5-Steroids are preferred substrates for CYP17 catalysis. -- Abstract: Cytochrome P450 CYP17A1 catalyzes a series of reactions that lie at the intersection of corticoid and androgen biosynthesis and thus occupies an essential role in steroid hormone metabolism. This multifunctional enzyme catalyzes the 17α-hydroxylation of Δ4- and Δ5-steroids progesterone and pregnenolone to form the corresponding 17α-hydroxy products through its hydroxylase activity, and a subsequent 17,20-carbon–carbon scission of pregnene-side chain produce the androgens androstenedione (AD) and dehydroepiandrosterone (DHEA). While the former hydroxylation reaction is believed to proceed through a conventional “Compound I” rebound mechanism, it has been suggested that the latter carbon cleavage is initiated by an iron-peroxy intermediate. We report on the role of Thr306 in CYP17 catalysis. Thr306 is a member of the conserved acid/alcohol pair thought to be essential for the efficient delivery of protons required for hydroperoxoanion heterolysis and formation of Compound I in the cytochromes P450. Wild type and T306A CYP17A1 self-assembled in Nanodiscs were used to quantitate turnover and coupling efficiencies of CYP17’s physiological Δ4- and Δ5-substrates. We observed that T306A co-incorporated in Nanodiscs with its redox partner cytochrome P450 oxidoreductase, coupled NADPH only by 0.9% and 0.7% compared to the wild type (97% and 22%) during the conversion of pregnenolone and progesterone, respectively, to the corresponding 17-OH products. Despite increased oxidation of pyridine nucleotide, hydroxylase activity was drastically diminished in the T306A mutant, suggesting a high degree of uncoupling in which reducing

  10. Active Sites Environmental Monitoring Program: Program plan. Revision 1

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  11. Comparative blanching activities of proprietary diflucortolone valerate topical preparations.

    PubMed

    Coleman, G L; Kanfer, I; Haigh, J M

    1978-01-01

    The blanching activities and hence bioavailabilities of the cream, ointment and fatty ointment preparations of Nerisone and Temetex (diflucortolone valerate 0.1%) were evaluated using an occluded and unoccluded blanching assay. These products were compared to Synalar ointment and cream (fluocinolone acetonide 0.025%), established topical corticosteroid preparations. Statistical analysis showed no significant differences between similar formulations of diflucortolone valerate. Significant differences were noted between diflucortolone valerate and fluocinolone acetonide preparations. PMID:342295

  12. Testing the applicability of rapid on-site enzymatic activity detection for surface water monitoring

    NASA Astrophysics Data System (ADS)

    Stadler, Philipp; Vogl, Wolfgang; Juri, Koschelnik; Markus, Epp; Maximilian, Lackner; Markus, Oismüller; Monika, Kumpan; Peter, Strauss; Regina, Sommer; Gabriela, Ryzinska-Paier; Farnleitner Andreas, H.; Matthias, Zessner

    2015-04-01

    On-site detection of enzymatic activities has been suggested as a rapid surrogate for microbiological pollution monitoring of water resources (e.g. using glucuronidases, galactosidases, esterases). Due to the possible short measuring intervals enzymatic methods have high potential as near-real time water quality monitoring tools. This presentation describes results from a long termed field test. For twelve months, two ColiMinder devices (Vienna Water Monitoring, Austria) for on-site determination of enzymatic activity were tested for stream water monitoring at the experimental catchment HOAL (Hydrological Open Air Laboratory, Center for Water Resource Systems, Vienna University of Technology). The devices were overall able to follow and reflect the diverse hydrological and microbiological conditions of the monitored stream during the test period. Continuous data in high temporal resolution captured the course of enzymatic activity in stream water during diverse rainfall events. The method also proofed sensitive enough to determine diurnal fluctuations of enzymatic activity in stream water during dry periods. The method was able to capture a seasonal trend of enzymatic activity in stream water that matches the results gained from Colilert18 analysis for E. coli and coliform bacteria of monthly grab samples. Furthermore the comparison of ColiMinder data with measurements gained at the same test site with devices using the same method but having different construction design (BACTcontrol, microLAN) showed consistent measuring results. Comparative analysis showed significant differences between measured enzymatic activity (modified fishman units and pmol/min/100ml) and cultivation based analyses (most probable number, colony forming unit). Methods of enzymatic activity measures are capable to detect ideally the enzymatic activity caused by all active target bacteria members, including VBNC (viable but nonculturable) while cultivation based methods cannot detect VBNC

  13. Active Site and Laminarin Binding in Glycoside Hydrolase Family 55*

    PubMed Central

    Bianchetti, Christopher M.; Takasuka, Taichi E.; Deutsch, Sam; Udell, Hannah S.; Yik, Eric J.; Bergeman, Lai F.; Fox, Brian G.

    2015-01-01

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100–10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. PMID:25752603

  14. Active site loop conformation regulates promiscuous activity in a lactonase from Geobacillus kaustophilus HTA426.

    PubMed

    Zhang, Yu; An, Jiao; Yang, Guang-Yu; Bai, Aixi; Zheng, Baisong; Lou, Zhiyong; Wu, Geng; Ye, Wei; Chen, Hai-Feng; Feng, Yan; Manco, Giuseppe

    2015-01-01

    Enzyme promiscuity is a prerequisite for fast divergent evolution of biocatalysts. A phosphotriesterase-like lactonase (PLL) from Geobacillus kaustophilus HTA426 (GkaP) exhibits main lactonase and promiscuous phosphotriesterase activities. To understand its catalytic and evolutionary mechanisms, we investigated a "hot spot" in the active site by saturation mutagenesis as well as X-ray crystallographic analyses. We found that position 99 in the active site was involved in substrate discrimination. One mutant, Y99L, exhibited 11-fold improvement over wild-type in reactivity (kcat/Km) toward the phosphotriesterase substrate ethyl-paraoxon, but showed 15-fold decrease toward the lactonase substrate δ-decanolactone, resulting in a 157-fold inversion of the substrate specificity. Structural analysis of Y99L revealed that the mutation causes a ∼6.6 Å outward shift of adjacent loop 7, which may cause increased flexibility of the active site and facilitate accommodation and/or catalysis of organophosphate substrate. This study provides for the PLL family an example of how the evolutionary route from promiscuity to specificity can derive from very few mutations, which promotes alteration in the conformational adjustment of the active site loops, in turn draws the capacity of substrate binding and activity.

  15. Active Site Loop Conformation Regulates Promiscuous Activity in a Lactonase from Geobacillus kaustophilus HTA426

    PubMed Central

    Zhang, Yu; An, Jiao; Yang, Guang-Yu; Bai, Aixi; Zheng, Baisong; Lou, Zhiyong; Wu, Geng; Ye, Wei; Chen, Hai-Feng; Feng, Yan; Manco, Giuseppe

    2015-01-01

    Enzyme promiscuity is a prerequisite for fast divergent evolution of biocatalysts. A phosphotriesterase-like lactonase (PLL) from Geobacillus kaustophilus HTA426 (GkaP) exhibits main lactonase and promiscuous phosphotriesterase activities. To understand its catalytic and evolutionary mechanisms, we investigated a “hot spot” in the active site by saturation mutagenesis as well as X-ray crystallographic analyses. We found that position 99 in the active site was involved in substrate discrimination. One mutant, Y99L, exhibited 11-fold improvement over wild-type in reactivity (kcat/Km) toward the phosphotriesterase substrate ethyl-paraoxon, but showed 15-fold decrease toward the lactonase substrate δ-decanolactone, resulting in a 157-fold inversion of the substrate specificity. Structural analysis of Y99L revealed that the mutation causes a ∼6.6 Å outward shift of adjacent loop 7, which may cause increased flexibility of the active site and facilitate accommodation and/or catalysis of organophosphate substrate. This study provides for the PLL family an example of how the evolutionary route from promiscuity to specificity can derive from very few mutations, which promotes alteration in the conformational adjustment of the active site loops, in turn draws the capacity of substrate binding and activity. PMID:25706379

  16. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site.

    PubMed

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel

    2015-01-01

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called 'catalytic residues' are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes. PMID:25902402

  17. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site.

    PubMed

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel

    2015-01-01

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called 'catalytic residues' are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes.

  18. Jaccard index based similarity measure to compare transcription factor binding site models

    PubMed Central

    2013-01-01

    Background Positional weight matrix (PWM) remains the most popular for quantification of transcription factor (TF) binding. PWM supplied with a score threshold defines a set of putative transcription factor binding sites (TFBS), thus providing a TFBS model. TF binding DNA fragments obtained by different experimental methods usually give similar but not identical PWMs. This is also common for different TFs from the same structural family. Thus it is often necessary to measure the similarity between PWMs. The popular tools compare PWMs directly using matrix elements. Yet, for log-odds PWMs, negative elements do not contribute to the scores of highly scoring TFBS and thus may be different without affecting the sets of the best recognized binding sites. Moreover, the two TFBS sets recognized by a given pair of PWMs can be more or less different depending on the score thresholds. Results We propose a practical approach for comparing two TFBS models, each consisting of a PWM and the respective scoring threshold. The proposed measure is a variant of the Jaccard index between two TFBS sets. The measure defines a metric space for TFBS models of all finite lengths. The algorithm can compare TFBS models constructed using substantially different approaches, like PWMs with raw positional counts and log-odds. We present the efficient software implementation: MACRO-APE (MAtrix CompaRisOn by Approximate P-value Estimation). Conclusions MACRO-APE can be effectively used to compute the Jaccard index based similarity for two TFBS models. A two-pass scanning algorithm is presented to scan a given collection of PWMs for PWMs similar to a given query. Availability and implementation MACRO-APE is implemented in ruby 1.9; software including source code and a manual is freely available at http://autosome.ru/macroape/ and in supplementary materials. PMID:24074225

  19. Electron tunnelling through azurin is mediated by the active site Cu ion

    NASA Astrophysics Data System (ADS)

    Alessandrini, Andrea; Gerunda, Mimmo; Canters, G. W.; Verbeet, M. Ph.; Facci, Paolo

    2003-07-01

    Cu- and Zn-azurin chemisorbed on Au(1 1 1) have been comparatively investigated by electrochemical scanning tunnelling microscopy in buffer solution. Cu-azurin shows a marked tunnelling current resonance upon substrate potential at -0.21 V (vs SCE), whereas Zn counterparts do not. These data, discussed in terms of current theories on electron tunnelling through redox adsorbates, demonstrate the role of the electroactive metal ion present in the active site in assisting electron transfer via this metalloprotein.

  20. A facile reflux procedure to increase active surface sites form highly active and durable supported palladium@platinum bimetallic nanodendrites

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Li, Yingjun; Liu, Baocang; Xu, Guangran; Zhang, Geng; Zhao, Qi; Zhang, Jun

    2015-11-01

    A series of well-dispersed bimetallic Pd@Pt nanodendrites uniformly supported on XC-72 carbon black are fabricated by using different capping agents. These capping agents are essential for the branched morphology control. However, the surfactant adsorbed on the nanodendrites surface blocks the access of reactant molecules to the active surface sites, and the catalytic activities of these bimetallic nanodendrites are significantly restricted. Herein, a facile reflux procedure to effectively remove the capping agent molecules without significantly affecting their sizes is reported for activating supported nanocatalysts. More significantly, the structure and morphology of the nanodendrites can also be retained, enhancing the numbers of active surface sites, catalytic activity and stability toward methanol and ethanol electro-oxidation reactions. The as-obtained hot water reflux-treated Pd@Pt/C catalyst manifests superior catalytic activity and stability both in terms of surface and mass specific activities, as compared to the untreated catalysts and the commercial Pt/C and Pd/C catalysts. We anticipate that this effective and facile removal method has more general applicability to highly active nanocatalysts prepared with various surfactants, and should lead to improvements in environmental protection and energy production.

  1. Metals in the active site of native protein phosphatase-1.

    PubMed

    Heroes, Ewald; Rip, Jens; Beullens, Monique; Van Meervelt, Luc; De Gendt, Stefan; Bollen, Mathieu

    2015-08-01

    Protein phosphatase-1 (PP1) is a major protein Ser/Thr phosphatase in eukaryotic cells. Its activity depends on two metal ions in the catalytic site, which were identified as manganese in the bacterially expressed phosphatase. However, the identity of the metal ions in native PP1 is unknown. In this study, total reflection X-ray fluorescence (TXRF) was used to detect iron and zinc in PP1 that was purified from rabbit skeletal muscle. Metal exchange experiments confirmed that the distinct substrate specificity of recombinant and native PP1 is determined by the nature of their associated metals. We also found that the iron level associated with native PP1 is decreased by incubation with inhibitor-2, consistent with a function of inhibitor-2 as a PP1 chaperone. PMID:25890482

  2. Zymogen Activation and Subcellular Activity of Subtilisin Kexin Isozyme 1/Site 1 Protease*

    PubMed Central

    da Palma, Joel Ramos; Burri, Dominique Julien; Oppliger, Joël; Salamina, Marco; Cendron, Laura; de Laureto, Patrizia Polverino; Seidah, Nabil Georges; Kunz, Stefan; Pasquato, Antonella

    2014-01-01

    The proprotein convertase subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P) plays crucial roles in cellular homeostatic functions and is hijacked by pathogenic viruses for the processing of their envelope glycoproteins. Zymogen activation of SKI-1/S1P involves sequential autocatalytic processing of its N-terminal prodomain at sites B′/B followed by the herein newly identified C′/C sites. We found that SKI-1/S1P autoprocessing results in intermediates whose catalytic domain remains associated with prodomain fragments of different lengths. In contrast to other zymogen proprotein convertases, all incompletely matured intermediates of SKI-1/S1P showed full catalytic activity toward cellular substrates, whereas optimal cleavage of viral glycoproteins depended on B′/B processing. Incompletely matured forms of SKI-1/S1P further process cellular and viral substrates in distinct subcellular compartments. Using a cell-based sensor for SKI-1/S1P activity, we found that 9 amino acid residues at the cleavage site (P1–P8) and P1′ are necessary and sufficient to define the subcellular location of processing and to determine to what extent processing of a substrate depends on SKI-1/S1P maturation. In sum, our study reveals novel and unexpected features of SKI-1/S1P zymogen activation and subcellular specificity of activity toward cellular and pathogen-derived substrates. PMID:25378398

  3. Comparative studies of brain activation with MEG and functional MRI

    SciTech Connect

    George, J.S.; Aine, C.J.; Sanders, J.A.; Lewine, J.D.; Caprihan, A.

    1993-12-31

    The past two years have witnessed the emergence of MRI as a functional imaging methodology. Initial demonstrations involved the injection of a paramagnetic contrast agent and required ultrafast echo planar imaging capability to adequately resolve the passage of the injected bolus. By measuring the local reduction in image intensity due to magnetic susceptibility, it was possible to calculate blood volume, which changes as a function of neural activation. Later developments have exploited endogenous contrast mechanisms to monitor changes in blood volume or in venous blood oxygen content. Recently, we and others have demonstrated that it is possible to make such measurements in a clinical imager, suggesting that the large installed base of such machines might be utilized for functional imaging. Although it is likely that functional MRI (fMRI) will subsume some of the clinical and basic neuroscience applications now touted for MEG, it is also clear that these techniques offer different largely complementary, capabilities. At the very least, it is useful to compare and cross-validate the activation maps produced by these techniques. Such studies will be valuable as a check on results of neuromagnetic distributed current reconstructions and will allow better characterization of the relationship between neurophysiological activation and associated hemodynamic changes. A more exciting prospect is the development of analyses that combine information from the two modalities to produce a better description of underlying neural activity than is possible with either technique in isolation. In this paper we describe some results from initial comparative studies and outline several techniques that can be used to treat MEG and fMRI data within a unified computational framework.

  4. Improving the activity of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation.

    PubMed

    Weng, Meizhi; Deng, Xiongwei; Bao, Wei; Zhu, Li; Wu, Jieyuan; Cai, Yongjun; Jia, Yan; Zheng, Zhongliang; Zou, Guolin

    2015-09-25

    Nattokinase (NK), a bacterial serine protease from Bacillus subtilis var. natto, is a potential cardiovascular drug exhibiting strong fibrinolytic activity. To broaden its commercial and medical applications, we constructed a single-mutant (I31L) and two double-mutants (M222A/I31L and T220S/I31L) by site-directed mutagenesis. Active enzymes were expressed in Escherichia coli with periplasmic secretion and were purified to homogeneity. The kinetic parameters of enzymes were examined by spectroscopy assay and isothermal titration calorimetry (ITC), and their fibrinolytic activities were determined by fibrin plate method. The substitution of Leu(31) for Ile(31) resulted in about 2-fold enhancement of catalytic efficiency (Kcat/KM) compared with wild-type NK. The specific activities of both double-mutants (M222A/I31L and T220S/I31L) were significantly increased when compared with the single-mutants (M222A and T220S) and the oxidative stability of M222A/I31L mutant was enhanced with respect to wild-type NK. This study demonstrates the feasibility of improving activity of NK by site-directed mutagenesis and shows successful protein engineering cases to improve the activity of NK as a potent therapeutic agent.

  5. Site-specific PEGylation of lidamycin and its antitumor activity.

    PubMed

    Li, Liang; Shang, Boyang; Hu, Lei; Shao, Rongguang; Zhen, Yongsu

    2015-05-01

    In this study, N-terminal site-specific mono-PEGylation of the recombinant lidamycin apoprotein (rLDP) of lidamycin (LDM) was prepared using a polyethyleneglycol (PEG) derivative (M w 20 kDa) through a reactive terminal aldehyde group under weak acidic conditions (pH 5.5). The biochemical properties of mPEG-rLDP-AE, an enediyne-integrated conjugate, were analyzed by SDS-PAGE, RP-HPLC, SEC-HPLC and MALDI-TOF. Meanwhile, in vitro and in vivo antitumor activity of mPEG-rLDP-AE was evaluated by MTT assays and in xenograft model. The results indicated that mPEG-rLDP-AE showed significant antitumor activity both in vitro and in vivo. After PEGylation, mPEG-rLDP still retained the binding capability to the enediyne AE and presented the physicochemical characteristics similar to that of native LDP. It is of interest that the PEGylation did not diminish the antitumor efficacy of LDM, implying the possibility that this derivative may function as a payload to deliver novel tumor-targeted drugs. PMID:26579455

  6. Hybrid [FeFe]-hydrogenases with modified active sites show remarkable residual enzymatic activity.

    PubMed

    Siebel, Judith F; Adamska-Venkatesh, Agnieszka; Weber, Katharina; Rumpel, Sigrun; Reijerse, Edward; Lubitz, Wolfgang

    2015-02-24

    [FeFe]-hydrogenases are to date the only enzymes for which it has been demonstrated that the native inorganic binuclear cofactor of the active site Fe2(adt)(CO)3(CN)2 (adt = azadithiolate = [S-CH2-NH-CH2-S](2-)) can be synthesized on the laboratory bench and subsequently inserted into the unmaturated enzyme to yield fully functional holo-enzyme (Berggren, G. et al. (2013) Nature 499, 66-70; Esselborn, J. et al. (2013) Nat. Chem. Biol. 9, 607-610). In the current study, we exploit this procedure to introduce non-native cofactors into the enzyme. Mimics of the binuclear subcluster with a modified bridging dithiolate ligand (thiodithiolate, N-methylazadithiolate, dimethyl-azadithiolate) and three variants containing only one CN(-) ligand were inserted into the active site of the enzyme. We investigated the activity of these variants for hydrogen oxidation as well as proton reduction and their structural accommodation within the active site was analyzed using Fourier transform infrared spectroscopy. Interestingly, the monocyanide variant with the azadithiolate bridge showed ∼50% of the native enzyme activity. This would suggest that the CN(-) ligands are not essential for catalytic activity, but rather serve to anchor the binuclear subsite inside the protein pocket through hydrogen bonding. The inserted artificial cofactors with a propanedithiolate and an N-methylazadithiolate bridge as well as their monocyanide variants also showed residual activity. However, these activities were less than 1% of the native enzyme. Our findings indicate that even small changes in the dithiolate bridge of the binuclear subsite lead to a rather strong decrease of the catalytic activity. We conclude that both the Brønsted base function and the conformational flexibility of the native azadithiolate amine moiety are essential for the high catalytic activity of the native enzyme. PMID:25633077

  7. Flexibility and Stability Trade-Off in Active Site of Cold-Adapted Pseudomonas mandelii Esterase EstK.

    PubMed

    Truongvan, Ngoc; Jang, Sei-Heon; Lee, ChangWoo

    2016-06-28

    Cold-adapted enzymes exhibit enhanced conformational flexibility, especially in their active sites, as compared with their warmer-temperature counterparts. However, the mechanism by which cold-adapted enzymes maintain their active site stability is largely unknown. In this study, we investigated the role of conserved D308-Y309 residues located in the same loop as the catalytic H307 residue in the cold-adapted esterase EstK from Pseudomonas mandelii. Mutation of D308 and/or Y309 to Ala or deletion resulted in increased conformational flexibility. Particularly, the D308A or Y309A mutant showed enhanced substrate affinity and catalytic rate, as compared with wild-type EstK, via enlargement of the active site. However, all mutant EstK enzymes exhibited reduced thermal stability. The effect of mutation was greater for D308 than Y309. These results indicate that D308 is not preferable for substrate selection and catalytic activity, whereas hydrogen bond formation involving D308 is critical for active site stabilization. Taken together, conformation of the EstK active site is constrained via flexibility-stability trade-off for enzyme catalysis and thermal stability. Our study provides further insights into active site stabilization of cold-adapted enzymes. PMID:27259687

  8. Solar irradiance computations compared with observations at the Baseline Surface Radiation Network Payerne site

    SciTech Connect

    Nowak, Daniela; Vuilleumier, Laurent; Long, Charles N.; Ohmura, Atsumu

    2008-07-18

    Radiative transfer model calculations of solar fluxes during cloud free periods often show considerable discrepancies with surface radiation observations. Many efforts have been undertaken to explain the differences between modeled and observed shortwave downward radiation (SDR). In this study, MODTRAN4v3r1TM (designed later simply as MODTRANTM) was used for model simulations and compared with high quality radiation observations of the Baseline Surface Radiation Network (BSRN) site at Payerne, Switzerland. Results are presented for cloud free shortwave downward radiation calculations. The median differences of modeled minus observed global SDR are small (< 1%) and within the instrumental error. The differences of modeled and observed direct and diffuse SDR show larger discrepancies of -1.8% and 5.2% respectively. The diffuse SDR is generally overestimated by the model and more important, the model to observation linear regression slope and zero-intercept differs significantly from their ideal values of 1 and 0. Possible reasons for the discrepancies are presented and discussed and some modifications are investigated for decreasing such differences between modeled and observed diffuse SDR. However, we could not resolve all the discrepancies. The best agreement is obtained when comparing model simulations whose 550nm aerosol optical depth input is inferred from observations using nine spectral channels, and using BSRN observations performed with a new and more precise shading disk and sun tracker system. In this case, the median bias between model simulations and observed diffuse SDR is -0.4 Wm-2 (< 1%).

  9. Functional mimicry of the active site of glutathione peroxidase by glutathione imprinted selenium-containing protein.

    PubMed

    Liu, Lei; Mao, Shi-zhong; Liu, Xiao-man; Huang, Xin; Xu, Jia-yun; Liu, Jun-qiu; Luo, Gui-min; Shen, Jia-cong

    2008-01-01

    For imitating the active site of antioxidant selenoenzyme glutathione peroxidase (GPx), an artificial enzyme selenosubtilisin was employed as a scaffold for reconstructing substrate glutathione (GSH) specific binding sites by a bioimprinting strategy. GSH was first covalently linked to selenosubtilisin to form a covalent complex GSH-selenosubtilisin through a Se-S bond, then the GSH molecule was used as a template to cast a complementary binding site for substrate GSH recognition. The bioimprinting procedure consists of unfolding the conformation of selenosubtilisin and fixing the new conformation of the complex GSH-selenosubtilisin. Thus a new specificity for naturally occurring GPx substrate GSH was obtained. This bioimprinting procedure facilitates the catalytic selenium moiety of the imprinted selenosubtilisin to match the reactive thiol group of GSH in the GSH binding site, which contributes to acceleration of the intramolecular catalysis. These imprinted selenium-containing proteins exhibited remarkable rate enhancement for the reduction of H2O2 by GSH. The average GPx activity was found to be 462 U/micromol, and it was approximately 100 times that for unimprinted selenosubtilisin. Compared with ebselen, a well-known GPx mimic, an activity enhancement of 500-fold was observed. Detailed steady-state kinetic studies demonstrated that the novel selenoenzyme followed a ping-pong mechanism similar to the naturally occurring GPx. PMID:18163571

  10. The ribotoxin restrictocin recognizes its RNA substrate by selective engagement of active site residues.

    PubMed

    Plantinga, Matthew J; Korennykh, Alexei V; Piccirilli, Joseph A; Correll, Carl C

    2011-04-12

    Restrictocin and related fungal endoribonucleases from the α-sarcin family site-specifically cleave the sarcin/ricin loop (SRL) on the ribosome to inhibit translation and ultimately trigger cell death. Previous studies showed that the SRL folds into a bulged-G motif and tetraloop, with restrictocin achieving a specificity of ∼1000-fold by recognizing both motifs only after the initial binding step. Here, we identify contacts within the protein-RNA interface and determine the extent to which each one contributes to enzyme specificity by examining the effect of protein mutations on the cleavage of the SRL substrate compared to a variety of other RNA substrates. As with other biomolecular interfaces, only a subset of contacts contributes to specificity. One contact of this subset is critical, with the H49A mutation resulting in quantitative loss of specificity. Maximum catalytic activity occurs when both motifs of the SRL are present, with the major contribution involving the bulged-G motif recognized by three lysine residues located adjacent to the active site: K110, K111, and K113. Our findings support a kinetic proofreading mechanism in which the active site residues H49 and, to a lesser extent, Y47 make greater catalytic contributions to SRL cleavage than to suboptimal substrates. This systematic and quantitative analysis begins to elucidate the principles governing RNA recognition by a site-specific endonuclease and may thus serve as a mechanistic model for investigating other RNA modifying enzymes. PMID:21417210

  11. Molecular Docking Guided Comparative GFA, G/PLS, SVM and ANN Models of Structurally Diverse Dual Binding Site Acetylcholinesterase Inhibitors.

    PubMed

    Gupta, Shikhar; Fallarero, Adyary; Vainio, Mikko J; Saravanan, P; Santeri Puranen, J; Järvinen, Päivi; Johnson, Mark S; Vuorela, Pia M; Mohan, C Gopi

    2011-08-01

    Recently discovered 42 AChE inhibitors binding at the catalytic and peripheral anionic site were identified on the basis of molecular docking approach, and its comparative quantitative structure-activity relationship (QSAR) models were developed. These structurally diverse inhibitors were obtained by our previously reported high-throughput in vitro screening technique using 384-well plate's assay based on colorimetric method of Ellman. QSAR models were developed using (i) genetic function algorithm, (ii) genetic partial least squares, (iii) support vector machine and (iv) artificial neural network techniques. The QSAR model robustness and significance was critically assessed using different cross-validation techniques on test data set. The generated QSAR models using thermodynamic, electrotopological and electronic descriptors showed that nonlinear methods are more robust than linear methods, and provide insight into the structural features of compounds that are important for AChE inhibition.

  12. Photoreduction of the active site of the metalloprotein putidaredoxin by synchrotron radiation.

    PubMed

    Corbett, Mary C; Latimer, Matthew J; Poulos, Thomas L; Sevrioukova, Irina F; Hodgson, Keith O; Hedman, Britt

    2007-09-01

    X-ray damage to protein crystals is often assessed on the basis of the degradation of diffraction intensity, yet this measure is not sensitive to the rapid changes that occur at photosensitive groups such as the active sites of metalloproteins. Here, X-ray absorption spectroscopy is used to study the X-ray dose-dependent photoreduction of crystals of the [Fe(2)S(2)]-containing metalloprotein putidaredoxin. A dramatic decrease in the rate of photoreduction is observed in crystals cryocooled with liquid helium at 40 K compared with those cooled with liquid nitrogen at 110 K. Whereas structural changes consistent with cluster reduction occur in the active site of the crystal measured at 110 K, no such changes occur in the crystal measured at 40 K, even after an eightfold increase in dose. When the structural results from extended X-ray absorption fine-structure measurements are compared with those obtained by crystallography on this and similar proteins, it is apparent that X-ray-induced photoreduction has had an impact on the crystallographic data and subsequent structure solutions. These results strongly indicate the importance of using liquid-helium-based cooling for metalloprotein crystallography in order to avoid the subtle yet important changes that can take place at the metalloprotein active sites when liquid-nitrogen-based cooling is used. The study also illustrates the need for direct measurement of the redox states of the metals, through X-ray absorption spectroscopy, simultaneously with the crystallographic measurements.

  13. Regeneration of active enzyme by formation of hybrids from inactive derivatives: implications for active sites shared between polypeptide chains of aspartate transcarbamoylase.

    PubMed Central

    Robey, E A; Schachman, H K

    1985-01-01

    Crystallographic studies of Escherichia coli aspartate transcarbamoylase (aspartate carbamoyltransferase, EC 2.1.3.2) in conjunction with chemical modification experiments have led to the suggestion that the active sites of the enzyme are at the interfaces between adjacent polypeptide chains of the catalytic trimers and involve joint participation of amino acid residues from the adjoining chains. However, the precise locations of the active sites and of the residues involved in catalysis are not known. To test the hypothesis that the active sites are shared between chains, we constructed hybrid trimers in which two chains were modified at one presumed active site residue and the third chain was altered at a different active site residue. One parental trimer was a reduced pyridoxal phosphate derivative in which lysine-84 was modified and the other was a mutant protein in which tyrosine-165 was converted to serine by site-directed mutagenesis. Incubating mixtures of these two virtually inactive derivatives under conditions promoting interchain exchange led to a large increase in enzyme activity corresponding approximately to the formation of one active site per trimer. The purified hybrid trimers, containing either two pyridoxylated and one mutant chain or vice versa, had 23% and 28%, respectively, the activity of native wild-type catalytic trimers, compared to 5% and 3% for the parental trimers. The most likely explanation for this large increase in activity is the formation of one "native" active site in each of the hybrid trimers. The results constitute strong evidence for shared active sites in aspartate transcarbamoylase. Images PMID:3881763

  14. Lymphokine-activated killer (LAK) cells can be focused at sites of tumor growth by products of macrophage activation

    SciTech Connect

    Migliori, R.J.; Gruber, S.A.; Sawyer, M.D.; Hoffman, R.; Ochoa, A.; Bach, F.H.; Simmons, R.L.

    1987-08-01

    Successful adoptive cancer immunotherapy presumably depends on the accumulation of tumoricidal leukocytes at the sites of tumor growth. Large numbers of lymphokine-activated killer (LAK) cells can be generated in vitro by growth in high concentrations of interleukin-2 (IL-2), but relatively few arrive at the tumor site after intravenous injection. We hypothesize that the delivery of LAK cells to tumor sites may be augmented by previously demonstrated lymphocyte-recruiting factors, including activated macrophage products such as interleukin-1 (IL-1) and tumor necrosis factor. /sup 111/Indium-labeled LAK cells were injected intravenously into syngeneic mice bearing the macrophage activator endotoxin (LPS) in one hind footpad, and saline solution was injected into the contralateral footpad. Significantly more activity was recovered from the LPS-bearing footpad at all times during a 96-hour period. Recombinant IL-1 also attracted more LAK cells after injection into tumor-free hind footpads. Furthermore, LAK cells preferentially homed to hind footpads that were bearing 3-day established sarcomas after intralesional injections of LPS, IL-1, or tumor necrosis factor when compared with contralateral tumor-bearing footpads injected with saline solution alone. In preliminary experiments, mice with hind-footpad tumors appeared to survive longer after combined systemic IL-2 and LAK therapy if intralesional LPS was administered. These studies demonstrate that macrophage activation factors that have been shown capable of attracting circulating normal lymphocytes can also effectively attract LAK cells from the circulation. By the stimulation of macrophages at the sites of tumor growth, more LAK cells can be attracted. It is hoped that by focusing the migration of LAK cells to tumors, LAK cells and IL-2 would effect tumor regression more efficiently and with less toxicity.

  15. Characterization of the active site of chloroperoxidase using physical techniques

    SciTech Connect

    Hall, K.S.

    1986-01-01

    Chloroperoxidase (CPO) and Cytochrome P-450, two very different hemeproteins, have been shown to have similar active sites by several techniques. Recent work has demonstrated thiolate ligation from a cysteine residue to the iron in P-450. A major portion of this research has been devoted to obtaining direct evidence that CPO also has a thiolate 5th ligand from a cysteine residue. This information will provide the framework for a detailed analysis of the structure-function relationships between peroxidases, catalase and cytochrome P-450 hemeproteins. To determine whether the 5th ligand is a cysteine, methionine or a unique amino acid, specific isotope enrichment experiments were used. Preliminary /sup 1/H-NMR studies show that the carbon monoxide-CPO complex has a peak in the upfield region corresponding to alpha-protons of a thiolate amino acid. C. fumago was grown on 95% D/sub 2/O media with a small amount of /sup 1/H-cysteine added. Under these conditions C. fumago slows down the biosynthesis of cysteine by at least 50% and utilizes the exogenous cysteine in the media. GC-MS was able to show that the methylene protons next to the sulfur atom in cysteine are 80-90% protonated while these positions in methionine are approximately 73% deuterated. Comparison of the /sup 1/H-NMR spectra of CO-CPO and CO-CPO indicate the presence of a cysteine ligand in chloroperoxidase.

  16. N6-Methyldeoxyadenosine Marks Active Transcription Start Sites in Chlamydomonas

    PubMed Central

    Chen, Kai; Deng, Xin; Yu, Miao; Han, Dali; Hao, Ziyang; Liu, Jianzhao; Lu, Xingyu; Dore, Louis C; Weng, Xiaocheng; Ji, Quanjiang; Mets, Laurens; He, Chuan

    2015-01-01

    SUMMARY N6-methyldeoxyadenosine (6mA or m6A) is a DNA modification preserved in prokaryotes to eukaryotes. It is widespread in bacteria, and functions in DNA mismatch repair, chromosome segregation, and virulence regulation. In contrast, the distribution and function of 6mA in eukaryotes have been unclear. Here we present a comprehensive analysis of the 6mA landscape in the genome of Chlamydomonas using new sequencing approaches. We identified the 6mA modification in 84% of genes in Chlamydomonas. We found that 6mA mainly locates at ApT dinucleotides around transcription start sites (TSS) with a bimodal distribution, and appears to mark active genes. A periodic pattern of 6mA deposition was also observed at base resolution, which is associated with nucleosome distribution near the TSS, suggesting a possible role in nucleosome positioning. The new genome-wide mapping of 6mA and its unique distribution in the Chlamydomonas genome suggest potential regulatory roles of 6mA in gene expression in eukaryotic organisms. PMID:25936837

  17. Detection limit for activation measurements in ultralow background sites

    NASA Astrophysics Data System (ADS)

    Trache, Livius; Chesneanu, D.; Margineanu, R.; Pantelica, A.; Ghita, D. G.; Burducea, I.; Straticiuc, M.; Tang, X. D.

    2014-09-01

    We used 12C +13C fusion at the beam energies E = 6, 7 and 8 MeV to determine the sensitivity and the limits of activation method measurements in ultralow background sites. A 13C beam of 0.5 μA from the 3 MV Tandem accelerator of the Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH impinged on thick graphite targets. After about 24 hrs of irradiation targets were measured in two different laboratories: one with a heavy shielded Ge detector in the institute (at the surface) and one located underground in the microBequerel laboratory, in the salt mine of Slanic-Prahova, Romania. The 1369- and 2754 keV peaks from 24Na deactivation were clearly observed in the γ-ray spectra obtained for acquisitions lasting a few hours, or a few days. Determination of the detection limit in evaluating the cross sections for the target irradiated at Ec . m = 3 MeV indicates the fact that it is possible to measure gamma spectrum in underground laboratory down to Ec . m = 2 . 6 MeV. Cleaning the spectra with beta-gamma coincidences and increasing beam intensity 20 times will take as further down. The measurements are motivated by the study of the 12 C +12 C reaction at astrophysical energies.

  18. Disturbance opens recruitment sites for bacterial colonization in activated sludge.

    PubMed

    Vuono, David C; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E

    2016-01-01

    Little is known about the role of immigration in shaping bacterial communities or the factors that may dictate success or failure of colonization by bacteria from regional species pools. To address these knowledge gaps, the influence of bacterial colonization into an ecosystem (activated sludge bioreactor) was measured through a disturbance gradient (successive decreases in the parameter solids retention time) relative to stable operational conditions. Through a DNA sequencing approach, we show that the most abundant bacteria within the immigrant community have a greater probability of colonizing the receiving ecosystem, but mostly as low abundance community members. Only during the disturbance do some of these bacterial populations significantly increase in abundance beyond background levels and in few cases become dominant community members post-disturbance. Two mechanisms facilitate the enhanced enrichment of immigrant populations during disturbance: (i) the availability of resources left unconsumed by established species and (ii) the increased availability of niche space for colonizers to establish and displace resident populations. Thus, as a disturbance decreases local diversity, recruitment sites become available to promote colonization. This work advances our understanding of microbial resource management and diversity maintenance in complex ecosystems. PMID:25727891

  19. Active Site Characterization of Proteases Sequences from Different Species of Aspergillus.

    PubMed

    Morya, V K; Yadav, Virendra K; Yadav, Sangeeta; Yadav, Dinesh

    2016-09-01

    A total of 129 proteases sequences comprising 43 serine proteases, 36 aspartic proteases, 24 cysteine protease, 21 metalloproteases, and 05 neutral proteases from different Aspergillus species were analyzed for the catalytically active site residues using MEROPS database and various bioinformatics tools. Different proteases have predominance of variable active site residues. In case of 24 cysteine proteases of Aspergilli, the predominant active site residues observed were Gln193, Cys199, His364, Asn384 while for 43 serine proteases, the active site residues namely Asp164, His193, Asn284, Ser349 and Asp325, His357, Asn454, Ser519 were frequently observed. The analysis of 21 metalloproteases of Aspergilli revealed Glu298 and Glu388, Tyr476 as predominant active site residues. In general, Aspergilli species-specific active site residues were observed for different types of protease sequences analyzed. The phylogenetic analysis of these 129 proteases sequences revealed 14 different clans representing different types of proteases with diverse active site residues.

  20. A proposed definition of the 'activity' of surface sites on lactose carriers for dry powder inhalation.

    PubMed

    Grasmeijer, Floris; Frijlink, Henderik W; de Boer, Anne H

    2014-06-01

    A new definition of the activity of surface sites on lactose carriers for dry powder inhalation is proposed which relates to drug detachment during dispersion. The new definition is expected to improve the understanding of 'carrier surface site activity', which stimulates the unambiguous communication about this subject and may aid in the rational design and interpretation of future formulation studies. In contrast to the currently prevailing view on carrier surface site activity, it follows from the newly proposed definition that carrier surface site activity depends on more variables than just the physicochemical properties of the carrier surface. Because the term 'active sites' is ambiguous, it is recommended to use the term 'highly active sites' instead to denote carrier surface sites with a relatively high activity. PMID:24613490

  1. Active Site Dependent Reaction Mechanism over Ru/CeO2 Catalyst toward CO2 Methanation.

    PubMed

    Wang, Fei; He, Shan; Chen, Hao; Wang, Bin; Zheng, Lirong; Wei, Min; Evans, David G; Duan, Xue

    2016-05-18

    Oxygen vacancy on the surface of metal oxides is one of the most important defects which acts as the reactive site in a variety of catalytic reactions. In this work, operando spectroscopy methodology was employed to study the CO2 methanation reaction catalyzed by Ru/CeO2 (with oxygen vacancy in CeO2) and Ru/α-Al2O3 (without oxygen vacancy), respectively, so as to give a thorough understanding on active site dependent reaction mechanism. In Ru/CeO2 catalyst, operando XANES, IR, and Raman were used to reveal the generation process of Ce(3+), surface hydroxyl, and oxygen vacancy as well as their structural evolvements under practical reaction conditions. The steady-state isotope transient kinetic analysis (SSITKA)-type in situ DRIFT infrared spectroscopy undoubtedly substantiates that CO2 methanation undergoes formate route over Ru/CeO2 catalyst, and the formate dissociation to methanol catalyzed by oxygen vacancy is the rate-determining step. In contrast, CO2 methanation undergoes CO route over Ru surface in Ru/α-Al2O3 with the absence of oxygen vacancy, demonstrating active site dependent catalytic mechanism toward CO2 methanation. In addition, the catalytic activity evaluation and the oscillating reaction over Ru/CeO2 catalyst further prove that the oxygen vacancy catalyzes the rate-determining step with a much lower activation temperature compared with Ru surface in Ru/α-Al2O3 (125 vs 250 °C).

  2. Comparative activities of milk components in reversing chronic colitis.

    PubMed

    Kanwar, J R; Kanwar, R K; Stathopoulos, S; Haggarty, N W; MacGibbon, A K H; Palmano, K P; Roy, K; Rowan, A; Krissansen, G W

    2016-04-01

    Inflammatory bowel disease (IBD) is a poorly understood chronic immune disorder for which there is no medical cure. Milk and colostrum are rich sources of bioactives with immunomodulatory properties. Here we compared the therapeutic effects of oral delivery of bovine milk-derived iron-saturated lactoferrin (Fe-bLF), angiogenin, osteopontin (OPN), colostrum whey protein, Modulen IBD (Nestle Healthsciences, Rhodes, Australia), and cis-9,trans-11 conjugated linoleic acid (CLA)-enriched milk fat in a mouse model of dextran sulfate-induced colitis. The CLA-enriched milk fat significantly increased mouse body weights after 24d of treatment, reduced epithelium damage, and downregulated the expression of proinflammatory cytokines and nitrous oxide. Modulen IBD most effectively decreased the clinical score at d 12, and Modulen IBD and OPN most effectively lowered the inflammatory score. Myeloperoxidase activity that denotes neutrophil infiltration was significantly lower in mice fed Modulen IBD, OPN, angiogenin, and Fe-bLF. A significant decrease in the numbers of T cells, natural killer cells, dendritic cells, and a significant decrease in cytokine expression were observed in mice fed the treatment diets compared with dextran sulfate administered mice. The Fe-bLF, CLA-enriched milk fat, and Modulen IBD inhibited intestinal angiogenesis. In summary, each of the milk components attenuated IBD in mice, but with differing effectiveness against specific disease parameters. PMID:26805965

  3. Comparative antioxidant activities and synergism of resveratrol and oxyresveratrol.

    PubMed

    Aftab, Nan; Likhitwitayawuid, Kittisak; Vieira, Amandio

    2010-11-01

    Resveratrol (1) and oxyresveratrol (2) are phytoalexins with antioxidant activities (AAs) and proposed effects against several pathological processes. The main objective of this study was to provide a novel, comparative assessment of their AAs, and to test for potential synergism in their combined activities, or in combination with another phytochemical antioxidant, curcumin (3). The phytochemicals were tested at 10 µM total concentrations in a heme-based assay that involved, as the final step, quantification of tetramethyl-phenylene-diamine oxidation. Significant AAs were observed for both 1 and 2, 27-33% inhibition of oxidation (p < 0.05 relative to non-phytochemical control). The combination of 1 and 2 in the same assay (5 µM each) suggested a moderate synergistic effect of about 10% (41% inhibition of oxidation by 1/2 under the same conditions as for 1 and 2 separately). Combinations of 1/3 and 2/3 were also synergistic, but 1/3 had a two-fold greater AA (p < 0.05) than 2/3 (or 1/2). Our results indicate that (i) 1 and 2 are effective antioxidants in the assay, (ii) in combination, their AAs can synergise, and (iii) in relation to 2, 1 has a much greater synergistic potential with 3. The latter suggests different synergy mechanisms of the curcuminoid with each of the two stilbene phytoalexins.

  4. Nonparametric statistical methods for comparing two sites based on data with multiple non-detect limits

    NASA Astrophysics Data System (ADS)

    Millard, Steven P.; Deverel, Steven J.

    1988-12-01

    As concern over the effects of trace amounts of pollutants has increased, so has the need for statistical methods that deal appropriately with data that include values reported as "less than" the detection limit. It has become increasingly common for water quality data to include censored values that reflect more than one detection limit for a single analyte. For such multiply censored data sets, standard statistical methods (for example, to compare analyte concentration in two areas) are not valid. In such cases, methods from the biostatistical field of survival analysis are applicable. Several common two-sample censored data rank tests are explained, and their behaviors are studied via a Monte Carlo simulation in which sample sizes and censoring mechanisms are varied under an assumed lognormal distribution. These tests are applied to shallow groundwater chemistry data from two sites in the San Joaquin Valley, California. The best overall test, in terms of maintained α level, is the normal scores test based on a permutation variance. In cases where the α level is maintained, however, the Peto-Prentice statistic based on an asymptotic variance performs as well or better.

  5. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  6. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  7. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  8. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  9. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  10. Large zinc cation occupancy of octahedral sites in mechanically activated zinc ferrite powders

    SciTech Connect

    Oliver, S. A.; Harris, V. G.; Hamdeh, H. H.; Ho, J. C.

    2000-05-08

    The cation site occupancy of a mechanically activated nanocrystalline zinc ferrite powder was determined as (Zn{sub 0.55}{sup 2+}Fe{sub 0.18}{sup 3+}){sub tet}[Zr{sub 0.45}{sup 2+}Fe{sub 1.82}{sup 3+}]{sub oct}O{sub 4} through analysis of extended x-ray absorption fine structure measurements, showing a large redistribution of cations between sites compared to normal zinc ferrite samples. The overpopulation of cations in the octahedral sites was attributed to the ascendance in importance of the ionic radii over the crystal energy and bonding coordination in determining which interstitial sites are occupied in this structurally disordered powder. Slight changes are observed in the local atomic environment about the zinc cations, but not the iron cations, with respect to the spinel structure. The presence of Fe{sup 3+} on both sites is consistent with the measured room temperature magnetic properties. (c) 2000 American Institute of Physics.

  11. Computational predictions suggest that structural similarity in viral polymerases may lead to comparable allosteric binding sites.

    PubMed

    Brown, Jodian A; Espiritu, Marie V; Abraham, Joel; Thorpe, Ian F

    2016-08-15

    The identification of ligand-binding sites is often the first step in drug targeting and design. To date there are numerous computational tools available to predict ligand binding sites. These tools can guide or mitigate the need for experimental methods to identify binding sites, which often require significant resources and time. Here, we evaluate four ligand-binding site predictor (LBSP) tools for their ability to predict allosteric sites within the Hepatitis C Virus (HCV) polymerase. Our results show that the LISE LBSP is able to identify all three target allosteric sites within the HCV polymerase as well as a known allosteric site in the Coxsackievirus polymerase. LISE was then employed to identify novel binding sites within the polymerases of the Dengue, West Nile, and Foot-and-mouth Disease viruses. Our results suggest that all three viral polymerases have putative sites that share structural or chemical similarities with allosteric pockets of the HCV polymerase. Thus, these binding locations may represent an evolutionarily conserved structural feature of several viral polymerases that could be exploited for the development of small molecule therapeutics. PMID:27262620

  12. GAS HYDRATES AT TWO SITES OF AN ACTIVE CONTINENTAL MARGIN.

    USGS Publications Warehouse

    Kvenvolden, K.A.

    1985-01-01

    Sediment containing gas hydrates from two distant Deep Sea Drilling Project sites (565 and 568), located about 670 km apart on the landward flank of the Middle America Trench, was studied to determine the geochemical conditions that characterize the occurrence of gas hydrates. Site 565 was located in the Pacific Ocean offshore the Nicoya Peninsula of Costa Rica in 3,111 m of water. The depth of the hole at this site was 328 m, and gas hydrates were recovered from 285 and 319 m. Site 568 was located about 670 km to the northwest offshore Guatemala in 2,031 m of water. At this site the hole penetrated to 418 m, and gas hydrates were encountered at 404 m.

  13. Control of active sites in selective flocculation: III -- Mechanism of site blocking

    SciTech Connect

    Behl, S.; Moudgil, B.M. . Dept. of Materials Science and Engineering)

    1993-12-01

    It has been shown in Parts I and II of this paper that heteroflocculation can be controlled by poisoning the sites for flocculant adsorption using a site blocking agent (SBA). An efficient SBA was determined to be the lower molecular weight fraction of the flocculant. In this paper, the underlying mechanism of SBA action is described. Also, the mathematical model detailed in Part I is used to determine the effect of different SBAs on apatite-dolomite separation efficiency. It has been demonstrated that the depression in flocculation is directly related to the site blocking parameter ([bar [Phi

  14. Dynamically achieved active site precision in enzyme catalysis.

    PubMed

    Klinman, Judith P

    2015-02-17

    CONSPECTUS: The grand challenge in enzymology is to define and understand all of the parameters that contribute to enzymes' enormous rate accelerations. The property of hydrogen tunneling in enzyme reactions has moved the focus of research away from an exclusive focus on transition state stabilization toward the importance of the motions of the heavy atoms of the protein, a role for reduced barrier width in catalysis, and the sampling of a protein conformational landscape to achieve a family of protein substates that optimize enzyme-substrate interactions and beyond. This Account focuses on a thermophilic alcohol dehydrogenase for which the chemical step of hydride transfer is rate determining across a wide range of experimental conditions. The properties of the chemical coordinate have been probed using kinetic isotope effects, indicating a transition in behavior below 30 °C that distinguishes nonoptimal from optimal C-H activation. Further, the introduction of single site mutants has the impact of either enhancing or eliminating the temperature dependent transition in catalysis. Biophysical probes, which include time dependent hydrogen/deuterium exchange and fluorescent lifetimes and Stokes shifts, have also been pursued. These studies allow the correlation of spatially resolved transitions in protein motions with catalysis. It is now possible to define a long-range network of protein motions in ht-ADH that extends from a dimer interface to the substrate binding domain across to the cofactor binding domain, over a distance of ca. 30 Å. The ongoing challenge to obtaining spatial and temporal resolution of catalysis-linked protein motions is discussed.

  15. Lethal Factor Active-Site Mutations Affect Catalytic Activity In Vitro

    PubMed Central

    Hammond, S. E.; Hanna, P. C.

    1998-01-01

    The lethal factor (LF) protein of Bacillus anthracis lethal toxin contains the thermolysin-like active-site and zinc-binding consensus motif HEXXH (K. R. Klimpel, N. Arora, and S. H. Leppla, Mol. Microbiol. 13:1093–1100, 1994). LF is hypothesized to act as a Zn2+ metalloprotease in the cytoplasm of macrophages, but no proteolytic activities have been previously shown on any target substrate. Here, synthetic peptides are hydrolyzed by LF in vitro. Mass spectroscopy and peptide sequencing of isolated cleavage products separated by reverse-phase high-pressure liquid chromatography indicate that LF seems to prefer proline-containing substrates. Substitution mutations within the consensus active-site residues completely abolish all in vitro catalytic functions, as does addition of 1,10-phenanthroline, EDTA, and certain amino acid hydroxamates, including the novel zinc metalloprotease inhibitor ZINCOV. In contrast, the protease inhibitors bestatin and lysine CMK, previously shown to block LF activity on macrophages, did not block LF activity in vitro. These data provide the first direct evidence that LF may act as an endopeptidase. PMID:9573135

  16. Monoclonal antibody against the active site of caeruloplasmin and the ELISA system detecting active caeruloplasmin.

    PubMed

    Hiyamuta, S; Ito, K

    1994-04-01

    Serum caeruloplasmin deficiency is a characteristic biochemical abnormality found in patients with Wilson's disease, but the mechanism of this disease is unknown. Although the phenylenediamine oxidase activity of serum caeruloplasmin is markedly low in patients with Wilson's disease, mRNA of caeruloplasmin exists to some extent. To investigate the deficiency of caeruloplasmin oxidase activity in Wilson's disease, we generated 14 monoclonal antibodies (MAbs) and selected ID1, which had the strongest reactivity, and ID2, which had neutralizing ability. We also established a system to measure active caeruloplasmin specifically using these MAbs. These MAbs and the system will be useful tools in analyzing the active site of caeruloplasmin in patients with Wilson's disease.

  17. Free energy simulations of active-site mutants of dihydrofolate reductase.

    PubMed

    Doron, Dvir; Stojković, Vanja; Gakhar, Lokesh; Vardi-Kilshtain, Alexandra; Kohen, Amnon; Major, Dan Thomas

    2015-01-22

    This study employs hybrid quantum mechanics-molecular mechanics (QM/MM) simulations to investigate the effect of mutations of the active-site residue I14 of E. coli dihydrofolate reductase (DHFR) on the hydride transfer. Recent kinetic measurements of the I14X mutants (X = V, A, and G) indicated slower hydride transfer rates and increasingly temperature-dependent kinetic isotope effects (KIEs) with systematic reduction of the I14 side chain. The QM/MM simulations show that when the original isoleucine residue is substituted in silico by valine, alanine, or glycine (I14V, I14A, and I14G DHFR, respectively), the free energy barrier height of the hydride transfer reaction increases relative to the wild-type enzyme. These trends are in line with the single-turnover rate measurements reported for these systems. In addition, extended dynamics simulations of the reactive Michaelis complex reveal enhanced flexibility in the mutants, and in particular for the I14G mutant, including considerable fluctuations of the donor-acceptor distance (DAD) and the active-site hydrogen bonding network compared with those detected in the native enzyme. These observations suggest that the perturbations induced by the mutations partly impair the active-site environment in the reactant state. On the other hand, the average DADs at the transition state of all DHFR variants are similar. Crystal structures of I14 mutants (V, A, and G) confirmed the trend of increased flexibility of the M20 and other loops. PMID:25382260

  18. Robotics and Automation Activities at the Savannah River Site: A Site Report for SUBWOG 39F

    SciTech Connect

    Teese, G.D.

