Science.gov

Sample records for active site consistent

  1. Trisomy 21 consistently activates the interferon response

    PubMed Central

    Sullivan, Kelly D; Lewis, Hannah C; Hill, Amanda A; Pandey, Ahwan; Jackson, Leisa P; Cabral, Joseph M; Smith, Keith P; Liggett, L Alexander; Gomez, Eliana B; Galbraith, Matthew D; DeGregori, James; Espinosa, Joaquín M

    2016-01-01

    Although it is clear that trisomy 21 causes Down syndrome, the molecular events acting downstream of the trisomy remain ill defined. Using complementary genomics analyses, we identified the interferon pathway as the major signaling cascade consistently activated by trisomy 21 in human cells. Transcriptome analysis revealed that trisomy 21 activates the interferon transcriptional response in fibroblast and lymphoblastoid cell lines, as well as circulating monocytes and T cells. Trisomy 21 cells show increased induction of interferon-stimulated genes and decreased expression of ribosomal proteins and translation factors. An shRNA screen determined that the interferon-activated kinases JAK1 and TYK2 suppress proliferation of trisomy 21 fibroblasts, and this defect is rescued by pharmacological JAK inhibition. Therefore, we propose that interferon activation, likely via increased gene dosage of the four interferon receptors encoded on chromosome 21, contributes to many of the clinical impacts of trisomy 21, and that interferon antagonists could have therapeutic benefits. DOI: http://dx.doi.org/10.7554/eLife.16220.001 PMID:27472900

  2. Cue Consistency Associated with Physical Activity Automaticity and Behavior.

    PubMed

    Pimm, Rosemary; Vandelanotte, Corneel; Rhodes, Ryan E; Short, Camille; Duncan, Mitch J; Rebar, Amanda L

    2016-01-01

    Physical activity is partly regulated by automatic processes such as habits (ie, well-learned responses to cues), but it remains unclear what cues trigger these processes. This study examined the relations of physical activity automaticity and behavior with the consistency of people, activity, routine, location, time, and mood cues present upon initiation of physical activity behavior. Australian adults (N = 1,244, 627 female, M age = 55 years) reported their physical activity automaticity, behavior, and the degree of consistency of these cues each time they start a physical activity behavior. Multiple regression models, which accounted for gender and age, revealed that more consistent routine and mood cues were linked to more physical activity automaticity; whereas more consistent time and people cues were linked to more physical activity behavior. Interventions may more effectively translate into long-lasting physical activity habits if they draw people's attention to the salient cues of time, people, routine, and mood. PMID:25864705

  3. Full self-consistency versus quasiparticle self-consistency in diagrammatic approaches: Exactly solvable two-site Hubbard model

    SciTech Connect

    Kutepov, A. L.

    2015-07-22

    Self-consistent solutions of Hedin's equations (HE) for the two-site Hubbard model (HM) have been studied. They have been found for three-point vertices of increasing complexity (Γ = 1 (GW approximation), Γ₁ from the first-order perturbation theory, and the exact vertex ΓE). Comparison is made between the cases when an additional quasiparticle (QP) approximation for Green's functions is applied during the self-consistent iterative solving of HE and when QP approximation is not applied. Results obtained with the exact vertex are directly related to the present open question—which approximation is more advantageous for future implementations, GW + DMFT or QPGW + DMFT. It is shown that in a regime of strong correlations only the originally proposed GW + DMFT scheme is able to provide reliable results. Vertex corrections based on Perturbation Theory systematically improve the GW results when full self-consistency is applied. The application of QP self-consistency combined with PT vertex corrections shows similar problems to the case when the exact vertex is applied combined with QP sc. An analysis of Ward Identity violation is performed for all studied in this work's approximations and its relation to the general accuracy of the schemes used is provided.

  4. Full self-consistency versus quasiparticle self-consistency in diagrammatic approaches: Exactly solvable two-site Hubbard model

    DOE PAGESBeta

    Kutepov, A. L.

    2015-07-22

    Self-consistent solutions of Hedin's equations (HE) for the two-site Hubbard model (HM) have been studied. They have been found for three-point vertices of increasing complexity (Γ = 1 (GW approximation), Γ₁ from the first-order perturbation theory, and the exact vertex ΓE). Comparison is made between the cases when an additional quasiparticle (QP) approximation for Green's functions is applied during the self-consistent iterative solving of HE and when QP approximation is not applied. Results obtained with the exact vertex are directly related to the present open question—which approximation is more advantageous for future implementations, GW + DMFT or QPGW + DMFT.more » It is shown that in a regime of strong correlations only the originally proposed GW + DMFT scheme is able to provide reliable results. Vertex corrections based on Perturbation Theory systematically improve the GW results when full self-consistency is applied. The application of QP self-consistency combined with PT vertex corrections shows similar problems to the case when the exact vertex is applied combined with QP sc. An analysis of Ward Identity violation is performed for all studied in this work's approximations and its relation to the general accuracy of the schemes used is provided.« less

  5. Investigation of prototypal MOFs consisting of polyhedral cages with accessible Lewis-acid sites for quinoline synthesis.

    PubMed

    Gao, Wen-Yang; Leng, Kunyue; Cash, Lindsay; Chrzanowski, Matthew; Stackhouse, Chavis A; Sun, Yinyong; Ma, Shengqian

    2015-03-21

    A series of prototypal metal-organic frameworks (MOFs) consisting of polyhedral cages with accessible Lewis-acid sites, have been systematically investigated for Friedländer annulation reaction, a straightforward approach to synthesizing quinoline and its derivatives. Amongst them MMCF-2 demonstrates significantly enhanced catalytic activity compared with the benchmark MOFs, HKUST-1 and MOF-505, as a result of a high-density of accessible Cu(II) Lewis acid sites and large window size in the cuboctahedral cage-based nanoreactor of MMCF-2. PMID:25693429

  6. Establishing the Antarctic Dome C community reference standard site towards consistent measurements from Earth observation satellites

    USGS Publications Warehouse

    Cao, C.; Uprety, S.; Xiong, J.; Wu, A.; Jing, P.; Smith, D.; Chander, G.; Fox, N.; Ungar, S.

    2010-01-01

    Establishing satellite measurement consistency by using common desert sites has become increasingly more important not only for climate change detection but also for quantitative retrievals of geophysical variables in satellite applications. Using the Antarctic Dome C site (75°06′S, 123°21′E, elevation 3.2 km) for satellite radiometric calibration and validation (Cal/Val) is of great interest owing to its unique location and characteristics. The site surface is covered with uniformly distributed permanent snow, and the atmospheric effect is small and relatively constant. In this study, the long-term stability and spectral characteristics of this site are evaluated using well-calibrated satellite instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Preliminary results show that despite a few limitations, the site in general is stable in the long term, the bidirectional reflectance distribution function (BRDF) model works well, and the site is most suitable for the Cal/Val of reflective solar bands in the 0.4–1.0 µm range. It was found that for the past decade, the reflectivity change of the site is within 1.35% at 0.64 µm, and interannual variability is within 2%. The site is able to resolve calibration biases between instruments at a level of ~1%. The usefulness of the site is demonstrated by comparing observations from seven satellite instruments involving four space agencies, including OrbView-2–SeaWiFS, Terra–Aqua MODIS, Earth Observing 1 (EO-1) – Hyperion, Meteorological Operational satellite programme (MetOp) – Advanced Very High Resolution Radiometer (AVHRR), Envisat Medium Resolution Imaging Spectrometer (MERIS) – dvanced Along-Track Scanning Radiometer (AATSR), and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). Dome C is a promising candidate site for climate quality calibration of satellite radiometers towards more consistent satellite measurements, as part

  7. 15 CFR 930.36 - Consistency determinations for proposed activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND COASTAL RESOURCE MANAGEMENT FEDERAL CONSISTENCY WITH APPROVED COASTAL MANAGEMENT PROGRAMS... project (e.g., ongoing maintenance, waste disposal) which cumulatively has an effect upon any coastal use... coastal management issues and have similar enforceable policies, e.g., protection of a particular...

  8. 15 CFR 930.36 - Consistency determinations for proposed activities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND COASTAL RESOURCE MANAGEMENT FEDERAL CONSISTENCY WITH APPROVED COASTAL MANAGEMENT PROGRAMS... project (e.g., ongoing maintenance, waste disposal) which cumulatively has an effect upon any coastal use... coastal management issues and have similar enforceable policies, e.g., protection of a particular...

  9. Salt site performance assessment activities

    SciTech Connect

    Kircher, J.F.; Gupta, S.K.

    1983-01-01

    During this year the first selection of the tools (codes) for performance assessments of potential salt sites have been tentatively selected and documented; the emphasis has shifted from code development to applications. During this period prior to detailed characterization of a salt site, the focus is on bounding calculations, sensitivity and with the data available. The development and application of improved methods for sensitivity and uncertainty analysis is a focus for the coming years activities and the subject of a following paper in these proceedings. Although the assessments to date are preliminary and based on admittedly scant data, the results indicate that suitable salt sites can be identified and repository subsystems designed which will meet the established criteria for protecting the health and safety of the public. 36 references, 5 figures, 2 tables.

  10. Department of Energy seismic siting and design decisions: Consistent use of probabilistic seismic hazard analysis

    SciTech Connect

    Kimball, J.K.; Chander, H.

    1997-02-01

    The Department of Energy (DOE) requires that all nuclear or non-nuclear facilities shall be designed, constructed and operated so that the public, the workers, and the environment are protected from the adverse impacts of Natural Phenomena Hazards including earthquakes. The design and evaluation of DOE facilities to accommodate earthquakes shall be based on an assessment of the likelihood of future earthquakes occurrences commensurate with a graded approach which depends on the potential risk posed by the DOE facility. DOE has developed Standards for site characterization and hazards assessments to ensure that a consistent use of probabilistic seismic hazard is implemented at each DOE site. The criteria included in the DOE Standards are described, and compared to those criteria being promoted by the staff of the Nuclear Regulatory Commission (NRC) for commercial nuclear reactors. In addition to a general description of the DOE requirements and criteria, the most recent probabilistic seismic hazard results for a number of DOE sites are presented. Based on the work completed to develop the probabilistic seismic hazard results, a summary of important application issues are described with recommendations for future improvements in the development and use of probabilistic seismic hazard criteria for design of DOE facilities.

  11. 15 CFR 930.38 - Consistency determinations for activities initiated prior to management program approval.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT FEDERAL CONSISTENCY WITH APPROVED COASTAL MANAGEMENT PROGRAMS Consistency for Federal Agency Activities § 930.38 Consistency determinations for... activities initiated prior to management program approval. 930.38 Section 930.38 Commerce and Foreign...

  12. 29 CFR 779.205 - Enterprise must consist of “related activities.”

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Enterprise must consist of ârelated activities.â 779.205... STANDARDS ACT AS APPLIED TO RETAILERS OF GOODS OR SERVICES Employment to Which the Act May Apply; Enterprise Coverage Related Activities § 779.205 Enterprise must consist of “related activities.” The enterprise...

  13. 29 CFR 779.205 - Enterprise must consist of “related activities.”

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Enterprise must consist of ârelated activities.â 779.205... STANDARDS ACT AS APPLIED TO RETAILERS OF GOODS OR SERVICES Employment to Which the Act May Apply; Enterprise Coverage Related Activities § 779.205 Enterprise must consist of “related activities.” The enterprise...

  14. 29 CFR 779.205 - Enterprise must consist of “related activities.”

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Enterprise must consist of ârelated activities.â 779.205... STANDARDS ACT AS APPLIED TO RETAILERS OF GOODS OR SERVICES Employment to Which the Act May Apply; Enterprise Coverage Related Activities § 779.205 Enterprise must consist of “related activities.” The enterprise...

  15. 29 CFR 779.205 - Enterprise must consist of “related activities.”

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Enterprise must consist of ârelated activities.â 779.205... STANDARDS ACT AS APPLIED TO RETAILERS OF GOODS OR SERVICES Employment to Which the Act May Apply; Enterprise Coverage Related Activities § 779.205 Enterprise must consist of “related activities.” The enterprise...

  16. 29 CFR 779.205 - Enterprise must consist of “related activities.”

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Enterprise must consist of ârelated activities.â 779.205... STANDARDS ACT AS APPLIED TO RETAILERS OF GOODS OR SERVICES Employment to Which the Act May Apply; Enterprise Coverage Related Activities § 779.205 Enterprise must consist of “related activities.” The enterprise...

  17. Active Sites Environmental Monitoring Program: Program plan

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1990-10-01

    DOE Order 5820.2A requires that low-level waste (LLW) disposal sites active on or after September 1988 and all transuranic (TRU) waste storage sites be monitored periodically to assure that radioactive contamination does not escape from the waste sites and pose a threat to the public or to the environment. This plan describes such a monitoring program for the active LLW disposal sites in SWSA 6 and the TRU waste storage sites in SWSA 5 North. 14 refs., 8 figs.

  18. A study on the flexibility of enzyme active sites

    PubMed Central

    2011-01-01

    Background A common assumption about enzyme active sites is that their structures are highly conserved to specifically distinguish between closely similar compounds. However, with the discovery of distinct enzymes with similar reaction chemistries, more and more studies discussing the structural flexibility of the active site have been conducted. Results Most of the existing works on the flexibility of active sites focuses on a set of pre-selected active sites that were already known to be flexible. This study, on the other hand, proposes an analysis framework composed of a new data collecting strategy, a local structure alignment tool and several physicochemical measures derived from the alignments. The method proposed to identify flexible active sites is highly automated and robust so that more extensive studies will be feasible in the future. The experimental results show the proposed method is (a) consistent with previous works based on manually identified flexible active sites and (b) capable of identifying potentially new flexible active sites. Conclusions This proposed analysis framework and the former analyses on flexibility have their own advantages and disadvantage, depending on the cause of the flexibility. In this regard, this study proposes an alternative that complements previous studies and helps to construct a more comprehensive view of the flexibility of enzyme active sites. PMID:21342563

  19. Savannah River Site prioritization of transition activities

    SciTech Connect

    Finley, R.H.

    1993-11-01

    Effective management of SRS conversion from primarily a production facility to other missions (or Decontamination and Decommissioning (D&D)) requires a systematic and consistent method of prioritizing the transition activities. This report discusses the design of a prioritizing method developed to achieve systematic and consistent methods of prioritizing these activities.

  20. Educational Activity Sites for High School Students

    ERIC Educational Resources Information Center

    Troutner, Joanne

    2005-01-01

    Finding quality Internet resources for high school students is a continuing challenge. Several high-quality web sites are presented for educators and students. These sites offer activities to learn how an art conservator looks at paintings, create a newspaper, research and develop an end product, build geometry and physics skills, explore science…

  1. Nicotinamide Cofactors Suppress Active-Site Labeling of Aldehyde Dehydrogenases.

    PubMed

    Stiti, Naim; Chandrasekar, Balakumaran; Strubl, Laura; Mohammed, Shabaz; Bartels, Dorothea; van der Hoorn, Renier A L

    2016-06-17

    Active site labeling by (re)activity-based probes is a powerful chemical proteomic tool to globally map active sites in native proteomes without using substrates. Active site labeling is usually taken as a readout for the active state of the enzyme because labeling reflects the availability and reactivity of active sites, which are hallmarks for enzyme activities. Here, we show that this relationship holds tightly, but we also reveal an important exception to this rule. Labeling of Arabidopsis ALDH3H1 with a chloroacetamide probe occurs at the catalytic Cys, and labeling is suppressed upon nitrosylation and oxidation, and upon treatment with other Cys modifiers. These experiments display a consistent and strong correlation between active site labeling and enzymatic activity. Surprisingly, however, labeling is suppressed by the cofactor NAD(+), and this property is shared with other members of the ALDH superfamily and also detected for unrelated GAPDH enzymes with an unrelated hydantoin-based probe in crude extracts of plant cell cultures. Suppression requires cofactor binding to its binding pocket. Labeling is also suppressed by ALDH modulators that bind at the substrate entrance tunnel, confirming that labeling occurs through the substrate-binding cavity. Our data indicate that cofactor binding adjusts the catalytic Cys into a conformation that reduces the reactivity toward chloroacetamide probes. PMID:26990764

  2. The generalized active space concept in multiconfigurational self-consistent field methods.

    PubMed

    Ma, Dongxia; Li Manni, Giovanni; Gagliardi, Laura

    2011-07-28

    A multiconfigurational self-consistent field method based on the concept of generalized active space (GAS) is presented. GAS wave functions are obtained by defining an arbitrary number of active spaces with arbitrary occupation constraints. By a suitable choice of the GAS spaces, numerous ineffective configurations present in a large complete active space (CAS) can be removed, while keeping the important ones in the CI space. As a consequence, the GAS self-consistent field approach retains the accuracy of the CAS self-consistent field (CASSCF) ansatz and, at the same time, can deal with larger active spaces, which would be unaffordable at the CASSCF level. Test calculations on the Gd atom, Gd(2) molecule, and oxoMn(salen) complex are presented. They show that GAS wave functions achieve the same accuracy as CAS wave functions on systems that would be prohibitive at the CAS level. PMID:21806111

  3. Low dielectric response in enzyme active site

    PubMed Central

    Mertz, Edward L.; Krishtalik, Lev I.

    2000-01-01

    The kinetics of charge transfer depend crucially on the dielectric reorganization of the medium. In enzymatic reactions that involve charge transfer, atomic dielectric response of the active site and of its surroundings determines the efficiency of the protein as a catalyst. We report direct spectroscopic measurements of the reorganization energy associated with the dielectric response in the active site of α-chymotrypsin. A chromophoric inhibitor of the enzyme is used as a spectroscopic probe. We find that water strongly affects the dielectric reorganization in the active site of the enzyme in solution. The reorganization energy of the protein matrix in the vicinity of the active site is similar to that of low-polarity solvents. Surprisingly, water exhibits an anomalously high dielectric response that cannot be described in terms of the dielectric continuum theory. As a result, sequestering the active site from the aqueous environment inside low-dielectric enzyme body dramatically reduces the dielectric reorganization. This reduction is particularly important for controlling the rate of enzymatic reactions. PMID:10681440

  4. Consistency of Moderate to Vigorous Physical Activity in Middle School Physical Education.

    PubMed

    Gill, Monique; Chan-Golston, Alec M; Rice, Lindsay N; Cole, Brian L; Koniak-Griffin, Deborah; Prelip, Michael L

    2016-01-01

    This study assessed the consistency of moderate to vigorous physical activity (MVPA) in a sample of middle school physical education lessons. Random intercept hierarchical linear regressions were employed to model the relationship between consistency of MVPA and independent variables, including lesson and teacher characteristics. Larger classes spent significantly more time in consistent MVPA in the absence of controlling for teacher characteristics. A significant interaction between class size and teacher experience suggests that experience may play a beneficial role in larger classes, and overall class size does not have to be a barrier to achieving high levels of MVPA. PMID:27536933

  5. Architecture and active site of particulate methane monooxygenase

    PubMed Central

    Culpepper, Megen A.; Rosenzweig, Amy C.

    2012-01-01

    Particulate methane monooxygenase (pMMO) is an integral membrane metalloenzyme that oxidizes methane to methanol in methanotrophic bacteria, organisms that live on methane gas as their sole carbon source. Understanding pMMO function has important implications for bioremediation applications and for the development of new, environmentally friendly catalysts for the direct conversion of methane to methanol. Crystal structures of pMMOs from three different methanotrophs reveal a trimeric architecture, consisting of three copies each of the pmoB, pmoA, and pmoC subunits. There are three distinct metal centers in each protomer of the trimer, mononuclear and dinuclear copper sites in the periplasmic regions of pmoB and a mononuclear site within the membrane that can be occupied by copper or zinc. Various models for the pMMO active site have been proposed within these structural constraints, including dicopper, tricopper, and diiron centers. Biochemical and spectroscopic data on pMMO and recombinant soluble fragments, denoted spmoB proteins, indicate that the active site involves copper and is located at the site of the dicopper center in the pmoB subunit. Initial spectroscopic evidence for O2 binding at this site has been obtained. Despite these findings, questions remain about the active site identity and nuclearity and will be the focus of future studies. PMID:22725967

  6. fMRI activation patterns in an analytic reasoning task: consistency with EEG source localization

    NASA Astrophysics Data System (ADS)

    Li, Bian; Vasanta, Kalyana C.; O'Boyle, Michael; Baker, Mary C.; Nutter, Brian; Mitra, Sunanda

    2010-03-01

    Functional magnetic resonance imaging (fMRI) is used to model brain activation patterns associated with various perceptual and cognitive processes as reflected by the hemodynamic (BOLD) response. While many sensory and motor tasks are associated with relatively simple activation patterns in localized regions, higher-order cognitive tasks may produce activity in many different brain areas involving complex neural circuitry. We applied a recently proposed probabilistic independent component analysis technique (PICA) to determine the true dimensionality of the fMRI data and used EEG localization to identify the common activated patterns (mapped as Brodmann areas) associated with a complex cognitive task like analytic reasoning. Our preliminary study suggests that a hybrid GLM/PICA analysis may reveal additional regions of activation (beyond simple GLM) that are consistent with electroencephalography (EEG) source localization patterns.

  7. Active site specificity of plasmepsin II.

    PubMed Central

    Westling, J.; Cipullo, P.; Hung, S. H.; Saft, H.; Dame, J. B.; Dunn, B. M.

    1999-01-01

    Members of the aspartic proteinase family of enzymes have very similar three-dimensional structures and catalytic mechanisms. Each, however, has unique substrate specificity. These distinctions arise from variations in amino acid residues that line the active site subsites and interact with the side chains of the amino acids of the peptides that bind to the active site. To understand the unique binding preferences of plasmepsin II, an enzyme of the aspartic proteinase class from the malaria parasite, Plasmodium falciparum, chromogenic octapeptides having systematic substitutions at various positions in the sequence were analyzed. This enabled the design of new, improved substrates for this enzyme (Lys-Pro-Ile-Leu-Phe*Nph-Ala/Glu-Leu-Lys, where * indicates the cleavage point). Additionally, the crystal structure of plasmepsin II was analyzed to explain the binding characteristics. Specific amino acids (Met13, Ser77, and Ile287) that were suspected of contributing to active site binding and specificity were chosen for site-directed mutagenesis experiments. The Met13Glu and Ile287Glu single mutants and the Met13Glu/Ile287Glu double mutant gain the ability to cleave substrates containing Lys residues. PMID:10548045

  8. Consistency in boldness, activity and exploration at different stages of life

    PubMed Central

    2013-01-01

    Background Animals show consistent individual behavioural patterns over time and over situations. This phenomenon has been referred to as animal personality or behavioural syndromes. Little is known about consistency of animal personalities over entire life times. We investigated the repeatability of behaviour in common voles (Microtus arvalis) at different life stages, with different time intervals, and in different situations. Animals were tested using four behavioural tests in three experimental groups: 1. before and after maturation over three months, 2. twice as adults during one week, and 3. twice as adult animals over three months, which resembles a substantial part of their entire adult life span of several months. Results Different behaviours were correlated within and between tests and a cluster analysis showed three possible behavioural syndrome-axes, which we name boldness, exploration and activity. Activity and exploration behaviour in all tests was highly repeatable in adult animals tested over one week. In animals tested over maturation, exploration behaviour was consistent whereas activity was not. Voles that were tested as adults with a three-month interval showed the opposite pattern with stable activity but unstable exploration behaviour. Conclusions The consistency in behaviour over time suggests that common voles do express stable personality over short time. Over longer periods however, behaviour is more flexible and depending on life stage (i.e. tested before/after maturation or as adults) of the tested individual. Level of boldness or activity does not differ between tested groups and maintenance of variation in behavioural traits can therefore not be explained by expected future assets as reported in other studies. PMID:24314274

  9. A consistent muscle activation strategy underlies crawling and swimming in Caenorhabditis elegans

    PubMed Central

    Butler, Victoria J.; Branicky, Robyn; Yemini, Eviatar; Liewald, Jana F.; Gottschalk, Alexander; Kerr, Rex A.; Chklovskii, Dmitri B.; Schafer, William R.

    2015-01-01

    Although undulatory swimming is observed in many organisms, the neuromuscular basis for undulatory movement patterns is not well understood. To better understand the basis for the generation of these movement patterns, we studied muscle activity in the nematode Caenorhabditis elegans. Caenorhabditis elegans exhibits a range of locomotion patterns: in low viscosity fluids the undulation has a wavelength longer than the body and propagates rapidly, while in high viscosity fluids or on agar media the undulatory waves are shorter and slower. Theoretical treatment of observed behaviour has suggested a large change in force–posture relationships at different viscosities, but analysis of bend propagation suggests that short-range proprioceptive feedback is used to control and generate body bends. How muscles could be activated in a way consistent with both these results is unclear. We therefore combined automated worm tracking with calcium imaging to determine muscle activation strategy in a variety of external substrates. Remarkably, we observed that across locomotion patterns spanning a threefold change in wavelength, peak muscle activation occurs approximately 45° (1/8th of a cycle) ahead of peak midline curvature. Although the location of peak force is predicted to vary widely, the activation pattern is consistent with required force in a model incorporating putative length- and velocity-dependence of muscle strength. Furthermore, a linear combination of local curvature and velocity can match the pattern of activation. This suggests that proprioception can enable the worm to swim effectively while working within the limitations of muscle biomechanics and neural control. PMID:25551155

  10. A consistent muscle activation strategy underlies crawling and swimming in Caenorhabditis elegans.

    PubMed

    Butler, Victoria J; Branicky, Robyn; Yemini, Eviatar; Liewald, Jana F; Gottschalk, Alexander; Kerr, Rex A; Chklovskii, Dmitri B; Schafer, William R

    2015-01-01

    Although undulatory swimming is observed in many organisms, the neuromuscular basis for undulatory movement patterns is not well understood. To better understand the basis for the generation of these movement patterns, we studied muscle activity in the nematode Caenorhabditis elegans. Caenorhabditis elegans exhibits a range of locomotion patterns: in low viscosity fluids the undulation has a wavelength longer than the body and propagates rapidly, while in high viscosity fluids or on agar media the undulatory waves are shorter and slower. Theoretical treatment of observed behaviour has suggested a large change in force-posture relationships at different viscosities, but analysis of bend propagation suggests that short-range proprioceptive feedback is used to control and generate body bends. How muscles could be activated in a way consistent with both these results is unclear. We therefore combined automated worm tracking with calcium imaging to determine muscle activation strategy in a variety of external substrates. Remarkably, we observed that across locomotion patterns spanning a threefold change in wavelength, peak muscle activation occurs approximately 45° (1/8th of a cycle) ahead of peak midline curvature. Although the location of peak force is predicted to vary widely, the activation pattern is consistent with required force in a model incorporating putative length- and velocity-dependence of muscle strength. Furthermore, a linear combination of local curvature and velocity can match the pattern of activation. This suggests that proprioception can enable the worm to swim effectively while working within the limitations of muscle biomechanics and neural control. PMID:25551155

  11. Second-Order Perturbation Theory for Generalized Active Space Self-Consistent-Field Wave Functions.

    PubMed

    Ma, Dongxia; Li Manni, Giovanni; Olsen, Jeppe; Gagliardi, Laura

    2016-07-12

    A multireference second-order perturbation theory approach based on the generalized active space self-consistent-field (GASSCF) wave function is presented. Compared with the complete active space (CAS) and restricted active space (RAS) wave functions, GAS wave functions are more flexible and can employ larger active spaces and/or different truncations of the configuration interaction expansion. With GASSCF, one can explore chemical systems that are not affordable with either CASSCF or RASSCF. Perturbation theory to second order on top of GAS wave functions (GASPT2) has been implemented to recover the remaining electron correlation. The method has been benchmarked by computing the chromium dimer ground-state potential energy curve. These calculations show that GASPT2 gives results similar to CASPT2 even with a configuration interaction expansion much smaller than the corresponding CAS expansion. PMID:27276688

  12. Corrosion Research And Web Site Activities

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2001-01-01

    This report covers corrosion-related activities at the NASA Kennedy Space Center during the summer of 2000. The NASA Kennedy Space Center's corrosion web site, corrosion.ksc.nasa.gov, was updated with new information based on feedback over the past two years. The methodology for a two-year atmospheric exposure testing program to study the effectiveness of commercial chemicals sold for rinsing aircraft and other equipment was developed and some preliminary laboratory chemical analyses are presented.

  13. Corrosion Research and Web Site Activities

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2002-01-01

    This report covers corrosion-related activities at the NASA Kennedy Space Center during the summer of 2000. The NASA Kennedy Space Center's corrosion web site, corrosion.ksc.nasa.gov, was updated with new information based on feedback over the past two years. The methodology for a two-year atmospheric exposure testing program to study the effectiveness of commercial chemicals sold for rinsing aircraft and other equipment was developed and some preliminary laboratory chemical analyses are presented.

  14. Spectroscopic Definition of the Ferroxidase Site in M Ferritin: Comparison of Binuclear Substrate vs. Cofactor Active Sites

    PubMed Central

    Schwartz, Jennifer K.; Liu, Xiaofeng S.; Tosha, Takehiko; Theil, Elizabeth C.; Solomon, Edward I.

    2008-01-01

    Maxi ferritins, 24 subunit protein nanocages, are essential in humans, plants, bacteria, and other animals for the concentration and storage of iron as hydrated ferric oxide, while minimizing free radical generation or use by pathogens. Formation of the precursors to these ferric oxides is catalyzed at a non-heme biferrous substrate site, which has some parallels with the cofactor sites in other biferrous enzymes. A combination of circular dichroism (CD), magnetic circular dichroism (MCD), and variable-temperature, variable-field MCD (VTVH MCD) has been used to probe Fe(II) binding to the substrate active site in frog M ferritin. These data determined that the active site within each subunit consists of two inequivalent five-coordinate (5C) ferrous centers that are weakly anti-ferromagnetically coupled, consistent with a μ-1,3 carboxylate bridge. The active site ligand set is unusual and likely includes a terminal water bound to each Fe(II) center. The Fe(II) ions bind to the active sites in a concerted manner, and cooperativity among the sites in each subunit is observed, potentially providing a mechanism for the control of ferritin iron loading. Differences in geometric and electronic structure – including a weak ligand field, availability of two water ligands at the biferrous substrate site, and the single carboxylate bridge in ferritin – coincide with the divergent reaction pathways observed between this substrate site and the previously studied cofactor active sites. PMID:18576633

  15. Childhood Sexual Violence and Consistent, Effective Contraception Use among Young, Sexually Active Urban Women

    PubMed Central

    Nelson, Deborah B.; Lepore, Stephen J.; Mastrogiannis, Dimitrios S.

    2015-01-01

    Unintended pregnancy (UP) is a significant public health problem. The consistent use of effective contraception is the primary method to prevent UP. We examined the role of childhood sexual and physical violence and current interpersonal violence on the risk of unintended pregnancy among young, urban, sexually active women. In particular, we were interested in examining the role of childhood violence and interpersonal violence while recognizing the psychological correlates of experiencing violence (i.e., high depressive symptoms and low self-esteem) and consistent use of contraception. For this assessment, 315 sexually active women living in Philadelphia PA were recruited from family planning clinics in 2013. A self-administered, computer-assisted interview was used to collect data on method of contraception use in the past month, consistency of use, experiences with violence, levels of depressive symptoms, self-esteem and sexual self-efficacy, substance use and health services utilization. Fifty percent of young sexually active women reported inconsistent or no contraception use in the past month. Inconsistent users were significantly more likely to report at least one prior episode of childhood sexual violence and were significantly less likely to have received a prescription for contraception from a health care provider. Inconsistent contraception users also reported significantly higher levels of depressive symptoms and significantly lower levels of self-esteem. The relation between childhood sexual violence and UP remained unchanged in the multivariate models adjusting for self-esteem or depressive symptoms. These findings highlight the long-term consequences of childhood sexual violence, independent of current depressive symptoms and low self-esteem, on consistent use of contraception. PMID:26010318

  16. Efficient implementation of three-dimensional reference interaction site model self-consistent-field method: Application to solvatochromic shift calculations

    NASA Astrophysics Data System (ADS)

    Minezawa, Noriyuki; Kato, Shigeki

    2007-02-01

    The authors present an implementation of the three-dimensional reference interaction site model self-consistent-field (3D-RISM-SCF) method. First, they introduce a robust and efficient algorithm for solving the 3D-RISM equation. The algorithm is a hybrid of the Newton-Raphson and Picard methods. The Jacobian matrix is analytically expressed in a computationally useful form. Second, they discuss the solute-solvent electrostatic interaction. For the solute to solvent route, the electrostatic potential (ESP) map on a 3D grid is constructed directly from the electron density. The charge fitting procedure is not required to determine the ESP. For the solvent to solute route, the ESP acting on the solute molecule is derived from the solvent charge distribution obtained by solving the 3D-RISM equation. Matrix elements of the solute-solvent interaction are evaluated by the direct numerical integration. A remarkable reduction in the computational time is observed in both routes. Finally, the authors implement the first derivatives of the free energy with respect to the solute nuclear coordinates. They apply the present method to "solute" water and formaldehyde in aqueous solvent using the simple point charge model, and the results are compared with those from other methods: the six-dimensional molecular Ornstein-Zernike SCF, the one-dimensional site-site RISM-SCF, and the polarizable continuum model. The authors also calculate the solvatochromic shifts of acetone, benzonitrile, and nitrobenzene using the present method and compare them with the experimental and other theoretical results.

  17. Recreational rates and future land-use preferences for four Department of Energy sites: consistency despite demographic and geographical differences.

    PubMed

    Burger, Joanna

    2004-06-01

    The management of ecosystems has been improved by both a public understanding of ecosystem structure and function and by managers' understanding of public perceptions and attitudes. This is especially true for contaminated lands where there are a variety of remediation, restoration, and future land-use decisions to be made. This paper synthesizes several surveys from four US Department of Energy (DOE) sites in the states of South Carolina, Idaho, Nevada, and New York. Although ethnic composition varied among the sites, age and gender did not. The percentage of the study population engaged in hunting ranged from 30% to 41% and that in fishing ranged from 55% to 74%. Average hunting rates ranged from 9 (New York) to 15 (South Carolina) days/year; average fishing rates ranged from 12 (New Mexico) to 38 (New York) days a year. Despite the demographic and recreational rate differences, there was remarkable agreement about future land uses. Maintaining these DOE sites as National Environmental Research Parks and using them for nonconsumptive recreation rated the highest. The lowest rated future land uses were current and additional nuclear waste storage and the building of homes and factories. People who participated in a recreational activity rated those future land uses higher than nonusers. While these data on recreational rates can be used to assess the potential risk to people using contaminated sites and to aid in setting clean-up standards based on potential risk, the information on land-use preferences can be used by managers to determine future use and to plan for such use. This information is particularly relevant to the Department of Energy's "Risk-based End State Vision." PMID:15147927

  18. Resonant active sites in catalytic ammonia synthesis: A structural model

    NASA Astrophysics Data System (ADS)

    Cholach, Alexander R.; Bryliakova, Anna A.; Matveev, Andrey V.; Bulgakov, Nikolai N.

    2016-03-01

    Adsorption sites Mn consisted of n adjacent atoms M, each bound to the adsorbed species, are considered within a realistic model. The sum of bonds Σ lost by atoms in a site in comparison with the bulk atoms was used for evaluation of the local surface imperfection, while the reaction enthalpy at that site was used as a measure of activity. The comparative study of Mn sites (n = 1-5) at basal planes of Pt, Rh, Ir, Fe, Re and Ru with respect to heat of N2 dissociative adsorption QN and heat of Nad + Had → NHad reaction QNH was performed using semi-empirical calculations. Linear QN(Σ) increase and QNH(Σ) decrease allowed to specify the resonant Σ for each surface in catalytic ammonia synthesis at equilibrium Nad coverage. Optimal Σ are realizable for Ru2, Re2 and Ir4 only, whereas other centers meet steric inhibition or unreal crystal structure. Relative activity of the most active sites in proportion 5.0 × 10- 5: 4.5 × 10- 3: 1: 2.5: 3.0: 1080: 2270 for a sequence of Pt4, Rh4, Fe4(fcc), Ir4, Fe2-5(bcc), Ru2, Re2, respectively, is in agreement with relevant experimental data. Similar approach can be applied to other adsorption or catalytic processes exhibiting structure sensitivity.

  19. States Lack Physical Activity Policies in Child Care That Are Consistent with National Recommendations

    PubMed Central

    Slining, Meghan M.; Benjamin Neelon, Sara E.

    2014-01-01

    Abstract Background: Child care facilities' policies can importantly impact health behaviors of toddlers and preschoolers. Our aim was to assess state regulations promoting physical activity (PA) in child care and compare regulations to national recommendations. Methods: We reviewed licensing and administrative regulations related to promoting PA for all states and territories for child care centers (centers) and family child care homes (homes). Three reviewers searched two sources (a publically available website and WestlawNext™) and compared regulations with 15 Institute of Medicine recommendations. We used Pearson's and Spearman's correlations to assess associations between geographic region, year of last update, and number of regulations consistent with the recommendations. Results: The average number and range of regulations in centers and homes was 4.1 (standard deviation [SD], 1.4; range, 0–8) and 3.8 (SD, 1.5; range, 0–7), respectively. Nearly all states had regulations consistent with providing an outdoor (centers, 98%; homes, 95%) and indoor (centers, 94%, homes, 92%) environment “with a variety of portable play equipment and adequate space.” No state had regulations for staff joining children, avoiding punishment for being physically active, yearly consultation from a PA expert, or providing training/education on PA for providers. Conclusions: There is room for improvement in child care regulations around PA for young children; PA promotion should be included with future updates to regulations. PMID:25354331

  20. Evidence consistent with the requirement of cresolase activity for suicide inactivation of tyrosinase.

    PubMed

    Land, Edward J; Ramsden, Christopher A; Riley, Patrick A; Stratford, Michael R L

    2008-11-01

    Tyrosinase is a mono-oxygenase with a dinuclear copper catalytic center which is able to catalyze both the ortho-hydroxylation of monophenols (cresolase activity) and the oxidation of catechols (catecholase activity) yielding ortho-quinone products. Tyrosinases appear to have arisen early in evolution and are widespread in living organisms where they are involved in several processes, including antibiosis, adhesion of molluscs, the hardening of the exoskeleton of insects, and pigmentation. Tyrosinase is the principal enzyme of melanin formation in vertebrates and is of clinical interest because of the possible utilization of its activity for targeted treatment of malignant melanoma. Tyrosinase is characterised by an irreversible inactivation that occurs during the oxidation of catechols. In a recent publication we proposed a mechanism to account for this feature based on the ortho-hydroxylation of catecholic substrates, during which process Cu(II) is reduced to Cu(0) which no longer binds to the enzyme and is eliminated (reductive elimination). Since this process is dependent on cresolase activity of tyrosinase, a strong prediction of the proposed inactivation mechanism is that it will not be exhibited by enzymes lacking cresolase activity. We show that the catechol oxidase readily extracted from bananas (Musa cavendishii) is devoid of cresolase activity and that the kinetics of catechol oxidation do not exhibit inactivation. We also show that a species with the molecular mass of the putative cresolase oxidation product is formed during tyrosinase oxidation of 4-methylcatechol. The results presented are entirely consistent with our proposed mechanism to account for suicide-inactivation of tyrosinase. PMID:18987457

  1. Active site of ribulosebisphosphate carboxylase/oxygenase

    SciTech Connect

    Hartman, F.C.; Stringer, C.D.; Milanez, S.; Lee, E.H.

    1985-01-01

    Previous affinity labeling studies and comparative sequence analyses have identified two different lysines at the active site of ribulosebisphosphate carboxylase/oxygenase and have suggested their essentiality to function. The essential lysines occupy positions 166 and 329 in the Rhodospirillum rubrum enzyme and positions 175 and 334 in the spinach enzyme. Based on the pH-dependencies of inactivations of the two enzymes by trinitrobenzene sulfonate, Lys-166 (R. rubrum enzyme) exhibits a pK/sub a/ of 7.9 and Lys-334 (spinach enzyme) exhibits a pK/sub a/ of 9.0. These low pK/sub a/ values as well as the enhanced nucleophilicities of the lysyl residues argue that both are important to catalysis rather than to substrate binding. Lys-166 may correspond to the essential base that initiates catalysis and that displays a pK/sub a/ of 7.5 in the pH-curve for V/sub max//K/sub m/. Cross-linking experiments with 4,4'-diisothiocyano-2,2'-disulfonate stilbene demonstrate that the two active-site lysines are within 12 A. 50 refs., 7 figs., 1 tab.

  2. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer.

    PubMed

    Dinpajooh, Mohammadhasan; Martin, Daniel R; Matyushov, Dmitry V

    2016-01-01

    Enzymes in biology's energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work. PMID:27306204

  3. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer

    NASA Astrophysics Data System (ADS)

    Dinpajooh, Mohammadhasan; Martin, Daniel R.; Matyushov, Dmitry V.

    2016-06-01

    Enzymes in biology’s energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work.

  4. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer

    PubMed Central

    Dinpajooh, Mohammadhasan; Martin, Daniel R.; Matyushov, Dmitry V.

    2016-01-01

    Enzymes in biology’s energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work. PMID:27306204

  5. Active Sites Environmental Monitoring Program: Program plan

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  6. Probing the promiscuous active site of myo-inositol dehydrogenase using synthetic substrates, homology modeling, and active site modification.

    PubMed

    Daniellou, Richard; Zheng, Hongyan; Langill, David M; Sanders, David A R; Palmer, David R J

    2007-06-26

    The active site of myo-inositol dehydrogenase (IDH, EC 1.1.1.18) from Bacillus subtilis recognizes a variety of mono- and disaccharides, as well as 1l-4-O-substituted inositol derivatives. It catalyzes the NAD+-dependent oxidation of the axial alcohol of these substrates with comparable kinetic constants. We have found that 4-O-p-toluenesulfonyl-myo-inositol does not act as a substrate for IDH, in contrast to structurally similar compounds such as those bearing substituted benzyl substituents in the same position. X-ray crystallographic analysis of 4-O-p-toluenesulfonyl-myo-inositol and 4-O-(2-naphthyl)methyl-myo-inositol, which is a substrate for IDH, shows a distinct difference in the preferred conformation of the aryl substituent. Conformational analysis of known substrates of IDH suggests that this conformational difference may account for the difference in reactivity of 4-O-p-toluenesulfonyl-myo-inositol in the presence of IDH. A sequence alignment of IDH with the homologous glucose-fructose oxidoreductase allowed the construction of an homology model of inositol dehydrogenase, to which NADH and 4-O-benzyl-scyllo-inosose were docked and the active site energy minimized. The active site model is consistent with all experimental results and suggests that a conserved tyrosine-glycine-tyrosine motif forms the hydrophobic pocket adjoining the site of inositol recognition. Y233F and Y235F retain activity, while Y233R and Y235R do not. A histidine-aspartate pair, H176 and D172, are proposed to act as a dyad in which H176 is the active site acid/base. The enzyme is inactivated by diethyl pyrocarbonate, and the mutants H176A and D172N show a marked loss of activity. Kinetic isotope effect experiments with D172N indicate that chemistry is rate-determining for this mutant. PMID:17539607

  7. Self-consistent simulation of CdTe solar cells with active defects

    SciTech Connect

    Brinkman, Daniel; Guo, Da; Akis, Richard; Ringhofer, Christian; Sankin, Igor; Fang, Tian; Vasileska, Dragica

    2015-07-21

    We demonstrate a self-consistent numerical scheme for simulating an electronic device which contains active defects. As a specific case, we consider copper defects in cadmium telluride solar cells. The presence of copper has been shown experimentally to play a crucial role in predicting device performance. The primary source of this copper is migration away from the back contact during annealing, which likely occurs predominantly along grain boundaries. We introduce a mathematical scheme for simulating this effect in 2D and explain the numerical implementation of the system. Lastly, we will give numerical results comparing our results to known 1D simulations to demonstrate the accuracy of the solver and then show results unique to the 2D case.

  8. Self-consistent simulation of CdTe solar cells with active defects

    SciTech Connect

    Brinkman, Daniel; Ringhofer, Christian; Guo, Da; Akis, Richard; Vasileska, Dragica; Sankin, Igor; Fang, Tian

    2015-07-21

    We demonstrate a self-consistent numerical scheme for simulating an electronic device which contains active defects. As a specific case, we consider copper defects in cadmium telluride solar cells. The presence of copper has been shown experimentally to play a crucial role in predicting device performance. The primary source of this copper is migration away from the back contact during annealing, which likely occurs predominantly along grain boundaries. We introduce a mathematical scheme for simulating this effect in 2D and explain the numerical implementation of the system. Finally, we will give numerical results comparing our results to known 1D simulations to demonstrate the accuracy of the solver and then show results unique to the 2D case.

  9. Self-consistent simulation of CdTe solar cells with active defects

    DOE PAGESBeta

    Brinkman, Daniel; Guo, Da; Akis, Richard; Ringhofer, Christian; Sankin, Igor; Fang, Tian; Vasileska, Dragica

    2015-07-21

    We demonstrate a self-consistent numerical scheme for simulating an electronic device which contains active defects. As a specific case, we consider copper defects in cadmium telluride solar cells. The presence of copper has been shown experimentally to play a crucial role in predicting device performance. The primary source of this copper is migration away from the back contact during annealing, which likely occurs predominantly along grain boundaries. We introduce a mathematical scheme for simulating this effect in 2D and explain the numerical implementation of the system. Lastly, we will give numerical results comparing our results to known 1D simulations tomore » demonstrate the accuracy of the solver and then show results unique to the 2D case.« less

  10. A Consistency-Based Feature Selection Method Allied with Linear SVMs for HIV-1 Protease Cleavage Site Prediction

    PubMed Central

    Öztürk, Orkun; Aksaç, Alper; Elsheikh, Abdallah; Özyer, Tansel; Alhajj, Reda

    2013-01-01

    Background Predicting type-1 Human Immunodeficiency Virus (HIV-1) protease cleavage site in protein molecules and determining its specificity is an important task which has attracted considerable attention in the research community. Achievements in this area are expected to result in effective drug design (especially for HIV-1 protease inhibitors) against this life-threatening virus. However, some drawbacks (like the shortage of the available training data and the high dimensionality of the feature space) turn this task into a difficult classification problem. Thus, various machine learning techniques, and specifically several classification methods have been proposed in order to increase the accuracy of the classification model. In addition, for several classification problems, which are characterized by having few samples and many features, selecting the most relevant features is a major factor for increasing classification accuracy. Results We propose for HIV-1 data a consistency-based feature selection approach in conjunction with recursive feature elimination of support vector machines (SVMs). We used various classifiers for evaluating the results obtained from the feature selection process. We further demonstrated the effectiveness of our proposed method by comparing it with a state-of-the-art feature selection method applied on HIV-1 data, and we evaluated the reported results based on attributes which have been selected from different combinations. Conclusion Applying feature selection on training data before realizing the classification task seems to be a reasonable data-mining process when working with types of data similar to HIV-1. On HIV-1 data, some feature selection or extraction operations in conjunction with different classifiers have been tested and noteworthy outcomes have been reported. These facts motivate for the work presented in this paper. Software availability The software is available at http://ozyer.etu.edu.tr/c-fs-svm.rar. The software

  11. Direct Measurements of Local Coupling between Myosin Molecules Are Consistent with a Model of Muscle Activation

    PubMed Central

    Walcott, Sam; Kad, Neil M.

    2015-01-01

    Muscle contracts due to ATP-dependent interactions of myosin motors with thin filaments composed of the proteins actin, troponin, and tropomyosin. Contraction is initiated when calcium binds to troponin, which changes conformation and displaces tropomyosin, a filamentous protein that wraps around the actin filament, thereby exposing myosin binding sites on actin. Myosin motors interact with each other indirectly via tropomyosin, since myosin binding to actin locally displaces tropomyosin and thereby facilitates binding of nearby myosin. Defining and modeling this local coupling between myosin motors is an open problem in muscle modeling and, more broadly, a requirement to understanding the connection between muscle contraction at the molecular and macro scale. It is challenging to directly observe this coupling, and such measurements have only recently been made. Analysis of these data suggests that two myosin heads are required to activate the thin filament. This result contrasts with a theoretical model, which reproduces several indirect measurements of coupling between myosin, that assumes a single myosin head can activate the thin filament. To understand this apparent discrepancy, we incorporated the model into stochastic simulations of the experiments, which generated simulated data that were then analyzed identically to the experimental measurements. By varying a single parameter, good agreement between simulation and experiment was established. The conclusion that two myosin molecules are required to activate the thin filament arises from an assumption, made during data analysis, that the intensity of the fluorescent tags attached to myosin varies depending on experimental condition. We provide an alternative explanation that reconciles theory and experiment without assuming that the intensity of the fluorescent tags varies. PMID:26536123

  12. Clustered mutations in hominid genome evolution are consistent with APOBEC3G enzymatic activity.

    PubMed

    Pinto, Yishay; Gabay, Orshay; Arbiza, Leonardo; Sams, Aaron J; Keinan, Alon; Levanon, Erez Y

    2016-05-01

    The gradual accumulation of mutations by any of a number of mutational processes is a major driving force of divergence and evolution. Here, we investigate a potentially novel mutational process that is based on the activity of members of the AID/APOBEC family of deaminases. This gene family has been recently shown to introduce-in multiple types of cancer-enzyme-induced clusters of co-occurring somatic mutations caused by cytosine deamination. Going beyond somatic mutations, we hypothesized that APOBEC3-following its rapid expansion in primates-can introduce unique germline mutation clusters that can play a role in primate evolution. In this study, we tested this hypothesis by performing a comprehensive comparative genomic screen for APOBEC3-induced mutagenesis patterns across different hominids. We detected thousands of mutation clusters introduced along primate evolution which exhibit features that strongly fit the known patterns of APOBEC3G mutagenesis. These results suggest that APOBEC3G-induced mutations have contributed to the evolution of all genomes we studied. This is the first indication of site-directed, enzyme-induced genome evolution, which played a role in the evolution of both modern and archaic humans. This novel mutational mechanism exhibits several unique features, such as its higher tendency to mutate transcribed regions and regulatory elements and its ability to generate clusters of concurrent point mutations that all occur in a single generation. Our discovery demonstrates the exaptation of an anti-viral mechanism as a new source of genomic variation in hominids with a strong potential for functional consequences. PMID:27056836

  13. Clustered mutations in hominid genome evolution are consistent with APOBEC3G enzymatic activity

    PubMed Central

    Pinto, Yishay; Gabay, Orshay; Arbiza, Leonardo; Sams, Aaron J.; Keinan, Alon

    2016-01-01

    The gradual accumulation of mutations by any of a number of mutational processes is a major driving force of divergence and evolution. Here, we investigate a potentially novel mutational process that is based on the activity of members of the AID/APOBEC family of deaminases. This gene family has been recently shown to introduce—in multiple types of cancer—enzyme-induced clusters of co-occurring somatic mutations caused by cytosine deamination. Going beyond somatic mutations, we hypothesized that APOBEC3—following its rapid expansion in primates—can introduce unique germline mutation clusters that can play a role in primate evolution. In this study, we tested this hypothesis by performing a comprehensive comparative genomic screen for APOBEC3-induced mutagenesis patterns across different hominids. We detected thousands of mutation clusters introduced along primate evolution which exhibit features that strongly fit the known patterns of APOBEC3G mutagenesis. These results suggest that APOBEC3G-induced mutations have contributed to the evolution of all genomes we studied. This is the first indication of site-directed, enzyme-induced genome evolution, which played a role in the evolution of both modern and archaic humans. This novel mutational mechanism exhibits several unique features, such as its higher tendency to mutate transcribed regions and regulatory elements and its ability to generate clusters of concurrent point mutations that all occur in a single generation. Our discovery demonstrates the exaptation of an anti-viral mechanism as a new source of genomic variation in hominids with a strong potential for functional consequences. PMID:27056836

  14. Dissecting the active site of a photoreceptor protein

    NASA Astrophysics Data System (ADS)

    Hoff, Wouter; Hara, Miwa; Ren, Jie; Moghadam, Farzaneh; Xie, Aihua; Kumauchi, Masato

    While enzymes are quite large molecules, functionally important chemical events are often limited to a small region of the protein: the active site. The physical and chemical properties of residues at such active sites are often strongly altered compared to the same groups dissolved in water. Understanding such effects is important for unraveling the mechanisms underlying protein function and for protein engineering, but has proven challenging. Here we report on our ongoing efforts on using photoactive yellow protein (PYP), a bacterial photoreceptor, as a model system for such effects. We will report on the following questions: How many residues affect active site properties? Are these residues in direct physical contact with the active site? Can functionally important residues be recognized in the crystal structure of a protein? What structural resolution is needed to understand active sites? What spectroscopic techniques are most informative? Which weak interactions dominate active site properties?

  15. A complete active space self-consistent field study of the photochemistry of nitrosamine

    SciTech Connect

    Pelaez, Daniel; Arenas, Juan F.; Otero, Juan C.; Soto, Juan

    2006-10-28

    Photodissociation mechanisms of nitrosamine (NH{sub 2}NO) have been studied at the complete active space self-consistent field level of theory in conjunction with atomic-natural-orbital-type basis sets. In addition, the energies of all the critical points and the potential energy curves connecting them have been recomputed with the multiconfigurational second-order perturbation method. Ground state minimum of nitrosamine has a C{sub 1} nonplanar structure with the hydrogen atoms of the amino moiety out of the plane defined by the N-N-O bonds. Electronic transitions to the three lowest states are allowed by selection rules: (i) S{sub 0}{yields}S{sub 3} (7.41 eV) has an oscillator strength of f=0.0006 and it is assigned as an (np{sub O}){sup 0}{yields}({pi}{sub NO}*){sup 2} transition, (ii) S{sub 0}{yields}S{sub 2} (5.86 eV) has an oscillator strength of f=0.14 and it is assigned as an np{sub N}{yields}{pi}{sub NO}* transition, and (iii) S{sub 0}{yields}S{sub 1} (2.98 eV) has an oscillator strength of f=0.002 and it is assigned as an np{sub O}{yields}{pi}{sub NO}* transition. It is found that N-N bond cleavage is the most likely process in all the photochemical relevant states, namely, S{sub 1} (1 {sup 1}A{sup ''}), S{sub 2} (2 {sup 1}A{sup '}), and T{sub 1} (1 {sup 3}A{sup ''}). While S{sub 1} and T{sub 1} yield exclusively homolytic dissociation: NH{sub 2}NO{yields}NH{sub 2} (1 {sup 2}B{sub 1})+NO(X {sup 2}{pi}), on S{sub 2} the latter process constitutes the major path, but two additional minor channels are also available: adiabatic homolytic dissociation: NH{sub 2}NO{yields}NH{sub 2} (1 {sup 2}A{sub 1})+NO(X {sup 2}{pi}), and adiabatic oxygen extrusion: NH{sub 2}NO{yields}NH{sub 2}N (1 {sup 3}A{sub 1})+O({sup 3}P). The excited species NH{sub 2} (1 {sup 2}A{sub 1}) experiences a subsequent ultrafast decay to the ground state, the final products in all cases the fragments being in their lowest electronic state. We have not found a unimolecular mechanism connecting

  16. Functional and Behavioral Product Information Representation and Consistency Validation for Collaboration in Product Lifecycle Activities

    ERIC Educational Resources Information Center

    Baysal, Mehmet Murat

    2012-01-01

    Information models that represent the function, assembly and behavior of artifacts are critical in the conceptual development of a product and its evaluation. Much research has been conducted in this area; however, existing models do not relate function, behavior and structure in a comprehensive and consistent way. In this work, NIST's Core…

  17. Mars Surveyor Project Landing Site Activities

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C.; Briggs, Geoffrey; Saunders, R. Stephen; Gilmore, Martha; Soderblom, Larry

    1999-01-01

    The Mars Surveyor Program --now a cooperative program led by NASA and CNES along with other international partners -- is underway. It has the primary science objective of furthering our understanding of the biological potential and possible biological history of Mars and has the complementary objective of improving our understanding of martian climate evolution and planetary history The missions will develop technology and acquire data necessary for eventual human Exploration. Launches of orbiters, landers and rovers will take place in 2001 and in 2003; in 2005 a complete system will be launched capable of returning samples to Earth by 2008. A key aspect of the program is the selection of landing sites. This abstract 1) reports on the status of the landing site selection process that begins with the 2001 lander mission and 2) outlines be opportunities for the Mars community to provide input into the landing site selection process.

  18. Mars Surveyor Project Landing Site Activities

    NASA Technical Reports Server (NTRS)

    Gulick, V. C.; Briggs, Geoffrey; Saunders, R. Stephen; Gilmore, Martha; Soderblom, Larry

    1999-01-01

    The Mars Surveyor Program -- now a cooperative program led by NASA and CNES along with other international partners -- is underway. It has the primary science objective of furthering our understanding of the biological potential and possible biological history of Mars and has the complementary objective of improving our understanding of martian climate evolution and planetary history. The missions will develop technology and acquire data necessary for eventual human exploration. Launches of orbiters, landers and rovers will take place in 2001 and in 2003; in 2005 a complete system will be launched capable of returning samples to Earth by 2008. A key aspect of the program is the selection of landing sites. This abstract 1) reports on the status of the landing site selection process that begins with the 2001 lander mission and 2) outlines the opportunities for the Mars community to provide input into the landing site selection process.

  19. Ultrafast ligand binding dynamics in the active site of native bacterial nitric oxide reductase.

    PubMed

    Kapetanaki, Sofia M; Field, Sarah J; Hughes, Ross J L; Watmough, Nicholas J; Liebl, Ursula; Vos, Marten H

    2008-01-01

    The active site of nitric oxide reductase from Paracoccus denitrificans contains heme and non-heme iron and is evolutionarily related to heme-copper oxidases. The CO and NO dynamics in the active site were investigated using ultrafast transient absorption spectroscopy. We find that, upon photodissociation from the active site heme, 20% of the CO rebinds in 170 ps, suggesting that not all the CO transiently binds to the non-heme iron. The remaining 80% does not rebind within 4 ns and likely migrates out of the active site without transient binding to the non-heme iron. Rebinding of NO to ferrous heme takes place in approximately 13 ps. Our results reveal that heme-ligand recombination in this enzyme is considerably faster than in heme-copper oxidases and are consistent with a more confined configuration of the active site. PMID:18420024

  20. The bifunctional active site of s-adenosylmethionine synthetase. Roles of the active site aspartates.

    PubMed

    Taylor, J C; Markham, G D

    1999-11-12

    S-Adenosylmethionine (AdoMet) synthetase catalyzes the biosynthesis of AdoMet in a unique enzymatic reaction. Initially the sulfur of methionine displaces the intact tripolyphosphate chain (PPP(i)) from ATP, and subsequently PPP(i) is hydrolyzed to PP(i) and P(i) before product release. The crystal structure of Escherichia coli AdoMet synthetase shows that the active site contains four aspartate residues. Aspartate residues Asp-16* and Asp-271 individually provide the sole protein ligand to one of the two required Mg(2+) ions (* denotes a residue from a second subunit); aspartates Asp-118 and Asp-238* are proposed to interact with methionine. Each aspartate has been changed to an uncharged asparagine, and the metal binding residues were also changed to alanine, to assess the roles of charge and ligation ability on catalytic efficiency. The resultant enzyme variants all structurally resemble the wild type enzyme as indicated by circular dichroism spectra and are tetramers. However, all have k(cat) reductions of approximately 10(3)-fold in AdoMet synthesis, whereas the MgATP and methionine K(m) values change by less than 3- and 8-fold, respectively. In the partial reaction of PPP(i) hydrolysis, mutants of the Mg(2+) binding residues have >700-fold reduced catalytic efficiency (k(cat)/K(m)), whereas the D118N and D238*N mutants are impaired less than 35-fold. The catalytic efficiency for PPP(i) hydrolysis by Mg(2+) site mutants is improved by AdoMet, like the wild type enzyme. In contrast AdoMet reduces the catalytic efficiency for PPP(i) hydrolysis by the D118N and D238*N mutants, indicating that the events involved in AdoMet activation are hindered in these methionyl binding site mutants. Ca(2+) uniquely activates the D271A mutant enzyme to 15% of the level of Mg(2+), in contrast to the approximately 1% Ca(2+) activation of the wild type enzyme. This indicates that the Asp-271 side chain size is a discriminator between the activating ability of Ca(2+) and the

  1. Oil-containing waste water treating material consisting of modified active carbon

    SciTech Connect

    Sato, H.; Shigeta, S.; Takenaka, Y.

    1982-03-16

    An oil-containing waste water treating material comprises an active carbon upon whose surface is chemically bonded at least one nitrogenous compound which is an amine or a quaternarized derivative thereof.

  2. Implementation of a Self-Consistent Stereo Processing Chain for 3D Stereo Reconstruction of the Lunar Landing Sites

    NASA Astrophysics Data System (ADS)

    Tasdelen, E.; Willner, K.; Unbekannt, H.; Glaeser, P.; Oberst, J.

    2014-04-01

    The department for Planetary Geodesy at TU Berlin is developing routines for photogrammetric processing of planetary image data to derive 3D representations of planetary surfaces. The ISIS software [1], developed by USGS, Flagstaff, is readily available, open source, and very well documented. Hence, ISIS was chosen as a prime processing platform and tool kit. However, ISIS does not provide a full photogrammetric stereo processing chain. Several components like image matching, bundle block adjustment (until recently) or digital terrain model (DTM) interpolation from 3D object points are missing. Our group aims to complete this photogrammetric stereo processing chain by implementing the missing components, taking advantage of already existing ISIS classes and functionality. With this abstract we would like to report on the development of our stereo processing chain and its first application on the Lunar Apollo landing sites.

  3. Implementation of a Self-Consistent Stereo Processing Chain for 3D Stereo Reconstruction of the Lunar Landing Sites

    NASA Astrophysics Data System (ADS)

    Tasdelen, E.; Willner, K.; Unbekannt, H.; Glaeser, P.; Oberst, J.

    2014-04-01

    The department for Planetary Geodesy at Technical University Berlin is developing routines for photogrammetric processing of planetary image data to derive 3D representations of planetary surfaces. The Integrated Software for Imagers and Spectrometers (ISIS) software (Anderson et al., 2004), developed by USGS, Flagstaff, is readily available, open source, and very well documented. Hence, ISIS was chosen as a prime processing platform and tool kit. However, ISIS does not provide a full photogrammetric stereo processing chain. Several components like image matching, bundle block adjustment (until recently) or digital terrain model (DTM) interpolation from 3D object points are missing. Our group aims to complete this photogrammetric stereo processing chain by implementing the missing components, taking advantage of already existing ISIS classes and functionality. We report here on the current status of the development of our stereo processing chain and its first application on the Lunar Apollo landing sites.

  4. Biomechanics of the vibrissa motor plant in rat: rhythmic whisking consists of triphasic neuromuscular activity.

    PubMed

    Hill, Dan N; Bermejo, Roberto; Zeigler, H Philip; Kleinfeld, David

    2008-03-26

    The biomechanics of a motor plant constrain the behavioral strategies that an animal has available to extract information from its environment. We used the rat vibrissa system as a model for active sensing and determined the pattern of muscle activity that drives rhythmic exploratory whisking. Our approach made use of electromyography to measure the activation of all relevant muscles in both head-fixed and unrestrained rats and two-dimensional imaging to monitor the position of the vibrissae in head-fixed rats. Our essential finding is that the periodic motion of the vibrissae and mystacial pad during whisking results from three phases of muscle activity. First, the vibrissae are thrust forward as the rostral extrinsic muscle, musculus (m.) nasalis, contracts to pull the pad and initiate protraction. Second, late in protraction, the intrinsic muscles pivot the vibrissae farther forward. Third, retraction involves the cessation of m. nasalis and intrinsic muscle activity and the contraction of the caudal extrinsic muscles m. nasolabialis and m. maxillolabialis to pull the pad and the vibrissae backward. We developed a biomechanical model of the whisking motor plant that incorporates the measured muscular mechanics along with movement vectors observed from direct muscle stimulation in anesthetized rats. The results of simulations of the model quantify how the combination of extrinsic and intrinsic muscle activity leads to an enhanced range of vibrissa motion than would be available from the intrinsic muscles alone. PMID:18367610

  5. The active site of ribulose-bisphosphate carboxylase/oxygenase

    SciTech Connect

    Hartman, F.C.

    1991-01-01

    The active site of ribulose-bisphosphate carboxylase/oxygenase requires interacting domains of adjacent, identical subunits. Most active-site residues are located within the loop regions of an eight-stranded {beta}/{alpha}-barrel which constitutes the larger C-terminal domain; additional key residues are located within a segment of the smaller N-terminal domain which partially covers the mouth of the barrel. Site-directed mutagenesis of the gene encoding the enzyme from Rhodospirillum rubrum has been used to delineate functions of active-site residues. 6 refs., 2 figs.

  6. 15 CFR 930.154 - Listing activities subject to routine interstate consistency review.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... under subpart H of 15 CFR part 923. Each State submitting this program change shall include evidence of... this subpart and subpart H of 15 CFR part 923. States which have complied with paragraphs (a) through... are reasonably foreseeable. Listed activities may have different geographic location...

  7. 15 CFR 930.154 - Listing activities subject to routine interstate consistency review.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... under subpart H of 15 CFR part 923. Each State submitting this program change shall include evidence of... this subpart and subpart H of 15 CFR part 923. States which have complied with paragraphs (a) through... are reasonably foreseeable. Listed activities may have different geographic location...

  8. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    SciTech Connect

    Zull, Lawrence M.; Yeniscavich, William

    2008-01-15

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

  9. DOE site performance assessment activities. Radioactive Waste Technical Support Program

    SciTech Connect

    Not Available

    1990-07-01

    Information on performance assessment capabilities and activities was collected from eight DOE sites. All eight sites either currently dispose of low-level radioactive waste (LLW) or plan to dispose of LLW in the near future. A survey questionnaire was developed and sent to key individuals involved in DOE Order 5820.2A performance assessment activities at each site. The sites surveyed included: Hanford Site (Hanford), Idaho National Engineering Laboratory (INEL), Los Alamos National Laboratory (LANL), Nevada Test Site (NTS), Oak Ridge National Laboratory (ORNL), Paducah Gaseous Diffusion Plant (Paducah), Portsmouth Gaseous Diffusion Plant (Portsmouth), and Savannah River Site (SRS). The questionnaire addressed all aspects of the performance assessment process; from waste source term to dose conversion factors. This report presents the information developed from the site questionnaire and provides a comparison of site-specific performance assessment approaches, data needs, and ongoing and planned activities. All sites are engaged in completing the radioactive waste disposal facility performance assessment required by DOE Order 5820.2A. Each site has achieved various degrees of progress and have identified a set of critical needs. Within several areas, however, the sites identified common needs and questions.

  10. A hybrid attitude controller consisting of electromagnetic torque rods and an active fluid ring

    NASA Astrophysics Data System (ADS)

    Nobari, Nona A.; Misra, Arun K.

    2014-01-01

    In this paper, a novel hybrid actuation system for satellite attitude stabilization is proposed along with its feasibility analysis. The system considered consists of two magnetic torque rods and one fluid ring to produce the control torque required in the direction in which magnetic torque rods cannot produce torque. A mathematical model of the system dynamics is derived first. Then a controller is developed to stabilize the attitude angles of a satellite equipped with the abovementioned set of actuators. The effect of failure of the fluid ring or a magnetic torque rod is examined as well. It is noted that the case of failure of the magnetic torque rod whose torque is along the pitch axis is the most critical, since the coupling between the roll or yaw motion and the pitch motion is quite weak. The simulation results show that the control system proposed is quite fault tolerant.

  11. Consistent abnormalities in metabolic network activity in idiopathic rapid eye movement sleep behaviour disorder

    PubMed Central

    Wu, Ping; Yu, Huan; Peng, Shichun; Dauvilliers, Yves; Wang, Jian; Ge, Jingjie; Zhang, Huiwei; Eidelberg, David

    2014-01-01

    Rapid eye movement sleep behaviour disorder has been evaluated using Parkinson’s disease-related metabolic network. It is unknown whether this disorder is itself associated with a unique metabolic network. 18F-fluorodeoxyglucose positron emission tomography was performed in 21 patients (age 65.0 ± 5.6 years) with idiopathic rapid eye movement sleep behaviour disorder and 21 age/gender-matched healthy control subjects (age 62.5 ± 7.5 years) to identify a disease-related pattern and examine its evolution in 21 hemi-parkinsonian patients (age 62.6 ± 5.0 years) and 16 moderate parkinsonian patients (age 56.9 ± 12.2 years). We identified a rapid eye movement sleep behaviour disorder-related metabolic network characterized by increased activity in pons, thalamus, medial frontal and sensorimotor areas, hippocampus, supramarginal and inferior temporal gyri, and posterior cerebellum, with decreased activity in occipital and superior temporal regions. Compared to the healthy control subjects, network expressions were elevated (P < 0.0001) in the patients with this disorder and in the parkinsonian cohorts but decreased with disease progression. Parkinson’s disease-related network activity was also elevated (P < 0.0001) in the patients with rapid eye movement sleep behaviour disorder but lower than in the hemi-parkinsonian cohort. Abnormal metabolic networks may provide markers of idiopathic rapid eye movement sleep behaviour disorder to identify those at higher risk to develop neurodegenerative parkinsonism. PMID:25338949

  12. Ionizable Side Chains at Catalytic Active Sites of Enzymes

    PubMed Central

    Jimenez-Morales, David; Liang, Jie

    2012-01-01

    Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1072 Å3. The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes. PMID:22484856

  13. The Root Apex of Arabidopsis thaliana Consists of Four Distinct Zones of Growth Activities

    PubMed Central

    De Cnodder, Tinne; Le, Jie

    2006-01-01

    In the growing apex of Arabidopsis thaliana primary roots, cells proceed through four distinct phases of cellular activities. These zones and their boundaries can be well defined based on their characteristic cellular activities. The meristematic zone comprises, and is limited to, all cells that undergo mitotic divisions. Detailed in vivo analysis of transgenic lines reveals that, in the Columbia-0 ecotype, the meristem stretches up to 200 µm away from the junction between root and root cap (RCJ). In the transition zone, 200 to about 520 µm away from the RCJ, cells undergo physiological changes as they prepare for their fast elongation. Upon entering the transition zone, they progressively develop a central vacuole, polarize the cytoskeleton and remodel their cell walls. Cells grow slowly during this transition: it takes ten hours to triplicate cell length from 8.5 to about 35 µm in the trichoblast cell files. In the fast elongation zone, which covers the zone from 520 to about 850 µm from the RCJ, cell length quadruplicates to about 140 µm in only two hours. This is accompanied by drastic and specific cell wall alterations. Finally, root hairs fully develop in the growth terminating zone, where root cells undergo a minor elongation to reach their mature lengths. PMID:19517000

  14. Consistent estimation of complete neuronal connectivity in large neuronal populations using sparse "shotgun" neuronal activity sampling.

