Science.gov

Sample records for active site cys

  1. Evidence for the participation of Cys sub 558 and Cys sub 559 at the active site of mercuric reductase

    SciTech Connect

    Miller, S.M.; Moore, M.J.; Massey, V.; Williams, C.H. Jr.; Distefano, M.D.; Ballou, D.P.; Walsh, C.T. )

    1989-02-07

    Mercuric reductase, with FAD and a reducible disulfide at the active site, catalyzes the two-electron reduction of Hg(II) by NADPH. Addition of reducing equivalents rapidly produces a spectrally distinct EH{sub 2} form of the enzyme containing oxidized FAD and reduced active site thiols. Formation of EH{sub 2} has previously been reported to require only 2 electrons for reduction of the active site disulfide. The authors present results of anaerobic titrations of mercuric reductase with NADPH and dithionite showing that the equilibrium conversion of oxidized enzyme to EH{sub 2} actually requires 2 equiv of reducing agent or 4 electrons. Kinetic studies conducted both at 4{degree}C and at 25{degree}C indicate that reduction of the active site occurs rapidly, as previously reported; this is followed by a slower reduction of another redox group via reaction with the active site. ({sup 14}C)Iodoacetamide labeling experiments demonstrate that the C-terminal residues, Cys{sub 558} and Cys{sub 559}, are involved in this disulfide. The fluorescence, but not the absorbance, of the enzyme-bound FAD was found to be highly dependent on the redox state of the C-terminal thiols. Thus, E{sub ox} with Cys{sub 558} and Cys{sub 559} as thiols exhibits less than 50% of the fluorescence of E{sub ox} where these residues are present as a disulfide, indicating that the thiols remain intimately associated with the active site. Initial velocity measurements show that the auxiliary disulfide must be reduced before catalytic Hg(II) reduction can occur, consistent with the report of a preactivation phenomenon with NADPH or cysteine. A modified minimal catalytic mechanism is proposed as well as several chemical mechanisms for the Hg(II) reduction step.

  2. The role of short-range Cys171-Cys178 disulfide bond in maintaining cutinase active site integrity: A molecular dynamics simulation

    SciTech Connect

    Matak, Mehdi Youssefi; Moghaddam, Majid Erfani

    2009-12-11

    Understanding structural determinants in enzyme active site integrity can provide a good knowledge to design efficient novel catalytic machineries. Fusarium solani pisi cutinase with classic triad Ser-His-Asp is a promising enzyme to scrutinize these structural determinants. We performed two MD simulations: one, with the native structure, and the other with the broken Cys171-Cys178 disulfide bond. This disulfide bond stabilizes a turn in active site on which catalytic Asp175 is located. Functionally important H-bonds and atomic fluctuations in catalytic pocket have been changed. We proposed that this disulfide bond within active site can be considered as an important determinant of cutinase active site structural integrity.

  3. Number and locations of agonist binding sites required to activate homomeric Cys-loop receptors.

    PubMed

    Rayes, Diego; De Rosa, María José; Sine, Steven M; Bouzat, Cecilia

    2009-05-06

    Homo-pentameric Cys-loop receptors contain five identical agonist binding sites, each formed at a subunit interface. To determine the number and locations of binding sites required to generate a stable active state, we constructed a receptor subunit with a mutation that disables the agonist binding site and a reporter mutation that alters unitary conductance and coexpressed mutant and nonmutant subunits. Although receptors with a range of different subunit compositions are produced, patch-clamp recordings reveal that the amplitude of each single-channel opening event reports the number and, for certain subunit combinations, the locations of subunits with intact binding sites. We find that receptors with three binding sites at nonconsecutive subunit interfaces exhibit maximal mean channel open time, receptors with binding sites at three consecutive or two nonconsecutive interfaces exhibit intermediate open time, and receptors with binding sites at two consecutive or one interface exhibit brief open time. Macroscopic recordings after rapid application of agonist reveal that channel activation slows and the extent of desensitization decreases as the number of binding sites per receptor decreases. The overall results provide a framework for defining mechanisms of activation and drug modulation for homo-pentameric Cys-loop receptors.

  4. Involvement of the Cys-Tyr cofactor on iron binding in the active site of human cysteine dioxygenase.

    PubMed

    Arjune, Sita; Schwarz, Guenter; Belaidi, Abdel A

    2015-01-01

    Sulfur metabolism has gained increasing medical interest over the last years. In particular, cysteine dioxygenase (CDO) has been recognized as a potential marker in oncology due to its altered gene expression in various cancer types. Human CDO is a non-heme iron-dependent enzyme, which catalyzes the irreversible oxidation of cysteine to cysteine sulfinic acid, which is further metabolized to taurine or pyruvate and sulfate. Several studies have reported a unique post-translational modification of human CDO consisting of a cross-link between cysteine 93 and tyrosine 157 (Cys-Tyr), which increases catalytic efficiency in a substrate-dependent manner. However, the reaction mechanism by which the Cys-Tyr cofactor increases catalytic efficiency remains unclear. In this study, steady-state kinetics were determined for wild type CDO and two different variants being either impaired or saturated with the Cys-Tyr cofactor. Cofactor formation in CDO resulted in an approximately fivefold increase in k cat and tenfold increase in k cat/K m over the cofactor-free CDO variant. Furthermore, iron titration experiments revealed an 18-fold decrease in K d of iron upon cross-link formation. This finding suggests a structural role of the Cys-Tyr cofactor in coordinating the ferrous iron in the active site of CDO in accordance with the previously postulated reaction mechanism of human CDO. Finally, we identified product-based inhibition and α-ketoglutarate and glutarate as CDO inhibitors using a simplified well plate-based activity assay. This assay can be used for high-throughput identification of additional inhibitors, which may contribute to understand the functional importance of CDO in sulfur amino acid metabolism and related diseases.

  5. Palmitoylation of either Cys-3 or Cys-5 is required for the biological activity of the Lck tyrosine protein kinase.

    PubMed Central

    Yurchak, L K; Sefton, B M

    1995-01-01

    Palmitoylation can regulate both the affinity for membranes and the biological activity of proteins. To study the importance of the palmitoylation of the Src-like tyrosine protein kinase p56lck in the function of the protein, Cys-3, Cys-5, or both were mutated to serine, and the mutant proteins were expressed stably in fibroblasts and T cells. Both Cys-3 and Cys-5 were apparent sites of palmitoylation in Lck expressed in fibroblasts, as only the simultaneous mutation of both Cys-3 and Cys-5 caused a large reduction in the incorporation of [3H]palmitic acid. The double mutant S3/5Lck was no longer membrane bound when examined by either immunofluorescence or cell fractionation. This indicated that palmitoylation was required for association of Lck with the plasma membrane. Since the S3/5Lck protein was myristoylated, myristoylation of Lck is not sufficient for membrane binding. When Cys-3, Cys-5, or both Cys-3 and Cys-5 were changed to serine in activated F505Lck, palmitoylation of either Cys-3 or Cys-5 was found to be necessary and sufficient for the transformation of fibroblasts and for the induction of spontaneous, antigen-independent interleukin-2 production in the T-helper cell line DO-11.10. Nonpalmitoylated F505Lck exhibited little activity in vivo, where it did not induce elevated levels of tyrosine phosphorylation, and in vitro, where it was unable to phosphorylate angiotensin in an in vitro kinase assay. These findings suggest that F505Lck must be anchored stably to membranes to become activated. Because palmitoylation is dynamic, it may be involved in regulating the cellular localization of p56(lck), and consequently its activity, by altering the proximity of p56(lck) to its activators and/or targets. PMID:8524258

  6. A Redox 2-Cys Mechanism Regulates the Catalytic Activity of Divergent Cyclophilins1[W

    PubMed Central

    Campos, Bruna Medéia; Sforça, Mauricio Luis; Ambrosio, Andre Luis Berteli; Domingues, Mariane Noronha; Brasil de Souza, Tatiana de Arruda Campos; Barbosa, João Alexandre Ribeiro Gonçalvez; Leme, Adriana Franco Paes; Perez, Carlos Alberto; Whittaker, Sara Britt-Marie; Murakami, Mario Tyago; Zeri, Ana Carolina de Matos; Benedetti, Celso Eduardo

    2013-01-01

    The citrus (Citrus sinensis) cyclophilin CsCyp is a target of the Xanthomonas citri transcription activator-like effector PthA, required to elicit cankers on citrus. CsCyp binds the citrus thioredoxin CsTdx and the carboxyl-terminal domain of RNA polymerase II and is a divergent cyclophilin that carries the additional loop KSGKPLH, invariable cysteine (Cys) residues Cys-40 and Cys-168, and the conserved glutamate (Glu) Glu-83. Despite the suggested roles in ATP and metal binding, the functions of these unique structural elements remain unknown. Here, we show that the conserved Cys residues form a disulfide bond that inactivates the enzyme, whereas Glu-83, which belongs to the catalytic loop and is also critical for enzyme activity, is anchored to the divergent loop to maintain the active site open. In addition, we demonstrate that Cys-40 and Cys-168 are required for the interaction with CsTdx and that CsCyp binds the citrus carboxyl-terminal domain of RNA polymerase II YSPSAP repeat. Our data support a model where formation of the Cys-40-Cys-168 disulfide bond induces a conformational change that disrupts the interaction of the divergent and catalytic loops, via Glu-83, causing the active site to close. This suggests a new type of allosteric regulation in divergent cyclophilins, involving disulfide bond formation and a loop-displacement mechanism. PMID:23709667

  7. A molecular characterization of the agonist binding site of a nematode cys-loop GABA receptor

    PubMed Central

    Kaji, Mark D; Kwaka, Ariel; Callanan, Micah K; Nusrat, Humza; Desaulniers, Jean-Paul; Forrester, Sean G

    2015-01-01

    Background and Purpose Cys-loop GABA receptors represent important targets for human chemotherapeutics and insecticides and are potential targets for novel anthelmintics (nematicides). However, compared with insect and mammalian receptors, little is known regarding the pharmacological characteristics of nematode Cys-loop GABA receptors. Here we have investigated the agonist binding site of the Cys-loop GABA receptor UNC-49 (Hco-UNC-49) from the parasitic nematode Haemonchus contortus. Experimental Approach We used two-electrode voltage-clamp electrophysiology to measure channel activation by classical GABA receptor agonists on Hco-UNC-49 expressed in Xenopus laevis oocytes, along with site-directed mutagenesis and in silico homology modelling. Key Results The sulphonated molecules P4S and taurine had no effect on Hco-UNC-49. Other classical Cys-loop GABAA receptor agonists tested on the Hco-UNC-49B/C heteromeric channel had a rank order efficacy of GABA > trans-4-aminocrotonic acid > isoguvacine > imidazole-4-acetic acid (IMA) > (R)-(−)-4-amino-3-hydroxybutyric acid [R(−)-GABOB] > (S)-(+)-4-amino-3-hydroxybutyric acid [S(+)-GABOB] > guanidinoacetic acid > isonipecotic acid > 5-aminovaleric acid (DAVA) (partial agonist) > β-alanine (partial agonist). In silico ligand docking revealed some variation in binding between agonists. Mutagenesis of a key serine residue in binding loop C to threonine had minimal effects on GABA and IMA but significantly increased the maximal response to DAVA and decreased twofold the EC50 for R(−)- and S(+)-GABOB. Conclusions and Implications The pharmacological profile of Hco-UNC-49 differed from that of vertebrate Cys-loop GABA receptors and insect resistance to dieldrin receptors, suggesting differences in the agonist binding pocket. These findings could be exploited to develop new drugs that specifically target GABA receptors of parasitic nematodes. PMID:25850584

  8. Unraveling the essential role of CysK in CDI toxin activation

    PubMed Central

    Johnson, Parker M.; Beck, Christina M.; Morse, Robert P.; Garza-Sánchez, Fernando; Low, David A.; Hayes, Christopher S.; Goulding, Celia W.

    2016-01-01

    Contact-dependent growth inhibition (CDI) is a widespread mechanism of bacterial competition. CDI+ bacteria deliver the toxic C-terminal region of contact-dependent inhibition A proteins (CdiA-CT) into neighboring target bacteria and produce CDI immunity proteins (CdiI) to protect against self-inhibition. The CdiA-CTEC536 deployed by uropathogenic Escherichia coli 536 (EC536) is a bacterial toxin 28 (Ntox28) domain that only exhibits ribonuclease activity when bound to the cysteine biosynthetic enzyme O-acetylserine sulfhydrylase A (CysK). Here, we present crystal structures of the CysK/CdiA-CTEC536 binary complex and the neutralized ternary complex of CysK/CdiA-CT/CdiIEC536. CdiA-CTEC536 inserts its C-terminal Gly-Tyr-Gly-Ile peptide tail into the active-site cleft of CysK to anchor the interaction. Remarkably, E. coli serine O-acetyltransferase uses a similar Gly-Asp-Gly-Ile motif to form the “cysteine synthase” complex with CysK. The cysteine synthase complex is found throughout bacteria, protozoa, and plants, indicating that CdiA-CTEC536 exploits a highly conserved protein–protein interaction to promote its toxicity. CysK significantly increases CdiA-CTEC536 thermostability and is required for toxin interaction with tRNA substrates. These observations suggest that CysK stabilizes the toxin fold, thereby organizing the nuclease active site for substrate recognition and catalysis. By contrast, Ntox28 domains from Gram-positive bacteria lack C-terminal Gly-Tyr-Gly-Ile motifs, suggesting that they do not interact with CysK. We show that the Ntox28 domain from Ruminococcus lactaris is significantly more thermostable than CdiA-CTEC536, and its intrinsic tRNA-binding properties support CysK-independent nuclease activity. The striking differences between related Ntox28 domains suggest that CDI toxins may be under evolutionary pressure to maintain low global stability. PMID:27531961

  9. Cross-linking myosin subfragment 1 Cys-697 and Cys-707 modifies ATP and actin binding site interactions.

    PubMed Central

    Kirshenbaum, K.; Papp, S.; Highsmith, S.

    1993-01-01

    Skeletal muscle myosin is an enzyme that interacts allosterically with MgATP and actin to transduce the chemical energy from ATP hydrolysis into work. By modifying myosin structure, one can change this allosteric interaction and gain insight into its mechanism. Chemical cross-linking with N,N'-p-phenylenedimaleimide (pPDM) of Cys-697 to Cys-707 of the myosin-ADP complex eliminates activity and produces a species that resembles myosin with ATP bound (Burke et al., 1976). Nucleotide-free pPDM-modified myosin subfragment 1 (S1) was prepared, and its structural and allosteric properties were investigated by comparing the nucleotide and actin interactions of S1 to those of pPDM-S1. The structural properties of the nucleotide-free pPDM-S1 are different from those of S1 in several respects. pPDM-S1 intrinsic tryptophan fluorescence intensity is reduced 28%, indicating a large increase of an internal quenching reaction (the fluorescence intensity of the related vanadate complex of S1, S1-MgADP-Vi, is reduced by a similar degree). Tryptophan fluorescence anisotropy increases from 0.168 for S1 to 0.192 for pPDM-S1, indicating that the unquenched tryptophan population in pPDM-S1 has reduced local freedom of motion. The actin affinity of pPDM-S1 is over 6,000-fold lower than that of S1, and the absolute value of the product of the net effective electric charges at the acto-S1 interface is reduced from 8.1 esu2 for S1 to 1.6 esu2 for pPDM-S1. In spite of these changes, the structural response of pPDM-S1 to nucleotide and the allosteric communication between its ATP and actin sites remain intact. Compared to pPDM-S1, the fluorescence intensity of pPDM-S1 *MgADP is increased 50%(compared to 8 and 31% increases, respectively, for MgADP and MgATP binding to S1). Compared to acto-pPDM-S1, the absolute value of the product of the net effective electric charge at the actin binding interface of acto-pPDM-S1 *MgADP increases 7.3 esu2 (compared to a 0.9 esu2 decrease and an 11.0 esu2

  10. Spectroscopic characterization of the [Fe(His)(4)(Cys)] site in 2Fe-superoxide reductase from Desulfovibrio vulgaris.

    PubMed

    Clay, Michael D; Emerson, Joseph P; Coulter, Eric D; Kurtz, Donald M; Johnson, Michael K

    2003-07-01

    The electronic and vibrational properties of the [Fe(His)(4)(Cys)] site (Center II) responsible for catalysis of superoxide reduction in the two-iron superoxide reductase (2Fe-SOR) from Desulfovibrio vulgaris have been investigated using the combination of EPR, resonance Raman, UV/visible/near-IR absorption, CD, and VTMCD spectroscopies. Deconvolution of the spectral contributions of Center II from those of the [Fe(Cys)(4)] site (Center I) has been achieved by parallel investigations of the C13S variant, which does not contain Center I. The resonance Raman spectrum of ferric Center II has been assigned based on isotope shifts for (34)S and (15)N globally labeled proteins. As for the [Fe(His)(4)(Cys)] active site in 1Fe-SOR from Pyrococcus furiosus, the spectroscopic properties of ferric and ferrous Center II in D. vulgaris 2Fe-SOR are indicative of distorted octahedral and square-pyramidal coordination geometries, respectively. Differences in the properties of the ferric [Fe(His)(4)(Cys)] sites in 1Fe- and 2Fe-SORs are apparent in the rhombicity of the S=5/2 ground state ( E/ D=0.06 and 0.28 in 1Fe- and 2Fe-SORs, respectively), the energy of the CysS(-)(p(pi))-->Fe(3+)(d(pi)) CT transition (15150+/-150 cm(-1) and 15600+/-150 cm(-1) in 1Fe- and 2Fe-SORs, respectively) and in changes in the Fe-S stretching region of the resonance Raman spectrum indicative of a weaker Fe-S(Cys) bond in 2Fe-SORs. These differences are interpreted in terms of small structural perturbations in the Fe coordination sphere with changes in the Fe-S(Cys) bond strength resulting from differences in the peptide N-H.S(Cys) hydrogen bonding within a tetrapeptide bidentate "chelate". Observation of the characteristic intervalence charge transfer transition of a cyano-bridged [Fe(III)-NC-Fe(II)(CN)(5)] unit in the near-IR VTMCD spectra of ferricyanide-oxidized samples of both P. furiosus 1Fe-SOR and D. vulgaris 2Fe-SOR has confirmed the existence of novel ferrocyanide adducts of the ferric [Fe

  11. New insights into the structural bases of activation of Cys-loop receptors.

    PubMed

    Bouzat, Cecilia

    2012-01-01

    Neurotransmitter receptors of the Cys-loop superfamily mediate rapid synaptic transmission throughout the nervous system, and include receptors activated by ACh, GABA, glycine and serotonin. They are involved in physiological processes, including learning and memory, and in neurological disorders, and they are targets for clinically relevant drugs. Cys-loop receptors assemble either from five copies of one type of subunit, giving rise to homomeric receptors, or from several types of subunits, giving rise to heteromeric receptors. Homomeric receptors are invaluable models for probing fundamental relationships between structure and function. Receptors contain a large extracellular domain that carries the binding sites and a transmembrane region that forms the ion pore. How the structural changes elicited by agonist binding are propagated through a distance of 50Å to the ion channel gate is central to understanding receptor function. Depending on the receptor subtype, occupancy of either two, as in the prototype muscle nicotinic receptor, or three binding sites, as in homomeric receptors, is required for full activation. The conformational changes initiated at the binding sites are propagated to the gate through the interface between the extracellular and transmembrane domains. This region forms a network that relays structural changes from the binding site towards the pore, and also contributes to open channel lifetime and rate of desensitization. Thus, this coupling region controls the beginning and duration of a synaptic response. Here we review recent advances in the molecular mechanism by which Cys-loop receptors are activated with particular emphasis on homomeric receptors.

  12. Proteomic identification of an embryo-specific 1Cys-Prx promoter and analysis of its activity in transgenic rice.

    PubMed

    Kim, Je Hein; Jung, In Jung; Kim, Dool Yi; Fanata, Wahyu Indra; Son, Bo Hwa; Yoo, Jae Yong; Harmoko, Rikno; Ko, Ki Seong; Moon, Jeong Chan; Jang, Ho Hee; Kim, Woe Yeon; Kim, Jae-Yean; Lim, Chae Oh; Lee, Sang Yeol; Lee, Kyun Oh

    2011-04-29

    Proteomic analysis of a rice callus led to the identification of 10 abscisic acid (ABA)-induced proteins as putative products of the embryo-specific promoter candidates. 5'-flanking sequence of 1 Cys-Prx, a highly-induced protein gene, was cloned and analyzed. The transcription initiation site of 1 Cys-Prx maps 96 nucleotides upstream of the translation initiation codon and a TATA-box and putative seed-specific cis-acting elements, RYE and ABRE, are located 26, 115 and 124 bp upstream of the transcription site, respectively. β-glucuronidase (GUS) expression driven by the 1 Cys-Prx promoters was strong in the embryo and aleurone layer and the activity reached up to 24.9 ± 3.3 and 40.5 ± 2.1 pmol (4 MU/min/μg protein) in transgenic rice seeds and calluses, respectively. The activity of the 1 Cys-Prx promoters is much higher than that of the previously-identified embryo-specific promoters, and comparable to that of strong endosperm-specific promoters in rice. GUS expression driven by the 1 Cys-Prx promoters has been increased by ABA treatment and rapidly induced by wounding in callus and at the leaf of the transgenic plants, respectively. Furthermore, ectopic expression of the GUS construct in Arabidopsis suggested that the 1 Cys-Prx promoter also has strong activity in seeds of dicot plants.

  13. Glutathionylation of Pea Chloroplast 2-Cys Prx and Mitochondrial Prx IIF Affects Their Structure and Peroxidase Activity and Sulfiredoxin Deglutathionylates Only the 2-Cys Prx.

    PubMed

    Calderón, Aingeru; Lázaro-Payo, Alfonso; Iglesias-Baena, Iván; Camejo, Daymi; Lázaro, Juan J; Sevilla, Francisca; Jiménez, Ana

    2017-01-01

    Together with thioredoxins (Trxs), plant peroxiredoxins (Prxs), and sulfiredoxins (Srxs) are involved in antioxidant defense and redox signaling, while their regulation by post-translational modifications (PTMs) is increasingly regarded as a key component for the transduction of the bioactivity of reactive oxygen and nitrogen species. Among these PTMs, S-glutathionylation is considered a protective mechanism against overoxidation, it also modulates protein activity and allows signaling. This study explores the glutathionylation of recombinant chloroplastic 2-Cys Prx and mitochondrial Prx IIF from Pisum sativum. Glutathionylation of the decameric form of 2-Cys Prx produced a change in the elution volume after FPLC chromatography and converted it to its dimeric glutathionylated form, while Prx IIF in its reduced dimeric form was glutathionylated without changing its oligomeric state. Mass spectrometry demonstrated that oxidized glutathione (GSSG) can glutathionylate resolving cysteine (Cys(174)), but not the peroxidatic equivalent (Cys(52)), in 2-Cys Prx. In contrast, GSSG was able to glutathionylate both peroxidatic (Cys(59)) and resolving (Cys(84)) cysteine in Prx IIF. Glutathionylation was seen to be dependent on the GSH/GSSG ratio, although the exact effect on the 2-Cys Prx and Prx IIF proteins differed. However, the glutathionylation provoked a similar decrease in the peroxidase activity of both peroxiredoxins. Despite growing evidence of the importance of post-translational modifications, little is known about the enzymatic systems that specifically regulate the reversal of this modification. In the present work, sulfiredoxin from P. sativum was seen to be able to deglutathionylate pea 2-Cys Prx but not pea Prx IIF. Redox changes during plant development and the response to stress influence glutathionylation/deglutathionylation processes, which may represent an important event through the modulation of peroxiredoxin and sulfiredoxin proteins.

  14. Glutathionylation of Pea Chloroplast 2-Cys Prx and Mitochondrial Prx IIF Affects Their Structure and Peroxidase Activity and Sulfiredoxin Deglutathionylates Only the 2-Cys Prx

    PubMed Central

    Calderón, Aingeru; Lázaro-Payo, Alfonso; Iglesias-Baena, Iván; Camejo, Daymi; Lázaro, Juan J.; Sevilla, Francisca; Jiménez, Ana

    2017-01-01

    Together with thioredoxins (Trxs), plant peroxiredoxins (Prxs), and sulfiredoxins (Srxs) are involved in antioxidant defense and redox signaling, while their regulation by post-translational modifications (PTMs) is increasingly regarded as a key component for the transduction of the bioactivity of reactive oxygen and nitrogen species. Among these PTMs, S-glutathionylation is considered a protective mechanism against overoxidation, it also modulates protein activity and allows signaling. This study explores the glutathionylation of recombinant chloroplastic 2-Cys Prx and mitochondrial Prx IIF from Pisum sativum. Glutathionylation of the decameric form of 2-Cys Prx produced a change in the elution volume after FPLC chromatography and converted it to its dimeric glutathionylated form, while Prx IIF in its reduced dimeric form was glutathionylated without changing its oligomeric state. Mass spectrometry demonstrated that oxidized glutathione (GSSG) can glutathionylate resolving cysteine (Cys174), but not the peroxidatic equivalent (Cys52), in 2-Cys Prx. In contrast, GSSG was able to glutathionylate both peroxidatic (Cys59) and resolving (Cys84) cysteine in Prx IIF. Glutathionylation was seen to be dependent on the GSH/GSSG ratio, although the exact effect on the 2-Cys Prx and Prx IIF proteins differed. However, the glutathionylation provoked a similar decrease in the peroxidase activity of both peroxiredoxins. Despite growing evidence of the importance of post-translational modifications, little is known about the enzymatic systems that specifically regulate the reversal of this modification. In the present work, sulfiredoxin from P. sativum was seen to be able to deglutathionylate pea 2-Cys Prx but not pea Prx IIF. Redox changes during plant development and the response to stress influence glutathionylation/deglutathionylation processes, which may represent an important event through the modulation of peroxiredoxin and sulfiredoxin proteins. PMID:28197170

  15. Overoxidation of chloroplast 2-Cys peroxiredoxins: balancing toxic and signaling activities of hydrogen peroxide.

    PubMed

    Puerto-Galán, Leonor; Pérez-Ruiz, Juan M; Ferrández, Julia; Cano, Beatriz; Naranjo, Belén; Nájera, Victoria A; González, Maricruz; Lindahl, Anna M; Cejudo, Francisco J

    2013-01-01

    Photosynthesis, the primary source of biomass and oxygen into the biosphere, involves the transport of electrons in the presence of oxygen and, therefore, chloroplasts constitute an important source of reactive oxygen species, including hydrogen peroxide. If accumulated at high level, hydrogen peroxide may exert a toxic effect; however, it is as well an important second messenger. In order to balance the toxic and signaling activities of hydrogen peroxide its level has to be tightly controlled. To this end, chloroplasts are equipped with different antioxidant systems such as 2-Cys peroxiredoxins (2-Cys Prxs), thiol-based peroxidases able to reduce hydrogen and organic peroxides. At high peroxide concentrations the peroxidase function of 2-Cys Prxs may become inactivated through a process of overoxidation. This inactivation has been proposed to explain the signaling function of hydrogen peroxide in eukaryotes, whereas in prokaryotes, the 2-Cys Prxs of which were considered to be insensitive to overoxidation, the signaling activity of hydrogen peroxide is less relevant. Here we discuss the current knowledge about the mechanisms controlling 2-Cys Prx overoxidation in chloroplasts, organelles with an important signaling function in plants. Given the prokaryotic origin of chloroplasts, we discuss the occurrence of 2-Cys Prx overoxidation in cyanobacteria with the aim of identifying similarities between chloroplasts and their ancestors regarding their response to hydrogen peroxide.

  16. Mechanisms of mitochondrial holocytochrome c synthase and the key roles played by cysteines and histidine of the heme attachment site, Cys-XX-Cys-His.

    PubMed

    Babbitt, Shalon E; San Francisco, Brian; Mendez, Deanna L; Lukat-Rodgers, Gudrun S; Rodgers, Kenton R; Bretsnyder, Eric C; Kranz, Robert G

    2014-10-17

    Mitochondrial cytochrome c assembly requires the covalent attachment of heme by thioether bonds between heme vinyl groups and a conserved CXXCH motif of cytochrome c/c1. The enzyme holocytochrome c synthase (HCCS) binds heme and apocytochrome c substrate to catalyze this attachment, subsequently releasing holocytochrome c for proper folding to its native structure. We address mechanisms of assembly using a functional Escherichia coli recombinant system expressing human HCCS. Human cytochrome c variants with individual cysteine, histidine, double cysteine, and triple cysteine/histidine substitutions (of CXXCH) were co-purified with HCCS. Single and double mutants form a complex with HCCS but not the triple mutant. Resonance Raman and UV-visible spectroscopy support the proposal that heme puckering induced by both thioether bonds facilitate release of holocytochrome c from the complex. His-19 (of CXXCH) supplies the second axial ligand to heme in the complex, the first axial ligand was previously shown to be from HCCS residue His-154. Substitutions of His-19 in cytochrome c to seven other residues (Gly, Ala, Met, Arg, Lys, Cys, and Tyr) were used with various approaches to establish other roles played by His-19. Three roles for His-19 in HCCS-mediated assembly are suggested: (i) to provide the second axial ligand to the heme iron in preparation for covalent attachment; (ii) to spatially position the two cysteinyl sulfurs adjacent to the two heme vinyl groups for thioether formation; and (iii) to aid in release of the holocytochrome c from the HCCS active site. Only H19M is able to carry out these three roles, albeit at lower efficiencies than the natural His-19.

  17. Mechanisms of Mitochondrial Holocytochrome c Synthase and the Key Roles Played by Cysteines and Histidine of the Heme Attachment Site, Cys-XX-Cys-His*

    PubMed Central

    Babbitt, Shalon E.; San Francisco, Brian; Mendez, Deanna L.; Lukat-Rodgers, Gudrun S.; Rodgers, Kenton R.; Bretsnyder, Eric C.; Kranz, Robert G.

    2014-01-01

    Mitochondrial cytochrome c assembly requires the covalent attachment of heme by thioether bonds between heme vinyl groups and a conserved CXXCH motif of cytochrome c/c1. The enzyme holocytochrome c synthase (HCCS) binds heme and apocytochrome c substrate to catalyze this attachment, subsequently releasing holocytochrome c for proper folding to its native structure. We address mechanisms of assembly using a functional Escherichia coli recombinant system expressing human HCCS. Human cytochrome c variants with individual cysteine, histidine, double cysteine, and triple cysteine/histidine substitutions (of CXXCH) were co-purified with HCCS. Single and double mutants form a complex with HCCS but not the triple mutant. Resonance Raman and UV-visible spectroscopy support the proposal that heme puckering induced by both thioether bonds facilitate release of holocytochrome c from the complex. His-19 (of CXXCH) supplies the second axial ligand to heme in the complex, the first axial ligand was previously shown to be from HCCS residue His-154. Substitutions of His-19 in cytochrome c to seven other residues (Gly, Ala, Met, Arg, Lys, Cys, and Tyr) were used with various approaches to establish other roles played by His-19. Three roles for His-19 in HCCS-mediated assembly are suggested: (i) to provide the second axial ligand to the heme iron in preparation for covalent attachment; (ii) to spatially position the two cysteinyl sulfurs adjacent to the two heme vinyl groups for thioether formation; and (iii) to aid in release of the holocytochrome c from the HCCS active site. Only H19M is able to carry out these three roles, albeit at lower efficiencies than the natural His-19. PMID:25170082

  18. Discovery of a novel allosteric modulator of 5-HT3 receptors: inhibition and potentiation of Cys-loop receptor signaling through a conserved transmembrane intersubunit site.

    PubMed

    Trattnig, Sarah M; Harpsøe, Kasper; Thygesen, Sarah B; Rahr, Louise M; Ahring, Philip K; Balle, Thomas; Jensen, Anders A

    2012-07-20

    The ligand-gated ion channels in the Cys-loop receptor superfamily mediate the effects of neurotransmitters acetylcholine, serotonin, GABA, and glycine. Cys-loop receptor signaling is susceptible to modulation by ligands acting through numerous allosteric sites. Here we report the discovery of a novel class of negative allosteric modulators of the 5-HT(3) receptors (5-HT(3)Rs). PU02 (6-[(1-naphthylmethyl)thio]-9H-purine) is a potent and selective antagonist displaying IC(50) values of ~1 μM at 5-HT(3)Rs and substantially lower activities at other Cys-loop receptors. In an elaborate mutagenesis study of the 5-HT(3)A receptor guided by a homology model, PU02 is demonstrated to act through a transmembrane intersubunit site situated in the upper three helical turns of TM2 and TM3 in the (+)-subunit and TM1 and TM2 in the (-)-subunit. The Ser(248), Leu(288), Ile(290), Thr(294), and Gly(306) residues are identified as important molecular determinants of PU02 activity with minor contributions from Ser(292) and Val(310), and we propose that the naphthalene group of PU02 docks into the hydrophobic cavity formed by these. Interestingly, specific mutations of Ser(248), Thr(294), and Gly(306) convert PU02 into a complex modulator, potentiating and inhibiting 5-HT-evoked signaling through these mutants at low and high concentrations, respectively. The PU02 binding site in the 5-HT(3)R corresponds to allosteric sites in anionic Cys-loop receptors, which emphasizes the uniform nature of the molecular events underlying signaling through the receptors. Moreover, the dramatic changes in the functional properties of PU02 induced by subtle changes in its binding site bear witness to the delicate structural discrimination between allosteric inhibition and potentiation of Cys-loop receptors.

  19. The cysP promoter of Salmonella typhimurium: characterization of two binding sites for CysB protein, studies of in vivo transcription initiation, and demonstration of the anti-inducer effects of thiosulfate.

    PubMed Central

    Hryniewicz, M M; Kredich, N M

    1991-01-01

    The cysPTWA operons of Escherichia coli and Salmonella typhimurium encode components of periplasmic transport systems for sulfate and thiosulfate and are regulated as part of the cysteine regulons. In vitro transcription initiation from the cysP promoter was shown to require both CysB protein and either O-acetyl-L-serine or N-acetyl-L-serine, which act as inducers, and was inhibited by the anti-inducer sulfide. Thiosulfate was found to be even more potent than sulfide as an anti-inducer. DNase I protection experiments showed two discrete binding sites for CysB protein in the presence of N-acetyl-L-serine. CBS-P1 is located between positions -85 and -41 relative to the major transcription start site, and CBS-P2 is located between positions -19 and +25. Without N-acetyl-L-serine, the CysB protein protected the region between positions -63 and -11, which was designated CBS-P3. In gel mobility shift assays, the mobility of CysB protein-cysP promoter complexes was increased by O-acetyl-L-serine, N-Acetyl-L-serine had no effect in gel shift experiments, presumably because its anionic charge results in its rapid removal from the complex during electrophoresis. Comparison of DNA fragments differing with respect to binding site position indicated that complexes with CysB protein contain DNA that is bent somewhere between CBS-P1 and CBS-P2 and that O-acetyl-L-serine decreases DNA bending. Binding studies with fragments containing either CBS-P2 alone, CBS-P1 alone, or the entire cysP promoter region suggest a model in which the complex of bent DNA observed in the absence of O-acetyl-L-serine contains a single CysB protein molecule bound to CBS-P3. At relatively low CysB protein concentrations, O-acetyl-L-serine would cause a single CysB protein molecule to bind tightly to CBS-P1, rather than to CBS-P3, thereby decreasing DNA bending and increasing complex electrophoretic mobility. At higher CysB protein concentrations, O-acetyl-L-serine would cause a second molecule to bind

  20. Control of activity through oxidative modification at the conserved residue Cys66 of aryl sulfotransferase IV.

    PubMed

    Marshall, A D; Darbyshire, J F; Hunter, A P; McPhie, P; Jakoby, W B

    1997-04-04

    Oxidation at Cys66 of rat liver aryl suflotransferase IV alters the enzyme's catalytic activity, pH optima and substrate specificity. Although this is a cytosolic detoxification enzyme, the pH optimum for the standard assay substrate 4-nitrophenol is at pH 5.5; upon oxidation, the optimum changes to the physiological pH range. The principal effect of the change in pH optimum is activation, which is manifest by an increase in K'cat without any major influence on substrate binding. In contrast, with tyrosine methyl ester as a substrate, the enzyme's optimum activity occurs at pH 8.0; upon oxidation, it ceases to be a substrate at any pH. The presence of Cys66 was essential for activation to occur, thereby providing a putative reason underlying the conserved nature of this cysteine throughout the phenol sulfotransferase family. Mapping of disulfides by mass spectrometry showed the critical event to be the oxidation of Cys66 to form a disulfide with either Cys232 or glutathione, either one is effective. These results point to a mechanism for regulating the activity of a key enzyme in xenobiotic detoxication during cellular oxidative stress.

  1. Restoration of catalytic activity beyond wild-type level in glucoamylase from Aspergillus awamori by oxidation of the Glu400-->Cys catalytic-base mutant to cysteinesulfinic acid.

    PubMed

    Fierobe, H P; Mirgorodskaya, E; McGuire, K A; Roepstorff, P; Svensson, B; Clarke, A J

    1998-03-17

    Glucoamylase catalyzes the hydrolysis of glucosidic bonds with inversion of the anomeric configuration. Site-directed mutagenesis and three-dimensional structure determination of the glucoamylase from Aspergillus awamori previously identified Glu179 and Glu400 as the general acid and base catalyst, respectively. The average distance between the two carboxyl groups was measured to be 9.2 A, which is typical for inverting glycosyl hydrolases. In the present study, this distance was increased by replacing the catalytic base Glu400 with cysteine which was then oxidized to cysteinesulfinic acid. Initially, this oxidation occurred during attempts to carboxyalkylate the Cys400 residue with iodoacetic acid, 3-iodopropionic acid, or 4-bromobutyric acid. However, endoproteinase Lys-C digestion of modified glucoamylase followed by high-pressure liquid chromatography in combination with matrix-assisted laser desorption ionization/time-of-flight mass spectrometry on purified peptide fragments demonstrated that all enzyme derivatives contained the cysteinesulfinic acid oxidation product of Cys400. Subsequently, it was demonstrated that treatment of Glu400-->Cys glucoamylase with potassium iodide in the presence of bromine resulted in complete conversion to the cysteinesulfinic acid product. As expected, the catalytic base mutant Glu400-->Cys glucoamylase had very low activity, i.e., 0.2% compared to wild-type. The oxidation of Cys400 to cysteinesulfinic acid, however, restored activity (kcat) on alpha-1,4-linked substrates to levels up to 160% of the wild-type glucoamylase which corresponded to approximately a 700-fold increase in the kcat of the Glu400-->Cys mutant glucoamylase. Whereas Glu400-->Cys glucoamylase was much less thermostable and more sensitive to guanidinium chloride than the wild-type enzyme, the oxidation to cysteinesulfinic acid was accompanied by partial recovery of the stability.

  2. Effect of ortho-SR groups on O-H bond strength and H-atom donating ability of phenols: a possible role for the Tyr-Cys link in galactose oxidase active site?

    PubMed

    Amorati, Riccardo; Catarzi, Francesca; Menichetti, Stefano; Pedulli, Gian Franco; Viglianisi, Caterina

    2008-01-09

    Rotation about the Ar-S bond in ortho-(alkylthio)phenols strongly affects the bond dissociation enthalpy (BDE) and the reactivity of the OH group. Newly synthesized sulfur containing heterocycles 3 and 4, where the -SR group is almost coplanar with the phenolic ring, are characterized by unusually low BDE(O-H) values (79.6 and 79.2 kcal/mol, respectively) and by much higher reactivities toward peroxyl radicals than the ortho-methylthio derivative 1 (82.0 kcal/mol). The importance of the intramolecular hydrogen bond (IHB) in determining the BDE(O-H) was demonstrated by FT-IR experiments, which showed that in heterocycles 3 and 4 the IHB between the phenolic OH group and the S atom is much weaker than that present in 1. Since the IHB can be formed only if the -SR group adopts an out-of-plane geometry, this interaction is possible only in the methylthio derivative 1 and not in 3 and 4. The additive contribution to the phenolic BDE(O-H) of the -SR substituent therefore varies from -3.1 to +2.8 kcal/mol for the in-plane and out-of-plane conformations, respectively. These results may be relevant to understanding the role of the tyrosine-cysteine link in the active site of galactose oxidase, an important enzyme that catalyzes the two-electron aerobic oxidation of primary alcohols to aldehydes. The switching of the ortho -SR substituent between perpendicular and planar conformations may account for the catalytic efficiency of this enzyme.

  3. Effects of physical exercise training in DNA damage and repair activity in humans with different genetic polymorphisms of hOGG1 (Ser326Cys).

    PubMed

    Soares, Jorge Pinto; Silva, Ana Inês; Silva, Amélia M; Almeida, Vanessa; Teixeira, João Paulo; Matos, Manuela; Gaivão, Isabel; Mota, Maria Paula

    2015-12-01

    The main purpose of this pilot study was to investigate the possible influence of genetic polymorphisms of the hOGG1 (Ser326Cys) gene in DNA damage and repair activity by 8-oxoguanine DNA glycosylase 1 (OGG1 enzyme) in response to 16 weeks of combined physical exercise training. Thirty-two healthy Caucasian men (40-74 years old) were enrolled in this study. All the subjects were submitted to a training of 16 weeks of combined physical exercise. The subjects with Ser/Ser genotype were considered as wild-type group (WTG), and Ser/Cys and Cys/Cys genotype were analysed together as mutant group (MG). We used comet assay in conjunction with formamidopyrimidine DNA glycoslyase (FPG) to analyse both strand breaks and FPG-sensitive sites. DNA repair activity were also analysed with the comet assay technique. Our results showed no differences between DNA damage (both strand breaks and FPG-sensitive sites) and repair activity (OGG1) between genotype groups (in the pre-training condition). Regarding the possible influence of genotype in the response to 16 weeks of physical exercise training, the results revealed a decrease in DNA strand breaks in both groups, a decrease in FPG-sensitive sites and an increase in total antioxidant capacity in the WTG, but no changes were found in MG. No significant changes in DNA repair activity was observed in both genotype groups with physical exercise training. This preliminary study suggests the possibility of different responses in DNA damage to the physical exercise training, considering the hOGG1 Ser326Cys polymorphism.

  4. Structural and Biochemical Characterization of an Active Arylamine N-Acetyltransferase Possessing a Non-canonical Cys-His-Glu Catalytic Triad*

    PubMed Central

    Kubiak, Xavier; Li de la Sierra-Gallay, Inès; Chaffotte, Alain F.; Pluvinage, Benjamin; Weber, Patrick; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2013-01-01

    Arylamine N-acetyltransferases (NATs), a class of xenobiotic-metabolizing enzymes, catalyze the acetylation of aromatic amine compounds through a strictly conserved Cys-His-Asp catalytic triad. Each residue is essential for catalysis in both prokaryotic and eukaryotic NATs. Indeed, in (HUMAN)NAT2 variants, mutation of the Asp residue to Asn, Gln, or Glu dramatically impairs enzyme activity. However, a putative atypical NAT harboring a catalytic triad Glu residue was recently identified in Bacillus cereus ((BACCR)NAT3) but has not yet been characterized. We report here the crystal structure and functional characterization of this atypical NAT. The overall fold of (BACCR)NAT3 and the geometry of its Cys-His-Glu catalytic triad are similar to those present in functional NATs. Importantly, the enzyme was found to be active and to acetylate prototypic arylamine NAT substrates. In contrast to (HUMAN) NAT2, the presence of a Glu or Asp in the triad of (BACCR)NAT3 did not significantly affect enzyme structure or function. Computational analysis identified differences in residue packing and steric constraints in the active site of (BACCR)NAT3 that allow it to accommodate a Cys-His-Glu triad. These findings overturn the conventional view, demonstrating that the catalytic triad of this family of acetyltransferases is plastic. Moreover, they highlight the need for further study of the evolutionary history of NATs and the functional significance of the predominant Cys-His-Asp triad in both prokaryotic and eukaryotic forms. PMID:23770703

  5. Increasing the refolding efficiency in vitro by site-directed mutagenesis of Cys383 in rat procarboxypeptidase B.

    PubMed

    Li, Suxia; Zhang, Luosheng; Wu, Qian; Xin, Aijie; Zhao, Jian; Fan, Liqiang

    2011-07-10

    This study examines a novel method to reduce the probability of disulfide mismatches during the refolding process by the replacement of cysteines within a protein. Specifically, Cys383 of recombinant rat procarboxypeptidase B was replaced by other amino acids to increase the refolding efficiency in vitro. Mutants C383G, C383A and C383S could refold successfully, but mutants C383R, C383E, C383L and C383Y failed to refold correctly. Compared with wild type, the refolding efficiencies of mutants C383G and C383A were enhanced. The Cys383 mutations changed some of the properties of rat carboxypeptidase B. Mutants C383G, C383A had higher k(cat)/K(m) values which indicated increased catalytic abilities. And both had higher thermal stability. pH had different effects on the activities and stabilities of the mutant and wild type proteins. The studies suggested that mutating Cys383 of rat procarboxypeptidase B could improve the renaturation process by increasing the refolding efficiency. This new method could be taken as a new attempt to improve the refolding efficiency of other recombinant proteins containing disulfide bonds that are expressed as inclusion bodies. While the results also claimed that the potential effects of the substituted amino acid on the protein itself should be seriously considered in addition to its ability to reduce the probability of disulfide mismatches.

  6. CysLT2 receptor activation is involved in LTC4-induced lung air-trapping in guinea pigs.

    PubMed

    Sekioka, Tomohiko; Kadode, Michiaki; Yonetomi, Yasuo; Kamiya, Akihiro; Fujita, Manabu; Nabe, Takeshi; Kawabata, Kazuhito

    2017-01-05

    CysLT1 receptors are known to be involved in the pathogenesis of asthma. However, the functional roles of CysLT2 receptors in this condition have not been determined. The purpose of this study is to develop an experimental model of CysLT2 receptor-mediated LTC4-induced lung air-trapping in guinea pigs and use this model to clarify the mechanism underlying response to such trapping. Because LTC4 is rapidly converted to LTD4 by γ-glutamyltranspeptidase (γ-GTP) under physiological conditions, S-hexyl GSH was used as a γ-GTP inhibitor. In anesthetized artificially ventilated guinea pigs with no S-hexyl GSH treatment, i.v. LTC4-induced bronchoconstriction was almost completely inhibited by montelukast, a CysLT1 receptor antagonist, but not by BayCysLT2RA, a CysLT2 receptor antagonist. The inhibitory effect of montelukast was diminished by treatment with S-hexyl GSH, whereas the effect of BayCysLT2RA was enhanced with increasing dose of S-hexyl GSH. Macroscopic and histological examination of lung tissue isolated from LTC4-/S-hexyl-GSH-treated guinea pigs revealed air-trapping expansion, particularly at the alveolar site. Inhaled LTC4 in conscious guinea pigs treated with S-hexyl GSH increased both airway resistance and airway hyperinflation. On the other hand, LTC4-induced air-trapping was only partially suppressed by treatment with the bronchodilator salmeterol. Although montelukast inhibition of LTC4-induced air-trapping was weak, treatment with BayCysLT2RA resulted in complete suppression of this air-trapping. Furthermore, BayCysLT2RA completely suppressed LTC4-induced airway vascular hyperpermeability. In conclusion, we found in this study that CysLT2 receptors mediate LTC4-induced bronchoconstriction and air-trapping in S-hexyl GSH-treated guinea pigs. It is therefore believed that CysLT2 receptors contribute to asthmatic response involving air-trapping.

  7. Mixed Disulfide Formation at Cys141 Leads to Apparent Unidirectional Attenuation of Aspergillus niger NADP-Glutamate Dehydrogenase Activity

    PubMed Central

    Walvekar, Adhish S.; Choudhury, Rajarshi; Punekar, Narayan S.

    2014-01-01

    NADP-Glutamate dehydrogenase from Aspergillus niger (AnGDH) exhibits sigmoid 2-oxoglutarate saturation. Incubation with 2-hydroxyethyl disulfide (2-HED, the disulfide of 2-mercaptoethanol) resulted in preferential attenuation of AnGDH reductive amination (forward) activity but with a negligible effect on oxidative deamination (reverse) activity, when monitored in the described standard assay. Such a disulfide modified AnGDH displaying less than 1.0% forward reaction rate could be isolated after 2-HED treatment. This unique forward inhibited GDH form (FIGDH), resembling a hypothetical ‘one-way’ active enzyme, was characterized. Kinetics of 2-HED mediated inhibition and protein thiol titrations suggested that a single thiol group is modified in FIGDH. Two site-directed cysteine mutants, C141S and C415S, were constructed to identify the relevant thiol in FIGDH. The forward activity of C141S alone was insensitive to 2-HED, implicating Cys141 in FIGDH formation. It was observed that FIGDH displayed maximal reaction rate only after a pre-incubation with 2-oxoglutarate and NADPH. In addition, compared to the native enzyme, FIGDH showed a four fold increase in K0.5 for 2-oxoglutarate and a two fold increase in the Michaelis constants for ammonium and NADPH. With no change in the GDH reaction equilibrium constant, the FIGDH catalyzed rate of approach to equilibrium from reductive amination side was sluggish. Altered kinetic properties of FIGDH at least partly account for the observed apparent loss of forward activity when monitored under defined assay conditions. In sum, although Cys141 is catalytically not essential, its covalent modification provides a striking example of converting the biosynthetic AnGDH into a catabolic enzyme. PMID:24987966

  8. Fluorescence energy transfer between points in G-actin: the nucleotide-binding site, the metal-binding site and Cys-373 residue.

    PubMed

    Miki, M; Wahl, P

    1985-04-05

    Fluorescence energy transfers were studied in order to investigate the spatial relationships between the nucleotide-binding site, the metal-binding site and the Cys-373 residue in the G-actin molecule. When 1-N6-ethenoadenosine-5'-triphosphate (epsilon-ATP) in the nucleotide-binding site and Co2+ or Ni2+ in the metal-binding site were used as fluorescence donor and acceptor, respectively, the fluorescence intensity of epsilon-ATP was perfectly quenched by Ni2+ or Co2+. This indicated that the nucleotide-binding site is very close to the metal-binding site; the distance should be less than 10 A. When N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (IAEDANS) bound to Cys-373 residue and Co2+ in the metal-binding site were used as a fluorescence donor and an acceptor, respectively, the transfer efficiency was equal to 5 +/- 1%. The corresponding distance was calculated to be 23-32 A, assuming a random orientation factor K2 = 2/3.

  9. In vitro interactions of CysB protein with the cysK and cysJIH promoter regions of Salmonella typhimurium.

    PubMed Central

    Monroe, R S; Ostrowski, J; Hryniewicz, M M; Kredich, N M

    1990-01-01

    The cysteine regulons of Salmonella typhimurium and Escherichia coli are positively regulated by CysB protein and either O-acetyl-L-serine or N-acetyl-L-serine, both of which act as inducers. Gel mobility shift assays and DNase I footprinting experiments showed that CysB protein binds to the S. typhimurium cysK promoter at two sites, one, designated CBS-K1, at positions -78 to -39 relative to the major transcription start site, and the other, designated CBS-K2, at positions -115 to -79. The S. typhimurium cysJIH promoter was found to contain a single binding site, designated CBS-JH, at positions -76 to -35. Acetyl-L-serine stimulated binding to CBS-K1 and CBS-J and inhibited binding to CBS-K2. In the absence of acetyl-L-serine, CysB protein bound to both CBS-K1 and CBS-K2 and gave a complex that migrated more slowly during gel electrophoresis than did that formed in the presence of acetyl-L-serine, in which case CysB protein bound only to CBS-K1. Complexes formed with DNA containing the two binding sites either at the middle or at one end of the fragment migrated differently, suggesting that DNA was bent in the slow complex formed in the absence of acetyl-L-serine and that DNA in the fast complex was less bent or not bent at all. An analysis of upstream deletions of the cysK promoter showed that only CBS-K1 is required for in vivo promoter activity. CBS-J is analogous in position to CBS-K1 and is probably also required for activity of the cysJIH promoter. CBS-K2 has no known function but may help sequester CysB protein at the cysK promoter. Images PMID:2254265

  10. Increasing the hydrolysis constant of the reactive site upon introduction of an engineered Cys¹⁴-Cys³⁹ bond into the ovomucoid third domain from silver pheasant.

    PubMed

    Hemmi, Hikaru; Kumazaki, Takashi; Kojima, Shuichi; Yoshida, Takuya; Ohkubo, Tadayasu; Yokosawa, Hideyoshi; Miura, Kin-Ichiro; Kobayashi, Yuji

    2011-08-01

    P14C/N39C is the disulfide variant of the ovomucoid third domain from silver pheasant (OMSVP3) introducing an engineered Cys¹⁴-Cys³⁹ bond near the reactive site on the basis of the sequence homology between OMSVP3 and ascidian trypsin inhibitor. This variant exhibits a narrower inhibitory specificity. We have examined the effects of introducing a Cys¹⁴-Cys³⁹ bond into the flexible N-terminal loop of OMSVP3 on the thermodynamics of the reactive site peptide bond hydrolysis, as well as the thermal stability of reactive site intact inhibitors. P14C/N39C can be selectively cleaved by Streptomyces griseus protease B at the reactive site of OMSVP3 to form a reactive site modified inhibitor. The conversion rate of intact to modified P14C/N39C is much faster than that for wild type under any pH condition. The pH-independent hydrolysis constant (K(hyd) °) is estimated to be approximately 5.5 for P14C/N39C, which is higher than the value of 1.6 for natural OMSVP3. The reactive site modified form of P14C/N39C is thermodynamically more stable than the intact one. Thermal denaturation experiments using intact inhibitors show that the temperature at the midpoint of unfolding at pH 2.0 is 59 °C for P14C/N39C and 58 °C for wild type. There have been no examples, except P14C/N39C, where introducing an engineered disulfide causes a significant increase in K(hyd) °, but has no effect on the thermal stability. The site-specific disulfide introduction into the flexible N-terminal loop of natural Kazal-type inhibitors would be useful to further characterize the thermodynamics of the reactive site peptide bond hydrolysis.

  11. Peroxiredoxin 1 (Prx1) is a dual function enzyme by possessing Cys-independent catalase-like activity.

    PubMed

    Sun, Cen-Cen; Dong, Wei-Ren; Shao, Tong; Li, Jiang-Yuan; Zhao, Jing; Nie, Li; Xiang, Li-Xin; Zhu, Guan; Shao, Jian-Zhong

    2017-02-20

    Peroxiredoxin (Prx) was previously known as a Cys-dependent thioredoxin. However, we unexpected observed that Prx1 from the green spotted puffer fish Tetraodon nigroviridis (TnPrx1) was able to reduce H2O2 in a manner independent on the Cys peroxidation and reductants. This study aimed to validate the novel function for Prx1, delineate the biochemical features and explore its antioxidant role in cells. We have confirmed that Prx1 from the puffer fish and humans truly possesses a catalase-like activity that is independent of Cys residues and reductants, but dependent on iron. We have identified that the GVL motif was essential to the catalase-like (CAT) activity of Prx1, but not to the Cys-dependent thioredoxin peroxidase (POX) activity, and generated mutants lacking POX and/or CAT activities for individual functional validation. We discovered that the TnPrx1 POX and CAT activities possessed different kinetic features in reducing H2O2 The overexpression of wild-type TnPrx1 and mutants differentially regulated the intracellular levels of reactive oxygen species (ROS) and the phosphorylation of p38 in HEK-293T cells treated with H2O2 Prx1 is a dual function enzyme by acting as POX and CAT with varied affinities towards ROS. This study extends our knowledge on Prx1 and provides new opportunities to further study the biological roles of this family of antioxidants.

  12. Molecular characterization of the cysJIH promoters of Salmonella typhimurium and Escherichia coli: regulation by cysB protein and N-acetyl-L-serine.

    PubMed Central

    Ostrowski, J; Kredich, N M

    1989-01-01

    The cysJIH promoter regions from Salmonella typhimurium LT7 and Escherichia coli B were cloned and sequenced. Primer extension analyses showed that the major in vivo transcription initiation site in S. typhimurium is located 171 nucleotides upstream of the cysJ start codon. Minor start sites were found 8 and 9 nucleotides downstream of the major site. In vivo transcription initiation in E. coli was found to occur at a single site 66 nucleotides upstream of the cysJ start codon. Primer extension studies also indicated that chromosomal cysJIH transcription is stimulated by sulfur limitation and repressed by growth on L-cystine. Paradoxically, in strains carrying plasmids containing the S. typhimurium cysJIH region, the highest levels of primer extension products were found with RNA from cells grown on L-cystine, even though levels of the proteins encoded by cysJ and cysI were normally repressed. In vitro transcription runoff studies with DNA template from the S. typhimurium cysJIH promoter region showed synthesis of a product originating at the major in vivo start site, which was dependent on the presence of purified cysB protein and either O-acetyl-L-serine or N-acetyl-L-serine. N-Acetyl-L-serine was 10- to 30-fold more active than O-acetyl-L-serine as an in vitro inducer of cysJIH transcription. Images PMID:2701932

  13. Conversion of Bacillus subtilis OhrR from a 1-Cys to a 2-Cys Peroxide Sensor▿

    PubMed Central

    Soonsanga, Sumarin; Lee, Jin-Won; Helmann, John D.

    2008-01-01

    OhrR proteins can be divided into two groups based on their inactivation mechanism: 1-Cys (represented by Bacillus subtilis OhrR) and 2-Cys (represented by Xanthomonas campestris OhrR). A conserved cysteine residue near the amino terminus is present in both groups of proteins and is initially oxidized to the sulfenic acid. The B. subtilis 1-Cys OhrR protein is subsequently inactivated by formation of a mixed-disulfide bond with low-molecular-weight thiols or by cysteine overoxidation to sulfinic and sulfonic acids. In contrast, the X. campestris 2-Cys OhrR is inactivated when the initially oxidized cysteine sulfenate forms an intersubunit disulfide bond with a second Cys residue from the other subunit of the protein dimer. Here, we demonstrate that the 1-Cys B. subtilis OhrR can be converted into a 2-Cys OhrR by introducing another cysteine residue in either position 120 or position 124. Like the X. campestris OhrR protein, these mutants (G120C and Q124C) are inactivated by intermolecular disulfide bond formation. Analysis of oxidized 2-Cys variants both in vivo and in vitro indicates that intersubunit disulfide bond formation can occur simultaneously at both active sites in the protein dimer. Rapid formation of intersubunit disulfide bonds protects OhrR against irreversible overoxidation in the presence of strong oxidants much more efficiently than do the endogenous low-molecular-weight thiols. PMID:18586944

  14. Evolution and function of the Mycoplasma hyopneumoniae peroxiredoxin, a 2-Cys-like enzyme with a single Cys residue.

    PubMed

    Gonchoroski, Taylor; Virginio, Veridiana G; Thompson, Claudia E; Paes, Jéssica A; Machado, Cláudio X; Ferreira, Henrique B

    2017-04-01

    The minimal genome of the mollicute Mycoplasma hyopneumoniae, the etiological agent of porcine enzootic pneumonia, encodes a limited repertoire of antioxidant enzymes that include a single and atypical peroxiredoxin (MhPrx), whose evolution and function were studied here. MhPrx has only one catalytic cysteine, in contrast with some of its possible ancestors (2-Cys peroxiredoxins), which have two. Although it is more similar to 2-Cys orthologs, MhPrx can still function with a single peroxidatic cysteine (CysP), using non-thiolic electron donors to reduce it. Therefore, MhPrx could be a representative of a possible group of 2-Cys peroxiredoxins, which have lost the resolving cysteine (CysR) residue without losing their catalytic properties. To further investigate MhPrx evolution, we performed a comprehensive phylogenetic analysis in the context of several bacterial families, including Prxs belonging to Tpx and AhpE families, shedding light on the evolutionary history of Mycoplasmataceae Prxs and giving support to the hypothesis of a relatively recent loss of the CysR within this family. Moreover, mutational analyses provided insights into MhPrx function with one, two, or without catalytic cysteines. While removal of the MhPrx putative CysP caused complete activity loss, confirming its catalytic role, the introduction of a second cysteine in a site correspondent to that of the CysR of a 2-Cys orthologue, as in the MhPrx supposed ancestral form, was compatible with enzyme activity. Overall, our phylogenetic and mutational studies support that MhPrx recently diverged from a 2-Cys Prx ancestor and pave the way for future studies addressing structural, functional, and evolutive aspects of peroxiredoxin subfamilies in Mollicutes and other bacteria.

  15. Allosteric binding site in a Cys-loop receptor ligand-binding domain unveiled in the crystal structure of ELIC in complex with chlorpromazine

    PubMed Central

    Nys, Mieke; Wijckmans, Eveline; Farinha, Ana; Yoluk, Özge; Andersson, Magnus; Brams, Marijke; Spurny, Radovan; Peigneur, Steve; Tytgat, Jan; Lindahl, Erik; Ulens, Chris

    2016-01-01

    Pentameric ligand-gated ion channels or Cys-loop receptors are responsible for fast inhibitory or excitatory synaptic transmission. The antipsychotic compound chlorpromazine is a widely used tool to probe the ion channel pore of the nicotinic acetylcholine receptor, which is a prototypical Cys-loop receptor. In this study, we determine the molecular determinants of chlorpromazine binding in the Erwinia ligand-gated ion channel (ELIC). We report the X-ray crystal structures of ELIC in complex with chlorpromazine or its brominated derivative bromopromazine. Unexpectedly, we do not find a chlorpromazine molecule in the channel pore of ELIC, but behind the β8–β9 loop in the extracellular ligand-binding domain. The β8–β9 loop is localized downstream from the neurotransmitter binding site and plays an important role in coupling of ligand binding to channel opening. In combination with electrophysiological recordings from ELIC cysteine mutants and a thiol-reactive derivative of chlorpromazine, we demonstrate that chlorpromazine binding at the β8–β9 loop is responsible for receptor inhibition. We further use molecular-dynamics simulations to support the X-ray data and mutagenesis experiments. Together, these data unveil an allosteric binding site in the extracellular ligand-binding domain of ELIC. Our results extend on previous observations and further substantiate our understanding of a multisite model for allosteric modulation of Cys-loop receptors. PMID:27791038

  16. Biochemical characterization of Toxoplasma gondii 1-Cys peroxiredoxin 2 with mechanistic similarities to typical 2-Cys Prx.

    PubMed

    Deponte, Marcel; Becker, Katja

    2005-03-01

    TgPrx2 represents a recently discovered cytosolic 1-Cys peroxiredoxin (Prx) from the intracellular parasite Toxoplasma gondii. Over-expression of the respective gene confers protection against H(2)O(2), suggesting that the protein possesses peroxidase activity. According to the current nomenclature eukaryotic typical and atypical 2-Cys Prx contain a second conserved resolving cysteine residue whereas 1-Cys Prx work on the basis of a monothiol mechanism. Only a few 1-Cys peroxiredoxins have been biochemically characterized to date. Here we describe the mechanistic characterization of TgPrx2 in vitro, including site directed mutagenesis studies, gel filtration chromatography, and molecular modeling. TgPrx2 has general antioxidant properties as indicated by its ability to protect glutamine synthetase against a dithiothreitol Fe(3+)-catalyzed oxidation system. However, TgPrx2 does not reduce H(2)O(2) nor tert-butyl hydroperoxide at the expense of glutaredoxin, thioredoxin or glutathione. Cys(47) was identified as the active site cysteine residue. Most interestingly, Cys(47) was found to form an intermolecular disulfide with Cys(209) from the C-terminal domain of a second subunit which acts as the resolving cysteine. This is a mechanism analogous to typical peroxiredoxins. In contrast to the latter, however, dimeric TgPrx2 does not oligomerize to decamers but is able to form tetramers and hexamers which are non-covalently associated. To our knowledge, TgPrx2 is the first eukaryotic 'so called' 1-Cys peroxiredoxin shown to act on the basis of a 2-Cys mechanism. Our data indicate that mechanistic studies are essential for classifying peroxiredoxins.

  17. The Embryonically Active Gene, Unkempt, of Drosophila Encodes a Cys(3)his Finger Protein

    PubMed Central

    Mohler, J.; Weiss, N.; Murli, S.; Mohammadi, S.; Vani, K.; Vasilakis, G.; Song, C. H.; Epstein, A.; Kuang, T.; English, J.; Cherdak, D.

    1992-01-01

    The unkempt gene of Drosophila encodes a set of embryonic RNAs, which are abundant during early stages of embryogenesis and are present ubiquitously in most somatic tissues from the syncytial embryo through stage 15 of embryogenesis. Expression of unkempt RNAs becomes restricted predominantly to the central nervous system in stages 16 and early 17. Analysis of cDNAs from this locus reveals the presence of five Cys(3)His fingers in the protein product. Isolation and analysis of mutations affecting the unkempt gene, including complete deletions of this gene, indicate that there is no zygotic requirement for unkempt during embryogenesis, presumably due to the contribution of maternally supplied RNA, although the gene is essential during post-embryonic development. PMID:1339381

  18. The activity of TcCYS4 modified by variations in pH and temperature can affect symptoms of witches' broom disease of cocoa, caused by the fungus Moniliophthora perniciosa.

    PubMed

    Freitas, Ana Camila Oliveira; Souza, Cristiane Ferreira; Monzani, Paulo Sérgio; Garcia, Wanius; de Almeida, Alex Alan Furtado; Costa, Marcio Gilberto Cardoso; Pirovani, Carlos Priminho

    2015-01-01

    The phytocystatins regulate various physiological processes in plants, including responses to biotic and abiotic stresses, mainly because they act as inhibitors of cysteine proteases. In this study, we have analyzed four cystatins from Theobroma cacao L. previously identified in ESTs libraries of the interaction with the fungus Moniliophthora perniciosa and named TcCYS1, TcCYS2, TcCYS3 and TcCYS4. The recombinant cystatins were purified and subjected to the heat treatment, at different temperatures, and their thermostabilities were monitored using their ability to inhibit papain protease. TcCYS1 was sensitive to temperatures above 50°C, while TcCYS2, TcCYS3, and TcCYS4 were thermostable. TcCYS4 presented a decrease of inhibitory activity when it was treated at temperatures between 60 and 70°C, with the greater decrease occurring at 65°C. Analyses by native gel electrophoresis and size-exclusion chromatography showed that TcCYS4 forms oligomers at temperatures between 60 and 70°C, condition where reduction of inhibitory activity was observed. TcCYS4 oligomers remain stable for up to 20 days after heat treatment and are undone after treatment at 80°C. TcCYS4 presented approximately 90% of inhibitory activity at pH values between 5 and 9. This protein treated at temperatures above 45°C and pH 5 presented reduced inhibitory activity against papain, suggesting that the pH 5 enhances the formation of TcCYS4 oligomers. A variation in the titratable acidity was observed in tissues of T. cacao during the symptoms of witches' broom disease. Our findings suggest that the oligomerization of TcCYS4, favored by variations in pH, is an endergonic process. We speculate that this process can be involved in the development of the symptoms of witches' broom disease in cocoa.

  19. Evidence for segmental mobility in the active site of pepsin

    SciTech Connect

    Pohl, J.; Strop, P.; Senn, H.; Foundling, S.; Kostka, V.

    1986-05-01

    The low hydrolytic activity (k/sub cat/ < 0.001 s/sup -1/) of chicken pepsin (CP) towards tri- and tetrapeptides is enhanced at least 100 times by modification of its single sulfhydryl group of Cys-115, with little effect on K/sub m/-values. Modification thus simulates the effect of secondary substrate binding on pepsin catalysis. The rate of Cys-115 modification is substantially decreased in the presence of some competitive inhibitors, suggesting its active site location. Experiments with CP alkylated at Cys-115 with Acrylodan as a fluorescent probe or with N-iodoacetyl-(4-fluoro)-aniline as a /sup 19/F-nmr probe suggest conformation change around Cys-115 to occur on substrate or substrate analog binding. The difference /sup 1/H-nmr spectra (500 MHz) of unmodified free and inhibitor-complexed CP reveal chemical shifts almost exclusively in the aromatic region. The effects of Cu/sup + +/ on /sup 19/F- and /sup 1/H-nmr spectra have been studied. Examination of a computer graphics model of CP based on E. parasitica pepsin-inhibitor complex X-ray coordinates suggests that Cys-115 is located near the S/sub 3//S/sub 5/ binding site. The results are interpreted in favor of segmental mobility of this region important for pepsin substrate binding and catalysis.

  20. Functional coupling of Cys-226 and Cys-296 in the glucagon-like peptide-1 (GLP-1) receptor indicates a disulfide bond that is close to the activation pocket.

    PubMed

    Mann, Rosalind J; Al-Sabah, Suleiman; de Maturana, Rakel López; Sinfield, John K; Donnelly, Dan

    2010-12-01

    G protein-coupled receptors (GPCRs) are seven transmembrane α-helical (7TM) integral membrane proteins that play a central role in both cell signaling and in the action of many pharmaceuticals. The crystal structures of several Family A GPCRs have shown the presence of a disulfide bond linking transmembrane helix 3 (TM3) to the second extracellular loop (ECL2), enabling ECL2 to stabilize and contribute to the ligand binding pocket. Family B GPCRs share no significant sequence identity with those in Family A but nevertheless share two conserved cysteines in topologically equivalent positions. Since there are no available crystal structures for the 7TM domain of any Family B GPCR, we used mutagenesis alongside pharmacological analysis to investigate the role of ECL2 and the conserved cysteine residues. We mutated Cys-226, at the extracellular end of TM3 of the glucagon-like peptide-1 (GLP-1) receptor, to alanine and observed a 38-fold reduction in GLP-1 potency. Interestingly, this potency loss was restored by the additional substitution of Cys-296 in ECL2 to alanine. Alongside the complete conservation of these cysteine residues in Family B GPCRs, this functional coupling suggested the presence of a disulfide bond. Further mutagenesis demonstrated that the low potency observed at the C226A mutant, compared with the C226A-C296A double mutant, was the result of the bulky nature of the released Cys-296 side chain. Since this suggested that ECL2 was in close proximity to the agonist activation pocket, an alanine scan of ECL2 was carried out which confirmed the important role of this loop in agonist-induced receptor activation.

  1. Ser-substituted mutations of Cys residues in Bacillus thuringiensis Vip3Aa7 exert a negative effect on its insecticidal activity.

    PubMed

    Dong, Fang; Zhang, Shanshan; Shi, Ruiping; Yi, Shuyuan; Xu, Fangyan; Liu, Ziduo

    2012-11-01

    Vegetative insecticidal proteins (VIPs), which were produced by Bacillus thuringiensis during its vegetative growth stage, display a broad insecticidal spectrum to Lepidoptera larvae. Sequence alignment of the Vip3A-type indicates that three cysteine residues were conserved in Vip3A-type proteins. To determine whether these conserved cysteine residues contributed to the insecticidal activity, the three residues were respectively substituted with serine in the Vip3Aa7 protein by site-directed mutagenesis. Bioassays using the third instar larvae of Plutella xylostella showed that the toxicity of C401S and C507S mutants were completely abolished. To find out the inactivity reason of mutants, three mutants and the wild-type Vip3Aa7 were treated with trypsin. The results indicated that the C507S mutant was rapidly cleaved and resulted in decrease of the 62 kDa toxic core fragment. These results indicated that the replacement of the Cys(507) with a Ser(507) caused decrease in C507S resistance against trypsin degradation. It is suggesting a possible association between insecticidal activity and trypsin sensitivity of Vip3A proteins. This study serves a guideline for the study of Vip3A protein structure and active mechanism.

  2. O-Phospho-L-serine and the Thiocarboxylated Sulfur Carrier Protein CysO-COSH are Substrates for CysM, a Cysteine Synthase from Mycobacterium tuberculosis†

    PubMed Central

    O’Leary, Seán E.; Jurgenson, Christopher T.; Ealick, Steven E.; Begley, Tadhg P.

    2009-01-01

    The kinetic pathway of CysM, a cysteine synthase from Mycobacterium tuberculosis, the expression of which is upregulated under conditions of oxidative stress, was studied by transient-state kinetic techniques. This enzyme exhibits extensive homology with the B-isozymes of the well-studied O-acetylserine sulfhydrylases and employs a similar chemical mechanism involving a stable α-aminoacrylate intermediate. However, we show that specificity of CysM for its amino acid substrate is more than 500-fold greater for O-phospho-L-serine than for O-acetyl-L-serine, suggesting that O-phospho-L-serine is the likely substrate in vivo. We also investigated the kinetics of the carbon-sulfur bond-forming reaction between the CysM-bound α-aminoacrylate intermediate and the thiocarboxylated sulfur-carrier protein, CysO-COSH. The specificity of CysM for this physiological sulfide equivalent is more than three orders of magnitude greater than that for bisulfide. Moreover, the kinetics of this latter reaction are limited by association of the proteins, whilst the reaction with bisulfide is consistent with a rapid equilibrium binding model. We interpret this finding to suggest that the CysM active site with the bound aminoacrylate intermediate is protected from solvent and that binding of CysO-COSH produces a conformational change allowing rapid sulfur transfer. This study represents the first detailed kinetic characterization of sulfide transfer from a sulfide carrier protein. PMID:18842002

  3. O-phospho-L-serine and the thiocarboxylated sulfur carrier protein CysO-COSH are substrates for CysM, a cysteine synthase from Mycobacterium tuberculosis.