    1995-09-28

    The Savannah River Site has successfully used robots, teleoperators, and remote video to reduce exposure to ionizing radiation, improve worker safety, and improve the quality of operations. Previous reports have described the use of mobile teleoperators in coping with a high level liquid waste spill, the removal of highly contaminated equipment, and the inspection of nuclear reactor vessels. This report will cover recent applications at the Savannah River, as well as systems which SRS has delivered to other DOE site customers.

  19. Control of active sites in selective flocculation: II -- Role of site blocking agents

    SciTech Connect

    Behl, S.; Moudgil, B.M. . Dept. of Materials Science and Engineering)

    1993-12-01

    Control of heteroflocculation using a lower molecular weight fraction of the flocculant as a site blocking agent is demonstrated in the apatite-dolomite-polyethylene oxide system. The most effective SBA (site blocking agent) was determined to be the highest molecular weight fraction of the flocculant itself which was not capable of flocculating any of the components of the mixture. In the presence of the SBA, flocculant adsorption decreased significantly on apatite particles, thereby inhibiting coflocculation.

  20. rVISTA for Comparative Sequence-Based Discovery of Functional Transcription Factor Binding Sites

    SciTech Connect

    Loots, Gabriela G.; Ovcharenko, Ivan; Pachter, Lior; Dubchak, Inna; Rubin, Edward M.

    2002-03-08

    Identifying transcriptional regulatory elements represents a significant challenge in annotating the genomes of higher vertebrates. We have developed a computational tool, rVISTA, for high-throughput discovery of cis-regulatory elements that combines transcription factor binding site prediction and the analysis of inter-species sequence conservation. Here, we illustrate the ability of rVISTA to identify true transcription factor binding sites through the analysis of AP-1 and NFAT binding sites in the 1 Mb well-annotated cytokine gene cluster1 (Hs5q31; Mm11). The exploitation of orthologous human-mouse data set resulted in the elimination of 95 percent of the 38,000 binding sites predicted upon analysis of the human sequence alone, while it identified 87 percent of the experimentally verified binding sites in this region.

  1. Discovery of Active Hydrothermal Sites Along the Mariana Volcanic Arc, Western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Baker, E. T.; Embley, R. W.; Resing, J. A.; Lupton, J. E.; Massoth, G. J.; de Ronde, C. E.; Nakamura, K.; Walker, S. L.

    2003-12-01

    Some 20,000 km of volcanic arcs, roughly one-third the total length of the global midocean ridge (MOR) system, rim the western Pacific Ocean. But compared to 25 years of hydrothermal investigations along MORs, exploration of similar activity on the estimated 600 submarine arc volcanoes is only beginning. In February 2003, as part of the Submarine Ring of Fire project funded by NOAA's Ocean Exploration Program, we made the first systematic survey of hydrothermal activity along the 1270-km-long Mariana intraoceanic volcanic arc, which lies almost entirely within the US EEZ. Prior fieldwork had documented active (but low-temperature) hydrothermal discharge on only three volcanoes: Kasuga 2, Kasuga 3, and Esmeralda Bank. During the cruise, we conducted 70 CTD operations over more than 50 individual volcanoes from 13° N to 23° N, plus a continuous CTD survey along 75 km of the back-arc spreading center (13° 15'N to 13° 41'N) adjacent to the southern end of the arc. We found evidence for active hydrothermal venting at 11 submarine volcanoes with summit (or caldera floor) depths ranging from 50 to 1550 m. Two additional sites were identified on the back-arc spreading center. Ongoing analyses of collected water samples could increase these totals. Our results confirmed continuing hydrothermal activity at Kasuga 2 (but not Kasuga 3) and Esmeralda Bank, in addition to newly discovered sites on nine other volcanoes. Many of these sites produce intense and widely dispersed plumes indicative of vigorous, high-temperature discharge. The volcanoes with active hydrothermal systems are about equally divided between those with and without summit calderas. The addition of the Marianas data greatly improves our view of hydrothermal sources along arcs. The 20,000 km of Pacific arcs can be divided between 6380 km of intraoceanic (i.e., mostly submarine) arcs and 13,880 km of island (i.e., mostly subaerial) arcs. At present, ˜15% of the total length of Pacific arcs has been surveyed

  2. Effect of reactive site loop elongation on the inhibitory activity of C1-inhibitor.

    PubMed

    Bos, Ineke G A; Lubbers, Yvonne T P; Eldering, Eric; Abrahams, Jan Pieter; Hack, C Erik

    2004-06-01

    The serine protease inhibitor C1-Inhibitor (C1-Inh) inhibits several complement- and contact-system proteases, which play an important role in inflammation. C1-Inh has a short reactive site loop (RSL) compared to other serpins. RSL length determines the inhibitory activity of serpins. We investigated the effect of RSL elongation on inhibitory activity of C1-Inh by insertion of one or two alanine residues in the RSL. One of five mutants had an increased association rate with kallikrein, but was nevertheless a poor inhibitor because of a simultaneous high stoichiometry of inhibition (>10). The association rate of the other variants was lower than that of wild-type C1-Inh. These data suggest that the relatively weak inhibitory activity of C1-Inh is not the result of its short RSL. The short RSL of C1-Inh has, surprisingly, the optimal length for inhibition.

  3. The Hanford Site generic component failure-rate database compared with other generic failure-rate databases

    SciTech Connect

    Reardon, M.F.; Zentner, M.D.

    1992-11-01

    The Risk Assessment Technology Group, Westinghouse Hanford Company (WHC), has compiled a component failure rate database to be used during risk and reliability analysis of nonreactor facilities. Because site-specific data for the Hanford Site are generally not kept or not compiled in a usable form, the database was assembled using information from a variety of other established sources. Generally, the most conservative failure rates were chosen from the databases reviewed. The Hanford Site database has since been used extensively in fault tree modeling of many Hanford Site facilities and systems. The purpose of this study was to evaluate the reasonableness of the data chosen for the Hanford Site database by comparing the values chosen with the values from the other databases.

  4. P-glycoprotein substrate transport assessed by comparing cellular and vesicular ATPase activity.

    PubMed

    Nervi, Pierluigi; Li-Blatter, Xiaochun; Aänismaa, Päivi; Seelig, Anna

    2010-03-01

    We compared the P-glycoprotein ATPase activity in inside-out plasma membrane vesicles and living NIH-MDR1-G185 cells with the aim to detect substrate transport. To this purpose we used six substrates which differ significantly in their passive influx through the plasma membrane. In cells, the cytosolic membrane leaflet harboring the substrate binding site of P-glycoprotein has to be approached by passive diffusion through the lipid membrane, whereas in inside-out plasma membrane vesicles, it is accessible directly from the aqueous phase. Compounds exhibiting fast passive influx compared to active efflux by P-glycoprotein induced similar ATPase activity profiles in cells and inside-out plasma membrane vesicles, because their concentrations in the cytosolic leaflets were similar. Compounds exhibiting similar influx as efflux induced in contrast different ATPase activity profiles in cells and inside-out vesicles. Their concentration was significantly lower in the cytosolic leaflet of cells than in the cytosolic leaflet of inside-out membrane vesicles, indicating that P-glycoprotein could cope with passive influx. P-glycoprotein thus transported all compounds at a rate proportional to ATP hydrolysis (i.e. all compounds were substrates). However, it prevented substrate entry into the cytosol only if passive influx of substrates across the lipid bilayer was in a similar range as active efflux. PMID:20004641

  5. Anesthetic Activity of Alfaxalone Compared with Ketamine in Mice.

    PubMed

    Siriarchavatana, Parkpoom; Ayers, Jessica D; Kendall, Lon V

    2016-01-01

    Alfaxalone encased in hydroxypropyl-β -cyclodextrin is a neuroactive steroid compound that has recently been approved in the United States for use as an anesthetic in dogs and cats. We evaluated the use of alfaxalone compared with ketamine, both alone and in combination with xylazine, for anesthesia of C57BL/6 mice. We assessed time to onset of anesthesia, duration of action, reflex responses, respiratory rate, and clinical signs. Alfaxalone (80 mg/kg IP) induced a light surgical plane of anesthesia in all mice, with a time to onset of 2.2 ± 0.2 min and duration of 57.1 ± 3.8 min, whereas ketamine (80 mg/kg IP) provided only sedative effects (time to onset, 5.4 ± 0.4 min; duration, 6.9 ± 0.8 min). Clinically, alfaxalone caused a spectrum of activities, including popcorn-like jumping movements after injection, intense scratching of the face, hyperresponsiveness to noise or touch, and marked limb jerking during recovery. Adding xylazine to the single-agent protocols achieved deep surgical anesthesia (duration: alfaxalone + xylazine, 80.3 ± 17.8 min; ketamine + xylazine, 37.4 ± 8.2 min) and ameliorated the adverse clinical signs. Our preliminary analysis suggests that, because of its side effects, alfaxalone alone is not a viable anesthetic option for mice. Although alfaxalone combined with xylazine appeared to be a more viable option, some mice still experienced mild adverse reactions, and the long duration of action might be problematic regarding the maintenance of body temperature and monitoring of recovery. Further studies evaluating different routes of administration and drug combinations are warranted. PMID:27423149

  6. Comparative study of the antibacterial activity of propolis from different geographical and climatic zones.

    PubMed

    Seidel, Véronique; Peyfoon, Elham; Watson, David G; Fearnley, James

    2008-09-01

    Propolis is a natural substance produced by honeybees upon collection and transformation of resins and exudates from plants. Comparative studies on propolis collected from a wide range of countries are crucial for linking its provenance to antibacterial activity and thus ensuring that the beneficial properties of propolis are used more efficiently by the general public. This study reports the in vitro screening of ethanol extracts of propolis (n = 40), collected from a wide range of countries within the tropical, subtropical and temperate zones, and on the comparison of their activity against a range of Gram-positive and Gram-negative bacteria using a broth microdilution assay. The results obtained revealed that propolis extracts were mostly active against Gram-positive bacteria. The samples were subjected to principal component analysis (PCA) in order to model their activity against Gram-positive microorganisms. Three distinct clusters were distinguished in the PCA mapping based on MIC values, categorizing samples with strong (MIC range 3.9-31.25 mg/L), moderate (MIC range 31.25-> or =500 mg/L) and weak antibacterial activity or inactivity (MIC > or = 500 mg/L only). It is hypothesized that for samples of tropical provenance differences in the activity profiles may depend on the climatic characteristics of the collection sites. High antibacterial activity was observed for samples from locations characterized by a wet-tropical rainforest-type climate.

  7. Comparing the Effects of Light- or Sonic-Activated Drug Delivery: Photochemical/Sonochemical Internalization.

    PubMed

    Madsen, Steen J; Gonzales, Jonathan; Zamora, Genesis; Berg, Kristian; Nair, Rohit Kumar; Hirschberg, Henry

    2016-01-01

    Photochemical internalization (PCI) is a technique that uses the photochemical properties of photodynamic therapy (PDT) for the enhanced delivery of endolysosomal-trapped macromolecules into the cell cytoplasm. The released agent can therefore exert its full biological activity, in contrast to being degraded by lysosomal hydrolases. Activation of photosensitizers via ultrasound (US), called sonodynamic therapy (SDT), has been proposed as an alternative to light-activated PDT for the treatment of cancerous tumors. The use of focused US (FUS) to activate photosensitizers allows treatment at tumor sites buried deep within tissues, overcoming one of the main limitations of PDT/PCI. We have examined ultrasonic activation of photosensitizers together with the anticancer agent bleomycin (BLM) using sonochemical internalization (SCI), as an alternative to light-activated PCI. Our results indicate that, compared to drug or US treatment alone, US activation of the photosensitizer AlPcS2a together with BLM significantly inhibits the ability of treated glioma cells to form clonogenic colonies.

  8. Comparing the Effects of Light- or Sonic-Activated Drug Delivery: Photochemical/Sonochemical Internalization.

    PubMed

    Madsen, Steen J; Gonzales, Jonathan; Zamora, Genesis; Berg, Kristian; Nair, Rohit Kumar; Hirschberg, Henry

    2016-01-01

    Photochemical internalization (PCI) is a technique that uses the photochemical properties of photodynamic therapy (PDT) for the enhanced delivery of endolysosomal-trapped macromolecules into the cell cytoplasm. The released agent can therefore exert its full biological activity, in contrast to being degraded by lysosomal hydrolases. Activation of photosensitizers via ultrasound (US), called sonodynamic therapy (SDT), has been proposed as an alternative to light-activated PDT for the treatment of cancerous tumors. The use of focused US (FUS) to activate photosensitizers allows treatment at tumor sites buried deep within tissues, overcoming one of the main limitations of PDT/PCI. We have examined ultrasonic activation of photosensitizers together with the anticancer agent bleomycin (BLM) using sonochemical internalization (SCI), as an alternative to light-activated PCI. Our results indicate that, compared to drug or US treatment alone, US activation of the photosensitizer AlPcS2a together with BLM significantly inhibits the ability of treated glioma cells to form clonogenic colonies. PMID:27279586

  9. Employee physical activity: how does it compare to the nation?

    PubMed

    Aldana, S G; Stone, W J

    1992-04-01

    1. Working adults exercise as much as the rest of society. 2. The amount of physical activity declines with age until 55, at which point increases were observed. 3. Marriage appears to have the largest effect on reducing the amount of physical activity a person gets. 4. Males are 1 1/2 times more likely than females to be vigorously active.

  10. Single-site Laparoscopic Colorectal Surgery Provides Similar Clinical Outcomes Compared to Standard Laparoscopic Surgery: An Analysis of 626 Patients

    PubMed Central

    Sangster, William; Messaris, Evangelos; Berg, Arthur S.; Stewart, David B.

    2015-01-01

    BACKGROUND Compared to standard laparoscopy, single-site laparoscopic colorectal surgerymay potentially offer advantages by creating fewer surgical incisions and providing a multi-functional trocar. Previous comparisons, however, have been limited by small sample sizes and selection bias. OBJECTIVE To compare 60-day outcomes between standard laparoscopic and single-site laparoscopic colorectal surgery patients undergoing elective and urgent surgeries. DESIGN This was an unselected retrospective cohort study comparing patients who underwent elective and unplanned standard laparoscopic or single-site laparoscopic colorectal resections for benign and malignant disease between 2008 and 2014. Outcomes were compared using univariate analyses. SETTING This study was conducted at a single institution. PATIENTS A total of 626 consecutive patients undergoing laparoscopic colorectal surgery were included. MAIN OUTCOME MEASURES Morbidity and mortality within 60 postoperative days. RESULTS 318 (51%) and 308 (49%) patients underwent standard laparoscopic and single-site laparoscopic procedures, respectively. No significant difference was noted in mean operative time (Standard laparoscopy 182.1 ± 81.3 vs. Single-site laparoscopy 177±86.5, p=0.30) and postoperative length of stay (Standard laparoscopy 4.8±3.4 vs. Single-site laparoscopy 5.5 ± 6.9, p=0.14). Conversions to laparotomy and 60-day readmissions were also similar for both cohorts across all procedures performed. A significant difference was identified in the number of patients who developed postoperative complications (Standard laparoscopy 19.2% vs. Single-site laparoscopy 10.7%, p=0.004), especially with respect to surgical-site infections (Standard laparoscopy 11.3% vs. Single-site laparoscopy 5.8%, p=0.02). LIMITATIONS This was a retrospective, single institution study. CONCLUSIONS Single-site laparoscopic colorectal surgery demonstrates similar results to standard laparoscopic colorectal surgery in regards to

  11. Comparative evaluation of leachate pollution index of MSW landfill site of Kolkata with other metropolitan cities of India.

    PubMed

    Motling, Sanjay; Dutta, Amit; Mukherjee, S N; Kumar, Sunil

    2013-07-01

    The uncontrolled tipping of mixed urban solid waste in landfill site causes serious negative impacts on the environment. The major issue in this context is the generation of leachate which possesses potential of polluting freshwater ecosystem including groundwater besides associated health hazards and depletion of soil fertility. In this context, a pseudo computation quantitative tool, known as leachate pollution index (LPI), has been developed by some researchers for scaling pollution potential of landfill site owing to emergence of leachate. This paper. deals with the assessment of leachate quality of existing landfill site of Kolkata situated at Dhapa waste dumping ground through evaluation of the LPI from experimental analysis of leachate. The leachate was collected from this site in different seasons. 18 parameters were tested with real leachate samples in the Environmental Engineering Laboratory of Civil Engineering Department of Jadavpur University Kolkata. The results exhibited a very high value of organic pollutants in the leachate with COD as 21,129 mg/L and also values of TDS, Fe2+, Cr, Zn, chloride and ammonical nitrogen. The LPI value of Kolkata landfill site at Dhapa was estimated and also compared with leachate quality data of other metropolitan cities viz. Mumbai, Delhi, Chennai as available in literatures. It is found that LPI of the Kolkata landfill site is highest compared to all other landfill sites of other metropolitan cities in India. PMID:25509951

  12. Mutation at a Strictly Conserved, Active Site Tyrosine in the Copper Amine Oxidase Leads to Uncontrolled Oxygenase Activity

    SciTech Connect

    Chen, Zhi-wei; Datta, Saumen; DuBois, Jennifer L.; Klinman, Judith P.; Mathews, F. Scott

    2010-09-07

    The copper amine oxidases carry out two copper-dependent processes: production of their own redox-active cofactor (2,4,5-trihydroxyphenylalanine quinone, TPQ) and the subsequent oxidative deamination of substrate amines. Because the same active site pocket must facilitate both reactions, individual active site residues may serve multiple roles. We have examined the roles of a strictly conserved active site tyrosine Y305 in the copper amine oxidase from Hansenula polymorpha kinetically, spetroscopically (Dubois and Klinman (2006) Biochemistry 45, 3178), and, in the present work, structurally. While the Y305A enzyme is almost identical to the wild type, a novel, highly oxygenated species replaces TPQ in the Y305F active sites. This new structure not only provides the first direct detection of peroxy intermediates in cofactor biogenesis but also indicates the critical control of oxidation chemistry that can be conferred by a single active site residue.

  13. Thermal regime of active layer at two lithologically contrasting sites on James Ross Island, Antarctic Peninsula.

    NASA Astrophysics Data System (ADS)

    Hrbáček, Filip; Nývlt, Daniel; Láska, Kamil

    2016-04-01

    Antarctic Peninsula region (AP) represents one of the most rapidly warming parts of our planet in the last 50 years. Despite increasing research activities along both western and eastern sides of AP in last decades, there is still a lot of gaps in our knowledge relating to permafrost, active layer and its thermal and physical properties. This study brings new results of active layer monitoring on James Ross Island, which is the largest island in northern AP. Its northern part, Ulu Peninsula, is the largest ice-free area (more than 200 km2) in the region. Due its large area, we focused this study on sites located in different lithologies, which would affect local thermal regime of active layer. Study site (1) at Abernethy Flats area (41 m a.s.l.) lies ~7 km from northern coast. Lithologically is formed by disintegrated Cretaceous calcareous sandstones and siltstones of the Santa Marta Formation. Study site (2) is located at the northern slopes of Berry Hill (56 m a.s.l.), about 0.4 km from northern coastline. Lithology is composed of muddy to intermediate diamictites, tuffaceous siltstones to fine grained sandstones of the Mendel Formation. Data of air temperature at 2 meters above ground and the active layer temperatures at 75 cm deep profiles were obtained from both sites in period 1 January 2012 to 31 December 2014. Small differences were found when comparing mean air temperatures and active temperatures at 5 and 75 cm depth in the period 2012-2014. While the mean air temperatures varied between -7.7 °C and -7.0 °C, the mean ground temperatures fluctuated between -6.6 °C and -6.1 °C at 5 cm and -6.9 °C and -6.0 °C at 75 cm at Abernethy Flats and Berry Hill slopes respectively. Even though ground temperature differences along the profiles weren't pronounced during thawing seasons, the maximum active layer thickness was significantly larger at Berry Hill slopes (80 to 82 cm) than at Abernethy Flats (52 to 64 cm). We assume this differences are affected by

  14. Probing the active site loop motif of murine ferrochelatase by random mutagenesis.

    PubMed

    Shi, Zhen; Ferreira, Gloria C

    2004-05-01

    Ferrochelatase catalyzes the terminal step of the heme biosynthetic pathway by inserting ferrous iron into protoporphyrin IX. A conserved loop motif was shown to form part of the active site and contact the bound porphyrin by molecular dynamics calculations and structural analysis. We applied a random mutagenesis approach and steady-state kinetic analysis to assess the role of the loop motif in murine ferrochelatase function, particularly with respect to porphyrin interaction. Functional substitutions in the 10 consecutive loop positions Gln(248)-Leu(257) were identified by genetic complementation in Escherichia coli strain Deltavis. Lys(250), Val(251), Pro(253), Val(254), and Pro(255) tolerated a variety of replacements including single substitutions and contained low informational content. Gln(248), Ser(249), Gly(252), Trp(256), and Leu(257) possessed high informational content, since permissible replacements were limited and only observed in multiply substituted mutants. Selected active loop variants exhibited k(cat) values comparable with or higher than that of wild-type murine ferrochelatase. The K(m) values for porphyrin increased, except for the single mutant V251L. Other than a moderate increase observed in the triple mutant S249A/K250Q/V251C, the K(m) values for Fe(2+) were lowered. The k(cat)/K(m) for porphyrin remained largely unchanged, with the exception of a 10-fold reduction in the triple mutant K250M/V251L/W256Y. The k(cat)/K(m) for Fe(2+) was improved. Molecular modeling of these active loop variants indicated that loop mutations resulted in alterations of the active site architecture. However, despite the plasticity of the loop primary structure, the relative spatial positioning of the loop in the active site appeared to be maintained in functional variants, supporting a role for the loop in ferrochelatase function. PMID:14981080

  15. Role of arginine-304 in the diphosphate-triggered active site closure mechanism of trichodiene synthase.

    PubMed

    Vedula, L Sangeetha; Cane, David E; Christianson, David W

    2005-09-27

    The X-ray crystal structures of R304K trichodiene synthase and its complexes with inorganic pyrophosphate (PP(i)) and aza analogues of the bisabolyl carbocation intermediate are reported. The R304K substitution does not cause large changes in the overall structure in comparison with the wild-type enzyme. The complexes with (R)- and (S)-azabisabolenes and PP(i) bind three Mg2+ ions, and each undergoes a diphosphate-triggered conformational change that caps the active site cavity. This conformational change is only slightly attenuated compared to that of the wild-type enzyme complexed with Mg2+(3)-PP(i), in which R304 donates hydrogen bonds to PP(i) and D101. In R304K trichodiene synthase, K304 does not engage in any hydrogen bond interactions in the unliganded state and it donates a hydrogen bond to only PP(i) in the complex with (R)-azabisabolene; K304 makes no hydrogen bond contacts in its complex with PP(i) and (S)-azabisabolene. Thus, although the R304-D101 hydrogen bond interaction stabilizes diphosphate-triggered active site closure, it is not required for Mg2+(3)-PP(i) binding. Nevertheless, since R304K trichodiene synthase generates aberrant cyclic terpenoids with a 5000-fold reduction in kcat/KM, it is clear that a properly formed R304-D101 hydrogen bond is required in the enzyme-substrate complex to stabilize the proper active site contour, which in turn facilitates cyclization of farnesyl diphosphate for the exclusive formation of trichodiene. Structural analysis of the R304K mutant and comparison with the monoterpene cyclase (+)-bornyl diphosphate synthase suggest that the significant loss in activity results from compromised activation of the PP(i) leaving group. PMID:16171386

  16. Role of Arginine-304 in the Diphosphate-Triggered Active Site Closure Mechanism of Trichodiene Synthase

    SciTech Connect

    Vedula,L.; Cane, D.; Christianson, D.

    2005-01-01

    The X-ray crystal structures of R304K trichodiene synthase and its complexes with inorganic pyrophosphate (PPi) and aza analogues of the bisabolyl carbocation intermediate are reported. The R304K substitution does not cause large changes in the overall structure in comparison with the wild-type enzyme. The complexes with (R)- and (S)-azabisabolenes and PPi bind three Mg2+ ions, and each undergoes a diphosphate-triggered conformational change that caps the active site cavity. This conformational change is only slightly attenuated compared to that of the wild-type enzyme complexed with Mg{sup 2+}{sub 3-}PP{sub i}, in which R304 donates hydrogen bonds to PP{sub i} and D101. In R304K trichodiene synthase, K304 does not engage in any hydrogen bond interactions in the unliganded state and it donates a hydrogen bond to only PP{sub i} in the complex with (R)-azabisabolene; K304 makes no hydrogen bond contacts in its complex with PP{sub i} and (S)-azabisabolene. Thus, although the R304-D101 hydrogen bond interaction stabilizes diphosphate-triggered active site closure, it is not required for Mg{sup 2+}{sub 3-}PP{sub i} binding. Nevertheless, since R304K trichodiene synthase generates aberrant cyclic terpenoids with a 5000-fold reduction in kcat/KM, it is clear that a properly formed R304-D101 hydrogen bond is required in the enzyme-substrate complex to stabilize the proper active site contour, which in turn facilitates cyclization of farnesyl diphosphate for the exclusive formation of trichodiene. Structural analysis of the R304K mutant and comparison with the monoterpene cyclase (+)-bornyl diphosphate synthase suggest that the significant loss in activity results from compromised activation of the PP{sub i} leaving group.

  17. NMR crystallography of enzyme active sites: probing chemically detailed, three-dimensional structure in tryptophan synthase.

    PubMed

    Mueller, Leonard J; Dunn, Michael F

    2013-09-17

    NMR crystallography--the synergistic combination of X-ray diffraction, solid-state NMR spectroscopy, and computational chemistry--offers unprecedented insight into three-dimensional, chemically detailed structure. Initially, researchers used NMR crystallography to refine diffraction data from organic and inorganic solids. Now we are applying this technique to explore active sites in biomolecules, where it reveals chemically rich detail concerning the interactions between enzyme site residues and the reacting substrate. Researchers cannot achieve this level of detail from X-ray, NMR,or computational methodologies in isolation. For example, typical X-ray crystal structures (1.5-2.5 Å resolution) of enzyme-bound intermediates identify possible hydrogen-bonding interactions between site residues and substrate but do not directly identify the protonation states. Solid-state NMR can provide chemical shifts for selected atoms of enzyme-substrate complexes, but without a larger structural framework in which to interpret them only empirical correlations with local chemical structure are possible. Ab initio calculations and molecular mechanics can build models for enzymatic processes, but they rely on researcher-specified chemical details. Together, however, X-ray diffraction, solid-state NMR spectroscopy, and computational chemistry can provide consistent and testable models for structure and function of enzyme active sites: X-ray crystallography provides a coarse framework upon which scientists can develop models of the active site using computational chemistry; they can then distinguish these models by comparing calculated NMR chemical shifts with the results of solid-state NMR spectroscopy experiments. Conceptually, each technique is a puzzle piece offering a generous view of the big picture. Only when correctly pieced together, however, can they reveal the big picture at the highest possible resolution. In this Account, we detail our first steps in the development of

  18. Conserved tyrosine 182 residue in hyperthermophilic esterase EstE1 plays a critical role in stabilizing the active site.

    PubMed

    Truongvan, Ngoc; Chung, Hye-Shin; Jang, Sei-Heon; Lee, ChangWoo

    2016-03-01

    An aromatic amino acid, Tyr or Trp, located in the esterase active site wall, is highly conserved, with hyperthermophilic esterases showing preference for Tyr and lower temperature esterases showing preference for Trp. In this study, we investigated the role of Tyr(182) in the active site wall of hyperthermophilic esterase EstE1. Mutation of Tyr to Phe or Ala had a moderate effect on EstE1 thermal stability. However, a small-to-large mutation such as Tyr to His or Trp had a devastating effect on thermal stability. All mutant EstE1 enzymes showed reduced catalytic rates and enhanced substrate affinities as compared with wild-type EstE1. Hydrogen bond formation involving Tyr(182) was unimportant for maintaining EstE1 thermal stability, as the EstE1 structure is already adapted to high temperatures via increased intramolecular interactions. However, removal of hydrogen bond from Tyr(182) significantly decreased EstE1 catalytic activity, suggesting its role in stabilization of the active site. These results suggest that Tyr is preferred over a similarly sized Phe residue or bulky His or Trp residue in the active site walls of hyperthermophilic esterases for stabilizing the active site and regulating catalytic activity at high temperatures. PMID:26838013

  19. Intragenic suppression of an active site mutation in the human apurinic/apyrimidinic endonuclease.

    PubMed

    Izumi, T; Malecki, J; Chaudhry, M A; Weinfeld, M; Hill, J H; Lee, J C; Mitra, S

    1999-03-19

    The apurinic/apyrimidinic endonucleases (APE) contain several highly conserved sequence motifs. The glutamic acid residue in a consensus motif, LQE96TK98 in human APE (hAPE-1), is crucial because of its role in coordinating Mg2+, an essential cofactor. Random mutagenesis of the inactive E96A mutant cDNA, followed by phenotypic screening in Escherichia coli, led to isolation of an intragenic suppressor with a second site mutation, K98R. Although the Km of the suppressor mutant was about sixfold higher than that of the wild-type enzyme, their kcat values were similar for AP endonuclease activity. These results suggest that the E96A mutation affects only the DNA-binding step, but not the catalytic step of the enzyme. The 3' DNA phosphoesterase activities of the wild-type and the suppressor mutant were also comparable. No global change of the protein conformation is induced by the single or double mutations, but a local perturbation in the structural environment of tryptophan residues may be induced by the K98R mutation. The wild-type and suppressor mutant proteins have similar Mg2+ requirement for activity. These results suggest a minor perturbation in conformation of the suppressor mutant enabling an unidentified Asp or Glu residue to substitute for Glu96 in positioning Mg2+ during catalysis. The possibility that Asp70 is such a residue, based on its observed proximity to the metal-binding site in the wild-type protein, was excluded by site-specific mutation studies. It thus appears that another acidic residue coordinates with Mg2+ in the mutant protein. These results suggest a rather flexible conformation of the region surrounding the metal binding site in hAPE-1 which is not obvious from the X-ray crystallographic structure. PMID:10074406

  20. Prioritizing conservation activities using reserve site selection methods and population viability analysis.

    PubMed

    Newbold, Stephen C; Siikamäki, Juha

    2009-10-01

    In recent years a large literature on reserve site selection (RSS) has developed at the interface between ecology, operations research, and environmental economics. Reserve site selection models use numerical optimization techniques to select sites for a network of nature reserves for protecting biodiversity. In this paper, we develop a population viability analysis (PVA) model for salmon and incorporate it into an RSS framework for prioritizing conservation activities in upstream watersheds. We use spawner return data for three closely related salmon stocks in the upper Columbia River basin and estimates of the economic costs of watershed protection from NOAA to illustrate the framework. We compare the relative cost-effectiveness of five alternative watershed prioritization methods, based on various combinations of biological and economic information. Prioritization based on biological benefit-economic cost comparisons and accounting for spatial interdependencies among watersheds substantially outperforms other more heuristic methods. When using this best-performing prioritization method, spending 10% of the cost of protecting all upstream watersheds yields 79% of the biological benefits (increase in stock persistence) from protecting all watersheds, compared to between 20% and 64% for the alternative methods. We also find that prioritization based on either costs or benefits alone can lead to severe reductions in cost-effectiveness. PMID:19831069

  1. Mutational Analysis of Substrate Interactions with the Active Site of Dialkylglycine Decarboxylase

    PubMed Central

    Fogle, Emily J.; Toney, Michael D.

    2010-01-01

    Pyridoxal phosphate (PLP) dependent enzymes catalyze many different types of reactions at the α-, β-, and γ-carbons of amine and amino acid substrates. Dialkylglycine decarboxylase (DGD) is an unusual PLP dependent enzyme that catalyzes two reaction types, decarboxylation and transamination, in the same active site. A structurally-based, functional model has been proposed for the DGD active site, which maintains that R406 is important in determining substrate specificity through interactions with the substrate carboxylate while W138 provides specificity for short-chain alkyl groups. The mechanistic roles of R406 and W138 were investigated using site directed mutagenesis, alternate substrates, and analysis of steady-state and half-reaction kinetics. Experiments on the R406M and R406K mutants confirm the importance of R406 in substrate binding. Surprisingly, this work also shows that the positive charge of R406 facilitates catalysis of decarboxylation. The W138F mutant demonstrates that W138 indeed acts to limit the size of the subsite C binding pocket, determining specificity for 2,2-dialkylglycines with small side chains as predicted by the model. Finally, work with the double mutant W138F/M141R shows that these mutations expand substrate specificity to include L-glutamate and lead to an increase in specificity for L-glutamate over 2-aminoisobutyrate of approximately eight orders of magnitude compared to WT DGD. PMID:20540501

  2. The role of active site tyrosine 58 in Citrobacter freundii methionine γ-lyase.

    PubMed

    Anufrieva, Natalya V; Faleev, Nicolai G; Morozova, Elena A; Bazhulina, Natalia P; Revtovich, Svetlana V; Timofeev, Vladimir P; Tkachev, Yaroslav V; Nikulin, Alexei D; Demidkina, Tatyana V

    2015-09-01

    In the spatial structure of methionine γ-lyase (MGL, EC 4.4.1.11) from Citrobacter freundii, Tyr58 is located at H-bonding distance to the oxygen atom of the phosphate "handle" of pyridoxal 5'-phosphate (PLP). It was replaced for phenylalanine by site-directed mutagenesis. The X-ray structure of the mutant enzyme was determined at 1.96Å resolution. Comparison of spatial structures and absorption spectra of wild-type and mutant holoenzymes demonstrated that the replacement did not result in essential changes of the conformation of the active site Tyr58Phe MGL. The Kd value of PLP for Tyr58Phe MGL proved to be comparable to the Kd value for the wild-type enzyme. The replacement led to a decrease of catalytic efficiencies in both γ- and β-elimination reactions of about two orders of magnitude as compared to those for the wild-type enzyme. The rates of exchange of C-α- and C-β- protons of inhibitors in D2O catalyzed by the mutant form are comparable with those for the wild-type enzyme. Spectral data on the complexes of the mutant form with the substrates and inhibitors showed that the replacement led to a change of rate the limiting step of the physiological reaction. The results allowed us to conclude that Tyr58 is involved in an optimal positioning of the active site Lys210 at some stages of γ- and β-elimination reactions. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.

  3. An ionizable active-site tryptophan imparts catalase activity to a peroxidase core.

    PubMed

    Loewen, Peter C; Carpena, Xavi; Vidossich, Pietro; Fita, Ignacio; Rovira, Carme

    2014-05-21

    Catalase peroxidases (KatG's) are bifunctional heme proteins that can disproportionate hydrogen peroxide (catalatic reaction) despite their structural dissimilarity with monofunctional catalases. Using X-ray crystallography and QM/MM calculations, we demonstrate that the catalatic reaction of KatG's involves deprotonation of the active-site Trp, which plays a role similar to that of the distal His in monofunctional catalases. The interaction of a nearby mobile arginine with the distal Met-Tyr-Trp essential adduct (in/out) acts as an electronic switch, triggering deprotonation of the adduct Trp.

  4. Nuclear Site Security in the Event of Terrorist Activity

    SciTech Connect

    Thomson, M.L.; Sims, J.

    2008-07-01

    This paper, presented as a poster, identifies why ballistic protection should now be considered at nuclear sites to counter terrorist threats. A proven and flexible form of multi purpose protection is described in detail with identification of trial results that show its suitability for this role. (authors)

  5. Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory

    SciTech Connect

    Taylor, D.D.; Hoskinson, R.L.; Kingsford, C.O.; Ball, L.W.

    1994-09-01

    The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria.

  6. Conformational dynamics of the active site loop of S-adenosylmethionine synthetase illuminated by site-directed spin labeling.

    PubMed

    Taylor, John C; Markham, George D

    2003-07-15

    S-adenosylmethionine synthetase (ATP: L-methionine S-adenosyltransferase, methionine adenosyltransferase, a.k.a. MAT) is one of numerous enzymes that have a flexible polypeptide loop that moves to gate access to the active site in a motion that is closely coupled to catalysis. Crystallographic studies of this tetrameric enzyme have shown that the loop is closed in the absence of bound substrates. However, the loop must open to allow substrate binding and a variety of data indicate that the loop is closed during the catalytic steps. Previous kinetic studies indicate that during turnover loop motion occurs on a time scale of 10(-2)s, ca. 10-fold faster than chemical transformations and turnover. Site-directed spin labeling has been used to introduce nitroxide groups at two positions in the loop to illuminate how the motion of the loop is affected by substrate binding. The two loop mutants constructed, G105C and D107C, retain wild type levels of MAT activity; attachment of a methanethiosulfonate spin label to convert the cysteine to the "R1" residue reduced the k(cat) only for the labeled D107R1 form (7-fold). The K(m) value for methionine increased 2- to 4-fold for the cysteine mutants and 2- to 7-fold for the labeled proteins, whereas the K(m) for ATP was changed by at most 2-fold. EPR spectra for both labeled proteins are nearly identical and show the presence of two major spin label environments with rotational diffusion rates differing by approximately 10-fold; the slower rate is ca. 4-fold faster than the estimated protein rotational rate. The spectra are not altered by addition of substrates or products. At both positions the less mobile conformation constitutes ca. 65% of the total species, indicating an equilibrium that only slightly favors one form, that in which the label is more immobilized. The equilibrium constant that relates the two forms is comparable to the equilibrium constant of 1.5 for a conformational change that was previously deduced from the

  7. Active Layer and Moisture Measurements for Intensive Site 0 and 1, Barrow, Alaska

    DOE Data Explorer

    John Peterson

    2015-04-17

    These are measurements of Active Layer Thickness collected along several lines beginning in September, 2011 to the present. The data were collected at several time periods along the Site0 L2 Line, the Site1 AB Line, and an ERT Monitoring Line near Area A in Site1.

  8. Structural mechanism of RuBisCO activation by carbamylation of the active site lysine

    PubMed Central

    Stec, Boguslaw

    2012-01-01

    Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is a crucial enzyme in carbon fixation and the most abundant protein on earth. It has been studied extensively by biochemical and structural methods; however, the most essential activation step has not yet been described. Here, we describe the mechanistic details of Lys carbamylation that leads to RuBisCO activation by atmospheric CO2. We report two crystal structures of nitrosylated RuBisCO from the red algae Galdieria sulphuraria with O2 and CO2 bound at the active site. G. sulphuraria RuBisCO is inhibited by cysteine nitrosylation that results in trapping of these gaseous ligands. The structure with CO2 defines an elusive, preactivation complex that contains a metal cation Mg2+ surrounded by three H2O/OH molecules. Both structures suggest the mechanism for discriminating gaseous ligands by their quadrupole electric moments. We describe conformational changes that allow for intermittent binding of the metal ion required for activation. On the basis of these structures we propose the individual steps of the activation mechanism. Knowledge of all these elements is indispensable for engineering RuBisCO into a more efficient enzyme for crop enhancement or as a remedy to global warming. PMID:23112176

  9. Comparing measured and modelled soil carbon: which site-specific variables are linked to high stability?

    NASA Astrophysics Data System (ADS)

    Robertson, Andy; Schipanski, Meagan; Ma, Liwang; Ahuja, Lajpat; McNamara, Niall; Smith, Pete; Davies, Christian

    2016-04-01

    Changes in soil carbon (C) stocks have been studied in depth over the last two decades, as net greenhouse gas (GHG) sinks are highlighted to be a partial solution to the causes of climate change. However, the stability of this soil C is often overlooked when measuring these changes. Ultimately a net sequestration in soils is far less beneficial if labile C is replacing more stable forms. To date there is no accepted framework for measuring soil C stability, and as a result there is considerable uncertainty associated with the simulated impacts of land management and land use change when using process-based systems models. However, a recent effort to equate measurable soil C fractions to model pools has generated data that help to assess the impacts of land management, and can ultimately help to reduce the uncertainty of model predictions. Our research compiles this existing fractionation data along with site metadata to create a simplistic statistical model able to quantify the relative importance of different site-specific conditions. Data was mined from 23 published studies and combined with original data to generate a dataset of 100+ land use change sites across Europe. For sites to be included they required soil C fractions isolated using the Zimmermann et al. (2007) method and specific site metadata (mean annual precipitation, MAP; mean annual temperature, MAT; soil pH; land use; altitude). Of the sites, 75% were used to develop a generalized linear mixed model (GLMM) to create coefficients where site parameters can be used to predict influence on the measured soil fraction C stocks. The remaining 25% of sites were used to evaluate uncertainty and validate this empirical model. Further, four of the aforementioned sites were used to simulate soil C dynamics using the RothC, DayCent and RZWQM2 models. A sensitivity analysis (4096 model runs for each variable applying Latin hypercube random sampling techniques) was then used to observe whether these models place

  10. Using catalytic atom maps to predict the catalytic functions present in enzyme active sites.

    PubMed

    Nosrati, Geoffrey R; Houk, K N

    2012-09-18

    Catalytic atom maps (CAMs) are minimal models of enzyme active sites. The structures in the Protein Data Bank (PDB) were examined to determine if proteins with CAM-like geometries in their active sites all share the same catalytic function. We combined the CAM-based search protocol with a filter based on the weighted contact number (WCN) of the catalytic residues, a measure of the "crowdedness" of the microenvironment around a protein residue. Using this technique, a CAM based on the Ser-His-Asp catalytic triad of trypsin was able to correctly identify catalytic triads in other enzymes within 0.5 Å rmsd of the CAM with 96% accuracy. A CAM based on the Cys-Arg-(Asp/Glu) active site residues from the tyrosine phosphatase active site achieved 89% accuracy in identifying this type of catalytic functionality. Both of these CAMs were able to identify active sites across different fold types. Finally, the PDB was searched to locate proteins with catalytic functionality similar to that present in the active site of orotidine 5'-monophosphate decarboxylase (ODCase), whose mechanism is not known with certainty. A CAM, based on the conserved Lys-Asp-Lys-Asp tetrad in the ODCase active site, was used to search the PDB for enzymes with similar active sites. The ODCase active site has a geometry similar to that of Schiff base-forming Class I aldolases, with lowest aldolase rmsd to the ODCase CAM at 0.48 Å. The similarity between this CAM and the aldolase active site suggests that ODCase has the correct catalytic functionality present in its active site for the generation of a nucleophilic lysine. PMID:22909276

  11. Using Catalytic Atom Maps to Predict the Catalytic Functions Present in Enzyme Active Sites

    PubMed Central

    Nosrati, Geoffrey R.; Houk, K. N.

    2012-01-01

    Catalytic Atom Maps (CAMs) are minimal models of enzyme active sites. The structures in the Protein Data Bank (PDB) were examined to determine if proteins with CAM-like geometries in their active sites all share the same catalytic function. We combined the CAM-based search protocol with a filter based on the weighted contact number (WCN) of the catalytic residues, a measure of the “crowdedness” of the microenvironment around a protein residue. Using this technique, a CAM based on the Ser-His-Asp catalytic triad of trypsin was able to correctly identify catalytic triads in other enzymes within 0.5 Å RMSD of the Catalytic Atom Map with 96% accuracy. A CAM based on the Cys-Arg-(Asp/Glu) active site residues from the tyrosine phosphatase active site achieved 89% accuracy in identifying this type of catalytic functionality. Both of these Catalytic Atom Maps were able to identify active sites across different fold types. Finally, the PDB was searched to locate proteins with catalytic functionality similar to that present in the active site of orotidine 5′-monophosphate decarboxylase (ODCase), whose mechanism is not known with certainty. A CAM, based on the conserved Lys-Asp-Lys-Asp tetrad in the ODCase active site, was used to search the PDB for enzymes with similar active sites. The ODCase active site has a geometry similar to that of Schiff base-forming Class I aldolases, with lowest aldolase RMSD to the ODCase CAM at 0.48 Å. The similarity between this CAM and the aldolase active site suggests that ODCase has the correct catalytic functionality present in its active site for the generation of a nucleophilic lysine. PMID:22909276

  12. Comparative hepatic cytochrome P450 activities and contaminant concentrations in caged carp and juvenile ducks

    SciTech Connect

    O`Keefe, P.; Gierthy, J.; Connor, S.; Bush, B.; Hong, C.S.; Wood, L.; Clayton, W.; Storm, R.

    1995-12-31

    Juvenile carp (Cyprinius carpio) weighing approx. 60 g were placed in cages located on the surface of sediments near an aluminum plant and an automobile parts plant in the Massena area of the St. Lawrence River. Fish were removed at weekly intervals over a 35 day exposure period and composited samples of liver tissue, cranial lipid, and fillet tissue were prepared for analysis of polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/PCDFs). Liver tissue was also stored at {minus}80 C for determination of microsomal Cytochrome P450 activity using the aryl hydrocarbon hydroxylase (AHH) assay. A control exposure was carried out upstream at an uncontaminated site. Juvenile pre-flight ducks (mallards, gadwalls, wood ducks and common mergansers) were collected in the contaminated areas on the St. Lawrence and on the Hudson River two to three months after hatching. Control pre-flight mallards, wood ducks and common mergansers were collected from remote lakes in the Addirondack State Park. Samples of subcutaneous fat and liver tissue were removed for analysis as described above for the carp. There was a three fold increase in AHH activity in the carp liver tissue at the end of the 35 day exposure period and there was a similar increase it activity for the mallards, common mergansers and wood ducks compared to controls. For each species the enzyme activity increases will be compared to the contaminant concentrations.

  13. Active Site Dependent Reaction Mechanism over Ru/CeO2 Catalyst toward CO2 Methanation.

    PubMed

    Wang, Fei; He, Shan; Chen, Hao; Wang, Bin; Zheng, Lirong; Wei, Min; Evans, David G; Duan, Xue

    2016-05-18

    Oxygen vacancy on the surface of metal oxides is one of the most important defects which acts as the reactive site in a variety of catalytic reactions. In this work, operando spectroscopy methodology was employed to study the CO2 methanation reaction catalyzed by Ru/CeO2 (with oxygen vacancy in CeO2) and Ru/α-Al2O3 (without oxygen vacancy), respectively, so as to give a thorough understanding on active site dependent reaction mechanism. In Ru/CeO2 catalyst, operando XANES, IR, and Raman were used to reveal the generation process of Ce(3+), surface hydroxyl, and oxygen vacancy as well as their structural evolvements under practical reaction conditions. The steady-state isotope transient kinetic analysis (SSITKA)-type in situ DRIFT infrared spectroscopy undoubtedly substantiates that CO2 methanation undergoes formate route over Ru/CeO2 catalyst, and the formate dissociation to methanol catalyzed by oxygen vacancy is the rate-determining step. In contrast, CO2 methanation undergoes CO route over Ru surface in Ru/α-Al2O3 with the absence of oxygen vacancy, demonstrating active site dependent catalytic mechanism toward CO2 methanation. In addition, the catalytic activity evaluation and the oscillating reaction over Ru/CeO2 catalyst further prove that the oxygen vacancy catalyzes the rate-determining step with a much lower activation temperature compared with Ru surface in Ru/α-Al2O3 (125 vs 250 °C). PMID:27135417

  14. Decreased physical activity in Pima Indian compared with Caucasian children.

    PubMed

    Fontvieille, A M; Kriska, A; Ravussin, E

    1993-08-01

    Since reduced physical activity might be a risk factor for body weight gain, we studied the relationship between physical activity and body composition in 43 Pima Indian children (22 male/21 female, mean +/- s.d.: 9.9 +/- 1.1 years) and 42 Caucasian children (21 male/21 female, 9.7 +/- 1.2 years). A list of usual sport leisure activities was established (e.g. bicycling, swimming, basketball) and the subjects were asked how much time they had devoted to each activity over the past week and the last year. Data on time spent playing outside (excluding sport leisure activities for the estimation of physical activity) and watching television/videos were also collected. Pima Indians were taller (143 +/- 9 vs. 137 +/- 8 cm, P < 0.001), heavier (48.6 +/- 15.8 vs. 32.9 +/- 7.8 kg, P < 0.0001) and fatter (39 +/- 16 vs. 24 +/- 7% fat, P < 0.001) than Caucasians. Pima Indian girls showed significantly lower past year and past week sport leisure activity than Caucasian girls (P < 0.01) and spent significantly more time watching television/videos (P < 0.05). Pima boys also showed significantly lower past week sport leisure activity than Caucasian boys (P < 0.05). In Pima Indian boys, past year sport leisure activity correlated negatively (P < 0.05) with body mass index (r = -0.49) and percentage body fat (r = -0.56). However, such correlations were not found in Pima Indian girls, possibly due their very low levels of activity.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Investigation of the active sites of rhodium sulfide for hydrogen evolution/oxidation using carbon monoxide as a probe.

    PubMed

    Singh, Nirala; Upham, David C; Liu, Ru-Fen; Burk, Jonathan; Economou, Nick; Buratto, Steven; Metiu, Horia; McFarland, Eric W

    2014-05-20

    Carbon monoxide (CO) was observed to decrease the activity for hydrogen evolution, hydrogen oxidation, and H2-D2 exchange on rhodium sulfide, platinum, and rhodium metal. The temperature at which the CO was desorbed from the catalyst surface (detected by recovery in the H2-D2 exchange activity of the catalyst) was used as a descriptor for the CO binding energy to the active site. The differences in the CO desorption temperature between the different catalysts showed that the rhodium sulfide active site is not metallic rhodium. Using density functional theory, the binding energy of CO to the Rh sites in rhodium sulfide is found comparable to the binding energy on Pt. Coupled with experiment this supports the proposition that rhodium rather than sulfur atoms in the rhodium sulfide are the active site for the hydrogen reaction. This would indicate the active sites for hydrogen evolution/oxidation as well as oxygen reduction (determined by other groups using X-ray absorption spectroscopy) may be the same.

  16. Parameterization of an Active Thermal Erosion Site, Caribou Creek, Alaska

    NASA Astrophysics Data System (ADS)

    Busey, R.; Bolton, W. R.; Cherry, J. E.; Hinzman, L. D.

    2012-12-01

    Thermokarst features are thought to be an important mechanism for landscape change in permafrost-dominated cold regions, but few such features have been incorporated into full featured landscape models. The root of this shortcoming is that historic observations are not detailed enough to parameterize a model, and the models typically do not include the relevant processes for thermal erosion. A new, dynamic thermokarst feature has been identified at the Caribou-Poker Creek Research Watershed (CPCRW) in the boreal forest of Interior Alaska. Located adjacent to a traditional use trail, this feature terminates directly in Caribou Creek. Erosion within the feature is driven predominantly by fluvial interflow. CPCRW is a Long-Term Ecological Research site underlain by varying degrees of relatively warm, discontinuous permafrost. This poster will describe the suite of measurements that have been undertaken to parameterize the ERODE model for this site, including thorough surveys, time lapse- and aerial photography, and 3-D structure from motion algorithms.

  17. The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs

    PubMed Central

    2002-01-01

    Background Comparative analysis of RNA sequences is the basis for the detailed and accurate predictions of RNA structure and the determination of phylogenetic relationships for organisms that span the entire phylogenetic tree. Underlying these accomplishments are very large, well-organized, and processed collections of RNA sequences. This data, starting with the sequences organized into a database management system and aligned to reveal their higher-order structure, and patterns of conservation and variation for organisms that span the phylogenetic tree, has been collected and analyzed. This type of information can be fundamental for and have an influence on the study of phylogenetic relationships, RNA structure, and the melding of these two fields. Results We have prepared a large web site that disseminates our comparative sequence and structure models and data. The four major types of comparative information and systems available for the three ribosomal RNAs (5S, 16S, and 23S rRNA), transfer RNA (tRNA), and two of the catalytic intron RNAs (group I and group II) are: (1) Current Comparative Structure Models; (2) Nucleotide Frequency and Conservation Information; (3) Sequence and Structure Data; and (4) Data Access Systems. Conclusions This online RNA sequence and structure information, the result of extensive analysis, interpretation, data collection, and computer program and web development, is accessible at our Comparative RNA Web (CRW) Site http://www.rna.icmb.utexas.edu. In the future, more data and information will be added to these existing categories, new categories will be developed, and additional RNAs will be studied and presented at the CRW Site. PMID:11869452

  18. Identification of the active-site serine in human lecithin: cholesterol acyltransferase

    SciTech Connect

    Farooqui, J.; Wohl, R.C.; Kezdy, F.J.; Scanu, A.M.

    1987-05-01

    Lecithin:cholesterol acyltransferase (LCAT) from human plasma reacts stoichiometrically with diisopropylphosphorofluoridate (DFP) resulting in the complete loss of transacylase activity. Purified LCAT was covalently labeled with (TH) DFP and the labeled protein was reduced and carboxymethylated. Cyanogen bromide cleavage followed by gel permeation chromatography yielded a peptide of 4-5 KDa (LCAT CNBr-III) containing most of the radioactive label. Preliminary studies comparing the amino acid composition of the LCAT-CNBr-III with the sequence of LCAT indicate that this peptide corresponds to fragment 168-220. Automated Edman degradation of the radioactive peptide recovered a radioactive PTC-amino acid at cycle 14. Of all predicted CNBr fragments only peptide 168-220 contained a serine at residue 14 from the amino terminus of the peptide. The authors conclude that serine 181 is the active site serine of LCAT.

  19. Blogs and Social Network Sites as Activity Systems: Exploring Adult Informal Learning Process through Activity Theory Framework

    ERIC Educational Resources Information Center

    Heo, Gyeong Mi; Lee, Romee

    2013-01-01

    This paper uses an Activity Theory framework to explore adult user activities and informal learning processes as reflected in their blogs and social network sites (SNS). Using the assumption that a web-based space is an activity system in which learning occurs, typical features of the components were investigated and each activity system then…

  20. Use of Temperature and Surface Gas Flux as Novel Measures of Microbial Activity at a Crude Oil Spill Site

    NASA Astrophysics Data System (ADS)

    Bekins, B. A.; Warren, E.; Sihota, N. J.; Hostettler, F. D.