    PubMed

    Mishchenko, Yuriy

    2016-10-01

    We investigate the properties of recently proposed "shotgun" sampling approach for the common inputs problem in the functional estimation of neuronal connectivity. We study the asymptotic correctness, the speed of convergence, and the data size requirements of such an approach. We show that the shotgun approach can be expected to allow the inference of complete connectivity matrix in large neuronal populations under some rather general conditions. However, we find that the posterior error of the shotgun connectivity estimator grows quickly with the size of unobserved neuronal populations, the square of average connectivity strength, and the square of observation sparseness. This implies that the shotgun connectivity estimation will require significantly larger amounts of neuronal activity data whenever the number of neurons in observed neuronal populations remains small. We present a numerical approach for solving the shotgun estimation problem in general settings and use it to demonstrate the shotgun connectivity inference in the examples of simulated synfire and weakly coupled cortical neuronal networks. PMID:27515518

  15. Changes in active site histidine hydrogen bonding trigger cryptochrome activation.

    PubMed

    Ganguly, Abir; Manahan, Craig C; Top, Deniz; Yee, Estella F; Lin, Changfan; Young, Michael W; Thiel, Walter; Crane, Brian R

    2016-09-01

    Cryptochrome (CRY) is the principal light sensor of the insect circadian clock. Photoreduction of the Drosophila CRY (dCRY) flavin cofactor to the anionic semiquinone (ASQ) restructures a C-terminal tail helix (CTT) that otherwise inhibits interactions with targets that include the clock protein Timeless (TIM). All-atom molecular dynamics (MD) simulations indicate that flavin reduction destabilizes the CTT, which undergoes large-scale conformational changes (the CTT release) on short (25 ns) timescales. The CTT release correlates with the conformation and protonation state of conserved His378, which resides between the CTT and the flavin cofactor. Poisson-Boltzmann calculations indicate that flavin reduction substantially increases the His378 pKa Consistent with coupling between ASQ formation and His378 protonation, dCRY displays reduced photoreduction rates with increasing pH; however, His378Asn/Arg variants show no such pH dependence. Replica-exchange MD simulations also support CTT release mediated by changes in His378 hydrogen bonding and verify other responsive regions of the protein previously identified by proteolytic sensitivity assays. His378 dCRY variants show varying abilities to light-activate TIM and undergo self-degradation in cellular assays. Surprisingly, His378Arg/Lys variants do not degrade in light despite maintaining reactivity toward TIM, thereby implicating different conformational responses in these two functions. Thus, the dCRY photosensory mechanism involves flavin photoreduction coupled to protonation of His378, whose perturbed hydrogen-bonding pattern alters the CTT and surrounding regions. PMID:27551082

  16. Radioiodinated rat parathyroid hormone-(1-34) binds to its receptor on rat osteosarcoma cells in a manner consistent with two classes of binding sites

    SciTech Connect

    Seitz, P.K.; Nickols, G.A.; Nickols, M.A.; McPherson, M.B.; Cooper, C.W. )

    1990-04-01

    Binding of 125I-labeled rat (r) PTH-(1-34) to ROS 17/2.8 osteoblastic bone cells and to membranes from these cells was examined. Competitive binding inhibition experiments were performed using unlabeled rPTH-(1-34) with particular emphasis on concentrations of peptide below 1 nM. In intact cells, binding of labeled rPTH-(1-34) was highly specific, and inhibition of binding by unlabeled ligand suggested the presence of two classes of binding sites, one with high affinity and low capacity (KD = 40 pM, approximately 20% of total binding sites) and the other with lower affinity and high capacity (KD = 2 nM, approximately 80% of the sites). Membranes prepared from ROS cells also exhibited a pattern of binding from competitive inhibition curves consistent with two distinct binding sites (KD = 30 pM and 6 nM). In intact ROS cells, cellular cAMP levels increased over the range of 10(-11)-10(-9) M rPTH-(1-34) with an ED50 intermediate between the two KD values (0.25 nM). These data suggest that osteoblastic bone cells possess two distinct classes of membrane receptors for PTH. Since the KD of the higher affinity site more closely approximates circulating concentrations of PTH, binding to this site may have physiologic relevance.

  17. Discovery and analysis of consistent active sub-networks in cancers

    PubMed Central

    2013-01-01

    Gene expression profiles can show significant changes when genetically diseased cells are compared with non-diseased cells. Biological networks are often used to identify active subnetworks (ASNs) of the diseases from the expression profiles to understand the reason behind the observed changes. Current methodologies for discovering ASNs mostly use undirected PPI networks and node centric approaches. This can limit their ability to find the meaningful ASNs when using integrated networks having comprehensive information than the traditional protein-protein interaction networks. Using appropriate scoring functions to assess both genes and their interactions may allow the discovery of better ASNs. In this paper, we present CASNet, which aims to identify better ASNs using (i) integrated interaction networks (mixed graphs), (ii) directions of regulations of genes, and (iii) combined node and edge scores. We simplify and extend previous methodologies to incorporate edge evaluations and lessen their sensitivity to significance thresholds. We formulate our objective functions using mixed integer programming (MIP) and show that optimal solutions may be obtained. We compare the ASNs obtained by CASNet and similar other approaches to show that CASNet can often discover more meaningful and stable regulatory ASNs. Our analysis of a breast cancer dataset finds that the positive feedback loops across 7 genes, AR, ESR1, MYC, E2F2, PGR, BCL2 and CCND1 are conserved across the basal/triple negative subtypes in multiple datasets that could potentially explain the aggressive nature of this cancer subtype. Furthermore, comparison of the basal subtype of breast cancer and the mesenchymal subtype of glioblastoma ASNs shows that an ASN in the vicinity of IL6 is conserved across the two subtypes. This result suggests that subtypes of different cancers can show molecular similarities indicating that the therapeutic approaches in different types of cancers may be shared. PMID:23368093

  18. Active Sites Environmental Monitoring Program FY 1996 annual report

    SciTech Connect

    Morrissey, C.M.; Marshall, D.S.; Cunningham, G.R.

    1997-11-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1995 through September 1996. The Radioactive Solid Waste Operations Group (RSWOG) of the Waste Management and Remedial Action Division (WMRAD) and the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) established ASEMP in 1989. The purpose of the program is to provide early detection and performance monitoring at active low-level waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 North as required by Chapters 2 and 3 of US Department of Energy Order 5820.2A.

  19. Active sites environmental monitoring Program - Program Plan: Revision 2

    SciTech Connect

    Morrissey, C.M.; Hicks, D.S.; Ashwood, T.L.; Cunningham, G.R.

    1994-05-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of active low-level-waste (LLW) and transuranic (TRU) waste facilities at Oak Ridge National Laboratory (ORNL). Several changes have recently occurred in regard to the sites that are currently used for waste storage and disposal. These changes require a second set of revisions to the ASEMP program plan. This document incorporates those revisions. This program plan presents the organization and procedures for monitoring the active sites. The program plan also provides internal reporting levels to guide the evaluation of monitoring results.

  20. The active site behaviour of electrochemically synthesised gold nanomaterials.

    PubMed

    Plowman, Blake J; O'Mullane, Anthony P; Bhargava, Suresh K

    2011-01-01

    Even though gold is the noblest of metals, a weak chemisorber and is regarded as being quite inert, it demonstrates significant electrocatalytic activity in its nanostructured form. It is demonstrated here that nanostructured and even evaporated thin films of gold are covered with active sites which are responsible for such activity. The identification of these sites is demonstrated with conventional electrochemical techniques such as cyclic voltammetry as well as a large amplitude Fourier transformed alternating current (FT-ac) method under acidic and alkaline conditions. The latter technique is beneficial in determining if an electrode process is either Faradaic or capacitive in nature. The observed behaviour is analogous to that observed for activated gold electrodes whose surfaces have been severely disrupted by cathodic polarisation in the hydrogen evolution region. It is shown that significant electrochemical oxidation responses occur at discrete potential values well below that for the formation of the compact monolayer oxide of bulk gold and are attributed to the facile oxidation of surface active sites. Several electrocatalytic reactions are explored in which the onset potential is determined by the presence of such sites on the surface. Significantly, the facile oxidation of active sites is used to drive the electroless deposition of metals such as platinum, palladium and silver from their aqueous salts on the surface of gold nanostructures. The resultant surface decoration of gold with secondary metal nanoparticles not only indicates regions on the surface which are rich in active sites but also provides a method to form interesting bimetallic surfaces. PMID:22455038

  1. Active site - a site of binding of affinity inhibitors in baker's yeast inorganic pyrophosphatase

    SciTech Connect

    Svyato, I.E.; Sklyankina, V.A.; Avaeva, S.M.

    1986-03-20

    The interaction of the enzyme-substrate complex with methyl phosphate, O-phosphoethanolamine, O-phosphopropanolamine, N-acetylphosphoserine, and phosphoglyolic acid, as well as pyrophosphatase, modified by monoesters of phosphoric acid, with pyrophosphate and tripolyphosphate, was investigated. It was shown that the enzyme containing the substrate in the active site does not react with monophosphates, but modified pyrophosphatase entirely retains the ability to bind polyanions to the regulatory site. It is concluded that the inactivation of baker's yeast inorganic pyrophosphatase by monoesters of phosphoric acid, which are affinity inhibitors of it, is the result of modification of the active site of the enzyme.

  2. A small ribozyme with dual-site kinase activity

    PubMed Central

    Biondi, Elisa; Maxwell, Adam W.R.; Burke, Donald H.

    2012-01-01

    Phosphoryl transfer onto backbone hydroxyls is a recognized catalytic activity of nucleic acids. We find that kinase ribozyme K28 possesses an unusually complex active site that promotes (thio)phosphorylation of two residues widely separated in primary sequence. After allowing the ribozyme to radiolabel itself by phosphoryl transfer from [γ-32P]GTP, DNAzyme-mediated cleavage yielded two radiolabeled cleavage fragments, indicating phosphorylation sites within each of the two cleavage fragments. These sites were mapped by alkaline digestion and primer extension pausing. Enzymatic digestion and mutational analysis identified nucleotides important for activity and established the active structure as being a constrained pseudoknot with unusual connectivity that may juxtapose the two reactive sites. Nuclease sensitivities for nucleotides near the pseudoknot core were altered in the presence of GTPγS, indicating donor-induced folding. The 5′ target site was more strongly favored in full-length ribozyme K28 (128 nt) than in truncated RNAs (58 nt). Electrophoretic mobilities of self-thiophosphorylated products on organomercurial gels are distinct from the 5′ mono-thiophosphorylated product produced by reaction with polynucleotide kinase, potentially indicating simultaneous labeling of both sites within individual RNA strands. Our evidence supports a single, compact structure with local dynamics, rather than global rearrangement, as being responsible for dual-site phosphorylation. PMID:22618879

  3. Controlled tetra-Fc sialylation of IVIg results in a drug candidate with consistent enhanced anti-inflammatory activity

    PubMed Central

    Washburn, Nathaniel; Schwab, Inessa; Ortiz, Daniel; Bhatnagar, Naveen; Lansing, Jonathan C.; Medeiros, Amy; Tyler, Steven; Mekala, Divya; Cochran, Edward; Sarvaiya, Hetal; Garofalo, Kevin; Meccariello, Robin; Meador, James W.; Rutitzky, Laura; Schultes, Birgit C.; Ling, Leona; Avery, William; Nimmerjahn, Falk; Manning, Anthony M.; Kaundinya, Ganesh V.; Bosques, Carlos J.

    2015-01-01

    Despite the beneficial therapeutic effects of intravenous immunoglobulin (IVIg) in inflammatory diseases, consistent therapeutic efficacy and potency remain major limitations for patients and physicians using IVIg. These limitations have stimulated a desire to generate therapeutic alternatives that could leverage the broad mechanisms of action of IVIg while improving therapeutic consistency and potency. The identification of the important anti-inflammatory role of fragment crystallizable domain (Fc) sialylation has presented an opportunity to develop more potent Ig therapies. However, translating this concept to potent anti-inflammatory therapeutics has been hampered by the difficulty of generating suitable sialylated products for clinical use. Therefore, we set out to develop the first, to our knowledge, robust and scalable process for generating a well-qualified sialylated IVIg drug candidate with maximum Fc sialylation devoid of unwanted alterations to the IVIg mixture. Here, we describe a controlled enzymatic, scalable process to produce a tetra-Fc–sialylated (s4-IVIg) IVIg drug candidate and its qualification across a wide panel of analytic assays, including physicochemical, pharmacokinetic, biodistribution, and in vivo animal models of inflammation. Our in vivo characterization of this drug candidate revealed consistent, enhanced anti-inflammatory activity up to 10-fold higher than IVIg across different animal models. To our knowledge, this candidate represents the first s4-IVIg suitable for clinical use; it is also a valuable therapeutic alternative with more consistent and potent anti-inflammatory activity. PMID:25733881

  4. Dashboard applications to monitor experiment activities at sites

    NASA Astrophysics Data System (ADS)

    Andreeva, Julia; Belforte, Stefano; Boehm, Max; Casajus, Adrian; Flix, Josep; Gaidioz, Benjamin; Grigoras, Costin; Kokoszkiewicz, Lukasz; Lanciotti, Elisa; Rocha, Ricardo; Saiz, Pablo; Santinelli, Roberto; Sidorova, Irina; Sciabà, Andrea; Tsaregorodtsev, Andrei

    2010-04-01

    In the framework of a distributed computing environment, such as WLCG, monitoring has a key role in order to keep under control activities going on in sites located in different countries and involving people based in many different sites. To be able to cope with such a large scale heterogeneous infrastructure, it is necessary to have monitoring tools providing a complete and reliable view of the overall performance of the sites. Moreover, the structure of a monitoring system critically depends on the object to monitor and on the users it is addressed to. In this article we will describe two different monitoring systems both aimed to monitor activities and services provided in the WLCG framework, but designed in order to meet the requirements of different users: Site Status Board has an overall view of the services available in all the sites supporting an experiment, whereas Siteview provides a complete view of all the activities going on at a site, for all the experiments supported by the site.

  5. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site.

    PubMed

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-04-20

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2domains reveal that the (HhH)2domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide. PMID:26908655

  6. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site

    PubMed Central

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-01-01

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2 domains reveal that the (HhH)2 domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2 domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2 domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2 domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide. PMID:26908655

  7. Large-Scale Variational Two-Electron Reduced-Density-Matrix-Driven Complete Active Space Self-Consistent Field Methods.

    PubMed

    Fosso-Tande, Jacob; Nguyen, Truong-Son; Gidofalvi, Gergely; DePrince, A Eugene

    2016-05-10

    A large-scale implementation of the complete active space self-consistent field (CASSCF) method is presented. The active space is described using the variational two-electron reduced-density-matrix (v2RDM) approach, and the algorithm is applicable to much larger active spaces than can be treated using configuration-interaction-driven methods. Density fitting or Cholesky decomposition approximations to the electron repulsion integral tensor allow for the simultaneous optimization of large numbers of external orbitals. We have tested the implementation by evaluating singlet-triplet energy gaps in the linear polyacene series and two dinitrene biradical compounds. For the acene series, we report computations that involve active spaces consisting of as many as 50 electrons in 50 orbitals and the simultaneous optimization of 1892 orbitals. For the dinitrene compounds, we find that the singlet-triplet gaps obtained from v2RDM-driven CASSCF with partial three-electron N-representability conditions agree with those obtained from configuration-interaction-driven approaches to within one-third of 1 kcal mol(-1). When enforcing only the two-electron N-representability conditions, v2RDM-driven CASSCF yields less accurate singlet-triplet energy gaps in these systems, but the quality of the results is still far superior to those obtained from standard single-reference approaches. PMID:27065086

  8. Solvent dependence of Stokes shift for organic solute-solvent systems: A comparative study by spectroscopy and reference interaction-site model-self-consistent-field theory

    NASA Astrophysics Data System (ADS)

    Nishiyama, Katsura; Watanabe, Yasuhiro; Yoshida, Norio; Hirata, Fumio

    2013-09-01

    The Stokes shift magnitudes for coumarin 153 (C153) in 13 organic solvents with various polarities have been determined by means of steady-state spectroscopy and reference interaction-site model-self-consistent-field (RISM-SCF) theory. RISM-SCF calculations have reproduced experimental results fairly well, including individual solvent characteristics. It is empirically known that in some solvents, larger Stokes shift magnitudes are detected than anticipated on the basis of the solvent relative permittivity, ɛr. In practice, 1,4-dioxane (ɛr = 2.21) provides almost identical Stokes shift magnitudes to that of tetrahydrofuran (THF, ɛr = 7.58), for C153 and other typical organic solutes. In this work, RISM-SCF theory has been used to estimate the energetics of C153-solvent systems involved in the absorption and fluorescence processes. The Stokes shift magnitudes estimated by RISM-SCF theory are ˜5 kJ mol-1 (400 cm-1) less than those determined by spectroscopy; however, the results obtained are still adequate for dipole moment comparisons, in a qualitative sense. We have also calculated the solute-solvent site-site radial distributions by this theory. It is shown that solvation structures with respect to the C-O-C framework, which is common to dioxane and THF, in the near vicinity (˜0.4 nm) of specific solute sites can largely account for their similar Stokes shift magnitudes. In previous works, such solute-solvent short-range interactions have been explained in terms of the higher-order multipole moments of the solvents. Our present study shows that along with the short-range interactions that contribute most significantly to the energetics, long-range electrostatic interactions are also important. Such long-range interactions are effective up to 2 nm from the solute site, as in the case of a typical polar solvent, acetonitrile.

  9. Active-site mobility revealed by the crystal structure of arylmalonate decarboxylase from Bordetella bronchiseptica.

    PubMed

    Kuettner, E Bartholomeus; Keim, Antje; Kircher, Markus; Rosmus, Susann; Sträter, Norbert

    2008-03-21

    Arylmalonate decarboxylase (AMDase) from Bordetella bronchiseptica catalyzes the enantioselective decarboxylation of arylmethylmalonates without the need for an organic cofactor or metal ion. The decarboxylation reaction is of interest for the synthesis of fine chemicals. As basis for an analysis of the catalytic mechanism of AMDase and for a rational enzyme design, we determined the X-ray structure of the enzyme up to 1.9 A resolution. Like the distantly related aspartate or glutamate racemases, AMDase has an aspartate transcarbamoylase fold consisting of two alpha/beta domains related by a pseudo dyad. However, the domain orientation of AMDase differs by about 30 degrees from that of the glutamate racemases, and also significant differences in active-site structures are observed. In the crystals, four independent subunits showing different conformations of active-site loops are present. This finding is likely to reflect the active-site mobility necessary for catalytic activity. PMID:18258259

  10. Fully relativistic complete active space self-consistent field for large molecules: Quasi-second-order minimax optimization

    SciTech Connect

    Bates, Jefferson E.; Shiozaki, Toru

    2015-01-28

    We develop an efficient algorithm for four-component complete active space self-consistent field (CASSCF) methods on the basis of the Dirac equation that takes into account spin–orbit and other relativistic effects self-consistently. Orbitals are optimized using a trust-region quasi-Newton method with Hessian updates so that energies are minimized with respect to rotations among electronic orbitals and maximized with respect to rotations between electronic and positronic orbitals. Utilizing density fitting and parallel computation, we demonstrate that Dirac–Coulomb CASSCF calculations can be routinely performed on systems with 100 atoms and a few heavy-elements. The convergence behavior and wall times for octachloridodirhenate(III) and a tungsten methylidene complex are presented. In addition, the excitation energies of octachloridodirhenate(III) are reported using a state-averaged variant.

  11. Molecular Imprint of Enzyme Active Site by Camel Nanobodies

    PubMed Central

    Li, Jiang-Wei; Xia, Lijie; Su, Youhong; Liu, Hongchun; Xia, Xueqing; Lu, Qinxia; Yang, Chunjin; Reheman, Kalbinur

    2012-01-01

    Screening of inhibitory Ab1 antibodies is a critical step for producing catalytic antibodies in the anti-idiotypic approach. However, the incompatible surface of the active site of the enzyme and the antigen-binding site of heterotetrameric conventional antibodies become the limiting step. Because camelid-derived nanobodies possess the potential to preferentially bind to the active site of enzymes due to their small size and long CDR3, we have developed a novel approach to produce antibodies with alliinase activities by exploiting the molecular mimicry of camel nanobodies. By screening the camelid-derived variable region of the heavy chain cDNA phage display library with alliinase, we obtained an inhibitory nanobody VHHA4 that recognizes the active site. Further screening with VHHA4 from the same variable domain of the heavy chain of a heavy-chain antibody library led to a higher incidence of anti-idiotypic Ab2 abzymes with alliinase activities. One of the abzymes, VHHC10, showed the highest activity that can be inhibited by Ab1 VHHA4 and alliinase competitive inhibitor penicillamine and significantly suppressed the B16 tumor cell growth in the presence of alliin in vitro. The results highlight the feasibility of producing abzymes via anti-idiotypic nanobody approach. PMID:22374998

  12. Active Sites Environmental Monitoring Program: Mid-FY 1991 report

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1991-10-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1990 through March 1991. The ASEMP was established in 1989 by Solid Waste Operations and the Environmental Sciences Division to provide early detection and performance monitoring at active low-level radioactive waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. Monitoring results continue to demonstrate the no LLW is being leached from the storage vaults on the tumulus pads. Loading of vaults on Tumulus II began during this reporting period and 115 vaults had been loaded by the end of March 1991.

  13. An active-site peptide from pepsin C

    PubMed Central

    Kay, J.; Ryle, A. P.

    1971-01-01

    Porcine pepsin C is inactivated rapidly and irreversibly by diazoacetyl-dl-norleucine methyl ester in the presence of cupric ions at pH values above 4.5. The inactivation is specific in that complete inactivation accompanies the incorporation of 1mol of inhibitor residue/mol of enzyme and evidence has been obtained to suggest that the reaction occurs with an active site residue. The site of reaction is the β-carboxyl group of an aspartic acid residue in the sequence Ile-Val-Asp-Thr. This sequence is identical with the active-site sequence in pepsin and the significance of this in terms of the different activities of the two enzymes is discussed. PMID:4942834

  14. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    PubMed

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined. PMID:27243042

  15. An atomic orbital-based formulation of the complete active space self-consistent field method on graphical processing units

    SciTech Connect

    Hohenstein, Edward G.; Luehr, Nathan; Ufimtsev, Ivan S.; Martínez, Todd J.

    2015-06-14

    Despite its importance, state-of-the-art algorithms for performing complete active space self-consistent field (CASSCF) computations have lagged far behind those for single reference methods. We develop an algorithm for the CASSCF orbital optimization that uses sparsity in the atomic orbital (AO) basis set to increase the applicability of CASSCF. Our implementation of this algorithm uses graphical processing units (GPUs) and has allowed us to perform CASSCF computations on molecular systems containing more than one thousand atoms. Additionally, we have implemented analytic gradients of the CASSCF energy; the gradients also benefit from GPU acceleration as well as sparsity in the AO basis.

  16. Active Site Inhibitors Protect Protein Kinase C from Dephosphorylation and Stabilize Its Mature Form*

    PubMed Central

    Gould, Christine M.; Antal, Corina E.; Reyes, Gloria; Kunkel, Maya T.; Adams, Ryan A.; Ziyar, Ahdad; Riveros, Tania; Newton, Alexandra C.

    2011-01-01

    Conformational changes acutely control protein kinase C (PKC). We have previously shown that the autoinhibitory pseudosubstrate must be removed from the active site in order for 1) PKC to be phosphorylated by its upstream kinase phosphoinositide-dependent kinase 1 (PDK-1), 2) the mature enzyme to bind and phosphorylate substrates, and 3) the mature enzyme to be dephosphorylated by phosphatases. Here we show an additional level of conformational control; binding of active site inhibitors locks PKC in a conformation in which the priming phosphorylation sites are resistant to dephosphorylation. Using homogeneously pure PKC, we show that the active site inhibitor Gö 6983 prevents the dephosphorylation by pure protein phosphatase 1 (PP1) or the hydrophobic motif phosphatase, pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP). Consistent with results using pure proteins, treatment of cells with the competitive inhibitors Gö 6983 or bisindolylmaleimide I, but not the uncompetitive inhibitor bisindolylmaleimide IV, prevents the dephosphorylation and down-regulation of PKC induced by phorbol esters. Pulse-chase analyses reveal that active site inhibitors do not affect the net rate of priming phosphorylations of PKC; rather, they inhibit the dephosphorylation triggered by phorbol esters. These data provide a molecular explanation for the recent studies showing that active site inhibitors stabilize the phosphorylation state of protein kinases B/Akt and C. PMID:21715334

  17. Multiscale Modeling Indicates That Temperature Dependent [Ca2+]i Spiking in Astrocytes Is Quantitatively Consistent with Modulated SERCA Activity

    PubMed Central

    Komin, Niko; Moein, Mahsa; Ellisman, Mark H.; Skupin, Alexander

    2015-01-01

    Changes in the cytosolic Ca2+ concentration ([Ca2+]i) are the most predominant active signaling mechanism in astrocytes that can modulate neuronal activity and is assumed to influence neuronal plasticity. Although Ca2+ signaling in astrocytes has been intensively studied in the past, our understanding of the signaling mechanism and its impact on tissue level is still incomplete. Here we revisit our previously published data on the strong temperature dependence of Ca2+ signals in both cultured primary astrocytes and astrocytes in acute brain slices of mice. We apply multiscale modeling to test the hypothesis that the temperature dependent [Ca2+]i spiking is mainly caused by the increased activity of the sarcoendoplasmic reticulum ATPases (SERCAs) that remove Ca2+ from the cytosol into the endoplasmic reticulum. Quantitative comparison of experimental data with multiscale simulations supports the SERCA activity hypothesis. Further analysis of multiscale modeling and traditional rate equations indicates that the experimental observations are a spatial phenomenon where increasing pump strength leads to a decoupling of Ca2+ release sites and subsequently to vanishing [Ca2+]i spikes. PMID:26347125

  18. Rat intestinal trehalase. Studies of the active site.

    PubMed

    Chen, C C; Guo, W J; Isselbacher, K J

    1987-11-01

    Rat intestinal trehalase was solubilized, purified and reconstituted into proteoliposomes. With octyl glucoside as the solubilizing detergent, the purified protein appeared as a single band on SDS/polyacrylamide-gel electrophoresis with an apparent molecular mass of 67 kDa. Kinetic studies indicated that the active site of this enzyme can be functionally divided into two adjacent regions, namely a binding site (with pKa 4.8) and a catalytic site (with pKa 7.2). Other findings suggested that the catalytic site contains a functional thiol group, which is sensitive to inhibition by N-ethylmaleimide, Hg2+ and iodoacetate. Substrate protection and iodoacetate labelling of the thiol group demonstrated that only a protein of 67 kDa was labelled. Furthermore, sucrose and phlorizin protected the thiol group, but Tris-like inhibitors did not. Structure-inhibition analysis of Tris-like inhibitors, the pH effect of Tris inhibition and Tris protection of 1-(3-dimethylaminopropyl)-3-ethylcarbodi-imide inactivation permitted characterization and location of a separate site containing a carboxy group for Tris binding, which may also be the binding region. On the basis of these findings, a possible structure for the active site of trehalase is proposed. PMID:3426558

  19. Active Site and Remote Contributions to Catalysis in Methylthioadenosine Nucleosidases

    PubMed Central

    Thomas, Keisha; Cameron, Scott A.; Almo, Steven C.; Burgos, Emmanuel S.; Gulab, Shivali A.; Schramm, Vern L.

    2015-01-01

    5′-Methylthioadenosine/S-adenosyl-L-homocysteine nucleosidases (MTANs) catalyze the hydrolysis of 5′-methylthioadenosine to adenine and 5-methylthioribose. The amino acid sequences of the MTANs from Vibrio cholerae (VcMTAN) and Escherichia coli (EcMTAN) are 60% identical and 75% similar. Protein structure folds and kinetic properties are similar. However, binding of transition-state analogues is dominated by favorable entropy in VcMTAN and by enthalpy in EcMTAN. Catalytic sites of VcMTAN and EcMTAN in contact with reactants differ by two residues; Ala113 and Val153 in VcMTAN are Pro113 and Ile152, respectively, in EcMTAN. We mutated the VcMTAN catalytic site residues to match those of EcMTAN in anticipation of altering its properties toward EcMTAN. Inhibition of VcMTAN by transition-state analogues required filling both active sites of the homodimer. However, in the Val153Ile mutant or double mutants, transition-state analogue binding at one site caused complete inhibition. Therefore, a single amino acid, Val153, alters the catalytic site cooperativity in VcMTAN. The transition-state analogue affinity and thermodynamics in mutant VcMTAN became even more unlike those of EcMTAN, the opposite of expectations from catalytic site similarity; thus, catalytic site contacts in VcMTAN are unable to recapitulate the properties of EcMTAN. X-ray crystal structures of EcMTAN, VcMTAN, and a multiple-site mutant of VcMTAN most closely resembling EcMTAN in catalytic site contacts show no major protein conformational differences. The overall protein architectures of these closely related proteins are implicated in contributing to the catalytic site differences. PMID:25806409

  20. A caspase active site probe reveals high fractional inhibition needed to block DNA fragmentation.

    PubMed

    Méthot, Nathalie; Vaillancourt, John P; Huang, JingQi; Colucci, John; Han, Yongxin; Ménard, Stéphane; Zamboni, Robert; Toulmond, Sylvie; Nicholson, Donald W; Roy, Sophie

    2004-07-01

    Apoptotic markers consist of either caspase substrate cleavage products or phenotypic changes that manifest themselves as a consequence of caspase-mediated substrate cleavage. We have shown recently that pharmacological inhibitors of caspase activity prevent the appearance of two such apoptotic manifestations, alphaII-spectrin cleavage and DNA fragmentation, but that blockade of the latter required a significantly higher concentration of inhibitor. We investigated this phenomenon through the use of a novel radiolabeled caspase inhibitor, [(125)I]M808, which acts as a caspase active site probe. [(125)I]M808 bound to active caspases irreversibly and with high sensitivity in apoptotic cell extracts, in tissue extracts from several commonly used animal models of cellular injury, and in living cells. Moreover, [(125)I]M808 detected active caspases in septic mice when injected intravenously. Using this caspase probe, an active site occupancy assay was developed and used to measure the fractional inhibition required to block apoptosis-induced DNA fragmentation. In thymocytes, occupancy of up to 40% of caspase active sites had no effect on DNA fragmentation, whereas inhibition of half of the DNA cleaving activity required between 65 and 75% of active site occupancy. These results suggest that a high and persistent fractional inhibition will be required for successful caspase inhibition-based therapies. PMID:15067000

  1. Water in the Active Site of Ketosteroid Isomerase

    PubMed Central

    Hanoian, Philip; Hammes-Schiffer, Sharon

    2011-01-01

    Classical molecular dynamics simulations were utilized to investigate the structural and dynamical properties of water in the active site of ketosteroid isomerase (KSI) to provide insight into the role of these water molecules in the enzyme-catalyzed reaction. This reaction is thought to proceed via a dienolate intermediate that is stabilized by hydrogen bonding with residues Tyr16 and Asp103. A comparative study was performed for the wild-type (WT) KSI and the Y16F, Y16S, and Y16F/Y32F/Y57F (FFF) mutants. These systems were studied with three different bound ligands: equilenin, which is an intermediate analog, and the intermediate states of two steroid substrates. Several distinct water occupation sites were identified in the active site of KSI for the WT and mutant systems. Three additional sites were identified in the Y16S mutant that were not occupied in WT KSI or the other mutants studied. The number of water molecules directly hydrogen bonded to the ligand oxygen was approximately two waters in the Y16S mutant, one water in the Y16F and FFF mutants, and intermittent hydrogen bonding of one water molecule in WT KSI. The molecular dynamics trajectories of the Y16F and FFF mutants reproduced the small conformational changes of residue 16 observed in the crystal structures of these two mutants. Quantum mechanical/molecular mechanical calculations of 1H NMR chemical shifts of the protons in the active site hydrogen-bonding network suggest that the presence of water in the active site does not prevent the formation of short hydrogen bonds with far-downfield chemical shifts. The molecular dynamics simulations indicate that the active site water molecules exchange much more frequently for WT KSI and the FFF mutant than for the Y16F and Y16S mutants. This difference is most likely due to the hydrogen-bonding interaction between Tyr57 and an active site water molecule that is persistent in the Y16F and Y16S mutants but absent in the FFF mutant and significantly less

  2. Energy transfer at the active sites of heme proteins

    SciTech Connect

    Dlott, D.D.; Hill, J.R.

    1995-12-31

    Experiments using a picosecond pump-probe apparatus at the Picosecond Free-electron Laser Center at Stanford University, were performed to investigate the relaxation of carbon monoxide bound to the active sites of heme proteins. The significance of these experiments is two-fold: (1) they provide detailed information about molecular dynamics occurring at the active sites of proteins; and (2) they provide insight into the nature of vibrational relaxation processes in condensed matter. Molecular engineering is used to construct various molecular systems which are studied with the FEL. We have studied native proteins, mainly myoglobin obtained from different species, mutant proteins produced by genetic engineering using recombinant DNA techniques, and a variety of model systems which mimic the structures of the active sites of native proteins, which are produced using molecular synthesis. Use of these different systems permits us to investigate how specific molecular structural changes affect dynamical processes occurring at the active sites. This research provides insight into the problems of how different species needs are fulfilled by heme proteins which have greatly different functionality, which is induced by rather small structural changes.

  3. Chemical Modification of Papain and Subtilisin: An Active Site Comparison

    ERIC Educational Resources Information Center

    St-Vincent, Mireille; Dickman, Michael

    2004-01-01

    An experiment using methyle methanethiosulfonate (MMTS) and phenylmethylsulfonyl flouride (PMSF) to specifically modify the cysteine and serine residues in the active sites of papain and subtilism respectively is demonstrated. The covalent modification of these enzymes and subsequent rescue of papain shows the beginning biochemist that proteins…

  4. The endothelial cell binding site for advanced glycation end products consists of a complex: an integral membrane protein and a lactoferrin-like polypeptide.

    PubMed

    Schmidt, A M; Mora, R; Cao, R; Yan, S D; Brett, J; Ramakrishnan, R; Tsang, T C; Simionescu, M; Stern, D

    1994-04-01

    Advanced glycation end products (AGEs), formed as the result of the extended interaction of proteins with ketoses, modulate central properties of endothelial cells and mononuclear phagocytes by interacting with a cell surface binding site comprised of a novel integral membrane protein (receptor for AGE = RAGE) and a lactoferrin-like polypeptide (LF-L), the latter having sequence identity to lactoferrin (LF). To further understand this cellular binding site, the interaction of RAGE with LF-L and LF was characterized. By ligand blotting and a solid state competitive binding assay, 125I-LF-L and 125I-LF bound to RAGE immobilized on nitrocellulose membranes or polypropylene tubes in a time-dependent and reversible manner, demonstrating a high affinity component with Kd approximately 100 pM. The interaction of 125I-LF-L and 125I-LF with RAGE was independent of iron in LF and was competed by addition of an excess of unlabeled carboxyl-terminal portion of LF. Cross-linking studies with purified 125I-LF-L and RAGE, in the presence of disuccinimidyl suberate, showed a new, slowly migrating band, corresponding to a complex of RAGE and LF-L, and cross-linking on mouse aortic endothelial cells showed two new slowly migrating bands on immunoblotting visualized with both anti-RAGE IgG and anti-LF-L IgG. These data lead us to propose that the endothelial cell surface binding site for AGEs consists of LF-L bound noncovalently to RAGE anchored in the cell membrane. PMID:8144581

  5. Active sites environmental monitoring program. Annual report FY 1992

    SciTech Connect

    Morrissey, C.M.; Ashwood, T.L.; Hicks, D.S.

    1994-04-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) at ORNL from October 1991 through September 1992. Solid Waste Operations and the Environmental Sciences Division established ASEMP in 1989 to provide early detection and performance monitoring at active low-level waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by Chapter 2 and 3 of US Department of Energy Order 5820.2A. The Interim Waste Management Facility (IWMF) began operation in December 1991. Monitoring results from the tumulus and IWMF disposal pads continue to indicate that no LLW is leaching from the storage vaults. Storm water falling on the IWMF active pad was collected and transported to the Process Waste Treatment Plant while operators awaited approval of the National Pollutant Discharge Elimination System (NPDES) permit. Several of the recent samples collected from the active IWMF pad had pH levels above the NPDES limit of 9.0 because of alkali leached from the concrete. The increase in gross beta activity has been slight; only 1 of the 21 samples collected contained activity above the 5.0 Bq/L action level. Automated sample-collection and flow-measurement equipment has been installed at IWMF and is being tested. The flume designed to electronically measure flow from the IWMF pads and underpads is too large to be of practical value for measuring most flows at this site. Modification of this system will be necessary. A CO{sub 2} bubbler system designed to reduce the pH of water from the pads is being tested at IWMF.

  6. Communication: Smoothing out excited-state dynamics: Analytical gradients for dynamically weighted complete active space self-consistent field

    SciTech Connect

    Glover, W. J.

    2014-11-07

    State averaged complete active space self-consistent field (SA-CASSCF) is a workhorse for determining the excited-state electronic structure of molecules, particularly for states with multireference character; however, the method suffers from known issues that have prevented its wider adoption. One issue is the presence of discontinuities in potential energy surfaces when a state that is not included in the state averaging crosses with one that is. In this communication I introduce a new dynamical weight with spline (DWS) scheme that mimics SA-CASSCF while removing energy discontinuities due to unweighted state crossings. In addition, analytical gradients for DWS-CASSCF (and other dynamically weighted schemes) are derived for the first time, enabling energy-conserving excited-state ab initio molecular dynamics in instances where SA-CASSCF fails.

  7. Analytical gradients of the state-average complete active space self-consistent field method with density fitting

    NASA Astrophysics Data System (ADS)

    Delcey, Mickaël G.; Pedersen, Thomas Bondo; Aquilante, Francesco; Lindh, Roland

    2015-07-01

    An efficient implementation of the state-averaged complete active space self-consistent field (SA-CASSCF) gradients employing density fitting (DF) is presented. The DF allows a reduction both in scaling and prefactors of the different steps involved. The performance of the algorithm is demonstrated on a set of molecules ranging up to an iron-Heme b complex which with its 79 atoms and 811 basis functions is to our knowledge the largest SA-CASSCF gradient computed. For smaller systems where the conventional code could still be used as a reference, both the linear response calculation and the gradient formation showed a clear timing reduction and the overall cost of a geometry optimization is typically reduced by more than one order of magnitude while the accuracy loss is negligible.

  8. Analytical gradients of the state-average complete active space self-consistent field method with density fitting

    SciTech Connect

    Delcey, Mickaël G.; Pedersen, Thomas Bondo; Aquilante, Francesco; Lindh, Roland

    2015-07-28

    An efficient implementation of the state-averaged complete active space self-consistent field (SA-CASSCF) gradients employing density fitting (DF) is presented. The DF allows a reduction both in scaling and prefactors of the different steps involved. The performance of the algorithm is demonstrated on a set of molecules ranging up to an iron-Heme b complex which with its 79 atoms and 811 basis functions is to our knowledge the largest SA-CASSCF gradient computed. For smaller systems where the conventional code could still be used as a reference, both the linear response calculation and the gradient formation showed a clear timing reduction and the overall cost of a geometry optimization is typically reduced by more than one order of magnitude while the accuracy loss is negligible.

  9. Active-Site-Accessible, Porphyrinic Metal;#8722;Organic Framework Materials

    SciTech Connect

    Farha, Omar K.; Shultz, Abraham M.; Sarjeant, Amy A.; Nguyen, SonBinh T.; Hupp, Joseph T.

    2012-02-06

    On account of their structural similarity to cofactors found in many metallo-enzymes, metalloporphyrins are obvious potential building blocks for catalytically active, metal-organic framework (MOF) materials. While numerous porphyrin-based MOFs have already been described, versions featuring highly accessible active sites and permanent microporosity are remarkably scarce. Indeed, of the more than 70 previously reported porphyrinic MOFs, only one has been shown to be both permanently microporous and contain internally accessible active sites for chemical catalysis. Attempts to generalize the design approach used in this single successful case have failed. Reported here, however, is the synthesis of an extended family of MOFs that directly incorporate a variety of metalloporphyrins (specifically Al{sup 3+}, Zn{sup 2+}, Pd{sup 2+}, Mn{sup 3+}, and Fe{sup 3+} complexes). These robust porphyrinic materials (RPMs) feature large channels and readily accessible active sites. As an illustrative example, one of the manganese-containing RPMs is shown to be catalytically competent for the oxidation of alkenes and alkanes.

  10. Nest predation increases with parental activity: Separating nest site and parental activity effects

    USGS Publications Warehouse

    Martin, T.E.; Scott, J.; Menge, C.

    2000-01-01

    Alexander Skutch hypothesized that increased parental activity can increase the risk of nest predation. We tested this hypothesis using ten open-nesting bird species in Arizona, USA. Parental activity was greater during the nestling than incubation stage because parents visited the nest frequently to feed their young during the nestling stage. However, nest predation did not generally increase with parental activity between nesting stages across the ten study species. Previous investigators have found similar results. We tested whether nest site effects might yield higher predation during incubation because the most obvious sites are depredated most rapidly. We conducted experiments using nest sites from the previous year to remove parental activity. Our results showed that nest sites have highly repeatable effects on nest predation risk; poor nest sites incurred rapid predation and caused predation rates to be greater during the incubation than nestling stage. This pattern also was exhibited in a bird species with similar (i.e. controlled) parental activity between nesting stages. Once nest site effects are taken into account, nest predation shows a strong proximate increase with parental activity during the nestling stage within and across species. Parental activity and nest sites exert antagonistic influences on current estimates of nest predation between nesting stages and both must be considered in order to understand current patterns of nest predation, which is an important source of natural selection.

  11. Nest predation increases with parental activity: separating nest site and parental activity effects.

    PubMed Central

    Martin, T E; Scott, J; Menge, C

    2000-01-01

    Alexander Skutch hypothesized that increased parental activity can increase the risk of nest predation. We tested this hypothesis using ten open-nesting bird species in Arizona, USA. Parental activity was greater during the nestling than incubation stage because parents visited the nest frequently to feed their young during the nestling stage. However, nest predation did not generally increase with parental activity between nesting stages across the ten study species. Previous investigators have found similar results. We tested whether nest site effects might yield higher predation during incubation because the most obvious sites are depredated most rapidly. We conducted experiments using nest sites from the previous year to remove parental activity. Our results showed that nest sites have highly repeatable effects on nest predation risk; poor nest sites incurred rapid predation and caused predation rates to be greater during the incubation than nestling stage. This pattern also was exhibited in a bird species with similar (i.e. controlled) parental activity between nesting stages. Once nest site effects are taken into account, nest predation shows a strong proximate increase with parental activity during the nestling stage within and across species. Parental activity and nest sites exert antagonistic influences on current estimates of nest predation between nesting stages and both must be considered in order to understand current patterns of nest predation, which is an important source of natural selection. PMID:11413645

  12. Identification of Ice Nucleation Active Sites on Silicate Dust Particles

    NASA Astrophysics Data System (ADS)

    Zolles, Tobias; Burkart, Julia; Häusler, Thomas; Pummer, Bernhard; Hitzenberger, Regina; Grothe, Hinrich

    2015-04-01

    Mineral dusts originating from Earth's crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts [1-3]. Nevertheless, among those structures K-feldspar showed by far the highest ice nucleation activity. In this study, the reasons for its activity and the difference in the activity of the different feldspars were investigated in closer details. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. We give a potential explanation of the increased ice nucleation activity of K-feldspar. The ice nucleating sites are very much dependent on the alkali ion present by altering the water structure and the feldspar surface. The higher activity of K-feldspar can be attributed to the presence of potassium ions on the surface and surface bilayer. The alkali-ions have different hydration shells and thus an influence on the ice nucleation activity of feldspar. Chaotropic behavior of Calcium and Sodium ions are lowering the ice nucleation potential of the other feldspars, while kosmotropic Potassium has a neutral or even positive effect. Furthermore we investigated the influence of milling onto the ice nucleation of quartz particles. The ice nucleation activity can be increased by mechanical milling, by introducing more molecular, nucleation active defects to the particle surface. This effect is larger than expected by plane surface increase. [1] Atkinson et al. The Importance of Feldspar for Ice Nucleation by Mineral Dust in Mixed-Phase Clouds. Nature 2013, 498, 355-358. [2] Yakobi-Hancock et al.. Feldspar Minerals as Efficient Deposition Ice Nuclei. Atmos. Chem. Phys. 2013, 13, 11175-11185. [3] Zolles et al. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles. J. Phys. Chem. A 2015 accepted.

  13. Active Sites Environmental Monitoring Program. FY 1993: Annual report

    SciTech Connect

    Morrissey, C.M.; Ashwood, T.L.; Hicks, D.S.; Marsh, J.D.

    1994-08-01

    This report continues a series of annual and semiannual reports that present the results of the Active Sites Environmental Monitoring Program (ASEMP) monitoring activities. The report details monitoring data for fiscal year (FY) 1993 and is divided into three major areas: SWSA 6 [including tumulus pads, Interim Waste Management Facility (IWMF), and other sites], the low-level Liquid-Waste Solidification Project (LWSP), and TRU-waste storage facilities in SWSA 5 N. The detailed monitoring methodology is described in the second revision of the ASEMP program plan. This report also presents a summary of the methodology used to gather data for each major area along with the results obtained during FY 1993.

  14. Active sites in char gasification: Final technical report

    SciTech Connect

    Wojtowicz, M.; Lilly, W.D.; Perkins, M.T.; Hradil, G.; Calo, J.M.; Suuberg, E.M.

    1987-09-01

    Among the key variables in the design of gasifiers and combustors is the reactivity of the chars which must be gasified or combusted. Significant loss of unburned char is unacceptable in virtually any process; the provision of sufficient residence time for complete conversion is essential. A very wide range of reactivities are observed, depending upon the nature of the char in a process. The current work focuses on furthering the understanding of gasification reactivities of chars. It has been well established that the reactivity of char to gasification generally depends upon three principal factors: (1) the concentration of ''active sites'' in the char; (2) mass transfer within the char; and (3) the type and concentration of catalytic impurities in the char. The present study primarily addresses the first factor. The subject of this research is the origin, nature, and fate of active sites in chars derived from parent hydrocarbons with coal-like structure. The nature and number of the active sites and their reactivity towards oxygen are examined in ''model'' chars derived from phenol-formaldehyde type resins. How the active sites are lost by the process of thermal annealing during heat treatment of chars are studied, and actual rate for the annealing process is derived. Since intrinsic char reactivities are of primary interest in the present study, a fair amount of attention was given to the model char synthesis and handling so that the effect of catalytic impurities and oxygen-containing functional groups in the chemical structure of the material were minimized, if not completely eliminated. The project would not be considered complete without comparing characteristic features of synthetic chars with kinetic behavior exhibited by natural chars, including coal chars.

  15. Evidence for oxygen binding at the active site of particulate methane monooxygenase.

    PubMed

    Culpepper, Megen A; Cutsail, George E; Hoffman, Brian M; Rosenzweig, Amy C

    2012-05-01

    Particulate methane monooxygenase (pMMO) is an integral membrane metalloenzyme that converts methane to methanol in methanotrophic bacteria. The enzyme consists of three subunits, pmoB, pmoA, and pmoC, organized in an α(3)β(3)γ(3) trimer. Studies of intact pMMO and a recombinant soluble fragment of the pmoB subunit (denoted as spmoB) indicate that the active site is located within the soluble region of pmoB at the site of a crystallographically modeled dicopper center. In this work, we have investigated the reactivity of pMMO and spmoB with oxidants. Upon reduction and treatment of spmoB with O(2) or H(2)O(2) or pMMO with H(2)O(2), an absorbance feature at 345 nm is generated. The energy and intensity of this band are similar to those of the μ-η(2):η(2)-peroxo-Cu(II)(2) species formed in several dicopper enzymes and model compounds. The feature is not observed in inactive spmoB variants in which the dicopper center is disrupted, consistent with O(2) binding to the proposed active site. Reaction of the 345 nm species with CH(4) results in the disappearance of the spectroscopic feature, suggesting that this O(2) intermediate is mechanistically relevant. Taken together, these observations provide strong new support for the identity and location of the pMMO active site. PMID:22540911

  16. Bi-site activation occurs with the native and nucleotide-depleted mitochondrial F1-ATPase.

    PubMed Central

    Milgrom, Y M; Murataliev, M B; Boyer, P D

    1998-01-01

    Experiments are reported on the uni-site catalysis and the transition from uni-site to multi-site catalysis with bovine heart mitochondrial F1-ATPase. The very slow uni-site ATP hydrolysis is shown to occur without tightly bound nucleotides present and with or without Pi in the buffer. Measurements of the transition to higher rates and the amount of bound ATP committed to hydrolysis as the ATP concentration is increased at different fixed enzyme concentrations give evidence that the filling of a second site can initiate near maximal turnover rates. They provide rate constant information, and show that an apparent Km for a second site of about 2 microM and Vmax of 10 s-1, as suggested by others, is not operative. Careful initial velocity measurements also eliminate other suggested Km values and are consistent with bi-site activation to near maximal hydrolysis rates, with a Km of about 130 microM and Vmax of about 700 s-1. However, the results do not eliminate the possibility of additional 'hidden' Km values with similar Vmax:Km ratios. Recent data on competition between TNP-ATP and ATP revealed a third catalytic site for ATP in the millimolar concentration range. This result, and those reported in the present paper, allow the conclusion that the mitochondrial F1-ATPase can attain near maximal activity in bi-site catalysis. Our data also add to the evidence that a recent claim, that the mitochondrial F1-ATPase does not show catalytic site cooperativity, is invalid. PMID:9480927

  17. Potential sites of CFTR activation by tyrosine kinases.

    PubMed

    Billet, Arnaud; Jia, Yanlin; Jensen, Timothy J; Hou, Yue-Xian; Chang, Xiu-Bao; Riordan, John R; Hanrahan, John W

    2016-05-01

    The CFTR chloride channel is tightly regulated by phosphorylation at multiple serine residues. Recently it has been proposed that its activity is also regulated by tyrosine kinases, however the tyrosine phosphorylation sites remain to be identified. In this study we examined 2 candidate tyrosine residues near the boundary between the first nucleotide binding domain and the R domain, a region which is important for channel function but devoid of PKA consensus sequences. Mutating tyrosines at positions 625 and 627 dramatically reduced responses to Src or Pyk2 without altering the activation by PKA, suggesting they may contribute to CFTR regulation. PMID:26645934

  18. Brownian aggregation rate of colloid particles with several active sites

    SciTech Connect

    Nekrasov, Vyacheslav M.; Yurkin, Maxim A.; Chernyshev, Andrei V.; Polshchitsin, Alexey A.; Yakovleva, Galina E.; Maltsev, Valeri P.

    2014-08-14

    We theoretically analyze the aggregation kinetics of colloid particles with several active sites. Such particles (so-called “patchy particles”) are well known as chemically anisotropic reactants, but the corresponding rate constant of their aggregation has not yet been established in a convenient analytical form. Using kinematic approximation for the diffusion problem, we derived an analytical formula for the diffusion-controlled reaction rate constant between two colloid particles (or clusters) with several small active sites under the following assumptions: the relative translational motion is Brownian diffusion, and the isotropic stochastic reorientation of each particle is Markovian and arbitrarily correlated. This formula was shown to produce accurate results in comparison with more sophisticated approaches. Also, to account for the case of a low number of active sites per particle we used Monte Carlo stochastic algorithm based on Gillespie method. Simulations showed that such discrete model is required when this number is less than 10. Finally, we applied the developed approach to the simulation of immunoagglutination, assuming that the formed clusters have fractal structure.

  19. A kinetic description for sodium and potassium effects on (Na+ plus K+)-adenosine triphosphatase: a model for a two-nonequivalent site potassium activation and an analysis of multiequivalent site models for sodium activation.

    PubMed

    Lindenmayer, G E; Schwartz, A; Thompson, H K

    1974-01-01

    1. Dissociation constants for sodium and potassium of a site that modulates the rate of ouabain-(Na(+)+K(+))-ATPase interaction were applied to models for potassium activation of (Na(+)+K(+))-ATPase. The constants for potassium (0.213 mM) and for sodium (13.7 mM) were defined, respectively, as activation constant, K(a) and inhibitory constant, K(i).2. Tests of the one- and the two-equivalent site models, that describe sodium and potassium competition, revealed that neither model adequately predicts the activation effects of potassium in the presence of 100 or 200 mM sodium.3. The potassium-activation data, obtained at low potassium and high sodium, were explained by a two-nonequivalent site model where the dissociation constants of the first site are 0.213 mM for potassium and 13.7 mM for sodium. The second site was characterized by dissociation constants of 0.091 mM for potassium and 74.1 mM for sodium.4. The two-nonequivalent site model adequately predicted the responses to concentrations of potassium between 0.25 and 5 mM in the presence of 100-500 mM sodium. At lower sodium concentrations the predicted responses formed an upper limit for the function of observed activities. This limit was reached at lower concentrations of potassium and higher concentrations of sodium, which inferred saturation of the sodium-activation sites with sodium.5. Sodium-activation data were corrected for sodium interaction with potassium-activation sites by use of the two-nonequivalent site model for potassium activation. Tests of equivalent site models suggested that the corrected data for sodium activation may be most consistent with a model that has three-equivalent sites. Other multiequivalent site models (n = 2, 4, 5 or 6), however, cannot be statistically eliminated as possibilities. The three-equivalent site activation model was characterized by dissociation constants of 1.39 mM for sodium and 11.7 mM for potassium. The system theoretically would be half-maximally activated by

  20. Consistency of NMR and mass spectrometry determinations of natural-abundance site-specific carbon isotope ratios. The case of glycerol.

    PubMed

    Zhang, B L; Trierweiler, M; Jouitteau, C; Martin, G J

    1999-07-01

    Quantitative determinations of natural-abundance carbon isotope ratios by nuclear magnetic resonance (SNIF-NMR) have been optimized by appropriate selection of the experimental conditions and by signal analysis based on a dedicated algorithm. To check the consistency of the isotopic values obtained by NMR and mass spectrometry (IRMS) the same glycerol samples have been investigated by both techniques. To have access to site-specific isotope ratios by IRMS, the products have been degraded and transformed into two derivatives, one of which contains carbons 1 and 3 and the other carbon 2 of glycerol. The sensitivity of the isotopic parameters determined by IRMS to fractionation effects possibly occurring in the course of the chemical transformations has been investigated, and the repeatability and reproducibility of both analytical chains have been estimated. The good agreement observed between the two series of isotopic results supports the reliability of the two different approaches. SNIF-NMR is therefore a very attractive tool for routine determination, in a single nondestructive experiment, of the carbon isotope distribution in glycerol, and the method can be applied to other compounds. Using this method, the isotopic distributions have been compared for glycerol samples, obtained from plant or animal oils, extracted from fermented media, or prepared by chemical synthesis. Typical behaviors are characterized. PMID:21662780

  1. Functional copper at the acetyl-CoA synthase active site

    PubMed Central

    Seravalli, Javier; Gu, Weiwei; Tam, Annie; Strauss, Erick; Begley, Tadhg P.; Cramer, Stephen P.; Ragsdale, Stephen W.

    2003-01-01

    The bifunctional CO dehydrogenase/acetyl-CoA synthase (CODH/ACS) plays a central role in the Wood–Ljungdahl pathway of autotrophic CO2 fixation. A recent structure of the Moorella thermoacetica enzyme revealed that the ACS active site contains a [4Fe-4S] cluster bridged to a binuclear Cu-Ni site. Here, biochemical and x-ray absorption spectroscopic (XAS) evidence is presented that the copper ion at the M. thermoacetica ACS active site is essential. Depletion of copper correlates with reduction in ACS activity and in intensity of the “NiFeC” EPR signal without affecting either the activity or the EPR spectroscopic properties associated with CODH. In contrast, Zn content is negatively correlated with ACS activity without any apparent relationship to CODH activity. Cu is also found in the methanogenic CODH/ACS from Methanosarcina thermophila. XAS studies are consistent with a distorted Cu(I)–S3 site in the fully active enzyme in solution. Cu extended x-ray absorption fine structure analysis indicates an average Cu–S bond length of 2.25 Å and a metal neighbor at 2.65 Å, consistent with the Cu–Ni distance observed in the crystal structure. XAS experiments in the presence of seleno-CoA reveal a Cu–S3Se environment with a 2.4-Å Se–Cu bond, strongly implicating a Cu–SCoA intermediate in the mechanism of acetyl-CoA synthesis. These results indicate an essential and functional role for copper in the CODH/ACS from acetogenic and methanogenic organisms. PMID:12589021

  2. Active-Site Monovalent Cations Revealed in a 1.55 Å Resolution Hammerhead Ribozyme Structure

    PubMed Central

    Anderson, Michael; Schultz, Eric P.; Martick, Monika; Scott, William G.

    2013-01-01

    We have obtained a 1.55 Å crystal structure of a hammerhead ribozyme derived from Schistosoma mansoni in conditions that permit detailed observations of Na+ ion binding in the ribozyme's active site. At least two such Na+ ions are observed. The first Na+ ion binds to the N7 of G10.1 and the adjacent A9 phosphate in a manner identical to that previously observed for divalent cations. A second Na+ ion binds to the Hoogsteen face of G12, the general base in the hammerhead cleavage reaction, thereby potentially dissipating the negative charge of the catalytically active enolate form of the nucleotide base. A potential but more ambiguous third site bridges the A9 and scissile phosphates in a manner consistent with previous predictions. Hammerhead ribozymes have been observed to be active in the presence of high concentrations of monovalent cations, including Na+, but the mechanism by which monovalent cations substitute for divalent cations in hammerhead catalysis remains unclear. Our results enable us to suggest that Na+ directly and specifically substitutes for divalent cations in the hammerhead active site. The detailed geometry of the pre-catalytic active site complex is also revealed with a new level of precision, thanks to the quality of the electron density maps obtained from what is currently the highest resolution ribozyme structure in the protein data bank. PMID:23711504

  3. Small activating RNA binds to the genomic target site in a seed-region-dependent manner

    PubMed Central

    Meng, Xing; Jiang, Qian; Chang, Nannan; Wang, Xiaoxia; Liu, Chujun; Xiong, Jingwei; Cao, Huiqing; Liang, Zicai

    2016-01-01

    RNA activation (RNAa) is the upregulation of gene expression by small activating RNAs (saRNAs). In order to investigate the mechanism by which saRNAs act in RNAa, we used the progesterone receptor (PR) gene as a model, established a panel of effective saRNAs and assessed the involvement of the sense and antisense strands of saRNA in RNAa. All active saRNAs had their antisense strand effectively incorporated into Ago2, whereas such consistency did not occur for the sense strand. Using a distal hotspot for saRNA targeting at 1.6-kb upstream from the PR transcription start site, we further established that gene activation mediated by saRNA depended on the complementarity of the 5′ region of the antisense strand, and that such activity was largely abolished by mutations in this region of the saRNA. We found markedly reduced RNAa effects when we created mutations in the genomic target site of saRNA PR-1611, thus providing evidence that RNAa depends on the integrity of the DNA target. We further demonstrated that this saRNA bound the target site on promoter DNA. These results demonstrated that saRNAs work via an on-site mechanism by binding to target genomic DNA in a seed-region-dependent manner, reminiscent of miRNA-like target recognition. PMID:26873922

  4. Single-Unit Activity during Natural Vision: Diversity, Consistency, and Spatial Sensitivity among AF Face Patch Neurons

    PubMed Central

    Russ, Brian E.; Elnaiem, Heba D.; Kurnikova, Anastasia I.; Leopold, David A.

    2015-01-01

    Several visual areas within the STS of the macaque brain respond strongly to faces and other biological stimuli. Determining the principles that govern neural responses in this region has proven challenging, due in part to the inherently complex stimulus domain of dynamic biological stimuli that are not captured by an easily parameterized stimulus set. Here we investigated neural responses in one fMRI-defined face patch in the anterior fundus (AF) of the STS while macaques freely view complex videos rich with natural social content. Longitudinal single-unit recordings allowed for the accumulation of each neuron's responses to repeated video presentations across sessions. We found that individual neurons, while diverse in their response patterns, were consistently and deterministically driven by the video content. We used principal component analysis to compute a family of eigenneurons, which summarized 24% of the shared population activity in the first two components. We found that the most prominent component of AF activity reflected an interaction between visible body region and scene layout. Close-up shots of faces elicited the strongest neural responses, whereas far away shots of faces or close-up shots of hindquarters elicited weak or inhibitory responses. Sensitivity to the apparent proximity of faces was also observed in gamma band local field potential. This category-selective sensitivity to spatial scale, together with the known exchange of anatomical projections of this area with regions involved in visuospatial analysis, suggests that the AF face patch may be specialized in aspects of face perception that pertain to the layout of a social scene. PMID:25855170

  5. Time-dependent restricted-active-space self-consistent-field singles method for many-electron dynamics

    SciTech Connect

    Miyagi, Haruhide; Bojer Madsen, Lars

    2014-04-28

    The time-dependent restricted-active-space self-consistent-field singles (TD-RASSCF-S) method is presented for investigating TD many-electron dynamics in atoms and molecules. Adopting the SCF notion from the muticonfigurational TD Hartree-Fock (MCTDHF) method and the RAS scheme (single-orbital excitation concept) from the TD configuration-interaction singles (TDCIS) method, the TD-RASSCF-S method can be regarded as a hybrid of them. We prove that, for closed-shell N{sub e}-electron systems, the TD-RASSCF-S wave function can be fully converged using only N{sub e}/2 + 1 ⩽ M ⩽ N{sub e} spatial orbitals. Importantly, based on the TD variational principle, the converged TD-RASSCF-S wave function with M = N{sub e} is more accurate than the TDCIS wave function. The accuracy of the TD-RASSCF-S approach over the TDCIS is illustrated by the calculation of high-order harmonic generation spectra for one-dimensional models of atomic helium, beryllium, and carbon in an intense laser pulse. The electronic dynamics during the process is investigated by analyzing the behavior of electron density and orbitals. The TD-RASSCF-S method is accurate, numerically tractable, and applicable for large systems beyond the capability of the MCTDHF method.

  6. Active site proton delivery and the lyase activity of human CYP17A1

    SciTech Connect

    Khatri, Yogan; Gregory, Michael C.; Grinkova, Yelena V.; Denisov, Ilia G.; Sligar, Stephen G.

    2014-01-03

    equivalents and protons are funneled into non-productive pathways. This is similar to previous work with other P450 catalyzed hydroxylation. However, catalysis of carbon–carbon bond scission by the T306A mutant was largely unimpeded by disruption of the CYP17A1 acid-alcohol pair. The unique response of CYP17A1 lyase activity to mutation of Thr306 is consistent with a reactive intermediate formed independently of proton delivery in the active site, and supports involvement of a nucleophilic peroxo-anion rather than the traditional Compound I in catalysis.

  7. Testing the applicability of rapid on-site enzymatic activity detection for surface water monitoring

    NASA Astrophysics Data System (ADS)

    Stadler, Philipp; Vogl, Wolfgang; Juri, Koschelnik; Markus, Epp; Maximilian, Lackner; Markus, Oismüller; Monika, Kumpan; Peter, Strauss; Regina, Sommer; Gabriela, Ryzinska-Paier; Farnleitner Andreas, H.; Matthias, Zessner

    2015-04-01

    On-site detection of enzymatic activities has been suggested as a rapid surrogate for microbiological pollution monitoring of water resources (e.g. using glucuronidases, galactosidases, esterases). Due to the possible short measuring intervals enzymatic methods have high potential as near-real time water quality monitoring tools. This presentation describes results from a long termed field test. For twelve months, two ColiMinder devices (Vienna Water Monitoring, Austria) for on-site determination of enzymatic activity were tested for stream water monitoring at the experimental catchment HOAL (Hydrological Open Air Laboratory, Center for Water Resource Systems, Vienna University of Technology). The devices were overall able to follow and reflect the diverse hydrological and microbiological conditions of the monitored stream during the test period. Continuous data in high temporal resolution captured the course of enzymatic activity in stream water during diverse rainfall events. The method also proofed sensitive enough to determine diurnal fluctuations of enzymatic activity in stream water during dry periods. The method was able to capture a seasonal trend of enzymatic activity in stream water that matches the results gained from Colilert18 analysis for E. coli and coliform bacteria of monthly grab samples. Furthermore the comparison of ColiMinder data with measurements gained at the same test site with devices using the same method but having different construction design (BACTcontrol, microLAN) showed consistent measuring results. Comparative analysis showed significant differences between measured enzymatic activity (modified fishman units and pmol/min/100ml) and cultivation based analyses (most probable number, colony forming unit). Methods of enzymatic activity measures are capable to detect ideally the enzymatic activity caused by all active target bacteria members, including VBNC (viable but nonculturable) while cultivation based methods cannot detect VBNC

  8. Current activities handbook: formerly utilized sites remedial action program

    SciTech Connect

    1981-02-27

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the activities each of the thirteen state legislatures potentially affected by the Formerly Utilized Sites Remedial Action Program. It contains a description of the state legislative procedural rules and a schedule of each legislative session; a summary of pending relevant legislation; the name and telephone number of legislative and state agency contacts; and the full text of all bills identified.

  9. The Soluble NAD+-Reducing [NiFe]-Hydrogenase from Ralstonia eutropha H16 Consists of Six Subunits and Can Be Specifically Activated by NADPH

    PubMed Central

    Burgdorf, Tanja; van der Linden, Eddy; Bernhard, Michael; Yuan Yin, Qing; Back, Jaap W.; Hartog, Aloysius F.; Muijsers, Anton O.; de Koster, Chris G.; Albracht, Simon P. J.; Friedrich, Bärbel

    2005-01-01

    The soluble [NiFe]-hydrogenase (SH) of the facultative lithoautotrophic proteobacterium Ralstonia eutropha H16 has up to now been described as a heterotetrameric enzyme. The purified protein consists of two functionally distinct heterodimeric moieties. The HoxHY dimer represents the hydrogenase module, and the HoxFU dimer constitutes an NADH-dehydrogenase. In the bimodular form, the SH mediates reduction of NAD+ at the expense of H2. We have purified a new high-molecular-weight form of the SH which contains an additional subunit. This extra subunit was identified as the product of hoxI, a member of the SH gene cluster (hoxFUYHWI). Edman degradation, in combination with protein sequencing of the SH high-molecular-weight complex, established a subunit stoichiometry of HoxFUYHI2. Cross-linking experiments indicated that the two HoxI subunits are the closest neighbors. The stability of the hexameric SH depended on the pH and the ionic strength of the buffer. The tetrameric form of the SH can be instantaneously activated with small amounts of NADH but not with NADPH. The hexameric form, however, was also activated by adding small amounts of NADPH. This suggests that HoxI provides a binding domain for NADPH. A specific reaction site for NADPH adds to the list of similarities between the SH and mitochondrial NADH:ubiquinone oxidoreductase (Complex I). PMID:15838039

  10. Towards a Self-Consistent Physical Framework for Modeling Coupled Human and Physical Activities during the Anthropocene

    NASA Astrophysics Data System (ADS)

    Garrett, T. J.

    2014-12-01

    Studies of the response of global climate to anthropogenic activities rely upon scenarios for future human activity to provide a range of possible trajectories for greenhouse gases emissions over the coming century. Sophisticated integrated models are used to explore not only what will happen, but what should happen in order to optimize societal well-being. Hundreds of equations might be used to account for the interplay between human decisions, technological change, and macroeconomic priniciples. In contrast, the model equations used to describe geophysical phenomena look very different because they are a) purely deterministic and b) consistent with basic thermodynamic laws. This inconsistency between macroeconomics and physics suggests a rather unhappy marriage. During the Anthropocene the evolution of humanity and our environment will become increasingly intertwined. Representing such a coupling suggests a need for a common theoretical basis. To this end, the approach that is described here is to treat civilization like any other physical process, that is as an open, non-equilibrium thermodynamic system that dissipates energy and diffuses matter in order to sustain existing circulations and to further its material growth. Theoretical arguments and over 40 years of measurements show that a very general representation of global economic wealth (not GDP) has been tied to rates of global primary energy consumption through a constant 7.1 ± 0.1 mW per year 2005 USD. This link between physics and economics leads to very simple expressions for how fast civilization and its rate of energy consumption grow. These are expressible as a function of rates of energy and material resource discovery and depletion, and of the magnitude of externally imposed decay. The equations are validated through hindcasts that show, for example, that economic conditions in the 1950s can be invoked to make remarkably accurate forecasts of present rates of global GDP growth and primary energy

  11. Differential behavior of the sub-sites of cytochrome 450 active site in binding of substrates, and products (implications for coupling/uncoupling).

    PubMed

    Narasimhulu, Shakunthala

    2007-03-01

    are also reflected in the data on binding of the substrate camphor (S) in the presence of the product 5-exo-OH camphor (P) to CYP101 (E). The data are in accordance with the two-site model involving the ternary complex ESP. The affinity of the substrate to the product-bound enzyme as well as the affinity of the product to the substrate-bound enzyme decreased with increase in product concentration, which is consistent with mixed inhibition indicative of inhibitory allosteric interactions between the two sub-sites. Implications of these observations for coupling/uncoupling mechanisms are discussed in the light of the published findings consistent with the two-site behavior of the P450 active site. In addition, kinetic data indicating that the transient high spin intermediate may have to be taken into account for understanding how some P450s have been able to express appreciable hydroxylation activities in the absence of substrate-induced low to high spin transition, observable by the traditional static spectroscopy, are presented. PMID:17134838

  12. Identification of covalent active site inhibitors of dengue virus protease

    PubMed Central

    Koh-Stenta, Xiaoying; Joy, Joma; Wang, Si Fang; Kwek, Perlyn Zekui; Wee, John Liang Kuan; Wan, Kah Fei; Gayen, Shovanlal; Chen, Angela Shuyi; Kang, CongBao; Lee, May Ann; Poulsen, Anders; Vasudevan, Subhash G; Hill, Jeffrey; Nacro, Kassoum

    2015-01-01

    Dengue virus (DENV) protease is an attractive target for drug development; however, no compounds have reached clinical development to date. In this study, we utilized a potent West Nile virus protease inhibitor of the pyrazole ester derivative class as a chemical starting point for DENV protease drug development. Compound potency and selectivity for DENV protease were improved through structure-guided small molecule optimization, and protease-inhibitor binding interactions were validated biophysically using nuclear magnetic resonance. Our work strongly suggests that this class of compounds inhibits flavivirus protease through targeted covalent modification of active site serine, contrary to an allosteric binding mechanism as previously described. PMID:26677315

  13. The copper active site of CBM33 polysaccharide oxygenases.

    PubMed

    Hemsworth, Glyn R; Taylor, Edward J; Kim, Robbert Q; Gregory, Rebecca C; Lewis, Sally J; Turkenburg, Johan P; Parkin, Alison; Davies, Gideon J; Walton, Paul H

    2013-04-24

    The capacity of metal-dependent fungal and bacterial polysaccharide oxygenases, termed GH61 and CBM33, respectively, to potentiate the enzymatic degradation of cellulose opens new possibilities for the conversion of recalcitrant biomass to biofuels. GH61s have already been shown to be unique metalloenzymes containing an active site with a mononuclear copper ion coordinated by two histidines, one of which is an unusual τ-N-methylated N-terminal histidine. We now report the structural and spectroscopic characterization of the corresponding copper CBM33 enzymes. CBM33 binds copper with high affinity at a mononuclear site, significantly stabilizing the enzyme. X-band EPR spectroscopy of Cu(II)-CBM33 shows a mononuclear type 2 copper site with the copper ion in a distorted axial coordination sphere, into which azide will coordinate as evidenced by the concomitant formation of a new absorption band in the UV/vis spectrum at 390 nm. The enzyme's three-dimensional structure contains copper, which has been photoreduced to Cu(I) by the incident X-rays, confirmed by X-ray absorption/fluorescence studies of both aqueous solution and intact crystals of Cu-CBM33. The single copper(I) ion is ligated in a T-shaped configuration by three nitrogen atoms from two histidine side chains and the amino terminus, similar to the endogenous copper coordination geometry found in fungal GH61. PMID:23540833

  14. The Copper Active Site of CBM33 Polysaccharide Oxygenases

    PubMed Central

    2013-01-01

    The capacity of metal-dependent fungal and bacterial polysaccharide oxygenases, termed GH61 and CBM33, respectively, to potentiate the enzymatic degradation of cellulose opens new possibilities for the conversion of recalcitrant biomass to biofuels. GH61s have already been shown to be unique metalloenzymes containing an active site with a mononuclear copper ion coordinated by two histidines, one of which is an unusual τ-N-methylated N-terminal histidine. We now report the structural and spectroscopic characterization of the corresponding copper CBM33 enzymes. CBM33 binds copper with high affinity at a mononuclear site, significantly stabilizing the enzyme. X-band EPR spectroscopy of Cu(II)-CBM33 shows a mononuclear type 2 copper site with the copper ion in a distorted axial coordination sphere, into which azide will coordinate as evidenced by the concomitant formation of a new absorption band in the UV/vis spectrum at 390 nm. The enzyme’s three-dimensional structure contains copper, which has been photoreduced to Cu(I) by the incident X-rays, confirmed by X-ray absorption/fluorescence studies of both aqueous solution and intact crystals of Cu-CBM33. The single copper(I) ion is ligated in a T-shaped configuration by three nitrogen atoms from two histidine side chains and the amino terminus, similar to the endogenous copper coordination geometry found in fungal GH61. PMID:23540833

  15. An Active Site Water Network in the Plasminogen Activator Pla from Yersinia pestis

    SciTech Connect

    Eren, Elif; Murphy, Megan; Goguen, Jon; van den Berg, Bert

    2010-08-13

    The plasminogen activator Pla from Yersinia pestis is an outer membrane protease (omptin) that is important for the virulence of plague. Here, we present the high-resolution crystal structure of wild-type, enzymatically active Pla at 1.9 {angstrom}. The structure shows a water molecule located between active site residues D84 and H208, which likely corresponds to the nucleophilic water. A number of other water molecules are present in the active site, linking residues important for enzymatic activity. The R211 sidechain in loop L4 is close to the nucleophilic water and possibly involved in the stabilization of the oxyanion intermediate. Subtle conformational changes of H208 result from the binding of lipopolysaccharide to the outside of the barrel, explaining the unusual dependence of omptins on lipopolysaccharide for activity. The Pla structure suggests a model for the interaction with plasminogen substrate and provides a more detailed understanding of the catalytic mechanism of omptin proteases.