    PubMed

    O'Leary, Seán E; Jurgenson, Christopher T; Ealick, Steven E; Begley, Tadhg P

    2008-11-04

    The kinetic pathway of CysM, a cysteine synthase from Mycobacterium tuberculosis, was studied by transient-state kinetic techniques. The expression of which is upregulated under conditions of oxidative stress. This enzyme exhibits extensive homology with the B-isozymes of the well-studied O-acetylserine sulfhydrylase family and employs a similar chemical mechanism involving a stable alpha-aminoacrylate intermediate. However, we show that specificity of CysM for its amino acid substrate is more than 500-fold greater for O-phospho-L-serine than for O-acetyl-L-serine, suggesting that O-phospho-L-serine is the likely substrate in vivo. We also investigated the kinetics of the carbon-sulfur bond-forming reaction between the CysM-bound alpha-aminoacrylate intermediate and the thiocarboxylated sulfur carrier protein, CysO-COSH. The specificity of CysM for this physiological sulfide equivalent is more than 3 orders of magnitude greater than that for bisulfide. Moreover, the kinetics of this latter reaction are limited by association of the proteins, while the reaction with bisulfide is consistent with a rapid equilibrium binding model. We interpret this finding to suggest that the CysM active site with the bound aminoacrylate intermediate is protected from solvent and that binding of CysO-COSH produces a conformational change allowing rapid sulfur transfer. This study represents the first detailed kinetic characterization of sulfide transfer from a sulfide carrier protein.

  4. The Activity of TcCYS4 Modified by Variations in pH and Temperature Can Affect Symptoms of Witches’ Broom Disease of Cocoa, Caused by the Fungus Moniliophthora perniciosa

    PubMed Central

    Freitas, Ana Camila Oliveira; Souza, Cristiane Ferreira; Monzani, Paulo Sérgio; Garcia, Wanius; de Almeida, Alex Alan Furtado; Costa, Marcio Gilberto Cardoso; Pirovani, Carlos Priminho

    2015-01-01

    The phytocystatins regulate various physiological processes in plants, including responses to biotic and abiotic stresses, mainly because they act as inhibitors of cysteine proteases. In this study, we have analyzed four cystatins from Theobroma cacao L. previously identified in ESTs libraries of the interaction with the fungus Moniliophthora perniciosa and named TcCYS1, TcCYS2, TcCYS3 and TcCYS4. The recombinant cystatins were purified and subjected to the heat treatment, at different temperatures, and their thermostabilities were monitored using their ability to inhibit papain protease. TcCYS1 was sensitive to temperatures above 50°C, while TcCYS2, TcCYS3, and TcCYS4 were thermostable. TcCYS4 presented a decrease of inhibitory activity when it was treated at temperatures between 60 and 70°C, with the greater decrease occurring at 65°C. Analyses by native gel electrophoresis and size-exclusion chromatography showed that TcCYS4 forms oligomers at temperatures between 60 and 70°C, condition where reduction of inhibitory activity was observed. TcCYS4 oligomers remain stable for up to 20 days after heat treatment and are undone after treatment at 80°C. TcCYS4 presented approximately 90% of inhibitory activity at pH values between 5 and 9. This protein treated at temperatures above 45°C and pH 5 presented reduced inhibitory activity against papain, suggesting that the pH 5 enhances the formation of TcCYS4 oligomers. A variation in the titratable acidity was observed in tissues of T. cacao during the symptoms of witches’ broom disease. Our findings suggest that the oligomerization of TcCYS4, favored by variations in pH, is an endergonic process. We speculate that this process can be involved in the development of the symptoms of witches’ broom disease in cocoa. PMID:25830226

  5. Exoplasmic cysteine Cys384 of the HDL receptor SR-BI is critical for its sensitivity to a small-molecule inhibitor and normal lipid transport activity

    PubMed Central

    Yu, Miao; Romer, Katherine A.; Nieland, Thomas J. F.; Xu, Shangzhe; Saenz-Vash, Veronica; Penman, Marsha; Yesilaltay, Ayce; Carr, Steven A.; Krieger, Monty

    2011-01-01

    The HDL receptor, scavenger receptor, class B, type I (SR-BI), is a homooligomeric cell surface glycoprotein that controls HDL structure and metabolism by mediating the cellular selective uptake of lipids, mainly cholesteryl esters, from HDL. The mechanism underlying SR-BI-mediated lipid transfer, which differs from classic receptor-mediated endocytosis, involves a two-step process (binding followed by lipid transport) that is poorly understood. Our previous structure/activity analysis of the small-molecule inhibitor blocker of lipid transport 1 (BLT-1), which potently (IC50 ∼ 50 nM) blocks SR-BI-mediated lipid transport, established that the sulfur in BLT-1’s thiosemicarbazone moiety was essential for activity. Here we show that BLT-1 is an irreversible inhibitor of SR-BI, raising the possibility that cysteine(s) in SR-BI interact with BLT-1. Mass spectrometric analysis of purified SR-BI showed two of its six exoplasmic cysteines have free thiol groups (Cys251 and Cys384). Converting Cys384 (but not Cys251) to serine resulted in complete BLT-1 insensitivity, establishing that the unique molecular target of BLT-1 inhibition of cellular SR-BI dependent lipid transport is SR-BI itself. The C384S substitution reduced the receptor’s intrinsic lipid uptake activity by approximately 60% without dramatically altering its surface expression, homooligomerization, or HDL binding. Thus, a small-molecule screening approach identified a key residue in SR-BI involved in lipid transport, providing a powerful springboard into the analyses of the structure and mechanism of SR-BI, and highlighting the power of this approach for such analyses. PMID:21746906

  6. Catalytic Thr or Ser Residue Modulates Structural Switches in 2-Cys Peroxiredoxin by Distinct Mechanisms

    PubMed Central

    Tairum, Carlos A.; Santos, Melina Cardoso; Breyer, Carlos A.; Geyer, R. Ryan; Nieves, Cecilia J.; Portillo-Ledesma, Stephanie; Ferrer-Sueta, Gerardo; Toledo, José Carlos; Toyama, Marcos H.; Augusto, Ohara; Netto, Luis E. S.; de Oliveira, Marcos A.

    2016-01-01

    Typical 2-Cys Peroxiredoxins (2-Cys Prxs) reduce hydroperoxides with extraordinary rates due to an active site composed of a catalytic triad, containing a peroxidatic cysteine (CP), an Arg, and a Thr (or Ser). 2-Cys Prx are involved in processes such as cancer; neurodegeneration and host-pathogen interactions. During catalysis, 2-Cys Prxs switch between decamers and dimers. Analysis of 2-Cys Prx structures in the fully folded (but not locally unfolded) form revealed a highly conserved, non-conventional hydrogen bond (CH-π) between the catalytic triad Thr of a dimer with an aromatic residue of an adjacent dimer. In contrast, structures of 2-Cys Prxs with a Ser in place of the Thr do not display this CH-π bond. Chromatographic and structural data indicate that the Thr (but not Ser) destabilizes the decamer structure in the oxidized state probably through steric hindrance. As a general trend, mutations in a yeast 2-Cys Prx (Tsa1) favoring the dimeric state also displayed a decreased catalytic activity. Remarkably, yeast naturally contains Thr-Ser variants (Tsa1 and Tsa2, respectively) with distinct oligomeric stabilities in their disulfide states. PMID:27629822

  7. List 9 - Active CERCLIS Sites:

    EPA Pesticide Factsheets

    The List 9 displays the sequence of activities undertaken at active CERCLIS sites. An active site is one at which site assessment, removal, remedial, enforcement, cost recovery, or oversight activities are being planned or conducted.

  8. Site-specific PEGylation of hemoglobin at Cys-93(beta): correlation between the colligative properties of the PEGylated protein and the length of the conjugated PEG chain.

    PubMed

    Manjula, B N; Tsai, A; Upadhya, R; Perumalsamy, K; Smith, P K; Malavalli, A; Vandegriff, K; Winslow, R M; Intaglietta, M; Prabhakaran, M; Friedman, J M; Acharya, A S

    2003-01-01

    Increasing the molecular size of acellular hemoglobin (Hb) has been proposed as an approach to reduce its undesirable vasoactive properties. The finding that bovine Hb surface decorated with about 10 copies of PEG5K per tetramer is vasoactive provides support for this concept. The PEGylated bovine Hb has a strikingly larger molecular radius than HbA (1). The colligative properties of the PEGylated bovine Hb are distinct from those of HbA and even polymerized Hb, suggesting a role for the colligative properties of PEGylated Hb in neutralizing the vasoactivity of acellular Hb. To correlate the colligative properties of surface-decorated Hb with the mass of the PEG attached and also its vasoactivity, we have developed a new maleimide-based protocol for the site-specific conjugation of PEG to Hb, taking advantage of the unusually high reactivity of Cys-93(beta) of oxy HbA and the high reactivity of the maleimide to protein thiols. PEG chains of 5, 10, and 20 kDa have been functionalized at one of their hydroxyl groups with a maleidophenyl moiety through a carbamate linkage and used to conjugate the PEG chains at the beta-93 Cys of HbA to generate PEGylated Hbs carrying two copies of PEG (of varying chain length) per tetramer. Homogeneous preparations of (SP-PEG5K)(2)-HbA, (SP-PEG10K)(2)-HbA, and (SP-PEG20K)(2)-HbA have been isolated by ion exchange chromatography. The oxygen affinity of Hb is increased slightly on PEGylation, but the length of the PEG-chain had very little additional influence on the O(2) affinity. Both the hydrodynamic volume and the molecular radius of the Hb increased on surface decoration with PEG and exhibited a linear correlation with the mass of the PEG chain attached. On the other hand, both the viscosity and the colloidal osmotic pressure (COP) of the PEGylated Hbs exhibited an exponential increase with the increase in PEG chain length. In contrast to the molecular volume, viscosity, and COP, the vasoactivity of the PEGylated Hbs was not a

  9. A peroxiredoxin cDNA from Taiwanofungus camphorata: role of Cys31 in dimerization.

    PubMed

    Huang, Chih-Yu; Chen, Yu-Ting; Wen, Lisa; Sheu, Dey-Chyi; Lin, Chi-Tsai

    2014-01-01

    Peroxiredoxins (Prxs) play important roles in antioxidant defense and redox signaling pathways. A Prx isozyme cDNA (TcPrx2, 745 bp, EF552425) was cloned from Taiwanofungus camphorata and its recombinant protein was overexpressed. The purified protein was shown to exist predominantly as a dimer by sodium dodecyl sulfate-polyacrylamide gel electrolysis in the absence of a reducing agent. The protein in its dimeric form showed no detectable Prx activity. However, the protein showed increased Prx activity with increasing dithiothreitol concentration which correlates with dissociation of the dimer into monomer. The TcPrx2 contains two Cys residues. The Cys(60) located in the conserved active site is the putative active peroxidatic Cys. The role of Cys(31) was investigated by site-directed mutagenesis. The C31S mutant (C(31) → S(31)) exists predominantly as a monomer with noticeable Prx activity. The Prx activity of the mutant was higher than that of the corresponding wild-type protein by nearly twofold at 12 μg/mL. The substrate preference of the mutant was H2O2 > cumene peroxide > t-butyl peroxide. The Michaelis constant (K M) value for H2O2 of the mutant was 0.11 mM. The mutant enzyme was active under a broad pH range from 6 to 10. The results suggest a role of Cys(31) in dimerization of the TcPrx2, a role which, at least in part, may be involved in determining the activity of Prx. The C(31) residue does not function as a resolving Cys and therefore the TcPrx2 must follow the reaction mechanism of 1-Cys Prx. This TcPrx2 represents a new isoform of Prx family.

  10. Molecular Cloning of cpcU and Heterodimeric Bilin Lyase Activity Analysis of CpcU and CpcS for Attachment of Phycocyanobilin to Cys-82 on the β-Subunit of Phycocyanin in Arthrospira platensis FACHB314.

    PubMed

    Wu, Fei; Zang, Xiaonan; Zhang, Xuecheng; Zhang, Ran; Huang, Xiaoyun; Hou, Lulu; Jiang, Minjie; Liu, Chang; Pang, Chunhong

    2016-03-16

    A new bilin lyase gene cpcU was cloned from Arthrospira platensis FACHB314 to study the assembly of the phycocyanin β-Subunit. Two recombinant plasmids, one contained the phycocyanobilin (PCB) producing genes (hoxI and pcyA), while the other contained the gene of the β-Subunit of phycobiliprotein (cpcB) and the lyase gene (cpcU, cpcS, or cpcU/S) were constructed and separately transferred into Escherichia coli in order to test the activities of relevant lyases for catalyzing PCB addition to CpcB during synthesizing fluorescent β-PC of A. platensis FACHB314. The fluorescence intensity examination showed that Cys-82 maybe the active site for the β-Subunit binding to PCBs and the attachment could be carried out by CpcU, CpcS, or co-expressed cpcU/S in A. platensis FACHB314.

  11. S-Mercuration of ubiquitin carboxyl-terminal hydrolase L1 through Cys152 by methylmercury causes inhibition of its catalytic activity and reduction of monoubiquitin levels in SH-SY5Y cells.

    PubMed

    Toyama, Takashi; Abiko, Yumi; Katayama, Yuko; Kaji, Toshiyuki; Kumagai, Yoshito

    2015-12-01

    Methylmercury (MeHg) is an environmental electrophile that covalently modifies cellular proteins. In this study, we identified proteins that undergo S-mercuration by MeHg. By combining two-dimensional SDS-PAGE, atomic absorption spectrometry and ultra performance liquid chromatography mass spectrometry (UPLC/MS/MS), we revealed that ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) is a target for S-mercuration in human neuroblastoma SH-SY5Y cells exposed to MeHg (1 µM, 9 hr). The modification site of UCH-L1 by MeHg was Cys152, as determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. MeHg was shown to inhibit the catalytic activity of recombinant human UCH-L1 in a concentration-dependent manner. Knockdown of UCH-L1 indicated that this enzyme plays a critical role in regulating mono-ubiquitin (monoUb) levels in SH-SY5Y cells and exposure of SH-SY5Y cells to MeHg caused a reduction in the level of monoUb in these cells. These observations suggest that UCH-L1 readily undergoes S-mercuration by MeHg through Cys152 and this covalent modification inhibits UCH-L1, leading to the potential disruption of the maintenance of cellular monoUb levels.

  12. IDENTIFICATION OF A MEMBRANE-LOCALIZED CYSTEINE CLUSTER NEAR THE SUBSTRATE BINDING SITES OF THE STREPTOCOCCUS EQUISIMILIS HYALURONAN SYNTHASE

    PubMed Central

    Kumari, Kshama; Weigel, Paul H.

    2005-01-01

    The membrane-bound hyaluronan synthase (HAS) from Streptococcus equisimilis (seHAS), which is the smallest Class I HAS, has four cysteine residues (positions 226, 262, 281, and 367) that are generally conserved within this family. Although Cys-null seHAS is still active, chemical modification of cysteine residues causes inhibition of wildtype enzyme (Kumari et al., J. Biol. Chem. 277, 13943, 2002). Here we studied the effects of N-ethylmaleimide (NEM) treatment on a panel of seHAS Cys-mutants to examine the structural and functional roles of the four cysteine residues in the activity of the enzyme. We found that Cys226, Cys262, and Cys281 are reactive with NEM, but that Cys367 is not. Substrate protection studies of wildtype seHAS and a variety of Cys-mutants revealed that binding of UDP-GlcUA, UDP-GlcNAc or UDP can protect Cys226 and Cys262 from NEM inhibition. Inhibition of the six double Cys-mutants of seHAS by sodium arsenite, which can crosslink vicinyl sulfhydryl groups, also supported the conclusion that Cys262 and Cys281 are close enough to be crosslinked. Similar results indicated that Cys281 and Cys367 are also very close in the active enzyme. We conclude that three of the four Cys residues in seHAS (Cys262, Cys281, and Cys367 ) are clustered very close together, that these Cys residues and Cys226 are located at the inner surface of the cell membrane, and that Cys226 and Cys262 are located in or near a UDP binding site. PMID:15616126

  13. Active sites of thioredoxin reductases: why selenoproteins?

    PubMed

    Gromer, Stephan; Johansson, Linda; Bauer, Holger; Arscott, L David; Rauch, Susanne; Ballou, David P; Williams, Charles H; Schirmer, R Heiner; Arnér, Elias S J

    2003-10-28

    Selenium, an essential trace element for mammals, is incorporated into a selected class of selenoproteins as selenocysteine. All known isoenzymes of mammalian thioredoxin (Trx) reductases (TrxRs) employ selenium in the C-terminal redox center -Gly-Cys-Sec-Gly-COOH for reduction of Trx and other substrates, whereas the corresponding sequence in Drosophila melanogaster TrxR is -Ser-Cys-Cys-Ser-COOH. Surprisingly, the catalytic competence of these orthologous enzymes is similar, whereas direct Sec-to-Cys substitution of mammalian TrxR, or other selenoenzymes, yields almost inactive enzyme. TrxRs are therefore ideal for studying the biology of selenocysteine by comparative enzymology. Here we show that the serine residues flanking the C-terminal Cys residues of Drosophila TrxRs are responsible for activating the cysteines to match the catalytic efficiency of a selenocysteine-cysteine pair as in mammalian TrxR, obviating the need for selenium. This finding suggests that the occurrence of selenoenzymes, which implies that the organism is selenium-dependent, is not necessarily associated with improved enzyme efficiency. Our data suggest that the selective advantage of selenoenzymes is a broader range of substrates and a broader range of microenvironmental conditions in which enzyme activity is possible.

  14. A Homozygous [Cys25]PTH(1-84) Mutation That Impairs PTH/PTHrP Receptor Activation Defines a Novel Form of Hypoparathyroidism

    PubMed Central

    Lee, Sihoon; Mannstadt, Michael; Guo, Jun; Kim, Seul Min; Yi, Hyon-Seung; Khatri, Ashok; Dean, Thomas; Okazaki, Makoto; Gardella, Thomas J; Jüppner, Harald

    2015-01-01

    Hypocalcemia and hyperphosphatemia are encountered in idiopathic hypoparathyroidism (IHP) and pseudohypoparathyroidism type Ib (PHP1B). In contrast to PHP1B, which is caused by resistance toward parathyroid hormone (PTH), the genetic defects leading to IHP impair production of this important regulator of mineral ion homeostasis. So far, only five PTH mutations were shown to cause IHP, each of which is located in the hormone’s pre-pro leader segment and thus impair hormone secretion. In three siblings affected by IHP, we now identified a homozygous arginine-to-cysteine mutation at position 25 (R25C) of the mature PTH(1-84) polypeptide; heterozygous family members are healthy. Depending on the assay used for evaluating these patients, plasma PTH levels were either low or profoundly elevated, thus leading to ambiguities regarding the underlying diagnosis, namely IHP or PHP1B. Consistent with increased PTH levels, recombinant [Cys25]PTH(1-84) and wild-type PTH(1-84) were secreted equally well by transfected COS-7 cells. However, synthetic [Cys25]PTH(1-34) was found to have a lower binding affinity for the PTH receptor type-1 (PTH1R) than PTH(1-34) and consequently a lower efficiency for stimulating cAMP formation in cells expressing this receptor. Consistent with these in vitro findings, long-term infusion of [Cys25]PTH(1-34) resulted only in minimal calcemic and phosphaturic responses, despite readily detectable levels of [Cys25]PTH(1-34) in plasma. The mineral ion abnormalities observed in the three IHP patients are thus most likely caused by the inherited homozygous missense PTH mutation, which reduces bioactivity of the secreted hormone. Based on these findings, screening for PTH(1-84) mutations should be considered when clinical and laboratory findings are consistent with PHP1B, but GNAS methylation changes have been excluded. Differentiating between IHP and PHP1B has considerable implications for genetic counseling, therapy, and long-term outcome because

  15. Engineering of 2-Cys Peroxiredoxin for Enhanced Stress-Tolerance

    PubMed Central

    An, Byung Chull; Lee, Seung Sik; Lee, Jae Taek; Hong, Sung Hyun; Wi, Seung Gon; Chung, Byung Yeoup

    2011-01-01

    A typical 2-cysteine peroxiredoxin (2-Cys Prx)-like protein (PpPrx) that alternatively acts as a peroxidase or a molecular chaperone in Pseudomonas putida KT2440 was previously characterized. The dual functions of PpPrx are regulated by the existence of an additional Cys112 between the active Cys51 and Cys171 residues. In the present study, additional Cys residues (Cys31, Cys112, and Cys192) were added to PpPrx variants to improve their enzymatic function. The optimal position of the additional Cys residues for the dual functionality was assessed. The peroxidase activities of the S31C and Y192C mutants were increased 3- to 4-fold compared to the wild-type, while the chaperone activity was maintained at > 66% of PpPrx. To investigate whether optimization of the dual functions could enhance stress-tolerance in vivo, a complementation study was performed. The S31C and Y192C mutants showed a much greater tolerance than other variants under a complex condition of heat and oxidative stresses. The optimized dual functions of PpPrx could be adapted for use in bioengineering systems and industries, such as to develop organisms that are more resistant to extreme environments. PMID:21773675

  16. Structural Framework for Covalent Inhibition of Clostridium botulinum Neurotoxin A by Targeting Cys165*

    PubMed Central

    Stura, Enrico A.; Le Roux, Laura; Guitot, Karine; Garcia, Sandra; Bregant, Sarah; Beau, Fabrice; Vera, Laura; Collet, Guillaume; Ptchelkine, Denis; Bakirci, Huseyin; Dive, Vincent

    2012-01-01

    Clostridium botulinum neurotoxin type A (BoNT/A) is one of the most potent toxins for humans and a major biothreat agent. Despite intense chemical efforts over the past 10 years to develop inhibitors of its catalytic domain (catBoNT/A), highly potent and selective inhibitors are still lacking. Recently, small inhibitors were reported to covalently modify catBoNT/A by targeting Cys165, a residue located in the enzyme active site just above the catalytic zinc ion. However, no direct proof of Cys165 modification was reported, and the poor accessibility of this residue in the x-ray structure of catBoNT/A raises concerns about this proposal. To clarify this issue, the functional role of Cys165 was first assessed through a combination of site-directed mutagenesis and structural studies. These data suggested that Cys165 is more involved in enzyme catalysis rather than in structural property. Then by peptide mass fingerprinting and x-ray crystallography, we demonstrated that a small compound containing a sulfonyl group acts as inhibitor of catBoNT/A through covalent modification of Cys165. The crystal structure of this covalent complex offers a structural framework for developing more potent covalent inhibitors catBoNT/A. Other zinc metalloproteases can be founded in the protein database with a cysteine at a similar location, some expressed by major human pathogens; thus this work should find broader applications for developing covalent inhibitors. PMID:22869371

  17. Two sulfhydryl groups near the active site of soybean beta-amylase.

    PubMed

    Mikami, B; Nomura, K; Morita, Y

    1994-01-01

    The less reactive SH groups of soybean beta-amylase, SH4, SH5, and SH6, were modified with p-chloromercuribenzoic acid or N-ethylmaleimide, after the reactive SH groups, SH1, SH2, and SH3, were blocked with 5,5'-dithiobis-(2-nitrobenzoic acid) and cyanide. The enzyme activity decreased, accompanied by the modification of SH4. alpha-Cyclodextrin protected SH4 from the modification more effectively than maltose. The SH4-modified enzyme still bound to glucose, maltose, and alpha-cyclodextrin. SH4 was concerned with neither the catalysis nor substrate binding but its large substituent affected the substrate binding site. The sequencing of the 5-(iodoacetoamidoethyl)-aminoaphthalene-1-sulfonate-labeled peptides showed that SH4, SH5, and SH6 are Cys343, Cys82, and Cys208, respectively. Comparison of the primary structure of beta-amylases also showed that the sequence around SH4 (Cys343), as well as SH2 (Cys95), is strongly conserved between higher plant and bacterial beta-amylases. These results agree with the structure model deduced from X-ray crystallography of soybean beta-amylase.

  18. CysB-dependent upregulation of the Salmonella Typhimurium cysJIH operon in response to antimicrobial compounds that induce oxidative stress.

    PubMed

    Álvarez, Ricardo; Neumann, German; Frávega, Jorge; Díaz, Fernando; Tejías, Cristóbal; Collao, Bernardo; Fuentes, Juan A; Paredes-Sabja, Daniel; Calderón, Iván L; Gil, Fernando

    2015-02-27

    It has been proposed that some antibiotics exert additional damage through reactive oxygen species (ROS) production. Since H₂S protects neurons and cardiac muscle from oxidative stress, it has been hypothesized that bacterial H₂S might, similarly, be a cellular protector against antibiotics. In Enterobacteriaceae, H₂S can be produced by the cysJIH pathway, which uses sulfate as the sulfur source. CysB, in turn, is a positive regulator of cysJIH. At present, the role of S. Typhimurium cysJIH operon in the protection to reactive oxygen species (ROS) induced by antimicrobial compounds remains to be elucidated. In this work, we evaluated the role of cysJIH and cysB in ROS accumulation, superoxide dismutase (SOD) activity, reduced thiol accumulation, and H₂S accumulation in S. Typhimurium, cultured in either sulfate or cysteine as the sole sulfur source. Furthermore, we assessed the effects of the addition of ceftriaxone (CEF) and menadione (MEN) in these same parameters. In sulfate as the sole sulfur source, we found that the cysJIH operon and the cysB gene were required to full growth in minimal media, independently on the addition of CEF or MEN. Most importantly, both cysJIH and cysB contributed to diminish ROS levels, increase the SOD activity, increase the reduced thiols, and increase the H₂S levels in presence of CEF or MEN. Moreover, the cysJIH operon exhibited a CysB-dependent upregulation in presence of these two antimicrobials compounds. On the other hand, when cysteine was used as the sole sulfur source, we found that cysJIH operon was completely negligible, were only cysB exhibited similar phenotypes than the described for sulfate as sulfur source. Unexpectedly, CysB downregulated cysJIH operon when cysteine was used instead of sulfate, suggesting a complex regulation of this system.

  19. DNA sequences of the cysK regions of Salmonella typhimurium and Escherichia coli and linkage of the cysK regions to ptsH.

    PubMed Central

    Byrne, C R; Monroe, R S; Ward, K A; Kredich, N M

    1988-01-01

    Nucleotide sequences of the cysK regions of Salmonella typhimurium and Escherichia coli have been determined. A total of 3,812 and 2,595 nucleotides were sequenced from S. typhimurium and E. coli, respectively. Open reading frames of 323 codons were found in both species and were identified as those of cysK by comparison of deduced amino acid sequences with amino- and carboxyl-terminal amino acid analyses of the S. typhimurium cysK gene product O-acetylserine (thiol)-lyase A. The two cysK DNA sequences were 85% identical, and the deduced amino acid sequences were 96% identical. The major transcription initiation sites for cysK were found to be virtually identical in the two organisms, by using primer extension and S1 nuclease protection techniques. The -35 region corresponding to the major transcription start site was TTCCCC in S. typhimurium and TTCCGC in E. coli. The deviation of these sequences from the consensus sequence TTGACA may reflect the fact that cysK is subject to positive control and requires the cysB regulatory protein for expression. Sequences downstream of cysK were found to include ptsH and a portion of ptsI, thus establishing the exact relationship of cysK with these two genes. A 290-codon open reading frame, which may represent the cysZ gene, was identified upstream of cysK. Images PMID:3290198

  20. Evidence that the amino acid residue Cys117 of chloroplastic monodehydroascorbate reductase is involved in its activity and structural stability.

    PubMed

    Li, Feng; Wu, Qing-Yun; Sun, Yan-Li; Ma, Na-Na; Wang, Xiao-Yun; Meng, Qing-Wei

    2010-04-01

    Monodehydroascorbate reductase (MDAR; EC 1.6.5.4) is crucial for AsA regeneration and essential for maintaining the reduced pool of AsA. And the amino acid residue C117 of chloroplastic MDAR is the conserved cysteine residue in MDAR isoforms. A series mutation of conserved amino acid residue cysteine117 (C117) was constructed to investigate its role in MDAR structural stability and activity. Our study revealed that mutation in this conserved residue could cause pronounced loss of activity and conformational changes. Spectroscopic experiments indicated that these mutations influenced transition from the molten globule intermediate to the native state in folding process. These results suggested that amino acid residue C117 played a relatively important role in keeping MDAR structural stability and activity.

  1. Ca2+ dependence of the distance between Cys-98 of troponin C and Cys-133 of troponin I in the ternary troponin complex. Resonance energy transfer measurements.

    PubMed

    Tao, T; Gowell, E; Strasburg, G M; Gergely, J; Leavis, P C

    1989-07-11

    We have used resonance energy transfer to study the spatial relationship between Cys-98 of rabbit skeletal troponin C and Cys-133 of rabbit skeletal troponin I in the reconstituted ternary troponin complex. The donor was introduced by labeling either troponin C or troponin I with N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine, while the acceptor was introduced by labeling either protein with N-[4-(dimethylamino)phenyl-4'-azophenyl]maleimide. The extent of energy transfer was determined by measuring the quenching of the donor fluorescence decay. The results indicate first that the distance between these two sites is not fixed, suggesting that the protein regions involved possess considerable segmental flexibility. Second, the mean distance between the two sites is dependent on the metal-binding state of troponin C, being 39.1 A when none of the metal-binding sites are occupied, 41.0 A when Mg2+ ions bind at the high-affinity sites, and 35.5 A when Ca2+ ions bind to the low-affinity sites. Neither the magnitude of the distances nor the trend of change with metal ions differs greatly when the locations of the probes are switched or when steady-state fluorometry was used to determine the transfer efficiency. Since the low-affinity sites have been implicated as the physiological triggering sites, our findings suggest that one of the key events in Ca2+ activation of skeletal muscle contraction is a approximately 5-A decrease in the distance between the Cys-98 region of troponin C and the Cys-133 region of troponin I.

  2. The exceptionally high reactivity of Cys 621 is critical for electrophilic activation of the sensory nerve ion channel TRPA1.

    PubMed

    Bahia, Parmvir K; Parks, Thomas A; Stanford, Katherine R; Mitchell, David A; Varma, Sameer; Stevens, Stanley M; Taylor-Clark, Thomas E

    2016-06-01

    Activation of the sensory nerve ion channel TRPA1 by electrophiles is the key mechanism that initiates nociceptive signaling, and leads to defensive reflexes and avoidance behaviors, during oxidative stress in mammals. TRPA1 is rapidly activated by subtoxic levels of electrophiles, but it is unclear how TRPA1 outcompetes cellular antioxidants that protect cytosolic proteins from electrophiles. Here, using physiologically relevant exposures, we demonstrate that electrophiles react with cysteine residues on mammalian TRPA1 at rates that exceed the reactivity of typical cysteines by 6,000-fold and that also exceed the reactivity of antioxidant enzymes. We show that TRPA1 possesses a complex reactive cysteine profile in which C621 is necessary for electrophile-induced binding and activation. Modeling of deprotonation energies suggests that K620 contributes to C621 reactivity and mutation of K620 alone greatly reduces the effect of electrophiles on TRPA1. Nevertheless, binding of electrophiles to C621 is not sufficient for activation, which also depends on the function of another reactive cysteine (C665). Together, our results demonstrate that TRPA1 acts as an effective electrophilic sensor because of the exceptionally high reactivity of C621.

  3. The exceptionally high reactivity of Cys 621 is critical for electrophilic activation of the sensory nerve ion channel TRPA1

    PubMed Central

    Bahia, Parmvir K.; Parks, Thomas A.; Stanford, Katherine R.; Mitchell, David A.; Varma, Sameer; Stevens, Stanley M.

    2016-01-01

    Activation of the sensory nerve ion channel TRPA1 by electrophiles is the key mechanism that initiates nociceptive signaling, and leads to defensive reflexes and avoidance behaviors, during oxidative stress in mammals. TRPA1 is rapidly activated by subtoxic levels of electrophiles, but it is unclear how TRPA1 outcompetes cellular antioxidants that protect cytosolic proteins from electrophiles. Here, using physiologically relevant exposures, we demonstrate that electrophiles react with cysteine residues on mammalian TRPA1 at rates that exceed the reactivity of typical cysteines by 6,000-fold and that also exceed the reactivity of antioxidant enzymes. We show that TRPA1 possesses a complex reactive cysteine profile in which C621 is necessary for electrophile-induced binding and activation. Modeling of deprotonation energies suggests that K620 contributes to C621 reactivity and mutation of K620 alone greatly reduces the effect of electrophiles on TRPA1. Nevertheless, binding of electrophiles to C621 is not sufficient for activation, which also depends on the function of another reactive cysteine (C665). Together, our results demonstrate that TRPA1 acts as an effective electrophilic sensor because of the exceptionally high reactivity of C621. PMID:27241698

  4. Two new 4-Cys conotoxins (framework 14) of the vermivorous snail Conus austini from the Gulf of Mexico with activity in the central nervous system of mice

    PubMed Central

    Zugasti-Cruz, Alejandro; Falcón, Andrés; Heimer de la Cotera, Edgar P.; Olivera, Baldomero M.; Aguilar, Manuel B.

    2008-01-01

    As part of continuing studies of the venom components present in Conus austini (syn.: Conus cancellatus), a vermivorous cone snail collected in the western Gulf of Mexico, Mexico, two major peptides, as14a and as14b, were purified and characterized. Their amino acid sequences were determined by automatic Edman sequencing after reduction and alkylation. Their molecular masses, established by matrix-assisted laser desorption ionization time-of-flight mass spectrometry, confirmed the chemical analyses and indicated that as14a and as14b have free C-termini. Each peptide contains four Cys residues arranged in a pattern (C-C-C-C, framework 14). The primary structure of as14a is GGVGRCIYNCMNSGGGLNFIQCKTMCY (experimental monoisotopic mass 2,883.92 Da; calculated monoisotopic mass 2,884.20 Da), whereas that of as14b is RWDVDQCIYYCLNGVVGYSYTECQTMCT (experimental monoisotopic mass 3,308.63 Da; calculated monoisotopic mass 3,308.34 Da). Both purified peptides elicited scratching and grooming activity in mice, and as14b also caused body and rear limb extension and tail curling immediately upon injection. The high sequence similarity of peptide as14a with peptide vil14a from the vermivorous C. villepinii suggests that the former might block K+ channels. PMID:18206266

  5. Identification of active sites in amidase: Evolutionary relationship between amide bond- and peptide bond-cleaving enzymes

    PubMed Central

    Kobayashi, Michihiko; Fujiwara, Yoshie; Goda, Masahiko; Komeda, Hidenobu; Shimizu, Sakayu

    1997-01-01

    Mainly based on various inhibitor studies previously performed, amidases came to be regarded as sulfhydryl enzymes. Not completely satisfied with this generally accepted interpretation, we performed a series of site-directed mutagenesis studies on one particular amidase of Rhodococcus rhodochrous J1 that was involved in its nitrile metabolism. For these experiments, the recombinant amidase was produced as the inclusion body in Escherichia coli to greatly facilitate its recovery and subsequent purification. With regard to the presumptive active site residue Cys203, a Cys203 → Ala mutant enzyme still retained 11.5% of the original specific activity. In sharp contrast, substitutions in certain other positions in the neighborhood of Cys203 had a far more dramatic effect on the amidase. Glutamic acid substitution of Asp191 reduced the specific activity of the mutant enzyme to 1.33% of the wild-type activity. Furthermore, Asp191 → Asn substitution as well as Ser195 → Ala substitution completely abolished the specific activity. It would thus appear that, among various conserved residues residing within the so-called signature sequence common to all amidases, the real active site residues are Asp191 and Ser195 rather than Cys203. Inasmuch as an amide bond (CO-NH2) in the amide substrate is not too far structurally removed from a peptide bond (CO-NH-), the signature sequences of various amidases were compared with the active site sequences of various types of proteases. It was found that aspartic acid and serine residues corresponding to Asp191 and Ser195 of the Rhodococcus amidase are present within the active site sequences of aspartic proteinases, thus suggesting the evolutionary relationship between the two. PMID:9342349

  6. Selective desulfurization of cysteine in the presence of Cys(Acm) in polypeptides obtained by native chemical ligation.

    PubMed

    Pentelute, Brad L; Kent, Stephen B H

    2007-02-15

    Increased versatility for the synthesis of proteins and peptides by native chemical ligation requires the ability to ligate at positions other than Cys. Here, we report that Raney nickel can be used under standard conditions for the selective desulfurization of Cys in the presence of Cys(Acm). This simple and practical tactic enables the more common Xaa-Ala junctions to be used as ligation sites for the chemical synthesis of Cys-containing peptides and proteins. [reaction: see text].

  7. Fine-structure genetic map of the cysB locus in Salmonella typhimurium.

    PubMed Central

    Cheney, R W; Kredich, N M

    1975-01-01

    A genetic map of the cysB region of the Salmonella typhimurium chromosome was constructed using bacteriophage P22-mediated transduction. Strains bearing delta (supX cysB) mutations were employed to divide this regulatory locus into 12 segments containing a total of 39 single-site mutations. Twenty-five of these single-site mutations were further ordered by reciprocal three-point crosses. The results do not support the concept of multiple cistrons at cysB and suggest that the abortive transductants previously observed in crosses between certain cysB mutants were due to intracistronic complementation. The prototrophic cys-1352 mutation, which causes the constitutive expression of the cysteine biosynthetic enzymes, was found to lie within the cysB region itself. It is bracketed by mutations, which lead to an inability to derepress for these enzymes and result in auxotrophy for cysteine. PMID:1104581

  8. Salt site performance assessment activities

    SciTech Connect

    Kircher, J.F.; Gupta, S.K.

    1983-01-01

    During this year the first selection of the tools (codes) for performance assessments of potential salt sites have been tentatively selected and documented; the emphasis has shifted from code development to applications. During this period prior to detailed characterization of a salt site, the focus is on bounding calculations, sensitivity and with the data available. The development and application of improved methods for sensitivity and uncertainty analysis is a focus for the coming years activities and the subject of a following paper in these proceedings. Although the assessments to date are preliminary and based on admittedly scant data, the results indicate that suitable salt sites can be identified and repository subsystems designed which will meet the established criteria for protecting the health and safety of the public. 36 references, 5 figures, 2 tables.

  9. The atypical N-glycosylation motif, Asn-Cys-Cys, in human GPR109A is required for normal cell surface expression and intracellular signaling.

    PubMed

    Yasuda, Daisuke; Imura, Yuki; Ishii, Satoshi; Shimizu, Takao; Nakamura, Motonao

    2015-06-01

    Asparagine-linked glycosylation (N-glycosylation) is necessary for the proper folding of secreted and membrane proteins, including GPCRs. Thus, many GPCRs possess the N-glycosylation motif Asn-X-Ser/Thr at their N-termini and/or extracellular loops. We found that human GPR109A (hGPR109A) has an N-glycosylation site at Asn(17) in the N-terminal atypical motif, Asn(17)-Cys(18)-Cys(19). Why does hGPR109A require the atypical motif, rather than the typical sequence? Here we show that Asn(17)-Cys(18)-Cys(19) sequence of hGPR109A possesses 2 biologic roles. First, Asn(17)-X-Cys(19) contributed to hGPR109A N-glycosylation by acting as an atypical motif. This modification is required for the normal surface expression of hGPR109A, as evidenced by the reduced surface expression of the nonglycosylated mutants, hGPR109A/N17A, and the finding that hGPR109A/C19S and hGPR109A/C19T, which are N-glycosylated at Asn(17), exhibited expression similar to the wild-type receptor. Second, the X-Cys(18)-Cys(19) dicysteine is indispensable for hGPR109A function. Substitution of Cys(18) or Cys(19) residue to Ala impaired Gi-mediated signaling via hGPR109A. We propose the disulfide bond formations of these residues with other Cys existed in the extracellular loops for the proper folding. Together, these results suggest that the atypical motif Asn(17)-Cys(18)-Cys(19) is crucial for the normal surface trafficking and function of hGPR109A.

  10. CysB Negatively Affects the Transcription of pqsR and Pseudomonas Quinolone Signal Production in Pseudomonas aeruginosa

    PubMed Central

    Farrow, John M.; Hudson, L. Lynn; Wells, Greg; Coleman, James P.

    2015-01-01

    ABSTRACT Pseudomonas aeruginosa is a Gram-negative bacterium that is ubiquitous in the environment, and it is an opportunistic pathogen that can infect a variety of hosts, including humans. During the process of infection, P. aeruginosa coordinates the expression of numerous virulence factors through the production of multiple cell-to-cell signaling molecules. The production of these signaling molecules is linked through a regulatory network, with the signal N-(3-oxododecanoyl) homoserine lactone and its receptor LasR controlling the induction of a second acyl-homoserine lactone signal and the Pseudomonas quinolone signal (PQS). LasR-mediated control of PQS occurs partly by activating the transcription of pqsR, a gene that encodes the PQS receptor and is necessary for PQS production. We show that LasR interacts with a single binding site in the pqsR promoter region and that it does not influence the transcription of the divergently transcribed gene, nadA. Using DNA affinity chromatography, we identified additional proteins that interact with the pqsR-nadA intergenic region. These include the H-NS family members MvaT and MvaU, and CysB, a transcriptional regulator that controls sulfur uptake and cysteine biosynthesis. We show that CysB interacts with the pqsR promoter and that CysB represses pqsR transcription and PQS production. Additionally, we provide evidence that CysB can interfere with the activation of pqsR transcription by LasR. However, as seen with other CysB-regulated genes, pqsR expression was not differentially regulated in response to cysteine levels. These findings demonstrate a novel role for CysB in influencing cell-to-cell signal production by P. aeruginosa. IMPORTANCE The production of PQS and other 4-hydroxy-2-alkylquinolone (HAQs) compounds is a key component of the P. aeruginosa cell-to-cell signaling network, impacts multiple physiological functions, and is required for virulence. PqsR directly regulates the genes necessary for HAQ production

  11. Selective targeting of the conserved active site cysteine of Mycobacterium tuberculosis methionine aminopeptidase with electrophilic reagents.

    PubMed

    Reddi, Ravikumar; Arya, Tarun; Kishor, Chandan; Gumpena, Rajesh; Ganji, Roopa J; Bhukya, Supriya; Addlagatta, Anthony

    2014-09-01

    Methionine aminopeptidases (MetAPs) cleave initiator methionine from ~ 70% of the newly synthesized proteins in every living cell, and specific inhibition or knockdown of this function is detrimental. MetAPs are metalloenzymes, and are broadly classified into two subtypes, type I and type II. Bacteria contain only type I MetAPs, and the active site of these enzymes contains a conserved cysteine. By contrast, in type II enzymes the analogous position is occupied by a conserved glycine. Here, we report the reactivity of the active site cysteine in a type I MetAP, MetAP1c, of Mycobacterium tuberculosis (MtMetAP1c) towards highly selective cysteine-specific reagents. The authenticity of selective modification of Cys105 of MtMetAP1c was established by using site-directed mutagenesis and crystal structure determination of covalent and noncovalent complexes. On the basis of these observations, we propose that metal ions in the active site assist in the covalent modification of Cys105 by orienting the reagents appropriately for a successful reaction. These studies establish, for the first time, that the conserved cysteine of type I MetAPs can be targeted for selective inhibition, and we believe that this chemistry can be exploited for further drug discovery efforts regarding microbial MetAPs.

  12. Native Chemical Ligation at Asx-Cys, Glx-Cys: Chemical Synthesis and High Resolution X-ray Structure of ShK Toxin by Racemic Protein Crystallography

    PubMed Central

    Dang, Bobo; Kubota, Tomoya; Mandal, Kalyaneswar; Bezanilla, Francisco; Kent, Stephen B. H.

    2013-01-01

    We have re-examined the utility of native chemical ligation at −Gln/Glu-Cys− [Glx-Cys] and −Asn/Asp-Cys− [Asx-Cys] sites. Using the improved thioaryl catalyst 4-mercaptophenylacetic acid (MPAA), native chemical ligation could be performed at −Gln-Cys− and Asn-Cys− sites without side reactions. After optimization, ligation at a −Glu-Cys− could also be used as a ligation site, with minimal levels of byproduct formation. However, −Asp-Cys− is not appropriate for use as a site for native chemical ligation because of formation of significant amounts of β-linked byproduct. The feasibility of native chemical ligation at −Gln-Cys− enabled a convergent total chemical synthesis of the enantiomeric forms of the ShK toxin protein molecule. The D-ShK protein molecule was ~50,000-fold less active in blocking the Kv1.3 channel than the L-ShK protein molecule. Racemic protein crystallography was used to obtain high resolution X-ray diffraction data for ShK toxin. The structure was solved by direct methods and showed significant differences from the previously reported NMR structures in some regions of the ShK protein molecule. PMID:23919482

  13. Role of a cysteine residue in the active site of ERK and the MAPKK family

    SciTech Connect

    Ohori, Makoto; Kinoshita, Takayoshi; Yoshimura, Seiji; Warizaya, Masaichi; Nakajima, Hidenori . E-mail: hidenori.nakajima@jp.astellas.com; Miyake, Hiroshi

    2007-02-16

    Kinases of mitogen-activated protein kinase (MAPK) cascades, including extracellular signal-regulated protein kinase (ERK), represent likely targets for pharmacological intervention in proliferative diseases. Here, we report that FR148083 inhibits ERK2 enzyme activity and TGF{beta}-induced AP-1-dependent luciferase expression with respective IC{sub 50} values of 0.08 and 0.05 {mu}M. FR265083 (1'-2' dihydro form) and FR263574 (1'-2' and 7'-8' tetrahydro form) exhibited 5.5-fold less and no activity, respectively, indicating that both the {alpha},{beta}-unsaturated ketone and the conformation of the lactone ring contribute to this inhibitory activity. The X-ray crystal structure of the ERK2/FR148083 complex revealed that the compound binds to the ATP binding site of ERK2, involving a covalent bond to S{gamma} of ERK2 Cys166, hydrogen bonds with the backbone NH of Met108, N{zeta} of Lys114, backbone C=O of Ser153, N{delta}2 of Asn154, and hydrophobic interactions with the side chains of Ile31, Val39, Ala52, and Leu156. The covalent bond motif in the ERK2/FR148083 complex assures that the inhibitor has high activity for ERK2 and no activity for other MAPKs such as JNK1 and p38MAPK{alpha}/{beta}/{gamma}/{delta} which have leucine residues at the site corresponding to Cys166 in ERK2. On the other hand, MEK1 and MKK7, kinases of the MAPKK family which also can be inhibited by FR148083, contain a cysteine residue corresponding to Cys166 of ERK2. The covalent binding to the common cysteine residue in the ATP-binding site is therefore likely to play a crucial role in the inhibitory activity for these MAP kinases. These findings on the molecular recognition mechanisms of FR148083 for kinases with Cys166 should provide a novel strategy for the pharmacological intervention of MAPK cascades.

  14. The bacterial YbaK protein is a Cys-tRNAPro and Cys-tRNA Cys deacylase.

    PubMed

    Ruan, Benfang; Söll, Dieter

    2005-07-08

    Bacterial prolyl-tRNA synthetases and some smaller paralogs, YbaK and ProX, can hydrolyze misacylated Cys-tRNA Pro or Ala-tRNA Pro. To assess the significance of this quality control editing reaction in vivo, we tested Escherichia coli ybaK for its ability to suppress the E. coli thymidylate synthase thyA:146CCA missense mutant strain, which requires Cys-tRNA(Pro) for growth in the absence of thymine. Missense suppression was observed in a ybaK deletion background, suggesting that YbaK functions as a Cys-tRNA Pro deacylase in vivo. In vitro studies with the full set of 20 E. coli aminoacyl-tRNAs revealed that the Haemophilus influenzae and E. coli YbaK proteins are moderately general aminoacyl-tRNA deacylases that preferentially hydrolyze Cys-tRNA Pro and Cys-tRNA Cys and are also weak deacylases that cleave Gly-tRNA, Ala-tRNA, Ser-tRNA, Pro-tRNA, and Met-tRNA. The ProX protein acted as an aminoacyl-tRNA deacylase that cleaves preferentially Ala-tRNA and Gly-tRNA. The potential of H. influenzae YbaK to hydrolyze in vivo correctly charged Cys-tRNA Cys was tested in E. coli strain X2913 (ybaK+). Overexpression of H. influenzae ybaK decreased the in vivo ratio of Cys-tRNA Cys to tRNA Cys from 65 to 35% and reduced the growth rate of strain X2913 by 30% in LB medium. These data suggest that YbaK-mediated hydrolysis of aminoacyl-tRNA can influence cell growth.

  15. Compensating for the absence of selenocysteine in high-molecular weight thioredoxin reductases: the electrophilic activation hypothesis.

    PubMed

    Lothrop, Adam P; Snider, Gregg W; Flemer, Stevenson; Ruggles, Erik L; Davidson, Ronald S; Lamb, Audrey L; Hondal, Robert J

    2014-02-04

    Mammalian thioredoxin reductase (TR) is a pyridine disulfide oxidoreductase that uses the rare amino acid selenocysteine (Sec) in place of the more commonly used amino acid cysteine (Cys). Selenium is a Janus-faced element because it is both highly nucleophilic and highly electrophilic. Cys orthologs of Sec-containing enzymes may compensate for the absence of a Sec residue by making the active site Cys residue more (i) nucleophilic, (ii) electrophilic, or (iii) reactive by increasing both S-nucleophilicity and S-electrophilicity. It has already been shown that the Cys ortholog TR from Drosophila melanogaster (DmTR) has increased S-nucleophilicity [Gromer, S., Johansson, L., Bauer, H., Arscott, L. D., Rauch, S., Ballou, D. P., Williams, C. H., Jr., Schrimer, R. H., and Arnér, E. S (2003) Active sites of thioredoxin reductases: Why selenoproteins? Proc. Natl. Acad. Sci. U.S.A. 100, 12618-12623]. Here we present evidence that DmTR also enhances the electrophilicity of Cys490 through the use of an "electrophilic activation" mechanism. This mechanism is proposed to work by polarizing the disulfide bond that occurs between Cys489 and Cys490 in the C-terminal redox center by the placement of a positive charge near Cys489. This polarization renders the sulfur atom of Cys490 electron deficient and enhances the rate of thiol/disulfide exchange that occurs between the N- and C-terminal redox centers. Our hypothesis was developed by using a strategy of homocysteine (hCys) for Cys substitution in the Cys-Cys redox dyad of DmTR to differentiate the function of each Cys residue. The results show that hCys could substitute for Cys490 with little loss of thioredoxin reductase activity, but that substitution of hCys for Cys489 resulted in a 238-fold reduction in activity. We hypothesize that replacement of Cys489 with hCys destroys an interaction between the sulfur atom of Cys489 and His464 crucial for the proposed electrophilic activation mechanism. This electrophilic activation

  16. Compensating for the Absence of Selenocysteine in High-Molecular Weight Thioredoxin Reductases: The Electrophilic Activation Hypothesis

    PubMed Central

    2015-01-01

    Mammalian thioredoxin reductase (TR) is a pyridine disulfide oxidoreductase that uses the rare amino acid selenocysteine (Sec) in place of the more commonly used amino acid cysteine (Cys). Selenium is a Janus-faced element because it is both highly nucleophilic and highly electrophilic. Cys orthologs of Sec-containing enzymes may compensate for the absence of a Sec residue by making the active site Cys residue more (i) nucleophilic, (ii) electrophilic, or (iii) reactive by increasing both S-nucleophilicity and S-electrophilicity. It has already been shown that the Cys ortholog TR from Drosophila melanogaster (DmTR) has increased S-nucleophilicity [Gromer, S., Johansson, L., Bauer, H., Arscott, L. D., Rauch, S., Ballou, D. P., Williams, C. H., Jr., Schrimer, R. H., and Arnér, E. S (2003) Active sites of thioredoxin reductases: Why selenoproteins? Proc. Natl. Acad. Sci. U.S.A. 100, 12618–12623]. Here we present evidence that DmTR also enhances the electrophilicity of Cys490 through the use of an “electrophilic activation” mechanism. This mechanism is proposed to work by polarizing the disulfide bond that occurs between Cys489 and Cys490 in the C-terminal redox center by the placement of a positive charge near Cys489. This polarization renders the sulfur atom of Cys490 electron deficient and enhances the rate of thiol/disulfide exchange that occurs between the N- and C-terminal redox centers. Our hypothesis was developed by using a strategy of homocysteine (hCys) for Cys substitution in the Cys-Cys redox dyad of DmTR to differentiate the function of each Cys residue. The results show that hCys could substitute for Cys490 with little loss of thioredoxin reductase activity, but that substitution of hCys for Cys489 resulted in a 238-fold reduction in activity. We hypothesize that replacement of Cys489 with hCys destroys an interaction between the sulfur atom of Cys489 and His464 crucial for the proposed electrophilic activation mechanism. This electrophilic

  17. Normal Modes Expose Active Sites in Enzymes

    PubMed Central

    Glantz-Gashai, Yitav; Samson, Abraham O.

    2016-01-01

    Accurate prediction of active sites is an important tool in bioinformatics. Here we present an improved structure based technique to expose active sites that is based on large changes of solvent accessibility accompanying normal mode dynamics. The technique which detects EXPOsure of active SITes through normal modEs is named EXPOSITE. The technique is trained using a small 133 enzyme dataset and tested using a large 845 enzyme dataset, both with known active site residues. EXPOSITE is also tested in a benchmark protein ligand dataset (PLD) comprising 48 proteins with and without bound ligands. EXPOSITE is shown to successfully locate the active site in most instances, and is found to be more accurate than other structure-based techniques. Interestingly, in several instances, the active site does not correspond to the largest pocket. EXPOSITE is advantageous due to its high precision and paves the way for structure based prediction of active site in enzymes. PMID:28002427

  18. Characterization of Active Site Residues of Nitroalkane Oxidase†

    PubMed Central

    Valley, Michael P.; Fenny, Nana S.; Ali, Shah R.; Fitzpatrick, Paul F.

    2010-01-01

    The flavoenzyme nitroalkane oxidase catalyzes the oxidation of primary and secondary nitrolkanes to the corresponding aldehydes and ketones plus nitrite. The structure of the enzyme shows that Serl71 forms a hydrogen bond to the flavin N5, suggesting that it plays a role in catalysis. Cys397 and Tyr398 were previously identified by chemical modification as potential active site residues. To more directly probe the roles of these residues, the S171A, S171V, S171T, C397S, and Y398F enzymes have been characterized with nitroethane as substrate. The C397S and Y398 enzymes were less stable than the wild-type enzyme, and the C397S enzyme routinely contained a substoichiometric amount of FAD. Analysis of the steady-state kinetic parameters for the mutant enzymes, including deuterium isotope effects, establishes that all of the mutations result in decreases in the rate constants for removal of the substrate proton by ~5-fold and decreases in the rate constant for product release of ~2-fold. Only the S171V and S171T mutations alter the rate constant for flavin oxidation. These results establish that these residues are not involved in catalysis, but rather are required for maintaining the protein structure. PMID:20056514

  19. Interaction of aspartic acid-104 and proline-287 with the active site of m-calpain.

    PubMed Central

    Arthur, J S; Elce, J S

    1996-01-01

    In an ongoing study of the mechanisms of calpain catalysis and Ca(2+)-induced activation, the effects of Asp-104-->Ser and Pro-287-->Ser large subunit mutations on m-calpain activity, the pH-activity profile, Ca(2+)-sensitivity, and autolysis were measured. The importance of these positions was suggested by sequence comparisons between the calpain and papain families of cysteine proteinases. Asp-104 is adjacent to the active-site Cys-105, and Pro-287 is adjacent to the active-site Asn-286 and probably to the active-site His-262; both Asp-104 and Pro-287 are absolutely conserved in the known calpains, but are replaced by highly conserved serine residues in the papains. The single mutants had approx. 10-15% of wild-type activity, due mainly to a decrease in kcat, since Km was only slightly increased. The Pro-287-->Ser mutation appeared to cause a local perturbation of the catalytic Cys-105/His-262 catalytic ion pair, reducing its efficiency without major effect on the conformation and stability of the enzyme. The Asp-104-->Ser mutation caused a marked narrowing of the pH-activity curve, a 9-fold increase in Ca2+ requirement, and an acceleration of autolysis, when compared with the wild-type enzyme. The results indicated that Asp-104 alters the nature of its interaction with the catalytic ion pair during Ca(2+)-induced conformational change in calpain. This interaction may be direct or indirect, but is important in activation of the enzyme. PMID:8912692

  20. The Dof domain, a zinc finger DNA-binding domain conserved only in higher plants, truly functions as a Cys2/Cys2 Zn finger domain.

    PubMed

    Umemura, Yoshimi; Ishiduka, Tomoko; Yamamoto, Rie; Esaka, Muneharu

    2004-03-01

    The Dof (DNA-binding with one finger) proteins are plant transcription factors that have a highly conserved DNA-binding domain, called the Dof domain. The Dof domain, which is composed of 52 amino acid residues, is similar to the Cys2/Cys2 zinc finger DNA-binding domain of GATA1 and steroid hormone receptors, but has a longer putative loop than that in the case of these zinc finger domains. The DNA-binding function of ascorbate oxidase gene binding protein (AOBP), a Dof protein, was investigated by gel retardation analysis. When Cys was replaced by His, the Dof domain could not function as a Cys3/His- or a Cys2/His2-type zinc finger. The characteristic longer loop was essential for DNA-binding activity. Furthermore, heavy metals such as Co(II), Ni(II), Cd(II), Cu(II), Hg(II), Fe(II), and Fe(III) inhibited the DNA-binding activity of the Dof domain. Manganese ion as well as zinc ion was coordinated by the Dof domain in vitro. On the other hand, the analysis using inductively coupled argon plasma mass spectrometry (ICP-MS) showed that the Dof domain contained zinc ion but not manganese ion. Thus, the Dof domain was proved to function as a Cys2/Cys2 zinc finger domain.

  1. Diuretic drug binding to human glutathione transferase P1-1: potential role of Cys-101 revealed in the double mutant C47S/Y108V.

    PubMed

    Quesada-Soriano, Indalecio; Parker, Lorien J; Primavera, Alessandra; Wielens, Jerome; Holien, Jessica K; Casas-Solvas, Juan M; Vargas-Berenguel, Antonio; Aguilera, Ana M; Nuccetelli, Marzia; Mazzetti, Anna P; Lo Bello, Mario; Parker, Michael W; García-Fuentes, Luis

    2011-01-01

    The diuretic drug ethacrynic acid (EA), both an inhibitor and substrate of pi class glutathione S-transferase (GST P1-1), has been tested in clinical trials as an adjuvant in chemotherapy. We recently studied the role of the active site residue Tyr-108 in binding EA to the enzyme and found that the analysis was complicated by covalent binding of this drug to the highly reactive Cys-47. Previous attempts to eliminate this binding by chemical modification yielded ambiguous results and therefore we decided here to produce a double mutant C47S/Y108V by site directed mutagenesis and further expression in Escherichia coli and the interaction of EA and its GSH conjugate (EASG) examined by calorimetric studies and X-ray diffraction. Surprisingly, in the absence of Cys-47, Cys-101 (located at the dimer interface) becomes a target for modification by EA, albeit at a lower conjugation rate than Cys-47. The Cys-47 → Ser mutation in the double mutant enzyme induces a positive cooperativity between the two subunits when ligands with affinity to G-site bind to enzyme. However, this mutation does not seem to affect the thermodynamic properties of ligand binding to the electrophilic binding site (H-site) and the thermal or chemical stability of this double mutant does not significantly affect the unfolding mechanism in either the absence or presence of ligand. Crystal structures of apo and an EASG complex are essentially identical with a few exceptions in the H-site and in the water network at the dimer interface.

  2. Characterization of plant sulfiredoxin and role of sulphinic form of 2-Cys peroxiredoxin

    PubMed Central

    Iglesias-Baena, Iván; Barranco-Medina, Sergio; Lázaro-Payo, Alfonso; López-Jaramillo, Francisco Javier; Sevilla, Francisca; Lázaro, Juan-José

    2010-01-01

    The antioxidant function of 2-Cys peroxiredoxin (Prx) involves the oxidation of its conserved peroxidatic cysteine to sulphenic acid that is recycled by a reductor agent. In conditions of oxidative stress, the peroxidatic cysteine can be overoxidized to sulphinic acid inactivating the Prx. An enzyme recently discovered, named sulfiredoxin (Srx), reduces the sulphinic 2-Cys Prx (Prx-SO2H). To explore the physiological functions of Srx in plants we have cloned, expressed and purified to homogeneity a Srx from Arabidopsis thaliana (AtSrx), as well as five variants by site-directed mutagenesis on amino acids involved in its activity. The activity of sulfiredoxin, determined by a new method, is dependent on the concentration of the sulphinic form of Prx and the conserved Srx is capable of regenerating the functionality of both pea and Arabidopsis Prx-SO2H. Molecular modelling of AtSrx and the facts that the R28Q variant shows a partial inactivation, that the activity of the E76A variant is equivalent to that of the native enzyme and that the double mutation R28Q/E76A abolishes the enzymatic activity suggests that the pair His100-Glu76 may be involved in the activation of C72 in the absence of R28. The knock-out mutant plants without Srx or 2-Cys Prx exhibited phenotypical differences under growth conditions of 16 h light, probably due to the signalling role of the sulphinic form of Prx. These mutants showed more susceptibility to oxidative stress than wild-type plants. This work presents the first systematic biochemical characterization of the Srx/Prx system from plants and contributes to a better understanding of its physiological function. PMID:20176891

  3. Active-site zinc ligands and activated H2O of zinc enzymes.

    PubMed Central

    Vallee, B L; Auld, D S

    1990-01-01

    The x-ray crystallographic structures of 12 zinc enzymes have been chosen as standards of reference to identify the ligands to the catalytic and structural zinc atoms of other members of their respective enzyme families. Universally, H2O is a ligand and critical component of the catalytically active zinc sites. In addition, three protein side chains bind to the catalytic zinc atom, whereas four protein ligands bind to the structural zinc atom. The geometry and coordination number of zinc can vary greatly to accommodate particular ligands. Zinc forms complexes with nitrogen and oxygen just as readily as with sulfur, and this is reflected in catalytic zinc sites having a binding frequency of His much greater than Glu greater than Asp = Cys, three of which bind to the metal atom. The systematic spacing between the ligands is striking. For all catalytic zinc sites except the coenzyme-dependent alcohol dehydrogenase, the first two ligands are separated by a "short-spacer" consisting of 1 to 3 amino acids. These ligands are separated from the third ligand by a "long spacer" of approximately 20 to approximately 120 amino acids. The spacer enables formation of a primary bidentate zinc complex, whereas the long spacer contributes flexibility to the coordination sphere, which can poise the zinc for catalysis as well as bring other catalytic and substrate binding groups into apposition with the active site. The H2O is activated by ionization, polarization, or poised for displacement. Collectively, the data imply that the preferred mechanistic pathway for activating the water--e.g., zinc hydroxide or Lewis acid catalysis--will be determined by the identity of the other three ligands and their spacing. Images PMID:2104979

  4. Mechanistic pathways of mercury removal from the organomercurial lyase active site

    PubMed Central

    Rodrigues, Viviana

    2015-01-01

    Bacterial populations present in Hg-rich environments have evolved biological mechanisms to detoxify methylmercury and other organometallic mercury compounds. The most common resistance mechanism relies on the H+-assisted cleavage of the Hg–C bond of methylmercury by the organomercurial lyase MerB. Although the initial reaction steps which lead to the loss of methane from methylmercury have already been studied experimentally and computationally, the reaction steps leading to the removal of Hg2+ from MerB and regeneration of the active site for a new round of catalysis have not yet been elucidated. In this paper, we have studied the final steps of the reaction catalyzed by MerB through quantum chemical computations at the combined MP2/CBS//B3PW91/6-31G(d) level of theory. While conceptually simple, these reaction steps occur in a complex potential energy surface where several distinct pathways are accessible and may operate concurrently. The only pathway which clearly emerges as forbidden in our analysis is the one arising from the sequential addition of two thiolates to the metal atom, due to the accumulation of negative charges in the active site. The addition of two thiols, in contrast, leads to two feasible mechanistic possibilities. The most straightforward pathway proceeds through proton transfer from the attacking thiol to Cys159 , leading to its removal from the mercury coordination sphere, followed by a slower attack of a second thiol, which removes Cys96. The other pathway involves Asp99 in an accessory role similar to the one observed earlier for the initial stages of the reaction and affords a lower activation enthalpy, around 14 kcal mol−1, determined solely by the cysteine removal step rather than by the thiol ligation step. Addition of one thiolate to the intermediates arising from either thiol attack occurs without a barrier and produces an intermediate bound to one active site cysteine and from which Hg(SCH3)2 may be removed only after

  5. Effect of exchange of the cysteine molybdenum ligand with selenocysteine on the structure and function of the active site in human sulfite oxidase.

    PubMed

    Reschke, Stefan; Niks, Dimitri; Wilson, Heather; Sigfridsson, Kajsa G V; Haumann, Michael; Rajagopalan, K V; Hille, Russ; Leimkühler, Silke

    2013-11-19

    Sulfite oxidase (SO) is an essential molybdoenzyme for humans, catalyzing the final step in the degradation of sulfur-containing amino acids and lipids, which is the oxidation of sulfite to sulfate. The catalytic site of SO consists of a molybdenum ion bound to the dithiolene sulfurs of one molybdopterin (MPT) molecule, carrying two oxygen ligands, and is further coordinated by the thiol sulfur of a conserved cysteine residue. We have exchanged four non-active site cysteines in the molybdenum cofactor (Moco) binding domain of human SO (SOMD) with serine using site-directed mutagenesis. This facilitated the specific replacement of the active site Cys207 with selenocysteine during protein expression in Escherichia coli. The sulfite oxidizing activity (kcat/KM) of SeSOMD4Ser was increased at least 1.5-fold, and the pH optimum was shifted to a more acidic value compared to those of SOMD4Ser and SOMD4Cys(wt). X-ray absorption spectroscopy revealed a Mo(VI)-Se bond length of 2.51 Å, likely caused by the specific binding of Sec207 to the molybdenum, and otherwise rather similar square-pyramidal S/Se(Cys)O2Mo(VI)S2(MPT) site structures in the three constructs. The low-pH form of the Mo(V) electron paramagnetic resonance (EPR) signal of SeSOMD4Ser was altered compared to those of SOMD4Ser and SOMD4Cys(wt), with g1 in particular shifted to a lower magnetic field, due to the Se ligation at the molybdenum. In contrast, the Mo(V) EPR signal of the high-pH form was unchanged. The substantially stronger effect of substituting selenocysteine for cysteine at low pH as compared to high pH is most likely due to the decreased covalency of the Mo-Se bond.

  6. Spectroscopic insights into axial ligation and active-site H-bonding in substrate-bound human heme oxygenase-2.

    PubMed

    Gardner, Jessica D; Yi, Li; Ragsdale, Stephen W; Brunold, Thomas C

    2010-09-01

    Heme oxygenases (HOs) are monooxygenases that catalyze the first step in heme degradation, converting heme to biliverdin with concomitant release of Fe(II) and CO from the porphyrin macrocycle. Two heme oxygenase isoforms, HO-1 and HO-2, exist that differ in several ways, including a complete lack of Cys residues in HO-1 and the presence of three Cys residues as part of heme-regulatory motifs (HRMs) in HO-2. HRMs in other heme proteins are thought to directly bind heme, or to otherwise regulate protein stability or activity; however, it is not currently known how the HRMs exert these effects on HO-2 function. To better understand the properties of this vital enzyme and to elucidate possible roles of its HRMs, various forms of HO-2 possessing distinct alterations to the HRMs were prepared. In this study, variants with Cys265 in a thiol form are compared with those with this residue in an oxidized (part of a disulfide bond or existing as a sulfenate moiety) form. Absorption and magnetic circular dichroism spectroscopic data of these HO-2 variants clearly demonstrate that a new low-spin Fe(III) heme species characteristic of thiolate ligation is formed when Cys265 is reduced. Additionally, absorption, magnetic circular dichroism, and resonance Raman data collected at different temperatures reveal an intriguing temperature dependence of the iron spin state in the heme-HO-2 complex. These findings are consistent with the presence of a hydrogen-bonding network at the heme's distal side within the active site of HO-2 with potentially significant differences from that observed in HO-1.

  7. [Litter decomposition and lignocellulose enzyme activities of Actinothuidium hookeri and Cys- topteris montana in alpine timberline ecotone of western Sichuan, China].

    PubMed

    Chen, Ya-mei; He, Run-lian; Deng, Chang-chun; Yang, Wan-qin; Zhang, Jian; Yang, Lin; Liu, Yang

    2015-11-01

    The mass loss and lignocellulose enzyme activities of Actinothuidium hookeri residues and Cystopteris montana leaf litter in coniferous forest and timberline of western Sichuan, China were investigated. The results showed that both the mass loss rates of A. hookeri and C. Montana in timberline were higher than those in coniferous forest, while enzyme activities in timberline were lower than those in coniferous forest which was contrast with the hypothesis. The mass loss of two ground covers had significant differences in different seasons. The mass loss rate of A. hookeri in snow-covered season accounted for 69.8% and 83.0% of the whole year' s in timberline and coniferous forest, while that of C. montana in the growing season accounted for 82.6% and 83.4% of the whole year' s in timberline and coniferous forest, respectively. C. montana leaf litter decayed faster in the growing season, which was consistent with its higher cellulase activity in the growing season. The result illustrated that the enzymatic hydrolysis of cellulose and hemicellulose might be the main driving force for the early stage of litter decomposition. Multiple linear regression analysis showed that environmental factors and initial litter quality could explain 45.8%-85.1% variation of enzyme activity. The enzyme activities of A. hookeri and C. montana in the process of decomposition were mainly affected by the freeze-thaw cycle in snow-covered season.

  8. Role of Cys³⁶⁰² in the function and regulation of the cardiac ryanodine receptor.

    PubMed

    Mi, Tao; Xiao, Zhichao; Guo, Wenting; Tang, Yijun; Hiess, Florian; Xiao, Jianmin; Wang, Yundi; Zhang, Joe Z; Zhang, Lin; Wang, Ruiwu; Jones, Peter P; Chen, S R Wayne

    2015-04-01

    The cardiac Ca²⁺ release channel [ryanodine receptor type 2 (RyR2)] is modulated by thiol reactive agents, but the molecular basis of RyR2 modulation by thiol reagents is poorly understood. Cys³⁶³⁵ in the skeletal muscle RyR1 is one of the most hyper-reactive thiols and is important for the redox and calmodulin (CaM) regulation of the RyR1 channel. However, little is known about the role of the corresponding cysteine residue in RyR2 (Cys³⁶⁰²) in the function and regulation of the RyR2 channel. In the present study, we assessed the impact of mutating Cys³⁶⁰² (C³⁶⁰²A) on store overload-induced Ca²⁺ release (SOICR) and the regulation of RyR2 by thiol reagents and CaM. We found that the C³⁶⁰²A mutation suppressed SOICR by raising the activation threshold and delayed the termination of Ca²⁺ release by reducing the termination threshold. As a result, C³⁶⁰²A markedly increased the fractional Ca²⁺ release. Furthermore, the C³⁶⁰²A mutation diminished the inhibitory effect of N-ethylmaleimide on Ca²⁺ release, but it had no effect on the stimulatory action of 4,4'-dithiodipyridine (DTDP) on Ca²⁺ release. In addition, Cys³⁶⁰² mutations (C³⁶⁰²A or C³⁶⁰²R) did not abolish the effect of CaM on Ca²⁺-release termination. Therefore, RyR2-Cys³⁶⁰² is a major site mediating the action of thiol alkylating agent N-ethylmaleimide, but not the action of the oxidant DTDP. Our data also indicate that residue Cys³⁶⁰² plays an important role in the activation and termination of Ca²⁺ release, but it is not essential for CaM regulation of RyR2.

  9. Validated ligand mapping of ACE active site

    NASA Astrophysics Data System (ADS)

    Kuster, Daniel J.; Marshall, Garland R.

    2005-08-01

    Crystal structures of angiotensin-converting enzyme (ACE) complexed with three inhibitors (lisinopril, captopril, enalapril) provided experimental data for testing the validity of a prior active site model predicting the bound conformation of the inhibitors. The ACE active site model - predicted over 18 years ago using a series of potent ACE inhibitors of diverse chemical structure - was recreated using published data and commercial software. Comparison between the predicted structures of the three inhibitors bound to the active site of ACE and those determined experimentally yielded root mean square deviation (RMSD) values of 0.43-0.81 Å, among the distances defining the active site map. The bound conformations of the chemically relevant atoms were accurately deduced from the geometry of ligands, applying the assumption that the geometry of the active site groups responsible for binding and catalysis of amide hydrolysis was constrained. The mapping of bound inhibitors at the ACE active site was validated for known experimental compounds, so that the constrained conformational search methodology may be applied with confidence when no experimentally determined structure of the enzyme yet exists, but potent, diverse inhibitors are available.