    2012-12-01

    Degradation of crude oil in the subsurface has been studied for over 30 years at a spill site located near Bemidji, Minnesota, USA. The well-characterized site is being used to experiment with the use of surface gas flux and temperature measurements as novel methods for quantifying microbial activity. In the largest subsurface oil body, a 2-m-thick smear zone spans the water table 6-8 m below the surface. Methane produced from degradation of the oil diffuses upward and mixes with oxygen from the surface supporting aerobic methanotrophy at 2-4 m depth. The methane oxidation produces CO2 and heat at rates which are hypothetically proportional to other measures of subsurface microbial activity. To test this hypothesis, vertical profiles of temperature and microbial populations, surface CO2 flux, and oil degradation state were measured at three sites in the oil body and one background site. Temperature increases in the oil zone near the water table were 1-4°C above the background site. The site with the highest temperature increase at the water table also had the highest concentrations of gene copy numbers for methanogens (mcrA) and methanotrophs (pmoA) along with the most degraded oil. Surface CO2 flux over the oil sites averaged more than twice that at the background site but was not consistently highest over the site with the highest activity by other measures. One possible explanation for this discrepancy is variation in the effective diffusion coefficient of the vadose zone between the methanotrophic zone and the surface. At the level of the methanotrophic zone, temperatures were elevated 2-6°C over the background values but again the site with greatest average annual temperature increase was not at the most active site. This may be due to enhanced recharge at the most active site, which lies at the center of a local topographic depression where focused recharge occurs. Overall, the temperature and flux data showed significant increases at the oil sites compared

  1. Early Site Permit Demonstration Program: Recommendations for communication activities and public participation in the Early Site Permit Demonstration Program

    SciTech Connect

    Not Available

    1993-01-27

    On October 24, 1992, President Bush signed into law the National Energy Policy Act of 1992. The bill is a sweeping, comprehensive overhaul of the Nation`s energy laws, the first in more than a decade. Among other provisions, the National Energy Policy Act reforms the licensing process for new nuclear power plants by adopting a new approach developed by the US Nuclear Regulatory Commission (NRC) in 1989, and upheld in court in 1992. The NRC 10 CFR Part 52 rule is a three-step process that guarantees public participation at each step. The steps are: early site permit approval; standard design certifications; and, combined construction/operating licenses for nuclear power reactors. Licensing reform increases an organization`s ability to respond to future baseload electricity generation needs with less financial risk for ratepayers and the organization. Costly delays can be avoided because design, safety and siting issues will be resolved before a company starts to build a plant. Specifically, early site permit approval allows for site suitability and acceptability issues to be addressed prior to an organization`s commitment to build a plant. Responsibility for site-specific activities, including communications and public participation, rests with those organizations selected to try out early site approval. This plan has been prepared to assist those companies (referred to as sponsoring organizations) in planning their communications and public involvement programs. It provides research findings, information and recommendations to be used by organizations as a resource and starting point in developing their own plans.

  2. Subway construction activity influence on polycyclic aromatic hydrocarbons in fine particles: Comparison with a background mountainous site

    NASA Astrophysics Data System (ADS)

    Kong, Shaofei; Li, Xuxu; Li, Qi; Yin, Yan; Li, Li; Chen, Kui; Liu, Dantong; Yuan, Liang; Pang, Xiaobing

    2015-07-01

    Intensive construction activities worsened the surrounding atmospheric environment in China. Eighteen polycyclic aromatic hydrocarbons (PAHs) in fine particles (PM2.5) were collected at a subway construction site (SC) of Nanjing and compared with a regional background mountainous site (BM) to examine the influence of anthropogenic activities on concentrations, sources and health risks of PAHs. Average PAH concentrations at SC were higher than BM at a factor of about 5.9. All PAH species at SC were higher than BM, with the SC/BM ratios ranging from 1.3 (NaP) to 10.3 (BaP). PAH profiles differed for the two sites. The SC site had higher mass fractions of PAHs from coal combustion and vehicle emission, while the BM site held higher mass percentages of PAHs from long-range transported wood combustion and industrial activities. Lower temperature at BM may lead to the higher mass percentages of low ring PAHs. Coal combustion, traffic emissions and biomass burning were the common sources for PAHs at both SC and BM. Construction workers were exposed to higher BaPeq concentrations, nearly ten times of the background site and their lifetime cancer risk reached to 0.6 per 1,000,000 exposed worker, owing to the influence of coal combustion, vehicle emission and industrial activities at the surroundings of SC.

  3. Active Site Structure and Peroxidase Activity of Oxidatively Modified Cytochrome c Species in Complexes with Cardiolipin.

    PubMed

    Capdevila, Daiana A; Oviedo Rouco, Santiago; Tomasina, Florencia; Tortora, Verónica; Demicheli, Verónica; Radi, Rafael; Murgida, Daniel H

    2015-12-29

    We report a resonance Raman and UV-vis characterization of the active site structure of oxidatively modified forms of cytochrome c (Cyt-c) free in solution and in complexes with cardiolipin (CL). The studied post-translational modifications of Cyt-c include methionine sulfoxidation and tyrosine nitration, which lead to altered heme axial ligation and increased peroxidase activity with respect to those of the wild-type protein. In spite of the structural and activity differences between the protein variants free in solution, binding to CL liposomes induces in all cases the formation of a spectroscopically identical bis-His axial coordination conformer that more efficiently promotes lipid peroxidation. The spectroscopic results indicate that the bis-His form is in equilibrium with small amounts of high-spin species, thus suggesting a labile distal His ligand as the basis for the CL-induced increase in enzymatic activity observed for all protein variants. For Cyt-c nitrated at Tyr74 and sulfoxidized at Met80, the measured apparent binding affinities for CL are ∼4 times larger than for wild-type Cyt-c. On the basis of these results, we propose that these post-translational modifications may amplify the pro-apoptotic signal of Cyt-c under oxidative stress conditions at CL concentrations lower than for the unmodified protein.

  4. Identification of ice nucleation active sites on feldspar dust particles.

    PubMed

    Zolles, Tobias; Burkart, Julia; Häusler, Thomas; Pummer, Bernhard; Hitzenberger, Regina; Grothe, Hinrich

    2015-03-19

    Mineral dusts originating from Earth's crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts. Here we investigated in closer detail the reasons for its activity and the difference in the activity of the different feldspars. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. K-feldspar showed by far the highest ice nucleation activity. Finally, we give a potential explanation of this effect, finding alkali-metal ions having different hydration shells and thus an influence on the ice nucleation activity of feldspar surfaces. PMID:25584435

  5. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles

    PubMed Central

    2015-01-01

    Mineral dusts originating from Earth’s crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts. Here we investigated in closer detail the reasons for its activity and the difference in the activity of the different feldspars. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. K-feldspar showed by far the highest ice nucleation activity. Finally, we give a potential explanation of this effect, finding alkali-metal ions having different hydration shells and thus an influence on the ice nucleation activity of feldspar surfaces. PMID:25584435

  6. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination.

    PubMed

    Rowley, Paul A; Kachroo, Aashiq H; Ma, Chien-Hui; Maciaszek, Anna D; Guga, Piotr; Jayaram, Makkuni

    2015-07-13

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5' to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions. PMID:25999343

  7. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination.

    PubMed

    Rowley, Paul A; Kachroo, Aashiq H; Ma, Chien-Hui; Maciaszek, Anna D; Guga, Piotr; Jayaram, Makkuni

    2015-07-13

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5' to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions.

  8. Active site densities, oxygen activation and adsorbed reactive oxygen in alcohol activation on npAu catalysts.

    PubMed

    Wang, Lu-Cun; Friend, C M; Fushimi, Rebecca; Madix, Robert J

    2016-07-01

    The activation of molecular O2 as well as the reactivity of adsorbed oxygen species is of central importance in aerobic selective oxidation chemistry on Au-based catalysts. Herein, we address the issue of O2 activation on unsupported nanoporous gold (npAu) catalysts by applying a transient pressure technique, a temporal analysis of products (TAP) reactor, to measure the saturation coverage of atomic oxygen, its collisional dissociation probability, the activation barrier for O2 dissociation, and the facility with which adsorbed O species activate methanol, the initial step in the catalytic cycle of esterification. The results from these experiments indicate that molecular O2 dissociation is associated with surface silver, that the density of reactive sites is quite low, that adsorbed oxygen atoms do not spill over from the sites of activation onto the surrounding surface, and that methanol reacts quite facilely with the adsorbed oxygen atoms. In addition, the O species from O2 dissociation exhibits reactivity for the selective oxidation of methanol but not for CO. The TAP experiments also revealed that the surface of the npAu catalyst is saturated with adsorbed O under steady state reaction conditions, at least for the pulse reaction. PMID:27376884

  9. Economic deprivation and racial segregation: comparing Superfund sites in Portland, Oregon and Detroit, Michigan.

    PubMed

    Smith, Chad L

    2009-09-01

    The research presented here weighs the ability of two major explanations of social inequality-Massey and Denton's racial segregation explanation and Wilson's emphasis on economic deprivation (concentrated poverty)-to predict environmental inequality. Two sets of logistic regression analyses are used to predict the location of Superfund sites in Portland, Oregon and Detroit, Michigan providing a conditional understanding of environmental inequality within a larger sociological context. The analysis includes a general examination of the two theories in all census tracts in both cities and a set of analyses focusing upon Black neighborhoods in Detroit. The findings indicate that there is support for explanations of environmental inequality that include both racial segregation and economic deprivation, but that the more powerful of the two is economic deprivation. The results suggest that even though African-American neighborhoods disproportionately house Superfund sites, these facilities are more likely to be located in Black neighborhoods that are economically deprived.

  10. Comparative analyses of spent nuclear fuel transport modal options: Transport options under existing site constraints

    SciTech Connect

    Brentlinger, L.A.; Hofmann, P.L.; Peterson, R.W.

    1989-08-01

    The movement of nuclear waste can be accomplished by various transport modal options involving different types of vehicles, transport casks, transport routes, and intermediate intermodal transfer facilities. A series of systems studies are required to evaluate modal/intermodal spent fuel transportation options in a consistent fashion. This report provides total life-cycle cost and life-cycle dose estimates for a series of transport modal options under existing site constraints. 14 refs., 7 figs., 28 tabs.

  11. Comparative evaluation of international practice in remediating hazardous and radioactive waste sites

    SciTech Connect

    Santiago, J.L.; Gonzales, D.E.; Caldwell, J.A.

    1995-12-31

    A series of disposal cells and, particularly, the covers used to contain radioactive and hazardous waste from site remediation are described. The disposal site locations vary from the south of Spain to the entire United States climatic zones, including the west and the high precipitation regions of the east. While the regulations that govern the design and construction of these many disposal cells and covers vary greatly, it is shown that a similar engineering approach is adopted regardless of the laws that establish performance criteria. It is concluded that the site specifics, including the availability of suitable materials and climax vegetation, are the primary determinants of the design of robust, long-term covers for radioactive and hazardous waste encapsulation. Case histories are used as a basis to suggest a series of international norms or desiderata to govern the design, construction, and maintenance of long-term disposal cell covers. Numerical and analytic pathway analysis plays a key role in the design process and fulfillment of the protection of human health and the environment.

  12. Comparative Analysis of Protein Tyrosine Phosphatases Regulating Microglial Activation

    PubMed Central

    Song, Gyun Jee; Kim, Jaehong; Kim, Jong-Heon; Song, Seungeun; Park, Hana; Zhang, Zhong-Yin

    2016-01-01

    Protein tyrosine phosphatases (PTPs) are key regulatory factors in inflammatory signaling pathways. Although PTPs have been extensively studied, little is known about their role in neuroinflammation. In the present study, we examined the expression of 6 different PTPs (PTP1B, TC-PTP, SHP2, MEG2, LYP, and RPTPβ) and their role in glial activation and neuroinflammation. All PTPs were expressed in brain and glia. The expression of PTP1B, SHP2, and LYP was enhanced in the inflamed brain. The expression of PTP1B, TC-PTP, and LYP was increased after treating microglia cells with lipopolysaccharide (LPS). To examine the role of PTPs in microglial activation and neuroinflammation, we used specific pharmacological inhibitors of PTPs. Inhibition of PTP1B, TC-PTP, SHP2, LYP, and RPTPβ suppressed nitric oxide production in LPS-treated microglial cells in a dose-dependent manner. Furthermore, intracerebroventricular injection of PTP1B, TC-PTP, SHP2, and RPTPβ inhibitors downregulated microglial activation in an LPS-induced neuroinflammation model. Our results indicate that multiple PTPs are involved in regulating microglial activation and neuroinflammation, with different expression patterns and specific functions. Thus, PTP inhibitors can be exploited for therapeutic modulation of microglial activation in neuroinflammatory diseases. PMID:27790059

  13. A Tale of Two Web Spaces: Comparing Sites Using Web Impact Factors.

    ERIC Educational Resources Information Center

    Smith, Alastair

    1999-01-01

    Explains the Web impact factor (WIF) for comparing the relative attractiveness or influence of Web spaces, where the WIF is the number of pages linking to a Web space divided by the number of pages in the Web space. Compares WIFs for Australasian universities and for Australasian electronic journals. (Author/LRW)

  14. Comparative study between two different active flutter suppression systems

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1978-01-01

    An activated leading-edge (LE)-tailing-edge (TE) control system is applied to a drone aircraft with the objective of enabling the drone to fly subsonically at dynamic pressures which are 44% above the open-loop flutter dynamic pressure. The control synthesis approach is based on the aerodynamic energy concept and it incorporates recent developments in this area. A comparison is made between the performance of the activated LE-TE control system and the performance of a TE control system, analyzed in a previous work. The results obtained indicate that although all the control systems achieve the flutter suppression objectives, the TE control system appears to be somewhat superior to the LE-TE control system, in this specific application. This superiority is manifested through reduced values of control surface activity over a wide range of flight conditions.

  15. Comparative study of antral gastrin activity in some mammals.

    PubMed

    Amure, B O; Omole, A

    1971-04-01

    1. The amounts of crude gastrin extract and the gastrin activities of extracts from antral mucosa of several mammalian species have been determined.2. The yield of crude gastrin powder per gramme wet weight of antral mucosa was greater in goats and rabbits than in cat, dog, man or pig.3. Statistical differences do not appear to exist between the potencies of gastrin from the various species. The potencies of the powders were within the ranges 1.2-1.8 mug porcine gastrin II/mg with the exception of the extract from frozen dog antra (0.8 mug/mg).4. During prolonged freezing of animal antra and consequent thawing before extraction, significant losses in gastrin activity occurred in the dog.5. The amounts of gastrin activity per gramme wet weight of antral mucosa from herbivores (goat, rabbit and cattle) were greater than those from non-herbivores (cat, dog, man and pig).

  16. Possible active site of the sweet-tasting protein thaumatin.

    PubMed

    Slootstra, J W; De Geus, P; Haas, H; Verrips, C T; Meloen, R H

    1995-10-01

    Epitopes on thaumatin and monellin were studied using the PEPSCAN-technology. The antibodies used were raised against thaumatin. Only antibodies that, in an ELISA, both recognized thaumatin and monellin were used in the PEPSCAN-analyses. On thaumatin two major overlapping epitopes were identified. On monellin no epitopes could be identified. The identified epitope region on thaumatin shares structural features with various peptide and protein sweeteners. It contains an aspartame-like site which is formed by Asp21 and Phe80, tips of the two extruding loops KGDAALDAGGR19-29 and CKRFGRPP77-84, which are spatially positioned next to each other. Furthermore, sub-sequences of the KGDAALDAGGR19-29 loop are similar to peptide-sweeteners such as L-Asp-D-Ala-L-Ala-methyl ester and L-Asp-D-Ala-Gly-methyl ester. Since the aspartame-like Asp21-Phe80 site and the peptide-sweetener-like sequences are also not present in non-sweet thaumatin-like proteins it is postulated that the KGDAALDAGGR19-29- and CKRFGRPP77-84 loop contain important sweet-taste determinants. This region has previously not been implicated as a sweet-taste determinant of thaumatin.

  17. Sediment biogeochemistry and microbial activity at natural hydrocarbon seeps and at sites impacted by anthropogenic hydrocarbon discharges

    NASA Astrophysics Data System (ADS)

    Joye, S. B.; Sibert, R.; Battles, J.; Fields, L.; Kleindienst, S.; Crespo-Medina, M.; Hunter, K.; Meile, C. D.; Montoya, J. P.

    2013-12-01

    Natural hydrocarbon seeps occur along the seafloor where geologic faults facilitate transfer of deeply sourced fluids enriched in gas, oil, and dissolved organic matter through shallow sediments and into the water column. At natural seeps, microbial populations specialize in hydrocarbon degradation and rates of microbial activity, including sulfate reduction and anaerobic oxidation of methane, can be extremely high. As a result, the biogeochemical signature of sediments near areas of active natural seepage is distinct: high concentrations of metabolic end products, such as dissolved inorganic carbon and hydrogen sulfide, abound, and often, high dissolved inorganic carbon concentrations result in the precipitation of authigenic carbonate minerals. We examined microbial processes and biogeochemical signatures at two natural seeps, Green Canyon 600 and Mississippi Canyon 118. Higher and more frequent seepage loci at the Green Canyon 600 site led to more widespread hotspots of elevated microbial activity and distinct geochemistry. However, rates of microbial activity were comparable at the two sites in areas of active hydrocarbon seepage. The microbial communities at the two sites were surprisingly different. The second group of sites was impacted by anthropogenic hydrocarbon discharges instead of natural seepage. One site, Oceanus 26, lies near the Deepwater Horizon/Macondo wellhead and was impacted by weathered oil sedimentation during the Macondo discharge. The second set of impacted sites, noted as Taylor Energy, lie near a sunken platform and compromised riser, which have together resulted in persistent hydrocarbon discharge to the adjacent oceanic system for more than 6 years. Rates of microbial activity in the upper sediments at Oceanus 26 were depressed relative to activity in the deeper layers, suggesting inhibition by the presence of weathered oil or an microbial community unable to weather the carbon available in the layer. At the Taylor energy site

  18. Relating subsurface temperature changes to microbial activity at a crude oil-contaminated site.

    PubMed

    Warren, Ean; Bekins, Barbara A

    2015-11-01

    Crude oil at a spill site near Bemidji, Minnesota has been undergoing aerobic and anaerobic biodegradation for over 30 years, creating a 150-200 m plume of primary and secondary contaminants. Microbial degradation generates heat that should be measurable under the right conditions. To measure this heat, thermistors were installed in wells in the saturated zone and in water-filled monitoring tubes in the unsaturated zone. In the saturated zone, a thermal groundwater plume originates near the residual oil body with temperatures ranging from 2.9°C above background near the oil to 1.2°C down gradient. Temperatures in the unsaturated zone above the oil body were up to 2.7°C more than background temperatures. Previous work at this site has shown that methane produced from biodegradation of the oil migrates upward and is oxidized in a methanotrophic zone midway between the water table and the surface. Enthalpy calculations and observations demonstrate that the temperature increases primarily result from aerobic methane oxidation in the unsaturated zone above the oil. Methane oxidation rates at the site independently estimated from surface CO2 efflux data are comparable to rates estimated from the observed temperature increases. The results indicate that temperature may be useful as a low-cost measure of activity but care is required to account for the correct heat-generating reactions, other heat sources and the effects of focused recharge.

  19. Relating subsurface temperature changes to microbial activity at a crude oil-contaminated site.

    PubMed

    Warren, Ean; Bekins, Barbara A

    2015-11-01

    Crude oil at a spill site near Bemidji, Minnesota has been undergoing aerobic and anaerobic biodegradation for over 30 years, creating a 150-200 m plume of primary and secondary contaminants. Microbial degradation generates heat that should be measurable under the right conditions. To measure this heat, thermistors were installed in wells in the saturated zone and in water-filled monitoring tubes in the unsaturated zone. In the saturated zone, a thermal groundwater plume originates near the residual oil body with temperatures ranging from 2.9°C above background near the oil to 1.2°C down gradient. Temperatures in the unsaturated zone above the oil body were up to 2.7°C more than background temperatures. Previous work at this site has shown that methane produced from biodegradation of the oil migrates upward and is oxidized in a methanotrophic zone midway between the water table and the surface. Enthalpy calculations and observations demonstrate that the temperature increases primarily result from aerobic methane oxidation in the unsaturated zone above the oil. Methane oxidation rates at the site independently estimated from surface CO2 efflux data are comparable to rates estimated from the observed temperature increases. The results indicate that temperature may be useful as a low-cost measure of activity but care is required to account for the correct heat-generating reactions, other heat sources and the effects of focused recharge. PMID:26409188

  20. Relating subsurface temperature changes to microbial activity at a crude oil-contaminated site

    NASA Astrophysics Data System (ADS)

    Warren, Ean; Bekins, Barbara A.

    2015-11-01

    Crude oil at a spill site near Bemidji, Minnesota has been undergoing aerobic and anaerobic biodegradation for over 30 years, creating a 150-200 m plume of primary and secondary contaminants. Microbial degradation generates heat that should be measurable under the right conditions. To measure this heat, thermistors were installed in wells in the saturated zone and in water-filled monitoring tubes in the unsaturated zone. In the saturated zone, a thermal groundwater plume originates near the residual oil body with temperatures ranging from 2.9 °C above background near the oil to 1.2 °C down gradient. Temperatures in the unsaturated zone above the oil body were up to 2.7 °C more than background temperatures. Previous work at this site has shown that methane produced from biodegradation of the oil migrates upward and is oxidized in a methanotrophic zone midway between the water table and the surface. Enthalpy calculations and observations demonstrate that the temperature increases primarily result from aerobic methane oxidation in the unsaturated zone above the oil. Methane oxidation rates at the site independently estimated from surface CO2 efflux data are comparable to rates estimated from the observed temperature increases. The results indicate that temperature may be useful as a low-cost measure of activity but care is required to account for the correct heat-generating reactions, other heat sources and the effects of focused recharge.

  1. Relating subsurface temperature changes to microbial activity at a crude oil-contaminated site

    USGS Publications Warehouse

    Warren, Ean; Bekins, Barbara A.

    2015-01-01

    Crude oil at a spill site near Bemidji, Minnesota has been undergoing aerobic and anaerobic biodegradation for over 30 years, creating a 150–200 m plume of primary and secondary contaminants. Microbial degradation generates heat that should be measurable under the right conditions. To measure this heat, thermistors were installed in wells in the saturated zone and in water-filled monitoring tubes in the unsaturated zone. In the saturated zone, a thermal groundwater plume originates near the residual oil body with temperatures ranging from 2.9 °C above background near the oil to 1.2 °C down gradient. Temperatures in the unsaturated zone above the oil body were up to 2.7 °C more than background temperatures. Previous work at this site has shown that methane produced from biodegradation of the oil migrates upward and is oxidized in a methanotrophic zone midway between the water table and the surface. Enthalpy calculations and observations demonstrate that the temperature increases primarily result from aerobic methane oxidation in the unsaturated zone above the oil. Methane oxidation rates at the site independently estimated from surface CO2 efflux data are comparable to rates estimated from the observed temperature increases. The results indicate that temperature may be useful as a low-cost measure of activity but care is required to account for the correct heat-generating reactions, other heat sources and the effects of focused recharge.

  2. A Comparative Study of Active Play on Differently Designed Playgrounds

    ERIC Educational Resources Information Center

    Luchs, Antje; Fikus, Monika

    2013-01-01

    The physical and social environment of children in cities is continuously changing. Knowledge about the positive effects of natural play experiences within the child's development is becoming widely known. Affordances of diverse landscape elements and especially loose parts for play in natural environments influence play activities. New…

  3. Elevated Ground Temperatures at Crude Oil Spill Sites due to Microbial Activity

    NASA Astrophysics Data System (ADS)

    Warren, E.; Bekins, B. A.

    2009-12-01

    Crude oil near the water table at spill sites near Bemidji and Cass Lake, Minnesota, has been undergoing aerobic and anaerobic biodegradation for decades. Because the reactions are exothermic, biodegradation of oil compounds will produce measurable temperature increases if heat is generated faster than it is transported away from the oil body. Subsurface temperatures at the two spill sites were measured with thermistors at multiple depths in groundwater monitoring wells and water-filled tubes in the vadose zone. Temperatures in selected wells were measured in the summer of 2007, 2008, and 2009. At the Bemidji site, temperatures measured in the summer ranged from a low of 6.3 oC in the background well to a high of 9.2 oC within wells in the oil-contaminated zone. From year to year, background minimum temperatures were constant within +/- 0.05 oC while maximum temperatures within the oil-contaminated zone remained within +/- 0.25 oC. Seasonal changes in temperature in the plume as measured by data loggers exceeded 4 oC, which was far greater than the year to year change in the summer measurements. Seasonal variability was greater near the water table than at depth. It is unclear whether this variability is due to subsurface hydrology or microbial activity. Temperatures in the vadose zone were warmer near and down-gradient from the oil body compared to the background indicating the heat from the oil and plume propagates up and outward into the vadose zone. At the Cass Lake site, summer temperatures in 2009 were 6.4 oC in the background and 11.5 oC in wells near the oil. Reaction rates inferred from chemical data were compared to heating required in a 3-dimension energy transport model of the subsurface. The increased temperature compared well to the expected heat production from biodegradation reactions occurring in the oil and plume. Results indicate that microbial activity in sediments contaminated with crude oil undergoing biodegradation can be detected using

  4. Assessment of activation products in the Savannah River Site environment

    SciTech Connect

    Carlton, W.H.; Denham, M.

    1996-07-01

    This document assesses the impact of radioactive activation products released from SRS facilities since the first reactor became operational late in 1953. The isotopes reported here are those whose release resulted in the highest dose to people living near SRS: {sup 32}P, {sup 51}Cr, {sup 60}C, and {sup 65}Zn. Release pathways, emission control features, and annual releases to the aqueous and atmospheric environments are discussed. No single incident has resulted in a major acute release of activation products to the environment. The releases were the result of normal operations of the reactors and separations facilities. Releases declined over the years as better controls were established and production was reduced. The overall radiological impact of SRS activation product atmospheric releases from 1954 through 1994 on the offsite maximally exposed individual can be characterized by a total dose of 0.76 mrem. During the same period, such an individual received a total dose of 14,400 mrem from non-SRS sources of ionizing radiation present in the environment. SRS activation product aqueous releases between 1954 and 1994 resulted in a total dose of 54 mrem to the offsite maximally exposed individual. The impact of SRS activation product releases on offsite populations also has been evaluated.

  5. Design and comparative anticonvulsant activity assessment of CNS-active alkyl-carbamoyl imidazole derivatives.

    PubMed

    Mawasi, Hafiz; Bibi, David; Bialer, Meir

    2016-09-15

    A novel series of carbamoyl derivatives of alkylimidazole has been designed and their anticonvulsant activity was comparatively evaluated in the mice- and rats-maximal-electroshock (MES), subcutaneous-metrazol (scMet) seizure tests and the mice-6Hz psychomotor (6Hz) models. The ten new designed molecules contain in their chemical structure imidazole, alkyl side-chain and carbamate as three potential active moieties. In spite of the close structural features of the carbamoyl imidazole derivatives only compounds 7, 8, 13 and 16 were active at the MES test with ED50 values ranging from 12 to 20mg/kg coupled with high protective index (PI=TD50/ED50) values of 4.1-7.3 after ip administration to rats. A similar phenomenon was observed in mice where compounds 7, 8, 9, 12 had MES-ED50 values of 14-26mg/kg. Compounds 7 and 13 also demonstrated anticonvulsant activity in the 6Hz model with ED50 values of 32 and 44mg/kg, respectively. As the most active entities, compounds 7, 8 followed by 13 and 16, thus offer an optimal efficacy-safety profile and consequently, might be promising candidates for development as new antiepileptics. PMID:27469980

  6. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts

    PubMed Central

    Sahraie, Nastaran Ranjbar; Kramm, Ulrike I.; Steinberg, Julian; Zhang, Yuanjian; Thomas, Arne; Reier, Tobias; Paraknowitsch, Jens-Peter; Strasser, Peter

    2015-01-01

    Carbon materials doped with transition metal and nitrogen are highly active, non-precious metal catalysts for the electrochemical conversion of molecular oxygen in fuel cells, metal air batteries, and electrolytic processes. However, accurate measurement of their intrinsic turn-over frequency and active-site density based on metal centres in bulk and surface has remained difficult to date, which has hampered a more rational catalyst design. Here we report a successful quantification of bulk and surface-based active-site density and associated turn-over frequency values of mono- and bimetallic Fe/N-doped carbons using a combination of chemisorption, desorption and 57Fe Mössbauer spectroscopy techniques. Our general approach yields an experimental descriptor for the intrinsic activity and the active-site utilization, aiding in the catalyst development process and enabling a previously unachieved level of understanding of reactivity trends owing to a deconvolution of site density and intrinsic activity. PMID:26486465

  7. Piezoelectric ceramic fibers for active fiber composites: a comparative study

    NASA Astrophysics Data System (ADS)

    Kornmann, Xavier; Huber, Christian; Elsener, Hans-Rudolf

    2003-08-01

    The morphology and the free strain performances of three different piezoelectric ceramic fibers used for the manufacture of active fiber composites (AFCs) have been investigated. The morphology of the fibers has a direct influence on the manufacture of the AFCs. Fibers with non-uniform diameters are more difficult to contact with the interdigitated electrodes and can be the cause of irreparable damages in AFCs. An indirect method requiring the use of a simple analytical model is proposed to evaluate the free strain of active fiber composites. This indirect method presents a relatively good agreement with direct free strain measurements performed with strain gages glued on both sides of an AFC. The results show a systematic difference of ca. 20 % between the indirect and the direct methods. However, the indirect method did not permit to see differences of piezoelectric performance between the types of fibers.

  8. Characterization of an Active Thermal Erosion Site, Caribou Creek, Alaska

    NASA Astrophysics Data System (ADS)

    Busey, R.; Bolton, W. R.; Cherry, J. E.; Hinzman, L. D.

    2013-12-01

    The goal of this project is to estimate volume loss of soil over time from this site, provide parameterizations on erodibility of ice rich permafrost and serve as a baseline for future landscape evolution simulations. Located in the zone of discontinuous permafrost, the interior region of Alaska (USA) is home to a large quantity of warm, unstable permafrost that is both high in ice content and has soil temperatures near the freezing point. Much of this permafrost maintains a frozen state despite the general warming air temperature trend in the region due to the presence of a thick insulating organic mat and a dense root network in the upper sub-surface of the soil column. At a rapidly evolving thermo-erosion site, located within the Caribou-Poker Creeks Research Watershed (part of the Bonanza Creek LTER) near Chatanika, Alaska (N65.140, W147.570), the protective organic layer and associated plants were disturbed by an adjacent traditional use trail and the shifting of a groundwater spring. These triggers have led to rapid geomorphological change on the landscape as the soil thaws and sediment is transported into the creek at the valley bottom. Since 2006 (approximately the time of initiation), the thermal erosion has grown to 170 meters length, 3 meters max depth, and 15 meters maximum width. This research combines several data sets: DGPS survey, imagery from an extremely low altitude pole-based remote sensing (3 to 5 meters above ground level), and imagery from an Unmanned Aerial System (UAS) at about 60m altitude.

  9. Molecular Basis for Enzymatic Sulfite Oxidation -- HOW THREE CONSERVED ACTIVE SITE RESIDUES SHAPE ENZYME ACTIVITY

    SciTech Connect

    Bailey, Susan; Rapson, Trevor; Johnson-Winters, Kayunta; Astashkin, Andrei; Enemark, John; Kappler, Ulrike

    2008-11-10

    Sulfite dehydrogenases (SDHs) catalyze the oxidation and detoxification of sulfite to sulfate, a reaction critical to all forms of life. Sulfite-oxidizing enzymes contain three conserved active site amino acids (Arg-55, His-57, and Tyr-236) that are crucial for catalytic competency. Here we have studied the kinetic and structural effects of two novel and one previously reported substitution (R55M, H57A, Y236F) in these residues on SDH catalysis. Both Arg-55 and His-57 were found to have key roles in substrate binding. An R55M substitution increased Km(sulfite)(app) by 2-3 orders of magnitude, whereas His-57 was required for maintaining a high substrate affinity at low pH when the imidazole ring is fully protonated. This effect may be mediated by interactions of His-57 with Arg-55 that stabilize the position of the Arg-55 side chain or, alternatively, may reflect changes in the protonation state of sulfite. Unlike what is seen for SDHWT and SDHY236F, the catalytic turnover rates of SDHR55M and SDHH57A are relatively insensitive to pH (~;;60 and 200 s-1, respectively). On the structural level, striking kinetic effects appeared to correlate with disorder (in SDHH57A and SDHY236F) or absence of Arg-55 (SDHR55M), suggesting that Arg-55 and the hydrogen bonding interactions it engages in are crucial for substrate binding and catalysis. The structure of SDHR55M has sulfate bound at the active site, a fact that coincides with a significant increase in the inhibitory effect of sulfate in SDHR55M. Thus, Arg-55 also appears to be involved in enabling discrimination between the substrate and product in SDH.

  10. Comparative study of SoxR activation by redox-active compounds

    PubMed Central

    Singh, Atul K.; Shin, Jung-Ho; Lee, Kang-Lok; Imlay, James A.; Roe, Jung-Hye

    2013-01-01

    Summary SoxR from E. coli and related enterobacteria is activated by a broad range of redox-active compounds through oxidation or nitrosylation of its [2Fe-2S] cluster. Activated SoxR then induces SoxS, which subsequently activates more than 100 genes in response. In contrast, non-enteric SoxRs directly activate their target genes in response to redox-active compounds that include endogenously produced metabolites. We compared the responsiveness of SoxRs from Streptomyces coelicolor (ScSoxR), Pseudomonas aeruginosa (PaSoxR) and E. coli (EcSoxR), all expressed in S. coelicolor, toward natural or synthetic redox-active compounds. EcSoxR responded to all compounds examined, whereas ScSoxR was insensitive to oxidants such as paraquat (Eh −440 mV) and menadione sodium bisulfite (Eh −45 mV) and to NO generators. PaSoxR was insensitive only to some NO generators. Whole cell EPR analysis of SoxRs expressed in E. coli revealed that the [2Fe-2S]1+ of ScSoxR was not oxidizable by paraquat, differing from EcSoxR and PaSoxR. The mid-point redox potential of purified ScSoxR was determined to be −185 ± 10 mV, higher by ~100 mV than those of EcSoxR and PaSoxR, supporting its limited response to paraquat. The overall sensitivity profile indicates that both redox potential and kinetic reactivity determine the differential responses of SoxRs toward various oxidants. PMID:24112649

  11. Active Site Metal Occupancy and Cyclic Di-GMP Phosphodiesterase Activity of Thermotoga maritima HD-GYP.

    PubMed

    Miner, Kyle D; Kurtz, Donald M

    2016-02-16

    HD-GYPs make up a subclass of the metal-dependent HD phosphohydrolase superfamily and catalyze conversion of cyclic di(3',5')-guanosine monophosphate (c-di-GMP) to 5'-phosphoguanylyl-(3'→5')-guanosine (pGpG) and GMP. Until now, the only reported crystal structure of an HD-GYP that also exhibits c-di-GMP phosphodiesterase activity contains a His/carboxylate ligated triiron active site. However, other structural and phylogenetic correlations indicate that some HD-GYPs contain dimetal active sites. Here we provide evidence that an HD-GYP c-di-GMP phosphodiesterase, TM0186, from Thermotoga maritima can accommodate both di- and trimetal active sites. We show that an as-isolated iron-containing TM0186 has an oxo/carboxylato-bridged diferric site, and that the reduced (diferrous) form is necessary and sufficient to catalyze conversion of c-di-GMP to pGpG, but that conversion of pGpG to GMP requires more than two metals per active site. Similar c-di-GMP phosphodiesterase activities were obtained with divalent iron or manganese. On the basis of activity correlations with several putative metal ligand residue variants and molecular dynamics simulations, we propose that TM0186 can accommodate both di- and trimetal active sites. Our results also suggest that a Glu residue conserved in a subset of HD-GYPs is required for formation of the trimetal site and can also serve as a labile ligand to the dimetal site. Given the anaerobic growth requirement of T. maritima, we suggest that this HD-GYP can function in vivo with either divalent iron or manganese occupying di- and trimetal sites.

  12. A rapid and direct method for the determination of active site accessibility in proteins based on ESI-MS and active site titrations.

    PubMed

    O'Farrell, Norah; Kreiner, Michaela; Moore, Barry D; Parker, Marie-Claire

    2006-11-01

    We have developed an electrospray ionisation mass spectrometry (ESI-MS) technique that can be applied to rapidly determine the number of intact active sites in proteins. The methodology relies on inhibiting the protein with an active-site irreversible inhibitor and then using ESI-MS to determine the extent of inhibition. We have applied this methodology to a test system: a serine protease, subtilisin Carlsberg, and monitored the extent of inhibition by phenylmethylsulfonyl fluoride (PMSF), an irreversible serine hydrolase inhibitor as a function of the changes in immobilisation and hydration conditions. Two types of enzyme preparation were investigated, lyophilised enzymes and protein-coated microcrystals (PCMC).

  13. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand.

    PubMed

    Parashar, Abhinav; Venkatachalam, Avanthika; Gideon, Daniel Andrew; Manoj, Kelath Murali

    2014-12-12

    The toxicity of cyanide is hitherto attributed to its ability to bind to heme proteins' active site and thereby inhibit their activity. It is shown herein that the long-held interpretation is inadequate to explain several observations in heme-enzyme reaction systems. Generation of cyanide-based diffusible radicals in heme-enzyme reaction milieu could shunt electron transfers (by non-active site processes), and thus be detrimental to the efficiency of oxidative outcomes.

  14. Active Site, Catalytic Cycle, and Iodination Reactions of Vanadium Iodoperoxidase: A Computational Study.

    PubMed

    Pacios, Luis F; Gálvez, Oscar

    2010-05-11

    A combined computational study using molecular surfaces and Poisson-Boltzmann electrostatic potentials for proteins and quantum calculations on complexes representing the vanadate cofactor throughout the catalytic cycle is employed to study the activity of vanadium iodoperoxidase (VIPO) from alga Laminaria digitata . A model structure of VIPO is compared with available crystal structures of chloroperoxidases (VClPOs) and bromoperoxidases (VBrPOs) focusing on properties of the active site that concern halogen specificity. It is found that VIPO displays distinctive features regarding electrostatic potentials at the site cavity and the local topography of the cavity entrance. Quantum calculations on cofactor stages throughout the catalytic cycle reveal that, while steps involving binding of hydrogen peroxide and halide oxidization agree with available data on VBrPO, final formation and subsequent release of hypohalous acid could follow a different pathway consisting of His476-assisted protonation of bonded hypoiodite and further displacement by a water molecule. Ab initio free energies of reaction computed to explore iodination of organic substrates predict strongly exoergonic reactions with HOI, whereas other possible iodination reagents give thermodynamically disfavored reactions.

  15. Marine Biology Field Trip Sites. Ocean Related Curriculum Activities.

    ERIC Educational Resources Information Center

    Pauls, John

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  16. Endolysosomes Are the Principal Intracellular Sites of Acid Hydrolase Activity.

    PubMed

    Bright, Nicholas A; Davis, Luther J; Luzio, J Paul

    2016-09-12

    The endocytic delivery of macromolecules from the mammalian cell surface for degradation by lysosomal acid hydrolases requires traffic through early endosomes to late endosomes followed by transient (kissing) or complete fusions between late endosomes and lysosomes. Transient or complete fusion results in the formation of endolysosomes, which are hybrid organelles from which lysosomes are re-formed. We have used synthetic membrane-permeable cathepsin substrates, which liberate fluorescent reporters upon proteolytic cleavage, as well as acid phosphatase cytochemistry to identify which endocytic compartments are acid hydrolase active. We found that endolysosomes are the principal organelles in which acid hydrolase substrates are cleaved. Endolysosomes also accumulated acidotropic probes and could be distinguished from terminal storage lysosomes, which were acid hydrolase inactive and did not accumulate acidotropic probes. Using live-cell microscopy, we have demonstrated that fusion events, which form endolysosomes, precede the onset of acid hydrolase activity. By means of sucrose and invertase uptake experiments, we have also shown that acid-hydrolase-active endolysosomes and acid-hydrolase-inactive, terminal storage lysosomes exist in dynamic equilibrium. We conclude that the terminal endocytic compartment is composed of acid-hydrolase-active, acidic endolysosomes and acid hydrolase-inactive, non-acidic, terminal storage lysosomes, which are linked and function in a lysosome regeneration cycle. PMID:27498570

  17. Phase I and II liver enzyme activities in juvenile alligators (Alligator mississippiensis) collected from three sites in the Kissimmee-Everglades drainage, Florida (USA).

    PubMed

    Gunderson, M P; Oberdörster, E; Guillette, L J

    2004-10-01

    We examined CYP1A (measured using hepatic EROD and MROD activities) and glutathione-S-transferase (GST) activities in juvenile alligators (Alligator mississippiensis) collected from three sites with varying contamination in the Kissimmee-Everglades drainage in south Florida. We hypothesized that contaminants present in areas with intermediate or higher contaminant concentrations would alter hepatic enzyme activities in juvenile alligators from those sites when compared to hepatic enzyme activity in animals from the area with the least contamination. EROD activity was found to be higher in animals from the site with lower reported levels of contamination relative to those from the site with the highest reported contamination suggesting an inhibition of CYP1A expression or activity. No differences among animals from the three sites were observed for hepatic MROD and GST activities. A significant negative relationship between EROD, MROD, and GST activities and body size was exhibited in alligators from the site with the lowest contamination. No relationship between body size and hepatic enzyme activity was found in animals from the sites with intermediate and higher contamination, suggesting that contaminants present at these sites act to alter this relationship. No correlation was observed in this study between plasma steroid concentrations (estradiol-17 beta or testosterone) and hepatic EROD, MROD, or GST activities.

  18. Trace metal biogeochemistry in mangrove ecosystems: a comparative assessment of acidified (by acid sulfate soils) and non-acidified sites.

    PubMed

    Nath, Bibhash; Birch, Gavin; Chaudhuri, Punarbasu

    2013-10-01

    The generation of acidity and subsequent mobilization of toxic metals induced by acid sulfate soils (ASSs) are known to cause severe environmental damage to many coastal wetlands and estuaries of Australia and worldwide. Mangrove ecosystems serve to protect coastal environments, but are increasingly threatened from such ASS-induced acidification due to variable hydrological conditions (i.e., inundation-desiccation cycles). However, the impact of such behaviors on trace metal distribution, bio-availability and accumulation in mangrove tissues, i.e., leaves and pneumatophores, are largely unknown. In this study, we examined how ASS-induced acidifications controlled trace metal distribution and bio-availability in gray mangrove (Avicennia marina) soils and in tissues in the Kooragang wetland, New South Wales, Australia. We collected mangrove soils, leaves and pneumatophores from a part of the wetland acidified from ASS (i.e., an affected site) for detailed biogeochemical studies. The results were compared with samples collected from a natural intertidal mangrove forest (i.e., a control site) located within the same wetland. Soil pH (mean: 5.90) indicated acidic conditions in the affected site, whereas pH was near-neutral (mean: 7.17) in the control site. The results did not show statistically significant differences in near-total and bio-available metal concentrations, except for Fe and Mn, between affected and control sites. Iron concentrations were significantly (p values≤0.001) greater in the affected site, whereas Mn concentrations were significantly (p values≤0.001) greater in the control site. However, large proportions of near-total metals were potentially bio-available in control sites. Concentrations of Fe and Ni were significantly (p values≤0.001) greater in leaves and pneumatophores of the affected sites, whereas Mn, Cu, Pb and Zn were greater in control sites. The degree of metal bio-accumulation in leaves and pneumatophores suggest contrasting

  19. Trace metal biogeochemistry in mangrove ecosystems: a comparative assessment of acidified (by acid sulfate soils) and non-acidified sites.

    PubMed

    Nath, Bibhash; Birch, Gavin; Chaudhuri, Punarbasu

    2013-10-01

    The generation of acidity and subsequent mobilization of toxic metals induced by acid sulfate soils (ASSs) are known to cause severe environmental damage to many coastal wetlands and estuaries of Australia and worldwide. Mangrove ecosystems serve to protect coastal environments, but are increasingly threatened from such ASS-induced acidification due to variable hydrological conditions (i.e., inundation-desiccation cycles). However, the impact of such behaviors on trace metal distribution, bio-availability and accumulation in mangrove tissues, i.e., leaves and pneumatophores, are largely unknown. In this study, we examined how ASS-induced acidifications controlled trace metal distribution and bio-availability in gray mangrove (Avicennia marina) soils and in tissues in the Kooragang wetland, New South Wales, Australia. We collected mangrove soils, leaves and pneumatophores from a part of the wetland acidified from ASS (i.e., an affected site) for detailed biogeochemical studies. The results were compared with samples collected from a natural intertidal mangrove forest (i.e., a control site) located within the same wetland. Soil pH (mean: 5.90) indicated acidic conditions in the affected site, whereas pH was near-neutral (mean: 7.17) in the control site. The results did not show statistically significant differences in near-total and bio-available metal concentrations, except for Fe and Mn, between affected and control sites. Iron concentrations were significantly (p values≤0.001) greater in the affected site, whereas Mn concentrations were significantly (p values≤0.001) greater in the control site. However, large proportions of near-total metals were potentially bio-available in control sites. Concentrations of Fe and Ni were significantly (p values≤0.001) greater in leaves and pneumatophores of the affected sites, whereas Mn, Cu, Pb and Zn were greater in control sites. The degree of metal bio-accumulation in leaves and pneumatophores suggest contrasting

  20. Comparative efficacy of switching to natalizumab in active multiple sclerosis

    PubMed Central

    Spelman, Timothy; Kalincik, Tomas; Zhang, Annie; Pellegrini, Fabio; Wiendl, Heinz; Kappos, Ludwig; Tsvetkova, Larisa; Belachew, Shibeshih; Hyde, Robert; Verheul, Freek; Grand-Maison, Francois; Izquierdo, Guillermo; Grammond, Pierre; Duquette, Pierre; Lugaresi, Alessandra; Lechner-Scott, Jeannette; Oreja-Guevara, Celia; Hupperts, Raymond; Petersen, Thor; Barnett, Michael; Trojano, Maria; Butzkueven, Helmut

    2015-01-01

    Objective To compare treatment efficacy and persistence in patients who switched to natalizumab versus those who switched between glatiramer acetate (GA) and interferon-beta (IFNβ) after an on-treatment relapse on IFNβ or GA using propensity score matched real-world datasets. Methods Patients included were registered in MSBase or the TYSABRI Observational Program (TOP), had relapsed on IFNβ or GA within 12 months prior to switching to another therapy, and had initiated natalizumab or IFNβ/GA treatment ≤6 months after discontinuing prior therapy. Covariates were balanced across post switch treatment groups by propensity score matching at treatment initiation. Relapse, persistence, and disability measures were compared between matched treatment arms in the total population (n = 869/group) and in subgroups defined by prior treatment history (IFNβ only [n = 578/group], GA only [n = 165/group], or both IFNβ and GA [n = 176/group]). Results Compared to switching between IFNβ and GA, switching to natalizumab reduced annualized relapse rate in year one by 65–75%, the risk of first relapse by 53–82% (mean follow-up 1.7–2.2 years) and treatment discontinuation events by 48–65% (all P ≤ 0.001). In the total population, switching to natalizumab reduced the risk of confirmed disability progression by 26% (P = 0.036) and decreased the total disability burden by 1.54 EDSS-years (P < 0.0001) over the first 24 months post switch. Interpretation Using large, real-world, propensity-matched datasets we demonstrate that after a relapse on IFNβ or GA, switching to natalizumab (rather than between IFNβ and GA) led to superior outcomes for patients in all measures assessed. Results were consistent regardless of the prior treatment identity. PMID:25909083

  1. Comparative evaluation of the antimicrobial activity of 19 essential oils.

    PubMed

    Chaftar, Naouel; Girardot, Marion; Labanowski, Jérôme; Ghrairi, Tawfik; Hani, Khaled; Frère, Jacques; Imbert, Christine

    2016-01-01

    In our research on natural compounds efficient against human pathogen or opportunist microorganisms contracted by food or water, the antimicrobial activity of 19 essential oils (EOs) was investigated against 11 bacterial species (6 Gram positive, 5 Gram negative) and 7 fungal species (2 dermatophytes, 1 mould, 4 yeasts) using microdilution assays. Five essential oils were obtained from Tunisian plants (EOtun): Artemisia herba-alba Asso, Juniperus phoenicea L., Rosmarinus officinalis L., Ruta graveolens L. and Thymus vulgaris L., whereas others were commercial products (EOcom). Overall, T. vulgaris EOtun was the most efficient EO against both bacteria (Gram negative: MIC ≤ 0.34 mg/mL; Gram positive: MIC ≤ 0.70 mg/mL) and fungi (yeasts: MIC ≤ 0.55 mg/mL; mould: MIC = 0.30 mg/mL; dermatophytes: MIC ≤ 0.07 mg/mL). Two EOcom displayed both acceptable antibacterial and antifungal potency, although weaker than T. vulgaris EOtun activity: Origanum vulgare EOcom (bacteria: MIC ≤ 1.13 mg/mL, fungi: MIC ≤ 1.80 mg/mL), and Cymbopogon martinii var. motia EOcom (bacteria: MIC ≤ 1.00 mg/mL, fungi: MIC ≤ 0.80 mg/mL). Bacillus megaterium, Legionella pneumophila, Listeria monocytogenes and Trichophyton spp. were the most sensitive species to both EOcom and EOtun. This study demonstrated the noteworthy antimicrobial activity of two commercial EOs and points out the remarkable efficiency of T. vulgaris EOtun on all tested bacterial and fungal species, certainly associated with its high content in carvacrol (85 %). These three oils could thus represent promising candidates for applications in water and food protections. PMID:26566647

  2. Identification of inhibitors against the potential ligandable sites in the active cholera toxin.

    PubMed

    Gangopadhyay, Aditi; Datta, Abhijit

    2015-04-01

    The active cholera toxin responsible for the massive loss of water and ions in cholera patients via its ADP ribosylation activity is a heterodimer of the A1 subunit of the bacterial holotoxin and the human cytosolic ARF6 (ADP Ribosylation Factor 6). The active toxin is a potential target for the design of inhibitors against cholera. In this study we identified the potential ligandable sites of the active cholera toxin which can serve as binding sites for drug-like molecules. By employing an energy-based approach to identify ligand binding sites, and comparison with the results of computational solvent mapping, we identified two potential ligandable sites in the active toxin which can be targeted during structure-based drug design against cholera. Based on the probe affinities of the identified ligandable regions, docking-based virtual screening was employed to identify probable inhibitors against these sites. Several indole-based alkaloids and phosphates showed strong interactions to the important residues of the ligandable region at the A1 active site. On the other hand, 26 top scoring hits were identified against the ligandable region at the A1 ARF6 interface which showed strong hydrogen bonding interactions, including guanidines, phosphates, Leucopterin and Aristolochic acid VIa. This study has important implications in the application of hybrid structure-based and ligand-based methods against the identified ligandable sites using the identified inhibitors as reference ligands, for drug design against the active cholera toxin.

  3. A comparative Study of Circulation Patterns at Active Lava Lakes

    NASA Astrophysics Data System (ADS)

    Lev, Einat; Oppenheimer, Clive; Spampinato, Letizia; Hernandez, Pedro; Unglert, Kathi

    2016-04-01

    Lava lakes present a rare opportunity to study magma dynamics in a large scaled-up "crucible" and provide a unique natural laboratory to ground-truth dynamic models of magma circulation. The persistence of lava lakes allows for long-term observations of flow dynamics and of lava properties, especially compared to surface lava flows. There are currently five persistent lava lakes in the world: Halemaumau in Kilauea (Hawaii, USA), Erta Ale (Ethiopia), Nyiragongo (Congo), Erebus (Antarctica), and Villarica (Chile). Marum and Benbow craters of Ambrym volcano (Vanuatu) and Masaya (Nicaragua) have often hosted lava lakes as well. We use visible-light and thermal infrared time-lapse and video footage collected at all above lakes (except Villarica, where the lake is difficult to observe), and compare the circulation patterns recorded. We calculate lake surface motion from the footage using the optical flow method (Lev et al., 2012) to produce 2D velocity fields. We mined both the surface temperature field and the surface velocity field for patterns using machine learning techniques such as "self-organizing maps (SOMs)" and "principle component analysis (PCA)". We use automatic detection technique to study the configuration of crustal plates at the lakes' surface. We find striking differences among the lakes, in flow direction, flow speed, frequency of changes in flow direction and speed, location and consistency of upwelling and downwelling, and crustal plate configuration. We relate the differences to lake size, shallow conduit geometry, lava viscosity, crystal and gas content, and crust integrity.

  4. Encroachment of Human Activity on Sea Turtle Nesting Sites

    NASA Astrophysics Data System (ADS)

    Ziskin, D.; Aubrecht, C.; Elvidge, C.; Tuttle, B.; Baugh, K.; Ghosh, T.