  16. Target-classification approach applied to active UXO sites

    NASA Astrophysics Data System (ADS)

    Shubitidze, F.; Fernández, J. P.; Shamatava, Irma; Barrowes, B. E.; O'Neill, K.

    2013-06-01

    This study is designed to illustrate the discrimination performance at two UXO active sites (Oklahoma's Fort Sill and the Massachusetts Military Reservation) of a set of advanced electromagnetic induction (EMI) inversion/discrimination models which include the orthonormalized volume magnetic source (ONVMS), joint diagonalization (JD), and differential evolution (DE) approaches and whose power and flexibility greatly exceed those of the simple dipole model. The Fort Sill site is highly contaminated by a mix of the following types of munitions: 37-mm target practice tracers, 60-mm illumination mortars, 75-mm and 4.5'' projectiles, 3.5'', 2.36'', and LAAW rockets, antitank mine fuzes with and without hex nuts, practice MK2 and M67 grenades, 2.5'' ballistic windshields, M2A1-mines with/without bases, M19-14 time fuzes, and 40-mm practice grenades with/without cartridges. The site at the MMR site contains targets of yet different sizes. In this work we apply our models to EMI data collected using the MetalMapper (MM) and 2 × 2 TEMTADS sensors. The data for each anomaly are inverted to extract estimates of the extrinsic and intrinsic parameters associated with each buried target. (The latter include the total volume magnetic source or NVMS, which relates to size, shape, and material properties; the former includes location, depth, and orientation). The estimated intrinsic parameters are then used for classification performed via library matching and the use of statistical classification algorithms; this process yielded prioritized dig-lists that were submitted to the Institute for Defense Analyses (IDA) for independent scoring. The models' classification performance is illustrated and assessed based on these independent evaluations.

  17. Differential Active Site Loop Conformations Mediate Promiscuous Activities in the Lactonase SsoPox

    PubMed Central

    Elias, Mikael; Chabriere, Eric

    2013-01-01

    Enzymes are proficient catalysts that enable fast rates of Michaelis-complex formation, the chemical step and products release. These different steps may require different conformational states of the active site that have distinct binding properties. Moreover, the conformational flexibility of the active site mediates alternative, promiscuous functions. Here we focused on the lactonase SsoPox from Sulfolobus solfataricus. SsoPox is a native lactonase endowed with promiscuous phosphotriesterase activity. We identified a position in the active site loop (W263) that governs its flexibility, and thereby affects the substrate specificity of the enzyme. We isolated two different sets of substitutions at position 263 that induce two distinct conformational sampling of the active loop and characterized the structural and kinetic effects of these substitutions. These sets of mutations selectively and distinctly mediate the improvement of the promiscuous phosphotriesterase and oxo-lactonase activities of SsoPox by increasing active-site loop flexibility. These observations corroborate the idea that conformational diversity governs enzymatic promiscuity and is a key feature of protein evolvability. PMID:24086491

  18. Metal active site elasticity linked to activation of homocysteine in methionine synthases

    SciTech Connect

    Koutmos, Markos; Pejchal, Robert; Bomer, Theresa M.; Matthews, Rowena G.; Smith, Janet L.; Ludwig, Martha L.

    2008-04-02

    Enzymes possessing catalytic zinc centers perform a variety of fundamental processes in nature, including methyl transfer to thiols. Cobalamin-independent (MetE) and cobalamin-dependent (MetH) methionine synthases are two such enzyme families. Although they perform the same net reaction, transfer of a methyl group from methyltetrahydrofolate to homocysteine (Hcy) to form methionine, they display markedly different catalytic strategies, modular organization, and active site zinc centers. Here we report crystal structures of zinc-replete MetE and MetH, both in the presence and absence of Hcy. Structural investigation of the catalytic zinc sites of these two methyltransferases reveals an unexpected inversion of zinc geometry upon binding of Hcy and displacement of an endogenous ligand in both enzymes. In both cases a significant movement of the zinc relative to the protein scaffold accompanies inversion. These structures provide new information on the activation of thiols by zinc-containing enzymes and have led us to propose a paradigm for the mechanism of action of the catalytic zinc sites in these and related methyltransferases. Specifically, zinc is mobile in the active sites of MetE and MetH, and its dynamic nature helps facilitate the active site conformational changes necessary for thiol activation and methyl transfer.

  19. Evidence for segmental mobility in the active site of pepsin

    SciTech Connect

    Pohl, J.; Strop, P.; Senn, H.; Foundling, S.; Kostka, V.

    1986-05-01

    The low hydrolytic activity (k/sub cat/ < 0.001 s/sup -1/) of chicken pepsin (CP) towards tri- and tetrapeptides is enhanced at least 100 times by modification of its single sulfhydryl group of Cys-115, with little effect on K/sub m/-values. Modification thus simulates the effect of secondary substrate binding on pepsin catalysis. The rate of Cys-115 modification is substantially decreased in the presence of some competitive inhibitors, suggesting its active site location. Experiments with CP alkylated at Cys-115 with Acrylodan as a fluorescent probe or with N-iodoacetyl-(4-fluoro)-aniline as a /sup 19/F-nmr probe suggest conformation change around Cys-115 to occur on substrate or substrate analog binding. The difference /sup 1/H-nmr spectra (500 MHz) of unmodified free and inhibitor-complexed CP reveal chemical shifts almost exclusively in the aromatic region. The effects of Cu/sup + +/ on /sup 19/F- and /sup 1/H-nmr spectra have been studied. Examination of a computer graphics model of CP based on E. parasitica pepsin-inhibitor complex X-ray coordinates suggests that Cys-115 is located near the S/sub 3//S/sub 5/ binding site. The results are interpreted in favor of segmental mobility of this region important for pepsin substrate binding and catalysis.

  20. Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues.

    PubMed

    Youngblut, Matthew D; Tsai, Chi-Lin; Clark, Iain C; Carlson, Hans K; Maglaqui, Adrian P; Gau-Pan, Phonchien S; Redford, Steven A; Wong, Alan; Tainer, John A; Coates, John D

    2016-04-22

    Perchlorate is an important ion on both Earth and Mars. Perchlorate reductase (PcrAB), a specialized member of the dimethylsulfoxide reductase superfamily, catalyzes the first step of microbial perchlorate respiration, but little is known about the biochemistry, specificity, structure, and mechanism of PcrAB. Here we characterize the biophysics and phylogeny of this enzyme and report the 1.86-Å resolution PcrAB complex crystal structure. Biochemical analysis revealed a relatively high perchlorate affinity (Km = 6 μm) and a characteristic substrate inhibition compared with the highly similar respiratory nitrate reductase NarGHI, which has a relatively much lower affinity for perchlorate (Km = 1.1 mm) and no substrate inhibition. Structural analysis of oxidized and reduced PcrAB with and without the substrate analog SeO3 (2-) bound to the active site identified key residues in the positively charged and funnel-shaped substrate access tunnel that gated substrate entrance and product release while trapping transiently produced chlorate. The structures suggest gating was associated with shifts of a Phe residue between open and closed conformations plus an Asp residue carboxylate shift between monodentate and bidentate coordination to the active site molybdenum atom. Taken together, structural and mutational analyses of gate residues suggest key roles of these gate residues for substrate entrance and product release. Our combined results provide the first detailed structural insight into the mechanism of biological perchlorate reduction, a critical component of the chlorine redox cycle on Earth. PMID:26940877

  1. Eel calcitonin binding site distribution and antinociceptive activity in rats

    SciTech Connect

    Guidobono, F.; Netti, C.; Sibilia, V.; Villa, I.; Zamboni, A.; Pecile, A.

    1986-03-01

    The distribution of binding site for (/sup 125/I)-eel-calcitonin (ECT) to rat central nervous system, studied by an autoradiographic technique, showed concentrations of binding in the diencephalon, the brain stem and the spinal cord. Large accumulations of grains were seen in the hypothalamus, the amygdala, in the fasciculus medialis prosencephali, in the fasciculus longitudinalis medialis, in the ventrolateral part of the periventricular gray matter, in the lemniscus medialis and in the raphe nuclei. The density of grains in the reticular formation and in the nucleus tractus spinalis nervi trigemini was more moderate. In the spinal cord, grains were scattered throughout the dorsal horns. Binding of the ligand was displaced equally by cold ECT and by salmon CT(sCT), indicating that both peptides bind to the same receptors. Human CT was much weaker than sCT in displacing (/sup 125/I)-ECT binding. The administration of ECT into the brain ventricles of rats dose-dependently induced a significant and long-lasting enhancement of hot-plate latencies comparable with that obtained with sCT. The antinociceptive activity induced by ECT is compatible with the topographical distribution of binding sites for the peptide and is a further indication that fish CTs are active in the mammalian brain.

  2. Evolution of a designed retro-aldolase leads to complete active site remodeling

    PubMed Central

    Giger, Lars; Caner, Sami; Obexer, Richard; Kast, Peter; Baker, David; Ban, Nenad; Hilvert, Donald

    2013-01-01

    Evolutionary advances are often fueled by unanticipated innovation. Directed evolution of a computationally designed enzyme suggests that dramatic molecular changes can also drive the optimization of primitive protein active sites. The specific activity of an artificial retro-aldolase was boosted >4,400 fold by random mutagenesis and screening, affording catalytic efficiencies approaching those of natural enzymes. However, structural and mechanistic studies reveal that the engineered catalytic apparatus, consisting of a reactive lysine and an ordered water molecule, was unexpectedly abandoned in favor of a new lysine residue in a substrate binding pocket created during the optimization process. Structures of the initial in silico design, a mechanistically promiscuous intermediate, and one of the most evolved variants highlight the importance of loop mobility and supporting functional groups in the emergence of the new catalytic center. Such internal competition between alternative reactive sites may have characterized the early evolution of many natural enzymes. PMID:23748672

  3. Dynamics and Mechanism of Efficient DNA Repair Reviewed by Active-Site Mutants

    NASA Astrophysics Data System (ADS)

    Tan, Chuang; Liu, Zheyun; Li, Jiang; Guo, Xunmin; Wang, Lijuan; Zhong, Dongping

    2010-06-01

    Photolyases repair the UV-induced pyrimidine dimers in damage DNA via a photoreaction which includes a series of light-driven electron transfers between the two-electron-reduced flavin cofactor FADH^- and the dimer. We report here our systematic studies of the repair dynamics in E. coli photolyase with mutation of several active-site residues. With femtosecond resolution, we observed the significant change in the forward electron transfer from the excited FADH^- to the dimer and the back electron transfer from the repaired thymines by mutation of E274A, R226A, R342A, N378S and N378C. We also found that the mutation of E274A accelerates the bond-breaking of the thymine dimer. The dynamics changes are consistent with the quantum yield study of these mutants. These results suggest that the active-site residues play a significant role, structurally and chemically, in the DNA repair photocycle.

  4. Synthesis of supported bimetallic nanoparticles with controlled size and composition distributions for active site elucidation

    SciTech Connect

    Hakim, Sikander H.; Sener, Canan; Alba Rubio, Ana C.; Gostanian, Thomas M.; O'neill, Brandon J; Ribeiro, Fabio H.; Miller, Jeffrey T.; Dumesic, James A

    2015-08-01

    Elucidation of active sites in supported bimetallic catalysts is complicated by the high level of dispersity in the nanoparticle size and composition that is inherent in conventional methods of catalyst preparation. We present a synthesis strategy that leads to highly dispersed, bimetallic nanoparticles with uniform particle size and composition by means of controlled surface reactions. We demonstrate the synthesis of three systems, RhMo, PtMo, and RhRe, consisting of a highly reducible metal with an oxophilic promoter. These catalysts are characterized by FTIR, CO chemisorption, STEM/EDS, TPR, and XAS analysis. The catalytic properties of these bimetallic nanoparticles were probed for the selective CO hydrogenolysis of (hydroxymethyl)tetrahydropyran to produce 1,6 hexanediol. Based on the characterization results and reactivity trends, the active sites in the hydrogenolysis reaction are identified to be small ensembles of the more noble metal (Rh, Pt) adjacent to highly reduced moieties of the more oxophilic metal (Mo, Re).

  5. Active Sites Environmental Monitoring Program: Program plan. Revision 1

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  6. Calorimetric studies of the interactions of metalloenzyme active site mimetics with zinc-binding inhibitors.

    PubMed

    Robinson, Sophia G; Burns, Philip T; Miceli, Amanda M; Grice, Kyle A; Karver, Caitlin E; Jin, Lihua

    2016-07-19

    The binding of drugs to metalloenzymes is an intricate process that involves several interactions, including binding of the drug to the enzyme active site metal, as well as multiple interactions between the drug and the enzyme residues. In order to determine the free energy contribution of Zn(2+) binding by known metalloenzyme inhibitors without the other interactions, valid active site zinc structural mimetics must be formed and binding studies need to be performed in biologically relevant conditions. The potential of each of five ligands to form a structural mimetic with Zn(2+) was investigated in buffer using Isothermal Titration Calorimetry (ITC). All five ligands formed strong 1 : 1 (ligand : Zn(2+)) binary complexes. The complexes were used in further ITC experiments to study their interaction with 8-hydroxyquinoline (8-HQ) and/or acetohydroxamic acid (AHA), two bidentate anionic zinc-chelating enzyme inhibitors. It was found that tetradentate ligands were not suitable for creating zinc structural mimetics for inhibitor binding in solution due to insufficient coordination sites remaining on Zn(2+). A stable binary complex, [Zn(BPA)](2+), which was formed by a tridentate ligand, bis(2-pyridylmethyl)amine (BPA), was found to bind one AHA in buffer or a methanol : buffer mixture (60 : 40 by volume) at pH 7.25 or one 8-HQ in the methanol : buffer mixture at pH 6.80, making it an effective structural mimetic for the active site of zinc metalloenzymes. These results are consistent with the observation that metalloenzyme active site zinc ions have three residues coordinated to them, leaving one or two sites open for inhibitors to bind. Our findings indicate that Zn(BPA)X2 can be used as an active site structural mimetic for zinc metalloenzymes for estimating the free energy contribution of zinc binding to the overall inhibitor active site interactions. Such use will help aid in the rational design of inhibitors to a variety of zinc metalloenzymes

  7. Active Site and Laminarin Binding in Glycoside Hydrolase Family 55*

    PubMed Central

    Bianchetti, Christopher M.; Takasuka, Taichi E.; Deutsch, Sam; Udell, Hannah S.; Yik, Eric J.; Bergeman, Lai F.; Fox, Brian G.

    2015-01-01

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100–10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. PMID:25752603

  8. Active site and laminarin binding in glycoside hydrolase family 55.

    PubMed

    Bianchetti, Christopher M; Takasuka, Taichi E; Deutsch, Sam; Udell, Hannah S; Yik, Eric J; Bergeman, Lai F; Fox, Brian G

    2015-05-01

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100-10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. PMID:25752603

  9. Active Site Loop Conformation Regulates Promiscuous Activity in a Lactonase from Geobacillus kaustophilus HTA426

    PubMed Central

    Zhang, Yu; An, Jiao; Yang, Guang-Yu; Bai, Aixi; Zheng, Baisong; Lou, Zhiyong; Wu, Geng; Ye, Wei; Chen, Hai-Feng; Feng, Yan; Manco, Giuseppe

    2015-01-01

    Enzyme promiscuity is a prerequisite for fast divergent evolution of biocatalysts. A phosphotriesterase-like lactonase (PLL) from Geobacillus kaustophilus HTA426 (GkaP) exhibits main lactonase and promiscuous phosphotriesterase activities. To understand its catalytic and evolutionary mechanisms, we investigated a “hot spot” in the active site by saturation mutagenesis as well as X-ray crystallographic analyses. We found that position 99 in the active site was involved in substrate discrimination. One mutant, Y99L, exhibited 11-fold improvement over wild-type in reactivity (kcat/Km) toward the phosphotriesterase substrate ethyl-paraoxon, but showed 15-fold decrease toward the lactonase substrate δ-decanolactone, resulting in a 157-fold inversion of the substrate specificity. Structural analysis of Y99L revealed that the mutation causes a ∼6.6 Å outward shift of adjacent loop 7, which may cause increased flexibility of the active site and facilitate accommodation and/or catalysis of organophosphate substrate. This study provides for the PLL family an example of how the evolutionary route from promiscuity to specificity can derive from very few mutations, which promotes alteration in the conformational adjustment of the active site loops, in turn draws the capacity of substrate binding and activity. PMID:25706379

  10. The Mechanism by which 146-N-Glycan Affects the Active Site of Neuraminidase.

    PubMed

    Liu, Pi; Wang, Zhonghua; Zhang, Lijie; Li, Dongmei; Lin, Jianping

    2015-01-01

    One of the most conserved glycosylation sites of neuraminidase (NA) is 146-N-glycan. This site is adjacent to the 150-cavity of NA, which is found within the active site and thought to be a target for rational drug development against the antiviral resistance of influenza. Here, through a total of 2.4 μs molecular dynamics (MD) simulations, we demonstrated that 146-N-glycan can stabilize the conformation of the 150-loop that controls the volume of the 150-cavity. Moreover, with 146-N-glycan, our simulation result was more consistent with crystal structures of NAs than simulations conducted without glycans. Cluster analysis of the MD trajectories showed that 146-N-glycan adopted three distinct conformations: monomer-bridged, dimer-bridged and standing. Of these conformations, the dimer-bridged 146-N-glycan was the most stable one and contributed to stabilization of the 150-loop conformation. Furthermore, our simulation revealed that various standing conformations of 146-N-glycan could block the entrance of the binding pocket. This result was consistent with experimental data and explained the relatively low activity of inhibitors with flexible substituents toward the 150-cavity. Together, our results lead us to hypothesize that rigid and hydrophobic substituents could serve as better inhibitors targeting the 150-cavity. PMID:26267136

  11. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site.

    PubMed

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel

    2015-01-01

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called 'catalytic residues' are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes. PMID:25902402

  12. Controlling activation site density by low-energy far-field stimulation in cardiac tissue

    NASA Astrophysics Data System (ADS)

    Hörning, Marcel; Takagi, Seiji; Yoshikawa, Kenichi

    2012-06-01

    Tachycardia and fibrillation are potentially fatal arrhythmias associated with the formation of rotating spiral waves in the heart. Presently, the termination of these types of arrhythmia is achieved by use of antitachycardia pacing or cardioversion. However, these techniques have serious drawbacks, in that they either have limited application or produce undesirable side effects. Low-energy far-field stimulation has recently been proposed as a superior therapy. This proposed therapeutic method would exploit the phenomenon in which the application of low-energy far-field shocks induces a large number of activation sites (“virtual electrodes”) in tissue. It has been found that the formation of such sites can lead to the termination of undesired states in the heart and the restoration of normal beating. In this study we investigate a particular aspect of this method. Here we seek to determine how the activation site density depends on the applied electric field through in vitro experiments carried out on neonatal rat cardiac tissue cultures. The results indicate that the activation site density increases exponentially as a function of the intracellular conductivity and the level of cell isotropy. Additionally, we report numerical results obtained from bidomain simulations of the Beeler-Reuter model that are quantitatively consistent with our experimental results. Also, we derive an intuitive analytical framework that describes the activation site density and provides useful information for determining the ratio of longitudinal to transverse conductivity in a cardiac tissue culture. The results obtained here should be useful in the development of an actual therapeutic method based on low-energy far-field pacing. In addition, they provide a deeper understanding of the intrinsic properties of cardiac cells.

  13. Metavanadate at the active site of the phosphatase VHZ.

    PubMed

    Kuznetsov, Vyacheslav I; Alexandrova, Anastassia N; Hengge, Alvan C

    2012-09-01

    Vanadate is a potent modulator of a number of biological processes and has been shown by crystal structures and NMR spectroscopy to interact with numerous enzymes. Although these effects often occur under conditions where oligomeric forms dominate, the crystal structures and NMR data suggest that the inhibitory form is usually monomeric orthovanadate, a particularly good inhibitor of phosphatases because of its ability to form stable trigonal-bipyramidal complexes. We performed a computational analysis of a 1.14 Å structure of the phosphatase VHZ in complex with an unusual metavanadate species and compared it with two classical trigonal-bipyramidal vanadate-phosphatase complexes. The results support extensive delocalized bonding to the apical ligands in the classical structures. In contrast, in the VHZ metavanadate complex, the central, planar VO(3)(-) moiety has only one apical ligand, the nucleophilic Cys95, and a gap in electron density between V and S. A computational analysis showed that the V-S interaction is primarily ionic. A mechanism is proposed to explain the formation of metavanadate in the active site from a dimeric vanadate species that previous crystallographic evidence has shown to be able to bind to the active sites of phosphatases related to VHZ. Together, the results show that the interaction of vanadate with biological systems is not solely reliant upon the prior formation of a particular inhibitory form in solution. The catalytic properties of an enzyme may act upon the oligomeric forms primarily present in solution to generate species such as the metavanadate ion observed in the VHZ structure. PMID:22876963

  14. Structure/function correlations over binuclear non-heme iron active sites.

    PubMed

    Solomon, Edward I; Park, Kiyoung

    2016-09-01

    Binuclear non-heme iron enzymes activate O2 to perform diverse chemistries. Three different structural mechanisms of O2 binding to a coupled binuclear iron site have been identified utilizing variable-temperature, variable-field magnetic circular dichroism spectroscopy (VTVH MCD). For the μ-OH-bridged Fe(II)2 site in hemerythrin, O2 binds terminally to a five-coordinate Fe(II) center as hydroperoxide with the proton deriving from the μ-OH bridge and the second electron transferring through the resulting μ-oxo superexchange pathway from the second coordinatively saturated Fe(II) center in a proton-coupled electron transfer process. For carboxylate-only-bridged Fe(II)2 sites, O2 binding as a bridged peroxide requires both Fe(II) centers to be coordinatively unsaturated and has good frontier orbital overlap with the two orthogonal O2 π* orbitals to form peroxo-bridged Fe(III)2 intermediates. Alternatively, carboxylate-only-bridged Fe(II)2 sites with only a single open coordination position on an Fe(II) enable the one-electron formation of Fe(III)-O2 (-) or Fe(III)-NO(-) species. Finally, for the peroxo-bridged Fe(III)2 intermediates, further activation is necessary for their reactivities in one-electron reduction and electrophilic aromatic substitution, and a strategy consistent with existing spectral data is discussed. PMID:27369780

  15. Large zinc cation occupancy of octahedral sites in mechanically activated zinc ferrite powders

    SciTech Connect

    Oliver, S. A.; Harris, V. G.; Hamdeh, H. H.; Ho, J. C.

    2000-05-08

    The cation site occupancy of a mechanically activated nanocrystalline zinc ferrite powder was determined as (Zn{sub 0.55}{sup 2+}Fe{sub 0.18}{sup 3+}){sub tet}[Zr{sub 0.45}{sup 2+}Fe{sub 1.82}{sup 3+}]{sub oct}O{sub 4} through analysis of extended x-ray absorption fine structure measurements, showing a large redistribution of cations between sites compared to normal zinc ferrite samples. The overpopulation of cations in the octahedral sites was attributed to the ascendance in importance of the ionic radii over the crystal energy and bonding coordination in determining which interstitial sites are occupied in this structurally disordered powder. Slight changes are observed in the local atomic environment about the zinc cations, but not the iron cations, with respect to the spinel structure. The presence of Fe{sup 3+} on both sites is consistent with the measured room temperature magnetic properties. (c) 2000 American Institute of Physics.

  16. Mimicking enzymatic active sites on surfaces for energy conversion chemistry.

    PubMed

    Gutzler, Rico; Stepanow, Sebastian; Grumelli, Doris; Lingenfelder, Magalí; Kern, Klaus

    2015-07-21

    Metal-organic supramolecular chemistry on surfaces has matured to a point where its underlying growth mechanisms are well understood and structures of defined coordination environments of metal atoms can be synthesized in a controlled and reproducible procedure. With surface-confined molecular self-assembly, scientists have a tool box at hand which can be used to prepare structures with desired properties, as for example a defined oxidation number and spin state of the transition metal atoms within the organic matrix. From a structural point of view, these coordination sites in the supramolecular structure resemble the catalytically active sites of metallo-enzymes, both characterized by metal centers coordinated to organic ligands. Several chemical reactions take place at these embedded metal ions in enzymes and the question arises whether these reactions also take place using metal-organic networks as catalysts. Mimicking the active site of metal atoms and organic ligands of enzymes in artificial systems is the key to understanding the selectivity and efficiency of enzymatic reactions. Their catalytic activity depends on various parameters including the charge and spin configuration in the metal ion, but also on the organic environment, which can stabilize intermediate reaction products, inhibits catalytic deactivation, and serves mostly as a transport channel for the reactants and products and therefore ensures the selectivity of the enzyme. Charge and spin on the transition metal in enzymes depend on the one hand on the specific metal element, and on the other hand on its organic coordination environment. These two parameters can carefully be adjusted in surface confined metal-organic networks, which can be synthesized by virtue of combinatorial mixing of building synthons. Different organic ligands with varying functional groups can be combined with several transition metals and spontaneously assemble into ordered networks. The catalytically active metal

  17. Long-term monitoring of soil microbiological activities in two forest sites in South tyrol in the italian alps.

    PubMed

    Margesin, Rosa; Minerbi, Stefano; Schinner, Franz

    2014-09-17

    We monitored microbiological properties in two forest sites over a period of 17 years (1993-2010) within the International Cooperative Programme on Integrated Monitoring of Air Pollution Effects on Ecosystems (ICP IM). The two study sites were located in South Tyrol in the Italian Alps at altitudes of 1,737 m a.s.l. (subalpine site IT01) and 570 m a.s.l. (submontane site IT02). Soil samples were collected in the late spring and autumn of 1993, 2000, and 2010, and were characterized by measuring respiration, key enzyme activities involved in the C, N, P, and S cycles and litter degradation, and the abundance of viable bacterial and fungal populations. Over the study period, an increase in mean annual air temperatures at both sites (+0.6°C and +0.8°C at IT01 and IT02, respectively) was calculated from trendlines. Significantly lower mean annual air temperatures, higher temperature fluctuations, and higher annual precipitation rates were observed at site IT01 than at site IT02. Subalpine site IT01 was characterized by significantly lower microbial activity (respiration, enzymes) and abundance than those at submontane site IT02. The year of sampling had a significant effect on all the parameters investigated, except for nitrification. Fungal abundance decreased consistently over the study period, while no consistent trend was noted among the other parameters investigated. Season only affected a few of the measured microbiological parameters: respiration and bacterial numbers were significantly higher in the spring than in the autumn, while the opposite was noted for xylanase and phosphatase activities. Soil fungi contributed essentially to xylanase and protease activities, while soil bacteria were mainly involved in degradation processes that required the activity of sulfatase. PMID:25008018

  18. Hybrid [FeFe]-hydrogenases with modified active sites show remarkable residual enzymatic activity.

    PubMed

    Siebel, Judith F; Adamska-Venkatesh, Agnieszka; Weber, Katharina; Rumpel, Sigrun; Reijerse, Edward; Lubitz, Wolfgang

    2015-02-24

    [FeFe]-hydrogenases are to date the only enzymes for which it has been demonstrated that the native inorganic binuclear cofactor of the active site Fe2(adt)(CO)3(CN)2 (adt = azadithiolate = [S-CH2-NH-CH2-S](2-)) can be synthesized on the laboratory bench and subsequently inserted into the unmaturated enzyme to yield fully functional holo-enzyme (Berggren, G. et al. (2013) Nature 499, 66-70; Esselborn, J. et al. (2013) Nat. Chem. Biol. 9, 607-610). In the current study, we exploit this procedure to introduce non-native cofactors into the enzyme. Mimics of the binuclear subcluster with a modified bridging dithiolate ligand (thiodithiolate, N-methylazadithiolate, dimethyl-azadithiolate) and three variants containing only one CN(-) ligand were inserted into the active site of the enzyme. We investigated the activity of these variants for hydrogen oxidation as well as proton reduction and their structural accommodation within the active site was analyzed using Fourier transform infrared spectroscopy. Interestingly, the monocyanide variant with the azadithiolate bridge showed ∼50% of the native enzyme activity. This would suggest that the CN(-) ligands are not essential for catalytic activity, but rather serve to anchor the binuclear subsite inside the protein pocket through hydrogen bonding. The inserted artificial cofactors with a propanedithiolate and an N-methylazadithiolate bridge as well as their monocyanide variants also showed residual activity. However, these activities were less than 1% of the native enzyme. Our findings indicate that even small changes in the dithiolate bridge of the binuclear subsite lead to a rather strong decrease of the catalytic activity. We conclude that both the Brønsted base function and the conformational flexibility of the native azadithiolate amine moiety are essential for the high catalytic activity of the native enzyme. PMID:25633077

  19. Site-specific PEGylation of lidamycin and its antitumor activity.

    PubMed

    Li, Liang; Shang, Boyang; Hu, Lei; Shao, Rongguang; Zhen, Yongsu

    2015-05-01

    In this study, N-terminal site-specific mono-PEGylation of the recombinant lidamycin apoprotein (rLDP) of lidamycin (LDM) was prepared using a polyethyleneglycol (PEG) derivative (M w 20 kDa) through a reactive terminal aldehyde group under weak acidic conditions (pH 5.5). The biochemical properties of mPEG-rLDP-AE, an enediyne-integrated conjugate, were analyzed by SDS-PAGE, RP-HPLC, SEC-HPLC and MALDI-TOF. Meanwhile, in vitro and in vivo antitumor activity of mPEG-rLDP-AE was evaluated by MTT assays and in xenograft model. The results indicated that mPEG-rLDP-AE showed significant antitumor activity both in vitro and in vivo. After PEGylation, mPEG-rLDP still retained the binding capability to the enediyne AE and presented the physicochemical characteristics similar to that of native LDP. It is of interest that the PEGylation did not diminish the antitumor efficacy of LDM, implying the possibility that this derivative may function as a payload to deliver novel tumor-targeted drugs. PMID:26579455

  20. Substrate Binding and Active Site Residues in RNases E and G

    PubMed Central

    Garrey, Stephen M.; Blech, Michaela; Riffell, Jenna L.; Hankins, Janet S.; Stickney, Leigh M.; Diver, Melinda; Hsu, Ying-Han Roger; Kunanithy, Vitharani; Mackie, George A.

    2009-01-01

    The paralogous endoribonucleases, RNase E and RNase G, play major roles in intracellular RNA metabolism in Escherichia coli and related organisms. To assay the relative importance of the principal RNA binding sites identified by crystallographic analysis, we introduced mutations into the 5′-sensor, the S1 domain, and the Mg+2/Mn+2 binding sites. The effect of such mutations has been measured by assays of activity on several substrates as well as by an assay of RNA binding. RNase E R169Q and the equivalent mutation in RNase G (R171Q) exhibit the strongest reductions in both activity (the kcat decrease ∼40- to 100-fold) and RNA binding consistent with a key role for the 5′-sensor. Our analysis also supports a model in which the binding of substrate results in an increase in catalytic efficiency. Although the phosphate sensor plays a key role in vitro, it is unexpectedly dispensable in vivo. A strain expressing only RNase E R169Q as the sole source of RNase E activity is viable, exhibits a modest reduction in doubling time and colony size, and accumulates immature 5 S rRNA. Our results point to the importance of alternative RNA binding sites in RNase E and to alternative pathways of RNA recognition. PMID:19778900

  1. A Relaxed Active Site After Exon Ligation by the Group I Intron

    SciTech Connect

    Lipchock,S.; Strobel, S.

    2008-01-01

    During RNA maturation, the group I intron promotes two sequential phosphorotransfer reactions resulting in exon ligation and intron release. Here, we report the crystal structure of the intron in complex with spliced exons and two additional structures that examine the role of active-site metal ions during the second step of RNA splicing. These structures reveal a relaxed active site, in which direct metal coordination by the exons is lost after ligation, while other tertiary interactions are retained between the exon and the intron. Consistent with these structural observations, kinetic and thermodynamic measurements show that the scissile phosphate makes direct contact with metals in the ground state before exon ligation and in the transition state, but not after exon ligation. Despite no direct exonic interactions and even in the absence of the scissile phosphate, two metal ions remain bound within the active site. Together, these data suggest that release of the ligated exons from the intron is preceded by a change in substrate-metal coordination before tertiary hydrogen bonding contacts to the exons are broken.

  2. Localization of the active site of an enzyme, bacterial luciferase, using two-quantum affinity modification

    NASA Astrophysics Data System (ADS)

    Benimetskaya, L. Z.; Gitelzon, I. I.; Kozionov, Andrew L.; Novozhilov, S. Y.; Petushkov, V. N.; Rodionova, N. S.; Stockman, Mark I.

    1991-11-01

    For the first time the method of two-quantum affinity modification has been employed to probe the structure of an enzyme, bacterial luciferase. Position of the flavin-binding site of this enzyme, which was previously unknown, has been established. The obtained data indicate that the flavin site is positioned on the (alpha) -subunit. The closest contact of the protein chain of the enzyme with the chromophoric group of the flavin takes place near 80 +/- 10 and 120 +/- 10 amino acid residues; the regions 50 +/- 10 and 215 +/- 10 are also close to the flavin. The established localization does not contradict suggestions on positions of the flavin and phosphate sites of the bacterial luciferase, which had earlier been made from the data on evolutionary stability of various luciferases. The present method can, in principle, be applied to a great number of enzymes, including all flavin-dependent enzymes. Enzymatic catalysis has high speed and specificity. Creation of a method of determination of the elements of the primary structure of a protein, making up the active site (in which substratum conversion occurs), could be a significant advance in clearing up mechanisms of enzymatic catalysis. It was proposed to localize active sites of the enzymes, whose substrata are chromophores, using this method of two-quantum affinity modification. An enzyme- substratum complex is irradiated with laser light of sufficiently long wavelength ((lambda) 300 nm) which is not directly absorbed by the enzyme. Two-quantum quasiresonant excitation of the substratum activates it to the state with energy 5-7 eV, which is then radiativelessly transferred to neighboring protein groups. This energy exceeds the energy of activation of peptide bond breakage. Therefore, the enzyme will be disrupted in the vicinity of its active site. In the present paper the above approach has been implemented for the first time. Information has been obtained about the position of the flavin-binding site of bacterial

  3. Allosteric site-mediated active site inhibition of PBP2a using Quercetin 3-O-rutinoside and its combination.

    PubMed

    Rani, Nidhi; Vijayakumar, Saravanan; P T V, Lakshmi; Arunachalam, Annamalai

    2016-08-01

    Recent crystallographic study revealed the involvement of allosteric site in active site inhibition of penicillin binding protein (PBP2a), where one molecule of Ceftaroline (Cef) binds to the allosteric site of PBP2a and paved way for the other molecule (Cef) to bind at the active site. Though Cef has the potency to inhibit the PBP2a, its adverse side effects are of major concern. Previous studies have reported the antibacterial property of Quercetin derivatives, a group of natural compounds. Hence, the present study aims to evaluate the effect of Quercetin 3-o-rutinoside (Rut) in allosteric site-mediated active site inhibition of PBP2a. The molecular docking studies between allosteric site and ligands (Rut, Que, and Cef) revealed a better binding efficiency (G-score) of Rut (-7.790318) and Cef (-6.194946) with respect to Que (-5.079284). Molecular dynamic (MD) simulation studies showed significant changes at the active site in the presence of ligands (Rut and Cef) at allosteric site. Four different combinations of Rut and Cef were docked and their G-scores ranged between -6.320 and -8.623. MD studies revealed the stability of the key residue (Ser403) with Rut being at both sites, compared to other complexes. Morphological analysis through electron microscopy confirmed that combination of Rut and Cefixime was able to disturb the bacterial cell membrane in a similar fashion to that of Rut and Cefixime alone. The results of this study indicate that the affinity of Rut at both sites were equally good, with further validations Rut could be considered as an alternative for inhibiting MRSA growth. PMID:26360629

  4. Crystal Structure of Albaflavenone Monooxygenase Containing a Moonlighting Terpene Synthase Active Site

    SciTech Connect

    Zhao, Bin; Lei, Li; Vassylyev, Dmitry G.; Lin, Xin; Cane, David E.; Kelly, Steven L.; Yuan, Hang; Lamb, David C.; Waterman, Michael R.

    2010-01-08

    Albaflavenone synthase (CYP170A1) is a monooxygenase catalyzing the final two steps in the biosynthesis of this antibiotic in the soil bacterium, Streptomyces coelicolor A3(2). Interestingly, CYP170A1 shows no stereo selection forming equal amounts of two albaflavenol epimers, each of which is oxidized in turn to albaflavenone. To explore the structural basis of the reaction mechanism, we have studied the crystal structures of both ligand-free CYP170A1 (2.6 {angstrom}) and complex of endogenous substrate (epi-isozizaene) with CYP170A1 (3.3 {angstrom}). The structure of the complex suggests that the proximal epi-isozizaene molecules may bind to the heme iron in two orientations. In addition, much to our surprise, we have found that albaflavenone synthase also has a second, completely distinct catalytic activity corresponding to the synthesis of farnesene isomers from farnesyl diphosphate. Within the cytochrome P450 {alpha}-helical domain both the primary sequence and x-ray structure indicate the presence of a novel terpene synthase active site that is moonlighting on the P450 structure. This includes signature sequences for divalent cation binding and an {alpha}-helical barrel. This barrel is unusual because it consists of only four helices rather than six found in all other terpene synthases. Mutagenesis establishes that this barrel is essential for the terpene synthase activity of CYP170A1 but not for the monooxygenase activity. This is the first bifunctional P450 discovered to have another active site moonlighting on it and the first time a terpene synthase active site is found moonlighting on another protein.

  5. Temporal patterns of deer-vehicle collisions consistent with deer activity pattern and density increase but not general accident risk.

    PubMed

    Hothorn, Torsten; Müller, Jörg; Held, Leonhard; Möst, Lisa; Mysterud, Atle

    2015-08-01

    The increasing number of deer-vehicle collisions (DVCs) across Europe during recent decades poses a serious threat to human health and animal welfare and increasing costs for society. DVCs are triggered by both a human-related and a deer-related component. Mitigation requires an understanding of the processes driving temporal and spatial collision patterns. Separating human-related from deer-related processes is important for identifying potentially effective countermeasures, but this has rarely been done. We analysed two time series of 341,655 DVCs involving roe deer and 854,659 non-deer-related accidents (non-DVCs) documented between 2002 and 2011. Nonparametric smoothing and temporal parametric modelling were used to estimate annual, seasonal, weekly and diurnal patterns in DVCs, non-DVCs and adjusted DVCs. As we had access to data on both DVCs and non-DVCs, we were able to disentangle the relative role of human-related and deer-related processes contributing to the overall temporal DVC pattern. We found clear evidence that variation in DVCs was mostly driven by deer-related and not human-related activity on annual, seasonal, weekly and diurnal scales. A very clear crepuscular activity pattern with high activity after sunset and around sunrise throughout the year was identified. Early spring and the mating season between mid-July and mid-August are typically periods of high roe deer activity, and as expected we found a high number of DVC during these periods, although these patterns differed tremendously during different phases of a day. The role of human activity was mainly reflected in fewer DVCs on weekends than on weekdays. Over the ten-year study period, we estimated that DVCs increased by 25%, whereas the number of non-DVCs decreased by 10%. Increasing deer densities are the most likely driver behind this rise in DVCs. Precise estimates of DVC patterns and their relationship to deer and human activity patterns allow implementation of specific mitigation

  6. Tertiary Contacts Distant from the Active Site Prime a Ribozyme for Catalysis

    PubMed Central

    Martick, Monika; Scott, William G.

    2015-01-01

    SUMMARY Minimal hammerhead ribozymes have been characterized extensively by static and time-resolved crystallography as well as numerous biochemical analyses, leading to mutually contradictory mechanistic explanations for catalysis. We present the 2.2 Å resolution crystal structure of a full-length Schistosoma mansoni hammerhead ribozyme that permits us to explain the structural basis for its 1000-fold catalytic enhancement. The full-length hammerhead structure reveals how tertiary interactions occurring remotely from the active site prime this ribozyme for catalysis. G-12 and G-8 are positioned consistent with their previously suggested roles in acid-base catalysis, the nucleophile is aligned with a scissile phosphate positioned proximal to the A-9 phosphate, and previously unexplained roles of other conserved nucleotides become apparent within the context of a distinctly new fold that nonetheless accommodates the previous structural studies. These interactions permit us to explain the previously irreconcilable sets of experimental results in a unified, consistent, and unambiguous manner. PMID:16859740

  7. Active site hydrophobicity is critical to the bioluminescence activity of Vibrio harveyi luciferase.

    PubMed

    Li, Chi-Hui; Tu, Shiao-Chun

    2005-10-01

    Vibrio harveyi luciferase is an alphabeta heterodimer containing a single active site, proposed earlier to be at a cleft in the alpha subunit. In this work, six conserved phenylalanine residues at this proposed active site were subjected to site-directed mutations to investigate their possible functional roles and to delineate the makeup of luciferase active site. After initial screening of Phe --> Ala mutants, alphaF46, alphaF49, alphaF114, and alphaF117 were chosen for additional mutations to Asp, Ser, and Tyr. Comparisons of the general kinetic properties of wild-type and mutated luciferases indicated that the hydrophobic nature of alphaF46, alphaF49, alphaF114, and alphaF117 was important to luciferase V(max) and V(max)/K(m), which were reduced by 3-5 orders of magnitude for the Phe --> Asp mutants. Both alphaF46 and alphaF117 also appeared to be involved in the binding of reduced flavin substrate. Additional studies on the stability and yield of the 4a-hydroperoxyflavin intermediate II and measurements of decanal substrate oxidation by alphaF46D, alphaF49D, alphaF114D, and alphaF117D revealed that their marked reductions in the overall quantum yield (phi( degrees )) were a consequence of diminished yields of luciferase intermediates and, with the exception of alphaF114D, emission quantum yield of the excited emitter due to the replacement of the hydrophobic Phe by the anionic Asp. The locations of these four critical Phe residues in relation to other essential and/or hydrophobic residues are depicted in a refined map of the active site. Functional implications of these residues are discussed. PMID:16185065

  8. Consistently High Sports/Exercise Activity Is Associated with Better Sleep Quality, Continuity and Depth in Midlife Women: The SWAN Sleep Study

    PubMed Central

    Kline, Christopher E.; Irish, Leah A.; Krafty, Robert T.; Sternfeld, Barbara; Kravitz, Howard M.; Buysse, Daniel J.; Bromberger, Joyce T.; Dugan, Sheila A.; Hall, Martica H.

    2013-01-01

    Study Objectives: To examine relationships between different physical activity (PA) domains and sleep, and the influence of consistent PA on sleep, in midlife women. Design: Cross-sectional. Setting: Community-based. Participants: 339 women in the Study of Women's Health Across the Nation Sleep Study (52.1 ± 2.1 y). Interventions: None. Measurements and Results: Sleep was examined using questionnaires, diaries and in-home polysomnography (PSG). PA was assessed in three domains (Active Living, Household/Caregiving, Sports/Exercise) using the Kaiser Physical Activity Survey (KPAS) up to 4 times over 6 years preceding the sleep assessments. The association between recent PA and sleep was evaluated using KPAS scores immediately preceding the sleep assessments. The association between the historical PA pattern and sleep was examined by categorizing PA in each KPAS domain according to its pattern over the 6 years preceding sleep assessments (consistently low, inconsistent/consistently moderate, or consistently high). Greater recent Sports/Exercise activity was associated with better sleep quality (diary “restedness” [P < 0.01]), greater sleep continuity (diary sleep efficiency [SE; P = 0.02]) and depth (higher NREM delta electroencephalographic [EEG] power [P = 0.04], lower NREM beta EEG power [P < 0.05]), and lower odds of insomnia diagnosis (P < 0.05). Consistently high Sports/Exercise activity was also associated with better Pittsburgh Sleep Quality Index scores (P = 0.02) and higher PSG-assessed SE (P < 0.01). Few associations between sleep and Active Living or Household/Caregiving activity (either recent or historical pattern) were noted. Conclusion: Consistently high levels of recreational physical activity, but not lifestyle- or household-related activity, are associated with better sleep in midlife women. Increasing recreational physical activity early in midlife may protect against sleep disturbance in this population. Citation: Kline CE; Irish LA; Krafty

  9. A proposed definition of the 'activity' of surface sites on lactose carriers for dry powder inhalation.

    PubMed

    Grasmeijer, Floris; Frijlink, Henderik W; de Boer, Anne H

    2014-06-01

    A new definition of the activity of surface sites on lactose carriers for dry powder inhalation is proposed which relates to drug detachment during dispersion. The new definition is expected to improve the understanding of 'carrier surface site activity', which stimulates the unambiguous communication about this subject and may aid in the rational design and interpretation of future formulation studies. In contrast to the currently prevailing view on carrier surface site activity, it follows from the newly proposed definition that carrier surface site activity depends on more variables than just the physicochemical properties of the carrier surface. Because the term 'active sites' is ambiguous, it is recommended to use the term 'highly active sites' instead to denote carrier surface sites with a relatively high activity. PMID:24613490

  10. Disturbance opens recruitment sites for bacterial colonization in activated sludge.

    PubMed

    Vuono, David C; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E

    2016-01-01

    Little is known about the role of immigration in shaping bacterial communities or the factors that may dictate success or failure of colonization by bacteria from regional species pools. To address these knowledge gaps, the influence of bacterial colonization into an ecosystem (activated sludge bioreactor) was measured through a disturbance gradient (successive decreases in the parameter solids retention time) relative to stable operational conditions. Through a DNA sequencing approach, we show that the most abundant bacteria within the immigrant community have a greater probability of colonizing the receiving ecosystem, but mostly as low abundance community members. Only during the disturbance do some of these bacterial populations significantly increase in abundance beyond background levels and in few cases become dominant community members post-disturbance. Two mechanisms facilitate the enhanced enrichment of immigrant populations during disturbance: (i) the availability of resources left unconsumed by established species and (ii) the increased availability of niche space for colonizers to establish and displace resident populations. Thus, as a disturbance decreases local diversity, recruitment sites become available to promote colonization. This work advances our understanding of microbial resource management and diversity maintenance in complex ecosystems. PMID:25727891

  11. Construction of DNA recognition sites active in Haemophilus transformation.

    PubMed Central

    Danner, D B; Smith, H O; Narang, S A

    1982-01-01

    Competent Haemophilus cells recognize and preferentially take up Haemophilus DNA during genetic transformation. This preferential uptake is correlated with the presence on incoming DNA of an 11-base-pair (bp) sequence, 5'-A-A-G-T-G-C-G-G-T-C-A-3'. To prove that this sequence is the recognition site that identifies Haemophilus DNA to the competent cell, we have now constructed a series of plasmids, each of which contains the 11-bp sequence. Using two different assay systems we have tested the ability of fragments from these plasmids to compete with cloned Haemophilus DNA fragments that naturally contain the 11-bp sequence. We find that the addition of the 11-bp sequence to a DNA fragment is necessary and sufficient for preferential uptake of that fragment. However, plasmid DNAs containing this sequence may vary as much as 48-fold in uptake activity, and this variation correlates with the A+T-richness of the DNA flanking the 11-mer. Images PMID:6285382

  12. Characterization of active site residues of nitroalkane oxidase.

    PubMed

    Valley, Michael P; Fenny, Nana S; Ali, Shah R; Fitzpatrick, Paul F

    2010-06-01

    The flavoenzyme nitroalkane oxidase catalyzes the oxidation of primary and secondary nitroalkanes to the corresponding aldehydes and ketones plus nitrite. The structure of the enzyme shows that Ser171 forms a hydrogen bond to the flavin N5, suggesting that it plays a role in catalysis. Cys397 and Tyr398 were previously identified by chemical modification as potential active site residues. To more directly probe the roles of these residues, the S171A, S171V, S171T, C397S, and Y398F enzymes have been characterized with nitroethane as substrate. The C397S and Y398 enzymes were less stable than the wild-type enzyme, and the C397S enzyme routinely contained a substoichiometric amount of FAD. Analysis of the steady-state kinetic parameters for the mutant enzymes, including deuterium isotope effects, establishes that all of the mutations result in decreases in the rate constants for removal of the substrate proton by approximately 5-fold and decreases in the rate constant for product release of approximately 2-fold. Only the S171V and S171T mutations alter the rate constant for flavin oxidation. These results establish that these residues are not involved in catalysis, but rather are required for maintaining the protein structure. PMID:20056514

  13. Detection limit for activation measurements in ultralow background sites

    NASA Astrophysics Data System (ADS)

    Trache, Livius; Chesneanu, D.; Margineanu, R.; Pantelica, A.; Ghita, D. G.; Burducea, I.; Straticiuc, M.; Tang, X. D.

    2014-09-01

    We used 12C +13C fusion at the beam energies E = 6, 7 and 8 MeV to determine the sensitivity and the limits of activation method measurements in ultralow background sites. A 13C beam of 0.5 μA from the 3 MV Tandem accelerator of the Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH impinged on thick graphite targets. After about 24 hrs of irradiation targets were measured in two different laboratories: one with a heavy shielded Ge detector in the institute (at the surface) and one located underground in the microBequerel laboratory, in the salt mine of Slanic-Prahova, Romania. The 1369- and 2754 keV peaks from 24Na deactivation were clearly observed in the γ-ray spectra obtained for acquisitions lasting a few hours, or a few days. Determination of the detection limit in evaluating the cross sections for the target irradiated at Ec . m = 3 MeV indicates the fact that it is possible to measure gamma spectrum in underground laboratory down to Ec . m = 2 . 6 MeV. Cleaning the spectra with beta-gamma coincidences and increasing beam intensity 20 times will take as further down. The measurements are motivated by the study of the 12 C +12 C reaction at astrophysical energies.

  14. N6-Methyldeoxyadenosine Marks Active Transcription Start Sites in Chlamydomonas

    PubMed Central

    Chen, Kai; Deng, Xin; Yu, Miao; Han, Dali; Hao, Ziyang; Liu, Jianzhao; Lu, Xingyu; Dore, Louis C; Weng, Xiaocheng; Ji, Quanjiang; Mets, Laurens; He, Chuan

    2015-01-01

    SUMMARY N6-methyldeoxyadenosine (6mA or m6A) is a DNA modification preserved in prokaryotes to eukaryotes. It is widespread in bacteria, and functions in DNA mismatch repair, chromosome segregation, and virulence regulation. In contrast, the distribution and function of 6mA in eukaryotes have been unclear. Here we present a comprehensive analysis of the 6mA landscape in the genome of Chlamydomonas using new sequencing approaches. We identified the 6mA modification in 84% of genes in Chlamydomonas. We found that 6mA mainly locates at ApT dinucleotides around transcription start sites (TSS) with a bimodal distribution, and appears to mark active genes. A periodic pattern of 6mA deposition was also observed at base resolution, which is associated with nucleosome distribution near the TSS, suggesting a possible role in nucleosome positioning. The new genome-wide mapping of 6mA and its unique distribution in the Chlamydomonas genome suggest potential regulatory roles of 6mA in gene expression in eukaryotic organisms. PMID:25936837

  15. The Structural Features of Thousands of T-DNA Insertion Sites Are Consistent with a Double-Strand Break Repair-Based Insertion Mechanism.

    PubMed

    Kleinboelting, Nils; Huep, Gunnar; Appelhagen, Ingo; Viehoever, Prisca; Li, Yong; Weisshaar, Bernd

    2015-11-01

    Transformation by Agrobacterium tumefaciens, an important tool in modern plant research, involves the integration of T-DNA initially present on a plasmid in agrobacteria into the genome of plant cells. The process of attachment of the agrobacteria to plant cells and the transport of T-DNA into the cell and further to the nucleus has been well described. However, the exact mechanism of integration into the host's DNA is still unclear, although several models have been proposed. During confirmation of T-DNA insertion alleles from the GABI-Kat collection of Arabidopsis thaliana mutants, we have generated about 34,000 sequences from the junctions between inserted T-DNA and adjacent genome regions. Here, we describe the evaluation of this dataset with regard to existing models for T-DNA integration. The results suggest that integration into the plant genome is mainly mediated by the endogenous plant DNA repair machinery. The observed integration events showed characteristics highly similar to those of repair sites of double-strand breaks with respect to microhomology and deletion sizes. In addition, we describe unexpected integration events, such as large deletions and inversions at the integration site that are relevant for correct interpretation of results from T-DNA insertion mutants in reverse genetics experiments. PMID:26343971

  16. Near-Surface Site Characterization Using a Combination of Active and Passive Seismic Arrays

    NASA Astrophysics Data System (ADS)

    Lane, J. W.; Liu, L.; Chen, Y.; White, E. A.

    2007-12-01

    Seismic surveys with an active source are commonly used to characterize the subsurface. Increasingly, passive seismic surveys utilizing ambient seismic frequencies (microtremors) are being used to support geotechnical and hazards engineering studies. In this study, we use a combination of active and passive seismic methods to characterize a watershed site at Haddam Meadows State Park, Haddam, Connecticut. At Haddam Meadows, we employed a number of seismic arrays using both active and passive approaches to estimate the depth to rock and the seismic velocity structure of the unconsolidated sediments. The active seismic surveys included seismic refraction and multi-channel analysis of surface waves (MASW) using an accelerated weight-drop seismic source. The passive seismic surveys consisted of MASW techniques using both linear and circular geophone arrays, and a survey using a 3-component seismometer. The active seismic data were processed using conventional algorithms; the passive seismic data were processed using both the spatial autocorrelation method (SPAC) and the horizontal to vertical spectral ratio (H/V) method. The interpretations of subsurface structure from the active and passive surveys are generally in good agreement and compare favorably with ground truth information provided by adjacent boreholes. Our results suggest that a combination of active and passive seismic methods can be used to rapidly characterize the subsurface at the watershed scale.

  17. A traditional Chinese medicine formulation consisting of Rhizoma Corydalis and Rhizoma Curcumae exerts synergistic anti-tumor activity.

    PubMed

    Gao, Jian-Li; He, Tong-Chuan; Li, Ying-Bo; Wang, Yi-Tao

    2009-11-01

    Synergy analysis of anticancer agents is an important approach to determining the ratio and/or dose of drugs for clinical combination therapy. However, this method is rarely used to evaluate the composition of traditional Chinese medicine formulation. 'Yanhusuo San' (YHSS), which consists of yanhusuo (Rhizoma Corydalis) and Ezhu (Rhizoma Curcumae), has been an archaic Chinese medicine prescription since the Song dynasty (960-1279 AD). We previously demonstrated that either yanhusuo or ezhu has strong anticancer effect. Herein, we sought to determine the possible synergic effect between these two Chinese herbs. We measured the IC50 of each herb extract and both extracts at different ratios of doses by MTT assay. Isobologram and combination index (CI) analyses were used to evaluate the synergistic effect of yanhusuo and ezhu in different fixed ratios. Our results indicated that a combination of two herbal extracts exhibits the strongest anticancer cell proliferation effect at the ratio of 3:2 (ezhu to yanhusuo; referred to as E3Y2). Using Boyden Chamber assay, flow cytometry, and fluorescence microscopy analysis, we found that E3Y2 could markedly reduce the cell invasion ability and induce cytochrome c release rather than single use, but E3Y2 could not influence the cell cycle distribution. When the levels of ERK1/2, p-ERK1/2 and p-Rb were determined by Western blot analysis, we found that the E3Y2 significantly suppresses the level of p-ERK. Thus, our studies provide a plausible molecular basis of the synergistic anti-tumor effect of ezhu and yanhusuo. PMID:19787224

  18. In Situ Detection of Active Edge Sites in Single-Layer MoS2 Catalysts.

    PubMed

    Bruix, Albert; Füchtbauer, Henrik Gøbel; Tuxen, Anders K; Walton, Alexander S; Andersen, Mie; Porsgaard, Søren; Besenbacher, Flemming; Hammer, Bjørk; Lauritsen, Jeppe V

    2015-09-22

    MoS2 nanoparticles are proven catalysts for processes such as hydrodesulfurization and hydrogen evolution, but unravelling their atomic-scale structure under catalytic working conditions has remained significantly challenging. Ambient pressure X-ray Photoelectron Spectroscopy (AP-XPS) allows us to follow in situ the formation of the catalytically relevant MoS2 edge sites in their active state. The XPS fingerprint is described by independent contributions to the Mo 3d core level spectrum whose relative intensity is sensitive to the thermodynamic conditions. Density Functional Theory (DFT) is used to model the triangular MoS2 particles on Au(111) and identify the particular sulphidation state of the edge sites. A consistent picture emerges in which the core level shifts for the edge Mo atoms evolve counterintuitively toward higher binding energies when the active edges are reduced. The shift is explained by a surprising alteration in the metallic character of the edge sites, which is a distinct spectroscopic signature of the MoS2 edges under working conditions. PMID:26203593

  19. Active-Site Structure of Class IV Adenylyl Cyclase and Transphyletic Mechanism

    SciTech Connect

    Gallagher, D.T.; Robinson, H.; Kim, S.-K.; Reddy, P. T.

    2011-01-21

    Adenylyl cyclases (ACs) belonging to three nonhomologous classes (II, III, and IV) have been structurally characterized, enabling a comparison of the mechanisms of cyclic adenosine 3',5'-monophosphate biosynthesis. We report the crystal structures of three active-site complexes for Yersinia pestis class IV AC (AC-IV)-two with substrate analogs and one with product. Mn{sup 2+} binds to all three phosphates, and to Glu12 and Glu136. Electropositive residues Lys14, Arg63, Lys76, Lys111, and Arg113 also form hydrogen bonds to phosphates. The conformation of the analogs is suitable for in-line nucleophilic attack by the ribose O3' on {alpha}-phosphate (distance {approx} 4 {angstrom}). In the product complex, a second Mn ion is observed to be coordinated to both ribose 2' oxygen and ribose 3' oxygen. Observation of both metal sites, together with kinetic measurements, provides strong support for a two-cation mechanism. Eleven active-site mutants were also made and kinetically characterized. These findings and comparisons with class II and class III enzymes enable a detailed transphyletic analysis of the AC mechanism. Consistent with its lack of coordination to purine, Y. pestis AC-IV cyclizes both ATP and GTP. As in other classes of AC, the ribose is loosely bound, and as in class III, no base appears to ionize the O3' nucleophile. Different syn/anti conformations suggest that the mechanism involves a conformational transition, and further evidence suggests a role for ribosyl pseudorotation. With resolutions of 1.6-1.7 {angstrom}, these are the most detailed active-site ligand complexes for any class of this ubiquitous signaling enzyme.

  20. Active-Site Structure of Class IV Adenylyl Cyclase and Transphyletic Mechanism

    SciTech Connect

    D Gallagher; S Kim; H Robinson; P Reddy

    2011-12-31

    Adenylyl cyclases (ACs) belonging to three nonhomologous classes (II, III, and IV) have been structurally characterized, enabling a comparison of the mechanisms of cyclic adenosine 3',5'-monophosphate biosynthesis. We report the crystal structures of three active-site complexes for Yersinia pestis class IV AC (AC-IV) - two with substrate analogs and one with product. Mn{sup 2+} binds to all three phosphates, and to Glu12 and Glu136. Electropositive residues Lys14, Arg63, Lys76, Lys111, and Arg113 also form hydrogen bonds to phosphates. The conformation of the analogs is suitable for in-line nucleophilic attack by the ribose O3' on {alpha}-phosphate (distance {approx} 4 {angstrom}). In the product complex, a second Mn ion is observed to be coordinated to both ribose 2' oxygen and ribose 3' oxygen. Observation of both metal sites, together with kinetic measurements, provides strong support for a two-cation mechanism. Eleven active-site mutants were also made and kinetically characterized. These findings and comparisons with class II and class III enzymes enable a detailed transphyletic analysis of the AC mechanism. Consistent with its lack of coordination to purine, Y. pestis AC-IV cyclizes both ATP and GTP. As in other classes of AC, the ribose is loosely bound, and as in class III, no base appears to ionize the O3' nucleophile. Different syn/anti conformations suggest that the mechanism involves a conformational transition, and further evidence suggests a role for ribosyl pseudorotation. With resolutions of 1.6-1.7 {angstrom}, these are the most detailed active-site ligand complexes for any class of this ubiquitous signaling enzyme.

  1. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  2. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  3. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  4. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  5. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  6. KRAS promoter oligonucleotide with decoy activity dimerizes into a unique topology consisting of two G-quadruplex units

    PubMed Central

    Podbevšek, Peter; Plavec, Janez

    2016-01-01

    Mutations of the KRAS proto-oncogene are associated with several tumor types, which is why it is being considered as a target for anti-cancer drug development. The human KRAS promoter contains a nuclease hypersensitive element (NHE), which can bind to nuclear proteins and is believed to form G-quadruplex structures. Previous studies showed that a 32-nt oligonucleotide (32R-3n) mimicking the KRAS NHE can reduce gene transcription by sequestering MAZ, a crucial transcription factor. Here we show that 32R-3n has to dimerize in order to fold into a G-quadruplex structure. Individual 5′- and 3′-end G-quadruplex units are formed and both feature a symmetric head-to-head topology with edge-type loops. The MAZ binding sequence is located within the 3′-end unit. Nuclear magnetic resonance data complemented by CD and UV spectra show that nucleotides of the MAZ binding G-rich motif are dynamic and could be available for sequence or structure based recognition. Both stable G-quadruplex structures could protect 5′- and 3′-ends of 32R-3n and enhance its anti-cancer activity. Single stranded genomic KRAS NHE including nucleotides flanking the 32R-3n sequence could favor a different monomeric fold, which remains unknown. PMID:26656490

  7. KRAS promoter oligonucleotide with decoy activity dimerizes into a unique topology consisting of two G-quadruplex units.

    PubMed

    Podbevšek, Peter; Plavec, Janez

    2016-01-29

    Mutations of the KRAS proto-oncogene are associated with several tumor types, which is why it is being considered as a target for anti-cancer drug development. The human KRAS promoter contains a nuclease hypersensitive element (NHE), which can bind to nuclear proteins and is believed to form G-quadruplex structures. Previous studies showed that a 32-nt oligonucleotide (32R-3n) mimicking the KRAS NHE can reduce gene transcription by sequestering MAZ, a crucial transcription factor. Here we show that 32R-3n has to dimerize in order to fold into a G-quadruplex structure. Individual 5'- and 3'-end G-quadruplex units are formed and both feature a symmetric head-to-head topology with edge-type loops. The MAZ binding sequence is located within the 3'-end unit. Nuclear magnetic resonance data complemented by CD and UV spectra show that nucleotides of the MAZ binding G-rich motif are dynamic and could be available for sequence or structure based recognition. Both stable G-quadruplex structures could protect 5'- and 3'-ends of 32R-3n and enhance its anti-cancer activity. Single stranded genomic KRAS NHE including nucleotides flanking the 32R-3n sequence could favor a different monomeric fold, which remains unknown. PMID:26656490

  8. Active-site mutagenesis of tetanus neurotoxin implicates TYR-375 and GLU-271 in metalloproteolytic activity.

    PubMed

    Rossetto, O; Caccin, P; Rigoni, M; Tonello, F; Bortoletto, N; Stevens, R C; Montecucco, C

    2001-08-01

    Tetanus neurotoxin (TeNT) blocks neurotransmitter release by cleaving VAMP/synaptobrevin, a membrane associated protein involved in synaptic vesicle fusion. Such activity is exerted by the N-terminal 50kDa domain of TeNT which is a zinc-dependent endopeptidase (TeNT-L-chain). Based on the three-dimensional structure of botulinum neurotoxin serotype A (BoNT/A) and serotype B (BoNT/B), two proteins closely related to TeNT, and on X-ray scattering studies of TeNT, we have designed mutations at two active site residues to probe their involvement in activity. The active site of metalloproteases is composed of a primary sphere of residues co-ordinating the zinc atom, and a secondary sphere of residues that determines proteolytic specificity and activity. Glu-261 and Glu-267 directly co-ordinates the zinc atom in BoNT/A and BoNT/B respectively and the corresponding residue of TeNT was replaced by Asp or by the non conservative residue Ala. Tyr-365 is 4.3A away from zinc in BoNT/A, and the corresponding residue of TeNT was replaced by Phe or by Ala. The purified mutants had CD, fluorescence and UV spectra closely similar to those of the wild-type molecule. The proteolytic activity of TeNT-Asp-271 (E271D) is similar to that of the native molecule, whereas that of TeNT-Phe-375 (Y375F) is lower than the control. Interestingly, the two Ala mutants are completely devoid of enzymatic activity. These results demonstrate that both Glu-271 and Tyr-375 are essential for the proteolytic activity of TeNT. PMID:11306125

  9. GAS HYDRATES AT TWO SITES OF AN ACTIVE CONTINENTAL MARGIN.

    USGS Publications Warehouse

    Kvenvolden, K.A.

    1985-01-01

    Sediment containing gas hydrates from two distant Deep Sea Drilling Project sites (565 and 568), located about 670 km apart on the landward flank of the Middle America Trench, was studied to determine the geochemical conditions that characterize the occurrence of gas hydrates. Site 565 was located in the Pacific Ocean offshore the Nicoya Peninsula of Costa Rica in 3,111 m of water. The depth of the hole at this site was 328 m, and gas hydrates were recovered from 285 and 319 m. Site 568 was located about 670 km to the northwest offshore Guatemala in 2,031 m of water. At this site the hole penetrated to 418 m, and gas hydrates were encountered at 404 m.

  10. Dynamically Achieved Active Site Precision in Enzyme Catalysis

    PubMed Central

    2015-01-01

    Conspectus The grand challenge in enzymology is to define and understand all of the parameters that contribute to enzymes’ enormous rate accelerations. The property of hydrogen tunneling in enzyme reactions has moved the focus of research away from an exclusive focus on transition state stabilization toward the importance of the motions of the heavy atoms of the protein, a role for reduced barrier width in catalysis, and the sampling of a protein conformational landscape to achieve a family of protein substates that optimize enzyme–substrate interactions and beyond. This Account focuses on a thermophilic alcohol dehydrogenase for which the chemical step of hydride transfer is rate determining across a wide range of experimental conditions. The properties of the chemical coordinate have been probed using kinetic isotope effects, indicating a transition in behavior below 30 °C that distinguishes nonoptimal from optimal C–H activation. Further, the introduction of single site mutants has the impact of either enhancing or eliminating the temperature dependent transition in catalysis. Biophysical probes, which include time dependent hydrogen/deuterium exchange and fluorescent lifetimes and Stokes shifts, have also been pursued. These studies allow the correlation of spatially resolved transitions in protein motions with catalysis. It is now possible to define a long-range network of protein motions in ht-ADH that extends from a dimer interface to the substrate binding domain across to the cofactor binding domain, over a distance of ca. 30 Å. The ongoing challenge to obtaining spatial and temporal resolution of catalysis-linked protein motions is discussed. PMID:25539048

  11. Configuration effects of H-bonded sites and rigid core lengths on h-bonded banana-shaped liquid crystalline supramolecules consisting of symmetric trimers and asymmetric heterodimers.

    PubMed

    Wang, Ling-Yung; Chiang, I-Hung; Yang, Po-Jen; Li, Wan-Sheung; Chao, I-To; Lin, Hong-Cheu

    2009-11-01

    Several series of novel banana-shaped H-bonded symmetric trimers (with two H-bonds) and asymmetric heterodimers (with one H-bond) were self-assembled by appropriate molar ratios of proton donors (H-donors) and acceptors (H-acceptors). The influences of H-bonded linking positions and aromatic ring numbers (4-8 aromatic rings in the rigid cores) as well as the chain lengths (n, m = 12 or 16, respectively, in the flexible parts) on the mesomorphism and the switching behavior of the bent-core supramolecules were evaluated and theoretically analyzed. Except for the supramolecular structures with longer rigid cores or shorter flexible chains possessing the rectangular columnar (Col(r) or B1) phase, the SmC(A)P(A) phase was revealed in most supramolecular asymmetric heterodimers and switched to the SmC(S)P(F) phase by applying electric fields. The polar smectic C phase was dominated for those with H-bonded sites apart from the core center. Interestingly, the SmA and nematic phases were observed in H-bonded asymmetric dimers with H-bonded sites close to the core center, which theoretically proved that the polar smectic C phase was disfavored due to an unfavorable bend angle (smaller than the lower limit of 110 degrees ) in the lowest-energy H-bonded conformer. Compared with the fully covalently bonded analogue, lower transition temperatures and lower threshold voltages were developed in the H-bonded asymmetric dimers with the polar smectic C phase. On the basis of the theoretical calculations of molecular modeling, the existence of polar switching behavior in the polar smectic C phase of asymmetric heterodimers was proven to be associated with their configurations with higher dipole moments and suitable bend angles. Furthermore, the lack of polar switching behavior in supramolecular symmetric trimers, which exhibited the regular SmC phase with weak electrical stabilities, was related to their configurations with smaller dipole moments and confirmed by theoretical

  12. 29 CFR 779.212 - Enterprise must consist of related activities performed for a “common business purpose.”

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... purpose.” (See the comprehensive discussion in 29 CFR part 776.) The term “common business purpose” as... 29 Labor 3 2011-07-01 2011-07-01 false Enterprise must consist of related activities performed for... Employment to Which the Act May Apply; Enterprise Coverage Common Business Purpose § 779.212 Enterprise...

  13. 29 CFR 779.212 - Enterprise must consist of related activities performed for a “common business purpose.”

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... purpose.” (See the comprehensive discussion in 29 CFR part 776.) The term “common business purpose” as... 29 Labor 3 2010-07-01 2010-07-01 false Enterprise must consist of related activities performed for... Employment to Which the Act May Apply; Enterprise Coverage Common Business Purpose § 779.212 Enterprise...

  14. 29 CFR 779.212 - Enterprise must consist of related activities performed for a “common business purpose.”

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... purpose.” (See the comprehensive discussion in 29 CFR part 776.) The term “common business purpose” as... 29 Labor 3 2013-07-01 2013-07-01 false Enterprise must consist of related activities performed for... Employment to Which the Act May Apply; Enterprise Coverage Common Business Purpose § 779.212 Enterprise...

  15. 29 CFR 779.212 - Enterprise must consist of related activities performed for a “common business purpose.”

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... purpose.” (See the comprehensive discussion in 29 CFR part 776.) The term “common business purpose” as... 29 Labor 3 2012-07-01 2012-07-01 false Enterprise must consist of related activities performed for... Employment to Which the Act May Apply; Enterprise Coverage Common Business Purpose § 779.212 Enterprise...

  16. 29 CFR 779.212 - Enterprise must consist of related activities performed for a “common business purpose.”

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... purpose.” (See the comprehensive discussion in 29 CFR part 776.) The term “common business purpose” as... 29 Labor 3 2014-07-01 2014-07-01 false Enterprise must consist of related activities performed for... Employment to Which the Act May Apply; Enterprise Coverage Common Business Purpose § 779.212 Enterprise...