  10. Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography*

    PubMed Central

    Huang, Honggang; Haar Petersen, Martin; Ibañez-Vea, Maria; Lassen, Pernille S.; Larsen, Martin R.; Palmisano, Giuseppe

    2016-01-01

    Cysteine is a rare and conserved amino acid involved in most cellular functions. The thiol group of cysteine can be subjected to diverse oxidative modifications that regulate many physio-pathological states. In the present work, a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) was synthesized to selectively label cysteine-containing peptides (Cys peptides) followed by their enrichment with titanium dioxide (TiO2) and subsequent mass spectrometric analysis. The CysPAT strategy was developed using a synthetic peptide, a standard protein and subsequently the strategy was applied to protein lysates from Hela cells, achieving high specificity and enrichment efficiency. In particular, for Cys proteome analysis, the method led to the identification of 7509 unique Cys peptides from 500 μg of HeLa cell lysate starting material. Furthermore, the method was developed to simultaneously enrich Cys peptides and phosphorylated peptides. This strategy was applied to SILAC labeled Hela cells subjected to 5 min epidermal growth factor (EGF) stimulation. In total, 10440 unique reversibly modified Cys peptides (3855 proteins) and 7339 unique phosphopeptides (2234 proteins) were simultaneously identified from 250 μg starting material. Significant regulation was observed in both phosphorylation and reversible Cys modification of proteins involved in EGFR signaling. Our data indicates that EGF stimulation can activate the well-known phosphorylation of EGFR and downstream signaling molecules, such as mitogen-activated protein kinases (MAPK1 and MAPK3), however, it also leads to substantial modulation of reversible cysteine modifications in numerous proteins. Several protein tyrosine phosphatases (PTPs) showed a reduction of the catalytic Cys site in the conserved putative phosphatase HC(X)5R motif indicating an activation and subsequent de-phosphorylation of proteins involved in the EGF signaling pathway. Overall, the CysPAT strategy is a straight forward, easy and promising

  11. Effect of Reduction of Redox Modifications of Cys-Residues in the Na,K-ATPase α1-Subunit on Its Activity.

    PubMed

    Dergousova, Elena A; Petrushanko, Irina Yu; Klimanova, Elizaveta A; Mitkevich, Vladimir A; Ziganshin, Rustam H; Lopina, Olga D; Makarov, Alexander A

    2017-02-21

    Sodium-potassium adenosine triphosphatase (Na,K-ATPase) creates a gradient of sodium and potassium ions necessary for the viability of animal cells, and it is extremely sensitive to intracellular redox status. Earlier we found that regulatory glutathionylation determines Na,K-ATPase redox sensitivity but the role of basal glutathionylation and other redox modifications of cysteine residues is not clear. The purpose of this study was to detect oxidized, nitrosylated, or glutathionylated cysteine residues in Na,K-ATPase, evaluate the possibility of removing these modifications and assess their influence on the enzyme activity. To this aim, we have detected such modifications in the Na,K-ATPase α1-subunit purified from duck salt glands and tried to eliminate them by chemical reducing agents and the glutaredoxin1/glutathione reductase enzyme system. Detection of cysteine modifications was performed using mass spectrometry and Western blot analysis. We have found that purified Na,K-ATPase α1-subunit contains glutathionylated, nitrosylated, and oxidized cysteines. Chemical reducing agents partially eliminate these modifications that leads to the slight increase of the enzyme activity. Enzyme system glutaredoxin/glutathione reductase, unlike chemical reducing agents, produces significant increase of the enzyme activity. At the same time, the enzyme system deglutathionylates native Na,K-ATPase to a lesser degree than chemical reducing agents. This suggests that the enzymatic reducing system glutaredoxin/glutathione reductase specifically affects glutathionylation of the regulatory cysteine residues of Na,K-ATPase α1-subunit.

  12. Pressure-induced perturbation on the active site of beta-amylase monitored from the sulfhydryl reaction.

    PubMed

    Tanaka, N; Mitani, D; Kunugi, S

    2001-05-22

    We investigated the pressure effect on the conformation of beta-amylase by monitoring the chemical reaction of the unpaired cysteine. Sweet potato beta-amylase is composed of four identical subunits, each of which contains six cysteine residues. These residues are inert to 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) in the native state due to steric hindrance. With the increase of the pressure from 0.1 to 400 MPa, the reactivity of one cysteine out of six residues was enhanced. We have identified that the reacted cysteine residue was Cys345 by the chemical cleavage at the reacted site. The reaction kinetics of Cys345 were pseudo-first-order, and the apparent rate constant was increased from 0.001 to 0.05 min(-)(1) with the increase of pressure from 100 to 400 MPa. The activation volume of the reaction rate was calculated as -24 +/- 2 mL/mol from the slope of the logarithmic plot of the pressure dependence of the rate constant. Hysteresis was not evident in the change of intrinsic fluorescence during the cycle of compression and decompression between 0.1 and 400 MPa, indicating that the tetramer does not dissociate under high pressure. This indicates that the enhancement of the reactivity of Cys345 was caused by the perturbation of local conformation under high pressure. The reaction of Cys345 was also enhanced by low concentrations of GuHCl, suggesting the significant role of hydration-driven fluctuation in the pressure-induced enhancement of the reactivity.

  13. Recombinant human O6-alkylguanine-DNA alkyltransferase (AGT), Cys145-alkylated AGT and Cys145 --> Met145 mutant AGT: comparison by isoelectric focusing, CD and time-resolved fluorescence spectroscopy.

    PubMed Central

    Federwisch, M; Hassiepen, U; Bender, K; Dewor, M; Rajewsky, M F; Wollmer, A

    1997-01-01

    Isoelectric focusing, CD, steady-state and time-resolved fluorescence spectroscopy were used to compare the native recombinant human DNA-repair protein O6-alkylguanine-DNA alkyltransferase (AGT) with AGT derivatives methylated or benzylated on Cys145 or modified by site-directed mutagenesis at the active centre (Met145 mutant). The AGT protein is approximately spherical with highly constrained Trp residues, but is not stabilized by disulphide bridges. In contrast with native AGT, alkylated AGT precipitated at 25 degrees C but remained monomeric at 4 degrees C. As revealed by isoelectric focusing, pI changed from 8.2 (AGT) to 8. 4 (Cys145-methylated AGT) and 8.6 (Cys145-benzylated AGT). The alpha-helical content of the Met145 mutant was decreased by approx. 5% and Trp residues were partially liberated. Although non-covalent binding of O6-benzylguanine did not alter the secondary structure of AGT, its alpha-helical content was increased by approx. 2% on methylation and by approx. 4% on benzylation, altogether indicating a small conformational change in AGT on undergoing alkylation. No signal sequences have been found in AGT that mark it for polyubiquitination. Therefore the signal for AGT degradation remains to be discovered. PMID:9164873

  14. The dual transcriptional regulator CysR in Corynebacterium glutamicum ATCC 13032 controls a subset of genes of the McbR regulon in response to the availability of sulphide acceptor molecules

    PubMed Central

    Rückert, Christian; Milse, Johanna; Albersmeier, Andreas; Koch, Daniel J; Pühler, Alfred; Kalinowski, Jörn

    2008-01-01

    Background Regulation of sulphur metabolism in Corynebacterium glutamicum ATCC 13032 has been studied intensively in the last few years, due to its industrial as well as scientific importance. Previously, the gene cg0156 was shown to belong to the regulon of McbR, a global transcriptional repressor of sulphur metabolism in C. glutamicum. This gene encodes a putative ROK-type regulator, a paralogue of the activator of sulphonate utilisation, SsuR. Therefore, it is an interesting candidate for study to further the understanding of the regulation of sulphur metabolism in C. glutamicum. Results Deletion of cg0156, now designated cysR, results in the inability of the mutant to utilise sulphate and aliphatic sulphonates. DNA microarray hybridisations revealed 49 genes with significantly increased and 48 with decreased transcript levels in presence of the native CysR compared to a cysR deletion mutant. Among the genes positively controlled by CysR were the gene cluster involved in sulphate reduction, fpr2 cysIXHDNYZ, and ssuR. Gel retardation experiments demonstrated that binding of CysR to DNA depends in vitro on the presence of either O-acetyl-L-serine or O-acetyl-L-homoserine. Mapping of the transcription start points of five transcription units helped to identify a 10 bp inverted repeat as the possible CysR binding site. Subsequent in vivo tests proved this motif to be necessary for CysR-dependent transcriptional regulation. Conclusion CysR acts as the functional analogue of the unrelated LysR-type regulator CysB from Escherichia coli, controlling sulphide production in response to acceptor availability. In both bacteria, gene duplication events seem to have taken place which resulted in the evolution of dedicated regulators for the control of sulphonate utilisation. The striking convergent evolution of network topology indicates the strong selective pressure to control the metabolism of the essential but often toxic sulphur-containing (bio-)molecules. PMID:18854009

  15. Function of the CysD domain of the gel-forming MUC2 mucin

    PubMed Central

    Ambort, Daniel; van der Post, Sjoerd; Johansson, Malin E. V.; MacKenzie, Jenny; Thomsson, Elisabeth; Krengel, Ute; Hansson, Gunnar C.

    2011-01-01

    The colonic human MUC2 mucin forms a polymeric gel by covalent disulfide bonds in its N- and C-termini. The middle part of MUC2 is largely composed of two highly O-glycosylated mucin domains that are interrupted by a CysD domain of unknown function. We studied its function as recombinant proteins fused to a removable immunoglobulin Fc domain. Analysis of affinity-purified fusion proteins by native gel electrophoresis and gel filtration showed that they formed oligomeric complexes. Analysis of the individual isolated CysD parts showed that they formed dimers both when flanked by two MUC2 tandem repeats and without these. Cleavages of the two non-reduced CysD fusion proteins and analysis by MS revealed the localization of all five CysD disulfide bonds and that the predicted C-mannosylated site was not glycosylated. All disulfide bonds were within individual peptides showing that the domain was stabilized by intramolecular disulfide bonds and that CysD dimers were of non-covalent nature. These observations suggest that CysD domains act as non-covalent cross-links in the MUC2 gel, thereby determining the pore sizes of the mucus. PMID:21338337

  16. Characterization of one typical 2-Cys peroxiredoxin gene of Taenia solium and Taenia crassiceps.

    PubMed

    Vaca-Paniagua, Felipe; Parra-Unda, Ricardo; Landa, Abraham

    2009-09-01

    The Taenia genus is capable of living for long periods within its hosts. Reports have shown that this successful establishment is related to its efficient defense mechanisms against host immune response and its high tolerance to oxidative stress. In this work, we describe the genomic sequences of one Taenia solium and Taenia crassiceps typical 2-Cys peroxiredoxins (Ts2-CysPrx, Tc2-CysPrx) genes, which are 94% identical in primary sequence with the typical 2-Cys Prxs catalytic motifs. Both genes have the same genomic architecture, showing a TATA box and Initiator (Inr) sequence in their proximal promoter, two exons split by a 67-bp type III intron and one unique transcription start site located inside the Inr. We show that T. crassiceps cysticerci are highly tolerant to H(2)O(2) presenting a lethal concentration 50 of 3.0 mM and demonstrate that the typical Tc2-CysPrx gene is not induced by H(2)O(2), showing a behavior of an antioxidant housekeeping gene. This study describes for first time the gene structure of a typical 2-Cys Prx in the Taenia genus.

  17. Geometrical analysis of Cys-Cys bridges in proteins and their prediction from incomplete structural information

    NASA Technical Reports Server (NTRS)

    Goldblum, A.; Rein, R.

    1987-01-01

    Analysis of C-alpha atom positions from cysteines involved in disulphide bridges in protein crystals shows that their geometric characteristics are unique with respect to other Cys-Cys, non-bridging pairs. They may be used for predicting disulphide connections in incompletely determined protein structures, such as low resolution crystallography or theoretical folding experiments. The basic unit for analysis and prediction is the 3 x 3 distance matrix for Cx positions of residues (i - 1), Cys(i), (i +1) with (j - 1), Cys(j), (j + 1). In each of its columns, row and diagonal vector--outer distances are larger than the central distance. This analysis is compared with some analytical models.

  18. Mutagenesis of the redox-active disulfide in mercuric ion reductase: Catalysis by mutant enzymes restricted to flavin redox chemistry

    SciTech Connect

    Distefano, M.D.; Au, K.G.; Walsh, C.T. )

    1989-02-07

    Mercuric reductase, a flavoenzyme that possesses a redox-active cystine, Cys{sub 135}Cys{sub 140}, catalyzes the reduction of Hg(II) to Hg(0) by NADPH. As a probe of mechanism, the authors have constructed mutants lacking a redox-active disulfide by eliminating Cys{sub 135} (Ala{sub 135}Cys{sub 140}), Cys{sub 14} (Cys{sub 135}Ala{sub 140}), or both (Ala{sub 135}Ala{sub 140}). Additionally, they have made double mutants that lack Cys{sub 135} (Ala{sub 135}Cys{sub 139}Cys{sub 140}) or Cys{sub 140} (Cys{sub 135}Cys{sub 139}Ala{sub 140}) but introduce a new Cys in place of Gly{sub 139} with the aim of constructing dithiol pairs in the active site that do not form a redox-active disulfide. The resulting mutant enzymes all lack redox-active disulfides and are hence restricted to FAD/FADH{sub 2} redox chemistry. Each mutant enzyme possesses unique physical and spectroscopic properties that reflect subtle differences in the FAD microenvironment. Preliminary evidence for the Ala{sub 135}Cys{sub 139}Cys{sub 14} mutant enzyme suggests that this protein forms a disulfide between the two adjacent Cys residues. Hg(II) titration experiments that correlate the extent of charge-transfer quenching with Hg(II) binding indicate that the Ala{sub 135}Cys{sub 140} protein binds Hg(II) with substantially less avidity than does the wild-type enzyme. All mutant mercuric reductases catalyze transhydrogenation and oxygen reduction reactions through obligatory reduced flavin intermediates at rates comparable to or greater than that of the wild-type enzyme. In multiple-turnover assays which monitored the production of Hg(0), two of the mutant enzymes were observed to proceed through at least 30 turnovers at rates ca. 1000-fold slower than that of wild-type mercuric reductase. They conclude that the Cys{sub 135} and Cys{sub 140} thiols serve as Hg(II) ligands that orient the Hg(II) for subsequent reduction by a reduced flavin intermediate.

  19. The role of the Cys-X-X-X-Cys motif on the kinetics of cupric ion loading to the Streptomyces lividans Sco protein.

    PubMed

    Blundell, Katie L I M; Wilson, Michael T; Vijgenboom, Erik; Worrall, Jonathan A R

    2013-08-07

    The mechanisms and spectroscopic properties generated by intermediate states upon cupric ion binding to flexible peptide motifs in proteins are of considerable interest. One such motif is the Cys-X-X-X-Cys motif characteristic to members of the Sco family of proteins. In the antibiotic producing bacterium, Streptomyces lividans, a role for its Sco protein (Sco(Sl)) as a cupric metallochaperone to the extracytoplasmic CuA domain of cytochrome c oxidase has been revealed. Stopped-flow kinetic studies have revealed a mechanism of cupric ion capture by Sco(Sl), which passes through a monothiolate intermediate, with distinct spectral features. In the present study we have used two site directed mutants of Sco(Sl), C86A and C90A, to determine which Cys in the CXXXC motif acts as the capture ligand. Comparison of kinetic and thermodynamic parameters obtained from cupric ion binding to the C86A and C90A mutants clearly indicate that Cys86 is the capture ligand and this finding can be reconciled with structural data. At subsaturating levels of cupric ions both mutants bind copper rapidly, but the absorbance properties are distinctly different from wild type Sco(Sl). This is most extreme for the C86A mutant where the Cys90 thiolate bond is considered to be weaker than the Cys86 thiolate bond in the C90A mutant. We put forward an explanation for this behaviour whereby we propose that the cupric ion is moving to a second site with no thiolate coordination.

  20. Electrostatic stabilization and general base catalysis in the active site of the human protein disulfide isomerase a domain monitored by hydrogen exchange.

    PubMed

    Hernández, Griselda; Anderson, Janet S; LeMaster, David M

    2008-03-25

    The nucleophilic Cys36 thiol of the human protein disulfide isomerase a domain is positioned over the N terminus of the alpha(2) helix. Amides in the active site exhibit diffusion-limited, hydroxide-catalyzed exchange, indicating that the local positive electrostatic potential decreases the pK value for peptide anion formation by at least 2 units so as to equal or exceed the acidity of water. In stark contrast to the pH dependence of exchange for simple peptides, the His38 amide in the reduced enzyme exhibits a maximum rate of exchange at pH 5 due to efficient general base catalysis by the neutral imidazole of its own side chain and suppression of its exchange by the ionization of the Cys36 thiol. Ionization of this thiol and deprotonation of the His38 side chain suppress the Cys39 amide hydroxide-catalyzed exchange by a million-fold. The electrostatic potential within the active site monitored by these exchange experiments provides a means of stabilizing the two distinct transition states that lead to substrate reduction and oxidation. Molecular modeling offers a role for the conserved Arg103 in coordinating the oxidative transition-state complex, thus providing further support for mechanisms of disulfide isomerization that utilize enzymatic catalysis at each step of the overall reaction.

  1. Identification of active site residues of Fenugreek β-amylase: chemical modification and in silico approach.

    PubMed

    Srivastava, Garima; Singh, Vinay K; Kayastha, Arvind M

    2014-10-01

    The amino acid sequence of Fenugreek β-amylase is not available in protein data bank. Therefore, an attempt has been made to identify the catalytic amino acid residues of enzyme by employing studies of pH dependence of enzyme catalysis, chemical modification and bioinformatics. Treatment of purified Fenugreek β-amylase with EDAC in presence of glycine methyl ester and sulfhydryl group specific reagents (IAA, NEM and p-CMB), followed a pseudo first-order kinetics and resulted in effective inactivation of enzyme. The reaction with EDAC in presence of NTEE (3-nitro-l-tyrosine ethylester) resulted into modification of two carboxyl groups per molecule of enzyme and presence of one accessible sulfhydryl group at the active site, per molecule of enzyme was ascertained by titration with DTNB. The above results were supported by the prevention of inactivation of enzyme in presence of substrate. Based on MALDI-TOF analysis of purified Fenugreek β-amylase and MASCOT search, β-amylase of Medicago sativa was found to be the best match. To further confirm the amino acid involved in catalysis, homology modelling of β-amylase of M. sativa was performed. The sequence alignment, superimposition of template and target models, along with study of interactions involved in docking of sucrose and maltose at the active site, led to identification of Glu187, Glu381 and Cys344 as active site residues.

  2. Chikungunya virus infectivity, RNA replication and non-structural polyprotein processing depend on the nsP2 protease's active site cysteine residue.

    PubMed

    Rausalu, Kai; Utt, Age; Quirin, Tania; Varghese, Finny S; Žusinaite, Eva; Das, Pratyush Kumar; Ahola, Tero; Merits, Andres

    2016-11-15

    Chikungunya virus (CHIKV), genus Alphavirus, family Togaviridae, has a positive-stand RNA genome approximately 12 kb in length. In infected cells, the genome is translated into non-structural polyprotein P1234, an inactive precursor of the viral replicase, which is activated by cleavages carried out by the non-structural protease, nsP2. We have characterized CHIKV nsP2 using both cell-free and cell-based assays. First, we show that Cys478 residue in the active site of CHIKV nsP2 is indispensable for P1234 processing. Second, the substrate requirements of CHIKV nsP2 are quite similar to those of nsP2 of related Semliki Forest virus (SFV). Third, substitution of Ser482 residue, recently reported to contribute to the protease activity of nsP2, with Ala has almost no negative effect on the protease activity of CHIKV nsP2. Fourth, Cys478 to Ala as well as Trp479 to Ala mutations in nsP2 completely abolished RNA replication in CHIKV and SFV trans-replication systems. In contrast, trans-replicases with Ser482 to Ala mutation were similar to wild type counterparts. Fifth, Cys478 to Ala as well as Trp479 to Ala mutations in nsP2 abolished the rescue of infectious virus from CHIKV RNA transcripts while Ser482 to Ala mutation had no effect. Thus, CHIKV nsP2 is a cysteine protease.

  3. Structure of PEP carboxykinase from the succinate-producing Actinobacillus succinogenes: a new conserved active-site motif.

    PubMed

    Leduc, Yvonne A; Prasad, Lata; Laivenieks, Maris; Zeikus, J Gregory; Delbaere, Louis T J

    2005-07-01

    Actinobacillus succinogenes can produce, via fermentation, high concentrations of succinate, an important industrial commodity. A key enzyme in this pathway is phosphoenolpyruvate carboxykinase (PCK), which catalyzes the production of oxaloacetate from phosphoenolpyruvate and carbon dioxide, with the concomitant conversion of adenosine 5'-diphosphate to adenosine 5'-triphosphate. 1.85 and 1.70 A resolution structures of the native and a pyruvate/Mn(2+)/phosphate complex have been solved, respectively. The structure of the complex contains sulfhydryl reducing agents covalently bound to three cysteine residues via disulfide bonds. One of these cysteine residues (Cys285) is located in the active-site cleft and may be analogous to the putative reactive cysteine of PCK from Trypanosoma cruzi. Cys285 is also part of a previously unreported conserved motif comprising residues 280-287 and containing the pattern NXEXGXY(/F)A(/G); this new motif appears to have a structural role in stabilizing and positioning side chains that bind substrates and metal ions. The first few residues of this motif connect the two domains of the enzyme and a fulcrum point appears to be located near Asn280. In addition, an active-site Asp residue forms two coordinate bonds with the Mn(2+) ion present in the structure of the complex in a symmetrical bidentate manner, unlike in other PCK structures that contain a manganese ion.

  4. Role of individual disulfide bridges in the conformation and activity of spinoxin (α-KTx6.13), a potassium channel toxin from Heterometrus spinifer scorpion venom.

    PubMed

    Yamaguchi, Yoko; Peigneur, Steve; Liu, Junyi; Uemura, Shiho; Nose, Takeru; Nirthanan, Selvanayagam; Gopalakrishnakone, Ponnampalam; Tytgat, Jan; Sato, Kazuki

    2016-11-01

    Spinoxin (SPX; α-KTx6.13), isolated from venom of the scorpion Heterometrus spinifer, is a K(+) channel-specific peptide toxin (KTx), which adopts a cysteine-stabilized α/β scaffold that is cross-linked by four disulfide bridges (Cys1-Cys5, Cys2-Cys6, Cys3-Cys7, and Cys4-Cys8). To investigate the role of the individual disulfide bonds in the structure-activity relationship of SPX, we synthesized four SPX analogs in which each pair of cysteine residues was replaced by alanine residues. The analysis of circular dichroism spectra and inhibitory activity against Kv1.3 channels showed that the SPX analogs lacking any of three specific disulfide bonds (Cys1-Cys5, Cys2-Cys6, and Cys3-Cys7) were unable to form the native secondary structure and completely lost inhibitory activities. Thus, we conclude that Cys1-Cys5, Cys2-Cys6, and Cys3-Cys7 are required for the inhibition of the Kv1.3 channel by SPX. In contrast, the analog lacking Cys4-Cys8 retained both native secondary structure and inhibitory activity. Interestingly, one of the isomers of the analog lacking Cys1-Cys5 also showed inhibitory activities, although its inhibition was ∼18-fold weaker than native SPX. This isomer had an atypical disulfide bond pairing (Cys3-Cys4 and Cys7-Cys8) that corresponds to that of maurotoxin (MTX), another α-KTx6 family member. These results indicate that the Cys1-Cys5 and Cys2-Cys6 bonds are important for restricting the toxin from forming an atypical (MTX-type) disulfide bond pairing among the remaining four cysteine residues (Cys3, Cys4, Cys7, and Cys8) in native SPX.

  5. Inactivation of the pore-forming toxin Sticholysin I by peroxynitrite: protection by cys groups incorporated in the toxin.

    PubMed

    León, L; Lissi, E A; Celedón, G; Gonzalez, G; Pazos, F; Alvarez, C; Lanio, M E

    2014-10-01

    Sea anemones synthesize a variety of toxic peptides and proteins of biological interest. The Caribbean Sea anemone Stichodactyla helianthus, produces two pore-forming toxins, Sticholysin I (St I) and Stichloysin II (St II), with the ability to form oligomeric pores in cell and lipid bilayers characteristically lacking cysteine in their amino acid sequences. Recently, two mutants of a recombinant variant of Sticholysin I (rSt I) have been obtained with a Cys residue in functionally relevant regions for the pore-forming activity of the toxin: r St I F15C (in the amino terminal sequence) and r St I R52C (in the binding site). Aiming at characterizing the effects of oxidants in toxins devoid (r St I) or containing -SH moieties (r St I F15C and r St I R52C), we measured their hemolytic activity and pore forming capacity prior and after their incubation with peroxynitrite (ONOO(-)). At low ONOO(-)/Toxin ratios, nearly 0.8 Trp groups are modified by each added peroxynitrite molecule, and the toxin activity is reduced in ca. 20 %. On the other hand, in -SH bearing mutants only 0.5 Trp groups are modified by each peroxynitrite molecule and the toxin activity is only reduced in 10 %. The results indicated that Cys is the initial target of the oxidative damage and that Trp residues in Cys-containing toxins were less damaged than those in r St I. This relative protection of Trp groups correlates with a smaller loss of hemolytic activity and permeabilization ability in liposomes and emphasizes the relevance of Trp groups in the pore forming capacity of the toxins.

  6. Corrosion Research And Web Site Activities

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2001-01-01

    This report covers corrosion-related activities at the NASA Kennedy Space Center during the summer of 2000. The NASA Kennedy Space Center's corrosion web site, corrosion.ksc.nasa.gov, was updated with new information based on feedback over the past two years. The methodology for a two-year atmospheric exposure testing program to study the effectiveness of commercial chemicals sold for rinsing aircraft and other equipment was developed and some preliminary laboratory chemical analyses are presented.

  7. Corrosion Research and Web Site Activities

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2002-01-01

    This report covers corrosion-related activities at the NASA Kennedy Space Center during the summer of 2000. The NASA Kennedy Space Center's corrosion web site, corrosion.ksc.nasa.gov, was updated with new information based on feedback over the past two years. The methodology for a two-year atmospheric exposure testing program to study the effectiveness of commercial chemicals sold for rinsing aircraft and other equipment was developed and some preliminary laboratory chemical analyses are presented.

  8. Tricyclic covalent inhibitors selectively target Jak3 through an active site thiol.

    PubMed

    Goedken, Eric R; Argiriadi, Maria A; Banach, David L; Fiamengo, Bryan A; Foley, Sage E; Frank, Kristine E; George, Jonathan S; Harris, Christopher M; Hobson, Adrian D; Ihle, David C; Marcotte, Douglas; Merta, Philip J; Michalak, Mark E; Murdock, Sara E; Tomlinson, Medha J; Voss, Jeffrey W

    2015-02-20

    The action of Janus kinases (JAKs) is required for multiple cytokine signaling pathways, and as such, JAK inhibitors hold promise for treatment of autoimmune disorders, including rheumatoid arthritis, inflammatory bowel disease, and psoriasis. However, due to high similarity in the active sites of the four members (Jak1, Jak2, Jak3, and Tyk2), developing selective inhibitors within this family is challenging. We have designed and characterized substituted, tricyclic Jak3 inhibitors that selectively avoid inhibition of the other JAKs. This is accomplished through a covalent interaction between an inhibitor containing a terminal electrophile and an active site cysteine (Cys-909). We found that these ATP competitive compounds are irreversible inhibitors of Jak3 enzyme activity in vitro. They possess high selectivity against other kinases and can potently (IC50 < 100 nm) inhibit Jak3 activity in cell-based assays. These results suggest irreversible inhibitors of this class may be useful selective agents, both as tools to probe Jak3 biology and potentially as therapies for autoimmune diseases.

  9. Hydroxynonenal inactivates cathepsin B by forming Michael adducts with active site residues.

    PubMed

    Crabb, John W; O'Neil, June; Miyagi, Masaru; West, Karen; Hoff, Henry F

    2002-04-01

    Oxidation of plasma low-density lipoprotein (oxLDL) generates the lipid peroxidation product 4-hydroxy-2 nonenal (HNE) and also reduces proteolytic degradation of oxLDL and other proteins internalized by mouse peritoneal macrophages in culture. This leads to accumulation of undegraded material in lysosomes and formation of ceroid, a component of foam cells in atherosclerotic lesions. To explore the possibility that HNE contributes directly to the inactivation of proteases, structure-function studies of the lysosomal protease cathepsin B have been pursued. We found that treatment of mouse macrophages with HNE reduces degradation of internalized maleyl bovine serine albumin and cathepsin B activity. Purified bovine cathepsin B treated briefly with 15 microM HNE lost approximately 76% of its protease activity and also developed immunoreactivity with antibodies to HNE adducts in Western blot analysis. After stabilization of the potential Michael adducts by sodium borohydride reduction, modified amino acids were localized within the bovine cathepsin B protein structure by mass spectrometric analysis of tryptic peptides. Michael adducts were identified by tandem mass spectrometry at cathepsin B active site residues Cys 29 (mature A chain) and His 150 (mature B chain). Thus, covalent interaction between HNE and critical active site residues inactivates cathepsin B. These results support the hypothesis that the accumulation of undegraded macromolecules in lysosomes after oxidative damage are caused in part by direct protease inactivation by adduct formation with lipid peroxidation products such as HNE.

  10. Tricyclic Covalent Inhibitors Selectively Target Jak3 through an Active Site Thiol*

    PubMed Central

    Goedken, Eric R.; Argiriadi, Maria A.; Banach, David L.; Fiamengo, Bryan A.; Foley, Sage E.; Frank, Kristine E.; George, Jonathan S.; Harris, Christopher M.; Hobson, Adrian D.; Ihle, David C.; Marcotte, Douglas; Merta, Philip J.; Michalak, Mark E.; Murdock, Sara E.; Tomlinson, Medha J.; Voss, Jeffrey W.

    2015-01-01

    The action of Janus kinases (JAKs) is required for multiple cytokine signaling pathways, and as such, JAK inhibitors hold promise for treatment of autoimmune disorders, including rheumatoid arthritis, inflammatory bowel disease, and psoriasis. However, due to high similarity in the active sites of the four members (Jak1, Jak2, Jak3, and Tyk2), developing selective inhibitors within this family is challenging. We have designed and characterized substituted, tricyclic Jak3 inhibitors that selectively avoid inhibition of the other JAKs. This is accomplished through a covalent interaction between an inhibitor containing a terminal electrophile and an active site cysteine (Cys-909). We found that these ATP competitive compounds are irreversible inhibitors of Jak3 enzyme activity in vitro. They possess high selectivity against other kinases and can potently (IC50 < 100 nm) inhibit Jak3 activity in cell-based assays. These results suggest irreversible inhibitors of this class may be useful selective agents, both as tools to probe Jak3 biology and potentially as therapies for autoimmune diseases. PMID:25552479

  11. Coevolution of the Ile1,016 and Cys1,534 Mutations in the Voltage Gated Sodium Channel Gene of Aedes aegypti in Mexico

    PubMed Central

    Vera-Maloof, Farah Z.; Saavedra-Rodriguez, Karla; Elizondo-Quiroga, Armando E.; Lozano-Fuentes, Saul; Black IV, William C.

    2015-01-01

    Background Worldwide the mosquito Aedes aegypti (L.) is the principal urban vector of dengue viruses. Currently 2.5 billion people are at risk for infection and reduction of Ae. aegypti populations is the most effective means to reduce the risk of transmission. Pyrethroids are used extensively for adult mosquito control, especially during dengue outbreaks. Pyrethroids promote activation and prolong the activation of the voltage gated sodium channel protein (VGSC) by interacting with two distinct pyrethroid receptor sites [1], formed by the interfaces of the transmembrane helix subunit 6 (S6) of domains II and III. Mutations of S6 in domains II and III synergize so that double mutants have higher pyrethroid resistance than mutants in either domain alone. Computer models predict an allosteric interaction between mutations in the two domains. In Ae. aegypti, a Ile1,016 mutation in the S6 of domain II was discovered in 2006 and found to be associated with pyrethroid resistance in field populations in Mexico. In 2010 a second mutation, Cys1,534 in the S6 of domain III was discovered and also found to be associated with pyrethroid resistance and correlated with the frequency of Ile1,016. Methodology/Principal Findings A linkage disequilibrium analysis was performed on Ile1,016 and Cys1,534 in Ae. aegypti collected in Mexico from 2000–2012 to test for statistical associations between S6 in domains II and III in natural populations. We estimated the frequency of the four dilocus haplotypes in 1,016 and 1,534: Val1,016/Phe1,534 (susceptible), Val1,016/Cys1,534, Ile1,016/Phe1,534, and Ile1,016/Cys1,534 (resistant). The susceptible Val1,016/Phe1,534 haplotype went from near fixation to extinction and the resistant Ile1,016/Cys1,534 haplotype increased in all collections from a frequency close to zero to frequencies ranging from 0.5–0.9. The Val1,016/Cys1,534 haplotype increased in all collections until 2008 after which it began to decline as Ile1,016/Cys1,534 increased

  12. The contribution of NADPH thioredoxin reductase C (NTRC) and sulfiredoxin to 2-Cys peroxiredoxin overoxidation in Arabidopsis thaliana chloroplasts.

    PubMed

    Puerto-Galán, Leonor; Pérez-Ruiz, Juan M; Guinea, Manuel; Cejudo, Francisco Javier

    2015-05-01

    Hydrogen peroxide is a harmful by-product of photosynthesis, which also has important signalling activity. Therefore, the level of hydrogen peroxide needs to be tightly controlled. Chloroplasts harbour different antioxidant systems including enzymes such as the 2-Cys peroxiredoxins (2-Cys Prxs). Under oxidizing conditions, 2-Cys Prxs are susceptible to inactivation by overoxidation of their peroxidatic cysteine, which is enzymatically reverted by sulfiredoxin (Srx). In chloroplasts, the redox status of 2-Cys Prxs is highly dependent on NADPH-thioredoxin reductase C (NTRC) and Srx; however, the relationship of these activities in determining the level of 2-Cys Prx overoxidation is unknown. Here we have addressed this question by a combination of genetic and biochemical approaches. An Arabidopsis thaliana double knockout mutant lacking NTRC and Srx shows a phenotype similar to the ntrc mutant, while the srx mutant resembles wild-type plants. The deficiency of NTRC causes reduced overoxidation of 2-Cys Prxs, whereas the deficiency of Srx has the opposite effect. Moreover, in vitro analyses show that the disulfide bond linking the resolving and peroxidatic cysteines protects the latter from overoxidation, thus explaining the dominant role of NTRC on the level of 2-Cys Prx overoxidation in vivo. The overoxidation of chloroplast 2-Cys Prxs shows no circadian oscillation, in agreement with the fact that neither the NTRC nor the SRX genes show circadian regulation of expression. Additionally, the low level of 2-Cys Prx overoxidation in the ntrc mutant is light dependent, suggesting that the redox status of 2-Cys Prxs in chloroplasts depends on light rather than the circadian clock.

  13. Active-site-mutagenesis study of rat liver betaine-homocysteine S-methyltransferase.

    PubMed

    González, Beatriz; Campillo, Nuria; Garrido, Francisco; Gasset, María; Sanz-Aparicio, Juliana; Pajares, María A

    2003-03-15

    A site-directed-mutagenesis study of putative active-site residues in rat liver betaine-homocysteine S-methyltransferase has been carried out. Identification of these amino acids was based on data derived from a structural model of the enzyme. No alterations in the CD spectra or the gel-filtration chromatography elution pattern were observed with the mutants, thus suggesting no modification in the secondary structure content or in the association state of the proteins. All the mutants obtained showed a reduction of the enzyme activity, the most dramatic effect being that of Glu(159), followed by Tyr(77) and Asp(26). Changes in affinity for either of the substrates, homocysteine or betaine, were detected when substitutions were performed of Glu(21), Asp(26), Phe(74) and Cys(186). Interestingly, Asp(26), postulated to be involved in homocysteine binding, has a strong effect on affinity for betaine. The relevance of these results is discussed in the light of very recent structural data obtained for the human enzyme.

  14. Active Sites Environmental Monitoring Program: Program plan

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  15. CysLT2 receptors interact with CysLT1 receptors and down-modulate cysteinyl leukotriene–dependent mitogenic responses of mast cells

    PubMed Central

    Jiang, Yongfeng; Borrelli, Laura A.; Kanaoka, Yoshihide; Bacskai, Brian J.

    2007-01-01

    Cysteinyl leukotrienes (cys-LTs) induce inflammation through 2 G protein–coupled receptors (GPCRs), CysLT1 and CysLT2, which are coexpressed by most myeloid cells. Cys-LTs induce proliferation of mast cells (MCs), transactivate c-Kit, and phosphorylate extracellular signal-regulated kinase (ERK). Although MCs express CysLT2, their responses to cys-LTs are blocked by antagonists of CysLT1. We demonstrate that CysLT2 interacts with CysLT1, and that knockdown of CysLT2 increases CysLT1 surface expression and CysLT1-dependent proliferation of cord blood–derived human MCs (hMCs). Cys-LT–mediated responses were absent in MCs from mice lacking CysLT1 receptors, but enhanced by the absence of CysLT2 receptors. CysLT1 and CysLT2 receptors colocalized to the plasma membranes and nuclei of a human MC line, LAD2. Antibody-based fluorescent lifetime imaging microscopy confirmed complexes containing both receptors based on fluorescence energy transfer. Negative regulation of CysLT1-induced mitogenic signaling responses of MCs by CysLT2 demonstrates physiologically relevant functions for GPCR heterodimers on primary cells central to inflammation. PMID:17693579

  16. [Structural regularities in activated cleavage sites of thrombin receptors].

    PubMed

    Mikhaĭlik, I V; Verevka, S V

    1999-01-01

    Comparison of thrombin receptors activation splitting sites sequences testifies to their similarity both in activation splitting sites of protein precursors and protein proteinase inhibitors reactive sites. In all these sites corresponded to effectory sites P2'-positions are placed by hydrophobic amino-acids only. The regularity defined conforms with previous thesis about the role of effectory S2'-site in regulation of the processes mediated by serine proteinases.

  17. cysQ, a gene needed for cysteine synthesis in Escherichia coli K-12 only during aerobic growth.

    PubMed Central

    Neuwald, A F; Krishnan, B R; Brikun, I; Kulakauskas, S; Suziedelis, K; Tomcsanyi, T; Leyh, T S; Berg, D E

    1992-01-01

    The initial steps in assimilation of sulfate during cysteine biosynthesis entail sulfate uptake and sulfate activation by formation of adenosine 5'-phosphosulfate, conversion to 3'-phosphoadenosine 5'-phosphosulfate, and reduction to sulfite. Mutations in a previously uncharacterized Escherichia coli gene, cysQ, which resulted in a requirement for sulfite or cysteine, were obtained by in vivo insertion of transposons Tn5tac1 and Tn5supF and by in vitro insertion of resistance gene cassettes. cysQ is at chromosomal position 95.7 min (kb 4517 to 4518) and is transcribed divergently from the adjacent cpdB gene. A Tn5tac1 insertion just inside the 3' end of cysQ, with its isopropyl-beta-D-thiogalactopyranoside-inducible tac promoter pointed toward the cysQ promoter, resulted in auxotrophy only when isopropyl-beta-D-thiogalactopyranoside was present; this conditional phenotype was ascribed to collision between converging RNA polymerases or interaction between complementary antisense and cysQ mRNAs. The auxotrophy caused by cysQ null mutations was leaky in some but not all E. coli strains and could be compensated by mutations in unlinked genes. cysQ mutants were prototrophic during anaerobic growth. Mutations in cysQ did not affect the rate of sulfate uptake or the activities of ATP sulfurylase and its protein activator, which together catalyze adenosine 5'-phosphosulfate synthesis. Some mutations that compensated for cysQ null alleles resulted in sulfate transport defects. cysQ is identical to a gene called amtA, which had been thought to be needed for ammonium transport. Computer analyses, detailed elsewhere, revealed significant amino acid sequence homology between cysQ and suhB of E. coli and the gene for mammalian inositol monophosphatase. Previous work had suggested that 3'-phosphoadenoside 5'-phosphosulfate is toxic if allowed to accumulate, and we propose that CysQ helps control the pool of 3'-phosphoadenoside 5'-phosphosulfate, or its use in sulfite synthesis

  18. Decavanadate binding to a high affinity site near the myosin catalytic centre inhibits F-actin-stimulated myosin ATPase activity.

    PubMed

    Tiago, Teresa; Aureliano, Manuel; Gutiérrez-Merino, Carlos

    2004-05-11

    Decameric vanadate (V(10)) inhibits the actin-stimulated myosin ATPase activity, noncompetitively with actin or with ATP upon interaction with a high-affinity binding site (K(i) = 0.27 +/- 0.05 microM) in myosin subfragment-1 (S1). The binding of V(10) to S1 can be monitored from titration with V(10) of the fluorescence of S1 labeled at Cys-707 and Cys-697 with N-iodo-acetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (IAEDANS) or 5-(iodoacetamido) fluorescein, which showed the presence of only one V(10) binding site per monomer with a dissociation constant of 0.16-0.7 microM, indicating that S1 labeling with these dyes produced only a small distortion of the V(10) binding site. The large quenching of AEDANS-labeled S1 fluorescence produced by V(10) indicated that the V(10) binding site is close to Cys-697 and 707. Fluorescence studies demonstrated the following: (i) the binding of V(10) to S1 is not competitive either with actin or with ADP.V(1) or ADP.AlF(4); (ii) the affinity of V(10) for the complex S1/ADP.V(1) and S1/ADP.AlF(4) is 2- and 3-fold lower than for S1; and (iii) it is competitive with the S1 "back door" ligand P(1)P(5)-diadenosine pentaphosphate. A local conformational change in S1 upon binding of V(10) is supported by (i) a decrease of the efficiency of fluorescence energy transfer between eosin-labeled F-actin and fluorescein-labeled S1, and (ii) slower reassociation between S1 and F-actin after ATP hydrolysis. The results are consistent with binding of V(10) to the Walker A motif of ABC ATPases, which in S1 corresponds to conserved regions of the P-loop which form part of the phosphate tube.

  19. CysLT1R downregulation reverses intracerebroventricular streptozotocin-induced memory impairment via modulation of neuroinflammation in mice.

    PubMed

    Ghosh, Arijit; Chen, Fang; Wu, Feng; Tang, Su-Su; Hu, Mei; Long, Yan; Sun, Hong-Bin; Kong, Ling-Yi; Hong, Hao

    2017-02-06

    Our previous studies showed that cysteinyl leukotrienes receptor 1 (CysLT1R) is upregulated in amyloid-β (Aβ)-induced neurotoxicity and that administration of CysLT1R antagonists such as pranlukast or montelukast can ameliorate memory impairment in mice. In the current study, we sought to explore the role of CysLT1R in intracerebroventricular streptozotocin (STZ-ICV)-induced mouse model of memory impairment and neuroinflammation through shRNA-mediated knockdown of CysLT1R and also its pharmacological blockade by pranlukast. ICR mice were infused with STZ (3.0mg/kg) by a single bilateral stereotaxic ICV microinjection followed by administration of CysLT1R-shRNA (intra-hippocampal) or pranlukast (intragastric, IG). After 21days, a set of behavioral and biochemical tests were performed in order to assess the degree of memory impairment and neuroinflammation in mice. STZ-infused mice spent less time in the target quadrant of Morris water maze test and took more time to find the shock-free arm in modified Y-maze test, which were rescued in the CysLT1R-knockdowned or pranlukast-treated mice. STZ-induced memory impairment was also accompanied by an elevated level of hippocampal CysLT1R, microglial activation, increased IL-1β, and TNF-α. Such elevation of these factors was found to be mediated through the classical NF-κB pathway and administration of CysLT1R-shRNA or pranlukast for 21days reversed all these parameters, suggesting a role of CysLT1R in STZ-induced memory deficit and neuroinflammation.

  20. Dynamics of the Active Sites of Dimeric Seryl tRNA Synthetase from Methanopyrus kandleri.

    PubMed

    Dutta, Saheb; Nandi, Nilashis

    2015-08-27

    reaction center. Synchronously, Arg366 of the β sheet at the base holds the syn oxygen of the attacking carboxylic group so that the attack by the anti oxygen is feasible. This residue also contributes to the reduction of the unfavorable electrostatic potential at the reaction center. Present simulation clearly shows the catalytic role of the residues at reaction center. A precise and stable geometry of hydrogen bonded network develops within the active site, which is essential for the development of an optimum transition state geometry. All loops move away from the platform of active site in the open or adenylate bound state and the network of hydrogen bond disappears. The serine binding site is most rigid among all three subsites. The Ser is held here in a highly organized geometry bound by Zn(2+) and Cys residues. Present simulation further suggests that the helix-turn-helix motif connecting the monomers might have important role in coordinating the functional dynamics of the two active sites. The N-terminal domain is involved in long-range electrostatic interaction and specific hydrogen bond interaction (both direct and water mediated) with tRNA. Overall conformational fluctuation is less in the N terminal compared to the catalytic domain due to the presence of a motif 2 loop, loop f, and serine ordering loop, which change conformation in the later domain during the reaction cycle. The dynamic perspective of the active site of (mk)SerRS with the mobile loop acting as the gate and dynamically silent β sheets performing as the base has similarity with the perception of the active site in various other enzymes.

  1. l-Cys/CSE/H2S pathway modulates mouse uterus motility and sildenafil effect.

    PubMed

    Mitidieri, Emma; Tramontano, Teresa; Donnarumma, Erminia; Brancaleone, Vincenzo; Cirino, Giuseppe; d'Emmanuele di Villa Bianca, Roberta; Sorrentino, Raffaella

    2016-09-01

    Sildenafil, a selective phosphodiesterase type 5 (PDE5) inhibitor, commonly used in the oral treatment for erectile dysfunction, relaxes smooth muscle of human bladder through the activation of hydrogen sulfide (H2S) signaling. H2S is an endogenous gaseous transmitter with myorelaxant properties predominantly formed from l-cysteine (l-Cys) by cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE). Sildenafil also relaxes rat and human myometrium during preterm labor but the underlying mechanism is still unclear. In the present study we investigated the possible involvement of H2S as a mediator of sildenafil-induced effect in uterine mouse contractility. We firstly demonstrated that both enzymes, CBS and CSE were expressed, and able to convert l-Cys into H2S in mouse uterus. Thereafter, sildenafil significantly increased H2S production in mouse uterus and this effect was abrogated by CBS or CSE inhibition. In parallel, l-Cys, sodium hydrogen sulfide or sildenafil but not d-Cys reduced spontaneous uterus contractility in a functional study. The blockage of CBS and CSE reduced this latter effect even if a major role for CSE than CBS was observed. This data was strongly confirmed by using CSE(-/-) mice. Indeed, the increase in H2S production mediated by l-Cys or by sildenafil was not found in CSE(-/-) mice. Besides, the effect of H2S or sildenafil on spontaneous contractility was reduced in CSE(-/-) mice. A decisive proof for the involvement of H2S signaling in sildenafil effect in mice uterus was given by the measurement of cGMP. Sildenafil increased cGMP level that was significantly reduced by CSE inhibition. In conclusion, l-Cys/CSE/H2S signaling modulates the mouse uterus motility and the sildenafil effect. Therefore the study may open different therapeutical approaches for the management of the uterus abnormal contractility disorders.

  2. Rv2131c from Mycobacterium tuberculosis is a CysQ 3'-phosphoadenosine-5'-phosphatase.

    PubMed

    Hatzios, Stavroula K; Iavarone, Anthony T; Bertozzi, Carolyn R

    2008-05-27

    Mycobacterium tuberculosis ( Mtb) produces a number of sulfur-containing metabolites that contribute to its pathogenesis and ability to survive in the host. These metabolites are products of the sulfate assimilation pathway. CysQ, a 3'-phosphoadenosine-5'-phosphatase, is considered an important regulator of this pathway in plants, yeast, and other bacteria. By controlling the pools of 3'-phosphoadenosine 5'-phosphate (PAP) and 3'-phosphoadenosine 5'-phosphosulfate (PAPS), CysQ has the potential to modulate flux in the biosynthesis of essential sulfur-containing metabolites. Bioinformatic analysis of the Mtb genome suggests the presence of a CysQ homologue encoded by the gene Rv2131c. However, a recent biochemical study assigned the protein's function as a class IV fructose-1,6-bisphosphatase. In the present study, we expressed Rv2131c heterologously and found that the protein dephosphorylates PAP in a magnesium-dependent manner, with optimal activity observed between pH 8.5 and pH 9.5 using 0.5 mM MgCl 2. A sensitive electrospray ionization mass spectrometry-based assay was used to extract the kinetic parameters for PAP, revealing a K m (8.1 +/- 3.1 microM) and k cat (5.4 +/- 1.1 s (-1)) comparable to those reported for other CysQ enzymes. The second-order rate constant for PAP was determined to be over 3 orders of magnitude greater than those determined for myo-inositol 1-phosphate (IMP) and fructose 1,6-bisphosphate (FBP), previously considered to be the primary substrates of this enzyme. Moreover, the ability of the Rv2131c-encoded enzyme to dephosphorylate PAP and PAPS in vivo was confirmed by functional complementation of an Escherichia coli Delta cysQ mutant. Taken together, these studies indicate that Rv2131c encodes a CysQ enzyme that may play a role in mycobacterial sulfur metabolism.

  3. SufE D74R Substitution Alters Active Site Loop Dynamics To Further Enhance SufE Interaction with the SufS Cysteine Desulfurase

    PubMed Central

    Dai, Yuyuan; Kim, Dokyong; Dong, Guangchao; Busenlehner, Laura S.; Frantom, Patrick A.; Outten, F. Wayne

    2015-01-01

    Many essential metalloproteins require iron–sulfur (Fe–S) cluster cofactors for their function. In vivo persulfide formation from L-cysteine is a key step in the biogenesis of Fe–S clusters in most organisms. In Escherichia coli, the SufS cysteine desulfurase mobilizes persulfide from L-cysteine via a PLP-dependent ping-pong reaction. SufS requires the SufE partner protein to transfer the persulfide to the SufB Fe–S cluster scaffold. Without SufE, the SufS enzyme fails to efficiently turn over and remains locked in the persulfide-bound state. Coordinated protein–protein interactions mediate sulfur transfer from SufS to SufE. Multiple studies have suggested that SufE must undergo a conformational change to extend its active site Cys loop during sulfur transfer from SufS. To test this putative model, we mutated SufE Asp74 to Arg (D74R) to increase the dynamics of the SufE Cys51 loop. Amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) analysis of SufE D74R revealed an increase in solvent accessibility and dynamics in the loop containing the active site Cys51 used to accept persulfide from SufS. Our results indicate that the mutant protein has a stronger binding affinity for SufS than that of wild-type SufE. In addition, SufE D74R can still enhance SufS desulfurase activity and did not show saturation at higher SufE D74R concentrations, unlike wild-type SufE. These results show that dynamic changes may shift SufE to a sulfur-acceptor state that interacts more strongly with SufS. PMID:26171726

  4. Sulfur K-Edge XAS and DFT Calculations on NitrileHydratase: Geometric and Electronic Structure of the Non-heme Iron Active Site

    SciTech Connect

    Dey, Abhishek; Chow, Marina; Taniguchi, Kayoko; Lugo-Mas, Priscilla; Davin, Steven; Maeda, Mizuo; Kovacs, Julie A.; Odaka, Masafumi; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.; /SLAC, SSRL

    2006-09-28

    The geometric and electronic structure of the active site of the non-heme iron enzyme nitrile hydratase (NHase) is studied using sulfur K-edge XAS and DFT calculations. Using thiolate (RS{sup -})-, sulfenate (RSO{sup -})-, and sulfinate (RSO{sub 2}{sup -})-ligated model complexes to provide benchmark spectral parameters, the results show that the S K-edge XAS is sensitive to the oxidation state of S-containing ligands and that the spectrum of the RSO- species changes upon protonation as the S-O bond is elongated (by {approx}0.1 {angstrom}). These signature features are used to identify the three cysteine residues coordinated to the low-spin Fe{sup III} in the active site of NHase as CysS{sup -}, CysSOH, and CysSO{sub 2}{sup -} both in the NO-bound inactive form and in the photolyzed active form. These results are correlated to geometry-optimized DFT calculations. The pre-edge region of the X-ray absorption spectrum is sensitive to the Z{sub eff} of the Fe and reveals that the Fe in [FeNO]{sup 6} NHase species has a Z{sub eff} very similar to that of its photolyzed Fe{sup III} counterpart. DFT calculations reveal that this results from the strong {pi} back-bonding into the {pi}* antibonding orbital of NO, which shifts significant charge from the formally t{sub 2}{sup 6} low-spin metal to the coordinated NO.

  5. Role of CysE in production of an extracellular signaling molecule in Providencia stuartii and Escherichia coli: loss of CysE enhances biofilm formation in Escherichia coli.

    PubMed

    Sturgill, Gwen; Toutain, Christine M; Komperda, John; O'Toole, George A; Rather, Philip N

    2004-11-01

    A mini-Tn5Cm insertion has been identified that significantly reduced the amount of an extracellular activating signal for a lacZ fusion (cma37::lacZ) in Providencia stuartii. The transposon insertion was located immediately upstream of an open reading frame encoding a putative CysE ortholog. The CysE enzyme, serine acetyltransferase, catalyzes the conversion of serine to O-acetyl-L-serine (OAS). This activating signal was also produced by Escherichia coli, and production was abolished in a strain containing a null allele of cysE. Products of the CysE enzyme (OAS, N-acetyl-L-serine [NAS], O-acetyl-L-threonine, and N-acetyl-L-threonine) were individually tested for the ability to activate cma37::lacZ. Only OAS was capable of activating the cma37::lacZ fusion. The ability of OAS to activate the cma37::lacZ fusion was abolished by pretreatment at pH 8.5, which converts OAS to NAS. However, the activity of the native signal in conditioned medium was not decreased by treatment at pH 8.5. In contrast, conditioned medium prepared from cells grown at pH 8.5 exhibited a 4- to 10-fold-higher activity, relative to pH 6.0. Additional genes regulated by the CysE-dependent signal and OAS were identified in P. stuartii and E. coli. The response to the extracellular signal in E. coli was dependent on CysB, a positive activator that requires NAS as a coactivator. In E. coli, a cysE mutant formed biofilms at an accelerated rate compared to the wild type, suggesting a physiological role for this extracellular signal.

  6. MYST protein acetyltransferase activity requires active site lysine autoacetylation.

    PubMed

    Yuan, Hua; Rossetto, Dorine; Mellert, Hestia; Dang, Weiwei; Srinivasan, Madhusudan; Johnson, Jamel; Hodawadekar, Santosh; Ding, Emily C; Speicher, Kaye; Abshiru, Nebiyu; Perry, Rocco; Wu, Jiang; Yang, Chao; Zheng, Y George; Speicher, David W; Thibault, Pierre; Verreault, Alain; Johnson, F Bradley; Berger, Shelley L; Sternglanz, Rolf; McMahon, Steven B; Côté, Jacques; Marmorstein, Ronen

    2012-01-04

    The MYST protein lysine acetyltransferases are evolutionarily conserved throughout eukaryotes and acetylate proteins to regulate diverse biological processes including gene regulation, DNA repair, cell-cycle regulation, stem cell homeostasis and development. Here, we demonstrate that MYST protein acetyltransferase activity requires active site lysine autoacetylation. The X-ray crystal structures of yeast Esa1 (yEsa1/KAT5) bound to a bisubstrate H4K16CoA inhibitor and human MOF (hMOF/KAT8/MYST1) reveal that they are autoacetylated at a strictly conserved lysine residue in MYST proteins (yEsa1-K262 and hMOF-K274) in the enzyme active site. The structure of hMOF also shows partial occupancy of K274 in the unacetylated form, revealing that the side chain reorients to a position that engages the catalytic glutamate residue and would block cognate protein substrate binding. Consistent with the structural findings, we present mass spectrometry data and biochemical experiments to demonstrate that this lysine autoacetylation on yEsa1, hMOF and its yeast orthologue, ySas2 (KAT8) occurs in solution and is required for acetylation and protein substrate binding in vitro. We also show that this autoacetylation occurs in vivo and is required for the cellular functions of these MYST proteins. These findings provide an avenue for the autoposttranslational regulation of MYST proteins that is distinct from other acetyltransferases but draws similarities to the phosphoregulation of protein kinases.

  7. MYST protein acetyltransferase activity requires active site lysine autoacetylation

    PubMed Central

    Yuan, Hua; Rossetto, Dorine; Mellert, Hestia; Dang, Weiwei; Srinivasan, Madhusudan; Johnson, Jamel; Hodawadekar, Santosh; Ding, Emily C; Speicher, Kaye; Abshiru, Nebiyu; Perry, Rocco; Wu, Jiang; Yang, Chao; Zheng, Y George; Speicher, David W; Thibault, Pierre; Verreault, Alain; Johnson, F Bradley; Berger, Shelley L; Sternglanz, Rolf; McMahon, Steven B; Côté, Jacques; Marmorstein, Ronen

    2012-01-01

    The MYST protein lysine acetyltransferases are evolutionarily conserved throughout eukaryotes and acetylate proteins to regulate diverse biological processes including gene regulation, DNA repair, cell-cycle regulation, stem cell homeostasis and development. Here, we demonstrate that MYST protein acetyltransferase activity requires active site lysine autoacetylation. The X-ray crystal structures of yeast Esa1 (yEsa1/KAT5) bound to a bisubstrate H4K16CoA inhibitor and human MOF (hMOF/KAT8/MYST1) reveal that they are autoacetylated at a strictly conserved lysine residue in MYST proteins (yEsa1-K262 and hMOF-K274) in the enzyme active site. The structure of hMOF also shows partial occupancy of K274 in the unacetylated form, revealing that the side chain reorients to a position that engages the catalytic glutamate residue and would block cognate protein substrate binding. Consistent with the structural findings, we present mass spectrometry data and biochemical experiments to demonstrate that this lysine autoacetylation on yEsa1, hMOF and its yeast orthologue, ySas2 (KAT8) occurs in solution and is required for acetylation and protein substrate binding in vitro. We also show that this autoacetylation occurs in vivo and is required for the cellular functions of these MYST proteins. These findings provide an avenue for the autoposttranslational regulation of MYST proteins that is distinct from other acetyltransferases but draws similarities to the phosphoregulation of protein kinases. PMID:22020126

  8. Rational Design of Fatty Acid Amide Hydrolase Inhibitors that Act by Covalently Bonding to Two Active Site Residues

    PubMed Central

    Otrubova, Katerina; Brown, Monica; McCormick, Michael S.; Han, Gye W.; O’Neal, Scott T.; Cravatt, Benjamin F.; Stevens, Raymond C.; Lichtman, Aron H.; Boger, Dale L.

    2013-01-01

    The design and characterization of α-ketoheterocycle fatty acid amide hydrolase (FAAH) inhibitors are disclosed that additionally and irreversibly target a cysteine (Cys269) found in the enzyme cytosolic port while maintaining the reversible covalent Ser241 attachment responsible for their rapid and initially reversible enzyme inhibition. Two α-ketooxazoles (3 and 4) containing strategically placed electrophiles at the C5 position of the pyridyl substituent of 2 (OL-135) were prepared and examined as inhibitors of FAAH. Consistent with the observed time-dependent non-competitive inhibition, the co-crystal X-ray structure of 3 bound to a humanized variant of rat FAAH revealed that 3 was not only covalently bound to the active site catalytic nucleophile Ser241 as a deprotonated hemiketal, but also to Cys269 through the pyridyl C5-substituent, thus providing an inhibitor with dual covalent attachment in the enzyme active site. In vivo characterization of the prototypical inhibitors in mice demonstrate that they raise endogenous brain levels of FAAH substrates to a greater extent and for a much longer duration (>6 h) than the reversible inhibitor 2, indicating that the inhibitors accumulate and persist in the brain to completely inhibit FAAH for a prolonged period. Consistent with this behavior and the targeted irreversible enzyme inhibition, 3 reversed cold allodynia in the chronic constriction injury model of neuropathic pain in mice for a sustained period (>6 h) beyond that observed with the reversible inhibitor 2, providing effects that were unchanged over the 1–6 h time course monitored. PMID:23581831

  9. Heparanase Activates Antithrombin through the Binding to Its Heparin Binding Site

    PubMed Central

    Águila, Sonia; Teruel-Montoya, Raúl; Vicente, Vicente; Corral, Javier; Martínez-Martínez, Irene

    2016-01-01

    Heparanase is an endoglycosidase that participates in morphogenesis, tissue repair, heparan sulphates turnover and immune response processes. It is over-expressed in tumor cells favoring the metastasis as it penetrates the endothelial layer that lines blood vessels and facilitates the metastasis by degradation of heparan sulphate proteoglycans of the extracellular matrix. Heparanase may also affect the hemostatic system in a non-enzymatic manner, up-regulating the expression of tissue factor, which is the initiator of blood coagulation, and dissociating tissue factor pathway inhibitor on the cell surface membrane of endothelial and tumor cells, thus resulting in a procoagulant state. Trying to check the effect of heparanase on heparin, a highly sulphated glycosaminoglycan, when it activates antithrombin, our results demonstrated that heparanase, but not proheparanase, interacted directly with antithrombin in a non-covalent manner. This interaction resulted in the activation of antithrombin, which is the most important endogenous anticoagulant. This activation mainly accelerated FXa inhibition, supporting an allosteric activation effect. Heparanase bound to the heparin binding site of antithrombin as the activation of Pro41Leu, Arg47Cys, Lys114Ala and Lys125Alaantithrombin mutants was impaired when it was compared to wild type antithrombin. Intrinsic fluorescence analysis showed that heparanase induced an activating conformational change in antithrombin similar to that induced by heparin and with a KD of 18.81 pM. In conclusion, under physiological pH and low levels of tissue factor, heparanase may exert a non-enzymatic function interacting and activating the inhibitory function of antithrombin. PMID:27322195

  10. Crystal Structures of Mycobacterium tuberculosis CysQ, with Substrate and Products Bound.

    PubMed

    Erickson, Anna I; Sarsam, Reta D; Fisher, Andrew J

    2015-11-17

    In many organisms, 3'-phosphoadenosine 5'-phosphate (PAP) is a product of two reactions in the sulfur activation pathway. The sulfurylation of biomolecules, catalyzed by sulfotransferases, uses 3'-phosphoadenosine 5'-phosphosulfate (PAPS) as a sulfate donor, producing the sulfated biomolecule and PAP product. Additionally, the first step in sulfate reduction for many bacteria and fungi reduces the sulfate moiety of PAPS, producing PAP and sulfite, which is subsequently reduced to sulfide. PAP is removed by the phosphatase activity of CysQ, a 3',5'-bisphosphate nucleotidase, yielding AMP and phosphate. Because excess PAP alters the equilibrium of the sulfur pathway and inhibits sulfotransferases, PAP concentrations can affect the levels of sulfur-containing metabolites. Therefore, CysQ, a divalent cation metal-dependent phosphatase, is a major regulator of this pathway. CysQ (Rv2131c) from Mycobacterium tuberculosis (Mtb) was successfully expressed, purified, and crystallized in a variety of ligand-bound states. Here we report six crystal structures of Mtb CysQ, including a ligand-free structure, a lithium-inhibited state with substrate PAP bound, and a product-bound complex with AMP, phosphate, and three Mg(2+) ions bound. Comparison of these structures together with homologues of the superfamily has provided insight into substrate specificity, metal coordination, and catalytic mechanism.

  11. A large displacement of the SXN motif of Cys115-modified penicillin-binding protein 5 from Escherichia coli

    PubMed Central

    2005-01-01

    Penicillin-binding proteins (PBPs), which are the lethal targets of β-lactam antibiotics, catalyse the final stages of peptidoglycan biosynthesis of the bacterial cell wall. PBP 5 of Escherichia coli is a D-alanine CPase (carboxypeptidase) that has served as a useful model to elucidate the catalytic mechanism of low-molecular-mass PBPs. Previous studies have shown that modification of Cys115 with a variety of reagents results in a loss of CPase activity and a large decrease in the rate of deacylation of the penicilloyl–PBP 5 complex [Tamura, Imae and Strominger (1976) J. Biol. Chem. 251, 414–423; Curtis and Strominger (1978) J. Biol. Chem. 253, 2584–2588]. The crystal structure of wild-type PBP 5 in which Cys115 fortuitously had formed a covalent adduct with 2-mercaptoethanol was solved at 2.0 Å (0.2 nm) resolution, and these results provide a structural rationale for how thiol-directed reagents lower the rate of deacylation. When compared with the structure of the unmodified wild-type enzyme, a major change in the architecture of the active site is observed. The two largest differences are the disordering of a loop comprising residues 74–90 and a shift in residues 106–111, which results in the displacement of Ser110 of the SXN active-site motif. These results support the developing hypothesis that the SXN motif of PBP 5, and especially Ser110, is intimately involved in the catalytic mechanism of deacylation. PMID:16038617

  12. The roles of active site residues in the catalytic mechanism of methylaspartate ammonia-lyase.

    PubMed

    Raj, Hans; Poelarends, Gerrit J

    2013-01-01

    Methylaspartate ammonia-lyase (MAL; EC 4.3.1.2) catalyzes the reversible addition of ammonia to mesaconate to yield l-threo-(2S,3S)-3-methylaspartate and l-erythro-(2S,3R)-3-methylaspartate as products. In the proposed minimal mechanism for MAL of Clostridium tetanomorphum, Lys-331 acts as the (S)-specific base catalyst and abstracts the 3S-proton from l-threo-3-methylaspartate, resulting in an enolate anion intermediate. This enolic intermediate is stabilized by coordination to the essential active site Mg(2+) ion and hydrogen bonding to the Gln-329 residue. Collapse of this intermediate results in the release of ammonia and the formation of mesaconate. His-194 likely acts as the (R)-specific base catalyst and abstracts the 3R-proton from the l-erythro isomer of 3-methylaspartate, yielding the enolic intermediate. In the present study, we have investigated the importance of the residues Gln-73, Phe-170, Gln-172, Tyr-356, Thr-360, Cys-361 and Leu-384 for the catalytic activity of C. tetanomorphum MAL. These residues, which are part of the enzyme surface lining the substrate binding pocket, were subjected to site-directed mutagenesis and the mutant enzymes were characterized for their structural integrity, ability to catalyze the amination of mesaconate, and regio- and diastereoselectivity. Based on the observed properties of the mutant enzymes, combined with previous structural studies and protein engineering work, we propose a detailed catalytic mechanism for the MAL-catalyzed reaction, in which the side chains of Gln-73, Gln-172, Tyr-356, Thr-360, and Leu-384 provide favorable interactions with the substrate, which are important for substrate binding and activation. This detailed knowledge of the catalytic mechanism of MAL can serve as a guide for future protein engineering experiments.

  13. Chikungunya virus infectivity, RNA replication and non-structural polyprotein processing depend on the nsP2 protease’s active site cysteine residue

    PubMed Central

    Rausalu, Kai; Utt, Age; Quirin, Tania; Varghese, Finny S.; Žusinaite, Eva; Das, Pratyush Kumar; Ahola, Tero; Merits, Andres

    2016-01-01

    Chikungunya virus (CHIKV), genus Alphavirus, family Togaviridae, has a positive-stand RNA genome approximately 12 kb in length. In infected cells, the genome is translated into non-structural polyprotein P1234, an inactive precursor of the viral replicase, which is activated by cleavages carried out by the non-structural protease, nsP2. We have characterized CHIKV nsP2 using both cell-free and cell-based assays. First, we show that Cys478 residue in the active site of CHIKV nsP2 is indispensable for P1234 processing. Second, the substrate requirements of CHIKV nsP2 are quite similar to those of nsP2 of related Semliki Forest virus (SFV). Third, substitution of Ser482 residue, recently reported to contribute to the protease activity of nsP2, with Ala has almost no negative effect on the protease activity of CHIKV nsP2. Fourth, Cys478 to Ala as well as Trp479 to Ala mutations in nsP2 completely abolished RNA replication in CHIKV and SFV trans-replication systems. In contrast, trans-replicases with Ser482 to Ala mutation were similar to wild type counterparts. Fifth, Cys478 to Ala as well as Trp479 to Ala mutations in nsP2 abolished the rescue of infectious virus from CHIKV RNA transcripts while Ser482 to Ala mutation had no effect. Thus, CHIKV nsP2 is a cysteine protease. PMID:27845418

  14. Discovery and evaluation of inhibitors to the immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO1): Probing the active site-inhibitor interactions.

    PubMed

    Tomek, Petr; Palmer, Brian D; Flanagan, Jack U; Sun, Chuanwen; Raven, Emma L; Ching, Lai-Ming

    2017-01-27

    High expression of the immunosuppressive enzyme, indoleamine 2,3-dioxygenase 1 (IDO1) for a broad range of malignancies is associated with poor patient prognosis, and the enzyme is a validated target for cancer intervention. To identify novel IDO1 inhibitors suitable for drug development, 1597 compounds in the National Cancer Institute Diversity Set III library were tested for inhibitory activity against recombinant human IDO1. We retrieved 35 hits that inhibited IDO1 activity >50% at 20 μM. Five structural filters and the PubChem Bioassay database were used to guide the selection of five inhibitors with IC50 between 3 and 12 μM for subsequent experimental evaluation. A pyrimidinone scaffold emerged as being the most promising. It showed excellent cell penetration, negligible cytotoxicity and passed four out of the five structural filters applied. To evaluate the importance of Ser167 and Cys129 residues in the IDO1 active site for inhibitor binding, the entire NCI library was subsequently screened against alanine-replacement mutant enzymes of these two residues. The results established that Ser167 but not Cys129 is important for inhibitory activity of a broad range of IDO1 inhibitors. Structure-activity-relationship studies proposed substituents interacting with Ser167 on four investigated IDO1 inhibitors. Three of these four Ser167 interactions associated with an increased IDO1 inhibition and were correctly predicted by molecular docking supporting Ser167 as an important mediator of potency for IDO1 inhibitors.

  15. Identification of a CysB-regulated gene involved in glutathione transport in Escherichia coli.

    PubMed

    Parry, Jesse; Clark, David P

    2002-03-19

    Growth of Escherichia coli using the tripeptide glutathione as a sulfur source is well documented, but transport of glutathione into E. coli is uncharacterized. We have found that the ybiK gene, at 18.7 min, appears to be involved in the transport of glutathione and have therefore renamed ybiK as spt for sulfur peptide transport. The ybiK/spt gene is the first of what appear to be five cotranscribed genes, three of which show high homology to the peptide transport operon dpp. When the lacZ gene encoding beta-galactosidase was fused to the promoter of ybiK/spt, expression of the ybiK-lacZ fusion was repressed in rich media. This was shown to be due to the presence of exogenous cysteine. The ybiK-lacZ fusion was found to be regulated by cysB, the transcriptional activator for the cysteine regulon. Mutations in the cysB or ybiK genes led to severe growth inhibition when cells were given glutathione as the sole sulfur source. In particular, strains of E. coli containing mutations in both the ybiK and cysA genes were unable to grow when the sole sulfur source provided was glutathione whereas single cysA mutants grew well with glutathione. In contrast, no such defects were seen when L-djenkolic acid or cysteine were used as the sole sulfur source.

  16. Expression, purification, crystallization and X-ray crystallographic studies of different redox states of the active site of thioredoxin 1 from the whiteleg shrimp Litopenaeus vannamei

    PubMed Central

    Campos-Acevedo, Adam A.; Garcia-Orozco, Karina D.; Sotelo-Mundo, Rogerio R.; Rudiño-Piñera, Enrique

    2013-01-01

    Thioredoxin (Trx) is a 12 kDa cellular redox protein that belongs to a family of small redox proteins which undergo reversible oxidation to produce a cystine disulfide bond through the transfer of reducing equivalents from the catalytic site cysteine residues (Cys32 and Cys35) to a disulfide substrate. In this study, crystals of thioredoxin 1 from the Pacific whiteleg shrimp Litopenaeus vannamei (LvTrx) were successfully obtained. One data set was collected from each of four crystals at 100 K and the three-dimensional structures of the catalytic cysteines in different redox states were determined: reduced and oxidized forms at 2.00 Å resolution using data collected at a synchrotron-radiation source and two partially reduced structures at 1.54 and 1.88 Å resolution using data collected using an in-house source. All of the crystals belonged to space group P3212, with unit-cell parameters a = 57.5 (4), b = 57.5 (4), c = 118.1 (8) Å. The asymmetric unit contains two subunits of LvTrx, with a Matthews coefficient (V M) of 2.31 Å3 Da−1 and a solvent content of 46%. Initial phases were determined by molecular replacement using the crystallographic model of Trx from Drosophila melanogaster as a template. In the present work, LvTrx was overexpressed in Escherichia coli, purified and crystallized. Structural analysis of the different redox states at the Trx active site highlights its reactivity and corroborates the existence of a dimer in the crystal. In the crystallographic structures the dimer is stabilized by several interactions, including a disulfide bridge between Cys73 of each LvTrx monomer, a hydrogen bond between the side chain of Asp60 of each monomer and several hydrophobic interactions, with a noncrystallographic twofold axis. PMID:23695560

  17. Expression, purification, crystallization and X-ray crystallographic studies of different redox states of the active site of thioredoxin 1 from the whiteleg shrimp Litopenaeus vannamei.

    PubMed

    Campos-Acevedo, Adam A; Garcia-Orozco, Karina D; Sotelo-Mundo, Rogerio R; Rudiño-Piñera, Enrique

    2013-05-01

    Thioredoxin (Trx) is a 12 kDa cellular redox protein that belongs to a family of small redox proteins which undergo reversible oxidation to produce a cystine disulfide bond through the transfer of reducing equivalents from the catalytic site cysteine residues (Cys32 and Cys35) to a disulfide substrate. In this study, crystals of thioredoxin 1 from the Pacific whiteleg shrimp Litopenaeus vannamei (LvTrx) were successfully obtained. One data set was collected from each of four crystals at 100 K and the three-dimensional structures of the catalytic cysteines in different redox states were determined: reduced and oxidized forms at 2.00 Å resolution using data collected at a synchrotron-radiation source and two partially reduced structures at 1.54 and 1.88 Å resolution using data collected using an in-house source. All of the crystals belonged to space group P3212, with unit-cell parameters a = 57.5 (4), b = 57.5 (4), c = 118.1 (8) Å. The asymmetric unit contains two subunits of LvTrx, with a Matthews coefficient (VM) of 2.31 Å(3) Da(-1) and a solvent content of 46%. Initial phases were determined by molecular replacement using the crystallographic model of Trx from Drosophila melanogaster as a template. In the present work, LvTrx was overexpressed in Escherichia coli, purified and crystallized. Structural analysis of the different redox states at the Trx active site highlights its reactivity and corroborates the existence of a dimer in the crystal. In the crystallographic structures the dimer is stabilized by several interactions, including a disulfide bridge between Cys73 of each LvTrx monomer, a hydrogen bond between the side chain of Asp60 of each monomer and several hydrophobic interactions, with a noncrystallographic twofold axis.