    2008-12-01

    The encroachment of anthropogenic lighting on sea turtle nesting sites poses a serious threat to the survival of these animals [Nicholas, 2001]. This danger is quantified by combining two established data sets. The first is the Nighttime Lights data produced by the NOAA National Geophysical Data Center [Elvidge et al., 1997]. The second is the Marine Turtle Database produced by the World Conservation Monitoring Centre (WCMC). The technique used to quantify the threat of encroachment is an adaptation of the method described in Aubrecht et al. [2008], which analyzes the stress on coral reef systems by proximity to nighttime lights near the shore. Nighttime lights near beaches have both a direct impact on turtle reproductive success since they disorient hatchlings when they mistake land-based lights for the sky-lit surf [Lorne and Salmon, 2007] and the lights are also a proxy for other anthropogenic threats. The identification of turtle nesting sites with high rates of encroachment will hopefully steer conservation efforts to mitigate their effects [Witherington, 1999]. Aubrecht, C, CD Elvidge, T Longcore, C Rich, J Safran, A Strong, M Eakin, KE Baugh, BT Tuttle, AT Howard, EH Erwin, 2008, A global inventory of coral reef stressors based on satellite observed nighttime lights, Geocarto International, London, England: Taylor and Francis. In press. Elvidge, CD, KE Baugh, EA Kihn, HW Kroehl, ER Davis, 1997, Mapping City Lights with Nighttime Data from the DMSP Operational Linescan System, Photogrammatic Engineering and Remote Sensing, 63:6, pp. 727-734. Lorne, JK, M Salmon, 2007, Effects of exposure to artificial lighting on orientation of hatchling sea turtles on the beach and in the ocean, Endangered Species Research, Vol. 3: 23-30. Nicholas, M, 2001, Light Pollution and Marine Turtle Hatchlings: The Straw that Breaks the Camel's Back?, George Wright Forum, 18:4, p77-82. Witherington, BE, 1999, Reducing Threats To Nesting Habitat, Research and Management Techniques for

  5. Diffusion-controlled reaction rate to an active site

    NASA Astrophysics Data System (ADS)

    Traytak, S. D.

    1995-02-01

    The diffusion-controlled reactions of chemically anisotropic reactants are treated for the simplest model of Solc and Stockmayer (Intern. J. Chem. Kinet. 5 (1973) 733) in the absence of rotational diffusion. Using the dual series relations approach we can find the effective steric factor with any necessary accuracy. A few simple analytical approximations for the effective steric factor are proposed. The derived results we compare with the relevant analytical approximations and numerical calculations available in the literature.

  6. Assessing the use of existing data to compare plains fish assemblages collected from random and fixed sites in Colorado

    USGS Publications Warehouse

    Zuellig, Robert E.; Crockett, Harry J.

    2013-01-01

    The U.S. Geological Survey, in cooperation with Colorado Parks and Wildlife, assessed the potential use of combining recently (2007 to 2010) and formerly (1992 to 1996) collected data to compare plains fish assemblages sampled from random and fixed sites located in the South Platte and Arkansas River Basins in Colorado. The first step was to determine if fish assemblages collected between 1992 and 1996 were comparable to samples collected at the same sites between 2007 and 2010. If samples from the two time periods were comparable, then it was considered reasonable that the combined time-period data could be used to make comparisons between random and fixed sites. In contrast, if differences were found between the two time periods, then it was considered unreasonable to use these data to make comparisons between random and fixed sites. One-hundred samples collected during the 1990s and 2000s from 50 sites dispersed among 19 streams in both basins were compiled from a database maintained by Colorado Parks and Wildlife. Nonparametric multivariate two-way analysis of similarities was used to test for fish-assemblage differences between time periods while accounting for stream-to-stream differences. Results indicated relatively weak but significant time-period differences in fish assemblages. Weak time-period differences in this case possibly were related to changes in fish assemblages associated with environmental factors; however, it is difficult to separate other possible explanations such as limited replication of paired time-period samples in many of the streams or perhaps differences in sampling efficiency and effort between the time periods. Regardless, using the 1990s data to fill data gaps to compare random and fixed-site fish-assemblage data is ill advised based on the significant separation in fish assemblages between time periods and the inability to determine conclusive explanations for these results. These findings indicated that additional sampling will

  7. Comparative activity profiles of Thielavia terrestris and Trichoderma reesei cellulases

    SciTech Connect

    Tuse, D.; Mason, B.J.; Skinner, W.A.

    1980-10-01

    The successful utilization of cellulosic materials depends on the development of economically feasible processes for the literation of low molecular weight soluble products from the polymers. These soluble products, such as hexoses and pentoses, can then be utilized as substrates for the microbial or chemical product of fuels, food, and chemical feedstocks. In the enzymatic saccharification of cellulose, one of the major roadblocks to the development of commercially attractive processes has been the instability of the cellulase complex. It is desirable, for example, to operate the conversion systems at elevated temperatures, but environments with high thermal energy can significantly shorten enzyme half life. The authors have isolated a strain of the fungus Thielavia terrestris that possesses a complete cellulase system, and its enzymes were found to have remarkable thermal stability. The author presents a comparison of the activities of the T. terrestris enzymes with those of Trichoderma reesei.

  8. Reduction of Urease Activity by Interaction with the Flap Covering the Active Site

    PubMed Central

    Macomber, Lee; Minkara, Mona S.; Hausinger, Robert P.; Merz, Kenneth M.

    2015-01-01

    With the increasing appreciation for the human microbiome coupled with the global rise of antibiotic resistant organisms, it is imperative that new methods be developed to specifically target pathogens. To that end, a novel computational approach was devised to identify compounds that reduce the activity of urease, a medically important enzyme of Helicobacter pylori, Proteus mirabilis, and many other microorganisms. Urease contains a flexible loop that covers its active site; Glide was used to identify small molecules predicted to lock this loop in an open conformation. These compounds were screened against the model urease from Klebsiella aerogenes and the natural products epigallocatechin and quercetin were shown to inhibit at low and high micromolar concentrations, respectively. These molecules exhibit a strong time-dependent inactivation of urease that was not due to their oxygen sensitivity. Rather, these compounds appear to inactivate urease by reacting with a specific Cys residue located on the flexible loop. Substitution of this cysteine by alanine in the C319A variant increased the urease resistance to both epigallocatechin and quercetin, as predicted by the computational studies. Protein dynamics are integral to the function of many enzymes; thus, identification of compounds that lock an enzyme into a single conformation presents a useful approach to define potential inhibitors. PMID:25594724

  9. Loop substitution as a tool to identify active sites of interleukin-1 beta.

    PubMed

    Palla, E; Bensi, G; Solito, E; Buonamassa, D T; Fassina, G; Raugei, G; Spano, F; Galeotti, C; Mora, M; Domenighini, M

    1993-06-25

    By computer analysis of the amino acid sequence of human interleukin-1 beta (IL-1 beta) and of the human type I IL-1 receptor (IL-1RI), we have identified two hydropathically complementary peptides (Fassina, G., Roller, P. P., Olson, A. D., Thorgeirsson, S. S., and Omichinski, J. G. (1989) J. Biol. Chem. 264, 11252-11257) capable of binding to each other. The sequence of the IL-1 beta peptide corresponds to that of residues 88-99 (loop 7 of the crystal structure of mature IL-1 beta) of mature IL-1 beta, one of the exposed and highly charged regions of the molecule. The substitution of this loop with an amino acid sequence of the same length but different hydropathic profile generates a mutant with drastically reduced binding activity to IL-1RI. In contrast, the binding affinity to the type II IL-1R (IL-1RII) is the same as that of wild type IL-1 beta. The results show that 1) loop 7 is part of the binding site of IL-1 beta to IL-1RI, but not to IL-1RII. 2) The structure of the mutant protein is not grossly altered except locally at the position of the substituted loop. 3) The substitution of amino acids by site-directed mutagenesis of the loop 7 region generates mutants with binding affinity constants slightly lower than that of wild type IL-1 beta and not comparable to that of the loop substitution analogue. 4. All mutants analyzed, including the loop substitutions, are biologically active, confirming the structural integrity of the proteins. We propose a binding site in which the cooperation of several low energy bonds extended over a wide area results in a high affinity complex between IL-1 and the type I receptor. PMID:7685764

  10. Preliminary assessment of several parameters to measure and compare usefulness of the CEOS reference pseudo-invariant calibration sites

    USGS Publications Warehouse

    Chander, Gyanesh; Angal, Amit; Xiong, Xiaoxiong; Helder, Dennis L.; Mishra, Nischal; Choi, Taeyoung; Wu, Aisheng

    2010-01-01

    Test sites are central to any future quality assurance and quality control (QA/QC) strategy. The Committee on Earth Observation Satellites (CEOS) Working Group for Calibration and Validation (WGCV) Infrared Visible Optical Sensors (IVOS) worked with collaborators around the world to establish a core set of CEOS-endorsed, globally distributed, reference standard test sites (both instrumented and pseudo-invariant) for the post-launch calibration of space-based optical imaging sensors. The pseudo-invariant calibration sites (PICS) have high reflectance and are usually made up of sand dunes with low aerosol loading and practically no vegetation. The goal of this paper is to provide preliminary assessment of "several parameters" than can be used on an operational basis to compare and measure usefulness of reference sites all over the world. The data from Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and the Earth Observing-1 (EO-1) Hyperion sensors over the CEOS PICS were used to perform a preliminary assessment of several parameters, such as usable area, data availability, top-of-atmosphere (TOA) reflectance, at-sensor brightness temperature, spatial uniformity, temporal stability, spectral stability, and typical spectrum observed over the sites.

  11. Heparanase Activates Antithrombin through the Binding to Its Heparin Binding Site

    PubMed Central

    Águila, Sonia; Teruel-Montoya, Raúl; Vicente, Vicente; Corral, Javier; Martínez-Martínez, Irene

    2016-01-01

    Heparanase is an endoglycosidase that participates in morphogenesis, tissue repair, heparan sulphates turnover and immune response processes. It is over-expressed in tumor cells favoring the metastasis as it penetrates the endothelial layer that lines blood vessels and facilitates the metastasis by degradation of heparan sulphate proteoglycans of the extracellular matrix. Heparanase may also affect the hemostatic system in a non-enzymatic manner, up-regulating the expression of tissue factor, which is the initiator of blood coagulation, and dissociating tissue factor pathway inhibitor on the cell surface membrane of endothelial and tumor cells, thus resulting in a procoagulant state. Trying to check the effect of heparanase on heparin, a highly sulphated glycosaminoglycan, when it activates antithrombin, our results demonstrated that heparanase, but not proheparanase, interacted directly with antithrombin in a non-covalent manner. This interaction resulted in the activation of antithrombin, which is the most important endogenous anticoagulant. This activation mainly accelerated FXa inhibition, supporting an allosteric activation effect. Heparanase bound to the heparin binding site of antithrombin as the activation of Pro41Leu, Arg47Cys, Lys114Ala and Lys125Alaantithrombin mutants was impaired when it was compared to wild type antithrombin. Intrinsic fluorescence analysis showed that heparanase induced an activating conformational change in antithrombin similar to that induced by heparin and with a KD of 18.81 pM. In conclusion, under physiological pH and low levels of tissue factor, heparanase may exert a non-enzymatic function interacting and activating the inhibitory function of antithrombin. PMID:27322195

  12. Spectroscopic definition of the copper active sites in mordenite: selective methane oxidation.

    PubMed

    Vanelderen, Pieter; Snyder, Benjamin E R; Tsai, Ming-Li; Hadt, Ryan G; Vancauwenbergh, Julie; Coussens, Olivier; Schoonheydt, Robert A; Sels, Bert F; Solomon, Edward I

    2015-05-20

    Two distinct [Cu-O-Cu](2+) sites with methane monooxygenase activity are identified in the zeolite Cu-MOR, emphasizing that this Cu-O-Cu active site geometry, having a ∠Cu-O-Cu ∼140°, is particularly formed and stabilized in zeolite topologies. Whereas in ZSM-5 a similar [Cu-O-Cu](2+) active site is located in the intersection of the two 10 membered rings, Cu-MOR provides two distinct local structures, situated in the 8 membered ring windows of the side pockets. Despite their structural similarity, as ascertained by electronic absorption and resonance Raman spectroscopy, the two Cu-O-Cu active sites in Cu-MOR clearly show different kinetic behaviors in selective methane oxidation. This difference in reactivity is too large to be ascribed to subtle differences in the ground states of the Cu-O-Cu sites, indicating the zeolite lattice tunes their reactivity through second-sphere effects. The MOR lattice is therefore functionally analogous to the active site pocket of a metalloenzyme, demonstrating that both the active site and its framework environment contribute to and direct reactivity in transition metal ion-zeolites.

  13. Proton nuclear Overhauser effect study of the heme active site structure of Coprinus macrorhizus peroxidase.

    PubMed

    Dugad, L B; Goff, H M

    1992-07-13

    Proton nuclear Overhauser effect and paramagnetic relaxation measurements have been used to define more extensively the heme active site structure of Coprinus macrorhizus peroxidase, CMP (previously known as Coprinus cinereus peroxidase), as the ferric low-spin cyanide ligated complex. The results are compared with other well-characterized peroxidase enzymes. The NMR spectrum of CMPCN shows changes in the paramagnetically shifted resonances as a function of time, suggesting a significant heme disorder for CMP. The presence of proximal and distal histidine amino acid residues are common to the heme environments of both CMPCN and HRPCN. However, the upfield distal arginine signals of HRPCN are not evident in the 1H-NMR spectra of CMPCN.

  14. Implication of crystal water molecules in inhibitor binding at ALR2 active site.

    PubMed

    Hymavati; Kumar, Vivek; Sobhia, M Elizabeth

    2012-01-01

    Water molecules play a crucial role in mediating the interaction between a ligand and a macromolecule. The solvent environment around such biomolecule controls their structure and plays important role in protein-ligand interactions. An understanding of the nature and role of these water molecules in the active site of a protein could greatly increase the efficiency of rational drug design approaches. We have performed the comparative crystal structure analysis of aldose reductase to understand the role of crystal water in protein-ligand interaction. Molecular dynamics simulation has shown the versatile nature of water molecules in bridge H bonding during interaction. Occupancy and life time of water molecules depend on the type of cocrystallized ligand present in the structure. The information may be useful in rational approach to customize the ligand, and thereby longer occupancy and life time for bridge H-bonding. PMID:22649481

  15. Comparative analysis of contextual bias around the translation initiation sites in plant genomes.

    PubMed

    Gupta, Paras; Rangan, Latha; Ramesh, T Venkata; Gupta, Mudit

    2016-09-01

    Nucleotide distribution around translation initiation site (TIS) is thought to play an important role in determining translation efficiency. Kozak in vertebrates and later Joshi et al. in plants identified context sequence having a key role in translation efficiency, but a great variation regarding this context sequence has been observed among different taxa. The present study aims to refine the context sequence around initiation codon in plants and addresses the sampling error problem by using complete genomes of 7 monocots and 7 dicots separately. Besides positions -3 and +4, significant conservation at -2 and +5 positions was also found and nucleotide bias at the latter two positions was shown to directly influence translation efficiency in the taxon studied. About 1.8% (monocots) and 2.4% (dicots) of the total sequences fit the context sequence from positions -3 to +5, which might be indicative of lower number of housekeeping genes in the transcriptome. A three base periodicity was observed in 5' UTR and CDS of monocots and only in CDS of dicots as confirmed against random occurrence and annotation errors. Deterministic enrichment of GCNAUGGC in monocots, AANAUGGC in dicots and GCNAUGGC in plants around TIS was also established (where AUG denotes the start codon), which can serve as an arbiter of putative TIS with efficient translation in plants. PMID:27316311

  16. School Pharmacist/School Environmental Hygienic Activities at School Site.

    PubMed

    Muramatsu, Akiyoshi

    2016-01-01

    The "School Health and Safety Act" was enforced in April 2009 in Japan, and "school environmental health standards" were established by the Minister of Education, Culture, Sports, Science and Technology. In Article 24 of the Enforcement Regulations, the duties of the school pharmacist have been clarified; school pharmacists have charged with promoting health activities in schools and carrying out complete and regular checks based on the "school environmental health standards" in order to protect the health of students and staff. In supported of this, the school pharmacist group of Japan Pharmaceutical Association has created and distributed digital video discs (DVDs) on "check methods of school environmental health standards" as support material. We use the DVD to ensure the basic issues that school pharmacists deal with, such as objectives, criteria, and methods for each item to be checked, advice, and post-measures. We conduct various workshops and classes, and set up Q&A committees so that inquiries from members are answered with the help of such activities. In addition, school pharmacists try to improve the knowledge of the school staff on environmental hygiene during their in-service training. They also conduct "drug abuse prevention classes" at school and seek to improve knowledge and recognition of drugs, including "dangerous drugs". PMID:27252053

  17. An Accessory Agonist Binding Site Promotes Activation of α4β2* Nicotinic Acetylcholine Receptors.

    PubMed

    Wang, Jingyi; Kuryatov, Alexander; Sriram, Aarati; Jin, Zhuang; Kamenecka, Theodore M; Kenny, Paul J; Lindstrom, Jon

    2015-05-29

    Neuronal nicotinic acetylcholine receptors containing α4, β2, and sometimes other subunits (α4β2* nAChRs) regulate addictive and other behavioral effects of nicotine. These nAChRs exist in several stoichiometries, typically with two high affinity acetylcholine (ACh) binding sites at the interface of α4 and β2 subunits and a fifth accessory subunit. A third low affinity ACh binding site is formed when this accessory subunit is α4 but not if it is β2. Agonists selective for the accessory ACh site, such as 3-[3-(3-pyridyl)-1,2,4-oxadiazol-5-yl]benzonitrile (NS9283), cannot alone activate a nAChR but can facilitate more efficient activation in combination with agonists at the canonical α4β2 sites. We therefore suggest categorizing agonists according to their site selectivity. NS9283 binds to the accessory ACh binding site; thus it is termed an accessory site-selective agonist. We expressed (α4β2)2 concatamers in Xenopus oocytes with free accessory subunits to obtain defined nAChR stoichiometries and α4/accessory subunit interfaces. We show that α2, α3, α4, and α6 accessory subunits can form binding sites for ACh and NS9283 at interfaces with α4 subunits, but β2 and β4 accessory subunits cannot. To permit selective blockage of the accessory site, α4 threonine 126 located on the minus side of α4 that contributes to the accessory site, but not the α4β2 sites, was mutated to cysteine. Alkylation of this cysteine with a thioreactive reagent blocked activity of ACh and NS9283 at the accessory site. Accessory agonist binding sites are promising drug targets.

  18. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site.

    PubMed

    Kassotis, Christopher D; Iwanowicz, Luke R; Akob, Denise M; Cozzarelli, Isabelle M; Mumford, Adam C; Orem, William H; Nagel, Susan C

    2016-07-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby. PMID:27073166

  19. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site

    USGS Publications Warehouse

    Kassotis, Christopher D.; Iwanowicz, Luke; Akob, Denise M.; Cozzarelli, Isabelle M.; Mumford, Adam; Orem, William H.; Nagel, Susan C.

    2016-01-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby.

  20. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity.

    PubMed

    Matsubu, John C; Yang, Vanessa N; Christopher, Phillip

    2015-03-01

    CO2 reduction by H2 on heterogeneous catalysts is an important class of reactions that has been studied for decades. However, atomic scale details of structure-function relationships are still poorly understood. Particularly, it has been suggested that metal particle size plays a unique role in controlling the stability of CO2 hydrogenation catalysts and the distribution of active sites, which dictates reactivity and selectivity. These studies often have not considered the possible role of isolated metal active sites in the observed dependences. Here, we utilize probe molecule diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) with known site-specific extinction coefficients to quantify the fraction of Rh sites residing as atomically dispersed isolated sites (Rhiso), as well as Rh sites on the surface of Rh nanoparticles (RhNP) for a series of TiO2 supported Rh catalysts. Strong correlations were observed between the catalytic reverse water gas shift turn over frequency (TOF) and the fraction of Rhiso sites and between catalytic methanation TOF and the fraction of RhNP sites. Furthermore, it was observed that reaction condition-induced disintegration of Rh nanoparticles, forming Rhiso active sites, controls the changing reactivity with time on stream. This work demonstrates that isolated atoms and nanoparticles of the same metal on the same support can exhibit uniquely different catalytic selectivity in competing parallel reaction pathways and that disintegration of nanoparticles under reaction conditions can play a significant role in controlling stability.

  1. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity.

    PubMed

    Matsubu, John C; Yang, Vanessa N; Christopher, Phillip

    2015-03-01

    CO2 reduction by H2 on heterogeneous catalysts is an important class of reactions that has been studied for decades. However, atomic scale details of structure-function relationships are still poorly understood. Particularly, it has been suggested that metal particle size plays a unique role in controlling the stability of CO2 hydrogenation catalysts and the distribution of active sites, which dictates reactivity and selectivity. These studies often have not considered the possible role of isolated metal active sites in the observed dependences. Here, we utilize probe molecule diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) with known site-specific extinction coefficients to quantify the fraction of Rh sites residing as atomically dispersed isolated sites (Rhiso), as well as Rh sites on the surface of Rh nanoparticles (RhNP) for a series of TiO2 supported Rh catalysts. Strong correlations were observed between the catalytic reverse water gas shift turn over frequency (TOF) and the fraction of Rhiso sites and between catalytic methanation TOF and the fraction of RhNP sites. Furthermore, it was observed that reaction condition-induced disintegration of Rh nanoparticles, forming Rhiso active sites, controls the changing reactivity with time on stream. This work demonstrates that isolated atoms and nanoparticles of the same metal on the same support can exhibit uniquely different catalytic selectivity in competing parallel reaction pathways and that disintegration of nanoparticles under reaction conditions can play a significant role in controlling stability. PMID:25671686

  2. Site specific rationale for technical impracticability of active groundwater restoration at a former manufactured gas plant site

    SciTech Connect

    Logan, C.M.; Walden, R.H.; MacFarlane, I.D.

    1995-12-31

    The National Contingency Plan (40 CFR Part 300 ) requires that remedial strategies must, at minimum, protect human health and the environment and meet applicable and relevant or appropriate requirements (ARARs). Where groundwater is impacted, maximum contaminant levels (MCLs) and maximum contaminant level goals (MCLGs) set under the Safe Drinking Water Act are often used as ARARs, whether or not the aquifer is a reasonably anticipated future source of drinking water. The US Environmental Protection Agency now recognizes the difficulty of groundwater restoration at sites where dense nonaqueous phase liquids are present, particularly in certain complex hydrogeological settings (EPA 1993). However, demonstration of impracticability generally does not occur until active remediation (e.g., pump and treat) has been shown to be ineffective. A case study of a former manufactured gas plant (MGP) is used to demonstrate how physical and chemical properties of the aquifer and coal tar, the major waste product from MGP sites, influence the feasibility of active restoration. Field characterization investigations, laboratory studies, and groundwater modeling are integrated into a demonstration following EPA guidelines. Laboratory studies included microbiological characterization and natural biodegradation and suggest that intrinsic bioremediation is occurring at this site. This work will be useful as EPA continues to develop presumptive remedies for cleanup under Superfund.

  3. The calculation of surface orbital energies for specific types of active sites on dispersed metal catalysts

    SciTech Connect

    Augustine, R.L.; Lahanas, K.M.; Cole, F.

    1992-11-01

    An angular overlap calculation has been used to determine the s, p, and d orbital energy levels of the different types of surface sites present on dispersed metal catalysts. These data can permit a Frontier Molecular Orbital treatment of specific site activities as long as the surface orbital availability for overlap with adsorbed substrates is considered along with its energy value and symmetry.

  4. The calculation of surface orbital energies for specific types of active sites on dispersed metal catalysts

    SciTech Connect

    Augustine, R.L.; Lahanas, K.M.; Cole, F.

    1992-01-01

    An angular overlap calculation has been used to determine the s, p, and d orbital energy levels of the different types of surface sites present on dispersed metal catalysts. These data can permit a Frontier Molecular Orbital treatment of specific site activities as long as the surface orbital availability for overlap with adsorbed substrates is considered along with its energy value and symmetry.

  5. Extending the Diffuse Layer Model of Surface Acidity Behavior: III. Estimating Bound Site Activity Coefficients

    EPA Science Inventory

    Although detailed thermodynamic analyses of the 2-pK diffuse layer surface complexation model generally specify bound site activity coefficients for the purpose of accounting for those non-ideal excess free energies contributing to bound site electrochemical potentials, in applic...

  6. Activity of site-specific endonucleases on complexes of plasmid DNA with multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Egorova, V. P.; Krylova, H. V.; Lipnevich, I. V.; Veligura, A. A.; Shulitsky, B. G.; Asayonok, A. A.; Vaskovtsev, E. V.

    2016-08-01

    We have synthesized and investigated structural and functional properties of plasmid DNA complexes with multi-walled carbon nanotubes (MWCNTs) for detection of changes in structural state of the plasmid DNA at its recognition by site-specific endonuclease. It has been also established that the site-specific endonuclease is functionally active on the surface of MWCNTs.

  7. 77 FR 5560 - Commercial Wind Lease Issuance and Site Assessment Activities on the Atlantic Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ... project proposals on those leases) in identified Wind Energy Areas (WEAs) on the OCS offshore New Jersey... Bureau of Ocean Energy Management Commercial Wind Lease Issuance and Site Assessment Activities on the... site assessment plans (SAPs) on those leases. BOEM may issue one or more commercial wind energy...

  8. The balance of flexibility and rigidity in the active site residues of hen egg white lysozyme

    NASA Astrophysics Data System (ADS)

    Qi, Jian-Xun; Jiang, Fan

    2011-05-01

    The crystallographic temperature factors (B factor) of individual atoms contain important information about the thermal motion of the atoms in a macromolecule. Previously the theory of flexibility of active site has been established based on the observation that the enzyme activity is sensitive to low concentration denaturing agents. It has been found that the loss of enzyme activity occurs well before the disruption of the three-dimensional structural scaffold of the enzyme. To test the theory of conformational flexibility of enzyme active site, crystal structures were perturbed by soaking in low concentration guanidine hydrochloride solutions. It was found that many lysozyme crystals tested could still diffract until the concentration of guanidine hydrochloride reached 3 M. It was also found that the B factors averaged over individually collected data sets were more accurate. Thus it suggested that accurate measurement of crystal temperature factors could be achieved for medium-high or even medium resolution crystals by averaging over multiple data sets. Furthermore, we found that the correctly predicted active sites included not only the more flexible residues, but also some more rigid residues. Both the flexible and the rigid residues in the active site played an important role in forming the active site residue network, covering the majority of the substrate binding residues. Therefore, this experimental prediction method may be useful for characterizing the binding site and the function of a protein, such as drug targeting.

  9. Specific Alterations in Complement Protein Activity of Little Brown Myotis (Myotis lucifugus) Hibernating in White-Nose Syndrome Affected Sites

    PubMed Central

    Moore, Marianne S.; Reichard, Jonathan D.; Murtha, Timothy D.; Zahedi, Bita; Fallier, Renee M.; Kunz, Thomas H.

    2011-01-01

    White-nose syndrome (WNS) is the most devastating condition ever reported for hibernating bats, causing widespread mortality in the northeastern United States. The syndrome is characterized by cutaneous lesions caused by a recently identified psychrophilic and keratinophylic fungus (Geomyces destructans), depleted fat reserves, atypical behavior, and damage to wings; however, the proximate cause of mortality is still uncertain. To assess relative levels of immunocompetence in bats hibernating in WNS-affected sites compared with levels in unaffected bats, we describe blood plasma complement protein activity in hibernating little brown myotis (Myotis lucifugus) based on microbicidal competence assays using Escherichia coli, Staphylococcus aureus and Candida albicans. Blood plasma from bats collected during mid-hibernation at WNS-affected sites had higher bactericidal ability against E. coli and S. aureus, but lower fungicidal ability against C. albicans when compared with blood plasma from bats collected at unaffected sites. Within affected sites during mid-hibernation, we observed no difference in microbicidal ability between bats displaying obvious fungal infections compared to those without. Bactericidal ability against E. coli decreased significantly as hibernation progressed in bats collected from an affected site. Bactericidal ability against E. coli and fungicidal ability against C. albicans were positively correlated with body mass index (BMI) during late hibernation. We also compared complement activity against the three microbes within individuals and found that the ability of blood plasma from hibernating M. lucifugus to lyse microbial cells differed as follows: E. coli>S. aureus>C. albicans. Overall, bats affected by WNS experience both relatively elevated and reduced innate immune responses depending on the microbe tested, although the cause of observed immunological changes remains unknown. Additionally, considerable trade-offs may exist between energy

  10. Specific alterations in complement protein activity of little brown myotis (Myotis lucifugus) hibernating in white-nose syndrome affected sites.

    PubMed

    Moore, Marianne S; Reichard, Jonathan D; Murtha, Timothy D; Zahedi, Bita; Fallier, Renee M; Kunz, Thomas H

    2011-01-01

    White-nose syndrome (WNS) is the most devastating condition ever reported for hibernating bats, causing widespread mortality in the northeastern United States. The syndrome is characterized by cutaneous lesions caused by a recently identified psychrophilic and keratinophylic fungus (Geomyces destructans), depleted fat reserves, atypical behavior, and damage to wings; however, the proximate cause of mortality is still uncertain. To assess relative levels of immunocompetence in bats hibernating in WNS-affected sites compared with levels in unaffected bats, we describe blood plasma complement protein activity in hibernating little brown myotis (Myotis lucifugus) based on microbicidal competence assays using Escherichia coli, Staphylococcus aureus and Candida albicans. Blood plasma from bats collected during mid-hibernation at WNS-affected sites had higher bactericidal ability against E. coli and S. aureus, but lower fungicidal ability against C. albicans when compared with blood plasma from bats collected at unaffected sites. Within affected sites during mid-hibernation, we observed no difference in microbicidal ability between bats displaying obvious fungal infections compared to those without. Bactericidal ability against E. coli decreased significantly as hibernation progressed in bats collected from an affected site. Bactericidal ability against E. coli and fungicidal ability against C. albicans were positively correlated with body mass index (BMI) during late hibernation. We also compared complement activity against the three microbes within individuals and found that the ability of blood plasma from hibernating M. lucifugus to lyse microbial cells differed as follows: E. coli>S. aureus>C. albicans. Overall, bats affected by WNS experience both relatively elevated and reduced innate immune responses depending on the microbe tested, although the cause of observed immunological changes remains unknown. Additionally, considerable trade-offs may exist between energy

  11. Chemical modification studies on arginine kinase: essential cysteine and arginine residues at the active site.

    PubMed

    Zhu, Wen-Jing; Li, Miao; Wang, Xiao-Yun

    2007-12-01

    Chemical modification was used to elucidate the essential amino acids in the catalytic activity of arginine kinase (AK) from Migratoria manilensis. Among six cysteine (Cys) residues only one Cys residue was determined to be essential in the active site by Tsou's method. Furthermore, the AK modified by DTNB can be fully reactivated by dithiothreitol (DTT) in a monophasic kinetic course. At the same time, this reactivation can be slowed down in the presence of ATP, suggesting that the essential Cys is located near the ATP binding site. The ionizing groups at the AK active site were studied and the standard dissociation enthalpy (DeltaH degrees ) was 12.38kcal/mol, showing that the dissociation group may be the guanidino of arginine (Arg). Using the specific chemical modifier phenylglyoxal (PG) demonstrated that only one Arg, located near the ATP binding site, is essential for the activity of AK. PMID:17765964

  12. 1993 annual report of hazardous waste activities for the Oak Ridge K-25 site

    SciTech Connect

    Not Available

    1994-02-01

    This report is a detailed listing of all of the Hazardous Waste activities occurring at Martin Marietta`s K-25 site. Contained herein are hazardous waste notification forms, waste stream reports, generator fee forms and various TSDR reports.

  13. Annealing of Cd-implanted GaAs: Defect removal, lattice site occupation, and electrical activation

    NASA Astrophysics Data System (ADS)

    Moriya, N.; Brener, I.; Kalish, R.; Pfeiffer, W.; Deicher, M.; Keller, R.; Magerle, R.; Recknagel, E.; Skudlik, H.; Wichert, Th.; Wolf, H.

    1993-05-01

    A systematic investigation of the behavior of Cd-implanted GaAs after rapid thermal annealing is presented. The use of various experimental techniques gives a detailed picture regarding the annealing process in the low-dose regime (1012 and 1013 cm-2) on a microscopic as well as on a macroscopic scale. Perturbed angular correlation experiments, using the radioactive probe 111mCd, yield information on the immediate environment of the Cd implant on an atomic scale. Rutherford backscattering channeling and photoluminescence spectroscopy give complementary information concerning the overall damage level in the implanted layer, Hall measurements are used to determine the degree of electrical activation of the implanted Cd acceptors. The outdiffusion of the implanted radioactive Cd atoms is also investigated. The removal of defects in the next-nearest neighborhood of the Cd atoms takes place after annealing at 700 K and is accompanied by a general recovering of the crystal lattice. Between 600 and 900 K more distant defects are removed. The observed outdiffusion of about one-third of the dopant atoms after annealing above 600 K is discussed in context with their partial incorporation in extended defects. Although already at 700 K, 80% of the implanted Cd atoms are on substitutional lattice sites with no defects in their immediate environment, an annealing temperature in excess of 1000 K is necessary to obtain electrical activation of the implants. It is concluded that compensating defects, present in ion-implanted GaAs, are the reason for the significantly higher temperature required for electrical activation as compared to the incorporation of the dopants on defect-free, substitutional lattice sites.

  14. Comparative study of the microbial quality of greywater treated by three on-site treatment systems.

    PubMed

    Friedler, E; Kovalio, R; Ben-Zvi, A

    2006-06-01

    This paper analyses the performance of a pilot scale treatment plant, treating light domestic greywater. The treatment included three parallel treatment units: stand-alone sand filtration (SFEB), RBC followed by sand filtration (SFRBC), and an MBR equipped with UF membranes (MBR). The performance of the SFEB unit was rather poor. The RBC and MBR units produced effluent of excellent quality, with COD of 42 and 40 mg l(-1), BOD of 1.8 and 1.1 mg l(-1), and turbidity of 0.6 and 0.2 NTU respectively. The SFEB failed to remove heterotrophic microorganisms (HPC), while the SFRBC and the MBR exhibited 2.1 and 3.6 logs removal, leading to effluent concentrations of 1.1 x 10(3) and 8.8 x 10(3) cfu ml(-1) respectively. Faecal coliforms (FC) counts were 3.4 x 10(5) 1.4 x 10(5) 1.1 x 10(3) and 3.5 x 10(2) cfu 100 ml(-1) in raw greywater, and in the SFEB, SFRBC and MBR effluents respectively. Further, in 60% of the samples no FC were detected in the MBR effluent. In order to simulate residence times in full scale systems, effluents were disinfected and stored for 0.5 h, 3 h, 6 h (normal operation), and one week (extreme event). The average chlorine demand was 8.1, 3.8 and 2.9 mg l(-1) for SFEB, SFRBC and MBR effluents respectively. Low residual chlorine (0.15-0.22 mg l(-1)) remained in all effluents even after a week-long storage. Disinfection reduced HPC by 5, 2 and 2 orders of magnitude in the SFEB, SFRBC and MBR effluents respectively, with no regrowth in short contact times (up to 6 hours). Some regrowth was observed after a week-long storage leading to 10(6), 10(4) and 10(3) cfu ml(-1) (SFEB SFRBC and MBR respectively). Disinfection reduced FC counts in all three types of effluent to 0 cfu 100 ml(-1), whilst no FC regrowth was observed after week-long storage. The results show that both RBC and MBR treatment units are viable options for on-site greywater reuse. The disinfection experiments strongly indicate that the health risk associated with the reuse of these effluents

  15. Comparing bioenergy production sites in the Southeastern US regarding ecosystem service supply and demand.

    PubMed

    Meyer, Markus A; Chand, Tanzila; Priess, Joerg A

    2015-01-01

    Biomass for bioenergy is debated for its potential synergies or tradeoffs with other provisioning and regulating ecosystem services (ESS). This biomass may originate from different production systems and may be purposefully grown or obtained from residues. Increased concerns globally about the sustainable production of biomass for bioenergy has resulted in numerous certification schemes focusing on best management practices, mostly operating at the plot/field scale. In this study, we compare the ESS of two watersheds in the southeastern US. We show the ESS tradeoffs and synergies of plantation forestry, i.e., pine poles, and agricultural production, i.e., wheat straw and corn stover, with the counterfactual natural or semi-natural forest in both watersheds. The plantation forestry showed less distinct tradeoffs than did corn and wheat production, i.e., for carbon storage, P and sediment retention, groundwater recharge, and biodiversity. Using indicators of landscape composition and configuration, we showed that landscape planning can affect the overall ESS supply and can partly determine if locally set environmental thresholds are being met. Indicators on landscape composition, configuration and naturalness explained more than 30% of the variation in ESS supply. Landscape elements such as largely connected forest patches or more complex agricultural patches, e.g., mosaics with shrub and grassland patches, may enhance ESS supply in both of the bioenergy production systems. If tradeoffs between biomass production and other ESS are not addressed by landscape planning, it may be reasonable to include rules in certification schemes that require, e.g., the connectivity of natural or semi-natural forest patches in plantation forestry or semi-natural landscape elements in agricultural production systems. Integrating indicators on landscape configuration and composition into certification schemes is particularly relevant considering that certification schemes are governance

  16. Comparing Bioenergy Production Sites in the Southeastern US Regarding Ecosystem Service Supply and Demand

    PubMed Central

    Meyer, Markus A.; Chand, Tanzila; Priess, Joerg A.

    2015-01-01

    Biomass for bioenergy is debated for its potential synergies or tradeoffs with other provisioning and regulating ecosystem services (ESS). This biomass may originate from different production systems and may be purposefully grown or obtained from residues. Increased concerns globally about the sustainable production of biomass for bioenergy has resulted in numerous certification schemes focusing on best management practices, mostly operating at the plot/field scale. In this study, we compare the ESS of two watersheds in the southeastern US. We show the ESS tradeoffs and synergies of plantation forestry, i.e., pine poles, and agricultural production, i.e., wheat straw and corn stover, with the counterfactual natural or semi-natural forest in both watersheds. The plantation forestry showed less distinct tradeoffs than did corn and wheat production, i.e., for carbon storage, P and sediment retention, groundwater recharge, and biodiversity. Using indicators of landscape composition and configuration, we showed that landscape planning can affect the overall ESS supply and can partly determine if locally set environmental thresholds are being met. Indicators on landscape composition, configuration and naturalness explained more than 30% of the variation in ESS supply. Landscape elements such as largely connected forest patches or more complex agricultural patches, e.g., mosaics with shrub and grassland patches, may enhance ESS supply in both of the bioenergy production systems. If tradeoffs between biomass production and other ESS are not addressed by landscape planning, it may be reasonable to include rules in certification schemes that require, e.g., the connectivity of natural or semi-natural forest patches in plantation forestry or semi-natural landscape elements in agricultural production systems. Integrating indicators on landscape configuration and composition into certification schemes is particularly relevant considering that certification schemes are governance

  17. Healing of complement activating Ti implants compared with non-activating Ti in rat tibia.

    PubMed

    Harmankaya, N; Igawa, K; Stenlund, P; Palmquist, A; Tengvall, P

    2012-09-01

    Recent studies have revealed that ozone ultraviolet (UVO) illumination of titanium (Ti) implants improves bone-implant anchorage by altering the physico-chemical and immune activating properties of the titanium dioxide (TiO(2)) layer. In the present rat tibia model, the authors compared the early events of inflammation and bone formation around UVO-treated Ti and complement activating immunoglobin g (IgG)-coated Ti. Machined Ti and machined Ti coated with a physical vapour-deposited Ti layer were used as references. Screw-shaped test and reference implants were implanted into rat tibia and harvested after 1, 7 and 28 days. Messenger RNA expression of implant adhered cells and peri-implant tissue ~250 μm from the surface were subsequently analysed with regard to IL-1β, TNF-α, osteocalcin, cathepsin K, BMP-2 and PDGF. Separate implants were retrieved after 7 and 28 days for removal torque measurements, and histological staining and histomorphometric analysis of bone area and bone-to-implant contact. While enhanced expression of inflammatory markers, TNF-α and IL-1β, was observed on IgG-coated surfaces throughout the observation time, UVO-treated surfaces indicated a significantly lower early inflammatory response. In the early phases (1 and 7 days), the UVO-treated surfaces displayed a significantly higher expression of osteoblast markers BMP-2 and osteocalcin. In summary, complement activating Ti implants elicited a stronger inflammatory response than UVO-treated Ti, with low complement activation during the first week of healing. In spite of this, the UVO-treated Ti induced only marginally more bone growth outside the implants.

  18. Coordination of the Filament Stabilizing Versus Destabilizing Activities of Cofilin Through its Secondary Binding Site on Actin

    PubMed Central

    Aggeli, Dimitra; Kish-Trier, Erik; Lin, Meng Chi; Haarer, Brian; Cingolani, Gino; Cooper, John A.; Wilkens, Stephan; Amberg, David C.

    2014-01-01

    Cofilin is a ubiquitous modulator of actin cytoskeleton dynamics that can both stabilize and destabilize actin filaments depending on its concentration and/or the presence of regulatory co-factors. Three charge-reversal mutants of yeast cofilin, located in cofilin’s filament-specific secondary binding site, were characterized in order to understand why disruption of this site leads to enhanced filament disassembly. Crystal structures of the mutants showed that the mutations specifically affect the secondary actin-binding interface, leaving the primary binding site unaltered. The mutant cofilins show enhanced activity compared to wild-type cofilin in severing and disassembling actin filaments. Electron microscopy and image analysis revealed long actin filaments in the presence of wild-type cofilin, while the mutants induced many short filaments, consistent with enhanced severing. Real-time fluorescence microscopy of labeled actin filaments confirmed that the mutants, unlike wild-type cofilin, were functioning as constitutively active severing proteins. In cells, the mutant cofilins delayed endocytosis, which depends on rapid actin turnover. We conclude that mutating cofilin’s secondary actin-binding site increases cofilin’s ability to sever and depolymerize actin filaments. We hypothesize that activators of cofilin severing, like Aip1p, may act by disrupting the interface between cofilin’s secondary actin-binding site and the actin filament. PMID:24943913

  19. Efficient Fludarabine-Activating PNP From Archaea as a Guidance for Redesign the Active Site of E. Coli PNP.

    PubMed

    Cacciapuoti, Giovanna; Bagarolo, Maria Libera; Martino, Elisa; Scafuri, Bernardina; Marabotti, Anna; Porcelli, Marina

    2016-05-01

    The combination of the gene of purine nucleoside phosphorylase (PNP) from Escherichia coli and fludarabine represents one of the most promising systems in the gene therapy of solid tumors. The use of fludarabine in gene therapy is limited by the lack of an enzyme that is able to efficiently activate this prodrug which, consequently, has to be administered in high doses that cause serious side effects. In an attempt to identify enzymes with a better catalytic efficiency than E. coli PNP towards fludarabine to be used as a guidance on how to improve the activity of the bacterial enzyme, we have selected 5'-deoxy-5'-methylthioadenosine phosphorylase (SsMTAP) and 5'-deoxy-5'-methylthioadenosine phosphorylase II (SsMTAPII), two PNPs isolated from the hyperthermophilic archaeon Sulfolobus solfataricus. Substrate specificity and catalytic efficiency of SsMTAP and SsMTAPII for fludarabine were analyzed by kinetic studies and compared with E. coli PNP. SsMTAP and SsMTAPII share with E. coli PNP a comparable low affinity for the arabinonucleoside but are better catalysts of fludarabine cleavage with k(cat)/K(m) values that are 12.8-fold and 6-fold higher, respectively, than those reported for the bacterial enzyme. A computational analysis of the interactions of fludarabine in the active sites of E. coli PNP, SsMTAP, and SsMTAPII allowed to identify the crucial residues involved in the binding with this substrate, and provided structural information to improve the catalytic efficiency of E. coli PNP by enzyme redesign.

  20. Structural Basis for Substrate and Oxygen Activation in Homoprotocatechuate 2,3-Dioxygenase: Roles of Conserved Active Site Histidine 200.

    PubMed

    Kovaleva, Elena G; Rogers, Melanie S; Lipscomb, John D

    2015-09-01

    Kinetic and spectroscopic studies have shown that the conserved active site residue His200 of the extradiol ring-cleaving homoprotocatechuate 2,3-dioxygenase (FeHPCD) from Brevibacterium fuscum is critical for efficient catalysis. The roles played by this residue are probed here by analysis of the steady-state kinetics, pH dependence, and X-ray crystal structures of the FeHPCD position 200 variants His200Asn, His200Gln, and His200Glu alone and in complex with three catecholic substrates (homoprotocatechuate, 4-sulfonylcatechol, and 4-nitrocatechol) possessing substituents with different inductive capacity. Structures determined at 1.35-1.75 Å resolution show that there is essentially no change in overall active site architecture or substrate binding mode for these variants when compared to the structures of the wild-type enzyme and its analogous complexes. This shows that the maximal 50-fold decrease in kcat for ring cleavage, the dramatic changes in pH dependence, and the switch from ring cleavage to ring oxidation of 4-nitrocatechol by the FeHPCD variants can be attributed specifically to the properties of the altered second-sphere residue and the substrate. The results suggest that proton transfer is necessary for catalysis, and that it occurs most efficiently when the substrate provides the proton and His200 serves as a catalyst. However, in the absence of an available substrate proton, a defined proton-transfer pathway in the protein can be utilized. Changes in the steric bulk and charge of the residue at position 200 appear to be capable of altering the rate-limiting step in catalysis and, perhaps, the nature of the reactive species.

  1. Structural Basis for Substrate and Oxygen Activation in Homoprotocatechuate 2,3-Dioxygenase: Roles of Conserved Active Site Histidine-200

    PubMed Central

    Kovaleva, Elena G.; Rogers, Melanie S.; Lipscomb, John D.

    2015-01-01

    Kinetic and spectroscopic studies have shown that the conserved active site residue His200 of the extradiol ring-cleaving homoprotocatechuate 2,3-dioxygenase (FeHPCD) from Brevibacterium fuscum is critical for efficient catalysis. The roles played by this residue are probed here by analysis of the steady state kinetics, pH dependence, and X-ray crystal structures of the FeHPCD position 200 variants His200Asn, His200Gln, and His200Glu alone and in complex with three catecholic substrates (homoprotocatechuate, 4-sulfonylcatechol, and 4-nitrocatechol) possessing substituents with different inductive capacity. Structures solved at 1.35 –1.75 Å resolution show that there is essentially no change in overall active site architecture or substrate binding mode for these variants when compared to the structures of the wild type enzyme and its analogous complexes. This shows that the maximal 50-fold decrease in kcat for ring cleavage, the dramatic changes in pH dependence, and the switch from ring cleavage to ring oxidation of 4-nitrocatechol by the FeHPCD variants can be attributed specifically to the properties of the altered second sphere residue and the substrate. The results suggest that proton transfer is necessary for catalysis, and that it occurs most efficiently when the substrate provides the proton and His200 serves as a catalyst. However, in the absence of an available substrate proton, a defined proton-transfer pathway in the protein can be utilized. Changes in steric bulk and charge of the residue at position 200 appear capable of altering the rate-limiting step in catalysis, and perhaps, the nature of the reactive species. PMID:26267790

  2. Detection of allosteric kinase inhibitors by displacement of active site probes.

    PubMed

    Lebakken, Connie S; Reichling, Laurie J; Ellefson, Jason M; Riddle, Steven M

    2012-07-01

    Non-adenosine triphosphate (ATP) competitive, allosteric inhibitors provide a promising avenue to develop highly selective small-molecule kinase inhibitors. Although this class of compounds is growing, detection of such inhibitors can be challenging as standard kinase activity assays preferentially detect compounds that bind to active kinases in an ATP competitive manner. We have previously described a time-resolved fluorescence resonance energy transfer (TR-FRET)-based kinase binding assay using the competitive displacement of ATP competitive active site fluorescent probes ("tracers"). Although this format has gained acceptance, published data with this and related formats are almost entirely without examples of non-ATP competitive compounds. Thus, this study addresses whether this format is useful for non-ATP competitive inhibitors. To this end, 15 commercially available non-ATP competitive inhibitors were tested for their ability to displace ATP competitive probes. Despite the diversity of both compound structures and their respective targets, 14 of the 15 compounds displaced the tracers with IC(50) values comparable to literature values. We conclude that such binding assays are well suited for the study of non-ATP competitive inhibitors. In addition, we demonstrate that allosteric inhibitors of BCR-Abl and MEK bind preferentially to the nonphosphorylated (i.e., inactive) form of the kinase, indicating that binding assays may be a preferred format in some cases.

  3. Direct Visualization of Catalytically Active Sites at the FeO-Pt(111) Interface.

    PubMed

    Kudernatsch, Wilhelmine; Peng, Guowen; Zeuthen, Helene; Bai, Yunhai; Merte, Lindsay R; Lammich, Lutz; Besenbacher, Flemming; Mavrikakis, Manos; Wendt, Stefan

    2015-08-25

    Within the area of surface science, one of the "holy grails" is to directly visualize a chemical reaction at the atomic scale. Whereas this goal has been reached by high-resolution scanning tunneling microscopy (STM) in a number of cases for reactions occurring at flat surfaces, such a direct view is often inhibited for reaction occurring at steps and interfaces. Here we have studied the CO oxidation reaction at the interface between ultrathin FeO islands and a Pt(111) support by in situ STM and density functional theory (DFT) calculations. Time-lapsed STM imaging on this inverse model catalyst in O2 and CO environments revealed catalytic activity occurring at the FeO-Pt(111) interface and directly showed that the Fe-edges host the catalytically most active sites for the CO oxidation reaction. This is an important result since previous evidence for the catalytic activity of the FeO-Pt(111) interface is essentially based on averaging techniques in conjunction with DFT calculations. The presented STM results are in accord with DFT+U calculations, in which we compare possible CO oxidation pathways on oxidized Fe-edges and O-edges. We found that the CO oxidation reaction is more favorable on the oxidized Fe-edges, both thermodynamically and kinetically.

  4. Direct Visualization of Catalytically Active Sites at the FeO-Pt(111) Interface

    SciTech Connect

    Kudernatsch, Wilhelmine; Peng, Guowen; Zeuthen, Helene; Bai, Yunhai; Merte, L. R.; Lammich, Lutz; Besenbacher, Fleming; Mavrikakis, Manos; Wendt, Stefen

    2015-08-25

    Within the area of surface science, one of the “holy grails” is to directly visualize a chemical reaction at the atomic scale. Whereas this goal has been reached by high-resolution scanning tunneling microscopy (STM) in a number of cases for reactions occurring at flat surfaces, such a direct view is often inhibited for reaction occurring at steps and interfaces. Here we have studied the CO oxidation reaction at the interface between ultrathin FeO islands and a Pt(111) support by in situ STM and density functional theory (DFT) calculations. Time-lapsed STM imaging on this inverse model catalyst in O2 and CO environments revealed catalytic activity occurring at the FeO-Pt(111) interface and directly showed that the Fe-edges host the catalytically most active sites for the CO oxidation reaction. This is an important result since previous evidence for the catalytic activity of the FeO-Pt(111) interface is essentially based on averaging techniques in conjunction with DFT calculations. The presented STM results are in accord with DFTþU calculations, in which we compare possible CO oxidation pathways on oxidized Fe-edges and O-edges. We found that the CO oxidation reaction is more favorable on the oxidized Fe-edges, both thermodynamically and kinetically.

  5. Probing impact of active site residue mutations on stability and activity of Neisseria polysaccharea amylosucrase.

    PubMed

    Daudé, David; Topham, Christopher M; Remaud-Siméon, Magali; André, Isabelle

    2013-12-01

    The amylosucrase from Neisseria polysaccharea is a transglucosidase from the GH13 family of glycoside-hydrolases that naturally catalyzes the synthesis of α-glucans from the widely available donor sucrose. Interestingly, natural molecular evolution has modeled a dense hydrogen bond network at subsite -1 responsible for the specific recognition of sucrose and conversely, it has loosened interactions at the subsite +1 creating a highly promiscuous subsite +1. The residues forming these subsites are considered to be likely involved in the activity as well as the overall stability of the enzyme. To assess their role, a structure-based approach was followed to reshape the subsite -1. A strategy based on stability change predictions, using the FoldX algorithm, was considered to identify the best candidates for site-directed mutagenesis and guide the construction of a small targeted library. A miniaturized purification protocol was developed and both mutant stability and substrate promiscuity were explored. A range of 8 °C between extreme melting temperature values was observed and some variants were able to synthesize series of oligosaccharides with distributions differing from that of the parental enzyme. The crucial role of subsite -1 was thus highlighted and the biocatalysts generated can now be considered as starting points for further engineering purposes.

  6. Comparing rapid-screening and standard toxicity assays to assess known chemical contamination at a hazardous waste site

    SciTech Connect

    Martino, L.; Swigert, J.; Roberts, C.

    1995-12-31

    The thrust to streamline the Superfund site investigation/remediation program makes it critical for site investigators to utilize rapid screening methodologies to facilitate decision-making. However, screening methodologies providing information upon which decision-making is based must not only be rapid but also scientifically valid. This presentation compares and contrasts two rapid screening toxicity assessments, the Daphnia magna IQ Toxicity Test {trademark} and Microtox{trademark}, to a battery of standard aquatic toxicity tests using Lemna, Rana, Pimephales, Selenastruni and Ceriodaphnia. Chemical analysis of test water samples provided evidence of potential toxicological risk associated with the test samples. The study site was J-Field, Aberdeen Proving Ground, Maryland, a federal facility listed on the National Priority List that used to test and/or dispose of high explosives and chemical warfare agents in open pits or fields. Surface water samples from 20 sites were collected and used in the toxicity assessments. Water samples also were analyzed for explosives, chemical surety degradation compounds, Target Analyte List (inorganics), Target Compound List (organics) and selected pesticides and PCBs. The Microtox{trademark} assay did not reveal any toxicity present in the samples analyzed. Correlation analyses showed only slight correlation between the Daphnia magna IQ{trademark} assay and the standard 48-hour toxicity test. No correlation existed between the Microtox{trademark} assay and the aquatic toxicity tests. Results are discussed in light of the expected risk of the chemicals known to be present and the outcome of the toxicity tests.