  17. The active site of oxidative phosphorylation and the origin of hyperhomocysteinemia in aging and dementia.

    PubMed

    McCully, Kilmer S

    2015-01-01

    The active site of oxidative phosphorylation and adenosine triphosphate (ATP) synthesis in mitochondria is proposed to consist of two molecules of thioretinamide bound to cobalamin, forming thioretinaco, complexed with ozone, oxygen, nicotinamide adenine dinucleotide. and inorganic phosphate, TR2CoO3O2NAD(+)H2PO4(-). Reduction of the pyridinium nitrogen of the nicotinamide group by an electron from electron transport complexes initiates polymerization of phosphate with adenosine diphosphate, yielding nicotinamide riboside and ATP bound to thioretinaco ozonide oxygen. A second electron reduces oxygen to hydroperoxyl radical, releasing ATP from the active site. A proton gradient is created within F1F0 ATPase complexes of mitochondria by reaction of protons with reduced nicotinamide riboside and with hydroperoxyl radical, yielding reduced nicotinamide riboside and hydroperoxide. The hyperhomocysteinemia of aging and dementia is attributed to decreased synthesis of adenosyl methionine by thioretinaco ozonide and ATP, causing decreased allosteric activation of cystathionine synthase and decreased allosteric inhibition of methylenetetrahydrofolate reductase and resulting in dysregulation of methionine metabolism. PMID:25887881

  18. NMR structure of the A730 loop of the Neurospora VS ribozyme: insights into the formation of the active site

    PubMed Central

    Bonneau, Eric; Girard, Nicolas; Boisbouvier, Jérôme; Legault, Pascale

    2011-01-01

    The Neurospora VS ribozyme is a small nucleolytic ribozyme with unique primary, secondary and global tertiary structures, which displays mechanistic similarities to the hairpin ribozyme. Here, we determined the high-resolution NMR structure of a stem–loop VI fragment containing the A730 internal loop, which forms part of the active site. In the presence of magnesium ions, the A730 loop adopts a structure that is consistent with existing biochemical data and most likely reflects its conformation in the VS ribozyme prior to docking with the cleavage site internal loop. Interestingly, the A730 loop adopts an S-turn motif that is also present in loop B within the hairpin ribozyme active site. The S-turn appears necessary to expose the Watson–Crick edge of a catalytically important residue (A756) so that it can fulfill its role in catalysis. The A730 loop and the cleavage site loop of the VS ribozyme display structural similarities to internal loops found in the active site of the hairpin ribozyme. These similarities provided a rationale to build a model of the VS ribozyme active site based on the crystal structure of the hairpin ribozyme. PMID:21266483

  19. Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation

    SciTech Connect

    Boudreaux, David A.; Maiti, Tushar K.; Davies, Christopher W.; Das, Chittaranjan

    2010-07-06

    Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a Parkinson disease-associated, putative cysteine protease found abundantly and selectively expressed in neurons. The crystal structure of apo UCHL1 showed that the active-site residues are not aligned in a canonical form, with the nucleophilic cysteine being 7.7 {angstrom} from the general base histidine, an arrangement consistent with an inactive form of the enzyme. Here we report the crystal structures of the wild type and two Parkinson disease-associated variants of the enzyme, S18Y and I93M, bound to a ubiquitin-based suicide substrate, ubiquitin vinyl methyl ester. These structures reveal that ubiquitin vinyl methyl ester binds primarily at two sites on the enzyme, with its carboxy terminus at the active site and with its amino-terminal {beta}-hairpin at the distal site - a surface-exposed hydrophobic crevice 17 {angstrom} away from the active site. Binding at the distal site initiates a cascade of side-chain movements in the enzyme that starts at a highly conserved, surface-exposed phenylalanine and is relayed to the active site resulting in the reorientation and proximal placement of the general base within 4 {angstrom} of the catalytic cysteine, an arrangement found in productive cysteine proteases. Mutation of the distal-site, surface-exposed phenylalanine to alanine reduces ubiquitin binding and severely impairs the catalytic activity of the enzyme. These results suggest that the activity of UCHL1 may be regulated by its own substrate.

  20. Robotics and Automation Activities at the Savannah River Site: A Site Report for SUBWOG 39F

    SciTech Connect

    Teese, G.D.

    1995-09-28

    The Savannah River Site has successfully used robots, teleoperators, and remote video to reduce exposure to ionizing radiation, improve worker safety, and improve the quality of operations. Previous reports have described the use of mobile teleoperators in coping with a high level liquid waste spill, the removal of highly contaminated equipment, and the inspection of nuclear reactor vessels. This report will cover recent applications at the Savannah River, as well as systems which SRS has delivered to other DOE site customers.

  1. Improving upon Nature: Active site remodeling produces highly efficient aldolase activity towards hydrophobic electrophilic substrates

    PubMed Central

    Cheriyan, Manoj; Toone, Eric J.; Fierke, Carol A.

    2012-01-01

    Substrate specificity of enzymes is frequently narrow and constrained by multiple interactions, limiting the use of natural enzymes in biocatalytic applications. Aldolases have important synthetic applications, but the usefulness of these enzymes is hampered by their narrow reactivity profile with unnatural substrates. To explore the determinants of substrate selectivity and alter the specificity of E. coli 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase, we employed structure-based mutagenesis coupled with library screening of mutant enzymes localized to the bacterial periplasm. We identified two active site mutations (T161S/S184L) that work additively to enhance the substrate specificity of this aldolase to include catalysis of retro-aldol cleavage of (4S)-2-keto-4-hydroxy-4-(2′-pyridyl)butyrate (S-KHPB). These mutations improve the value of kcat/KMS-KHPB by >450-fold, resulting in a catalytic efficiency that is comparable to that of the wild-type enzyme with the natural substrate while retaining high stereoselectivity. Moreover, the value of kcatS-KHPB for this mutant enzyme, a parameter critical for biocatalytic applications, is 3-fold higher than the maximum value achieved by the natural aldolase with any substrate. This mutant also possesses high catalytic efficiency for the retro-aldol cleavage of the natural substrate, KDPG, and a >50-fold improved activity for cleavage of 2-keto-4-hydroxy-octonoate (KHO), a non-functionalized hydrophobic analog. These data suggest a substrate binding mode that illuminates the origin of facial selectivity in aldol addition reactions catalyzed by KDPG and 2-keto-3-deoxy-6-phosphogalactonate (KDPGal) aldolases. Furthermore, targeting mutations to the active site provides marked improvement in substrate selectivity, demonstrating that structure-guided active site mutagenesis combined with selection techniques can efficiently identify proteins with characteristics that compare favorably to naturally occurring enzymes. PMID

  2. Atomically-thin two-dimensional sheets for understanding active sites in catalysis.

    PubMed

    Sun, Yongfu; Gao, Shan; Lei, Fengcai; Xie, Yi

    2015-02-01

    Catalysis can speed up chemical reactions and it usually occurs on the low coordinated steps, edges, terraces, kinks and corner atoms that are often called "active sites". However, the atomic level interplay between active sites and catalytic activity is still an open question, owing to the large difference between idealized models and real catalysts. This stimulates us to pursue a suitable material model for studying the active sites-catalytic activity relationship, in which the atomically-thin two-dimensional sheets could serve as an ideal model, owing to their relatively simple type of active site and the ultrahigh fraction of active sites that are comparable to the overall atoms. In this tutorial review, we focus on the recent progress in disclosing the factors that affect the activity of reactive sites, including characterization of atomic coordination number, structural defects and disorder in ultrathin two-dimensional sheets by X-ray absorption fine structure spectroscopy, positron annihilation spectroscopy, electron spin resonance and high resolution transmission electron microscopy. Also, we overview their applications in CO catalytic oxidation, photocatalytic water splitting, electrocatalytic oxygen and hydrogen evolution reactions, and hence highlight the atomic level interplay among coordination number, structural defects/disorder, active sites and catalytic activity in the two-dimensional sheets with atomic thickness. Finally, we also present the major challenges and opportunities regarding the role of active sites in catalysis. We believe that this review provides critical insights for understanding the catalysis and hence helps to develop new catalysts with high catalytic activity. PMID:25382246

  3. The active sites of supported silver particle catalysts in formaldehyde oxidation.

    PubMed

    Chen, Yaxin; Huang, Zhiwei; Zhou, Meijuan; Hu, Pingping; Du, Chengtian; Kong, Lingdong; Chen, Jianmin; Tang, Xingfu

    2016-08-01

    Surface silver atoms with upshifted d-orbitals are identified as the catalytically active sites in formaldehyde oxidation by correlating their activity with the number of surface silver atoms, and the degree of the d-orbital upshift governs the catalytic performance of the active sites. PMID:27406403

  4. Localization of active sites along the myelinated goldfish Mauthner axon: morphological and pharmacological evidence for saltatory conduction.

    PubMed

    Funch, P G; Wood, M R; Faber, D S

    1984-09-01

    Injections of Lucifer Yellow (LY) and horseradish peroxidase (HRP) were made within the myelin sheath of the goldfish Mauthner axon to determine the domains of individual oligodendrocytes. Long segments of the myelin sheath were stained with both markers. The lengths and locations of these sheath segments were analyzed in whole mount preparations (LY) or in reconstructions of serial vibratome sections (HRP). The termination sites of individual myelin sheaths, relative to gross anatomical landmarks of the brain, were consistent within and between all fish studied. In particular, the average locations of the termination sites were separated by 2.2 to 2.6 mm and corresponded to the brain regions where active site foci have been previously localized electrophysiologically. Individual sheath segments generally spanned the entire distance between adjacent active sites. The node-internode-node structure of the Mauthner axon that is suggested by these findings was further tested by ejecting tetrodotoxin (TTX) at various discrete rostral-caudal locations just outside the fiber. Large all-or-nothing components of the antidromic action potential were rapidly blocked (within seconds) only when the TTX ejections were made within a few hundred micrometers of the active site foci. The amplitudes of these blocked components are also consistent with predictions based upon previous electrophysiological analyses which demonstrated an active site spacing of 2.2 to 2.6 mm, a space constant of 5.0 mm, and a safety factor of 6 for impulse propagation. It is concluded from these morphological, pharmacological, and electrophysiological observations that the Mauthner axon possesses nodes separated by 2.2 to 2.6 mm and that a single oligodendrocyte spans an internodal region. Although nodal ultrastructure remains to be described, these results rule out the possibility that each of the short (approximately 50 micron), closely spaced (average separation = 155 micron) axon collaterals is a site

  5. Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations

    PubMed Central

    Steinkellner, Georg; Gruber, Christian C.; Pavkov-Keller, Tea; Binter, Alexandra; Steiner, Kerstin; Winkler, Christoph; Łyskowski, Andrzej; Schwamberger, Orsolya; Oberer, Monika; Schwab, Helmut; Faber, Kurt; Macheroux, Peter; Gruber, Karl

    2014-01-01

    The exploitation of catalytic promiscuity and the application of de novo design have recently opened the access to novel, non-natural enzymatic activities. Here we describe a structural bioinformatic method for predicting catalytic activities of enzymes based on three-dimensional constellations of functional groups in active sites (‘catalophores’). As a proof-of-concept we identify two enzymes with predicted promiscuous ene-reductase activity (reduction of activated C–C double bonds) and compare them with known ene-reductases, that is, members of the Old Yellow Enzyme family. Despite completely different amino acid sequences, overall structures and protein folds, high-resolution crystal structures reveal equivalent binding modes of typical Old Yellow Enzyme substrates and ligands. Biochemical and biocatalytic data show that the two enzymes indeed possess ene-reductase activity and reveal an inverted stereopreference compared with Old Yellow Enzymes for some substrates. This method could thus be a tool for the identification of viable starting points for the development and engineering of novel biocatalysts. PMID:24954722

  6. Identification of catalytically important residues in the active site of Escherichia coli transaldolase.

    PubMed

    Schörken, U; Thorell, S; Schürmann, M; Jia, J; Sprenger, G A; Schneider, G

    2001-04-01

    The roles of invariant residues at the active site of transaldolase B from Escherichia coli have been probed by site-directed mutagenesis. The mutant enzymes D17A, N35A, E96A, T156A, and S176A were purified from a talB-deficient host and analyzed with respect to their 3D structure and kinetic behavior. X-ray analysis showed that side chain replacement did not induce unanticipated structural changes in the mutant enzymes. Three mutations, N35A, E96A, and T156A resulted mainly in an effect on apparent kcat, with little changes in apparent Km values for the substrates. Residues N35 and T156 are involved in the positioning of a catalytic water molecule at the active site and the side chain of E96 participates in concert with this water molecule in proton transfer during catalysis. Substitution of Ser176 by alanine resulted in a mutant enzyme with 2.5% residual activity. The apparent Km value for the donor substrate, fructose 6-phosphate, was increased nearly fivefold while the apparent Km value for the acceptor substrate, erythrose 4-phosphate remained unchanged, consistent with a function for S176 in the binding of the C1 hydroxyl group of the donor substrate. The mutant D17A showed a 300-fold decrease in kcat, and a fivefold increase in the apparent Km value for the acceptor substrate erythrose 4-phosphate, suggesting a role of this residue in carbon-carbon bond cleavage and stabilization of the carbanion/enamine intermediate. PMID:11298760

  7. Holistic Evaluation of Quality Consistency of Ixeris sonchifolia (Bunge) Hance Injectables by Quantitative Fingerprinting in Combination with Antioxidant Activity and Chemometric Methods

    PubMed Central

    Yang, Lanping; Sun, Guoxiang; Guo, Yong; Hou, Zhifei; Chen, Shuai

    2016-01-01

    A widely used herbal medicine, Ixeris sonchifolia (Bge.) Hance Injectable (ISHI) was investigated for quality consistency. Characteristic fingerprints of 23 batches of the ISHI samples were generated at five wavelengths and evaluated by the systematic quantitative fingerprint method (SQFM) as well as simultaneous analysis of the content of seven marker compounds. Chemometric methods, i.e., support vector machine (SVM) and principal component analysis (PCA) were performed to assist in fingerprint evaluation of the ISHI samples. Qualitative classification of the ISHI samples by SVM was consistent with PCA, and in agreement with the quantitative evaluation by SQFM. In addition, the antioxidant activities of the ISHI samples were determined by both the off-line and on-line DPPH (2, 2-diphenyl-1-picryldrazyl) radical scavenging assays. A fingerprint–efficacy relationship linking the chemical components and in vitro antioxidant activity was established and validated using the partial least squares (PLS) and orthogonal projection to latent structures (OPLS) models; and the online DPPH assay further revealed those components that had position contribution to the total antioxidant activity. Therefore, the combined use of the chemometric methods, quantitative fingerprint evaluation by SQFM, and multiple marker compound analysis in conjunction with the assay of antioxidant activity provides a powerful and holistic approach to evaluate quality consistency of herbal medicines and their preparations. PMID:26872364

  8. Holistic Evaluation of Quality Consistency of Ixeris sonchifolia (Bunge) Hance Injectables by Quantitative Fingerprinting in Combination with Antioxidant Activity and Chemometric Methods.

    PubMed

    Yang, Lanping; Sun, Guoxiang; Guo, Yong; Hou, Zhifei; Chen, Shuai

    2016-01-01

    A widely used herbal medicine, Ixeris sonchifolia (Bge.) Hance Injectable (ISHI) was investigated for quality consistency. Characteristic fingerprints of 23 batches of the ISHI samples were generated at five wavelengths and evaluated by the systematic quantitative fingerprint method (SQFM) as well as simultaneous analysis of the content of seven marker compounds. Chemometric methods, i.e., support vector machine (SVM) and principal component analysis (PCA) were performed to assist in fingerprint evaluation of the ISHI samples. Qualitative classification of the ISHI samples by SVM was consistent with PCA, and in agreement with the quantitative evaluation by SQFM. In addition, the antioxidant activities of the ISHI samples were determined by both the off-line and on-line DPPH (2, 2-diphenyl-1-picryldrazyl) radical scavenging assays. A fingerprint-efficacy relationship linking the chemical components and in vitro antioxidant activity was established and validated using the partial least squares (PLS) and orthogonal projection to latent structures (OPLS) models; and the online DPPH assay further revealed those components that had position contribution to the total antioxidant activity. Therefore, the combined use of the chemometric methods, quantitative fingerprint evaluation by SQFM, and multiple marker compound analysis in conjunction with the assay of antioxidant activity provides a powerful and holistic approach to evaluate quality consistency of herbal medicines and their preparations. PMID:26872364

  9. The role of active site aromatic residues in substrate degradation by the human chitotriosidase.

    PubMed

    Eide, Kristine Bistrup; Stockinger, Linn Wilhelmsen; Lewin, Anna Sofia; Tøndervik, Anne; Eijsink, Vincent G H; Sørlie, Morten

    2016-02-01

    Human chitotriosidase (HCHT) is a glycoside hydrolase family 18 chitinase synthesized and secreted in human macrophages thought be an innate part of the human immune system. It consists of a catalytic domain with the (β/α)8 TIM barrel fold having a large area of solvent-exposed aromatic amino acids in the active site and an additional family 14 carbohydrate-binding module. To gain further insight into enzyme functionality, especially the effect of the active site aromatic residues, we expressed two variants with mutations in subsites on either side of the catalytic acid, subsite -3 (W31A) and +2 (W218A), and compared their catalytic properties on chitin and high molecular weight chitosans. Exchange of Trp to Ala in subsite -3 resulted in a 12-fold reduction in extent of degradation and a 20-fold reduction in kcat(app) on chitin, while the values are 5-fold and 10-fold for subsite +2. Moreover, aromatic residue mutation resulted in a decrease of the rate of chitosan degradation contrasting previous observations for bacterial family 18 chitinases. Interestingly, the presence of product polymers of 40 sugar moieties and higher starts to disappear already at 8% degradation for HCHT50-W31A. Such behavior contrast that of the wild type and HCHT-W218A and resembles the action of endo-nonprocessive chitinases. PMID:26621384

  10. Characterization of the Dielectric Constant in the Trichoderma reesei Cel7B Active Site.

    PubMed

    Song, Xiangfei; Wang, Yefei; Zhang, Shujun; Yan, Shihai; Li, Tong; Yao, Lishan

    2015-07-27

    An attempt is made to evaluate the dielectric constant of the Trichoderma reesei Cel7B active site. Through kinetic measurements, the pKa value of the catalytic acid E201 is determined. Mutations (away from E201) with net charge changes are introduced to perturb the E201 pKa. It is shown that the mutation with a +1 charge change (including G225R, G230R, and A335R) decreases the pKa of E201, whereas the mutation with a -1 charge change (including Q149E, A222D, G225D, and G230D) increases the pKa. This effect is consistent with the electrostatic interaction between the changed charge and the E201 side chain. The fitting of the experimental data yields an apparent dielectric constant of 25-80. Molecular dynamics simulations with explicit water molecules indicate that the high solvent accessibility of the active site contributes largely to the high dielectric constant. ONIOM calculations show that high dielectric constant benefits the catalysis through decreasing the energy of the transition state relative to that of the enzyme substrate complex. PMID:26114648

  11. Structural mechanism of RuBisCO activation by carbamylation of the active site lysine

    PubMed Central

    Stec, Boguslaw

    2012-01-01

    Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is a crucial enzyme in carbon fixation and the most abundant protein on earth. It has been studied extensively by biochemical and structural methods; however, the most essential activation step has not yet been described. Here, we describe the mechanistic details of Lys carbamylation that leads to RuBisCO activation by atmospheric CO2. We report two crystal structures of nitrosylated RuBisCO from the red algae Galdieria sulphuraria with O2 and CO2 bound at the active site. G. sulphuraria RuBisCO is inhibited by cysteine nitrosylation that results in trapping of these gaseous ligands. The structure with CO2 defines an elusive, preactivation complex that contains a metal cation Mg2+ surrounded by three H2O/OH molecules. Both structures suggest the mechanism for discriminating gaseous ligands by their quadrupole electric moments. We describe conformational changes that allow for intermittent binding of the metal ion required for activation. On the basis of these structures we propose the individual steps of the activation mechanism. Knowledge of all these elements is indispensable for engineering RuBisCO into a more efficient enzyme for crop enhancement or as a remedy to global warming. PMID:23112176

  12. 78 FR 33908 - Commercial Wind Lease Issuance and Site Assessment Activities on the Atlantic Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... identified Wind Energy Area (WEA) on the OCS offshore Rhode Island (RI) and Massachusetts (MA). The revised... from leasing, site characterization, and site assessment in and around the Call Area (76 FR 51391). The... Bureau of Ocean Energy Management Commercial Wind Lease Issuance and Site Assessment Activities on...

  13. 77 FR 39508 - Commercial Wind Lease Issuance and Site Assessment Activities on the Atlantic Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ... specific project proposals on those leases) in an identified Wind Energy Area (WEA) on the OCS offshore..., site characterization, and site assessment in and around the Call Area (76 FR 51391). The Call Area is... Bureau of Ocean Energy Management Commercial Wind Lease Issuance and Site Assessment Activities on...

  14. Active Layer and Moisture Measurements for Intensive Site 0 and 1, Barrow, Alaska

    DOE Data Explorer

    John Peterson

    2015-04-17

    These are measurements of Active Layer Thickness collected along several lines beginning in September, 2011 to the present. The data were collected at several time periods along the Site0 L2 Line, the Site1 AB Line, and an ERT Monitoring Line near Area A in Site1.

  15. Nuclear Site Security in the Event of Terrorist Activity

    SciTech Connect

    Thomson, M.L.; Sims, J.

    2008-07-01

    This paper, presented as a poster, identifies why ballistic protection should now be considered at nuclear sites to counter terrorist threats. A proven and flexible form of multi purpose protection is described in detail with identification of trial results that show its suitability for this role. (authors)

  16. Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory

    SciTech Connect

    Taylor, D.D.; Hoskinson, R.L.; Kingsford, C.O.; Ball, L.W.

    1994-09-01

    The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria.

  17. Time-dependent multiconfiguration self-consistent-field method based on the occupation-restricted multiple-active-space model for multielectron dynamics in intense laser fields

    NASA Astrophysics Data System (ADS)

    Sato, Takeshi; Ishikawa, Kenichi L.

    2015-02-01

    The time-dependent multiconfiguration self-consistent-field method based on the occupation-restricted multiple-active-space model is proposed (TD-ORMAS) for multielectron dynamics in intense laser fields. Extending the previously proposed time-dependent complete-active-space self-consistent-field method [TD-CASSCF; Phys. Rev. A 88, 023402 (2013), 10.1103/PhysRevA.88.023402], which divides the occupied orbitals into core and active orbitals, the TD-ORMAS method further subdivides the active orbitals into an arbitrary number of subgroups and poses the occupation restriction by giving the minimum and maximum number of electrons distributed in each subgroup. This enables highly flexible construction of the configuration-interaction (CI) space, allowing a large-active-space simulation of dynamics, e.g., the core excitation or ionization. The equations of motion for both CI coefficients and spatial orbitals are derived based on the time-dependent variational principle, and an efficient algorithm is proposed to solve for the orbital time derivatives. In-depth descriptions of the computational implementation are given in a readily programmable manner. The numerical application to the one-dimensional lithium hydride cluster models demonstrates that the high flexibility of the TD-ORMAS framework allows for the cost-effective simulations of multielectron dynamics by exploiting systematic series of approximations to the TD-CASSCF method.

  18. Monitoring the quality consistency of Fufang Danshen Pills using micellar electrokinetic chromatography fingerprint coupled with prediction of antioxidant activity and chemometrics.

    PubMed

    Ji, Zhengchao; Sun, Wanyang; Sun, Guoxiang; Zhang, Jin

    2016-08-01

    A fast micellar electrokinetic chromatography fingerprint method combined with quantification was developed and validated to evaluate the quality of Fufang Danshen Pills, a traditional Chinese Medicine, which has been used in the treatment of cardiovascular system diseases, in which the tetrahedron optimization method was first used to optimize the background electrolyte solution. Subsequently, the index of the fingerprint information amount of I was performed as an excellent objective indictor to investigate the experimental conditions. In addition, a systematical quantified fingerprint method was constructed for evaluating the quality consistency of 20 batches of test samples obtained from the same drug manufacturer. The fingerprint analysis combined with quantitative determination of two components showed that the quality consistency of the test samples was quite good within the same commercial brand. Furthermore, the partial least squares model analysis was used to explore the fingerprint-efficacy relationship between active components and antioxidant activity in vitro, which can be applied for the assessment of anti-oxidant activity of Fufang Danshen pills and provide valuable medicinal information for quality control. The result illustrated that the present study provided a reliable and reasonable method for monitoring the quality consistency of Fufang Danshen pills. PMID:27279557

  19. Blogs and Social Network Sites as Activity Systems: Exploring Adult Informal Learning Process through Activity Theory Framework

    ERIC Educational Resources Information Center

    Heo, Gyeong Mi; Lee, Romee

    2013-01-01

    This paper uses an Activity Theory framework to explore adult user activities and informal learning processes as reflected in their blogs and social network sites (SNS). Using the assumption that a web-based space is an activity system in which learning occurs, typical features of the components were investigated and each activity system then…

  20. Active-Site Hydration and Water Diffusion in Cytochrome P450cam: A Highly Dynamic Process

    SciTech Connect

    Miao, Yinglong; Baudry, Jerome Y

    2011-01-01

    Long-timescale molecular dynamics simulations (300 ns) are performed on both the apo- (i.e., camphor-free) and camphor-bound cytochrome P450cam (CYP101). Water diffusion into and out of the protein active site is observed without biased sampling methods. During the course of the molecular dynamics simulation, an average of 6.4 water molecules is observed in the camphor-binding site of the apo form, compared to zero water molecules in the binding site of the substrate-bound form, in agreement with the number of water molecules observed in crystal structures of the same species. However, as many as 12 water molecules can be present at a given time in the camphor-binding region of the active site in the case of apo-P450cam, revealing a highly dynamic process for hydration of the protein active site, with water molecules exchanging rapidly with the bulk solvent. Water molecules are also found to exchange locations frequently inside the active site, preferentially clustering in regions surrounding the water molecules observed in the crystal structure. Potential-of-mean-force calculations identify thermodynamically favored trans-protein pathways for the diffusion of water molecules between the protein active site and the bulk solvent. Binding of camphor in the active site modifies the free-energy landscape of P450cam channels toward favoring the diffusion of water molecules out of the protein active site.

  1. Active-site Arg --> Lys substitutions alter reaction and substrate specificity of aspartate aminotransferase.

    PubMed

    Vacca, R A; Giannattasio, S; Graber, R; Sandmeier, E; Marra, E; Christen, P

    1997-08-29

    Arg386 and Arg292 of aspartate aminotransferase bind the alpha and the distal carboxylate group, respectively, of dicarboxylic substrates. Their substitution with lysine residues markedly decreased aminotransferase activity. The kcat values with L-aspartate and 2-oxoglutarate as substrates under steady-state conditions at 25 degrees C were 0.5, 2.0, and 0.03 s-1 for the R292K, R386K, and R292K/R386K mutations, respectively, kcat of the wild-type enzyme being 220 s-1. Longer dicarboxylic substrates did not compensate for the shorter side chain of the lysine residues. Consistent with the different roles of Arg292 and Arg386 in substrate binding, the effects of their substitution on the activity toward long chain monocarboxylic (norleucine/2-oxocaproic acid) and aromatic substrates diverged. Whereas the R292K mutation did not impair the aminotransferase activity toward these substrates, the effect of the R386K substitution was similar to that on the activity toward dicarboxylic substrates. All three mutant enzymes catalyzed as side reactions the beta-decarboxylation of L-aspartate and the racemization of amino acids at faster rates than the wild-type enzyme. The changes in reaction specificity were most pronounced in aspartate aminotransferase R292K, which decarboxylated L-aspartate to L-alanine 15 times faster (kcat = 0.002 s-1) than the wild-type enzyme. The rates of racemization of L-aspartate, L-glutamate, and L-alanine were 3, 5, and 2 times, respectively, faster than with the wild-type enzyme. Thus, Arg --> Lys substitutions in the active site of aspartate aminotransferase decrease aminotransferase activity but increase other pyridoxal 5'-phosphate-dependent catalytic activities. Apparently, the reaction specificity of pyridoxal 5'-phosphate-dependent enzymes is not only achieved by accelerating the specific reaction but also by preventing potential side reactions of the coenzyme substrate adduct. PMID:9268327

  2. Active site densities, oxygen activation and adsorbed reactive oxygen in alcohol activation on npAu catalysts.

    PubMed

    Wang, Lu-Cun; Friend, C M; Fushimi, Rebecca; Madix, Robert J

    2016-07-01

    The activation of molecular O2 as well as the reactivity of adsorbed oxygen species is of central importance in aerobic selective oxidation chemistry on Au-based catalysts. Herein, we address the issue of O2 activation on unsupported nanoporous gold (npAu) catalysts by applying a transient pressure technique, a temporal analysis of products (TAP) reactor, to measure the saturation coverage of atomic oxygen, its collisional dissociation probability, the activation barrier for O2 dissociation, and the facility with which adsorbed O species activate methanol, the initial step in the catalytic cycle of esterification. The results from these experiments indicate that molecular O2 dissociation is associated with surface silver, that the density of reactive sites is quite low, that adsorbed oxygen atoms do not spill over from the sites of activation onto the surrounding surface, and that methanol reacts quite facilely with the adsorbed oxygen atoms. In addition, the O species from O2 dissociation exhibits reactivity for the selective oxidation of methanol but not for CO. The TAP experiments also revealed that the surface of the npAu catalyst is saturated with adsorbed O under steady state reaction conditions, at least for the pulse reaction. PMID:27376884

  3. Active Site Structure and Peroxidase Activity of Oxidatively Modified Cytochrome c Species in Complexes with Cardiolipin.

    PubMed

    Capdevila, Daiana A; Oviedo Rouco, Santiago; Tomasina, Florencia; Tortora, Verónica; Demicheli, Verónica; Radi, Rafael; Murgida, Daniel H

    2015-12-29

    We report a resonance Raman and UV-vis characterization of the active site structure of oxidatively modified forms of cytochrome c (Cyt-c) free in solution and in complexes with cardiolipin (CL). The studied post-translational modifications of Cyt-c include methionine sulfoxidation and tyrosine nitration, which lead to altered heme axial ligation and increased peroxidase activity with respect to those of the wild-type protein. In spite of the structural and activity differences between the protein variants free in solution, binding to CL liposomes induces in all cases the formation of a spectroscopically identical bis-His axial coordination conformer that more efficiently promotes lipid peroxidation. The spectroscopic results indicate that the bis-His form is in equilibrium with small amounts of high-spin species, thus suggesting a labile distal His ligand as the basis for the CL-induced increase in enzymatic activity observed for all protein variants. For Cyt-c nitrated at Tyr74 and sulfoxidized at Met80, the measured apparent binding affinities for CL are ∼4 times larger than for wild-type Cyt-c. On the basis of these results, we propose that these post-translational modifications may amplify the pro-apoptotic signal of Cyt-c under oxidative stress conditions at CL concentrations lower than for the unmodified protein. PMID:26620444

  4. Screening breeding sites of the common toad (Bufo bufo) in England and Wales for evidence of endocrine disrupting activity.

    PubMed

    Pickford, Daniel B; Jones, Alexandra; Velez-Pelez, Alejandra; Orton, Frances; Iguchi, Taisen; Mitsui, Naoko; Tooi, Osamu

    2015-07-01

    Anuran amphibians are often present in agricultural landscapes and may therefore be exposed to chemicals in surface waters used for breeding. We used passive accumulation devices (SPMD and POCIS) to sample contaminants from nine breeding sites of the Common toad (Bufo bufo) across England and Wales, measuring endocrine activity of the extracts in a recombinant yeast androgen screen (YAS) and yeast estrogen screen (YES) and an in vitro vitellogenin induction screen in primary culture of Xenopus laevis hepatocytes. We also assessed hatching, growth, survival, and development in caged larvae in situ, and sampled metamorphs for gonadal histopathology. None of the SPMD extracts exhibited estrogen receptor or androgen receptor agonist activity, while POCIS extracts from two sites in west-central England exhibited concentration-dependent androgenic activity in the YAS. Three sites exhibited significant estrogenic activity in both the YES and the Xenopus hepatocyte. Hatching rates varied widely among sites, but there was no consistent correlation between hatching rate and intensity of agricultural activity, predicted concentrations of agrochemicals, or endocrine activity measured in YES/YAS assays. While a small number of intersex individuals were observed, their incidence could not be associated with predicted pesticide exposure or endocrine activitity measured in the in vitro screens. There were no significant differences in sex ratio, as determined by gonadal histomorphology among the study sites, and no significant correlation was observed between proportion of males and predicted exposure to agrochemicals. However, a negative correlation did become apparent in later sampling periods between proportion of males and estrogenic activity of the POCIS sample, as measured in the YES. Our results suggest that larval and adult amphibians may be exposed to endocrine disrupting chemicals in breeding ponds, albeit at low concentrations, and that chemical contaminants other than

  5. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles

    PubMed Central

    2015-01-01

    Mineral dusts originating from Earth’s crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts. Here we investigated in closer detail the reasons for its activity and the difference in the activity of the different feldspars. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. K-feldspar showed by far the highest ice nucleation activity. Finally, we give a potential explanation of this effect, finding alkali-metal ions having different hydration shells and thus an influence on the ice nucleation activity of feldspar surfaces. PMID:25584435

  6. Early Site Permit Demonstration Program: Recommendations for communication activities and public participation in the Early Site Permit Demonstration Program

    SciTech Connect

    Not Available

    1993-01-27

    On October 24, 1992, President Bush signed into law the National Energy Policy Act of 1992. The bill is a sweeping, comprehensive overhaul of the Nation`s energy laws, the first in more than a decade. Among other provisions, the National Energy Policy Act reforms the licensing process for new nuclear power plants by adopting a new approach developed by the US Nuclear Regulatory Commission (NRC) in 1989, and upheld in court in 1992. The NRC 10 CFR Part 52 rule is a three-step process that guarantees public participation at each step. The steps are: early site permit approval; standard design certifications; and, combined construction/operating licenses for nuclear power reactors. Licensing reform increases an organization`s ability to respond to future baseload electricity generation needs with less financial risk for ratepayers and the organization. Costly delays can be avoided because design, safety and siting issues will be resolved before a company starts to build a plant. Specifically, early site permit approval allows for site suitability and acceptability issues to be addressed prior to an organization`s commitment to build a plant. Responsibility for site-specific activities, including communications and public participation, rests with those organizations selected to try out early site approval. This plan has been prepared to assist those companies (referred to as sponsoring organizations) in planning their communications and public involvement programs. It provides research findings, information and recommendations to be used by organizations as a resource and starting point in developing their own plans.

  7. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination

    PubMed Central

    Rowley, Paul A.; Kachroo, Aashiq H.; Ma, Chien-Hui; Maciaszek, Anna D.; Guga, Piotr; Jayaram, Makkuni

    2015-01-01

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5′ to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions. PMID:25999343

  8. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination.

    PubMed

    Rowley, Paul A; Kachroo, Aashiq H; Ma, Chien-Hui; Maciaszek, Anna D; Guga, Piotr; Jayaram, Makkuni

    2015-07-13

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5' to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions. PMID:25999343

  9. Quantitative meta-analysis of fMRI and PET studies reveals consistent activation in fronto-striatal-parietal regions and cerebellum during antisaccades and prosaccades

    PubMed Central

    Jamadar, Sharna D.; Fielding, Joanne; Egan, Gary F.

    2013-01-01

    The antisaccade task is a classic task of oculomotor control that requires participants to inhibit a saccade to a target and instead make a voluntary saccade to the mirror opposite location. By comparison, the prosaccade task requires participants to make a visually-guided saccade to the target. These tasks have been studied extensively using behavioral oculomotor, electrophysiological, and neuroimaging in both non-human primates and humans. In humans, the antisaccade task is under active investigation as a potential endophenotype or biomarker for multiple psychiatric and neurological disorders. A large and growing body of literature has used functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) to study the neural correlates of the antisaccade and prosaccade tasks. We present a quantitative meta-analysis of all published voxel-wise fMRI and PET studies (18) of the antisaccade task and show that consistent activation for antisaccades and prosaccades is obtained in a fronto-subcortical-parietal network encompassing frontal and supplementary eye fields (SEFs), thalamus, striatum, and intraparietal cortex. This network is strongly linked to oculomotor control and was activated to a greater extent for antisaccade than prosaccade trials. Antisaccade but not prosaccade trials additionally activated dorsolateral and ventrolateral prefrontal cortices. We also found that a number of additional regions not classically linked to oculomotor control were activated to a greater extent for antisaccade vs. prosaccade trials; these regions are often reported in antisaccade studies but rarely commented upon. While the number of studies eligible to be included in this meta-analysis was small, the results of this systematic review reveal that antisaccade and prosaccade trials consistently activate a distributed network of regions both within and outside the classic definition of the oculomotor network. PMID:24137150

  10. Kinetic Evidence for the Presence of Two Postaglandin Receptor Sites Regulating the Activity of Intestinal Adenylate Cyclase Sensitive to Escherichia coli Enterotoxin

    PubMed Central

    Kantor, Harvey S.; Tao, Pearl; Kiefer, Helen Chilton

    1974-01-01

    Kinetic behavior most consistent with the presence of two independent, but simultaneously acting, regulatory effector sites for prostaglandins has been presented for adenylate cyclase (EC 4.6.1.1) of rabbit intestinal epithelial cells. One site regulates activation of the catalytic site, while the other site regulates inhibition. A synthetic prostaglandin analogue, 7-oxa-13-prostynoic acid, is recognized at both sites in a concentration-dependent manner. At concentrations of 7-oxa-13-prostynoic acid less than 45 μg/ml, activation is seen, while at higher concentrations, inhibition is seen. Different naturally occurring prostaglandins appear to be site-specific. Prostaglandin E1 gives only activation of the cyclase, while prostaglandin A1 gives only inhibition of the activated cyclase. When saturating concentrations of prostaglandin E1 are used to activate adenylate cyclase, no further activation by 7-oxa-13-prostynoic acid can be elicited, indicating that both molecules activate at the same site. The similarity of inhibition constants for both 7-oxa-13-prostynoic acid and prostaglandin A1 suggests that the mode of binding is the same for both compounds and that they probably inhibit by acting at the same site. The inhibition by 7-oxa-13-prostynoic acid and by prostaglandin A1 overrides enzyme activation produced by either Escherichia coli enterotoxin, prostaglandin E1, or sodium fluoride, suggesting that in intestinal adenylate cyclase this site is the primary regulatory site (i.e., primary allosteric effector site) for enzyme activity. These data suggest that sites exist on adenylate cyclase which would allow prostaglandins to serve as the intracellular messengers by which the cell controls its adenylate-cyclase-mediated response to extracellular stimulation, as with hormones. PMID:4208548

  11. Conformational Disorganization within the Active Site of a Recently Evolved Organophosphate Hydrolase Limits Its Catalytic Efficiency.

    PubMed

    Mabbitt, Peter D; Correy, Galen J; Meirelles, Tamara; Fraser, Nicholas J; Coote, Michelle L; Jackson, Colin J

    2016-03-01

    The evolution of new enzymatic activity is rarely observed outside of the laboratory. In the agricultural pest Lucilia cuprina, a naturally occurring mutation (Gly137Asp) in α-esterase 7 (LcαE7) results in acquisition of organophosphate hydrolase activity and confers resistance to organophosphate insecticides. Here, we present an X-ray crystal structure of LcαE7:Gly137Asp that, along with kinetic data, suggests that Asp137 acts as a general base in the new catalytic mechanism. Unexpectedly, the conformation of Asp137 observed in the crystal structure obstructs the active site and is not catalytically productive. Molecular dynamics simulations reveal that alternative, catalytically competent conformers of Asp137 are sampled on the nanosecond time scale, although these states are less populated. Thus, although the mutation introduces the new reactive group responsible for organophosphate detoxification, the catalytic efficiency appears to be limited by conformational disorganization: the frequent sampling of low-energy nonproductive states. This result is consistent with a model of molecular evolution in which initial function-changing mutations can result in enzymes that display only a fraction of their catalytic potential due to conformational disorganization. PMID:26881849

  12. Actinobacterial diversity in limestone deposit sites in Hundung, Manipur (India) and their antimicrobial activities

    PubMed Central

    Nimaichand, Salam; Devi, Asem Mipeshwaree; Tamreihao, K.; Ningthoujam, Debananda S.; Li, Wen-Jun

    2015-01-01

    Studies on actinobacterial diversity in limestone habitats are scarce. This paper reports profiling of actinobacteria isolated from Hundung limestone samples in Manipur, India using ARDRA as the molecular tool for preliminary classification. A total of 137 actinobacteria were clustered into 31 phylotypic groups based on the ARDRA pattern generated and representative of each group was subjected to 16S rRNA gene sequencing. Generic diversity of the limestone isolates consisted of Streptomyces (15 phylotypic groups), Micromonospora (4), Amycolatopsis (3), Arthrobacter (3), Kitasatospora (2), Janibacter (1), Nocardia (1), Pseudonocardia (1) and Rhodococcus (1). Considering the antimicrobial potential of these actinobacteria, 19 showed antimicrobial activities against at least one of the bacterial and candidal test pathogens, while 45 exhibit biocontrol activities against at least one of the rice fungal pathogens. Out of the 137 actinobacterial isolates, 118 were found to have at least one of the three biosynthetic gene clusters (PKS-I, PKS-II, NRPS). The results indicate that 86% of the strains isolated from Hundung limestone deposit sites possessed biosynthetic gene clusters of which 40% exhibited antimicrobial activities. It can, therefore, be concluded that limestone habitat is a promising source for search of novel secondary metabolites. PMID:25999937

  13. Human uroporphyrinogen III synthase: NMR-based mapping of the active site.

    PubMed

    Cunha, Luis; Kuti, Miklos; Bishop, David F; Mezei, Mihaly; Zeng, Lei; Zhou, Ming-Ming; Desnick, Robert J

    2008-05-01

    Uroporphyrinogen III synthase (URO-synthase) catalyzes the cyclization and D-ring isomerization of hydroxymethylbilane (HMB) to uroporphyrinogen (URO'gen) III, the cyclic tetrapyrrole and physiologic precursor of heme, chlorophyl, and corrin. The deficient activity of human URO-synthase results in the autosomal recessive cutaneous disorder, congenital erythropoietic porphyria. Mapping of the structural determinants that specify catalysis and, potentially, protein-protein interactions is lacking. To map the active site and assess the enzyme's possible interaction in a complex with hydroxymethylbilane-synthase (HMB-synthase) and/or uroporphyrinogen-decarboxylase (URO-decarboxylase) by NMR, an efficient expression and purification procedure was developed for these cytosolic enzymes of heme biosynthesis that enabled preparation of special isotopically-labeled protein samples for NMR characterization. Using an 800 MHz instrument, assignment of the URO-synthase backbone (13)C(alpha) (100%), (1)H(alpha) (99.6%), and nonproline (1)H(N) and (15)N resonances (94%) was achieved as well as 85% of the side-chain (13)C and (1)H resonances. NMR analyses of URO-synthase titrated with competitive inhibitors N(D)-methyl-1-formylbilane (NMF-bilane) or URO'gen III, revealed resonance perturbations of specific residues lining the cleft between the two major domains of URO synthase that mapped the enzyme's active site. In silico docking of the URO-synthase crystal structure with NMF-bilane and URO'gen III was consistent with the perturbation results and provided a 3D model of the enzyme-inhibitor complex. The absence of chemical shift changes in the (15)N spectrum of URO-synthase mixed with the homogeneous HMB-synthase holoenzyme or URO-decarboxylase precluded occurrence of a stable cytosolic enzyme complex. PMID:18004775

  14. The influence of small-mammal burrowing activity on water storage at the Hanford Site

    SciTech Connect

    Landeen, D.S.

    1994-12-31

    This paper summarizes the activities that were conducted in support of the long-term surface barrier development program by Westinghouse Hanford Company to determine the degree that small-mammal burrow systems affect the loss or retention of water in the soils at the Hanford Site in Washington state. An animal intrusion lysimeter facility was constructed, consisting of two outer boxes buried at grade, which served as receptacles for six animal intrusion lysimeters. Small burrowing animals common the Hanford Site were introduced over a 3- to 4-month period. Supplemental precipitation was added monthly to three of the lysimeters with a rainfall simulator (rainulator). Information collected from the five tests indicated that (1) during summer months, water was lost in all the lysimeters, including the supplemental precipitation added with the rainulator; and (2) during winter months, all lysimeters gained water. The data indicate little difference in the amount of water stored between control and animal lysimeters. The overall water loss was attributed to surface evaporation, a process that occurred equally in control and treatment lysimeters. Other causes of water loss are a result of (1) constant soil turnover and subsequent drying, and (2) burrow ventilation effects. This suggests that burrow systems will not contribute to any significant water storage at depth and, in fact, may enhance the removal of water from the soil.

  15. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts.

    PubMed

    Sahraie, Nastaran Ranjbar; Kramm, Ulrike I; Steinberg, Julian; Zhang, Yuanjian; Thomas, Arne; Reier, Tobias; Paraknowitsch, Jens-Peter; Strasser, Peter

    2015-01-01

    Carbon materials doped with transition metal and nitrogen are highly active, non-precious metal catalysts for the electrochemical conversion of molecular oxygen in fuel cells, metal air batteries, and electrolytic processes. However, accurate measurement of their intrinsic turn-over frequency and active-site density based on metal centres in bulk and surface has remained difficult to date, which has hampered a more rational catalyst design. Here we report a successful quantification of bulk and surface-based active-site density and associated turn-over frequency values of mono- and bimetallic Fe/N-doped carbons using a combination of chemisorption, desorption and (57)Fe Mössbauer spectroscopy techniques. Our general approach yields an experimental descriptor for the intrinsic activity and the active-site utilization, aiding in the catalyst development process and enabling a previously unachieved level of understanding of reactivity trends owing to a deconvolution of site density and intrinsic activity. PMID:26486465

  16. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts

    NASA Astrophysics Data System (ADS)

    Sahraie, Nastaran Ranjbar; Kramm, Ulrike I.; Steinberg, Julian; Zhang, Yuanjian; Thomas, Arne; Reier, Tobias; Paraknowitsch, Jens-Peter; Strasser, Peter

    2015-10-01

    Carbon materials doped with transition metal and nitrogen are highly active, non-precious metal catalysts for the electrochemical conversion of molecular oxygen in fuel cells, metal air batteries, and electrolytic processes. However, accurate measurement of their intrinsic turn-over frequency and active-site density based on metal centres in bulk and surface has remained difficult to date, which has hampered a more rational catalyst design. Here we report a successful quantification of bulk and surface-based active-site density and associated turn-over frequency values of mono- and bimetallic Fe/N-doped carbons using a combination of chemisorption, desorption and 57Fe Mössbauer spectroscopy techniques. Our general approach yields an experimental descriptor for the intrinsic activity and the active-site utilization, aiding in the catalyst development process and enabling a previously unachieved level of understanding of reactivity trends owing to a deconvolution of site density and intrinsic activity.

  17. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts

    PubMed Central

    Sahraie, Nastaran Ranjbar; Kramm, Ulrike I.; Steinberg, Julian; Zhang, Yuanjian; Thomas, Arne; Reier, Tobias; Paraknowitsch, Jens-Peter; Strasser, Peter

    2015-01-01

    Carbon materials doped with transition metal and nitrogen are highly active, non-precious metal catalysts for the electrochemical conversion of molecular oxygen in fuel cells, metal air batteries, and electrolytic processes. However, accurate measurement of their intrinsic turn-over frequency and active-site density based on metal centres in bulk and surface has remained difficult to date, which has hampered a more rational catalyst design. Here we report a successful quantification of bulk and surface-based active-site density and associated turn-over frequency values of mono- and bimetallic Fe/N-doped carbons using a combination of chemisorption, desorption and 57Fe Mössbauer spectroscopy techniques. Our general approach yields an experimental descriptor for the intrinsic activity and the active-site utilization, aiding in the catalyst development process and enabling a previously unachieved level of understanding of reactivity trends owing to a deconvolution of site density and intrinsic activity. PMID:26486465

  18. Active Site Metal Occupancy and Cyclic Di-GMP Phosphodiesterase Activity of Thermotoga maritima HD-GYP.

    PubMed

    Miner, Kyle D; Kurtz, Donald M

    2016-02-16

    HD-GYPs make up a subclass of the metal-dependent HD phosphohydrolase superfamily and catalyze conversion of cyclic di(3',5')-guanosine monophosphate (c-di-GMP) to 5'-phosphoguanylyl-(3'→5')-guanosine (pGpG) and GMP. Until now, the only reported crystal structure of an HD-GYP that also exhibits c-di-GMP phosphodiesterase activity contains a His/carboxylate ligated triiron active site. However, other structural and phylogenetic correlations indicate that some HD-GYPs contain dimetal active sites. Here we provide evidence that an HD-GYP c-di-GMP phosphodiesterase, TM0186, from Thermotoga maritima can accommodate both di- and trimetal active sites. We show that an as-isolated iron-containing TM0186 has an oxo/carboxylato-bridged diferric site, and that the reduced (diferrous) form is necessary and sufficient to catalyze conversion of c-di-GMP to pGpG, but that conversion of pGpG to GMP requires more than two metals per active site. Similar c-di-GMP phosphodiesterase activities were obtained with divalent iron or manganese. On the basis of activity correlations with several putative metal ligand residue variants and molecular dynamics simulations, we propose that TM0186 can accommodate both di- and trimetal active sites. Our results also suggest that a Glu residue conserved in a subset of HD-GYPs is required for formation of the trimetal site and can also serve as a labile ligand to the dimetal site. Given the anaerobic growth requirement of T. maritima, we suggest that this HD-GYP can function in vivo with either divalent iron or manganese occupying di- and trimetal sites. PMID:26786892

  19. Molecular Basis for Enzymatic Sulfite Oxidation -- HOW THREE CONSERVED ACTIVE SITE RESIDUES SHAPE ENZYME ACTIVITY

    SciTech Connect

    Bailey, Susan; Rapson, Trevor; Johnson-Winters, Kayunta; Astashkin, Andrei; Enemark, John; Kappler, Ulrike

    2008-11-10

    Sulfite dehydrogenases (SDHs) catalyze the oxidation and detoxification of sulfite to sulfate, a reaction critical to all forms of life. Sulfite-oxidizing enzymes contain three conserved active site amino acids (Arg-55, His-57, and Tyr-236) that are crucial for catalytic competency. Here we have studied the kinetic and structural effects of two novel and one previously reported substitution (R55M, H57A, Y236F) in these residues on SDH catalysis. Both Arg-55 and His-57 were found to have key roles in substrate binding. An R55M substitution increased Km(sulfite)(app) by 2-3 orders of magnitude, whereas His-57 was required for maintaining a high substrate affinity at low pH when the imidazole ring is fully protonated. This effect may be mediated by interactions of His-57 with Arg-55 that stabilize the position of the Arg-55 side chain or, alternatively, may reflect changes in the protonation state of sulfite. Unlike what is seen for SDHWT and SDHY236F, the catalytic turnover rates of SDHR55M and SDHH57A are relatively insensitive to pH (~;;60 and 200 s-1, respectively). On the structural level, striking kinetic effects appeared to correlate with disorder (in SDHH57A and SDHY236F) or absence of Arg-55 (SDHR55M), suggesting that Arg-55 and the hydrogen bonding interactions it engages in are crucial for substrate binding and catalysis. The structure of SDHR55M has sulfate bound at the active site, a fact that coincides with a significant increase in the inhibitory effect of sulfate in SDHR55M. Thus, Arg-55 also appears to be involved in enabling discrimination between the substrate and product in SDH.

  20. Assessment of activation products in the Savannah River Site environment

    SciTech Connect

    Carlton, W.H.; Denham, M.

    1996-07-01

    This document assesses the impact of radioactive activation products released from SRS facilities since the first reactor became operational late in 1953. The isotopes reported here are those whose release resulted in the highest dose to people living near SRS: {sup 32}P, {sup 51}Cr, {sup 60}C, and {sup 65}Zn. Release pathways, emission control features, and annual releases to the aqueous and atmospheric environments are discussed. No single incident has resulted in a major acute release of activation products to the environment. The releases were the result of normal operations of the reactors and separations facilities. Releases declined over the years as better controls were established and production was reduced. The overall radiological impact of SRS activation product atmospheric releases from 1954 through 1994 on the offsite maximally exposed individual can be characterized by a total dose of 0.76 mrem. During the same period, such an individual received a total dose of 14,400 mrem from non-SRS sources of ionizing radiation present in the environment. SRS activation product aqueous releases between 1954 and 1994 resulted in a total dose of 54 mrem to the offsite maximally exposed individual. The impact of SRS activation product releases on offsite populations also has been evaluated.

  1. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand.

    PubMed

    Parashar, Abhinav; Venkatachalam, Avanthika; Gideon, Daniel Andrew; Manoj, Kelath Murali

    2014-12-12

    The toxicity of cyanide is hitherto attributed to its ability to bind to heme proteins' active site and thereby inhibit their activity. It is shown herein that the long-held interpretation is inadequate to explain several observations in heme-enzyme reaction systems. Generation of cyanide-based diffusible radicals in heme-enzyme reaction milieu could shunt electron transfers (by non-active site processes), and thus be detrimental to the efficiency of oxidative outcomes. PMID:25449264

  2. Characterization of an Active Thermal Erosion Site, Caribou Creek, Alaska

    NASA Astrophysics Data System (ADS)

    Busey, R.; Bolton, W. R.; Cherry, J. E.; Hinzman, L. D.

    2013-12-01

    The goal of this project is to estimate volume loss of soil over time from this site, provide parameterizations on erodibility of ice rich permafrost and serve as a baseline for future landscape evolution simulations. Located in the zone of discontinuous permafrost, the interior region of Alaska (USA) is home to a large quantity of warm, unstable permafrost that is both high in ice content and has soil temperatures near the freezing point. Much of this permafrost maintains a frozen state despite the general warming air temperature trend in the region due to the presence of a thick insulating organic mat and a dense root network in the upper sub-surface of the soil column. At a rapidly evolving thermo-erosion site, located within the Caribou-Poker Creeks Research Watershed (part of the Bonanza Creek LTER) near Chatanika, Alaska (N65.140, W147.570), the protective organic layer and associated plants were disturbed by an adjacent traditional use trail and the shifting of a groundwater spring. These triggers have led to rapid geomorphological change on the landscape as the soil thaws and sediment is transported into the creek at the valley bottom. Since 2006 (approximately the time of initiation), the thermal erosion has grown to 170 meters length, 3 meters max depth, and 15 meters maximum width. This research combines several data sets: DGPS survey, imagery from an extremely low altitude pole-based remote sensing (3 to 5 meters above ground level), and imagery from an Unmanned Aerial System (UAS) at about 60m altitude.

  3. Marine Biology Field Trip Sites. Ocean Related Curriculum Activities.

    ERIC Educational Resources Information Center

    Pauls, John

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  4. Reduction of urease activity by interaction with the flap covering the active site.

    PubMed

    Macomber, Lee; Minkara, Mona S; Hausinger, Robert P; Merz, Kenneth M

    2015-02-23

    With the increasing appreciation for the human microbiome coupled with the global rise of antibiotic resistant organisms, it is imperative that new methods be developed to specifically target pathogens. To that end, a novel computational approach was devised to identify compounds that reduce the activity of urease, a medically important enzyme of Helicobacter pylori, Proteus mirabilis, and many other microorganisms. Urease contains a flexible loop that covers its active site; Glide was used to identify small molecules predicted to lock this loop in an open conformation. These compounds were screened against the model urease from Klebsiella aerogenes, and the natural products epigallocatechin and quercetin were shown to inhibit at low and high micromolar concentrations, respectively. These molecules exhibit a strong time-dependent inactivation of urease that was not due to their oxygen sensitivity. Rather, these compounds appear to inactivate urease by reacting with a specific Cys residue located on the flexible loop. Substitution of this cysteine by alanine in the C319A variant increased the urease resistance to both epigallocatechin and quercetin, as predicted by the computational studies. Protein dynamics are integral to the function of many enzymes; thus, identification of compounds that lock an enzyme into a single conformation presents a useful approach to define potential inhibitors. PMID:25594724

  5. Reduction of Urease Activity by Interaction with the Flap Covering the Active Site

    PubMed Central

    Macomber, Lee; Minkara, Mona S.; Hausinger, Robert P.; Merz, Kenneth M.

    2015-01-01

    With the increasing appreciation for the human microbiome coupled with the global rise of antibiotic resistant organisms, it is imperative that new methods be developed to specifically target pathogens. To that end, a novel computational approach was devised to identify compounds that reduce the activity of urease, a medically important enzyme of Helicobacter pylori, Proteus mirabilis, and many other microorganisms. Urease contains a flexible loop that covers its active site; Glide was used to identify small molecules predicted to lock this loop in an open conformation. These compounds were screened against the model urease from Klebsiella aerogenes and the natural products epigallocatechin and quercetin were shown to inhibit at low and high micromolar concentrations, respectively. These molecules exhibit a strong time-dependent inactivation of urease that was not due to their oxygen sensitivity. Rather, these compounds appear to inactivate urease by reacting with a specific Cys residue located on the flexible loop. Substitution of this cysteine by alanine in the C319A variant increased the urease resistance to both epigallocatechin and quercetin, as predicted by the computational studies. Protein dynamics are integral to the function of many enzymes; thus, identification of compounds that lock an enzyme into a single conformation presents a useful approach to define potential inhibitors. PMID:25594724

  6. Encroachment of Human Activity on Sea Turtle Nesting Sites

    NASA Astrophysics Data System (ADS)

    Ziskin, D.; Aubrecht, C.; Elvidge, C.; Tuttle, B.; Baugh, K.; Ghosh, T.

    2008-12-01

    The encroachment of anthropogenic lighting on sea turtle nesting sites poses a serious threat to the survival of these animals [Nicholas, 2001]. This danger is quantified by combining two established data sets. The first is the Nighttime Lights data produced by the NOAA National Geophysical Data Center [Elvidge et al., 1997]. The second is the Marine Turtle Database produced by the World Conservation Monitoring Centre (WCMC). The technique used to quantify the threat of encroachment is an adaptation of the method described in Aubrecht et al. [2008], which analyzes the stress on coral reef systems by proximity to nighttime lights near the shore. Nighttime lights near beaches have both a direct impact on turtle reproductive success since they disorient hatchlings when they mistake land-based lights for the sky-lit surf [Lorne and Salmon, 2007] and the lights are also a proxy for other anthropogenic threats. The identification of turtle nesting sites with high rates of encroachment will hopefully steer conservation efforts to mitigate their effects [Witherington, 1999]. Aubrecht, C, CD Elvidge, T Longcore, C Rich, J Safran, A Strong, M Eakin, KE Baugh, BT Tuttle, AT Howard, EH Erwin, 2008, A global inventory of coral reef stressors based on satellite observed nighttime lights, Geocarto International, London, England: Taylor and Francis. In press. Elvidge, CD, KE Baugh, EA Kihn, HW Kroehl, ER Davis, 1997, Mapping City Lights with Nighttime Data from the DMSP Operational Linescan System, Photogrammatic Engineering and Remote Sensing, 63:6, pp. 727-734. Lorne, JK, M Salmon, 2007, Effects of exposure to artificial lighting on orientation of hatchling sea turtles on the beach and in the ocean, Endangered Species Research, Vol. 3: 23-30. Nicholas, M, 2001, Light Pollution and Marine Turtle Hatchlings: The Straw that Breaks the Camel's Back?, George Wright Forum, 18:4, p77-82. Witherington, BE, 1999, Reducing Threats To Nesting Habitat, Research and Management Techniques for

  7. Microemulsion Electrokinetic Chromatography in Combination with Chemometric Methods to Evaluate the Holistic Quality Consistency and Predict the Antioxidant Activity of Ixeris sonchifolia (Bunge) Hance Injection.

    PubMed

    Yang, Lanping; Xie, Xiuman; Zhang, Jing; Sun, Guoxiang

    2016-01-01

    In this paper, microemulsion electrokinetic chromatography (MEEKC) fingerprints combined with quantification were successfully developed to monitor the holistic quality consistency of Ixeris sonchifolia (Bge.) Hance Injection (ISHI). ISHI is a Chinese traditional patent medicine used for its anti-inflammatory and hemostatic effects. The effects of five crucial experimental variables on MEEKC were optimized by the central composite design. Under the optimized conditions, the MEEKC fingerprints of 28 ISHIs were developed. Quantitative determination of seven marker compounds was employed simultaneously, then 28 batches of samples from two manufacturers were clearly divided into two clusters by the principal component analysis. In fingerprint assessments, a systematic quantitative fingerprint method was established for the holistic quality consistency evaluation of ISHI from qualitative and quantitative perspectives, by which the qualities of 28 samples were well differentiated. In addition, the fingerprint-efficacy relationship between the fingerprints and the antioxidant activities was established utilizing orthogonal projection to latent structures, which provided important medicinal efficacy information for quality control. The present study offered a powerful and holistic approach to evaluating the quality consistency of herbal medicines and their preparations. PMID:27336298

  8. Consistent inter-individual differences in common marmosets (Callithrix jacchus) in Boldness-Shyness, Stress-Activity, and Exploration-Avoidance.

    PubMed

    Šlipogor, Vedrana; Gunhold-de Oliveira, Tina; Tadić, Zoran; Massen, Jorg J M; Bugnyar, Thomas

    2016-09-01

    The study of animal personality, defined as consistent inter-individual differences in correlated behavioral traits stable throughout time and/or contexts, has recently become one of the fastest growing areas in animal biology, with study species ranging from insects to non-human primates. The latter have, however, only occasionally been tested with standardized experiments. Instead their personality has usually been assessed using questionnaires. Therefore, this study aimed to test 21 common marmosets (Callithrix jacchus) living in three family groups, in five different experiments, and their corresponding controls. We found that behavioral differences between our animals were not only consistent over time, but also across different contexts. Moreover, the consistent behaviors formed a construct of four major non-social personality components: Boldness-Shyness in Foraging, Boldness-Shyness in Predation, Stress-Activity, and Exploration-Avoidance. We found no sex or age differences in these components, but our results did reveal differences in Exploration-Avoidance between the three family groups. As social environment can have a large influence on behavior of individuals, our results may suggest group-level similarity in personality (i.e., "group personality") in common marmosets, a species living in highly cohesive social groups. Am. J. Primatol. 78:961-973, 2016. © 2016 Wiley Periodicals, Inc. PMID:27286098

  9. Consistent inter‐individual differences in common marmosets (Callithrix jacchus) in Boldness‐Shyness, Stress‐Activity, and Exploration‐Avoidance

    PubMed Central

    Gunhold‐de Oliveira, Tina; Tadić, Zoran; Massen, Jorg J.M.; Bugnyar, Thomas

    2016-01-01

    The study of animal personality, defined as consistent inter‐individual differences in correlated behavioral traits stable throughout time and/or contexts, has recently become one of the fastest growing areas in animal biology, with study species ranging from insects to non‐human primates. The latter have, however, only occasionally been tested with standardized experiments. Instead their personality has usually been assessed using questionnaires. Therefore, this study aimed to test 21 common marmosets (Callithrix jacchus) living in three family groups, in five different experiments, and their corresponding controls. We found that behavioral differences between our animals were not only consistent over time, but also across different contexts. Moreover, the consistent behaviors formed a construct of four major non‐social personality components: Boldness‐Shyness in Foraging, Boldness‐Shyness in Predation, Stress‐Activity, and Exploration‐Avoidance. We found no sex or age differences in these components, but our results did reveal differences in Exploration‐Avoidance between the three family groups. As social environment can have a large influence on behavior of individuals, our results may suggest group‐level similarity in personality (i.e., “group personality”) in common marmosets, a species living in highly cohesive social groups. Am. J. Primatol. 78:961–973, 2016. © 2016 The Authors. American Journal of Primatology published by Wiley Periodicals, Inc. PMID:27286098

  10. Microemulsion Electrokinetic Chromatography in Combination with Chemometric Methods to Evaluate the Holistic Quality Consistency and Predict the Antioxidant Activity of Ixeris sonchifolia (Bunge) Hance Injection

    PubMed Central

    Yang, Lanping; Xie, Xiuman; Zhang, Jing; Sun, Guoxiang

    2016-01-01

    In this paper, microemulsion electrokinetic chromatography (MEEKC) fingerprints combined with quantification were successfully developed to monitor the holistic quality consistency of Ixeris sonchifolia (Bge.) Hance Injection (ISHI). ISHI is a Chinese traditional patent medicine used for its anti-inflammatory and hemostatic effects. The effects of five crucial experimental variables on MEEKC were optimized by the central composite design. Under the optimized conditions, the MEEKC fingerprints of 28 ISHIs were developed. Quantitative determination of seven marker compounds was employed simultaneously, then 28 batches of samples from two manufacturers were clearly divided into two clusters by the principal component analysis. In fingerprint assessments, a systematic quantitative fingerprint method was established for the holistic quality consistency evaluation of ISHI from qualitative and quantitative perspectives, by which the qualities of 28 samples were well differentiated. In addition, the fingerprint—efficacy relationship between the fingerprints and the antioxidant activities was established utilizing orthogonal projection to latent structures, which provided important medicinal efficacy information for quality control. The present study offered a powerful and holistic approach to evaluating the quality consistency of herbal medicines and their preparations. PMID:27336298

  11. Small Molecule Active Site Directed Tools for Studying Human Caspases.

    PubMed

    Poreba, Marcin; Szalek, Aleksandra; Kasperkiewicz, Paulina; Rut, Wioletta; Salvesen, Guy S; Drag, Marcin

    2015-11-25

    Caspases are proteases of clan CD and were described for the first time more than two decades ago. They play critical roles in the control of regulated cell death pathways including apoptosis and inflammation. Due to their involvement in the development of various diseases like cancer, neurodegenerative diseases, or autoimmune disorders, caspases have been intensively investigated as potential drug targets, both in academic and industrial laboratories. This review presents a thorough, deep, and systematic assessment of all technologies developed over the years for the investigation of caspase activity and specificity using substrates and inhibitors, as well as activity based probes, which in recent years have attracted considerable interest due to their usefulness in the investigation of biological functions of this family of enzymes. PMID:26551511

  12. Activation of brown adipose tissue mitochondrial GDP binding sites

    SciTech Connect

    Swick, A.G.

    1987-01-01

    The primary function of brown adipose tissue (BAT) is heat production. This ability is attributed to the existence of a unique inner mitochondrial membrane protein termed the uncoupling protein or thermogenin. This protein is permeable to H+ and thus allows respiration (and therefore thermogenesis) to proceed at a rapid rate, independent of ADP phosphorylation. Proton conductance can be inhibited by the binding of purine nucleotides to the uncoupling protein. The binding of (/sup 3/H)-GDP to BAT mitochondria is frequently used as a measure of BAT thermogenic activity. Rats fed a diet that was low but adequate in protein exhibited a decrease in feed efficiency. In addition, BAT thermogenesis was activated as indicated by an elevation in the level of GDP binding to BAT mitochondria. This phenomena occurred in older rats and persisted over time.

  13. Time-dependent density functional theory (TD-DFT) coupled with reference interaction site model self-consistent field explicitly including spatial electron density distribution (RISM-SCF-SEDD).

    PubMed

    Yokogawa, D

    2016-09-01

    Theoretical approach to design bright bio-imaging molecules is one of the most progressing ones. However, because of the system size and computational accuracy, the number of theoretical studies is limited to our knowledge. To overcome the difficulties, we developed a new method based on reference interaction site model self-consistent field explicitly including spatial electron density distribution and time-dependent density functional theory. We applied it to the calculation of indole and 5-cyanoindole at ground and excited states in gas and solution phases. The changes in the optimized geometries were clearly explained with resonance structures and the Stokes shift was correctly reproduced. PMID:27608983

  14. Contribution of active-site glutamine to rate enhancement in ubiquitin carboxy terminal hydrolases

    PubMed Central

    Boudreaux, David; Chaney, Joseph; Maiti, Tushar K.; Das, Chittaranjan

    2012-01-01

    Ubiquitin carboxy terminal hydrolases (UCHs) are cysteine proteases featuring a classical cysteine-histidine-aspartate catalytic triad, also a highly conserved glutamine thought to be a part of the oxyanion hole. However, the contribution of this side chain to the catalysis by UCH enzymes is not known. Herein, we demonstrate that the glutamine side chain contributes to rate enhancement in UCHL1, UCHL3 and UCHL5. Mutation of the glutamine to alanine in these enzymes impairs the catalytic efficiency mainly due to a 16 to 30-fold reduction in kcat, which is consistent with a loss of approximately 2 kcal/mol in transition-state stabilization. However, the contribution to transition-state stabilization observed here is rather modest for the side chain’s role in oxyanion stabilization. Interestingly, we discovered that the carbonyl oxygen of this side chain is engaged in a C—H•••O hydrogen-bonding contact with the CεH group of the catalytic histidine. Upon further analysis, we found that this interaction is a common active-site structural feature in most cysteine proteases, including papain, belonging to families with the QCH(N/D) type of active-site configuration. It is possible that removal of the glutamine side chain might have abolished the C—H•••O interaction, which typically accounts for 2 kcal/mol of stabilization, leading to the effect on catalysis observed here. Additional studies performed on UCHL3 by mutating the glutamine to glutamate (strong C—H•••O acceptor but oxyanion destabilizer) and to lysine (strong oxyanion stabilizer but lacking C—H•••O hydrogen-bonding property) suggest that the C—H•••O hydrogen bond could contribute to catalysis. PMID:22284438

  15. Comparison of IUPAC k0 Values and Neutron Cross Sections to Determine a Self-consistent Set of Data for Neutron Activation Analysis

    SciTech Connect

    Firestone, Richard B; Revay, Zsolt

    2009-12-01

    Independent databases of nuclear constants for Neutron Activation Analysis (NAA) have been independently maintained by the physics and chemistry communities for many year. They contain thermal neturon cross sections s0, standardization values k0, and transition probabilities Pg. Chemistry databases tend to rely upon direct measurements of the nuclear constants k0 and Pg which are often published in chemistry journals while the physics databases typically include evaluated s0 and Pg data from a variety of experiments published mainly in physics journals. The IAEA/LBNL Evaluated Gamma-ray Activation File (EGAF) also contains prompt and delayed g-ray cross sections sg from Prompt Gamma-ray Activation Analysis (PGAA) measurements that can also be used to determine k0 and s0 values. As a result several independent databases of fundamental constants for NAA have evolved containing slightly different and sometimes discrepant results. An IAEA CRP for a Reference Database for Neutron Activation Analysis was established to compare these databases and investigate the possibilitiy of producing a self-consistent set of s0, k0, sg, and Pg values for NAA and other applications. Preliminary results of this IAEA CRP comparison are given in this paper.

  16. Identification of a Tumor Specific, Active-Site Mutation in Casein Kinase 1α by Chemical Proteomics

    PubMed Central

    Okerberg, Eric S.; Hainley, Anna; Brown, Heidi; Aban, Arwin; Alemayehu, Senait; Shih, Ann; Wu, Jane; Patricelli, Matthew P.; Kozarich, John W.; Nomanbhoy, Tyzoon; Rosenblum, Jonathan S.