  18. Ligand-dependent dynamics of the active-site lid in bacterial dimethylarginine dimethylaminohydrolase.

    PubMed

    Rasheed, Masooma; Richter, Christine; Chisty, Liisa T; Kirkpatrick, John; Blackledge, Martin; Webb, Martin R; Driscoll, Paul C

    2014-02-18

    The dimethylarginine dimethylaminohydrolase (DDAH) enzyme family has been the subject of substantial investigation as a potential therapeutic target for the regulation of vascular tension. DDAH enzymes catalyze the conversion of asymmetric N(η),N(η)-dimethylarginine (ADMA) to l-citrulline. Here the influence of substrate and product binding on the dynamic flexibility of DDAH from Pseudomonas aeruginosa (PaDDAH) has been assessed. A combination of heteronuclear NMR spectroscopy, static and time-resolved fluorescence measurements, and atomistic molecular dynamics simulations was employed. A monodisperse monomeric variant of the wild-type enzyme binds the reaction product l-citrulline with a low millimolar dissociation constant. A second variant, engineered to be catalytically inactive by substitution of the nucleophilic Cys249 residue with serine, can still convert the substrate ADMA to products very slowly. This PaDDAH variant also binds l-citrulline, but with a low micromolar dissociation constant. NMR and molecular dynamics simulations indicate that the active site "lid", formed by residues Gly17-Asp27, exhibits a high degree of internal motion on the picosecond-to-nanosecond time scale. This suggests that the lid is open in the apo state and allows substrate access to the active site that is otherwise buried. l-Citrulline binding to both protein variants is accompanied by an ordering of the lid. Modification of PaDDAH with a coumarin fluorescence reporter allowed measurement of the kinetic mechanism of the PaDDAH reaction. A combination of NMR and kinetic data shows that the catalytic turnover of the enzyme is not limited by release of the l-citrulline product. The potential to develop the coumarin-PaDDAH adduct as an l-citrulline sensor is discussed.

  19. The catalytic domain CysPc of the DEK1 calpain is functionally conserved in land plants.

    PubMed

    Liang, Zhe; Demko, Viktor; Wilson, Robert C; Johnson, Kenneth A; Ahmad, Rafi; Perroud, Pierre-François; Quatrano, Ralph; Zhao, Sen; Shalchian-Tabrizi, Kamran; Otegui, Marisa S; Olsen, Odd-Arne; Johansen, Wenche

    2013-09-01

    DEK1, the single calpain of land plants, is a member of the ancient membrane bound TML-CysPc-C2L calpain family that dates back 1.5 billion years. Here we show that the CysPc-C2L domains of land plant calpains form a separate sub-clade in the DEK1 clade of the phylogenetic tree of plants. The charophycean alga Mesostigma viride DEK1-like gene is clearly divergent from those in land plants, suggesting that a major evolutionary shift in DEK1 occurred during the transition to land plants. Based on genetic complementation of the Arabidopsis thaliana dek1-3 mutant using CysPc-C2L domains of various origins, we show that these two domains have been functionally conserved within land plants for at least 450 million years. This conclusion is based on the observation that the CysPc-C2L domains of DEK1 from the moss Physcomitrella patens complements the A. thaliana dek1-3 mutant phenotype. In contrast, neither the CysPc-C2L domains from M. viride nor chimeric animal-plant calpains complement this mutant. Co-evolution analysis identified differences in the interactions between the CysPc-C2L residues of DEK1 and classical calpains, supporting the view that the two enzymes are regulated by fundamentally different mechanisms. Using the A. thaliana dek1-3 complementation assay, we show that four conserved amino acid residues of two Ca²⁺-binding sites in the CysPc domain of classical calpains are conserved in land plants and functionally essential in A. thaliana DEK1.

  20. The active site of ribulose-bisphosphate carboxylase/oxygenase

    SciTech Connect

    Hartman, F.C.

    1991-01-01

    The active site of ribulose-bisphosphate carboxylase/oxygenase requires interacting domains of adjacent, identical subunits. Most active-site residues are located within the loop regions of an eight-stranded {beta}/{alpha}-barrel which constitutes the larger C-terminal domain; additional key residues are located within a segment of the smaller N-terminal domain which partially covers the mouth of the barrel. Site-directed mutagenesis of the gene encoding the enzyme from Rhodospirillum rubrum has been used to delineate functions of active-site residues. 6 refs., 2 figs.

  1. Di-peptide Based Models of Nickel Superoxide Dismutase: Solvent Effects Highlight a Critical Role to Ni-S Bonding and Active Site Stabilization

    PubMed Central

    Gale, Eric M.; Cowart, Darin M.; Scott, Robert A.

    2013-01-01

    Nickel superoxide dismutase (Ni-SOD) catalyzes the disproportionation of the superoxide radical to O2 and H2O2 utilizing the Ni(III/II) redox couple. The Ni center in Ni-SOD resides in an unusual coordination environment that is distinct from other SODs. In the reduced state (Ni-SODred), the Ni(II) center is ligated to a primary amine-N from His1, anionic carboxamido-N/thiolato-S from Cys2, and a second thiolato-S from Cys6 to complete a NiN2S2 square-planar coordination motif. Utilizing the dipeptide N2S2− ligand, H2N-Gly-L-Cys-OMe (GC-OMeH2) that accurately models the structural and electronic contributions provided by His1 and Cys2 in Ni-SODred, we have constructed the dinuclear sulfur-bridged metallosynthon, [Ni2(GC-OMe)2] (1). From 1 we have prepared the following monomeric Ni(II)-N2S2 complexes: K[Ni(GC-OMe)(SC6H4-p-Cl)] (2), K[Ni(GC-OMe)(StBu)] (3), K[Ni(GC-OMe)(SC6H4-p-OMe)] (4), and K[Ni(GC-OMe)(S-NAc)] (5). The design strategy in utilizing GC-OMe2− is analogous to one which we have reported before (see Inorg. Chem. 2009, 48, 5620 and Inorg. Chem. 2010, 49, 7080) wherein Ni-SODred active site mimics can be constructed at will with electronically variant RS− ligands. Discussed herein is the first account pertaining to the aqueous behavior of isolable, small molecule Ni-SOD model complexes (non-maquette based). Spectroscopic (FTIR, UV-vis, XAS) and electrochemical (CV) measurements suggest that 2–5 successfully simulate many of the electronic features of the Ni-SODred active site but also reveal, in conjunction with 1H NMR and ESI-MS studies, that these models are dynamic species with regards to RS− lability and bridging interactions in aqueous media suggesting a stabilizing role brought about by the protein architecture. PMID:21932766

  2. DOE site performance assessment activities. Radioactive Waste Technical Support Program

    SciTech Connect

    Not Available

    1990-07-01

    Information on performance assessment capabilities and activities was collected from eight DOE sites. All eight sites either currently dispose of low-level radioactive waste (LLW) or plan to dispose of LLW in the near future. A survey questionnaire was developed and sent to key individuals involved in DOE Order 5820.2A performance assessment activities at each site. The sites surveyed included: Hanford Site (Hanford), Idaho National Engineering Laboratory (INEL), Los Alamos National Laboratory (LANL), Nevada Test Site (NTS), Oak Ridge National Laboratory (ORNL), Paducah Gaseous Diffusion Plant (Paducah), Portsmouth Gaseous Diffusion Plant (Portsmouth), and Savannah River Site (SRS). The questionnaire addressed all aspects of the performance assessment process; from waste source term to dose conversion factors. This report presents the information developed from the site questionnaire and provides a comparison of site-specific performance assessment approaches, data needs, and ongoing and planned activities. All sites are engaged in completing the radioactive waste disposal facility performance assessment required by DOE Order 5820.2A. Each site has achieved various degrees of progress and have identified a set of critical needs. Within several areas, however, the sites identified common needs and questions.

  3. Savannah River Site prioritization of transition activities

    SciTech Connect

    Finley, R.H.

    1993-11-01

    Effective management of SRS conversion from primarily a production facility to other missions (or Decontamination and Decommissioning (D&D)) requires a systematic and consistent method of prioritizing the transition activities. This report discusses the design of a prioritizing method developed to achieve systematic and consistent methods of prioritizing these activities.

  4. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    SciTech Connect

    Zull, Lawrence M.; Yeniscavich, William

    2008-01-15

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

  5. Controlled Orientation of Active Sites in a Nanostructured Multienzyme Complex

    PubMed Central

    Lim, Sung In; Yang, Byungseop; Jung, Younghan; Cha, Jaehyun; Cho, Jinhwan; Choi, Eun-Sil; Kim, Yong Hwan; Kwon, Inchan

    2016-01-01

    Multistep cascade reactions in nature maximize reaction efficiency by co-assembling related enzymes. Such organization facilitates the processing of intermediates by downstream enzymes. Previously, the studies on multienzyme nanocomplexes assembled on DNA scaffolds demonstrated that closer interenzyme distance enhances the overall reaction efficiency. However, it remains unknown how the active site orientation controlled at nanoscale can have an effect on multienzyme reaction. Here, we show that controlled alignment of active sites promotes the multienzyme reaction efficiency. By genetic incorporation of a non-natural amino acid and two compatible bioorthogonal chemistries, we conjugated mannitol dehydrogenase to formate dehydrogenase with the defined active site arrangement with the residue-level accuracy. The study revealed that the multienzyme complex with the active sites directed towards each other exhibits four-fold higher relative efficiency enhancement in the cascade reaction and produces 60% more D-mannitol than the other complex with active sites directed away from each other. PMID:28004799

  6. Analyzing the catalytic role of active site residues in the Fe-type nitrile hydratase from Comamonas testosteroni Ni1.

    PubMed

    Martinez, Salette; Wu, Rui; Krzywda, Karoline; Opalka, Veronika; Chan, Hei; Liu, Dali; Holz, Richard C

    2015-07-01

    A strictly conserved active site arginine residue (αR157) and two histidine residues (αH80 and αH81) located near the active site of the Fe-type nitrile hydratase from Comamonas testosteroni Ni1 (CtNHase), were mutated. These mutant enzymes were examined for their ability to bind iron and hydrate acrylonitrile. For the αR157A mutant, the residual activity (k cat = 10 ± 2 s(-1)) accounts for less than 1% of the wild-type activity (k cat = 1100 ± 30 s(-1)) while the K m value is nearly unchanged at 205 ± 10 mM. On the other hand, mutation of the active site pocket αH80 and αH81 residues to alanine resulted in enzymes with k cat values of 220 ± 40 and 77 ± 13 s(-1), respectively, and K m values of 187 ± 11 and 179 ± 18 mM. The double mutant (αH80A/αH81A) was also prepared and provided an enzyme with a k cat value of 132 ± 3 s(-1) and a K m value of 213 ± 61 mM. These data indicate that all three residues are catalytically important, but not essential. X-ray crystal structures of the αH80A/αH81A, αH80W/αH81W, and αR157A mutant CtNHase enzymes were solved to 2.0, 2.8, and 2.5 Å resolutions, respectively. In each mutant enzyme, hydrogen-bonding interactions crucial for the catalytic function of the αCys(104)-SOH ligand are disrupted. Disruption of these hydrogen bonding interactions likely alters the nucleophilicity of the sulfenic acid oxygen and the Lewis acidity of the active site Fe(III) ion.

  7. Molecular cloning and expression analysis of a new bilin lyase: the cpcT gene encoding a bilin lyase responsible for attachment of phycocyanobilin to Cys-153 on the β-subunit of phycocyanin in Arthrospira platensis FACHB314.

    PubMed

    Zhang, Ran; Feng, Xiao-Ting; Wu, Fei; Ding, Yan; Zang, Xiao-Nan; Zhang, Xue-Cheng; Yuan, Ding-Yang; Zhao, Bing-Ran

    2014-07-10

    To study the assembly of phycocyanin β subunit, the gene cpcT was first cloned from Arthrospira platensis FACHB314. To explore the function of cpcT, the DNA of phycocyanin β subunit and cpcT were transformed into Escherichia coli BL21 with the plasmid pET-hox1-pcyA, which contained the genes hemeoxygenase 1 (Hox1) and ferredoxin oxidoreductase (PcyA) needed to produce phycocyanobilin. The transformed strains showed specific phycocyanin fluorescence, and the fluorescence intensity was stronger than the strains with only phycocyanin β subunit, indicating that CpcT can promote the assembly of phycocyanin to generate fluorescence. To study the possible binding sites of apo-phycocyanin and phycocyanobilin, the Cys-82 and Cys-153 of the β subunit were individually mutated, giving two kinds of mutants. The results show that Cys-153 maybe the active site for β subunit binding to phycocyanobilins, which is catalyzed by CpcT in A. platensis FACHB314.

  8. Identification and reactivity of the catalytic site of pig liver thioltransferase

    SciTech Connect

    Gan, Z.R.; Wells, W.W.

    1987-05-01

    The active site cysteine of pig liver thioltransferase was identified as Cys 22. The kinetics of the reaction between Cys 22 of the reduced enzyme and iodoacetic acid as a function of pH revealed that the active site sulfhydryl group had a pKa of 2.5. Incubation of reduced enzyme with (1-/sup 14/C)cystine prevented the inactivation of the enzyme by iodoacetic acid at pH 6.5 and no stable protein-cysteine disulfide was found suggesting an intramolecular disulfide formation. The reaction rate between reduced enzyme and S-sulfocysteine was concentration dependent, but not pH dependent, whereas the reaction between oxidized enzyme and reduced glutathione was both concentration and pH dependent. The results suggested a reaction mechanism for thioltransferase. The thiolated Cys 22 first initiates a nucleophilic attack on a disulfide substrate, resulting in the formation of an unstable mixed disulfide between Cys 22 and the substrate. Subsequently, the sulfhydryl group at Cys 25 is deprotonated as a result of microenvironmental changes within the active site domain, releasing the mixed disulfide and forming an intramolecular disulfide bond. Reduced glutathione, the second substrate, reduces the intramolecular disulfide forming a transient mixed disulfide which is then further reduced by glutathione to regenerate the reduced enzyme and form oxidized glutathione. The rate limiting step is proposed to be the reduction of the intramolecular disulfide form of the enzyme by reduced glutathione.

  9. Active site cysteine-null glyceraldehyde-3-phosphate dehydrogenase (GAPDH) rescues nitric oxide-induced cell death.

    PubMed

    Kubo, Takeya; Nakajima, Hidemitsu; Nakatsuji, Masatoshi; Itakura, Masanori; Kaneshige, Akihiro; Azuma, Yasu-Taka; Inui, Takashi; Takeuchi, Tadayoshi

    2016-02-29

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a homotetrameric enzyme involved in a key step of glycolysis, also has a role in mediating cell death under nitrosative stress. Our previous reports suggest that nitric oxide-induced intramolecular disulfide-bonding GAPDH aggregation, which occurs through oxidation of the active site cysteine (Cys-152), participates in a mechanism to account for nitric oxide-induced death signaling in some neurodegenerative/neuropsychiatric disorders. Here, we demonstrate a rescue strategy for nitric oxide-induced cell death accompanied by GAPDH aggregation in a mutant with a substitution of Cys-152 to alanine (C152A-GAPDH). Pre-incubation of purified wild-type GAPDH with C152A-GAPDH under exposure to nitric oxide inhibited wild-type GAPDH aggregation in a concentration-dependent manner in vitro. Several lines of structural analysis revealed that C152A-GAPDH extensively interfered with nitric oxide-induced GAPDH-amyloidogenesis. Overexpression of doxycycline-inducible C152A-GAPDH in SH-SY5Y neuroblastoma significantly rescued nitric oxide-induced death, concomitant with the decreased formation of GAPDH aggregates. Further, both co-immunoprecipitation assays and simulation models revealed a heterotetramer composed of one dimer each of wild-type GAPDH and C152A-GAPDH. These results suggest that the C152A-GAPDH mutant acts as a dominant-negative molecule against GAPDH aggregation via the formation of this GAPDH heterotetramer. This study may contribute to a new therapeutic approach utilizing C152A-GAPDH against brain damage in nitrosative stress-related disorders.

  10. Perspective: On the active site model in computational catalyst screening

    NASA Astrophysics Data System (ADS)

    Reuter, Karsten; Plaisance, Craig P.; Oberhofer, Harald; Andersen, Mie

    2017-01-01

    First-principles screening approaches exploiting energy trends in surface adsorption represent an unparalleled success story in recent computational catalysis research. Here we argue that our still limited understanding of the structure of active sites is one of the major bottlenecks towards an ever extended and reliable use of such computational screening for catalyst discovery. For low-index transition metal surfaces, the prevalently chosen high-symmetry (terrace and step) sites offered by the nominal bulk-truncated crystal lattice might be justified. For more complex surfaces and composite catalyst materials, computational screening studies will need to actively embrace a considerable uncertainty with respect to what truly are the active sites. By systematically exploring the space of possible active site motifs, such studies might eventually contribute towards a targeted design of optimized sites in future catalysts.

  11. Diffusional correlations among multiple active sites in a single enzyme.

    PubMed

    Echeverria, Carlos; Kapral, Raymond

    2014-04-07

    Simulations of the enzymatic dynamics of a model enzyme containing multiple substrate binding sites indicate the existence of diffusional correlations in the chemical reactivity of the active sites. A coarse-grain, particle-based, mesoscopic description of the system, comprising the enzyme, the substrate, the product and solvent, is constructed to study these effects. The reactive and non-reactive dynamics is followed using a hybrid scheme that combines molecular dynamics for the enzyme, substrate and product molecules with multiparticle collision dynamics for the solvent. It is found that the reactivity of an individual active site in the multiple-active-site enzyme is reduced substantially, and this effect is analyzed and attributed to diffusive competition for the substrate among the different active sites in the enzyme.

  12. Robotics at Savannah River site: activity report

    SciTech Connect

    Byrd, J.S.

    1984-09-01

    The objectives of the Robotics Technology Group at the Savannah River Laboratory are to employ modern industrial robots and to develop unique automation and robotic systems to enhance process operations at the Savannah River site (SRP and SRL). The incentives are to improve safety, reduce personnel radiation exposure, improve product quality and productivity, and to reduce operating costs. During the past year robotic systems have been installed to fill chemical dilution vials in a SRP laboratory at 772-F and remove radioactive waste materials in the SRL Californium Production Facility at 773-A. A robotic system to lubricate an extrusion press has been developed and demonstrated in the SRL robotics laboratory and is scheduled for installation at the 321-M fuel fabrication area. A mobile robot was employed by SRP for a radiation monitoring task at a waste tank top in H-Area. Several other robots are installed in the SRL robotics laboratories and application development programs are underway. The status of these applications is presented in this report.

  13. Systematic mutational analysis of the active-site threonine of HIV-1 proteinase: rethinking the "fireman's grip" hypothesis.

    PubMed Central

    Strisovsky, K.; Tessmer, U.; Langner, J.; Konvalinka, J.; Kräusslich, H. G.

    2000-01-01

    Aspartic proteinases share a conserved network of hydrogen bonds (termed "fireman's grip"), which involves the hydroxyl groups of two threonine residues in the active site Asp-Thr-Gly triplets (Thr26 in the case of human immunodeficiency virus type 1 (HIV-1) PR). In the case of retroviral proteinases (PRs), which are active as symmetrical homodimers, these interactions occur at the dimer interface. For a systematic analysis of the "fireman's grip," Thr26 of HIV-1 PR was changed to either Ser, Cys, or Ala. The variant enzymes were tested for cleavage of HIV-1 derived peptide and polyprotein substrates. PR(T26S) and PR(T26C) showed similar or slightly reduced activity compared to wild-type HIV-1 PR, indicating that the sulfhydryl group of cysteine can substitute for the hydroxyl of the conserved threonine in this position. PR(T26A), which lacks the "fireman's grip" interaction, was virtually inactive and was monomeric in solution at conditions where wild-type PR exhibited a monomer-dimer equilibrium. All three mutations had little effect when introduced into only one chain of a linked dimer of HIV-1 PR. In this case, even changing both Thr residues to Ala yielded residual activity suggesting that the "fireman's grip" is not essential for activity but contributes significantly to dimer formation. Taken together, these results indicate that the "fireman's grip" is crucial for stabilization of the retroviral PR dimer and for overall stability of the enzyme. PMID:11045610

  14. Structural definition of the active site and catalytic mechanism of 3,4-dihydroxy-2-butanone-4-phosphate synthase.

    PubMed

    Liao, Der-Ing; Zheng, Ya-Jun; Viitanen, Paul V; Jordan, Douglas B

    2002-02-12

    X-ray crystal structures of L-3,4-dihydroxy-2-butanone-4-phosphate synthase from Magnaporthe grisea are reported for the E-SO(4)(2-), E-SO(4)(2-)-Mg(2+), E-SO(4)(2)(-)-Mn(2+), E-SO(4)(2)(-)-Mn(2+)-glycerol, and E-SO(4)(2)(-)-Zn(2+) complexes with resolutions that extend to 1.55, 0.98, 1.60, 1.16, and 1.00 A, respectively. Active-site residues of the homodimer are fully defined. The structures were used to model the substrate ribulose 5-phosphate in the active site with the phosphate group anchored at the sulfate site and the placement of the ribulose group guided by the glycerol site. The model includes two Mg(2+) cations that bind to the oxygen substituents of the C2, C3, C4, and phosphate groups of the substrate, the side chains of Glu37 and His153, and water molecules. The position of the metal cofactors and the substrate's phosphate group are further stabilized by an extensive hydrogen-bond and salt-bridge network. On the basis of their proximity to the substrate's reaction participants, the imidazole of an Asp99-His136 dyad from one subunit, the side chains of the Asp41, Cys66, and Glu174 residues from the other subunit, and Mg(2+)-activated water molecules are proposed to serve specific roles in the catalytic cycle as general acid-base functionalities. The model suggests that during the 1,2-shift step of the reaction, the substrate's C3 and C4 hydroxyl groups are cis to each other. A cis transition state is calculated to have an activation barrier that is 2 kcal/mol greater than that of the trans transition state in the absence of the enzyme.

  15. Structural definition of the active site and catalytic mechanism of 3,4-dihydroxy-2-butanone 4-phosphate synthase

    SciTech Connect

    Liao, D.-I.; Zheng, Y.-J.; Viitanen, P.V.; Jordan, D.B.

    2010-03-08

    X-ray crystal structures of L-3,4-dihydroxy-2-butanone-4-phosphate synthase from Magnaporthe grisea are reported for the E-SO{sub 4}{sup 2-}, E-{sub 4}{sup 2-}-Mg{sup 2+}, E-SO{sub 4}{sup 2-}-Mn{sup 2+}, E-SO{sub 4}{sup 2-}-Mn{sup 2+}-glycerol, and E-SO{sub 4}{sup 2-}-Zn{sup 2+} complexes with resolutions that extend to 1.55, 0.98, 1.60, 1.16, and 1.00 {angstrom}, respectively. Active-site residues of the homodimer are fully defined. The structures were used to model the substrate ribulose 5-phosphate in the active site with the phosphate group anchored at the sulfate site and the placement of the ribulose group guided by the glycerol site. The model includes two Mg{sup 2+} cations that bind to the oxygen substituents of the C2, C3, C4, and phosphate groups of the substrate, the side chains of Glu37 and His153, and water molecules. The position of the metal cofactors and the substrate's phosphate group are further stabilized by an extensive hydrogen-bond and salt-bridge network. On the basis of their proximity to the substrate's reaction participants, the imidazole of an Asp99-His136 dyad from one subunit, the side chains of the Asp41, Cys66, and Glu174 residues from the other subunit, and Mg{sup 2+}-activated water molecules are proposed to serve specific roles in the catalytic cycle as general acid-base functionalities. The model suggests that during the 1,2-shift step of the reaction, the substrate's C3 and C4 hydroxyl groups are cis to each other. A cis transition state is calculated to have an activation barrier that is 2 kcal/mol greater than that of the trans transition state in the absence of the enzyme.

  16. Role of Cysteine Residues in the Structure, Stability, and Alkane Producing Activity of Cyanobacterial Aldehyde Deformylating Oxygenase

    PubMed Central

    Hayashi, Yuuki; Yasugi, Fumitaka; Arai, Munehito

    2015-01-01

    Aldehyde deformylating oxygenase (AD) is a key enzyme for alkane biosynthesis in cyanobacteria, and it can be used as a catalyst for alkane production in vitro and in vivo. However, three free Cys residues in AD may impair its catalytic activity by undesired disulfide bond formation and oxidation. To develop Cys-deficient mutants of AD, we examined the roles of the Cys residues in the structure, stability, and alkane producing activity of AD from Nostoc punctiforme PCC 73102 by systematic Cys-to-Ala/Ser mutagenesis. The C71A/S mutations reduced the hydrocarbon producing activity of AD and facilitated the formation of a dimer, indicating that the conserved Cys71, which is located in close proximity to the substrate-binding site, plays crucial roles in maintaining the activity, structure, and stability of AD. On the other hand, mutations at Cys107 and Cys117 did not affect the hydrocarbon producing activity of AD. Therefore, we propose that the C107A/C117A double mutant is preferable to wild type AD for alkane production and that the double mutant may be used as a pseudo-wild type protein for further improvement of the alkane producing activity of AD. PMID:25837679

  17. Characterization of a bacterioferritin comigratory protein family 1-Cys peroxiredoxin from Candidatus Liberibacter asiaticus.

    PubMed

    Singh, Anamika; Kumar, Narender; Tomar, Prabhat P S; Bhose, Sumit; Ghosh, Dilip Kumar; Roy, Partha; Sharma, Ashwani K

    2016-12-16

    To defend against the lethality of the reactive oxygen species (ROS), nature has armed microorganisms with a range of antioxidant proteins. These include peroxiredoxin (Prx) super family proteins which are ubiquitous cysteine-based non-heme peroxidases. The phytopathogenic bacterium Candidatus Liberibacter asiaticus (CLA), an etiological agent of citrus plants diseases, posses many genes for defense against oxidative stress. The bacterioferritin comigratory protein (BCP), a member of Prxs, is part of an oxidative stress defense system of CLA. The key residue of these enzymes is peroxidatic Cys (termed CPSH) which is contained within an absolutely conserved PXXX (T/S) XXC motif. In the present study, a 1-Cys Prx enzyme (CLa-BCP), having CPSH/sulfenic acid cysteine (C-46) but lacking the resolving cysteine (CRSH), was characterized from CLA. The peroxidase activity was demonstrated using a non-physiological electron donor DTT against varied substrates. The protein was shown to have the defensive role against peroxide-mediated cell killing and an antioxidant activity. In vitro DNA-binding studies showed that this protein can protect supercoiled DNA from oxidative damage. To the best of our knowledge, this is the first report on a 1-Cys BCPs to have an intracellular reactive oxygen species scavenging activity.

  18. Mass spectrometric identification of N- and O-glycosylation sites of full-length rat selenoprotein P and determination of selenide-sulfide and disulfide linkages in the shortest isoform.

    PubMed

    Ma, Shuguang; Hill, Kristina E; Burk, Raymond F; Caprioli, Richard M

    2003-08-19

    Rat selenoprotein P is an extracellular glycoprotein of 366 amino acid residues that is rich in cysteine and selenocysteine. Plasma contains four isoforms that differ principally by length at the C-terminal end. Mass spectrometry was used to identify sites of glycosylation on the full-length protein. Of the potential N-glycosylation sites, three located at residues 64, 155, and 169 were occupied, while the two at residues 351 and 356 were not occupied. Threonine 346 was variably O-glycosylated. Thus, full-length selenoprotein P is both N- and O-glycosylated. The shortest isoform of selenoprotein P, which terminates at residue 244, was analyzed for selenide-sulfide and disulfide linkages. In this isoform, a single selenocysteine and seven cysteines are present. Mass spectrometric analysis indicated that a selenide-sulfide bond exists between Sec40 and Cys43. Two disulfides were also detected as Cys149-Cys167 and Cys153-Cys156. The finding of a selenide-sulfide bond in the shortest isoform is compatible with a redox function of this pair that might be analogous to the selenol-thiol pair near the C terminus of animal thioredoxin reductase. The disulfide formed by Cys153-Cys156 also has some characteristics of a redox active pair.

  19. Community Update on Site Activities, July 19, 2013

    EPA Pesticide Factsheets

    In an effort to engage and inform community members interested in the New Bedford Harbor Superfund Site cleanup, EPA will be issuing periodic topic-based fact sheets that will provide background information and updates about ongoing activities.

  20. Babesia bovis expresses Bbo-6cys-E, a member of a novel gene family that is homologous to the 6-cys family of Plasmodium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel Babesia bovis gene family encoding proteins with similarities to the Plasmodium 6cys protein family was identified by TBLASTN searches of the Babesia bovis genome using the sequence of the P. falciparum PFS230 protein as query, and was termed Bbo-6cys gene family. The Bbo-cys6 gene family co...

  1. Kinetic investigation of the ligand dependence of rabbit skeletal muscle myosin subfragment 1 Cys-697 and Cys-707 reactivities.

    PubMed

    Polosukhina, K; Highsmith, S

    1997-09-30

    Rate constants for the reactions of Cys-697 and Cys-707 of skeletal muscle myosin subfragment 1 (S1) with N,N'-p-phenylenedimaleimide (pPDM) and its monofunctional analog phenylmaleimide (PM) were measured for S1 and S1 bound to nucleotides and/or actin. The [pPDM] and [PM] dependencies indicate that prereaction noncovalent complexes of S1 and the alkylating agents form. The rates of the pseudo-first-order reactions of the complexes depend on the nucleotide bound. For pPDM, only the rate constant ka (for Cys-707 modification) can be measured. The relative ka magnitudes are S1. MgATPgammaS > S1.MgADP > S1.MgPPi > S1.MgATP > actin.S1.MgADP > S1 > actin.S1 (for which ka approximately 0 s-1). For PM, only ka can be measured for S1.MgATPgammaS and S1.MgPPi. However, for S1, S1. MgADP, and S1.MgATP, ki (for the reaction of Cys-697) can also be measured, and it is also nucleotide sensitive. The data are consistent with a mechanism in which pPDM or PM binds S1 near Cys-707 to form a noncovalent complex that reacts at a rate determined by the relative orientation of the cysteine sulfhydryl and the bound reagent. The simplest mechanism for the cross-linking step that reconciles these data with earlier cross-linker length data and with S1-nucleotide atomic structures is one which has pPDM-S1 complexes exist part of the time in conformations having the helical Cys-697/Cys-707-pPDM region converted to a loop structure which cross-links. The fact that rigor actin.S1 is the slowest and the S1.MgATP analog S1.MgATPgammaS is the fastest to be cross-linked is discussed in terms of possible energetic roles for helix to loop transitions of the Cys-697/Cys-707 region during the ATP hydrolysis cycle.

  2. Kinetic and site-directed mutagenesis studies of the cysteine residues of bovine low molecular weight phosphotyrosyl protein phosphatase.

    PubMed

    Davis, J P; Zhou, M M; Van Etten, R L

    1994-03-25

    The roles of the 8 conserved cysteines and 1 arginine in the low molecular weight phosphotyrosyl protein phosphatases were investigated using site-directed mutagenesis of the recombinant bovine heart enzyme. Single mutants of cysteine to serine were studied for each cysteine; alanine replacements were also made for Cys-12, Cys-17, and Arg-18. The CD spectra of the purified proteins were effectively superimposable, consistent with the conclusion that no major structural alterations had occurred, but 1H NMR spectroscopy did reveal some spectral shifts in the aromatic region. Kinetic analysis of the mutant proteins demonstrated that only Cys-12, Cys-17, and Arg-18 had significantly altered catalytic activity toward the substrate p-nitrophenyl phosphate at pH 5. The Cys-12 and Arg-18 mutants were effectively inactive. Thus, it is concluded that Cys-12 is the catalytic nucleophile, and Arg-18 presumably serves an essential function in substrate binding. The C17S mutant had 6% residual activity compared with wild type protein, whereas the C17A mutant had 37% activity. Consistent with the observed activity of the Cys-17 mutant, a covalent phosphocysteine intermediate was trapped and identified by 31P NMR. Further kinetic analysis of C17A using several aryl phosphate monoester substrates with different leaving group pK alpha values indicated that no change in the rate-determining step of the catalytic mechanism had occurred, that is, dephosphorylation of the covalent phosphoenzyme intermediate remains rate-limiting. The C17A mutant had a 4-fold higher phosphate Ki and slightly higher Km values for p-nitrophenyl phosphate suggesting that Cys-17 may be important for optimal positioning of the substrate phosphate moiety.

  3. Identification of the srtC1 Transcription Start Site and Catalytically Essential Residues Required for Actinomyces oris T14V SrtC1 Activity

    DTIC Science & Technology

    2011-07-27

    al., 1999, 2002; Frankel et al., 2007), Cys 193 in SrtC1 from Streptococcus pneumoniae (Manzano et al., 2008) and Cys 219 in SrtC1 from Group B...Sortase mediated pilus fiber biogenesis in Streptococcus pneumoniae . Structure 16: 1838 1848. Manzano C, Izore T, Job V, Di Guilmi AM & Dessen A... Streptococcus (Cozzi et al., 2011) are critical for each of their corresponding sortase activities. When two other residues (Leu263 and Thr265) in this

  4. Finding a Needle in the Haystack: Computational Modeling of Mg2+ Binding in the Active Site of Protein Farnesyltransferase

    PubMed Central

    Yang, Yue; Chakravorty, Dhruva K.; Merz, Kenneth M.

    2010-01-01

    Studies aimed at elucidating the unknown Mg2+ binding site in protein farnesyltransferase (FTase) are reported. FTase catalyzes the transfer of a farnesyl group to a conserved cysteine residue (Cys1p) on a target protein, an important step for proteins in the signal transduction pathways (e.g. Ras). Mg2+ ions accelerate the protein farnesylation reaction by up to 700-fold. The exact function of Mg2+ in catalysis and the structural characteristics of its binding remain unresolved to date. Molecular Dynamics (MD) simulations addressing the role of magnesium ions in FTase are presented, and relevant octahedral binding motifs for Mg2+ in wild type (WT) FTase and Dβ352A mutant are explored. Our simulations suggest that the addition of Mg2+ ions causes a conformational changes to occur in the FTase active site, breaking interactions known to keep FPP in its inactive conformation. Two relevant Mg2+ ion binding motifs were determined in WT FTase. In the first binding motif, WT1, the Mg2+ ion is coordinated to D352β, zinc-bound D297β, two water molecules, and one oxygen atoms from the α- and β-phosphates of farnesyl diphosphate (FPP). The second binding motif, WT2, is identical with the exception of the zinc-bound D297β being replaced by a water molecule in the Mg2+ coordination complex. In the Dβ352A mutant Mg2+ binding motif, D297β, three water molecules and one oxygen atom from the α- and β-phosphates of FPP complete the octahedral coordination sphere of Mg2+. Simulations of WT FTase, in which Mg2+ was replaced by water in the active site, re-created the salt bridges and hydrogen bonding patterns around FPP, validating these simulations. In all Mg2+ binding motifs, a key hydrogen bond was identified between a magnesium bound water and Cys1p, bridging the two metallic binding sites, and thereby, reducing the equilibrium distance between the reacting atoms of FPP Cys1p. The free energy profiles calculated for these systems provide a qualitative understanding of

  5. On-resin conversion of Cys(Acm)-containing peptides to their corresponding Cys(Scm) congeners.

    PubMed

    Mullen, Daniel G; Weigel, Benjamin; Barany, George; Distefano, Mark D

    2010-05-01

    The Acm protecting group for the thiol functionality of cysteine is removed under conditions (Hg(2+)) that are orthogonal to the acidic milieu used for global deprotection in Fmoc-based solid-phase peptide synthesis. This use of a toxic heavy metal for deprotection has limited the usefulness of Acm in peptide synthesis. The Acm group may be converted to the Scm derivative that can then be used as a reactive intermediate for unsymmetrical disulfide formation. It may also be removed by mild reductive conditions to generate unprotected cysteine. Conversion of Cys(Acm)-containing peptides to their corresponding Cys(Scm) derivatives in solution is often problematic because the sulfenyl chloride reagent used for this conversion may react with the sensitive amino acids tyrosine and tryptophan. In this protocol, we report a method for on-resin Acm to Scm conversion that allows the preparation of Cys(Scm)-containing peptides under conditions that do not modify other amino acids.

  6. Transient Transcriptional Regulation of the CYS-C1 Gene and Cyanide Accumulation upon Pathogen Infection in the Plant Immune Response1[C][W

    PubMed Central

    García, Irene; Rosas, Tábata; Bejarano, Eduardo R.; Gotor, Cecilia; Romero, Luis C.

    2013-01-01

    Cyanide is produced concomitantly with ethylene biosynthesis. Arabidopsis (Arabidopsis thaliana) detoxifies cyanide primarily through the enzyme β-cyanoalanine synthase, mainly by the mitochondrial CYS-C1. CYS-C1 loss of function is not toxic for the plant and leads to an increased level of cyanide in cys-c1 mutants as well as a root hairless phenotype. The classification of genes differentially expressed in cys-c1 and wild-type plants reveals that the high endogenous cyanide content of the cys-c1 mutant is correlated with the biotic stress response. Cyanide accumulation and CYS-C1 gene expression are negatively correlated during compatible and incompatible plant-bacteria interactions. In addition, cys-c1 plants present an increased susceptibility to the necrotrophic fungus Botrytis cinerea and an increased tolerance to the biotrophic Pseudomonas syringae pv tomato DC3000 bacterium and Beet curly top virus. The cys-c1 mutation produces a reduction in respiration rate in leaves, an accumulation of reactive oxygen species, and an induction of the alternative oxidase AOX1a and pathogenesis-related PR1 expression. We hypothesize that cyanide, which is transiently accumulated during avirulent bacterial infection and constitutively accumulated in the cys-c1 mutant, uncouples the respiratory electron chain dependent on the cytochrome c oxidase, and this uncoupling induces the alternative oxidase activity and the accumulation of reactive oxygen species, which act by stimulating the salicylic acid-dependent signaling pathway of the plant immune system. PMID:23784464

  7. The Cys326 allele of the 8-oxoguanine DNA N-glycosylase 1 gene as a risk factor in smoking- and drinking-associated larynx cancer.

    PubMed

    Pawlowska, Elzbieta; Janik-Papis, Katarzyna; Rydzanicz, Malgorzata; Zuk, Karolina; Kaczmarczyk, Dariusz; Olszewski, Jurek; Szyfter, Krzysztof; Blasiak, Janusz; Morawiec-Sztandera, Alina

    2009-12-01

    Tobacco smoke-related products and ethanol would induce oxidative modifications to the DNA bases, thereby contributing to larynx cancer. Human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) deals with oxidative DNA damage, and the base changes in the hOGG1 gene may alter the susceptibility of the human cells to tobacco smoke-related compounds and/or ethanol. In the present work, we investigated the association between smoking, drinking or the Ser326Cys polymorphism of the hOGG1 gene and the risk of larynx cancer in a Polish population. It has been reported that the Ser326 allele exhibits higher activity than the Cys326 variant. In this study, 253 age-matched controls and 253 patients with larynx cancer were enrolled. The polymorphism was determined with DNA from blood lymphocytes by polymerase chain reaction. The frequencies (%) of the genotypes were Ser/Ser 65.6, Ser/Cys 30.4, and Cys/Cys 4.0 in the controls and those in patients were 55.7, 36.0 and 8.3, respectively. Stratification of individuals according to their smoking and drinking habits indicated that these habits might be significant risk factors in larynx cancer. The Ser/Cys and Cys/Cys genotypes are significantly associated with the increased risk of larynx cancer. These genotypes increased the risk ratio of larynx cancer among heavy smokers, but did not change the risk in former smokers and moderate smokers. These genotypes also increased the risk of larynx cancer in moderate and heavy drinkers. Therefore, the Cys326 allele of the hOGG1 gene may increase the risk of larynx cancer associated with smoking or alcohol consumption.

  8. Brønsted analysis reveals Lys218 as the carboxylase active site base that deprotonates vitamin K hydroquinone to initiate vitamin K-dependent protein carboxylation.

    PubMed

    Rishavy, Mark A; Hallgren, Kevin W; Yakubenko, Anna V; Shtofman, Rebecca L; Runge, Kurt W; Berkner, Kathleen L

    2006-11-07

    The vitamin K-dependent (VKD) carboxylase converts Glu's to carboxylated Glu's in VKD proteins to render them functional in a broad range of physiologies. The carboxylase uses vitamin K hydroquinone (KH(2)) epoxidation to drive Glu carboxylation, and one of its critical roles is to provide a catalytic base that deprotonates KH(2) to allow epoxidation. A long-standing model invoked Cys as the catalytic base but was ruled out by activity retention in a mutant where every Cys is substituted by Ala. Inhibitor analysis of the cysteine-less mutant suggested that the base is an activated amine [Rishavy et al. (2004) Proc. Natl. Acad. Sci. U.S.A. 101, 13732-13737], and in the present study, we used an evolutionary approach to identify candidate amines, which revealed His160, His287, His381, and Lys218. When mutational analysis was performed using an expression system lacking endogenous carboxylase, the His to Ala mutants all showed full epoxidase activity but K218A activity was not detectable. The addition of exogenous amines restored K218A activity while having little effect on wild type carboxylase, and pH studies indicated that rescue was dependent upon the basic form of the amine. Importantly, Brønsted analysis that measured the effect of amines with different pK(a) values showed that K218A activity rescue depended upon the basicity of the amine. The combined results provide strong evidence that Lys218 is the essential base that deprotonates KH(2) to initiate the reaction. The identification of this base is an important advance in defining the carboxylase active site and has implications regarding carboxylase membrane topology and the feedback mechanism by which the Glu substrate regulates KH(2) oxygenation.

  9. Identification of putative active site residues of ACAT enzymes.

    PubMed

    Das, Akash; Davis, Matthew A; Rudel, Lawrence L

    2008-08-01

    In this report, we sought to determine the putative active site residues of ACAT enzymes. For experimental purposes, a particular region of the C-terminal end of the ACAT protein was selected as the putative active site domain due to its high degree of sequence conservation from yeast to humans. Because ACAT enzymes have an intrinsic thioesterase activity, we hypothesized that by analogy with the thioesterase domain of fatty acid synthase, the active site of ACAT enzymes may comprise a catalytic triad of ser-his-asp (S-H-D) amino acid residues. Mutagenesis studies revealed that in ACAT1, S456, H460, and D400 were essential for activity. In ACAT2, H438 was required for enzymatic activity. However, mutation of D378 destabilized the enzyme. Surprisingly, we were unable to identify any S mutations of ACAT2 that abolished catalytic activity. Moreover, ACAT2 was insensitive to serine-modifying reagents, whereas ACAT1 was not. Further studies indicated that tyrosine residues may be important for ACAT activity. Mutational analysis showed that the tyrosine residue of the highly conserved FYXDWWN motif was important for ACAT activity. Furthermore, Y518 was necessary for ACAT1 activity, whereas the analogous residue in ACAT2, Y496, was not. The available data suggest that the amino acid requirement for ACAT activity may be different for the two ACAT isozymes.

  10. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site

    PubMed Central

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-01-01

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2 domains reveal that the (HhH)2 domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2 domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2 domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2 domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide. PMID:26908655

  11. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site.

    PubMed

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-04-20

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2 domains reveal that the (HhH)2 domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2 domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2 domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2 domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide.

  12. In vivo parameters influencing 2-Cys Prx oligomerization: The role of enzyme sulfinylation.

    PubMed

    Noichri, Y; Palais, G; Ruby, V; D'Autreaux, B; Delaunay-Moisan, A; Nyström, T; Molin, M; Toledano, M B

    2015-12-01

    2-Cys Prxs are H2O2-specific antioxidants that become inactivated by enzyme hyperoxidation at elevated H2O2 levels. Although hyperoxidation restricts the antioxidant physiological role of these enzymes, it also allows the enzyme to become an efficient chaperone holdase. The critical molecular event allowing the peroxidase to chaperone switch is thought to be the enzyme assembly into high molecular weight (HMW) structures brought about by enzyme hyperoxidation. How hyperoxidation promotes HMW assembly is not well understood and Prx mutants allowing disentangling its peroxidase and chaperone functions are lacking. To begin addressing the link between enzyme hyperoxidation and HMW structures formation, we have evaluated the in vivo 2-Cys Prxs quaternary structure changes induced by H2O2 by size exclusion chromatography (SEC) on crude lysates, using wild type (Wt) untagged and Myc-tagged S. cerevisiae 2-Cys Prx Tsa1 and derivative Tsa1 mutants or genetic conditions known to inactivate peroxidase or chaperone activity or altering the enzyme sensitivity to hyperoxidation. Our data confirm the strict causative link between H2O2-induced hyperoxidation and HMW formation/stabilization, also raising the question of whether CP hyperoxidation triggers the assembly of HMW structures by the stacking of decamers, which is the prevalent view of the literature, or rather, the stabilization of preassembled stacked decamers.

  13. Microbial 2-Cys Peroxiredoxins: Insights into Their Complex Physiological Roles

    PubMed Central

    Toledano, Michel B.; Huang, Bo

    2016-01-01

    The peroxiredoxins (Prxs) constitute a very large and highly conserved family of thiol-based peroxidases that has been discovered only very recently. We consider here these enzymes through the angle of their discovery, and of some features of their molecular and physiological functions, focusing on complex phenotypes of the gene mutations of the 2-Cys Prxs subtype in yeast. As scavengers of the low levels of H2O2 and as H2O2 receptors and transducers, 2-Cys Prxs have been highly instrumental to understand the biological impact of H2O2, and in particular its signaling function. 2-Cys Prxs can also become potent chaperone holdases, and unveiling the in vivo relevance of this function, which is still not established, should further increase our knowledge of the biological impact and toxicity of H2O2. The diverse molecular functions of 2-Cys Prx explain the often-hard task of relating them to peroxiredoxin genes phenotypes, which underscores the pleiotropic physiological role of these enzymes and complex biologic impact of H2O2. PMID:26813659

  14. Mating type-specific cell-cell recognition of Saccharomyces cerevisiae: cell wall attachment and active sites of a- and alpha-agglutinin.

    PubMed Central

    Cappellaro, C; Baldermann, C; Rachel, R; Tanner, W

    1994-01-01

    Mating type-specific agglutination of Saccharomyces cerevisiae a and alpha cells depends on the heterophilic interaction of two cell surface glycoproteins, the gene products of AG alpha 1 and AGA2. Evidence is presented with immunogold labelling that the alpha-agglutinin is part of the outer fimbrial cell wall coat. The a-agglutinin is bound via two S-S bridges (Cys7 and Cys50) to a cell wall component, most probably the gene product of AGA1. His273 of alpha-agglutinin has previously been shown to be essential for a- and alpha-agglutinin interaction and a model based on two opposing ion-pairs had been proposed. By site-directed mutagenesis this possibility has now been excluded. With the help of various peptides, either chemically synthesized, obtained by proteolysis of intact glycosylated a-agglutinin or prepared from a fusion protein expressed in Escherichia coli, the biologically active region of a-agglutinin was located at the C-terminus of the molecule. A peptide consisting of the C-terminal 10 amino acids (GSPIN-TQYVF) was active in nanomolar concentrations. Saccharide moieties, therefore, are not essential for the mating type-specific cell-cell interaction; glycosylated peptides are, however, four to five times more active than non-glycosylated ones. Comparisons of the recognition sequences of the S. cerevisiae agglutinins with that of the Dictyostelium contact site A glycoprotein (gp80), as well as with those of the various families of cell adhesion molecules of higher eucaryotes, have been made and are discussed. Images PMID:7957044

  15. Bright blue-shifted fluorescent proteins with Cys in the GAF domain engineered from bacterial phytochromes: fluorescence mechanisms and excited-state dynamics

    PubMed Central

    Hontani, Yusaku; Shcherbakova, Daria M.; Baloban, Mikhail; Zhu, Jingyi; Verkhusha, Vladislav V.; Kennis, John T. M.

    2016-01-01

    Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes (BphPs) are of great interest for in vivo imaging. They utilize biliverdin (BV) as a chromophore, which is a heme degradation product, and therefore they are straightforward to use in mammalian tissues. Here, we report on fluorescence properties of NIR FPs with key alterations in their BV binding sites. BphP1-FP, iRFP670 and iRFP682 have Cys residues in both PAS and GAF domains, rather than in the PAS domain alone as in wild-type BphPs. We found that NIR FP variants with Cys in the GAF or with Cys in both PAS and GAF show blue-shifted emission with long fluorescence lifetimes. In contrast, mutants with Cys in the PAS only or no Cys residues at all exhibit red-shifted emission with shorter lifetimes. Combining these results with previous biochemical and BphP1-FP structural data, we conclude that BV adducts bound to Cys in the GAF are the origin of bright blue-shifted fluorescence. We propose that the long fluorescence lifetime follows from (i) a sterically more constrained thioether linkage, leaving less mobility for ring A than in canonical BphPs, and (ii) that π-electron conjugation does not extend on ring A, making excited-state deactivation less sensitive to ring A mobility. PMID:27857208

  16. Bright blue-shifted fluorescent proteins with Cys in the GAF domain engineered from bacterial phytochromes: fluorescence mechanisms and excited-state dynamics

    NASA Astrophysics Data System (ADS)

    Hontani, Yusaku; Shcherbakova, Daria M.; Baloban, Mikhail; Zhu, Jingyi; Verkhusha, Vladislav V.; Kennis, John T. M.

    2016-11-01

    Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes (BphPs) are of great interest for in vivo imaging. They utilize biliverdin (BV) as a chromophore, which is a heme degradation product, and therefore they are straightforward to use in mammalian tissues. Here, we report on fluorescence properties of NIR FPs with key alterations in their BV binding sites. BphP1-FP, iRFP670 and iRFP682 have Cys residues in both PAS and GAF domains, rather than in the PAS domain alone as in wild-type BphPs. We found that NIR FP variants with Cys in the GAF or with Cys in both PAS and GAF show blue-shifted emission with long fluorescence lifetimes. In contrast, mutants with Cys in the PAS only or no Cys residues at all exhibit red-shifted emission with shorter lifetimes. Combining these results with previous biochemical and BphP1-FP structural data, we conclude that BV adducts bound to Cys in the GAF are the origin of bright blue-shifted fluorescence. We propose that the long fluorescence lifetime follows from (i) a sterically more constrained thioether linkage, leaving less mobility for ring A than in canonical BphPs, and (ii) that π-electron conjugation does not extend on ring A, making excited-state deactivation less sensitive to ring A mobility.

  17. How pH Modulates the Dimer-Decamer Interconversion of 2-Cys Peroxiredoxins from the Prx1 Subfamily*

    PubMed Central

    Morais, Mariana A. B.; Giuseppe, Priscila O.; Souza, Tatiana A. C. B.; Alegria, Thiago G. P.; Oliveira, Marcos A.; Netto, Luis E. S.; Murakami, Mario T.

    2015-01-01

    2-Cys peroxiredoxins belonging to the Prx1 subfamily are Cys-based peroxidases that control the intracellular levels of H2O2 and seem to assume a chaperone function under oxidative stress conditions. The regulation of their peroxidase activity as well as the observed functional switch from peroxidase to chaperone involves changes in their quaternary structure. Multiple factors can modulate the oligomeric transitions of 2-Cys peroxiredoxins such as redox state, post-translational modifications, and pH. However, the molecular basis for the pH influence on the oligomeric state of these enzymes is still elusive. Herein, we solved the crystal structure of a typical 2-Cys peroxiredoxin from Leishmania in the dimeric (pH 8.5) and decameric (pH 4.4) forms, showing that conformational changes in the catalytic loop are associated with the pH-induced decamerization. Mutagenesis and biophysical studies revealed that a highly conserved histidine (His113) functions as a pH sensor that, at acidic conditions, becomes protonated and forms an electrostatic pair with Asp76 from the catalytic loop, triggering the decamerization. In these 2-Cys peroxiredoxins, decamer formation is important for the catalytic efficiency and has been associated with an enhanced sensitivity to oxidative inactivation by overoxidation of the peroxidatic cysteine. In eukaryotic cells, exposure to high levels of H2O2 can trigger intracellular pH variations, suggesting that pH changes might act cooperatively with H2O2 and other oligomerization-modulator factors to regulate the structure and function of typical 2-Cys peroxiredoxins in response to oxidative stress. PMID:25666622

  18. Promoter-proximal polyadenylation sites reduce transcription activity

    PubMed Central

    Andersen, Pia K.; Lykke-Andersen, Søren; Jensen, Torben Heick

    2012-01-01

    Gene expression relies on the functional communication between mRNA processing and transcription. We previously described the negative impact of a point-mutated splice donor (SD) site on transcription. Here we demonstrate that this mutation activates an upstream cryptic polyadenylation (CpA) site, which in turn causes reduced transcription. Functional depletion of U1 snRNP in the context of the wild-type SD triggers the same CpA event accompanied by decreased RNA levels. Thus, in accordance with recent findings, U1 snRNP can shield premature pA sites. The negative impact of unshielded pA sites on transcription requires promoter proximity, as demonstrated using artificial constructs and supported by a genome-wide data set. Importantly, transcription down-regulation can be recapitulated in a gene context devoid of splice sites by placing a functional bona fide pA site/transcription terminator within ∼500 base pairs of the promoter. In contrast, promoter-proximal positioning of a pA site-independent histone gene terminator supports high transcription levels. We propose that optimal communication between a pA site-dependent gene terminator and its promoter critically depends on gene length and that short RNA polymerase II-transcribed genes use specialized termination mechanisms to maintain high transcription levels. PMID:23028143

  19. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    PubMed

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined.

  20. Active Sites Environmental Monitoring Program: Mid-FY 1991 report

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1991-10-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1990 through March 1991. The ASEMP was established in 1989 by Solid Waste Operations and the Environmental Sciences Division to provide early detection and performance monitoring at active low-level radioactive waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. Monitoring results continue to demonstrate the no LLW is being leached from the storage vaults on the tumulus pads. Loading of vaults on Tumulus II began during this reporting period and 115 vaults had been loaded by the end of March 1991.

  1. Expression of salt-induced 2-Cys peroxiredoxin from Oryza sativa increases stress tolerance and fermentation capacity in genetically engineered yeast Saccharomyces cerevisiae.

    PubMed

    Kim, Il-Sup; Kim, Young-Saeng; Yoon, Ho-Sung

    2013-04-01

    Peroxiredoxins (Prxs), also termed thioredoxin peroxidases (TPXs), are a family of thiol-specific antioxidant enzymes that are critically involved in cell defense and protect cells from oxidative damage. In this study, a putative chloroplastic 2-Cys thioredoxin peroxidase (OsTPX) was identified by proteome analysis from leaf tissue samples of rice (Oryza sativa) seedlings exposed to 0.1 M NaCl for 3 days. To investigate the relationship between the OsTPX gene and the stress response, OsTPX was cloned into the yeast expression vector p426GPD under the control of the glyceraldehyde-3-phosphate dehydrogenase (GPD1) promoter, and the construct was transformed into Saccharomyces cerevisiae cells. OsTPX expression was confirmed by semi-quantitative reverse transcription-polymerase chain reaction and western blot analyses. OsTPX contained two highly conserved cysteine residues (Cys114 and Cys236) and an active site region (FTFVCPT), and it is structurally very similar to human 2-Cys Prx. Heterologous OsTPX expression increased the ability of the transgenic yeast cells to adapt and recover from reactive oxygen species (ROS)-induced oxidative stresses, such as a reduction of cellular hydroperoxide levels in the presence of hydrogen peroxide and menadione, by improving redox homeostasis. OsTPX expression also conferred enhanced tolerance to tert-butylhydroperoxide, heat shock, and high ethanol concentrations. Furthermore, high OsTPX expression improved the fermentation capacity of the yeast during glucose-based batch fermentation at a high temperature (40 °C) and at the general cultivation temperature (30 °C). The alcohol yield in OsTPX-expressing transgenic yeast increased by approximately 29 % (0.14 g g(-1)) and 21 % (0.12 g g(-1)) during fermentation at 40 and 30 °C, respectively, compared to the wild-type yeast. Accordingly, OsTPX-expressing transgenic yeast showed prolonged cell survival during the environmental stresses produced during fermentation. These

  2. Active and regulatory sites of cytosolic 5'-nucleotidase.

    PubMed

    Pesi, Rossana; Allegrini, Simone; Careddu, Maria Giovanna; Filoni, Daniela Nicole; Camici, Marcella; Tozzi, Maria Grazia

    2010-12-01

    Cytosolic 5'-nucleotidase (cN-II), which acts preferentially on 6-hydroxypurine nucleotides, is essential for the survival of several cell types. cN-II catalyses both the hydrolysis of nucleotides and transfer of their phosphate moiety to a nucleoside acceptor through formation of a covalent phospho-intermediate. Both activities are regulated by a number of phosphorylated compounds, such as diadenosine tetraphosphate (Ap₄A), ADP, ATP, 2,3-bisphosphoglycerate (BPG) and phosphate. On the basis of a partial crystal structure of cN-II, we mutated two residues located in the active site, Y55 and T56. We ascertained that the ability to catalyse the transfer of phosphate depends on the presence of a bulky residue in the active site very close to the aspartate residue that forms the covalent phospho-intermediate. The molecular model indicates two possible sites at which adenylic compounds may interact. We mutated three residues that mediate interaction in the first activation site (R144, N154, I152) and three in the second (F127, M436 and H428), and found that Ap₄A and ADP interact with the same site, but the sites for ATP and BPG remain uncertain. The structural model indicates that cN-II is a homotetrameric protein that results from interaction through a specific interface B of two identical dimers that have arisen from interaction of two identical subunits through interface A. Point mutations in the two interfaces and gel-filtration experiments indicated that the dimer is the smallest active oligomerization state. Finally, gel-filtration and light-scattering experiments demonstrated that the native enzyme exists as a tetramer, and no further oligomerization is required for enzyme activation.

  3. BAX Activation is Initiated at a Novel Interaction Site

    PubMed Central

    Gavathiotis, Evripidis; Suzuki, Motoshi; Davis, Marguerite L.; Pitter, Kenneth; Bird, Gregory H.; Katz, Samuel G.; Tu, Ho-Chou; Kim, Hyungjin; Cheng, Emily H.-Y.; Tjandra, Nico; Walensky, Loren D.

    2008-01-01

    BAX is a pro-apoptotic protein of the BCL-2 family stationed in the cytosol until activated by a diversity of stress stimuli to induce cell death. Anti-apoptotic proteins such as BCL-2 counteract BAX-mediated cell death. Although an interaction site that confers survival functionality has been defined for anti-apoptotic proteins, an activation site has not been identified for BAX, rendering its explicit trigger mechanism unknown. We previously developed Stabilized Alpha-Helix of BCL-2 domains (SAHBs) that directly initiate BAX-mediated mitochondrial apoptosis. Here we demonstrate by NMR analysis that BIM SAHB binds BAX at an interaction site that is distinct from the canonical binding groove characterized for anti-apoptotic proteins. The specificity of the BIM SAHB-BAX interaction is highlighted by point mutagenesis that abrogates functional activity, confirming that BAX activation is initiated at this novel structural location. Thus, we have now defined a BAX interaction site for direct activation, establishing a new target for therapeutic modulation of apoptosis. PMID:18948948

  4. Overexpression of MpCYS4, A Phytocystatin Gene from Malus prunifolia (Willd.) Borkh., Enhances Stomatal Closure to Confer Drought Tolerance in Transgenic Arabidopsis and Apple

    PubMed Central

    Tan, Yanxiao; Li, Mingjun; Yang, Yingli; Sun, Xun; Wang, Na; Liang, Bowen; Ma, Fengwang

    2017-01-01

    Phytocystatins (PhyCys) comprise a group of inhibitors for cysteine proteinases in plants. They play a wide range of important roles in regulating endogenous processes and protecting plants against various environmental stresses, but the underlying mechanisms remain largely unknown. Here, we detailed the biological functions of MpCYS4, a member of cystatin genes isolated from Malus prunifolia. This gene was activated under water deficit, heat (40°C), exogenous abscisic acid (ABA), or methyl viologen (MV) (Tan et al., 2014a). At cellular level, MpCYS4 protein was found to be localized in the nucleus, cytoplasm, and plasma membrane of onion epidermal cells. Recombinant MpCYS4 cystatin expressed in Escherichia coli was purified and it exhibited cysteine protease inhibitor activity. Transgenic overexpression of MpCYS4 in Arabidopsis (Arabidopsis thaliana) and apple (Malus domestica) led to ABA hypersensitivity and series of ABA-associated phenotypes, such as enhanced ABA-induced stomatal closing, altered expression of many ABA/stress-responsive genes, and enhanced drought tolerance. Taken together, our results demonstrate that MpCYS4 is involved in ABA-mediated stress signal transduction and confers drought tolerance at least in part by enhancing stomatal closure and up-regulating the transcriptional levels of ABA- and drought-related genes. These findings provide new insights into the molecular mechanisms by which phytocystatins influence plant growth, development, and tolerance to stress. PMID:28174579

  5. Overexpression of MpCYS4, A Phytocystatin Gene from Malus prunifolia (Willd.) Borkh., Enhances Stomatal Closure to Confer Drought Tolerance in Transgenic Arabidopsis and Apple.

    PubMed

    Tan, Yanxiao; Li, Mingjun; Yang, Yingli; Sun, Xun; Wang, Na; Liang, Bowen; Ma, Fengwang

    2017-01-01

    Phytocystatins (PhyCys) comprise a group of inhibitors for cysteine proteinases in plants. They play a wide range of important roles in regulating endogenous processes and protecting plants against various environmental stresses, but the underlying mechanisms remain largely unknown. Here, we detailed the biological functions of MpCYS4, a member of cystatin genes isolated from Malus prunifolia. This gene was activated under water deficit, heat (40°C), exogenous abscisic acid (ABA), or methyl viologen (MV) (Tan et al., 2014a). At cellular level, MpCYS4 protein was found to be localized in the nucleus, cytoplasm, and plasma membrane of onion epidermal cells. Recombinant MpCYS4 cystatin expressed in Escherichia coli was purified and it exhibited cysteine protease inhibitor activity. Transgenic overexpression of MpCYS4 in Arabidopsis (Arabidopsis thaliana) and apple (Malus domestica) led to ABA hypersensitivity and series of ABA-associated phenotypes, such as enhanced ABA-induced stomatal closing, altered expression of many ABA/stress-responsive genes, and enhanced drought tolerance. Taken together, our results demonstrate that MpCYS4 is involved in ABA-mediated stress signal transduction and confers drought tolerance at least in part by enhancing stomatal closure and up-regulating the transcriptional levels of ABA- and drought-related genes. These findings provide new insights into the molecular mechanisms by which phytocystatins influence plant growth, development, and tolerance to stress.

  6. Involvement of novel autophosphorylation sites in ATM activation.

    PubMed

    Kozlov, Sergei V; Graham, Mark E; Peng, Cheng; Chen, Philip; Robinson, Phillip J; Lavin, Martin F

    2006-08-09

    ATM kinase plays a central role in signaling DNA double-strand breaks to cell cycle checkpoints and to the DNA repair machinery. Although the exact mechanism of ATM activation remains unknown, efficient activation requires the Mre11 complex, autophosphorylation on S1981 and the involvement of protein phosphatases and acetylases. We report here the identification of several additional phosphorylation sites on ATM in response to DNA damage, including autophosphorylation on pS367 and pS1893. ATM autophosphorylates all these sites in vitro in response to DNA damage. Antibodies against phosphoserine 1893 revealed rapid and persistent phosphorylation at this site after in vivo activation of ATM kinase by ionizing radiation, paralleling that observed for S1981 phosphorylation. Phosphorylation was dependent on functional ATM and on the Mre11 complex. All three autophosphorylation sites are physiologically important parts of the DNA damage response, as phosphorylation site mutants (S367A, S1893A and S1981A) were each defective in ATM signaling in vivo and each failed to correct radiosensitivity, genome instability and cell cycle checkpoint defects in ataxia-telangiectasia cells. We conclude that there are at least three functionally important radiation-induced autophosphorylation events in ATM.

  7. Resonant active sites in catalytic ammonia synthesis: A structural model

    NASA Astrophysics Data System (ADS)

    Cholach, Alexander R.; Bryliakova, Anna A.; Matveev, Andrey V.; Bulgakov, Nikolai N.

    2016-03-01

    Adsorption sites Mn consisted of n adjacent atoms M, each bound to the adsorbed species, are considered within a realistic model. The sum of bonds Σ lost by atoms in a site in comparison with the bulk atoms was used for evaluation of the local surface imperfection, while the reaction enthalpy at that site was used as a measure of activity. The comparative study of Mn sites (n = 1-5) at basal planes of Pt, Rh, Ir, Fe, Re and Ru with respect to heat of N2 dissociative adsorption QN and heat of Nad + Had → NHad reaction QNH was performed using semi-empirical calculations. Linear QN(Σ) increase and QNH(Σ) decrease allowed to specify the resonant Σ for each surface in catalytic ammonia synthesis at equilibrium Nad coverage. Optimal Σ are realizable for Ru2, Re2 and Ir4 only, whereas other centers meet steric inhibition or unreal crystal structure. Relative activity of the most active sites in proportion 5.0 × 10- 5: 4.5 × 10- 3: 1: 2.5: 3.0: 1080: 2270 for a sequence of Pt4, Rh4, Fe4(fcc), Ir4, Fe2-5(bcc), Ru2, Re2, respectively, is in agreement with relevant experimental data. Similar approach can be applied to other adsorption or catalytic processes exhibiting structure sensitivity.

  8. Profiling Cys34 Adducts of Human Serum Albumin by Fixed-Step Selected Reaction Monitoring*

    PubMed Central

    Li, He; Grigoryan, Hasmik; Funk, William E.; Lu, Sixin Samantha; Rose, Sherri; Williams, Evan R.; Rappaport, Stephen M.

    2011-01-01

    A method is described for profiling putative adducts (or other unknown covalent modifications) at the Cys34 locus of human serum albumin (HSA), which represents the preferred reaction site for small electrophilic species in human serum. By comparing profiles of putative HSA-Cys34 adducts across populations of interest it is theoretically possible to explore environmental causes of degenerative diseases and cancer caused by both exogenous and endogenous chemicals. We report a novel application of selected-reaction-monitoring (SRM) mass spectrometry, termed fixed-step SRM (FS-SRM), that allows detection of essentially all HSA-Cys34 modifications over a specified range of mass increases (added masses). After tryptic digestion, HSA-Cys34 adducts are contained in the third largest peptide (T3), which contains 21 amino acids and an average mass of 2433.87 Da. The FS-SRM method does not require that exact masses of T3 adducts be known in advance but rather uses a theoretical list of T3-adduct m/z values separated by a fixed increment of 1.5. In terms of added masses, each triply charged parent ion represents a bin of ±2.3 Da between 9.1 Da and 351.1 Da. Synthetic T3 adducts were used to optimize FS-SRM and to establish screening rules based upon selected b- and y-series fragment ions. An isotopically labeled T3 adduct is added to protein digests to facilitate quantification of putative adducts. We used FS-SRM to generate putative adduct profiles from six archived specimens of HSA that had been pooled by gender, race, and smoking status. An average of 66 putative adduct hits (out of a possible 77) were detected in these samples. Putative adducts covered a wide range of concentrations, were most abundant in the mass range below 100 Da, and were more abundant in smokers than in nonsmokers. With minor modifications, the FS-SRM methodology can be applied to other nucleophilic sites and proteins. PMID:21193536

  9. Chemical Modification of Papain and Subtilisin: An Active Site Comparison

    ERIC Educational Resources Information Center

    St-Vincent, Mireille; Dickman, Michael

    2004-01-01

    An experiment using methyle methanethiosulfonate (MMTS) and phenylmethylsulfonyl flouride (PMSF) to specifically modify the cysteine and serine residues in the active sites of papain and subtilism respectively is demonstrated. The covalent modification of these enzymes and subsequent rescue of papain shows the beginning biochemist that proteins…

  10. Spectroscopic studies of the active site of galactose oxidase

    SciTech Connect

    Knowles, P.F.; Brown, R.D. III; Koenig, S.H.

    1995-07-19

    X-ray absorption and EPR spectroscopy have been used to probe the copper site structure in galactose oxidase at pH 4.5 and 7.0. the results suggest that there are no major differences in the structure of the tetragonal Cu(II) site at these pH values. Analysis of the extended X-ray absorption fine structure (EXAFS) indicates that four N,O scatterers are present at approximately 2 {Angstrom}; these are presumably the equatorial ligands. In addition, the EXAFS data establish that oxidative activation to produce the active-site tyrosine radical does not cause major changes in the copper coordination environment. Therefore results obtained on the one-electron reduced enzyme, containing Cu(II) but not the tyrosine radical, probably also apply to the catalytically active Cu(II)/tyrosine radical state. Solvent water exchange, inhibitor binding, and substrate binding have been probed via nuclear magnetic relaxation dispersion (NMRD) measurements. The NMRD profile of galactose oxidase is quantitatively consistent with the rapid exchange of a single, equatorial water ligand with a Cu(II)-O separation of about 2.4 {Angstrom}. Azide and cyanide displace this coordinated water. The binding of azide and the substrate dihydroxyacetone produce very similar effects on the NMRD profile of galactose oxidase, indicating that substrates also bind to the active site Cu(II) in an equatorial position.

  11. Energy transfer at the active sites of heme proteins

    SciTech Connect

    Dlott, D.D.; Hill, J.R.

    1995-12-31

    Experiments using a picosecond pump-probe apparatus at the Picosecond Free-electron Laser Center at Stanford University, were performed to investigate the relaxation of carbon monoxide bound to the active sites of heme proteins. The significance of these experiments is two-fold: (1) they provide detailed information about molecular dynamics occurring at the active sites of proteins; and (2) they provide insight into the nature of vibrational relaxation processes in condensed matter. Molecular engineering is used to construct various molecular systems which are studied with the FEL. We have studied native proteins, mainly myoglobin obtained from different species, mutant proteins produced by genetic engineering using recombinant DNA techniques, and a variety of model systems which mimic the structures of the active sites of native proteins, which are produced using molecular synthesis. Use of these different systems permits us to investigate how specific molecular structural changes affect dynamical processes occurring at the active sites. This research provides insight into the problems of how different species needs are fulfilled by heme proteins which have greatly different functionality, which is induced by rather small structural changes.

  12. Probing catalysis by Escherichia coli dTDP-glucose-4,6-dehydratase: identification and preliminary characterization of functional amino acid residues at the active site.

    PubMed

    Hegeman, A D; Gross, J W; Frey, P A

    2001-06-05

    A model of the Escherichia coli dTDP-glucose-4,6-dehydratase (4,6-dehydratase) active site has been generated by combining amino acid sequence alignment information with the 3-dimensional structure of UDP-galactose-4-epimerase. The active site configuration is consistent with the partially refined 3-dimensional structure of 4,6-dehydratase, which lacks substrate-nucleotide but contains NAD(+) (PDB file ). From the model, two groups of active site residues were identified. The first group consists of Asp135(DEH), Glu136(DEH), Glu198(DEH), Lys199(DEH), and Tyr301(DEH). These residues are near the substrate-pyranose binding pocket in the model, they are completely conserved in 4,6-dehydratase, and they differ from the corresponding equally well-conserved residues in 4-epimerase. The second group of residues is Cys187(DEH), Asn190(DEH), and His232(DEH), which form a motif on the re face of the cofactor nicotinamide binding pocket that resembles the catalytic triad of cysteine-proteases. The importance of both groups of residues was tested by mutagenesis and steady-state kinetic analysis. In all but one case, a decrease in catalytic efficiency of approximately 2 orders of magnitude below wild-type activity was observed. Mutagenesis of each of these residues, with the exception of Cys187(DEH), which showed near-wild-type activity, clearly has important negative consequences for catalysis. The allocation of specific functions to these residues and the absolute magnitude of these effects are obscured by the complex chemistry in this multistep mechanism. Tools will be needed to characterize each chemical step individually in order to assign loss of catalytic efficiency to specific residue functions. To this end, the effects of each of these variants on the initial dehydrogenation step were evaluated using a the substrate analogue dTDP-xylose. Additional steady-state techniques were employed in an attempt to further limit the assignment of rate limitation. The results are

  13. Activation of phenylalanine hydroxylase by phenylalanine does not require binding in the active site.

    PubMed

    Roberts, Kenneth M; Khan, Crystal A; Hinck, Cynthia S; Fitzpatrick, Paul F

    2014-12-16

    Phenylalanine hydroxylase (PheH), a liver enzyme that catalyzes the hydroxylation of excess phenylalanine in the diet to tyrosine, is activated by phenylalanine. The lack of activity at low levels of phenylalanine has been attributed to the N-terminus of the protein's regulatory domain acting as an inhibitory peptide by blocking substrate access to the active site. The location of the site at which phenylalanine binds to activate the enzyme is unknown, and both the active site in the catalytic domain and a separate site in the N-terminal regulatory domain have been proposed. Binding of catecholamines to the active-site iron was used to probe the accessibility of the active site. Removal of the regulatory domain increases the rate constants for association of several catecholamines with the wild-type enzyme by ∼2-fold. Binding of phenylalanine in the active site is effectively abolished by mutating the active-site residue Arg270 to lysine. The k(cat)/K(phe) value is down 10⁴ for the mutant enzyme, and the K(m) value for phenylalanine for the mutant enzyme is >0.5 M. Incubation of the R270K enzyme with phenylalanine also results in a 2-fold increase in the rate constants for catecholamine binding. The change in the tryptophan fluorescence emission spectrum seen in the wild-type enzyme upon activation by phenylalanine is also seen with the R270K mutant enzyme in the presence of phenylalanine. Both results establish that activation of PheH by phenylalanine does not require binding of the amino acid in the active site. This is consistent with a separate allosteric site, likely in the regulatory domain.