  7. Site-directed mutagenesis and high-resolution NMR spectroscopy of the active site of porphobilinogen deaminase

    SciTech Connect

    Scott, A.I.; Roessner, C.A.; Stolowich, N.J.; Karuso, P.; Williams, H.J.; Grant, S.K.; Gonzalez, M.D.; Hoshino, T. )

    1988-10-18

    The active site of porphobilinogen (PBG){sup 1} deaminase from Escherichia coli has been found to contain an unusual dipyrromethane derived from four molecules of 5-aminolevulinic acid (ALA) covalently linked to Cys-242, one of the two cysteine residues conserved in E. coli and human deaminase. By use of a hemA{sup {minus}} strain of E. coli the enzyme was enriched from (5-{sup 13}C)ALA and examined by {sup 1}H-detected multiple quantum coherence spectroscopy, which revealed all of the salient features of a dipyrromethane composed of two PBG units linked heat to tail and terminating in a CH{sub 2}-S bond to a cysteine residue. Site-specific mutagenesis of Cys-99 and Cys-242, respectively, has shown that substitution of Ser for Cys-99 does not affect the enzymatic activity, whereas substitution of Ser for Cys-242 removes essentially all of the catalytic activity as measured by the conversion of the substrate PBG to uro'gen I. The NMR spectrum of the covalent complex of deaminase with the suicide inhibitor 2-bromo-(2,11-{sup 13}C{sub 2})PBG reveals that the aminomethyl terminus of the inhibitor reacts with the enzyme's cofactor at the {alpha}-free pyrrole. NMR spectroscopy of the ES{sub 2} complex confirmed a PBG-derived head-to-tail dipyrromethane attached to the {alpha}-free pyrrole position of the enzyme. A mechanistic rationale for deaminase is presented.

  8. Nuclear waste: Status of DOE`s nuclear waste site characterization activities

    SciTech Connect

    1987-12-31

    Three potential nuclear waste repository sites have been selected to carry out characterization activities-the detailed geological testing to determine the suitability of each site as a repository. The sites are Hanford in south-central Washington State, Yucca Mountain in southern Nevada, and Deaf Smith in the Texas Panhandle. Two key issues affecting the total program are the estimations of the site characterization completion data and costs and DOE`s relationship with the Nuclear Regulatory Commission which has been limited and its relations with affected states and Indian tribes which continue to be difficult.

  9. XAFS Study of the Photo-Active Site of Mo/MCM-41

    NASA Astrophysics Data System (ADS)

    Miyamoto, Daisuke; Ichikuni, Nobuyuki; Shimazu, Shogo

    2007-02-01

    An Mo/MCM-41 catalyst was prepared and used for study of propene and 1-butene photo-metathesis reactions. XAFS analysis revealed that hydrogen reduction leads to a decreased role for the Mo=O site. The Mo-O site plays an important role for the olefin photo-metathesis reaction on the H2 reduced Mo/MCM-41. From EXAFS analysis, the active site of photo-metathesis reaction is the Mo=O part for oxidized Mo/MCM-41, whereas it is the Mo-O site for reduced Mo/MCM-41.

  10. Comparative tissue distribution of heavy metals in house sparrow (Passer domesticus, Aves) in polluted and reference sites in Turkey.

    PubMed

    Albayrak, Tamer; Mor, Firdevs

    2011-10-01

    Bioindicators are useful for environmental monitoring in ecosystems with pollution loads. We compared concentrations of selected 10 metals in 42 samples of House Sparrow in a polluted by thermal power plant and reference sites. We found mean tissue concentrations of some metals to be significantly higher in sparrows from the polluted area when compared to tissues from the reference site. In liver mean concentrations of Cu (35.85 ± 17.22 mg kg(-1)) and Zn (101.76 ± 26.38 mg kg(-1)) were significantly higher and concentration of Ni (0.43 ± 0.49 mg kg(-1)) were significantly lower in sparrows from the polluted area (p<0.05). The concentration of Cu was significantly higher in muscle and liver at the polluted site. Gender did not seem to influence residue levels, of the elements studied, among sparrows with the exception of kidney cobalt concentrations; which were higher in female sparrows than in males (p<0.05, t=-2.409).

  11. The Three Mycobacterium tuberculosis Antigen 85 Isoforms Have Unique Substrates and Activities Determined by Non-active Site Regions*

    PubMed Central

    Backus, Keriann M.; Dolan, Michael A.; Barry, Conor S.; Joe, Maju; McPhie, Peter; Boshoff, Helena I. M.; Lowary, Todd L.; Davis, Benjamin G.; Barry, Clifton E.

    2014-01-01

    The three isoforms of antigen 85 (A, B, and C) are the most abundant secreted mycobacterial proteins and catalyze transesterification reactions that synthesize mycolated arabinogalactan, trehalose monomycolate (TMM), and trehalose dimycolate (TDM), important constituents of the outermost layer of the cellular envelope of Mycobacterium tuberculosis. These three enzymes are nearly identical at the active site and have therefore been postulated to exist to evade host immunity. Distal to the active site is a second putative carbohydrate-binding site of lower homology. Mutagenesis of the three isoforms at this second site affected both substrate selectivity and overall catalytic activity in vitro. Using synthetic and natural substrates, we show that these three enzymes exhibit unique selectivity; antigen 85A more efficiently mycolates TMM to form TDM, whereas C (and to a lesser extent B) has a higher rate of activity using free trehalose to form TMM. This difference in substrate selectivity extends to the hexasaccharide fragment of cell wall arabinan. Mutation of secondary site residues from the most active isoform (C) into those present in A or B partially interconverts this substrate selectivity. These experiments in combination with molecular dynamics simulations reveal that differences in the N-terminal helix α9, the adjacent Pro216–Phe228 loop, and helix α5 are the likely cause of changes in activity and substrate selectivity. These differences explain the existence of three isoforms and will allow for future work in developing inhibitors. PMID:25028517

  12. Transcriptional activation through ETS domain binding sites in the cytochrome c oxidase subunit IV gene

    SciTech Connect

    Virbasius, J.V.; Scarpulla, R.C. )

    1991-11-01

    A mutational analysis of the rat cytochrome c oxidase subunit IV (RCO4) promoter region revealed the presence of a major control element consisting of a tandemly repeated pair of binding sites for a nuclear factor from HeLa cells. This factor was designated NRF-2 (nuclear respiratory factor 2) because a functional recognition site was also found in the human ATP synthase {beta}-subunit gene. Deletion or site-directed point mutations of the NRF-2 binding sites in the RCO4 promoter resulted in substantial loss of transcriptional activity, and synthetic oligomers of the NRF-2 binding sites from both genes stimulated a heterologous promoter when cloned in cis. NRF-2 binding a transcriptional activation required a purine-rich core sequence, GGAA. This motif is characteristic of the recognition site for a family of activators referred to as ETS domain proteins because of the similarity within their DNA-binding domains to the ets-1 proto-oncogene product. NRF-2 recognized an authentic Ets-1 site within the Moloney murine sarcoma virus long terminal repeat, and this site was able to compete for NRF-2 binding to the RCO4 promoter sequence. However, in contrast to Ets-1, which appears to be exclusive to lymphoid tissues, NRF-2 has the broad tissue distribution expected of a regulator of respiratory chain expression.

  13. Thermospheric Neutral Wind Observations from Three Antarctic Sites Compared with Data from Two Near-Conjugate Sites in the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Conde, M. G.; Wu, Q.; Anderson, C.; Aruliah, A. L.; Noto, J.; Yiu, I.; Dyson, P. L.; Davies, T.; Kosch, M.

    2011-12-01

    The 2010/2011 austral summer season saw a new narrow-field Fabry-Perot Doppler spectrometer installed at Palmer station, while an existing all-sky instrument at Mawson station was returned to service by replacing an EMCCD camera that had failed two years earlier. E-region and F-region thermospheric winds recorded in 2011 by these two instruments will be presented, together with observations from a third (narrow-field) Antarctic Fabry-Perot spectrometer that has been running at Davis station since 2004. Combined observations from these three sites characterize the large-scale thermospheric circulation over Antarctica, whereas the all-sky data from Mawson also resolves small-scale features such as divergence, shear, and gravity waves. Hemispheric differences in thermospheric winds will be examined by comparing these data with corresponding northern hemisphere winds recorded by Fabry-Perot instruments located at Millstone Hill (which is approximately conjugate to Palmer) and Longyearbyen (which is approximately conjugate to Davis and Mawson.) Inter-hemispheric comparisons will consider both the average wind patterns observed from the southern and northern sites, and case studies of individual days during the March equinox when both hemispheres were in darkness.

  14. Comparing Three Methods of Sampling Throughfall in a Declining Coniferous Forest at a low Rainfall Site

    NASA Astrophysics Data System (ADS)

    Carlyle-Moses, D. E.; Kinniburgh, S. M.; Giesbrecht, W. J.; McKee, A. J.; Lishman, C. E.

    2009-05-01

    The Mayson Lake Hydrological Processes Study area is located in the southern interior of British Columbia ˜ 60 km NNW of the City of Kamloops on the Thompson - Bonaparte Plateau (51.2° N, 120.4° W; 1260 m a.m.s.l.). During the summer of 2008 throughfall was measured in a mature declining mixed lodgepole pine (Pinus contorta var. latifolia Dougl.) - hybrid spruce (Picea glauca (Moench) Voss. x engelmanni Perry x Engelm.) - subalpine fir (Abies lasiocarpa (Hook.) Nutt.) stand, where pines were at the grey - attack stage of a mountain pine beetle (Dendroctonus ponderosae Scolytidae) infestation. Throughfall was estimated on a rainfall event basis using three sampling strategies: 32 stationary wedge gauges, 32 roving wedge gauges that were moved periodically during the study period, and 16 stationary trough gauges. The wedge gauges had a catch area of 36 cm2 each, while the trough gauges had a catch area of 2900 cm2 each, ˜ 80 times larger than the wedge gauges. Throughfall depth (mm) for all three sampling methods followed a power relationship with rainfall depth (mm). No significant difference in the slopes or intercepts of the three power relationships were found (α = 0.05). Thus the throughfall data were pooled to give the following equation relating throughfall depth (mm) to event rainfall depth (mm): TF = 0.348Pg1.33, r2 = 0.93, n = 14. An efficiency ratio was derived for this study to compare the sampling accuracy among the three sampling methods used. The efficiency ratio ER between two sampling methods was calculated as n1 / n2, where n1 and n2 are the number of samples required to meet a statistical objective using the method that produces the lowest and highest coefficient of variation (CV) values, respectively. The number of required samples (gauges) for a given method, ni, is found using: t2 x CV2 / CI2, where t is the student t value and CI is the desired confidence interval around the mean expressed as a percentage. Assuming t = 2 and keeping CI

  15. Quantitative, directional measurement of electric field heterogeneity in the active site of ketosteroid isomerase.

    PubMed

    Fafarman, Aaron T; Sigala, Paul A; Schwans, Jason P; Fenn, Timothy D; Herschlag, Daniel; Boxer, Steven G

    2012-02-01

    Understanding the electrostatic forces and features within highly heterogeneous, anisotropic, and chemically complex enzyme active sites and their connection to biological catalysis remains a longstanding challenge, in part due to the paucity of incisive experimental probes of electrostatic properties within proteins. To quantitatively assess the landscape of electrostatic fields at discrete locations and orientations within an enzyme active site, we have incorporated site-specific thiocyanate vibrational probes into multiple positions within bacterial ketosteroid isomerase. A battery of X-ray crystallographic, vibrational Stark spectroscopy, and NMR studies revealed electrostatic field heterogeneity of 8 MV/cm between active site probe locations and widely differing sensitivities of discrete probes to common electrostatic perturbations from mutation, ligand binding, and pH changes. Electrostatic calculations based on active site ionization states assigned by literature precedent and computational pK(a) prediction were unable to quantitatively account for the observed vibrational band shifts. However, electrostatic models of the D40N mutant gave qualitative agreement with the observed vibrational effects when an unusual ionization of an active site tyrosine with a pK(a) near 7 was included. UV-absorbance and (13)C NMR experiments confirmed the presence of a tyrosinate in the active site, in agreement with electrostatic models. This work provides the most direct measure of the heterogeneous and anisotropic nature of the electrostatic environment within an enzyme active site, and these measurements provide incisive benchmarks for further developing accurate computational models and a foundation for future tests of electrostatics in enzymatic catalysis.

  16. Refining the active site structure of iron-iron hydrogenase using computational infrared spectroscopy.

    PubMed

    Tye, Jesse W; Darensbourg, Marcetta Y; Hall, Michael B

    2008-04-01

    Iron-iron hydrogenases ([FeFe]H2ases) are exceptional natural catalysts for the reduction of protons to dihydrogen. Future biotechnological applications based on these enzymes require a precise understanding of their structures and properties. Although the [FeFe]H2ases have been characterized by single-crystal X-ray crystallography and a range of spectroscopic techniques, ambiguities remain regarding the details of the molecular structures of the spectroscopically observed forms. We use density functional theory (DFT) computations on small-molecule computational models of the [FeFe]H2ase active site to address this problem. Specifically, a series of structural candidates are geometry optimized and their infrared (IR) spectra are simulated using the computed C-O and C-N stretching frequencies and infrared intensities. Structural assignments are made by comparing these spectra to the experimentally determined IR spectra for each form. The H red form is assigned as a mixture of an Fe(I)Fe(I) form with an open site on the distal iron center and either a Fe(I)Fe(I) form in which the distal cyanide has been protonated or a Fe(II)Fe(II) form with a bridging hydride ligand. The Hox form is assigned as a valence-localized Fe(I)Fe(II) redox level with an open site at the distal iron. The Hox(air)(ox) form is assigned as an Fe(II)Fe(II) redox level with OH(-) or OOH(-) bound to the distal iron center that may or may not have an oxygen atom bound to one of the sulfur atoms of the dithiolate linker. Comparisons of the computed IR spectra of the (12)CO and (13)CO inhibited form with the experimental IR spectra show that exogenous CO binds terminally to the distal iron center.

  17. Molecular dynamics explorations of active site structure in designed and evolved enzymes.

    PubMed

    Osuna, Sílvia; Jiménez-Osés, Gonzalo; Noey, Elizabeth L; Houk, K N

    2015-04-21

    This Account describes the use of molecular dynamics (MD) simulations to reveal how mutations alter the structure and organization of enzyme active sites. As proposed by Pauling about 70 years ago and elaborated by many others since then, biocatalysis is efficient when functional groups in the active site of an enzyme are in optimal positions for transition state stabilization. Changes in mechanism and covalent interactions are often critical parts of enzyme catalysis. We describe our explorations of the dynamical preorganization of active sites using MD, studying the fluctuations between active and inactive conformations normally concealed to static crystallography. MD shows how the various arrangements of active site residues influence the free energy of the transition state and relates the populations of the catalytic conformational ensemble to the enzyme activity. This Account is organized around three case studies from our laboratory. We first describe the importance of dynamics in evaluating a series of computationally designed and experimentally evolved enzymes for the Kemp elimination, a popular subject in the enzyme design field. We find that the dynamics of the active site is influenced not only by the original sequence design and subsequent mutations but also by the nature of the ligand present in the active site. In the second example, we show how microsecond MD has been used to uncover the role of remote mutations in the active site dynamics and catalysis of a transesterase, LovD. This enzyme was evolved by Tang at UCLA and Codexis, Inc., and is a useful commercial catalyst for the production of the drug simvastatin. X-ray analysis of inactive and active mutants did not reveal differences in the active sites, but relatively long time scale MD in solution showed that the active site of the wild-type enzyme preorganizes only upon binding of the acyl carrier protein (ACP) that delivers the natural acyl group to the active site. In the absence of bound ACP

  18. Oxygen reduction and evolution at single-metal active sites: Comparison between functionalized graphitic materials and protoporphyrins

    NASA Astrophysics Data System (ADS)

    Calle-Vallejo, F.; Martínez, J. I.; García-Lastra, J. M.; Abad, E.; Koper, M. T. M.

    2013-01-01

    A worldwide spread of clean technologies such as low-temperature fuel cells and electrolyzers depends strictly on their technical reliability and economic affordability. Currently, both conditions are hardly fulfilled mainly due to the same reason: the oxygen electrode, which has large overpotentials and is made of precious materials. A possible solution is the use of non-noble electrocatalysts with single-metal active sites. Here, on the basis of DFT calculations of adsorbed intermediates and a thermodynamic analysis, we compare the oxygen reduction (ORR) and evolution (OER) activities of functionalized graphitic materials and gas-phase porphyrins with late transition metals. We find that both kinds of materials follow approximately the same activity trends, and active sites with transition metals from groups 7 to 9 may be good ORR and OER electrocatalysts. However, spin analyses show more flexibility in the possible oxidation states of the metal atoms in solid electrocatalysts, while in porphyrins they must be + 2. These observations reveal that the catalytic activity of these materials is mainly due to nearest-neighbor interactions. Based on this, we propose that this class of electrocatalysts may be improved by careful selections of the support and the ligand properties close to the active sites and/or the ramifications near them, so that charge is transferred back and forth during adsorption and selective hydrogen bonds are formed.

  19. Sequences flanking the core-binding site modulate glucocorticoid receptor structure and activity.

    PubMed

    Schöne, Stefanie; Jurk, Marcel; Helabad, Mahdi Bagherpoor; Dror, Iris; Lebars, Isabelle; Kieffer, Bruno; Imhof, Petra; Rohs, Remo; Vingron, Martin; Thomas-Chollier, Morgane; Meijsing, Sebastiaan H

    2016-09-01

    The glucocorticoid receptor (GR) binds as a homodimer to genomic response elements, which have particular sequence and shape characteristics. Here we show that the nucleotides directly flanking the core-binding site, differ depending on the strength of GR-dependent activation of nearby genes. Our study indicates that these flanking nucleotides change the three-dimensional structure of the DNA-binding site, the DNA-binding domain of GR and the quaternary structure of the dimeric complex. Functional studies in a defined genomic context show that sequence-induced changes in GR activity cannot be explained by differences in GR occupancy. Rather, mutating the dimerization interface mitigates DNA-induced changes in both activity and structure, arguing for a role of DNA-induced structural changes in modulating GR activity. Together, our study shows that DNA sequence identity of genomic binding sites modulates GR activity downstream of binding, which may play a role in achieving regulatory specificity towards individual target genes.

  20. Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site

    SciTech Connect

    Grossman, Moran; Born, Benjamin; Heyden, Matthias; Tworowski, Dmitry; Fields, Gregg B.; Sagi, Irit; Havenith, Martina

    2011-09-18

    Solvent dynamics can play a major role in enzyme activity, but obtaining an accurate, quantitative picture of solvent activity during catalysis is quite challenging. Here, we combine terahertz spectroscopy and X-ray absorption analyses to measure changes in the coupled water-protein motions during peptide hydrolysis by a zinc-dependent human metalloprotease. These changes were tightly correlated with rearrangements at the active site during the formation of productive enzyme-substrate intermediates and were different from those in an enzyme–inhibitor complex. Molecular dynamics simulations showed a steep gradient of fast-to-slow coupled protein-water motions around the protein, active site and substrate. Our results show that water retardation occurs before formation of the functional Michaelis complex. We propose that the observed gradient of coupled protein-water motions may assist enzyme-substrate interactions through water-polarizing mechanisms that are remotely mediated by the catalytic metal ion and the enzyme active site.

  1. An overlapping kinase and phosphatase docking site regulates activity of the retinoblastoma protein.

    PubMed

    Hirschi, Alexander; Cecchini, Matthew; Steinhardt, Rachel C; Schamber, Michael R; Dick, Frederick A; Rubin, Seth M

    2010-09-01

    The phosphorylation state and corresponding activity of the retinoblastoma tumor suppressor protein (Rb) are modulated by a balance of kinase and phosphatase activities. Here we characterize the association of Rb with the catalytic subunit of protein phosphatase 1 (PP1c). A crystal structure identifies an enzyme docking site in the Rb C-terminal domain that is required for efficient PP1c activity toward Rb. The phosphatase docking site overlaps with the known docking site for cyclin-dependent kinase (Cdk), and PP1 competition with Cdk-cyclins for Rb binding is sufficient to retain Rb activity and block cell-cycle advancement. These results provide the first detailed molecular insights into Rb activation and establish a novel mechanism for Rb regulation in which kinase and phosphatase compete for substrate docking. PMID:20694007

  2. Structure-based comparative analysis and prediction of N-linked glycosylation sites in evolutionarily distant eukaryotes.

    PubMed

    Lam, Phuc Vinh Nguyen; Goldman, Radoslav; Karagiannis, Konstantinos; Narsule, Tejas; Simonyan, Vahan; Soika, Valerii; Mazumder, Raja

    2013-04-01

    The asparagine-X-serine/threonine (NXS/T) motif, where X is any amino acid except proline, is the consensus motif for N-linked glycosylation. Significant numbers of high-resolution crystal structures of glycosylated proteins allow us to carry out structural analysis of the N-linked glycosylation sites (NGS). Our analysis shows that there is enough structural information from diverse glycoproteins to allow the development of rules which can be used to predict NGS. A Python-based tool was developed to investigate asparagines implicated in N-glycosylation in five species: Homo sapiens, Mus musculus, Drosophila melanogaster, Arabidopsis thaliana and Saccharomyces cerevisiae. Our analysis shows that 78% of all asparagines of NXS/T motif involved in N-glycosylation are localized in the loop/turn conformation in the human proteome. Similar distribution was revealed for all the other species examined. Comparative analysis of the occurrence of NXS/T motifs not known to be glycosylated and their reverse sequence (S/TXN) shows a similar distribution across the secondary structural elements, indicating that the NXS/T motif in itself is not biologically relevant. Based on our analysis, we have defined rules to determine NGS. Using machine learning methods based on these rules we can predict with 93% accuracy if a particular site will be glycosylated. If structural information is not available the tool uses structural prediction results resulting in 74% accuracy. The tool was used to identify glycosylation sites in 108 human proteins with structures and 2247 proteins without structures that have acquired NXS/T site/s due to non-synonymous variation. The tool, Structure Feature Analysis Tool (SFAT), is freely available to the public at http://hive.biochemistry.gwu.edu/tools/sfat. PMID:23459159

  3. Structural and Kinetic Analyses of Macrophage Migration Inhibitory Factor Active Site Interactions

    SciTech Connect

    Crichlow, G.; Lubetsky, J; Leng, L; Bucala, R; Lolis, E

    2009-01-01

    Macrophage migration inhibitory factor (MIF) is a secreted protein expressed in numerous cell types that counters the antiinflammatory effects of glucocorticoids and has been implicated in sepsis, cancer, and certain autoimmune diseases. Interestingly, the structure of MIF contains a catalytic site resembling the tautomerase/isomerase sites of microbial enzymes. While bona fide physiological substrates remain unknown, model substrates have been identified. Selected compounds that bind in the tautomerase active site also inhibit biological functions of MIF. It had previously been shown that the acetaminophen metabolite, N-acetyl-p-benzoquinone imine (NAPQI), covalently binds to the active site of MIF. In this study, kinetic data indicate that NAPQI inhibits MIF both covalently and noncovalently. The structure of MIF cocrystallized with NAPQI reveals that the NAPQI has undergone a chemical alteration forming an acetaminophen dimer (bi-APAP) and binds noncovalently to MIF at the mouth of the active site. We also find that the commonly used protease inhibitor, phenylmethylsulfonyl fluoride (PMSF), forms a covalent complex with MIF and inhibits the tautomerase activity. Crystallographic analysis reveals the formation of a stable, novel covalent bond for PMSF between the catalytic nitrogen of the N-terminal proline and the sulfur of PMSF with complete, well-defined electron density in all three active sites of the MIF homotrimer. Conclusions are drawn from the structures of these two MIF-inhibitor complexes regarding the design of novel compounds that may provide more potent reversible and irreversible inhibition of MIF.

  4. Comparing the Anticonvulsant Effects of Low Frequency Stimulation of Different Brain Sites on the Amygdala Kindling Acquisition in Rats

    PubMed Central

    Esmaeilpour, Khadijeh; Masoumi-Ardakani, Yaser; Sheibani, Vahid; Shojaei, Amir; Harandi, Shaahin; Mirnajafi-Zadeh, Javad

    2013-01-01

    Low frequency stimulation (LFS) is a potential alternative therapy for epilepsy. However, it seems that the anticonvulsant effects of LFS depend on its target sites in the brain. Thus, the present study was designed to compare the anticonvulsant effects of LFS administered to amygdala, piriform cortex and substantia nigra on amygdala kindling acquisition. In control group, rats were kindled in a chronic manner (one stimulation per 24 h). In other experimental groups, animals received low-frequency stimulation (8 packages at 100 s intervals, each package contained 200 monophasic square-wave pulses, 0.1 ms pulse duration at 1 Hz andAD threshold intensity) in amygdala, piriform cortex or substantia nigra 60 seconds after the kindling stimulation, the AD duration and daily seizure stages were recorded. The obtained results showed that administration of LFS in all three regions reduced electrical and behavioral parameters of the kindling procedure. However LFS has a stronger inhibitory effect on kindling development when applied in substantia nigra compared to the amygdala and piriform cortex which reinforce the view that the substantia nigra mediates a crucial role in amygdala-kindled seizures. LFS had also greater inhibitory effects when applied to the amygdala compared to piriform cortex. Thus, it may be suggested that antiepileptogenic effect of LFS depends on its target site and different brain areas exert different inhibitory effects on kindling acquisition according to the seizure focus. PMID:25337354

  5. Comparing the anticonvulsant effects of low frequency stimulation of different brain sites on the amygdala kindling acquisition in rats.

    PubMed

    Esmaeilpour, Khadijeh; Masoumi-Ardakani, Yaser; Sheibani, Vahid; Shojaei, Amir; Harandi, Shaahin; Mirnajafi-Zadeh, Javad

    2013-01-01

    Low frequency stimulation (LFS) is a potential alternative therapy for epilepsy. However, it seems that the anticonvulsant effects of LFS depend on its target sites in the brain. Thus, the present study was designed to compare the anticonvulsant effects of LFS administered to amygdala, piriform cortex and substantia nigra on amygdala kindling acquisition. In control group, rats were kindled in a chronic manner (one stimulation per 24 h). In other experimental groups, animals received low-frequency stimulation (8 packages at 100 s intervals, each package contained 200 monophasic square-wave pulses, 0.1 ms pulse duration at 1 Hz andAD threshold intensity) in amygdala, piriform cortex or substantia nigra 60 seconds after the kindling stimulation, the AD duration and daily seizure stages were recorded. The obtained results showed that administration of LFS in all three regions reduced electrical and behavioral parameters of the kindling procedure. However LFS has a stronger inhibitory effect on kindling development when applied in substantia nigra compared to the amygdala and piriform cortex which reinforce the view that the substantia nigra mediates a crucial role in amygdala-kindled seizures. LFS had also greater inhibitory effects when applied to the amygdala compared to piriform cortex. Thus, it may be suggested that antiepileptogenic effect of LFS depends on its target site and different brain areas exert different inhibitory effects on kindling acquisition according to the seizure focus.

  6. Comparing the anticonvulsant effects of low frequency stimulation of different brain sites on the amygdala kindling acquisition in rats.

    PubMed

    Esmaeilpour, Khadijeh; Masoumi-Ardakani, Yaser; Sheibani, Vahid; Shojaei, Amir; Harandi, Shaahin; Mirnajafi-Zadeh, Javad

    2013-01-01

    Low frequency stimulation (LFS) is a potential alternative therapy for epilepsy. However, it seems that the anticonvulsant effects of LFS depend on its target sites in the brain. Thus, the present study was designed to compare the anticonvulsant effects of LFS administered to amygdala, piriform cortex and substantia nigra on amygdala kindling acquisition. In control group, rats were kindled in a chronic manner (one stimulation per 24 h). In other experimental groups, animals received low-frequency stimulation (8 packages at 100 s intervals, each package contained 200 monophasic square-wave pulses, 0.1 ms pulse duration at 1 Hz andAD threshold intensity) in amygdala, piriform cortex or substantia nigra 60 seconds after the kindling stimulation, the AD duration and daily seizure stages were recorded. The obtained results showed that administration of LFS in all three regions reduced electrical and behavioral parameters of the kindling procedure. However LFS has a stronger inhibitory effect on kindling development when applied in substantia nigra compared to the amygdala and piriform cortex which reinforce the view that the substantia nigra mediates a crucial role in amygdala-kindled seizures. LFS had also greater inhibitory effects when applied to the amygdala compared to piriform cortex. Thus, it may be suggested that antiepileptogenic effect of LFS depends on its target site and different brain areas exert different inhibitory effects on kindling acquisition according to the seizure focus. PMID:25337354

  7. Elucidating the mechanism and active site of the cyclohexanol dehydrogenation on copper-based catalysts: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Wang, Ziyun; Liu, Xinyi; Rooney, D. W.; Hu, P.

    2015-10-01

    The dehydrogenation of cyclohexanol to cyclohexanone is very important in the manufacture of nylon. Copper-based catalysts are the most popular catalysts for this reaction, and on these catalysts the reaction mechanism and active site are in debate. In order to elucidate the mechanism and active site of the cyclohexanol dehydrogenation on copper-based catalysts, density functional theory with dispersion corrections were performed on up to six facets of copper in two different oxidation states: monovalent copper and metallic copper. By calculating the surface energies of these facets, Cu(111) and Cu2O(111) were found to be the most stable facets for metallic copper and for monovalent copper, respectively. On these two facets, all the possible elementary steps in the dehydrogenation pathway of cyclohexanol were calculated, including the adsorption, dehydrogenation, hydrogen coupling and desorption. Two different reaction pathways for dehydrogenation were considered on both surfaces. It was revealed that the dehydrogenation mechanisms are different on these two surfaces: on Cu(111) the hydrogen belonging to the hydroxyl is removed first, then the hydrogen belonging to the carbon is subtracted, while on Cu2O(111) the hydrogen belonging to the carbon is removed followed by the subtraction of the hydrogen in the hydroxyl group. Furthermore, by comparing the energy profiles of these two surfaces, Cu2O(111) was found to be more active for cyclohexanol dehydrogenation than Cu(111). In addition, we found that the coordinatively unsaturated copper sites on Cu2O(111) are the reaction sites for all the steps. Therefore, the coordinatively unsaturated copper site on Cu2O(111) is likely to be the active site for cyclohexanol dehydrogenation on the copper-based catalysts.

  8. Precursor complex structure of pseudouridine synthase TruB suggests coupling of active site perturbations to an RNA-sequestering peripheral protein domain.

    PubMed

    Hoang, Charmaine; Hamilton, Christopher S; Mueller, Eugene G; Ferré-D'Amaré, Adrian R

    2005-08-01

    The pseudouridine synthase TruB is responsible for the universally conserved post-transcriptional modification of residue 55 of elongator tRNAs. In addition to the active site, the "thumb", a peripheral domain unique to the TruB family of enzymes, makes extensive interactions with the substrate. To coordinate RNA binding and release with catalysis, the thumb may be able to sense progress of the reaction in the active site. To establish whether there is a structural correlate of communication between the active site and the RNA-sequestering thumb, we have solved the structure of a catalytically inactive point mutant of TruB in complex with a substrate RNA, and compared it to the previously determined structure of an active TruB bound to a reaction product. Superposition of the two structures shows that they are extremely similar, except in the active site and, intriguingly, in the relative position of the thumb. Because the two structures were solved using isomorphous crystals, and because the thumb is very well ordered in both structures, the displacement of the thumb we observe likely reflects preferential propagation of active site perturbations to this RNA-binding domain. One of the interactions between the active site and the thumb involves an active site residue whose hydrogen-bonding status changes during the reaction. This may allow the peripheral RNA-binding domain to monitor progress of the pseudouridylation reaction.

  9. Enhanced Enzyme Kinetic Stability by Increasing Rigidity within the Active Site*

    PubMed Central

    Xie, Yuan; An, Jiao; Yang, Guangyu; Wu, Geng; Zhang, Yong; Cui, Li; Feng, Yan

    2014-01-01

    Enzyme stability is an important issue for protein engineers. Understanding how rigidity in the active site affects protein kinetic stability will provide new insight into enzyme stabilization. In this study, we demonstrated enhanced kinetic stability of Candida antarctica lipase B (CalB) by mutating the structurally flexible residues within the active site. Six residues within 10 Å of the catalytic Ser105 residue with a high B factor were selected for iterative saturation mutagenesis. After screening 2200 colonies, we obtained the D223G/L278M mutant, which exhibited a 13-fold increase in half-life at 48 °C and a 12 °C higher T5015, the temperature at which enzyme activity is reduced to 50% after a 15-min heat treatment. Further characterization showed that global unfolding resistance against both thermal and chemical denaturation also improved. Analysis of the crystal structures of wild-type CalB and the D223G/L278M mutant revealed that the latter formed an extra main chain hydrogen bond network with seven structurally coupled residues within the flexible α10 helix that are primarily involved in forming the active site. Further investigation of the relative B factor profile and molecular dynamics simulation confirmed that the enhanced rigidity decreased fluctuation of the active site residues at high temperature. These results indicate that enhancing the rigidity of the flexible segment within the active site may provide an efficient method for improving enzyme kinetic stability. PMID:24448805

  10. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes.

    PubMed

    Cockburn, Darrell; Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data. PMID:27504624

  11. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes

    PubMed Central

    Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data. PMID:27504624

  12. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (20″×14″) upright format signs specified in 29 CFR 1910.145(d)(4) and this paragraph; and (iii... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an...

  13. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (20″×14″) upright format signs specified in 29 CFR 1910.145(d)(4) and this paragraph; and (iii... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an...

  14. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (20″×14″) upright format signs specified in 29 CFR 1910.145(d)(4) and this paragraph; and (iii... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an...

  15. 77 FR 39508 - Commercial Wind Lease Issuance and Site Assessment Activities on the Atlantic Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ... specific project proposals on those leases) in an identified Wind Energy Area (WEA) on the OCS offshore... Bureau of Ocean Energy Management Commercial Wind Lease Issuance and Site Assessment Activities on the... Activities on the Atlantic OCS Offshore RI and MA'' to: Program Manager, Office of Renewable Energy...

  16. Effects of resource activities upon repository siting and waste containment with reference to bedded salt

    SciTech Connect

    Ashby, J.; Rowe, J.

    1980-02-01

    The primary consideration for the suitability of a nuclear waste repository site is the overall ability of the repository to safely contain radioactive waste. This report is a discussion of the past, present, and future effects of resource activities on waste containment. Past and present resource activities which provide release pathways (i.e., leaky boreholes, adjacent mines) will receive initial evaluation during the early stages of any repository site study. However, other resource activities which may have subtle effects on containment (e.g., long-term pumping causing increased groundwater gradients, invasion of saline water causing lower retardation) and all potential future resource activities must also be considered during the site evaluation process. Resource activities will affect both the siting and the designing of repositories. Ideally, sites should be located in areas of low resource activity and low potential for future activity, and repository design should seek to eliminate or minimize the adverse effects of any resource activity. Buffer zones should be created to provide areas in which resource activities that might adversely affect containment can be restricted or curtailed. This could mean removing large areas of land from resource development. The impact of these frozen assets should be assessed in terms of their economic value and of their effect upon resource reserves. This step could require a major effort in data acquisition and analysis followed by extensive numerical modeling of regional fluid flow and mass transport. Numerical models should be used to assess the effects of resource activity upon containment and should include the cumulative effects of different resource activities. Analysis by other methods is probably not possible except for relatively simple cases.

  17. Computational approaches to the determination of active site structures and reaction mechanisms in heterogeneous catalysts.

    PubMed

    Catlow, C R A; French, S A; Sokol, A A; Thomas, J M

    2005-04-15

    We apply quantum chemical methods to the study of active site structures and reaction mechanisms in mesoporous silica and metal oxide catalysts. Our approach is based on the use of both molecular cluster and embedded cluster (QM/MM) techniques, where the active site and molecular complex are described using density functional theory (DFT) and the embedding matrix simulated by shell model potentials. We consider three case studies: alkene epoxidation over the microporous TS-1 catalyst; methanol synthesis on ZnO and Cu/ZnO and C-H bond activation over Li-doped MgO.

  18. Computational approaches to the determination of active site structures and reaction mechanisms in heterogeneous catalysts.

    PubMed

    Catlow, C R A; French, S A; Sokol, A A; Thomas, J M

    2005-04-15

    We apply quantum chemical methods to the study of active site structures and reaction mechanisms in mesoporous silica and metal oxide catalysts. Our approach is based on the use of both molecular cluster and embedded cluster (QM/MM) techniques, where the active site and molecular complex are described using density functional theory (DFT) and the embedding matrix simulated by shell model potentials. We consider three case studies: alkene epoxidation over the microporous TS-1 catalyst; methanol synthesis on ZnO and Cu/ZnO and C-H bond activation over Li-doped MgO. PMID:15901543

  19. Rapid binding of a cationic active site inhibitor to wild type and mutant mouse acetylcholinesterase: Brownian dynamics simulation including diffusion in the active site gorge.

    PubMed

    Tara, S; Elcock, A H; Kirchhoff, P D; Briggs, J M; Radic, Z; Taylor, P; McCammon, J A

    1998-12-01

    It is known that anionic surface residues play a role in the long-range electrostatic attraction between acetylcholinesterase and cationic ligands. In our current investigation, we show that anionic residues also play an important role in the behavior of the ligand within the active site gorge of acetylcholinesterase. Negatively charged residues near the gorge opening not only attract positively charged ligands from solution to the enzyme, but can also restrict the motion of the ligand once it is inside of the gorge. We use Brownian dynamics techniques to calculate the rate constant kon, for wild type and mutant acetylcholinesterase with a positively charged ligand. These calculations are performed by allowing the ligand to diffuse within the active site gorge. This is an extension of previously reported work in which a ligand was allowed to diffuse only to the enzyme surface. By setting the reaction criteria for the ligand closer to the active site, better agreement with experimental data is obtained. Although a number of residues influence the movement of the ligand within the gorge, Asp74 is shown to play a particularly important role in this function. Asp74 traps the ligand within the gorge, and in this way helps to ensure a reaction.

  20. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand

    SciTech Connect

    Parashar, Abhinav; Venkatachalam, Avanthika; Gideon, Daniel Andrew; Manoj, Kelath Murali

    2014-12-12

    Highlights: • Cyanide (CN) is a well-studied toxic principle, known to inhibit heme-enzymes. • Inhibition is supposed to result from CN binding at the active site as a ligand. • Diverse heme enzymes’ CN inhibition profiles challenge prevailing mechanism. • Poor binding efficiency of CN at low enzyme concentrations and ligand pressures. • CN-based diffusible radicals cause ‘non-productive electron transfers’ (inhibition). - Abstract: The toxicity of cyanide is hitherto attributed to its ability to bind to heme proteins’ active site and thereby inhibit their activity. It is shown herein that the long-held interpretation is inadequate to explain several observations in heme-enzyme reaction systems. Generation of cyanide-based diffusible radicals in heme-enzyme reaction milieu could shunt electron transfers (by non-active site processes), and thus be detrimental to the efficiency of oxidative outcomes.

  1. Denaturation studies of active-site labeled papain using electron paramagnetic resonance and fluorescence spectroscopy.

    PubMed Central

    Ping, Z A; Butterfiel, D A

    1991-01-01

    A spin-labeled p-chloromercuribenzoate (SL-PMB) and a fluorescence probe, 6-acryloyl-2-dimethylaminonaphthalene (Acrylodan), both of which bind to the single SH group located in the active site of papain, were used to investigate the interaction of papain (EC 3.4.22.2) with two protein denaturants. It was found that the active site of papain was highly stable in urea solution, but underwent a large conformational change in guanidine hydrochloride solution. Electron paramagnetic resonance and fluorescence results were in agreement and both paralleled enzymatic activity of papain with respect to both the variation in pH and denaturation. These results strongly suggest that SL-PMB and Acrylodan labels can be used to characterize the physical state of the active site of the enzyme. PMID:1657229

  2. Zinc cysteine active sites of metalloproteins: a density functional theory and x-ray absorption fine structure study.

    PubMed

    Dimakis, Nicholas; Farooqi, Mohammed Junaid; Garza, Emily Sofia; Bunker, Grant

    2008-03-21

    Density functional theory (DFT) and x-ray absorption fine structure (XAFS) spectroscopy are complementary tools for the biophysical study of active sites in metalloproteins. DFT is used to compute XAFS multiple scattering Debye Waller factors, which are then employed in genetic algorithm-based fitting process to obtain a global fit to the XAFS in the space of fitting parameters. Zn-Cys sites, which serve important functions as transcriptional switches in Zn finger proteins and matrix metalloproteinases, previously have proven intractable by this method; here these limitations are removed. In this work we evaluate optimal DFT nonlocal functionals and basis sets for determining optimal geometries and vibrational densities of states of mixed ligation Zn(His)(4-n)(Cys)(n) sites. Theoretical results are compared to experimental XAFS measurements and Raman spectra from the literature and tabulated for use.

  3. Catalysis-dependent selenium incorporation and migration in the nitrogenase active site iron-molybdenum cofactor

    PubMed Central

    Spatzal, Thomas; Perez, Kathryn A; Howard, James B; Rees, Douglas C

    2015-01-01

    Dinitrogen reduction in the biological nitrogen cycle is catalyzed by nitrogenase, a two-component metalloenzyme. Understanding of the transformation of the inert resting state of the active site FeMo-cofactor into an activated state capable of reducing dinitrogen remains elusive. Here we report the catalysis dependent, site-selective incorporation of selenium into the FeMo-cofactor from selenocyanate as a newly identified substrate and inhibitor. The 1.60 Å resolution structure reveals selenium occupying the S2B site of FeMo-cofactor in the Azotobacter vinelandii MoFe-protein, a position that was recently identified as the CO-binding site. The Se2B-labeled enzyme retains substrate reduction activity and marks the starting point for a crystallographic pulse-chase experiment of the active site during turnover. Through a series of crystal structures obtained at resolutions of 1.32–1.66 Å, including the CO-inhibited form of Av1-Se2B, the exchangeability of all three belt-sulfur sites is demonstrated, providing direct insights into unforeseen rearrangements of the metal center during catalysis. DOI: http://dx.doi.org/10.7554/eLife.11620.001 PMID:26673079

  4. Catalysis-dependent selenium incorporation and migration in the nitrogenase active site iron-molybdenum cofactor.

    PubMed

    Spatzal, Thomas; Perez, Kathryn A; Howard, James B; Rees, Douglas C

    2015-12-16

    Dinitrogen reduction in the biological nitrogen cycle is catalyzed by nitrogenase, a two-component metalloenzyme. Understanding of the transformation of the inert resting state of the active site FeMo-cofactor into an activated state capable of reducing dinitrogen remains elusive. Here we report the catalysis dependent, site-selective incorporation of selenium into the FeMo-cofactor from selenocyanate as a newly identified substrate and inhibitor. The 1.60 Å resolution structure reveals selenium occupying the S2B site of FeMo-cofactor in the Azotobacter vinelandii MoFe-protein, a position that was recently identified as the CO-binding site. The Se2B-labeled enzyme retains substrate reduction activity and marks the starting point for a crystallographic pulse-chase experiment of the active site during turnover. Through a series of crystal structures obtained at resolutions of 1.32-1.66 Å, including the CO-inhibited form of Av1-Se2B, the exchangeability of all three belt-sulfur sites is demonstrated, providing direct insights into unforeseen rearrangements of the metal center during catalysis.

  5. Effects of sex and site on amino acid metabolism enzyme gene expression and activity in rat white adipose tissue

    PubMed Central

    Arriarán, Sofía; Agnelli, Silvia; Remesar, Xavier; Fernández-López, José Antonio

    2015-01-01

    Background and Objectives. White adipose tissue (WAT) shows marked sex- and diet-dependent differences. However, our metabolic knowledge of WAT, especially on amino acid metabolism, is considerably limited. In the present study, we compared the influence of sex on the amino acid metabolism profile of the four main WAT sites, focused on the paths related to ammonium handling and the urea cycle, as a way to estimate the extent of WAT implication on body amino-nitrogen metabolism. Experimental Design. Adult female and male rats were maintained, undisturbed, under standard conditions for one month. After killing them under isoflurane anesthesia. WAT sites were dissected and weighed. Subcutaneous, perigonadal, retroperitoneal and mesenteric WAT were analyzed for amino acid metabolism gene expression and enzyme activities. Results. There was a considerable stability of the urea cycle activities and expressions, irrespective of sex, and with only limited influence of site. Urea cycle was more resilient to change than other site-specialized metabolic pathways. The control of WAT urea cycle was probably related to the provision of arginine/citrulline, as deduced from the enzyme activity profiles. These data support a generalized role of WAT in overall amino-N handling. In contrast, sex markedly affected WAT ammonium-centered amino acid metabolism in a site-related way, with relatively higher emphasis in males’ subcutaneous WAT. Conclusions. We found that WAT has an active amino acid metabolism. Its gene expressions were lower than those of glucose-lipid interactions, but the differences were quantitatively less important than usually reported. The effects of sex on urea cycle enzymes expression and activity were limited, in contrast with the wider variations observed in other metabolic pathways. The results agree with a centralized control of urea cycle operation affecting the adipose organ as a whole. PMID:26587356

  6. Cost Analysis and Surgical Site Infection Rates in Total Knee Arthroplasty Comparing Traditional vs. Single-Use Instrumentation.

    PubMed

    Siegel, Geoffrey W; Patel, Neil N; Milshteyn, Michael A; Buzas, David; Lombardo, Daniel J; Morawa, Lawrence G

    2015-12-01

    Surgical site infections (SSIs) are a significant complications in total knee arthroplasty (TKA). The purpose of this study was to evaluate if traditional vs. single-use instrumentation had an effect on SSI's. We compared SSI rates and costs of TKAs performed with single-use (449) and traditional (169) TKA instrumentation trays. Total OR Time was, on average, 30 min less when single-use instrumentation was used. SSIs decreased in the single-use group (n=1) compared to the traditional group (n=5) (P=0.006). Single-use instrumentation added $490 in initial costs; however it saved between $480 and $600. Single-use instrumentation may provide a benefit to the patient by potentially decreasing the risk of infection and reducing the overall hospital costs.

  7. Cost Analysis and Surgical Site Infection Rates in Total Knee Arthroplasty Comparing Traditional vs. Single-Use Instrumentation.

    PubMed

    Siegel, Geoffrey W; Patel, Neil N; Milshteyn, Michael A; Buzas, David; Lombardo, Daniel J; Morawa, Lawrence G

    2015-12-01

    Surgical site infections (SSIs) are a significant complications in total knee arthroplasty (TKA). The purpose of this study was to evaluate if traditional vs. single-use instrumentation had an effect on SSI's. We compared SSI rates and costs of TKAs performed with single-use (449) and traditional (169) TKA instrumentation trays. Total OR Time was, on average, 30 min less when single-use instrumentation was used. SSIs decreased in the single-use group (n=1) compared to the traditional group (n=5) (P=0.006). Single-use instrumentation added $490 in initial costs; however it saved between $480 and $600. Single-use instrumentation may provide a benefit to the patient by potentially decreasing the risk of infection and reducing the overall hospital costs. PMID:26231077

  8. An air quality modeling study comparing two possible sites for the new international airport for Mexico City.

    PubMed

    Jazcilevich, Aron D; García, Agustín R; Ruiz-Suárez, L Gerardo; Cruz-Nuñez, Xóchitl; Delgado, Javier C; Tellez, Carlos; Chias, Luis B

    2003-03-01

    Using an air quality model, two future urban scenarios induced by the construction of the new international airport for Mexico City are compared at a regional level. The air quality model couples the meteorology model MM5 and state-of-the-art photochemistry. The air quality comparison is made using metrics for the criterion gases selected for the study. From the two urban scenarios compared, the option for Tizayuca is moderately better than the option for Texcoco, because relative reductions in O3 and other photochemical pollutants are achieved over highly populated areas. Regardless of the site, the air quality for the central region of Mexico in the future will deteriorate. In the region of central Mexico, SO2 and NO2 will become important pollutants.

  9. The Role of an Active Site Mg2+ in HDV Ribozyme Self-Cleavage: Insights from QM/MM Calculations

    PubMed Central

    Mlýnský, Vojtěch; Šponer, Jiří

    2014-01-01

    The hepatitis delta virus (HDV) ribozyme is a catalytic RNA motif embedded in the human pathogenic HDV RNA. It catalyzes self-cleavage of its sugar-phosphate backbone with direct participation of the active site cytosine C75. Biochemical and structural data support a general acid role of C75. Here, we used hybrid quantum mechanical/molecular mechanical (QM/MM) calculations to probe the reaction mechanism and changes in Gibbs energy along the ribozyme's reaction pathway with an N3-protonated C75H+ in the active site, which acts as the general acid, and a partially hydrated Mg2+ ion with one deprotonated, inner-shell coordinated water molecule that acts as the general base. We followed eight reaction paths with distinct position and coordination of the catalytically important active site Mg2+ ion. For six of them, we observed feasible activation barriers ranging from 14.2 to 21.9 kcal/mol, indicating that the specific position of the Mg2+ ion in the active site is predicted to strongly affect the kinetics of self-cleavage. The deprotonation of the U-1(2′-OH) nucleophile and the nucleophilic attack of the resulting U-1(2′-O−) on the scissile phosphodiester are found to be separate steps, as deprotonation precedes the nucleophilic attack. This sequential mechanism of the HDV ribozyme differs from the concerted nucleophilic activation and attack suggested for the hairpin ribozyme. We estimated the pKa of the U-1(2′-OH) group to range from 8.8 to 11.2, suggesting that the pKa is lowered by several units from that of a free ribose, comparable to and most likely smaller than the pKa of the solvated active site Mg2+ ion. Our results thus support the notion that the structure of the HDV ribozyme, and particularly the positioning of the active site Mg2+ ion, facilitates deprotonation and activation of the 2′-OH nucleophile. PMID:25412464

  10. Time dependent analysis of assay comparability: a novel approach to understand intra- and inter-site variability over time.

    PubMed

    Winiwarter, Susanne; Middleton, Brian; Jones, Barry; Courtney, Paul; Lindmark, Bo; Page, Ken M; Clark, Alan; Landqvist, Claire

    2015-09-01

    We demonstrate here a novel use of statistical tools to study intra- and inter-site assay variability of five early drug metabolism and pharmacokinetics in vitro assays over time. Firstly, a tool for process control is presented. It shows the overall assay variability but allows also the following of changes due to assay adjustments and can additionally highlight other, potentially unexpected variations. Secondly, we define the minimum discriminatory difference/ratio to support projects to understand how experimental values measured at different sites at a given time can be compared. Such discriminatory values are calculated for 3 month periods and followed over time for each assay. Again assay modifications, especially assay harmonization efforts, can be noted. Both the process control tool and the variability estimates are based on the results of control compounds tested every time an assay is run. Variability estimates for a limited set of project compounds were computed as well and found to be comparable. This analysis reinforces the need to consider assay variability in decision making, compound ranking and in silico modeling.

  11. Time dependent analysis of assay comparability: a novel approach to understand intra- and inter-site variability over time.

    PubMed

    Winiwarter, Susanne; Middleton, Brian; Jones, Barry; Courtney, Paul; Lindmark, Bo; Page, Ken M; Clark, Alan; Landqvist, Claire

    2015-09-01

    We demonstrate here a novel use of statistical tools to study intra- and inter-site assay variability of five early drug metabolism and pharmacokinetics in vitro assays over time. Firstly, a tool for process control is presented. It shows the overall assay variability but allows also the following of changes due to assay adjustments and can additionally highlight other, potentially unexpected variations. Secondly, we define the minimum discriminatory difference/ratio to support projects to understand how experimental values measured at different sites at a given time can be compared. Such discriminatory values are calculated for 3 month periods and followed over time for each assay. Again assay modifications, especially assay harmonization efforts, can be noted. Both the process control tool and the variability estimates are based on the results of control compounds tested every time an assay is run. Variability estimates for a limited set of project compounds were computed as well and found to be comparable. This analysis reinforces the need to consider assay variability in decision making, compound ranking and in silico modeling. PMID:25697964

  12. Crystal structure of an avian influenza polymerase PA[subscript N] reveals an endonuclease active site

    SciTech Connect

    Yuan, Puwei; Bartlam, Mark; Lou, Zhiyong; Chen, Shoudeng; Zhou, Jie; He, Xiaojing; Lv, Zongyang; Ge, Ruowen; Li, Xuemei; Deng, Tao; Fodor, Ervin; Rao, Zihe; Liu, Yingfang

    2009-11-10

    The heterotrimeric influenza virus polymerase, containing the PA, PB1 and PB2 proteins, catalyses viral RNA replication and transcription in the nucleus of infected cells. PB1 holds the polymerase active site and reportedly harbours endonuclease activity, whereas PB2 is responsible for cap binding. The PA amino terminus is understood to be the major functional part of the PA protein and has been implicated in several roles, including endonuclease and protease activities as well as viral RNA/complementary RNA promoter binding. Here we report the 2.2 angstrom (A) crystal structure of the N-terminal 197 residues of PA, termed PA(N), from an avian influenza H5N1 virus. The PA(N) structure has an alpha/beta architecture and reveals a bound magnesium ion coordinated by a motif similar to the (P)DX(N)(D/E)XK motif characteristic of many endonucleases. Structural comparisons and mutagenesis analysis of the motif identified in PA(N) provide further evidence that PA(N) holds an endonuclease active site. Furthermore, functional analysis with in vivo ribonucleoprotein reconstitution and direct in vitro endonuclease assays strongly suggest that PA(N) holds the endonuclease active site and has critical roles in endonuclease activity of the influenza virus polymerase, rather than PB1. The high conservation of this endonuclease active site among influenza strains indicates that PA(N) is an important target for the design of new anti-influenza therapeutics.