    2016-01-01

    We describe the identification of a novel, tumor-specific missense mutation in the active site of casein kinase 1α (CSNK1A1) using activity-based proteomics. Matched normal and tumor colon samples were analyzed using an ATP acyl phosphate probe in a kinase-targeted LC-MS2 platform. An anomaly in the active-site peptide from CSNK1A1 was observed in a tumor sample that was consistent with an altered catalytic aspartic acid. Expression and analysis of the suspected mutant verified the presence of asparagine in the probe-labeled, active-site peptide for CSNK1A1. Genomic sequencing of the colon tumor samples confirmed the presence of a missense mutation in the catalytic aspartic acid of CSNK1A1 (GAC→AAC). To our knowledge, the D163N mutation in CSNK1A1 is a newly defined mutation to the conserved, catalytic aspartic acid of a protein kinase and the first missense mutation identified using activity-based proteomics. The tumorigenic potential of this mutation remains to be determined. PMID:27031502

  17. Selective Sirt2 inhibition by ligand-induced rearrangement of the active site

    PubMed Central

    Rumpf, Tobias; Schiedel, Matthias; Karaman, Berin; Roessler, Claudia; North, Brian J.; Lehotzky, Attila; Oláh, Judit; Ladwein, Kathrin I.; Schmidtkunz, Karin; Gajer, Markus; Pannek, Martin; Steegborn, Clemens; Sinclair, David A.; Gerhardt, Stefan; Ovádi, Judit; Schutkowski, Mike; Sippl, Wolfgang; Einsle, Oliver; Jung, Manfred

    2015-01-01

    Sirtuins are a highly conserved class of NAD+-dependent lysine deacylases. The human isotype Sirt2 has been implicated in the pathogenesis of cancer, inflammation and neurodegeneration, which makes the modulation of Sirt2 activity a promising strategy for pharmaceutical intervention. A rational basis for the development of optimized Sirt2 inhibitors is lacking so far. Here we present high-resolution structures of human Sirt2 in complex with highly selective drug-like inhibitors that show a unique inhibitory mechanism. Potency and the unprecedented Sirt2 selectivity are based on a ligand-induced structural rearrangement of the active site unveiling a yet-unexploited binding pocket. Application of the most potent Sirtuin-rearranging ligand, termed SirReal2, leads to tubulin hyperacetylation in HeLa cells and induces destabilization of the checkpoint protein BubR1, consistent with Sirt2 inhibition in vivo. Our structural insights into this unique mechanism of selective sirtuin inhibition provide the basis for further inhibitor development and selective tools for sirtuin biology. PMID:25672491

  18. Active sites and mechanisms for H2O2 decomposition over Pd catalysts.

    PubMed

    Plauck, Anthony; Stangland, Eric E; Dumesic, James A; Mavrikakis, Manos

    2016-04-01

    A combination of periodic, self-consistent density functional theory (DFT-GGA-PW91) calculations, reaction kinetics experiments on a SiO2-supported Pd catalyst, and mean-field microkinetic modeling are used to probe key aspects of H2O2 decomposition on Pd in the absence of cofeeding H2 We conclude that both Pd(111) and OH-partially covered Pd(100) surfaces represent the nature of the active site for H2O2 decomposition on the supported Pd catalyst reasonably well. Furthermore, all reaction flux in the closed catalytic cycle is predicted to flow through an O-O bond scission step in either H2O2 or OOH, followed by rapid H-transfer steps to produce the H2O and O2 products. The barrier for O-O bond scission is sensitive to Pd surface structure and is concluded to be the central parameter governing H2O2 decomposition activity. PMID:27006504

  19. Methanol Synthesis over Cu/ZnO/Al2O3: The Active Site in Industrial Catalysis

    SciTech Connect

    Behrens, Malte

    2012-03-28

    Unlike homogeneous catalysts, heterogeneous catalysts that have been optimized through decades are typically so complex and hard to characterize that the nature of the catalytically active site is not known. This is one of the main stumbling blocks in developing rational catalyst design strategies in heterogeneous catalysis. We show here how to identify the crucial atomic structure motif for the industrial Cu/ZnO/Al{sub 2}O{sub 3} methanol synthesis catalyst. Using a combination of experimental evidence from bulk-, surface-sensitive and imaging methods collected on real high-performance catalytic systems in combination with DFT calculations. We show that the active site consists of Cu steps peppered with Zn atoms, all stabilized by a series of well defined bulk defects and surface species that need jointly to be present for the system to work.

  20. School Pharmacist/School Environmental Hygienic Activities at School Site.

    PubMed

    Muramatsu, Akiyoshi

    2016-01-01

    The "School Health and Safety Act" was enforced in April 2009 in Japan, and "school environmental health standards" were established by the Minister of Education, Culture, Sports, Science and Technology. In Article 24 of the Enforcement Regulations, the duties of the school pharmacist have been clarified; school pharmacists have charged with promoting health activities in schools and carrying out complete and regular checks based on the "school environmental health standards" in order to protect the health of students and staff. In supported of this, the school pharmacist group of Japan Pharmaceutical Association has created and distributed digital video discs (DVDs) on "check methods of school environmental health standards" as support material. We use the DVD to ensure the basic issues that school pharmacists deal with, such as objectives, criteria, and methods for each item to be checked, advice, and post-measures. We conduct various workshops and classes, and set up Q&A committees so that inquiries from members are answered with the help of such activities. In addition, school pharmacists try to improve the knowledge of the school staff on environmental hygiene during their in-service training. They also conduct "drug abuse prevention classes" at school and seek to improve knowledge and recognition of drugs, including "dangerous drugs". PMID:27252053

  1. An Accessory Agonist Binding Site Promotes Activation of α4β2* Nicotinic Acetylcholine Receptors*

    PubMed Central

    Wang, Jingyi; Kuryatov, Alexander; Sriram, Aarati; Jin, Zhuang; Kamenecka, Theodore M.; Kenny, Paul J.; Lindstrom, Jon

    2015-01-01

    Neuronal nicotinic acetylcholine receptors containing α4, β2, and sometimes other subunits (α4β2* nAChRs) regulate addictive and other behavioral effects of nicotine. These nAChRs exist in several stoichiometries, typically with two high affinity acetylcholine (ACh) binding sites at the interface of α4 and β2 subunits and a fifth accessory subunit. A third low affinity ACh binding site is formed when this accessory subunit is α4 but not if it is β2. Agonists selective for the accessory ACh site, such as 3-[3-(3-pyridyl)-1,2,4-oxadiazol-5-yl]benzonitrile (NS9283), cannot alone activate a nAChR but can facilitate more efficient activation in combination with agonists at the canonical α4β2 sites. We therefore suggest categorizing agonists according to their site selectivity. NS9283 binds to the accessory ACh binding site; thus it is termed an accessory site-selective agonist. We expressed (α4β2)2 concatamers in Xenopus oocytes with free accessory subunits to obtain defined nAChR stoichiometries and α4/accessory subunit interfaces. We show that α2, α3, α4, and α6 accessory subunits can form binding sites for ACh and NS9283 at interfaces with α4 subunits, but β2 and β4 accessory subunits cannot. To permit selective blockage of the accessory site, α4 threonine 126 located on the minus side of α4 that contributes to the accessory site, but not the α4β2 sites, was mutated to cysteine. Alkylation of this cysteine with a thioreactive reagent blocked activity of ACh and NS9283 at the accessory site. Accessory agonist binding sites are promising drug targets. PMID:25869137

  2. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity.

    PubMed

    Matsubu, John C; Yang, Vanessa N; Christopher, Phillip

    2015-03-01

    CO2 reduction by H2 on heterogeneous catalysts is an important class of reactions that has been studied for decades. However, atomic scale details of structure-function relationships are still poorly understood. Particularly, it has been suggested that metal particle size plays a unique role in controlling the stability of CO2 hydrogenation catalysts and the distribution of active sites, which dictates reactivity and selectivity. These studies often have not considered the possible role of isolated metal active sites in the observed dependences. Here, we utilize probe molecule diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) with known site-specific extinction coefficients to quantify the fraction of Rh sites residing as atomically dispersed isolated sites (Rhiso), as well as Rh sites on the surface of Rh nanoparticles (RhNP) for a series of TiO2 supported Rh catalysts. Strong correlations were observed between the catalytic reverse water gas shift turn over frequency (TOF) and the fraction of Rhiso sites and between catalytic methanation TOF and the fraction of RhNP sites. Furthermore, it was observed that reaction condition-induced disintegration of Rh nanoparticles, forming Rhiso active sites, controls the changing reactivity with time on stream. This work demonstrates that isolated atoms and nanoparticles of the same metal on the same support can exhibit uniquely different catalytic selectivity in competing parallel reaction pathways and that disintegration of nanoparticles under reaction conditions can play a significant role in controlling stability. PMID:25671686

  3. The balance of flexibility and rigidity in the active site residues of hen egg white lysozyme

    NASA Astrophysics Data System (ADS)

    Qi, Jian-Xun; Jiang, Fan

    2011-05-01

    The crystallographic temperature factors (B factor) of individual atoms contain important information about the thermal motion of the atoms in a macromolecule. Previously the theory of flexibility of active site has been established based on the observation that the enzyme activity is sensitive to low concentration denaturing agents. It has been found that the loss of enzyme activity occurs well before the disruption of the three-dimensional structural scaffold of the enzyme. To test the theory of conformational flexibility of enzyme active site, crystal structures were perturbed by soaking in low concentration guanidine hydrochloride solutions. It was found that many lysozyme crystals tested could still diffract until the concentration of guanidine hydrochloride reached 3 M. It was also found that the B factors averaged over individually collected data sets were more accurate. Thus it suggested that accurate measurement of crystal temperature factors could be achieved for medium-high or even medium resolution crystals by averaging over multiple data sets. Furthermore, we found that the correctly predicted active sites included not only the more flexible residues, but also some more rigid residues. Both the flexible and the rigid residues in the active site played an important role in forming the active site residue network, covering the majority of the substrate binding residues. Therefore, this experimental prediction method may be useful for characterizing the binding site and the function of a protein, such as drug targeting.

  4. The calculation of surface orbital energies for specific types of active sites on dispersed metal catalysts

    SciTech Connect

    Augustine, R.L.; Lahanas, K.M.; Cole, F.

    1992-11-01

    An angular overlap calculation has been used to determine the s, p, and d orbital energy levels of the different types of surface sites present on dispersed metal catalysts. These data can permit a Frontier Molecular Orbital treatment of specific site activities as long as the surface orbital availability for overlap with adsorbed substrates is considered along with its energy value and symmetry.

  5. The calculation of surface orbital energies for specific types of active sites on dispersed metal catalysts

    SciTech Connect

    Augustine, R.L.; Lahanas, K.M.; Cole, F.

    1992-01-01

    An angular overlap calculation has been used to determine the s, p, and d orbital energy levels of the different types of surface sites present on dispersed metal catalysts. These data can permit a Frontier Molecular Orbital treatment of specific site activities as long as the surface orbital availability for overlap with adsorbed substrates is considered along with its energy value and symmetry.

  6. Extending the Diffuse Layer Model of Surface Acidity Behavior: III. Estimating Bound Site Activity Coefficients

    EPA Science Inventory

    Although detailed thermodynamic analyses of the 2-pK diffuse layer surface complexation model generally specify bound site activity coefficients for the purpose of accounting for those non-ideal excess free energies contributing to bound site electrochemical potentials, in applic...

  7. 1993 annual report of hazardous waste activities for the Oak Ridge K-25 site

    SciTech Connect

    Not Available

    1994-02-01

    This report is a detailed listing of all of the Hazardous Waste activities occurring at Martin Marietta`s K-25 site. Contained herein are hazardous waste notification forms, waste stream reports, generator fee forms and various TSDR reports.

  8. Chemical modification studies on arginine kinase: essential cysteine and arginine residues at the active site.

    PubMed

    Zhu, Wen-Jing; Li, Miao; Wang, Xiao-Yun

    2007-12-01

    Chemical modification was used to elucidate the essential amino acids in the catalytic activity of arginine kinase (AK) from Migratoria manilensis. Among six cysteine (Cys) residues only one Cys residue was determined to be essential in the active site by Tsou's method. Furthermore, the AK modified by DTNB can be fully reactivated by dithiothreitol (DTT) in a monophasic kinetic course. At the same time, this reactivation can be slowed down in the presence of ATP, suggesting that the essential Cys is located near the ATP binding site. The ionizing groups at the AK active site were studied and the standard dissociation enthalpy (DeltaH degrees ) was 12.38kcal/mol, showing that the dissociation group may be the guanidino of arginine (Arg). Using the specific chemical modifier phenylglyoxal (PG) demonstrated that only one Arg, located near the ATP binding site, is essential for the activity of AK. PMID:17765964

  9. 78 FR 8190 - Commercial Wind Leasing and Site Assessment Activities on the Atlantic Outer Continental Shelf...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ...BOEM is reopening the comment period announced in the Notice of Intent to Prepare an Environmental Assessment (EA) for Commercial Wind Leasing and Site Assessment Activities on the OCS Offshore North...

  10. Anisotropic Covalency Contributions to Superexchange Pathways in Type One Copper Active Sites

    PubMed Central

    2015-01-01

    Type one (T1) Cu sites deliver electrons to catalytic Cu active sites: the mononuclear type two (T2) Cu site in nitrite reductases (NiRs) and the trinuclear Cu cluster in the multicopper oxidases (MCOs). The T1 Cu and the remote catalytic sites are connected via a Cys-His intramolecular electron-transfer (ET) bridge, which contains two potential ET pathways: P1 through the protein backbone and P2 through the H-bond between the Cys and the His. The high covalency of the T1 Cu–S(Cys) bond is shown here to activate the T1 Cu site for hole superexchange via occupied valence orbitals of the bridge. This covalency-activated electronic coupling (HDA) facilitates long-range ET through both pathways. These pathways can be selectively activated depending on the geometric and electronic structure of the T1 Cu site and thus the anisotropic covalency of the T1 Cu–S(Cys) bond. In NiRs, blue (π-type) T1 sites utilize P1 and green (σ-type) T1 sites utilize P2, with P2 being more efficient. Comparing the MCOs to NiRs, the second-sphere environment changes the conformation of the Cys-His pathway, which selectively activates HDA for superexchange by blue π sites for efficient turnover in catalysis. These studies show that a given protein bridge, here Cys-His, provides different superexchange pathways and electronic couplings depending on the anisotropic covalencies of the donor and acceptor metal sites. PMID:25310460

  11. The Three Mycobacterium tuberculosis Antigen 85 Isoforms Have Unique Substrates and Activities Determined by Non-active Site Regions*

    PubMed Central

    Backus, Keriann M.; Dolan, Michael A.; Barry, Conor S.; Joe, Maju; McPhie, Peter; Boshoff, Helena I. M.; Lowary, Todd L.; Davis, Benjamin G.; Barry, Clifton E.

    2014-01-01

    The three isoforms of antigen 85 (A, B, and C) are the most abundant secreted mycobacterial proteins and catalyze transesterification reactions that synthesize mycolated arabinogalactan, trehalose monomycolate (TMM), and trehalose dimycolate (TDM), important constituents of the outermost layer of the cellular envelope of Mycobacterium tuberculosis. These three enzymes are nearly identical at the active site and have therefore been postulated to exist to evade host immunity. Distal to the active site is a second putative carbohydrate-binding site of lower homology. Mutagenesis of the three isoforms at this second site affected both substrate selectivity and overall catalytic activity in vitro. Using synthetic and natural substrates, we show that these three enzymes exhibit unique selectivity; antigen 85A more efficiently mycolates TMM to form TDM, whereas C (and to a lesser extent B) has a higher rate of activity using free trehalose to form TMM. This difference in substrate selectivity extends to the hexasaccharide fragment of cell wall arabinan. Mutation of secondary site residues from the most active isoform (C) into those present in A or B partially interconverts this substrate selectivity. These experiments in combination with molecular dynamics simulations reveal that differences in the N-terminal helix α9, the adjacent Pro216–Phe228 loop, and helix α5 are the likely cause of changes in activity and substrate selectivity. These differences explain the existence of three isoforms and will allow for future work in developing inhibitors. PMID:25028517

  12. Conformational coupling, bridge helix dynamics and active site dehydration in catalysis by RNA polymerase

    PubMed Central

    Seibold, Steve A.; Singh, Badri Nath; Zhang, Chunfen; Kireeva, Maria; Domecq, Céline; Bouchard, Annie; Nazione, Anthony M.; Feig, Michael; Cukier, Robert I.; Coulombe, Benoit; Kashlev, Mikhail; Hampsey, Michael; Burton, Zachary F.

    2010-01-01

    Molecular dynamics simulation of Thermus thermophilus (Tt) RNA polymerase (RNAP) in a catalytic conformation demonstrates that the active site dNMP-NTP base pair must be substantially dehydrated to support full active site closing and optimum conditions for phosphodiester bond synthesis. In silico mutant β R428A RNAP, which was designed based on substitutions at the homologous position (Rpb2 R512) of Saccharomyces cerevisiae (Sc) RNAP II, was used as a reference structure to compare to Tt RNAP in simulations. Long range conformational coupling linking a dynamic segment of the bridge α-helix, the extended fork loop, the active site, and the trigger loop-trigger helix is apparent and adversely affected in β R428A RNAP. Furthermore, bridge helix bending is detected in the catalytic structure, indicating that bridge helix dynamics may regulate phosphodiester bond synthesis as well as translocation. An active site “latch” assembly that includes a key trigger helix residue Tt β’ H1242 and highly conserved active site residues β E445 and R557 appears to help regulate active site hydration/dehydration. The potential relevance of these observations in understanding RNAP and DNAP induced fit and fidelity is discussed. PMID:20478425

  13. 'Unconventional' coordination chemistry by metal chelating fragments in a metalloprotein active site.

    PubMed

    Martin, David P; Blachly, Patrick G; Marts, Amy R; Woodruff, Tessa M; de Oliveira, César A F; McCammon, J Andrew; Tierney, David L; Cohen, Seth M

    2014-04-01

    The binding of three closely related chelators: 5-hydroxy-2-methyl-4H-pyran-4-thione (allothiomaltol, ATM), 3-hydroxy-2-methyl-4H-pyran-4-thione (thiomaltol, TM), and 3-hydroxy-4H-pyran-4-thione (thiopyromeconic acid, TPMA) to the active site of human carbonic anhydrase II (hCAII) has been investigated. Two of these ligands display a monodentate mode of coordination to the active site Zn(2+) ion in hCAII that is not recapitulated in model complexes of the enzyme active site. This unprecedented binding mode in the hCAII-thiomaltol complex has been characterized by both X-ray crystallography and X-ray spectroscopy. In addition, the steric restrictions of the active site force the ligands into a 'flattened' mode of coordination compared with inorganic model complexes. This change in geometry has been shown by density functional computations to significantly decrease the strength of the metal-ligand binding. Collectively, these data demonstrate that the mode of binding by small metal-binding groups can be significantly influenced by the protein active site. Diminishing the strength of the metal-ligand bond results in unconventional modes of metal coordination not found in typical coordination compounds or even carefully engineered active site models, and understanding these effects is critical to the rational design of inhibitors that target clinically relevant metalloproteins. PMID:24635441

  14. Micro-phase assembly of active sites in a coarse-grained model of chromatin by Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Heermann, Dieter; Farmer, Barry; Pandey, Ras

    2011-03-01

    A coarse-grained model is used to study the self-assembly of active sites in a DNA (chromatin) chain. The chromosome is described by a bond-fluctuating chain of two types of nodes A (interacting) and B (non-interacting), distributed randomly with concentration C and 1 - C respectively. Active nodes interact with a Lennard-Jones (LJ) potential and execute their stochastic motion with the Metropolis algorithm. The depth of the LJ potential (f) , a measure of interaction strength and the concentration (C) of the active sites are varied. A number of local and global physical quantities are studied such as mobility (Mn) profile of each node, their local structural profile, root mean square (RMS) displacement (R) , radius of gyration (Rg) , and structure factor S (q) . We find that the chain segments assemble into microphase of blobs which requires higher concentration of active sites at weaker interaction. These findings are consistent with that of a dynamic loop model of chromatin on global (large) scale but differ at small scales. This work is supported in part by the Alexander von Humboldt foundation and AFRL.

  15. Time-dependent complete-active-space self-consistent-field method for atoms: Application to high-order harmonic generation

    NASA Astrophysics Data System (ADS)

    Sato, Takeshi; Ishikawa, Kenichi L.; Březinová, Iva; Lackner, Fabian; Nagele, Stefan; Burgdörfer, Joachim

    2016-08-01

    We present a numerical implementation of the time-dependent complete-active-space self-consistent-field (TD-CASSCF) method [Phys. Rev. A 88, 023402 (2013), 10.1103/PhysRevA.88.023402] for atoms driven by a strong linearly polarized laser pulse. The present implementation treats the problem in its full dimensionality and introduces a gauge-invariant frozen-core approximation, an efficient evaluation of the Coulomb mean field scaling linearly with the number of basis functions, and a split-operator method specifically designed for stable propagation of stiff spatial derivative operators. We apply this method to high-harmonic generation in helium, beryllium, and neon and explore the role of electron correlations.

  16. Active sites for NO reduction over Fe-ZSM-5 catalysts.

    PubMed

    Schwidder, M; Santhosh Kumar, M; Brückner, A; Grünert, W

    2005-02-14

    A study of Fe-ZSM-5 catalysts with variable amounts of isolated, oligomeric and heavily aggregated Fe3+ oxo sites (as evidenced by UV-Vis and EPR spectroscopic data) and their catalytic properties in the selective catalytic reduction of NO by isobutane or by NH3 is presented, which allows development of a unified concept of the active Fe sites in these reactions, according to which isolated Fe sites catalyse both SCR reactions while oligomeric sites, though also involved in the selective reduction path, limit the catalyst performance by causing the total oxidation of the reductant. PMID:15685345

  17. Site-directed mutagenesis and high-resolution NMR spectroscopy of the active site of porphobilinogen deaminase

    SciTech Connect

    Scott, A.I.; Roessner, C.A.; Stolowich, N.J.; Karuso, P.; Williams, H.J.; Grant, S.K.; Gonzalez, M.D.; Hoshino, T. )

    1988-10-18

    The active site of porphobilinogen (PBG){sup 1} deaminase from Escherichia coli has been found to contain an unusual dipyrromethane derived from four molecules of 5-aminolevulinic acid (ALA) covalently linked to Cys-242, one of the two cysteine residues conserved in E. coli and human deaminase. By use of a hemA{sup {minus}} strain of E. coli the enzyme was enriched from (5-{sup 13}C)ALA and examined by {sup 1}H-detected multiple quantum coherence spectroscopy, which revealed all of the salient features of a dipyrromethane composed of two PBG units linked heat to tail and terminating in a CH{sub 2}-S bond to a cysteine residue. Site-specific mutagenesis of Cys-99 and Cys-242, respectively, has shown that substitution of Ser for Cys-99 does not affect the enzymatic activity, whereas substitution of Ser for Cys-242 removes essentially all of the catalytic activity as measured by the conversion of the substrate PBG to uro'gen I. The NMR spectrum of the covalent complex of deaminase with the suicide inhibitor 2-bromo-(2,11-{sup 13}C{sub 2})PBG reveals that the aminomethyl terminus of the inhibitor reacts with the enzyme's cofactor at the {alpha}-free pyrrole. NMR spectroscopy of the ES{sub 2} complex confirmed a PBG-derived head-to-tail dipyrromethane attached to the {alpha}-free pyrrole position of the enzyme. A mechanistic rationale for deaminase is presented.

  18. Identification of active-site residues in protease 3C of hepatitis A virus by site-directed mutagenesis.

    PubMed Central

    Gosert, R; Dollenmaier, G; Weitz, M

    1997-01-01

    Picornavirus 3C proteases (3Cpro) are cysteine proteases related by amino acid sequence to trypsin-like serine proteases. Comparisons of 3Cpro of hepatitis A virus (HAV) to those of other picornaviruses have resulted in prediction of active-site residues: histidine at position 44 (H44), aspartic acid (D98), and cysteine (C172). To test whether these residues are key members of a putative catalytic triad, oligonucleotide-directed mutagenesis was targeted to 3Cpro in the context of natural polypeptide precursor P3. Autocatalytic processing of the polyprotein containing wild-type or variant 3Cpro was tested by in vivo expression of vaccinia virus-HAV chimeras in an animal cell-T7 hybrid system and by in vitro translation of corresponding RNAs. Comparison with proteins present in HAV-infected cells showed that both expression systems mimicked authentic polyprotein processing. Individual substitutions of H44 by tyrosine and of C172 by glycine or serine resulted in complete loss of the virus-specific proteolytic cascade. In contrast, a P3 polyprotein in which D98 was substituted by asparagine underwent only slightly delayed processing, while an additional substitution of valine (V47) by glycine within putative protein 3A caused a more pronounced loss of processing. Therefore, apparently H44 and C172 are active-site constituents whereas D98 is not. The results, furthermore, suggest that substitution of amino acid residues distant from polyprotein cleavage sites may reduce proteolytic activity, presumably by altering substrate conformation. PMID:9060667

  19. Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site

    PubMed Central

    Grossman, Moran; Born, Benjamin; Heyden, Matthias; Tworowski, Dmitry; Fields, Gregg B; Sagi, Irit; Havenith, Martina

    2012-01-01

    Solvent dynamics can play a major role in enzyme activity, but obtaining an accurate, quantitative picture of solvent activity during catalysis is quite challenging. Here, we combine terahertz spectroscopy and X-ray absorption analyses to measure changes in the coupled water-protein motions during peptide hydrolysis by a zinc-dependent human metalloprotease. These changes were tightly correlated with rearrangements at the active site during the formation of productive enzyme-substrate intermediates and were different from those in an enzyme–inhibitor complex. Molecular dynamics simulations showed a steep gradient of fast-to-slow coupled protein-water motions around the protein, active site and substrate. Our results show that water retardation occurs before formation of the functional Michaelis complex. We propose that the observed gradient of coupled protein-water motions may assist enzyme-substrate interactions through water-polarizing mechanisms that are remotely mediated by the catalytic metal ion and the enzyme active site. PMID:21926991

  20. Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site

    SciTech Connect

    Grossman, Moran; Born, Benjamin; Heyden, Matthias; Tworowski, Dmitry; Fields, Gregg B.; Sagi, Irit; Havenith, Martina

    2011-09-18

    Solvent dynamics can play a major role in enzyme activity, but obtaining an accurate, quantitative picture of solvent activity during catalysis is quite challenging. Here, we combine terahertz spectroscopy and X-ray absorption analyses to measure changes in the coupled water-protein motions during peptide hydrolysis by a zinc-dependent human metalloprotease. These changes were tightly correlated with rearrangements at the active site during the formation of productive enzyme-substrate intermediates and were different from those in an enzyme–inhibitor complex. Molecular dynamics simulations showed a steep gradient of fast-to-slow coupled protein-water motions around the protein, active site and substrate. Our results show that water retardation occurs before formation of the functional Michaelis complex. We propose that the observed gradient of coupled protein-water motions may assist enzyme-substrate interactions through water-polarizing mechanisms that are remotely mediated by the catalytic metal ion and the enzyme active site.

  1. The complexities of measuring access to parks and physical activity sites in New York City: a quantitative and qualitative approach

    PubMed Central

    Maroko, Andrew R; Maantay, Juliana A; Sohler, Nancy L; Grady, Kristen L; Arno, Peter S

    2009-01-01

    Background Proximity to parks and physical activity sites has been linked to an increase in active behaviors, and positive impacts on health outcomes such as lower rates of cardiovascular disease, diabetes, and obesity. Since populations with a low socio-economic status as well as racial and ethnic minorities tend to experience worse health outcomes in the USA, access to parks and physical activity sites may be an environmental justice issue. Geographic Information systems were used to conduct quantitative and qualitative analyses of park accessibility in New York City, which included kernel density estimation, ordinary least squares (global) regression, geographically weighted (local) regression, and longitudinal case studies, consisting of field work and archival research. Accessibility was measured by both density of park acreage and density of physical activity sites. Independent variables included percent non-Hispanic black, percent Hispanic, percent below poverty, percent of adults without high school diploma, percent with limited English-speaking ability, and population density. Results The ordinary least squares linear regression found weak relationships in both the park acreage density and the physical activity site density models (Ra2 = .11 and .23, respectively; AIC = 7162 and 3529, respectively). Geographically weighted regression, however, suggested spatial non-stationarity in both models, indicating disparities in accessibility that vary over space with respect to magnitude and directionality of the relationships (AIC = 2014 and -1241, respectively). The qualitative analysis supported the findings of the local regression, confirming that although there is a geographically inequitable distribution of park space and physical activity sites, it is not globally predicted by race, ethnicity, or socio-economic status. Conclusion The combination of quantitative and qualitative analyses demonstrated the complexity of the issues around racial and ethnic

  2. HIV integration site distributions in resting and activated CD4+ T cells infected in culture

    PubMed Central

    Brady, Troy; Agosto, Luis M.; Malani, Nirav; Berry, Charles C.; O'Doherty, Una; Bushman, Frederic

    2010-01-01

    Objective The goal of this study was to investigate whether the location of HIV integration differs in resting versus activated T cells, a feature that could contribute to the formation of latent viral reservoirs via effects on integration targeting. Design Primary resting or activated CD4+ T cells were infected with purified X4-tropic HIV in the presence and absence of nucleoside triphosphates and genomic locations of integrated provirus determined. Methods We sequenced and analyzed a total of 2661 HIV integration sites using linker-mediated PCR and 454 sequencing. Integration site data sets were then compared to each other and to computationally generated random distributions. Results HIV integration was favored in active transcription units in both cell types, but integration sites from activated cells were found more often in genomic regions that were dense in genes, dense in CpG islands, and enriched in G/C bases. Integration sites from activated cells were also more strongly correlated with histone methylation patterns associated with active genes. Conclusion These data indicate that integration site distributions show modest but significant differences between resting and activated CD4+ T cells, and that integration in resting cells occurs more often in regions that may be suboptimal for proviral gene expression. PMID:19550285

  3. Fragment-based identification of determinants of conformational and spectroscopic change at the ricin active site

    SciTech Connect

    Carra,J.; McHugh, C.; Mulligan, S.; Machiesky, L.; Soares, A.; Millard, C.

    2007-01-01

    We found that amide ligands can bind weakly but specifically to the ricin active site, producing significant shifts in positions of the critical active site residues Arg180 and Tyr80. These results indicate that fragment-based drug discovery methods are capable of identifying minimal bonding determinants of active-site side-chain rearrangements and the mechanistic origins of spectroscopic shifts. Our results suggest that tryptophan fluorescence provides a sensitive probe for the geometric relationship of arginine-tryptophan pairs, which often have significant roles in protein function. Using the unusual characteristics of the RTA system, we measured the still controversial thermodynamic changes of site-specific urea binding to a protein, results that are relevant to understanding the physical mechanisms of protein denaturation.

  4. Assessment of the site of ventricular activation by Fourier analysis of gated blood-pool studies

    SciTech Connect

    Links, J.M.; Raichlen, J.S.; Wagner, H.N. Jr.; Reid, P.R.

    1985-01-01

    The authors studied the use of first-harmonic Fourier analysis of gated blood-pool images to assess the site of ventricular activation in a group of 12 patients undergoing electrophysiologic pacing studies. They acquired gated blood-pool studies during pacing at up to four sites at each of two different rates. A total of 50 studies were made. At a pacing rate of 100 beats/min, when the pacing electrode was the right-ventricular outflow tract, 7/8; at the anterolateral left-ventricular wall, 4/4. When the Fourier activation site was at the right-ventricular apex, 9/9 times the pacing electrode was there; at the right-ventricular outflow tract, 7/10; in the left ventricle, 4/4. Fourier analysis of gated blood-pool studies can help identify the site of ventricular activation but is not sufficiently accurate to fully replace endocardial mapping.

  5. Structural and Kinetic Analyses of Macrophage Migration Inhibitory Factor Active Site Interactions

    SciTech Connect

    Crichlow, G.; Lubetsky, J; Leng, L; Bucala, R; Lolis, E

    2009-01-01

    Macrophage migration inhibitory factor (MIF) is a secreted protein expressed in numerous cell types that counters the antiinflammatory effects of glucocorticoids and has been implicated in sepsis, cancer, and certain autoimmune diseases. Interestingly, the structure of MIF contains a catalytic site resembling the tautomerase/isomerase sites of microbial enzymes. While bona fide physiological substrates remain unknown, model substrates have been identified. Selected compounds that bind in the tautomerase active site also inhibit biological functions of MIF. It had previously been shown that the acetaminophen metabolite, N-acetyl-p-benzoquinone imine (NAPQI), covalently binds to the active site of MIF. In this study, kinetic data indicate that NAPQI inhibits MIF both covalently and noncovalently. The structure of MIF cocrystallized with NAPQI reveals that the NAPQI has undergone a chemical alteration forming an acetaminophen dimer (bi-APAP) and binds noncovalently to MIF at the mouth of the active site. We also find that the commonly used protease inhibitor, phenylmethylsulfonyl fluoride (PMSF), forms a covalent complex with MIF and inhibits the tautomerase activity. Crystallographic analysis reveals the formation of a stable, novel covalent bond for PMSF between the catalytic nitrogen of the N-terminal proline and the sulfur of PMSF with complete, well-defined electron density in all three active sites of the MIF homotrimer. Conclusions are drawn from the structures of these two MIF-inhibitor complexes regarding the design of novel compounds that may provide more potent reversible and irreversible inhibition of MIF.

  6. A time-dependent density-functional theory and complete active space self-consistent field method study of vibronic absorption and emission spectra of coumarin

    NASA Astrophysics Data System (ADS)

    Li, Junfeng; Rinkevicius, Zilvinas; Cao, Zexing

    2014-07-01

    Time-dependent density-functional theory (TD-DFT) and complete active space multiconfiguration self-consistent field (CASSCF) calculations have been used to determine equilibrium structures and vibrational frequencies of the ground state and several singlet low-lying excited states of coumarin. Vertical and adiabatic transition energies of S1, S2, and S3 have been estimated by TD-B3LYP and CASSCF/PT2. Calculations predict that the dipole-allowed S1 and S3 states have a character of 1(ππ*), while the dipole-forbidden 1(nπ*) state is responsible for S2. The vibronic absorption and emission spectra of coumarin have been simulated by TD-B3LYP and CASSCF calculations within the Franck-Condon approximation, respectively. The simulated vibronic spectra show good agreement with the experimental observations available, which allow us to reasonably interpret vibronic features in the S0→S1 and S0→S3 absorption and the S0←S1 emission spectra. Based on the calculated results, activity, intensity, and density of the vibronic transitions and their contribution to the experimental spectrum profile have been discussed.

  7. A time-dependent density-functional theory and complete active space self-consistent field method study of vibronic absorption and emission spectra of coumarin.

    PubMed

    Li, Junfeng; Rinkevicius, Zilvinas; Cao, Zexing

    2014-07-01

    Time-dependent density-functional theory (TD-DFT) and complete active space multiconfiguration self-consistent field (CASSCF) calculations have been used to determine equilibrium structures and vibrational frequencies of the ground state and several singlet low-lying excited states of coumarin. Vertical and adiabatic transition energies of S1, S2, and S3 have been estimated by TD-B3LYP and CASSCF/PT2. Calculations predict that the dipole-allowed S1 and S3 states have a character of (1)(ππ*), while the dipole-forbidden (1)(nπ*) state is responsible for S2. The vibronic absorption and emission spectra of coumarin have been simulated by TD-B3LYP and CASSCF calculations within the Franck-Condon approximation, respectively. The simulated vibronic spectra show good agreement with the experimental observations available, which allow us to reasonably interpret vibronic features in the S0→S1 and S0→S3 absorption and the S0←S1 emission spectra. Based on the calculated results, activity, intensity, and density of the vibronic transitions and their contribution to the experimental spectrum profile have been discussed. PMID:25005288

  8. A novel three-dimensional spherical CuBi2O4 consisting of nanocolumn arrays with persulfate and peroxymonosulfate activation functionalities for 1H-benzotriazole removal

    NASA Astrophysics Data System (ADS)

    Oh, Wen-Da; Lua, Shun-Kuang; Dong, Zhili; Lim, Teik-Thye

    2015-04-01

    A novel CuBi2O4 consisting of self-assembled spherical nanocolumn arrays (CuB-H) was synthesized via a facile hydrothermal method. It was further modified by controlling the Cu : Bi ratio during synthesis to become an efficient bi-functional catalyst (CuB-2.5) activated persulfate (PS) and peroxymonosulfate (PMS) for 1H-benzotriazole (BTZ) removal. Characterization of CuB-2.5 using XRD, FESEM, FTIR, BET and XPS revealed that it was morphologically similar to CuB-H and the molecular formula, as determined from the XRD results, was Cu1.2Bi1.6O3.6 with 2.4% w/w of CuO. The CuB-2.5 catalyst exhibited superior performance for BTZ removal via PS and PMS activations over the Cu2+ (aq.), CuO, CuBi2O4 (CuB-M, microsphere) and CuB-H. The performance of CuB-2.5 was investigated at different initial PS/PMS dosages, initial catalyst loadings and initial BTZ concentrations. Interestingly, it was found that the inter- and intra-molecular hydrogen bondings play prominent roles in the BTZ removal mechanism in both the PS and PMS systems. Meanwhile, it is relatively easy to activate PMS, leading to a faster BTZ removal rate over the PS system. The intermediate products of BTZ degradation produced from the PS and PMS systems were similar, indicating a similar degradation pathway. The catalyst could still retain its morphology and can be reused multiple times.A novel CuBi2O4 consisting of self-assembled spherical nanocolumn arrays (CuB-H) was synthesized via a facile hydrothermal method. It was further modified by controlling the Cu : Bi ratio during synthesis to become an efficient bi-functional catalyst (CuB-2.5) activated persulfate (PS) and peroxymonosulfate (PMS) for 1H-benzotriazole (BTZ) removal. Characterization of CuB-2.5 using XRD, FESEM, FTIR, BET and XPS revealed that it was morphologically similar to CuB-H and the molecular formula, as determined from the XRD results, was Cu1.2Bi1.6O3.6 with 2.4% w/w of CuO. The CuB-2.5 catalyst exhibited superior performance for BTZ

  9. Underground Test Area Activity Quality Assurance Plan Nevada National Security Site, Nevada. Revision 1

    SciTech Connect

    Farnham, Irene; Krenzien, Susan

    2012-10-01

    This Quality Assurance Plan (QAP) provides the overall quality assurance (QA) requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) activities. The requirements in this QAP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). NNSA/NSO, or designee, must review this QAP every two years. Changes that do not affect the overall scope or requirements will not require an immediate QAP revision but will be incorporated into the next revision cycle after identification. Section 1.0 describes UGTA objectives, participant responsibilities, and administrative and management quality requirements (i.e., training, records, procurement). Section 1.0 also details data management and computer software requirements. Section 2.0 establishes the requirements to ensure newly collected data are valid, existing data uses are appropriate, and environmental-modeling methods are reliable. Section 3.0 provides feedback loops through assessments and reports to management. Section 4.0 provides the framework for corrective actions. Section 5.0 provides references for this document.

  10. Kinetic evidence for an anion binding pocket in the active site of nitronate monooxygenase.

    PubMed

    Francis, Kevin; Gadda, Giovanni

    2009-10-01

    A series of monovalent, inorganic anions and aliphatic aldehydes were tested as inhibitors for Hansenula mrakii and Neurospora crassa nitronate monooxygenase, formerly known as 2-nitropropane dioxygenase, to investigate the structural features that contribute to the binding of the anionic nitronate substrates to the enzymes. A linear correlation between the volumes of the inorganic anions and their effectiveness as competitive inhibitors of the enzymes was observed in a plot of pK(is)versus the ionic volume of the anion with slopes of 0.041+/-0.001 mM/A(3) and 0.027+/-0.001 mM/A(3) for the H. mrakii and N. crassa enzymes, respectively. Aliphatic aldehydes were weak competitive inhibitors of the enzymes, with inhibition constants that are independent of their alkyl chain lengths. The reductive half reactions of H. mrakii nitronate monooxygenase with primary nitronates containing two to four carbon atoms all showed apparent K(d) values of approximately 5 mM. These results are consistent with the presence of an anion binding pocket in the active site of nitronate monooxygenase that interacts with the nitro group of the substrate, and suggest a minimal contribution of the hydrocarbon chain of the nitronates to the binding of the ligands to the enzyme. PMID:19683782

  11. Active Site Sharing and Subterminal Hairpin Recognition in a New Class of DNA Transposases

    SciTech Connect

    Ronning, Donald R.; Guynet, Catherine; Ton-Hoang, Bao; Perez, Zhanita N.; Ghirlando, Rodolfo; Chandler, Michael; Dyda, Fred

    2010-07-20

    Many bacteria harbor simple transposable elements termed insertion sequences (IS). In Helicobacter pylori, the chimeric IS605 family elements are particularly interesting due to their proximity to genes encoding gastric epithelial invasion factors. Protein sequences of IS605 transposases do not bear the hallmarks of other well-characterized transposases. We have solved the crystal structure of full-length transposase (TnpA) of a representative member, ISHp608. Structurally, TnpA does not resemble any characterized transposase; rather, it is related to rolling circle replication (RCR) proteins. Consistent with RCR, Mg{sup 2+} and a conserved tyrosine, Tyr127, are essential for DNA nicking and the formation of a covalent intermediate between TnpA and DNA. TnpA is dimeric, contains two shared active sites, and binds two DNA stem loops representing the conserved inverted repeats near each end of ISHp608. The cocrystal structure with stem-loop DNA illustrates how this family of transposases specifically recognizes and pairs ends, necessary steps during transposition.

  12. Developing Restoration Planting Mixes for Active Ski Slopes: A Multi-Site Reference Community Approach

    NASA Astrophysics Data System (ADS)

    Burt, Jennifer Williamson

    2012-03-01

    Downhill ski areas occupy large expanses of mountainous lands where restoration of ecosystem function is of increasing importance and interest. Establishing diverse native plant communities on ski runs should enhance sediment and water retention, wildlife habitat, biodiversity and aesthetics. Because ski slopes are managed for recreation, ski slope revegetation mixes must consist of low-stature or herbaceous plants that can tolerate typical environmental conditions on ski slopes (high elevation, disturbed soils, open, steep slopes). The most appropriate reference communities for selecting ski slope revegetation species are thus successional, or seral plant communities in similar environments (i.e., other ski slopes). Using results from a broad-scale reference community analysis, I evaluated plant communities naturally occurring on ski slopes from 21 active and abandoned ski areas throughout the northern Sierra Nevada to identify native plant species suitable for use in ski slope restoration. I constructed a baseline planting palette of regionally appropriate plant species (for restoration of either newly created or already existing ski runs) that is functionally diverse and is likely to succeed across a broad range of environments. I also identify a more comprehensive list of species for more specialized planting mixes based on site-specific goals and particular environmental settings. Establishing seral plant communities may be an appropriate restoration goal for many other types of managed lands, including roadsides, firebreaks and utility rights-of-way. This study describes an ecological (and potentially cost-effective) approach to developing restoration planting palettes for such managed lands.

  13. A novel three-dimensional spherical CuBi2O4 consisting of nanocolumn arrays with persulfate and peroxymonosulfate activation functionalities for 1H-benzotriazole removal.

    PubMed

    Oh, Wen-Da; Lua, Shun-Kuang; Dong, Zhili; Lim, Teik-Thye

    2015-05-01

    A novel CuBi2O4 consisting of self-assembled spherical nanocolumn arrays (CuB-H) was synthesized via a facile hydrothermal method. It was further modified by controlling the Cu : Bi ratio during synthesis to become an efficient bi-functional catalyst (CuB-2.5) activated persulfate (PS) and peroxymonosulfate (PMS) for 1H-benzotriazole (BTZ) removal. Characterization of CuB-2.5 using XRD, FESEM, FTIR, BET and XPS revealed that it was morphologically similar to CuB-H and the molecular formula, as determined from the XRD results, was Cu1.2Bi1.6O3.6 with 2.4% w/w of CuO. The CuB-2.5 catalyst exhibited superior performance for BTZ removal via PS and PMS activations over the Cu(2+) (aq.), CuO, CuBi2O4 (CuB-M, microsphere) and CuB-H. The performance of CuB-2.5 was investigated at different initial PS/PMS dosages, initial catalyst loadings and initial BTZ concentrations. Interestingly, it was found that the inter- and intra-molecular hydrogen bondings play prominent roles in the BTZ removal mechanism in both the PS and PMS systems. Meanwhile, it is relatively easy to activate PMS, leading to a faster BTZ removal rate over the PS system. The intermediate products of BTZ degradation produced from the PS and PMS systems were similar, indicating a similar degradation pathway. The catalyst could still retain its morphology and can be reused multiple times. PMID:25874972

  14. Identification of essential active-site residues in the cyanogenic beta-glucosidase (linamarase) from cassava (Manihot esculenta Crantz) by site-directed mutagenesis.

    PubMed Central

    Keresztessy, Z; Brown, K; Dunn, M A; Hughes, M A

    2001-01-01

    The coding sequence of the mature cyanogenic beta-glucosidase (beta-glucoside glucohydrolase, EC 3.2.1.21; linamarase) was cloned into the vector pYX243 modified to contain the SUC2 yeast secretion signal sequence and expressed in Saccharomyces cerevisiae. The recombinant enzyme is active, glycosylated and showed similar stability to the plant protein. Michaelis constants for hydrolysis of the natural substrate, linamarin (K(m)=1.06 mM) and the synthetic p-nitrophenyl beta-D-glucopyranoside (PNP-Glc; K(m)=0.36 mM), as well as apparent pK(a) values of the free enzyme and the enzyme-substrate complexes (pK(E)(1)=4.4-4.8, pK(E)(2)=6.7-7.2, pK(ES)(1)=3.9-4.4, pK(ES)(2)=8.3) were very similar to those of the plant enzyme. Site-directed mutagenesis was carried out to study the function of active-site residues based on a homology model generated for the enzyme using the MODELLER program. Changing Glu-413 to Gly destroyed enzyme activity, consistent with it being the catalytic nucleophile. The Gln-339Glu mutation also abolished activity, confirming a function in positioning the catalytic diad. The Ala-201Val mutation shifted the pK(a) of the acid/base catalyst Glu-198 from 7.22 to 7.44, reflecting a change in its hydrophobic environment. A Phe-269Asn change increased K(m) for linamarin hydrolysis 16-fold (16.1 mM) and that for PNP-Glc only 2.5-fold (0.84 mM), demonstrating that Phe-269 contributes to the cyanogenic specificity of the cassava beta-glucosidase. PMID:11139381

  15. Active-site motions and polarity enhance catalytic turnover of hydrated subtilisin dissolved in organic solvents.

    PubMed

    Hudson, Elton P; Eppler, Ross K; Beaudoin, Julianne M; Dordick, Jonathan S; Reimer, Jeffrey A; Clark, Douglas S

    2009-04-01

    The enzyme subtilisin Carlsberg was surfactant-solubilized into two organic solvents, isooctane and tetrahydrofuran, and hydrated through stepwise changes in the thermodynamic water activity, a(w). The apparent turnover number k(cat)(app) in these systems ranged from 0.2 to 80 s(-1) and increased 11-fold in isooctane and up to 50-fold in tetrahydrofuran with increasing a(w). (19)F NMR relaxation experiments employing an active-site inhibitor were used to assess the dependence of active-site motions on a(w). The rates of NMR-derived fast (k > 10(7) s(-1)) and slow (k < 10(4) s(-1)) active-site motions increased in both solvents upon hydration, but only the slow motions correlated with k(cat). The (19)F chemical shift was a sensitive probe of the local electronic environment and provided an empirical measure of the active-site dielectric constant epsilon(as), which increased with hydration to epsilon(as) approximately 13 in each solvent. In both solvents, the transition state free energy data and epsilon(as) followed Kirkwood's model for the continuum solvation of a dipole, indicating that water also enhanced catalysis by altering the active-site's electronic environment and increasing its polarity to better stabilize the transition state. These results reveal that favorable dynamic and electrostatic effects both contribute to accelerated catalysis by solubilized subtilisin Carlsberg upon hydration in organic solvents. PMID:19317505

  16. Enhanced Enzyme Kinetic Stability by Increasing Rigidity within the Active Site*

    PubMed Central

    Xie, Yuan; An, Jiao; Yang, Guangyu; Wu, Geng; Zhang, Yong; Cui, Li; Feng, Yan

    2014-01-01

    Enzyme stability is an important issue for protein engineers. Understanding how rigidity in the active site affects protein kinetic stability will provide new insight into enzyme stabilization. In this study, we demonstrated enhanced kinetic stability of Candida antarctica lipase B (CalB) by mutating the structurally flexible residues within the active site. Six residues within 10 Å of the catalytic Ser105 residue with a high B factor were selected for iterative saturation mutagenesis. After screening 2200 colonies, we obtained the D223G/L278M mutant, which exhibited a 13-fold increase in half-life at 48 °C and a 12 °C higher T5015, the temperature at which enzyme activity is reduced to 50% after a 15-min heat treatment. Further characterization showed that global unfolding resistance against both thermal and chemical denaturation also improved. Analysis of the crystal structures of wild-type CalB and the D223G/L278M mutant revealed that the latter formed an extra main chain hydrogen bond network with seven structurally coupled residues within the flexible α10 helix that are primarily involved in forming the active site. Further investigation of the relative B factor profile and molecular dynamics simulation confirmed that the enhanced rigidity decreased fluctuation of the active site residues at high temperature. These results indicate that enhancing the rigidity of the flexible segment within the active site may provide an efficient method for improving enzyme kinetic stability. PMID:24448805

  17. Effects of resource activities upon repository siting and waste containment with reference to bedded salt

    SciTech Connect

    Ashby, J.; Rowe, J.

    1980-02-01

    The primary consideration for the suitability of a nuclear waste repository site is the overall ability of the repository to safely contain radioactive waste. This report is a discussion of the past, present, and future effects of resource activities on waste containment. Past and present resource activities which provide release pathways (i.e., leaky boreholes, adjacent mines) will receive initial evaluation during the early stages of any repository site study. However, other resource activities which may have subtle effects on containment (e.g., long-term pumping causing increased groundwater gradients, invasion of saline water causing lower retardation) and all potential future resource activities must also be considered during the site evaluation process. Resource activities will affect both the siting and the designing of repositories. Ideally, sites should be located in areas of low resource activity and low potential for future activity, and repository design should seek to eliminate or minimize the adverse effects of any resource activity. Buffer zones should be created to provide areas in which resource activities that might adversely affect containment can be restricted or curtailed. This could mean removing large areas of land from resource development. The impact of these frozen assets should be assessed in terms of their economic value and of their effect upon resource reserves. This step could require a major effort in data acquisition and analysis followed by extensive numerical modeling of regional fluid flow and mass transport. Numerical models should be used to assess the effects of resource activity upon containment and should include the cumulative effects of different resource activities. Analysis by other methods is probably not possible except for relatively simple cases.

  18. Conserved Active Site Residues Limit Inhibition of a Copper-Containing Nitrite By Small Molecules

    SciTech Connect

    Tocheva, E.I.; Eltis, L.D.; Murphy, M.E.P.

    2009-05-26

    The interaction of copper-containing dissimilatory nitrite reductase from Alcaligenes faecalis S-6 ( AfNiR) with each of five small molecules was studied using crystallography and steady-state kinetics. Structural studies revealed that each small molecule interacted with the oxidized catalytic type 2 copper of AfNiR. Three small molecules (formate, acetate and nitrate) mimic the substrate by having at least two oxygen atoms for bidentate coordination to the type 2 copper atom. These three anions bound to the copper ion in the same asymmetric, bidentate manner as nitrite. Consistent with their weak inhibition of the enzyme ( K i >50 mM), the Cu-O distances in these AfNiR-inhibitor complexes were approximately 0.15 A longer than that observed in the AfNiR-nitrite complex. The binding mode of each inhibitor is determined in part by steric interactions with the side chain of active site residue Ile257. Moreover, the side chain of Asp98, a conserved residue that hydrogen bonds to type 2 copper-bound nitrite and nitric oxide, was either disordered or pointed away from the inhibitors. Acetate and formate inhibited AfNiR in a mixed fashion, consistent with the occurrence of second acetate binding site in the AfNiR-acetate complex that occludes access to the type 2 copper. A fourth small molecule, nitrous oxide, bound to the oxidized metal in a side-on fashion reminiscent of nitric oxide to the reduced copper. Nevertheless, nitrous oxide bound at a farther distance from the metal. The fifth small molecule, azide, inhibited the reduction of nitrite by AfNiR most strongly ( K ic = 2.0 +/- 0.1 mM). This ligand bound to the type 2 copper center end-on with a Cu-N c distance of approximately 2 A, and was the only inhibitor to form a hydrogen bond with Asp98. Overall, the data substantiate the roles of Asp98 and Ile257 in discriminating substrate from other small anions.

  19. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes.

    PubMed

    Cockburn, Darrell; Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data. PMID:27504624

  20. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes

    PubMed Central

    Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data. PMID:27504624

  1. Computational approaches to the determination of active site structures and reaction mechanisms in heterogeneous catalysts.

    PubMed

    Catlow, C R A; French, S A; Sokol, A A; Thomas, J M

    2005-04-15

    We apply quantum chemical methods to the study of active site structures and reaction mechanisms in mesoporous silica and metal oxide catalysts. Our approach is based on the use of both molecular cluster and embedded cluster (QM/MM) techniques, where the active site and molecular complex are described using density functional theory (DFT) and the embedding matrix simulated by shell model potentials. We consider three case studies: alkene epoxidation over the microporous TS-1 catalyst; methanol synthesis on ZnO and Cu/ZnO and C-H bond activation over Li-doped MgO. PMID:15901543

  2. N2O reduction by the mu4-sulfide-bridged tetranuclear CuZ cluster active site.

    PubMed

    Chen, Peng; Gorelsky, Serge I; Ghosh, Somdatta; Solomon, Edward I

    2004-08-13

    Nitrous oxide (N2O) reduction is a chemical challenge both in the selective oxidation of organic substrates by N2O and in the removal of N2O as a green-house gas. The reduction of N2O is thermodynamically favorable but kinetically inert, and requires activating transition-metal centers. In biological systems, N2O reduction is the last step in the denitrification process of the bacterial nitrogen cycle and is accomplished by the enzyme nitrous oxide reductase, whose active site consists of a micro4-sulfide-bridged tetranuclear CuZ cluster which has many unusual spectroscopic features. Recent studies have developed a detailed electronic-structure description of the resting CuZ cluster, determined its catalytically relevant state, and provided insight into the role of this tetranuclear copper cluster in N2O activation and reduction. PMID:15307074

  3. Denaturation studies of active-site labeled papain using electron paramagnetic resonance and fluorescence spectroscopy.

    PubMed Central

    Ping, Z A; Butterfiel, D A

    1991-01-01

    A spin-labeled p-chloromercuribenzoate (SL-PMB) and a fluorescence probe, 6-acryloyl-2-dimethylaminonaphthalene (Acrylodan), both of which bind to the single SH group located in the active site of papain, were used to investigate the interaction of papain (EC 3.4.22.2) with two protein denaturants. It was found that the active site of papain was highly stable in urea solution, but underwent a large conformational change in guanidine hydrochloride solution. Electron paramagnetic resonance and fluorescence results were in agreement and both paralleled enzymatic activity of papain with respect to both the variation in pH and denaturation. These results strongly suggest that SL-PMB and Acrylodan labels can be used to characterize the physical state of the active site of the enzyme. PMID:1657229

  4. Failure of origin activation in response to fork stalling leads to chromosomal instability at fragile sites.

    PubMed

    Ozeri-Galai, Efrat; Lebofsky, Ronald; Rahat, Ayelet; Bester, Assaf C; Bensimon, Aaron; Kerem, Batsheva

    2011-07-01

    Perturbed DNA replication in early stages of cancer development induces chromosomal instability preferentially at fragile sites. However, the molecular basis for this instability is unknown. Here, we show that even under normal growth conditions, replication fork progression along the fragile site, FRA16C, is slow and forks frequently stall at AT-rich sequences, leading to activation of additional origins to enable replication completion. Under mild replication stress, the frequency of stalling at AT-rich sequences is further increased. Strikingly, unlike in the entire genome, in the FRA16C region additional origins are not activated, suggesting that all potential origins are already activated under normal conditions. Thus, the basis for FRA16C fragility is replication fork stalling at AT-rich sequences and inability to activate additional origins under replication stress. Our results provide a mechanism explaining the replication stress sensitivity of fragile sites and thus, the basis for genomic instability during early stages of cancer development. PMID:21726815

  5. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand

    SciTech Connect

    Parashar, Abhinav; Venkatachalam, Avanthika; Gideon, Daniel Andrew; Manoj, Kelath Murali

    2014-12-12

    Highlights: • Cyanide (CN) is a well-studied toxic principle, known to inhibit heme-enzymes. • Inhibition is supposed to result from CN binding at the active site as a ligand. • Diverse heme enzymes’ CN inhibition profiles challenge prevailing mechanism. • Poor binding efficiency of CN at low enzyme concentrations and ligand pressures. • CN-based diffusible radicals cause ‘non-productive electron transfers’ (inhibition). - Abstract: The toxicity of cyanide is hitherto attributed to its ability to bind to heme proteins’ active site and thereby inhibit their activity. It is shown herein that the long-held interpretation is inadequate to explain several observations in heme-enzyme reaction systems. Generation of cyanide-based diffusible radicals in heme-enzyme reaction milieu could shunt electron transfers (by non-active site processes), and thus be detrimental to the efficiency of oxidative outcomes.

  6. Multiple active site residues are important for photochemical efficiency in the light-activated enzyme protochlorophyllide oxidoreductase (POR).

    PubMed

    Menon, Binuraj R K; Hardman, Samantha J O; Scrutton, Nigel S; Heyes, Derren J

    2016-08-01

    Protochlorophyllide oxidoreductase (POR) catalyzes the light-driven reduction of protochlorophyllide (Pchlide), an essential, regulatory step in chlorophyll biosynthesis. The unique requirement of the enzyme for light has provided the opportunity to investigate how light energy can be harnessed to power biological catalysis and enzyme dynamics. Excited state interactions between the Pchlide molecule and the protein are known to drive the subsequent reaction chemistry. However, the structural features of POR and active site residues that are important for photochemistry and catalysis are currently unknown, because there is no crystal structure for POR. Here, we have used static and time-resolved spectroscopic measurements of a number of active site variants to study the role of a number of residues, which are located in the proposed NADPH/Pchlide binding site based on previous homology models, in the reaction mechanism of POR. Our findings, which are interpreted in the context of a new improved structural model, have identified several residues that are predicted to interact with the coenzyme or substrate. Several of the POR variants have a profound effect on the photochemistry, suggesting that multiple residues are important in stabilizing the excited state required for catalysis. Our work offers insight into how the POR active site geometry is finely tuned by multiple active site residues to support enzyme-mediated photochemistry and reduction of Pchlide, both of which are crucial to the existence of life on Earth. PMID:27285815

  7. Catalysis-dependent selenium incorporation and migration in the nitrogenase active site iron-molybdenum cofactor

    PubMed Central

    Spatzal, Thomas; Perez, Kathryn A; Howard, James B; Rees, Douglas C

    2015-01-01

    Dinitrogen reduction in the biological nitrogen cycle is catalyzed by nitrogenase, a two-component metalloenzyme. Understanding of the transformation of the inert resting state of the active site FeMo-cofactor into an activated state capable of reducing dinitrogen remains elusive. Here we report the catalysis dependent, site-selective incorporation of selenium into the FeMo-cofactor from selenocyanate as a newly identified substrate and inhibitor. The 1.60 Å resolution structure reveals selenium occupying the S2B site of FeMo-cofactor in the Azotobacter vinelandii MoFe-protein, a position that was recently identified as the CO-binding site. The Se2B-labeled enzyme retains substrate reduction activity and marks the starting point for a crystallographic pulse-chase experiment of the active site during turnover. Through a series of crystal structures obtained at resolutions of 1.32–1.66 Å, including the CO-inhibited form of Av1-Se2B, the exchangeability of all three belt-sulfur sites is demonstrated, providing direct insights into unforeseen rearrangements of the metal center during catalysis. DOI: http://dx.doi.org/10.7554/eLife.11620.001 PMID:26673079

  8. Federal environmental standards of potential importance to operations and activities at US Department of Energy sites. Draft

    SciTech Connect

    Fowler, K.M.; Bilyard, G.R.; Davidson, S.A.; Jonas, R.J.; Joseph, J.

    1993-06-01

    The US Department of Energy (DOE) is now engaged in a program of environmental restoration nationwide across its 45 sites. It is also bringing its facilities into compliance with environmental regulations, decontaminating and decommissioning unwanted facilities, and constructing new waste management facilities. One of the most difficult questions that DOE must face in successfully remediating its inactive waste sites, decontaminating and decommissioning its inactive facilities, and operating its waste management facilities is: ``What criteria and standards should be met?`` Acceptable standards or procedures for determining standards will assist DOE in its conduct of ongoing waste management and pending cleanup activities by helping to ensure that those activities are conducted in compliance with applicable laws and regulations and are accepted by the regulatory community and the public. This document reports on the second of three baseline activities that are being conducted as prerequisites to either the development of quantitative standards that could be used by DOE, or consistent procedures for developing such standards. The first and third baseline activities are also briefly discussed in conjunction with the second of the three activities.

  9. Insight into the mechanism of phosphoenolpyruvate mutase catalysis derived from site-directed mutagenesis studies of active site residues.

    PubMed

    Jia, Y; Lu, Z; Huang, K; Herzberg, O; Dunaway-Mariano, D

    1999-10-26

    PEP mutase catalyzes the conversion of phosphoenolpyruvate (PEP) to phosphonopyruvate in biosynthetic pathways leading to phosphonate secondary metabolites. A recent X-ray structure [Huang, K., Li, Z., Jia, Y., Dunaway-Mariano, D., and Herzberg, O. (1999) Structure (in press)] of the Mytilus edulis enzyme complexed with the Mg(II) cofactor and oxalate inhibitor reveals an alpha/beta-barrel backbone-fold housing an active site in which Mg(II) is bound by the two carboxylate groups of the oxalate ligand and the side chain of D85 and, via bridging water molecules, by the side chains of D58, D85, D87, and E114. The oxalate ligand, in turn, interacts with the side chains of R159, W44, and S46 and the backbone amide NHs of G47 and L48. Modeling studies identified two feasible PEP binding modes: model A in which PEP replaces oxalate with its carboxylate group interacting with R159 and its phosphoryl group positioned close to D58 and Mg(II) shifting slightly from its original position in the crystal structure, and model B in which PEP replaces oxalate with its phosphoryl group interacting with R159 and Mg(II) retaining its original position. Site-directed mutagenesis studies of the key mutase active site residues (R159, D58, D85, D87, and E114) were carried out in order to evaluate the catalytic roles predicted by the two models. The observed retention of low catalytic activity in the mutants R159A, D85A, D87A, and E114A, coupled with the absence of detectable catalytic activity in D58A, was interpreted as evidence for model A in which D58 functions in nucleophilic catalysis (phosphoryl transfer), R159 functions in PEP carboxylate group binding, and the carboxylates of D85, D87 and E114 function in Mg(II) binding. These results also provide evidence against model B in which R159 serves to mediate the phosphoryl transfer. A catalytic motif, which could serve both the phosphoryl transfer and the C-C cleavage enzymes of the PEP mutase superfamily, is proposed. PMID:10571990

  10. Localization of the binding site of tissue-type plasminogen activator to fibrin.

    PubMed Central

    Ichinose, A; Takio, K; Fujikawa, K

    1986-01-01

    Functionally active A and B chains were separated from a two-chain form of recombinant tissue-type plasminogen activator after mild reduction and alkylation. The A chain was found to be responsible for the binding to lysine-Sepharose or fibrin and the B chain contained the catalytic activity of tissue-type plasminogen activator. An extensive reduction of two-chain tissue-type plasminogen activator, however, destroyed both the binding and catalytic activities. A thermolytic fragment, Fr. 1, of tissue-type plasminogen activator that contained a growth factor and two kringle segments retained its lysine binding activity. Additional thermolytic cleavages in the kringle-2 segment of Fr. 1 caused a total loss of the binding activity. These results indicated that the binding site of tissue-type plasminogen activator to fibrin was located in the kringle-2 segment. Images PMID:3088041

  11. Size Dependence of Atomically Precise Gold Nanoclusters in Chemoselective Hydrogenation and Active Site Structure

    SciTech Connect

    Li, Gao; Jiang, Deen; Kumar, Santosh; Chen, Yuxiang; Jin, Rongchao

    2014-01-01

    We here investigate the catalytic properties of water-soluble Aun(SG)m nanocluster catalysts (H-SG = glutathione) of different sizes, including Au15(SG)13, Au18(SG)14, Au25(SG)18, Au38(SG)24, and captopril-capped Au25(Capt)18 nanoclusters. These Aun(SR)m nanoclusters (-SR represents thiolate generally) are used as homogeneous catalysts (i.e., without supports) in the chemoselective hydrogenation of 4-nitrobenzaldehyde (4-NO2PhCHO) to 4-nitrobenzyl alcohol (4-NO2PhCH2OH) in water with H2 gas (20 bar) as the hydrogen source. These nanocluster catalysts, except Au18(SG)14, remain intact after the catalytic reaction, evidenced by UV-vis spectra which are characteristic of each sized nanoclusters and thus serve as spectroscopic fingerprints . We observe a drastic size-dependence and steric effect of protecting ligands on the gold nanocluster catalysts in the hydrogenation reaction. Density functional theory (DFT) modeling of the 4-nitrobenzaldehyde adsorption shows that both the CHO and NO2 groups are in close interact with the S-Au-S staples on the gold nanocluster surface; the adsorption of the 4-nitrobenzaldehyde molecule on the four different sized Aun(SR)m nanoclusters are moderately strong and similar in strength. The DFT results suggest that the catalytic activity of the Aun(SR)m nanoclusters is primarily determined by the surface area of the Au nanocluster, consistent with the observed trend of the conversion of 4-nitrobenzaldehyde versus the cluster size. Overall, this work offers the molecular insight into the hydrogenation of 4-nitrobenzaldehyde and the catalytically active site structure on gold nanocluster catalysts.

  12. Crystal structure of an avian influenza polymerase PA[subscript N] reveals an endonuclease active site

    SciTech Connect

    Yuan, Puwei; Bartlam, Mark; Lou, Zhiyong; Chen, Shoudeng; Zhou, Jie; He, Xiaojing; Lv, Zongyang; Ge, Ruowen; Li, Xuemei; Deng, Tao; Fodor, Ervin; Rao, Zihe; Liu, Yingfang

    2009-11-10

    The heterotrimeric influenza virus polymerase, containing the PA, PB1 and PB2 proteins, catalyses viral RNA replication and transcription in the nucleus of infected cells. PB1 holds the polymerase active site and reportedly harbours endonuclease activity, whereas PB2 is responsible for cap binding. The PA amino terminus is understood to be the major functional part of the PA protein and has been implicated in several roles, including endonuclease and protease activities as well as viral RNA/complementary RNA promoter binding. Here we report the 2.2 angstrom (A) crystal structure of the N-terminal 197 residues of PA, termed PA(N), from an avian influenza H5N1 virus. The PA(N) structure has an alpha/beta architecture and reveals a bound magnesium ion coordinated by a motif similar to the (P)DX(N)(D/E)XK motif characteristic of many endonucleases. Structural comparisons and mutagenesis analysis of the motif identified in PA(N) provide further evidence that PA(N) holds an endonuclease active site. Furthermore, functional analysis with in vivo ribonucleoprotein reconstitution and direct in vitro endonuclease assays strongly suggest that PA(N) holds the endonuclease active site and has critical roles in endonuclease activity of the influenza virus polymerase, rather than PB1. The high conservation of this endonuclease active site among influenza strains indicates that PA(N) is an important target for the design of new anti-influenza therapeutics.

  13. In silico analysis of Pycnoporus cinnabarinus laccase active site with toxic industrial dyes.

    PubMed

    Prasad, Nirmal K; Vindal, Vaibhav; Narayana, Siva Lakshmi; Ramakrishna, V; Kunal, Swaraj Priyaranjan; Srinivas, M

    2012-05-01

    Laccases belong to multicopper oxidases, a widespread class of enzymes implicated in many oxidative functions in various industrial oxidative processes like production of fine chemicals to bioremediation of contaminated soil and water. In order to understand the mechanisms of substrate binding and interaction between substrates and Pycnoporus cinnabarinus laccase, a homology model was generated. The resulted model was further validated and used for docking studies with toxic industrial dyes- acid blue 74, reactive black 5 and reactive blue 19. Interactions of chemical mediators with the laccase was also examined. The docking analysis showed that the active site always cannot accommodate the dye molecules, due to constricted nature of the active site pocket and steric hindrance of the residues whereas mediators are relatively small and can easily be accommodated into the active site pocket, which, thereafter leads to the productive binding. The binding properties of these compounds along with identification of critical active site residues can be used for further site-directed mutagenesis experiments in order to identify their role in activity and substrate specificity, ultimately leading to improved mutants for degradation of these toxic compounds. PMID:21877154

  14. Sites of Regulated Phosphorylation that Control K-Cl Cotransporter Activity

    PubMed Central

    Rinehart, Jesse; Maksimova, Yelena D.; Tanis, Jessica E.; Stone, Kathryn L.; Hodson, Caleb A.; Zhang, Junhui; Risinger, Mary; Pan, Weijun; Wu, Dianqing; Colangelo, Christopher M.; Forbush, Biff; Joiner, Clinton H.; Gulcicek, Erol E.; Gallagher, Patrick G.; Lifton, Richard P.

    2010-01-01

    Summary Modulation of intracellular chloride concentration ([Cl−]i) plays a fundamental role in cell volume regulation and neuronal response to GABA. Cl− exit via K-Cl cotransporters (KCCs) is a major determinant of [Cl−]I; however, mechanisms governing KCC activities are poorly understood. We identified two sites in KCC3 that are rapidly dephosphorylated in hypotonic conditions in cultured cells and human red blood cells in parallel with increased transport activity. Alanine substitutions at these sites result in constitutively active cotransport. These sites are highly phosphorylated in plasma membrane KCC3 in isotonic conditions, suggesting that dephosphorylation increases KCC3's intrinsic transport activity. Reduction of WNK1 expression via RNA interference reduces phosphorylation at these sites. Homologous sites are phosphorylated in all human KCCs. KCC2 is partially phosphorylated in neonatal mouse brain and dephosphorylated in parallel with KCC2 activation. These findings provide insight into regulation of [Cl−]i and have implications for control of cell volume and neuronal function. PMID:19665974

  15. Active sites of ligand-protected Au25 nanoparticle catalysts for CO2 electroreduction to CO

    NASA Astrophysics Data System (ADS)

    Alfonso, Dominic R.; Kauffman, Douglas; Matranga, Christopher

    2016-05-01

    Recent experimental studies have reported the electrochemical reduction of carbon dioxide (CO2) into CO at atomically precise negatively charged Au25- nanoclusters. The studies showed CO2 conversion at remarkably low overpotentials, but the exact mechanisms and nature of the active sites remain unclear. We used first-principles density functional theory and continuum solvation models to examine the role of the cluster during electrochemical CO2 reduction and analyze the free energies of proposed intermediate species. Contrary to previous assumptions, our results show that the fully ligand protected cluster is not an active CO2 reduction catalyst because formation of the crucial carboxyl intermediate required very high electrochemical potentials. Instead, our calculations suggest that the reduction process likely occurs on a dethiolated gold site, and adsorbed carboxyl intermediate formation was significantly stabilized at dethiolated gold sites. These findings point to the crucial role of exposed metal sites during electrochemical CO2 reduction at gold nanocluster catalysts.

  16. Active sites of ligand-protected Au25 nanoparticle catalysts for CO2 electroreduction to CO.

    PubMed

    Alfonso, Dominic R; Kauffman, Douglas; Matranga, Christopher

    2016-05-14

    Recent experimental studies have reported the electrochemical reduction of carbon dioxide (CO2) into CO at atomically precise negatively charged Au25 (-) nanoclusters. The studies showed CO2 conversion at remarkably low overpotentials, but the exact mechanisms and nature of the active sites remain unclear. We used first-principles density functional theory and continuum solvation models to examine the role of the cluster during electrochemical CO2 reduction and analyze the free energies of proposed intermediate species. Contrary to previous assumptions, our results show that the fully ligand protected cluster is not an active CO2 reduction catalyst because formation of the crucial carboxyl intermediate required very high electrochemical potentials. Instead, our calculations suggest that the reduction process likely occurs on a dethiolated gold site, and adsorbed carboxyl intermediate formation was significantly stabilized at dethiolated gold sites. These findings point to the crucial role of exposed metal sites during electrochemical CO2 reduction at gold nanocluster catalysts. PMID:27179498

  17. ATPase active-site electrostatic interactions control the global conformation of the 100 kDa SecA translocase

    PubMed Central

    Kim, Dorothy M.; Zheng, Haiyan; Huang, Yuanpeng J.; Montelione, Gaetano T.; Hunt, John F.