  14. Changes in active site histidine hydrogen bonding trigger cryptochrome activation.

    PubMed

    Ganguly, Abir; Manahan, Craig C; Top, Deniz; Yee, Estella F; Lin, Changfan; Young, Michael W; Thiel, Walter; Crane, Brian R

    2016-09-06

    Cryptochrome (CRY) is the principal light sensor of the insect circadian clock. Photoreduction of the Drosophila CRY (dCRY) flavin cofactor to the anionic semiquinone (ASQ) restructures a C-terminal tail helix (CTT) that otherwise inhibits interactions with targets that include the clock protein Timeless (TIM). All-atom molecular dynamics (MD) simulations indicate that flavin reduction destabilizes the CTT, which undergoes large-scale conformational changes (the CTT release) on short (25 ns) timescales. The CTT release correlates with the conformation and protonation state of conserved His378, which resides between the CTT and the flavin cofactor. Poisson-Boltzmann calculations indicate that flavin reduction substantially increases the His378 pKa Consistent with coupling between ASQ formation and His378 protonation, dCRY displays reduced photoreduction rates with increasing pH; however, His378Asn/Arg variants show no such pH dependence. Replica-exchange MD simulations also support CTT release mediated by changes in His378 hydrogen bonding and verify other responsive regions of the protein previously identified by proteolytic sensitivity assays. His378 dCRY variants show varying abilities to light-activate TIM and undergo self-degradation in cellular assays. Surprisingly, His378Arg/Lys variants do not degrade in light despite maintaining reactivity toward TIM, thereby implicating different conformational responses in these two functions. Thus, the dCRY photosensory mechanism involves flavin photoreduction coupled to protonation of His378, whose perturbed hydrogen-bonding pattern alters the CTT and surrounding regions.

  15. Changes in active site histidine hydrogen bonding trigger cryptochrome activation

    PubMed Central

    Ganguly, Abir; Manahan, Craig C.; Top, Deniz; Yee, Estella F.; Lin, Changfan; Young, Michael W.; Thiel, Walter; Crane, Brian R.

    2016-01-01

    Cryptochrome (CRY) is the principal light sensor of the insect circadian clock. Photoreduction of the Drosophila CRY (dCRY) flavin cofactor to the anionic semiquinone (ASQ) restructures a C-terminal tail helix (CTT) that otherwise inhibits interactions with targets that include the clock protein Timeless (TIM). All-atom molecular dynamics (MD) simulations indicate that flavin reduction destabilizes the CTT, which undergoes large-scale conformational changes (the CTT release) on short (25 ns) timescales. The CTT release correlates with the conformation and protonation state of conserved His378, which resides between the CTT and the flavin cofactor. Poisson-Boltzmann calculations indicate that flavin reduction substantially increases the His378 pKa. Consistent with coupling between ASQ formation and His378 protonation, dCRY displays reduced photoreduction rates with increasing pH; however, His378Asn/Arg variants show no such pH dependence. Replica-exchange MD simulations also support CTT release mediated by changes in His378 hydrogen bonding and verify other responsive regions of the protein previously identified by proteolytic sensitivity assays. His378 dCRY variants show varying abilities to light-activate TIM and undergo self-degradation in cellular assays. Surprisingly, His378Arg/Lys variants do not degrade in light despite maintaining reactivity toward TIM, thereby implicating different conformational responses in these two functions. Thus, the dCRY photosensory mechanism involves flavin photoreduction coupled to protonation of His378, whose perturbed hydrogen-bonding pattern alters the CTT and surrounding regions. PMID:27551082

  16. The C-type Arabidopsis thioredoxin reductase ANTR-C acts as an electron donor to 2-Cys peroxiredoxins in chloroplasts

    SciTech Connect

    Moon, Jeong Chan; Jang, Ho Hee; Chae, Ho Byoung; Lee, Jung Ro; Lee, Sun Yong; Jung, Young Jun; Shin, Mi Rim; Lim, Hye Song |; Chung, Woo Sik |; Yun, Dae-Jin |; Lee, Kyun Oh; Lee, Sang Yeol . E-mail: sylee@gsnu.ac.kr

    2006-09-22

    2-Cys peroxiredoxins (Prxs) play important roles in the antioxidative defense systems of plant chloroplasts. In order to determine the interaction partner for these proteins in Arabidopsis, we used a yeast two-hybrid screening procedure with a C175S-mutant of Arabidopsis 2-Cys Prx-A as bait. A cDNA encoding an NADPH-dependent thioredoxin reductase (NTR) isotype C was identified and designated ANTR-C. We demonstrated that this protein effected efficient transfer of electrons from NADPH to the 2-Cys Prxs of chloroplasts. Interaction between 2-Cys Prx-A and ANTR-C was confirmed by a pull-down experiment. ANTR-C contained N-terminal TR and C-terminal Trx domains. It exhibited both TR and Trx activities and co-localized with 2-Cys Prx-A in chloroplasts. These results suggest that ANTR-C functions as an electron donor for plastidial 2-Cys Prxs and represents the NADPH-dependent TR/Trx system in chloroplasts.

  17. Probing the promiscuous active site of myo-inositol dehydrogenase using synthetic substrates, homology modeling, and active site modification.

    PubMed

    Daniellou, Richard; Zheng, Hongyan; Langill, David M; Sanders, David A R; Palmer, David R J

    2007-06-26

    The active site of myo-inositol dehydrogenase (IDH, EC 1.1.1.18) from Bacillus subtilis recognizes a variety of mono- and disaccharides, as well as 1l-4-O-substituted inositol derivatives. It catalyzes the NAD+-dependent oxidation of the axial alcohol of these substrates with comparable kinetic constants. We have found that 4-O-p-toluenesulfonyl-myo-inositol does not act as a substrate for IDH, in contrast to structurally similar compounds such as those bearing substituted benzyl substituents in the same position. X-ray crystallographic analysis of 4-O-p-toluenesulfonyl-myo-inositol and 4-O-(2-naphthyl)methyl-myo-inositol, which is a substrate for IDH, shows a distinct difference in the preferred conformation of the aryl substituent. Conformational analysis of known substrates of IDH suggests that this conformational difference may account for the difference in reactivity of 4-O-p-toluenesulfonyl-myo-inositol in the presence of IDH. A sequence alignment of IDH with the homologous glucose-fructose oxidoreductase allowed the construction of an homology model of inositol dehydrogenase, to which NADH and 4-O-benzyl-scyllo-inosose were docked and the active site energy minimized. The active site model is consistent with all experimental results and suggests that a conserved tyrosine-glycine-tyrosine motif forms the hydrophobic pocket adjoining the site of inositol recognition. Y233F and Y235F retain activity, while Y233R and Y235R do not. A histidine-aspartate pair, H176 and D172, are proposed to act as a dyad in which H176 is the active site acid/base. The enzyme is inactivated by diethyl pyrocarbonate, and the mutants H176A and D172N show a marked loss of activity. Kinetic isotope effect experiments with D172N indicate that chemistry is rate-determining for this mutant.

  18. The active site structure and mechanism of phosphoenolpyruvate utilizing enzymes

    SciTech Connect

    Cheng, K.C.

    1989-01-01

    Arginine specific reagents showed irreversible inhibition of avian liver mitochondrial phosphoenolpyruvate carboxykinase. Potent protection against modification was elicited by CO{sub 2} or CO{sub 2} in the presence of other substrates. Labeling of enzyme with (7-{sup 14}C) phenylglyoxal showed that 1 or 2 arginines are involved in CO{sub 2} binding and activation. Peptide map studies showed this active site arginine residues is located at position 289. Histidine specific reagents showed pseudo first order inhibition of avian mitochondrial phosphoenolpyruvate carboxykinase activity. The best protection against modification was elicited by IDP or IDP and Mn{sup +2}. One histidine residue is at or near the phosphoenolpyruvate binding site as demonstrated in the increased absorbance at 240 nm and proton relaxation rate studies. Circular dichroism studies reveal that enzyme structure was perturbed by diethylpyrocarbonate modification. Metal binding studies suggest that this enzyme has only one metal binding site. The putative binding sites from several GTP and phosphoenolpyruvate utilizing enzymes are observed in P-enolpyruvate carboxykinase from different species.

  19. The hydrogen chemistry of the FeMo-co active site of nitrogenase.

    PubMed

    Dance, Ian

    2005-08-10

    The chemical mechanism by which nitrogenase enzymes catalyze the hydrogenation of N(2) (and other multiply bonded substrates) at the N(c)Fe(7)MoS(9)(homocitrate) active site (FeMo-co) is unknown, despite the accumulation of much data on enzyme reactivity and the influences of key amino acids surrounding FeMo-co. The mutual influences of H(2), substrates, and the inhibitor CO on reactivity are key experimental tests for postulated mechanisms. Fundamental to all aspects of mechanism is the accumulation of H atoms (from e(-) + H(+)) on FeMo-co, and the generation and influences of coordinated H(2). Here, I argue that the first introduction of H is via a water chain terminating at water 679 (PDB structure , Azotobacter vinelandii) to one of the mu(3)-S atoms (S3B) of FeMo-co. Next, using validated density functional calculations of a full chemical representation of FeMo-co and its connected residues (alpha-275(Cys), alpha-442(His)), I have characterized more than 80 possibilities for the coordination of up to three H atoms, and H(2), and H + H(2), on the S2A, Fe2, S2B, Fe6, S3B domain of FeMo-co, which is favored by recent targeted mutagenesis results. Included are calculated reaction profiles for movements of H atoms (between S and Fe, and between Fe and Fe), for the generation of Fe-H(2), for association and dissociation of Fe-H(2) at various reduction levels, and for H/H(2) exchange. This is new hydrogen chemistry on an unprecedented coordination frame, with some similarities to established hydrogen coordination chemistry, and with unexpected and unprecedented structures such as Fe(S)(3)(H(2))(2)(H) octahedral coordination. General principles for the hydrogen chemistry of FeMo-co include (1) the stereochemical mobility of H bound to mu(3)-S, (2) the differentiated endo- and exo- positions at Fe for coordination of H and/or H(2), and (3) coordinative allosteric influences in which structural and dynamic aspects of coordination at one Fe atom are affected by

  20. Multilevel regulation of 2-Cys peroxiredoxin reaction cycle by S-nitrosylation.

    PubMed

    Engelman, Rotem; Weisman-Shomer, Pnina; Ziv, Tamar; Xu, Jianqiang; Arnér, Elias S J; Benhar, Moran

    2013-04-19

    S-nitrosothiols (SNOs), formed by nitric oxide (NO)-mediated S-nitrosylation, and hydrogen peroxide (H2O2), a prominent reactive oxygen species, are implicated in diverse physiological and pathological processes. Recent research has shown that the cellular action and metabolism of SNOs and H2O2 involve overlapping, thiol-based mechanisms, but how these reactive species may affect each other's fate and function is not well understood. In this study we investigated how NO/SNO may affect the redox cycle of mammalian peroxiredoxin-1 (Prx1), a representative of the 2-Cys Prxs, a group of thioredoxin (Trx)-dependent peroxidases. We found that, both in a cell-free system and in cells, NO/SNO donors such as S-nitrosocysteine and S-nitrosoglutathione readily induced the S-nitrosylation of Prx1, causing structural and functional alterations. In particular, nitrosylation promoted disulfide formation involving the pair of catalytic cysteines (Cys-52 and Cys-173) and disrupted the oligomeric structure of Prx1, leading to loss of peroxidase activity. A highly potent inhibition of the peroxidase catalytic reaction by NO/SNO was seen in assays employing the coupled Prx-Trx system. In this setting, S-nitrosocysteine (10 μM) effectively blocked the Trx-mediated regeneration of oxidized Prx1. This effect appeared to be due to both competition between S-nitrosocysteine and Prx1 for the Trx system and direct modulation by S-nitrosocysteine of Trx reductase activity. Our findings that NO/SNO target both Prx and Trx reductase may have implications for understanding the impact of nitrosylation on cellular redox homeostasis.

  1. Identification of Ice Nucleation Active Sites on Silicate Dust Particles

    NASA Astrophysics Data System (ADS)

    Zolles, Tobias; Burkart, Julia; Häusler, Thomas; Pummer, Bernhard; Hitzenberger, Regina; Grothe, Hinrich

    2015-04-01

    Mineral dusts originating from Earth's crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts [1-3]. Nevertheless, among those structures K-feldspar showed by far the highest ice nucleation activity. In this study, the reasons for its activity and the difference in the activity of the different feldspars were investigated in closer details. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. We give a potential explanation of the increased ice nucleation activity of K-feldspar. The ice nucleating sites are very much dependent on the alkali ion present by altering the water structure and the feldspar surface. The higher activity of K-feldspar can be attributed to the presence of potassium ions on the surface and surface bilayer. The alkali-ions have different hydration shells and thus an influence on the ice nucleation activity of feldspar. Chaotropic behavior of Calcium and Sodium ions are lowering the ice nucleation potential of the other feldspars, while kosmotropic Potassium has a neutral or even positive effect. Furthermore we investigated the influence of milling onto the ice nucleation of quartz particles. The ice nucleation activity can be increased by mechanical milling, by introducing more molecular, nucleation active defects to the particle surface. This effect is larger than expected by plane surface increase. [1] Atkinson et al. The Importance of Feldspar for Ice Nucleation by Mineral Dust in Mixed-Phase Clouds. Nature 2013, 498, 355-358. [2] Yakobi-Hancock et al.. Feldspar Minerals as Efficient Deposition Ice Nuclei. Atmos. Chem. Phys. 2013, 13, 11175-11185. [3] Zolles et al. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles. J. Phys. Chem. A 2015 accepted.

  2. Face the Edges: Catalytic Active Sites of Nanomaterials

    PubMed Central

    Ni, Bing

    2015-01-01

    Edges are special sites in nanomaterials. The atoms residing on the edges have different environments compared to those in other parts of a nanomaterial and, therefore, they may have different properties. Here, recent progress in nanomaterial fields is summarized from the viewpoint of the edges. Typically, edge sites in MoS2 or metals, other than surface atoms, can perform as active centers for catalytic reactions, so the method to enhance performance lies in the optimization of the edge structures. The edges of multicomponent interfaces present even more possibilities to enhance the activities of nanomaterials. Nanoframes and ultrathin nanowires have similarities to conventional edges of nanoparticles, the application of which as catalysts can help to reduce the use of costly materials. Looking beyond this, the edge structures of graphene are also essential for their properties. In short, the edge structure can influence many properties of materials. PMID:27980960

  3. Active sites in char gasification: Final technical report

    SciTech Connect

    Wojtowicz, M.; Lilly, W.D.; Perkins, M.T.; Hradil, G.; Calo, J.M.; Suuberg, E.M.

    1987-09-01

    Among the key variables in the design of gasifiers and combustors is the reactivity of the chars which must be gasified or combusted. Significant loss of unburned char is unacceptable in virtually any process; the provision of sufficient residence time for complete conversion is essential. A very wide range of reactivities are observed, depending upon the nature of the char in a process. The current work focuses on furthering the understanding of gasification reactivities of chars. It has been well established that the reactivity of char to gasification generally depends upon three principal factors: (1) the concentration of ''active sites'' in the char; (2) mass transfer within the char; and (3) the type and concentration of catalytic impurities in the char. The present study primarily addresses the first factor. The subject of this research is the origin, nature, and fate of active sites in chars derived from parent hydrocarbons with coal-like structure. The nature and number of the active sites and their reactivity towards oxygen are examined in ''model'' chars derived from phenol-formaldehyde type resins. How the active sites are lost by the process of thermal annealing during heat treatment of chars are studied, and actual rate for the annealing process is derived. Since intrinsic char reactivities are of primary interest in the present study, a fair amount of attention was given to the model char synthesis and handling so that the effect of catalytic impurities and oxygen-containing functional groups in the chemical structure of the material were minimized, if not completely eliminated. The project would not be considered complete without comparing characteristic features of synthetic chars with kinetic behavior exhibited by natural chars, including coal chars.

  4. Active site remodelling accompanies thioester bond formation in the SUMO E1

    SciTech Connect

    Olsen, Shaun K.; Capili, Allan D.; Lu, Xuequan; Tan, Derek S.; Lima, Christopher D.

    2010-03-30

    E1 enzymes activate ubiquitin (Ub) and ubiquitin-like (Ubl) proteins in two steps by carboxy-terminal adenylation and thioester bond formation to a conserved catalytic cysteine in the E1 Cys domain. The structural basis for these intermediates remains unknown. Here we report crystal structures for human SUMO E1 in complex with SUMO adenylate and tetrahedral intermediate analogues at 2.45 and 2.6 {angstrom}, respectively. These structures show that side chain contacts to ATP-Mg are released after adenylation to facilitate a 130 degree rotation of the Cys domain during thioester bond formation that is accompanied by remodelling of key structural elements including the helix that contains the E1 catalytic cysteine, the crossover and re-entry loops, and refolding of two helices that are required for adenylation. These changes displace side chains required for adenylation with side chains required for thioester bond formation. Mutational and biochemical analyses indicate these mechanisms are conserved in other E1s.

  5. Active site remodelling accompanies thioester bond formation in the SUMO E1.

    PubMed

    Olsen, Shaun K; Capili, Allan D; Lu, Xuequan; Tan, Derek S; Lima, Christopher D

    2010-02-18

    E1 enzymes activate ubiquitin (Ub) and ubiquitin-like (Ubl) proteins in two steps by carboxy-terminal adenylation and thioester bond formation to a conserved catalytic cysteine in the E1 Cys domain. The structural basis for these intermediates remains unknown. Here we report crystal structures for human SUMO E1 in complex with SUMO adenylate and tetrahedral intermediate analogues at 2.45 and 2.6 A, respectively. These structures show that side chain contacts to ATP.Mg are released after adenylation to facilitate a 130 degree rotation of the Cys domain during thioester bond formation that is accompanied by remodelling of key structural elements including the helix that contains the E1 catalytic cysteine, the crossover and re-entry loops, and refolding of two helices that are required for adenylation. These changes displace side chains required for adenylation with side chains required for thioester bond formation. Mutational and biochemical analyses indicate these mechanisms are conserved in other E1s.

  6. Pore conformations and gating mechanism of a Cys-loop receptor.

    PubMed

    Paas, Yoav; Gibor, Gilad; Grailhe, Regis; Savatier-Duclert, Nathalie; Dufresne, Virginie; Sunesen, Morten; de Carvalho, Lia Prado; Changeux, Jean-Pierre; Attali, Bernard

    2005-11-01

    Neurons regulate the propagation of chemoelectric signals throughout the nervous system by opening and closing ion channels, a process known as gating. Here, histidine-based metal-binding sites were engineered along the intrinsic pore of a chimeric Cys-loop receptor to probe state-dependent Zn(2+)-channel interactions. Patterns of Zn(2+) ion binding within the pore reveal that, in the closed state, the five pore-lining segments adopt an oblique orientation relative to the axis of ion conduction and constrict into a physical gate at their intracellular end. The interactions of Zn(2+) with the open state indicate that the five pore-lining segments should rigidly tilt to enable the movement of their intracellular ends away from the axis of ion conduction, so as to open the constriction (i.e., the gate). Alignment of the functional results with the 3D structure of an acetylcholine receptor allowed us to generate structural models accounting for the closed and open pore conformations and for a gating mechanism of a Cys-loop receptor.

  7. Nest predation increases with parental activity: Separating nest site and parental activity effects

    USGS Publications Warehouse

    Martin, T.E.; Scott, J.; Menge, C.

    2000-01-01

    Alexander Skutch hypothesized that increased parental activity can increase the risk of nest predation. We tested this hypothesis using ten open-nesting bird species in Arizona, USA. Parental activity was greater during the nestling than incubation stage because parents visited the nest frequently to feed their young during the nestling stage. However, nest predation did not generally increase with parental activity between nesting stages across the ten study species. Previous investigators have found similar results. We tested whether nest site effects might yield higher predation during incubation because the most obvious sites are depredated most rapidly. We conducted experiments using nest sites from the previous year to remove parental activity. Our results showed that nest sites have highly repeatable effects on nest predation risk; poor nest sites incurred rapid predation and caused predation rates to be greater during the incubation than nestling stage. This pattern also was exhibited in a bird species with similar (i.e. controlled) parental activity between nesting stages. Once nest site effects are taken into account, nest predation shows a strong proximate increase with parental activity during the nestling stage within and across species. Parental activity and nest sites exert antagonistic influences on current estimates of nest predation between nesting stages and both must be considered in order to understand current patterns of nest predation, which is an important source of natural selection.

  8. Nest predation increases with parental activity: separating nest site and parental activity effects.

    PubMed Central

    Martin, T E; Scott, J; Menge, C

    2000-01-01

    Alexander Skutch hypothesized that increased parental activity can increase the risk of nest predation. We tested this hypothesis using ten open-nesting bird species in Arizona, USA. Parental activity was greater during the nestling than incubation stage because parents visited the nest frequently to feed their young during the nestling stage. However, nest predation did not generally increase with parental activity between nesting stages across the ten study species. Previous investigators have found similar results. We tested whether nest site effects might yield higher predation during incubation because the most obvious sites are depredated most rapidly. We conducted experiments using nest sites from the previous year to remove parental activity. Our results showed that nest sites have highly repeatable effects on nest predation risk; poor nest sites incurred rapid predation and caused predation rates to be greater during the incubation than nestling stage. This pattern also was exhibited in a bird species with similar (i.e. controlled) parental activity between nesting stages. Once nest site effects are taken into account, nest predation shows a strong proximate increase with parental activity during the nestling stage within and across species. Parental activity and nest sites exert antagonistic influences on current estimates of nest predation between nesting stages and both must be considered in order to understand current patterns of nest predation, which is an important source of natural selection. PMID:11413645

  9. Active site amino acid sequence of human factor D.

    PubMed

    Davis, A E

    1980-08-01

    Factor D was isolated from human plasma by chromatography on CM-Sephadex C50, Sephadex G-75, and hydroxylapatite. Digestion of reduced, S-carboxymethylated factor D with cyanogen bromide resulted in three peptides which were isolated by chromatography on Sephadex G-75 (superfine) equilibrated in 20% formic acid. NH2-Terminal sequences were determined by automated Edman degradation with a Beckman 890C sequencer using a 0.1 M Quadrol program. The smallest peptide (CNBr III) consisted of the NH2-terminal 14 amino acids. The other two peptides had molecular weights of 17,000 (CNBr I) and 7000 (CNBr II). Overlap of the NH2-terminal sequence of factor D with the NH2-terminal sequence of CNBr I established the order of the peptides. The NH2-terminal 53 residues of factor D are somewhat more homologous with the group-specific protease of rat intestine than with other serine proteases. The NH2-terminal sequence of CNBr II revealed the active site serine of factor D. The typical serine protease active site sequence (Gly-Asp-Ser-Gly-Gly-Pro was found at residues 12-17. The region surrounding the active site serine does not appear to be more highly homologous with any one of the other serine proteases. The structural data obtained point out the similarities between factor D and the other proteases. However, complete definition of the degree of relationship between factor D and other proteases will require determination of the remainder of the primary structure.

  10. Brownian aggregation rate of colloid particles with several active sites

    SciTech Connect

    Nekrasov, Vyacheslav M.; Yurkin, Maxim A.; Chernyshev, Andrei V.; Polshchitsin, Alexey A.; Yakovleva, Galina E.; Maltsev, Valeri P.

    2014-08-14

    We theoretically analyze the aggregation kinetics of colloid particles with several active sites. Such particles (so-called “patchy particles”) are well known as chemically anisotropic reactants, but the corresponding rate constant of their aggregation has not yet been established in a convenient analytical form. Using kinematic approximation for the diffusion problem, we derived an analytical formula for the diffusion-controlled reaction rate constant between two colloid particles (or clusters) with several small active sites under the following assumptions: the relative translational motion is Brownian diffusion, and the isotropic stochastic reorientation of each particle is Markovian and arbitrarily correlated. This formula was shown to produce accurate results in comparison with more sophisticated approaches. Also, to account for the case of a low number of active sites per particle we used Monte Carlo stochastic algorithm based on Gillespie method. Simulations showed that such discrete model is required when this number is less than 10. Finally, we applied the developed approach to the simulation of immunoagglutination, assuming that the formed clusters have fractal structure.

  11. [Mechanism of arginine deiminase activity by site-directed mutagenesis].

    PubMed

    Li, Lifeng; Ni, Ye; Sun, Zhihao

    2012-04-01

    Arginine deiminase (ADI) has been studied as a potential anti-cancer agent for inhibiting arginine-auxotrophic tumors (such as melanomas and hepatocellular carcinomas) in phase III clinical trials. In this work, we studied the molecular mechanism of arginine deiminase activity by site-directed mutagenesis. Three mutation sites, A128, H404 and 1410, were introduced into wild-type ADI gene by QuikChange site-directed mutagenesis method, and four ADI mutants M1 (A128T), M2 (H404R), M3 (I410L), and M4 (A128T, H404R) were obtained. The ADI mutants were individually expressed in Escherichia coli BL21 (DE3), and the enzymatic properties of the purified mutant proteins were determined. The results show that both A128T and H404R had enhanced optimum pH, higher activity and stability of ADI under physiological condition (pH 7.4), as well as reduced K(m) value. This study provides an insight into the molecular mechanism of the ADI activity, and also the experimental evidence for the rational protein evolution in the future.

  12. Potential sites of CFTR activation by tyrosine kinases

    PubMed Central

    Billet, Arnaud; Jia, Yanlin; Jensen, Timothy J.; Hou, Yue-Xian; Chang, Xiu-Bao; Riordan, John R.; Hanrahan, John W.

    2016-01-01

    ABSTRACT The CFTR chloride channel is tightly regulated by phosphorylation at multiple serine residues. Recently it has been proposed that its activity is also regulated by tyrosine kinases, however the tyrosine phosphorylation sites remain to be identified. In this study we examined 2 candidate tyrosine residues near the boundary between the first nucleotide binding domain and the R domain, a region which is important for channel function but devoid of PKA consensus sequences. Mutating tyrosines at positions 625 and 627 dramatically reduced responses to Src or Pyk2 without altering the activation by PKA, suggesting they may contribute to CFTR regulation. PMID:26645934

  13. Inactivation of the RTEM-1 cysteine beta-lactamase by iodoacetate. The nature of active-site functional groups and comparisons with the native enzyme.

    PubMed

    Knap, A K; Pratt, R F

    1991-01-01

    The pH-rate profile for inactivation of the RTEM-1 cysteine beta-lactamase by iodoacetate supports previous evidence [Knap & Pratt (1989) Proteins Struct. Funct. Genet. 6, 316-323] for the activation of the active-site thiol group by adjacent functional groups. The enhanced reactivity of iodoacetate, with respect to that of iodoacetamide, suggests the influence of a positive charge in the active site. The reactivity of iodoacetate is not affected by dissociation of an active-site functional group of pKa 6.7, which increases the reactivity of neutral reagents, probably because of a compensation phenomenon; it is, however, lost on dissociation of an acid of pKa 8.1. It is concluded that the active cysteine beta-lactamase has four functional groups at the active site, one nucleophilic thiolate of Cys-70, one neutral acid (most probably the carboxy group of Glu-166, from the crystal structures) and two cationic residues (most probably Lys-73 and Lys-234). A comparison of these results with the pH-dependence of reactivity of the native RTEM-2 beta-lactamase suggests that the active form of the latter enzyme is also monocationic, although the nucleophile (Ser-70) is likely to be neutral in this case and the carboxylic acid dissociated. A mechanism of class A beta-lactamase catalysis is discussed where the Glu-166 carboxylate acts as a general base/acid catalyst and Lys-73 is principally required for electrostatic stabilization of the anionic tetrahedral intermediate.

  14. Chemical modification of human albumin at cys34 by ethacrynic acid: structural characterisation and binding properties.

    PubMed

    Bertucci, C; Nanni, B; Raffaelli, A; Salvadori, P

    1998-10-01

    Derivatization of the free cys3,4 in human albumin, which is reported to occur under physiological conditions, has been performed in vitro by reaction of the protein with ethacrynic acid. This modification has been investigated by mass spectrometry and circular dichroism. Ethacrynic acid has been proven to bind human albumin either covalently and non-covalently. This post-translational modification does not determine significant changes in the secondary structure of the protein, as shown by the comparable circular dichroism spectra of the native and the modified proteins. Furthermore, the binding properties of the human albumin samples have been investigated by circular dichroism and equilibrium dialysis. The affinity to the higher affinity binding sites does not change either for drugs binding to site I, like phenylbutazone, or to site II, like diazepam, while a small but significant increase has been observed for bilirubin, known to bind to site III. Nevertheless significant decreases of the affinity at the lower affinity binding sites of the modified protein were observed for both drugs binding to site I or to site II.

  15. Ligand Binding at the α4-α4 Agonist-Binding Site of the α4β2 nAChR Triggers Receptor Activation through a Pre-Activated Conformational State

    PubMed Central

    Indurthi, Dinesh C.; Lewis, Trevor M.; Ahring, Philip K.; Balle, Thomas; Chebib, Mary; Absalom, Nathan L.

    2016-01-01

    The α4β2 nicotinic acetylcholine receptor (nAChR) is the most abundant subtype in the brain and exists in two functional stoichiometries: (α4)3(β2)2 and (α4)2(β2)3. A distinct feature of the (α4)3(β2)2 receptor is the biphasic activation response to the endogenous agonist acetylcholine, where it is activated with high potency and low efficacy when two α4-β2 binding sites are occupied and with low potency/high efficacy when a third α4-α4 binding site is occupied. Further, exogenous ligands can bind to the third α4-α4 binding site and potentiate the activation of the receptor by ACh that is bound at the two α4-β2 sites. We propose that perturbations of the recently described pre-activation step when a third binding site is occupied are a key driver of these distinct activation properties. To investigate this, we used a combination of simple linear kinetic models and voltage clamp electrophysiology to determine whether transitions into the pre-activated state were increased when three binding sites were occupied. We separated the binding at the two different sites with ligands selective for the α4-β2 site (Sazetidine-A and TC-2559) and the α4-α4 site (NS9283) and identified that when a third binding site was occupied, changes in the concentration-response curves were best explained by an increase in transitions into a pre-activated state. We propose that perturbations of transitions into a pre-activated state are essential to explain the activation properties of the (α4)3(β2)2 receptor by acetylcholine and other ligands. Considering the widespread clinical use of benzodiazepines, this discovery of a conserved mechanism that benzodiazepines and ACh potentiate receptor activation via a third binding site can be exploited to develop therapeutics with similar properties at other cys-loop receptors. PMID:27552221

  16. MSK1 activity is controlled by multiple phosphorylation sites

    PubMed Central

    McCOY, Claire E.; Campbell, David G.; Deak, Maria; Bloomberg, Graham B.; Arthur, J. Simon C.

    2004-01-01

    MSK1 (mitogen- and stress-activated protein kinase) is a kinase activated in cells downstream of both the ERK1/2 (extracellular-signal-regulated kinase) and p38 MAPK (mitogen-activated protein kinase) cascades. In the present study, we show that, in addition to being phosphorylated on Thr-581 and Ser-360 by ERK1/2 or p38, MSK1 can autophosphorylate on at least six sites: Ser-212, Ser-376, Ser-381, Ser-750, Ser-752 and Ser-758. Of these sites, the N-terminal T-loop residue Ser-212 and the ‘hydrophobic motif’ Ser-376 are phosphorylated by the C-terminal kinase domain of MSK1, and their phosphorylation is essential for the catalytic activity of the N-terminal kinase domain of MSK1 and therefore for the phosphorylation of MSK1 substrates in vitro. Ser-381 is also phosphorylated by the C-terminal kinase domain, and mutation of Ser-381 decreases MSK1 activity, probably through the inhibition of Ser-376 phosphorylation. Ser-750, Ser-752 and Ser-758 are phosphorylated by the N-terminal kinase domain; however, their function is not known. The activation of MSK1 in cells therefore requires the activation of the ERK1/2 or p38 MAPK cascades and does not appear to require additional signalling inputs. This is in contrast with the closely related RSK (p90 ribosomal S6 kinase) proteins, whose activity requires phosphorylation by PDK1 (3-phosphoinositide-dependent protein kinase 1) in addition to phosphorylation by ERK1/2. PMID:15568999

  17. Metal-catalyzed oxidation of phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli: inactivation and destabilization by oxidation of active-site cysteines.

    PubMed

    Park, O K; Bauerle, R

    1999-03-01

    The in vitro instability of the phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase [DAHPS(Phe)] from Escherichia coli has been found to be due to a metal-catalyzed oxidation mechanism. DAHPS(Phe) is one of three differentially feedback-regulated isoforms of the enzyme which catalyzes the first step of aromatic biosynthesis, the formation of DAHP from phosphoenolpyruvate and D-erythrose-4-phosphate. The activity of the apoenzyme decayed exponentially, with a half-life of about 1 day at room temperature, and the heterotetramer slowly dissociated to the monomeric state. The enzyme was stabilized by the presence of phosphoenolpyruvate or EDTA, indicating that in the absence of substrate, a trace metal(s) was the inactivating agent. Cu2+ and Fe2+, but none of the other divalent metals that activate the enzyme, greatly accelerated the rate of inactivation and subunit dissociation. Both anaerobiosis and the addition of catalase significantly reduced Cu2+-catalyzed inactivation. In the spontaneously inactivated enzyme, there was a net loss of two of the seven thiols per subunit; this value increased with increasing concentrations of added Cu2+. Dithiothreitol completely restored the enzymatic activity and the two lost thiols in the spontaneously inactivated enzyme but was only partially effective in reactivation of the Cu2+-inactivated enzyme. Mutant enzymes with conservative replacements at either of the two active-site cysteines, Cys61 or Cys328, were insensitive to the metal attack. Peptide mapping of the Cu2+-inactivated enzyme revealed a disulfide linkage between these two cysteine residues. All results indicate that DAHPS(Phe) is a metal-catalyzed oxidation system wherein bound substrate protects active-site residues from oxidative attack catalyzed by bound redox metal cofactor. A mechanism of inactivation of DAHPS is proposed that features a metal redox cycle that requires the sequential oxidation of its two active-site cysteines.

  18. A Trp474Cys mutation in the alpha-subunit of beta-hexosaminidase causes a subacute encephalopathic form of G{sub M2} gangliosidosis, type 1

    SciTech Connect

    Petroulakis, E.; Cao, Z.; Salo, T.

    1994-09-01

    Mutations in the HEXA gene that encodes the {alpha}-subunit of the heterodimeric lysosomal enzyme {beta}-hexosaminidase A, or Hex A ({alpha}{beta}), cause G{sub M2} gangliosidosis, type 1. The infantile form (Tay-Sachs disease) results when there is no residual Hex A activity, while less severe and more variable clinical phenotypes result when residual Hex A activity is present. A non-Jewish male who presented with an acute psychotic episode at age 16 was diagnosed with a subacute encephalopathic form of G{sub M2} gangliosidosis. At age 19, chronic psychosis with intermittent acute exacerbations remains the most disabling symptom in this patient and his affected brother although both exhibit some ataxia and moderately severe dysarthria. We have found a 4 bp insertion (+TATC 1278) associated with infantile Tay-Sachs disease on one allele; no previously identified mutation was found on the second allele. SSCP analysis detected a shift in exon 13 and sequencing revealed a G1422C mutation in the second allele that results in a Trp474Cys substitution. The presence of the mutation was confirmed by the loss of HaeIII and ScrFI sites in exon 13 PCR products from the subjects and their father. The mutation was introduced into the {alpha}-subunit cDNA and Hex S ({alpha}{alpha}) and Hex A ({alpha}{beta}) were transiently expressed in monkey COS-7 cells. The Trp474Cys mutant protein had approximately 5% and 12% of wild-type Hex S and Hex A activity, respectively. Western blot analysis revealed a small amount of residual mature {alpha}-subunit and a normal level of precursor protein. We conclude that the Trp474Cys mutation is the cause of the Hex A deficiency associated with a subacute (juvenile-onset) phenotype in this patient. Like other mutations in exon 13 of HEXA, it appears to affect intracellular processing. Studies of the defect in intracellular processing are in progress.

  19. Current activities handbook: formerly utilized sites remedial action program

    SciTech Connect

    1981-02-27

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the activities each of the thirteen state legislatures potentially affected by the Formerly Utilized Sites Remedial Action Program. It contains a description of the state legislative procedural rules and a schedule of each legislative session; a summary of pending relevant legislation; the name and telephone number of legislative and state agency contacts; and the full text of all bills identified.

  20. Vitamin K epoxide reductase: homology, active site and catalytic mechanism.

    PubMed

    Goodstadt, Leo; Ponting, Chris P

    2004-06-01

    Vitamin K epoxide reductase (VKOR) recycles reduced vitamin K, which is used subsequently as a co-factor in the gamma-carboxylation of glutamic acid residues in blood coagulation enzymes. VKORC1, a subunit of the VKOR complex, has recently been shown to possess this activity. Here, we show that VKORC1 is a member of a large family of predicted enzymes that are present in vertebrates, Drosophila, plants, bacteria and archaea. Four cysteine residues and one residue, which is either serine or threonine, are identified as likely active-site residues. In some plant and bacterial homologues the VKORC1 homologous domain is fused with domains of the thioredoxin family of oxidoreductases. These might reduce disulfide bonds of VKORC1-like enzymes as a prerequisite for their catalytic activities.

  1. Photonic activation of plasminogen induced by low dose UVB.

    PubMed

    Correia, Manuel; Snabe, Torben; Thiagarajan, Viruthachalam; Petersen, Steffen Bjørn; Campos, Sara R R; Baptista, António M; Neves-Petersen, Maria Teresa

    2015-01-01

    Activation of plasminogen to its active form plasmin is essential for several key mechanisms, including the dissolution of blood clots. Activation occurs naturally via enzymatic proteolysis. We report that activation can be achieved with 280 nm light. A 2.6 fold increase in proteolytic activity was observed after 10 min illumination of human plasminogen. Irradiance levels used are in the same order of magnitude of the UVB solar irradiance. Activation is correlated with light induced disruption of disulphide bridges upon UVB excitation of the aromatic residues and with the formation of photochemical products, e.g. dityrosine and N-formylkynurenine. Most of the protein fold is maintained after 10 min illumination since no major changes are observed in the near-UV CD spectrum. Far-UV CD shows loss of secondary structure after illumination (33.4% signal loss at 206 nm). Thermal unfolding CD studies show that plasminogen retains a native like cooperative transition at ~70 ºC after UV-illumination. We propose that UVB activation of plasminogen occurs upon photo-cleavage of a functional allosteric disulphide bond, Cys737-Cys765, located in the catalytic domain and in van der Waals contact with Trp761 (4.3 Å). Such proximity makes its disruption very likely, which may occur upon electron transfer from excited Trp761. Reduction of Cys737-Cys765 will result in likely conformational changes in the catalytic site. Molecular dynamics simulations reveal that reduction of Cys737-Cys765 in plasminogen leads to an increase of the fluctuations of loop 760-765, the S1-entrance frame located close to the active site. These fluctuations affect the range of solvent exposure of the catalytic triad, particularly of Asp646 and Ser74, which acquire an exposure profile similar to the values in plasmin. The presented photonic mechanism of plasminogen activation has the potential to be used in clinical applications, possibly together with other enzymatic treatments for the elimination of

  2. Two Cys residues essential for von Willebrand factor multimer assembly in the Golgi.

    PubMed

    Purvis, Angie R; Gross, Julia; Dang, Luke T; Huang, Ren-Huai; Kapadia, Milan; Townsend, R Reid; Sadler, J Evan

    2007-10-02

    Von Willebrand factor (VWF) dimerizes through C-terminal CK domains, and VWF dimers assemble into multimers in the Golgi by forming intersubunit disulfide bonds between D3 domains. This unusual oxidoreductase reaction requires the VWF propeptide (domains D1D2), which acts as an endogenous pH-dependent chaperone. The cysteines involved in multimer assembly were characterized by using a VWF construct that encodes the N-terminal D1D2D'D3 domains. Modification with thiol-specific reagents demonstrated that secreted D'D3 monomer contained reduced Cys, whereas D'D3 dimer and propeptide did not. Reduced Cys in the D'D3 monomer were alkylated with N-ethylmaleimide and analyzed by mass spectrometry. All 52 Cys within the D'D3 region were observed, and only Cys(1099) and Cys(1142) were modified by N-ethylmaleimide. When introduced into the D1D2D'D3 construct, the mutation C1099A or C1142A markedly impaired the formation of D'D3 dimers, and the double mutation prevented dimerization. In full-length VWF, the mutations C1099A and C1099A/C1142A prevented multimer assembly; the mutation C1142A allowed the formation of almost exclusively dimers, with few tetramers and no multimers larger than hexamers. Therefore, Cys(1099) and Cys(1142) are essential for the oxidoreductase mechanism of VWF multimerization. Cys(1142) is reported to form a Cys(1142)-Cys(1142) intersubunit bond, suggesting that Cys(1099) also participates in a Cys(1099)-Cys(1099) disulfide bond between D3 domains. This arrangement of intersubunit disulfide bonds implies that the dimeric N-terminal D'D3 domains of VWF subunits align in a parallel orientation within VWF multimers.

  3. Identification of covalent active site inhibitors of dengue virus protease

    PubMed Central

    Koh-Stenta, Xiaoying; Joy, Joma; Wang, Si Fang; Kwek, Perlyn Zekui; Wee, John Liang Kuan; Wan, Kah Fei; Gayen, Shovanlal; Chen, Angela Shuyi; Kang, CongBao; Lee, May Ann; Poulsen, Anders; Vasudevan, Subhash G; Hill, Jeffrey; Nacro, Kassoum

    2015-01-01

    Dengue virus (DENV) protease is an attractive target for drug development; however, no compounds have reached clinical development to date. In this study, we utilized a potent West Nile virus protease inhibitor of the pyrazole ester derivative class as a chemical starting point for DENV protease drug development. Compound potency and selectivity for DENV protease were improved through structure-guided small molecule optimization, and protease-inhibitor binding interactions were validated biophysically using nuclear magnetic resonance. Our work strongly suggests that this class of compounds inhibits flavivirus protease through targeted covalent modification of active site serine, contrary to an allosteric binding mechanism as previously described. PMID:26677315

  4. Activation mechanism of Gi and Go by reactive oxygen species.

    PubMed

    Nishida, Motohiro; Schey, Kevin L; Takagahara, Shuichi; Kontani, Kenji; Katada, Toshiaki; Urano, Yasuteru; Nagano, Tetsuo; Nagao, Taku; Kurose, Hitoshi

    2002-03-15

    Reactive oxygen species are proposed to work as intracellular mediators. One of their target proteins is the alpha subunit of heterotrimeric GTP-binding proteins (Galpha(i) and Galpha(o)), leading to activation. H(2)O(2) is one of the reactive oxygen species and activates purified Galpha(i2). However, the activation requires the presence of Fe(2+), suggesting that H(2)O(2) is converted to more reactive species such as c*OH. The analysis with mass spectrometry shows that seven cysteine residues (Cys(66), Cys(112), Cys(140), Cys(255), Cys(287), Cys(326), and Cys(352)) of Galpha(i2) are modified by the treatment with *OH. Among these cysteine residues, Cys(66), Cys(112), Cys(140), Cys(255), and Cys(352) are not involved in *OH-induced activation of Galpha(i2). Although the modification of Cys(287) but not Cys(326) is required for subunit dissociation, the modification of both Cys(287) and Cys(326) is necessary for the activation of Galpha(i2) as determined by pertussis toxin-catalyzed ADP-ribosylation, conformation-dependent change of trypsin digestion pattern or guanosine 5'-3-O-(thio)triphosphate binding. Wild type Galpha(i2) but not Cys(287)- or Cys(326)-substituted mutants are activated by UV light, singlet oxygen, superoxide anion, and nitric oxide, indicating that these oxidative stresses activate Galpha(i2) by the mechanism similar to *OH-induced activation. Because Cys(287) exists only in G(i) family, this study explains the selective activation of G(i)/G(o) by oxidative stresses.

  5. Functional and Biochemical Characterization of Alvinella pompejana Cys-Loop Receptor Homologues

    PubMed Central

    Debaveye, Sarah; Brams, Marijke; Pardon, Els; Willegems, Katrien; Bertrand, Daniel; Steyaert, Jan; Efremov, Rouslan; Ulens, Chris

    2016-01-01

    Cys-loop receptors are membrane spanning ligand-gated ion channels involved in fast excitatory and inhibitory neurotransmission. Three-dimensional structures of these ion channels, determined by X-ray crystallography or electron microscopy, have revealed valuable information regarding the molecular mechanisms underlying ligand recognition, channel gating and ion conductance. To extend and validate the current insights, we here present promising candidates for further structural studies. We report the biochemical and functional characterization of Cys-loop receptor homologues identified in the proteome of Alvinella pompejana, an extremophilic, polychaete annelid found in hydrothermal vents at the bottom of the Pacific Ocean. Seven homologues were selected, named Alpo1-7. Five of them, Alpo2-6, were unidentified prior to this study. Two-electrode voltage clamp experiments revealed that wild type Alpo5 and Alpo6, both sharing remarkably high sequence identity with human glycine receptor α subunits, are anion-selective channels that can be activated by glycine, GABA and taurine. Furthermore, upon expression in insect cells fluorescence size-exclusion chromatography experiments indicated that four homologues, Alpo1, Alpo4, Alpo6 and Alpo7, can be extracted out of the membrane by a wide variety of detergents while maintaining their oligomeric state. Finally, large-scale purification efforts of Alpo1, Alpo4 and Alpo6 resulted in milligram amounts of biochemically stable and monodisperse protein. Overall, our results establish the evolutionary conservation of glycine receptors in annelids and pave the way for future structural studies. PMID:26999666

  6. Target-classification approach applied to active UXO sites

    NASA Astrophysics Data System (ADS)

    Shubitidze, F.; Fernández, J. P.; Shamatava, Irma; Barrowes, B. E.; O'Neill, K.

    2013-06-01

    This study is designed to illustrate the discrimination performance at two UXO active sites (Oklahoma's Fort Sill and the Massachusetts Military Reservation) of a set of advanced electromagnetic induction (EMI) inversion/discrimination models which include the orthonormalized volume magnetic source (ONVMS), joint diagonalization (JD), and differential evolution (DE) approaches and whose power and flexibility greatly exceed those of the simple dipole model. The Fort Sill site is highly contaminated by a mix of the following types of munitions: 37-mm target practice tracers, 60-mm illumination mortars, 75-mm and 4.5'' projectiles, 3.5'', 2.36'', and LAAW rockets, antitank mine fuzes with and without hex nuts, practice MK2 and M67 grenades, 2.5'' ballistic windshields, M2A1-mines with/without bases, M19-14 time fuzes, and 40-mm practice grenades with/without cartridges. The site at the MMR site contains targets of yet different sizes. In this work we apply our models to EMI data collected using the MetalMapper (MM) and 2 × 2 TEMTADS sensors. The data for each anomaly are inverted to extract estimates of the extrinsic and intrinsic parameters associated with each buried target. (The latter include the total volume magnetic source or NVMS, which relates to size, shape, and material properties; the former includes location, depth, and orientation). The estimated intrinsic parameters are then used for classification performed via library matching and the use of statistical classification algorithms; this process yielded prioritized dig-lists that were submitted to the Institute for Defense Analyses (IDA) for independent scoring. The models' classification performance is illustrated and assessed based on these independent evaluations.

  7. The Structures of the C185S and C185A Mutants of Sulfite Oxidase Reveal Rearrangement of the Active Site

    SciTech Connect

    Qiu, James A.; Wilson, Heather L.; Pushie, M. Jake; Kisker, Caroline; George, Graham N.; Rajagopalan, K.V.

    2010-11-03

    Sulfite oxidase (SO) catalyzes the physiologically critical conversion of sulfite to sulfate. Enzymatic activity is dependent on the presence of the metal molybdenum complexed with a pyranopterin-dithiolene cofactor termed molybdopterin. Comparison of the amino acid sequences of SOs from a variety of sources has identified a single conserved Cys residue essential for catalytic activity. The crystal structure of chicken liver sulfite oxidase indicated that this residue, Cys185 in chicken SO, coordinates the Mo atom in the active site. To improve our understanding of the role of this residue in the catalytic mechanism of sulfite oxidase, serine and alanine variants at position 185 of recombinant chicken SO were generated. Spectroscopic and kinetic studies indicate that neither variant is capable of sulfite oxidation. The crystal structure of the C185S variant was determined to 1.9 {angstrom} resolution and to 2.4 {angstrom} resolution in the presence of sulfite, and the C185A variant to 2.8 {angstrom} resolution. The structures of the C185S and C185A variants revealed that neither the Ser or Ala side chains appeared to closely interact with the Mo atom and that a third oxo group replaced the usual cysteine sulfur ligand at the Mo center, confirming earlier extended X-ray absorption fine structure spectroscopy (EXAFS) work on the human C207S mutant. An unexpected result was that in the C185S variant, in the absence of sulfite, the active site residue Tyr322 became disordered as did the loop region flanking it. In the C185S variant crystallized in the presence of sulfite, the Tyr322 residue relocalized to the active site. The C185A variant structure also indicated the presence of a third oxygen ligand; however, Tyr322 remained in the active site. EXAFS studies of the Mo coordination environment indicate the Mo atom is in the oxidized Mo{sup VI} state in both the C185S and C185A variants of chicken SO and show the expected trioxodithiolene active site. Density

  8. Identification of Phosphorylation Sites Altering Pollen Soluble Inorganic Pyrophosphatase Activity.

    PubMed

    Eaves, Deborah J; Haque, Tamanna; Tudor, Richard L; Barron, Yoshimi; Zampronio, Cleidiane G; Cotton, Nicholas P J; de Graaf, Barend H J; White, Scott A; Cooper, Helen J; Franklin, F Christopher H; Harper, Jeffery F; Franklin-Tong, Vernonica E

    2017-03-01

    Protein phosphorylation regulates numerous cellular processes. Identifying the substrates and protein kinases involved is vital to understand how these important posttranslational modifications modulate biological function in eukaryotic cells. Pyrophosphatases catalyze the hydrolysis of inorganic phosphate (PPi) to inorganic phosphate Pi, driving biosynthetic reactions; they are essential for low cytosolic inorganic phosphate. It was suggested recently that posttranslational regulation of Family I soluble inorganic pyrophosphatases (sPPases) may affect their activity. We previously demonstrated that two pollen-expressed sPPases, Pr-p26.1a and Pr-p26.1b, from the flowering plant Papaver rhoeas were inhibited by phosphorylation. Despite the potential significance, there is a paucity of data on sPPase phosphorylation and regulation. Here, we used liquid chromatographic tandem mass spectrometry to map phosphorylation sites to the otherwise divergent amino-terminal extensions on these pollen sPPases. Despite the absence of reports in the literature on mapping phosphorylation sites on sPPases, a database survey of various proteomes identified a number of examples, suggesting that phosphorylation may be a more widely used mechanism to regulate these enzymes. Phosphomimetic mutants of Pr-p26.1a/b significantly and differentially reduced PPase activities by up to 2.5-fold at pH 6.8 and 52% in the presence of Ca(2+) and hydrogen peroxide over unmodified proteins. This indicates that phosphoregulation of key sites can inhibit the catalytic responsiveness of these proteins in concert with key intracellular events. As sPPases are essential for many metabolic pathways in eukaryotic cells, our findings identify the phosphorylation of sPPases as a potential master regulatory mechanism that could be used to attenuate metabolism.

  9. First Principles Computational Study of the Active Site of Arginase

    SciTech Connect

    Ivanov, Ivaylo; Klien, Micheal

    2004-01-14

    Ab initio density functional theory (DFT) methods were used to investigate the structural features of the active site of the binuclear enzyme rat liver arginase. Special emphasis was placed on the crucial role of the second shell ligand interactions. These interactions were systematically studied by performing calculations on models of varying size. It was determined that a water molecule, and not hydroxide, is the bridging exogenous ligand. The carboxylate ligands facilitate the close approach of the Mn (II) ions by attenuating the metal-metal electrostatic repulsion. Of the two metals, MnA was shown to carry a larger positive charge. Analysis of the electronic properties of the active site revealed that orbitals involving the terminal Asp234 residue, as well as the flexible -1,1 bridging Asp232, lie at high energies, suggesting weaker coordination. This is reflected in certain structural variability present in our models and is also consistent with recent experimental findings. Finally, implications of our findings for the biological function of the enzyme are delineated.

  10. Functional site profiling and electrostatic analysis of cysteines modifiable to cysteine sulfenic acid.

    PubMed

    Salsbury, Freddie R; Knutson, Stacy T; Poole, Leslie B; Fetrow, Jacquelyn S

    2008-02-01

    Cysteine sulfenic acid (Cys-SOH), a reversible modification, is a catalytic intermediate at enzyme active sites, a sensor for oxidative stress, a regulator of some transcription factors, and a redox-signaling intermediate. This post-translational modification is not random: specific features near the cysteine control its reactivity. To identify features responsible for the propensity of cysteines to be modified to sulfenic acid, a list of 47 proteins (containing 49 known Cys-SOH sites) was compiled. Modifiable cysteines are found in proteins from most structural classes and many functional classes, but have no propensity for any one type of protein secondary structure. To identify features affecting cysteine reactivity, these sites were analyzed using both functional site profiling and electrostatic analysis. Overall, the solvent exposure of modifiable cysteines is not different from the average cysteine. The combined sequence, structure, and electrostatic approaches reveal mechanistic determinants not obvious from overall sequence comparison, including: (1) pKaS of some modifiable cysteines are affected by backbone features only; (2) charged residues are underrepresented in the structure near modifiable sites; (3) threonine and other polar residues can exert a large influence on the cysteine pKa; and (4) hydrogen bonding patterns are suggested to be important. This compilation of Cys-SOH modification sites and their features provides a quantitative assessment of previous observations and a basis for further analysis and prediction of these sites. Agreement with known experimental data indicates the utility of this combined approach for identifying mechanistic determinants at protein functional sites.

  11. Genetic Selection for Enhanced Folding In Vivo Targets the Cys14-Cys38 Disulfide Bond in Bovine Pancreatic Trypsin Inhibitor

    PubMed Central

    Foit, Linda; Mueller-Schickert, Antje; Mamathambika, Bharath S.; Gleiter, Stefan; Klaska, Caitlyn L.; Ren, Guoping

    2011-01-01

    Abstract The periplasm provides a strongly oxidizing environment; however, periplasmic expression of proteins with disulfide bonds is often inefficient. Here, we used two different tripartite fusion systems to perform in vivo selections for mutants of the model protein bovine pancreatic trypsin inhibitor (BPTI) with the aim of enhancing its expression in Escherichia coli. This trypsin inhibitor contains three disulfides that contribute to its extreme stability and protease resistance. The mutants we isolated for increased expression appear to act by eliminating or destabilizing the Cys14-Cys38 disulfide in BPTI. In doing so, they are expected to reduce or eliminate kinetic traps that exist within the well characterized in vitro folding pathway of BPTI. These results suggest that elimination or destabilization of a disulfide bond whose formation is problematic in vitro can enhance in vivo protein folding. The use of these in vivo selections may prove a valuable way to identify and eliminate disulfides and other rate-limiting steps in the folding of proteins, including those proteins whose in vitro folding pathways are unknown. Antioxid. Redox Signal. 14, 973–984. PMID:21110786

  12. C-H Activation on Co,O Sites: Isolated Surface Sites versus Molecular Analogs.

    PubMed

    Estes, Deven P; Siddiqi, Georges; Allouche, Florian; Kovtunov, Kirill V; Safonova, Olga V; Trigub, Alexander L; Koptyug, Igor V; Copéret, Christophe

    2016-11-16

    The activation and conversion of hydrocarbons is one of the most important challenges in chemistry. Transition-metal ions (V, Cr, Fe, Co, etc.) isolated on silica surfaces are known to catalyze such processes. The mechanisms of these processes are currently unknown but are thought to involve C-H activation as the rate-determining step. Here, we synthesize well-defined Co(II) ions on a silica surface using a metal siloxide precursor followed by thermal treatment under vacuum at 500 °C. We show that these isolated Co(II) sites are catalysts for a number of hydrocarbon conversion reactions, such as the dehydrogenation of propane, the hydrogenation of propene, and the trimerization of terminal alkynes. We then investigate the mechanisms of these processes using kinetics, kinetic isotope effects, isotopic labeling experiments, parahydrogen induced polarization (PHIP) NMR, and comparison with a molecular analog. The data are consistent with all of these reactions occurring by a common mechanism, involving heterolytic C-H or H-H activation via a 1,2 addition across a Co-O bond.

  13. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer

    PubMed Central

    Dinpajooh, Mohammadhasan; Martin, Daniel R.; Matyushov, Dmitry V.

    2016-01-01

    Enzymes in biology’s energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work. PMID:27306204

  14. Further characterization of Cys-type and Ser-type anaerobic sulfatase maturating enzymes suggests a commonality in the mechanism of catalysis.

    PubMed

    Grove, Tyler L; Ahlum, Jessica H; Qin, Rosie M; Lanz, Nicholas D; Radle, Matthew I; Krebs, Carsten; Booker, Squire J

    2013-04-30

    The anaerobic sulfatase-maturating enzyme from Clostridium perfringens (anSMEcpe) catalyzes the two-electron oxidation of a cysteinyl residue on a cognate protein to a formylglycyl residue (FGly) using a mechanism that involves organic radicals. The FGly residue plays a unique role as a cofactor in a class of enzymes termed arylsulfatases, which catalyze the hydrolysis of various organosulfate monoesters. anSMEcpe has been shown to be a member of the radical S-adenosylmethionine (SAM) family of enzymes, [4Fe-4S] cluster-requiring proteins that use a 5'-deoxyadenosyl 5'-radical (5'-dA(•)) generated from a reductive cleavage of SAM to initiate radical-based catalysis. Herein, we show that anSMEcpe contains in addition to the [4Fe-4S] cluster harbored by all radical SAM (RS) enzymes, two additional [4Fe-4S] clusters, similar to the radical SAM protein AtsB, which catalyzes the two-electron oxidation of a seryl residue to a FGly residue. We show by size-exclusion chromatography that both AtsB and anSMEcpe are monomeric proteins, and site-directed mutagenesis studies of AtsB reveal that individual Cys → Ala substitutions at seven conserved positions result in an insoluble protein, consistent with those residues acting as ligands to the two additional [4Fe-4S] clusters. Ala substitutions at an additional conserved Cys residue (C291 in AtsB and C276 in anSMEcpe) afford proteins that display intermediate behavior. These proteins exhibit reduced solubility and drastically reduced activity, behavior that is conspicuously similar to that of a critical Cys residue in BtrN, another radical SAM dehydrogenase [Grove, T. L., et al. (2010) Biochemistry 49, 3783-3785]. We also show that wild-type anSMEcpe acts on peptides containing other oxidizable amino acids at the target position. Moreover, we show that the enzyme will convert threonyl peptides to the corresponding ketone product, and also allo-threonyl peptides, but with a significantly reduced efficiency, suggesting that

  15. Active Sites Environmental Monitoring Program: Program plan. Revision 1

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  16. On the active site of mononuclear B1 metallo β-lactamases: a computational study

    NASA Astrophysics Data System (ADS)

    Sgrignani, Jacopo; Magistrato, Alessandra; Dal Peraro, Matteo; Vila, Alejandro J.; Carloni, Paolo; Pierattelli, Roberta

    2012-04-01

    Metallo-β-lactamases (MβLs) are Zn(II)-based bacterial enzymes that hydrolyze β-lactam antibiotics, hampering their beneficial effects. In the most relevant subclass (B1), X-ray crystallography studies on the enzyme from Bacillus Cereus point to either two zinc ions in two metal sites (the so-called `3H' and `DCH' sites) or a single Zn(II) ion in the 3H site, where the ion is coordinated by Asp120, Cys221 and His263 residues. However, spectroscopic studies on the B1 enzyme from B. Cereus in the mono-zinc form suggested the presence of the Zn(II) ion also in the DCH site, where it is bound to an aspartate, a cysteine, a histidine and a water molecule. A structural model of this enzyme in its DCH mononuclear form, so far lacking, is therefore required for inhibitor design and mechanistic studies. By using force field based and mixed quantum-classical (QM/MM) molecular dynamics (MD) simulations of the protein in aqueous solution we constructed such structural model. The geometry and the H-bond network at the catalytic site of this model, in the free form and in complex with two common β-lactam drugs, is compared with experimental and theoretical findings of CphA and the recently solved crystal structure of new B2 MβL from Serratia fonticola (Sfh-I). These are MβLs from the B2 subclass, which features an experimentally well established mono-zinc form, in which the Zn(II) is located in the DCH site. From our simulations the ɛɛδ and δɛδ protomers emerge as possible DCH mono-zinc reactive species, giving a novel contribution to the discussion on the MβL reactivity and to the drug design process.

  17. Active Site and Laminarin Binding in Glycoside Hydrolase Family 55*

    PubMed Central

    Bianchetti, Christopher M.; Takasuka, Taichi E.; Deutsch, Sam; Udell, Hannah S.; Yik, Eric J.; Bergeman, Lai F.; Fox, Brian G.

    2015-01-01

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100–10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. PMID:25752603

  18. Metal active site elasticity linked to activation of homocysteine in methionine synthases

    SciTech Connect

    Koutmos, Markos; Pejchal, Robert; Bomer, Theresa M.; Matthews, Rowena G.; Smith, Janet L.; Ludwig, Martha L.

    2008-04-02

    Enzymes possessing catalytic zinc centers perform a variety of fundamental processes in nature, including methyl transfer to thiols. Cobalamin-independent (MetE) and cobalamin-dependent (MetH) methionine synthases are two such enzyme families. Although they perform the same net reaction, transfer of a methyl group from methyltetrahydrofolate to homocysteine (Hcy) to form methionine, they display markedly different catalytic strategies, modular organization, and active site zinc centers. Here we report crystal structures of zinc-replete MetE and MetH, both in the presence and absence of Hcy. Structural investigation of the catalytic zinc sites of these two methyltransferases reveals an unexpected inversion of zinc geometry upon binding of Hcy and displacement of an endogenous ligand in both enzymes. In both cases a significant movement of the zinc relative to the protein scaffold accompanies inversion. These structures provide new information on the activation of thiols by zinc-containing enzymes and have led us to propose a paradigm for the mechanism of action of the catalytic zinc sites in these and related methyltransferases. Specifically, zinc is mobile in the active sites of MetE and MetH, and its dynamic nature helps facilitate the active site conformational changes necessary for thiol activation and methyl transfer.

  19. An Active Site Water Network in the Plasminogen Activator Pla from Yersinia pestis

    SciTech Connect

    Eren, Elif; Murphy, Megan; Goguen, Jon; van den Berg, Bert

    2010-08-13

    The plasminogen activator Pla from Yersinia pestis is an outer membrane protease (omptin) that is important for the virulence of plague. Here, we present the high-resolution crystal structure of wild-type, enzymatically active Pla at 1.9 {angstrom}. The structure shows a water molecule located between active site residues D84 and H208, which likely corresponds to the nucleophilic water. A number of other water molecules are present in the active site, linking residues important for enzymatic activity. The R211 sidechain in loop L4 is close to the nucleophilic water and possibly involved in the stabilization of the oxyanion intermediate. Subtle conformational changes of H208 result from the binding of lipopolysaccharide to the outside of the barrel, explaining the unusual dependence of omptins on lipopolysaccharide for activity. The Pla structure suggests a model for the interaction with plasminogen substrate and provides a more detailed understanding of the catalytic mechanism of omptin proteases.

  20. An active site water network in the plasminogen activator pla from Yersinia pestis.

    PubMed

    Eren, Elif; Murphy, Megan; Goguen, Jon; van den Berg, Bert

    2010-07-14

    The plasminogen activator Pla from Yersinia pestis is an outer membrane protease (omptin) that is important for the virulence of plague. Here, we present the high-resolution crystal structure of wild-type, enzymatically active Pla at 1.9 A. The structure shows a water molecule located between active site residues D84 and H208, which likely corresponds to the nucleophilic water. A number of other water molecules are present in the active site, linking residues important for enzymatic activity. The R211 sidechain in loop L4 is close to the nucleophilic water and possibly involved in the stabilization of the oxyanion intermediate. Subtle conformational changes of H208 result from the binding of lipopolysaccharide to the outside of the barrel, explaining the unusual dependence of omptins on lipopolysaccharide for activity. The Pla structure suggests a model for the interaction with plasminogen substrate and provides a more detailed understanding of the catalytic mechanism of omptin proteases.

  1. CADASIL with a novel NOTCH3 mutation (Cys478Tyr).

    PubMed

    Ozaki, Kokoro; Irioka, Takashi; Ishikawa, Kinya; Mizusawa, Hidehiro

    2015-03-01

    Recently, an increasing number of NOTCH3 mutations have been described to cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Here, we report 2 CADASIL patients from a Japanese family, who were found to possess a novel NOTCH3 mutation. The proband only had chronic headache, and her mother had previously suffered a minor stroke. Although the patients' clinical symptoms were mild, their distinctive magnetic resonance imaging (MRI) features suggested CADASIL. Genetic analysis revealed that both patients had a novel heterozygous NOTCH3 mutation (p.Cys478Tyr) leading to stereotypical cysteine loss. The present finding suggests that genetic testing for NOTCH3 mutations in patients with distinctive MRI features, even if the symptoms are as mild as chronic headache, should help to broaden the mutational and clinical spectrum of CADASIL.

  2. Protein Chaperones Q8ZP25_SALTY from Salmonella Typhimurium and HYAE_ECOLI from Escherichia coli Exhibit Thioredoxin-like Structures Despite Lack of Canonical Thioredoxin Active Site Sequence Motif

    SciTech Connect

    Parish, D.; Benach, J; Liu, G; Singarapu, K; Xiao, R; Acton, T; Hunt, J; Montelione, G; Szyperski, T; et. al.

    2008-01-01

    The structure of the 142-residue protein Q8ZP25 SALTY encoded in the genome of Salmonella typhimurium LT2 was determined independently by NMR and X-ray crystallography, and the structure of the 140-residue protein HYAE ECOLI encoded in the genome of Escherichia coli was determined by NMR. The two proteins belong to Pfam (Finn et al. 34:D247-D251, 2006) PF07449, which currently comprises 50 members, and belongs itself to the 'thioredoxin-like clan'. However, protein HYAE ECOLI and the other proteins of Pfam PF07449 do not contain the canonical Cys-X-X-Cys active site sequence motif of thioredoxin. Protein HYAE ECOLI was previously classified as a (NiFe) hydrogenase-1 specific chaperone interacting with the twin-arginine translocation (Tat) signal peptide. The structures presented here exhibit the expected thioredoxin-like fold and support the view that members of Pfam family PF07449 specifically interact with Tat signal peptides.

  3. Active Site Loop Conformation Regulates Promiscuous Activity in a Lactonase from Geobacillus kaustophilus HTA426

    PubMed Central

    Zhang, Yu; An, Jiao; Yang, Guang-Yu; Bai, Aixi; Zheng, Baisong; Lou, Zhiyong; Wu, Geng; Ye, Wei; Chen, Hai-Feng; Feng, Yan; Manco, Giuseppe

    2015-01-01

    Enzyme promiscuity is a prerequisite for fast divergent evolution of biocatalysts. A phosphotriesterase-like lactonase (PLL) from Geobacillus kaustophilus HTA426 (GkaP) exhibits main lactonase and promiscuous phosphotriesterase activities. To understand its catalytic and evolutionary mechanisms, we investigated a “hot spot” in the active site by saturation mutagenesis as well as X-ray crystallographic analyses. We found that position 99 in the active site was involved in substrate discrimination. One mutant, Y99L, exhibited 11-fold improvement over wild-type in reactivity (kcat/Km) toward the phosphotriesterase substrate ethyl-paraoxon, but showed 15-fold decrease toward the lactonase substrate δ-decanolactone, resulting in a 157-fold inversion of the substrate specificity. Structural analysis of Y99L revealed that the mutation causes a ∼6.6 Å outward shift of adjacent loop 7, which may cause increased flexibility of the active site and facilitate accommodation and/or catalysis of organophosphate substrate. This study provides for the PLL family an example of how the evolutionary route from promiscuity to specificity can derive from very few mutations, which promotes alteration in the conformational adjustment of the active site loops, in turn draws the capacity of substrate binding and activity. PMID:25706379

  4. Characterization of the active site of ADP-ribosyl cyclase.

    PubMed

    Munshi, C; Thiel, D J; Mathews, I I; Aarhus, R; Walseth, T F; Lee, H C

    1999-10-22

    ADP-ribosyl cyclase synthesizes two Ca(2+) messengers by cyclizing NAD to produce cyclic ADP-ribose and exchanging nicotinic acid with the nicotinamide group of NADP to produce nicotinic acid adenine dinucleotide phosphate. Recombinant Aplysia cyclase was expressed in yeast and co-crystallized with a substrate, nicotinamide. x-ray crystallography showed that the nicotinamide was bound in a pocket formed in part by a conserved segment and was near the central cleft of the cyclase. Glu(98), Asn(107) and Trp(140) were within 3.5 A of the bound nicotinamide and appeared to coordinate it. Substituting Glu(98) with either Gln, Gly, Leu, or Asn reduced the cyclase activity by 16-222-fold, depending on the substitution. The mutant N107G exhibited only a 2-fold decrease in activity, while the activity of W140G was essentially eliminated. The base exchange activity of all mutants followed a similar pattern of reduction, suggesting that both reactions occur at the same active site. In addition to NAD, the wild-type cyclase also cyclizes nicotinamide guanine dinucleotide to cyclic GDP-ribose. All mutant enzymes had at least half of the GDP-ribosyl cyclase activity of the wild type, some even 2-3-fold higher, indicating that the three coordinating amino acids are responsible for positioning of the substrate but not absolutely critical for catalysis. To search for the catalytic residues, other amino acids in the binding pocket were mutagenized. E179G was totally devoid of GDP-ribosyl cyclase activity, and both its ADP-ribosyl cyclase and the base exchange activities were reduced by 10,000- and 18,000-fold, respectively. Substituting Glu(179) with either Asn, Leu, Asp, or Gln produced similar inactive enzymes, and so was the conversion of Trp(77) to Gly. However, both E179G and the double mutant E179G/W77G retained NAD-binding ability as shown by photoaffinity labeling with [(32)P]8-azido-NAD. These results indicate that both Glu(179) and Trp(77) are crucial for catalysis and

  5. Mutations inducing an active-site aperture in Rhizobium sp. sucrose isomerase confer hydrolytic activity.

    PubMed

    Lipski, Alexandra; Watzlawick, Hildegard; Ravaud, Stéphanie; Robert, Xavier; Rhimi, Moez; Haser, Richard; Mattes, Ralf; Aghajari, Nushin

    2013-02-01

    Sucrose isomerase is an enzyme that catalyzes the production of sucrose isomers of high biotechnological and pharmaceutical interest. Owing to the complexity of the chemical synthesis of these isomers, isomaltulose and trehalulose, enzymatic conversion remains the preferred method for obtaining these products. Depending on the microbial source, the ratio of the sucrose-isomer products varies significantly. In studies aimed at understanding and explaining the underlying molecular mechanisms of these reactions, mutations obtained using a random-mutagenesis approach displayed a major hydrolytic activity. Two of these variants, R284C and F164L, of sucrose isomerase from Rhizobium sp. were therefore crystallized and their crystal structures were determined. The three-dimensional structures of these mutants allowed the identification of the molecular determinants that favour hydrolytic activity compared with transferase activity. Substantial conformational changes resulting in an active-site opening were observed, as were changes in the pattern of water molecules bordering the active-site region.

  6. Oxygen-coupled redox regulation of the skeletal muscle ryanodine receptor/Ca2+ release channel (RyR1): sites and nature of oxidative modification.

    PubMed

    Sun, Qi-An; Wang, Benlian; Miyagi, Masaru; Hess, Douglas T; Stamler, Jonathan S

    2013-08-09

    In mammalian skeletal muscle, Ca(2+) release from the sarcoplasmic reticulum (SR) through the ryanodine receptor/Ca(2+)-release channel RyR1 can be enhanced by S-oxidation or S-nitrosylation of separate Cys residues, which are allosterically linked. S-Oxidation of RyR1 is coupled to muscle oxygen tension (pO2) through O2-dependent production of hydrogen peroxide by SR-resident NADPH oxidase 4. In isolated SR (SR vesicles), an average of six to eight Cys thiols/RyR1 monomer are reversibly oxidized at high (21% O2) versus low pO2 (1% O2), but their identity among the 100 Cys residues/RyR1 monomer is unknown. Here we use isotope-coded affinity tag labeling and mass spectrometry (yielding 93% coverage of RyR1 Cys residues) to identify 13 Cys residues subject to pO2-coupled S-oxidation in SR vesicles. Eight additional Cys residues are oxidized at high versus low pO2 only when NADPH levels are supplemented to enhance NADPH oxidase 4 activity. pO2-sensitive Cys residues were largely non-overlapping with those identified previously as hyperreactive by administration of exogenous reagents (three of 21) or as S-nitrosylated. Cys residues subject to pO2-coupled oxidation are distributed widely within the cytoplasmic domain of RyR1 in multiple functional domains implicated in RyR1 activity-regulating interactions with the L-type Ca(2+) channel (dihydropyridine receptor) and FK506-binding protein 12 as well as in "hot spot" regions containing sites of mutation implicated in malignant hyperthermia and central core disease. pO2-coupled disulfide formation was identified, whereas neither S-glutathionylated nor sulfenamide-modified Cys residues were observed. Thus, physiological redox regulation of RyR1 by endogenously generated hydrogen peroxide is exerted through dynamic disulfide formation involving multiple Cys residues.