  13. Evaluation of physical activity web sites for use of behavior change theories.

    PubMed

    Doshi, Amol; Patrick, Kevin; Sallis, James F; Calfas, Karen

    2003-01-01

    Physical activity (PA) Web sites were assessed for their use of behavior change theories, including constructs of the health belief model, Transtheoretical Model, social cognitive theory, and the theory of reasoned action and planned behavior. An evaluation template for assessing PA Web sites was developed, and content validity and interrater reliability were demonstrated. Two independent raters evaluated 24 PA Web sites. Web sites varied widely in application of theory-based constructs, ranging from 5 to 48 on a 100-point scale. The most common intervention strategies were general information, social support, and realistic goal areas. Coverage of theory-based strategies was low, varying from 26% for social cognitive theory to 39% for health belief model. Overall, PA Web sites provided little assessment, feedback, or individually tailored assistance for users. They were unable to substantially tailor the on-line experience for users at different stages of change or different demographic characteristics.

  14. A Mutational Analysis of the Active Site Loop Residues in cis-3-Chloroacrylic Acid Dehalogenase

    PubMed Central

    Schroeder, Gottfried K.; Huddleston, Jamison P.; Johnson, William H.; Whitman, Christian P.

    2013-01-01

    cis -3-Chloroacrylic acid dehalogenase (cis-CaaD) from Pseudomonas pavonaceae 170 and a homologue from Corynebacterium glutamicum designated Cg10062 share 34% sequence identity (54% similarity). The former catalyzes a key step in a bacterial catabolic pathway for the nematocide 1,3-dichloropropene, whereas the latter has no known biological activity. Although Cg10062 has the six active site residues (Pro-1, His-28, Arg-70, Arg-73, Tyr-103, Glu-114) that are critical for cis-CaaD activity, it shows only a low level cis-CaaD activity and lacks the specificity of cis-CaaD: Cg10062 processes both isomers of 3-chloroacrylate with a preference for the cis-isomer. Although the basis for these differences is unknown, a comparison of the crystal structures of the enzymes covalently modified by an adduct resulting from their incubation with the same inhibitor offers a possible explanation. A 6-residue active site loop in cis-CaaD shows a strikingly different conformation from that observed in Cg10062: the loop closes down on the active site of cis-CaaD, but not on that of Cg10062. In order to examine what this loop might contribute to cis-CaaD catalysis and specificity, the residues were changed individually to those found in Cg10062. Subsequent kinetic and mechanistic analysis suggests that the T34A mutant of cis-CaaD is more Cg10062-like. The mutant enzyme shows a 4-fold increase in Km (using cis-3-bromoacrylate), but not to the degree observed for Cg10062 (687-fold). The mutation also causes a 4-fold decrease in the burst rate (compared to the wild type cis-CaaD), whereas Cg10062 shows no burst rate. More telling is the reaction of the T34A mutant of cis-CaaD with the alternate substrate, 2,3-butadienoate. In the presence of NaBH4 and the allene, cis-CaaD is completely inactivated after one turnover due to the covalent modification of Pro-1. The same experiment with Cg10062 does not result in the covalent modification of Pro-1. The different outcomes are attributed to

  15. Conformational Change in the Active Site of Streptococcal Unsaturated Glucuronyl Hydrolase Through Site-Directed Mutagenesis at Asp-115.

    PubMed

    Nakamichi, Yusuke; Oiki, Sayoko; Mikami, Bunzo; Murata, Kousaku; Hashimoto, Wataru

    2016-08-01

    Bacterial unsaturated glucuronyl hydrolase (UGL) degrades unsaturated disaccharides generated from mammalian extracellular matrices, glycosaminoglycans, by polysaccharide lyases. Two Asp residues, Asp-115 and Asp-175 of Streptococcus agalactiae UGL (SagUGL), are completely conserved in other bacterial UGLs, one of which (Asp-175 of SagUGL) acts as a general acid and base catalyst. The other Asp (Asp-115 of SagUGL) also affects the enzyme activity, although its role in the enzyme reaction has not been well understood. Here, we show substitution of Asp-115 in SagUGL with Asn caused a conformational change in the active site. Tertiary structures of SagUGL mutants D115N and D115N/K370S with negligible enzyme activity were determined at 2.00 and 1.79 Å resolution, respectively, by X-ray crystallography. The side chain of Asn-115 is drastically shifted in both mutants owing to the interaction with several residues, including Asp-175, by formation of hydrogen bonds. This interaction between Asn-115 and Asp-175 probably prevents the mutants from triggering the enzyme reaction using Asp-175 as an acid catalyst.

  16. Counting Active Sites on Titanium Oxide-Silica Catalysts for Hydrogen Peroxide Activation through In Situ Poisoning with Phenylphosphonic Acid

    SciTech Connect

    Eaton, Todd R.; Boston, Andrew M.; Thompson, Anthony B.; Gray, Kimberly A.; Notestein, Justin M.

    2015-06-04

    Quantifying specific active sites in supported catalysts improves our understanding and assists in rational design. Supported oxides can undergo significant structural changes as surface densities increase from site-isolated cations to monolayers and crystallites, which changes the number of kinetically relevant sites. Herein, TiOx domains are titrated on TiOx–SiO2 selectively with phenylphosphonic acid (PPA). An ex situ method quantifies all fluid-accessible TiOx, whereas an in situ titration during cis-cyclooctene epoxidation provides previously unavailable values for the number of tetrahedral Ti sites on which H2O2 activation occurs. We use this method to determine the active site densities of 22 different catalysts with different synthesis methods, loadings, and characteristic spectra and find a single intrinsic turnover frequency for cis-cyclooctene epoxidation of (40±7) h-1. This simple method gives molecular-level insight into catalyst structure that is otherwise hidden when bulk techniques are used.

  17. Active site of tripeptidyl peptidase II from human erythrocytes is of the subtilisin type.

    PubMed Central

    Tomkinson, B; Wernstedt, C; Hellman, U; Zetterqvist, O

    1987-01-01

    The present report presents evidence that the amino acid sequence around the serine of the active site of human tripeptidyl peptidase II is of the subtilisin type. The enzyme from human erythrocytes was covalently labeled at its active site with [3H]diisopropyl fluorophosphate, and the protein was subsequently reduced, alkylated, and digested with trypsin. The labeled tryptic peptides were purified by gel filtration and repeated reversed-phase HPLC, and their amino-terminal sequences were determined. Residue 9 contained the radioactive label and was, therefore, considered to be the active serine residue. The primary structure of the part of the active site (residues 1-10) containing this residue was concluded to be Xaa-Thr-Gln-Leu-Met-Asx-Gly-Thr-Ser-Met. This amino acid sequence is homologous to the sequence surrounding the active serine of the microbial peptidases subtilisin and thermitase. These data demonstrate that human tripeptidyl peptidase II represents a potentially distinct class of human peptidases and raise the question of an evolutionary relationship between the active site of a mammalian peptidase and that of the subtilisin family of serine peptidases. PMID:3313395

  18. Evolution of anatase surface active sites probed by in situ sum-frequency phonon spectroscopy

    PubMed Central

    Cao, Yue; Chen, Shiyou; Li, Yadong; Gao, Yi; Yang, Deheng; Shen, Yuen Ron; Liu, Wei-Tao

    2016-01-01

    Surface active sites of crystals often govern their relevant surface chemistry, yet to monitor them in situ in real atmosphere remains a challenge. Using surface-specific sum-frequency spectroscopy, we identified the surface phonon mode associated with the active sites of undercoordinated titanium ions and conjoint oxygen vacancies, and used it to monitor them on anatase (TiO2) (101) under ambient conditions. In conjunction with theory, we determined related surface structure around the active sites and tracked the evolution of oxygen vacancies under ultraviolet irradiation. We further found that unlike in vacuum, the surface oxygen vacancies, which dominate the surface reactivity, are strongly regulated by ambient gas molecules, including methanol and water, as well as weakly associated species, such as nitrogen and hydrogen. The result revealed a rich interplay between prevailing ambient species and surface reactivity, which can be omnipresent in environmental and catalytic applications of titanium dioxides. PMID:27704049

  19. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase.

    PubMed

    Fenwick, Michael K; Mehta, Angad P; Zhang, Yang; Abdelwahed, Sameh H; Begley, Tadhg P; Ealick, Steven E

    2015-03-27

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active site metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.

  20. Solvent Tuning of Electrochemical Potentials in the Active Sites of HiPIP Versus Ferredoxin

    SciTech Connect

    Dey, A.; Francis, E.J.; Adams, M.W.W.; Babini, E.; Takahashi, Y.; Fukuyama, K.; Hodgson, K.O.; Hedman, B.; Solomon, E.I.; /Stanford U., Chem. Dept. /Georgia U. /Bologna U. /Osaka U. /SLAC, SSRL

    2009-04-29

    A persistent puzzle in the field of biological electron transfer is the conserved iron-sulfur cluster motif in both high potential iron-sulfur protein (HiPIP) and ferredoxin (Fd) active sites. Despite this structural similarity, HiPIPs react oxidatively at physiological potentials, whereas Fds are reduced. Sulfur K-edge x-ray absorption spectroscopy uncovers the substantial influence of hydration on this variation in reactivity. Fe-S covalency is much lower in natively hydrated Fd active sites than in HiPIPs but increases upon water removal; similarly, HiPIP covalency decreases when unfolding exposes an otherwise hydrophobically shielded active site to water. Studies on model compounds and accompanying density functional theory calculations support a correlation of Fe-S covalency with ease of oxidation and therefore suggest that hydration accounts for most of the difference between Fd and HiPIP reduction potentials.

  1. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase

    SciTech Connect

    Fenwick, Michael K.; Mehta, Angad P.; Zhang, Yang; Abdelwahed, Sameh H.; Begley, Tadhg P.; Ealick, Steven E.

    2015-03-27

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active site metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.

  2. Wasp recruitment to the T cell:APC contact site occurs independently of Cdc42 activation.

    PubMed

    Cannon, J L; Labno, C M; Bosco, G; Seth, A; McGavin, M H; Siminovitch, K A; Rosen, M K; Burkhardt, J K

    2001-08-01

    Cdc42 and WASP are critical regulators of actin polymerization whose function during T cell signaling is poorly understood. Using a novel reagent that specifically detects Cdc42-GTP in fixed cells, we found that activated Cdc42 localizes to the T cell:APC contact site in an antigen-dependent manner. TCR signaling alone was sufficient to induce localization of Cdc42-GTP, and functional Lck and Zap-70 kinases were required. WASP also localized to the T cell:APC contact site in an antigen-dependent manner. Surprisingly, WASP localization was independent of the Cdc42 binding domain but required the proline-rich domain. Our results indicate that localized WASP activation requires the integration of multiple signals: WASP is recruited via interaction with SH3 domain-containing proteins and is activated by Cdc42-GTP concentrated at the same site. PMID:11520460

  3. Comparing perceived and objectively measured access to recreational facilities as predictors of physical activity in adolescent girls.

    PubMed

    Scott, Molly M; Evenson, Kelly R; Cohen, Deborah A; Cox, Christine E

    2007-05-01

    A number of studies in recent years have identified both self-report and objectively measured accessibility of recreational facilities as important predictors of physical activity in youth. Yet, few studies have: (1) examined the relationship between the number and proximity of objectively measured neighborhood physical activity facilities and respondents' perceptions and (2) compared objective and self-report measures as predictors of physical activity. This study uses data on 1,367 6th-grade girls who participated in the Trial of Activity for Adolescent Girls (TAAG) to explore these issues. Girls reported whether nine different types of recreational facilities were easily accessible. These facilities included basketball courts, golf courses, martial arts studios, playing fields, tracks, skating rinks, swimming pools, tennis courts, and dance/gymnastic clubs. Next, geographic information systems (GIS) were used to identify all the parks, schools, and commercial sites for physical activity located within a mile of each girl's home. These sites were then visited to inventory the types of facilities available. Girls wore accelerometers to measure their weekly minutes of non-school metabolic equivalent weighted moderate-to-vigorous physical activity (MW-MVPA). The number of facilities within a half-mile of girls' homes strongly predicted the perception of easy access to seven out of nine facility types. Both individual facility perceptions and the total number of facilities perceived were associated with increased physical activity. For each additional facility perceived, girls clocked 3% more metabolic equivalent weighted moderate-to-vigorous physical activity (p < 0.001). Although girls tended to record 3% more of this kind of physical activity (p < 0.05) per basketball court within a mile of their homes, objective facility measures were otherwise unrelated to physical activity. The results from this study suggest that raising the profile of existing facilities may

  4. Comparing perceived and objectively measured access to recreational facilities as predictors of physical activity in adolescent girls.

    PubMed

    Scott, Molly M; Evenson, Kelly R; Cohen, Deborah A; Cox, Christine E

    2007-05-01

    A number of studies in recent years have identified both self-report and objectively measured accessibility of recreational facilities as important predictors of physical activity in youth. Yet, few studies have: (1) examined the relationship between the number and proximity of objectively measured neighborhood physical activity facilities and respondents' perceptions and (2) compared objective and self-report measures as predictors of physical activity. This study uses data on 1,367 6th-grade girls who participated in the Trial of Activity for Adolescent Girls (TAAG) to explore these issues. Girls reported whether nine different types of recreational facilities were easily accessible. These facilities included basketball courts, golf courses, martial arts studios, playing fields, tracks, skating rinks, swimming pools, tennis courts, and dance/gymnastic clubs. Next, geographic information systems (GIS) were used to identify all the parks, schools, and commercial sites for physical activity located within a mile of each girl's home. These sites were then visited to inventory the types of facilities available. Girls wore accelerometers to measure their weekly minutes of non-school metabolic equivalent weighted moderate-to-vigorous physical activity (MW-MVPA). The number of facilities within a half-mile of girls' homes strongly predicted the perception of easy access to seven out of nine facility types. Both individual facility perceptions and the total number of facilities perceived were associated with increased physical activity. For each additional facility perceived, girls clocked 3% more metabolic equivalent weighted moderate-to-vigorous physical activity (p < 0.001). Although girls tended to record 3% more of this kind of physical activity (p < 0.05) per basketball court within a mile of their homes, objective facility measures were otherwise unrelated to physical activity. The results from this study suggest that raising the profile of existing facilities may

  5. Mutations Closer to the Active Site Improve the Promiscuous Aldolase Activity of 4-Oxalocrotonate Tautomerase More Effectively than Distant Mutations.

    PubMed

    Rahimi, Mehran; van der Meer, Jan-Ytzen; Geertsema, Edzard M; Poddar, Harshwardhan; Baas, Bert-Jan; Poelarends, Gerrit J

    2016-07-01

    The enzyme 4-oxalocrotonate tautomerase (4-OT), which catalyzes enol-keto tautomerization as part of a degradative pathway for aromatic hydrocarbons, promiscuously catalyzes various carbon-carbon bond-forming reactions. These include the aldol condensation of acetaldehyde with benzaldehyde to yield cinnamaldehyde. Here, we demonstrate that 4-OT can be engineered into a more efficient aldolase for this condensation reaction, with a >5000-fold improvement in catalytic efficiency (kcat /Km ) and a >10(7) -fold change in reaction specificity, by exploring small libraries in which only "hotspots" are varied. The hotspots were identified by systematic mutagenesis (covering each residue), followed by a screen for single mutations that give a strong improvement in the desired aldolase activity. All beneficial mutations were near the active site of 4-OT, thus underpinning the notion that new catalytic activities of a promiscuous enzyme are more effectively enhanced by mutations close to the active site. PMID:27238293

  6. The effect of the distance between acidic site and basic site immobilized on mesoporous solid on the activity in catalyzing aldol condensation

    SciTech Connect

    Yu Xiaofang; Yu Xiaobo; Wu Shujie; Liu Bo; Liu Heng; Guan Jingqi; Kan Qiubin

    2011-02-15

    Acid-base bifunctional heterogeneous catalysts containing carboxylic and amine groups, which were immobilized at defined distance from one another on the mesoporous solid were synthesized by immobilizing lysine onto carboxyl-SBA-15. The obtained materials were characterized by X-ray diffraction (XRD), N{sub 2} adsorption, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron micrographs (SEM), transmission electron micrographs (TEM), elemental analysis, and back titration. Proximal-C-A-SBA-15 with a proximal acid-base distance was more active than maximum-C-A-SBA-15 with a maximum acid-base distance in aldol condensation reaction between acetone and various aldehydes. It appears that the distance between acidic site and basic site immobilized on mesoporous solid should be an essential factor for catalysis optimization. -- Graphical abstract: Proximal-C-A-SBA-15 with a proximal acid-base distance and maximum-C-A-SBA-15 with a maximum acid-base distance were synthesized by immobilizing lysine onto carboxyl-SBA-15. Display Omitted Research highlights: {yields} Proximal-C-A-SBA-15 with a proximal acid-base distance. {yields} Maximum-C-A-SBA-15 with a maximum acid-base distance. {yields} Compared to maximum-C-A-SBA-15, proximal-C-A-SBA-15 was more active toward aldol condensation reaction between acetone and various aldehydes.

  7. The active site of low-temperature methane hydroxylation in iron-containing zeolites.

    PubMed

    Snyder, Benjamin E R; Vanelderen, Pieter; Bols, Max L; Hallaert, Simon D; Böttger, Lars H; Ungur, Liviu; Pierloot, Kristine; Schoonheydt, Robert A; Sels, Bert F; Solomon, Edward I

    2016-08-18

    An efficient catalytic process for converting methane into methanol could have far-reaching economic implications. Iron-containing zeolites (microporous aluminosilicate minerals) are noteworthy in this regard, having an outstanding ability to hydroxylate methane rapidly at room temperature to form methanol. Reactivity occurs at an extra-lattice active site called α-Fe(ii), which is activated by nitrous oxide to form the reactive intermediate α-O; however, despite nearly three decades of research, the nature of the active site and the factors determining its exceptional reactivity are unclear. The main difficulty is that the reactive species-α-Fe(ii) and α-O-are challenging to probe spectroscopically: data from bulk techniques such as X-ray absorption spectroscopy and magnetic susceptibility are complicated by contributions from inactive 'spectator' iron. Here we show that a site-selective spectroscopic method regularly used in bioinorganic chemistry can overcome this problem. Magnetic circular dichroism reveals α-Fe(ii) to be a mononuclear, high-spin, square planar Fe(ii) site, while the reactive intermediate, α-O, is a mononuclear, high-spin Fe(iv)=O species, whose exceptional reactivity derives from a constrained coordination geometry enforced by the zeolite lattice. These findings illustrate the value of our approach to exploring active sites in heterogeneous systems. The results also suggest that using matrix constraints to activate metal sites for function-producing what is known in the context of metalloenzymes as an 'entatic' state-might be a useful way to tune the activity of heterogeneous catalysts. PMID:27535535

  8. The active site of low-temperature methane hydroxylation in iron-containing zeolites

    NASA Astrophysics Data System (ADS)

    Snyder, Benjamin E. R.; Vanelderen, Pieter; Bols, Max L.; Hallaert, Simon D.; Böttger, Lars H.; Ungur, Liviu; Pierloot, Kristine; Schoonheydt, Robert A.; Sels, Bert F.; Solomon, Edward I.

    2016-08-01

    An efficient catalytic process for converting methane into methanol could have far-reaching economic implications. Iron-containing zeolites (microporous aluminosilicate minerals) are noteworthy in this regard, having an outstanding ability to hydroxylate methane rapidly at room temperature to form methanol. Reactivity occurs at an extra-lattice active site called α-Fe(II), which is activated by nitrous oxide to form the reactive intermediate α-O; however, despite nearly three decades of research, the nature of the active site and the factors determining its exceptional reactivity are unclear. The main difficulty is that the reactive species—α-Fe(II) and α-O—are challenging to probe spectroscopically: data from bulk techniques such as X-ray absorption spectroscopy and magnetic susceptibility are complicated by contributions from inactive ‘spectator’ iron. Here we show that a site-selective spectroscopic method regularly used in bioinorganic chemistry can overcome this problem. Magnetic circular dichroism reveals α-Fe(II) to be a mononuclear, high-spin, square planar Fe(II) site, while the reactive intermediate, α-O, is a mononuclear, high-spin Fe(IV)=O species, whose exceptional reactivity derives from a constrained coordination geometry enforced by the zeolite lattice. These findings illustrate the value of our approach to exploring active sites in heterogeneous systems. The results also suggest that using matrix constraints to activate metal sites for function—producing what is known in the context of metalloenzymes as an ‘entatic’ state—might be a useful way to tune the activity of heterogeneous catalysts.

  9. A Tale of Two Isomerases: Compact versus Extended Active Sites in Ketosteroid Isomerase and Phosphoglucose Isomerase

    SciTech Connect

    Somarowthu, Srinivas; Brodkin, Heather R.; D’Aquino, J. Alejandro; Ringe, Dagmar; Ondrechen, Mary Jo; Beuning, Penny J.

    2012-07-11

    Understanding the catalytic efficiency and specificity of enzymes is a fundamental question of major practical and conceptual importance in biochemistry. Although progress in biochemical and structural studies has enriched our knowledge of enzymes, the role in enzyme catalysis of residues that are not nearest neighbors of the reacting substrate molecule is largely unexplored experimentally. Here computational active site predictors, THEMATICS and POOL, were employed to identify functionally important residues that are not in direct contact with the reacting substrate molecule. These predictions then guided experiments to explore the active sites of two isomerases, Pseudomonas putida ketosteroid isomerase (KSI) and human phosphoglucose isomerase (PGI), as prototypes for very different types of predicted active sites. Both KSI and PGI are members of EC 5.3 and catalyze similar reactions, but they represent significantly different degrees of remote residue participation, as predicted by THEMATICS and POOL. For KSI, a compact active site of mostly first-shell residues is predicted, but for PGI, an extended active site in which residues in the first, second, and third layers around the reacting substrate are predicted. Predicted residues that have not been previously tested experimentally were investigated by site-directed mutagenesis and kinetic analysis. In human PGI, single-point mutations of the predicted second- and third-shell residues K362, H100, E495, D511, H396, and Q388 show significant decreases in catalytic activity relative to that of the wild type. The results of these experiments demonstrate that, as predicted, remote residues are very important in PGI catalysis but make only small contributions to catalysis in KSI.

  10. SABER: A computational method for identifying active sites for new reactions

    PubMed Central

    Nosrati, Geoffrey R; Houk, K N

    2012-01-01

    A software suite, SABER (Selection of Active/Binding sites for Enzyme Redesign), has been developed for the analysis of atomic geometries in protein structures, using a geometric hashing algorithm (Barker and Thornton, Bioinformatics 2003;19:1644–1649). SABER is used to explore the Protein Data Bank (PDB) to locate proteins with a specific 3D arrangement of catalytic groups to identify active sites that might be redesigned to catalyze new reactions. As a proof-of-principle test, SABER was used to identify enzymes that have the same catalytic group arrangement present in o-succinyl benzoate synthase (OSBS). Among the highest-scoring scaffolds identified by the SABER search for enzymes with the same catalytic group arrangement as OSBS were l-Ala d/l-Glu epimerase (AEE) and muconate lactonizing enzyme II (MLE), both of which have been redesigned to become effective OSBS catalysts, demonstrated by experiments. Next, we used SABER to search for naturally existing active sites in the PDB with catalytic groups similar to those present in the designed Kemp elimination enzyme KE07. From over 2000 geometric matches to the KE07 active site, SABER identified 23 matches that corresponded to residues from known active sites. The best of these matches, with a 0.28 Å catalytic atom RMSD to KE07, was then redesigned to be compatible with the Kemp elimination using RosettaDesign. We also used SABER to search for potential Kemp eliminases using a theozyme predicted to provide a greater rate acceleration than the active site of KE07, and used Rosetta to create a design based on the proteins identified. PMID:22492397

  11. SABER: a computational method for identifying active sites for new reactions.

    PubMed

    Nosrati, Geoffrey R; Houk, K N

    2012-05-01

    A software suite, SABER (Selection of Active/Binding sites for Enzyme Redesign), has been developed for the analysis of atomic geometries in protein structures, using a geometric hashing algorithm (Barker and Thornton, Bioinformatics 2003;19:1644-1649). SABER is used to explore the Protein Data Bank (PDB) to locate proteins with a specific 3D arrangement of catalytic groups to identify active sites that might be redesigned to catalyze new reactions. As a proof-of-principle test, SABER was used to identify enzymes that have the same catalytic group arrangement present in o-succinyl benzoate synthase (OSBS). Among the highest-scoring scaffolds identified by the SABER search for enzymes with the same catalytic group arrangement as OSBS were L-Ala D/L-Glu epimerase (AEE) and muconate lactonizing enzyme II (MLE), both of which have been redesigned to become effective OSBS catalysts, demonstrated by experiments. Next, we used SABER to search for naturally existing active sites in the PDB with catalytic groups similar to those present in the designed Kemp elimination enzyme KE07. From over 2000 geometric matches to the KE07 active site, SABER identified 23 matches that corresponded to residues from known active sites. The best of these matches, with a 0.28 Å catalytic atom RMSD to KE07, was then redesigned to be compatible with the Kemp elimination using RosettaDesign. We also used SABER to search for potential Kemp eliminases using a theozyme predicted to provide a greater rate acceleration than the active site of KE07, and used Rosetta to create a design based on the proteins identified. PMID:22492397

  12. Preliminary examination of the impacts of repository site characterization activities and facility construction and operation activities on Hanford air quality

    SciTech Connect

    Glantz, C.S.; Ramsdell, J.V.

    1986-04-01

    Air quality impacts that would result from site characterization activities and from the construction and operation of a high-level nuclear wste repository at Hanford are estimated using two simple atmospheric dispersion models, HANCHI and CHISHORT. Model results indicate that pollutant concentrations would not exceed ambient air quality standards at any point outside the Hanford fenceline or at any publicly accessible location within the Hanford Site. The increase in pollutant concentrations in nearby communities due to site activities would be minimal. HANCHI and CHISHORT are documented in the appendices of this document. Further study of the repository's impact on air quality will be conducted when more detailed project plans and work schedules are available.

  13. Conserved phosphorylation sites in the activation loop of the Arabidopsis phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity.

    PubMed

    Hartmann, Jens; Linke, Dennis; Bönniger, Christine; Tholey, Andreas; Sauter, Margret

    2015-12-15

    PSK (phytosulfokine) is a plant peptide hormone perceived by a leucine-rich repeat receptor kinase. Phosphosite mapping of epitope-tagged PSKR1 (phytosulfokine receptor 1) from Arabidopsis thaliana plants identified Ser(696) and Ser(698) in the JM (juxtamembrane) region and probably Ser(886) and/or Ser(893) in the AL (activation loop) as in planta phosphorylation sites. In vitro-expressed kinase was autophosphorylated at Ser(717) in the JM, and at Ser(733), Thr(752), Ser(783), Ser(864), Ser(911), Ser(958) and Thr(998) in the kinase domain. The LC-ESI-MS/MS spectra provided support that up to three sites (Thr(890), Ser(893) and Thr(894)) in the AL were likely to be phosphorylated in vitro. These sites are evolutionarily highly conserved in PSK receptors, indicative of a conserved function. Site-directed mutagenesis of the four conserved residues in the activation segment, Thr(890), Ser(893), Thr(894) and Thr(899), differentially altered kinase activity in vitro and growth-promoting activity in planta. The T899A and the quadruple-mutated TSTT-A (T890A/S893A/T894A/T899A) mutants were both kinase-inactive, but PSKR1(T899A) retained growth-promoting activity. The T890A and S893A/T894A substitutions diminished kinase activity and growth promotion. We hypothesize that phosphorylation within the AL activates kinase activity and receptor function in a gradual and distinctive manner that may be a means to modulate the PSK response.

  14. Conserved phosphorylation sites in the activation loop of the Arabidopsis phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity

    PubMed Central

    Hartmann, Jens; Linke, Dennis; Bönniger, Christine; Tholey, Andreas; Sauter, Margret

    2015-01-01

    PSK (phytosulfokine) is a plant peptide hormone perceived by a leucine-rich repeat receptor kinase. Phosphosite mapping of epitope-tagged PSKR1 (phytosulfokine receptor 1) from Arabidopsis thaliana plants identified Ser696 and Ser698 in the JM (juxtamembrane) region and probably Ser886 and/or Ser893 in the AL (activation loop) as in planta phosphorylation sites. In vitro-expressed kinase was autophosphorylated at Ser717 in the JM, and at Ser733, Thr752, Ser783, Ser864, Ser911, Ser958 and Thr998 in the kinase domain. The LC–ESI–MS/MS spectra provided support that up to three sites (Thr890, Ser893 and Thr894) in the AL were likely to be phosphorylated in vitro. These sites are evolutionarily highly conserved in PSK receptors, indicative of a conserved function. Site-directed mutagenesis of the four conserved residues in the activation segment, Thr890, Ser893, Thr894 and Thr899, differentially altered kinase activity in vitro and growth-promoting activity in planta. The T899A and the quadruple-mutated TSTT-A (T890A/S893A/T894A/T899A) mutants were both kinase-inactive, but PSKR1(T899A) retained growth-promoting activity. The T890A and S893A/T894A substitutions diminished kinase activity and growth promotion. We hypothesize that phosphorylation within the AL activates kinase activity and receptor function in a gradual and distinctive manner that may be a means to modulate the PSK response. PMID:26472115

  15. Improved Biofilm Antimicrobial Activity of Polyethylene Glycol Conjugated Tobramycin Compared to Tobramycin in Pseudomonas aeruginosa Biofilms.

    PubMed

    Du, Ju; Bandara, H M H N; Du, Ping; Huang, Hui; Hoang, Khang; Nguyen, Dang; Mogarala, Sri Vasudha; Smyth, Hugh D C

    2015-05-01

    The objective of this study was to develop a functionally enhanced antibiotic that would improve the therapeutic activity against bacterial biofilms. Tobramycin was chemically conjugated with polyethylene glycol (PEG) via site-specific conjugation to form PEGylated-tobramycin (Tob-PEG). The antibacterial efficacy of Tob-PEG, as compared to tobramycin, was assessed on the planktonic phase and biofilms phase of Pseudomonas aeruginosa. The minimum inhibitory concentration (MIC80) of Tob-PEG was higher (13.9 μmol/L) than that of tobramycin (1.4 μmol/L) in the planktonic phases. In contrast, the Tob-PEG was approximately 3.2-fold more effective in eliminating bacterial biofilms than tobramycin. Specifically, Tob-PEG had a MIC80 lower than those exhibited by tobramycin (27.8 μmol/L vs 89.8 μmol/L). Both confocal laser scanning microscopy and scanning electron microscopy further confirmed these data. Thus, modification of antimicrobials by PEGylation appears to be a promising approach for overcoming the bacterial resistance in the established biofilms of Pseudomonas aeruginosa.

  16. Wobble Pairs of the HDV Ribozyme Play Specific Roles in Stabilization of Active Site Dynamics

    PubMed Central

    Sripathi, Kamali N.; Banáš, Pavel; Reblova, Kamila; Šponer, Jiři; Otyepka, Michal

    2015-01-01

    The hepatitis delta virus (HDV) is the only known human pathogen whose genome contains a catalytic RNA motif (ribozyme). The overall architecture of the HDV ribozyme is that of a double-nested pseudoknot, with two GU pairs flanking the active site. Although extensive studies have shown that mutation of either wobble results in decreased catalytic activity, little work has focused on linking these mutations to specific structural effects on catalytic fitness. Here we use molecular dynamics simulations based on an activated structure to probe the active site dynamics as a result of wobble pair mutations. In both wild-type and mutant ribozymes, the in-line fitness of the active site (as a measure of catalytic proficiency) strongly depends on the presence of a C75(N3H3+)N1(O5′) hydrogen bond, which positions C75 as the general acid for the reaction. Our mutational analyses show that each GU wobble supports catalytically fit conformations in distinct ways; the reverse G25U20 wobble promotes high in-line fitness, high occupancy of the C75(N3H3+)G1(O5′) general-acid hydrogen bond and stabilization of the G1U37 wobble, while the G1U37 wobble acts more locally by stabilizing high in-line fitness and the C75(N3H3+)G1(O5′) hydrogen bond. We also find that stable type I A-minor and P1.1 hydrogen bonding above and below the active site, respectively, prevent local structural disorder from spreading and disrupting global conformation. Taken together, our results define specific, often redundant architectural roles for several structural motifs of the HDV ribozyme active site, expanding the known roles of these motifs within all HDV-like ribozymes and other structured RNAs. PMID:25631765

  17. Tuned by metals: the TET peptidase activity is controlled by 3 metal binding sites

    PubMed Central

    Colombo, Matteo; Girard, Eric; Franzetti, Bruno

    2016-01-01

    TET aminopeptidases are dodecameric particles shared in the three life domains involved in various biological processes, from carbon source provider in archaea to eye-pressure regulation in humans. Each subunit contains a dinuclear metal site (M1 and M2) responsible for the enzyme catalytic activity. However, the role of each metal ion is still uncharacterized. Noteworthy, while mesophilic TETs are activated by Mn2+, hyperthermophilic TETs prefers Co2+. Here, by means of anomalous x-ray crystallography and enzyme kinetics measurements of the TET3 aminopeptidase from the hyperthermophilic organism Pyrococcus furiosus (PfTET3), we show that M2 hosts the catalytic activity of the enzyme, while M1 stabilizes the TET3 quaternary structure and controls the active site flexibility in a temperature dependent manner. A new third metal site (M3) was found in the substrate binding pocket, modulating the PfTET3 substrate preferences. These data show that TET activity is tuned by the molecular interplay among three metal sites. PMID:26853450

  18. Human Activities in Natura 2000 Sites: A Highly Diversified Conservation Network

    NASA Astrophysics Data System (ADS)

    Tsiafouli, Maria A.; Apostolopoulou, Evangelia; Mazaris, Antonios D.; Kallimanis, Athanasios S.; Drakou, Evangelia G.; Pantis, John D.

    2013-05-01

    The Natura 2000 network was established across the European Union's (EU) Member States with the aim to conserve biodiversity, while ensuring the sustainability of human activities. However, to what kind and to what extent Natura 2000 sites are subject to human activities and how this varies across Member States remains unspecified. Here, we analyzed 111,269 human activity records from 14,727 protected sites in 20 Member States. The frequency of occurrence of activities differs among countries, with more than 86 % of all sites being subjected to agriculture or forestry. Activities like hunting, fishing, urbanization, transportation, and tourism are more frequently recorded in south European sites than in northern or eastern ones. The observed variations indicate that Natura 2000 networks are highly heterogeneous among EU Member States. Our analysis highlights the importance of agriculture in European landscapes and indicates possible targets for policy interventions at national, European, or "sub-European" level. The strong human presence in the Natura 2000 network throughout Member States, shows that conservation initiatives could succeed only by combining social and ecological sustainability and by ensuring the integration of policies affecting biodiversity.

  19. Active-Site Monovalent Cations Revealed in a 1.55 Å Resolution Hammerhead Ribozyme Structure

    PubMed Central

    Anderson, Michael; Schultz, Eric P.; Martick, Monika; Scott, William G.

    2013-01-01

    We have obtained a 1.55 Å crystal structure of a hammerhead ribozyme derived from Schistosoma mansoni in conditions that permit detailed observations of Na+ ion binding in the ribozyme's active site. At least two such Na+ ions are observed. The first Na+ ion binds to the N7 of G10.1 and the adjacent A9 phosphate in a manner identical to that previously observed for divalent cations. A second Na+ ion binds to the Hoogsteen face of G12, the general base in the hammerhead cleavage reaction, thereby potentially dissipating the negative charge of the catalytically active enolate form of the nucleotide base. A potential but more ambiguous third site bridges the A9 and scissile phosphates in a manner consistent with previous predictions. Hammerhead ribozymes have been observed to be active in the presence of high concentrations of monovalent cations, including Na+, but the mechanism by which monovalent cations substitute for divalent cations in hammerhead catalysis remains unclear. Our results enable us to suggest that Na+ directly and specifically substitutes for divalent cations in the hammerhead active site. The detailed geometry of the pre-catalytic active site complex is also revealed with a new level of precision, thanks to the quality of the electron density maps obtained from what is currently the highest resolution ribozyme structure in the protein data bank. PMID:23711504

  20. Comparative distribution of 241 Am and 239,240 Pu in soils around the Rocky Flats Environmental Technology Site.

    PubMed

    Ibrahim, S A; Schierman, M J; Whicker, F W

    1996-04-01

    The distribution and behavior of 241 Am and 239,240 Pu in soils from the buffer zone of the Rocky Flats Environmental Technology Site have been investigated. Concentrations of both radionuclides decreased at similar rates with soil depth. More than 80% of the total inventory of both contaminants was found in the upper 9 cm of the soils with over 50% of the inventory residing in the top 3 cm. Comparison with earlier studies indicate that the plutonium depth profile has not changed significantly over the last 25 y. The inventories of 241 Am and 239,240 Pu decreased with distance from the 903 Pad (a former waste storage site) according to a power function, and the plume extended mainly toward the east. The lateral movement of the two contaminants away from the 903 Pad was not significantly different. The median activity ratio of 241 Am: 239,240 Pu ranged from 17 to 19% and was independent of sampling location and soil depth. This observation provided further evidence that the movement of both contaminants is indistinguishable in the study area. Because of the strong correlation between the two radionuclides, 241 Am concentrations can then be used to infer 239,240 Pu by counting the 241 Am via gamma spectroscopy. PMID:8617592

  1. Participating in Political Activities: Political Systems, Unit Three. Comparing Political Experiences, Experimental Edition.

    ERIC Educational Resources Information Center

    Gillespie, Judith A.; Patrick, John J.

    The third unit to the first-semester course, "Comparing Political Experiences," provides 16 activities to help 12th-grade students acquire in-depth knowledge of various kinds of political activities, such as decision making, leadership, communication, and participation. The activities and readings are divided into six sections which stress the…

  2. Comparing the validity of 2 physical activity questionnaire formats in African-American and Hispanic women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to compare the validity of 2 physical activity questionnaire formats—one that lists activities (Checklist questionnaire) and one that assesses overall activities (Global questionnaire) by domain. Two questionnaire formats were validated among 260 African-American and Hi...

  3. Fragile Sites of 'Valencia' Sweet Orange (Citrus sinensis) Chromosomes Are Related with Active 45s rDNA.

    PubMed

    Lan, Hong; Chen, Chun-Li; Miao, Yin; Yu, Chang-Xiu; Guo, Wen-Wu; Xu, Qiang; Deng, Xiu-Xin

    2016-01-01

    Citrus sinensis chromosomes present a morphological differentiation of bands after staining by the fluorochromes CMA and DAPI, but there is still little information on its chromosomal characteristics. In this study, the chromosomes in 'Valencia' C. sinensis were analyzed by fluorescence in situ hybridization (FISH) using telomere DNA and the 45S rDNA gene as probes combining CMA/DAPI staining, which showed that there were two fragile sites in sweet orange chromosomes co-localizing at distended 45S rDNA regions, one proximally locating on B-type chromosome and the other subterminally locating on D-type chromosome. While the chromosomal CMA banding and 45S rDNA FISH mapping in the doubled haploid line of 'Valencia' C. sinensis indicated six 45S rDNA regions, four were identified as fragile sites as doubled comparing its parental line, which confirmed the cytological heterozygosity and chromosomal heteromorphisms in sweet orange. Furthermore, Ag-NOR identified two distended 45S rDNA regions to be active nucleolar organizing regions (NORs) in diploid 'Valencia' C. sinensis. The occurrence of quadrivalent in meiosis of pollen mother cells (PMCs) in 'Valencia' sweet orange further confirmed it was a chromosomal reciprocal translocation line. We speculated this chromosome translocation was probably related to fragile sites. Our data provide insights into the chromosomal characteristics of the fragile sites in 'Valencia' sweet orange and are expected to facilitate the further investigation of the possible functions of fragile sites. PMID:26977938

  4. Fragile Sites of 'Valencia' Sweet Orange (Citrus sinensis) Chromosomes Are Related with Active 45s rDNA.

    PubMed

    Lan, Hong; Chen, Chun-Li; Miao, Yin; Yu, Chang-Xiu; Guo, Wen-Wu; Xu, Qiang; Deng, Xiu-Xin

    2016-01-01

    Citrus sinensis chromosomes present a morphological differentiation of bands after staining by the fluorochromes CMA and DAPI, but there is still little information on its chromosomal characteristics. In this study, the chromosomes in 'Valencia' C. sinensis were analyzed by fluorescence in situ hybridization (FISH) using telomere DNA and the 45S rDNA gene as probes combining CMA/DAPI staining, which showed that there were two fragile sites in sweet orange chromosomes co-localizing at distended 45S rDNA regions, one proximally locating on B-type chromosome and the other subterminally locating on D-type chromosome. While the chromosomal CMA banding and 45S rDNA FISH mapping in the doubled haploid line of 'Valencia' C. sinensis indicated six 45S rDNA regions, four were identified as fragile sites as doubled comparing its parental line, which confirmed the cytological heterozygosity and chromosomal heteromorphisms in sweet orange. Furthermore, Ag-NOR identified two distended 45S rDNA regions to be active nucleolar organizing regions (NORs) in diploid 'Valencia' C. sinensis. The occurrence of quadrivalent in meiosis of pollen mother cells (PMCs) in 'Valencia' sweet orange further confirmed it was a chromosomal reciprocal translocation line. We speculated this chromosome translocation was probably related to fragile sites. Our data provide insights into the chromosomal characteristics of the fragile sites in 'Valencia' sweet orange and are expected to facilitate the further investigation of the possible functions of fragile sites.

  5. Structure of inorganic pyrophosphatase from Staphylococcus aureus reveals conformational flexibility of the active site.

    PubMed

    Gajadeera, Chathurada S; Zhang, Xinyi; Wei, Yinan; Tsodikov, Oleg V

    2015-02-01

    Cytoplasmic inorganic pyrophosphatase (PPiase) is an enzyme essential for survival of organisms, from bacteria to human. PPiases are divided into two structurally distinct families: family I PPiases are Mg(2+)-dependent and present in most archaea, eukaryotes and prokaryotes, whereas the relatively less understood family II PPiases are Mn(2+)-dependent and present only in some archaea, bacteria and primitive eukaryotes. Staphylococcus aureus (SA), a dangerous pathogen and a frequent cause of hospital infections, contains a family II PPiase (PpaC), which is an attractive potential target for development of novel antibacterial agents. We determined a crystal structure of SA PpaC in complex with catalytic Mn(2+) at 2.1Å resolution. The active site contains two catalytic Mn(2+) binding sites, each half-occupied, reconciling the previously observed 1:1 Mn(2+):enzyme stoichiometry with the presence of two divalent metal ion sites in the apo-enzyme. Unexpectedly, despite the absence of the substrate or products in the active site, the two domains of SA PpaC form a closed active site, a conformation observed in structures of other family II PPiases only in complex with substrate or product mimics. A region spanning residues 295-298, which contains a conserved substrate binding RKK motif, is flipped out of the active site, an unprecedented conformation for a PPiase. Because the mutant of Arg295 to an alanine is devoid of activity, this loop likely undergoes an induced-fit conformational change upon substrate binding and product dissociation. This closed conformation of SA PPiase may serve as an attractive target for rational design of inhibitors of this enzyme. PMID:25576794

  6. Active Venting Sites On The Gas-Hydrate-Bearing Hikurangi Margin, Off New Zealand: ROV Measurements And Observations

    NASA Astrophysics Data System (ADS)

    Naudts, L.; Poort, J.; Boone, D.; Linke, P.; Greinert, J.; de Batist, M.; Henriet, J.

    2007-12-01

    During R.V. Sonne cruise SO191-3, part of the "New (Zealand Cold) Vents" expedition, RCMG deployed a CHEROKEE ROV "Genesis" on the Hikurangi Margin. This accretionary margin, on the east coast of New Zealand, is related to the subduction of the Pacific Plate under the Australian Plate. Several cold vent locations as well as an extensive BSR, indicating the presence of gas hydrates, have been found at this margin. The aims of the ROV-work were to precisely localize active methane vents, to conduct detailed visual observations of the vent structures and activity, and to perform measurements of physical properties and collect samples at and around the vent locations. The three investigated areas generally have a flat to moderate undulating sea floor with soft sediments alternating with carbonate platforms. The different sites were sometimes covered with dense fields of live clams or shell debris, often in association with tube worms, sponges and/or soft tissue corals. Active bubble- releasing seeps were observed at Faure's site and LM-3 site. Bubble-releasing activity was very variable in time, with periods of almost non-activity alternating with periods of violent outbursts. Bubble release occurred mainly from prominent depressions in soft-sediment sea floor. Bottom-water sampling revealed sometimes high concentrations of methane. Sediment-temperature measurements were largely comparable with the bottom- water temperature except for a "raindrop site" (with dense populations of polychaetes), where anomalous low sediment-temperature was measured. Further analysis of the ROV data together with the integration of other datasets will enable us to produce a model characterizing seep structure and environment.

  7. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland.

    PubMed

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Schnecker, Jörg; Wild, Birgit; Capek, Petr; Kaiser, Christina; Torsvik, Vigdis L; Richter, Andreas; Schleper, Christa; Urich, Tim

    2014-01-01

    Permafrost-affected soils in the Northern latitudes store huge amounts of organic carbon (OC) that is prone to microbial degradation and subsequent release of greenhouse gasses to the atmosphere. In Greenland, the consequences of permafrost thaw have only recently been addressed, and predictions on its impact on the carbon budget are thus still highly uncertain. However, the fate of OC is not only determined by abiotic factors, but closely tied to microbial activity. We investigated eight soil profiles in northeast Greenland comprising two sites with typical tundra vegetation and one wet fen site. We assessed microbial community structure and diversity (SSU rRNA gene tag sequencing, quantification of bacteria, archaea and fungi), and measured hydrolytic and oxidative enzyme activities. Sampling site and thus abiotic factors had a significant impact on microbial community structure, diversity and activity, the wet fen site exhibiting higher potential enzyme activities and presumably being a hot spot for anaerobic degradation processes such as fermentation and methanogenesis. Lowest fungal to bacterial ratios were found in topsoils that had been relocated by cryoturbation ("buried topsoils"), resulting from a decrease in fungal abundance compared to recent ("unburied") topsoils. Actinobacteria (in particular Intrasporangiaceae) accounted for a major fraction of the microbial community in buried topsoils, but were only of minor abundance in all other soil horizons. It was indicated that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates in these soils. Our study sheds light on the highly diverse, but poorly-studied communities in permafrost-affected soils in Greenland and their role in OC degradation.

  8. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland

    PubMed Central

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Schnecker, Jörg; Wild, Birgit; Čapek, Petr; Kaiser, Christina; Torsvik, Vigdis L.; Richter, Andreas; Schleper, Christa; Urich, Tim

    2014-01-01

    Permafrost-affected soils in the Northern latitudes store huge amounts of organic carbon (OC) that is prone to microbial degradation and subsequent release of greenhouse gasses to the atmosphere. In Greenland, the consequences of permafrost thaw have only recently been addressed, and predictions on its impact on the carbon budget are thus still highly uncertain. However, the fate of OC is not only determined by abiotic factors, but closely tied to microbial activity. We investigated eight soil profiles in northeast Greenland comprising two sites with typical tundra vegetation and one wet fen site. We assessed microbial community structure and diversity (SSU rRNA gene tag sequencing, quantification of bacteria, archaea and fungi), and measured hydrolytic and oxidative enzyme activities. Sampling site and thus abiotic factors had a significant impact on microbial community structure, diversity and activity, the wet fen site exhibiting higher potential enzyme activities and presumably being a hot spot for anaerobic degradation processes such as fermentation and methanogenesis. Lowest fungal to bacterial ratios were found in topsoils that had been relocated by cryoturbation (“buried topsoils”), resulting from a decrease in fungal abundance compared to recent (“unburied”) topsoils. Actinobacteria (in particular Intrasporangiaceae) accounted for a major fraction of the microbial community in buried topsoils, but were only of minor abundance in all other soil horizons. It was indicated that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates in these soils. Our study sheds light on the highly diverse, but poorly-studied communities in permafrost-affected soils in Greenland and their role in OC degradation. PMID

  9. Analysis of active site residues of the antiviral protein from summer leaves from Phytolacca americana by site-directed mutagenesis.

    PubMed

    Poyet, J L; Hoeveler, A; Jongeneel, C V

    1998-12-30

    The summer leaf isoform of the pokeweed (Phytolacca americana) antiviral protein, PAP II, was produced in high yields from inclusion bodies in recombinant E. coli. On the basis of its sequence similarity with the spring leaf isoform (PAP I) and with the A chain of ricin, a three-dimensional model of the protein was constructed as an aid in the design of active site mutants. PAP II variants mutated in residues Asp 88 (D88N), Tyr 117 (Y117S), Glu 172 (E172Q), Arg 175 (R175H) and a combination of Asp 88 and Arg 175 (D88N/R175H) were produced in E. coli and assayed for their ability to inhibit protein synthesis in a rabbit reticulocyte lysate. All of these mutations had effects deleterious to the enzymatic activity of PAP II. The results were interpreted in the light of three reaction mechanisms proposed for ribosome-inactivating proteins (RIPs). We conclude that none of the proposed mechanisms is entirely consistent with the data presented here.

  10. NMR structure of the active conformation of the Varkud satellite ribozyme cleavage site

    PubMed Central

    Hoffmann, Bernd; Mitchell, G. Thomas; Gendron, Patrick; Major, François; Andersen, Angela A.; Collins, Richard A.; Legault, Pascale

    2003-01-01

    Substrate cleavage by the Neurospora Varkud satellite (VS) ribozyme involves a structural change in the stem-loop I substrate from an inactive to an active conformation. We have determined the NMR solution structure of a mutant stem-loop I that mimics the active conformation of the cleavage site internal loop. This structure shares many similarities, but also significant differences, with the previously determined structures of the inactive internal loop. The active internal loop displays different base-pairing interactions and forms a novel RNA fold composed exclusively of sheared G-A base pairs. From chemical-shift mapping we identified two Mg2+ binding sites in the active internal loop. One of the Mg2+ binding sites forms in the active but not the inactive conformation of the internal loop and is likely important for catalysis. Using the structure comparison program mc-search, we identified the active internal loop fold in other RNA structures. In Thermus thermophilus 16S rRNA, this RNA fold is directly involved in a long-range tertiary interaction. An analogous tertiary interaction may form between the active internal loop of the substrate and the catalytic domain of the VS ribozyme. The combination of NMR and bioinformatic approaches presented here has identified a novel RNA fold and provides insights into the structural basis of catalytic function in the Neurospora VS ribozyme. PMID:12782785

  11. Immobilized low-activity waste site borehole 299-E17-21

    SciTech Connect

    Reidel, S.P.; Reynolds, K.D.; Horton, D.G.

    1998-08-01

    The Tank Waste Remediation System (TWRS) is the group at the Hanford Site responsible for the safe underground storage of liquid waste from previous Hanford Site operations, the storage and disposal of immobilized tank waste, and closure of underground tanks. The current plan is to dispose of immobilized low-activity tank waste (ILAW) in new facilities in the southcentral part of 200-East Area and in four existing vaults along the east side of 200-East Area. Boreholes 299-E17-21, B8501, and B8502 were drilled at the southwest corner of the ILAW site in support of the Performance Assessment activities for the disposal options. This report summarizes the initial geologic findings, field tests conducted on those boreholes, and ongoing studies. One deep (480 feet) borehole and two shallow (50 feet) boreholes were drilled at the southwest corner of the ILAW site. The primary factor dictating the location of the boreholes was their characterization function with respect to developing the geohydrologic model for the site and satisfying associated Data Quality Objectives. The deep borehole was drilled to characterize subsurface conditions beneath the ILAW site, and two shallow boreholes were drilled to support an ongoing environmental tracer study. The tracer study will supply information to the Performance Assessment. All the boreholes provide data on the vadose zone and saturated zone in a previously uncharacterized area.

  12. Maintenance of plastid RNA editing activities independently of their target sites

    PubMed Central

    Tillich, Michael; Poltnigg, Peter; Kushnir, Sergei; Schmitz-Linneweber, Christian

    2006-01-01

    RNA editing in plant organelles is mediated by site-specific, nuclear-encoded factors. Previous data suggested that the maintenance of these factors depends on the presence of their rapidly evolving cognate sites. The surprising ability of allotetraploid Nicotiana tabacum (tobacco) to edit a foreign site in the chloroplast ndhA messenger RNA was thought to be inherited from its diploid male ancestor, Nicotiana tomentosiformis. Here, we show that the same ndhA editing activity is also present in Nicotiana sylvestris, which is the female diploid progenitor of tobacco and which lacks the ndhA site. Hence, heterologous editing is not simply a result of tobacco's allopolyploid genome organization. Analyses of other editing sites after sexual or somatic transfer between land plants showed that heterologous editing occurs at a surprisingly high frequency. This suggests that the corresponding editing activities are conserved despite the absence of their target sites, potentially because they serve other functions in the plant cell. PMID:16415790

  13. ACCELERATED SITE TECHNOLOGY DEPLOYMENT COST AND PERFORMANCE REPORT COMPARABILITY OF ISOCS INSTRUMENT IN RADIONUCLIDE CHARACTERICATION AT BROOKHAVEN NATIONAL LABORATORY

    SciTech Connect

    KALB,P.; LUCKETT,L.; MILLER,K.; GOGOLAK,C.; MILIAN,L.