    2013-01-01

    SecA is an intensively studied mechanoenzyme that uses ATP hydrolysis to drive processive extrusion of secreted proteins through a protein-conducting channel in the cytoplasmic membrane of eubacteria. The ATPase motor of SecA is strongly homologous to that in DEAD-box RNA helicases. It remains unclear how local chemical events in its ATPase active site control the overall conformation of an ~100 kDa multidomain enzyme and drive protein transport. In this paper, we use biophysical methods to establish that a single electrostatic charge in the ATPase active site controls the global conformation of SecA. The enzyme undergoes an ATP-modulated endothermic conformational transition (ECT) believed to involve similar structural mechanics to the protein transport reaction. We have characterized the effects of an isosteric glutamate-to-glutamine mutation in the catalytic base, which mimics the immediate electrostatic consequences of ATP hydrolysis in the active site. Calorimetric studies demonstrate that this mutation facilitates the ECT in E. coli SecA and triggers it completely in B. subtilis SecA. Consistent with the substantial increase in entropy observed in the course of the ECT, hydrogen-deuterium exchange mass spectrometry demonstrates that it increases protein backbone dynamics in domain-domain interfaces at remote locations from the ATPase active site. The catalytic glutamate is one of ~250 charged amino acids in SecA, and yet neutralization of its sidechain charge is sufficient to trigger a global order-disorder transition in this 100 kDa enzyme. The intricate network of structural interactions mediating this effect couples local electrostatic changes during ATP hydrolysis to global conformational and dynamic changes in SecA. This network forms the foundation of the allosteric mechanochemistry that efficiently harnesses the chemical energy stored in ATP to drive complex mechanical processes. PMID:23167435

  18. The convergence of complete active space self-consistent-field configuration interaction including all single and double excitation energies to the complete basis set limit.

    PubMed

    Petersson, George A; Malick, David K; Frisch, Michael J; Braunstein, Matthew

    2006-07-28

    Examination of the convergence of full valence complete active space self-consistent-field configuration interaction including all single and double excitation (CASSCF-CISD) energies with expansion of the one-electron basis set reveals a pattern very similar to the convergence of single determinant energies. Calculations on the lowest four singlet states and the lowest four triplet states of N(2) with the sequence of n-tuple-zeta augmented polarized (nZaP) basis sets (n=2, 3, 4, 5, and 6) are used to establish the complete basis set limits. Full configuration-interaction (CI) and core electron contributions must be included for very accurate potential energy surfaces. However, a simple extrapolation scheme that has no adjustable parameters and requires nothing more demanding than CAS(10e(-),8orb)-CISD/3ZaP calculations gives the R(e), omega(e), omega(e)X(e), T(e), and D(e) for these eight states with rms errors of 0.0006 Angstrom, 4.43 cm(-1), 0.35 cm(-1), 0.063 eV, and 0.018 eV, respectively. PMID:16942134

  19. Site-directed mutagenesis of the human DNA repair enzyme HAP1: identification of residues important for AP endonuclease and RNase H activity.

    PubMed

    Barzilay, G; Walker, L J; Robson, C N; Hickson, I D

    1995-05-11

    HAP1 protein, the major apurinic/apyrimidinic (AP) endonuclease in human cells, is a member of a homologous family of multifunctional DNA repair enzymes including the Escherichia coli exonuclease III and Drosophila Rrp1 proteins. The most extensively characterised member of this family, exonuclease III, exhibits both DNA- and RNA-specific nuclease activities. Here, we show that the RNase H activity characteristic of exonuclease III has been conserved in the human homologue, although the products resulting from RNA cleavage are dissimilar. To identify residues important for enzymatic activity, five mutant HAP1 proteins containing single amino acid substitutions were purified and analysed in vitro. The substitutions were made at sites of conserved amino acids and targeted either acidic or histidine residues because of their known participation in the active sites of hydrolytic nucleases. One of the mutant proteins (replacement of Asp-219 by alanine) showed a markedly reduced enzymatic activity, consistent with a greatly diminished capacity to bind DNA and RNA. In contrast, replacement of Asp-90, Asp-308 or Glu-96 by alanine led to a reduction in enzymatic activity without significantly compromising nucleic acid binding. Replacement of His-255 by alanine led to only a very small reduction in enzymatic activity. Our data are consistent with the presence of a single catalytic active site for the DNA- and RNA-specific nuclease activities of the HAP1 protein. PMID:7784208

  20. Counting Active Sites on Titanium Oxide-Silica Catalysts for Hydrogen Peroxide Activation through In Situ Poisoning with Phenylphosphonic Acid

    SciTech Connect

    Eaton, Todd R.; Boston, Andrew M.; Thompson, Anthony B.; Gray, Kimberly A.; Notestein, Justin M.

    2015-06-04

    Quantifying specific active sites in supported catalysts improves our understanding and assists in rational design. Supported oxides can undergo significant structural changes as surface densities increase from site-isolated cations to monolayers and crystallites, which changes the number of kinetically relevant sites. Herein, TiOx domains are titrated on TiOx–SiO2 selectively with phenylphosphonic acid (PPA). An ex situ method quantifies all fluid-accessible TiOx, whereas an in situ titration during cis-cyclooctene epoxidation provides previously unavailable values for the number of tetrahedral Ti sites on which H2O2 activation occurs. We use this method to determine the active site densities of 22 different catalysts with different synthesis methods, loadings, and characteristic spectra and find a single intrinsic turnover frequency for cis-cyclooctene epoxidation of (40±7) h-1. This simple method gives molecular-level insight into catalyst structure that is otherwise hidden when bulk techniques are used.

  1. Modified Active Site Coordination in a Clinical Mutant of Sulfite Oxidase

    SciTech Connect

    Doonan, C.J.; Wilson, H.L.; Rajagopalan, K.V.; Garrett, R.M.; Bennett, B.; Prince, R.C.; George, G.N.

    2009-06-02

    The molybdenum site of the Arginine 160 {yields} Glutamine clinical mutant of the physiologically vital enzyme sulfite oxidase has been investigated by a combination of X-ray absorption spectroscopy and density functional theory calculations. We conclude that the mutant enzyme has a six-coordinate pseudo-octahedral active site with coordination of Glutamine O{sup {epsilon}} to molybdenum. This contrasts with the wild-type enzyme which is five-coordinate with approximately square-based pyramidal geometry. This difference in the structure of the molybdenum site explains many of the properties of the mutant enzyme which have previously been reported.

  2. Mutations Closer to the Active Site Improve the Promiscuous Aldolase Activity of 4-Oxalocrotonate Tautomerase More Effectively than Distant Mutations.

    PubMed

    Rahimi, Mehran; van der Meer, Jan-Ytzen; Geertsema, Edzard M; Poddar, Harshwardhan; Baas, Bert-Jan; Poelarends, Gerrit J

    2016-07-01

    The enzyme 4-oxalocrotonate tautomerase (4-OT), which catalyzes enol-keto tautomerization as part of a degradative pathway for aromatic hydrocarbons, promiscuously catalyzes various carbon-carbon bond-forming reactions. These include the aldol condensation of acetaldehyde with benzaldehyde to yield cinnamaldehyde. Here, we demonstrate that 4-OT can be engineered into a more efficient aldolase for this condensation reaction, with a >5000-fold improvement in catalytic efficiency (kcat /Km ) and a >10(7) -fold change in reaction specificity, by exploring small libraries in which only "hotspots" are varied. The hotspots were identified by systematic mutagenesis (covering each residue), followed by a screen for single mutations that give a strong improvement in the desired aldolase activity. All beneficial mutations were near the active site of 4-OT, thus underpinning the notion that new catalytic activities of a promiscuous enzyme are more effectively enhanced by mutations close to the active site. PMID:27238293

  3. Systematic mutagenesis of the active site omega loop of TEM-1 beta-lactamase.

    PubMed Central

    Petrosino, J F; Palzkill, T

    1996-01-01

    Beta-Lactamase is a bacterial protein that provides resistance against beta-lactam antibiotics. TEM-1 beta-lactamase is the most prevalent plasmid-mediated beta-lactamase in gram-negative bacteria. Normally, this enzyme has high levels of hydrolytic activity for penicillins, but mutant beta-lactamases have evolved with activity toward a variety of beta-lactam antibiotics. It has been shown that active site substitutions are responsible for changes in the substrate specificity. Since mutant beta-lactamases pose a serious threat to antimicrobial therapy, the mechanisms by which mutations can alter the substrate specificity of TEM-1 beta-lactamase are of interest. Previously, screens of random libraries encompassing 31 of 55 active site amino acid positions enabled the identification of the residues responsible for maintaining the substrate specificity of TEM-1 beta-lactamase. In addition to substitutions found in clinical isolates, many other specificity-altering mutations were also identified. Interestingly, many nonspecific substitutions in the N-terminal half of the active site omega loop were found to increase ceftazidime hydrolytic activity and decrease ampicillin hydrolytic activity. To complete the active sight study, eight additional random libraries were constructed and screened for specificity-altering mutations. All additional substitutions found to alter the substrate specificity were located in the C-terminal half of the active site loop. These mutants, much like the N-terminal omega loop mutants, appear to be less stable than the wild-type enzyme. Further analysis of a 165-YYG-167 triple mutant, selected for high levels of ceftazidime hydrolytic activity, provides an example of the correlation which exists between enzyme instability and increased ceftazidime hydrolytic activity in the ceftazidime-selected omega loop mutants. PMID:8606154

  4. Active-site motions and polarity enhance catalytic turnover of hydrated subtilisin dissolved in organic solvents

    PubMed Central

    Hudson, Elton P; Eppler, Ross K; Beaudoin, Julianne M; Dordick, Jonathan S; Reimer, Jeffrey A; Clark, Douglas S

    2009-01-01

    The enzyme subtilisin Carlsberg was surfactant-solubilized into two organic solvents, isooctane and tetrahydrofuran, and hydrated through stepwise changes in the thermodynamic water activity, aw. The apparent turnover number kcatapp in these systems ranged from 0.2 to 80 s−1 and increased 11-fold in isooctane and up to 50-fold in tetrahydrofuran with increasing aw. 19F-NMR relaxation experiments employing an active-site inhibitor were used to assess the dependence of active-site motions on aw. The rates of NMR-derived fast (k > 107 s−1) and slow (k < 104 s−1) active-site motions increased in both solvents upon hydration, but only the slow motions correlated with kcat. The 19F chemical shift was a sensitive probe of the local electronic environment and provided an empirical measure of the active-site dielectric constant εas, which increased with hydration to εas ≈ 13 in each solvent. In both solvents the transition state free energy data and εas followed Kirkwood’s model for the continuum solvation of a dipole, indicating that water also enhanced catalysis by altering the active-site’s electronic environment and increasing its polarity to better stabilize the transition state. These results reveal that favorable dynamic and electrostatic effects both contribute to accelerated catalysis by solubilized subtilisin Carlsberg upon hydration in organic solvents. PMID:19317505

  5. Acylpeptide hydrolase: inhibitors and some active site residues of the human enzyme.

    PubMed

    Scaloni, A; Jones, W M; Barra, D; Pospischil, M; Sassa, S; Popowicz, A; Manning, L R; Schneewind, O; Manning, J M

    1992-02-25

    Acylpeptide hydrolase may be involved in N-terminal deacetylation of nascent polypeptide chains and of bioactive peptides. The activity of this enzyme from human erythrocytes is sensitive to anions such as chloride, nitrate, and fluoride. Furthermore, blocked amino acids act as competitive inhibitors of the enzyme. Acetyl leucine chloromethyl ketone has been employed to identify one active site residue as His-707. Diisopropylfluorophosphate has been used to identify a second active site residue as Ser-587. Chemical modification studies with a water-soluble carbodiimide implicate a carboxyl group in catalytic activity. These results and the sequence around these active site residues, especially near Ser-587, suggest that acylpeptide hydrolase contains a catalytic triad. The presence of a cysteine residue in the vicinity of the active site is suggested by the inactivation of the enzyme by sulfhydryl-modifying agents and also by a low amount of modification by the peptide chloromethyl ketone inhibitor. Ebelactone A, an inhibitor of the formyl aminopeptidase, the bacterial counterpart of eukaryotic acylpeptide hydrolase, was found to be an effective inhibitor of this enzyme. These findings suggest that acylpeptidase hydrolase is a member of a family of enzymes with extremely diverse functions. PMID:1740429

  6. Improving the neutral phytase activity from Bacillus amyloliquefaciens DSM 1061 by site-directed mutagenesis.

    PubMed

    Xu, Wei; Shao, Rong; Wang, Zupeng; Yan, Xiuhua

    2015-03-01

    Neutral phytase is used as a feed additive for degradation of anti-nutritional phytate in aquatic feed industry. Site-directed mutagenesis of Bacillus amyloliquefaciens DSM 1061 phytase was performed with an aim to increase its activity. Mutation residues were chosen based on multiple sequence alignments and structure analysis of neutral phytsaes from different microorganisms. The mutation sites on surface (D148E, S197E and N156E) and around the active site (D52E) of phytase were selected. Analysis of the phytase variants showed that the specific activities of mutants D148E and S197E remarkably increased by about 35 and 13% over a temperature range of 40-75 °C at pH 7.0, respectively. The k cat of mutants D148E and S197E were 1.50 and 1.25 times than that of the wild-type phytase, respectively. Both D148E and S197E showed much higher thermostability than that of the wild-type phytase. However, mutants N156E and D52E led to significant loss of specific activity of the enzyme. Structural analysis revealed that these mutations may affect conformation of the active site of phytase. The present mutant phytases D148E and S197E with increased activities and thermostabilities have application potential as additives in aquaculture feed. PMID:25613522

  7. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase

    SciTech Connect

    Fenwick, Michael K.; Mehta, Angad P.; Zhang, Yang; Abdelwahed, Sameh H.; Begley, Tadhg P.; Ealick, Steven E.

    2015-03-27

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active site metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.

  8. Quantum delocalization of protons in the hydrogen-bond network of an enzyme active site

    PubMed Central

    Wang, Lu; Fried, Stephen D.; Boxer, Steven G.; Markland, Thomas E.

    2014-01-01

    Enzymes use protein architectures to create highly specialized structural motifs that can greatly enhance the rates of complex chemical transformations. Here, we use experiments, combined with ab initio simulations that exactly include nuclear quantum effects, to show that a triad of strongly hydrogen-bonded tyrosine residues within the active site of the enzyme ketosteroid isomerase (KSI) facilitates quantum proton delocalization. This delocalization dramatically stabilizes the deprotonation of an active-site tyrosine residue, resulting in a very large isotope effect on its acidity. When an intermediate analog is docked, it is incorporated into the hydrogen-bond network, giving rise to extended quantum proton delocalization in the active site. These results shed light on the role of nuclear quantum effects in the hydrogen-bond network that stabilizes the reactive intermediate of KSI, and the behavior of protons in biological systems containing strong hydrogen bonds. PMID:25503367

  9. Evidence from molecular dynamics simulations of conformational preorganization in the ribonuclease H active site

    PubMed Central

    Stafford, Kate A.; Palmer III, Arthur G.

    2014-01-01

    Ribonuclease H1 (RNase H) enzymes are well-conserved endonucleases that are present in all domains of life and are particularly important in the life cycle of retroviruses as domains within reverse transcriptase. Despite extensive study, especially of the E. coli homolog, the interaction of the highly negatively charged active site with catalytically required magnesium ions remains poorly understood. In this work, we describe molecular dynamics simulations of the E. coli homolog in complex with magnesium ions, as well as simulations of other homologs in their apo states. Collectively, these results suggest that the active site is highly rigid in the apo state of all homologs studied and is conformationally preorganized to favor the binding of a magnesium ion. Notably, representatives of bacterial, eukaryotic, and retroviral RNases H all exhibit similar active-site rigidity, suggesting that this dynamic feature is only subtly modulated by amino acid sequence and is primarily imposed by the distinctive RNase H protein fold. PMID:25075292

  10. Conformational Change in the Active Site of Streptococcal Unsaturated Glucuronyl Hydrolase Through Site-Directed Mutagenesis at Asp-115.

    PubMed

    Nakamichi, Yusuke; Oiki, Sayoko; Mikami, Bunzo; Murata, Kousaku; Hashimoto, Wataru

    2016-08-01

    Bacterial unsaturated glucuronyl hydrolase (UGL) degrades unsaturated disaccharides generated from mammalian extracellular matrices, glycosaminoglycans, by polysaccharide lyases. Two Asp residues, Asp-115 and Asp-175 of Streptococcus agalactiae UGL (SagUGL), are completely conserved in other bacterial UGLs, one of which (Asp-175 of SagUGL) acts as a general acid and base catalyst. The other Asp (Asp-115 of SagUGL) also affects the enzyme activity, although its role in the enzyme reaction has not been well understood. Here, we show substitution of Asp-115 in SagUGL with Asn caused a conformational change in the active site. Tertiary structures of SagUGL mutants D115N and D115N/K370S with negligible enzyme activity were determined at 2.00 and 1.79 Å resolution, respectively, by X-ray crystallography. The side chain of Asn-115 is drastically shifted in both mutants owing to the interaction with several residues, including Asp-175, by formation of hydrogen bonds. This interaction between Asn-115 and Asp-175 probably prevents the mutants from triggering the enzyme reaction using Asp-175 as an acid catalyst. PMID:27402448

  11. Conserved phosphorylation sites in the activation loop of the Arabidopsis phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity

    PubMed Central

    Hartmann, Jens; Linke, Dennis; Bönniger, Christine; Tholey, Andreas; Sauter, Margret

    2015-01-01

    PSK (phytosulfokine) is a plant peptide hormone perceived by a leucine-rich repeat receptor kinase. Phosphosite mapping of epitope-tagged PSKR1 (phytosulfokine receptor 1) from Arabidopsis thaliana plants identified Ser696 and Ser698 in the JM (juxtamembrane) region and probably Ser886 and/or Ser893 in the AL (activation loop) as in planta phosphorylation sites. In vitro-expressed kinase was autophosphorylated at Ser717 in the JM, and at Ser733, Thr752, Ser783, Ser864, Ser911, Ser958 and Thr998 in the kinase domain. The LC–ESI–MS/MS spectra provided support that up to three sites (Thr890, Ser893 and Thr894) in the AL were likely to be phosphorylated in vitro. These sites are evolutionarily highly conserved in PSK receptors, indicative of a conserved function. Site-directed mutagenesis of the four conserved residues in the activation segment, Thr890, Ser893, Thr894 and Thr899, differentially altered kinase activity in vitro and growth-promoting activity in planta. The T899A and the quadruple-mutated TSTT-A (T890A/S893A/T894A/T899A) mutants were both kinase-inactive, but PSKR1(T899A) retained growth-promoting activity. The T890A and S893A/T894A substitutions diminished kinase activity and growth promotion. We hypothesize that phosphorylation within the AL activates kinase activity and receptor function in a gradual and distinctive manner that may be a means to modulate the PSK response. PMID:26472115

  12. Conserved phosphorylation sites in the activation loop of the Arabidopsis phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity.

    PubMed

    Hartmann, Jens; Linke, Dennis; Bönniger, Christine; Tholey, Andreas; Sauter, Margret

    2015-12-15

    PSK (phytosulfokine) is a plant peptide hormone perceived by a leucine-rich repeat receptor kinase. Phosphosite mapping of epitope-tagged PSKR1 (phytosulfokine receptor 1) from Arabidopsis thaliana plants identified Ser(696) and Ser(698) in the JM (juxtamembrane) region and probably Ser(886) and/or Ser(893) in the AL (activation loop) as in planta phosphorylation sites. In vitro-expressed kinase was autophosphorylated at Ser(717) in the JM, and at Ser(733), Thr(752), Ser(783), Ser(864), Ser(911), Ser(958) and Thr(998) in the kinase domain. The LC-ESI-MS/MS spectra provided support that up to three sites (Thr(890), Ser(893) and Thr(894)) in the AL were likely to be phosphorylated in vitro. These sites are evolutionarily highly conserved in PSK receptors, indicative of a conserved function. Site-directed mutagenesis of the four conserved residues in the activation segment, Thr(890), Ser(893), Thr(894) and Thr(899), differentially altered kinase activity in vitro and growth-promoting activity in planta. The T899A and the quadruple-mutated TSTT-A (T890A/S893A/T894A/T899A) mutants were both kinase-inactive, but PSKR1(T899A) retained growth-promoting activity. The T890A and S893A/T894A substitutions diminished kinase activity and growth promotion. We hypothesize that phosphorylation within the AL activates kinase activity and receptor function in a gradual and distinctive manner that may be a means to modulate the PSK response. PMID:26472115

  13. Preliminary examination of the impacts of repository site characterization activities and facility construction and operation activities on Hanford air quality

    SciTech Connect

    Glantz, C.S.; Ramsdell, J.V.

    1986-04-01

    Air quality impacts that would result from site characterization activities and from the construction and operation of a high-level nuclear wste repository at Hanford are estimated using two simple atmospheric dispersion models, HANCHI and CHISHORT. Model results indicate that pollutant concentrations would not exceed ambient air quality standards at any point outside the Hanford fenceline or at any publicly accessible location within the Hanford Site. The increase in pollutant concentrations in nearby communities due to site activities would be minimal. HANCHI and CHISHORT are documented in the appendices of this document. Further study of the repository's impact on air quality will be conducted when more detailed project plans and work schedules are available.

  14. Activity-dependent labeling of oxygenase enzymes in a trichloroethene-contaminated groundwater site.

    PubMed

    Lee, M Hope; Clingenpeel, Scott C; Leiser, Owen P; Wymore, Ryan A; Sorenson, Kent S; Watwood, Mary E

    2008-05-01

    A variety of naturally occurring bacteria produce enzymes that cometabolically degrade trichloroethene (TCE), including organisms with aerobic oxygenases. Groundwater contaminated with TCE was collected from the aerobic region of the Test Area North site of the Idaho National Laboratory. Samples were evaluated with enzyme activity probes, and resulted in measurable detection of toluene oxygenase activity (6-79% of the total microbial cells). Wells from both inside and outside contaminated plume showed activity. Toluene oxygenase-specific PCR primers determined that toluene-degrading genes were present in all groundwater samples evaluated. In addition, bacterial isolates were obtained and possessed toluene oxygenase enzymes, demonstrated activity, and were dominated by the phylotype Pseudomonas. This study demonstrated, through the use of enzymatic probes and oxygenase gene identification, that indigenous microorganisms at a contaminated site were cometabolically active. Documentation such as this can be used to substantiate observations of natural attenuation of TCE-contaminated groundwater plumes. PMID:17904715

  15. DNA damage processing by human 8-oxoguanine-DNA glycosylase mutants with the occluded active site.

    PubMed

    Lukina, Maria V; Popov, Alexander V; Koval, Vladimir V; Vorobjev, Yuri N; Fedorova, Olga S; Zharkov, Dmitry O

    2013-10-01

    8-Oxoguanine-DNA glycosylase (OGG1) removes premutagenic lesion 8-oxoguanine (8-oxo-G) from DNA and then nicks the nascent abasic (apurinic/apyrimidinic) site by β-elimination. Although the structure of OGG1 bound to damaged DNA is known, the dynamic aspects of 8-oxo-G recognition are not well understood. To comprehend the mechanisms of substrate recognition and processing, we have constructed OGG1 mutants with the active site occluded by replacement of Cys-253, which forms a wall of the base-binding pocket, with bulky leucine or isoleucine. The conformational dynamics of OGG1 mutants were characterized by single-turnover kinetics and stopped-flow kinetics with fluorescent detection. Additionally, the conformational mobility of wild type and the mutant OGG1 substrate complex was assessed using molecular dynamics simulations. Although pocket occlusion distorted the active site and greatly decreased the catalytic activity of OGG1, it did not fully prevent processing of 8-oxo-G and apurinic/apyrimidinic sites. Both mutants were notably stimulated in the presence of free 8-bromoguanine, indicating that this base can bind to the distorted OGG1 and facilitate β-elimination. The results agree with the concept of enzyme plasticity, suggesting that the active site of OGG1 is flexible enough to compensate partially for distortions caused by mutation. PMID:23955443

  16. Threatened and endangered wildlife species of the Hanford Site related to CERCLA characterization activities

    SciTech Connect

    Fitzner, R.E.; Weiss, S.G.; Stegen, J.A.

    1994-06-01

    The US Department of Energy`s (DOE) Hanford Site has been placed on the National Priorities List, which requires that it be remediated under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) or Superfund. Potentially contaminated areas of the Hanford Site were grouped into operable units, and detailed characterization and investigation plans were formulated. The DOE Richland Operations Office requested Westinghouse Hanford Company (WHC) to conduct a biological assessment of the potential impact of these characterization activities on the threatened, endangered, and sensitive wildlife species of the Hanford Site. Additional direction for WHC compliances with wildlife protection can be found in the Environmental Compliance Manual. This document is intended to meet these requirements, in part, for the CERCLA characterization activities, as well as for other work comparable in scope. This report documents the biological assessment and describes the pertinent components of the Hanford Site as well as the planned characterization activities. Also provided are accounts of endangered, threatened, and federal candidate wildlife species on the Hanford Site and information as to how human disturbances can affect these species. Potential effects of the characterization activities are described with recommendations for mitigation measures.

  17. A Tale of Two Isomerases: Compact versus Extended Active Sites in Ketosteroid Isomerase and Phosphoglucose Isomerase

    SciTech Connect

    Somarowthu, Srinivas; Brodkin, Heather R.; D’Aquino, J. Alejandro; Ringe, Dagmar; Ondrechen, Mary Jo; Beuning, Penny J.

    2012-07-11

    Understanding the catalytic efficiency and specificity of enzymes is a fundamental question of major practical and conceptual importance in biochemistry. Although progress in biochemical and structural studies has enriched our knowledge of enzymes, the role in enzyme catalysis of residues that are not nearest neighbors of the reacting substrate molecule is largely unexplored experimentally. Here computational active site predictors, THEMATICS and POOL, were employed to identify functionally important residues that are not in direct contact with the reacting substrate molecule. These predictions then guided experiments to explore the active sites of two isomerases, Pseudomonas putida ketosteroid isomerase (KSI) and human phosphoglucose isomerase (PGI), as prototypes for very different types of predicted active sites. Both KSI and PGI are members of EC 5.3 and catalyze similar reactions, but they represent significantly different degrees of remote residue participation, as predicted by THEMATICS and POOL. For KSI, a compact active site of mostly first-shell residues is predicted, but for PGI, an extended active site in which residues in the first, second, and third layers around the reacting substrate are predicted. Predicted residues that have not been previously tested experimentally were investigated by site-directed mutagenesis and kinetic analysis. In human PGI, single-point mutations of the predicted second- and third-shell residues K362, H100, E495, D511, H396, and Q388 show significant decreases in catalytic activity relative to that of the wild type. The results of these experiments demonstrate that, as predicted, remote residues are very important in PGI catalysis but make only small contributions to catalysis in KSI.

  18. The active site of low-temperature methane hydroxylation in iron-containing zeolites.

    PubMed

    Snyder, Benjamin E R; Vanelderen, Pieter; Bols, Max L; Hallaert, Simon D; Böttger, Lars H; Ungur, Liviu; Pierloot, Kristine; Schoonheydt, Robert A; Sels, Bert F; Solomon, Edward I

    2016-08-18

    An efficient catalytic process for converting methane into methanol could have far-reaching economic implications. Iron-containing zeolites (microporous aluminosilicate minerals) are noteworthy in this regard, having an outstanding ability to hydroxylate methane rapidly at room temperature to form methanol. Reactivity occurs at an extra-lattice active site called α-Fe(ii), which is activated by nitrous oxide to form the reactive intermediate α-O; however, despite nearly three decades of research, the nature of the active site and the factors determining its exceptional reactivity are unclear. The main difficulty is that the reactive species-α-Fe(ii) and α-O-are challenging to probe spectroscopically: data from bulk techniques such as X-ray absorption spectroscopy and magnetic susceptibility are complicated by contributions from inactive 'spectator' iron. Here we show that a site-selective spectroscopic method regularly used in bioinorganic chemistry can overcome this problem. Magnetic circular dichroism reveals α-Fe(ii) to be a mononuclear, high-spin, square planar Fe(ii) site, while the reactive intermediate, α-O, is a mononuclear, high-spin Fe(iv)=O species, whose exceptional reactivity derives from a constrained coordination geometry enforced by the zeolite lattice. These findings illustrate the value of our approach to exploring active sites in heterogeneous systems. The results also suggest that using matrix constraints to activate metal sites for function-producing what is known in the context of metalloenzymes as an 'entatic' state-might be a useful way to tune the activity of heterogeneous catalysts. PMID:27535535

  19. Neighborhood inverse consistency preprocessing

    SciTech Connect

    Freuder, E.C.; Elfe, C.D.

    1996-12-31

    Constraint satisfaction consistency preprocessing methods are used to reduce search effort. Time and especially space costs limit the amount of preprocessing that will be cost effective. A new form of consistency preprocessing, neighborhood inverse consistency, can achieve more problem pruning than the usual arc consistency preprocessing in a cost effective manner. There are two basic ideas: (1) Common forms of consistency enforcement basically operate by identifying and remembering solutions to subproblems for which a consistent value cannot be found for some additional problem variable. The space required for this memory can quickly become prohibitive. Inverse consistency basically operates by removing values for variables that are not consistent with any solution to some subproblem involving additional variables. The space requirement is at worst linear. (2) Typically consistency preprocessing achieves some level of consistency uniformly throughout the problem. A subproblem solution will be tested against each additional variable that constrains any subproblem variable. Neighborhood consistency focuses attention on the subproblem formed by the variables that are all constrained by the value in question. By targeting highly relevant subproblems we hope to {open_quotes}skim the cream{close_quotes}, obtaining a high payoff for a limited cost.

  20. Dynamics of the Active Sites of Dimeric Seryl tRNA Synthetase from Methanopyrus kandleri.

    PubMed

    Dutta, Saheb; Nandi, Nilashis

    2015-08-27

    Aminoacyl tRNA synthetases (aaRSs) carry out the first step of protein biosynthesis. Several aaRSs are multimeric, and coordination between the dynamics of active sites present in each monomer is a prerequisite for the fast and accurate aminoacylation. However, important lacunae of understanding exist concerning the conformational dynamics of multimeric aaRSs. Questions remained unanswered pertaining to the dynamics of the active site. Little is known concerning the conformational dynamics of the active sites in response to the substrate binding, reorganization of the catalytic residues around reactants, time-dependent changes at the reaction center, which are essential for facilitating the nucleophilic attack, and interactions at the interface of neighboring monomers. In the present work, we carried out all-atom molecular dynamics simulation of dimeric (mk)SerRS from Methanopyrus kandleri bound with tRNA using an explicit solvent system. Two dimeric states of seryl tRNA synthetase (open, substrate bound, and adenylate bound) and two monomeric states (open and substrate bound) are simulated with bound tRNA. The aim is to understand the conformational dynamics of (mk)SerRS during its reaction cycle. While the present results provide a clear dynamical perspective of the active sites of (mk)SerRS, they corroborate with the results from the time-averaged experimental data such as crystallographic and mutation analysis of methanogenic SerRS from M. kandleri and M. barkeri. It is observed from the present simulation that the motif 2 loop gates the active site and its Glu351 and Arg360 stabilizes ATP in a bent state favorable for nucleophilic attack. The flexibility of the walls of the active site gradually reduces near reaction center, which is a more organized region compared to the lid region. The motif 2 loop anchors Ser and ATP using Arg349 in a hydrogen bonded geometry crucial for nucleophilic attack and favorably influences the electrostatic potential at the

  1. Monitoring of geological activity on astronomical sites of the Canary Islands, Hawaii, and Chile

    NASA Astrophysics Data System (ADS)

    Eff-Darwich, Antonio; Garcia-Lorenzo, Begoña; Rodriguez-Losada, Jose A.; Hernández-Gutiérrez, Luis E.; de la Nuez, Julio; Romero-Ruiz, Maria C.

    2009-09-01

    Future large and extremely large ground-based telescopes will demand stable geological settings.Remote sensing could be an unvaluable tool to analyse the impact of geological activity at selected astronomical sites, namely the observatories of El Teide (Tenerife, Canary Islands), Roque de los Muchachos (La Palma, Canary Islands), Mauna Kea (Hawaii) and Paranal (Chile; the candidate site of Cerro Ventarrones, Chile). In this sense, the extent of lava flows, eruptive clouds or ground deformation associated to seismic and/or volcanic activity could be analysed and characterised through remote sensing.

  2. Active site mapping, biochemical properties and subcellular localization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense.

    PubMed

    Caffrey, C R; Hansell, E; Lucas, K D; Brinen, L S; Alvarez Hernandez, A; Cheng, J; Gwaltney, S L; Roush, W R; Stierhof, Y D; Bogyo, M; Steverding, D; McKerrow, J H

    2001-11-01

    Cysteine protease activity of African trypanosome parasites is a target for new chemotherapy using synthetic protease inhibitors. To support this effort and further characterize the enzyme, we expressed and purified rhodesain, the target protease of Trypanosoma brucei rhodesiense (MVAT4 strain), in reagent quantities from Pichia pastoris. Rhodesain was secreted as an active, mature protease. Site-directed mutagenesis of a cryptic glycosylation motif not previously identified allowed production of rhodesain suitable for crystallization. An invariable ER(A/V)FNAA motif in the pro-peptide sequence of rhodesain was identified as being unique to the genus Trypanosoma. Antibodies to rhodesain localized the protease in the lysosome and identified a 40-kDa protein in long slender forms of T. b. rhodesiense and all life-cycle stages of T. b. brucei. With the latter parasite, protease expression was five times greater in short stumpy trypanosomes than in the other stages. Radiolabeled active site-directed inhibitors identified brucipain as the major cysteine protease in T. b. brucei. Peptidomimetic vinyl sulfone and epoxide inhibitors designed to interact with the S2, S1 and S' subsites of the active site cleft revealed differences between rhodesain and the related trypanosome protease cruzain. Using fluorogenic dipeptidyl substrates, rhodesain and cruzain had acid pH optima, but unlike some mammalian cathepsins retained significant activity and stability up to pH 8.0, consistent with a possible extracellular function. S2 subsite mapping of rhodesain and cruzain with fluorogenic peptidyl substrates demonstrates that the presence of alanine rather than glutamate at S2 prevents rhodesain from cleaving substrates in which P2 is arginine. PMID:11704274

  3. Structural dynamics of phenylisothiocyanate in the light-absorbing excited states: Resonance Raman and complete active space self-consistent field calculation study

    SciTech Connect

    Ouyang, Bing Xue, Jia-Dan Zheng, Xuming E-mail: zxm@zstu.edu.cn; Fang, Wei-Hai E-mail: fangwh@dnu.edu.cn

    2014-05-21

    The excited state structural dynamics of phenyl isothiocyanate (PITC) after excitation to the light absorbing S{sub 2}(A′), S{sub 6}(A′), and S{sub 7}(A′) excited states were studied by using the resonance Raman spectroscopy and complete active space self-consistent field method calculations. The UV absorption bands of PITC were assigned. The vibrational assignments were done on the basis of the Fourier transform (FT)-Raman and FT-infrared measurements, the density-functional theory computations, and the normal mode analysis. The A-, B-, and C-bands resonance Raman spectra in cyclohexane, acetonitrile, and methanol solvents were, respectively, obtained at 299.1, 282.4, 266.0, 252.7, 228.7, 217.8, and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PITC. The results indicated that the structural dynamics in the S{sub 2}(A′), S{sub 6}(A′), and S{sub 7}(A′) excited states were very different. The conical intersection point CI(S{sub 2}/S{sub 1}) were predicted to play important role in the low-lying excited state decay dynamics. Two major decay channels were predicted for PITC upon excitation to the S{sub 2}(A′) state: the radiative S{sub 2,min} → S{sub 0} transition and the nonradiative S{sub 2} → S{sub 1} internal conversion via CI(S{sub 2}/S{sub 1}). The differences in the decay dynamics between methyl isothiocyanate and PITC in the first light absorbing excited state were discussed. The role of the intersystem crossing point ISC(S{sub 1}/T{sub 1}) in the excited state decay dynamics of PITC is evaluated.

  4. Analytical gradients of complete active space self-consistent field energies using Cholesky decomposition: Geometry optimization and spin-state energetics of a ruthenium nitrosyl complex

    SciTech Connect

    Delcey, Mickaël G.; Freitag, Leon; González, Leticia; Pedersen, Thomas Bondo; Aquilante, Francesco; Lindh, Roland

    2014-05-07

    We present a formulation of analytical energy gradients at the complete active space self-consistent field (CASSCF) level of theory employing density fitting (DF) techniques to enable efficient geometry optimizations of large systems. As an example, the ground and lowest triplet state geometries of a ruthenium nitrosyl complex are computed at the DF-CASSCF level of theory and compared with structures obtained from density functional theory (DFT) using the B3LYP, BP86, and M06L functionals. The average deviation of all bond lengths compared to the crystal structure is 0.042 Å at the DF-CASSCF level of theory, which is slightly larger but still comparable with the deviations obtained by the tested DFT functionals, e.g., 0.032 Å with M06L. Specifically, the root-mean-square deviation between the DF-CASSCF and best DFT coordinates, delivered by BP86, is only 0.08 Å for S{sub 0} and 0.11 Å for T{sub 1}, indicating that the geometries are very similar. While keeping the mean energy gradient errors below 0.25%, the DF technique results in a 13-fold speedup compared to the conventional CASSCF geometry optimization algorithm. Additionally, we assess the singlet-triplet energy vertical and adiabatic differences with multiconfigurational second-order perturbation theory (CASPT2) using the DF-CASSCF and DFT optimized geometries. It is found that the vertical CASPT2 energies are relatively similar regardless of the geometry employed whereas the adiabatic singlet-triplet gaps are more sensitive to the chosen triplet geometry.

  5. Analytical gradients of complete active space self-consistent field energies using Cholesky decomposition: geometry optimization and spin-state energetics of a ruthenium nitrosyl complex.

    PubMed

    Delcey, Mickaël G; Freitag, Leon; Pedersen, Thomas Bondo; Aquilante, Francesco; Lindh, Roland; González, Leticia

    2014-05-01

    We present a formulation of analytical energy gradients at the complete active space self-consistent field (CASSCF) level of theory employing density fitting (DF) techniques to enable efficient geometry optimizations of large systems. As an example, the ground and lowest triplet state geometries of a ruthenium nitrosyl complex are computed at the DF-CASSCF level of theory and compared with structures obtained from density functional theory (DFT) using the B3LYP, BP86, and M06L functionals. The average deviation of all bond lengths compared to the crystal structure is 0.042 Å at the DF-CASSCF level of theory, which is slightly larger but still comparable with the deviations obtained by the tested DFT functionals, e.g., 0.032 Å with M06L. Specifically, the root-mean-square deviation between the DF-CASSCF and best DFT coordinates, delivered by BP86, is only 0.08 Å for S0 and 0.11 Å for T1, indicating that the geometries are very similar. While keeping the mean energy gradient errors below 0.25%, the DF technique results in a 13-fold speedup compared to the conventional CASSCF geometry optimization algorithm. Additionally, we assess the singlet-triplet energy vertical and adiabatic differences with multiconfigurational second-order perturbation theory (CASPT2) using the DF-CASSCF and DFT optimized geometries. It is found that the vertical CASPT2 energies are relatively similar regardless of the geometry employed whereas the adiabatic singlet-triplet gaps are more sensitive to the chosen triplet geometry. PMID:24811621

  6. Analytical gradients of complete active space self-consistent field energies using Cholesky decomposition: Geometry optimization and spin-state energetics of a ruthenium nitrosyl complex

    NASA Astrophysics Data System (ADS)

    Delcey, Mickaël G.; Freitag, Leon; Pedersen, Thomas Bondo; Aquilante, Francesco; Lindh, Roland; González, Leticia

    2014-05-01

    We present a formulation of analytical energy gradients at the complete active space self-consistent field (CASSCF) level of theory employing density fitting (DF) techniques to enable efficient geometry optimizations of large systems. As an example, the ground and lowest triplet state geometries of a ruthenium nitrosyl complex are computed at the DF-CASSCF level of theory and compared with structures obtained from density functional theory (DFT) using the B3LYP, BP86, and M06L functionals. The average deviation of all bond lengths compared to the crystal structure is 0.042 Å at the DF-CASSCF level of theory, which is slightly larger but still comparable with the deviations obtained by the tested DFT functionals, e.g., 0.032 Å with M06L. Specifically, the root-mean-square deviation between the DF-CASSCF and best DFT coordinates, delivered by BP86, is only 0.08 Å for S0 and 0.11 Å for T1, indicating that the geometries are very similar. While keeping the mean energy gradient errors below 0.25%, the DF technique results in a 13-fold speedup compared to the conventional CASSCF geometry optimization algorithm. Additionally, we assess the singlet-triplet energy vertical and adiabatic differences with multiconfigurational second-order perturbation theory (CASPT2) using the DF-CASSCF and DFT optimized geometries. It is found that the vertical CASPT2 energies are relatively similar regardless of the geometry employed whereas the adiabatic singlet-triplet gaps are more sensitive to the chosen triplet geometry.

  7. Optimization of expression and purification of two biologically active chimeric fusion proteins that consist of human interleukin-13 and Pseudomonas exotoxin in Escherichia coli.

    PubMed

    Joshi, Bharat H; Puri, Raj K

    2005-02-01

    We have previously reported that a variety of solid human tumor cell lines express a large number of receptors for interleukin-13 (IL-13). These receptors could be targeted with a chimeric fusion protein consisting of human IL-13 and a truncated form of Pseudomonas exotoxin (PE). We describe here optimization of critical steps involved in high yield expression of two recombinant chimeric fusion proteins for obtaining highly purified and biologically active cytotoxins in Escherichia coli. The chimeric constructs of human IL-13 and two 38 kDa truncated PEs: (i) PE38 and (ii) PE38QQR, (three lysine residues in PE38 at 590, 606, and 613 substituted with two glutamine and one arginine) were used for protein expression in pET prokaryotic expression vector system with kanamycin as a selection antibiotic. Our results suggest that fresh transformation of E. coli and induction by isopropyl-beta-D-thiogalactopyranoside (IPTG) for 6 h resulted in maximum protein expression. To further improve the yield, we used a genetically modified E. coli strain, BL21(DE3)pLysS, which carries a plasmid for lysozyme with a weak promoter that inhibits T7 RNA polymerase and minimizes protein production in the absence of IPTG. Use of this strain eliminated the need for lysozyme digestion of the induced bacteria to release inclusion bodies, which resulted in expression of purer protein as compared to the conventional BL21(DE3) strain. Additional protocol optimizations included 16 h solubilization of inclusion bodies, constitution of refolding buffer, and timing of dialysis. These proteins were finally purified by Q-Sepharose, mono-Q, and gel filtration chromatography. Between 14-22 and 21-28 mg highly purified and biologically active protein was obtained from 1L of BL21 (DE3) and BL21 (DE3) pLysS bacteria culture, respectively. As IL-13R targeting for brain tumor therapy offers an exciting treatment option, optimization of production of IL-13PE will enhance production of clinical grade material

  8. Subcellular localization of phospholipase Cζ in human sperm and its absence in DPY19L2-deficient sperm are consistent with its role in oocyte activation

    PubMed Central

    Escoffier, Jessica; Yassine, Sandra; Lee, Hoi Chang; Martinez, Guillaume; Delaroche, Julie; Coutton, Charles; Karaouzène, Thomas; Zouari, Raoudha; Metzler-Guillemain, Catherine; Pernet-Gallay, Karin; Hennebicq, Sylviane; Ray, Pierre F.; Fissore, Rafael; Arnoult, Christophe

    2015-01-01

    We recently identified the DPY19L2 gene as the main genetic cause of human globozoospermia (70%) and described that Dpy19l2 knockout (KO) mice faithfully reproduce the human phenotype of globozoospermia making it an excellent model to characterize the molecular physiopathology of globozoospermia. Recent case studies on non-genetically characterized men with globozoospermia showed that phospholipase C, zeta (PLCζ), the sperm factor thought to induce the Ca2+ oscillations at fertilization, was absent from their sperm, explaining the poor fertilization potential of these spermatozoa. Since 30% of globozoospermic men remain genetically uncharacterized, the absence of PLCζ in DPY19L2 globozoospermic men remains to be formally established. Moreover, the precise localization of PLCζ and the reasons underlying its loss during spermatogenesis in globozoospermic patients are still not understood. Herein, we show that PLCζ is absent, or its presence highly reduced, in human and mouse sperm with DPY19L2-associated globozoospermia. As a consequence, fertilization with sperm from Dpy19l2 KO mice failed to initiate Ca2+ oscillations and injected oocytes remained arrested at the metaphase II stage, although a few human oocytes injected with DPY19L2-defective sperm showed formation of 2-pronuclei embryos. We report for the first time the subcellular localization of PLCζ in control human sperm, which is along the inner acrosomal membrane and in the perinuclear theca, in the area corresponding to the equatorial region. Because these cellular components are absent in globozoospermic sperm, the loss of PLCζ in globozoospermic sperm is thus consistent and reinforces the role of PLCζ as an oocyte activation factor necessary for oocyte activation. In our companion article, we showed that chromatin compaction during spermiogenesis in Dpy19l2 KO mouse is defective and leads to sperm DNA damage. Together, these defects explain the poor fertilization potential of DPY19L2

  9. Subcellular localization of phospholipase Cζ in human sperm and its absence in DPY19L2-deficient sperm are consistent with its role in oocyte activation.

    PubMed

    Escoffier, Jessica; Yassine, Sandra; Lee, Hoi Chang; Martinez, Guillaume; Delaroche, Julie; Coutton, Charles; Karaouzène, Thomas; Zouari, Raoudha; Metzler-Guillemain, Catherine; Pernet-Gallay, Karin; Hennebicq, Sylviane; Ray, Pierre F; Fissore, Rafael; Arnoult, Christophe

    2015-02-01

    We recently identified the DPY19L2 gene as the main genetic cause of human globozoospermia (70%) and described that Dpy19l2 knockout (KO) mice faithfully reproduce the human phenotype of globozoospermia making it an excellent model to characterize the molecular physiopathology of globozoospermia. Recent case studies on non-genetically characterized men with globozoospermia showed that phospholipase C, zeta (PLCζ), the sperm factor thought to induce the Ca(2+) oscillations at fertilization, was absent from their sperm, explaining the poor fertilization potential of these spermatozoa. Since 30% of globozoospermic men remain genetically uncharacterized, the absence of PLCζ in DPY19L2 globozoospermic men remains to be formally established. Moreover, the precise localization of PLCζ and the reasons underlying its loss during spermatogenesis in globozoospermic patients are still not understood. Herein, we show that PLCζ is absent, or its presence highly reduced, in human and mouse sperm with DPY19L2-associated globozoospermia. As a consequence, fertilization with sperm from Dpy19l2 KO mice failed to initiate Ca(2+) oscillations and injected oocytes remained arrested at the metaphase II stage, although a few human oocytes injected with DPY19L2-defective sperm showed formation of 2-pronuclei embryos. We report for the first time the subcellular localization of PLCζ in control human sperm, which is along the inner acrosomal membrane and in the perinuclear theca, in the area corresponding to the equatorial region. Because these cellular components are absent in globozoospermic sperm, the loss of PLCζ in globozoospermic sperm is thus consistent and reinforces the role of PLCζ as an oocyte activation factor necessary for oocyte activation. In our companion article, we showed that chromatin compaction during spermiogenesis in Dpy19l2 KO mouse is defective and leads to sperm DNA damage. Together, these defects explain the poor fertilization potential of DPY19L2

  10. Wobble Pairs of the HDV Ribozyme Play Specific Roles in Stabilization of Active Site Dynamics

    PubMed Central

    Sripathi, Kamali N.; Banáš, Pavel; Reblova, Kamila; Šponer, Jiři; Otyepka, Michal

    2015-01-01

    The hepatitis delta virus (HDV) is the only known human pathogen whose genome contains a catalytic RNA motif (ribozyme). The overall architecture of the HDV ribozyme is that of a double-nested pseudoknot, with two GU pairs flanking the active site. Although extensive studies have shown that mutation of either wobble results in decreased catalytic activity, little work has focused on linking these mutations to specific structural effects on catalytic fitness. Here we use molecular dynamics simulations based on an activated structure to probe the active site dynamics as a result of wobble pair mutations. In both wild-type and mutant ribozymes, the in-line fitness of the active site (as a measure of catalytic proficiency) strongly depends on the presence of a C75(N3H3+)N1(O5′) hydrogen bond, which positions C75 as the general acid for the reaction. Our mutational analyses show that each GU wobble supports catalytically fit conformations in distinct ways; the reverse G25U20 wobble promotes high in-line fitness, high occupancy of the C75(N3H3+)G1(O5′) general-acid hydrogen bond and stabilization of the G1U37 wobble, while the G1U37 wobble acts more locally by stabilizing high in-line fitness and the C75(N3H3+)G1(O5′) hydrogen bond. We also find that stable type I A-minor and P1.1 hydrogen bonding above and below the active site, respectively, prevent local structural disorder from spreading and disrupting global conformation. Taken together, our results define specific, often redundant architectural roles for several structural motifs of the HDV ribozyme active site, expanding the known roles of these motifs within all HDV-like ribozymes and other structured RNAs. PMID:25631765

  11. Tuned by metals: the TET peptidase activity is controlled by 3 metal binding sites

    PubMed Central

    Colombo, Matteo; Girard, Eric; Franzetti, Bruno

    2016-01-01

    TET aminopeptidases are dodecameric particles shared in the three life domains involved in various biological processes, from carbon source provider in archaea to eye-pressure regulation in humans. Each subunit contains a dinuclear metal site (M1 and M2) responsible for the enzyme catalytic activity. However, the role of each metal ion is still uncharacterized. Noteworthy, while mesophilic TETs are activated by Mn2+, hyperthermophilic TETs prefers Co2+. Here, by means of anomalous x-ray crystallography and enzyme kinetics measurements of the TET3 aminopeptidase from the hyperthermophilic organism Pyrococcus furiosus (PfTET3), we show that M2 hosts the catalytic activity of the enzyme, while M1 stabilizes the TET3 quaternary structure and controls the active site flexibility in a temperature dependent manner. A new third metal site (M3) was found in the substrate binding pocket, modulating the PfTET3 substrate preferences. These data show that TET activity is tuned by the molecular interplay among three metal sites. PMID:26853450

  12. Human Activities in Natura 2000 Sites: A Highly Diversified Conservation Network

    NASA Astrophysics Data System (ADS)

    Tsiafouli, Maria A.; Apostolopoulou, Evangelia; Mazaris, Antonios D.; Kallimanis, Athanasios S.; Drakou, Evangelia G.; Pantis, John D.

    2013-05-01

    The Natura 2000 network was established across the European Union's (EU) Member States with the aim to conserve biodiversity, while ensuring the sustainability of human activities. However, to what kind and to what extent Natura 2000 sites are subject to human activities and how this varies across Member States remains unspecified. Here, we analyzed 111,269 human activity records from 14,727 protected sites in 20 Member States. The frequency of occurrence of activities differs among countries, with more than 86 % of all sites being subjected to agriculture or forestry. Activities like hunting, fishing, urbanization, transportation, and tourism are more frequently recorded in south European sites than in northern or eastern ones. The observed variations indicate that Natura 2000 networks are highly heterogeneous among EU Member States. Our analysis highlights the importance of agriculture in European landscapes and indicates possible targets for policy interventions at national, European, or "sub-European" level. The strong human presence in the Natura 2000 network throughout Member States, shows that conservation initiatives could succeed only by combining social and ecological sustainability and by ensuring the integration of policies affecting biodiversity.

  13. A Ty1 Reverse Transcriptase Active-Site Aspartate Mutation Blocks Transposition but Not Polymerization†

    PubMed Central

    Uzun, Ozcan; Gabriel, Abram

    2001-01-01

    Reverse transcriptases (RTs) are found in a wide variety of mobile genetic elements including viruses, retrotransposons, and infectious organellar introns. An invariant triad of aspartates is thought to be required for the catalytic function of RTs. We generated RT mutants in the yeast retrotransposon Ty1, changing each of these active-site aspartates to asparagine or glutamate. All but one of the mutants lacked detectable polymerase activity. The novel exception, D211N, retained near wild-type in vitro polymerase activity within virus-like particles but failed to carry out in vivo transposition. For this mutant, minus-strand synthesis is impaired and formation of the plus-strand strong-stop intermediate is eliminated. Intragenic second-site suppressor mutations of the transposition defect map to the RNase H domain of the enzyme. Our results demonstrate that one of the three active-site aspartates in a retrotransposon RT is not catalytically critical. This implies a basic difference in the polymerase active-site geometry of Ty1 and human immunodeficiency virus RT and shows that subtle mutations in one domain can cause dramatic functional effects on a distant domain of the same enzyme. PMID:11413300

  14. DNA binding induces active site conformational change in the human TREX2 3'-exonuclease.

    PubMed

    de Silva, Udesh; Perrino, Fred W; Hollis, Thomas

    2009-04-01

    The TREX enzymes process DNA as the major 3'-->5' exonuclease activity in mammalian cells. TREX2 and TREX1 are members of the DnaQ family of exonucleases and utilize a two metal ion catalytic mechanism of hydrolysis. The structure of the dimeric TREX2 enzyme in complex with single-stranded DNA has revealed binding properties that are distinct from the TREX1 protein. The TREX2 protein undergoes a conformational change in the active site upon DNA binding including ordering of active site residues and a shift of an active site helix. Surprisingly, even when a single monomer binds DNA, both monomers in the dimer undergo the structural rearrangement. From this we have proposed a model for DNA binding and 3' hydrolysis for the TREX2 dimer. The structure also shows how TREX proteins potentially interact with double-stranded DNA and suggest features that might be involved in strand denaturation to provide a single-stranded substrate for the active site. PMID:19321497

  15. Myc-Max heterodimers activate a DEAD box gene and interact with multiple E box-related sites in vivo.

    PubMed Central

    Grandori, C; Mac, J; Siëbelt, F; Ayer, D E; Eisenman, R N

    1996-01-01

    The c-Myc protein is involved in cell proliferation, differentiation and apoptosis though heterodimerization with Max to form a transcriptionally active sequence-specific DNA binding complex. By means of sequential immunoprecipitation of chromatin using anti-Max and anti-Myc antibodies, we have identified a Myc-regulated gene and genomic sites occupied by Myc-Max in vivo. Four of 27 sites recovered by this procedure corresponded to the highest affinity 'canonical' CACGTG sequence. However, the most common in vivo binding sites belonged to the group of 'non-canonical' E box-related binding sites previously identified by in vitro selection. Several of the genomic fragments isolated contained transcribed sequences, including one, MrDb, encoding an evolutionarily conserved RNA helicase of the DEAD box family. The corresponding mRNA was induced following activation of a Myc-estrogen receptor fusion protein (Myc-ER) in the presence of a protein synthesis inhibitor, consistent with this helicase gene being a direct target of Myc-Max. In addition, as for c-Myc, the expression of MrDb is induced upon proliferative stimulation of primary human fibroblasts as well as B cells and down-regulated during terminal differentiation of HL60 leukemia cells. Our results indicate that Myc-Max heterodimers interact in vivo with a specific set of E box-related DNA sequences and that Myc is likely to activate multiple target genes including a highly conserved DEAD box protein. Therefore, Myc may exert its effects on cell behavior through proteins that affect RNA structure and metabolism. Images PMID:8861962

  16. A facile reflux procedure to increase active surface sites form highly active and durable supported palladium@platinum bimetallic nanodendrites

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Li, Yingjun; Liu, Baocang; Xu, Guangran; Zhang, Geng; Zhao, Qi; Zhang, Jun

    2015-11-01

    A series of well-dispersed bimetallic Pd@Pt nanodendrites uniformly supported on XC-72 carbon black are fabricated by using different capping agents. These capping agents are essential for the branched morphology control. However, the surfactant adsorbed on the nanodendrites surface blocks the access of reactant molecules to the active surface sites, and the catalytic activities of these bimetallic nanodendrites are significantly restricted. Herein, a facile reflux procedure to effectively remove the capping agent molecules without significantly affecting their sizes is reported for activating supported nanocatalysts. More significantly, the structure and morphology of the nanodendrites can also be retained, enhancing the numbers of active surface sites, catalytic activity and stability toward methanol and ethanol electro-oxidation reactions. The as-obtained hot water reflux-treated Pd@Pt/C catalyst manifests superior catalytic activity and stability both in terms of surface and mass specific activities, as compared to the untreated catalysts and the commercial Pt/C and Pd/C catalysts. We anticipate that this effective and facile removal method has more general applicability to highly active nanocatalysts prepared with various surfactants, and should lead to improvements in environmental protection and energy production.

  17. Role of methionine in the active site of alpha-galactosidase from Trichoderma reesei.

    PubMed Central

    Kachurin, A M; Golubev, A M; Geisow, M M; Veselkina, O S; Isaeva-Ivanova, L S; Neustroev, K N

    1995-01-01

    alpha-Galactosidase from Trichoderma reesei when treated with H2O2 shows a 12-fold increase in activity towards p-nitrophenyl alpha-D-galactopyranoside. A similar effect is produced by the treatment of alpha-galactosidase with other non-specific oxidants: NaIO4, KMnO4 and K4S4O8. In addition to the increase in activity, the Michaelis constant rises from 0.2 to 1.4 mM, the temperature coefficient decreases by a factor of 1.5 and the pH-activity curve falls off sharply with increasing pH. Galactose (a competitive inhibitor of alpha-galactosidase; Ki 0.09 mM for the native enzyme at pH 4.4) effectively inhibits oxidative activation of the enzyme, because the observed activity changes are related to oxidation of the catalytically important methionine in the active site. NMR measurements and amino acid analysis show that oxidation to methionine sulphoxide of one of five methionines is sufficient to activate alpha-galactosidase. Binding of galactose prevents this. Oxidative activation does not lead to conversion of other H2O2-sensitive amino acid residues, such as histidine, tyrosine, tryptophan and cysteine. The catalytically important cysteine thiol group is quantitatively titrated after protein oxidative activation. Further oxidation of methionines (up to four of five residues) can be achieved by increasing the oxidation time and/or by prior denaturation of the protein. Obviously, a methionine located in the active site of alpha-galactosidase is more accessible. The oxidative-activation phenomenon can be explained by a conformational change in the active site as a result of conversion of non-polar methionine into polar methionine sulphoxide. Images Figure 10 PMID:8948456

  18. Structure of inorganic pyrophosphatase from Staphylococcus aureus reveals conformational flexibility of the active site.

    PubMed

    Gajadeera, Chathurada S; Zhang, Xinyi; Wei, Yinan; Tsodikov, Oleg V

    2015-02-01

    Cytoplasmic inorganic pyrophosphatase (PPiase) is an enzyme essential for survival of organisms, from bacteria to human. PPiases are divided into two structurally distinct families: family I PPiases are Mg(2+)-dependent and present in most archaea, eukaryotes and prokaryotes, whereas the relatively less understood family II PPiases are Mn(2+)-dependent and present only in some archaea, bacteria and primitive eukaryotes. Staphylococcus aureus (SA), a dangerous pathogen and a frequent cause of hospital infections, contains a family II PPiase (PpaC), which is an attractive potential target for development of novel antibacterial agents. We determined a crystal structure of SA PpaC in complex with catalytic Mn(2+) at 2.1Å resolution. The active site contains two catalytic Mn(2+) binding sites, each half-occupied, reconciling the previously observed 1:1 Mn(2+):enzyme stoichiometry with the presence of two divalent metal ion sites in the apo-enzyme. Unexpectedly, despite the absence of the substrate or products in the active site, the two domains of SA PpaC form a closed active site, a conformation observed in structures of other family II PPiases only in complex with substrate or product mimics. A region spanning residues 295-298, which contains a conserved substrate binding RKK motif, is flipped out of the active site, an unprecedented conformation for a PPiase. Because the mutant of Arg295 to an alanine is devoid of activity, this loop likely undergoes an induced-fit conformational change upon substrate binding and product dissociation. This closed conformation of SA PPiase may serve as an attractive target for rational design of inhibitors of this enzyme. PMID:25576794

  19. NMR structure of the active conformation of the Varkud satellite ribozyme cleavage site

    PubMed Central

    Hoffmann, Bernd; Mitchell, G. Thomas; Gendron, Patrick; Major, François; Andersen, Angela A.; Collins, Richard A.; Legault, Pascale

    2003-01-01

    Substrate cleavage by the Neurospora Varkud satellite (VS) ribozyme involves a structural change in the stem-loop I substrate from an inactive to an active conformation. We have determined the NMR solution structure of a mutant stem-loop I that mimics the active conformation of the cleavage site internal loop. This structure shares many similarities, but also significant differences, with the previously determined structures of the inactive internal loop. The active internal loop displays different base-pairing interactions and forms a novel RNA fold composed exclusively of sheared G-A base pairs. From chemical-shift mapping we identified two Mg2+ binding sites in the active internal loop. One of the Mg2+ binding sites forms in the active but not the inactive conformation of the internal loop and is likely important for catalysis. Using the structure comparison program mc-search, we identified the active internal loop fold in other RNA structures. In Thermus thermophilus 16S rRNA, this RNA fold is directly involved in a long-range tertiary interaction. An analogous tertiary interaction may form between the active internal loop of the substrate and the catalytic domain of the VS ribozyme. The combination of NMR and bioinformatic approaches presented here has identified a novel RNA fold and provides insights into the structural basis of catalytic function in the Neurospora VS ribozyme. PMID:12782785

  20. Inactivation of nitroalkane oxidase upon mutation of the active site base and rescue with a deprotonated substrate.

    PubMed

    Valley, Michael P; Fitzpatrick, Paul F

    2003-07-23

    Mutation of Asp402 in nitroalkane oxidase to Asn or Ala inactivates the enzyme with neutral nitroethane as substrate, but the activity can be rescued with the nitroethane anion. The V/K values of the D402N and D402A enzymes with the nitroethane anion are independent of pH, whereas the V/K values of the wild-type and D402E enzymes are pH dependent with both the protonated and the deprotonated forms of nitroethane. Moreover, although the V/K value of the D402E enzyme with neutral nitroethane is 20-fold less than that of the wild-type enzyme, there is only a 2-fold difference in the V/K values with the nitroethane anion. These results are fully consistent with a primary role for Asp402 as the active site base in nitroalkane oxidase which abstracts the substrate alpha-proton. PMID:12862464

  1. Stabilization of soils contaminated with explosives and metals from the ammunition demolition activity area and miscellaneous sites at the Umatilla Depot

    SciTech Connect

    Lear, P.R.; Gemarr, D.

    1997-12-31

    The US Army Umatilla Depot (UMD) was established as an ordnance depot in 1941 to store, preserve, and perform minor maintenance on conventional and chemical munitions. From the 1940`s until the present, UMD operated periodically at the 32 miscellaneous sites identified as OU-5. OU-4 consists of twenty sites within the Ammunition Demolition Activity Area. Typical activities conducted at these sites consisted of operations to burn, detonate, and otherwise dispose of ordnance, munitions casings, and other solids wastes. Five sites were selected for remedial action. The remediation contaminants of concern for the sites encompassed both metallic and non-metallic elements and both inorganic and organic compounds. The remedial action selected for the contaminated soil at these sites was stabilization/solidification (S/S). The site remediation activities for the five sites were performed by OHM Remediation Services Corp. (OHM) under the supervision of the US Army Corps of Engineers (USACE) Seattle District. The remedial action included treatability mix design testing, mobilization and field setup, soil excavation and processing, and S/S treatment. Stabilized soil samples were collected as grab samples from the pugmill discharge conveyor at a rate of every 75 tons of soil feed, corresponding to an individual production lot. None of the 437 production lots failed to meet the UCS requirement of 50 psi, however, 31 (7%) of the 437 lots failed for either TCLP-leachable metals or explosives. With one exception, all production lots which failed were due to exceedances of the TCLP-leachable explosives requirements. Of these 30 lots, 22 lots were from the OU-5 metals sites and were not expected to contain significant amounts of explosives. The areas in the landfill corresponding to these lots were excavated and the material reprocessed.

  2. Consistent model driven architecture

    NASA Astrophysics Data System (ADS)

    Niepostyn, Stanisław J.

    2015-09-01

    The goal of the MDA is to produce software systems from abstract models in a way where human interaction is restricted to a minimum. These abstract models are based on the UML language. However, the semantics of UML models is defined in a natural language. Subsequently the verification of consistency of these diagrams is needed in order to identify errors in requirements at the early stage of the development process. The verification of consistency is difficult due to a semi-formal nature of UML diagrams. We propose automatic verification of consistency of the series of UML diagrams originating from abstract models implemented with our consistency rules. This Consistent Model Driven Architecture approach enables us to generate automatically complete workflow applications from consistent and complete models developed from abstract models (e.g. Business Context Diagram). Therefore, our method can be used to check practicability (feasibility) of software architecture models.

  3. Immobilized low-activity waste site borehole 299-E17-21

    SciTech Connect

    Reidel, S.P.; Reynolds, K.D.; Horton, D.G.

    1998-08-01

    The Tank Waste Remediation System (TWRS) is the group at the Hanford Site responsible for the safe underground storage of liquid waste from previous Hanford Site operations, the storage and disposal of immobilized tank waste, and closure of underground tanks. The current plan is to dispose of immobilized low-activity tank waste (ILAW) in new facilities in the southcentral part of 200-East Area and in four existing vaults along the east side of 200-East Area. Boreholes 299-E17-21, B8501, and B8502 were drilled at the southwest corner of the ILAW site in support of the Performance Assessment activities for the disposal options. This report summarizes the initial geologic findings, field tests conducted on those boreholes, and ongoing studies. One deep (480 feet) borehole and two shallow (50 feet) boreholes were drilled at the southwest corner of the ILAW site. The primary factor dictating the location of the boreholes was their characterization function with respect to developing the geohydrologic model for the site and satisfying associated Data Quality Objectives. The deep borehole was drilled to characterize subsurface conditions beneath the ILAW site, and two shallow boreholes were drilled to support an ongoing environmental tracer study. The tracer study will supply information to the Performance Assessment. All the boreholes provide data on the vadose zone and saturated zone in a previously uncharacterized area.

  4. Active site diversification of P450cam with indole generates catalysts for benzylic oxidation reactions

    PubMed Central

    Herter, Susanne; Kranz, David C; Turner, Nicholas J

    2015-01-01

    Summary Cytochrome P450 monooxygenases are useful biocatalysts for C–H activation, and there is a need to expand the range of these enzymes beyond what is naturally available. A panel of 93 variants of active self-sufficient P450cam[Tyr96Phe]-RhFRed fusion enzymes with a broad diversity in active site amino acids was developed by screening a large mutant library of 16,500 clones using a simple, highly sensitive colony-based colorimetric screen against indole. These mutants showed distinct fingerprints of activity not only when screened in oxidations of substituted indoles but also for unrelated oxidations such as benzylic hydroxylations. PMID:26664590

  5. Coordination of software-development activities among sites that are geographically separated

    SciTech Connect

    Truett, L.F.; Loftis, J.P.; Shipe, P.C.; Faby, E.Z.; Grubb, J.W.

    1993-06-29

    The Department of Defense is sponsoring development of a centralized, integrated database, which will be a repository international surface cargo movement data. Scheduled for implementation surface in early 1994, the system will include a relational database management system, processing modules, and complex communication components. Four geographically separated sites are involved with development. Design and development of a major computer system is never simple, but when design and development occur at multiple sites, the problems are compounded, especially when the timeframe for project completion is extremely tight. Issues such as identical developmental platforms and communications strategies must be addressed. A design plan must be strictly followed to ensure consistency and to coordinate integration of modules developed at different sites.

  6. Molecular dioxygen enters the active site of 12/15-lipoxygenase via dynamic oxygen access channels.

    PubMed

    Saam, Jan; Ivanov, Igor; Walther, Matthias; Holzhütter, Hermann-Georg; Kuhn, Hartmut

    2007-08-14

    Cells contain numerous enzymes that use molecular oxygen for their reactions. Often, their active sites are buried deeply inside the protein, which raises the question whether there are specific access channels guiding oxygen to the site of catalysis. Choosing 12/15-lipoxygenase as a typical example for such oxygen-dependent enzymes, we determined the oxygen distribution within the protein and defined potential routes for oxygen access. For this purpose, we have applied an integrated strategy of structural modeling, molecular dynamics simulations, site-directed mutagenesis, and kinetic measurements. First, we computed the 3D free-energy distribution for oxygen, which led to identification of four oxygen channels in the protein. All channels connect the protein surface with a region of high oxygen affinity at the active site. This region is localized opposite to the nonheme iron providing a structural explanation for the reaction specificity of this lipoxygenase isoform. The catalytically most relevant path can be obstructed by L367F exchange, which leads to a strongly increased Michaelis constant for oxygen. The blocking mechanism is explained in detail by reordering the hydrogen-bonding network of water molecules. Our results provide strong evidence that the main route for oxygen access to the active site of the enzyme follows a channel formed by transiently interconnected cavities whereby the opening and closure are governed by side chain dynamics. PMID:17675410

  7. CO Oxidation on Au/TiO2: Condition-Dependent Active Sites and Mechanistic Pathways.

    PubMed

    Wang, Yang-Gang; Cantu, David C; Lee, Mal-Soon; Li, Jun; Glezakou, Vassiliki-Alexandra; Rousseau, Roger

    2016-08-24

    We present results of ab initio electronic structure and molecular dynamics simulations (AIMD), as well as a microkinetic model of CO oxidation catalyzed by TiO2 supported Au nanocatalysts. A coverage-dependent microkinetic analysis, based on energetics obtained with density functional methods, shows that the dominant kinetic pathway, activated oxygen species, and catalytic active sites are all strongly depended on both temperature and oxygen partial pressure. Under oxidizing conditions and T < 400 K, the prevalent pathway involves a dynamic single atom catalytic mechanism. This reaction is catalyzed by a transient Au-CO species that migrates from the Au-cluster onto a surface oxygen adatom. It subsequently reacts with the TiO2 support via a Mars van Krevelen mechanism to form CO2 and finally the Au atom reintegrates back into the gold cluster to complete the catalytic cycle. At 300 ≤ T ≤ 600 K, oxygen-bound single Oad-Au(+)-CO sites and the perimeter Au-sites of the nanoparticle work in tandem to optimally catalyze the reaction. Above 600 K, a variety of alternate pathways associated with both single-atom and the perimeter sites of the Au nanoparticle are found to be active. Under low oxygen pressures, Oad-Au(+)-CO species can be a source of catalyst deactivation and the dominant pathway involves only Au-perimeter sites. A detailed comparison of the current model and the existing literature resolves many apparent inconsistencies in the mechanistic interpretations. PMID:27480512

  8. Hydrogen Production Catalyzed by Bidirectional, Biomimetic Models of the [FeFe]-Hydrogenase Active Site.

    PubMed

    Lansing, James C; Camara, James M; Gray, Danielle E; Rauchfuss, Thomas B

    2014-10-27

    Active site mimics of [FeFe]-hydrogenase are shown to be bidirectional catalysts, producing H2 upon treatment with protons and reducing equivalents. This reactivity complements the previously reported oxidation of H2 by these same catalysts in the presence of oxidants. The complex Fe2(adt(Bn))(CO)3(dppv)(PFc*(Et2) ) ([1](0); adt(Bn) = (SCH2)2NBn, dppv = cis-1,2-bis(diphenylphosphino)ethylene, PFc*(Et2) = Et2PCH2C5Me4FeCp*) reacts with excess [H(OEt2)2]BAr(F) 4 (BAr(F) 4 (-) = B(C6H3-3,5-(CF3)2)4 (-)) to give ∼0.5 equiv of H2 and [Fe2(adt(Bn)H)(CO)3(dppv)(PFc*(Et2) )](2+) ([1H](2+)). The species [1H](2+) consists of a ferrocenium ligand, an N-protonated amine, and an Fe(I)Fe(I) core. In the presence of additional reducing equivalents in the form of decamethylferrocene (Fc*), hydrogen evolution is catalytic, albeit slow. The related catalyst Fe2(adt(Bn))(CO)3(dppv)(PMe3) (3) behaves similarly in the presence of Fc*, except that in the absence of excess reducing agent it converts to the catalytically inactive μ-hydride derivative [μ-H3](+). Replacement of the adt in [1](0) with propanedithiolate (pdt) results in a catalytically inactive complex. In the course of synthesizing [FeFe]-hydrogenase mimics, new routes to ferrocenylphosphine ligands and nonamethylferrocene were developed. PMID:25364093

  9. Revealing the Functional States in the Active Site of BLUF Photoreceptors from Electrochromic Shift Calculations

    PubMed Central

    2014-01-01

    Photoexcitation with blue light of the flavin chromophore in BLUF photoreceptors induces a switch into a metastable signaling state that is characterized by a red-shifted absorption maximum. The red shift is due to a rearrangement in the hydrogen bond pattern around Gln63 located in the immediate proximity of the isoalloxazine ring system of the chromophore. There is a long-lasting controversy between two structural models, named Q63A and Q63J in the literature, on the local conformation of the residues Gln63 and Tyr21 in the dark state of the photoreceptor. As regards the mechanistic details of the light-activation mechanism, rotation of Gln63 is opposed by tautomerism in the Q63A and Q63J models, respectively. We provide a structure-based simulation of electrochromic shifts of the flavin chromophore in the wild type and in various site-directed mutants. The excellent overall agreement between experimental and computed data allows us to evaluate the two structural models. Compelling evidence is obtained that the Q63A model is incorrect, whereas the Q63J is fully consistent with the present computations. Finally, we confirm independently that a keto–enol tautomerization of the glutamine at position 63, which was proposed as molecular mechanism for the transition between the dark and the light-adapted state, explains the measured 10 to 15 nm red shift in flavin absorption between these two states of the protein. We believe that the accurateness of our results provides evidence that the BLUF photoreceptors absorption is fine-tuned through electrostatic interactions between the chromophore and the protein matrix, and finally that the simplicity of our theoretical model is advantageous as regards easy reproducibility and further extensions. PMID:25153778

  10. Hydrogen Production Catalyzed by Bidirectional, Biomimetic Models of the [FeFe]-Hydrogenase Active Site

    PubMed Central

    2015-01-01

    Active site mimics of [FeFe]-hydrogenase are shown to be bidirectional catalysts, producing H2 upon treatment with protons and reducing equivalents. This reactivity complements the previously reported oxidation of H2 by these same catalysts in the presence of oxidants. The complex Fe2(adtBn)(CO)3(dppv)(PFc*Et2) ([1]0; adtBn = (SCH2)2NBn, dppv = cis-1,2-bis(diphenylphosphino)ethylene, PFc*Et2 = Et2PCH2C5Me4FeCp*) reacts with excess [H(OEt2)2]BArF4 (BArF4– = B(C6H3-3,5-(CF3)2)4–) to give ∼0.5 equiv of H2 and [Fe2(adtBnH)(CO)3(dppv)(PFc*Et2)]2+ ([1H]2+). The species [1H]2+ consists of a ferrocenium ligand, an N-protonated amine, and an FeIFeI core. In the presence of additional reducing equivalents in the form of decamethylferrocene (Fc*), hydrogen evolution is catalytic, albeit slow. The related catalyst Fe2(adtBn)(CO)3(dppv)(PMe3) (3) behaves similarly in the presence of Fc*, except that in the absence of excess reducing agent it converts to the catalytically inactive μ-hydride derivative [μ-H3]+. Replacement of the adt in [1]0 with propanedithiolate (pdt) results in a catalytically inactive complex. In the course of synthesizing [FeFe]-hydrogenase mimics, new routes to ferrocenylphosphine ligands and nonamethylferrocene were developed. PMID:25364093

  11. Investigation of the active site and the conformational stability of nucleoside diphosphate kinase by site-directed mutagenesis.