  7. Palmitoylation of muscarinic acetylcholine receptor m2 subtypes: reduction in their ability to activate G proteins by mutation of a putative palmitoylation site, cysteine 457, in the carboxyl-terminal tail.

    PubMed

    Hayashi, M K; Haga, T

    1997-04-15

    A putative palmitoylation site, Cys457, of muscarinic acetylcholine receptor m2 subtype (m2 receptor) was eliminated by conversion to alanine or stop codon by site-directed mutagenesis. The mutant m2 receptor C457A was not metabolically labeled with [3H] palmitic acid when expressed in Sf9 cells, whereas the wild-type m2 receptor was labeled under the same conditions. These results confirm that the Cys457 is the palmitoylation site. The rate of palmitoylation was markedly accelerated by addition of agonist, indicating that the palmitoylation reaction is affected by conformational changes of the receptor induced by agonist binding. The m2 receptor mutants without palmitoylation were purified and reconstituted with G proteins into phospholipid vesicles. Both mutants were good substrates of G protein-coupled receptor kinase 2 and the phosphorylation was stimulated by agonist and G protein beta gamma subunits, as was the case for wild-type receptors. The mutant receptors interacted with and activate Gi2 and G(o). However, the rate of [35S] GTP gamma S binding to Gi2 was half as much for the mutants as that for the wild type, and the proportion of guanine nucleotide-sensitive high-affinity agonist binding sites was significantly less for mutants (42-42%) compared to wild type (62%). These results indicate that the palmitoylation of m2 receptors is not an absolute requirement for their interaction with G proteins but enhances the ability of the receptors to interact with G proteins.

  8. Genome-wide analysis of the Zn(II)2Cys6 zinc cluster-encoding gene family in Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins with a Zn(II)2Cys6 domain, Cys-X2-Cys-X6-Cys-X5-12-Cys-X2-Cys-X6-9-Cys (hereafter, referred to as the C6 domain), form a subclass of zinc finger proteins found exclusively in fungi and yeast. Genome sequence databases of Saccharomyces cerevisiae and Candida albicans have provided an overvie...

  9. C-Mannosylation of MUC5AC and MUC5B Cys subdomains.

    PubMed

    Perez-Vilar, Juan; Randell, Scott H; Boucher, Richard C

    2004-04-01

    We expressed recombinant Cys subdomains in COS-7 cells to examine the role of this highly conserved protein domain in mucin biosynthesis. The entire Cys1 and Cys5 and Cys1 and Cys3 subdomains in MUC5AC and MUC5B, respectively, each with six carboxyl terminal histidine residues, were pulse-labeled with [(35)S]cysteine/methionine, and the labeled proteins were examined in the culture medium. Under nonreducing conditions, secreted Cys subdomains were monomers, indicating the absence of interchain disulfide bonds. Cross-linking studies suggested the domains are able to interact through very weak noncovalent interactions. Though the domains had apparent M(r) consistent with the absence of N- and O-glycans, they could be purified with mannose-specific lectins. Lectin binding was prevented by mutation of the first tryptophan residue in the putative C-mannosylation acceptor motif WXXW, indicating that C-mannosylation is responsible for lectin binding. As judged by pulse-chase experiments, C-mannosylation occurred very early during the domain biosynthesis, likely in the endoplasmic reticulum (ER). Mutation of the WXXW motif or expression of the unmutated domain in CHO-Lec35.1 cells, a C-mannosylation-defective cell line, resulted in reduced secretion of the corresponding Cys subdomains. Live cell imaging of green fluorescent protein fused to the Cys subdomains clearly revealed increased presence of Cys subdomains in the ER of CHO-Lec35.1 cells when compared to the same domains expressed in CHO-K1 cells. Considered together, these studies suggest that the Cys subdomains of MUC5AC and MUC5B are C-mannosylated in their respective WXXW motifs. C-mannosylation is likely required for proper folding of the Cys subdomains and/or for some aspect of ER export during mucin biosynthesis.

  10. Essential Role of the C-Terminal Helical Domain in Active Site Formation of Selenoprotein MsrA from Clostridium oremlandii

    PubMed Central

    Lee, Eun Hye; Lee, Kitaik; Hwang, Kwang Yeon; Kim, Hwa-Young

    2015-01-01

    We previously determined the crystal structures of 1-Cys type selenoprotein MsrA from Clostridium oremlandii (CoMsrA). The overall structure of CoMsrA is unusual, consisting of two domains, the N-terminal catalytic domain and the C-terminal distinct helical domain which is absent from other known MsrA structures. Deletion of the helical domain almost completely abolishes the catalytic activity of CoMsrA. In this study, we determined the crystal structure of the helical domain-deleted (ΔH-domain) form of CoMsrA at a resolution of 1.76 Å. The monomer structure is composed of the central rolled mixed β-sheet surrounded by α-helices. However, there are significant conformational changes in the N- and C-termini and loop regions of the ΔH-domain protein relative to the catalytic domain structure of full-length CoMsrA. The active site structure in the ΔH-domain protein completely collapses, thereby causing loss of catalytic activity of the protein. Interestingly, dimer structures are observed in the crystal formed by N-terminus swapping between two molecules. The ΔH-domain protein primarily exists as a dimer in solution, whereas the full-length CoMsrA exists as a monomer. Collectively, this study provides insight into the structural basis of the essential role of the helical domain of CoMsrA in its catalysis. PMID:25692691

  11. A Potent and Site-Selective Agonist of TRPA1.

    PubMed

    Takaya, Junichiro; Mio, Kazuhiro; Shiraishi, Takuya; Kurokawa, Tatsuki; Otsuka, Shinya; Mori, Yasuo; Uesugi, Motonari

    2015-12-23

    TRPA1 is a member of the transient receptor potential (TRP) cation channel family that is expressed primarily on sensory neurons. This chemosensor is activated through covalent modification of multiple cysteine residues with a wide range of reactive compounds including allyl isothiocyanate (AITC), a spicy component of wasabi. The present study reports on potent and selective agonists of TRPA1, discovered through screening 1657 electrophilic molecules. In an effort to validate the mode of action of hit molecules, we noted a new TRPA1-selective agonist, JT010 (molecule 1), which opens the TRPA1 channel by covalently and site-selectively binding to Cys621 (EC50 = 0.65 nM). The results suggest that a single modification of Cys621 is sufficient to open the TRPA1 channel. The TRPA1-selective probe described herein might be useful for further mechanistic studies of TRPA1 activation.

  12. Site-specific PEGylation of lidamycin and its antitumor activity

    PubMed Central

    Li, Liang; Shang, Boyang; Hu, Lei; Shao, Rongguang; Zhen, Yongsu

    2015-01-01

    In this study, N-terminal site-specific mono-PEGylation of the recombinant lidamycin apoprotein (rLDP) of lidamycin (LDM) was prepared using a polyethyleneglycol (PEG) derivative (Mw 20 kDa) through a reactive terminal aldehyde group under weak acidic conditions (pH 5.5). The biochemical properties of mPEG-rLDP-AE, an enediyne-integrated conjugate, were analyzed by SDS-PAGE, RP-HPLC, SEC-HPLC and MALDI-TOF. Meanwhile, in vitro and in vivo antitumor activity of mPEG-rLDP-AE was evaluated by MTT assays and in xenograft model. The results indicated that mPEG-rLDP-AE showed significant antitumor activity both in vitro and in vivo. After PEGylation, mPEG-rLDP still retained the binding capability to the enediyne AE and presented the physicochemical characteristics similar to that of native LDP. It is of interest that the PEGylation did not diminish the antitumor efficacy of LDM, implying the possibility that this derivative may function as a payload to deliver novel tumor-targeted drugs. PMID:26579455

  13. Allosteric site-mediated active site inhibition of PBP2a using Quercetin 3-O-rutinoside and its combination.

    PubMed

    Rani, Nidhi; Vijayakumar, Saravanan; P T V, Lakshmi; Arunachalam, Annamalai

    2016-08-01

    Recent crystallographic study revealed the involvement of allosteric site in active site inhibition of penicillin binding protein (PBP2a), where one molecule of Ceftaroline (Cef) binds to the allosteric site of PBP2a and paved way for the other molecule (Cef) to bind at the active site. Though Cef has the potency to inhibit the PBP2a, its adverse side effects are of major concern. Previous studies have reported the antibacterial property of Quercetin derivatives, a group of natural compounds. Hence, the present study aims to evaluate the effect of Quercetin 3-o-rutinoside (Rut) in allosteric site-mediated active site inhibition of PBP2a. The molecular docking studies between allosteric site and ligands (Rut, Que, and Cef) revealed a better binding efficiency (G-score) of Rut (-7.790318) and Cef (-6.194946) with respect to Que (-5.079284). Molecular dynamic (MD) simulation studies showed significant changes at the active site in the presence of ligands (Rut and Cef) at allosteric site. Four different combinations of Rut and Cef were docked and their G-scores ranged between -6.320 and -8.623. MD studies revealed the stability of the key residue (Ser403) with Rut being at both sites, compared to other complexes. Morphological analysis through electron microscopy confirmed that combination of Rut and Cefixime was able to disturb the bacterial cell membrane in a similar fashion to that of Rut and Cefixime alone. The results of this study indicate that the affinity of Rut at both sites were equally good, with further validations Rut could be considered as an alternative for inhibiting MRSA growth.

  14. Structure of a (Cys3His) zinc ribbon, a ubiquitous motif in archaeal and eucaryal transcription.

    PubMed Central

    Chen, H. T.; Legault, P.; Glushka, J.; Omichinski, J. G.; Scott, R. A.

    2000-01-01

    Transcription factor IIB (TFIIB) is an essential component in the formation of the transcription initiation complex in eucaryal and archaeal transcription. TFIIB interacts with a promoter complex containing the TATA-binding protein (TBP) to facilitate interaction with RNA polymerase II (RNA pol II) and the associated transcription factor IIF (TFIIF). TFIIB contains a zinc-binding motif near the N-terminus that is directly involved in the interaction with RNA pol II/TFIIF and plays a crucial role in selecting the transcription initiation site. The solution structure of the N-terminal residues 2-59 of human TFIIB was determined by multidimensional NMR spectroscopy. The structure consists of a nearly tetrahedral Zn(Cys)3(His)1 site confined by type I and "rubredoxin" turns, three antiparallel beta-strands, and disordered loops. The structure is similar to the reported zinc-ribbon motifs in several transcription-related proteins from archaea and eucarya, including Pyrococcus furiosus transcription factor B (PfTFB), human and yeast transcription factor IIS (TFIIS), and Thermococcus celer RNA polymerase II subunit M (TcRPOM). The zinc-ribbon structure of TFIIB, in conjunction with the biochemical analyses, suggests that residues on the beta-sheet are involved in the interaction with RNA pol II/TFIIF, while the zinc-binding site may increase the stability of the beta-sheet. PMID:11045620

  15. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site

    PubMed Central

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel

    2015-01-01

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called ‘catalytic residues’ are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes. DOI: http://dx.doi.org/10.7554/eLife.06181.001 PMID:25902402

  16. A split active site couples cap recognition by Dcp2 to activation

    PubMed Central

    Floor, Stephen N.; Jones, Brittnee N.; Hernandez, Gail A.; Gross, John D.

    2010-01-01

    Decapping by Dcp2 is an essential step in 5′-3′ mRNA decay. In yeast, decapping requires an open-to-closed transition in Dcp2, though the link between closure and catalysis remains elusive. Here we show using NMR that cap binds conserved residues on both the catalytic and regulatory domains of Dcp2. Lesions in the cap-binding site on the regulatory domain reduce the catalytic step two orders of magnitude and block formation of the closed state whereas Dcp1 enhances the catalytic step by a factor of ten and promotes closure. We conclude that closure occurs during the rate-limiting catalytic step of decapping, juxtaposing the cap-binding region of each domain to form a composite active site. This work suggests a model for regulation of decapping, where coactivators trigger decapping by stabilizing a labile composite active site. PMID:20711189

  17. No association of dopamine D2 receptor molecular variant Cys311 and schizophrenia in Chinese patients

    SciTech Connect

    Chia-Hsiang Chen; Shih-Hsiang Chien; Hai-Gwo Hwu

    1996-07-26

    A serine-to-cysteine mutation of dopamine D2 receptor at codon 311 (Cys311) was found to have higher frequency in schizophrenic patients than in normal controls in Japanese by Arinami et al. The Cys311 allele was found to be associated with patients with younger age-of-onset, positive family history, and more positive symptoms. To investigate the possible involvement of Cys311 in schizophrenia in the Chinese population, 114 unrelated Taiwanese Chinese schizophrenic patients with positive family history and 88 normal controls were genotyped for Cys311. Four patients and 5 normal controls were heterozygotes of Ser311/Cys311; no homozygotes of Cys311 were identified in either group. The allele frequencies of Cys311 in Chinese schizophrenic patients and normal controls were 2% and 3%, respectively. No significant difference was detected between the two groups. Our results do not support the argument that the Cys311 allele of DRD2 poses a genetic risk for certain types of schizophrenia in Chinese populations. 18 refs.

  18. Role of alphaArg145 and betaArg263 in the active site of penicillin acylase of Escherichia coli.

    PubMed Central

    Alkema, Wynand B L; Prins, Antoon K; de Vries, Erik; Janssen, Dick B

    2002-01-01

    The active site of penicillin acylase of Escherichia coli contains two conserved arginine residues. The function of these arginines, alphaArg145 and betaArg263, was studied by site-directed mutagenesis and kinetic analysis of the mutant enzymes. The mutants alphaArg145-->Leu (alphaArg145Leu), alphaArg145Cys and alphaArg145Lys were normally processed and exported to the periplasm, whereas expression of the mutants betaArg263Leu, betaArg263Asn and betaArg263Lys yielded large amounts of precursor protein in the periplasm, indicating that betaArg263 is crucial for efficient processing of the enzyme. Either modification of both arginine residues by 2,3-butanedione or replacement by site-directed mutagenesis yielded enzymes with a decreased specificity (kcat/K(m)) for 2-nitro-5-[(phenylacetyl)amino]benzoic acid, indicating that both residues are important in catalysis. Compared with the wild type, the alphaArg145 mutants exhibited a 3-6-fold-increased preference for 6-aminopenicillanic acid as the deacylating nucleophile compared with water. Analysis of the steady-state parameters of these mutants for the hydrolysis of penicillin G and phenylacetamide indicated that destabilization of the Michaelis-Menten complex accounts for the improved activity with beta-lactam substrates. Analysis of pH-activity profiles of wild-type enzyme and the betaArg263Lys mutant showed that betaArg263 has to be positively charged for catalysis, but is not involved in substrate binding. The results provide an insight into the catalytic mechanism of penicillin acylase, in which alphaArg145 is involved in binding of beta-lactam substrates and betaArg263 is important both for stabilizing the transition state in the reaction and for correct processing of the precursor protein. PMID:12071857

  19. Translational Control of Host Gene Expression by a Cys-Motif Protein Encoded in a Bracovirus

    PubMed Central

    Kim, Eunseong; Kim, Yonggyun

    2016-01-01

    Translational control is a strategy that various viruses use to manipulate their hosts to suppress acute antiviral response. Polydnaviruses, a group of insect double-stranded DNA viruses symbiotic to some endoparasitoid wasps, are divided into two genera: ichnovirus (IV) and bracovirus (BV). In IV, some Cys-motif genes are known as host translation-inhibitory factors (HTIF). The genome of endoparasitoid wasp Cotesia plutellae contains a Cys-motif gene (Cp-TSP13) homologous to an HTIF known as teratocyte-secretory protein 14 (TSP14) of Microplitis croceipes. Cp-TSP13 consists of 129 amino acid residues with a predicted molecular weight of 13.987 kDa and pI value of 7.928. Genomic DNA region encoding its open reading frame has three introns. Cp-TSP13 possesses six conserved cysteine residues as other Cys-motif genes functioning as HTIF. Cp-TSP13 was expressed in Plutella xylostella larvae parasitized by C. plutellae. C. plutellae bracovirus (CpBV) was purified and injected into non-parasitized P. xylostella that expressed Cp-TSP13. Cp-TSP13 was cloned into a eukaryotic expression vector and used to infect Sf9 cells to transiently express Cp-TSP13. The synthesized Cp-TSP13 protein was detected in culture broth. An overlaying experiment showed that the purified Cp-TSP13 entered hemocytes. It was localized in the cytosol. Recombinant Cp-TSP13 significantly inhibited protein synthesis of secretory proteins when it was added to in vitro cultured fat body. In addition, the recombinant Cp-TSP13 directly inhibited the translation of fat body mRNAs in in vitro translation assay using rabbit reticulocyte lysate. Moreover, the recombinant Cp-TSP13 significantly suppressed cellular immune responses by inhibiting hemocyte-spreading behavior. It also exhibited significant insecticidal activities by both injection and feeding routes. These results indicate that Cp-TSP13 is a viral HTIF. PMID:27598941

  20. The single Cys2-His2 zinc finger domain of the GAGA protein flanked by basic residues is sufficient for high-affinity specific DNA binding.

    PubMed Central

    Pedone, P V; Ghirlando, R; Clore, G M; Gronenborn, A M; Felsenfeld, G; Omichinski, J G

    1996-01-01

    Specific DNA binding to the core consensus site GAGAGAG has been shown with an 82-residue peptide (residues 310-391) taken from the Drosophila transcription factor GAGA. Using a series of deletion mutants, it was demonstrated that the minimal domain required for specific binding (residues 310-372) includes a single zinc finger of the Cys2-His2 family and a stretch of basic amino acids located on the N-terminal end of the zinc finger. In gel retardation assays, the specific binding seen with either the peptide or the whole protein is zinc dependent and corresponds to a dissociation constant of approximately 5 x 10(-9) M for the purified peptide. It has previously been thought that a single zinc finger of the Cys2-His2 family is incapable of specific, high-affinity binding to DNA. The combination of an N-terminal basic region with a single Cys2-His2 zinc finger in the GAGA protein can thus be viewed as a novel DNA binding domain. This raises the possibility that other proteins carrying only one Cys2-His2 finger are also capable of high-affinity specific binding to DNA. Images Fig. 2 Fig. 3 Fig. 4 PMID:8610125

  1. Enhancement of the Chaperone Activity of Alkyl Hydroperoxide Reductase C from Pseudomonas aeruginosa PAO1 Resulting from a Point-Specific Mutation Confers Heat Tolerance in Escherichia coli

    PubMed Central

    Lee, Jae Taek; Lee, Seung Sik; Mondal, Suvendu; Tripathi, Bhumi Nath; Kim, Siu; Lee, Keun Woo; Hong, Sung Hyun; Bai, Hyoung-Woo; Cho, Jae-Young; Chung, Byung Yeoup

    2016-01-01

    Alkyl hydroperoxide reductase subunit C from Pseudomonas aeruginosa PAO1 (PaAhpC) is a member of the 2-Cys peroxiredoxin family. Here, we examined the peroxidase and molecular chaperone functions of PaAhpC using a site-directed mutagenesis approach by substitution of Ser and Thr residues with Cys at positions 78 and 105 located between two catalytic cysteines. Substitution of Ser with Cys at position 78 enhanced the chaperone activity of the mutant (S78C-PaAhpC) by approximately 9-fold compared with that of the wild-type protein (WT-PaAhpC). This increased activity may have been associated with the proportionate increase in the high-molecular-weight (HMW) fraction and enhanced hydrophobicity of S78C-PaAhpC. Homology modeling revealed that mutation of Ser78 to Cys78 resulted in a more compact decameric structure than that observed in WT-PaAhpC and decreased the atomic distance between the two neighboring sulfur atoms of Cys78 in the dimer-dimer interface of S78C-PaAhpC, which could be responsible for the enhanced hydrophobic interaction at the dimer-dimer interface. Furthermore, complementation assays showed that S78C-PaAhpC exhibited greatly improved the heat tolerance, resulting in enhanced survival under thermal stress. Thus, addition of Cys at position 78 in PaAhpC modulated the functional shifting of this protein from a peroxidase to a chaperone. PMID:27457208

  2. A Minimal Cysteine Motif Required to Activate the SKOR K+ Channel of Arabidopsis by the Reactive Oxygen Species H2O2*

    PubMed Central

    Garcia-Mata, Carlos; Wang, Jianwen; Gajdanowicz, Pawel; Gonzalez, Wendy; Hills, Adrian; Donald, Naomi; Riedelsberger, Janin; Amtmann, Anna; Dreyer, Ingo; Blatt, Michael R.

    2010-01-01

    Reactive oxygen species (ROS) are essential for development and stress signaling in plants. They contribute to plant defense against pathogens, regulate stomatal transpiration, and influence nutrient uptake and partitioning. Although both Ca2+ and K+ channels of plants are known to be affected, virtually nothing is known of the targets for ROS at a molecular level. Here we report that a single cysteine (Cys) residue within the Kv-like SKOR K+ channel of Arabidopsis thaliana is essential for channel sensitivity to the ROS H2O2. We show that H2O2 rapidly enhanced current amplitude and activation kinetics of heterologously expressed SKOR, and the effects were reversed by the reducing agent dithiothreitol (DTT). Both H2O2 and DTT were active at the outer face of the membrane and current enhancement was strongly dependent on membrane depolarization, consistent with a H2O2-sensitive site on the SKOR protein that is exposed to the outside when the channel is in the open conformation. Cys substitutions identified a single residue, Cys168 located within the S3 α-helix of the voltage sensor complex, to be essential for sensitivity to H2O2. The same Cys residue was a primary determinant for current block by covalent Cys S-methioylation with aqueous methanethiosulfonates. These, and additional data identify Cys168 as a critical target for H2O2, and implicate ROS-mediated control of the K+ channel in regulating mineral nutrient partitioning within the plant. PMID:20605786

  3. Detection limit for activation measurements in ultralow background sites

    NASA Astrophysics Data System (ADS)

    Trache, Livius; Chesneanu, D.; Margineanu, R.; Pantelica, A.; Ghita, D. G.; Burducea, I.; Straticiuc, M.; Tang, X. D.

    2014-09-01

    We used 12C +13C fusion at the beam energies E = 6, 7 and 8 MeV to determine the sensitivity and the limits of activation method measurements in ultralow background sites. A 13C beam of 0.5 μA from the 3 MV Tandem accelerator of the Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH impinged on thick graphite targets. After about 24 hrs of irradiation targets were measured in two different laboratories: one with a heavy shielded Ge detector in the institute (at the surface) and one located underground in the microBequerel laboratory, in the salt mine of Slanic-Prahova, Romania. The 1369- and 2754 keV peaks from 24Na deactivation were clearly observed in the γ-ray spectra obtained for acquisitions lasting a few hours, or a few days. Determination of the detection limit in evaluating the cross sections for the target irradiated at Ec . m = 3 MeV indicates the fact that it is possible to measure gamma spectrum in underground laboratory down to Ec . m = 2 . 6 MeV. Cleaning the spectra with beta-gamma coincidences and increasing beam intensity 20 times will take as further down. The measurements are motivated by the study of the 12 C +12 C reaction at astrophysical energies.

  4. Disturbance opens recruitment sites for bacterial colonization in activated sludge.

    PubMed

    Vuono, David C; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E

    2016-01-01

    Little is known about the role of immigration in shaping bacterial communities or the factors that may dictate success or failure of colonization by bacteria from regional species pools. To address these knowledge gaps, the influence of bacterial colonization into an ecosystem (activated sludge bioreactor) was measured through a disturbance gradient (successive decreases in the parameter solids retention time) relative to stable operational conditions. Through a DNA sequencing approach, we show that the most abundant bacteria within the immigrant community have a greater probability of colonizing the receiving ecosystem, but mostly as low abundance community members. Only during the disturbance do some of these bacterial populations significantly increase in abundance beyond background levels and in few cases become dominant community members post-disturbance. Two mechanisms facilitate the enhanced enrichment of immigrant populations during disturbance: (i) the availability of resources left unconsumed by established species and (ii) the increased availability of niche space for colonizers to establish and displace resident populations. Thus, as a disturbance decreases local diversity, recruitment sites become available to promote colonization. This work advances our understanding of microbial resource management and diversity maintenance in complex ecosystems.

  5. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing...

  6. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing...

  7. Kinetic and thermodynamic consequences of the removal of the Cys-77-Cys-123 disulphide bond for the folding of TEM-1 beta-lactamase.

    PubMed Central

    Vanhove, M; Guillaume, G; Ledent, P; Richards, J H; Pain, R H; Frère, J M

    1997-01-01

    Class A beta-lactamases of the TEM family contain a single disulphide bond which connects cysteine residues 77 and 123. To clarify the possible role of the disulphide bond in the stability and folding kinetics of the TEM-1 beta-lactamase, this bond was removed by introducing a Cys-77-->Ser mutation, and the enzymically active mutant protein was studied by reversible guanidine hydrochloride-induced denaturation. The unfolding and refolding rates were monitored using tryptophan fluorescence. At low guanidine hydrochloride concentrations, the refolding of the wild-type and mutant enzymes followed biphasic time courses. The characteristics of the two phases were not significantly affected by the mutation. Double-jump experiments, in which the protein was unfolded in a high concentration of guanidine hydrochloride for a short time period and then refolded by diluting out the denaturant, indicated that, for both the wild-type and mutant enzymes, the two refolding phases could be ascribed to proline isomerization reactions. Equilibrium unfolding experiments monitored by fluorescence spectroscopy and far-UV CD indicated a three-state mechanism (N<-->H<--U). Both the folded mutant protein (N) and, to a lesser extent the thermodynamically stable intermediate, H. were destabilized relative to the fully unfolded state, U. Removal of the disulphide bond resulted in a decrease of 14.2 kJ/mol (3.4 kcal/mol) in the global free energy of stabilization. Similarly, the mutation also induced a drastic increase in the rate of thermal inactivation. PMID:9020874

  8. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  9. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  10. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  11. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  12. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  13. Robotics and Automation Activities at the Savannah River Site: A Site Report for SUBWOG 39F

    SciTech Connect

    Teese, G.D.

    1995-09-28

    The Savannah River Site has successfully used robots, teleoperators, and remote video to reduce exposure to ionizing radiation, improve worker safety, and improve the quality of operations. Previous reports have described the use of mobile teleoperators in coping with a high level liquid waste spill, the removal of highly contaminated equipment, and the inspection of nuclear reactor vessels. This report will cover recent applications at the Savannah River, as well as systems which SRS has delivered to other DOE site customers.

  14. GAS HYDRATES AT TWO SITES OF AN ACTIVE CONTINENTAL MARGIN.

    USGS Publications Warehouse

    Kvenvolden, K.A.

    1985-01-01

    Sediment containing gas hydrates from two distant Deep Sea Drilling Project sites (565 and 568), located about 670 km apart on the landward flank of the Middle America Trench, was studied to determine the geochemical conditions that characterize the occurrence of gas hydrates. Site 565 was located in the Pacific Ocean offshore the Nicoya Peninsula of Costa Rica in 3,111 m of water. The depth of the hole at this site was 328 m, and gas hydrates were recovered from 285 and 319 m. Site 568 was located about 670 km to the northwest offshore Guatemala in 2,031 m of water. At this site the hole penetrated to 418 m, and gas hydrates were encountered at 404 m.

  15. A Zn(II)2Cys6 DNA binding protein regulates the sirodesmin PL biosynthetic gene cluster in Leptosphaeria maculans

    PubMed Central

    Fox, Ellen M.; Gardiner, Donald M.; Keller, Nancy P.; Howlett, Barbara J.

    2008-01-01

    A gene, sirZ, encoding a Zn(II)2Cys6 DNA binding protein is present in a cluster of genes responsible for the biosynthesis of the epipolythiodioxopiperazine (ETP) toxin, sirodesmin PL in the ascomycete plant pathogen, Leptosphaeria maculans. RNA-mediated silencing of sirZ gives rise to transformants that produce only residual amounts of sirodesmin PL and display a decrease in the transcription of several sirodesmin PL biosynthetic genes. This indicates that SirZ is a major regulator of this gene cluster. Proteins similar to SirZ are encoded in the gliotoxin biosynthetic gene cluster of Aspergillus fumigatus (gliZ) and in an ETP-like cluster in Penicillium lilacinoechinulatum (PlgliZ). Despite its high level of sequence similarity to gliZ, PlgliZ is unable to complement the gliotoxin-deficiency of a mutant of gliZ in A. fumigatus. Putative binding sites for these regulatory proteins in the promoters of genes in these clusters were predicted using bioinformatic analysis. These sites are similar to those commonly bound by other proteins with Zn(II)2Cys6 DNA binding domains. PMID:18023597

  16. Lidar research activities and observations at NARL site, Gadanki, India

    NASA Astrophysics Data System (ADS)

    Yellapragada, Bhavani Kumar

    2016-05-01

    The National Atmospheric Research Laboratory (NARL), a unit of Department of Space (DOS), located at Gadanki village (13.5°N, 79.2°E, 370 m AMSL) in India, is involved in the development of lidar remote sensing technologies for atmospheric research. Several advanced lidar technologies employing micropulse, polarization, Raman and scanning have been developed at this site and demonstrated for atmospheric studies during the period between 2008 and 2015. The technology of micropulse lidar, operates at 532 nm wavelength, was successfully transferred to an industry and the commercial version has been identified for Indian Lidar network (I-LINK) programme. Under this lidar network activity, several lidar units were installed at different locations in India to study tropospheric aerosols and clouds. The polarization sensitive lidar technology was realized using a set of mini photomultiplier tube (PMT) units and has the capability to operate during day and night without a pause. The lidar technology uses a compact flashlamp pumped Qswitched laser and employs biaxial configuration between the transmitter and receiver units. The lidar technology has been utilized for understanding the polarization characteristics of boundary layer aerosols during the mixed layer development. The demonstrated Raman lidar technology, uses the third harmonic wavelength of Nd:YAG laser, provides the altitude profiles of aerosol backscattering, extinction and water vapor covering the boundary layer range and allows operation during nocturnal periods. The Raman lidar derived height profiles of aerosol backscattering and extinction coefficient, lidar ratio, and watervapor mixing ratio inform the tropical boundary layer aerosol characteristics. The scanning lidar technology uses a near infrared laser wavelength for probing the lower atmosphere and has been utilized for high resolution cloud profiling during convective periods. The lidar technology is also used for rain rate measurement during

  17. Dynamically achieved active site precision in enzyme catalysis.

    PubMed

    Klinman, Judith P

    2015-02-17

    CONSPECTUS: The grand challenge in enzymology is to define and understand all of the parameters that contribute to enzymes' enormous rate accelerations. The property of hydrogen tunneling in enzyme reactions has moved the focus of research away from an exclusive focus on transition state stabilization toward the importance of the motions of the heavy atoms of the protein, a role for reduced barrier width in catalysis, and the sampling of a protein conformational landscape to achieve a family of protein substates that optimize enzyme-substrate interactions and beyond. This Account focuses on a thermophilic alcohol dehydrogenase for which the chemical step of hydride transfer is rate determining across a wide range of experimental conditions. The properties of the chemical coordinate have been probed using kinetic isotope effects, indicating a transition in behavior below 30 °C that distinguishes nonoptimal from optimal C-H activation. Further, the introduction of single site mutants has the impact of either enhancing or eliminating the temperature dependent transition in catalysis. Biophysical probes, which include time dependent hydrogen/deuterium exchange and fluorescent lifetimes and Stokes shifts, have also been pursued. These studies allow the correlation of spatially resolved transitions in protein motions with catalysis. It is now possible to define a long-range network of protein motions in ht-ADH that extends from a dimer interface to the substrate binding domain across to the cofactor binding domain, over a distance of ca. 30 Å. The ongoing challenge to obtaining spatial and temporal resolution of catalysis-linked protein motions is discussed.

  18. Physiological relevance of plant 2-Cys peroxiredoxin overoxidation level and oligomerization status.

    PubMed

    Cerveau, Delphine; Ouahrani, Djelloul; Marok, Mohamed Amine; Blanchard, Laurence; Rey, Pascal

    2016-01-01

    Peroxiredoxins are ubiquitous thioredoxin-dependent peroxidases presumed to display, upon environmental constraints, a chaperone function resulting from a redox-dependent conformational switch. In this work, using biochemical and genetic approaches, we aimed to unravel the factors regulating the redox status and the conformation of the plastidial 2-Cys peroxiredoxin (2-Cys PRX) in plants. In Arabidopsis, we show that in optimal growth conditions, the overoxidation level mainly depends on the availability of thioredoxin-related electron donors, but not on sulfiredoxin, the enzyme reducing the 2-Cys PRX overoxidized form. We also observed that upon various physiological temperature, osmotic and light stress conditions, the overoxidation level and oligomerization status of 2-Cys PRX can moderately vary depending on the constraint type. Further, no major change was noticed regarding protein conformation in water-stressed Arabidopsis, barley and potato plants, whereas species-dependent up- and down-variations in overoxidation were observed. In contrast, both 2-Cys PRX overoxidation and oligomerization were strongly induced during a severe oxidative stress generated by methyl viologen. From these data, revealing that the oligomerization status of plant 2-Cys PRX does not exhibit important variation and is not tightly linked to the protein redox status upon physiologically relevant environmental constraints, the possible in planta functions of 2-Cys PRX are discussed.

  19. Small aminothiol compounds improve the function of Arg to Cys variant proteins: effect on the human cystathionine β-synthase p.R336C.

    PubMed

    Mendes, Marisa I S; Smith, Desirée E C; Vicente, João B; Tavares De Almeida, Isabel; Ben-Omran, Tawfeg; Salomons, Gajja S; Rivera, Isabel A; Leandro, Paula; Blom, Henk J

    2015-12-20

    The key regulatory point of L-methionine (Met) and L-homocysteine (Hcy) degradation is catalyzed by cystathionine beta-synthase (CBS). CBS deficiency is caused by mutations in CBS gene, often resulting in protein misfolding. The prevalence of CBS deficiency in Qatar is 1/1800, ∼200-fold higher than the worldwide prevalence of 1/344 000. Almost all patients bear the CBS p.R336C variant. More than 20 years ago, it was shown in vitro that two unrelated protein variants with a substitution of an arginine (Arg) residue by cysteine (Cys) could be rescued by cysteamine (mercaptoethylamine), likely via formation of a disulfide between Cys and cysteamine, functionally mimicking the wild-type (WT) Arg side-chain. Based on these findings, we aimed to study whether cysteamine was able to improve the function of p.R336C CBS variant. Additionally, we tested the effect of mercaptoethylguanidine (MEG), a compound with a guanidino and a thiol function that may resemble Arg structure better than cysteamine. Three purified recombinant CBS proteins (p.R336C, p.R336H and WT) were pre-incubated with cysteamine, MEG or Cys (as negative control), and CBS activity and stability were measured. Pre-incubation with cysteamine and MEG increased the enzymatic activity of the p.R336C protein, which was absent upon pre-incubation with Cys. The WT and the p.R336H variant enzyme activity presented no increase with any of the tested compounds. Our results show that cysteamine and MEG are able to specifically improve the function of the CBS p.R336C variant, suggesting that any Arg-to-Cys substitution accessible to these small molecules may be converted back to a moiety resembling Arg.

  20. Lethal Factor Active-Site Mutations Affect Catalytic Activity In Vitro

    PubMed Central

    Hammond, S. E.; Hanna, P. C.

    1998-01-01

    The lethal factor (LF) protein of Bacillus anthracis lethal toxin contains the thermolysin-like active-site and zinc-binding consensus motif HEXXH (K. R. Klimpel, N. Arora, and S. H. Leppla, Mol. Microbiol. 13:1093–1100, 1994). LF is hypothesized to act as a Zn2+ metalloprotease in the cytoplasm of macrophages, but no proteolytic activities have been previously shown on any target substrate. Here, synthetic peptides are hydrolyzed by LF in vitro. Mass spectroscopy and peptide sequencing of isolated cleavage products separated by reverse-phase high-pressure liquid chromatography indicate that LF seems to prefer proline-containing substrates. Substitution mutations within the consensus active-site residues completely abolish all in vitro catalytic functions, as does addition of 1,10-phenanthroline, EDTA, and certain amino acid hydroxamates, including the novel zinc metalloprotease inhibitor ZINCOV. In contrast, the protease inhibitors bestatin and lysine CMK, previously shown to block LF activity on macrophages, did not block LF activity in vitro. These data provide the first direct evidence that LF may act as an endopeptidase. PMID:9573135

  1. Dopamine DRD2/Cys311 is not associated with chronic schizophrenia

    SciTech Connect

    Crawford, F.; Hoyne, J.; Cai, Xingang

    1996-09-20

    A mutation in the DRD2 receptor gene has been reported in association with schizophrenia in Japanese and Caucasian populations. The variation, Ser to Cys at codon 311, occurs in the third intracellular loop of the receptor and is therefore putatively functional. We report the results of screening US Caucasian schizophrenic and nonschizophrenic populations. We detected the occurrence of the DRD2 Cys311 variant in both schizophrenics and controls. Our data demonstrates no significant difference between the frequency of Cys311 in Caucasian schizophrenic and non-schizophrenic populations, indicating no association with schizophrenia. 8 refs., 1 fig., 1 tab.

  2. Molecular Basis of Regulating High Voltage-Activated Calcium Channels by S-Nitrosylation.

    PubMed

    Zhou, Meng-Hua; Bavencoffe, Alexis; Pan, Hui-Lin

    2015-12-18

    Nitric oxide (NO) is involved in a variety of physiological processes, such as vasoregulation and neurotransmission, and has a complex role in the regulation of pain transduction and synaptic transmission. We have shown previously that NO inhibits high voltage-activated Ca(2+) channels in primary sensory neurons and excitatory synaptic transmission in the spinal dorsal horn. However, the molecular mechanism involved in this inhibitory action remains unclear. In this study, we investigated the role of S-nitrosylation in the NO regulation of high voltage-activated Ca(2+) channels. The NO donor S-nitroso-N-acetyl-DL-penicillamine (SNAP) rapidly reduced N-type currents when Cav2.2 was coexpressed with the Cavβ1 or Cavβ3 subunits in HEK293 cells. In contrast, SNAP only slightly inhibited P/Q-type and L-type currents reconstituted with various Cavβ subunits. SNAP caused a depolarizing shift in voltage-dependent N-type channel activation, but it had no effect on Cav2.2 protein levels on the membrane surface. The inhibitory effect of SNAP on N-type currents was blocked by the sulfhydryl-specific modifying reagent methanethiosulfonate ethylammonium. Furthermore, the consensus motifs of S-nitrosylation were much more abundant in Cav2.2 than in Cav1.2 and Cav2.1. Site-directed mutagenesis studies showed that Cys-805, Cys-930, and Cys-1045 in the II-III intracellular loop, Cys-1835 and Cys-2145 in the C terminus of Cav2.2, and Cys-346 in the Cavβ3 subunit were nitrosylation sites mediating NO sensitivity of N-type channels. Our findings demonstrate that the consensus motifs of S-nitrosylation in cytoplasmically accessible sites are critically involved in post-translational regulation of N-type Ca(2+) channels by NO. S-Nitrosylation mediates the feedback regulation of N-type channels by NO.

  3. The yeast regulator of transcription protein Rtr1 lacks an active site and phosphatase activity.

    PubMed

    Xiang, Kehui; Manley, James L; Tong, Liang

    2012-07-10

    The activity of RNA polymerase II (Pol II) is controlled in part by the phosphorylation state of the C-terminal domain (CTD) of its largest subunit. Recent reports have suggested that yeast regulator of transcription protein, Rtr1, and its human homologue RPAP2, possess Pol II CTD Ser5 phosphatase activity. Here we report the crystal structure of Kluyveromyces lactis Rtr1, which reveals a new type of zinc finger protein and does not have any close structural homologues. Importantly, the structure does not show evidence of an active site, and extensive experiments to demonstrate its CTD phosphatase activity have been unsuccessful, suggesting that Rtr1 has a non-catalytic role in CTD dephosphorylation.

  4. Expression of a soluble form of iodotyrosine deiodinase for active site characterization by engineering the native membrane protein from Mus musculus

    SciTech Connect

    Buss, Jennifer M.; McTamney, Patrick M.; Rokita, Steven E.

    2012-06-27

    Reductive deiodination is critical for thyroid function and represents an unusual exception to the more common oxidative and hydrolytic mechanisms of dehalogenation in mammals. Studies on the reductive processes have been limited by a lack of convenient methods for heterologous expression of the appropriate proteins in large scale. The enzyme responsible for iodide salvage in the thyroid, iodotyrosine deodinase, is now readily generated after engineering its gene from Mus musculus. High expression of a truncated derivative lacking the membrane domain at its N-terminal was observed in Sf9 cells, whereas expression in Pichia pastoris remained low despite codon optimization. Ultimately, the desired expression in Escherichia coli was achieved after replacing the two conserved Cys residues of the deiodinase with Ala and fusing the resulting protein to thioredoxin. This final construct provided abundant enzyme for crystallography and mutagenesis. Utility of the E. coli system was demonstrated by examining a set of active site residues critical for binding to the zwitterionic portion of substrate.

  5. Salt bridges overlapping the gonadotropin-releasing hormone receptor agonist binding site reveal a coincidence detector for G protein-coupled receptor activation.

    PubMed

    Janovick, Jo Ann; Pogozheva, Irina D; Mosberg, Henry I; Conn, P Michael

    2011-08-01

    G protein-coupled receptors (GPCRs) play central roles in most physiological functions, and mutations in them cause heritable diseases. Whereas crystal structures provide details about the structure of GPCRs, there is little information that identifies structural features that permit receptors to pass the cellular quality control system or are involved in transition from the ground state to the ligand-activated state. The gonadotropin-releasing hormone receptor (GnRHR), because of its small size among GPCRs, is amenable to molecular biological approaches and to computer modeling. These techniques and interspecies comparisons are used to identify structural features that are important for both intracellular trafficking and GnRHR activation yet distinguish between these processes. Our model features two salt (Arg(38)-Asp(98) and Glu(90)-Lys(121)) and two disulfide (Cys(14)-Cys(200) and Cys(114)-Cys(196)) bridges, all of which are required for the human GnRHR to traffic to the plasma membrane. This study reveals that both constitutive and ligand-induced activation are associated with a "coincidence detector" that occurs when an agonist binds. The observed constitutive activation of receptors lacking Glu(90)-Lys(121), but not Arg(38)-Asp(98) ionic bridge, suggests that the role of the former connection is holding the receptor in the inactive conformation. Both the aromatic ring and hydroxyl group of Tyr(284) and the hydrogen bonding of Ser(217) are important for efficient receptor activation. Our modeling results, supported by the observed influence of Lys(191) from extracellular loop 2 (EL2) and a four-residue motif surrounding this loop on ligand binding and receptor activation, suggest that the positioning of EL2 within the seven-α-helical bundle regulates receptor stability, proper trafficking, and function.

  6. The alpha-galactosidase A p.Arg118Cys variant does not cause a Fabry disease phenotype: data from individual patients and family studies

    PubMed Central

    Ferreira, Susana; Ortiz, Alberto; Germain, Dominique P.; Viana-Baptista, Miguel; Gomes, António Caldeira; Camprecios, Marta; Fenollar-Cortés, Maria; Gallegos-Villalobos, Ángel; Garcia, Diego; García-Robles, José Antonio; Egido, Jesús; Gutiérrez-Rivas, Eduardo; Herrero, José Antonio; Mas, Sebastián; Oancea, Raluca; Péres, Paloma; Salazar-Martín, Luis Manuel; Solera-Garcia, Jesús; Alves, Helena; Garman, Scott C.; Oliveira, João Paulo

    2015-01-01

    Summary Lysosomal α-galactosidase A (α-Gal) is the enzyme deficient in Fabry disease (FD), an X-linked glycosphingolipidosis caused by pathogenic mutations affecting the GLA gene. The early-onset, multi-systemic FD classical phenotype is associated with absent or severe enzyme deficiency, as measured by in vitro assays, but patients with higher levels of residual α-Gal activity may have later-onset, more organ-restricted clinical presentations. A change in the codon 118 of the wild-type α-Gal sequence, replacing basic arginine by a potentially sulfhydryl-binding cysteine residue – GLA p.(Arg118Cys) –, has been recurrently described in large FD screening studies of high-risk patients. Although the Cys118 allele is associated with high residual α-Gal activity in vitro, it has been classified as a pathogenic mutation, mainly on the basis of theoretical arguments about the chemistry of the cysteine residue. However its pathogenicity has never been convincingly demonstrated by pathology criteria. We reviewed the clinical, biochemical and histopathology data obtained from 22 individuals of Portuguese and Spanish ancestry carrying the Cys118 allele, including 3 homozygous females. Cases were identified either on the differential diagnosis of possible FD manifestations and on case-finding studies (n=11; 4 males), or on unbiased cascade screening of probands’ close relatives (n=11; 3 males). Overall, those data strongly suggest that the GLA p.(Arg118Cys) variant does not segregate with FD clinical phenotypes in a Mendelian fashion, but might be a modulator of the multifactorial risk of cerebrovascular disease, since the allelic frequency in stroke patients was 0.0087 (p=0.0185 vs the general population). The Cys118 allelic frequency in healthy Portuguese adults (n=696) has been estimated as 0.001, therefore not qualifying for “rare” condition. PMID:25468652

  7. The alpha-galactosidase A p.Arg118Cys variant does not cause a Fabry disease phenotype: data from individual patients and family studies.

    PubMed

    Ferreira, Susana; Ortiz, Alberto; Germain, Dominique P; Viana-Baptista, Miguel; Caldeira-Gomes, António; Camprecios, Marta; Fenollar-Cortés, Maria; Gallegos-Villalobos, Ángel; Garcia, Diego; García-Robles, José Antonio; Egido, Jesús; Gutiérrez-Rivas, Eduardo; Herrero, José Antonio; Mas, Sebastián; Oancea, Raluca; Péres, Paloma; Salazar-Martín, Luis Manuel; Solera-Garcia, Jesús; Alves, Helena; Garman, Scott C; Oliveira, João Paulo

    2015-02-01

    Lysosomal α-galactosidase A (α-Gal) is the enzyme deficient in Fabry disease (FD), an X-linked glycosphingolipidosis caused by pathogenic mutations affecting the GLA gene. The early-onset, multi-systemic FD classical phenotype is associated with absent or severe enzyme deficiency, as measured by in vitro assays, but patients with higher levels of residual α-Gal activity may have later-onset, more organ-restricted clinical presentations. A change in the codon 118 of the wild-type α-Gal sequence, replacing basic arginine by a potentially sulfhydryl-binding cysteine residue - GLA p.(Arg118Cys) -, has been recurrently described in large FD screening studies of high-risk patients. Although the Cys118 allele is associated with high residual α-Gal activity in vitro, it has been classified as a pathogenic mutation, mainly on the basis of theoretical arguments about the chemistry of the cysteine residue. However its pathogenicity has never been convincingly demonstrated by pathology criteria. We reviewed the clinical, biochemical and histopathology data obtained from 22 individuals of Portuguese and Spanish ancestry carrying the Cys118 allele, including 3 homozygous females. Cases were identified either on the differential diagnosis of possible FD manifestations and on case-finding studies (n=11; 4 males), or on unbiased cascade screening of probands' close relatives (n=11; 3 males). Overall, those data strongly suggest that the GLA p.(Arg118Cys) variant does not segregate with FD clinical phenotypes in a Mendelian fashion, but might be a modulator of the multifactorial risk of cerebrovascular disease. The Cys118 allelic frequency in healthy Portuguese adults (n=696) has been estimated as 0.001, therefore not qualifying for "rare" condition.

  8. Dynamic HypA zinc site is essential for acid viability and proper urease maturation in Helicobacter pylori

    PubMed Central

    Johnson, Ryan C.; Hu, Heidi Q.; Merrell, D. Scott; Maroney, Michael J.

    2015-01-01

    Helicobacter pylori requires urease activity in order to survive in the acid environment of the human stomach. Urease is regulated in part by nickelation, a process that requires the HypA protein, which is a putative nickel metallochaperone that is generally associated with hydrogenase maturation. However, in H. pylori, HypA plays a dual role. In addition to an N-terminal nickel binding site, HypA proteins also contain a structural zinc site that is coordinated by two rigorously conserved CXXC sequences, which in H. pylori are flanked by His residues. These structural Zn sites are known to be dynamic, converting from Zn(Cys)4 centers at pH 7.2 to Zn(Cys)2(His)2 centers at pH 6.3 in the presence of Ni(II) ions. In this study, mutant strains of H. pylori that express zinc site variants of the HypA protein are used to show that the structural changes in the zinc site are important for the acid viability of the bacterium, and that a reduction in acid viability in these variants can be traced in large measure to deficient urease activity. This in turn leads to a model that connects the Zn(Cys)4 coordination to urease maturation. PMID:25608738

  9. Nuclear Site Security in the Event of Terrorist Activity

    SciTech Connect

    Thomson, M.L.; Sims, J.

    2008-07-01

    This paper, presented as a poster, identifies why ballistic protection should now be considered at nuclear sites to counter terrorist threats. A proven and flexible form of multi purpose protection is described in detail with identification of trial results that show its suitability for this role. (authors)

  10. Occurrence of the Cys311 DRD2 variant in a pedigree multiply affected with panic disorder

    SciTech Connect

    Crawford, F.; Hoyne, J.; Diaz, P.

    1995-08-14

    Following the detection of the rare DRD2 codon 311 variant (Ser{yields}Cys) in an affected member from a large, multiply affected panic disorder family, we investigated the occurrence of this variant in other family members. The variant occurred in both affected and unaffected individuals. Further screening in panic disorder sib pairs unrelated to this family failed to detect the Cys311 variant. Our data suggests that this variant has no pathogenic role in panic disorder. 18 refs., 1 fig.

  11. Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory

    SciTech Connect

    Taylor, D.D.; Hoskinson, R.L.; Kingsford, C.O.; Ball, L.W.

    1994-09-01

    The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria.

  12. Revealing the nature of the active site on the carbon catalyst for C-H bond activation.

    PubMed

    Sun, XiaoYing; Li, Bo; Su, Dangsheng

    2014-09-28

    A reactivity descriptor for the C-H bond activation on the nanostructured carbon catalyst is proposed. Furthermore the calculations reveal that the single ketone group can be an active site in ODH reaction.

  13. The R163K Mutant of Human Thymidylate Synthase Is Stabilized in an Active Conformation: Structural Asymmetry and Reactivity of Cysteine 195

    SciTech Connect

    Gibson, Lydia M.; Lovelace, Leslie L.; Lebioda, Lukasz

    2008-06-16

    Loop 181-197 of human thymidylate synthase (hTS) populates two conformational states. In the first state, Cys195, a residue crucial for catalytic activity, is in the active site (active conformer); in the other conformation, it is about 10 {angstrom} away, outside the active site (inactive conformer). We have designed and expressed an hTS variant, R163K, in which the inactive conformation is destabilized. The activity of this mutant is 33% higher than that of wt hTS, suggesting that at least one-third of hTS populates the inactive conformer. Crystal structures of R163K in two different crystal forms, with six and two subunits per asymmetric part of the unit cells, have been determined. All subunits of this mutant are in the active conformation while wt hTS crystallizes as the inactive conformer in similar mother liquors. The structures show differences in the environment of catalytic Cys195, which correlate with Cys195 thiol reactivity, as judged by its oxidation state. Calculations show that the molecular electrostatic potential at Cys195 differs between the subunits of the dimer. One of the dimers is asymmetric with a phosphate ion bound in only one of the subunits. In the absence of the phosphate ion, that is in the inhibitor-free enzyme, the tip of loop 47-53 is about 11 {angstrom} away from the active site.

  14. Cellular Active N-Hydroxyurea FEN1 Inhibitors Block Substrate Entry to the Active Site

    PubMed Central

    Exell, Jack C.; Thompson, Mark J.; Finger, L. David; Shaw, Steven J.; Debreczeni, Judit; Ward, Thomas A.; McWhirter, Claire; Siöberg, Catrine L. B.; Martinez Molina, Daniel; Mark Abbott, W.; Jones, Clifford D.; Nissink, J. Willem M.; Durant, Stephen T.; Grasby, Jane A.

    2016-01-01

    The structure-specific nuclease human flap endonuclease-1 (hFEN1) plays a key role in DNA replication and repair and may be of interest as an oncology target. We present the first crystal structure of inhibitor-bound hFEN1 and show a cyclic N-hydroxyurea bound in the active site coordinated to two magnesium ions. Three such compounds had similar IC50 values but differed subtly in mode of action. One had comparable affinity for protein and protein–substrate complex and prevented reaction by binding to active site catalytic metal ions, blocking the unpairing of substrate DNA necessary for reaction. Other compounds were more competitive with substrate. Cellular thermal shift data showed engagement of both inhibitor types with hFEN1 in cells with activation of the DNA damage response evident upon treatment. However, cellular EC50s were significantly higher than in vitro inhibition constants and the implications of this for exploitation of hFEN1 as a drug target are discussed. PMID:27526030

  15. Active Layer and Moisture Measurements for Intensive Site 0 and 1, Barrow, Alaska

    DOE Data Explorer

    John Peterson

    2015-04-17

    These are measurements of Active Layer Thickness collected along several lines beginning in September, 2011 to the present. The data were collected at several time periods along the Site0 L2 Line, the Site1 AB Line, and an ERT Monitoring Line near Area A in Site1.

  16. Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations

    PubMed Central

    Steinkellner, Georg; Gruber, Christian C.; Pavkov-Keller, Tea; Binter, Alexandra; Steiner, Kerstin; Winkler, Christoph; Łyskowski, Andrzej; Schwamberger, Orsolya; Oberer, Monika; Schwab, Helmut; Faber, Kurt; Macheroux, Peter; Gruber, Karl

    2014-01-01

    The exploitation of catalytic promiscuity and the application of de novo design have recently opened the access to novel, non-natural enzymatic activities. Here we describe a structural bioinformatic method for predicting catalytic activities of enzymes based on three-dimensional constellations of functional groups in active sites (‘catalophores’). As a proof-of-concept we identify two enzymes with predicted promiscuous ene-reductase activity (reduction of activated C–C double bonds) and compare them with known ene-reductases, that is, members of the Old Yellow Enzyme family. Despite completely different amino acid sequences, overall structures and protein folds, high-resolution crystal structures reveal equivalent binding modes of typical Old Yellow Enzyme substrates and ligands. Biochemical and biocatalytic data show that the two enzymes indeed possess ene-reductase activity and reveal an inverted stereopreference compared with Old Yellow Enzymes for some substrates. This method could thus be a tool for the identification of viable starting points for the development and engineering of novel biocatalysts. PMID:24954722

  17. Are nest sites actively chosen? Testing a common assumption for three non-resource limited birds

    NASA Astrophysics Data System (ADS)

    Goodenough, A. E.; Elliot, S. L.; Hart, A. G.

    2009-09-01

    Many widely-accepted ecological concepts are simplified assumptions about complex situations that remain largely untested. One example is the assumption that nest-building species choose nest sites actively when they are not resource limited. This assumption has seen little direct empirical testing: most studies on nest-site selection simply assume that sites are chosen actively (and seek explanations for such behaviour) without considering that sites may be selected randomly. We used 15 years of data from a nestbox scheme in the UK to test the assumption of active nest-site choice in three cavity-nesting bird species that differ in breeding and migratory strategy: blue tit ( Cyanistes caeruleus), great tit ( Parus major) and pied flycatcher ( Ficedula hypoleuca). Nest-site selection was non-random (implying active nest-site choice) for blue and great tits, but not for pied flycatchers. We also considered the relative importance of year-specific and site-specific factors in determining occupation of nest sites. Site-specific factors were more important than year-specific factors for the tit species, while the reverse was true for pied flycatchers. Our results show that nest-site selection, in birds at least, is not always the result of active choice, such that choice should not be assumed automatically in studies of nesting behaviour. We use this example to highlight the need to test key ecological assumptions empirically, and the importance of doing so across taxa rather than for single "model" species.

  18. Metachromatic leukodystrophy: Biochemical characterization of two (p.307Glu→Lys, p.318Trp→Cys) arylsulfatase A mutations

    PubMed Central

    Özkan, Adem; Özkara, Hatice Asuman

    2016-01-01

    Summary Metachromatic leukodystrophy (MLD) is a lysosomal storage disease caused by Arylsulfatase A (ASA) deficiency. The hallmark of the disease is central and peripheral neurodegeneration. More than 200 mutations have been identified in ARSA gene so far. Some of these mutations were characterized. The aim of this study is to reinforce genotype-phenotype correlation and to understand the effect of mutations on the enzyme by biochemical characterization. Two missense mutations (c.919G→A, p.307Glu→Lys and c.954G→T, p.318Trp→Cys in exon 5) were constructed on WT-ASA cDNA and were confirmed by DNA sequence analysis. Plasmid DNA carrying mutant or normal ASA cDNA was transferred to Chinese Hamster Ovary (CHO) cells through transient transfection. ASA protein was produced by CHO cells. Hexosaminidase beta-subunit gene was cotransfected into the CHO cells as a control gene of transfection efficiency. 48 hours after transfection, cells were collected and homogenized. ASA and hexosaminidase activities were measured in supernatant. ASA enzyme activity is decreased 100% according to the control by the effect of both mutations. The mutations are located in the higly conserved region of the protein. In this study, we showed that both mutations result in null ASA activity in CHO cells making the protein nonfunctional. We confirmed that p.307Glu→Lys and p.318Trp→Cys mutations cause late infantile form of MLD disease. PMID:27904824

  19. Early Site Permit Demonstration Program: Recommendations for communication activities and public participation in the Early Site Permit Demonstration Program

    SciTech Connect

    Not Available

    1993-01-27

    On October 24, 1992, President Bush signed into law the National Energy Policy Act of 1992. The bill is a sweeping, comprehensive overhaul of the Nation`s energy laws, the first in more than a decade. Among other provisions, the National Energy Policy Act reforms the licensing process for new nuclear power plants by adopting a new approach developed by the US Nuclear Regulatory Commission (NRC) in 1989, and upheld in court in 1992. The NRC 10 CFR Part 52 rule is a three-step process that guarantees public participation at each step. The steps are: early site permit approval; standard design certifications; and, combined construction/operating licenses for nuclear power reactors. Licensing reform increases an organization`s ability to respond to future baseload electricity generation needs with less financial risk for ratepayers and the organization. Costly delays can be avoided because design, safety and siting issues will be resolved before a company starts to build a plant. Specifically, early site permit approval allows for site suitability and acceptability issues to be addressed prior to an organization`s commitment to build a plant. Responsibility for site-specific activities, including communications and public participation, rests with those organizations selected to try out early site approval. This plan has been prepared to assist those companies (referred to as sponsoring organizations) in planning their communications and public involvement programs. It provides research findings, information and recommendations to be used by organizations as a resource and starting point in developing their own plans.

  20. Structural characterization of single nucleotide variants at ligand binding sites and enzyme active sites of human proteins

    PubMed Central

    Yamada, Kazunori D.; Nishi, Hafumi; Nakata, Junichi; Kinoshita, Kengo

    2016-01-01

    Functional sites on proteins play an important role in various molecular interactions and reactions between proteins and other molecules. Thus, mutations in functional sites can severely affect the overall phenotype. Progress of genome sequencing projects has yielded a wealth of information on single nucleotide variants (SNVs), especially those with less than 1% minor allele frequency (rare variants). To understand the functional influence of genetic variants at a protein level, we investigated the relationship between SNVs and protein functional sites in terms of minor allele frequency and the structural position of variants. As a result, we observed that SNVs were less abundant at ligand binding sites, which is consistent with a previous study on SNVs and protein interaction sites. Additionally, we found that non-rare variants tended to be located slightly apart from enzyme active sites. Examination of non-rare variants revealed that most of the mutations resulted in moderate changes of the physico-chemical properties of amino acids, suggesting the existence of functional constraints. In conclusion, this study shows that the mapping of genetic variants on protein structures could be a powerful approach to evaluate the functional impact of rare genetic variations. PMID:27924270

  1. Lamellipodial actin mechanically links myosin activity with adhesion site formation

    PubMed Central

    Giannone, Gregory; Dubin-Thaler, Benjamin; Rossier, Olivier; Cai, Yunfei; Chaga, Oleg; Jiang, Guoying; Beaver, William; Döbereiner, Hans-Günther; Freund, Yoav; Borisy, Gary; Sheetz, Michael P.

    2013-01-01

    Summary Cell motility proceeds by cycles of edge protrusion, adhesion and retraction. Whether these functions are coordinated by biochemical or biomechanical processes is unknown. We find that myosin II pulls the rear of the lamellipodial actin network, causing upward bending, edge retraction and initiation of new adhesion sites. The network then separates from the edge and condenses over the myosin. Protrusion resumes as lamellipodial actin regenerates from the front and extends rearward until it reaches newly assembled myosin, initiating the next cycle. Upward bending, observed by evanescence and electron microscopy, results in ruffle formation when adhesion strength is low. Correlative fluorescence and electron microscopy shows that the regenerating lamellipodium forms a cohesive, separable layer of actin above the lamellum. Thus, actin polymerization periodically builds a mechanical link, the lamellipodium, connecting myosin motors with the initiation of adhesion sites, suggesting that the major functions driving motility are coordinated by a biomechanical process. PMID:17289574

  2. Glycosyltransfer in mutants of putative catalytic residue Glu303 of the human ABO(H) A and B blood group glycosyltransferases GTA and GTB proceeds through a labile active site.

    PubMed

    Blackler, Ryan J; Gagnon, Susannah M L; Polakowski, Robert; Rose, Natisha L; Zheng, Ruixiang B; Letts, James A; Johal, Asha R; Schuman, Brock; Borisova, Svetlana N; Palcic, Monica M; Evans, Stephen V

    2016-11-22

    The homologous glycosyltransferases α-1,3-N-acetylgalactosaminyltransferase (GTA) and α-1,3-galactosyltransferase (GTB) carry out the final synthetic step of the closely related human ABO(H) blood group A and B antigens. The catalytic mechanism of these model retaining enzymes remains under debate, where Glu303 has been suggested to act as a putative nucleophile in a double displacement mechanism, a local dipole stabilizing the intermediate in an orthogonal associative mechanism or a general base to stabilize the reactive oxocarbenium ion-like intermediate in an S N i-like mechanism. Kinetic analysis of GTA and GTB point mutants E303C, E303D, E303Q and E303A shows that despite the enzymes having nearly identical sequences, the corresponding mutants of GTA/GTB have up to a 13-fold difference in their residual activities relative to wild type. High-resolution single crystal X-ray diffraction studies reveal, surprisingly, that the mutated Cys, Asp and Gln functional groups are no more than 0.8 Å further from the anomeric carbon of donor substrate compared to wild type. However, complicating the analysis is the observation that Glu303 itself plays a critical role in maintaining the stability of a strained "double-turn" in the active site through several hydrogen bonds, and any mutation other than E303Q leads to significantly higher thermal motion or even disorder in the substrate recognition pockets. Thus, there is a remarkable juxtaposition of the mutants E303C and E303D, which retain significant activity despite disrupted active site architecture, with GTB/E303Q, which maintains active site architecture but exhibits zero activity. These findings indicate that nucleophilicity at position 303 is more catalytically valuable than active site stability and highlight the mechanistic elasticity of these enzymes.

  3. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination.

    PubMed

    Rowley, Paul A; Kachroo, Aashiq H; Ma, Chien-Hui; Maciaszek, Anna D; Guga, Piotr; Jayaram, Makkuni

    2015-07-13

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5' to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions.

  4. Active-Site Hydration and Water Diffusion in Cytochrome P450cam: A Highly Dynamic Process

    SciTech Connect

    Miao, Yinglong; Baudry, Jerome Y

    2011-01-01

    Long-timescale molecular dynamics simulations (300 ns) are performed on both the apo- (i.e., camphor-free) and camphor-bound cytochrome P450cam (CYP101). Water diffusion into and out of the protein active site is observed without biased sampling methods. During the course of the molecular dynamics simulation, an average of 6.4 water molecules is observed in the camphor-binding site of the apo form, compared to zero water molecules in the binding site of the substrate-bound form, in agreement with the number of water molecules observed in crystal structures of the same species. However, as many as 12 water molecules can be present at a given time in the camphor-binding region of the active site in the case of apo-P450cam, revealing a highly dynamic process for hydration of the protein active site, with water molecules exchanging rapidly with the bulk solvent. Water molecules are also found to exchange locations frequently inside the active site, preferentially clustering in regions surrounding the water molecules observed in the crystal structure. Potential-of-mean-force calculations identify thermodynamically favored trans-protein pathways for the diffusion of water molecules between the protein active site and the bulk solvent. Binding of camphor in the active site modifies the free-energy landscape of P450cam channels toward favoring the diffusion of water molecules out of the protein active site.

  5. Structural mechanism of RuBisCO activation by carbamylation of the active site lysine.

    PubMed

    Stec, Boguslaw

    2012-11-13

    Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is a crucial enzyme in carbon fixation and the most abundant protein on earth. It has been studied extensively by biochemical and structural methods; however, the most essential activation step has not yet been described. Here, we describe the mechanistic details of Lys carbamylation that leads to RuBisCO activation by atmospheric CO(2). We report two crystal structures of nitrosylated RuBisCO from the red algae Galdieria sulphuraria with O(2) and CO(2) bound at the active site. G. sulphuraria RuBisCO is inhibited by cysteine nitrosylation that results in trapping of these gaseous ligands. The structure with CO(2) defines an elusive, preactivation complex that contains a metal cation Mg(2+) surrounded by three H(2)O/OH molecules. Both structures suggest the mechanism for discriminating gaseous ligands by their quadrupole electric moments. We describe conformational changes that allow for intermittent binding of the metal ion required for activation. On the basis of these structures we propose the individual steps of the activation mechanism. Knowledge of all these elements is indispensable for engineering RuBisCO into a more efficient enzyme for crop enhancement or as a remedy to global warming.

  6. Dual role of the active-center cysteine in human peroxiredoxin 1: Peroxidase activity and heme binding.

    PubMed

    Watanabe, Yuta; Ishimori, Koichiro; Uchida, Takeshi

    2017-02-12

    HBP23, a 23-kDa heme-binding protein identified in rats, is a member of the peroxiredoxin (Prx) family, the primary peroxidases involved in hydrogen peroxide catabolism. Although HBP23 has a characteristic Cys-Pro heme-binding motif, the significance of heme binding to Prx family proteins remains to be elucidated. Here, we examined the effect of heme binding to human peroxiredoxin-1 (PRX1), which has 97% amino acid identity to HBP23. PRX1 was expressed in Escherichia coli and purified to homogeneity. Spectroscopic titration demonstrated that PRX1 binds heme with a 1:1 stoichiometry and a dissociation constant of 0.17 μM. UV-vis spectra of heme-PRX1 suggested that Cys52 is the axial ligand of ferric heme. PRX1 peroxidase activity was lost upon heme binding, reflecting the fact that Cys52 is not only the heme-binding site but also the active center of peroxidase activity. Interestingly, heme binding to PRX1 caused a decrease in the toxicity and degradation of heme, significantly suppressing H2O2-dependent heme peroxidase activity and degradation of PRX1-bound heme compared with that of free hemin. By virtue of its cytosolic abundance (∼20 μM), PRX1 thus functions as a scavenger of cytosolic hemin (<1 μM). Collectively, our results indicate that PRX1 has a dual role; Cys-dependent peroxidase activity and cytosolic heme scavenger.

  7. Structural features important for the biological activity of the potassium channel blocking dendrotoxins.

    PubMed

    Hollecker, M; Marshall, D L; Harvey, A L

    1993-10-01

    1. Dendrotoxins from mamba snake venoms are small proteins that block neuronal K+ channels. In order to investigate structural features associated with their biological activity, partially folded versions of dendrotoxins I and K from black mamba (Dendroaspis polylepis) were prepared by selectively reducing one or more of their three S-S bonds. 2. The modified toxins were tested for ability to compete with 125I-labelled native toxin I to high affinity binding sites on rat brain synaptosomal membranes and for the ability to increase acetylcholine release in a neuromuscular preparation. 3. Binding affinity increased progressively as the toxins folded to the native conformation and the most biologically active of the modified species were those in which only the disulphide bond between residues 14 and 38 was not formed. These intermediates had native-like conformations as determined by circular dichroism but still had about 5-10 times lower affinity than native toxins. 4. Addition of negatively charged groups to block the free sulthydryls at positions 14 and 38 caused a further, marked loss of activity. 5. The results are consistent with the existence of two important regions in the dendrotoxin molecules. The region containing two of the disulphide bonds (around Cys5-Cys55 and Cys30-Cys51) and much of the secondary structure is essential for the binding affinity of the toxins, while the region around Cys14 and Cys38, equivalent to part of the antiprotease site of the homologous protease inhibitor from bovine pancreas (BPTI), plays an important role in the potency of dendrotoxins.

  8. Silver-Coated Nylon Dressing Plus Active DC Microcurrent for Healing of Autogenous Skin Donor Sites

    DTIC Science & Technology

    2013-08-01

    Silver-Coated Nylon Dressing Plus Active DC Microcurrent for Healing of Autogenous Skin Donor Sites Edward W. Malin, MD, Chaya M. Galin, BSN, RN... microcurrent in comparison to silver-coated dressing with sham microcurrent on wound-closure time for autogenous skin donor sites. Methods: Four...hundred five patients were screened for treatment of their donor sites using a silver-coated nylon dressing with either sham or active microcurrent

  9. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles

    PubMed Central

    2015-01-01

    Mineral dusts originating from Earth’s crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts. Here we investigated in closer detail the reasons for its activity and the difference in the activity of the different feldspars. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. K-feldspar showed by far the highest ice nucleation activity. Finally, we give a potential explanation of this effect, finding alkali-metal ions having different hydration shells and thus an influence on the ice nucleation activity of feldspar surfaces. PMID:25584435

  10. 76 FR 30696 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites AGENCY: Department of... eligible active uranium and thorium processing site licensees for reimbursement under Title X of the Energy... requires DOE to reimburse eligible uranium and thorium licensees for certain costs of...

  11. 76 FR 24871 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites AGENCY: Department of... from eligible active uranium and thorium processing site licensees for reimbursement under Title X of...). Title X requires DOE to reimburse eligible uranium and thorium licensees for certain costs...

  12. The Disulfide Bond Cys255-Cys279 in the Immunoglobulin-Like Domain of Anthrax Toxin Receptor 2 Is Required for Membrane Insertion of Anthrax Protective Antigen Pore.

    PubMed

    Jacquez, Pedro; Avila, Gustavo; Boone, Kyle; Altiyev, Agamyrat; Puschhof, Jens; Sauter, Roland; Arigi, Emma; Ruiz, Blanca; Peng, Xiuli; Almeida, Igor; Sherman, Michael; Xiao, Chuan; Sun, Jianjun

    2015-01-01

    Anthrax toxin receptors act as molecular clamps or switches that control anthrax toxin entry, pH-dependent pore formation, and translocation of enzymatic moieties across the endosomal membranes. We previously reported that reduction of the disulfide bonds in the immunoglobulin-like (Ig) domain of the anthrax toxin receptor 2 (ANTXR2) inhibited the function of the protective antigen (PA) pore. In the present study, the disulfide linkage in the Ig domain was identified as Cys255-Cys279 and Cys230-Cys315. Specific disulfide bond deletion mutants were achieved by replacing Cys residues with Ala residues. Deletion of the disulfide bond C255-C279, but not C230-C315, inhibited the PA pore-induced release of the fluorescence dyes from the liposomes, suggesting that C255-C279 is essential for PA pore function. Furthermore, we found that deletion of C255-C279 did not affect PA prepore-to-pore conversion, but inhibited PA pore membrane insertion by trapping the PA membrane-inserting loops in proteinaceous hydrophobic pockets. Fluorescence spectra of Trp59, a residue adjacent to the PA-binding motif in von Willebrand factor A (VWA) domain of ANTXR2, showed that deletion of C255-C279 resulted in a significant conformational change on the receptor ectodomain. The disulfide deletion-induced conformational change on the VWA domain was further confirmed by single-particle 3D reconstruction of the negatively stained PA-receptor heptameric complexes. Together, the biochemical and structural data obtained in this study provides a mechanistic insight into the role of the receptor disulfide bond C255-C279 in anthrax toxin action. Manipulation of the redox states of the receptor, specifically targeting to C255-C279, may become a novel strategy to treat anthrax.

  13. The Disulfide Bond Cys255-Cys279 in the Immunoglobulin-Like Domain of Anthrax Toxin Receptor 2 Is Required for Membrane Insertion of Anthrax Protective Antigen Pore

    PubMed Central

    Boone, Kyle; Altiyev, Agamyrat; Puschhof, Jens; Sauter, Roland; Arigi, Emma; Ruiz, Blanca; Peng, Xiuli; Almeida, Igor; Sherman, Michael; Xiao, Chuan; Sun, Jianjun

    2015-01-01

    Anthrax toxin receptors act as molecular clamps or switches that control anthrax toxin entry, pH-dependent pore formation, and translocation of enzymatic moieties across the endosomal membranes. We previously reported that reduction of the disulfide bonds in the immunoglobulin-like (Ig) domain of the anthrax toxin receptor 2 (ANTXR2) inhibited the function of the protective antigen (PA) pore. In the present study, the disulfide linkage in the Ig domain was identified as Cys255-Cys279 and Cys230-Cys315. Specific disulfide bond deletion mutants were achieved by replacing Cys residues with Ala residues. Deletion of the disulfide bond C255-C279, but not C230-C315, inhibited the PA pore-induced release of the fluorescence dyes from the liposomes, suggesting that C255-C279 is essential for PA pore function. Furthermore, we found that deletion of C255-C279 did not affect PA prepore-to-pore conversion, but inhibited PA pore membrane insertion by trapping the PA membrane-inserting loops in proteinaceous hydrophobic pockets. Fluorescence spectra of Trp59, a residue adjacent to the PA-binding motif in von Willebrand factor A (VWA) domain of ANTXR2, showed that deletion of C255-C279 resulted in a significant conformational change on the receptor ectodomain. The disulfide deletion-induced conformational change on the VWA domain was further confirmed by single-particle 3D reconstruction of the negatively stained PA-receptor heptameric complexes. Together, the biochemical and structural data obtained in this study provides a mechanistic insight into the role of the receptor disulfide bond C255-C279 in anthrax toxin action. Manipulation of the redox states of the receptor, specifically targeting to C255-C279, may become a novel strategy to treat anthrax. PMID:26107617

  14. A model of the rabies virus glycoprotein active site.

    PubMed

    Rustici, M; Bracci, L; Lozzi, L; Neri, P; Santucci, A; Soldani, P; Spreafico, A; Niccolai, N

    1993-06-01

    The glycoprotein from the neurotropic rabies virus shows a significant homology with the alpha neurotoxin that binds to the nicotinic acetylcholine receptor. The crystal structure of the alpha neurotoxins suggests that the Arg 37 guanidinium group and the Asp 31 side-chain carboxylate of the erabutoxin have stereochemical features resembling those of acetylcholine. Conformational studies on the Asn194-Ser195-Arg196-Gly197 tetrapeptide, an essential part of the binding site of the rabies virus glycoprotein, indicate that the side chains of Asn and Arg could also mimic the acetylcholine structure. This observation is consistent with the recently proposed mechanism of the viral infection.