    2001-03-01

    This report describes a DOE Accelerated Site Technology Deployment project being conducted at Brookhaven National Laboratory to deploy innovative, radiological, in situ analytical techniques. The technologies are being deployed in support of efforts to characterize the Brookhaven Graphite Research Reactor (BGRR) facility, which is currently undergoing decontamination and decommissioning. This report focuses on the deployment of the Canberra Industries In Situ Object Counting System (ISOCS) and assesses its data comparability to baseline methods of sampling and laboratory analysis. The battery-operated, field deployable gamma spectrometer provides traditional spectra of counts as a function of gamma energy. The spectra are then converted to radionuclide concentration by applying innovative efficiency calculations using monte carlo statistical methods and pre-defined geometry templates in the analysis software. Measurement of gamma emitting radionuclides has been accomplished during characterization of several BGRR components including the Pile Fan Sump, Above Ground Ducts, contaminated cooling fans, and graphite pile internals. Cs-137 is the predominant gamma-emitting radionuclide identified, with smaller quantities of Co-60 and Am-241 detected. The Project used the Multi-Agency Radiation Survey and Site Investigation Manual guidance and the Data Quality Objectives process to provide direction for survey planning and data quality assessment. Analytical results have been used to calculate data quality indicators (DQI) for the ISOCS measurements. Among the DQIs assessed in the report are sensitivity, accuracy, precision, bias, and minimum detectable concentration. The assessment of the in situ data quality using the DQIs demonstrates that the ISOCS data quality can be comparable to definitive level laboratory analysis when the field instrument is supported by an appropriate Quality Assurance Project Plan. A discussion of the results obtained by ISOCS analysis of

  14. Active site diversification of P450cam with indole generates catalysts for benzylic oxidation reactions

    PubMed Central

    Herter, Susanne; Kranz, David C; Turner, Nicholas J

    2015-01-01

    Summary Cytochrome P450 monooxygenases are useful biocatalysts for C–H activation, and there is a need to expand the range of these enzymes beyond what is naturally available. A panel of 93 variants of active self-sufficient P450cam[Tyr96Phe]-RhFRed fusion enzymes with a broad diversity in active site amino acids was developed by screening a large mutant library of 16,500 clones using a simple, highly sensitive colony-based colorimetric screen against indole. These mutants showed distinct fingerprints of activity not only when screened in oxidations of substituted indoles but also for unrelated oxidations such as benzylic hydroxylations. PMID:26664590

  15. Active site diversification of P450cam with indole generates catalysts for benzylic oxidation reactions.

    PubMed

    Kelly, Paul P; Eichler, Anja; Herter, Susanne; Kranz, David C; Turner, Nicholas J; Flitsch, Sabine L

    2015-01-01

    Cytochrome P450 monooxygenases are useful biocatalysts for C-H activation, and there is a need to expand the range of these enzymes beyond what is naturally available. A panel of 93 variants of active self-sufficient P450cam[Tyr96Phe]-RhFRed fusion enzymes with a broad diversity in active site amino acids was developed by screening a large mutant library of 16,500 clones using a simple, highly sensitive colony-based colorimetric screen against indole. These mutants showed distinct fingerprints of activity not only when screened in oxidations of substituted indoles but also for unrelated oxidations such as benzylic hydroxylations.

  16. Active site diversification of P450cam with indole generates catalysts for benzylic oxidation reactions.

    PubMed

    Kelly, Paul P; Eichler, Anja; Herter, Susanne; Kranz, David C; Turner, Nicholas J; Flitsch, Sabine L

    2015-01-01

    Cytochrome P450 monooxygenases are useful biocatalysts for C-H activation, and there is a need to expand the range of these enzymes beyond what is naturally available. A panel of 93 variants of active self-sufficient P450cam[Tyr96Phe]-RhFRed fusion enzymes with a broad diversity in active site amino acids was developed by screening a large mutant library of 16,500 clones using a simple, highly sensitive colony-based colorimetric screen against indole. These mutants showed distinct fingerprints of activity not only when screened in oxidations of substituted indoles but also for unrelated oxidations such as benzylic hydroxylations. PMID:26664590

  17. Molecular dioxygen enters the active site of 12/15-lipoxygenase via dynamic oxygen access channels.

    PubMed

    Saam, Jan; Ivanov, Igor; Walther, Matthias; Holzhütter, Hermann-Georg; Kuhn, Hartmut

    2007-08-14

    Cells contain numerous enzymes that use molecular oxygen for their reactions. Often, their active sites are buried deeply inside the protein, which raises the question whether there are specific access channels guiding oxygen to the site of catalysis. Choosing 12/15-lipoxygenase as a typical example for such oxygen-dependent enzymes, we determined the oxygen distribution within the protein and defined potential routes for oxygen access. For this purpose, we have applied an integrated strategy of structural modeling, molecular dynamics simulations, site-directed mutagenesis, and kinetic measurements. First, we computed the 3D free-energy distribution for oxygen, which led to identification of four oxygen channels in the protein. All channels connect the protein surface with a region of high oxygen affinity at the active site. This region is localized opposite to the nonheme iron providing a structural explanation for the reaction specificity of this lipoxygenase isoform. The catalytically most relevant path can be obstructed by L367F exchange, which leads to a strongly increased Michaelis constant for oxygen. The blocking mechanism is explained in detail by reordering the hydrogen-bonding network of water molecules. Our results provide strong evidence that the main route for oxygen access to the active site of the enzyme follows a channel formed by transiently interconnected cavities whereby the opening and closure are governed by side chain dynamics. PMID:17675410

  18. CO Oxidation on Au/TiO2: Condition-Dependent Active Sites and Mechanistic Pathways.

    PubMed

    Wang, Yang-Gang; Cantu, David C; Lee, Mal-Soon; Li, Jun; Glezakou, Vassiliki-Alexandra; Rousseau, Roger

    2016-08-24

    We present results of ab initio electronic structure and molecular dynamics simulations (AIMD), as well as a microkinetic model of CO oxidation catalyzed by TiO2 supported Au nanocatalysts. A coverage-dependent microkinetic analysis, based on energetics obtained with density functional methods, shows that the dominant kinetic pathway, activated oxygen species, and catalytic active sites are all strongly depended on both temperature and oxygen partial pressure. Under oxidizing conditions and T < 400 K, the prevalent pathway involves a dynamic single atom catalytic mechanism. This reaction is catalyzed by a transient Au-CO species that migrates from the Au-cluster onto a surface oxygen adatom. It subsequently reacts with the TiO2 support via a Mars van Krevelen mechanism to form CO2 and finally the Au atom reintegrates back into the gold cluster to complete the catalytic cycle. At 300 ≤ T ≤ 600 K, oxygen-bound single Oad-Au(+)-CO sites and the perimeter Au-sites of the nanoparticle work in tandem to optimally catalyze the reaction. Above 600 K, a variety of alternate pathways associated with both single-atom and the perimeter sites of the Au nanoparticle are found to be active. Under low oxygen pressures, Oad-Au(+)-CO species can be a source of catalyst deactivation and the dominant pathway involves only Au-perimeter sites. A detailed comparison of the current model and the existing literature resolves many apparent inconsistencies in the mechanistic interpretations. PMID:27480512

  19. A unique DNase activity shares the active site with ATPase activity of the RecA/Rad51 homologue (Pk-REC) from a hyperthermophilic archaeon.

    PubMed

    Rashid, N; Morikawa, M; Kanaya, S; Atomi, H; Imanaka, T

    1999-02-19

    A RecA/Rad51 homologue from Pyrococcus kodakaraensis KOD1 (Pk-REC) is the smallest protein among various RecA/Rad51 homologues. Nevertheless, Pk-Rec is a super multifunctional protein and shows a deoxyribonuclease activity. This deoxyribonuclease activity was inhibited by 3 mM or more ATP, suggesting that the catalytic centers of the ATPase and deoxyribonuclease activities are overlapped. To examine whether these two enzymatic activities share the same active site, a number of site-directed mutations were introduced into Pk-REC and the ATPase and deoxyribonuclease activities of the mutant proteins were determined. The mutant enzyme in which double mutations Lys-33 to Ala and Thr-34 to Ala were introduced, fully lost both of these activities, indicating that Lys-33 and/or Thr-34 are important for both ATPase and deoxyribonuclease activities. The mutation of Asp-112 to Ala slightly and almost equally reduced both ATPase and deoxyribonuclease activities. In addition, the mutation of Glu-54 to Gln did not seriously affect the ATPase, deoxyribonuclease, and UV tolerant activities. These results strongly suggest that the active sites of the ATPase and deoxyribonuclease activities of Pk-REC are common. It is noted that unlike Glu-96 in Escherichia coli RecA, which has been proposed to be a catalytic residue for the ATPase activity, the corresponding residual Glu-54 in Pk-REC is not involved in the catalytic function of the protein.

  20. Docking and molecular dynamics studies at trypanothione reductase and glutathione reductase active sites.

    PubMed

    Iribarne, Federico; Paulino, Margot; Aguilera, Sara; Murphy, Miguel; Tapia, Orlando

    2002-05-01

    A theoretical docking study on the active sites of trypanothione reductase (TR) and glutathione reductase (GR) with the corresponding natural substrates, trypanothione disulfide (T[S]2) and glutathione disulfide (GSSG), is reported. Molecular dynamics simulations were carried out in order to check the robustness of the docking results. The energetic results are in agreement with previous experimental findings and show the crossed complexes have lower stabilization energies than the natural ones. To test DOCK3.5, four nitro furanic compounds, previously designed as potentially active anti-chagasic molecules, were docked at the GR and TR active sites with the DOCK3.5 procedure. A good correlation was found between differential inhibitory activity and relative interaction energy (affinity). The results provide a validation test for the use of DOCK3.5 in connection with the design of anti-chagasic drugs.

  1. Active sites and mechanisms for direct oxidation of benzene to phenol over carbon catalysts.

    PubMed

    Wen, Guodong; Wu, Shuchang; Li, Bo; Dai, Chunli; Su, Dang Sheng

    2015-03-23

    The direct oxidation of benzene to phenol with H2 O2 as the oxidizer, which is regarded as an environmentally friendly process, can be efficiently catalyzed by carbon catalysts. However, the detailed roles of carbon catalysts, especially what is the active site, are still a topic of debate controversy. Herein, we present a fundamental consideration of possible mechanisms for this oxidation reaction by using small molecular model catalysts, Raman spectra, static secondary ion mass spectroscopy (SIMS), DFT calculations, quasi in situ ATR-IR and UV spectra. Our study indicates that the defects, being favorable for the formation of active oxygen species, are the active sites for this oxidation reaction. Furthermore, one type of active defect, namely the armchair configuration defect was successfully identified.

  2. Sphingosine-1-phosphate receptor 1 reporter mice reveal receptor activation sites in vivo

    PubMed Central

    Kono, Mari; Tucker, Ana E.; Tran, Jennifer; Bergner, Jennifer B.; Turner, Ewa M.; Proia, Richard L.

    2014-01-01

    Activation of the GPCR sphingosine-1-phosphate receptor 1 (S1P1) by sphingosine-1-phosphate (S1P) regulates key physiological processes. S1P1 activation also has been implicated in pathologic processes, including autoimmunity and inflammation; however, the in vivo sites of S1P1 activation under normal and disease conditions are unclear. Here, we describe the development of a mouse model that allows in vivo evaluation of S1P1 activation. These mice, known as S1P1 GFP signaling mice, produce a S1P1 fusion protein containing a transcription factor linked by a protease cleavage site at the C terminus as well as a β-arrestin/protease fusion protein. Activated S1P1 recruits the β-arrestin/protease, resulting in the release of the transcription factor, which stimulates the expression of a GFP reporter gene. Under normal conditions, S1P1 was activated in endothelial cells of lymphoid tissues and in cells in the marginal zone of the spleen, while administration of an S1P1 agonist promoted S1P1 activation in endothelial cells and hepatocytes. In S1P1 GFP signaling mice, LPS-mediated systemic inflammation activated S1P1 in endothelial cells and hepatocytes via hematopoietically derived S1P. These data demonstrate that S1P1 GFP signaling mice can be used to evaluate S1P1 activation and S1P1-active compounds in vivo. Furthermore, this strategy could be potentially applied to any GPCR to identify sites of receptor activation during normal physiology and disease. PMID:24667638

  3. A three-dimensional model of mammalian tyrosinase active site accounting for loss of function mutations.

    PubMed

    Schweikardt, Thorsten; Olivares, Concepción; Solano, Francisco; Jaenicke, Elmar; García-Borrón, José Carlos; Decker, Heinz

    2007-10-01

    Tyrosinases are the first and rate-limiting enzymes in the synthesis of melanin pigments responsible for colouring hair, skin and eyes. Mutation of tyrosinases often decreases melanin production resulting in albinism, but the effects are not always understood at the molecular level. Homology modelling of mouse tyrosinase based on recently published crystal structures of non-mammalian tyrosinases provides an active site model accounting for loss-of-function mutations. According to the model, the copper-binding histidines are located in a helix bundle comprising four densely packed helices. A loop containing residues M374, S375 and V377 connects the CuA and CuB centres, with the peptide oxygens of M374 and V377 serving as hydrogen acceptors for the NH-groups of the imidazole rings of the copper-binding His367 and His180. Therefore, this loop is essential for the stability of the active site architecture. A double substitution (374)MS(375) --> (374)GG(375) or a single M374G mutation lead to a local perturbation of the protein matrix at the active site affecting the orientation of the H367 side chain, that may be unable to bind CuB reliably, resulting in loss of activity. The model also accounts for loss of function in two naturally occurring albino mutations, S380P and V393F. The hydroxyl group in S380 contributes to the correct orientation of M374, and the substitution of V393 for a bulkier phenylalanine sterically impedes correct side chain packing at the active site. Therefore, our model explains the mechanistic necessity for conservation of not only active site histidines but also adjacent amino acids in tyrosinase. PMID:17850513

  4. Dynamics of an Active-Site Flap Contributes to Catalysis in a JAMM Family Metallo Deubiquitinase.

    PubMed

    Bueno, Amy N; Shrestha, Rashmi K; Ronau, Judith A; Babar, Aditya; Sheedlo, Michael J; Fuchs, Julian E; Paul, Lake N; Das, Chittaranjan

    2015-10-01

    The endosome-associated deubiquitinase (DUB) AMSH is a member of the JAMM family of zinc-dependent metallo isopeptidases with high selectivity for Lys63-linked polyubiquitin chains, which play a key role in endosomal-lysosomal sorting of activated cell surface receptors. The catalytic domain of the enzyme features a flexible flap near the active site that opens and closes during its catalytic cycle. Structural analysis of its homologues, AMSH-LP (AMSH-like protein) and the fission yeast counterpart, Sst2, suggests that a conserved Phe residue in the flap may be critical for substrate binding and/or catalysis. To gain insight into the contribution of this flap in substrate recognition and catalysis, we generated mutants of Sst2 and characterized them using a combination of enzyme kinetics, X-ray crystallography, molecular dynamics simulations, and isothermal titration calorimetry (ITC). Our analysis shows that the Phe residue in the flap contributes key interactions during the rate-limiting step but not to substrate binding, since mutants of Phe403 exhibit a defect only in kcat but not in KM. Moreover, ITC studies show Phe403 mutants have similar KD for ubiquitin compared to the wild-type enzyme. The X-ray structures of both Phe403Ala and the Phe403Trp, in both the free and ubiquitin bound form, reveal no appreciable structural change that might impair substrate or alter product binding. We observed that the side chain of the Trp residue is oriented identically with respect to the isopeptide moiety of the substrate as the Phe residue in the wild-type enzyme, so the loss of activity seen in this mutant cannot be explained by the absence of a group with the ability to provide van der Waals interactions that facilitate the hyrdolysis of the Lys63-linked diubiquitin. Molecular dynamics simulations indicate that the flap in the Trp mutant is quite flexible, allowing almost free rotation of the indole side chain. Therefore, it is possible that these different dynamic

  5. Calorimetric studies of the interactions of metalloenzyme active site mimetics with zinc-binding inhibitors.

    PubMed

    Robinson, Sophia G; Burns, Philip T; Miceli, Amanda M; Grice, Kyle A; Karver, Caitlin E; Jin, Lihua

    2016-07-19

    The binding of drugs to metalloenzymes is an intricate process that involves several interactions, including binding of the drug to the enzyme active site metal, as well as multiple interactions between the drug and the enzyme residues. In order to determine the free energy contribution of Zn(2+) binding by known metalloenzyme inhibitors without the other interactions, valid active site zinc structural mimetics must be formed and binding studies need to be performed in biologically relevant conditions. The potential of each of five ligands to form a structural mimetic with Zn(2+) was investigated in buffer using Isothermal Titration Calorimetry (ITC). All five ligands formed strong 1 : 1 (ligand : Zn(2+)) binary complexes. The complexes were used in further ITC experiments to study their interaction with 8-hydroxyquinoline (8-HQ) and/or acetohydroxamic acid (AHA), two bidentate anionic zinc-chelating enzyme inhibitors. It was found that tetradentate ligands were not suitable for creating zinc structural mimetics for inhibitor binding in solution due to insufficient coordination sites remaining on Zn(2+). A stable binary complex, [Zn(BPA)](2+), which was formed by a tridentate ligand, bis(2-pyridylmethyl)amine (BPA), was found to bind one AHA in buffer or a methanol : buffer mixture (60 : 40 by volume) at pH 7.25 or one 8-HQ in the methanol : buffer mixture at pH 6.80, making it an effective structural mimetic for the active site of zinc metalloenzymes. These results are consistent with the observation that metalloenzyme active site zinc ions have three residues coordinated to them, leaving one or two sites open for inhibitors to bind. Our findings indicate that Zn(BPA)X2 can be used as an active site structural mimetic for zinc metalloenzymes for estimating the free energy contribution of zinc binding to the overall inhibitor active site interactions. Such use will help aid in the rational design of inhibitors to a variety of zinc metalloenzymes

  6. Protein engineering of alcohol dehydrogenase--1. Effects of two amino acid changes in the active site of yeast ADH-1.

    PubMed

    Murali, C; Creaser, E H

    1986-01-01

    One of the promises held out by protein engineering is the ability to alter predictably the properties of an enzyme to enable it to find new substrates or catalyse existing substrates more efficiently, such manipulations being of interest both enzymologically and, potentially, industrially. It has been postulated that in yeast alcohol dehydrogenase (YADH-1) certain amino acids such as Trp 93 and Thr 48 constrict the active site due to their bulky side chains and thus impede catalysis of molecules larger than ethanol. To study effects of enlarging the active site we have made two changes into YADH-1, replacing Trp 93 with Phe and Thr 48 with Ser. Kinetic experiments showed that this enzyme had marked increases in reaction velocity for the n-alcohols propanol, butanol, pentanol, hexanol, heptanol, octanol and cinnamyl alcohol compared to the parent, agreeing with the prediction that expanding the active site should facilitate the oxidation of larger alcohols. The substrate affinities were slightly reduced in the altered enzyme, possibly due to its having reduced hydrophobicity at Phe 93.

  7. Ligand uptake in Mycobacterium tuberculosis truncated hemoglobins is controlled by both internal tunnels and active site water molecules

    PubMed Central

    Davidge, Kelly S; Singh, Sandip; Bowman, Lesley AH; Tinajero-Trejo, Mariana; Carballal, Sebastián; Radi, Rafael; Poole, Robert K; Dikshit, Kanak; Estrin, Dario A; Marti, Marcelo A; Boechi, Leonardo

    2015-01-01

    Mycobacterium tuberculosis, the causative agent of human tuberculosis, has two proteins belonging to the truncated hemoglobin (trHb) family. Mt-trHbN presents well-defined internal hydrophobic tunnels that allow O 2 and •NO to migrate easily from the solvent to the active site, whereas Mt-trHbO possesses tunnels that are partially blocked by a few bulky residues, particularly a tryptophan at position G8. Differential ligand migration rates allow Mt-trHbN to detoxify •NO, a crucial step for pathogen survival once under attack by the immune system, much more efficiently than Mt-trHbO. In order to investigate the differences between these proteins, we performed experimental kinetic measurements, •NO decomposition, as well as molecular dynamics simulations of the wild type Mt-trHbN and two mutants, VG8F and VG8W. These mutations introduce modifications in both tunnel topologies and affect the incoming ligand capacity to displace retained water molecules at the active site. We found that a single mutation allows Mt-trHbN to acquire ligand migration rates comparable to those observed for Mt-trHbO, confirming that ligand migration is regulated by the internal tunnel architecture as well as by water molecules stabilized in the active site. PMID:26478812

  8. Ligand uptake in Mycobacterium tuberculosis truncated hemoglobins is controlled by both internal tunnels and active site water molecules.

    PubMed

    Boron, Ignacio; Bustamante, Juan Pablo; Davidge, Kelly S; Singh, Sandip; Bowman, Lesley Ah; Tinajero-Trejo, Mariana; Carballal, Sebastián; Radi, Rafael; Poole, Robert K; Dikshit, Kanak; Estrin, Dario A; Marti, Marcelo A; Boechi, Leonardo

    2015-01-01

    Mycobacterium tuberculosis, the causative agent of human tuberculosis, has two proteins belonging to the truncated hemoglobin (trHb) family. Mt-trHbN presents well-defined internal hydrophobic tunnels that allow O 2 and (•)NO to migrate easily from the solvent to the active site, whereas Mt-trHbO possesses tunnels that are partially blocked by a few bulky residues, particularly a tryptophan at position G8. Differential ligand migration rates allow Mt-trHbN to detoxify (•)NO, a crucial step for pathogen survival once under attack by the immune system, much more efficiently than Mt-trHbO. In order to investigate the differences between these proteins, we performed experimental kinetic measurements, (•)NO decomposition, as well as molecular dynamics simulations of the wild type Mt-trHbN and two mutants, VG8F and VG8W. These mutations introduce modifications in both tunnel topologies and affect the incoming ligand capacity to displace retained water molecules at the active site. We found that a single mutation allows Mt-trHbN to acquire ligand migration rates comparable to those observed for Mt-trHbO, confirming that ligand migration is regulated by the internal tunnel architecture as well as by water molecules stabilized in the active site.

  9. The controlled relay of multiple protons required at the active site of nitrogenase.

    PubMed

    Dance, Ian

    2012-07-01

    The enzyme nitrogenase, when reducing natural and unnatural substrates, requires large numbers of protons per chemical catalytic cycle. The active face of the catalytic site (the FeMo-cofactor, FeMo-co) is situated in a protein domain which is largely hydrophobic and anhydrous, and incapable of serial provision of multiple protons. Through detailed analysis of the high quality protein crystal structures available the characteristics of a chain of water molecules leading from the protein surface to a key sulfur atom (S3B) of FeMo-co are described. The first half of the water chain from the surface inwards is branched, slightly variable, and able to accommodate exogenous small molecules: this is dubbed the proton bay. The second half, from the proton bay to S3B, is comprised of a single chain of eight hydrogen bonded water molecules. This section is strictly conserved, and is intimately involved in hydrogen bonds with homocitrate, an essential component that chelates Mo. This is the proton wire, and a detailed Grotthuss mechanism for serial translocation of protons through this proton wire to S3B is proposed. This controlled serial proton relay from the protein surface to S3B is an essential component of the intramolecular hydrogenation paradigm for the complete chemical mechanisms of nitrogenase. Each proton reaching S3B, instigated by electron transfer to FeMo-co, becomes a hydrogen atom that migrates to other components of the active face of FeMo-co and to bound substrates and intermediates, allowing subsequent multiple proton transfers along the proton wire. Experiments to test the proposed mechanism of proton supply are suggested. The water chain in nitrogenase is comparable with the purported proton pumping pathway of cytochrome c oxidase.

  10. Identification of active sites in gold-catalyzed hydrogenation of acrolein.

    PubMed

    Mohr, Christian; Hofmeister, Herbert; Radnik, Jörg; Claus, Peter

    2003-02-19

    The active sites of supported gold catalysts, favoring the adsorption of C=O groups of acrolein and subsequent reaction to allyl alcohol, have been identified as edges of gold nanoparticles. After our recent finding that this reaction preferentially occurs on single crystalline particles rather than multiply twinned ones, this paper reports on a new approach to distinguish different features of the gold particle morphology. Elucidation of the active site issue cannot be simply done by varying the size of gold particles, since the effects of faceting and multiply twinned particles may interfere. Therefore, modification of the gold particle surface by indium has been used to vary the active site characteristics of a suitable catalyst, and a selective decoration of gold particle faces has been observed, leaving edges free. This is in contradiction to theoretical predictions, suggesting a preferred occupation of the low-coordinated edges of the gold particles. On the bimetallic catalyst, the desired allyl alcohol is the main product (selectivity 63%; temperature 593 K, total pressure p(total) = 2 MPa). From the experimentally proven correlation between surface structure and catalytic behavior, the edges of single crystalline gold particles have been identified as active sites for the preferred C=O hydrogenation. PMID:12580618

  11. Evidence for surface Ag + complexes as the SERS-active sites on Ag electrodes

    NASA Astrophysics Data System (ADS)

    Watanabe, T.; Kawanami, O.; Honda, K.; Pettinger, B.

    1983-12-01

    Evidence is given that SERS-active sites at Ag electrodes are associated with Ag + ions, forming sparingly soluble surface complexes with ligands such as pyridine molecules and halide ions. Such surface Ag + complexes contribute a factor of >800 to the overall (10 7-fold) enhancement, possibly via a resonance Raman effect.

  12. Strategies and Activities for Using Local Communities as Environmental Education Sites.

    ERIC Educational Resources Information Center

    Roth, Charles E.; Lockwood, Linda G.

    Presented are over 100 environmental education activities which use the local community for a learning site and resource. These lessons are grouped under seven topical headings: (1) biological neighbors, (2) physical environs, (3) built environs, (4) social environs, (5) understanding ourselves, (6) influencing change, and (7) improvement and…

  13. 78 FR 18576 - Agency Information Collection Activities; Comment Request; Experimental Sites Data Collection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... Agency Information Collection Activities; Comment Request; Experimental Sites Data Collection Instrument... information collection requirements and provide the requested data in the desired format. ED is soliciting... collection instrument will be used to collect specific information/performance data for analysis of...

  14. Penicillin Use in Meningococcal Disease Management: Active Bacterial Core Surveillance Sites, 2009

    PubMed Central

    Blain, Amy E.; Mandal, Sema; Wu, Henry; MacNeil, Jessica R.; Harrison, Lee H.; Farley, Monica M.; Lynfield, Ruth; Miller, Lisa; Nichols, Megin; Petit, Sue; Reingold, Arthur; Schaffner, William; Thomas, Ann; Zansky, Shelley M.; Anderson, Raydel; Harcourt, Brian H.; Mayer, Leonard W.; Clark, Thomas A.; Cohn, Amanda C.

    2016-01-01

    In 2009, in the Active Bacterial Core surveillance sites, penicillin was not commonly used to treat meningococcal disease. This is likely because of inconsistent availability of antimicrobial susceptibility testing and ease of use of third-generation cephalosporins. Consideration of current practices may inform future meningococcal disease management guidelines. PMID:27704009

  15. The Thumbs Up Ecology Curriculum: A Fun Group of School Site Activities for Sixth Graders.

    ERIC Educational Resources Information Center

    Smith, John; And Others

    This guide is a collection of "fun" school site activities for sixth graders. Some of the topics covered are: animals, trees, energy and lifestyle, land use and you, energy conservation, and car-pooling. Each section offers both introductory information about the topic as well as questions to ponder such as what, so what, now what, and another way…

  16. 78 FR 33908 - Commercial Wind Lease Issuance and Site Assessment Activities on the Atlantic Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... identified Wind Energy Area (WEA) on the OCS offshore Rhode Island (RI) and Massachusetts (MA). The revised... Bureau of Ocean Energy Management Commercial Wind Lease Issuance and Site Assessment Activities on the.... BOEM may issue one or more commercial wind energy leases in the WEA. The competitive lease process...

  17. 77 FR 3460 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-24

    ... published a final rule under 10 CFR Part 765 in the Federal Register on May 23, 1994, (59 FR 26714) to carry... for reimbursement. DOE amended the final rule on June 3, 2003, (68 FR 32955) to adopt several... Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites AGENCY: Department...

  18. 75 FR 71677 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... published a final rule under 10 CFR Part 765 in the Federal Register on May 23, 1994, (59 FR 26714) to carry... for reimbursement. DOE amended the final rule on June 3, 2003, (68 FR 32955) to adopt several... Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites AGENCY: Department...

  19. Archaeological Activity Report: Post-Review Discoveries Within 45BN431 at Solid Waste Site 128-F-2

    SciTech Connect

    T. E. Marceau; J. J. Sharpe

    2006-12-21

    During monitoring of remedial activities at Solid Waste Site 128-F-2 on August 19, 2005, a concentration of mussel shell was discovered in the west wall of a trench in the northen section of the waste site.

  20. Comparative Plutonium-239 Dose Assessment for Three Desert Sites: Maralinga, Australia; Palomares, Spain; and the Nevada Test Site, USA - Before and After Remedial Action

    SciTech Connect

    Church, B W; Shinn, J; Williams, G A; Martin, L J; O'Brien, R S; Adams, S R

    2000-07-14

    As a result of nuclear weapons testing and accidents, plutonium has been distributed into the environment. The areas close to the sites of these tests and accidental dispersions contain plutonium deposition of such a magnitude that health authorities and responsible officials have mandated that the contaminated areas be protected, generally through isolation or removal of the contaminated areas. In recent years remedial actions have taken place at all these sites. For reasons not entirely clear, the public perceives radiation exposure risk to be much greater than the evidence would suggest [1]. This perception seems to be particularly true for plutonium, which has often been ''demonized'' in various publications as the ''most hazardous substance known to man'' [2]. As the position statement adapted by the Health Physics Society explains, ''Plutonium's demonization is an example of how the public has been misled about radiation's environmental and health threats generally, and in cases like plutonium, how it has developed a warped ''risk perception'' that does not reflect reality'' [3]. As a result of this risk perception and ongoing debate surrounding environmental plutonium contamination, remedial action criteria are difficult to establish. By examining the data available before and after remedial actions taken at the three sites discussed in our report, we hope to present data that will illustrate that plutonium measured as aged deposition (older than several months) does not present as high a dose or risk as many had expected. The authors show that even though dose to the lung from inhalation (the primary pathway for the high-fired plutonium oxide particles present at these sites) is reduced, such a reduction is achieved at significant cost. The cost comes from damage to the environment, large expenditures per hectare rehabilitated, and the risk to occupational workers. This paper specifically examines sites that are similar in many ways. These sites were chosen

  1. Comparative study of surface-active properties and antimicrobial activities of disaccharide monoesters.

    PubMed

    Zhang, Xi; Song, Fei; Taxipalati, Maierhaba; Wei, Wei; Feng, Fengqin

    2014-01-01

    The objective of this research was to determine the effect of sugar or fatty acid in sugar ester compounds on the surface-active properties and antimicrobial activities of these compounds. Disaccharides of medium-chain fatty acid monoesters were synthesized through transesterifications by immobilized lipase (Lipozyme TLIM) to yield nine monoesters for subsequent study. Their antimicrobial activities were investigated using three pathogenic microorganisms: Staphylococcus aureus, Escherichia coli O157:H7 and Candida albicans. Their surface-active properties including air-water surface tension, critical micelle concentration, and foaming and emulsion power and stability were also studied. The results showed that all of the tested monoesters were more effective against Staphylococcus aureus (Gram-positive bacterium) than against Escherichia coli O157:H7 (Gram-negative bacterium). The results demonstrated that the carbon chain length was the most important factor influencing the surface properties, whereas degree of esterification and hydrophilic groups showed little effect.

  2. Comparative Study of Surface-Active Properties and Antimicrobial Activities of Disaccharide Monoesters

    PubMed Central

    Zhang, Xi; Song, Fei; Taxipalati, Maierhaba; Wei, Wei; Feng, Fengqin

    2014-01-01

    The objective of this research was to determine the effect of sugar or fatty acid in sugar ester compounds on the surface-active properties and antimicrobial activities of these compounds. Disaccharides of medium-chain fatty acid monoesters were synthesized through transesterifications by immobilized lipase (Lipozyme TLIM) to yield nine monoesters for subsequent study. Their antimicrobial activities were investigated using three pathogenic microorganisms: Staphylococcus aureus, Escherichia coli O157:H7 and Candida albicans. Their surface-active properties including air–water surface tension, critical micelle concentration, and foaming and emulsion power and stability were also studied. The results showed that all of the tested monoesters were more effective against Staphylococcus aureus (Gram-positive bacterium) than against Escherichia coli O157:H7 (Gram-negative bacterium). The results demonstrated that the carbon chain length was the most important factor influencing the surface properties, whereas degree of esterification and hydrophilic groups showed little effect. PMID:25531369

  3. Spectroscopic studies of single and double variants of M ferritin: lack of conversion of a biferrous substrate site into a cofactor site for O2 activation.

    PubMed

    Kwak, Yeonju; Schwartz, Jennifer K; Haldar, Suranjana; Behera, Rabindra K; Tosha, Takehiko; Theil, Elizabeth C; Solomon, Edward I

    2014-01-28

    Ferritin has a binuclear non-heme iron active site that functions to oxidize iron as a substrate for formation of an iron mineral core. Other enzymes of this class have tightly bound diiron cofactor sites that activate O2 to react with substrate. Ferritin has an active site ligand set with 1-His/4-carboxylate/1-Gln rather than the 2-His/4-carboxylate set of the cofactor site. This ligand variation has been thought to make a major contribution to this biferrous substrate rather than cofactor site reactivity. However, the Q137E/D140H double variant of M ferritin, has a ligand set that is equivalent to most of the diiron cofactor sites, yet did not rapidly react with O2 or generate the peroxy intermediate observed in the cofactor sites. Therefore, in this study, a combined spectroscopic methodology of circular dichroism (CD)/magnetic CD (MCD)/variable temperature, variable field (VTVH) MCD has been applied to evaluate the factors required for the rapid O2 activation observed in cofactor sites. This methodology defines the coordination environment of each iron and the bridging ligation of the biferrous active sites in the double and corresponding single variants of frog M ferritin. Based on spectral changes, the D140H single variant has the new His ligand binding, and the Q137E variant has the new carboxylate forming a μ-1,3 bridge. The spectra for the Q137E/D140H double variant, which has the cofactor ligand set, however, reflects a site that is more coordinately saturated than the cofactor sites in other enzymes including ribonucleotide reductase, indicating the presence of additional water ligation. Correlation of this double variant and the cofactor sites to their O2 reactivities indicates that electrostatic and steric changes in the active site and, in particular, the hydrophobic nature of a cofactor site associated with its second sphere protein environment, make important contributions to the activation of O2 by the binuclear non-heme iron enzymes.

  4. Structure of Arabidopsis thaliana 5-methylthioribose Kinase Reveals a More Occluded Active Site Than its Bacterial Homolog

    SciTech Connect

    Ku,S.; Cornell, K.; Howell, P.

    2007-01-01

    Metabolic variations exist between the methionine salvage pathway of humans and a number of plants and microbial pathogens. 5-Methylthioribose (MTR) kinase is a key enzyme required for methionine salvage in plants and many bacteria. The absence of a mammalian homolog suggests that MTR kinase is a good target for the design of specific herbicides or antibiotics. The structure of Arabidopsis thaliana MTR kinase co-crystallized with ATP?S and MTR has been determined at 1.9 Angstroms resolution. The structure is similar to B. subtilis MTR kinase and has the same protein kinase fold observed in other evolutionarily related protein kinase-like phosphotransferases. The active site is comparable between the two enzymes with the DXE-motif coordinating the nucleotide-Mg, the D238 of the HGD catalytic loop polarizing the MTR O1 oxygen, and the RR-motif interacting with the substrate MTR. Unlike its bacterial homolog, however, the Gly-rich loop (G-loop) of A. thaliana MTR kinase has an extended conformation, which shields most of the active site from solvent, a feature that resembles eukaryotic protein kinases more than the bacterial enzyme. The G- and W-loops of A. thaliana and B. subtilis MTR kinase adopt different conformations despite high sequence similarity. The ATP?S analog was hydrolyzed during the co-crystallization procedure, resulting in ADP in the active site. This suggests that the A. thaliana enzyme, like its bacterial homolog, may have significant ATPase activity in the absence of MTR. The structure of A. thaliana MTR kinase provides a template for structure-based design of agrochemicals, particularly herbicides whose effectiveness could be regulated by nutrient levels. Features of the MTR binding site offer an opportunity for a simple organic salt of an MTR analog to specifically inhibit MTR kinase.

  5. Characterization of the active site properties of CYP4F12.

    PubMed

    Eksterowicz, John; Rock, Dan A; Rock, Brooke M; Wienkers, Larry C; Foti, Robert S

    2014-10-01

    Cytochrome P450 4F12 is a drug-metabolizing enzyme that is primarily expressed in the liver, kidney, colon, small intestine, and heart. The properties of CYP4F12 that may impart an increased catalytic selectivity (decreased promiscuity) were explored through in vitro metabolite elucidation, kinetic isotope effect experiments, and computational modeling of the CYP4F12 active site. By using astemizole as a probe substrate for CYP4F12 and CYP3A4, it was observed that although CYP4F12 favored astemizole O-demethylation as the primary route of metabolism, CYP3A4 was capable of metabolizing astemizole at multiple sites on the molecule. Deuteration of astemizole at the site of O-demethylation resulted in an isotope effect of 7.1 as well as an 8.3-fold decrease in the rate of clearance for astemizole by CYP4F12. Conversely, although an isotope effect of 3.8 was observed for the formation of the O-desmethyl metabolite when deuterated astemizole was metabolized by CYP3A4, there was no decrease in the clearance of astemizole. Development of a homology model of CYP4F12 based on the crystal structure of cytochrome P450 BM3 predicted an active site volume for CYP4F12 that was approximately 76% of the active site volume of CYP3A4. As predicted, multiple favorable binding orientations were available for astemizole docked into the active site of CYP3A4, but only a single binding orientation with the site of O-demethylation oriented toward the heme was identified for CYP4F12. Overall, it appears that although CYP4F12 may be capable of binding similar ligands to other cytochrome P450 enzymes such as CYP3A4, the ability to achieve catalytically favorable orientations may be inherently more difficult because of the increased steric constraints of the CYP4F12 active site. PMID:25074871

  6. A modular treatment of molecular traffic through the active site of cholinesterase

    PubMed Central

    Botti, SA; Felder, CE; Lifson, S; Sussman, JL; Silman, I

    1999-01-01

    We present a model for the molecular traffic of ligands, substrates, and products through the active site of cholinesterases (ChEs). First, we describe a common treatment of the diffusion to a buried active site of cationic and neutral species. We then explain the specificity of ChEs for cationic ligands and substrates by introducing two additional components to this common treatment. The first module is a surface trap for cationic species at the entrance to the active-site gorge that operates through local, short-range electrostatic interactions and is independent of ionic strength. The second module is an ionic-strength-dependent steering mechanism generated by long-range electrostatic interactions arising from the overall distribution of charges in ChEs. Our calculations show that diffusion of charged ligands relative to neutral isosteric analogs is enhanced approximately 10-fold by the surface trap, while electrostatic steering contributes only a 1.5- to 2-fold rate enhancement at physiological salt concentration. We model clearance of cationic products from the active-site gorge as analogous to the escape of a particle from a one-dimensional well in the presence of a linear electrostatic potential. We evaluate the potential inside the gorge and provide evidence that while contributing to the steering of cationic species toward the active site, it does not appreciably retard their clearance. This optimal fine-tuning of global and local electrostatic interactions endows ChEs with maximum catalytic efficiency and specificity for a positively charged substrate, while at the same time not hindering clearance of the positively charged products. PMID:10545346

  7. Characterization and sequencing of the active site of 1-aminocyclopropane-1-carboxylate synthase

    SciTech Connect

    Yip, Wing-Kin; Dong, Jian-Guo; Yang, S.F. ); Kenny, J.W.; Thompson, G.A. )

    1990-10-01

    The pyridoxal phosphate (PLP)-dependent 1-aminocyclopropane-1-carboxylic acid (ACC) synthase the key enzyme in ethylene biosynthesis, is inactivated by its substrate S-adenosylmethionine (AdoMet). Apple ACC synthase was purified with an immunoaffinity gel, and its active site was probed with NaB{sup 3}H{sub 4} or Ado({sup 14}C)Met. Peptide sequencing of both {sup 3}H- and {sup 14}C-labeled peptides revealed a common dodecapeptide of Ser-Leu-Ser-Xaa-Asp-Leu-Gly-Leu-Pro-Gly-Phe-Arg, where Xaa was the modified, radioactive residue in each case. Acid hydrolysis of the {sup 3}H-labeled enzyme released radioactive N-pyridoxyllysine, indicating that the active-site peptide contained lysine at position 4. Mass spectrometry of the {sup 14}C-labeled peptide indicated a protonated molecular ion at m/z 1390.6, from which the mass of Xaa was calculated to be 229, a number that is equivalent to the mass of a lysine residue alkylated by the 2-aminobutyrate portion of AdoMet, as we previously proposed. These results indicate that the same active-site lysine binds the PLP and convalently links to the 2-aminobutyrate portion of AdoMet during inactivation. The active site of tomato ACC synthase was probed in the same manner with Ado ({sup 14}C)Met. Sequencing of the tomato active-site peptide revealed two highly conserved dodecapeptides; the minor peptide possessed a sequence identical to that of the apple enzyme, whereas the major peptide differed from the minor peptide in that methionine replaced leucine at position 6.

  8. Methyl Acetate Synthesis by Esterification on the Modified Ferrierite: Correlation of Acid Sites Measured by Pyridine IR and NH3-TPD for Steady-State Activity.

    PubMed

    Park, Jae Hyun; Pang, Changhyun; Chung, Chan-Hwa; Bae, Jong Wook

    2016-05-01

    The amounts of Brønsted acid sites on K, P, and Zr-modified microporous Ferrierite zeolite were investigated through pyridine FT-IR and NH3-TPD analyses. P-modified Ferrierite showed a superior catalytic activity for methyl acetate synthesis by esterification of methanol and acetic acid. The catalytic activity at steady-state with the acidic properties of as-prepared catalysts was well correlated with the results of pyridine FT-IR (intensity ratio of Brønsted acid sites to total acid sites) compared with that of NH3-TPD. The results can suggest the proper and simple method to estimate the esterification activity at steady-state using the measured acid sites on the as-prepared zeolites. PMID:27483801

  9. Threshold occupancy and specific cation binding modes in the hammerhead ribozyme active site are required for active conformation

    PubMed Central

    Lee, Tai-Sung; Giambaşu, George M.; Sosa, Carlos P.; Martick, Monika; Scott, William G.; York, Darrin M.

    2009-01-01

    The relationship between formation of active in-line attack conformations and monovalent (Na+) and divalent (Mg2+) metal ion binding in the hammerhead ribozyme has been explored with molecular dynamics simulations. To stabilize repulsions between negatively charged groups, different requirements of threshold occupancy of metal ions were observed in the reactant and activated precursor states both in the presence or absence of a Mg2+ in the active site. Specific bridging coordination patterns of the ions are correlated with the formation of active in-line attack conformations and can be accommodated in both cases. Furthermore, simulation results suggest that the hammerhead ribozyme folds to form an electronegative recruiting pocket that attracts high local concentrations of positive charge. The present simulations help to reconcile experiments that probe the metal ion sensitivity of hammerhead ribozyme catalysis and support the supposition that Mg2+, in addition to stabilizing active conformations, plays a specific chemical role in catalysis. PMID:19265710

  10. Locomotor activity influences muscle architecture and bone growth but not muscle attachment site morphology

    PubMed Central

    Rabey, Karyne N.; Green, David J.; Taylor, Andrea B.; Begun, David R.; Richmond, Brian G.; McFarlin, Shannon C.

    2014-01-01

    The ability to make behavioural inferences from skeletal remains is critical to understanding the lifestyles and activities of past human populations and extinct animals. Muscle attachment site (enthesis) morphology has long been assumed to reflect muscle strength and activity during life, but little experimental evidence exists to directly link activity patterns with muscle development and the morphology of their attachments to the skeleton. We used a mouse model to experimentally test how the level and type of activity influences forelimb muscle architecture of spinodeltoideus, acromiodeltoideus, and superficial pectoralis, bone growth rate and gross morphology of their insertion sites. Over an 11-week period, we collected data on activity levels in one control group and two experimental activity groups (running, climbing) of female wild-type mice. Our results show that both activity type and level increased bone growth rates influenced muscle architecture, including differences in potential muscular excursion (fibre length) and potential force production (physiological cross-sectional area). However, despite significant influences on muscle architecture and bone development, activity had no observable effect on enthesis morphology. These results suggest that the gross morphology of entheses is less reliable than internal bone structure for making inferences about an individual’s past behaviour. PMID:25467113

  11. Roles of s3 site residues of nattokinase on its activity and substrate specificity.

    PubMed

    Wu, Shuming; Feng, Chi; Zhong, Jin; Huan, Liandong

    2007-09-01

    Nattokinase (Subtilisin NAT, NK) is a bacterial serine protease with high fibrinolytic activity. To probe their roles on protease activity and substrate specificity, three residues of S3 site (Gly(100), Ser(101) and Leu(126)) were mutated by site-directed mutagenesis. Kinetics parameters of 20 mutants were measured using tetrapeptides as substrates, and their fibrinolytic activities were determined by fibrin plate method. Results of mutation analysis showed that Gly(100) and Ser(101) had reverse steric and electrostatic effects. Residues with bulky or positively charged side chains at position 100 decreased the substrate binding and catalytic activity drastically, while residues with the same characters at position 101 could obviously enhance protease and fibrinolytic activity of NK. Mutation of Leu(126) might impair the structure of the active cleft and drastically decreased the activity of NK. Kinetics studies of the mutants showed that S3 residues were crucial to keep protease activity while they moderately affected substrate specificity of NK. The present study provided some original insight into the P3-S3 interaction in NK and other subtilisins, as well as showed successful protein engineering cases to improve NK as a potential therapeutic agent.

  12. Asymmetry of the active site loop conformation between subunits of glutamate-1-semialdehyde aminomutase in solution.

    PubMed

    Campanini, Barbara; Bettati, Stefano; di Salvo, Martino Luigi; Mozzarelli, Andrea; Contestabile, Roberto

    2013-01-01

    Glutamate-1-semialdehyde aminomutase (GSAM) is a dimeric, pyridoxal 5'-phosphate (PLP)- dependent enzyme catalysing in plants and some bacteria the isomerization of L-glutamate-1-semialdehyde to 5-aminolevulinate, a common precursor of chlorophyll, haem, coenzyme B12, and other tetrapyrrolic compounds. During the catalytic cycle, the coenzyme undergoes conversion from pyridoxamine 5'-phosphate (PMP) to PLP. The entrance of the catalytic site is protected by a loop that is believed to switch from an open to a closed conformation during catalysis. Crystallographic studies indicated that the structure of the mobile loop is related to the form of the cofactor bound to the active site, allowing for asymmetry within the dimer. Since no information on structural and functional asymmetry of the enzyme in solution is available in the literature, we investigated the active site accessibility by determining the cofactor fluorescence quenching of PMP- and PLP-GSAM forms. PLP-GSAM is partially quenched by potassium iodide, suggesting that at least one catalytic site is accessible to the anionic quencher and therefore confirming the asymmetry observed in the crystal structure. Iodide induces release of the cofactor from PMP-GSAM, apparently from only one catalytic site, therefore suggesting an asymmetry also in this form of the enzyme in solution, in contrast with the crystallographic data.

  13. Comparative informatics analysis to evaluate site-specific protein oxidation in multidimensional LC-MS/MS data.

    PubMed

    McClintock, Carlee S; Parks, Jerry M; Bern, Marshall; Ghattyvenkatakrishna, Pavan K; Hettich, Robert L

    2013-07-01

    Redox proteomics has yielded molecular insight into diseases of protein dysfunction attributable to oxidative stress, underscoring the need for robust detection of protein oxidation products. Additionally, oxidative protein surface mapping techniques utilize hydroxyl radicals to gain structural insight about solvent exposure. Interpretation of tandem mass spectral data is a critical challenge for such investigations, because reactive oxygen species target a wide breadth of amino acids. Additionally, oxidized peptides may be generated in a wide range of abundances since the reactivity of hydroxyl radicals with different amino acids spans 3 orders of magnitude. Taken together, these attributes of oxidative footprinting pose both experimental and computational challenges to detecting oxidized peptides that are naturally less abundant than their unoxidized counterparts. In this study, model proteins were oxidized electrochemically and analyzed at both the intact protein and peptide levels. A multidimensional chromatographic strategy was utilized to expand the dynamic range of oxidized peptide measurements. Peptide mass spectral data were searched by the "hybrid" software packages Inspect and Byonic, which incorporate de novo elements of spectral interpretation into a database search. This dynamic search capacity accommodates the challenge of searching for more than 40 oxidative mass shifts that can occur in a staggering variety of possible combinatorial occurrences. A prevailing set of oxidized residues was identified with this comparative approach, and evaluation of these sites was informed by solvent accessible surface area gleaned through molecular dynamics simulations. Along with increased levels of oxidation around highly reactive "hotspot" sites as expected, the enhanced sensitivity of these measurements uncovered a surprising level of oxidation on less reactive residues.

  14. Comparative Informatics Analysis to Evaluate Site-Specific Protein Oxidation in Multidimensional LC-MS/MS Data

    SciTech Connect

    McClintock, Carlee; Parks, Jerry M; Bern, Marshall; Ghattyvenkatakrishna, Pavan K; Hettich, Robert {Bob} L

    2013-01-01

    Redox proteomics has yielded molecular insight into diseases of protein dysfunction attributable to oxidative stress, underscoring the need for robust detection of protein oxidation products. Additionally, oxidative protein surface mapping techniques utilize hydroxyl radicals to gain structural insight about solvent exposure. Interpretation of tandem mass spectral data is a critical challenge for such investigations, because reactive oxygen species target a wide breadth of amino acids. Additionally, oxidized peptides may be generated in a wide range of abundances since the reactivity of hydroxyl radicals with different amino acids spans three orders of magnitude. Taken together, these attributes of oxidative footprinting pose both experimental and computational challenges to detecting oxidized peptides that are naturally less abundant than their unoxidized counterparts. In this study, three model proteins were oxidized electrochemically and analyzed at both the intact protein and peptide levels. A multidimensional chromatographic strategy was utilized to expand the dynamic range of oxidized peptides measurements. Peptide mass spectral data were searched by the hybrid software packages Inspect and Byonic, which incorporate de novo elements of spectral interpretation into a database search. This dynamic search capacity accommodates the challenge of searching for more than forty oxidative mass shifts that can occur in a staggering variety of possible combinatorial occurrences. A prevailing set of oxidized residues was identified with this comparative approach, and evaluation of these sites was informed by solvent accessible surface area gleaned through molecular dynamics simulations. Along with increased levels of oxidation around highly reactive hotspot sites as expected, the enhanced sensitivity of these measurements uncovered a surprising level of oxidation on less reactive residues.

  15. Sequences flanking the core-binding site modulate glucocorticoid receptor structure and activity

    PubMed Central

    Schöne, Stefanie; Jurk, Marcel; Helabad, Mahdi Bagherpoor; Dror, Iris; Lebars, Isabelle; Kieffer, Bruno; Imhof, Petra; Rohs, Remo; Vingron, Martin; Thomas-Chollier, Morgane; Meijsing, Sebastiaan H.

    2016-01-01

    The glucocorticoid receptor (GR) binds as a homodimer to genomic response elements, which have particular sequence and shape characteristics. Here we show that the nucleotides directly flanking the core-binding site, differ depending on the strength of GR-dependent activation of nearby genes. Our study indicates that these flanking nucleotides change the three-dimensional structure of the DNA-binding site, the DNA-binding domain of GR and the quaternary structure of the dimeric complex. Functional studies in a defined genomic context show that sequence-induced changes in GR activity cannot be explained by differences in GR occupancy. Rather, mutating the dimerization interface mitigates DNA-induced changes in both activity and structure, arguing for a role of DNA-induced structural changes in modulating GR activity. Together, our study shows that DNA sequence identity of genomic binding sites modulates GR activity downstream of binding, which may play a role in achieving regulatory specificity towards individual target genes. PMID:27581526

  16. Alkyl isocyanates as active site-directed inactivators of guinea pig liver transglutaminase.

    PubMed

    Gross, M; Whetzel, N K; Folk, J E

    1975-10-10

    Alkyl isocyanates are effective inactivators of guinea pig liver transglutaminase. Based on the specificity of the reaction the protection against inactivation by glutamine substrate, and the essential nature of calcium for the inactivation reaction, it is concluded that these reagents act as amide substrate analogs and, thus function in an active site-specific manner. Support for the contention that inactivation results from alkyl thiocarbamate ester formation through the single active site sulfhydryl group of the enzyme is (a) the loss of one free--SH group and the incorporation of 1 mol of reagent/mol of enzyme in the reaction, (b) similarity in chemical properties of the inactive enzyme derivative formed to those previously reported for another alkyl thiocarbamoylenzyme and an alkyl thiocarbamoylcysteine derivative, and (c) the finding that labeled peptides from digests of [methyl-14C]thiocarbamoyltransglutaminase and those from digests of iodoacetamide-inactivated enzyme occupy similar positions on peptide maps. Transglutaminase was found to be inactivated neither by urethan anlogs of its active ester substrates nor by urea analogs of its amide substrates. It is concluded on the basis of these findings that inactive carbamoylenzyme derivatives are formed only by direct addition of the transglutaminase active--SH group to the isocyanate C--N double bond, and not, like several serine active site enzymes, by nucleophilic displacement with urethan analogs of substrate, or by nucleophilic displacement with urea analogs of substrate. PMID:240837

  17. Sequences flanking the core-binding site modulate glucocorticoid receptor structure and activity.

    PubMed

    Schöne, Stefanie; Jurk, Marcel; Helabad, Mahdi Bagherpoor; Dror, Iris; Lebars, Isabelle; Kieffer, Bruno; Imhof, Petra; Rohs, Remo; Vingron, Martin; Thomas-Chollier, Morgane; Meijsing, Sebastiaan H

    2016-01-01

    The glucocorticoid receptor (GR) binds as a homodimer to genomic response elements, which have particular sequence and shape characteristics. Here we show that the nucleotides directly flanking the core-binding site, differ depending on the strength of GR-dependent activation of nearby genes. Our study indicates that these flanking nucleotides change the three-dimensional structure of the DNA-binding site, the DNA-binding domain of GR and the quaternary structure of the dimeric complex. Functional studies in a defined genomic context show that sequence-induced changes in GR activity cannot be explained by differences in GR occupancy. Rather, mutating the dimerization interface mitigates DNA-induced changes in both activity and structure, arguing for a role of DNA-induced structural changes in modulating GR activity. Together, our study shows that DNA sequence identity of genomic binding sites modulates GR activity downstream of binding, which may play a role in achieving regulatory specificity towards individual target genes. PMID:27581526

  18. Alternative poly(A) site utilization during adenovirus infection coincides with a decrease in the activity of a poly(A) site processing factor.