    PubMed

    Tepper, A D; Dammann, H; Bominaar, A A; Véron, M

    1994-12-23

    Nucleoside-diphosphate kinase (EC 2.7.4.6) catalyzes phosphate exchange between nucleoside triphosphates and nucleoside diphosphates. Its 17 kDa subunits are highly conserved throughout evolution in both sequence and tertiary structure. Using site-directed mutagenesis we investigated the function of 8 amino acids (Lys16, Tyr56, Arg92, Thr98, Arg109, Asn119, Ser124, and Glu133) that are totally conserved among all nucleoside diphosphate kinases known to date. The mutant proteins all show decreased specific activity and support roles for these residues in catalysis, substrate binding, or both, as was previously proposed on the basis of the x-ray structure (Moréra, S., Lascu, I., Dumas, C., LeBras, G., Briozzo, P., Véron, M., and Janin, J. (1994) Biochemistry 33, 459-467). Furthermore, residues Lys16, Arg109, and Asn 119 were identified to play important roles in conformational stability or subunit interactions. We show that Lys16 and Asn119 form a rigid structure that is important for enzymatic function and that Arg109, known to interact with the phosphate moiety of the substrate, also plays an important role in subunit association. The dual roles of Lys16, Arg109, and Asn119 in both substrate binding and subunit assembly provide further evidence for a functional coupling between catalytic activity and quaternary structure in nucleoside diphosphate kinase. PMID:7798215

  12. Directing reaction pathways by catalyst active-site selection using self-assembled monolayers.

    PubMed

    Pang, Simon H; Schoenbaum, Carolyn A; Schwartz, Daniel K; Medlin, J Will

    2013-01-01

    One key route for controlling reaction selectivity in heterogeneous catalysis is to prepare catalysts that exhibit only specific types of sites required for desired product formation. Here we show that alkanethiolate self-assembled monolayers with varying surface densities can be used to tune selectivity to desired hydrogenation and hydrodeoxygenation products during the reaction of furfural on supported palladium catalysts. Vibrational spectroscopic studies demonstrate that the selectivity improvement is achieved by controlling the availability of specific sites for the hydrogenation of furfural on supported palladium catalysts through the selection of an appropriate alkanethiolate. Increasing self-assembled monolayer density by controlling the steric bulk of the organic tail ligand restricts adsorption on terrace sites and dramatically increases selectivity to desired products furfuryl alcohol and methylfuran. This technique of active-site selection simultaneously serves both to enhance selectivity and provide insight into the reaction mechanism. PMID:24025780

  13. Lessons learned from DOE site culture change activities: Implications for waste management organizations

    SciTech Connect

    Kurstedt, H.A. Jr.; Howard, E.M.; Doss, A.R.; Mallak, L.A.

    1991-01-01

    Management Systems Laboratories (MSL) has worked with the US Department of Energy (DOE) and several of its contractors as they understand and assess the DOE culture change and change the contractor culture to serve DOE's needs. Primarily, these contractors have been those whose responsibilities include starting up and operating weapons materials facilities. The number and scope of these activities have escalated and expanded to contractors at DOE sites such as Westinghouse at the Savannah River Site (SRS) in Aiken, South Carolina, EG G at the Rocky Flats Plant (RFP) in Golden, Colorado, and Westinghouse at the Feed Materials Processing Center (FMPC) in Fernald, Ohio. The point of this paper is not to compare or contrast the relative merit of one site over another. It is to show the lessons, good and bad, and use and communicate those lessons, especially those lessons transferable to other sites in similar situations. 8 refs., 1 fig.

  14. A three-dimensional model of mammalian tyrosinase active site accounting for loss of function mutations.

    PubMed

    Schweikardt, Thorsten; Olivares, Concepción; Solano, Francisco; Jaenicke, Elmar; García-Borrón, José Carlos; Decker, Heinz

    2007-10-01

    Tyrosinases are the first and rate-limiting enzymes in the synthesis of melanin pigments responsible for colouring hair, skin and eyes. Mutation of tyrosinases often decreases melanin production resulting in albinism, but the effects are not always understood at the molecular level. Homology modelling of mouse tyrosinase based on recently published crystal structures of non-mammalian tyrosinases provides an active site model accounting for loss-of-function mutations. According to the model, the copper-binding histidines are located in a helix bundle comprising four densely packed helices. A loop containing residues M374, S375 and V377 connects the CuA and CuB centres, with the peptide oxygens of M374 and V377 serving as hydrogen acceptors for the NH-groups of the imidazole rings of the copper-binding His367 and His180. Therefore, this loop is essential for the stability of the active site architecture. A double substitution (374)MS(375) --> (374)GG(375) or a single M374G mutation lead to a local perturbation of the protein matrix at the active site affecting the orientation of the H367 side chain, that may be unable to bind CuB reliably, resulting in loss of activity. The model also accounts for loss of function in two naturally occurring albino mutations, S380P and V393F. The hydroxyl group in S380 contributes to the correct orientation of M374, and the substitution of V393 for a bulkier phenylalanine sterically impedes correct side chain packing at the active site. Therefore, our model explains the mechanistic necessity for conservation of not only active site histidines but also adjacent amino acids in tyrosinase. PMID:17850513

  15. Recent Experience Using Active Love Wave Techniques to Characterize Seismographic Station Sites

    NASA Astrophysics Data System (ADS)

    Martin, A. J.; Yong, A.; Salomone, L.

    2014-12-01

    Active-source Love waves recorded by the multi-channel analysis of surface wave (MASLW) technique were recently analyzed in two site characterization projects. Between 2010 and 2011, the 2009 American Recovery and Reinvestment Act (ARRA) funded GEOVision to conduct geophysical investigations at 189 seismographic stations—185 in California and 4 in the Central Eastern U.S. (CEUS). The original project plan was to utilize active and passive Rayleigh wave-based techniques to obtain shear-wave velocity (VS) profiles to a minimum depth of 30 m and the time-averaged VS of the upper 30 meters (VS30). Early in the investigation it became evident that Rayleigh wave techniques, such as multi-channel analysis of surface waves (MASRW), were not effective at characterizing all sites. Shear-wave seismic refraction and MASLW techniques were therefore applied. The MASLW technique was deployed at a total of 38 sites, in addition to other methods, and used as the primary technique to characterize 22 sites, 5 of which were also characterized using Rayleigh wave techniques. In 2012, the Electric Power Research Institute funded characterization of 33 CEUS station sites. Based on experience from the ARRA investigation, both MASRW and MASLW data were acquired by GEOVision at 24 CEUS sites—the remaining 9 sites and 2 overlapping sites were characterized by University of Texas, Austin. Of the 24 sites characterized by GEOVision, 16 were characterized using MASLW data, 4 using both MASLW and MASRW data and 4 using MASRW data. Love wave techniques were often found to perform better, or at least yield phase velocity data that could be more readily modeled using the fundamental mode assumption, at shallow rock sites, sites with steep velocity gradients, and, sites with a thin, low velocity, surficial soil layer overlying stiffer sediments. These types of velocity structure often excite dominant higher modes in Rayleigh wave data, but not in Love wave data. At such sites, it may be possible

  16. Thiolactomycin inhibits D-aspartate oxidase: a novel approach to probing the active site environment.

    PubMed

    Katane, Masumi; Saitoh, Yasuaki; Hanai, Toshihiko; Sekine, Masae; Furuchi, Takemitsu; Koyama, Nobuhiro; Nakagome, Izumi; Tomoda, Hiroshi; Hirono, Shuichi; Homma, Hiroshi

    2010-10-01

    D-Aspartate oxidase (DDO) and D-amino acid oxidase (DAO) are flavin adenine dinucleotide (FAD)-containing flavoproteins that catalyze the oxidative deamination of D-amino acids. While several functionally and structurally important amino acid residues have been identified in the DAO protein, little is known about the structure-function relationships of DDO. In the search for a potent DDO inhibitor as a novel tool for investigating its structure-function relationships, a large number of biologically active compounds of microbial origin were screened for their ability to inhibit the enzymatic activity of mouse DDO. We discovered several compounds that inhibited the activity of mouse DDO, and one of the compounds identified, thiolactomycin (TLM), was then characterized and evaluated as a novel DDO inhibitor. TLM reversibly inhibited the activity of mouse DDO with a mixed type of inhibition more efficiently than meso-tartrate and malonate, known competitive inhibitors of mammalian DDOs. The selectivity of TLM was investigated using various DDOs and DAOs, and it was found that TLM inhibits not only DDO, but also DAO. Further experiments with apoenzymes of DDO and DAO revealed that TLM is most likely to inhibit the activities of DDO and DAO by competition with both the substrate and the coenzyme, FAD. Structural models of mouse DDO/TLM complexes supported this finding. The binding mode of TLM to DDO was validated further by site-directed mutagenesis of an active site residue, Arg-237. Collectively, our findings show that TLM is a novel, active site-directed DDO inhibitor that will be useful for elucidating the molecular details of the active site environment of DDO. PMID:20603179

  17. A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol

    PubMed Central

    Woertink, Julia S.; Smeets, Pieter J.; Groothaert, Marijke H.; Vance, Michael A.; Sels, Bert F.; Schoonheydt, Robert A.; Solomon, Edward I.

    2009-01-01

    Driven by the depletion of crude oil, the direct oxidation of methane to methanol has been of considerable interest. Promising low-temperature activity of an oxygen-activated zeolite, Cu-ZSM-5, has recently been reported in this selective oxidation and the active site in this reaction correlates with an absorption feature at 22,700 cm−1. In the present study, this absorption band is used to selectively resonance enhance Raman vibrations of this active site. 18O2 labeling experiments allow definitive assignment of the observed vibrations and exclude all previously characterized copper-oxygen species for the active site. In combination with DFT and normal coordinate analysis calculations, the oxygen activated Cu core is uniquely defined as a bent mono-(μ-oxo)dicupric site. Spectroscopically validated electronic structure calculations show polarization of the low-lying singly-occupied molecular orbital of the [Cu2O]2+ core, which is directed into the zeolite channel, upon approach of CH4. This induces significant oxyl character into the bridging O atom leading to a low transition state energy consistent with experiment and explains why the bent mono-(μ-oxo)dicupric core is highly activated for H atom abstraction from CH4. The oxygen intermediate of Cu-ZSM-5 is now the most well defined species active in the methane monooxygenase reaction. PMID:19864626

  18. Archaeological Activity Report: Post-Review Discoveries Within 45BN431 at Solid Waste Site 128-F-2

    SciTech Connect

    T. E. Marceau; J. J. Sharpe

    2006-12-21

    During monitoring of remedial activities at Solid Waste Site 128-F-2 on August 19, 2005, a concentration of mussel shell was discovered in the west wall of a trench in the northen section of the waste site.

  19. A Unique Chitinase with Dual Active Sites and Triple Substrate Binding Sites from the Hyperthermophilic Archaeon Pyrococcus kodakaraensis KOD1

    PubMed Central

    Tanaka, Takeshi; Fujiwara, Shinsuke; Nishikori, Shingo; Fukui, Toshiaki; Takagi, Masahiro; Imanaka, Tadayuki

    1999-01-01

    We have found that the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 produces an extracellular chitinase. The gene encoding the chitinase (chiA) was cloned and sequenced. The chiA gene was found to be composed of 3,645 nucleotides, encoding a protein (1,215 amino acids) with a molecular mass of 134,259 Da, which is the largest among known chitinases. Sequence analysis indicates that ChiA is divided into two distinct regions with respective active sites. The N-terminal and C-terminal regions show sequence similarity with chitinase A1 from Bacillus circulans WL-12 and chitinase from Streptomyces erythraeus (ATCC 11635), respectively. Furthermore, ChiA possesses unique chitin binding domains (CBDs) (CBD1, CBD2, and CBD3) which show sequence similarity with cellulose binding domains of various cellulases. CBD1 was classified into the group of family V type cellulose binding domains. In contrast, CBD2 and CBD3 were classified into that of the family II type. chiA was expressed in Escherichia coli cells, and the recombinant protein was purified to homogeneity. The optimal temperature and pH for chitinase activity were found to be 85°C and 5.0, respectively. Results of thin-layer chromatography analysis and activity measurements with fluorescent substrates suggest that the enzyme is an endo-type enzyme which produces a chitobiose as a major end product. Various deletion mutants were constructed, and analyses of their enzyme characteristics revealed that both the N-terminal and C-terminal halves are independently functional as chitinases and that CBDs play an important role in insoluble chitin binding and hydrolysis. Deletion mutants which contain the C-terminal half showed higher thermostability than did N-terminal-half mutants and wild-type ChiA. PMID:10583986

  20. Active sites residues of beef liver carnitine octanoyltransferase (COT) and carnitine palmitoyltransferase (CPT-II).

    PubMed Central

    Nic a'Bháird, N; Yankovskaya, V; Ramsay, R R

    1998-01-01

    The carnitine acyltransferases which catalyse the reversible transfer of fatty acyl groups between carnitine and coenzyme A have been proposed to contain a catalytic histidine. Here, the chemical reactivity of active site groups has been used to demonstrate differences between the active sites of beef liver carnitine octanoyltransferase (COT) and carnitine palmitoyltransferase-II (CPT-II). Treatment of CPT-II with the histidine-selective reagent, diethyl pyrocarbonate (DEPC), resulted in simple linear pseudo-first-order kinetics. The reversal of the inhibition by hydroxylamine and the pKa (7.1) of the modified residue indicated that the residue was a histidine. The order of the inactivation kinetics showed that 1mol of histidine was modified per mol of CPT-II.When COT was treated with DEPC the kinetics of inhibition were biphasic with an initial rapid loss of activity followed by a slower loss of activity. The residue reacting in the faster phase of inhibition was not a histidine but possibly a serine. The modification of this residue did not lead to complete loss of activity suggesting that a direct role in catalysis is unlikely. It was deduced that the residue modified by DEPC in the slower phase was a lysine and indeed fluorodinitrobenzene (FDNB) inactivated COT with linear pseudo-first-order kinetics. The COT peptide containing the FDNB-labelled lysine was isolated and sequenced. Alignment of this sequence placed it 10 amino acids downstream of the putative active-site histidine. PMID:9480926

  1. Identification of active sites in gold-catalyzed hydrogenation of acrolein.

    PubMed

    Mohr, Christian; Hofmeister, Herbert; Radnik, Jörg; Claus, Peter

    2003-02-19

    The active sites of supported gold catalysts, favoring the adsorption of C=O groups of acrolein and subsequent reaction to allyl alcohol, have been identified as edges of gold nanoparticles. After our recent finding that this reaction preferentially occurs on single crystalline particles rather than multiply twinned ones, this paper reports on a new approach to distinguish different features of the gold particle morphology. Elucidation of the active site issue cannot be simply done by varying the size of gold particles, since the effects of faceting and multiply twinned particles may interfere. Therefore, modification of the gold particle surface by indium has been used to vary the active site characteristics of a suitable catalyst, and a selective decoration of gold particle faces has been observed, leaving edges free. This is in contradiction to theoretical predictions, suggesting a preferred occupation of the low-coordinated edges of the gold particles. On the bimetallic catalyst, the desired allyl alcohol is the main product (selectivity 63%; temperature 593 K, total pressure p(total) = 2 MPa). From the experimentally proven correlation between surface structure and catalytic behavior, the edges of single crystalline gold particles have been identified as active sites for the preferred C=O hydrogenation. PMID:12580618

  2. Strategies and Activities for Using Local Communities as Environmental Education Sites.

    ERIC Educational Resources Information Center

    Roth, Charles E.; Lockwood, Linda G.

    Presented are over 100 environmental education activities which use the local community for a learning site and resource. These lessons are grouped under seven topical headings: (1) biological neighbors, (2) physical environs, (3) built environs, (4) social environs, (5) understanding ourselves, (6) influencing change, and (7) improvement and…

  3. 77 FR 5830 - Commercial Wind Leasing and Site Assessment Activities on the Atlantic Outer Continental Shelf...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... FR 30,616) of the EA for Issuance of Leases for Wind Resource Data Collection on the Outer... (NOA) in the Federal Register (72 FR 62,672) of the Programmatic EIS for Alternative Energy Development... Bureau of Ocean Energy Management Commercial Wind Leasing and Site Assessment Activities on the...

  4. 40 CFR 35.6260 - Combining Cooperative Agreement sites and activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Combining Cooperative Agreement sites and activities. 35.6260 Section 35.6260 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Contracts for Superfund Response Actions Combining Cooperative Agreements § 35.6260 Combining...

  5. Organized Agents: Canadian Teacher Unions as Alternative Sites for Social Justice Activism

    ERIC Educational Resources Information Center

    Rottmann, Cindy

    2008-01-01

    Historically teachers' federations have been some of the major organizational sites for social justice leadership in K-12 public education. Despite this history of activism, social justice teacher unionism remains a relatively underdeveloped concept. This article merges four philosophical conceptions of social justice in education: liberal…

  6. Active site electrostatics protect genome integrity by blocking abortive hydrolysis during DNA recombination

    PubMed Central

    Ma, Chien-Hui; Rowley, Paul A; Macieszak, Anna; Guga, Piotr; Jayaram, Makkuni

    2009-01-01

    Water, acting as a rogue nucleophile, can disrupt transesterification steps of important phosphoryl transfer reactions in DNA and RNA. We have unveiled this risk, and identified safeguards instituted against it, during strand cleavage and joining by the tyrosine site-specific recombinase Flp. Strand joining is threatened by a latent Flp endonuclease activity (type I) towards the 3′-phosphotyrosyl intermediate resulting from strand cleavage. This risk is not alleviated by phosphate electrostatics; neutralizing the negative charge on the scissile phosphate through methylphosphonate (MeP) substitution does not stimulate type I endonuclease. Rather, protection derives from the architecture of the recombination synapse and conformational dynamics within it. Strand cleavage is protected against water by active site electrostatics. Replacement of the catalytic Arg-308 of Flp by alanine, along with MeP substitution, elicits a second Flp endonuclease activity (type II) that directly targets the scissile phosphodiester bond in DNA. MeP substitution, combined with appropriate active site mutations, will be useful in revealing anti-hydrolytic mechanisms engendered by systems that mediate DNA relaxation, DNA transposition, site-specific recombination, telomere resolution, RNA splicing and retrohoming of mobile introns. PMID:19440204

  7. 40 CFR 35.6260 - Combining Cooperative Agreement sites and activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Combining Cooperative Agreement sites and activities. 35.6260 Section 35.6260 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Cooperative Agreements and Superfund State Contracts for Superfund Response...

  8. 40 CFR 35.6260 - Combining Cooperative Agreement sites and activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Combining Cooperative Agreement sites and activities. 35.6260 Section 35.6260 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Cooperative Agreements and Superfund State Contracts for Superfund Response...

  9. 40 CFR 35.6260 - Combining Cooperative Agreement sites and activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Combining Cooperative Agreement sites and activities. 35.6260 Section 35.6260 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Cooperative Agreements and Superfund State Contracts for Superfund Response...

  10. 40 CFR 35.6260 - Combining Cooperative Agreement sites and activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Combining Cooperative Agreement sites and activities. 35.6260 Section 35.6260 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Cooperative Agreements and Superfund State Contracts for Superfund Response...

  11. The Thumbs Up Ecology Curriculum: A Fun Group of School Site Activities for Sixth Graders.

    ERIC Educational Resources Information Center

    Smith, John; And Others

    This guide is a collection of "fun" school site activities for sixth graders. Some of the topics covered are: animals, trees, energy and lifestyle, land use and you, energy conservation, and car-pooling. Each section offers both introductory information about the topic as well as questions to ponder such as what, so what, now what, and another way…

  12. IN VIVO ACTIVITY OF RHOPALOSIPHUM PADI VIRUS INTERNAL RIBOSOME ENTRY SITES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The RNA genome of Rhopalosiphum padi virus (RhPV), like other members of the Dicistroviridae, contains two open reading frames that are preceded by internal ribosome entry sites (IRESs). To compare the activities of the two RhPV IRESs in insect cells, a system was established for the in vivo transc...

  13. Cyclic silicate active site and stereochemical match for apatite nucleation on pseudowollastonite bioceramic-bone interfaces.

    PubMed

    Sahai, Nita; Anseau, Michel

    2005-10-01

    Hydroxyapatite (Ca5(PO4)3(OH)) forms on pseudowollastonite (psW) (alpha-CaSiO3) in vitro in simulated body fluid, human parotid saliva and cell-culture medium, and in vivo in implanted rat tibias. We used crystallographic constraints with ab initio molecular orbital calculations to identify the active site and reaction mechanism for heterogeneous nucleation of the earliest calcium phosphate oligomer/phase. The active site is the planar, cyclic, silicate trimer (Si3O9) on the (001) face of psW. The trimer has three silanol groups (>SiOH) arranged at 60 degrees from each other, providing a stereochemical match for O atoms bonded to Ca2+ on the (001) face of hydroxyapatite. Calcium phosphate nucleation is modeled in steps as hydrolysis of surface Ca-O bonds with leaching of Ca2+ into solution, protonation of the surface Si-O groups to form silanols, calcium sorption as an inner-sphere surface complex and, attachment of HPO4(2-). Our model explains the experimental solution and high resolution transmission electron microscopy data for epitaxial hydroxyapatite growth on psW in vitro and in vivo. We propose that the cyclic silicate trimer is the universal active site for heterogeneous, stereochemically promoted nucleation on silicate-based bioactive ceramics. A critical active site-density and a point of zero charge of the bioceramic less than physiological pH are required for bioactivity. PMID:15949543

  14. Indexing Consistency and Quality.

    ERIC Educational Resources Information Center

    Zunde, Pranas; Dexter, Margaret E.

    A measure of indexing consistency is developed based on the concept of 'fuzzy sets'. It assigns a higher consistency value if indexers agree on the more important terms than if they agree on less important terms. Measures of the quality of an indexer's work and exhaustivity of indexing are also proposed. Experimental data on indexing consistency…

  15. Bithionol Potently Inhibits Human Soluble Adenylyl Cyclase through Binding to the Allosteric Activator Site.

    PubMed

    Kleinboelting, Silke; Ramos-Espiritu, Lavoisier; Buck, Hannes; Colis, Laureen; van den Heuvel, Joop; Glickman, J Fraser; Levin, Lonny R; Buck, Jochen; Steegborn, Clemens

    2016-04-29

    The signaling molecule cAMP regulates functions ranging from bacterial transcription to mammalian memory. In mammals, cAMP is synthesized by nine transmembrane adenylyl cyclases (ACs) and one soluble AC (sAC). Despite similarities in their catalytic domains, these ACs differ in regulation. Transmembrane ACs respond to G proteins, whereas sAC is uniquely activated by bicarbonate. Via bicarbonate regulation, sAC acts as a physiological sensor for pH/bicarbonate/CO2, and it has been implicated as a therapeutic target, e.g. for diabetes, glaucoma, and a male contraceptive. Here we identify the bisphenols bithionol and hexachlorophene as potent, sAC-specific inhibitors. Inhibition appears mostly non-competitive with the substrate ATP, indicating that they act via an allosteric site. To analyze the interaction details, we solved a crystal structure of an sAC·bithionol complex. The structure reveals that the compounds are selective for sAC because they bind to the sAC-specific, allosteric binding site for the physiological activator bicarbonate. Structural comparison of the bithionol complex with apo-sAC and other sAC·ligand complexes along with mutagenesis experiments reveals an allosteric mechanism of inhibition; the compound induces rearrangements of substrate binding residues and of Arg(176), a trigger between the active site and allosteric site. Our results thus provide 1) novel insights into the communication between allosteric regulatory and active sites, 2) a novel mechanism for sAC inhibition, and 3) pharmacological compounds targeting this allosteric site and utilizing this mode of inhibition. These studies provide support for the future development of sAC-modulating drugs. PMID:26961873

  16. Fluorescence properties and sequestration of peripheral anionic site specific ligands in bile acid hosts: Effect on acetylcholinesterase inhibition activity.

    PubMed

    Islam, Mullah Muhaiminul; Aguan, Kripamoy; Mitra, Sivaprasad

    2016-05-01

    The increase in fluorescence intensity of model acetyl cholinesterase (AChE) inhibitors like propidium iodide (PI) and ethidium bromide (EB) is due to sequestration of the probes in primary micellar aggregates of bile acid (BA) host medium with moderate binding affinity of ca. 10(2)-10(3)M(-1). Multiple regression analysis of solvent dependent fluorescence behavior of PI indicates the decrease in total nonradiative decay rate due to partial shielding of the probe from hydrogen bond donation ability of the aqueous medium in bile acid bound fraction. Both PI and EB affects AChE activity through mixed inhibition and consistent with one site binding model; however, PI (IC50=20±1μM) shows greater inhibition in comparison with EB (IC50=40±3μM) possibly due to stronger interaction with enzyme active site. The potency of AChE inhibition for both the compounds is drastically reduced in the presence of bile acid due to the formation of BA-inhibitor complex and subsequent reduction of active inhibitor fraction in the medium. Although the inhibition mechanism still remains the same, the course of catalytic reaction critically depends on equilibrium binding among several species present in the solution; particularly at low inhibitor concentration. All the kinetic parameters for enzyme inhibition reaction are nicely correlated with the association constant for BA-inhibitor complex formation. PMID:26974580

  17. Lazy arc consistency

    SciTech Connect

    Schiex, T.; Gaspin, C.; Regin, J.C.; Verfaillie, G.

    1996-12-31

    Arc consistency filtering is widely used in the framework of binary constraint satisfaction problems: with a low complexity, inconsistency may be detected and domains are filtered. In this paper, we show that when detecting inconsistency is the objective, a systematic domain filtering is useless and a lazy approach is more adequate. Whereas usual arc consistency algorithms produce the maximum arc consistent sub-domain, when it exists, we propose a method, called LAC{tau}, which only looks for any arc consistent sub-domain. The algorithm is then extended to provide the additional service of locating one variable with a minimum domain cardinality in the maximum arc consistent sub-domain, without necessarily computing all domain sizes. Finally, we compare traditional AC enforcing and lazy AC enforcing using several benchmark problems, both randomly generated CSP and real life problems.

  18. Expansion of access tunnels and active-site cavities influence activity of haloalkane dehalogenases in organic cosolvents.

    PubMed

    Stepankova, Veronika; Khabiri, Morteza; Brezovsky, Jan; Pavelka, Antonin; Sykora, Jan; Amaro, Mariana; Minofar, Babak; Prokop, Zbynek; Hof, Martin; Ettrich, Rudiger; Chaloupkova, Radka; Damborsky, Jiri

    2013-05-10

    The use of enzymes for biocatalysis can be significantly enhanced by using organic cosolvents in the reaction mixtures. Selection of the cosolvent type and concentration range for an enzymatic reaction is challenging and requires extensive empirical testing. An understanding of protein-solvent interaction could provide a theoretical framework for rationalising the selection process. Here, the behaviour of three model enzymes (haloalkane dehalogenases) was investigated in the presence of three representative organic cosolvents (acetone, formamide, and isopropanol). Steady-state kinetics assays, molecular dynamics simulations, and time-resolved fluorescence spectroscopy were used to elucidate the molecular mechanisms of enzyme-solvent interactions. Cosolvent molecules entered the enzymes' access tunnels and active sites, enlarged their volumes with no change in overall protein structure, but surprisingly did not act as competitive inhibitors. At low concentrations, the cosolvents either enhanced catalysis by lowering K(0.5) and increasing k(cat), or caused enzyme inactivation by promoting substrate inhibition and decreasing k(cat). The induced activation and inhibition of the enzymes correlated with expansion of the active-site pockets and their occupancy by cosolvent molecules. The study demonstrates that quantitative analysis of the proportions of the access tunnels and active-sites occupied by organic solvent molecules provides the valuable information for rational selection of appropriate protein-solvent pair and effective cosolvent concentration. PMID:23564727

  19. Kinetic and Spectroscopic Studies of Bicupin Oxalate Oxidase and Putative Active Site Mutants

    PubMed Central

    Moomaw, Ellen W.; Hoffer, Eric; Moussatche, Patricia; Salerno, John C.; Grant, Morgan; Immelman, Bridget; Uberto, Richard; Ozarowski, Andrew; Angerhofer, Alexander

    2013-01-01

    Ceriporiopsis subvermispora oxalate oxidase (CsOxOx) is the first bicupin enzyme identified that catalyzes manganese-dependent oxidation of oxalate. In previous work, we have shown that the dominant contribution to catalysis comes from the monoprotonated form of oxalate binding to a form of the enzyme in which an active site carboxylic acid residue must be unprotonated. CsOxOx shares greatest sequence homology with bicupin microbial oxalate decarboxylases (OxDC) and the 241-244DASN region of the N-terminal Mn binding domain of CsOxOx is analogous to the lid region of OxDC that has been shown to determine reaction specificity. We have prepared a series of CsOxOx mutants to probe this region and to identify the carboxylate residue implicated in catalysis. The pH profile of the D241A CsOxOx mutant suggests that the protonation state of aspartic acid 241 is mechanistically significant and that catalysis takes place at the N-terminal Mn binding site. The observation that the D241S CsOxOx mutation eliminates Mn binding to both the N- and C- terminal Mn binding sites suggests that both sites must be intact for Mn incorporation into either site. The introduction of a proton donor into the N-terminal Mn binding site (CsOxOx A242E mutant) does not affect reaction specificity. Mutation of conserved arginine residues further support that catalysis takes place at the N-terminal Mn binding site and that both sites must be intact for Mn incorporation into either site. PMID:23469254

  20. Threshold occupancy and specific cation binding modes in the hammerhead ribozyme active site are required for active conformation

    PubMed Central

    Lee, Tai-Sung; Giambaşu, George M.; Sosa, Carlos P.; Martick, Monika; Scott, William G.; York, Darrin M.

    2009-01-01

    The relationship between formation of active in-line attack conformations and monovalent (Na+) and divalent (Mg2+) metal ion binding in the hammerhead ribozyme has been explored with molecular dynamics simulations. To stabilize repulsions between negatively charged groups, different requirements of threshold occupancy of metal ions were observed in the reactant and activated precursor states both in the presence or absence of a Mg2+ in the active site. Specific bridging coordination patterns of the ions are correlated with the formation of active in-line attack conformations and can be accommodated in both cases. Furthermore, simulation results suggest that the hammerhead ribozyme folds to form an electronegative recruiting pocket that attracts high local concentrations of positive charge. The present simulations help to reconcile experiments that probe the metal ion sensitivity of hammerhead ribozyme catalysis and support the supposition that Mg2+, in addition to stabilizing active conformations, plays a specific chemical role in catalysis. PMID:19265710

  1. Probing the Role of Active Site Water in the Sesquiterpene Cyclization Reaction Catalyzed by Aristolochene Synthase.

    PubMed

    Chen, Mengbin; Chou, Wayne K W; Al-Lami, Naeemah; Faraldos, Juan A; Allemann, Rudolf K; Cane, David E; Christianson, David W

    2016-05-24

    Aristolochene synthase (ATAS) is a high-fidelity terpenoid cyclase that converts farnesyl diphosphate exclusively into the bicyclic hydrocarbon aristolochene. Previously determined crystal structures of ATAS complexes revealed trapped active site water molecules that could potentially interact with catalytic intermediates: water "w" hydrogen bonds with S303 and N299, water molecules "w1" and "w2" hydrogen bond with Q151, and a fourth water molecule coordinates to the Mg(2+)C ion. There is no obvious role for water in the ATAS mechanism because the enzyme exclusively generates a hydrocarbon product. Thus, these water molecules are tightly controlled so that they cannot react with carbocation intermediates. Steady-state kinetics and product distribution analyses of eight ATAS mutants designed to perturb interactions with active site water molecules (S303A, S303H, S303D, N299A, N299L, N299A/S303A, Q151H, and Q151E) indicate relatively modest effects on catalysis but significant effects on sesquiterpene product distributions. X-ray crystal structures of S303A, N299A, N299A/S303A, and Q151H mutants reveal minimal perturbation of active site solvent structure. Seven of the eight mutants generate farnesol and nerolidol, possibly resulting from addition of the Mg(2+)C-bound water molecule to the initially formed farnesyl cation, but no products are generated that would suggest enhanced reactivity of other active site water molecules. However, intermediate germacrene A tends to accumulate in these mutants. Thus, apart from the possible reactivity of Mg(2+)C-bound water, active site water molecules in ATAS are not directly involved in the chemistry of catalysis but instead contribute to the template that governs the conformation of the flexible substrate and carbocation intermediates. PMID:27172425

  2. Spectroscopic Studies of Single and Double Variants of M Ferritin: Lack of Conversion of a Biferrous Substrate Site into a Cofactor Site for O2 Activation

    PubMed Central

    2015-01-01

    Ferritin has a binuclear non-heme iron active site that functions to oxidize iron as a substrate for formation of an iron mineral core. Other enzymes of this class have tightly bound diiron cofactor sites that activate O2 to react with substrate. Ferritin has an active site ligand set with 1-His/4-carboxylate/1-Gln rather than the 2-His/4-carboxylate set of the cofactor site. This ligand variation has been thought to make a major contribution to this biferrous substrate rather than cofactor site reactivity. However, the Q137E/D140H double variant of M ferritin, has a ligand set that is equivalent to most of the diiron cofactor sites, yet did not rapidly react with O2 or generate the peroxy intermediate observed in the cofactor sites. Therefore, in this study, a combined spectroscopic methodology of circular dichroism (CD)/magnetic CD (MCD)/variable temperature, variable field (VTVH) MCD has been applied to evaluate the factors required for the rapid O2 activation observed in cofactor sites. This methodology defines the coordination environment of each iron and the bridging ligation of the biferrous active sites in the double and corresponding single variants of frog M ferritin. Based on spectral changes, the D140H single variant has the new His ligand binding, and the Q137E variant has the new carboxylate forming a μ-1,3 bridge. The spectra for the Q137E/D140H double variant, which has the cofactor ligand set, however, reflects a site that is more coordinately saturated than the cofactor sites in other enzymes including ribonucleotide reductase, indicating the presence of additional water ligation. Correlation of this double variant and the cofactor sites to their O2 reactivities indicates that electrostatic and steric changes in the active site and, in particular, the hydrophobic nature of a cofactor site associated with its second sphere protein environment, make important contributions to the activation of O2 by the binuclear non-heme iron enzymes. PMID

  3. Conformational dynamics of the active site loop of S-adenosylmethionine synthetase illuminated by site-directed spin labeling.

    PubMed

    Taylor, John C; Markham, George D

    2003-07-15

    S-adenosylmethionine synthetase (ATP: L-methionine S-adenosyltransferase, methionine adenosyltransferase, a.k.a. MAT) is one of numerous enzymes that have a flexible polypeptide loop that moves to gate access to the active site in a motion that is closely coupled to catalysis. Crystallographic studies of this tetrameric enzyme have shown that the loop is closed in the absence of bound substrates. However, the loop must open to allow substrate binding and a variety of data indicate that the loop is closed during the catalytic steps. Previous kinetic studies indicate that during turnover loop motion occurs on a time scale of 10(-2)s, ca. 10-fold faster than chemical transformations and turnover. Site-directed spin labeling has been used to introduce nitroxide groups at two positions in the loop to illuminate how the motion of the loop is affected by substrate binding. The two loop mutants constructed, G105C and D107C, retain wild type levels of MAT activity; attachment of a methanethiosulfonate spin label to convert the cysteine to the "R1" residue reduced the k(cat) only for the labeled D107R1 form (7-fold). The K(m) value for methionine increased 2- to 4-fold for the cysteine mutants and 2- to 7-fold for the labeled proteins, whereas the K(m) for ATP was changed by at most 2-fold. EPR spectra for both labeled proteins are nearly identical and show the presence of two major spin label environments with rotational diffusion rates differing by approximately 10-fold; the slower rate is ca. 4-fold faster than the estimated protein rotational rate. The spectra are not altered by addition of substrates or products. At both positions the less mobile conformation constitutes ca. 65% of the total species, indicating an equilibrium that only slightly favors one form, that in which the label is more immobilized. The equilibrium constant that relates the two forms is comparable to the equilibrium constant of 1.5 for a conformational change that was previously deduced from the

  4. Roles of s3 site residues of nattokinase on its activity and substrate specificity.

    PubMed

    Wu, Shuming; Feng, Chi; Zhong, Jin; Huan, Liandong

    2007-09-01

    Nattokinase (Subtilisin NAT, NK) is a bacterial serine protease with high fibrinolytic activity. To probe their roles on protease activity and substrate specificity, three residues of S3 site (Gly(100), Ser(101) and Leu(126)) were mutated by site-directed mutagenesis. Kinetics parameters of 20 mutants were measured using tetrapeptides as substrates, and their fibrinolytic activities were determined by fibrin plate method. Results of mutation analysis showed that Gly(100) and Ser(101) had reverse steric and electrostatic effects. Residues with bulky or positively charged side chains at position 100 decreased the substrate binding and catalytic activity drastically, while residues with the same characters at position 101 could obviously enhance protease and fibrinolytic activity of NK. Mutation of Leu(126) might impair the structure of the active cleft and drastically decreased the activity of NK. Kinetics studies of the mutants showed that S3 residues were crucial to keep protease activity while they moderately affected substrate specificity of NK. The present study provided some original insight into the P3-S3 interaction in NK and other subtilisins, as well as showed successful protein engineering cases to improve NK as a potential therapeutic agent. PMID:17673485

  5. Locomotor activity influences muscle architecture and bone growth but not muscle attachment site morphology

    PubMed Central

    Rabey, Karyne N.; Green, David J.; Taylor, Andrea B.; Begun, David R.; Richmond, Brian G.; McFarlin, Shannon C.

    2014-01-01

    The ability to make behavioural inferences from skeletal remains is critical to understanding the lifestyles and activities of past human populations and extinct animals. Muscle attachment site (enthesis) morphology has long been assumed to reflect muscle strength and activity during life, but little experimental evidence exists to directly link activity patterns with muscle development and the morphology of their attachments to the skeleton. We used a mouse model to experimentally test how the level and type of activity influences forelimb muscle architecture of spinodeltoideus, acromiodeltoideus, and superficial pectoralis, bone growth rate and gross morphology of their insertion sites. Over an 11-week period, we collected data on activity levels in one control group and two experimental activity groups (running, climbing) of female wild-type mice. Our results show that both activity type and level increased bone growth rates influenced muscle architecture, including differences in potential muscular excursion (fibre length) and potential force production (physiological cross-sectional area). However, despite significant influences on muscle architecture and bone development, activity had no observable effect on enthesis morphology. These results suggest that the gross morphology of entheses is less reliable than internal bone structure for making inferences about an individual’s past behaviour. PMID:25467113

  6. Structural analysis of a phosphonate hydroxylase with an access tunnel at the back of the active site.

    PubMed

    Li, Changqing; Junaid, Muhammad; Almuqri, Eman Abdullah; Hao, Shiguang; Zhang, Houjin

    2016-05-01

    FrbJ is a member of the Fe(2+)/α-ketoglutarate-dependent dioxygenase family which hydroxylates the natural product FR-900098 of Streptomyces rubellomurinus, yielding the phosphonate antibiotic FR-33289. Here, the crystal structure of FrbJ, which shows structural homology to taurine dioxygenase (TauD), a key member of the same family, is reported. Unlike other members of the family, FrbJ has an unusual lid structure which consists of two β-strands with a long loop between them. To investigate the role of this lid motif, a molecular-dynamics simulation was performed with the FrbJ structure. The molecular-dynamics simulation analysis implies that the lid-loop region is highly flexible, which is consistent with the fact that FrbJ has a relatively broad spectrum of substrates with different lengths. Interestingly, an access tunnel is found at the back of the active site which connects the putative binding site of α-ketoglutarate to the solvent outside. PMID:27139827

  7. How active site protonation state influences the reactivity and ligation of the heme in chlorite dismutase

    PubMed Central

    Streit, Bennett R.; Blanc, Béatrice; Lukat-Rodgers, Gudrun S.; Rodgers, Kenton R.; DuBois, Jennifer L.

    2010-01-01

    Chlorite dismutase catalyzes O2 release from chlorite with exquisite efficiency and specificity. The spectroscopic properties, ligand binding affinities, and steady state kinetics of chlorite dismutase from Dechloromonas aromatica were examined over pH 3–11.5 to gain insight into how the protonation state of the heme environment influences dioxygen formation. An acid/base transition was observed by UV/visible and resonance Raman spectroscopy with a pKa of 8.7, 2–3 pH units below analogous transitions observed in typical His-ligated peroxidases. This transition marks the conversion of a five coordinate high spin Fe(III) to a mixed high/low spin ferric-hydroxide, as confirmed by resonance Raman (rR) spectroscopy. The two Fe–OH stretching frequencies are quite low, consistent with a weak Fe–OH bond, despite the nearly neutral imidazole side chain of the proximal histidine ligand. The hydroxide is proposed to interact strongly with a distal H-bond donor, thereby weakening the Fe–OH bond. The rR spectra of Cld-CO as a function of pH reveal two forms of the complex, one in which there is minimal interaction of distal residues with the carbonyl oxygen and another, acidic form in which the oxygen is under the influence of positive charge. Recent crystallographic data reveal arginine 183 as the lone H-bond donating residue in the distal pocket. It is likely that this Arg is the strong, positively charged H-bond donor implicated by vibrational data to interact with exogenous axial heme ligands. The same Arg in its neutral (pKa ~ 6.5) form also appears to act as the active site base in binding reactions of protonated ligands, such as HCN, to ferric Cld. The steady state profile for the rate of chlorite decomposition is characterized by these same pKas. The 5 coordinate high spin acidic Cld is more active than the alkaline hydroxide-bound form. The acid form decomposes chlorite most efficiently when the distal Arg is protonated/cationic (maximum kcat = 2.0 (±0.6)

  8. Sequences flanking the core-binding site modulate glucocorticoid receptor structure and activity.

    PubMed

    Schöne, Stefanie; Jurk, Marcel; Helabad, Mahdi Bagherpoor; Dror, Iris; Lebars, Isabelle; Kieffer, Bruno; Imhof, Petra; Rohs, Remo; Vingron, Martin; Thomas-Chollier, Morgane; Meijsing, Sebastiaan H

    2016-01-01

    The glucocorticoid receptor (GR) binds as a homodimer to genomic response elements, which have particular sequence and shape characteristics. Here we show that the nucleotides directly flanking the core-binding site, differ depending on the strength of GR-dependent activation of nearby genes. Our study indicates that these flanking nucleotides change the three-dimensional structure of the DNA-binding site, the DNA-binding domain of GR and the quaternary structure of the dimeric complex. Functional studies in a defined genomic context show that sequence-induced changes in GR activity cannot be explained by differences in GR occupancy. Rather, mutating the dimerization interface mitigates DNA-induced changes in both activity and structure, arguing for a role of DNA-induced structural changes in modulating GR activity. Together, our study shows that DNA sequence identity of genomic binding sites modulates GR activity downstream of binding, which may play a role in achieving regulatory specificity towards individual target genes. PMID:27581526

  9. Active site of the replication protein of the rolling circle plasmid pC194.

    PubMed Central

    Noirot-Gros, M F; Bidnenko, V; Ehrlich, S D

    1994-01-01

    Mutation analysis of the rolling circle (RC) replication initiator protein RepA of plasmid pC194 was targeted to tyrosine and acidic amino acids (glutamate and aspartate) which are well conserved among numerous related plasmids. The effect of mutations was examined by an in vivo activity test. Mutations of one tyrosine and two glutamate residues were found to greatly impair or abolish activity, without affecting affinity for the origin, as deduced from in vitro gel mobility assays. We conclude that all three amino acids have a catalytic role. Tyrosine residues were found previously in active sites of different RC plasmid Rep proteins and topoisomerases, but not in association with acidic residues, which are a hallmark of the active sites of DNA hydrolyzing enzymes, such as the exo- and endonucleases. We propose that the active site of RepA contains two different catalytic centers, corresponding to a tyrosine and a glutamate. The former may be involved in the formation of the covalent DNA-protein intermediate at the initiation step of RC replication, and the latter may catalyze the release of the protein from the intermediate at the termination step. Images PMID:7925284

  10. Alkyl isocyanates as active site-directed inactivators of guinea pig liver transglutaminase.

    PubMed

    Gross, M; Whetzel, N K; Folk, J E

    1975-10-10

    Alkyl isocyanates are effective inactivators of guinea pig liver transglutaminase. Based on the specificity of the reaction the protection against inactivation by glutamine substrate, and the essential nature of calcium for the inactivation reaction, it is concluded that these reagents act as amide substrate analogs and, thus function in an active site-specific manner. Support for the contention that inactivation results from alkyl thiocarbamate ester formation through the single active site sulfhydryl group of the enzyme is (a) the loss of one free--SH group and the incorporation of 1 mol of reagent/mol of enzyme in the reaction, (b) similarity in chemical properties of the inactive enzyme derivative formed to those previously reported for another alkyl thiocarbamoylenzyme and an alkyl thiocarbamoylcysteine derivative, and (c) the finding that labeled peptides from digests of [methyl-14C]thiocarbamoyltransglutaminase and those from digests of iodoacetamide-inactivated enzyme occupy similar positions on peptide maps. Transglutaminase was found to be inactivated neither by urethan anlogs of its active ester substrates nor by urea analogs of its amide substrates. It is concluded on the basis of these findings that inactive carbamoylenzyme derivatives are formed only by direct addition of the transglutaminase active--SH group to the isocyanate C--N double bond, and not, like several serine active site enzymes, by nucleophilic displacement with urethan analogs of substrate, or by nucleophilic displacement with urea analogs of substrate. PMID:240837

  11. Communication: Active space decomposition with multiple sites: Density matrix renormalization group algorithm

    SciTech Connect

    Parker, Shane M.; Shiozaki, Toru

    2014-12-07

    We extend the active space decomposition method, recently developed by us, to more than two active sites using the density matrix renormalization group algorithm. The fragment wave functions are described by complete or restricted active-space wave functions. Numerical results are shown on a benzene pentamer and a perylene diimide trimer. It is found that the truncation errors in our method decrease almost exponentially with respect to the number of renormalization states M, allowing for numerically exact calculations (to a few μE{sub h} or less) with M = 128 in both cases. This rapid convergence is because the renormalization steps are used only for the interfragment electron correlation.

  12. Fibromodulin Interacts with Collagen Cross-linking Sites and Activates Lysyl Oxidase*

    PubMed Central

    Bihan, Dominique; Bonna, Arkadiusz; Rubin, Kristofer; Farndale, Richard W.

    2016-01-01

    The hallmark of fibrotic disorders is a highly cross-linked and dense collagen matrix, a property driven by the oxidative action of lysyl oxidase. Other fibrosis-associated proteins also contribute to the final collagen matrix properties, one of which is fibromodulin. Its interactions with collagen affect collagen cross-linking, packing, and fibril diameter. We investigated the possibility that a specific relationship exists between fibromodulin and lysyl oxidase, potentially imparting a specific collagen matrix phenotype. We mapped the fibromodulin-collagen interaction sites using the collagen II and III Toolkit peptide libraries. Fibromodulin interacted with the peptides containing the known collagen cross-linking sites and the MMP-1 cleavage site in collagens I and II. Interestingly, the interaction sites are closely aligned within the quarter-staggered collagen fibril, suggesting a multivalent interaction between fibromodulin and several collagen helices. Furthermore, we detected an interaction between fibromodulin and lysyl oxidase (a major collagen cross-linking enzyme) and mapped the interaction site to 12 N-terminal amino acids on fibromodulin. This interaction also increases the activity of lysyl oxidase. Together, the data suggest a fibromodulin-modulated collagen cross-linking mechanism where fibromodulin binds to a specific part of the collagen domain and also forms a complex with lysyl oxidase, targeting the enzyme toward specific cross-linking sites. PMID:26893379

  13. Consistent interactions and involution

    NASA Astrophysics Data System (ADS)

    Kaparulin, D. S.; Lyakhovich, S. L.; Sharapov, A. A.

    2013-01-01

    Starting from the concept of involution of field equations, a universal method is proposed for constructing consistent interactions between the fields. The method equally well applies to the Lagrangian and non-Lagrangian equations and it is explicitly covariant. No auxiliary fields are introduced. The equations may have (or have no) gauge symmetry and/or second class constraints in Hamiltonian formalism, providing the theory admits a Hamiltonian description. In every case the method identifies all the consistent interactions.

  14. A Frontier Molecular Orbital determination of the active sites on dispersed metal catalysts

    SciTech Connect

    Augustine, R.L.; Lahanas, K.M.

    1992-01-01

    An angular overlap calculation has been used to determine the s, p and d orbital energy levels of the different types of surface sites present on a dispersed metal catalysts. The basis for these calculations is the reported finding that a large number of catalyzed reactions take place on single atom active sites on the metal surface. Thus, these sites can be considered as surface complexes made up of the central active atom surrounded by near-neighbor metal atom ligands'' with localized surface orbitals perturbed only by these ligands''. These complexes'' are based on a twelve coordinate species with the ligands'' attached to the t{sub 2g} orbitals and the coordinate axes coincident with the direction of the e{sub g} orbitals on the central atom. These data can permit a Frontier Molecular Orbital treatment of specific site activities as long as the surface orbital availability for overlap with adsorbed substrates is considered along with its energy value and symmetry.

  15. A Frontier Molecular Orbital determination of the active sites on dispersed metal catalysts

    SciTech Connect

    Augustine, R.L.; Lahanas, K.M.

    1992-11-01

    An angular overlap calculation has been used to determine the s, p and d orbital energy levels of the different types of surface sites present on a dispersed metal catalysts. The basis for these calculations is the reported finding that a large number of catalyzed reactions take place on single atom active sites on the metal surface. Thus, these sites can be considered as surface complexes made up of the central active atom surrounded by near-neighbor metal atom ``ligands`` with localized surface orbitals perturbed only by these ``ligands``. These ``complexes`` are based on a twelve coordinate species with the ``ligands`` attached to the t{sub 2g} orbitals and the coordinate axes coincident with the direction of the e{sub g} orbitals on the central atom. These data can permit a Frontier Molecular Orbital treatment of specific site activities as long as the surface orbital availability for overlap with adsorbed substrates is considered along with its energy value and symmetry.

  16. Mapping Topoisomerase IV Binding and Activity Sites on the E. coli Genome.

    PubMed

    El Sayyed, Hafez; Le Chat, Ludovic; Lebailly, Elise; Vickridge, Elise; Pages, Carine; Cornet, Francois; Cosentino Lagomarsino, Marco; Espéli, Olivier

    2016-05-01

    Catenation links between sister chromatids are formed progressively during DNA replication and are involved in the establishment of sister chromatid cohesion. Topo IV is a bacterial type II topoisomerase involved in the removal of catenation links both behind replication forks and after replication during the final separation of sister chromosomes. We have investigated the global DNA-binding and catalytic activity of Topo IV in E. coli using genomic and molecular biology approaches. ChIP-seq revealed that Topo IV interaction with the E. coli chromosome is controlled by DNA replication. During replication, Topo IV has access to most of the genome but only selects a few hundred specific sites for its activity. Local chromatin and gene expression context influence site selection. Moreover strong DNA-binding and catalytic activities are found at the chromosome dimer resolution site, dif, located opposite the origin of replication. We reveal a physical and functional interaction between Topo IV and the XerCD recombinases acting at the dif site. This interaction is modulated by MatP, a protein involved in the organization of the Ter macrodomain. These results show that Topo IV, XerCD/dif and MatP are part of a network dedicated to the final step of chromosome management during the cell cycle. PMID:27171414

  17. Mapping Topoisomerase IV Binding and Activity Sites on the E. coli Genome

    PubMed Central

    Lebailly, Elise; Pages, Carine; Cornet, Francois; Cosentino Lagomarsino, Marco

    2016-01-01

    Catenation links between sister chromatids are formed progressively during DNA replication and are involved in the establishment of sister chromatid cohesion. Topo IV is a bacterial type II topoisomerase involved in the removal of catenation links both behind replication forks and after replication during the final separation of sister chromosomes. We have investigated the global DNA-binding and catalytic activity of Topo IV in E. coli using genomic and molecular biology approaches. ChIP-seq revealed that Topo IV interaction with the E. coli chromosome is controlled by DNA replication. During replication, Topo IV has access to most of the genome but only selects a few hundred specific sites for its activity. Local chromatin and gene expression context influence site selection. Moreover strong DNA-binding and catalytic activities are found at the chromosome dimer resolution site, dif, located opposite the origin of replication. We reveal a physical and functional interaction between Topo IV and the XerCD recombinases acting at the dif site. This interaction is modulated by MatP, a protein involved in the organization of the Ter macrodomain. These results show that Topo IV, XerCD/dif and MatP are part of a network dedicated to the final step of chromosome management during the cell cycle. PMID:27171414

  18. Activation of human 5-hydroxytryptamine type 3 receptors via an allosteric transmembrane site.

    PubMed

    Lansdell, Stuart J; Sathyaprakash, Chaitra; Doward, Anne; Millar, Neil S

    2015-01-01

    In common with other members of the Cys-loop family of pentameric ligand-gated ion channels, 5-hydroxytryptamine type 3 receptors (5-HT3Rs) are activated by the binding of a neurotransmitter to an extracellular orthosteric site, located at the interface of two adjacent receptor subunits. In addition, a variety of compounds have been identified that modulate agonist-evoked responses of 5-HT3Rs, and other Cys-loop receptors, by binding to distinct allosteric sites. In this study, we examined the pharmacological effects of a group of monoterpene compounds on recombinant 5-HT3Rs expressed in Xenopus oocytes. Two phenolic monoterpenes (carvacrol and thymol) display allosteric agonist activity on human homomeric 5-HT3ARs (64 ± 7% and 80 ± 4% of the maximum response evoked by the endogenous orthosteric agonist 5-HT, respectively). In addition, at lower concentrations, where agonist effects are less apparent, carvacrol and thymol act as potentiators of responses evoked by submaximal concentrations of 5-HT. By contrast, carvacrol and thymol have no agonist or potentiating activity on the closely related mouse 5-HT3ARs. Using subunit chimeras containing regions of the human and mouse 5-HT3A subunits, and by use of site-directed mutagenesis, we have identified transmembrane amino acids that either abolish the agonist activity of carvacrol and thymol on human 5-HT3ARs or are able to confer this property on mouse 5-HT3ARs. By contrast, these mutations have no significant effect on orthosteric activation of 5-HT3ARs by 5-HT. We conclude that 5-HT3ARs can be activated by the binding of ligands to an allosteric transmembrane site, a conclusion that is supported by computer docking studies. PMID:25338672

  19. Final Report - Independent Verification Survey Activities at the Seperations Process Research Unit Sites, Niskayuna, New York

    SciTech Connect

    Evan Harpenau

    2011-03-15

    The Separations Process Research Unit (SPRU) complex located on the Knolls Atomic Power Laboratory (KAPL) site in Niskayuna, New York, was constructed in the late 1940s to research the chemical separation of plutonium and uranium (Figure A-1). SPRU operated as a laboratory scale research facility between February 1950 and October 1953. The research activities ceased following the successful development of the reduction oxidation and plutonium/uranium extraction processes. The oxidation and extraction processes were subsequently developed for large scale use by the Hanford and Savannah River sites (aRc 2008a). Decommissioning of the SPRU facilities began in October 1953 and continued through the 1990s.

  20. Technical basis for classification of low-activity waste fraction from Hanford site tanks

    SciTech Connect

    Petersen, C.A., Westinghouse Hanford

    1996-07-17

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level wastes, for disposal in a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  1. Technical basis for classification of low-activity waste fraction from Hanford site tanks

    SciTech Connect

    Petersen, C.A.

    1996-09-20

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level waste, for disposal is a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  2. Probing Oxygen Activation Sites in Two Flavoprotein Oxidases Using Chloride as an Oxygen Surrogate

    SciTech Connect

    Kommoju, Phaneeswara-Rao; Chen, Zhi-wei; Bruckner, Robert C.; Mathews, F. Scott; Jorns, Marilyn Schuman

    2011-08-16

    A single basic residue above the si-face of the flavin ring is the site of oxygen activation in glucose oxidase (GOX) (His516) and monomeric sarcosine oxidase (MSOX) (Lys265). Crystal structures of both flavoenzymes exhibit a small pocket at the oxygen activation site that might provide a preorganized binding site for superoxide anion, an obligatory intermediate in the two-electron reduction of oxygen. Chloride binds at these polar oxygen activation sites, as judged by solution and structural studies. First, chloride forms spectrally detectable complexes with GOX and MSOX. The protonated form of His516 is required for tight binding of chloride to oxidized GOX and for rapid reaction of reduced GOX with oxygen. Formation of a binary MSOX-chloride complex requires Lys265 and is not observed with Lys265Met. Binding of chloride to MSOX does not affect the binding of a sarcosine analogue (MTA, methylthioactetate) above the re-face of the flavin ring. Definitive evidence is provided by crystal structures determined for a binary MSOX-chloride complex and a ternary MSOX-chloride-MTA complex. Chloride binds in the small pocket at a position otherwise occupied by a water molecule and forms hydrogen bonds to four ligands that are arranged in approximate tetrahedral geometry: Lys265:NZ, Arg49:NH1, and two water molecules, one of which is hydrogen bonded to FAD:N5. The results show that chloride (i) acts as an oxygen surrogate, (ii) is an effective probe of polar oxygen activation sites, and (iii) provides a valuable complementary tool to the xenon gas method that is used to map nonpolar oxygen-binding cavities.

  3. Kinetic model of ethopropazine interaction with horse serum butyrylcholinesterase and its docking into the active site.

    PubMed

    Golicnik, Marko; Sinko, Goran; Simeon-Rudolf, Vera; Grubic, Zoran; Stojan, Jure

    2002-02-01

    The action of a potent tricyclic cholinesterase inhibitor ethopropazine on the hydrolysis of acetylthiocholine and butyrylthiocholine by purified horse serum butyrylcholinesterase (EC 3.1.1.8) was investigated at 25 and 37 degrees C. The enzyme activities were measured on a stopped-flow apparatus and the analysis of experimental data was done by applying a six-parameter model for substrate hydrolysis. The model, which was introduced to explain the kinetics of Drosophila melanogaster acetylcholinesterase [Stojan et al. (1998) FEBS Lett. 440, 85-88], is defined with two dissociation constants and four rate constants and can describe both cooperative phenomena, apparent activation at low substrate concentrations and substrate inhibition by excess of substrate. For the analysis of the data in the presence of ethopropazine at two temperatures, we have enlarged the reaction scheme to allow primarily its competition with the substrate at the peripheral site, but the competition at the acylation site was not excluded. The proposed reaction scheme revealed, upon analysis, competitive effects of ethopropazine at both sites; at 25 degrees C, three enzyme-inhibitor dissociation constants could be evaluated; at 37 degrees C, only two constants could be evaluated. Although the model considers both cooperative phenomena, it appears that decreased enzyme sensitivity at higher temperature, predominantly for the ligands at the peripheral binding site, makes the determination of some expected enzyme substrate and/or inhibitor complexes technically impossible. The same reason might also account for one of the paradoxes in cholinesterases: activities at 25 degrees C at low substrate concentrations are higher than at 37 degrees C. Positioning of ethopropazine in the active-site gorge by molecular dynamics simulations shows that A328, W82, D70, and Y332 amino acid residues stabilize binding of the inhibitor. PMID:11811945

  4. Impact of single-site axonal GABAergic synaptic events on cerebellar interneuron activity

    PubMed Central

    Zorrilla de San Martin, Javier; Jalil, Abdelali

    2015-01-01

    Axonal ionotropic receptors are present in a variety of neuronal types, and their function has largely been associated with the modulation of axonal activity and synaptic release. It is usually assumed that activation of axonal GABAARs comes from spillover, but in cerebellar molecular layer interneurons (MLIs) the GABA source is different: in these cells, GABA release activates presynaptic GABAA autoreceptors (autoRs) together with postsynaptic targets, producing an autoR-mediated synaptic event. The frequency of presynaptic, autoR-mediated miniature currents is twice that of their somatodendritic counterparts, suggesting that autoR-mediated responses have an important effect on interneuron activity. Here, we used local Ca2+ photolysis in MLI axons of juvenile rats to evoke GABA release from individual varicosities to study the activation of axonal autoRs in single release sites. Our data show that single-site autoR conductances are similar to postsynaptic dendritic conductances. In conditions of high [Cl−]i, autoR-mediated conductances range from 1 to 5 nS; this corresponds to ∼30–150 GABAA channels per presynaptic varicosity, a value close to the number of channels in postsynaptic densities. Voltage responses produced by the activation of autoRs in single varicosities are amplified by a Nav-dependent mechanism and propagate along the axon with a length constant of 91 µm. Immunolabeling determination of synapse location shows that on average, one third of the synapses produce autoR-mediated signals that are large enough to reach the axon initial segment. Finally, we show that single-site activation of presynaptic GABAA autoRs leads to an increase in MLI excitability and thus conveys a strong feedback signal that contributes to spiking activity. PMID:26621773

  5. Crystal Structure of a Bacterial Type IB DNA Topoisomerase Reveals a Preassembled Active Site in the Absence of DNA

    SciTech Connect

    Patel, Asmita; Shuman, Stewart; Mondragon, Alfonso

    2010-03-08

    Type IB DNA topoisomerases are found in all eukarya, two families of eukaryotic viruses (poxviruses and mimivirus), and many genera of bacteria. They alter DNA topology by cleaving and resealing one strand of duplex DNA via a covalent DNA-(3-phosphotyrosyl)-enzyme intermediate. Bacterial type IB enzymes were discovered recently and are described as poxvirus-like with respect to their small size, primary structures, and bipartite domain organization. Here we report the 1.75-{angstrom} crystal structure of Deinococcus radiodurans topoisomerase IB (DraTopIB), a prototype of the bacterial clade. DraTopIB consists of an amino-terminal (N) {beta}-sheet domain (amino acids 1-90) and a predominantly {alpha}-helical carboxyl-terminal (C) domain (amino acids 91-346) that closely resemble the corresponding domains of vaccinia virus topoisomerase IB. The five amino acids of DraTopIB that comprise the catalytic pentad (Arg-137, Lys-174, Arg-239, Asn-280, and Tyr-289) are preassembled into the active site in the absence of DNA in a manner nearly identical to the pentad configuration in human topoisomerase I bound to DNA. This contrasts with the apoenzyme of vaccinia topoisomerase, in which three of the active site constituents are either displaced or disordered. The N and C domains of DraTopIB are splayed apart in an 'open' conformation, in which the surface of the catalytic domain containing the active site is exposed for DNA binding. A comparison with the human topoisomerase I-DNA cocrystal structure suggests how viral and bacterial topoisomerase IB enzymes might bind DNA circumferentially via movement of the N domain into the major groove and clamping of a disordered loop of the C domain around the helix.

  6. Linde FUSRAP Site Remediation: Engineering Challenges and Solutions of Remedial Activities on an Active Industrial Facility - 13506

    SciTech Connect

    Beres, Christopher M.; Fort, E. Joseph; Boyle, James D.

    2013-07-01

    The Linde FUSRAP Site (Linde) is located in Tonawanda, New York at a major research and development facility for Praxair, Inc. (Praxair). Successful remediation activities at Linde combines meeting cleanup objectives of radiological contamination while minimizing impacts to Praxair business operations. The unique use of Praxair's property coupled with an array of active and abandoned utilities poses many engineering and operational challenges; each of which has been overcome during the remedial action at Linde. The U.S. Army Corps of Engineers - Buffalo District (USACE) and CABRERA SERVICES, INC. (CABRERA) have successfully faced engineering challenges such as relocation of an aboveground structure, structural protection of an active water line, and installation of active mechanical, electrical, and communication utilities to perform remediation. As remediation nears completion, continued success of engineering challenges is critical as remaining activities exist in the vicinity of infrastructure essential to business operations; an electrical substation and duct bank providing power throughout the Praxair facility. Emphasis on engineering and operations through final remediation and into site restoration will allow for the safe and successful completion of the project. (authors)

  7. Active-site titration analysis of surface influence on immobilized Candida antarctica Lipase B activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Matrix morphology and surface polarity effects were investigated for Candida antarctica lipase B immobilization. Measurements of the amount of lipase immobilized (bicinchoninic acid method) and the catalyst’s tributyrin hydrolysis activity, coupled with a determination of the lipase’s functional fr...

  8. Site-specific monoubiquitination activates Ras by impeding GTPase-activating protein function

    PubMed Central

    Hobbs, G Aaron; Gunawardena, Harsha P; Baker, Rachael; Campbell, Sharon L

    2013-01-01

    KRas has recently been shown to be activated by monoubiquitination (mUb). Similar to oncogenic mutations, mUb of Ras at position 147 activates Ras by causing a defect in GTPase activating protein (GAP) function. To characterize the mechanism by which mUb impairs GAP-mediated downregulation of Ras, we made various modifications at position 147 of Ras and examined the impact on Ras sensitivity to GAP function. Whereas small modifications (iodoacetamide and glutathione) at position 147 of Ras do not affect GAP-mediated hydrolysis, ligation of Ras to UbG76C (native linker), UbX77C (one residue longer), and PDZ2 (with a native ubiquitin linker) was defective in GAP-mediated GTP hydrolysis. However, restoration of GAP activity was observed for Ras modified with the PDZ2 domain containing a shorter and stiffer linker region than ubiquitin. Therefore, the properties of the linker region dictate whether modification affects GAP-mediated hydrolysis, and our data indicate that the GAP defect requires a minimum linker length of 7 to 8 residues. PMID:24030601

  9. Crystallographic Analysis of Active Site Contributions to Regiospecificity in the Diiron Enzyme Toluene 4-Monooxygenase

    SciTech Connect

    Bailey, Lucas J.; Acheson, Justin F.; McCoy, Jason G.; Elsen, Nathaniel L.; Phillips, Jr., George N.; Fox, Brian G.

    2014-10-02

    Crystal structures of toluene 4-monooxygenase hydroxylase in complex with reaction products and effector protein reveal active site interactions leading to regiospecificity. Complexes with phenolic products yield an asymmetric {mu}-phenoxo-bridged diiron center and a shift of diiron ligand E231 into a hydrogen bonding position with conserved T201. In contrast, complexes with inhibitors p-NH{sub 2}-benzoate and p-Br-benzoate showed a {mu}-1,1 coordination of carboxylate oxygen between the iron atoms and only a partial shift in the position of E231. Among active site residues, F176 trapped the aromatic ring of products against a surface of the active site cavity formed by G103, E104 and A107, while F196 positioned the aromatic ring against this surface via a {pi}-stacking interaction. The proximity of G103 and F176 to the para substituent of the substrate aromatic ring and the structure of G103L T4moHD suggest how changes in regiospecificity arise from mutations at G103. Although effector protein binding produced significant shifts in the positions of residues along the outer portion of the active site (T201, N202, and Q228) and in some iron ligands (E231 and E197), surprisingly minor shifts (<1 {angstrom}) were produced in F176, F196, and other interior residues of the active site. Likewise, products bound to the diiron center in either the presence or absence of effector protein did not significantly shift the position of the interior residues, suggesting that positioning of the cognate substrates will not be strongly influenced by effector protein binding. Thus, changes in product distributions in the absence of the effector protein are proposed to arise from differences in rates of chemical steps of the reaction relative to motion of substrates within the active site channel of the uncomplexed, less efficient enzyme, while structural changes in diiron ligand geometry associated with cycling between diferrous and diferric states are discussed for their potential

  10. Parents' Attitudes about Adolescents' Premarital Sexual Activity: The Role of Inter-Parent Consistency/Inconsistency in Sexual Outcomes

    ERIC Educational Resources Information Center

    Somers, Cheryl L.; Anagurthi, Claudia

    2014-01-01

    Objective: Parents' values about sexuality and about premarital sex play unique roles in the development of adolescents' sexual attitudes and behaviours. However, research is scarce on the role of consistent versus inconsistent values transmission. The purpose of the present study was to examine the association between parental…

  11. The Orthographic Consistency Effect in the Recognition of French Spoken Words: An Early Developmental Shift from Sublexical to Lexical Orthographic Activation

    ERIC Educational Resources Information Center

    Pattamadilok, Chotiga; Morais, Jose; De Vylder, Olivia; Ventura, Paulo; Kolinsky, Regine

    2009-01-01

    The generality of the orthographic consistency effect in speech recognition tasks previously reported for Portuguese beginning readers was assessed in French-speaking children, as the French orthographic code presents a higher degree of inconsistency than the Portuguese one. Although the findings obtained with the French second graders replicated…

  12. Progress report on decommissioning activities at the Fernald Environmental Management Project (FEMP) site

    SciTech Connect

    1998-07-01

    The Fernald Environmental Management Project (FEMP), is located about 18 miles northwest of Cincinnati, Ohio. Between 1953 and 1989, the facility, then called the Feed Material Production Center or FMPC, produced uranium metal products used in the eventual production of weapons grade material for use by other US Department of Energy (DOE) sites. In 1989, FMPC`s production was suspended by the federal government in order to focus resources on environmental restoration versus defense production. In 1992, Fluor Daniel Fernald assumed responsibility for managing all cleanup activities at the FEMP under contract to the DOE. In 1990, as part of the remediation effort, the site was divided into five operable units based on physical proximity of contaminated areas, similar amounts of types of contamination, or the potential for a similar technology to be used in cleanup activities. This report continues the outline of the decontamination and decommissioning (D and D) activities at the FEMP site Operable Unit 3 (OU3) and provides an update on the status of the decommissioning activities. OU3, the Facilities Closure and Demolition Project, involves the remediation of more than 200 uranium processing facilities. The mission of the project is to remove nuclear materials stored in these buildings, then perform the clean out of the buildings and equipment, and decontaminate and dismantle the facilities.