  15. Active Site Hydrophobicity and the Convergent Evolution of Paraoxonase Activity in Structurally Divergent Enzymes: The Case of Serum Paraoxonase 1

    PubMed Central

    2016-01-01

    Serum paraoxonase 1 (PON1) is a native lactonase capable of promiscuously hydrolyzing a broad range of substrates, including organophosphates, esters, and carbonates. Structurally, PON1 is a six-bladed β-propeller with a flexible loop (residues 70–81) covering the active site. This loop contains a functionally critical Tyr at position 71. We have performed detailed experimental and computational analyses of the role of selected Y71 variants in the active site stability and catalytic activity in order to probe the role of Y71 in PON1’s lactonase and organophosphatase activities. We demonstrate that the impact of Y71 substitutions on PON1’s lactonase activity is minimal, whereas the kcat for the paraoxonase activity is negatively perturbed by up to 100-fold, suggesting greater mutational robustness of the native activity. Additionally, while these substitutions modulate PON1’s active site shape, volume, and loop flexibility, their largest effect is in altering the solvent accessibility of the active site by expanding the active site volume, allowing additional water molecules to enter. This effect is markedly more pronounced in the organophosphatase activity than the lactonase activity. Finally, a detailed comparison of PON1 to other organophosphatases demonstrates that either a similar “gating loop” or a highly buried solvent-excluding active site is a common feature of these enzymes. We therefore posit that modulating the active site hydrophobicity is a key element in facilitating the evolution of organophosphatase activity. This provides a concrete feature that can be utilized in the rational design of next-generation organophosphate hydrolases that are capable of selecting a specific reaction from a pool of viable substrates. PMID:28026940

  16. Proteome-wide analysis of nonsynonymous single-nucleotide variations in active sites of human proteins.

    PubMed

    Dingerdissen, Hayley; Motwani, Mona; Karagiannis, Konstantinos; Simonyan, Vahan; Mazumder, Raja

    2013-03-01

    An enzyme's active site is essential to normal protein activity such that any disruptions at this site may lead to dysfunction and disease. Nonsynonymous single-nucleotide variations (nsSNVs), which alter the amino acid sequence, are one type of disruption that can alter the active site. When this occurs, it is assumed that enzyme activity will vary because of the criticality of the site to normal protein function. We integrate nsSNV data and active site annotations from curated resources to identify all active-site-impacting nsSNVs in the human genome and search for all pathways observed to be associated with this data set to assess the likely consequences. We find that there are 934 unique nsSNVs that occur at the active sites of 559 proteins. Analysis of the nsSNV data shows an over-representation of arginine and an under-representation of cysteine, phenylalanine and tyrosine when comparing the list of nsSNV-impacted active site residues with the list of all possible proteomic active site residues, implying a potential bias for or against variation of these residues at the active site. Clustering analysis shows an abundance of hydrolases and transferases. Pathway and functional analysis shows several pathways over- or under-represented in the data set, with the most significantly affected pathways involved in carbohydrate metabolism. We provide a table of 32 variation-substrate/product pairs that can be used in targeted metabolomics experiments to assay the effects of specific variations. In addition, we report the significant prevalence of aspartic acid to histidine variation in eight proteins associated with nine diseases including glycogen storage diseases, lacrimo-auriculo-dento-digital syndrome, Parkinson's disease and several cancers.

  17. Assessment of activation products in the Savannah River Site environment

    SciTech Connect

    Carlton, W.H.; Denham, M.

    1996-07-01

    This document assesses the impact of radioactive activation products released from SRS facilities since the first reactor became operational late in 1953. The isotopes reported here are those whose release resulted in the highest dose to people living near SRS: {sup 32}P, {sup 51}Cr, {sup 60}C, and {sup 65}Zn. Release pathways, emission control features, and annual releases to the aqueous and atmospheric environments are discussed. No single incident has resulted in a major acute release of activation products to the environment. The releases were the result of normal operations of the reactors and separations facilities. Releases declined over the years as better controls were established and production was reduced. The overall radiological impact of SRS activation product atmospheric releases from 1954 through 1994 on the offsite maximally exposed individual can be characterized by a total dose of 0.76 mrem. During the same period, such an individual received a total dose of 14,400 mrem from non-SRS sources of ionizing radiation present in the environment. SRS activation product aqueous releases between 1954 and 1994 resulted in a total dose of 54 mrem to the offsite maximally exposed individual. The impact of SRS activation product releases on offsite populations also has been evaluated.

  18. The crystal structure of the C45S mutant of annelid Arenicola marina peroxiredoxin 6 supports its assignment to the mechanistically typical 2-Cys subfamily without any formation of toroid-shaped decamers

    PubMed Central

    Smeets, Aude; Loumaye, Eléonore; Clippe, André; Rees, Jean-François; Knoops, Bernard; Declercq, Jean-Paul

    2008-01-01

    The peroxiredoxins (PRDXs) define a superfamily of thiol-dependent peroxidases able to reduce hydrogen peroxide, alkyl hydroperoxides, and peroxynitrite. Besides their cytoprotective antioxidant function, PRDXs have been implicated in redox signaling and chaperone activity, the latter depending on the formation of decameric high-molecular-weight structures. PRDXs have been mechanistically divided into three major subfamilies, namely typical 2-Cys, atypical 2-Cys, and 1-Cys PRDXs, based on the number and position of cysteines involved in the catalysis. We report the structure of the C45S mutant of annelid worm Arenicola marina PRDX6 in three different crystal forms determined at 1.6, 2.0, and 2.4 Å resolution. Although A. marina PRDX6 was cloned during the search of annelid homologs of mammalian 1-Cys PRDX6s, the crystal structures support its assignment to the mechanistically typical 2-Cys PRDX subfamily. The protein is composed of two distinct domains: a C-terminal domain and an N-terminal domain exhibiting a thioredoxin fold. The subunits are associated in dimers compatible with the formation of intersubunit disulfide bonds between the peroxidatic and the resolving cysteine residues in the wild-type enzyme. The packing of two crystal forms is very similar, with pairs of dimers associated as tetramers. The toroid-shaped decamers formed by dimer association and observed in most typical 2-Cys PRDXs is not present. Thus, A. marina PRDX6 presents structural features of typical 2-Cys PRDXs without any formation of toroid-shaped decamers, suggesting that it should function more like a cytoprotective antioxidant enzyme or a modulator of peroxide-dependent cell signaling rather than a molecular chaperone. PMID:18359859

  19. All the catalytic active sites of MoS2 for hydrogen evolution

    DOE PAGES

    Li, Guoqing; Zhang, Du; Qiao, Qiao; ...

    2016-11-29

    MoS2 presents a promising low-cost catalyst for the hydrogen evolution reaction (HER), but the understanding about its active sites has remained limited. Here we present an unambiguous study of the catalytic activities of all possible reaction sites of MoS2, including edge sites, sulfur vacancies, and grain boundaries. We demonstrate that, in addition to the well-known catalytically active edge sites, sulfur vacancies provide another major active site for the HER, while the catalytic activity of grain boundaries is much weaker. Here, the intrinsic turnover frequencies (Tafel slopes) of the edge sites, sulfur vacancies, and grain boundaries are estimated to be 7.5more » s–1 (65–75 mV/dec), 3.2 s–1 (65–85 mV/dec), and 0.1 s–1 (120–160 mV/dec), respectively. We also demonstrate that the catalytic activity of sulfur vacancies strongly depends on the density of the vacancies and the local crystalline structure in proximity to the vacancies. Unlike edge sites, whose catalytic activity linearly depends on the length, sulfur vacancies show optimal catalytic activities when the vacancy density is in the range of 7–10%, and the number of sulfur vacancies in high crystalline quality MoS2 is higher than that in low crystalline quality MoS2, which may be related with the proximity of different local crystalline structures to the vacancies.« less

  20. Calcium binding to the low affinity sites in troponin C induces conformational changes in the high affinity domain. A possible route of information transfer in activation of muscle contraction.

    PubMed

    Grabarek, Z; Leavis, P C; Gergely, J

    1986-01-15

    Residues 89-100 of troponin C (C89-100) and 96-116 of troponin I (I96-116) interact with each other in the troponin complex (Dalgarno, D.C., Grand, R.J.A., Levine, B.A. Moir, A., J.G., Scott, G.M.M., and Perry, S.V. (1982) FEBS Lett. 150, 54-58) and are necessary for the Ca2+ sensitivity of actomyosin ATPase (Syska, H., Wilkinson, J.M., Grand, R.J.A., and Perry, S.V. (1976) Biochem. J. 153, 375-387 and Grabarek, Z., Drabikowski, W., Leavis, P.C., Rosenfeld, S.S., and Gergely, J. (1981) J. Biol. Chem. 256, 13121-13127). We have studied Ca2+-induced changes in the region C89-100 by monitoring the fluorescence of troponin C (TnC) labeled at Cys-98 with 5-(iodoacetamidoethyl)aminonaphthalene-1-sulfonic acid. Equilibrium titration of the labeled TnC with Ca2+ indicates that the probe is sensitive to binding to both classes of sites in free TnC as well as in its complex with TnI. When Mg2 X TnC is mixed with Ca2+ in a stopped flow apparatus, there is a rapid fluorescence increase related to Ca2+ binding to the unoccupied sites I and II followed by a slower increase (k = 9.9 s-1) that represents Mg2+-Ca2+ exchange at sites III and IV. In the TnC X TnI complex, the fast phase is much larger and the Mg2+-Ca2+ exchange at sites III and IV results in a small decrease rather than an increase in the fluorescence of the probe. The possibility is discussed that the fast change in the environment of Cys-98 upon Ca2+ binding to sites I and II may be instrumental in triggering activation of the thin filament by facilitating a contact between C89-100 and I96-116.

  1. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts

    PubMed Central

    Sahraie, Nastaran Ranjbar; Kramm, Ulrike I.; Steinberg, Julian; Zhang, Yuanjian; Thomas, Arne; Reier, Tobias; Paraknowitsch, Jens-Peter; Strasser, Peter

    2015-01-01

    Carbon materials doped with transition metal and nitrogen are highly active, non-precious metal catalysts for the electrochemical conversion of molecular oxygen in fuel cells, metal air batteries, and electrolytic processes. However, accurate measurement of their intrinsic turn-over frequency and active-site density based on metal centres in bulk and surface has remained difficult to date, which has hampered a more rational catalyst design. Here we report a successful quantification of bulk and surface-based active-site density and associated turn-over frequency values of mono- and bimetallic Fe/N-doped carbons using a combination of chemisorption, desorption and 57Fe Mössbauer spectroscopy techniques. Our general approach yields an experimental descriptor for the intrinsic activity and the active-site utilization, aiding in the catalyst development process and enabling a previously unachieved level of understanding of reactivity trends owing to a deconvolution of site density and intrinsic activity. PMID:26486465

  2. Expression, purification and characterization of an atypical 2-Cys peroxiredoxin from the silkworm, Bombyx mori.

    PubMed

    Zhang, L; Lu, Z

    2015-04-01

    Peroxiredoxins (Prxs) play important roles in protecting organisms against damage caused by reactive oxygen species (ROS). In this study, we cloned a cDNA of Bombyx mori peroxiredoxin 5 (BmPrx5), which contained a 565-bp open reading frame for a 188-residue protein. Sequence analysis indicated that BmPrx5 belongs to the atypical 2-Cys peroxiredoxin family. Recombinant BmPrx5 purified from Escherichia coli showed antioxidant activity that removes H2 O2 and protects DNA from oxidative damage. Quantitative real-time PCR showed that the level of BmPrx5 mRNA in haemocytes increased early and decreased by 24 h after injection of H2 O2 whereas, in the fat body, the transcript level decreased at 6 h and increased at 12 h. Pseudomonas aeruginosa and Staphylococcus aureus infection resulted in higher levels of H2 O2 in the haemolymph and of BmPrx5 mRNA in haemocytes at 8 h postinfection. These data suggest that BmPrx5 acts as an antioxidant enzyme to protect the silkworm from oxidative damage induced by bacterial infection. Further study is needed to elucidate the exact role of BmPrx5 in the silkworm immune system.

  3. Cys34-PEGylated Human Serum Albumin for Drug Binding and Delivery

    PubMed Central

    Mehtala, Jonathan G.; Kulczar, Chris; Lavan, Monika; Knipp, Gregory; Wei, Alexander

    2015-01-01

    Polyethylene glycol (PEG) derivatives were conjugated onto the Cys-34 residue of human serum albumin (HSA) to determine their effects on the solubilization, permeation, and cytotoxic activity of hydrophobic drugs such as paclitaxel (PTX). PEG(C34)HSA conjugates were prepared on a multigram scale by treating native HSA (n-HSA) with 5- or 20-kDa mPEG-maleimide, resulting in up to 77% conversion of the mono-PEGylated adduct. Nanoparticle tracking analysis of PEG(C34)HSA formulations in phosphate buffer revealed an increase in nanosized aggregates relative to n-HSA, both in the absence and presence of PTX. Cell viability studies conducted with MCF-7 breast cancer cells indicated that PTX cytotoxicity was enhanced by PEG(C34)HSA when mixed at 10:1 mole ratios, up to a two-fold increase in potency relative to n-HSA. The PEG(C34)HSA conjugates were also evaluated as PTX carriers across monolayers of HUVEC and hCMEC/D3 cells, and found to have nearly identical permeation profiles as n-HSA. PMID:25918947

  4. Marine Biology Field Trip Sites. Ocean Related Curriculum Activities.

    ERIC Educational Resources Information Center

    Pauls, John

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  5. An active site mutation increases the polymerase activity of the guinea pig-lethal Marburg virus.

    PubMed

    Koehler, Alexander; Kolesnikova, Larissa; Becker, Stephan

    2016-10-01

    Marburg virus (MARV) causes severe, often fatal, disease in humans and transient illness in rodents. Sequential passaging of MARV in guinea pigs resulted in selection of a lethal virus containing 4 aa changes. A D184N mutation in VP40 (VP40D184N), which leads to a species-specific gain of viral fitness, and three mutations in the active site of viral RNA-dependent RNA polymerase L, which were investigated in the present study for functional significance in human and guinea pig cells. The transcription/replication activity of L mutants was strongly enhanced by a substitution at position 741 (S741C), and inhibited by other substitutions (D758A and A759D) in both species. The polymerase activity of L carrying the S741C substitution was eightfold higher in guinea pig cells than in human cells upon co-expression with VP40D184N, suggesting that the additive effect of the two mutations provides MARV a replicative advantage in the new host.

  6. Encroachment of Human Activity on Sea Turtle Nesting Sites

    NASA Astrophysics Data System (ADS)

    Ziskin, D.; Aubrecht, C.; Elvidge, C.; Tuttle, B.; Baugh, K.; Ghosh, T.

    2008-12-01

    The encroachment of anthropogenic lighting on sea turtle nesting sites poses a serious threat to the survival of these animals [Nicholas, 2001]. This danger is quantified by combining two established data sets. The first is the Nighttime Lights data produced by the NOAA National Geophysical Data Center [Elvidge et al., 1997]. The second is the Marine Turtle Database produced by the World Conservation Monitoring Centre (WCMC). The technique used to quantify the threat of encroachment is an adaptation of the method described in Aubrecht et al. [2008], which analyzes the stress on coral reef systems by proximity to nighttime lights near the shore. Nighttime lights near beaches have both a direct impact on turtle reproductive success since they disorient hatchlings when they mistake land-based lights for the sky-lit surf [Lorne and Salmon, 2007] and the lights are also a proxy for other anthropogenic threats. The identification of turtle nesting sites with high rates of encroachment will hopefully steer conservation efforts to mitigate their effects [Witherington, 1999]. Aubrecht, C, CD Elvidge, T Longcore, C Rich, J Safran, A Strong, M Eakin, KE Baugh, BT Tuttle, AT Howard, EH Erwin, 2008, A global inventory of coral reef stressors based on satellite observed nighttime lights, Geocarto International, London, England: Taylor and Francis. In press. Elvidge, CD, KE Baugh, EA Kihn, HW Kroehl, ER Davis, 1997, Mapping City Lights with Nighttime Data from the DMSP Operational Linescan System, Photogrammatic Engineering and Remote Sensing, 63:6, pp. 727-734. Lorne, JK, M Salmon, 2007, Effects of exposure to artificial lighting on orientation of hatchling sea turtles on the beach and in the ocean, Endangered Species Research, Vol. 3: 23-30. Nicholas, M, 2001, Light Pollution and Marine Turtle Hatchlings: The Straw that Breaks the Camel's Back?, George Wright Forum, 18:4, p77-82. Witherington, BE, 1999, Reducing Threats To Nesting Habitat, Research and Management Techniques for

  7. CysLT(1)R antagonists inhibit tumor growth in a xenograft model of colon cancer.

    PubMed

    Savari, Sayeh; Liu, Minghui; Zhang, Yuan; Sime, Wondossen; Sjölander, Anita

    2013-01-01

    The expression of the inflammatory G-protein coupled receptor CysLT1R has been shown to be upregulated in colon cancer patients and associated with poor prognosis. The present study investigated the correlation between CysLT1R and colon cancer development in vivo using CysLT1R antagonists (ZM198,615 or Montelukast) and the nude mouse xenograft model. Two drug administration regimens were established. The first regimen was established to investigate the importance of CysLT1R in tumor initiation. Nude mice were inoculated with 50 µM CysLT1R antagonist-pretreated HCT-116 colon cancer cells and received continued treatment (5 mg/kg/day, intraperitoneally). The second regimen aimed to address the role of CysLT1R in tumor progression. Nude mice were inoculated with non-pretreated HCT-116 cells and did not receive CysLT1R antagonist treatment until recordable tumor appearance. Both regimens resulted in significantly reduced tumor size, attributed to changes in proliferation and apoptosis as determined by reduced Ki-67 levels and increased levels of p21(WAF/Cip1) (P<0.01), cleaved caspase 3, and the caspase-cleaved product of cytokeratin 18. Decreased levels of VEGF (P<0.01) and reduced vessel size (P<0.05) were also observed, the latter only in the ZM198,615-pretreatment group. Furthermore, we performed a series of in vitro studies using the colon cancer cell line HCT-116 and CysLT1R antagonists. In addition to significant reductions in cell proliferation, adhesion and colony formation, we observed induction of cell cycle arrest and apoptosis in a dose-dependent manner. The ability of Montelukast to inhibit growth of human colon cancer xenograft was further validated by using two additional colon cancer cell lines, SW-480 and HT-29. Our results demonstrate that CysLT1R antagonists inhibit growth of colon cancer xenografts primarily by reducing proliferation and inducing apoptosis of the tumor cells.

  8. CysLT1R Antagonists Inhibit Tumor Growth in a Xenograft Model of Colon Cancer

    PubMed Central

    Savari, Sayeh; Liu, Minghui; Zhang, Yuan; Sime, Wondossen; Sjölander, Anita

    2013-01-01

    The expression of the inflammatory G-protein coupled receptor CysLT1R has been shown to be upregulated in colon cancer patients and associated with poor prognosis. The present study investigated the correlation between CysLT1R and colon cancer development in vivo using CysLT1R antagonists (ZM198,615 or Montelukast) and the nude mouse xenograft model. Two drug administration regimens were established. The first regimen was established to investigate the importance of CysLT1R in tumor initiation. Nude mice were inoculated with 50 µM CysLT1R antagonist-pretreated HCT-116 colon cancer cells and received continued treatment (5 mg/kg/day, intraperitoneally). The second regimen aimed to address the role of CysLT1R in tumor progression. Nude mice were inoculated with non-pretreated HCT-116 cells and did not receive CysLT1R antagonist treatment until recordable tumor appearance. Both regimens resulted in significantly reduced tumor size, attributed to changes in proliferation and apoptosis as determined by reduced Ki-67 levels and increased levels of p21WAF/Cip1 (P<0.01), cleaved caspase 3, and the caspase-cleaved product of cytokeratin 18. Decreased levels of VEGF (P<0.01) and reduced vessel size (P<0.05) were also observed, the latter only in the ZM198,615-pretreatment group. Furthermore, we performed a series of in vitro studies using the colon cancer cell line HCT-116 and CysLT1R antagonists. In addition to significant reductions in cell proliferation, adhesion and colony formation, we observed induction of cell cycle arrest and apoptosis in a dose-dependent manner. The ability of Montelukast to inhibit growth of human colon cancer xenograft was further validated by using two additional colon cancer cell lines, SW-480 and HT-29. Our results demonstrate that CysLT1R antagonists inhibit growth of colon cancer xenografts primarily by reducing proliferation and inducing apoptosis of the tumor cells. PMID:24039952

  9. New cysE-pyrE-linked rfa mutation in Escherichia coli K-12 that results in a heptoseless lipopolysaccharide.

    PubMed Central

    Coleman, W G; Deshpande, K S

    1985-01-01

    A new novobiocin-supersensitive mutant of Escherichia coli K-12 has been characterized biochemically and genetically. Lipopolysaccharide prepared from this mutant strain is truncated and contains 2-keto-3-deoxyoctulosonic acid as its only core sugar. This new core-defective mutation, designated rfa-2, results in increased sensitivity to several hydrophobic and some hydrophilic agents. Genetic analysis of the rfa mutant indicated that the rfa-2 locus is located at 81 min on the chromosome. The order of the genes in this region based on transduction analysis is xyl cysE rfa-2 rfaD70 pyrE. P1 transduction analyses indicate that the rfa-2 marker is nonallelic with the recently described cysE-pyrE-linked rfaD70 locus. Plasmids carrying the wild-type rfaD70+ allele failed to abolish the rfa-2 phenotypes. Further, the rfaD gene product, ADP-L-glycero-D-mannoheptose-6-epimerase, was detected in crude extracts of a rfa-2 mutant strain, CL609, and was absent in the rfaD70 mutant. The wild-type rfa-2 allele codes either for a specific heptose biosynthetic enzyme (different from the rfaD gene product) or an enzymatic activity required for the addition of heptose to the lipid A-2-keto-3-deoxyoctulosonic acid acceptor. Images PMID:3882666

  10. A novel hypothyroid dwarfism due to the missense mutation Arg479Cys of the thyroid peroxidase gene in the mouse.

    PubMed

    Takabayashi, Shuji; Umeki, Kazumi; Yamamoto, Etsuko; Suzuki, Tohru; Okayama, Akihiko; Katoh, Hideki

    2006-10-01

    Recently, we found a novel dwarf mutation in an ICR closed colony. This mutation was governed by a single autosomal recessive gene. In novel dwarf mice, plasma levels of the thyroid hormones, T3 and T4, were reduced; however, TSH was elevated. Their thyroid glands showed a diffuse goiter exhibiting colloid deficiency and abnormal follicle epithelium. The dwarfism was improved by adding thyroid hormone in the diet. Gene mapping revealed that the dwarf mutation was closely linked to the thyroid peroxidase (Tpo) gene on chromosome 12. Sequencing of the Tpo gene of the dwarf mice demonstrated a C to T substitution at position 1508 causing an amino acid change from arginine (Arg) to cysteine (Cys) at codon 479 (Arg479Cys). Western blotting revealed that TPO protein of the dwarf mice was detected in a microsomal fraction of thyroid tissue, but peroxidase activity was not detected. These findings suggested that the dwarf mutation caused a primary congenital hypothyroidism by TPO deficiency, resulting in a defect of thyroid hormone synthesis.

  11. Calcium and Magnesium Ions Modulate the Oligomeric State and Function of Mitochondrial 2-Cys Peroxiredoxins in Leishmania Parasites.

    PubMed

    Morais, Mariana A B; Giuseppe, Priscila O; Souza, Tatiana A C B; Castro, Helena; Honorato, Rodrigo V; Oliveira, Paulo S L; Netto, Luis E S; Tomas, Ana M; Murakami, Mario T

    2017-03-14

    Leishmania parasites have evolved a number of strategies to cope with the harsh environmental changes during mammalian infection. One of these mechanisms involves the functional gain that allowed mitochondrial 2-Cys peroxiredoxins to act as molecular chaperones when forming decamers. This function was demonstrated to be critical for the parasite infectivity in mammals and its activation was considered to be controlled exclusively by the enzyme redox state under physiological conditions. Herein, we revealed that magnesium and calcium ions play a major role in modulating the ability of these enzymes to act as molecular chaperones, surpassing the redox effect. These ions are directly involved in the mitochondrial metabolism and now also integrate a novel mechanism to stabilize the decameric form of 2-Cys peroxiredoxins in Leishmania mitochondrion. Moreover, we demonstrated that a constitutively dimeric Prx1m mutant impairs Leishmania's survival under heat stress, supporting the central role of chaperone function of Prx1m for Leishmania parasites during the transition from insect to mammalian hosts.

  12. Molecular Basis for Enzymatic Sulfite Oxidation -- HOW THREE CONSERVED ACTIVE SITE RESIDUES SHAPE ENZYME ACTIVITY

    SciTech Connect

    Bailey, Susan; Rapson, Trevor; Johnson-Winters, Kayunta; Astashkin, Andrei; Enemark, John; Kappler, Ulrike

    2008-11-10

    Sulfite dehydrogenases (SDHs) catalyze the oxidation and detoxification of sulfite to sulfate, a reaction critical to all forms of life. Sulfite-oxidizing enzymes contain three conserved active site amino acids (Arg-55, His-57, and Tyr-236) that are crucial for catalytic competency. Here we have studied the kinetic and structural effects of two novel and one previously reported substitution (R55M, H57A, Y236F) in these residues on SDH catalysis. Both Arg-55 and His-57 were found to have key roles in substrate binding. An R55M substitution increased Km(sulfite)(app) by 2-3 orders of magnitude, whereas His-57 was required for maintaining a high substrate affinity at low pH when the imidazole ring is fully protonated. This effect may be mediated by interactions of His-57 with Arg-55 that stabilize the position of the Arg-55 side chain or, alternatively, may reflect changes in the protonation state of sulfite. Unlike what is seen for SDHWT and SDHY236F, the catalytic turnover rates of SDHR55M and SDHH57A are relatively insensitive to pH (~;;60 and 200 s-1, respectively). On the structural level, striking kinetic effects appeared to correlate with disorder (in SDHH57A and SDHY236F) or absence of Arg-55 (SDHR55M), suggesting that Arg-55 and the hydrogen bonding interactions it engages in are crucial for substrate binding and catalysis. The structure of SDHR55M has sulfate bound at the active site, a fact that coincides with a significant increase in the inhibitory effect of sulfate in SDHR55M. Thus, Arg-55 also appears to be involved in enabling discrimination between the substrate and product in SDH.

  13. Identification of inhibitors against the potential ligandable sites in the active cholera toxin.

    PubMed

    Gangopadhyay, Aditi; Datta, Abhijit

    2015-04-01

    The active cholera toxin responsible for the massive loss of water and ions in cholera patients via its ADP ribosylation activity is a heterodimer of the A1 subunit of the bacterial holotoxin and the human cytosolic ARF6 (ADP Ribosylation Factor 6). The active toxin is a potential target for the design of inhibitors against cholera. In this study we identified the potential ligandable sites of the active cholera toxin which can serve as binding sites for drug-like molecules. By employing an energy-based approach to identify ligand binding sites, and comparison with the results of computational solvent mapping, we identified two potential ligandable sites in the active toxin which can be targeted during structure-based drug design against cholera. Based on the probe affinities of the identified ligandable regions, docking-based virtual screening was employed to identify probable inhibitors against these sites. Several indole-based alkaloids and phosphates showed strong interactions to the important residues of the ligandable region at the A1 active site. On the other hand, 26 top scoring hits were identified against the ligandable region at the A1 ARF6 interface which showed strong hydrogen bonding interactions, including guanidines, phosphates, Leucopterin and Aristolochic acid VIa. This study has important implications in the application of hybrid structure-based and ligand-based methods against the identified ligandable sites using the identified inhibitors as reference ligands, for drug design against the active cholera toxin.

  14. Barium ions selectively activate BK channels via the Ca2+-bowl site.

    PubMed

    Zhou, Yu; Zeng, Xu-Hui; Lingle, Christopher J

    2012-07-10

    Activation of Ca(2+)-dependent BK channels is increased via binding of micromolar Ca(2+) to two distinct high-affinity sites per BK α-subunit. One site, termed the Ca(2+) bowl, is embedded within the second RCK domain (RCK2; regulator of conductance for potassium) of each α-subunit, while oxygen-containing residues in the first RCK domain (RCK1) have been linked to a separate Ca(2+) ligation site. Although both sites are activated by Ca(2+) and Sr(2+), Cd(2+) selectively favors activation via the RCK1 site. Divalent cations of larger ionic radius than Sr(2+) are thought to be ineffective at activating BK channels. Here we show that Ba(2+), better known as a blocker of K(+) channels, activates BK channels and that this effect arises exclusively from binding at the Ca(2+)-bowl site. Compared with previous estimates for Ca(2+) bowl-mediated activation by Ca(2+), the affinity of Ba(2+) to the Ca(2+) bowl is reduced about fivefold, and coupling of binding to activation is reduced from ∼3.6 for Ca(2+) to about ∼2.8 for Ba(2+). These results support the idea that ionic radius is an important determinant of selectivity differences among different divalent cations observed for each Ca(2+)-binding site.

  15. Activation of brown adipose tissue mitochondrial GDP binding sites

    SciTech Connect

    Swick, A.G.

    1987-01-01

    The primary function of brown adipose tissue (BAT) is heat production. This ability is attributed to the existence of a unique inner mitochondrial membrane protein termed the uncoupling protein or thermogenin. This protein is permeable to H+ and thus allows respiration (and therefore thermogenesis) to proceed at a rapid rate, independent of ADP phosphorylation. Proton conductance can be inhibited by the binding of purine nucleotides to the uncoupling protein. The binding of (/sup 3/H)-GDP to BAT mitochondria is frequently used as a measure of BAT thermogenic activity. Rats fed a diet that was low but adequate in protein exhibited a decrease in feed efficiency. In addition, BAT thermogenesis was activated as indicated by an elevation in the level of GDP binding to BAT mitochondria. This phenomena occurred in older rats and persisted over time.

  16. Methyl jasmonate promotes the transient reduction of the levels of 2-Cys peroxiredoxin in Ricinus communis plants.

    PubMed

    dos Santos Soares, Alexandra Martins; de Souza, Thiago Freitas; de Souza Domingues, Sarah Jane; Jacinto, Tânia; Tavares Machado, Olga Lima

    2004-06-01

    Jasmonates are signaling molecules that play a key role in the regulation of metabolic processes, reproduction and defense against insects and pathogens. This study investigated the effects of methyl jasmonate on the protein pattern of Ricinus communis plants and the activity of guaiacol peroxidase, an antioxidant enzyme. Methyl jasmonate treatment caused a transient reduction in guaiacol peroxidase activity. A similar response was observed for the levels of 2-Cys peroxiredoxin protein. Moreover, the levels of the small and large chains of Rubisco were also reduced. The transient reduction of the levels and activity of antioxidant enzymes could account for the increase in the levels of H2O2, an important signaling molecule in plant defense.

  17. Structure and Reactivity of the Phosphotriesterase Active Site

    DTIC Science & Technology

    2002-01-01

    characterize different catalytic conformations for chorismate mutase . Preliminary evidence for water binding in phosphotriesterase suggests that activity in...MD/QM study of the chorismate mutase catalyzed Claisen rearrangement reaction. 2001.subm. J.Phys.Chem.B 22.Day, P.N.J., J.H.; Gordon,M.S.; Webb,S.P...Claisen rearrangement of an unusual substrate in chorismate mutase . 2001.subm. J.Phys.Chem.B 38.Stevens, W.J., Basch,H., Krauss,M., Compact effective

  18. Strychnine activates neuronal α7 nicotinic receptors after mutations in the leucine ring and transmitter binding site domains

    PubMed Central

    Palma, Eleonora; Fucile, Sergio; Barabino, Benedetta; Miledi, Ricardo; Eusebi, Fabrizio

    1999-01-01

    Recent work has shown that strychnine, the potent and selective antagonist of glycine receptors, is also an antagonist of nicotinic acetylcholine (AcCho) receptors including neuronal homomeric α7 receptors, and that mutating Leu-247 of the α7 nicotinic AcCho receptor-channel domain (L247Tα7; mut1) converts some nicotinic antagonists into agonists. Therefore, a study was made of the effects of strychnine on Xenopus oocytes expressing the chick wild-type α7 or L247Tα7 receptors. In these oocytes, strychnine itself did not elicit appreciable membrane currents but reduced the currents elicited by AcCho in a reversible and dose-dependent manner. In sharp contrast, in oocytes expressing L247Tα7 receptors with additional mutations at Cys-189 and Cys-190, in the extracellular N-terminal domain (L247T/C189–190Sα7; mut2), micromolar concentrations of strychnine elicited inward currents that were reversibly inhibited by the nicotinic receptor blocker α-bungarotoxin. Single-channel recordings showed that strychnine gated mut2-channels with two conductance levels, 56 pS and 42 pS, and with kinetic properties similar to AcCho-activated channels. We conclude that strychnine is a modulator, as well as an activator, of some homomeric nicotinic α7 receptors. After injecting oocytes with mixtures of cDNAs encoding mut1 and mut2 subunits, the expressed hybrid receptors were activated by strychnine, similar to the mut2, and had a high affinity to AcCho like the mut1. A pentameric symmetrical model yields the striking conclusion that two identical α7 subunits may be sufficient to determine the functional properties of α7 receptors. PMID:10557336

  19. Active site proton delivery and the lyase activity of human CYP17A1

    SciTech Connect

    Khatri, Yogan; Gregory, Michael C.; Grinkova, Yelena V.; Denisov, Ilia G.; Sligar, Stephen G.

    2014-01-03

    equivalents and protons are funneled into non-productive pathways. This is similar to previous work with other P450 catalyzed hydroxylation. However, catalysis of carbon–carbon bond scission by the T306A mutant was largely unimpeded by disruption of the CYP17A1 acid-alcohol pair. The unique response of CYP17A1 lyase activity to mutation of Thr306 is consistent with a reactive intermediate formed independently of proton delivery in the active site, and supports involvement of a nucleophilic peroxo-anion rather than the traditional Compound I in catalysis.

  20. Pathways of H2 toward the Active Site of [NiFe]-Hydrogenase

    PubMed Central

    Teixeira, Vitor H.; Baptista, António M.; Soares, Cláudio M.

    2006-01-01

    Hydrogenases catalyze the reversible oxidation of molecular hydrogen (H2), but little is known about the diffusion of H2 toward the active site. Here we analyze pathways for H2 permeation using molecular dynamics (MD) simulations in explicit solvent. Various MD simulation replicates were done, to improve the sampling of the system states. H2 easily permeates hydrogenase in every simulation and it moves preferentially in channels. All H2 molecules that reach the active site made their approach from the side of the Ni ion. H2 is able to reach distances of <4 Å from the active site, although after 6 Å permeation is difficult. In this region we mutated Val-67 into alanine and perform new MD simulations. These simulations show an increase of H2 inside the protein and at lower distances from the active site. This valine can be a control point in the H2 access to the active center. PMID:16731562

  1. Maintenance of plastid RNA editing activities independently of their target sites.

    PubMed

    Tillich, Michael; Poltnigg, Peter; Kushnir, Sergei; Schmitz-Linneweber, Christian

    2006-03-01

    RNA editing in plant organelles is mediated by site-specific, nuclear-encoded factors. Previous data suggested that the maintenance of these factors depends on the presence of their rapidly evolving cognate sites. The surprising ability of allotetraploid Nicotiana tabacum (tobacco) to edit a foreign site in the chloroplast ndhA messenger RNA was thought to be inherited from its diploid male ancestor, Nicotiana tomentosiformis. Here, we show that the same ndhA editing activity is also present in Nicotiana sylvestris, which is the female diploid progenitor of tobacco and which lacks the ndhA site. Hence, heterologous editing is not simply a result of tobacco's allopolyploid genome organization. Analyses of other editing sites after sexual or somatic transfer between land plants showed that heterologous editing occurs at a surprisingly high frequency. This suggests that the corresponding editing activities are conserved despite the absence of their target sites, potentially because they serve other functions in the plant cell.

  2. A Processive Carbohydrate Polymerase That Mediates Bifunctional Catalysis Using a Single Active Site

    PubMed Central

    May, John F.; Levengood, Matthew R.; Splain, Rebecca A.; Brown, Christopher D.; Kiessling, Laura L.

    2012-01-01

    Even in the absence of a template, glycosyltransferases can catalyze the synthesis of carbohydrate polymers of specific sequence. The paradigm has been that one enzyme catalyzes the formation of one type of glycosidic linkage, yet certain glycosyltransferases generate polysaccharide sequences composed of two distinct linkage types. In principle, bifunctional glycosyltransferases can possess separate active sites for each catalytic activity or one active site with dual activities. We encountered the fundamental question of one or two distinct active sites in our investigation of the galactosyltransferase GlfT2. GlfT2 catalyzes the formation of mycobacterial galactan, a critical cell-wall polymer composed of galactofuranose residues connected with alternating, regioisomeric linkages. We found that GlfT2 mediates galactan polymerization using only one active site that manifests dual regioselectivity. Structural modeling of the bifunctional glycosyltransferases hyaluronan synthase and cellulose synthase suggests that these enzymes also generate multiple glycosidic linkages using a single active site. These results highlight the versatility of glycosyltransferases for generating polysaccharides of specific sequence. We postulate that a hallmark of processive elongation of a carbohydrate polymer by a bifunctional enzyme is that one active site can give rise to two separate types of glycosidic bonds. PMID:22217153

  3. Predicting DNA recognition by Cys2His2 zinc finger proteins

    PubMed Central

    Persikov, Anton V.; Osada, Robert; Singh, Mona

    2009-01-01

    Motivation: Cys2His2 zinc finger (ZF) proteins represent the largest class of eukaryotic transcription factors. Their modular structure and well-conserved protein-DNA interface allow the development of computational approaches for predicting their DNA-binding preferences even when no binding sites are known for a particular protein. The ‘canonical model’ for ZF protein-DNA interaction consists of only four amino acid nucleotide contacts per zinc finger domain. Results: We present an approach for predicting ZF binding based on support vector machines (SVMs). While most previous computational approaches have been based solely on examples of known ZF protein–DNA interactions, ours additionally incorporates information about protein–DNA pairs known to bind weakly or not at all. Moreover, SVMs with a linear kernel can naturally incorporate constraints about the relative binding affinities of protein-DNA pairs; this type of information has not been used previously in predicting ZF protein-DNA binding. Here, we build a high-quality literature-derived experimental database of ZF–DNA binding examples and utilize it to test both linear and polynomial kernels for predicting ZF protein–DNA binding on the basis of the canonical binding model. The polynomial SVM outperforms previously published prediction procedures as well as the linear SVM. This may indicate the presence of dependencies between contacts in the canonical binding model and suggests that modification of the underlying structural model may result in further improved performance in predicting ZF protein–DNA binding. Overall, this work demonstrates that methods incorporating information about non-binding and relative binding of protein–DNA pairs have great potential for effective prediction of protein–DNA interactions. Availability: An online tool for predicting ZF DNA binding is available at http://compbio.cs.princeton.edu/zf/. Contact: mona@cs.princeton.edu Supplementary information

  4. An Accessory Agonist Binding Site Promotes Activation of α4β2* Nicotinic Acetylcholine Receptors*

    PubMed Central

    Wang, Jingyi; Kuryatov, Alexander; Sriram, Aarati; Jin, Zhuang; Kamenecka, Theodore M.; Kenny, Paul J.; Lindstrom, Jon

    2015-01-01

    Neuronal nicotinic acetylcholine receptors containing α4, β2, and sometimes other subunits (α4β2* nAChRs) regulate addictive and other behavioral effects of nicotine. These nAChRs exist in several stoichiometries, typically with two high affinity acetylcholine (ACh) binding sites at the interface of α4 and β2 subunits and a fifth accessory subunit. A third low affinity ACh binding site is formed when this accessory subunit is α4 but not if it is β2. Agonists selective for the accessory ACh site, such as 3-[3-(3-pyridyl)-1,2,4-oxadiazol-5-yl]benzonitrile (NS9283), cannot alone activate a nAChR but can facilitate more efficient activation in combination with agonists at the canonical α4β2 sites. We therefore suggest categorizing agonists according to their site selectivity. NS9283 binds to the accessory ACh binding site; thus it is termed an accessory site-selective agonist. We expressed (α4β2)2 concatamers in Xenopus oocytes with free accessory subunits to obtain defined nAChR stoichiometries and α4/accessory subunit interfaces. We show that α2, α3, α4, and α6 accessory subunits can form binding sites for ACh and NS9283 at interfaces with α4 subunits, but β2 and β4 accessory subunits cannot. To permit selective blockage of the accessory site, α4 threonine 126 located on the minus side of α4 that contributes to the accessory site, but not the α4β2 sites, was mutated to cysteine. Alkylation of this cysteine with a thioreactive reagent blocked activity of ACh and NS9283 at the accessory site. Accessory agonist binding sites are promising drug targets. PMID:25869137

  5. Glut4 palmitoylation at Cys223 plays a critical role in Glut4 membrane trafficking.

    PubMed

    Ren, Wenying; Sun, Yingmin; Du, Keyong

    2015-05-08

    Recently, we identified Glut4 as a palmitoylated protein in adipocytes. To understand the role of Glut4 palmitoylation in Glut4 membrane trafficking, a process that is essential for maintenance of whole body glucose homeostasis, we have characterized Glut4 palmitoylation. We found that Glut4 is palmitoylated at Cys223 and Glut4 palmitoylation at Cys223 is essential for insulin dependent Glut4 membrane translocation as substitution of Cys223 with a serine residue in Glut4 (C223S Glut4) diminished Glut4 responsiveness to insulin in membrane translocation in both adipocytes and CHO-IR cells. We have examined C223S Glut4 subcellular localization and observed that it was absence from tubular-vesicle structure, where insulin responsive Glut4 vesicles were presented. Together, our studies uncover a novel mechanism under which Glut4 palmitoylation regulates Glut4 sorting to insulin responsive vesicles, thereby insulin-dependent Glut4 membrane translocation.

  6. Lack of association between dopamine D2 receptor gene Cys311 variant and schizophrenia

    SciTech Connect

    Tanaka, Toshihisa; Fukushima, Noboru; Takahashi, Makoto; Kameda, Kensuke; Ihda, Shin

    1996-04-09

    Itokawa et al. reported identifying one missense nucleotide mutation from C to G resulting in a substitution of serine with cysteine at codon 311 in the third intracellular loop of the dopamine D2 receptor in schizophrenics. Arinami et al. reported finding a positive association between the Cys311 variant and schizophrenia. In response to the report by Arinami et al. we examined 106 unrelated Japanese schizophrenics and 106 normal controls to determine if there is any association of the Cys311 variant with schizophrenia. However, we found no statistically significant differences in allelic frequencies of Cys311 between schizophrenia and normal controls. The present results as well as those of all previous studies except for that of Arinami et al. indicated that an association between the dopamine D2 receptor gene and schizophrenia is unlikely to exist. 24 refs., 1 fig., 1 tab.

  7. Design, Synthesis, and Characterization of α-Ketoheterocycles That Additionally Target the Cytosolic Port Cys269 of Fatty Acid Amide Hydrolase

    PubMed Central

    2015-01-01

    A series of α-ketooxazoles incorporating electrophiles at the C5 position of the pyridyl ring of 2 (OL-135) and related compounds were prepared and examined as inhibitors of fatty acid amide hydrolase (FAAH) that additionally target the cytosolic port Cys269. From this series, a subset of the candidate inhibitors exhibited time-dependent FAAH inhibition and noncompetitive irreversible inactivation of the enzyme, consistent with the targeted Cys269 covalent alkylation or addition, and maintained or enhanced the intrinsic selectivity for FAAH versus other serine hydrolases. A preliminary in vivo assessment demonstrates that these inhibitors raise endogenous brain levels of anandamide and other FAAH substrates upon intraperitoneal (i.p.) administration to mice, with peak levels achieved within 1.5–3 h, and that the elevations of the signaling lipids were maintained >6 h, indicating that the inhibitors effectively reach and remain active in the brain, inhibiting FAAH for a sustained period. PMID:24456116

  8. Distribution and dissemination of the Val1016Ile and Phe1534Cys Kdr mutations in Aedes aegypti Brazilian natural populations

    PubMed Central

    2014-01-01

    Background The chemical control of the mosquito Aedes aegypti, the major vector of dengue, is being seriously threatened due to the development of pyrethroid resistance. Substitutions in the 1016 and 1534 sites of the voltage gated sodium channel (AaNaV), commonly known as kdr mutations, confer the mosquito with knockdown resistance. Our aim was to evaluate the allelic composition of natural populations of Brazilian Ae. aegypti at both kdr sites. Methods The AaNaV IIIS6 region was cloned and sequenced from three Brazilian populations. Additionally, individual mosquitoes from 30 populations throughout the country were genotyped for 1016 and 1534 sites, based in allele-specific PCR. For individual genotypes both sites were considered as a single locus. Results The 350 bp sequence spanning the IIIS6 region of the AaNa V gene revealed the occurrence of the kdr mutation Phe1534Cys in Brazil. Concerning the individual genotyping, beyond the susceptible wild-type (NaVS), two kdr alleles were identified: substitutions restricted to the 1534 position (NaVR1) or simultaneous substitutions in both 1016 and 1534 sites (NaVR2). A clear regional distribution pattern of these alleles was observed. The NaVR1kdr allele occurred in all localities, while NaVR2 was more frequent in the Central and Southeastern localities. Locations that were sampled multiple times in the course of a decade revealed an increase in frequency of the kdr mutations, mainly the double mutant allele NaVR2. Recent samples also indicate that NaVR2 is spreading towards the Northern region. Conclusions We have found that in addition to the previously reported Val1016Ile kdr mutation, the Phe1534Cys mutation also occurs in Brazil. Allelic composition at both sites was important to elucidate the actual distribution of kdr mutations throughout the country. Studies to determine gene flow and the fitness costs of these kdr alleles are underway and will be important to better understand the dynamics of Ae. aegypti

  9. Extending the Diffuse Layer Model of Surface Acidity Behavior: III. Estimating Bound Site Activity Coefficients

    EPA Science Inventory

    Although detailed thermodynamic analyses of the 2-pK diffuse layer surface complexation model generally specify bound site activity coefficients for the purpose of accounting for those non-ideal excess free energies contributing to bound site electrochemical potentials, in applic...

  10. 75 FR 71677 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites AGENCY: Department of... uranium and thorium processing site licensees for reimbursement under Title X of the Energy Policy Act of... requires DOE to reimburse eligible uranium and thorium licensees for certain costs of...

  11. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...). (e) For all asbestos-containing waste material received, the owner or operator of the active waste... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an...

  12. Sample multiplexing with cysteine-selective approaches: cysDML and cPILOT.

    PubMed

    Gu, Liqing; Evans, Adam R; Robinson, Renã A S

    2015-04-01

    Cysteine-selective proteomics approaches simplify complex protein mixtures and improve the chance of detecting low abundant proteins. It is possible that cysteinyl-peptide/protein enrichment methods could be coupled to isotopic labeling and isobaric tagging methods for quantitative proteomics analyses in as few as two or up to 10 samples, respectively. Here we present two novel cysteine-selective proteomics approaches: cysteine-selective dimethyl labeling (cysDML) and cysteine-selective combined precursor isotopic labeling and isobaric tagging (cPILOT). CysDML is a duplex precursor quantification technique that couples cysteinyl-peptide enrichment with on-resin stable-isotope dimethyl labeling. Cysteine-selective cPILOT is a novel 12-plex workflow based on cysteinyl-peptide enrichment, on-resin stable-isotope dimethyl labeling, and iodoTMT tagging on cysteine residues. To demonstrate the broad applicability of the approaches, we applied cysDML and cPILOT methods to liver tissues from an Alzheimer's disease (AD) mouse model and wild-type (WT) controls. From the cysDML experiments, an average of 850 proteins were identified and 594 were quantified, whereas from the cPILOT experiment, 330 and 151 proteins were identified and quantified, respectively. Overall, 2259 unique total proteins were detected from both cysDML and cPILOT experiments. There is tremendous overlap in the proteins identified and quantified between both experiments, and many proteins have AD/WT fold-change values that are within ~20% error. A total of 65 statistically significant proteins are differentially expressed in the liver proteome of AD mice relative to WT. The performance of cysDML and cPILOT are demonstrated and advantages and limitations of using multiple duplex experiments versus a single 12-plex experiment are highlighted.

  13. The Role of β93 Cys in the Inhibition of Hb S Fiber Formation

    PubMed Central

    Knee, Kelly M.; Roden, Catherine K.; Flory, Mark R.; Mukerji, Ishita

    2016-01-01

    Recent studies have suggested that nitric oxide (NO) binding to hemoglobin (Hb) may lead to the inhibition of sickle cell fiber formation and the dissolution of sickle cell fibers. NO can react with Hb in at least 3 ways: 1) formation of Hb(II)NO, 2) formation of methemoglobin, and 3) formation of S-nitrosohemoglobin, through nitrosylation of the β93 Cys residue. In this study, the role of β93 Cys in the mechanism of sickle cell fiber inhibition is investigated through chemical modification with N-ethylmaleimide. UV resonance Raman, FT-IR and electrospray ionization mass spectroscopic methods in conjunction with equilibrium solubility and kinetic studies are used to characterize the effect of β93 Cys modification on Hb S fiber formation. Both FT-IR spectroscopy and electrospray mass spectrometry results demonstrate that modification can occur at both the β93 and α104 Cys residues under relatively mild reaction conditions. Equilibrium solubility measurements reveal that singly-modified Hb at the β93 position leads to increased amounts of fiber formation relative to unmodified or doubly-modified Hb S. Kinetic studies confirm that modification of only the β93 residue leads to a faster onset of polymerization. UV resonance Raman results indicate that modification of the α104 residue in addition to the β93 residue significantly perturbs the α1β2 interface, while modification of only β93 does not. These results in conjunction with the equilibrium solubility and kinetic measurements are suggestive that modification of the α104 Cys residue and not the β93 Cys residue leads to T-state destabilization and inhibition of fiber formation. These findings have implications for understanding the mechanism of NO binding to Hb and NO inhibition of Hb S fiber formation. PMID:17350155

  14. Sample Multiplexing with Cysteine-Selective Approaches: cysDML and cPILOT

    NASA Astrophysics Data System (ADS)

    Gu, Liqing; Evans, Adam R.; Robinson, Renã A. S.

    2015-04-01

    Cysteine-selective proteomics approaches simplify complex protein mixtures and improve the chance of detecting low abundant proteins. It is possible that cysteinyl-peptide/protein enrichment methods could be coupled to isotopic labeling and isobaric tagging methods for quantitative proteomics analyses in as few as two or up to 10 samples, respectively. Here we present two novel cysteine-selective proteomics approaches: cysteine-selective dimethyl labeling (cysDML) and cysteine-selective combined precursor isotopic labeling and isobaric tagging (cPILOT). CysDML is a duplex precursor quantification technique that couples cysteinyl-peptide enrichment with on-resin stable-isotope dimethyl labeling. Cysteine-selective cPILOT is a novel 12-plex workflow based on cysteinyl-peptide enrichment, on-resin stable-isotope dimethyl labeling, and iodoTMT tagging on cysteine residues. To demonstrate the broad applicability of the approaches, we applied cysDML and cPILOT methods to liver tissues from an Alzheimer's disease (AD) mouse model and wild-type (WT) controls. From the cysDML experiments, an average of 850 proteins were identified and 594 were quantified, whereas from the cPILOT experiment, 330 and 151 proteins were identified and quantified, respectively. Overall, 2259 unique total proteins were detected from both cysDML and cPILOT experiments. There is tremendous overlap in the proteins identified and quantified between both experiments, and many proteins have AD/WT fold-change values that are within ~20% error. A total of 65 statistically significant proteins are differentially expressed in the liver proteome of AD mice relative to WT. The performance of cysDML and cPILOT are demonstrated and advantages and limitations of using multiple duplex experiments versus a single 12-plex experiment are highlighted.

  15. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate.

    PubMed

    Johnson, Joseph L; Cusack, Bernadette; Davies, Matthew P; Fauq, Abdul; Rosenberry, Terrone L

    2003-05-13

    Acetylcholinesterase (AChE) contains a narrow and deep active site gorge with two sites of ligand binding, an acylation site (or A-site) at the base of the gorge, and a peripheral site (or P-site) near the gorge entrance. The P-site contributes to catalytic efficiency by transiently binding substrates on their way to the acylation site, where a short-lived acyl enzyme intermediate is produced. A conformational interaction between the A- and P-sites has recently been found to modulate ligand affinities. We now demonstrate that this interaction is of functional importance by showing that the acetylation rate constant of a substrate bound to the A-site is increased by a factor a when a second molecule of substrate binds to the P-site. This demonstration became feasible through the introduction of a new acetanilide substrate analogue of acetylcholine, 3-(acetamido)-N,N,N-trimethylanilinium (ATMA), for which a = 4. This substrate has a low acetylation rate constant and equilibrates with the catalytic site, allowing a tractable algebraic solution to the rate equation for substrate hydrolysis. ATMA affinities for the A- and P-sites deduced from the kinetic analysis were confirmed by fluorescence titration with thioflavin T as a reporter ligand. Values of a >1 give rise to a hydrolysis profile called substrate activation, and the AChE site-specific mutant W86F, and to a lesser extent wild-type human AChE itself, showed substrate activation with acetylthiocholine as the substrate. Substrate activation was incorporated into a previous catalytic scheme for AChE in which a bound P-site ligand can also block product dissociation from the A-site, and two additional features of the AChE catalytic pathway were revealed. First, the ability of a bound P-site ligand to increase the substrate acetylation rate constant varied with the structure of the ligand: thioflavin T accelerated ATMA acetylation by a factor a(2) of 1.3, while propidium failed to accelerate. Second, catalytic rate

  16. Structure and nuclearity of active sites in Fe-zeolites: comparison with iron sites in enzymes and homogeneous catalysts.

    PubMed

    Zecchina, Adriano; Rivallan, Mickaël; Berlier, Gloria; Lamberti, Carlo; Ricchiardi, Gabriele

    2007-07-21

    Fe-ZSM-5 and Fe-silicalite zeolites efficiently catalyse several oxidation reactions which find close analogues in the oxidation reactions catalyzed by homogeneous and enzymatic compounds. The iron centres are highly dispersed in the crystalline matrix and on highly diluted samples, mononuclear and dinuclear structures are expected to become predominant. The crystalline and robust character of the MFI framework has allowed to hypothesize that the catalytic sites are located in well defined crystallographic positions. For this reason these catalysts have been considered as the closest and best defined heterogeneous counterparts of heme and non heme iron complexes and of Fenton type Fe(2+) homogeneous counterparts. On this basis, an analogy with the methane monooxygenase has been advanced several times. In this review we have examined the abundant literature on the subject and summarized the most widely accepted views on the structure, nuclearity and catalytic activity of the iron species. By comparing the results obtained with the various characterization techniques, we conclude that Fe-ZSM-5 and Fe-silicalite are not the ideal samples conceived before and that many types of species are present, some active and some other silent from adsorptive and catalytic point of view. The relative concentration of these species changes with thermal treatments, preparation procedures and loading. Only at lowest loadings the catalytically active species become the dominant fraction of the iron species. On the basis of the spectroscopic titration of the active sites by using NO as a probe, we conclude that the active species on very diluted samples are isolated and highly coordinatively unsaturated Fe(2+) grafted to the crystalline matrix. Indication of the constant presence of a smaller fraction of Fe(2+) presumably located on small clusters is also obtained. The nitrosyl species formed upon dosing NO from the gas phase on activated Fe-ZSM-5 and Fe-silicalite, have been analyzed

  17. Point mutations at the type I Cu ligands, Cys457 and Met467, and at the putative proton donor, Asp105, in Myrothecium verrucaria bilirubin oxidase and reactions with dioxygen.

    PubMed

    Kataoka, Kunishige; Kitagawa, Rieko; Inoue, Megumi; Naruse, Daisaku; Sakurai, Takeshi; Huang, Hong-wei

    2005-05-10

    The type I Cu site in the Cys457Ser mutant of Myrothecium verrucaria bilirubin oxidase was vacant, but the trinuclear center composed of a type II Cu and a pair of type III Cu's was fully occupied by three Cu ions. Cys457Ser could react with dioxygen, affording reaction intermediate I with absorption maxima at 340, 470, and 675 nm. This intermediate corresponds to that obtained from laccase, whose type I Cu is cupric and type II and III Cu's are cuprous [Zoppellaro, G., Sakurai, T., and Huang, H. (2001) J. Biochem. 129, 949-953] or whose type I Cu is substituted with Hg [Palmer, A. E., Lee, S. K., and Solomon, E. I. (2001) J. Am. Chem. Soc. 123, 6591-6599]. Another type I Cu mutant, Met467Gln, with modified spectroscopic properties and redox potential, afforded reaction intermediate II with absorption maxima at 355 and 450 nm. This intermediate corresponds to that obtained during the reaction of laccase [Sundaram, U. M., Zhang, H. H., Hedman, B., Hodgson, K. O., and Solomon, E. I. (1997) J. Am. Chem. Soc. 119, 12525-12540; Huang, H., Zoppellaro, G., and Sakurai, T. (1999) J. Biol. Chem. 274, 32718-32724]. According to a three-dimensional model of bilirubin oxidase, Asp105 is positioned near the trinuclear center. Asp105Glu and Asp105Ala exhibited 46 and 7.5% bilirubin oxidase activity compared to the wild-type enzyme, respectively, indicating that Asp105 conserved in all multi-copper oxidases donates a proton to reaction intermediates I and II. In addition, this amino acid might be involved in the formation of the trinuclear center and in the binding of dioxygen based on the difficulties in incorporating four Cu ions in Asp105Ala and Asp105Asn and their reactions with dioxygen.

  18. Dipeptide Phe-Cys derived from in silico thermolysin-hydrolysed RuBisCO large subunit suppresses oxidative stress in cultured human hepatocytes.

    PubMed

    Je, Jae-Young; Cho, Young-Sook; Gong, Min; Udenigwe, Chibuike C

    2015-03-15

    A dipeptide (Phe-Cys) was predicted to be bioactive following bioinformatics analysis of the large subunit of plant and microalgae ribulose-1,5-bisphosphate carboxylase (RuBisCO), which was hydrolysed in silico with thermolysin. The peptide was synthesised and found to possess in vitro reducing potential and inhibitory activity against lipid peroxidation, comparable to the activity of glutathione. In cultured Chang human hepatocytes, 2.5-10 μM Phe-Cys was found to induce the suppression of reactive oxygen species formation and membrane lipid peroxidation in oxidative stressed cells. Intracellular glutathione levels were found to increase in the peptide-treated cells under normal condition, which can potentially contribute in protecting the cells from oxidative damage. Furthermore, Western blot analysis showed that the levels of antioxidant enzymes, catalase and superoxide dismutase-1, increased in the hepatic cells when treated with Phe-Cys in the presence of the oxidant. The results show that this peptide has great potential to be used against oxidative stress-induced health conditions.

  19. Monocopper active site for partial methane oxidation in Cu-exchanged 8MR zeolites

    SciTech Connect

    Kulkarni, Ambarish R.; Zhao, Zhi -Jian; Siahrostami, Samira; Nørskov, Jens K.; Studt, Felix

    2016-08-17

    Direct conversion of methane to methanol using oxygen is experiencing renewed interest owing to the availability of new natural gas resources. Copper-exchanged zeolites such as mordenite and ZSM-5 have shown encouraging results, and di- and tri-copper species have been suggested as active sites. Recently, small eight-membered ring (8MR) zeolites including SSZ-13, -16, and -39 have been shown to be active for methane oxidation, but the active sites and reaction mechanisms in these 8MR zeolites are not known. In this work, we use density functional theory (DFT) calculations to systematically evaluate monocopper species as active sites for the partial methane oxidation reaction in Cu-exchanged SSZ-13. On the basis of kinetic and thermodynamic arguments, we suggest that [CuIIOH]+ species in the 8MR are responsible for the experimentally observed activity. Furthermore, our results successfully explain the available spectroscopic data and experimental observations including (i) the necessity of water for methanol extraction and (ii) the effect of Si/Al ratio on the catalyst activity. Monocopper species have not yet been suggested as an active site for the partial methane oxidation reaction, and our results suggest that [CuIIOH]+ active site may provide complementary routes for methane activation in zeolites in addition to the known [Cu–O–Cu]2+ and Cu3O3 motifs.

  20. Monocopper active site for partial methane oxidation in Cu-exchanged 8MR zeolites

    DOE PAGES

    Kulkarni, Ambarish R.; Zhao, Zhi -Jian; Siahrostami, Samira; ...

    2016-08-17

    Direct conversion of methane to methanol using oxygen is experiencing renewed interest owing to the availability of new natural gas resources. Copper-exchanged zeolites such as mordenite and ZSM-5 have shown encouraging results, and di- and tri-copper species have been suggested as active sites. Recently, small eight-membered ring (8MR) zeolites including SSZ-13, -16, and -39 have been shown to be active for methane oxidation, but the active sites and reaction mechanisms in these 8MR zeolites are not known. In this work, we use density functional theory (DFT) calculations to systematically evaluate monocopper species as active sites for the partial methane oxidationmore » reaction in Cu-exchanged SSZ-13. On the basis of kinetic and thermodynamic arguments, we suggest that [CuIIOH]+ species in the 8MR are responsible for the experimentally observed activity. Furthermore, our results successfully explain the available spectroscopic data and experimental observations including (i) the necessity of water for methanol extraction and (ii) the effect of Si/Al ratio on the catalyst activity. Monocopper species have not yet been suggested as an active site for the partial methane oxidation reaction, and our results suggest that [CuIIOH]+ active site may provide complementary routes for methane activation in zeolites in addition to the known [Cu–O–Cu]2+ and Cu3O3 motifs.« less

  1. Vasohibins: new transglutaminase-like cysteine proteases possessing a non-canonical Cys-His-Ser catalytic triad

    PubMed Central

    Sanchez-Pulido, Luis; Ponting, Chris P.

    2016-01-01

    Summary: Vasohibin-1 and Vasohibin-2 regulate angiogenesis, tumour growth and metastasis. Their molecular functions, however, were previously unknown, in large part owing to their perceived lack of homology to proteins of known structure and function. To identify their functional amino acids and domains, their molecular activity and their evolutionary history, we undertook an in-depth analysis of Vasohibin sequences. We find that Vasohibin proteins are previously undetected members of the transglutaminase-like cysteine protease superfamily, and all possess a non-canonical Cys-His-Ser catalytic triad. We further propose a calcium-dependent activation mechanism for Vasohibin proteins. These findings can now be used to design constructs for protein structure determination and to develop enzyme inhibitors as angiogenic regulators to treat metastasis and tumour growth. Contact: luis.sanchezpulido@dpag.ox.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26794318

  2. 1993 annual report of hazardous waste activities for the Oak Ridge K-25 site

    SciTech Connect

    Not Available

    1994-02-01

    This report is a detailed listing of all of the Hazardous Waste activities occurring at Martin Marietta`s K-25 site. Contained herein are hazardous waste notification forms, waste stream reports, generator fee forms and various TSDR reports.

  3. The surface chemistry of heterogeneous catalysis: mechanisms, selectivity, and active sites.

    PubMed

    Zaera, Francisco

    2005-01-01

    The role of chemical kinetics in defining the requirements for the active sites of heterogeneous catalysts is discussed. A personal view is presented, with specific examples from our laboratory to illustrate the role of the chemical composition, structure, and electronic properties of specific surface sites in determining reaction activity and selectivity. Manipulation of catalytic behavior via the addition of chemical modifiers and by tuning of the reaction conditions is also introduced.

  4. The Cys-Rich Region of Hepatitis A Virus Cellular Receptor 1 Is Required for Binding of Hepatitis A Virus and Protective Monoclonal Antibody 190/4

    PubMed Central

    Thompson, Peter; Lu, Jinhua; Kaplan, Gerardo G.

    1998-01-01

    The hepatitis A virus cellular receptor 1 (HAVcr-1) cDNA codes for a class I integral membrane glycoprotein, termed havcr-1, of unknown natural function which serves as an African green monkey kidney (AGMK) cell receptor for HAV. The extracellular domain of havcr-1 has an N-terminal Cys-rich region that displays homology with sequences of members of the immunoglobulin superfamily, followed by a Thr/Ser/Pro (TSP)-rich region characteristic of mucin-like O-glycosylated proteins. The havcr-1 glycoprotein contains four putative N-glycosylation sites, two in the Cys-rich region and two in the TSP-rich region. To characterize havcr-1 and define region(s) involved in HAV receptor function, we expressed the TSP-rich region in Escherichia coli fused to glutathione S-transferase and generated antibodies (Ab) in rabbits (anti-GST2 Ab). Western blot analysis with anti-GST2 Ab detected 62- and 65-kDa bands in AGMK cells and 59-, 62-, and 65-kDa bands in dog cells transfected with the HAVcr-1 cDNA (cr5 cells) but not in dog cells transfected with the vector alone (DR2 cells). Treatment of AGMK and cr5 cell extracts with peptide-N-glycosidase F resulted in the collapse of the havcr-1-specific bands into a single band of 56 kDa, which indicated that different N-glycosylated forms of havcr-1 were expressed in these cells. Treatment of AGMK and cr5 cells with tunicamycin reduced binding of protective monoclonal Ab (MAb) 190/4, which suggested that N-glycans are required for binding of MAb 190/4 to havcr-1. To test this hypothesis, havcr-1 mutants lacking the N-glycosylation motif at the first site (mut1), second site (mut2), and both (mut3) sites were constructed and transfected into dog cells. Binding of MAb 190/4 and HAV to mut1 and mut3 cells was highly reduced, while binding to mut2 cells was not affected and binding to dog cells expressing an havcr-1 construct containing a deletion of the Cys-rich region (d1− cells) was undetectable. HAV-infected cr5 and mut2 cells but not

  5. The Cys-rich region of hepatitis A virus cellular receptor 1 is required for binding of hepatitis A virus and protective monoclonal antibody 190/4.

    PubMed

    Thompson, P; Lu, J; Kaplan, G G

    1998-05-01

    The hepatitis A virus cellular receptor 1 (HAVcr-1) cDNA codes for a class I integral membrane glycoprotein, termed havcr-1, of unknown natural function which serves as an African green monkey kidney (AGMK) cell receptor for HAV. The extracellular domain of havcr-1 has an N-terminal Cys-rich region that displays homology with sequences of members of the immunoglobulin superfamily, followed by a Thr/Ser/Pro (TSP)-rich region characteristic of mucin-like O-glycosylated proteins. The havcr-1 glycoprotein contains four putative N-glycosylation sites, two in the Cys-rich region and two in the TSP-rich region. To characterize havcr-1 and define region(s) involved in HAV receptor function, we expressed the TSP-rich region in Escherichia coli fused to glutathione S-transferase and generated antibodies (Ab) in rabbits (anti-GST2 Ab). Western blot analysis with anti-GST2 Ab detected 62- and 65-kDa bands in AGMK cells and 59-, 62-, and 65-kDa bands in dog cells transfected with the HAVcr-1 cDNA (cr5 cells) but not in dog cells transfected with the vector alone (DR2 cells). Treatment of AGMK and cr5 cell extracts with peptide-N-glycosidase F resulted in the collapse of the havcr-1-specific bands into a single band of 56 kDa, which indicated that different N-glycosylated forms of havcr-1 were expressed in these cells. Treatment of AGMK and cr5 cells with tunicamycin reduced binding of protective monoclonal Ab (MAb) 190/4, which suggested that N-glycans are required for binding of MAb 190/4 to havcr-1. To test this hypothesis, havcr-1 mutants lacking the N-glycosylation motif at the first site (mut1), second site (mut2), and both (mut3) sites were constructed and transfected into dog cells. Binding of MAb 190/4 and HAV to mut1 and mut3 cells was highly reduced, while binding to mut2 cells was not affected and binding to dog cells expressing an havcr-1 construct containing a deletion of the Cys-rich region (d1- cells) was undetectable. HAV-infected cr5 and mut2 cells but not mut1

  6. Nuclear waste: Status of DOE`s nuclear waste site characterization activities

    SciTech Connect

    1987-12-31

    Three potential nuclear waste repository sites have been selected to carry out characterization activities-the detailed geological testing to determine the suitability of each site as a repository. The sites are Hanford in south-central Washington State, Yucca Mountain in southern Nevada, and Deaf Smith in the Texas Panhandle. Two key issues affecting the total program are the estimations of the site characterization completion data and costs and DOE`s relationship with the Nuclear Regulatory Commission which has been limited and its relations with affected states and Indian tribes which continue to be difficult.

  7. Solvent dielectric effect and side chain mutation on the structural stability of Burkholderia cepacia lipase active site: a quantum mechanical/molecular mechanics study.

    PubMed

    Tahan, A; Monajjemi, M

    2011-12-01

    Quantum mechanical and molecular dynamics methods were used to analyze the structure and stability of neutral and zwitterionic configurations of the extracted active site sequence from a Burkholderia cepacia lipase, histidyl-seryl-glutamin (His86-Ser87-Gln88) and its mutated form, histidyl-cysteyl-glutamin (His86-Cys87-Gln88) in vacuum and different solvents. The effects of solvent dielectric constant, explicit and implicit water molecules and side chain mutation on the structure and stability of this sequence in both neutral and zwitterionic forms are represented. The quantum mechanics computations represent that the relative stability of zwitterionic and neutral configurations depends on the solvent structure and its dielectric constant. Therefore, in vacuum and the considered non-polar solvents, the neutral form of the interested sequences is more stable than the zwitterionic form, while their zwitterionic form is more stable than the neutral form in the aqueous solution and the investigated polar solvents in most cases. However, on the potential energy surfaces calculated, there is a barrier to proton transfer from the positively charged ammonium group to the negatively charged carboxylat group or from the ammonium group to the adjacent carbonyl oxygen and or from side chain oxygen and sulfur to negatively charged carboxylat group. Molecular dynamics simulations (MD) were also performed by using periodic boundary conditions for the zwitterionic configuration of the hydrated molecules in a box of water molecules. The obtained results demonstrated that the presence of explicit water molecules provides the more compact structures of the studied molecules. These simulations also indicated that side chain mutation and replacement of sulfur with oxygen leads to reduction of molecular flexibility and packing.

  8. Natural product derivative Bis(4-fluorobenzyl)trisulfide inhibits tumor growth by modification of beta-tubulin at Cys 12 and suppression of microtubule dynamics.

    PubMed

    Xu, Wanhong; Xi, Biao; Wu, Jieying; An, Haoyun; Zhu, Jenny; Abassi, Yama; Feinstein, Stuart C; Gaylord, Michelle; Geng, Baoqin; Yan, Huifang; Fan, Weimin; Sui, Meihua; Wang, Xiaobo; Xu, Xiao

    2009-12-01

    Bis(4-fluorobenzyl)trisulfide (BFBTS) is a synthetic molecule derived from a bioactive natural product, dibenzyltrisulfide, found in a subtropical shrub, Petiveria allieacea. BFBTS has potent anticancer activities to a broad spectrum of tumor cell lines with IC50 values from high nanomolar to low micromolar and showed equal anticancer potency between tumor cell lines overexpressing multidrug-resistant gene, MDR1 (MCF7/adr line and KBv200 line), and their parental MCF7 line and KB lines. BFBTS inhibited microtubule polymerization dynamics in MCF7 cells, at a low nanomolar concentration of 54 nmol/L, while disrupting microtubule filaments in cells at low micromolar concentration of 1 micromol/L. Tumor cells treated with BFBTS were arrested at G2-M phase, conceivably resulting from BFBTS-mediated antimicrotubule activities. Mass spectrometry studies revealed that BFBTS bound and modified beta-tubulin at residue Cys12, forming beta-tubulin-SS-fluorobenzyl. The binding site differs from known antimicrotubule agents, suggesting that BFBTS functions as a novel antimicrotubule agent. BFBTS at a dose of 25 mg/kg inhibited tumor growth with relative tumor growth rates of 19.91%, 18.5%, and 23.42% in A549 lung cancer, Bcap-37 breast cancer, and SKOV3 ovarian cancer xenografts, respectively. Notably, BFBTS was more potent against MDR1-overexpressing MCF7/adr breast cancer xenografts with a relative tumor growth rate of 12.3% than paclitaxel with a rate of 43.0%. BFBTS displays a novel antimicrotubule agent with potentials for cancer therapeutics.