    PubMed Central

    Mann, K P; Weiss, E A; Nevins, J R

    1993-01-01

    The recognition and processing of a pre-mRNA to create a poly(A) addition site, a necessary step in mRNA biogenesis, can also be a regulatory event in instances in which the frequency of use of a poly(A) site varies. One such case is found during the course of an adenovirus infection. Five poly(A) sites are utilized within the major late transcription unit to produce more than 20 distinct mRNAs during the late phase of infection. The proximal half of the major late transcription unit is also expressed during the early phase of a viral infection. During this early phase of expression, the L1 poly(A) site is used three times more frequently than the L3 poly(A) site. In contrast, the L3 site is used three times more frequently than the L1 site during the late phase of infection. Recent experiments have suggested that the recognition of the poly(A) site GU-rich downstream element by the CF1 processing factor may be a rate-determining step in poly(A) site selection. We demonstrate that the interaction of CF1 with the L1 poly(A) site is less stable than the interaction of CF1 with the L3 poly(A) site. We also find that there is a substantial decrease in the level of CF1 activity when an adenovirus infection proceeds to the late phase. We suggest that this reduction in CF1 activity, coupled with the relative instability of the interaction with the L1 poly(A) site, contributes to the reduced use of the L1 poly(A) site during the late stage of an adenovirus infection. Images PMID:8384308

  19. Fibromodulin Interacts with Collagen Cross-linking Sites and Activates Lysyl Oxidase*

    PubMed Central

    Bihan, Dominique; Bonna, Arkadiusz; Rubin, Kristofer; Farndale, Richard W.

    2016-01-01

    The hallmark of fibrotic disorders is a highly cross-linked and dense collagen matrix, a property driven by the oxidative action of lysyl oxidase. Other fibrosis-associated proteins also contribute to the final collagen matrix properties, one of which is fibromodulin. Its interactions with collagen affect collagen cross-linking, packing, and fibril diameter. We investigated the possibility that a specific relationship exists between fibromodulin and lysyl oxidase, potentially imparting a specific collagen matrix phenotype. We mapped the fibromodulin-collagen interaction sites using the collagen II and III Toolkit peptide libraries. Fibromodulin interacted with the peptides containing the known collagen cross-linking sites and the MMP-1 cleavage site in collagens I and II. Interestingly, the interaction sites are closely aligned within the quarter-staggered collagen fibril, suggesting a multivalent interaction between fibromodulin and several collagen helices. Furthermore, we detected an interaction between fibromodulin and lysyl oxidase (a major collagen cross-linking enzyme) and mapped the interaction site to 12 N-terminal amino acids on fibromodulin. This interaction also increases the activity of lysyl oxidase. Together, the data suggest a fibromodulin-modulated collagen cross-linking mechanism where fibromodulin binds to a specific part of the collagen domain and also forms a complex with lysyl oxidase, targeting the enzyme toward specific cross-linking sites. PMID:26893379

  20. Fibromodulin Interacts with Collagen Cross-linking Sites and Activates Lysyl Oxidase.

    PubMed

    Kalamajski, Sebastian; Bihan, Dominique; Bonna, Arkadiusz; Rubin, Kristofer; Farndale, Richard W

    2016-04-01

    The hallmark of fibrotic disorders is a highly cross-linked and dense collagen matrix, a property driven by the oxidative action of lysyl oxidase. Other fibrosis-associated proteins also contribute to the final collagen matrix properties, one of which is fibromodulin. Its interactions with collagen affect collagen cross-linking, packing, and fibril diameter. We investigated the possibility that a specific relationship exists between fibromodulin and lysyl oxidase, potentially imparting a specific collagen matrix phenotype. We mapped the fibromodulin-collagen interaction sites using the collagen II and III Toolkit peptide libraries. Fibromodulin interacted with the peptides containing the known collagen cross-linking sites and the MMP-1 cleavage site in collagens I and II. Interestingly, the interaction sites are closely aligned within the quarter-staggered collagen fibril, suggesting a multivalent interaction between fibromodulin and several collagen helices. Furthermore, we detected an interaction between fibromodulin and lysyl oxidase (a major collagen cross-linking enzyme) and mapped the interaction site to 12 N-terminal amino acids on fibromodulin. This interaction also increases the activity of lysyl oxidase. Together, the data suggest a fibromodulin-modulated collagen cross-linking mechanism where fibromodulin binds to a specific part of the collagen domain and also forms a complex with lysyl oxidase, targeting the enzyme toward specific cross-linking sites.

  1. Communication: Active space decomposition with multiple sites: Density matrix renormalization group algorithm

    SciTech Connect

    Parker, Shane M.; Shiozaki, Toru

    2014-12-07

    We extend the active space decomposition method, recently developed by us, to more than two active sites using the density matrix renormalization group algorithm. The fragment wave functions are described by complete or restricted active-space wave functions. Numerical results are shown on a benzene pentamer and a perylene diimide trimer. It is found that the truncation errors in our method decrease almost exponentially with respect to the number of renormalization states M, allowing for numerically exact calculations (to a few μE{sub h} or less) with M = 128 in both cases. This rapid convergence is because the renormalization steps are used only for the interfragment electron correlation.

  2. A Frontier Molecular Orbital determination of the active sites on dispersed metal catalysts

    SciTech Connect

    Augustine, R.L.; Lahanas, K.M.

    1992-11-01

    An angular overlap calculation has been used to determine the s, p and d orbital energy levels of the different types of surface sites present on a dispersed metal catalysts. The basis for these calculations is the reported finding that a large number of catalyzed reactions take place on single atom active sites on the metal surface. Thus, these sites can be considered as surface complexes made up of the central active atom surrounded by near-neighbor metal atom ``ligands`` with localized surface orbitals perturbed only by these ``ligands``. These ``complexes`` are based on a twelve coordinate species with the ``ligands`` attached to the t{sub 2g} orbitals and the coordinate axes coincident with the direction of the e{sub g} orbitals on the central atom. These data can permit a Frontier Molecular Orbital treatment of specific site activities as long as the surface orbital availability for overlap with adsorbed substrates is considered along with its energy value and symmetry.

  3. A Frontier Molecular Orbital determination of the active sites on dispersed metal catalysts

    SciTech Connect

    Augustine, R.L.; Lahanas, K.M.

    1992-01-01

    An angular overlap calculation has been used to determine the s, p and d orbital energy levels of the different types of surface sites present on a dispersed metal catalysts. The basis for these calculations is the reported finding that a large number of catalyzed reactions take place on single atom active sites on the metal surface. Thus, these sites can be considered as surface complexes made up of the central active atom surrounded by near-neighbor metal atom ligands'' with localized surface orbitals perturbed only by these ligands''. These complexes'' are based on a twelve coordinate species with the ligands'' attached to the t{sub 2g} orbitals and the coordinate axes coincident with the direction of the e{sub g} orbitals on the central atom. These data can permit a Frontier Molecular Orbital treatment of specific site activities as long as the surface orbital availability for overlap with adsorbed substrates is considered along with its energy value and symmetry.

  4. Mapping Topoisomerase IV Binding and Activity Sites on the E. coli Genome

    PubMed Central

    Lebailly, Elise; Pages, Carine; Cornet, Francois; Cosentino Lagomarsino, Marco

    2016-01-01

    Catenation links between sister chromatids are formed progressively during DNA replication and are involved in the establishment of sister chromatid cohesion. Topo IV is a bacterial type II topoisomerase involved in the removal of catenation links both behind replication forks and after replication during the final separation of sister chromosomes. We have investigated the global DNA-binding and catalytic activity of Topo IV in E. coli using genomic and molecular biology approaches. ChIP-seq revealed that Topo IV interaction with the E. coli chromosome is controlled by DNA replication. During replication, Topo IV has access to most of the genome but only selects a few hundred specific sites for its activity. Local chromatin and gene expression context influence site selection. Moreover strong DNA-binding and catalytic activities are found at the chromosome dimer resolution site, dif, located opposite the origin of replication. We reveal a physical and functional interaction between Topo IV and the XerCD recombinases acting at the dif site. This interaction is modulated by MatP, a protein involved in the organization of the Ter macrodomain. These results show that Topo IV, XerCD/dif and MatP are part of a network dedicated to the final step of chromosome management during the cell cycle. PMID:27171414

  5. Evidence for Oxygen Binding at the Active Site of Particulate Methane Monooxygenase

    PubMed Central

    Culpepper, Megen A.; Cutsail, George E.; Hoffman, Brian M.; Rosenzweig, Amy C.

    2012-01-01

    Particulate methane monooxygenase (pMMO) is an integral membrane metalloenzyme that converts methane to methanol in methanotrophic bacteria. The enzyme consists of three subunits, pmoB, pmoA, and pmoC, organized in an α3β3γ3 trimer. Studies of intact pMMO and a recombinant soluble fragment of the pmoB subunit, denoted spmoB, indicate that the active site is located within the soluble region of pmoB at the site of a crystallographically modeled dicopper center. In this work, we have investigated the reactivity of pMMO and spmoB with oxidants. Upon reduction and treatment of spmoB with O2 and H2O2 or pMMO with H2O2, an absorbance feature at 345 nm is generated. The energy and intensity of this band are similar to that of the μ-η2:η2-peroxo CuII 2 species formed in several dicopper enzymes and model compounds. The feature is not observed in inactive spmoB variants in which the dicopper center is disrupted, consistent with O2 binding to the proposed active site. Reaction of the 345 nm species with CH4 results in disappearance of the spectroscopic feature, suggesting that this O2 intermediate is mechanistically relevant. Taken together, these observations provide strong new support for the identity and location of the pMMO active site. PMID:22540911

  6. Activation of human 5-hydroxytryptamine type 3 receptors via an allosteric transmembrane site.

    PubMed

    Lansdell, Stuart J; Sathyaprakash, Chaitra; Doward, Anne; Millar, Neil S

    2015-01-01

    In common with other members of the Cys-loop family of pentameric ligand-gated ion channels, 5-hydroxytryptamine type 3 receptors (5-HT3Rs) are activated by the binding of a neurotransmitter to an extracellular orthosteric site, located at the interface of two adjacent receptor subunits. In addition, a variety of compounds have been identified that modulate agonist-evoked responses of 5-HT3Rs, and other Cys-loop receptors, by binding to distinct allosteric sites. In this study, we examined the pharmacological effects of a group of monoterpene compounds on recombinant 5-HT3Rs expressed in Xenopus oocytes. Two phenolic monoterpenes (carvacrol and thymol) display allosteric agonist activity on human homomeric 5-HT3ARs (64 ± 7% and 80 ± 4% of the maximum response evoked by the endogenous orthosteric agonist 5-HT, respectively). In addition, at lower concentrations, where agonist effects are less apparent, carvacrol and thymol act as potentiators of responses evoked by submaximal concentrations of 5-HT. By contrast, carvacrol and thymol have no agonist or potentiating activity on the closely related mouse 5-HT3ARs. Using subunit chimeras containing regions of the human and mouse 5-HT3A subunits, and by use of site-directed mutagenesis, we have identified transmembrane amino acids that either abolish the agonist activity of carvacrol and thymol on human 5-HT3ARs or are able to confer this property on mouse 5-HT3ARs. By contrast, these mutations have no significant effect on orthosteric activation of 5-HT3ARs by 5-HT. We conclude that 5-HT3ARs can be activated by the binding of ligands to an allosteric transmembrane site, a conclusion that is supported by computer docking studies. PMID:25338672

  7. Final Report - Independent Verification Survey Activities at the Seperations Process Research Unit Sites, Niskayuna, New York

    SciTech Connect

    Evan Harpenau

    2011-03-15

    The Separations Process Research Unit (SPRU) complex located on the Knolls Atomic Power Laboratory (KAPL) site in Niskayuna, New York, was constructed in the late 1940s to research the chemical separation of plutonium and uranium (Figure A-1). SPRU operated as a laboratory scale research facility between February 1950 and October 1953. The research activities ceased following the successful development of the reduction oxidation and plutonium/uranium extraction processes. The oxidation and extraction processes were subsequently developed for large scale use by the Hanford and Savannah River sites (aRc 2008a). Decommissioning of the SPRU facilities began in October 1953 and continued through the 1990s.

  8. Technical basis for classification of low-activity waste fraction from Hanford site tanks

    SciTech Connect

    Petersen, C.A.

    1996-09-20

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level waste, for disposal is a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  9. Technical basis for classification of low-activity waste fraction from Hanford site tanks

    SciTech Connect

    Petersen, C.A., Westinghouse Hanford

    1996-07-17

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level wastes, for disposal in a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  10. Controlling activation site density by low-energy far-field stimulation in cardiac tissue.

    PubMed

    Hörning, Marcel; Takagi, Seiji; Yoshikawa, Kenichi

    2012-06-01

    Tachycardia and fibrillation are potentially fatal arrhythmias associated with the formation of rotating spiral waves in the heart. Presently, the termination of these types of arrhythmia is achieved by use of antitachycardia pacing or cardioversion. However, these techniques have serious drawbacks, in that they either have limited application or produce undesirable side effects. Low-energy far-field stimulation has recently been proposed as a superior therapy. This proposed therapeutic method would exploit the phenomenon in which the application of low-energy far-field shocks induces a large number of activation sites ("virtual electrodes") in tissue. It has been found that the formation of such sites can lead to the termination of undesired states in the heart and the restoration of normal beating. In this study we investigate a particular aspect of this method. Here we seek to determine how the activation site density depends on the applied electric field through in vitro experiments carried out on neonatal rat cardiac tissue cultures. The results indicate that the activation site density increases exponentially as a function of the intracellular conductivity and the level of cell isotropy. Additionally, we report numerical results obtained from bidomain simulations of the Beeler-Reuter model that are quantitatively consistent with our experimental results. Also, we derive an intuitive analytical framework that describes the activation site density and provides useful information for determining the ratio of longitudinal to transverse conductivity in a cardiac tissue culture. The results obtained here should be useful in the development of an actual therapeutic method based on low-energy far-field pacing. In addition, they provide a deeper understanding of the intrinsic properties of cardiac cells.

  11. Probing Oxygen Activation Sites in Two Flavoprotein Oxidases Using Chloride as an Oxygen Surrogate

    SciTech Connect

    Kommoju, Phaneeswara-Rao; Chen, Zhi-wei; Bruckner, Robert C.; Mathews, F. Scott; Jorns, Marilyn Schuman

    2011-08-16

    A single basic residue above the si-face of the flavin ring is the site of oxygen activation in glucose oxidase (GOX) (His516) and monomeric sarcosine oxidase (MSOX) (Lys265). Crystal structures of both flavoenzymes exhibit a small pocket at the oxygen activation site that might provide a preorganized binding site for superoxide anion, an obligatory intermediate in the two-electron reduction of oxygen. Chloride binds at these polar oxygen activation sites, as judged by solution and structural studies. First, chloride forms spectrally detectable complexes with GOX and MSOX. The protonated form of His516 is required for tight binding of chloride to oxidized GOX and for rapid reaction of reduced GOX with oxygen. Formation of a binary MSOX-chloride complex requires Lys265 and is not observed with Lys265Met. Binding of chloride to MSOX does not affect the binding of a sarcosine analogue (MTA, methylthioactetate) above the re-face of the flavin ring. Definitive evidence is provided by crystal structures determined for a binary MSOX-chloride complex and a ternary MSOX-chloride-MTA complex. Chloride binds in the small pocket at a position otherwise occupied by a water molecule and forms hydrogen bonds to four ligands that are arranged in approximate tetrahedral geometry: Lys265:NZ, Arg49:NH1, and two water molecules, one of which is hydrogen bonded to FAD:N5. The results show that chloride (i) acts as an oxygen surrogate, (ii) is an effective probe of polar oxygen activation sites, and (iii) provides a valuable complementary tool to the xenon gas method that is used to map nonpolar oxygen-binding cavities.

  12. Controlling activation site density by low-energy far-field stimulation in cardiac tissue

    NASA Astrophysics Data System (ADS)

    Hörning, Marcel; Takagi, Seiji; Yoshikawa, Kenichi

    2012-06-01

    Tachycardia and fibrillation are potentially fatal arrhythmias associated with the formation of rotating spiral waves in the heart. Presently, the termination of these types of arrhythmia is achieved by use of antitachycardia pacing or cardioversion. However, these techniques have serious drawbacks, in that they either have limited application or produce undesirable side effects. Low-energy far-field stimulation has recently been proposed as a superior therapy. This proposed therapeutic method would exploit the phenomenon in which the application of low-energy far-field shocks induces a large number of activation sites (“virtual electrodes”) in tissue. It has been found that the formation of such sites can lead to the termination of undesired states in the heart and the restoration of normal beating. In this study we investigate a particular aspect of this method. Here we seek to determine how the activation site density depends on the applied electric field through in vitro experiments carried out on neonatal rat cardiac tissue cultures. The results indicate that the activation site density increases exponentially as a function of the intracellular conductivity and the level of cell isotropy. Additionally, we report numerical results obtained from bidomain simulations of the Beeler-Reuter model that are quantitatively consistent with our experimental results. Also, we derive an intuitive analytical framework that describes the activation site density and provides useful information for determining the ratio of longitudinal to transverse conductivity in a cardiac tissue culture. The results obtained here should be useful in the development of an actual therapeutic method based on low-energy far-field pacing. In addition, they provide a deeper understanding of the intrinsic properties of cardiac cells.

  13. Risks to children from exposure to lead in air during remedial or removal activities at Superfund sites: a case study of the RSR lead smelter Superfund site.

    PubMed

    Khoury, Ghassan A; Diamond, Gary L

    2003-01-01

    at the downwind West Dallas community did not result in more than 5% of children exceeding the target blood lead levels. The models were also used to estimate air lead levels for short-term and long-term exposures that would not exceed specified levels of risk (risk-based concentrations, RBCs). RBCs were derived for various daily exposure durations (3 or 8 h/day) and frequencies (1-7 days/week). RBCs based on the ICRP model ranged from 0.3 (7 days/week, 8 h/day) to 4.4 microg/m(3) (1 day/week, 3 h/day) for long-term exposures and were lower than those based on the IEUBK model. For short-term exposures, the RBCs ranged from 3.5 to 29.0 microg/m(3). Recontamination of remediated residential yards from deposition of air lead emitted during remedial activities at the RSR Superfund site was also examined. The predicted increase in soil concentration due to lead deposition at the monitoring station, which represented the community at large, was 3.0 mg/kg. This potential increase in soil lead concentration was insignificant, less than 1% increase, when compared to the clean-up level of 500 mg/kg developed for residential yards at the site. PMID:12595884

  14. Impact of single-site axonal GABAergic synaptic events on cerebellar interneuron activity.

    PubMed

    de San Martin, Javier Zorrilla; Jalil, Abdelali; Trigo, Federico F

    2015-12-01

    Axonal ionotropic receptors are present in a variety of neuronal types, and their function has largely been associated with the modulation of axonal activity and synaptic release. It is usually assumed that activation of axonal GABA(A)Rs comes from spillover, but in cerebellar molecular layer interneurons (MLIs) the GABA source is different: in these cells, GABA release activates presynaptic GABA(A) autoreceptors (autoRs) together with postsynaptic targets, producing an autoR-mediated synaptic event. The frequency of presynaptic, autoR-mediated miniature currents is twice that of their somatodendritic counterparts, suggesting that autoR-mediated responses have an important effect on interneuron activity. Here, we used local Ca(2+) photolysis in MLI axons of juvenile rats to evoke GABA release from individual varicosities to study the activation of axonal autoRs in single release sites. Our data show that single-site autoR conductances are similar to postsynaptic dendritic conductances. In conditions of high [Cl(-)](i), autoR-mediated conductances range from 1 to 5 nS; this corresponds to ∼30-150 GABA(A) channels per presynaptic varicosity, a value close to the number of channels in postsynaptic densities. Voltage responses produced by the activation of autoRs in single varicosities are amplified by a Na(v)-dependent mechanism and propagate along the axon with a length constant of 91 µm. Immunolabeling determination of synapse location shows that on average, one third of the synapses produce autoR-mediated signals that are large enough to reach the axon initial segment. Finally, we show that single-site activation of presynaptic GABA(A) autoRs leads to an increase in MLI excitability and thus conveys a strong feedback signal that contributes to spiking activity.

  15. Function of the active site lysine autoacetylation in Tip60 catalysis.

    PubMed

    Yang, Chao; Wu, Jiang; Zheng, Y George

    2012-01-01

    The 60-kDa HIV-Tat interactive protein (Tip60) is a key member of the MYST family of histone acetyltransferases (HATs) that plays critical roles in multiple cellular processes. We report here that Tip60 undergoes autoacetylation at several lysine residues, including a key lysine residue (i.e. Lys-327) in the active site of the MYST domain. The mutation of K327 to arginine led to loss of both the autoacetylation activity and the cognate HAT activity. Interestingly, deacetylated Tip60 still kept a substantial degree of HAT activity. We also investigated the effect of cysteine 369 and glutamate 403 in Tip60 autoacetylation in order to understand the molecular pathway of the autoacetylation at K327. Together, we conclude that the acetylation of K327 which is located in the active site of Tip60 regulates but is not obligatory for the catalytic activity of Tip60. Since acetylation at this key residue appears to be evolutionarily conserved amongst all MYST proteins, our findings provide an interesting insight into the regulatory mechanism of MYST activities. PMID:22470428

  16. A single amino acid substitution confers high cinchonidine oxidation activity comparable with that of rabbit to monkey aldehyde oxidase 1.

    PubMed

    Fukiya, Kensuke; Itoh, Kunio; Yamaguchi, Satoshi; Kishiba, Akiko; Adachi, Mayuko; Watanabe, Nobuaki; Tanaka, Yorihisa

    2010-02-01

    Aldehyde oxidase 1 (AOX1) is a major member of the xanthine oxidase family belonging to the class of complex molybdo-flavoenzymes and plays an important role in the nucleophilic oxidation of N-heterocyclic aromatic compounds and various aldehydes. The enzyme has been well known to show remarkable species differences. Comparing the rabbit and monkey enzymes, the former showed extremely high activity toward cinchonidine and methotrexate, but the latter exhibited only marginal activities. In contrast, monkey had several times greater activity than did rabbit toward zonisamide and (+)-4-(4-cyanoanilino)-5,6-dihydro-7-hydroxy-7H-cyclopenta[d]-pyrimidine [(S)-RS-8359]. In this report, we tried to confer high cinchonidine oxidation activity comparable with that of rabbit AOX1 to monkey AOX1. The chimera proteins prepared by restriction enzyme digestion and recombination methods between monkey and rabbit AOX1s indicated that the sequences from Asn993 to Ala1088 of rabbit AOX1 are essential for the activity. The kinetic parameters were then measured using monkey AOX1 mutants prepared by site-directed mutagenesis. The monkey V1085A mutant acquired the high cinchonidine oxidation activity. Inversely, the reciprocal rabbit A1081V mutant lost the activity entirely: amino acid 1081 of rabbit AOX1 corresponding to amino acid 1085 of monkey AOX1. Thus, cinchonidine oxidation activity was drastically changed by mutation of a single residue in AOX1. However, this might be true for bulky substrates such as cinchonidine but not for small substrates. The mechanism of substrate-dependent species differences in AOX1 activity toward bulky substrates is discussed.

  17. Blunted HPA Axis Activity in Suicide Attempters Compared to those at High Risk for Suicidal Behavior.

    PubMed

    Melhem, Nadine M; Keilp, John G; Porta, Giovanna; Oquendo, Maria A; Burke, Ainsley; Stanley, Barbara; Cooper, Thomas B; Mann, J John; Brent, David A

    2016-05-01

    Studies looking at the relationship of the hypothalamic-pituitary-adrenal (HPA) axis to suicidal behavior and its risk factors, such as depression, childhood abuse, and impulsive aggression, report inconsistent results. These studies also do not always differentiate between subjects who go on to attempt suicide, suicidal subjects who never attempted suicide, and non-suicidal subjects with psychiatric disorders. In this study, we examined cortisol responses to an experimental stressor, the Trier Social Stress Test (TSST), in 208 offspring of parents with mood disorder. Offspring suicide attempters showed lower total cortisol output (β=-0.47, 95% CI (-0.83, -0.11), p=0.01) compared with offspring with suicide-related behavior (SRB) but never attempted, non-suicidal offspring, and a healthy control group. The result remained significant even after controlling for sex, age, race, ethnicity, site, socio-economic status, and hour of the day when the TSST was conducted. Suicide attempters also showed lower baseline cortisol before the TSST (β=-0.45, 95% CI (-0.74, -0.17), p=0.002). However, there were no significant differences between the groups on cortisol reactivity to stress (β=4.5, 95% CI (-12.9, 22), p=0.61). Although subjects with suicide attempt and SRB have similar clinical and psychosocial characteristics, this is the first study to differentiate them biologically on HPA axis indices. Blunted HPA axis activity may increase risk for suicide attempt among individuals with psychopathology by reducing their ability to respond adaptively to ongoing stressors. These results may help better identify subjects at high risk for suicidal behavior for targeted prevention and intervention efforts.

  18. Modelling active sites for the Beckmann rearrangement reaction in boron-containing zeolites and their interaction with probe molecules.

    PubMed

    Lezcano-González, Inés; Vidal-Moya, Alejandro; Boronat, Mercedes; Blasco, Teresa; Corma, Avelino

    2010-06-28

    Theoretical calculations and in situ solid state NMR spectroscopy have been combined to get insight on the nature of the active sites for the Beckmann rearrangement reaction in borosilicate zeolites. The interaction of a B site in zeolite Beta with a series of probe molecules (ammonia, pyridine, acetone and water) has been modelled and the (15)N and (11)B NMR isotropic chemical shift of the resulting complexes calculated and compared with experimental in situ NMR results. This approach has allowed validation of the methodology to model the adsorption on a zeolite boron site of molecules of varying basicity which are either protonated or non-protonated. The limitation is that theoretical calculations overestimate the effect of molecular adsorption through hydrogen bonds on the calculated isotropic (11)B NMR chemical shift.Theoretical and experimental results on the adsorption of acetophenone and cyclohexanone oximes on zeolite B-Beta indicate that Brønsted acid sites protonate the oximes, changing the boron coordination from trigonal to tetrahedral. Comparison of theoretical and experimental (15)N NMR chemical shifts of the adsorbed amides (acetanilide and epsilon-caprolactam) indicates that they are non-protonated, and the (11)B NMR spectra show that, as expected, boron remains in trigonal coordination with an isotropic delta(11)B(exp) which differs from the calculated value delta(11)B(calc).

  19. Modelling active sites for the Beckmann rearrangement reaction in boron-containing zeolites and their interaction with probe molecules.

    PubMed

    Lezcano-González, Inés; Vidal-Moya, Alejandro; Boronat, Mercedes; Blasco, Teresa; Corma, Avelino

    2010-06-28

    Theoretical calculations and in situ solid state NMR spectroscopy have been combined to get insight on the nature of the active sites for the Beckmann rearrangement reaction in borosilicate zeolites. The interaction of a B site in zeolite Beta with a series of probe molecules (ammonia, pyridine, acetone and water) has been modelled and the (15)N and (11)B NMR isotropic chemical shift of the resulting complexes calculated and compared with experimental in situ NMR results. This approach has allowed validation of the methodology to model the adsorption on a zeolite boron site of molecules of varying basicity which are either protonated or non-protonated. The limitation is that theoretical calculations overestimate the effect of molecular adsorption through hydrogen bonds on the calculated isotropic (11)B NMR chemical shift.Theoretical and experimental results on the adsorption of acetophenone and cyclohexanone oximes on zeolite B-Beta indicate that Brønsted acid sites protonate the oximes, changing the boron coordination from trigonal to tetrahedral. Comparison of theoretical and experimental (15)N NMR chemical shifts of the adsorbed amides (acetanilide and epsilon-caprolactam) indicates that they are non-protonated, and the (11)B NMR spectra show that, as expected, boron remains in trigonal coordination with an isotropic delta(11)B(exp) which differs from the calculated value delta(11)B(calc). PMID:20454729

  20. Comparative toxicity assessment of ozone and activated carbon treated sewage effluents using an in vivo test battery.

    PubMed

    Stalter, Daniel; Magdeburg, Axel; Oehlmann, Jörg

    2010-04-01

    Wastewater treatment plants do not eliminate micropollutants completely and are thus important point sources for these substances. Ozonation and activated carbon treatment might be beneficial for ecosystem health as these techniques provide effective barriers to organic contaminants. However, a toxicity evaluation is required to investigate toxicity reduction and to assess the potential formation of toxic oxidation byproducts during ozonation. Therefore a comparative toxicity evaluation of different treated wastewater effluents was performed on site at a half scale treatment plant equipped with an ozonation step and an activated carbon treatment step in parallel subsequent to conventional activated sludge treatment. For this purpose four invertebrate and one higher plant toxicity test were selected to assess potential biological effects on whole organisms. The reproduction test with the mudsnail Potamopyrgus antipodarum exhibited a decreased reproductive output after advanced treatment compared to conventional treatment. This indicates an effective estrogenicity removal by ozonation and activated carbon treatment and is confirmed by results of the yeast estrogen screen with a reduction of in vitro estrogenic activity by >75%. The Lumbriculus variegatus test revealed a significantly enhanced toxicity after ozonation compared to conventional treatment whereas this effect was reduced following subsequent sand filtration. When ozonation was applied, a significantly increased genotoxicity was observed, detected with the comet assay using haemolymph of the zebra mussel. Again, this effect was removed by subsequent sand filtration to the level of conventional treatment. Activated carbon treatment even resulted in a significant reduction of genotoxicity. Adverse effects after the ozone reactor are possibly a result of the formation of toxic oxidation byproducts. Biologically active sand filtration obviously is an effective barrier to such compounds.

  1. Cysteine-S-conjugate beta-lyase activity and pyridoxal phosphate binding site of onion alliin lyase.

    PubMed

    Kitamura, N; Shimomura, N; Iseki, J; Honma, M; Chiba, S; Tahara, S; Mizutani, J

    1997-08-01

    Purification of onion alliin lyase gave two fractions by cation exchange chromatography. Both fractions showed the comparable high catalytic activity of cysteine-S-conjugate beta-lyase with that of alliin lyase using S-(2-chloro-6-nitrophenyl)-L-cysteine and alliin, S-allyl-L-cysteine sulfoxide as substrates. All the active substrates tested with onion alliin lyase were also active to the cysteine-S-conjugate beta-lyase of Mucor javanicus, but the catalytic activity of the Mucor enzyme was lower for all the substrates. The pyridoxal phosphate binding site of the onion alliin lyase was identified as Lys 285 in the amino acid sequence deduced from cDNA which has been reported. This lysine was conserved in all the sequences from the alliin lyase cDNAs, while similarity was not found between the sequences around pyridoxal phosphate binding sites of both the onion alliin lyase and the Mucor cysteine-S-conjugate beta-lyase. PMID:9301115

  2. Comparing Pictorial and Video Modeling Activity Schedules during Transitions for Students with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Cihak, David F.

    2011-01-01

    This study evaluated the differential effects of two different visual schedule strategies. In the context of an alternating treatments design, static-picture schedules were compared to video based activity schedules as supports for three middle school aged students with autism. Students used the visual schedules to transition between activities in…

  3. Comparing Pictorial and Video-Modeling Activity Schedules during Transitions for Students with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Cihak, David F.; Ayres, Kevin M.

    2010-01-01

    This study evaluated the differential effects of two different visual schedule strategies. In the context of an alternating treatments design, static-picture schedules were compared to video based activity schedules as supports for three middle school aged students with autism. Students used the visual schedules to transition between activities in…

  4. Comparing Activity Patterns, Biological, and Family Factors in Children with and without Developmental Coordination Disorder

    ERIC Educational Resources Information Center

    Beutum, Monique Natalie; Cordier, Reinie; Bundy, Anita

    2013-01-01

    The association between motor proficiency and moderate to vigorous physical activity (MVPA) suggests children with developmental coordination disorder (DCD) may be susceptible to inactivity-related conditions such as cardiovascular diseases. The aim of this study was to compare children with and without DCD on physical activity patterns, activity…

  5. Favoured Free-Time: Comparing Children's Activity Preferences in the UK and the USA

    ERIC Educational Resources Information Center

    Griffiths, Merris

    2011-01-01

    This study presents a comparative study of the free-time activity preferences of 9- to 11-year-old children in the UK and USA, as drawn by them in art workshops. Six themes emerged relating to sport, outdoor play, family/peers, media, special occasions and other (indefinable) activities. The children's talk about their drawings revealed additional…

  6. Comparing Role-Playing Activities in Second Life and Face-to-Face Environments

    ERIC Educational Resources Information Center

    Gao, Fei; Noh, Jeongmin J.; Koehler, Matthew J.

    2009-01-01

    This study compared student performances in role-playing activities in both a face-to-face (FTF) environment and a virtual 3D environment, Second Life (SL). We found that students produced a similar amount of communication in the two environments, but the communication styles were different. In SL role-playing activities, students took more…

  7. Comparing Two Forms of Concept Map Critique Activities to Facilitate Knowledge Integration Processes in Evolution Education

    ERIC Educational Resources Information Center

    Schwendimann, Beat A.; Linn, Marcia C.

    2016-01-01

    Concept map activities often lack a subsequent revision step that facilitates knowledge integration. This study compares two collaborative critique activities using a Knowledge Integration Map (KIM), a form of concept map. Four classes of high school biology students (n?=?81) using an online inquiry-based learning unit on evolution were assigned…

  8. The two active sites in human branched-chain alpha-keto acid dehydrogenase operate independently without an obligatory alternating-site mechanism.

    PubMed

    Li, Jun; Machius, Mischa; Chuang, Jacinta L; Wynn, R Max; Chuang, David T

    2007-04-20

    A long standing controversy is whether an alternating activesite mechanism occurs during catalysis in thiamine diphosphate (ThDP)-dependent enzymes. We address this question by investigating the ThDP-dependent decarboxylase/dehydrogenase (E1b) component of the mitochondrial branched-chain alpha-keto acid dehydrogenase complex (BCKDC). Our crystal structure reveals that conformations of the two active sites in the human E1b heterotetramer harboring the reaction intermediate are identical. Acidic residues in the core of the E1b heterotetramer, which align with the proton-wire residues proposed to participate in active-site communication in the related pyruvate dehydrogenase from Bacillus stearothermophilus, are mutated. Enzyme kinetic data show that, except in a few cases because of protein misfolding, these alterations are largely without effect on overall activity of BCKDC, ruling out the requirement of a proton-relay mechanism in E1b. BCKDC overall activity is nullified at 50% phosphorylation of E1b, but it is restored to nearly half of the pre-phosphorylation level after dissociation and reconstitution of BCKDC with the same phosphorylated E1b. The results suggest that the abolition of overall activity likely results from the specific geometry of the half-phosphorylated E1b in the BCKDC assembly and not due to a disruption of the alternating active-site mechanism. Finally, we show that a mutant E1b containing only one functional active site exhibits half of the wild-type BCKDC activity, which directly argues against the obligatory communication between active sites. The above results provide evidence that the two active sites in the E1b heterotetramer operate independently during the ThDP-dependent decarboxylation reaction. PMID:17329260

  9. Linde FUSRAP Site Remediation: Engineering Challenges and Solutions of Remedial Activities on an Active Industrial Facility - 13506

    SciTech Connect

    Beres, Christopher M.; Fort, E. Joseph; Boyle, James D.

    2013-07-01

    The Linde FUSRAP Site (Linde) is located in Tonawanda, New York at a major research and development facility for Praxair, Inc. (Praxair). Successful remediation activities at Linde combines meeting cleanup objectives of radiological contamination while minimizing impacts to Praxair business operations. The unique use of Praxair's property coupled with an array of active and abandoned utilities poses many engineering and operational challenges; each of which has been overcome during the remedial action at Linde. The U.S. Army Corps of Engineers - Buffalo District (USACE) and CABRERA SERVICES, INC. (CABRERA) have successfully faced engineering challenges such as relocation of an aboveground structure, structural protection of an active water line, and installation of active mechanical, electrical, and communication utilities to perform remediation. As remediation nears completion, continued success of engineering challenges is critical as remaining activities exist in the vicinity of infrastructure essential to business operations; an electrical substation and duct bank providing power throughout the Praxair facility. Emphasis on engineering and operations through final remediation and into site restoration will allow for the safe and successful completion of the project. (authors)

  10. Crystallographic Analysis of Active Site Contributions to Regiospecificity in the Diiron Enzyme Toluene 4-Monooxygenase

    SciTech Connect

    Bailey, Lucas J.; Acheson, Justin F.; McCoy, Jason G.; Elsen, Nathaniel L.; Phillips, Jr., George N.; Fox, Brian G.

    2014-10-02

    Crystal structures of toluene 4-monooxygenase hydroxylase in complex with reaction products and effector protein reveal active site interactions leading to regiospecificity. Complexes with phenolic products yield an asymmetric {mu}-phenoxo-bridged diiron center and a shift of diiron ligand E231 into a hydrogen bonding position with conserved T201. In contrast, complexes with inhibitors p-NH{sub 2}-benzoate and p-Br-benzoate showed a {mu}-1,1 coordination of carboxylate oxygen between the iron atoms and only a partial shift in the position of E231. Among active site residues, F176 trapped the aromatic ring of products against a surface of the active site cavity formed by G103, E104 and A107, while F196 positioned the aromatic ring against this surface via a {pi}-stacking interaction. The proximity of G103 and F176 to the para substituent of the substrate aromatic ring and the structure of G103L T4moHD suggest how changes in regiospecificity arise from mutations at G103. Although effector protein binding produced significant shifts in the positions of residues along the outer portion of the active site (T201, N202, and Q228) and in some iron ligands (E231 and E197), surprisingly minor shifts (<1 {angstrom}) were produced in F176, F196, and other interior residues of the active site. Likewise, products bound to the diiron center in either the presence or absence of effector protein did not significantly shift the position of the interior residues, suggesting that positioning of the cognate substrates will not be strongly influenced by effector protein binding. Thus, changes in product distributions in the absence of the effector protein are proposed to arise from differences in rates of chemical steps of the reaction relative to motion of substrates within the active site channel of the uncomplexed, less efficient enzyme, while structural changes in diiron ligand geometry associated with cycling between diferrous and diferric states are discussed for their potential

  11. Progress report on decommissioning activities at the Fernald Environmental Management Project (FEMP) site

    SciTech Connect

    1998-07-01

    The Fernald Environmental Management Project (FEMP), is located about 18 miles northwest of Cincinnati, Ohio. Between 1953 and 1989, the facility, then called the Feed Material Production Center or FMPC, produced uranium metal products used in the eventual production of weapons grade material for use by other US Department of Energy (DOE) sites. In 1989, FMPC`s production was suspended by the federal government in order to focus resources on environmental restoration versus defense production. In 1992, Fluor Daniel Fernald assumed responsibility for managing all cleanup activities at the FEMP under contract to the DOE. In 1990, as part of the remediation effort, the site was divided into five operable units based on physical proximity of contaminated areas, similar amounts of types of contamination, or the potential for a similar technology to be used in cleanup activities. This report continues the outline of the decontamination and decommissioning (D and D) activities at the FEMP site Operable Unit 3 (OU3) and provides an update on the status of the decommissioning activities. OU3, the Facilities Closure and Demolition Project, involves the remediation of more than 200 uranium processing facilities. The mission of the project is to remove nuclear materials stored in these buildings, then perform the clean out of the buildings and equipment, and decontaminate and dismantle the facilities.

  12. Identification of essential histidine residues in the active site of Escherichia coli xylose (glucose) isomerase.

    PubMed

    Batt, C A; Jamieson, A C; Vandeyar, M A

    1990-01-01

    Two conserved histidine residues (His-101 and His-271) appear to be essential components in the active site of the enzyme xylose (glucose) isomerase (EC 5.3.1.5). These amino acid residues were targeted for mutagenesis on the basis of sequence homology among xylose isomerases isolated from Escherichia coli, Bacillus subtilis, Ampullariella sp. strain 3876, and Streptomyces violaceus-niger. Each residue was selectively replaced by site-directed mutagenesis and shown to be essential for activity. No measurable activity was observed for any mutations replacing either His-101 or His-271. Circular dichroism measurements revealed no significant change in the overall conformation of the mutant enzymes, and all formed dimers similar to the wild-type enzyme. Mutations at His-271 could be distinguished from those at His-101, since the former resulted in a thermolabile protein whereas no significant change in heat stability was observed for the latter. Based upon these results and structural data recently reported, we speculate that His-101 is the catalytic base mediating the reaction. Replacement of His-271 may render the enzyme thermolabile, since this residue appears to be a ligand for one of the metal ions in the active site of the enzyme. PMID:2405386

  13. Structural basis for the active site inhibition mechanism of human kidney-type glutaminase (KGA).

    PubMed

    Thangavelu, K; Chong, Qing Yun; Low, Boon Chuan; Sivaraman, J

    2014-01-01

    Glutaminase is a metabolic enzyme responsible for glutaminolysis, a process harnessed by cancer cells to feed their accelerated growth and proliferation. Among the glutaminase isoforms, human kidney-type glutaminase (KGA) is often upregulated in cancer and is thus touted as an attractive drug target. Here we report the active site inhibition mechanism of KGA through the crystal structure of the catalytic domain of KGA (cKGA) in complex with 6-diazo-5-oxo-L-norleucine (DON), a substrate analogue of glutamine. DON covalently binds with the active site Ser286 and interacts with residues such as Tyr249, Asn335, Glu381, Asn388, Tyr414, Tyr466 and Val484. The nucleophilic attack of Ser286 sidechain on DON releases the diazo group (N2) from the inhibitor and results in the formation of an enzyme-inhibitor complex. Mutational studies confirmed the key role of these residues in the activity of KGA. This study will be important in the development of KGA active site inhibitors for therapeutic interventions.

  14. Structural Basis for the Active Site Inhibition Mechanism of Human Kidney-Type Glutaminase (KGA)

    PubMed Central

    Thangavelu, K.; Chong, Qing Yun; Low, Boon Chuan; Sivaraman, J.

    2014-01-01

    Glutaminase is a metabolic enzyme responsible for glutaminolysis, a process harnessed by cancer cells to feed their accelerated growth and proliferation. Among the glutaminase isoforms, human kidney-type glutaminase (KGA) is often upregulated in cancer and is thus touted as an attractive drug target. Here we report the active site inhibition mechanism of KGA through the crystal structure of the catalytic domain of KGA (cKGA) in complex with 6-diazo-5-oxo-L-norleucine (DON), a substrate analogue of glutamine. DON covalently binds with the active site Ser286 and interacts with residues such as Tyr249, Asn335, Glu381, Asn388, Tyr414, Tyr466 and Val484. The nucleophilic attack of Ser286 sidechain on DON releases the diazo group (N2) from the inhibitor and results in the formation of an enzyme-inhibitor complex. Mutational studies confirmed the key role of these residues in the activity of KGA. This study will be important in the development of KGA active site inhibitors for therapeutic interventions. PMID:24451979

  15. Site-dependent catalytic activity of graphene oxides towards oxidative dehydrogenation of propane.

    PubMed

    Tang, Shaobin; Cao, Zexing

    2012-12-28

    Graphene oxides (GOs) may offer extraordinary potential in the design of novel catalytic systems due to the presence of various oxygen functional groups and their unique electronic and structural properties. Using first-principles calculations, we explore the plausible mechanisms for the oxidative dehydrogenation (ODH) of propane to propene by GOs and the diffusion of the surface oxygen-containing groups under an external electric field. The present results show that GOs with modified oxygen-containing groups may afford high catalytic activity for the ODH of propane to propene. The presence of hydroxyl groups around the active sites provided by epoxides can remarkably enhance the C-H bond activation of propane and the activity enhancement exhibits strong site dependence. The sites of oxygen functional groups on the GO surface can be easily tuned by the diffusion of these groups under an external electric field, which increases the reactivity of GOs towards ODH of propane. The chemically modified GOs are thus quite promising in the design of metal-free catalysis. PMID:22801590

  16. How Force Might Activate Talin's Vinculin Binding Sites: SMD Reveals a Structural Mechanism

    PubMed Central

    Hytönen, Vesa P; Vogel, Viola

    2008-01-01

    Upon cell adhesion, talin physically couples the cytoskeleton via integrins to the extracellular matrix, and subsequent vinculin recruitment is enhanced by locally applied tensile force. Since the vinculin binding (VB) sites are buried in the talin rod under equilibrium conditions, the structural mechanism of how vinculin binding to talin is force-activated remains unknown. Taken together with experimental data, a biphasic vinculin binding model, as derived from steered molecular dynamics, provides high resolution structural insights how tensile mechanical force applied to the talin rod fragment (residues 486–889 constituting helices H1–H12) might activate the VB sites. Fragmentation of the rod into three helix subbundles is prerequisite to the sequential exposure of VB helices to water. Finally, unfolding of a VB helix into a completely stretched polypeptide might inhibit further binding of vinculin. The first events in fracturing the H1–H12 rods of talin1 and talin2 in subbundles are similar. The proposed force-activated α-helix swapping mechanism by which vinculin binding sites in talin rods are exposed works distinctly different from that of other force-activated bonds, including catch bonds. PMID:18282082

  17. From single crystal surfaces to single atoms: investigating active sites in electrocatalysis.

    PubMed

    O'Mullane, Anthony P

    2014-04-21

    Electrocatalytic processes will undoubtedly be at the heart of energising future transportation and technology with the added importance of being able to create the necessary fuels required to do so in an environmentally friendly and cost effective manner. For this to be successful two almost mutually exclusive surface properties need to be reconciled, namely producing highly active/reactive surface sites that exhibit long term stability. This article reviews the various approaches which have been undertaken to study the elusive nature of these active sites on metal surfaces which are considered as adatoms or clusters of adatoms with low coordination number. This includes the pioneering studies at extended well defined stepped single crystal surfaces using cyclic voltammetry up to the highly sophisticated in situ electrochemical imaging techniques used to study chemically synthesised nanomaterials. By combining the information attained from single crystal surfaces, individual nanoparticles of defined size and shape, density functional theory calculations and new concepts such as mesoporous multimetallic thin films and single atom electrocatalysts new insights into the design and fabrication of materials with highly active but stable active sites can be achieved. The area of electrocatalysis is therefore not only a fascinating and exciting field in terms of realistic technological and economical benefits but also from the fundamental understanding that can be acquired by studying such an array of interesting materials. PMID:24599277

  18. Mechanistic and bioinformatic investigation of a conserved active site helix in α-isopropylmalate synthase from Mycobacterium tuberculosis, a member of the DRE-TIM metallolyase superfamily.

    PubMed

    Casey, Ashley K; Hicks, Michael A; Johnson, Jordyn L; Babbitt, Patricia C; Frantom, Patrick A

    2014-05-13

    The characterization of functionally diverse enzyme superfamilies provides the opportunity to identify evolutionarily conserved catalytic strategies, as well as amino acid substitutions responsible for the evolution of new functions or specificities. Isopropylmalate synthase (IPMS) belongs to the DRE-TIM metallolyase superfamily. Members of this superfamily share common active site elements, including a conserved active site helix and an HXH divalent metal binding motif, associated with stabilization of a common enolate anion intermediate. These common elements are overlaid by variations in active site architecture resulting in the evolution of a diverse set of reactions that include condensation, lyase/aldolase, and carboxyl transfer activities. Here, using IPMS, an integrated biochemical and bioinformatics approach has been utilized to investigate the catalytic role of residues on an active site helix that is conserved across the superfamily. The construction of a sequence similarity network for the DRE-TIM metallolyase superfamily allows for the biochemical results obtained with IPMS variants to be compared across superfamily members and within other condensation-catalyzing enzymes related to IPMS. A comparison of our results with previous biochemical data indicates an active site arginine residue (R80 in IPMS) is strictly required for activity across the superfamily, suggesting that it plays a key role in catalysis, most likely through enolate stabilization. In contrast, differential results obtained from substitution of the C-terminal residue of the helix (Q84 in IPMS) suggest that this residue plays a role in reaction specificity within the superfamily.

  19. Targeting Large Kinase Active Site with Rigid, Bulky Octahedral Ruthenium Complexes

    SciTech Connect

    Maksimoska, Jasna; Feng, Li; Harms, Klaus; Yi, Chunling; Kissil, Joseph; Marmorstein, Ronen; Meggers, Eric

    2009-09-02

    A strategy for targeting protein kinases with large ATP-binding sites by using bulky and rigid octahedral ruthenium complexes as structural scaffolds is presented. A highly potent and selective GSK3 and Pim1 half-sandwich complex NP309 was successfully converted into a PAK1 inhibitor by making use of the large octahedral compounds {Lambda}-FL172 and {Lambda}-FL411 in which the cyclopentadienyl moiety of NP309 is replaced by a chloride and sterically demanding diimine ligands. A 1.65 {angstrom}cocrystal structure of PAK1 with {Lambda}-FL172 reveals how the large coordination sphere of the ruthenium complex matches the size of the active site and serves as a yardstick to discriminate between otherwise closely related binding sites.

  20. Novel active comb-shaped dry electrode for EEG measurement in hairy site.

    PubMed

    Huang, Yan-Jun; Wu, Chung-Yu; Wong, Alice May-Kuen; Lin, Bor-Shyh

    2015-01-01

    Electroencephalography (EEG) is an important biopotential, and has been widely applied in clinical applications. The conventional EEG electrode with conductive gels is usually used for measuring EEG. However, the use of conductive gel also encounters with the issue of drying and hardening. Recently, many dry EEG electrodes based on different conductive materials and techniques were proposed to solve the previous issue. However, measuring EEG in the hairy site is still a difficult challenge. In this study, a novel active comb-shaped dry electrode was proposed to measure EEG in hairy site. Different form other comb-shaped or spike-shaped dry electrodes, it can provide more excellent performance of avoiding the signal attenuation, phase distortion, and the reduction of common mode rejection ratio. Even under walking motion, it can effectively acquire EEG in hairy site. Finally, the experiments for alpha rhythm and steady-state visually evoked potential were also tested to validate the proposed electrode.

  1. Structure of a Clostridium botulinum C143S thiaminase I/thiamin complex reveals active site architecture†,‡

    PubMed Central

    Sikowitz, Megan D.; Shome, Brateen; Zhang, Yang; Begley, Tadhg P.; Ealick, Steven E.

    2013-01-01

    Thiaminases are responsible for the degradation of thiamin and its metabolites. Two classes of thiaminases have been identified based on their three-dimensional structures and in their requirements for a nucleophilic second substrate. While the reactions of several thiaminases have been characterized, the physiological role of thiamin degradation is not fully understood. We have determined the three-dimensional X-ray structure of an inactive C143S mutant of Clostridium botulinum (Cb) thiaminase I with bound thiamin at 2.2 Å resolution. The C143S/thiamin complex provides atomic level details of the orientation of thiamin upon binding to Cb-thiaminase I and the identity of active site residues involved in substrate binding and catalysis. The specific roles of active site residues were probed using site directed mutagenesis and kinetic analyses, leading to a detailed mechanism for Cb-thiaminase I. The structure of Cb-thiaminase I is also compared to the functionally similar but structurally distinct thiaminase II. PMID:24079939

  2. Structure of a Clostridium botulinum C143S thiaminase I/thiamin complex reveals active site architecture .

    PubMed

    Sikowitz, Megan D; Shome, Brateen; Zhang, Yang; Begley, Tadhg P; Ealick, Steven E

    2013-11-01

    Thiaminases are responsible for the degradation of thiamin and its metabolites. Two classes of thiaminases have been identified based on their three-dimensional structures and their requirements for a nucleophilic second substrate. Although the reactions of several thiaminases have been characterized, the physiological role of thiamin degradation is not fully understood. We have determined the three-dimensional X-ray structure of an inactive C143S mutant of Clostridium botulinum (Cb) thiaminase I with bound thiamin at 2.2 Å resolution. The C143S/thiamin complex provides atomic level details of the orientation of thiamin upon binding to Cb-thiaminase I and the identity of active site residues involved in substrate binding and catalysis. The specific roles of active site residues were probed by using site directed mutagenesis and kinetic analyses, leading to a detailed mechanism for Cb-thiaminase I. The structure of Cb-thiaminase I is also compared to the functionally similar but structurally distinct thiaminase II.