  13. The Histamine N-Methyltransferase T105I Polymorphism Affects Active Site Structure and Dynamics†

    PubMed Central

    Rutherford, Karen; Parson, William W.; Daggett, Valerie

    2010-01-01

    Histamine N-methyltransferase (HNMT) is the sole enzyme responsible for inactivating histamine in the mammalian brain. The human HNMT gene contains a common threonine-isoleucine polymorphism at residue 105, distal from the active site. The 105I variant has decreased activity and lower protein levels relative to the 105T protein. Crystal structures of both variants have been solved, but reveal little regarding how the T105I polymorphism affects activity. We performed molecular dynamics simulations of both 105T and 105I at 37°C to explore the structural and dynamic consequences of the polymorphism. The simulations indicate that replacing Thr with the larger Ile residue leads to greater burial of residue 105 and heightened packing interactions between residue105 and residues within helix α3 and strand β3. This altered packing is directly translated to the active site resulting in the reorientation of several co-substrate-binding residues. The simulations also show that the hydrophobic histamine-binding domain in both proteins undergoes a large-scale breathing motion that exposes key catalytic residues and lessens the hydrophobicity of the substrate-binding site. PMID:18154359

  14. Substrate conformational transitions in the active site of chorismate mutase: Their role in the catalytic mechanism

    PubMed Central

    Guo, Hong; Cui, Qiang; Lipscomb, William N.; Karplus, Martin

    2001-01-01

    Chorismate mutase acts at the first branch-point of aromatic amino acid biosynthesis and catalyzes the conversion of chorismate to prephenate. The results of molecular dynamics simulations of the substrate in solution and in the active site of chorismate mutase are reported. Two nonreactive conformers of chorismate are found to be more stable than the reactive pseudodiaxial chair conformer in solution. It is shown by QM/MM molecular dynamics simulations, which take into account the motions of the enzyme, that when these inactive conformers are bound to the active site, they are rapidly converted to the reactive chair conformer. This result suggests that one contribution of the enzyme is to bind the more prevalent nonreactive conformers and transform them into the active form in a step before the chemical reaction. The motion of the reactive chair conformer in the active site calculated by using the QM/MM potential generates transient structures that are closer to the transition state than is the stable CHAIR conformer. PMID:11481470

  15. From single crystal surfaces to single atoms: investigating active sites in electrocatalysis.

    PubMed

    O'Mullane, Anthony P

    2014-04-21

    Electrocatalytic processes will undoubtedly be at the heart of energising future transportation and technology with the added importance of being able to create the necessary fuels required to do so in an environmentally friendly and cost effective manner. For this to be successful two almost mutually exclusive surface properties need to be reconciled, namely producing highly active/reactive surface sites that exhibit long term stability. This article reviews the various approaches which have been undertaken to study the elusive nature of these active sites on metal surfaces which are considered as adatoms or clusters of adatoms with low coordination number. This includes the pioneering studies at extended well defined stepped single crystal surfaces using cyclic voltammetry up to the highly sophisticated in situ electrochemical imaging techniques used to study chemically synthesised nanomaterials. By combining the information attained from single crystal surfaces, individual nanoparticles of defined size and shape, density functional theory calculations and new concepts such as mesoporous multimetallic thin films and single atom electrocatalysts new insights into the design and fabrication of materials with highly active but stable active sites can be achieved. The area of electrocatalysis is therefore not only a fascinating and exciting field in terms of realistic technological and economical benefits but also from the fundamental understanding that can be acquired by studying such an array of interesting materials. PMID:24599277

  16. Synergistic effect between defect sites and functional groups on the hydrolysis of cellulose over activated carbon.

    PubMed

    Foo, Guo Shiou; Sievers, Carsten

    2015-02-01

    The chemical oxidation of activated carbon by H2 O2 and H2 SO4 is investigated, structural and chemical modifications are characterized, and the materials are used as catalysts for the hydrolysis of cellulose. Treatment with H2 O2 enlarges the pore size and imparts functional groups such as phenols, lactones, and carboxylic acids. H2 SO4 treatment targets the edges of carbon sheets primarily, and this effect is more pronounced with a higher temperature. Adsorption isotherms demonstrate that the adsorption of oligomers on functionalized carbon is dominated by van der Waals forces. The materials treated chemically are active for the hydrolysis of cellulose despite the relative weakness of most of their acid sites. It is proposed that a synergistic effect between defect sites and functional groups enhances the activity by inducing a conformational change in the glucan chains if they are adsorbed at defect sites. This activates the glycosidic bonds for hydrolysis by in-plane functional groups. PMID:25504913

  17. Site-dependent catalytic activity of graphene oxides towards oxidative dehydrogenation of propane.

    PubMed

    Tang, Shaobin; Cao, Zexing

    2012-12-28

    Graphene oxides (GOs) may offer extraordinary potential in the design of novel catalytic systems due to the presence of various oxygen functional groups and their unique electronic and structural properties. Using first-principles calculations, we explore the plausible mechanisms for the oxidative dehydrogenation (ODH) of propane to propene by GOs and the diffusion of the surface oxygen-containing groups under an external electric field. The present results show that GOs with modified oxygen-containing groups may afford high catalytic activity for the ODH of propane to propene. The presence of hydroxyl groups around the active sites provided by epoxides can remarkably enhance the C-H bond activation of propane and the activity enhancement exhibits strong site dependence. The sites of oxygen functional groups on the GO surface can be easily tuned by the diffusion of these groups under an external electric field, which increases the reactivity of GOs towards ODH of propane. The chemically modified GOs are thus quite promising in the design of metal-free catalysis. PMID:22801590

  18. Structural Basis for the Active Site Inhibition Mechanism of Human Kidney-Type Glutaminase (KGA)

    PubMed Central

    Thangavelu, K.; Chong, Qing Yun; Low, Boon Chuan; Sivaraman, J.

    2014-01-01

    Glutaminase is a metabolic enzyme responsible for glutaminolysis, a process harnessed by cancer cells to feed their accelerated growth and proliferation. Among the glutaminase isoforms, human kidney-type glutaminase (KGA) is often upregulated in cancer and is thus touted as an attractive drug target. Here we report the active site inhibition mechanism of KGA through the crystal structure of the catalytic domain of KGA (cKGA) in complex with 6-diazo-5-oxo-L-norleucine (DON), a substrate analogue of glutamine. DON covalently binds with the active site Ser286 and interacts with residues such as Tyr249, Asn335, Glu381, Asn388, Tyr414, Tyr466 and Val484. The nucleophilic attack of Ser286 sidechain on DON releases the diazo group (N2) from the inhibitor and results in the formation of an enzyme-inhibitor complex. Mutational studies confirmed the key role of these residues in the activity of KGA. This study will be important in the development of KGA active site inhibitors for therapeutic interventions. PMID:24451979

  19. Structural and kinetic contributions of the oxyanion binding site to the catalytic activity of acylaminoacyl peptidase.

    PubMed

    Kiss, András L; Palló, Anna; Náray-Szabó, Gábor; Harmat, Veronika; Polgár, László

    2008-05-01

    It is widely accepted that the catalytic activity of serine proteases depends primarily on the Asp-His-Ser catalytic triad and other residues within the vicinity of this motif. Some of these residues form the oxyanion binding site that stabilizes the tetrahedral intermediate by hydrogen bonding to the negatively charged oxyanion. In acylaminoacyl peptidase from the thermophile Aeropyrum pernix, the main chain NH group of Gly369 is one of the hydrogen bond donors forming the oxyanion binding site. The side chain of His367, a conserved residue in acylaminoacyl peptidases across all species, fastens the loop holding Gly369. Determination of the crystal structure of the H367A mutant revealed that this loop, including Gly369, moves away considerably, accounting for the observed three orders of magnitude decrease in the specificity rate constant. For the wild-type enzyme ln(k(cat)/K(m)) vs. 1/T deviates from linearity indicating greater rate enhancement with increasing temperature for the dissociation of the enzyme-substrate complex compared with its decomposition to product. In contrast, the H367A variant provided a linear Arrhenius plot, and its reaction was associated with unfavourable entropy of activation. These results show that a residue relatively distant from the active site can significantly affect the catalytic activity of acylaminoacyl peptidase without changing the overall structure of the enzyme. PMID:18325786

  20. The two active sites in human branched-chain alpha-keto acid dehydrogenase operate independently without an obligatory alternating-site mechanism.

    PubMed

    Li, Jun; Machius, Mischa; Chuang, Jacinta L; Wynn, R Max; Chuang, David T

    2007-04-20

    A long standing controversy is whether an alternating activesite mechanism occurs during catalysis in thiamine diphosphate (ThDP)-dependent enzymes. We address this question by investigating the ThDP-dependent decarboxylase/dehydrogenase (E1b) component of the mitochondrial branched-chain alpha-keto acid dehydrogenase complex (BCKDC). Our crystal structure reveals that conformations of the two active sites in the human E1b heterotetramer harboring the reaction intermediate are identical. Acidic residues in the core of the E1b heterotetramer, which align with the proton-wire residues proposed to participate in active-site communication in the related pyruvate dehydrogenase from Bacillus stearothermophilus, are mutated. Enzyme kinetic data show that, except in a few cases because of protein misfolding, these alterations are largely without effect on overall activity of BCKDC, ruling out the requirement of a proton-relay mechanism in E1b. BCKDC overall activity is nullified at 50% phosphorylation of E1b, but it is restored to nearly half of the pre-phosphorylation level after dissociation and reconstitution of BCKDC with the same phosphorylated E1b. The results suggest that the abolition of overall activity likely results from the specific geometry of the half-phosphorylated E1b in the BCKDC assembly and not due to a disruption of the alternating active-site mechanism. Finally, we show that a mutant E1b containing only one functional active site exhibits half of the wild-type BCKDC activity, which directly argues against the obligatory communication between active sites. The above results provide evidence that the two active sites in the E1b heterotetramer operate independently during the ThDP-dependent decarboxylation reaction. PMID:17329260

  1. Novel active comb-shaped dry electrode for EEG measurement in hairy site.

    PubMed

    Huang, Yan-Jun; Wu, Chung-Yu; Wong, Alice May-Kuen; Lin, Bor-Shyh

    2015-01-01

    Electroencephalography (EEG) is an important biopotential, and has been widely applied in clinical applications. The conventional EEG electrode with conductive gels is usually used for measuring EEG. However, the use of conductive gel also encounters with the issue of drying and hardening. Recently, many dry EEG electrodes based on different conductive materials and techniques were proposed to solve the previous issue. However, measuring EEG in the hairy site is still a difficult challenge. In this study, a novel active comb-shaped dry electrode was proposed to measure EEG in hairy site. Different form other comb-shaped or spike-shaped dry electrodes, it can provide more excellent performance of avoiding the signal attenuation, phase distortion, and the reduction of common mode rejection ratio. Even under walking motion, it can effectively acquire EEG in hairy site. Finally, the experiments for alpha rhythm and steady-state visually evoked potential were also tested to validate the proposed electrode. PMID:25137719

  2. Targeting Large Kinase Active Site with Rigid, Bulky Octahedral Ruthenium Complexes

    SciTech Connect

    Maksimoska, Jasna; Feng, Li; Harms, Klaus; Yi, Chunling; Kissil, Joseph; Marmorstein, Ronen; Meggers, Eric

    2009-09-02

    A strategy for targeting protein kinases with large ATP-binding sites by using bulky and rigid octahedral ruthenium complexes as structural scaffolds is presented. A highly potent and selective GSK3 and Pim1 half-sandwich complex NP309 was successfully converted into a PAK1 inhibitor by making use of the large octahedral compounds {Lambda}-FL172 and {Lambda}-FL411 in which the cyclopentadienyl moiety of NP309 is replaced by a chloride and sterically demanding diimine ligands. A 1.65 {angstrom}cocrystal structure of PAK1 with {Lambda}-FL172 reveals how the large coordination sphere of the ruthenium complex matches the size of the active site and serves as a yardstick to discriminate between otherwise closely related binding sites.

  3. A Region of Bdp1 Necessary for Transcription Initiation That Is Located within the RNA Polymerase III Active Site Cleft.

    PubMed

    Hu, Hui-Lan; Wu, Chih-Chien; Lee, Jin-Cheng; Chen, Hung-Ta

    2015-08-01

    The RNA polymerase III (Pol III)-specific transcription factor Bdp1 is crucial to Pol III recruitment and promoter opening in transcription initiation, yet structural information is sparse. To examine its protein-binding targets within the preinitiation complex at the residue level, photoreactive amino acids were introduced into Saccharomyces cerevisiae Bdp1. Mutations within the highly conserved SANT domain cross-linked to the transcription factor IIB (TFIIB)-related transcription factor Brf1, consistent with the findings of previous studies. In addition, we identified an essential N-terminal region that cross-linked with the Pol III catalytic subunit C128 as well as Brf1. Closer examination revealed that this region interacted with the C128 N-terminal region, the N-terminal half of Brf1, and the C-terminal domain of the C37 subunit, together positioning this region within the active site cleft of the preinitiation complex. With our functional data, our analyses identified an essential region of Bdp1 that is positioned within the active site cleft of Pol III and necessary for transcription initiation. PMID:26055328

  4. A Region of Bdp1 Necessary for Transcription Initiation That Is Located within the RNA Polymerase III Active Site Cleft

    PubMed Central

    Hu, Hui-Lan; Wu, Chih-Chien; Lee, Jin-Cheng

    2015-01-01

    The RNA polymerase III (Pol III)-specific transcription factor Bdp1 is crucial to Pol III recruitment and promoter opening in transcription initiation, yet structural information is sparse. To examine its protein-binding targets within the preinitiation complex at the residue level, photoreactive amino acids were introduced into Saccharomyces cerevisiae Bdp1. Mutations within the highly conserved SANT domain cross-linked to the transcription factor IIB (TFIIB)-related transcription factor Brf1, consistent with the findings of previous studies. In addition, we identified an essential N-terminal region that cross-linked with the Pol III catalytic subunit C128 as well as Brf1. Closer examination revealed that this region interacted with the C128 N-terminal region, the N-terminal half of Brf1, and the C-terminal domain of the C37 subunit, together positioning this region within the active site cleft of the preinitiation complex. With our functional data, our analyses identified an essential region of Bdp1 that is positioned within the active site cleft of Pol III and necessary for transcription initiation. PMID:26055328

  5. Improving the activity of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation.

    PubMed

    Weng, Meizhi; Deng, Xiongwei; Bao, Wei; Zhu, Li; Wu, Jieyuan; Cai, Yongjun; Jia, Yan; Zheng, Zhongliang; Zou, Guolin

    2015-09-25

    Nattokinase (NK), a bacterial serine protease from Bacillus subtilis var. natto, is a potential cardiovascular drug exhibiting strong fibrinolytic activity. To broaden its commercial and medical applications, we constructed a single-mutant (I31L) and two double-mutants (M222A/I31L and T220S/I31L) by site-directed mutagenesis. Active enzymes were expressed in Escherichia coli with periplasmic secretion and were purified to homogeneity. The kinetic parameters of enzymes were examined by spectroscopy assay and isothermal titration calorimetry (ITC), and their fibrinolytic activities were determined by fibrin plate method. The substitution of Leu(31) for Ile(31) resulted in about 2-fold enhancement of catalytic efficiency (Kcat/KM) compared with wild-type NK. The specific activities of both double-mutants (M222A/I31L and T220S/I31L) were significantly increased when compared with the single-mutants (M222A and T220S) and the oxidative stability of M222A/I31L mutant was enhanced with respect to wild-type NK. This study demonstrates the feasibility of improving activity of NK by site-directed mutagenesis and shows successful protein engineering cases to improve the activity of NK as a potent therapeutic agent. PMID:26291268

  6. Influence of cysteine 164 on active site structure in rat cysteine dioxygenase.

    PubMed

    Fellner, Matthias; Siakkou, Eleni; Faponle, Abayomi S; Tchesnokov, Egor P; de Visser, Sam P; Wilbanks, Sigurd M; Jameson, Guy N L

    2016-07-01

    Cysteine dioxygenase is a non-heme mononuclear iron enzyme with unique structural features, namely an intramolecular thioether cross-link between cysteine 93 and tyrosine 157, and a disulfide bond between substrate L-cysteine and cysteine 164 in the entrance channel to the active site. We investigated how these posttranslational modifications affect catalysis through a kinetic, crystallographic and computational study. The enzyme kinetics of a C164S variant are identical to WT, indicating that disulfide formation at C164 does not significantly impair access to the active site at physiological pH. However, at high pH, the cysteine-tyrosine cross-link formation is enhanced in C164S. This supports the view that disulfide formation at position 164 can limit access to the active site. The C164S variant yielded crystal structures of unusual clarity in both resting state and with cysteine bound. Both show that the iron in the cysteine-bound complex is a mixture of penta- and hexa-coordinate with a water molecule taking up the final site (60 % occupancy), which is where dioxygen is believed to coordinate during turnover. The serine also displays stronger hydrogen bond interactions to a water bound to the amine of the substrate cysteine. However, the interactions between cysteine and iron appear unchanged. DFT calculations support this and show that WT and C164S have similar binding energies for the water molecule in the final site. This variant therefore provides evidence that WT also exists in an equilibrium between penta- and hexa-coordinate forms and the presence of the sixth ligand does not strongly affect dioxygen binding. PMID:27193596

  7. Upregulation of RNase E activity by mutation of a site that uncompetitively interferes with RNA binding

    PubMed Central

    Lee, Minho; Shin, Eunkyoung; Jeon, Che Ok; Cha, Chang-Jun; Han, Seung Hyun; Kim, Su-Jin; Lee, Sang-Won; Lee, Younghoon; Ha, Nam-Chul

    2011-01-01

    Escherichia coli RNase E contains a site that selectively binds to RNAs containing 5′-monophosphate termini, increasing the efficiency of endonucleolytic cleavage of these RNAs. Random mutagenesis of N-Rne, the N-terminal catalytic region of RNase E, identified a hyperactive variant that remains preferentially responsive to phosphorylation at 5′ termini. Biochemical analyses showed that the mutation (Q36R), which replaces glutamine with arginine at a position distant from the catalytic site, increases formation of stable RNA-protein complexes without detectably affecting the enzyme's secondary or tertiary structure. Studies of cleavage of fluorogenic substrate and EMSA experiments indicated that the Q36R mutation increases catalytic activity and RNA binding. however, UV crosslinking and mass spectrometry studies suggested that the mutant enzyme lacks an RNA binding site present in its wild-type counterpart. Two substrate-bound tryptic peptides, 65HGFLPLK71—which includes amino acids previously implicated in substrate binding and catalysis—and 24LYDLDIESPGHEQK37—which includes the Q36 locus—were identified in wild-type enzyme complexes, whereas only the shorter peptide was observed for complexes containing Q36R. Our results identify a novel RNase E locus that disparately affects the number of substrate binding sites and catalytic activity of the enzyme. We propose a model that may account for these surprising effects. PMID:22186084

  8. The active sites in the heterogeneous Baeyer-Villiger oxidation of cyclopentanone by hydrotalcite catalysts

    NASA Astrophysics Data System (ADS)

    Ueno, Shinji; Ebitani, Kohki; Ookubo, Akira; Kaneda, Kiyotomi

    1997-11-01

    The active sites of hydrotalcites, [ Mg1-x2+Alx3+( OH) 2] x+[ Ax/nn-·m H 2O ] x-, A″ n-; CO 32-, Cl -, etc., were studied in the heterogeneous Baeyer-Villiger oxidation of cyclopentanone to δ-valerolactone with a combination oxidant system of molecular oxygen and benzaldehyde (O 2/benzaldehyde) in a 1,2-dichloroethane solvent. The hydrotalcites with different basicity were prepared by changing element ratios of Al 3+ to Mg 2+ in the Brucite-like layer and by changing anionic compounds (CO 32-, Cl -, and SO 42-) in the interlayer. The basicities of hydrotalcites were evaluated by measuring the calorimetric heats of benzoic acid adsorption and the zeta-potential of potassium chloride and by the indicator titration method. Yields of δ-valerolactone were almost proportional to the basicities of hydrotalcites, i.e., the heats of benzoic acid adsorption on hydrotalcites, which suggests that basic sites of hydrotalcites are active sites for the oxidation. Yields of δ-valerolactone were also dependent on the basicities of hydrotalcites using m-chloroperbenzoic acid ( m-CPBA) as an oxidant instead of O 2/benzaldehyde. Basic sites of hydrotalcites play an important role in the oxygen transfer from perbenzoic acid to ketone.

  9. Identification of the N-glycosylation sites on glutamate carboxypeptidase II necessary for proteolytic activity.

    PubMed

    Barinka, Cyril; Sácha, Pavel; Sklenár, Jan; Man, Petr; Bezouska, Karel; Slusher, Barbara S; Konvalinka, Jan

    2004-06-01

    Glutamate carboxypeptidase II (GCPII) is a membrane peptidase expressed in the prostate, central and peripheral nervous system, kidney, small intestine, and tumor-associated neovasculature. The GCPII form expressed in the central nervous system, termed NAALADase, is responsible for the cleavage of N-acetyl-L-aspartyl-L-glutamate (NAAG) yielding free glutamate in the synaptic cleft, and is implicated in various pathologic conditions associated with glutamate excitotoxicity. The prostate form of GCPII, termed prostate-specific membrane antigen (PSMA), is up-regulated in cancer and used as an effective prostate cancer marker. Little is known about the structure of this important pharmaceutical target. As a type II membrane protein, GCPII is heavily glycosylated. In this paper we show that N-glycosylation is vital for proper folding and subsequent secretion of human GCPII. Analysis of the predicted N-glycosylation sites also provides evidence that these sites are critical for GCPII carboxypeptidase activity. We confirm that all predicted N-glycosylation sites are occupied by an oligosaccharide moiety and show that glycosylation at sites distant from the putative catalytic domain is critical for the NAAG-hydrolyzing activity of GCPII calling the validity of previously described structural models of GCPII into question. PMID:15152093

  10. Barriers to physical activity in an on-site corporate fitness center.

    PubMed

    Schwetschenau, Heather M; O'Brien, William H; Cunningham, Christopher J L; Jex, Steve M

    2008-10-01

    Many corporations provide employees the option of participating in on-site fitness centers, but utilization rates are low. Perceived barriers to physical activity have been established as important correlates of physical activity, and recent research indicates that barriers may vary across settings. Work-site fitness centers may present unique barriers to participation, but there are currently no standardized measures that assess such barriers. Eighty-eight employees of a midwestern corporation completed a survey designed to identify and evaluate the extent to which barriers influence participation in an on-site corporate fitness center. Regression analyses revealed that external environmental barriers (e.g., inadequate exercise facilities) significantly accounted for not joining the fitness center, and for decreased duration of visits to the facility among members. Internal barriers (e.g., feeling embarrassed to exercise around coworkers) significantly accounted for frequency of fitness center visits among members. This corporate specific measure may lead to more effective interventions aimed to increase use of on-site corporate fitness centers. PMID:18837631

  11. Den site activity patterns of adult male and female swift foxes, Vulpes velox, in Northwestern Texas

    USGS Publications Warehouse

    Lemons, P.R.; Ballard, W.B.; Sullivan, R.M.; Sovada, M.A.

    2003-01-01

    Activity of Swift Foxes (Vulpes velox) at den sites was studied in northwestern Texas during pup rearing seasons in 2000 and 2001 to determine role of males in parental care. Twenty-four percent of radio-collared females with a potential to breed successfully raised pups to eight weeks of age. We intensively monitored presence and absence of male and female Swift Foxes at two den sites each year. Females were present >2.6 times more at den sites than males during the pup rearing season. Female and male Swift Foxes largely stayed at dens during diurnal hours and were active away from dens during nocturnal and crepuscular hours. Females and males spent 12.4% and 3.0% more time at dens before pups emerged, than after pups emerged, respectively. Following depredation of one male parent, the female spent 29% less time at the den site. Decrease in time spent at the den by the female following loss of her mate suggested that loss of one parent might severely impact recruitment of Swift Foxes. Our observations indicated that intense Coyote (Canis latrans) depredation may severely impact pup-rearing success as well as the parental care within Swift Fox family groups.

  12. Twinning in fcc lattice creates low-coordinated catalytically active sites in porous gold.

    PubMed

    Krajčí, Marian; Kameoka, Satoshi; Tsai, An-Pang

    2016-08-28

    We describe a new mechanism for creation of catalytically active sites in porous gold. Samples of porous gold prepared by de-alloying Al2Au exhibit a clear correlation between the catalytic reactivity towards CO oxidation and structural defects in the fcc lattice of Au. We have found that on the stepped {211} surfaces quite common twin boundary defects in the bulk structure of porous gold can form long close-packed rows of atoms with the coordination number CN = 6. DFT calculations confirm that on these low-coordinated Au sites dioxygen chemisorbs and CO oxidation can proceed via the Langmuir-Hinshelwood mechanism with the activation energy of 37 kJ/mol or via the CO-OO intermediate with the energy barrier of 19 kJ/mol. The existence of the twins in porous gold is stabilized by the surface energy. PMID:27586937

  13. Computation of Rate Constants for Diffusion of Small Ligands to and from Buried Protein Active Sites.

    PubMed

    Wang, P-H; De Sancho, D; Best, R B; Blumberger, J

    2016-01-01

    The diffusion of ligands to actives sites of proteins is essential to enzyme catalysis and many cellular signaling processes. In this contribution we review our recently developed methodology for calculation of rate constants for diffusion and binding of small molecules to buried protein active sites. The diffusive dynamics of the ligand obtained from molecular dynamics simulation is coarse grained and described by a Markov state model. Diffusion and binding rate constants are then obtained either from the reactive flux formalism or by fitting the time-dependent population of the Markov state model to a phenomenological rate law. The method is illustrated by applications to diffusion of substrate and inhibitors in [NiFe] hydrogenase, CO-dehydrogenase, and myoglobin. We also discuss a recently developed sensitivity analysis that allows one to identify hot spots in proteins, where mutations are expected to have the strongest effects on ligand diffusion rates. PMID:27497172

  14. 13C-Methyl isocyanide as an NMR probe for cytochrome P450 active sites.

    PubMed

    McCullough, Christopher R; Pullela, Phani Kumar; Im, Sang-Choul; Waskell, Lucy; Sem, Daniel S

    2009-03-01

    The cytochromes P450 (CYPs) play a central role in many biologically important oxidation reactions, including the metabolism of drugs and other xenobiotic compounds. Because they are often assayed as both drug targets and anti-targets, any tools that provide: (a) confirmation of active site binding and (b) structural data, would be of great utility, especially if data could be obtained in reasonably high throughput. To this end, we have developed an analog of the promiscuous heme ligand, cyanide, with a (13)CH(3)-reporter attached. This (13)C-methyl isocyanide ligand binds to bacterial (P450cam) and membrane-bound mammalian (CYP2B4) CYPs. It can be used in a rapid 1D experiment to identify binders, and provides a qualitative measure of structural changes in the active site. PMID:19199046

  15. Characterizing Active Site Conformational Heterogeneity along the Trajectory of an Enzymatic Phosphoryl Transfer Reaction.

    PubMed

    Zeymer, Cathleen; Werbeck, Nicolas D; Zimmermann, Sabine; Reinstein, Jochen; Hansen, D Flemming

    2016-09-12

    States along the phosphoryl transfer reaction catalyzed by the nucleoside monophosphate kinase UmpK were captured and changes in the conformational heterogeneity of conserved active site arginine side-chains were quantified by NMR spin-relaxation methods. In addition to apo and ligand-bound UmpK, a transition state analog (TSA) complex was utilized to evaluate the extent to which active site conformational entropy contributes to the transition state free energy. The catalytically essential arginine side-chain guanidino groups were found to be remarkably rigid in the TSA complex, indicating that the enzyme has evolved to restrict the conformational freedom along its reaction path over the energy landscape, which in turn allows the phosphoryl transfer to occur selectively by avoiding side reactions. PMID:27534930

  16. The active site of RNA polymerase II participates in transcript cleavage within arrested ternary complexes.

    PubMed Central

    Rudd, M D; Izban, M G; Luse, D S

    1994-01-01

    RNA polymerase II may become arrested during transcript elongation, in which case the ternary complex remains intact but further RNA synthesis is blocked. To relieve arrest, the nascent transcript must be cleaved from the 3' end. RNAs of 7-17 nt are liberated and transcription continues from the newly exposed 3' end. Factor SII increases elongation efficiency by strongly stimulating the transcript cleavage reaction. We show here that arrest relief can also occur by the addition of pyrophosphate. This generates the same set of cleavage products as factor SII, but the fragments produced with pyrophosphate have 5'-triphosphate termini. Thus, the active site of RNA polymerase II, in the presence of pyrophosphate, appears to be capable of cleaving phosphodiester linkages as far as 17 nt upstream of the original site of polymerization, leaving the ternary complex intact and transcriptionally active. Images PMID:8058756

  17. Extreme electric fields power catalysis in the active site of ketosteroid isomerase

    PubMed Central

    Fried, Stephen D.; Bagchi, Sayan; Boxer, Steven G.

    2015-01-01

    Enzymes use protein architecture to impose specific electrostatic fields onto their bound substrates, but the magnitude and catalytic effect of these electric fields have proven difficult to quantify with standard experimental approaches. Using vibrational Stark effect spectroscopy, we found that the active site of the enzyme ketosteroid isomerase (KSI) exerts an extremely large electric field onto the C=O chemical bond that undergoes a charge rearrangement in KSI’s rate-determining step. Moreover, we found that the magnitude of the electric field exerted by the active site strongly correlates with the enzyme’s catalytic rate enhancement, enabling us to quantify the fraction of the catalytic effect that is electrostatic in origin. The measurements described here may help explain the role of electrostatics in many other enzymes and biomolecular systems. PMID:25525245

  18. Network Consistent Data Association.

    PubMed

    Chakraborty, Anirban; Das, Abir; Roy-Chowdhury, Amit K

    2016-09-01

    Existing data association techniques mostly focus on matching pairs of data-point sets and then repeating this process along space-time to achieve long term correspondences. However, in many problems such as person re-identification, a set of data-points may be observed at multiple spatio-temporal locations and/or by multiple agents in a network and simply combining the local pairwise association results between sets of data-points often leads to inconsistencies over the global space-time horizons. In this paper, we propose a Novel Network Consistent Data Association (NCDA) framework formulated as an optimization problem that not only maintains consistency in association results across the network, but also improves the pairwise data association accuracies. The proposed NCDA can be solved as a binary integer program leading to a globally optimal solution and is capable of handling the challenging data-association scenario where the number of data-points varies across different sets of instances in the network. We also present an online implementation of NCDA method that can dynamically associate new observations to already observed data-points in an iterative fashion, while maintaining network consistency. We have tested both the batch and the online NCDA in two application areas-person re-identification and spatio-temporal cell tracking and observed consistent and highly accurate data association results in all the cases. PMID:26485472

  19. Active site models for the Cu(A) site of peptidylglycine α-hydroxylating monooxygenase and dopamine β-monooxygenase.

    PubMed

    Kunishita, Atsushi; Ertem, Mehmed Z; Okubo, Yuri; Tano, Tetsuro; Sugimoto, Hideki; Ohkubo, Kei; Fujieda, Nobutaka; Fukuzumi, Shunichi; Cramer, Christopher J; Itoh, Shinobu

    2012-09-01

    A mononuclear copper(II) superoxo species has been invoked as the key reactive intermediate in aliphatic substrate hydroxylation by copper monooxygenases such as peptidylglycine α-hydroxylating monooxygenase (PHM), dopamine β-monooxygenase (DβM), and tyramine β-monooxygenase (TβM). We have recently developed a mononuclear copper(II) end-on superoxo complex using a N-[2-(2-pyridyl)ethyl]-1,5-diazacyclooctane tridentate ligand, the structure of which is similar to the four-coordinate distorted tetrahedral geometry of the copper-dioxygen adduct found in the oxy-form of PHM (Prigge, S. T.; Eipper, B. A.; Mains, R. E.; Amzel, L. M. Science2004, 304, 864-867). In this study, structures and physicochemical properties as well as reactivity of the copper(I) and copper(II) complexes supported by a series of tridentate ligands having the same N-[2-(2-pyridyl)ethyl]-1,5-diazacyclooctane framework have been examined in detail to shed light on the chemistry dictated in the active sites of mononuclear copper monooxygenases. The ligand exhibits unique feature to stabilize the copper(I) complexes in a T-shape geometry and the copper(II) complexes in a distorted tetrahedral geometry. Low temperature oxygenation of the copper(I) complexes generated the mononuclear copper(II) end-on superoxo complexes, the structure and spin state of which have been further characterized by density functional theory (DFT) calculations. Detailed kinetic analysis on the O(2)-adduct formation reaction gave the kinetic and thermodynamic parameters providing mechanistic insights into the association and dissociation processes of O(2) to the copper complexes. The copper(II) end-on superoxo complex thus generated gradually decomposed to induce aliphatic ligand hydroxylation. Kinetic and DFT studies on the decomposition reaction have suggested that C-H bond abstraction occurs unimolecularly from the superoxo complex with subsequent rebound of the copper hydroperoxo species to generate the oxygenated

  20. A Binding Site Model and Structure-Activity Relationships for the Rat A3 Adenosine Receptor

    PubMed Central

    VAN GALEN, PHILIP J. M.; VAN BERGEN, ANDREW H.; GALLO-RODRIGUEZ, CAROLA; MELMAN, NELI; OLAH, MARK E.; IJZERMAN, AD P.; STILES, GARY L.; JACOBSON, KENNETH A.

    2012-01-01

    rat A3 receptors. The model presented here, which is consistent with the detailed SAR found in this study, may serve to suggest future chemical modification, site-directed mutagenesis, and SAR studies to further define essential characteristics of the ligand-receptor interaction and to develop even more potent and selective A3 receptor ligands. PMID:8022403

  1. Mutation at a Strictly-Conserved, Active-Site Tyrosine in the Copper Amine Oxidase Leads to Uncontrolled Oxygenase Activity†

    PubMed Central

    Chen, Zhi-wei; Datta, Saumen; DuBois, Jennifer L.; Klinman, Judith P.; Mathews, F. Scott

    2010-01-01

    The copper amine oxidases carry out two copper-dependent processes: production of their own redox-active cofactor (2,4,5-trihydroxyphenylalanine quinone, TPQ), and the subsequent oxidative deamination of substrate amines. Because the same active-site pocket must facilitate both reactions, individual active-site residues may serve multiple roles. We have examined the roles of a strictly-conserved active-site tyrosine Y305 in the copper amine oxidase from Hansenula polymorpha kinetically, spetroscopically, and, in the present work, structurally. While the Y305A enzyme is almost identical to the wild-type, a novel, highly oxygenated species replaces TPQ in the Y305F active sites. This new structure not only provides the first direct detection of peroxy-intermediates in cofactor biogenesis, but also indicates the critical control of oxidation chemistry that can be conferred by a single active-site residue. PMID:20684524

  2. Non-specific binding sites help to explain mixed inhibition in mushroom tyrosinase activities.

    PubMed

    Hassani, Sorour; Haghbeen, Kamahldin; Fazli, Mostafa

    2016-10-21

    Inhibition and activation studies of tyrosinase could prove beneficial to agricultural, food, cosmetic, and pharmaceutical industries. Although non-competitive and mixed-inhibition are frequent modes observed in kinetics studies on mushroom tyrosinase (MT) activities, the phenomena are left unexplained. In this study, dual effects of phthalic acid (PA) and cinnamic acid (CA) on MT during mono-phenolase activity were demonstrated. PA activated and inhibited MT at concentrations lower and higher than 150 μM, respectively. In contrast, CA inhibited and activated MT at concentrations lower and higher than 5 μM. The mode of inhibition for both effectors was mixed-type. Complex kinetics of MT in the presence of a modulator could partly be ascribed to its mixed-cooperativity. However, to explain mixed-inhibition mode, it is necessary to demonstrate how the ternary complex of substrate/enzyme/effector is formed. Therefore, we looked for possible non-specific binding sites using MT tropolone-bound PDB (2Y9X) in the computational studies. When tropolone was in MTPa (active site), PA and CA occupied different pockets (named MTPb and MTPc, respectively). The close Moldock scores of PA binding posed in MTPb and MTPa suggested that MTPb could be a secondary binding site for PA. Similar results were obtained for CA. Ensuing results from 10 ns molecular dynamics simulations for 2Y9X-effector complexes indicated that the structures were gradually stabilized during simulation. Tunnel analysis by using CAVER Analyst and CHEXVIS resulted in identifying two distinct channels that assumingly participate in exchanging the effectors when the direct channel to MTPa is not accessible. PMID:27344491

  3. Crystal structures of human tissue kallikrein 4: activity modulation by a specific zinc binding site.

    PubMed

    Debela, Mekdes; Magdolen, Viktor; Grimminger, Valerie; Sommerhoff, Christian; Messerschmidt, Albrecht; Huber, Robert; Friedrich, Rainer; Bode, Wolfram; Goettig, Peter

    2006-10-01

    Human tissue kallikrein 4 (hK4) belongs to a 15-member family of closely related serine proteinases. hK4 is predominantly expressed in prostate, activates hK3/PSA, and is up-regulated in prostate and ovarian cancer. We have identified active monomers of recombinant hK4 besides inactive oligomers in solution. hK4 crystallised in the presence of zinc, nickel, and cobalt ions in three crystal forms containing cyclic tetramers and octamers. These structures display a novel metal site between His25 and Glu77 that links the 70-80 loop with the N-terminal segment. Micromolar zinc as present in prostatic fluid inhibits the enzymatic activity of hK4 against fluorogenic substrates. In our measurements, wild-type hK4 exhibited a zinc inhibition constant (IC50) of 16 microM including a permanent residual activity, in contrast to the zinc-independent mutants H25A and E77A. Since the Ile16 N terminus of wild-type hK4 becomes more accessible for acetylating agents in the presence of zinc, we propose that zinc affects the hK4 active site via the salt-bridge formed between the N terminus and Asp194 required for a functional active site. hK4 possesses an unusual 99-loop that creates a groove-like acidic S2 subsite. These findings explain the observed specificity of hK4 for the P1 to P4 substrate residues. Moreover, hK4 shows a negatively charged surface patch, which may represent an exosite for prime-side substrate recognition. PMID:16950394

  4. Disposal Activities and the Unique Waste Streams at the Nevada National Security Site (NNSS)

    SciTech Connect

    Arnold, P.

    2012-10-31

    This slide show documents waste disposal at the Nevada National Security Site. Topics covered include: radionuclide requirements for waste disposal; approved performance assessment (PA) for depleted uranium disposal; requirements; program approval; the Waste Acceptance Review Panel (WARP); description of the Radioactive Waste Acceptance Program (RWAP); facility evaluation; recent program accomplishments, nuclear facility safety changes; higher-activity waste stream disposal; and, large volume bulk waste streams.

  5. Interaction of mining activities and aquatic environment: A review from Greek mine sites.

    NASA Astrophysics Data System (ADS)

    Vasileiou, Eleni; Kallioras, Andreas

    2016-04-01

    In Greece a significant amount of mineral and ore deposits have been recorded accompanied by large industrial interest and a long mining history. Today many active and/or abandoned mine sites are scattered within the country; while mining activities take place in different sites for exploiting various deposits (clay, limestone, slate, gypsum, kaolin, mixed sulphide ores (lead, zinc, olivine, pozzolan, quartz lignite, nickel, magnesite, aluminum, bauxite, gold, marbles etc). The most prominent recent ones are: (i) the lignite exploitation that is extended in the area of Ptolemais (Western Macedonia) and Megalopolis (Central Peloponnese); and (ii) the major bauxite deposits located in central Greece within the Parnassos-Ghiona geotectonic zone and on Euboea Island. In the latter area, significant ores of magnesite were exploited and mixed sulphide ores. Centuries of intensive mining exploitation and metallurgical treatment of lead-silver deposits in Greece, have also resulted in significant abandoned sites, such as the one in Lavrion. Mining activities in Lavrio, were initiated in ancient times and continued until the 1980s, resulting in the production of significant waste stockpiles deposited in the area, crucial for the local water resources. Ιn many mining sites, environmental pressures are also recorded after the mine closure to the aquatic environment, as the surface waters flow through waste dump areas and contaminated soils. This paper aims to the geospatial visualization of the mining activities in Greece, in connection to their negative (surface- and/or ground-water pollution; overpumping due to extensive dewatering practices) or positive (enhanced groundwater recharge; pit lakes, improvement of water budget in the catchment scale) impacts on local water resources.

  6. Analysis of Hydrogen Tunneling in an Enzyme Active Site using von Neumann Measurements

    PubMed Central

    Sumner, Isaiah; Iyengar, Srinivasan S.

    2010-01-01

    We build on our earlier quantum wavepacket study of hydrogen transfer in the biological enzyme, soybean lipoxygenase-1, by using von Neumann quantum measurement theory to gain qualitative insights into the transfer event. We treat the enzyme active site as a measurement device which acts on the tunneling hydrogen nucleus via the potential it exerts at each configuration. A series of changing active site geometries during the tunneling process effects a sequential projection of the initial, reactant state onto the final, product state. We study this process using several different kinds of von Neumann measurements and show how a discrete sequence of such measurements not only progressively increases the projection of the hydrogen nuclear wavepacket onto the product side but also favors proton over deuteron transfer. Several qualitative features of the hydrogen tunneling problem found in wavepacket dynamics studies are also recovered here. These include the shift in the “transition state” towards the reactant as a result of nuclear quantization, greater participation of excited states in the case of deuterium, and presence of critical points along the reaction coordinate that facilitate hydrogen and deuterium transfer and coincide with surface crossings. To further “tailor” the dynamics, we construct a perturbation to the sequence of measurements, that is a perturbation to the dynamical sequence of active site geometry evolution, which leads us to insight on the existence of sensitive regions of the reaction profile where subtle changes to the dynamics of the active site can have an effect on the hydrogen and deuterium transfer process. PMID:22933858

  7. Thermal regime of active layer at two lithologically contrasting sites on James Ross Island, Antarctic Peninsula.

    NASA Astrophysics Data System (ADS)

    Hrbáček, Filip; Nývlt, Daniel; Láska, Kamil

    2016-04-01

    Antarctic Peninsula region (AP) represents one of the most rapidly warming parts of our planet in the last 50 years. Despite increasing research activities along both western and eastern sides of AP in last decades, there is still a lot of gaps in our knowledge relating to permafrost, active layer and its thermal and physical properties. This study brings new results of active layer monitoring on James Ross Island, which is the largest island in northern AP. Its northern part, Ulu Peninsula, is the largest ice-free area (more than 200 km2) in the region. Due its large area, we focused this study on sites located in different lithologies, which would affect local thermal regime of active layer. Study site (1) at Abernethy Flats area (41 m a.s.l.) lies ~7 km from northern coast. Lithologically is formed by disintegrated Cretaceous calcareous sandstones and siltstones of the Santa Marta Formation. Study site (2) is located at the northern slopes of Berry Hill (56 m a.s.l.), about 0.4 km from northern coastline. Lithology is composed of muddy to intermediate diamictites, tuffaceous siltstones to fine grained sandstones of the Mendel Formation. Data of air temperature at 2 meters above ground and the active layer temperatures at 75 cm deep profiles were obtained from both sites in period 1 January 2012 to 31 December 2014. Small differences were found when comparing mean air temperatures and active temperatures at 5 and 75 cm depth in the period 2012-2014. While the mean air temperatures varied between -7.7 °C and -7.0 °C, the mean ground temperatures fluctuated between -6.6 °C and -6.1 °C at 5 cm and -6.9 °C and -6.0 °C at 75 cm at Abernethy Flats and Berry Hill slopes respectively. Even though ground temperature differences along the profiles weren't pronounced during thawing seasons, the maximum active layer thickness was significantly larger at Berry Hill slopes (80 to 82 cm) than at Abernethy Flats (52 to 64 cm). We assume this differences are affected by

  8. Structural analysis of the active site architecture of the VapC toxin from Shigella flexneri.

    PubMed

    Xu, Kehan; Dedic, Emil; Brodersen, Ditlev E

    2016-07-01

    The VapC toxin from the Shigella flexneri 2a virulence plasmid pMYSH6000 belongs to the PIN domain protein family, which is characterized by a conserved fold with low amino acid sequence conservation. The toxin is a bona fide Mg(2+) -dependent ribonuclease and has been shown to target initiator tRNA(fMet) in vivo. Here, we present crystal structures of active site catalytic triad mutants D7A, D7N, and D98N of the VapC toxin in absence of antitoxin. In all structures, as well as in solution, VapC forms a dimer. In the D98N structure, a Hepes molecule occupies both active sites of the dimer and comparison with the structure of RNase H bound to a DNA/RNA hybrid suggests that the Hepes molecule mimics the position of an RNA nucleotide in the VapC active site. Proteins 2016; 84:892-899. © 2016 Wiley Periodicals, Inc. PMID:26833558

  9. Differential Assembly of Catalytic Interactions within the Conserved Active Sites of Two Ribozymes

    PubMed Central

    Herschlag, Daniel

    2016-01-01

    Molecular recognition is central to biology and a critical aspect of RNA function. Yet structured RNAs typically lack the preorganization needed for strong binding and precise positioning. A striking example is the group I ribozyme from Tetrahymena, which binds its guanosine substrate (G) orders of magnitude slower than diffusion. Binding of G is also thermodynamically coupled to binding of the oligonucleotide substrate (S) and further work has shown that the transition from E•G to E•S•G accompanies a conformational change that allows G to make the active site interactions required for catalysis. The group I ribozyme from Azoarcus has a similarly slow association rate but lacks the coupled binding observed for the Tetrahymena ribozyme. Here we test, using G analogs and metal ion rescue experiments, whether this absence of coupling arises from a higher degree of preorganization within the Azoarcus active site. Our results suggest that the Azoarcus ribozyme forms cognate catalytic metal ion interactions with G in the E•G complex, interactions that are absent in the Tetrahymena E•G complex. Thus, RNAs that share highly similar active site architectures and catalyze the same reactions can differ in the assembly of transition state interactions. More generally, an ability to readily access distinct local conformational states may have facilitated the evolutionary exploration needed to attain RNA machines that carry out complex, multi-step processes. PMID:27501145

  10. Identification of active site residues of Fenugreek β-amylase: chemical modification and in silico approach.

    PubMed

    Srivastava, Garima; Singh, Vinay K; Kayastha, Arvind M

    2014-10-01

    The amino acid sequence of Fenugreek β-amylase is not available in protein data bank. Therefore, an attempt has been made to identify the catalytic amino acid residues of enzyme by employing studies of pH dependence of enzyme catalysis, chemical modification and bioinformatics. Treatment of purified Fenugreek β-amylase with EDAC in presence of glycine methyl ester and sulfhydryl group specific reagents (IAA, NEM and p-CMB), followed a pseudo first-order kinetics and resulted in effective inactivation of enzyme. The reaction with EDAC in presence of NTEE (3-nitro-l-tyrosine ethylester) resulted into modification of two carboxyl groups per molecule of enzyme and presence of one accessible sulfhydryl group at the active site, per molecule of enzyme was ascertained by titration with DTNB. The above results were supported by the prevention of inactivation of enzyme in presence of substrate. Based on MALDI-TOF analysis of purified Fenugreek β-amylase and MASCOT search, β-amylase of Medicago sativa was found to be the best match. To further confirm the amino acid involved in catalysis, homology modelling of β-amylase of M. sativa was performed. The sequence alignment, superimposition of template and target models, along with study of interactions involved in docking of sucrose and maltose at the active site, led to identification of Glu187, Glu381 and Cys344 as active site residues. PMID:25179433

  11. Free energy simulations of active-site mutants of dihydrofolate reductase.

    PubMed

    Doron, Dvir; Stojković, Vanja; Gakhar, Lokesh; Vardi-Kilshtain, Alexandra; Kohen, Amnon; Major, Dan Thomas

    2015-01-22

    This study employs hybrid quantum mechanics-molecular mechanics (QM/MM) simulations to investigate the effect of mutations of the active-site residue I14 of E. coli dihydrofolate reductase (DHFR) on the hydride transfer. Recent kinetic measurements of the I14X mutants (X = V, A, and G) indicated slower hydride transfer rates and increasingly temperature-dependent kinetic isotope effects (KIEs) with systematic reduction of the I14 side chain. The QM/MM simulations show that when the original isoleucine residue is substituted in silico by valine, alanine, or glycine (I14V, I14A, and I14G DHFR, respectively), the free energy barrier height of the hydride transfer reaction increases relative to the wild-type enzyme. These trends are in line with the single-turnover rate measurements reported for these systems. In addition, extended dynamics simulations of the reactive Michaelis complex reveal enhanced flexibility in the mutants, and in particular for the I14G mutant, including considerable fluctuations of the donor-acceptor distance (DAD) and the active-site hydrogen bonding network compared with those detected in the native enzyme. These observations suggest that the perturbations induced by the mutations partly impair the active-site environment in the reactant state. On the other hand, the average DADs at the transition state of all DHFR variants are similar. Crystal structures of I14 mutants (V, A, and G) confirmed the trend of increased flexibility of the M20 and other loops. PMID:25382260

  12. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase

    NASA Astrophysics Data System (ADS)

    Fenwick, Michael K.; Mehta, Angad P.; Zhang, Yang; Abdelwahed, Sameh H.; Begley, Tadhg P.; Ealick, Steven E.

    2015-03-01

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5‧-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active site metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.

  13. Crystal Structures of Pseudomonas aeruginosa GIM-1: Active-Site Plasticity in Metallo-β-Lactamases

    PubMed Central

    Borra, Pardha Saradhi; Samuelsen, Ørjan; Spencer, James; Walsh, Timothy R.; Lorentzen, Marit Sjo

    2013-01-01

    Metallo-β-lactamases (MBLs) have rapidly disseminated worldwide among clinically important Gram-negative bacteria and have challenged the therapeutic use of β-lactam antibiotics, particularly carbapenems. The blaGIM-1 gene, encoding one such enzyme, was first discovered in a Pseudomonas aeruginosa isolate from 2002 and has more recently been reported in Enterobacteriaceae. Here, we present crystal structures of GIM-1 in the apo-zinc (metal-free), mono-zinc (where Cys221 was found to be oxidized), and di-zinc forms, providing nine independently refined views of the enzyme. GIM-1 is distinguished from related MBLs in possessing a narrower active-site groove defined by aromatic side chains (Trp228 and Tyr233) at positions normally occupied by hydrophilic residues in other MBLs. Our structures reveal considerable flexibility in two loops (loop 1, residues 60 to 66; loop 2, residues 223 to 242) adjacent to the active site, with open and closed conformations defined by alternative hydrogen-bonding patterns involving Trp228. We suggest that this capacity for rearrangement permits GIM-1 to hydrolyze a wide range of β-lactams in spite of possessing a more constrained active site. Our results highlight the structural diversity within the MBL enzyme family. PMID:23208706

  14. VARIABLE ACTIVE SITE LOOP CONFORMATIONS ACCOMMODATE THE BINDING OF MACROCYCLIC LARGAZOLE ANALOGUES TO HDAC8

    PubMed Central

    Decroos, Christophe; Clausen, Dane J.; Haines, Brandon E.; Wiest, Olaf; Williams, Robert M.; Christianson, David W.

    2015-01-01

    The macrocyclic depsipeptide Largazole is a potent inhibitor of metal-dependent histone deacetylases (HDACs), some of which are drug targets for cancer chemotherapy. Indeed, Largazole partially resembles Romidepsin (FK228), a macrocyclic depsipeptide already approved for clinical use. Each inhibitor contains a pendant side chain thiol that coordinates to the active site Zn2+ ion, as observed in the X-ray crystal structure of the HDAC8–Largazole complex [Cole, K. E.; Dowling, D. P.; Boone, M. A.; Phillips, A. J.; Christianson, D. W. J. Am. Chem. Soc. 2011, 133, 12474]. Here, we report the X-ray crystal structures of HDAC8 complexed with three synthetic analogues of Largazole in which the depsipeptide ester is replaced with a rigid amide linkage. In two of these analogues, a 6-membered pyridine ring is also substituted (with two different orientations) for the 5-membered thiazole ring in the macrocycle skeleton. The side chain thiol group of each analogue coordinates to the active site Zn2+ ion with nearly ideal geometry, thereby preserving the hallmark structural feature of inhibition by Largazole. Surprisingly, in comparison with the binding of Largazole, these analogues trigger alternative conformational changes in the L1 and L2 loops flanking the active site. However, despite these structural differences, inhibitory potency is generally comparable to, or just moderately less than, the inhibitory potency of Largazole. Thus, this study reveals important new structure-affinity relationships for the binding of macrocyclic inhibitors to HDAC8. PMID:25793284

  15. Aerosol measurements at a high-elevation site: composition, size, and cloud condensation nuclei activity

    SciTech Connect

    Friedman, Beth; Zelenyuk, Alla; Beranek, Josef; Kulkarni, Gourihar R.; Pekour, Mikhail S.; Hallar, Anna G.; McCubbin, Ian; Thornton, Joel A.; Cziczo, D. J.

    2013-12-09

    We present measurements of CCN concentrations and associated aerosol composition and size properties at a high-elevation research site in March 2011. CCN closure and aerosol hygroscopicity were assessed using simplified assumptions of bulk aerosol properties as well as a new method utilizing single particle composition and size to assess the importance of particle mixing state in CCN activation. Free troposphere analysis found no significant difference between the CCN activity of free tropospheric aerosol and boundary layer aerosol at this location. Closure results indicate that using only size and number information leads to adequate prediction, in the majority of cases within 50%, of CCN concentrations, while incorporating the hygroscopicity parameters of the individual aerosol components measured by single particle mass spectrometry adds to the agreement, in most cases within 20%, between predicted and measured CCN concentrations. For high-elevation continental sites, with largely aged aerosol and low amounts of local area emissions, a lack of chemical knowledge and hygroscopicity may not hinder models in predicting CCN concentrations. At sites influenced by fresh emissions or more heterogeneous particle types, single particle composition information may be more useful in predicting CCN concentrations and understanding the importance of particle mixing state on CCN activation.

  16. Computational study on the roles of amino acid residues in the active site formation mechanism of blue-light photoreceptors

    NASA Astrophysics Data System (ADS)

    Sato, Ryuma; Kitoh-Nishioka, Hirotaka; Ando, Koji; Yamato, Takahisa

    2015-07-01

    To examine the functional roles of the active site methionine (M-site) and glutamic acid (E-site) residues of blue-light photoreceptors, we performed in silico mutation at the M-site in a systematic manner and focused on the hydrogen bonding between the E-site and the substrate: the cyclobutane-pyrimidine dimer (CPD). Fragment molecular orbital calculations with electron correlations demonstrated that substitution of the M-site methionine with either alanine or glutamine always destabilizes the interaction energy between the E-site and the CPD by more than 12.0 kcal/mol, indicating that the methionine and glutamic acid residues cooperatively facilitate the enzymatic reaction in the active site.

  17. Radiological audit of remedial action activities at the processing site, transfer site, and Cheney disposal site Grand Junction, Colorado: Audit date, August 9--11, 1993. Final report

    SciTech Connect

    Not Available

    1993-08-01

    The Uranium Mill Tailing Remedial Action (UMTRA) Project`s Technical Assistance Contractor (TAC) performed a radiological audit of the Remedial Action Contractor (RAC), MK-Ferguson and CWM Federal Environmental Services, Inc., at the processing site, transfer site, and Cheney disposal site in Grand Junction, Colorado. Jim Hylko and Bill James of the TAC conducted this audit August 9 through 11, 1993. Bob Cornish and Frank Bosiljevec represented the US Department of Energy (DOE). This report presents one programmatic finding, eleven site-specific observations, one good practice, and four programmatic observations.

  18. Discovery and Characterization of Non-ATP Site Inhibitors of the Mitogen Activated Protein (MAP) Kinases

    SciTech Connect

    Comess, Kenneth M.; Sun, Chaohong; Abad-Zapatero, Cele; Goedken, Eric R.; Gum, Rebecca J.; Borhani, David W.; Argiriadi, Maria; Groebe, Duncan R.; Jia, Yong; Clampit, Jill E.; Haasch, Deanna L.; Smith, Harriet T.; Wang, Sanyi; Song, Danying; Coen, Michael L.; Cloutier, Timothy E.; Tang, Hua; Cheng, Xueheng; Quinn, Christopher; Liu, Bo; Xin, Zhili; Liu, Gang; Fry, Elizabeth H.; Stoll, Vincent; Ng, Teresa I.; Banach, David; Marcotte, Doug; Burns, David J.; Calderwood, David J.; Hajduk, Philip J.

    2012-03-02

    Inhibition of protein kinases has validated therapeutic utility for cancer, with at least seven kinase inhibitor drugs on the market. Protein kinase inhibition also has significant potential for a variety of other diseases, including diabetes, pain, cognition, and chronic inflammatory and immunologic diseases. However, as the vast majority of current approaches to kinase inhibition target the highly conserved ATP-binding site, the use of kinase inhibitors in treating nononcology diseases may require great selectivity for the target kinase. As protein kinases are signal transducers that are involved in binding to a variety of other proteins, targeting alternative, less conserved sites on the protein may provide an avenue for greater selectivity. Here we report an affinity-based, high-throughput screening technique that allows nonbiased interrogation of small molecule libraries for binding to all exposed sites on a protein surface. This approach was used to screen both the c-Jun N-terminal protein kinase Jnk-1 (involved in insulin signaling) and p38{alpha} (involved in the formation of TNF{alpha} and other cytokines). In addition to canonical ATP-site ligands, compounds were identified that bind to novel allosteric sites. The nature, biological relevance, and mode of binding of these ligands were extensively characterized using two-dimensional {sup 1}H/{sup 13}C NMR spectroscopy, protein X-ray crystallography, surface plasmon resonance, and direct enzymatic activity and activation cascade assays. Jnk-1 and p38{alpha} both belong to the MAP kinase family, and the allosteric ligands for both targets bind similarly on a ledge of the protein surface exposed by the MAP insertion present in the CMGC family of protein kinases and distant from the active site. Medicinal chemistry studies resulted in an improved Jnk-1 ligand able to increase adiponectin secretion in human adipocytes and increase insulin-induced protein kinase PKB phosphorylation in human hepatocytes, in

  19. Proteolytic regulation of epithelial sodium channels by urokinase plasminogen activator: cutting edge and cleavage sites.

    PubMed

    Ji, Hong-Long; Zhao, Runzhen; Komissarov, Andrey A; Chang, Yongchang; Liu, Yongfeng; Matthay, Michael A

    2015-02-27

    Plasminogen activator inhibitor 1 (PAI-1) level is extremely elevated in the edematous fluid of acutely injured lungs and pleurae. Elevated PAI-1 specifically inactivates pulmonary urokinase-type (uPA) and tissue-type plasminogen activators (tPA). We hypothesized that plasminogen activation and fibrinolysis may alter epithelial sodium channel (ENaC) activity, a key player in clearing edematous fluid. Two-chain urokinase (tcuPA) has been found to strongly stimulate heterologous human αβγ ENaC activity in a dose- and time-dependent manner. This activity of tcuPA was completely ablated by PAI-1. Furthermore, a mutation (S195A) of the active site of the enzyme also prevented ENaC activation. By comparison, three truncation mutants of the amino-terminal fragment of tcuPA still activated ENaC. uPA enzymatic activity was positively correlated with ENaC current amplitude prior to reaching the maximal level. In sharp contrast to uPA, neither single-chain tPA nor derivatives, including two-chain tPA and tenecteplase, affected ENaC activity. Furthermore, γ but not α subunit of ENaC was proteolytically cleaved at ((177)GR↓KR(180)) by tcuPA. In summary, the underlying mechanisms of urokinase-mediated activation of ENaC include release of self-inhibition, proteolysis of γ ENaC, incremental increase in opening rate, and activation of closed (electrically "silent") channels. This study for the first time demonstrates multifaceted mechanisms for uPA-mediated up-regulation of ENaC, which form the cellular and molecular rationale for the beneficial effects of urokinase in mitigating mortal pulmonary edema and pleural effusions. PMID:25555911

  20. Location of Release Sites and Calcium-Activated Chloride Channels Relative to Calcium Channels at the Photoreceptor Ribbon Synapse

    PubMed Central

    Mercer, A. J.; Rabl, K.; Riccardi, G. E.; Brecha, N. C.; Stella, S. L.

    2011-01-01

    Vesicle release from photoreceptor ribbon synapses is regulated by L-type Ca2+ channels, which are in turn regulated by Cl− moving through calcium-activated chloride [Cl(Ca)] channels. We assessed the proximity of Ca2+ channels to release sites and Cl(Ca) channels in synaptic terminals of salamander photoreceptors by comparing fast (BAPTA) and slow (EGTA) intracellular Ca2+ buffers. BAPTA did not fully block synaptic release, indicating some release sites are <100 nm from Ca2+ channels. Comparing Cl(Ca) currents with predicted Ca2+ diffusion profiles suggested that Cl(Ca) and Ca2+ channels average a few hundred nanometers apart, but the inability of BAPTA to block Cl(Ca) currents completely suggested some channels are much closer together. Diffuse immunolabeling of terminals with an antibody to the putative Cl(Ca) channel TMEM16A supports the idea that Cl(Ca) channels are dispersed throughout the presynaptic terminal, in contrast with clustering of Ca2+ channels near ribbons. Cl(Ca) currents evoked by intracellular calcium ion concentration ([Ca2+]i) elevation through flash photolysis of DM-nitrophen exhibited EC50 values of 556 and 377 nM with Hill slopes of 1.8 and 2.4 in rods and cones, respectively. These relationships were used to estimate average submembrane [Ca2+]i in photoreceptor terminals. Consistent with control of exocytosis by [Ca2+] nanodomains near Ca2+ channels, average submembrane [Ca2+]i remained below the vesicle release threshold (∼400 nM) over much of the physiological voltage range for cones. Positioning Ca2+ channels near release sites may improve fidelity in converting voltage changes to synaptic release. A diffuse distribution of Cl(Ca) channels may allow Ca2+ influx at one site to influence relatively distant Ca2+ channels. PMID:21084687

  1. Effect of prolonged exposure to organic solvents on the active site environment of subtilisin Carlsberg

    PubMed Central

    Bansal, Vibha; Delgado, Yamixa; Fasoli, Ezio; Ferrer, Amaris; Griebenow, Kai; Secundo, Francesco; Barletta, Gabriel L

    2010-01-01

    The potential of enzyme catalysis as a tool for organic synthesis is nowadays indisputable, as is the fact that organic solvents affect an enzyme’s activity, selectivity and stability. Moreover, it was recently realized that an enzyme’s initial activity is substantially decreased after prolonged exposure to organic media, an effect that further hampers their potential as catalysts for organic synthesis. Regrettably, the mechanistic reasons for these effects are still debatable. In the present study we have made an attempt to explain the reasons behind the partial loss of enzyme activity on prolonged exposure to organic solvents. Fluorescence spectroscopic studies of the serine protease subtilisin Carlsberg chemically modified with polyethylene glycol (PEG-SC) and inhibited with a Dancyl fluorophore, and dissolved in two organic solvents (acetonitrile and 1,4-dioxane) indicate that when the enzyme is initially introduced into these solvents, the active site environment is similar to that in water; however prolonged exposure to the organic medium causes this environment to resemble that of the solvent in which the enzyme is dissolved. Furthermore, kinetic studies show a reduction on both Vmax and KM as a result of prolonged exposure to the solvents. One interpretation of these results is that during this prolonged exposure to organic solvents the active-site fluorescent label inhibitor adopts a different binding conformation. Extrapolating this to an enzymatic reaction we argue that substrates bind in a less catalytically favorable conformation after the enzyme has been exposed to organic media for several hours. PMID:20414456

  2. Enhancing Electrocatalytic Oxygen Reduction on Nitrogen-Doped Graphene by Active Sites Implantation

    NASA Astrophysics Data System (ADS)

    Feng, Leiyu; Yang, Lanqin; Huang, Zujing; Luo, Jingyang; Li, Mu; Wang, Dongbo; Chen, Yinguang

    2013-11-01

    The shortage of nitrogen active sites and relatively low nitrogen content result in unsatisfying eletrocatalytic activity and durability of nitrogen-doped graphene (NG) for oxygen reduction reaction (ORR). Here we report a novel approach to substantially enhance electrocatalytic oxygen reduction on NG electrode by the implantation of nitrogen active sites with mesoporous graphitic carbon nitride (mpg-C3N4). Electrochemical characterization revealed that in neutral electrolyte the resulting NG (I-NG) exhibited super electrocatalytic activity (completely 100% of four-electron ORR pathway) and durability (nearly no activity change after 100000 potential cyclings). When I-NG was used as cathode catalyst in microbial fuel cells (MFCs), power density and its drop percentage were also much better than the NG and Pt/C ones, demonstrating that the current I-NG was a perfect alternative to Pt/C and offered a new potential for constructing high-performance and less expensive cathode which is crucial for large-scale application of MFC technology.

  3. Enhancing Electrocatalytic Oxygen Reduction on Nitrogen-Doped Graphene by Active Sites Implantation

    PubMed Central

    Feng, Leiyu; Yang, Lanqin; Huang, Zujing; Luo, Jingyang; Li, Mu; Wang, Dongbo; Chen, Yinguang

    2013-01-01

    The shortage of nitrogen active sites and relatively low nitrogen content result in unsatisfying eletrocatalytic activity and durability of nitrogen-doped graphene (NG) for oxygen reduction reaction (ORR). Here we report a novel approach to substantially enhance electrocatalytic oxygen reduction on NG electrode by the implantation of nitrogen active sites with mesoporous graphitic carbon nitride (mpg-C3N4). Electrochemical characterization revealed that in neutral electrolyte the resulting NG (I-NG) exhibited super electrocatalytic activity (completely 100% of four-electron ORR pathway) and durability (nearly no activity change after 100000 potential cyclings). When I-NG was used as cathode catalyst in microbial fuel cells (MFCs), power density and its drop percentage were also much better than the NG and Pt/C ones, demonstrating that the current I-NG was a perfect alternative to Pt/C and offered a new potential for constructing high-performance and less expensive cathode which is crucial for large-scale application of MFC technology. PMID:24264379

  4. Site-specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation.

    PubMed

    Yamano, Koji; Queliconi, Bruno B; Koyano, Fumika; Saeki, Yasushi; Hirokawa, Takatsugu; Tanaka, Keiji; Matsuda, Noriyuki

    2015-10-16

    Damaged mitochondria are eliminated through autophagy machinery. A cytosolic E3 ubiquitin ligase Parkin, a gene product mutated in familial Parkinsonism, is essential for this pathway. Recent progress has revealed that phosphorylation of both Parkin and ubiquitin at Ser(65) by PINK1 are crucial for activation and recruitment of Parkin to the damaged mitochondria. However, the mechanism by which phosphorylated ubiquitin associates with and activates phosphorylated Parkin E3 ligase activity remains largely unknown. Here, we analyze interactions between phosphorylated forms of both Parkin and ubiquitin at a spatial resolution of the amino acid residue by site-specific photo-crosslinking. We reveal that the in-between-RING (IBR) domain along with RING1 domain of Parkin preferentially binds to ubiquitin in a phosphorylation-dependent manner. Furthermore, another approach, the Fluoppi (fluorescent-based technology detecting protein-protein interaction) assay, also showed that pathogenic mutations in these domains blocked interactions with phosphomimetic ubiquitin in mammalian cells. Molecular modeling based on the site-specific photo-crosslinking interaction map combined with mass spectrometry strongly suggests that a novel binding mechanism between Parkin and ubiquitin leads to a Parkin conformational change with subsequent activation of Parkin E3 ligase activity. PMID:26260794

  5. A zinc site in the C-terminal domain of RAG1 is essential for DNA cleavage activity

    PubMed Central

    Gwyn, Lori M.; Peak, Mandy M.; De, Pallabi; Rahman, Negar S.; Rodgers, Karla K.

    2009-01-01

    The recombination activating protein, RAG1, a key component of the V(D)J recombinase, binds multiple Zn2+ ions in its catalytically-required core region. However, the role of zinc in the DNA cleavage activity of RAG1 is not well-resolved. To address this issue, we determined the stoichiometry of Zn2+ ions bound to the catalytically active core region of RAG1 under various conditions. Using metal quantitation methods, we determined that core RAG1 can bind up to four Zn2+ ions. Stripping the full complement of bound Zn2+ ions to produce apo-protein abrogated DNA cleavage activity. Moreover, even partial removal of zinc-binding equivalents resulted in a significant diminishment of DNA cleavage activity, as compared to holo-Zn2+ core RAG1. Mutants of the intact core RAG1 and the isolated core RAG1 domains were studied to identify the location of zinc-binding sites. Significantly, the C-terminal domain in core RAG1 binds at least two Zn2+ ions, with one zinc-binding site containing C902 and C907 as ligands (termed the CC zinc site) and H937 and H942 coordinating a Zn2+ ion in a separate site (HH zinc site). The latter zinc-binding site is essential for DNA cleavage activity, given that the H937A and H942A mutants were defective in both in vitro DNA cleavage assays and cellular recombination assays. Furthermore, as mutation of the active site residue E962 reduces Zn2+ coordination, we propose that the HH zinc site is located in close proximity to the DDE active site. Overall, these results demonstrate that Zn2+ serves an important auxiliary role for RAG1 DNA cleavage activity. Furthermore, we propose that one of the zinc-binding sites is linked to the active site of core RAG1 directly or indirectly by E962. PMID:19500590

  6. The Effects of Site Characterization Activities on the Abundance of Ravens (Corvus corax) in the Yucca Mountain Area

    SciTech Connect

    P.E. Lederle

    1998-05-08

    In response to the Nuclear Waste Policy Act of 1982 and the Nuclear Waste Policy Amendments Act of 1987, the U.S. Department of Energy (DOE) developed and is implementing the Yucca Mountain Site Characterization Project. Raven abundance was measured from August 1991 through August 1995 along treatment and control routes to evaluate whether site characterization activities resulted in increased raven abundance at Yucca Mountain. This study fulfills the requirement set forth in the incidental take provisions of the Biological Opinion that DOE monitor the abundance of ravens at Yucca Mountain. Ravens were more abundant at Yucca Mountain than in the control area, and raven abundance in both areas increased over time. However, the magnitude of differences between Yucca Mountain and control surveys did not change over time, indicating that the increase in raven abundance observed during this study was not related to site characterization activities. Increases over time on both Yucca Mountain and control routes are consistent with increases in raven abundance in the Mojave Desert reported by the annual Breeding Bird Survey of the US. Fish and Wildlife Service. Evidence from the Desert Tortoise Monitoring Program at Yucca Mountain suggests that ravens are not a significant predator of small tortoises in this locale. Carcasses of small tortoises (less than 110 mm in length) collected during the study showed little evidence of raven predation, and 59 radiomarked hatchlings that were monitored on a regular basis were not preyed upon by ravens. Overall, no direct evidence of raven predation on tortoises was observed during this study. Small tortoises are probably encountered so infrequently by ravens that they are rarely exploited as a food source. This is likely due to the relatively low abundance of both desert tortoises and ravens in the Yucca Mountain area.

  7. Control of the active