  9. Cloning and bacterial expression of the CYS3 gene encoding cystathionine gamma-lyase of Saccharomyces cerevisiae and the physicochemical and enzymatic properties of the protein.

    PubMed Central

    Yamagata, S; D'Andrea, R J; Fujisaki, S; Isaji, M; Nakamura, K

    1993-01-01

    By screening a yeast genomic library, we isolated and characterized a gene rescuing the cysteine requirement in a "cys1" strain of Saccharomyces cerevisiae. Except for four residues in the open reading frame composed of 1,182 nucleotides, the DNA sequence was the same as that for the CYS3 (CYI1) gene, encoding cystathionine gamma-lyase (EC 4.4.1.1), and isolated previously as a cycloheximide-induced gene (B. Ono, K. Tanaka, K. Naito, C. Heike, S. Shinoda, S. Yamamoto, S. Ohmori, T. Oshima, and A. Toh-e, J. Bacteriol. 174:pp.3339-3347, 1992). S. cerevisiae "cys1" strains carry two closely linked mutations; one (cys1) causes a defect in serine O-acetyltransferase (EC 2.3.1.30), and another, designated cys3, impairs cystathionine gamma-lyase activity. Rescue of the cysteine requirement by the gene encoding cystathionine gamma-lyase is consistent with both defects being responsible for the cysteine auxotrophy. In an effort to further determine the physicochemical and enzymatic properties of this enzyme, a coding fragment was cloned into an Escherichia coli expression plasmid, and the protein was produced in the bacteria. The induced protein was extracted by sonication and purified to homogeneity through one course of DEAE-cellulose column chromatography. The yield of the protein was approximately 150 mg from cells cultured in 1 liter of L broth. The protein showed molecular weights of approximately 194,000 and 48,000 (for the subunit), suggesting a tetrameric structure. An s20,w value of 8.8 was estimated by centrifugation in a sucrose concentration gradient. No sulfhydryl groups were detected, which is consistent with the absence of cysteine residues in the coding sequence. The isoelectric point was at pH 5.2. The protein showed a number of cystathionine-related activities, i.e., cystathionine beta-lyase (EC 4.4.1.8), cystathionine gamma-lyase, and cystathionine gamma-synthase (EC 4.2.99.9) with L-homoserine as substrate. In addition, we demonstrated L

  10. Molecular dynamics explorations of active site structure in designed and evolved enzymes.

    PubMed

    Osuna, Sílvia; Jiménez-Osés, Gonzalo; Noey, Elizabeth L; Houk, K N

    2015-04-21

    This Account describes the use of molecular dynamics (MD) simulations to reveal how mutations alter the structure and organization of enzyme active sites. As proposed by Pauling about 70 years ago and elaborated by many others since then, biocatalysis is efficient when functional groups in the active site of an enzyme are in optimal positions for transition state stabilization. Changes in mechanism and covalent interactions are often critical parts of enzyme catalysis. We describe our explorations of the dynamical preorganization of active sites using MD, studying the fluctuations between active and inactive conformations normally concealed to static crystallography. MD shows how the various arrangements of active site residues influence the free energy of the transition state and relates the populations of the catalytic conformational ensemble to the enzyme activity. This Account is organized around three case studies from our laboratory. We first describe the importance of dynamics in evaluating a series of computationally designed and experimentally evolved enzymes for the Kemp elimination, a popular subject in the enzyme design field. We find that the dynamics of the active site is influenced not only by the original sequence design and subsequent mutations but also by the nature of the ligand present in the active site. In the second example, we show how microsecond MD has been used to uncover the role of remote mutations in the active site dynamics and catalysis of a transesterase, LovD. This enzyme was evolved by Tang at UCLA and Codexis, Inc., and is a useful commercial catalyst for the production of the drug simvastatin. X-ray analysis of inactive and active mutants did not reveal differences in the active sites, but relatively long time scale MD in solution showed that the active site of the wild-type enzyme preorganizes only upon binding of the acyl carrier protein (ACP) that delivers the natural acyl group to the active site. In the absence of bound ACP

  11. Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site

    SciTech Connect

    Grossman, Moran; Born, Benjamin; Heyden, Matthias; Tworowski, Dmitry; Fields, Gregg B.; Sagi, Irit; Havenith, Martina

    2011-09-18

    Solvent dynamics can play a major role in enzyme activity, but obtaining an accurate, quantitative picture of solvent activity during catalysis is quite challenging. Here, we combine terahertz spectroscopy and X-ray absorption analyses to measure changes in the coupled water-protein motions during peptide hydrolysis by a zinc-dependent human metalloprotease. These changes were tightly correlated with rearrangements at the active site during the formation of productive enzyme-substrate intermediates and were different from those in an enzyme–inhibitor complex. Molecular dynamics simulations showed a steep gradient of fast-to-slow coupled protein-water motions around the protein, active site and substrate. Our results show that water retardation occurs before formation of the functional Michaelis complex. We propose that the observed gradient of coupled protein-water motions may assist enzyme-substrate interactions through water-polarizing mechanisms that are remotely mediated by the catalytic metal ion and the enzyme active site.

  12. Two interacting binding sites for quinacrine derivatives in the active site of trypanothione reductase – a template for drug design

    PubMed Central

    Saravanamuthu, Ahilan; Vickers, Tim J.; Bond, Charles S.; Peterson, Mark R.; Hunter, William N.; Fairlamb, Alan H.

    2012-01-01

    SUMMARY Trypanothione reductase is a key enzyme in the trypanothione-based redox metabolism of pathogenic trypanosomes. Since this system is absent in humans, being replaced with glutathione and glutathione reductase, it offers a target for selective inhibition. The rational design of potent inhibitors requires accurate structures of enzyme-inhibitor complexes, but this is lacking for trypanothione reductase. We therefore used quinacrine mustard, an alkylating derivative of the competitive inhibitor quinacrine, to probe the active site of this dimeric flavoprotein. Quinacrine mustard irreversibly inactivates Trypanosoma cruzi trypanothione reductase, but not human glutathione reductase, in a time-dependent manner with a stoichiometry of two inhibitors bound per monomer. The rate of inactivation is dependent upon the oxidation state of trypanothione reductase, with the NADPH-reduced form being inactivated significantly faster than the oxidised form. Inactivation is slowed by clomipramine and a melarsen oxide-trypanothione adduct (both are competitive inhibitors) but accelerated by quinacrine. The structure of the trypanothione reductase-quinacrine mustard adduct was determined to 2.7 Å, revealing two molecules of inhibitor bound in the trypanothione-binding site. The acridine moieties interact with each other through π-stacking effects, and one acridine interacts in a similar fashion with a tryptophan residue. These interactions provide a molecular explanation for the differing effects of clomipramine and quinacrine on inactivation by quinacrine mustard. Synergism with quinacrine occurs as a result of these planar acridines being able to stack together in the active site cleft, thereby gaining an increased number of binding interactions, whereas antagonism occurs with non-planar molecules, such as clomipramine, where stacking is not possible. PMID:15102853

  13. The three Mycobacterium tuberculosis antigen 85 isoforms have unique substrates and activities determined by non-active site regions.

    PubMed

    Backus, Keriann M; Dolan, Michael A; Barry, Conor S; Joe, Maju; McPhie, Peter; Boshoff, Helena I M; Lowary, Todd L; Davis, Benjamin G; Barry, Clifton E

    2014-09-05

    The three isoforms of antigen 85 (A, B, and C) are the most abundant secreted mycobacterial proteins and catalyze transesterification reactions that synthesize mycolated arabinogalactan, trehalose monomycolate (TMM), and trehalose dimycolate (TDM), important constituents of the outermost layer of the cellular envelope of Mycobacterium tuberculosis. These three enzymes are nearly identical at the active site and have therefore been postulated to exist to evade host immunity. Distal to the active site is a second putative carbohydrate-binding site of lower homology. Mutagenesis of the three isoforms at this second site affected both substrate selectivity and overall catalytic activity in vitro. Using synthetic and natural substrates, we show that these three enzymes exhibit unique selectivity; antigen 85A more efficiently mycolates TMM to form TDM, whereas C (and to a lesser extent B) has a higher rate of activity using free trehalose to form TMM. This difference in substrate selectivity extends to the hexasaccharide fragment of cell wall arabinan. Mutation of secondary site residues from the most active isoform (C) into those present in A or B partially interconverts this substrate selectivity. These experiments in combination with molecular dynamics simulations reveal that differences in the N-terminal helix α9, the adjacent Pro(216)-Phe(228) loop, and helix α5 are the likely cause of changes in activity and substrate selectivity. These differences explain the existence of three isoforms and will allow for future work in developing inhibitors.

  14. Fragment-based identification of determinants of conformational and spectroscopic change at the ricin active site

    SciTech Connect

    Carra,J.; McHugh, C.; Mulligan, S.; Machiesky, L.; Soares, A.; Millard, C.

    2007-01-01

    We found that amide ligands can bind weakly but specifically to the ricin active site, producing significant shifts in positions of the critical active site residues Arg180 and Tyr80. These results indicate that fragment-based drug discovery methods are capable of identifying minimal bonding determinants of active-site side-chain rearrangements and the mechanistic origins of spectroscopic shifts. Our results suggest that tryptophan fluorescence provides a sensitive probe for the geometric relationship of arginine-tryptophan pairs, which often have significant roles in protein function. Using the unusual characteristics of the RTA system, we measured the still controversial thermodynamic changes of site-specific urea binding to a protein, results that are relevant to understanding the physical mechanisms of protein denaturation.

  15. TcCYS4, a cystatin from cocoa, reduces necrosis triggered by MpNEP2 in tobacco plants.

    PubMed

    Santana, L S; Costa, M G C; Pirovani, N M; Almeida, A F; Alvim, F C; Pirovani, C P

    2014-09-26

    In Brazil, most cocoa bean production occurs in Southern Bahia. Witches' broom disease arrived in this area in 1989 and has since caused heavy losses in production. The disease is caused by the basidiomycete fungus Moniliophthora perniciosa, a hemibiotrophic fungus that produces the necrosis and ethylene-inducting protein (MpNEP2) during infection; this protein can activate cysteine proteases and induce programmed cell death. Cysteine proteases can be modulated by cystatin. In this study, we overexpressed TcCYS4, a cocoa cystatin, in tobacco plants and evaluated the effect on MpNEP2 in model plants. Tccys4 cDNA was cloned into the pCAMBIA 1390 vector and inserted into the tobacco plants via Agrobacterium tumefaciens. Transgene expression was analyzed by reverse transcription-quantitative PCR and Western blot analysis. Transcript and protein levels in Tcccys4:tobacco lines were 8.9- and 1.5-fold higher than in wild-type plants (wt). Tcccys4:tobacco lines showed no change in growth compared to wt plants. CO2 net assimilation (A) increased in Tcccys4:tobacco lines compared to wt plants. Only one line showed statistically significant stomatal conductance (gs) and transpiration rate (E) changes. MpNEP2 was infiltered into the foliar mesophyll of Tcccys4:tobacco lines and wt plants, and necrotic lesions were attenuated in lines highly expressing Tccys4. Our results suggest that cocoa cystatin TcCYS4 affects MpNEP2 activity related to the progression of programmed cell death in tobacco plants. This may occur through the action of cystatin to inhibit cysteine proteases activated by MpNEP2 in plant tissues. Further studies are necessary to examine cystatin in the Theobroma cacao-M. perniciosa pathosystem.

  16. Structural and Kinetic Analyses of Macrophage Migration Inhibitory Factor Active Site Interactions

    SciTech Connect

    Crichlow, G.; Lubetsky, J; Leng, L; Bucala, R; Lolis, E

    2009-01-01

    Macrophage migration inhibitory factor (MIF) is a secreted protein expressed in numerous cell types that counters the antiinflammatory effects of glucocorticoids and has been implicated in sepsis, cancer, and certain autoimmune diseases. Interestingly, the structure of MIF contains a catalytic site resembling the tautomerase/isomerase sites of microbial enzymes. While bona fide physiological substrates remain unknown, model substrates have been identified. Selected compounds that bind in the tautomerase active site also inhibit biological functions of MIF. It had previously been shown that the acetaminophen metabolite, N-acetyl-p-benzoquinone imine (NAPQI), covalently binds to the active site of MIF. In this study, kinetic data indicate that NAPQI inhibits MIF both covalently and noncovalently. The structure of MIF cocrystallized with NAPQI reveals that the NAPQI has undergone a chemical alteration forming an acetaminophen dimer (bi-APAP) and binds noncovalently to MIF at the mouth of the active site. We also find that the commonly used protease inhibitor, phenylmethylsulfonyl fluoride (PMSF), forms a covalent complex with MIF and inhibits the tautomerase activity. Crystallographic analysis reveals the formation of a stable, novel covalent bond for PMSF between the catalytic nitrogen of the N-terminal proline and the sulfur of PMSF with complete, well-defined electron density in all three active sites of the MIF homotrimer. Conclusions are drawn from the structures of these two MIF-inhibitor complexes regarding the design of novel compounds that may provide more potent reversible and irreversible inhibition of MIF.

  17. All the catalytic active sites of MoS2 for hydrogen evolution

    SciTech Connect

    Li, Guoqing; Zhang, Du; Qiao, Qiao; Yu, Yifei; Peterson, David; Zafar, Abdullah; Kumar, Raj; Curtarolo, Stefano; Hunte, Frank; Shannon, Steve; Zhu, Yimei; Yang, Weitao; Cao, Linyou

    2016-11-29

    MoS2 presents a promising low-cost catalyst for the hydrogen evolution reaction (HER), but the understanding about its active sites has remained limited. Here we present an unambiguous study of the catalytic activities of all possible reaction sites of MoS2, including edge sites, sulfur vacancies, and grain boundaries. We demonstrate that, in addition to the well-known catalytically active edge sites, sulfur vacancies provide another major active site for the HER, while the catalytic activity of grain boundaries is much weaker. Here, the intrinsic turnover frequencies (Tafel slopes) of the edge sites, sulfur vacancies, and grain boundaries are estimated to be 7.5 s–1 (65–75 mV/dec), 3.2 s–1 (65–85 mV/dec), and 0.1 s–1 (120–160 mV/dec), respectively. We also demonstrate that the catalytic activity of sulfur vacancies strongly depends on the density of the vacancies and the local crystalline structure in proximity to the vacancies. Unlike edge sites, whose catalytic activity linearly depends on the length, sulfur vacancies show optimal catalytic activities when the vacancy density is in the range of 7–10%, and the number of sulfur vacancies in high crystalline quality MoS2 is higher than that in low crystalline quality MoS2, which may be related with the proximity of different local crystalline structures to the vacancies.

  18. Genetic diversity and natural selection of three blood-stage 6-Cys proteins in Plasmodium vivax populations from the China-Myanmar endemic border.

    PubMed

    Wang, Yue; Ma, An; Chen, Shen-Bo; Yang, Ying-Chao; Chen, Jun-Hu; Yin, Ming-Bo

    2014-12-01

    Pv12, Pv38 and Pv41, the three 6-Cys family proteins which are expressed in the blood-stage of vivax malaria, might be involved in merozoite invasion activity and thus be potential vaccine candidate antigens of Plasmodium vivax. However, little information is available concerning the genetic diversity and natural selection of these three proteins. In the present study, we analyzed the amino acid sequences of P. vivax blood-stage 6-Cys family proteins in comparison with the homologue proteins of Plasmodium cynomolgi strain B using bioinformatic methods. We also investigated genetic polymorphisms and natural selection of these three genes in P. vivax populations from the China-Myanmar endemic border. The three P. vivax blood-stage 6-Cys proteins were shown to possess a signal peptide at the N-terminus, containing two s48/45 domains, and Pv12 and Pv38 have a GPI-anchor motif at the C-terminus. Then, 22, 21 and 29 haplotypes of pv12, pv38 and pv41 were identified out of 45, 38 and 40 isolates, respectively. The dN/dS values for Domain II of pv38 and pv41 were 3.33880 and 5.99829, respectively, suggesting positive balancing selection for these regions. Meanwhile, the C-terminus of pv41 showed high nucleotide diversity, and Tajima's D test suggested that this fragment could be under positive balancing selection. Overall, our results have significant implications, providing a genetic basis for blood-stage malaria vaccine development based on these three 6-Cys proteins.

  19. Expression of 6-Cys gene superfamily defines babesia bovis sexual stage development within rhipicephalus microplus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Babesia bovis, an intra-erythrocytic tick-borne apicomplexan protozoan, is one of the agents of bovine babesiosis. Its life cycle includes sexual reproduction within cattle fever ticks, Rhipicephalus spp. Six B. bovis 6-Cys gene superfamily members were previously identified (A, B, C, D, E, F) and t...

  20. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes

    PubMed Central

    Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data. PMID:27504624

  1. Congenital erythropoietic porphyria with two mutations of the uroporphyrinogen III synthase gene (Cys73Arg, Thr228Met).

    PubMed

    Gucev, Zoran; Slavevska, Nevenka; Tasic, Velibor; Laban, Nevenka; Pop-Jordanova, Nada; Danilovski, Dragan; Woolf, Jacqueline; Cole, Duncan

    2011-05-01

    Congenital erythropoietic porphyria (CEP) is an autosomal recessive inborn error of metabolism that results from the markedly deficient activity of uroporphyrinogen III synthase (UROS). We describe a 14-year-old girl with red urine since infancy, progressive blistering and scarring of the skin, and moderate hemolytic anemia. After years of skin damage, her face is mutilated; she has a bald patch on the scalp, hypertrichosis of the neck, areas of skin darkening, and limited joint movements of the hands. Total urine excretion and fecal total porphyrin were both markedly raised above normal levels. Sequencing of the UROS gene identified two mutations causing CEP (Cys73Arg, Thr228Met). The patient lesions are progressing. Bone marrow transplantation and/or gene therapy are proposed as the next steps in her treatment. In brief, we describe a CEP with confirmed two pathogenic mutations, severe phenotype and discuss the various treatment options available.

  2. Photonic Activation of Plasminogen Induced by Low Dose UVB

    PubMed Central

    Correia, Manuel; Snabe, Torben; Thiagarajan, Viruthachalam; Petersen, Steffen Bjørn; Campos, Sara R. R.; Baptista, António M.; Neves-Petersen, Maria Teresa

    2015-01-01

    Activation of plasminogen to its active form plasmin is essential for several key mechanisms, including the dissolution of blood clots. Activation occurs naturally via enzymatic proteolysis. We report that activation can be achieved with 280 nm light. A 2.6 fold increase in proteolytic activity was observed after 10 min illumination of human plasminogen. Irradiance levels used are in the same order of magnitude of the UVB solar irradiance. Activation is correlated with light induced disruption of disulphide bridges upon UVB excitation of the aromatic residues and with the formation of photochemical products, e.g. dityrosine and N-formylkynurenine. Most of the protein fold is maintained after 10 min illumination since no major changes are observed in the near-UV CD spectrum. Far-UV CD shows loss of secondary structure after illumination (33.4% signal loss at 206 nm). Thermal unfolding CD studies show that plasminogen retains a native like cooperative transition at ~70 ºC after UV-illumination. We propose that UVB activation of plasminogen occurs upon photo-cleavage of a functional allosteric disulphide bond, Cys737-Cys765, located in the catalytic domain and in van der Waals contact with Trp761 (4.3 Å). Such proximity makes its disruption very likely, which may occur upon electron transfer from excited Trp761. Reduction of Cys737-Cys765 will result in likely conformational changes in the catalytic site. Molecular dynamics simulations reveal that reduction of Cys737-Cys765 in plasminogen leads to an increase of the fluctuations of loop 760–765, the S1-entrance frame located close to the active site. These fluctuations affect the range of solvent exposure of the catalytic triad, particularly of Asp646 and Ser74, which acquire an exposure profile similar to the values in plasmin. The presented photonic mechanism of plasminogen activation has the potential to be used in clinical applications, possibly together with other enzymatic treatments for the elimination of

  3. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    PubMed Central

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; Parks, Jerry M.; Elias, Dwayne A.; Hurt, Richard A.; Brown, Steven D.; Podar, Mircea

    2015-01-01

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential for mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. This study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin. PMID:25724962

  4. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    DOE PAGES

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; ...

    2015-02-27

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential formore » mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. Ultimately, this study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin.« less

  5. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    SciTech Connect

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; Parks, Jerry M.; Elias, Dwayne A.; Hurt, Richard A.; Brown, Steven D.; Podar, Mircea; Wall, Judy D.

    2015-02-27

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential for mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. Ultimately, this study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin.

  6. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand

    SciTech Connect

    Parashar, Abhinav; Venkatachalam, Avanthika; Gideon, Daniel Andrew; Manoj, Kelath Murali

    2014-12-12

    Highlights: • Cyanide (CN) is a well-studied toxic principle, known to inhibit heme-enzymes. • Inhibition is supposed to result from CN binding at the active site as a ligand. • Diverse heme enzymes’ CN inhibition profiles challenge prevailing mechanism. • Poor binding efficiency of CN at low enzyme concentrations and ligand pressures. • CN-based diffusible radicals cause ‘non-productive electron transfers’ (inhibition). - Abstract: The toxicity of cyanide is hitherto attributed to its ability to bind to heme proteins’ active site and thereby inhibit their activity. It is shown herein that the long-held interpretation is inadequate to explain several observations in heme-enzyme reaction systems. Generation of cyanide-based diffusible radicals in heme-enzyme reaction milieu could shunt electron transfers (by non-active site processes), and thus be detrimental to the efficiency of oxidative outcomes.

  7. Synergistic effect between defect sites and functional groups on the hydrolysis of cellulose over activated carbon.

    PubMed

    Foo, Guo Shiou; Sievers, Carsten

    2015-02-01

    The chemical oxidation of activated carbon by H2 O2 and H2 SO4 is investigated, structural and chemical modifications are characterized, and the materials are used as catalysts for the hydrolysis of cellulose. Treatment with H2 O2 enlarges the pore size and imparts functional groups such as phenols, lactones, and carboxylic acids. H2 SO4 treatment targets the edges of carbon sheets primarily, and this effect is more pronounced with a higher temperature. Adsorption isotherms demonstrate that the adsorption of oligomers on functionalized carbon is dominated by van der Waals forces. The materials treated chemically are active for the hydrolysis of cellulose despite the relative weakness of most of their acid sites. It is proposed that a synergistic effect between defect sites and functional groups enhances the activity by inducing a conformational change in the glucan chains if they are adsorbed at defect sites. This activates the glycosidic bonds for hydrolysis by in-plane functional groups.

  8. Denaturation studies of active-site labeled papain using electron paramagnetic resonance and fluorescence spectroscopy.

    PubMed Central

    Ping, Z A; Butterfiel, D A

    1991-01-01

    A spin-labeled p-chloromercuribenzoate (SL-PMB) and a fluorescence probe, 6-acryloyl-2-dimethylaminonaphthalene (Acrylodan), both of which bind to the single SH group located in the active site of papain, were used to investigate the interaction of papain (EC 3.4.22.2) with two protein denaturants. It was found that the active site of papain was highly stable in urea solution, but underwent a large conformational change in guanidine hydrochloride solution. Electron paramagnetic resonance and fluorescence results were in agreement and both paralleled enzymatic activity of papain with respect to both the variation in pH and denaturation. These results strongly suggest that SL-PMB and Acrylodan labels can be used to characterize the physical state of the active site of the enzyme. PMID:1657229

  9. Adductomics Pipeline for Untargeted Analysis of Modifications to Cys34 of Human Serum Albumin.

    PubMed

    Grigoryan, Hasmik; Edmands, William; Lu, Sixin S; Yano, Yukiko; Regazzoni, Luca; Iavarone, Anthony T; Williams, Evan R; Rappaport, Stephen M

    2016-11-01

    An important but understudied class of human exposures is comprised of reactive electrophiles that cannot be measured in vivo because they are short-lived. An avenue for assessing these meaningful exposures focuses on adducts from reactions with nucleophilic loci of blood proteins, particularly Cys34 of human serum albumin, which is the dominant scavenger of reactive electrophiles in serum. We developed an untargeted analytical scheme and bioinformatics pipeline for detecting, quantitating, and annotating Cys34 adducts in tryptic digests of human serum/plasma. The pipeline interrogates tandem mass spectra to find signatures of the Cys34-containing peptide, obtains accurate masses of putative adducts, quantitates adduct levels relative to a "housekeeping peptide", and annotates modifications based on a combination of retention time, accurate mass, elemental composition, and database searches. We used the adductomics pipeline to characterize 43 adduct features in archived plasma from healthy human subjects and found several that were highly associated with smoking status, race, and other covariates. Since smoking is a strong risk factor for cancer and cardiovascular disease, our ability to discover adducts that distinguish smokers from nonsmokers with untargeted adductomics indicates that the pipeline is suitable for use in epidemiologic studies. In fact, adduct features were both positively and negatively associated with smoking, indicating that some adducts arise from reactions between Cys34 and constituents of cigarette smoke (e.g., ethylene oxide and acrylonitrile) while others (Cys34 oxidation products and disulfides) appear to reflect alterations in the serum redox state that resulted in reduced adduct levels in smokers.

  10. Enhancement of Polymerase Activity of the Large Fragment in DNA Polymerase I from Geobacillus stearothermophilus by Site-Directed Mutagenesis at the Active Site

    PubMed Central

    Ma, Yi; Zhang, Beilei; Wang, Meng; Ou, Yanghui

    2016-01-01

    The large fragment of DNA polymerase I from Geobacillus stearothermophilus GIM1.543 (Bst DNA polymerase) with 5′-3′ DNA polymerase activity while in absence of 5′-3′ exonuclease activity possesses high thermal stability and polymerase activity. Bst DNA polymerase was employed in isothermal multiple self-matching initiated amplification (IMSA) which amplified the interest sequence with high selectivity and was widely applied in the rapid detection of human epidemic diseases. However, the detailed information of commercial Bst DNA polymerase is unpublished and well protected by patents, which makes the high price of commercial kits. In this study, wild-type Bst DNA polymerase (WT) and substitution mutations for improving the efficiency of DNA polymerization were expressed and purified in E. coli. Site-directed substitutions of four conserved residues (Gly310, Arg412, Lys416, and Asp540) in the activity site of Bst DNA polymerase influenced efficiency of polymerizing dNTPs. The substitution of residue Gly310 by alanine or leucine and residue Asp540 by glutamic acid increased the efficiency of polymerase activity. All mutants with higher polymerizing efficiency were employed to complete the rapid detection of EV71-associated hand, foot, and mouth disease (HFMD) by IMSA approach with relatively shorter period which is suitable for the primary diagnostics setting in rural and underdeveloped areas. PMID:27981047

  11. A fluorescent probe for the efficient discrimination of Cys, Hcy and GSH based on different cascade reactions.

    PubMed

    Li, Ying; Liu, Weimin; Zhang, Panpan; Zhang, Hongyan; Wu, Jiasheng; Ge, Jiechao; Wang, Pengfei

    2017-04-15

    A fluorescent probe (1) for distinguishing amongst biothiols, including cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), is developed based on different cascade reactions. The key design feature of fluorescent probe 1 is the integration of two potential reaction groups for the thiol and amino groups of biothiols in one molecule. By reacting with the halogen atom and α, β-unsaturated malonitrile in probe 1, Cys, Hcy and GSH can generate a total of three main products with distinct photophysical properties. Probe 1 shows a strong fluorescence turn-on response to Cys with blue-green emission by using an excitation wavelength of 390nm. At an excitation wavelength of 500nm, probe 1 responds to GSH over Cys and Hcy and emits strong orange fluorescence. The discrimination of biothiols can be demonstrated by cell imaging experiments, indicating that probe 1 can be a useful tool for the selective imaging of Cys and GSH in living cells.

  12. In silico analysis of Pycnoporus cinnabarinus laccase active site with toxic industrial dyes.

    PubMed

    Prasad, Nirmal K; Vindal, Vaibhav; Narayana, Siva Lakshmi; Ramakrishna, V; Kunal, Swaraj Priyaranjan; Srinivas, M

    2012-05-01

    Laccases belong to multicopper oxidases, a widespread class of enzymes implicated in many oxidative functions in various industrial oxidative processes like production of fine chemicals to bioremediation of contaminated soil and water. In order to understand the mechanisms of substrate binding and interaction between substrates and Pycnoporus cinnabarinus laccase, a homology model was generated. The resulted model was further validated and used for docking studies with toxic industrial dyes- acid blue 74, reactive black 5 and reactive blue 19. Interactions of chemical mediators with the laccase was also examined. The docking analysis showed that the active site always cannot accommodate the dye molecules, due to constricted nature of the active site pocket and steric hindrance of the residues whereas mediators are relatively small and can easily be accommodated into the active site pocket, which, thereafter leads to the productive binding. The binding properties of these compounds along with identification of critical active site residues can be used for further site-directed mutagenesis experiments in order to identify their role in activity and substrate specificity, ultimately leading to improved mutants for degradation of these toxic compounds.

  13. Conformational Change in the Active Site of Streptococcal Unsaturated Glucuronyl Hydrolase Through Site-Directed Mutagenesis at Asp-115.

    PubMed

    Nakamichi, Yusuke; Oiki, Sayoko; Mikami, Bunzo; Murata, Kousaku; Hashimoto, Wataru

    2016-08-01

    Bacterial unsaturated glucuronyl hydrolase (UGL) degrades unsaturated disaccharides generated from mammalian extracellular matrices, glycosaminoglycans, by polysaccharide lyases. Two Asp residues, Asp-115 and Asp-175 of Streptococcus agalactiae UGL (SagUGL), are completely conserved in other bacterial UGLs, one of which (Asp-175 of SagUGL) acts as a general acid and base catalyst. The other Asp (Asp-115 of SagUGL) also affects the enzyme activity, although its role in the enzyme reaction has not been well understood. Here, we show substitution of Asp-115 in SagUGL with Asn caused a conformational change in the active site. Tertiary structures of SagUGL mutants D115N and D115N/K370S with negligible enzyme activity were determined at 2.00 and 1.79 Å resolution, respectively, by X-ray crystallography. The side chain of Asn-115 is drastically shifted in both mutants owing to the interaction with several residues, including Asp-175, by formation of hydrogen bonds. This interaction between Asn-115 and Asp-175 probably prevents the mutants from triggering the enzyme reaction using Asp-175 as an acid catalyst.

  14. Substrate shuttling between active sites of uroporphyrinogen decarboxylase is not required to generate coproporphyrinogen

    PubMed Central

    Phillips, John D.; Warby, Christy A.; Whitby, Frank G.; Kushner, James P.; Hill, Christopher P.

    2009-01-01

    Summary Uroporphyrinogen Decarboxylase (URO-D; EC 4.1.1.37), the fifth enzyme of the heme biosynthetic pathway, is required for the production of heme, vitamin B12, siroheme, and chlorophyll precursors. URO-D catalyzes the sequential decarboxylation of the four acetate side chains on the pyrrole groups of uroporphyrinogen to produce coproporphyrinogen. URO-D is a stable homodimer with the active site clefts of the two subunits adjacent to each other. It has been hypothesized that the two catalytic centers interact functionally, perhaps by shuttling of reaction intermediates between subunits. We tested this hypothesis by construction of a single chain protein (scURO-D) in which the two subunits were connected by a flexible linker. The crystal structure of this protein was shown to be superimposible with wild-type activity and have comparable catalytic activity. Mutations that impaired one or the other of the two active sites of scURO-D resulted in approximately half of wild-type activity. The distribution of reaction intermediates was the same for mutant and wild-type sequences, and was unaltered in a competition experiment using the I and III isomer substrates. These observations indicate that communication between active sites is not required for enzyme function, and suggest that the dimeric structure of URO-D is required to achieve conformational stability and create a large active site cleft. PMID:19362562

  15. Substrate Shuttling Between Active Sites of Uroporphyrinogen Decarboxylase in Not Required to Generate Coproporphyrinogen

    SciTech Connect

    Phillips, J.; Warby, C; Whitby, F; Kushner, J; Hill, C

    2009-01-01

    Uroporphyrinogen decarboxylase (URO-D; EC 4.1.1.37), the fifth enzyme of the heme biosynthetic pathway, is required for the production of heme, vitamin B12, siroheme, and chlorophyll precursors. URO-D catalyzes the sequential decarboxylation of four acetate side chains in the pyrrole groups of uroporphyrinogen to produce coproporphyrinogen. URO-D is a stable homodimer, with the active-site clefts of the two subunits adjacent to each other. It has been hypothesized that the two catalytic centers interact functionally, perhaps by shuttling of reaction intermediates between subunits. We tested this hypothesis by construction of a single-chain protein (single-chain URO-D) in which the two subunits were connected by a flexible linker. The crystal structure of this protein was shown to be superimposable with wild-type activity and to have comparable catalytic activity. Mutations that impaired one or the other of the two active sites of single-chain URO-D resulted in approximately half of wild-type activity. The distributions of reaction intermediates were the same for mutant and wild-type sequences and were unaltered in a competition experiment using I and III isomer substrates. These observations indicate that communication between active sites is not required for enzyme function and suggest that the dimeric structure of URO-D is required to achieve conformational stability and to create a large active-site cleft.

  16. Crystal structure of an avian influenza polymerase PA[subscript N] reveals an endonuclease active site

    SciTech Connect

    Yuan, Puwei; Bartlam, Mark; Lou, Zhiyong; Chen, Shoudeng; Zhou, Jie; He, Xiaojing; Lv, Zongyang; Ge, Ruowen; Li, Xuemei; Deng, Tao; Fodor, Ervin; Rao, Zihe; Liu, Yingfang

    2009-11-10

    The heterotrimeric influenza virus polymerase, containing the PA, PB1 and PB2 proteins, catalyses viral RNA replication and transcription in the nucleus of infected cells. PB1 holds the polymerase active site and reportedly harbours endonuclease activity, whereas PB2 is responsible for cap binding. The PA amino terminus is understood to be the major functional part of the PA protein and has been implicated in several roles, including endonuclease and protease activities as well as viral RNA/complementary RNA promoter binding. Here we report the 2.2 angstrom (A) crystal structure of the N-terminal 197 residues of PA, termed PA(N), from an avian influenza H5N1 virus. The PA(N) structure has an alpha/beta architecture and reveals a bound magnesium ion coordinated by a motif similar to the (P)DX(N)(D/E)XK motif characteristic of many endonucleases. Structural comparisons and mutagenesis analysis of the motif identified in PA(N) provide further evidence that PA(N) holds an endonuclease active site. Furthermore, functional analysis with in vivo ribonucleoprotein reconstitution and direct in vitro endonuclease assays strongly suggest that PA(N) holds the endonuclease active site and has critical roles in endonuclease activity of the influenza virus polymerase, rather than PB1. The high conservation of this endonuclease active site among influenza strains indicates that PA(N) is an important target for the design of new anti-influenza therapeutics.

  17. Transcriptional activation by LR1 at the Eµ enhancer and switch region sites

    PubMed Central

    Hanakahi, L. A.; Maizels, Nancy

    2000-01-01

    LR1 is a B cell-specific, sequence-specific duplex DNA binding activity which is induced in B cells carrying out class switch recombination. Here we identify several properties of LR1 which enable it to function in transcriptional regulation. We show that LR1 contributes to transcriptional activation by the Eµ immunoglobulin heavy chain intron enhancer by binding to a site within the enhancer core. We further show that LR1 bends DNA upon binding. In addition, we show that LR1 is itself a bona fide transcriptional activator, as multimerized LR1 sites produce an element which can enhance transcription from a minimal promoter. In order for class switch recombination to occur, an activating signal must be transmitted via the Eµ core, and both S regions targeted for recombination must be actively transcribed. The properties of LR1 that we have identified suggest distinct potential functions of LR1 duplex DNA binding activity in class switch recombination. First, LR1 may contribute to recombinational activation by the Eµ core. Second, there are multiple potential LR1 duplex binding sites in each of the G-rich switch regions, and LR1 bound at contiguous sites may enhance recombination by stimulating transcription of the S regions. PMID:10908319

  18. Autocatalytic activity and substrate specificity of the pestivirus N-terminal protease N{sup pro}

    SciTech Connect

    Gottipati, Keerthi; Acholi, Sudheer; Ruggli, Nicolas; Choi, Kyung H.

    2014-03-15

    Pestivirus N{sup pro} is the first protein translated in the viral polypeptide, and cleaves itself off co-translationally generating the N-terminus of the core protein. Once released, N{sup pro} blocks the host's interferon response by inducing degradation of interferon regulatory factor-3. N{sup pro'}s intracellular autocatalytic activity and lack of trans-activity have hampered in vitro cleavage studies to establish its substrate specificity and the roles of individual residues. We constructed N{sup pro}-GFP fusion proteins that carry the authentic cleavage site and determined the autoproteolytic activities of N{sup pro} proteins containing substitutions at the predicted catalytic sites Glu22 and Cys69, at Arg100 that forms a salt bridge with Glu22, and at the cleavage site Cys168. Contrary to previous reports, we show that N{sup pro'}s catalytic activity does not involve Glu22, which may instead be involved in protein stability. Furthermore, N{sup pro} does not have specificity for Cys168 at the cleavage site even though this residue is conserved throughout the pestivirus genus. - Highlights: • N{sup pro'}s autoproteolysis is studied using N{sup pro}-GFP fusion proteins. • N-terminal 17 amino acids are dispensable without loss of protease activity. • The putative catalytic residue Glu22 is not involved in protease catalysis. • No specificity for Cys168 at the cleavage site despite evolutionary conservation. • N{sup pro} prefers small amino acids with non-branched beta carbons at the P1 position.

  19. Regulation of Dpp activity by tissue-specific cleavage of an upstream site within the prodomain

    PubMed Central

    Sopory, Shailaja; Kwon, Sunjong; Wehrli, Marcel; Christian, Jan L.

    2010-01-01

    BMP4 is synthesized as an inactive precursor that is cleaved at two sites during maturation: initially at a site (S1) adjacent to the ligand domain, and then at an upstream site (S2) within the prodomain. Cleavage at the second site regulates the stability of mature BMP4 and this in turn influences its signaling intensity and range of action. The Drosophila ortholog of BMP4, Dpp, functions as a long- or short-range signaling molecule in the wing disc or embryonic midgut, respectively but mechanisms that differentially regulate its bioactivity in these tissues have not been explored. In the current studies we demonstrate, by dpp mutant rescue, that cleavage at the S2 site of proDpp is required for development of the wing and leg imaginal discs, whereas cleavage at the S1 site is sufficient to rescue Dpp function in the midgut. Both the S1 and S2 site of proDpp are cleaved in the wing disc, and S2-cleavage is essential to generate sufficient ligand to exceed the threshold for pMAD activation at both short- and long-range in most cells. By contrast, proDpp is cleaved at the S1 site alone in the embryonic mesoderm and this generates sufficient ligand to activate physiological target genes in neighboring cells. These studies provide the first biochemical and genetic evidence that that selective cleavage of the S2 site of proDPP provides a tissue-specific mechanism for regulating Dpp activity, and that differential cleavage can contribute to, but is not an absolute determinant of signaling range. PMID:20659445

  20. Multiple active site residues are important for photochemical efficiency in the light-activated enzyme protochlorophyllide oxidoreductase (POR).

    PubMed

    Menon, Binuraj R K; Hardman, Samantha J O; Scrutton, Nigel S; Heyes, Derren J

    2016-08-01

    Protochlorophyllide oxidoreductase (POR) catalyzes the light-driven reduction of protochlorophyllide (Pchlide), an essential, regulatory step in chlorophyll biosynthesis. The unique requirement of the enzyme for light has provided the opportunity to investigate how light energy can be harnessed to power biological catalysis and enzyme dynamics. Excited state interactions between the Pchlide molecule and the protein are known to drive the subsequent reaction chemistry. However, the structural features of POR and active site residues that are important for photochemistry and catalysis are currently unknown, because there is no crystal structure for POR. Here, we have used static and time-resolved spectroscopic measurements of a number of active site variants to study the role of a number of residues, which are located in the proposed NADPH/Pchlide binding site based on previous homology models, in the reaction mechanism of POR. Our findings, which are interpreted in the context of a new improved structural model, have identified several residues that are predicted to interact with the coenzyme or substrate. Several of the POR variants have a profound effect on the photochemistry, suggesting that multiple residues are important in stabilizing the excited state required for catalysis. Our work offers insight into how the POR active site geometry is finely tuned by multiple active site residues to support enzyme-mediated photochemistry and reduction of Pchlide, both of which are crucial to the existence of life on Earth.

  1. Part I. Cobalt thiolate complexes modeling the active site of cobalt nitrile hydratase. Part II. Formation of inorganic nanoparticles on protein scaffolding in Escherichia coli glutamine synthetase

    NASA Astrophysics Data System (ADS)

    Kung, Irene Yuk Man

    Part I. A series of novel cobalt dithiolate complexes with mixed imine/amine ligand systems is presented here as electronic and structural models for the active site in the bacterial enzyme class, nitrile hydratase (NHase). Pentadentate cobalt(II) complexes with S2N 3 ligand environments are first studied as precursors to the more relevant cobalt(III) complexes. Adjustment of the backbone length by removal of a methylene group increases the reactivity of the system; whereas reduction of the two backbone imine bonds to allow free rotation about those bonds may decrease reactivity. Reactivity change due to the replacement of the backbone amine proton with a more sterically challenging methyl group is not yet clear. Upon oxidation, the monocationic pentadentate cobalt(III) complex, 1b, shows promising reactivity similar to that of NHase. The metal's open coordination site allows reversible binding of the endogenous, monoanionic ligands, N 3- and NCS-. Oxygenation of the thiolate sulfur atoms by exposure to O2 and H2O 2 produces sulfenate and sulfinate ligands in complex 8, which resembles the crystal structure of "deactivated" Fe NHase. However, its lack of reactivity argues against the oxygenated enzyme structure as the active form. Six-coordinate cobalt(III) complexes with S2N4 amine/amine ligand systems are also presented as analogues of previously reported iron(III) compounds, which mimic the spectroscopic properties of Fe NHase. The cobalt complexes do not seem to similarly model Co NHase. However, the S = 0 cobalt(III) center can be spectroscopically silent and difficult to detect, making comparison with synthetic models using common techniques hard. Part II. Dodecameric Escherichia coli glutamine synthetase mutant, E165C, stacks along its six-fold axis to produce tubular nanostructures in the presence of some divalent metal ions, as does the wild type enzyme. The centrally located, engineered Cys-165 residues appear to bind to various species and may serve as

  2. Development of Monoclonal Antibodies That Target 1-Cys Peroxiredoxin and Differentiate Plasmodium falciparum from P. vivax and P. knowlesi.

    PubMed

    Hakimi, Hassan; Nguyen, Thu-Thuy; Suganuma, Keisuke; Masuda-Suganuma, Hirono; Angeles, Jose Ma M; Inoue, Noboru; Kawazu, Shin-Ichiro

    2013-06-01

    Prompt and accurate diagnosis of malarial patients is a crucial factor in controlling the morbidity and mortality of the disease. Effective treatment decisions require a correct diagnosis among mixed-species malarial patients. Differential diagnosis is particularly important in cases of Plasmodium vivax, a species that shares endemicity with P. falciparum in most endemic areas. Moreover, it is difficult to identify P. knowlesi on the basis of morphology alone, and rapid diagnostic tests are still not available for this malaria species. Therefore, the development of diagnostic tests applicable to the field is urgently needed. 1-Cys peroxiredoxin (1-Cys-Prx) in P. falciparum is abundantly expressed in the mature asexual stages, making it a promising candidate as a diagnostic antigen. In this study, we produced five monoclonal antibodies (mAbs) against P. falciparum 1-Cys-Prx (Pf1-Cys-Prx) by immunizing BALB/c mice with recombinant Pf1-Cys-Prx and subsequent hybridoma production. Cross reactivity of established mAbs with the orthologous molecule of Pf1-Cys-Prx in P. vivax (Pv1-Cys-Prx) and P. knowlesi (Pk1-Cys-Prx) was examined. Western blot analyses showed that three mAbs reacted with Pv1-Cys-Prx and Pk1-Cys-Prx but two mAbs did not. These results indicate that the two mAbs were effective in differentiating P. falciparum from P. vivax and P. knowlesi and could be used in differential diagnosis as well as comparative molecular studies of human Plasmodium species.

  3. An Electromagnetic Interference Study of Potential Transmitter Sites for the HF Active Auroral Research Program (HAARP)

    DTIC Science & Technology

    1993-07-19

    heating . The measurements described in this report were conducted at a number of candidate HAARP transmitter sites in the vicinity of Fairbanks...employ the High Power Auroral Stimulation (HIPAS) RF heating facility [1], located in the Chena River valley area near Fairbanks. HAARP will be an...Potential Transmitter Sites for the HF Active Auroral Research Program ( HAARP ) JOSEP11 A. GOLDSTEIN EDWARD 1. KENNEDY ADRIAN S. ELEY 4 IMICHlAEL A. RuPAR C

  4. Probing the catalytic mechanism of bovine CD38/NAD+ glycohydrolase by site directed mutagenesis of key active site residues.

    PubMed

    Kuhn, Isabelle; Kellenberger, Esther; Cakir-Kiefer, Céline; Muller-Steffner, Hélène; Schuber, Francis

    2014-07-01

    Bovine CD38/NAD(+) glycohydrolase catalyzes the hydrolysis of NAD(+) to nicotinamide and ADP-ribose and the formation of cyclic ADP-ribose via a stepwise reaction mechanism. Our recent crystallographic study of its Michaelis complex and covalently-trapped intermediates provided insights into the modalities of substrate binding and the molecular mechanism of bCD38. The aim of the present work was to determine the precise role of key conserved active site residues (Trp118, Glu138, Asp147, Trp181 and Glu218) by focusing mainly on the cleavage of the nicotinamide-ribosyl bond. We analyzed the kinetic parameters of mutants of these residues which reside within the bCD38 subdomain in the vicinity of the scissile bond of bound NAD(+). To address the reaction mechanism we also performed chemical rescue experiments with neutral (methanol) and ionic (azide, formate) nucleophiles. The crucial role of Glu218, which orients the substrate for cleavage by interacting with the N-ribosyl 2'-OH group of NAD(+), was highlighted. This contribution to catalysis accounts for almost half of the reaction energy barrier. Other contributions can be ascribed notably to Glu138 and Asp147 via ground-state destabilization and desolvation in the vicinity of the scissile bond. Key interactions with Trp118 and Trp181 were also proven to stabilize the ribooxocarbenium ion-like transition state. Altogether we propose that, as an alternative to a covalent acylal reaction intermediate with Glu218, catalysis by bCD38 proceeds through the formation of a discrete and transient ribooxocarbenium intermediate which is stabilized within the active site mostly by electrostatic interactions.

  5. Myopathy phenotype of transgenic mice expressing active site-mutated inactive p94 skeletal muscle-specific calpain, the gene product responsible for limb girdle muscular dystrophy type 2A.

    PubMed

    Tagawa, K; Taya, C; Hayashi, Y; Nakagawa, M; Ono, Y; Fukuda, R; Karasuyama, H; Toyama-Sorimachi, N; Katsui, Y; Hata, S; Ishiura, S; Nonaka, I; Seyama, Y; Arahata, K; Yonekawa, H; Sorimachi, H; Suzuki, K

    2000-05-22

    A defect of the gene for p94 (calpain 3), a skeletal muscle-specific calpain, is responsible for limb girdle muscular dystrophy type 2A (LGMD2A), or 'calpainopathy', which is an autosomal recessive and progressive neuromuscular disorder. To study the relationships between the physiological functions of p94 and the etiology of LGMD2A, we created transgenic mice that express an inactive mutant of p94, in which the active site Cys129 is replaced by Ser (p94:C129S). Three lines of transgenic mice expressing p94:C129S mRNA at various levels showed significantly decreased grip strength. Sections of soleus and extensor digitorum longus (EDL) muscles of the aged transgenic mice showed increased numbers of lobulated and split fibers, respectively, which are often observed in limb girdle muscular dystrophy muscles. Centrally placed nuclei were also frequently found in the EDL muscle of the transgenic mice, whereas wild-type mice of the same age had almost none. There was more p94 protein produced in aged transgenic mice muscles and it showed significantly less autolytic degradation activity than that of wild-type mice. Although no necrotic-regenerative fibers were observed, the age and p94:C129S expression dependence of the phenotypes strongly suggest that accumulation of p94:C129S protein causes these myopathy phenotypes. The p94:C129S transgenic mice could provide us with crucial information on the molecular mech-anism of LGMD2A.

  6. Evolution of anatase surface active sites probed by in situ sum-frequency phonon spectroscopy.

    PubMed

    Cao, Yue; Chen, Shiyou; Li, Yadong; Gao, Yi; Yang, Deheng; Shen, Yuen Ron; Liu, Wei-Tao

    2016-09-01

    Surface active sites of crystals often govern their relevant surface chemistry, yet to monitor them in situ in real atmosphere remains a challenge. Using surface-specific sum-frequency spectroscopy, we identified the surface phonon mode associated with the active sites of undercoordinated titanium ions and conjoint oxygen vacancies, and used it to monitor them on anatase (TiO2) (101) under ambient conditions. In conjunction with theory, we determined related surface structure around the active sites and tracked the evolution of oxygen vacancies under ultraviolet irradiation. We further found that unlike in vacuum, the surface oxygen vacancies, which dominate the surface reactivity, are strongly regulated by ambient gas molecules, including methanol and water, as well as weakly associated species, such as nitrogen and hydrogen. The result revealed a rich interplay between prevailing ambient species and surface reactivity, which can be omnipresent in environmental and catalytic applications of titanium dioxides.

  7. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase

    SciTech Connect

    Fenwick, Michael K.; Mehta, Angad P.; Zhang, Yang; Abdelwahed, Sameh H.; Begley, Tadhg P.; Ealick, Steven E.

    2015-03-27

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active site metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.

  8. Kinetics of nucleotide entry into RNA polymerase active site provides mechanism for efficiency and fidelity.

    PubMed

    Wang, Beibei; Sexton, Rachel E; Feig, Michael

    2017-04-01

    During transcription, RNA polymerase II elongates RNA by adding nucleotide triphosphates (NTPs) complementary to a DNA template. Structural studies have suggested that NTPs enter and exit the active site via the narrow secondary pore but details have remained unclear. A kinetic model is presented that integrates molecular dynamics simulations with experimental data. Previous simulations of trigger loop dynamics and the dynamics of matched and mismatched NTPs in and near the active site were combined with new simulations describing NTP exit from the active site via the secondary pore. Markov state analysis was applied to identify major states and estimate kinetic rates for transitions between those states. The kinetic model predicts elongation and misincorporation rates in close agreement with experiment and provides mechanistic hypotheses for how NTP entry and exit via the secondary pore is feasible and a key feature for achieving high elongation and low misincorporation rates during RNA elongation.

  9. Evolution of anatase surface active sites probed by in situ sum-frequency phonon spectroscopy

    PubMed Central

    Cao, Yue; Chen, Shiyou; Li, Yadong; Gao, Yi; Yang, Deheng; Shen, Yuen Ron; Liu, Wei-Tao

    2016-01-01

    Surface active sites of crystals often govern their relevant surface chemistry, yet to monitor them in situ in real atmosphere remains a challenge. Using surface-specific sum-frequency spectroscopy, we identified the surface phonon mode associated with the active sites of undercoordinated titanium ions and conjoint oxygen vacancies, and used it to monitor them on anatase (TiO2) (101) under ambient conditions. In conjunction with theory, we determined related surface structure around the active sites and tracked the evolution of oxygen vacancies under ultraviolet irradiation. We further found that unlike in vacuum, the surface oxygen vacancies, which dominate the surface reactivity, are strongly regulated by ambient gas molecules, including methanol and water, as well as weakly associated species, such as nitrogen and hydrogen. The result revealed a rich interplay between prevailing ambient species and surface reactivity, which can be omnipresent in environmental and catalytic applications of titanium dioxides. PMID:27704049

  10. Gamma exposure rates due to neutron activation of soil: site of Hood detonation, Operation Plumbbob

    SciTech Connect

    Auxier, J.A.; Ohnesorge, W.F.

    1980-06-01

    This paper is the result of some recent discussions of exposure rates within the first few hours of the Hood detonation of the Plumbbob series due to neutron activation of soil. We estimated the exposure rates from 1/2 to 3 h after the detonation from ground zero to 1000 yards from ground zero. The area was assumed to be uncontaminated by fallout. Soil samples from the area of the Nevada Test Site at which the Hood device was detonated were sent to ORNL by Dr. John Malik of Los Alamos and by Mr. Gordon Jacks of the Nevada Test Site. These samples were irradiated at the DOSAR facility and the resulting activity analyzed. Calculations of exposure rates were then made based on the analyzed activity and the measured thermal neutron fluences at DOSAR and at the Hood Site.

  11. Systematic mutagenesis of the active site omega loop of TEM-1 beta-lactamase.

    PubMed Central

    Petrosino, J F; Palzkill, T

    1996-01-01

    Beta-Lactamase is a bacterial protein that provides resistance against beta-lactam antibiotics. TEM-1 beta-lactamase is the most prevalent plasmid-mediated beta-lactamase in gram-negative bacteria. Normally, this enzyme has high levels of hydrolytic activity for penicillins, but mutant beta-lactamases have evolved with activity toward a variety of beta-lactam antibiotics. It has been shown that active site substitutions are responsible for changes in the substrate specificity. Since mutant beta-lactamases pose a serious threat to antimicrobial therapy, the mechanisms by which mutations can alter the substrate specificity of TEM-1 beta-lactamase are of interest. Previously, screens of random libraries encompassing 31 of 55 active site amino acid positions enabled the identification of the residues responsible for maintaining the substrate specificity of TEM-1 beta-lactamase. In addition to substitutions found in clinical isolates, many other specificity-altering mutations were also identified. Interestingly, many nonspecific substitutions in the N-terminal half of the active site omega loop were found to increase ceftazidime hydrolytic activity and decrease ampicillin hydrolytic activity. To complete the active sight study, eight additional random libraries were constructed and screened for specificity-altering mutations. All additional substitutions found to alter the substrate specificity were located in the C-terminal half of the active site loop. These mutants, much like the N-terminal omega loop mutants, appear to be less stable than the wild-type enzyme. Further analysis of a 165-YYG-167 triple mutant, selected for high levels of ceftazidime hydrolytic activity, provides an example of the correlation which exists between enzyme instability and increased ceftazidime hydrolytic activity in the ceftazidime-selected omega loop mutants. PMID:8606154

  12. Improving the neutral phytase activity from Bacillus amyloliquefaciens DSM 1061 by site-directed mutagenesis.

    PubMed

    Xu, Wei; Shao, Rong; Wang, Zupeng; Yan, Xiuhua

    2015-03-01

    Neutral phytase is used as a feed additive for degradation of anti-nutritional phytate in aquatic feed industry. Site-directed mutagenesis of Bacillus amyloliquefaciens DSM 1061 phytase was performed with an aim to increase its activity. Mutation residues were chosen based on multiple sequence alignments and structure analysis of neutral phytsaes from different microorganisms. The mutation sites on surface (D148E, S197E and N156E) and around the active site (D52E) of phytase were selected. Analysis of the phytase variants showed that the specific activities of mutants D148E and S197E remarkably increased by about 35 and 13% over a temperature range of 40-75 °C at pH 7.0, respectively. The k cat of mutants D148E and S197E were 1.50 and 1.25 times than that of the wild-type phytase, respectively. Both D148E and S197E showed much higher thermostability than that of the wild-type phytase. However, mutants N156E and D52E led to significant loss of specific activity of the enzyme. Structural analysis revealed that these mutations may affect conformation of the active site of phytase. The present mutant phytases D148E and S197E with increased activities and thermostabilities have application potential as additives in aquaculture feed.

  13. A mutational analysis of the active site of human type II inosine 5'-monophosphate dehydrogenase.

    PubMed

    Futer, Olga; Sintchak, Michael D; Caron, Paul R; Nimmesgern, Elmar; DeCenzo, Maureen T; Livingston, David J; Raybuck, Scott A

    2002-01-31

    The oxidation of IMP to XMP is the rate-limiting step in the de novo synthesis of guanine ribonucleotides. This NAD-dependent reaction is catalyzed by the enzyme inosine monophosphate dehydrogenase (IMPDH). Based upon the recent structural determination of IMPDH complexed to oxidized IMP (XMP*) and the potent uncompetitive inhibitor mycophenolic acid (MPA), we have selected active site residues and prepared mutants of human type II IMPDH. The catalytic parameters of these mutants were determined. Mutations G326A, D364A, and the active site nucleophile C331A all abolish enzyme activity to less than 0.1% of wild type. These residues line the IMP binding pocket and are necessary for correct positioning of the substrate, Asp364 serving to anchor the ribose ring of the nucleotide. In the MPA/NAD binding site, significant loss of activity was seen by mutation of any residue of the triad Arg322, Asn303, Asp274 which form a hydrogen bonding network lining one side of this pocket. From a model of NAD bound to the active site consistent with the mutational data, we propose that these resides are important in binding the ribose ring of the nicotinamide substrate. Additionally, mutations in the pair Thr333, Gln441, which lies close to the xanthine ring, cause a significant drop in the catalytic activity of IMPDH. It is proposed that these residues serve to deliver the catalytic water molecule required for hydrolysis of the cysteine-bound XMP* intermediate formed after oxidation by NAD.

  14. Threatened and endangered wildlife species of the Hanford Site related to CERCLA characterization activities

    SciTech Connect

    Fitzner, R.E.; Weiss, S.G.; Stegen, J.A.

    1994-06-01

    The US Department of Energy`s (DOE) Hanford Site has been placed on the National Priorities List, which requires that it be remediated under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) or Superfund. Potentially contaminated areas of the Hanford Site were grouped into operable units, and detailed characterization and investigation plans were formulated. The DOE Richland Operations Office requested Westinghouse Hanford Company (WHC) to conduct a biological assessment of the potential impact of these characterization activities on the threatened, endangered, and sensitive wildlife species of the Hanford Site. Additional direction for WHC compliances with wildlife protection can be found in the Environmental Compliance Manual. This document is intended to meet these requirements, in part, for the CERCLA characterization activities, as well as for other work comparable in scope. This report documents the biological assessment and describes the pertinent components of the Hanford Site as well as the planned characterization activities. Also provided are accounts of endangered, threatened, and federal candidate wildlife species on the Hanford Site and information as to how human disturbances can affect these species. Potential effects of the characterization activities are described with recommendations for mitigation measures.

  15. Testing the applicability of rapid on-site enzymatic activity detection for surface water monitoring

    NASA Astrophysics Data System (ADS)

    Stadler, Philipp; Vogl, Wolfgang; Juri, Koschelnik; Markus, Epp; Maximilian, Lackner; Markus, Oismüller; Monika, Kumpan; Peter, Strauss; Regina, Sommer; Gabriela, Ryzinska-Paier; Farnleitner Andreas, H.; Matthias, Zessner

    2015-04-01

    On-site detection of enzymatic activities has been suggested as a rapid surrogate for microbiological pollution monitoring of water resources (e.g. using glucuronidases, galactosidases, esterases). Due to the possible short measuring intervals enzymatic methods have high potential as near-real time water quality monitoring tools. This presentation describes results from a long termed field test. For twelve months, two ColiMinder devices (Vienna Water Monitoring, Austria) for on-site determination of enzymatic activity were tested for stream water monitoring at the experimental catchment HOAL (Hydrological Open Air Laboratory, Center for Water Resource Systems, Vienna University of Technology). The devices were overall able to follow and reflect the diverse hydrological and microbiological conditions of the monitored stream during the test period. Continuous data in high temporal resolution captured the course of enzymatic activity in stream water during diverse rainfall events. The method also proofed sensitive enough to determine diurnal fluctuations of enzymatic activity in stream water during dry periods. The method was able to capture a seasonal trend of enzymatic activity in stream water that matches the results gained from Colilert18 analysis for E. coli and coliform bacteria of monthly grab samples. Furthermore the comparison of ColiMinder data with measurements gained at the same test site with devices using the same method but having different construction design (BACTcontrol, microLAN) showed consistent measuring results. Comparative analysis showed significant differences between measured enzymatic activity (modified fishman units and pmol/min/100ml) and cultivation based analyses (most probable number, colony forming unit). Methods of enzymatic activity measures are capable to detect ideally the enzymatic activity caused by all active target bacteria members, including VBNC (viable but nonculturable) while cultivation based methods cannot detect VBNC

  16. Ion selectivity of porcine skeletal muscle Ca2+ release channels is unaffected by the Arg615 to Cys615 mutation.

    PubMed Central

    Shomer, N H; Mickelson, J R; Louis, C F

    1994-01-01

    The Arg615 to Cys615 mutation of the sarcoplasmic reticulum (SR) Ca2+ release channel of malignant hyperthermia susceptible (MHS) pigs results in a decreased sensitivity of the channel to inhibitory Ca2+ concentrations. To investigate whether this mutation also affects the ion selectivity filter of the channel, the monovalent cation conductances and ion permeability ratios of single Ca2+ release channels incorporated into planar lipid bilayers were compared. Monovalent cation conductances in symmetrical solutions were: Li+, 183 pS +/- 3 (n = 21); Na+, 474 pS +/- 6 (n = 29); K+, 771 pS +/- 7 (n = 29); Rb+, 502 pS +/- 10 (n = 22); and Cs+, 527 pS +/- 5 (n = 16). The single-channel conductances of MHS and normal Ca2+ release channel were not significantly different for any of the monovalent cations tested. Permeability ratios measured under biionic conditions had the permeability sequence Ca2+ >> Li+ > Na+ > K+ > or Rb+ > Cs+, with no significant difference noted between MHS and normal channels. This systematic examination of the conduction properties of the pig skeletal muscle Ca2+ release channel indicated a higher Ca2+ selectivity (PCa2+:Pk+ approximately 15.5) than the sixfold Ca2+ selectivity previously reported for rabbit skeletal (Smith et al., 1988) or sheep cardiac muscle (Tinker et al., 1992) Ca2+ release channels. These results also indicate that although Ca2+ regulation of Ca2+ release channel activity is altered, the Arg615 to Cys615 mutation of the porcine Ca2+ release channel does not affect the conductance or ion selectivity properties of the channel. PMID:7948678

  17. Dipicrylamine Modulates GABAρ1 Receptors through Interactions with Residues in the TM4 and Cys-Loop Domains.

    PubMed

    Limon, Agenor; Estrada-Mondragón, Argel; Ruiz, Jorge M Reyes; Miledi, Ricardo

    2016-04-01

    Dipicrylamine (DPA) is a commonly used acceptor agent in Förster resonance energy transfer experiments that allows the study of high-frequency neuronal activity in the optical monitoring of voltage in living cells. However, DPA potently antagonizes GABAA receptors that contain α1 and β2 subunits by a mechanism which is not clearly understood. In this work, we aimed to determine whether DPA modulation is a general phenomenon of Cys-loop ligand-gated ion channels (LGICs), and whether this modulation depends on particular amino acid residues. For this, we studied the effects of DPA on human homomeric GABAρ1, α7 nicotinic, and 5-HT3A serotonin receptors expressed in Xenopus oocytes. Our results indicate that DPA is an allosteric modulator of GABAρ1 receptors with an IC50 of 1.6 µM, an enhancer of α7 nicotinic receptors at relatively high concentrations of DPA, and has little, if any, effect on 5-HT3A receptors. DPA antagonism of GABAρ1 was strongly enhanced by preincubation, was slightly voltage-dependent, and its washout was accelerated by bovine serum albumin. These results indicate that DPA modulation is not a general phenomenon of LGICs, and structural differences between receptors may account for disparities in DPA effects. In silico modeling of DPA docking to GABAρ1, α7 nicotinic, and 5-HT3A receptors suggests that a hydrophobic pocket within the Cys-loop and the M4 segment in GABAρ1, located at the extracellular/membrane interface, facilitates the interaction with DPA that leads to inhibition of the receptor. Functional examinations of mutant receptors support the involvement of the M4 segment in the allosteric modulation of GABAρ1 by DPA.

  18. A Variable Active Site Residue Influences the Kinetics of Response Regulator Phosphorylation and Dephosphorylation.

    PubMed

    Immormino, Robert M; Silversmith, Ruth E; Bourret, Robert B

    2016-10-04

    Two-component regulatory systems, minimally composed of a sensor kinase and a response regulator protein, are common mediators of signal transduction in microorganisms. All response regulators contain a receiver domain with conserved active site residues that catalyze the signal activating and deactivating phosphorylation and dephosphorylation reactions. We explored the impact of variable active site position T+1 (one residue C-terminal to the conserved Thr/Ser) on reaction kinetics and signaling fidelity, using wild type and mutant Escherichia coli CheY, CheB, and NarL to represent the three major sequence classes observed across response regulators: Ala/Gly, Ser/Thr, and Val/Ile/Met, respectively, at T+1. Biochemical and structural data together suggested that different amino acids at T+1 impacted reaction kinetics by altering access to the active site while not perturbing overall protein structure. A given amino acid at position T+1 had similar effects on autodephosphorylation in each protein background tested, likely by modulating access of the attacking water molecule to the active site. Similarly, rate constants for CheY autophosphorylation with three different small molecule phosphodonors were consistent with the steric constraints on access to the phosphorylation site arising from combination of specific phosphodonors with particular amino acids at T+1. Because other variable active site residues also influence response regulator phosphorylation biochemistry, we began to explore how context (here, the amino acid at T+2) affected the influence of position T+1 on CheY autocatalytic reactions. Finally, position T+1 affected the fidelity and kinetics of phosphotransfer between sensor kinases and response regulators but was not a primary determinant of their interaction.

  19. The active site of low-temperature methane hydroxylation in iron-containing zeolites

    NASA Astrophysics Data System (ADS)

    Snyder, Benjamin E. R.; Vanelderen, Pieter; Bols, Max L.; Hallaert, Simon D.; Böttger, Lars H.; Ungur, Liviu; Pierloot, Kristine; Schoonheydt, Robert A.; Sels, Bert F.; Solomon, Edward I.

    2016-08-01

    An efficient catalytic process for converting methane into methanol could have far-reaching economic implications. Iron-containing zeolites (microporous aluminosilicate minerals) are noteworthy in this regard, having an outstanding ability to hydroxylate methane rapidly at room temperature to form methanol. Reactivity occurs at an extra-lattice active site called α-Fe(II), which is activated by nitrous oxide to form the reactive intermediate α-O; however, despite nearly three decades of research, the nature of the active site and the factors determining its exceptional reactivity are unclear. The main difficulty is that the reactive species—α-Fe(II) and α-O—are challenging to probe spectroscopically: data from bulk techniques such as X-ray absorption spectroscopy and magnetic susceptibility are complicated by contributions from inactive ‘spectator’ iron. Here we show that a site-selective spectroscopic method regularly used in bioinorganic chemistry can overcome this problem. Magnetic circular dichroism reveals α-Fe(II) to be a mononuclear, high-spin, square planar Fe(II) site, while the reactive intermediate, α-O, is a mononuclear, high-spin Fe(IV)=O species, whose exceptional reactivity derives from a constrained coordination geometry enforced by the zeolite lattice. These findings illustrate the value of our approach to exploring active sites in heterogeneous systems. The results also suggest that using matrix constraints to activate metal sites for function—producing what is known in the context of metalloenzymes as an ‘entatic’ state—might be a useful way to tune the activity of heterogeneous catalysts.

  20. Counting Active Sites on Titanium Oxide-Silica Catalysts for Hydrogen Peroxide Activation through In Situ Poisoning with Phenylphosphonic Acid

    SciTech Connect

    Eaton, Todd R.; Boston, Andrew M.; Thompson, Anthony B.; Gray, Kimberly A.; Notestein, Justin M.

    2015-06-04

    Quantifying specific active sites in supported catalysts improves our understanding and assists in rational design. Supported oxides can undergo significant structural changes as surface densities increase from site-isolated cations to monolayers and crystallites, which changes the number of kinetically relevant sites. Herein, TiOx domains are titrated on TiOx–SiO2 selectively with phenylphosphonic acid (PPA). An ex situ method quantifies all fluid-accessible TiOx, whereas an in situ titration during cis-cyclooctene epoxidation provides previously unavailable values for the number of tetrahedral Ti sites on which H2O2 activation occurs. We use this method to determine the active site densities of 22 different catalysts with different synthesis methods, loadings, and characteristic spectra and find a single intrinsic turnover frequency for cis-cyclooctene epoxidation of (40±7) h-1. This simple method gives molecular-level insight into catalyst structure that is otherwise hidden when bulk techniques are used.

  1. Functional biomimetic models for the active site in the respiratory enzyme cytochrome c oxidase.

    PubMed

    Collman, James P; Decréau, Richard A

    2008-11-07

    A functional analog of the active site in the respiratory enzyme, cytochrome c oxidase (CcO) reproduces every feature in CcO's active site: a myoglobin-like heme (heme a3), a distal tridentate imidazole copper complex (Cu(B)), a phenol (Tyr244), and a proximal imidazole. When covalently attached to a liquid-crystalline SAM film on an Au electrode, this functional model continuously catalyzes the selective four-electron reduction of dioxygen at physiological potential and pH, under rate-limiting electron flux (as occurs in CcO).

  2. New active site oriented glyoxyl-agarose derivatives of Escherichia coli penicillin G acylase

    PubMed Central

    Cecchini, Davide A; Serra, Immacolata; Ubiali, Daniela; Terreni, Marco; Albertini, Alessandra M

    2007-01-01

    Background Immobilized Penicillin G Acylase (PGA) derivatives are biocatalysts that are industrially used for the hydrolysis of Penicillin G by fermentation and for the kinetically controlled synthesis of semi-synthetic β-lactam antibiotics. One of the most used supports for immobilization is glyoxyl-activated agarose, which binds the protein by reacting through its superficial Lys residues. Since in E. coli PGA Lys are also present near the active site, an immobilization that occurs through these residues may negatively affect the performance of the biocatalyst due to the difficult diffusion of the substrate into the active site. A preferential orientation of the enzyme with the active site far from the support surface would be desirable to avoid this problem. Results Here we report how it is possible to induce a preferential orientation of the protein during the binding process on aldehyde activated supports. A superficial region of PGA, which is located on the opposite side of the active site, is enriched in its Lys content. The binding of the enzyme onto the support is consequently forced through the Lys rich region, thus leaving the active site fully accessible to the substrate. Different mutants with an increasing number of Lys have been designed and, when active, immobilized onto glyoxyl agarose. The synthetic performances of these new catalysts were compared with those of the immobilized wild-type (wt) PGA. Our results show that, while the synthetic performance of the wt PGA sensitively decreases after immobilization, the Lys enriched mutants have similar performances to the free enzyme even after immobilization. We also report the observations made with other mutants which were unable to undergo a successful maturation process for the production of active enzymes or which resulted toxic for the host cell. Conclusion The desired orientation of immobilized PGA with the active site freely accessible can be obtained by increasing the density of Lys residues

  3. Comparative analysis of cyanobacterial and plant peroxiredoxins and their electron donors: peroxidase activity and susceptibility to overoxidation.

    PubMed

    Lindahl, Marika; Cejudo, Francisco Javier

    2013-01-01

    Peroxiredoxins (Prxs) are peroxidases that use thiol-based catalytic mechanisms implying redox-active cysteines. The different Prx families have homologs in all photosynthetic organisms, including plants, algae, and cyanobacteria. However, recent studies show that the physiological reduction systems that provide Prxs with reducing equivalents to sustain their activities differ considerably between cyanobacterial strains. Thus, for example, the filamentous cyanobacterium Anabaena sp. PCC 7120 is similar to the chloroplast in that it possesses an abundant 2-Cys Prx, which receives electrons from the NADPH-dependent thioredoxin reductase C (NTRC). In contrast, the unicellular cyanobacterium Synechocystis sp. PCC 6803, which lacks NTRC, has little 2-Cys Prx but high amounts of PrxII and 1-Cys Prx. The characterization of cyanobacterial Prxs and their electron donors relies on straightforward enzymatic assays and tools to study the physiological relevance of these systems. Here, we present methods to measure peroxidase activities in vitro and peroxide decomposition in vivo. Several approaches to detect overoxidation of the active site cysteine in cyanobacterial 2-Cys Prxs are also described.

  4. Wobble Pairs of the HDV Ribozyme Play Specific Roles in Stabilization of Active Site Dynamics

    PubMed Central

    Sripathi, Kamali N.; Banáš, Pavel; Reblova, Kamila; Šponer, Jiři; Otyepka, Michal

    2015-01-01

    The hepatitis delta virus (HDV) is the only known human pathogen whose genome contains a catalytic RNA motif (ribozyme). The overall architecture of the HDV ribozyme is that of a double-nested pseudoknot, with two GU pairs flanking the active site. Although extensive studies have shown that mutation of either wobble results in decreased catalytic activity, little work has focused on linking these mutations to specific structural effects on catalytic fitness. Here we use molecular dynamics simulations based on an activated structure to probe the active site dynamics as a result of wobble pair mutations. In both wild-type and mutant ribozymes, the in-line fitness of the active site (as a measure of catalytic proficiency) strongly depends on the presence of a C75(N3H3+)N1(O5′) hydrogen bond, which positions C75 as the general acid for the reaction. Our mutational analyses show that each GU wobble supports catalytically fit conformations in distinct ways; the reverse G25U20 wobble promotes high in-line fitness, high occupancy of the C75(N3H3+)G1(O5′) general-acid hydrogen bond and stabilization of the G1U37 wobble, while the G1U37 wobble acts more locally by stabilizing high in-line fitness and the C75(N3H3+)G1(O5′) hydrogen bond. We also find that stable type I A-minor and P1.1 hydrogen bonding above and below the active site, respectively, prevent local structural disorder from spreading and disrupting global conformation. Taken together, our results define specific, often redundant architectural roles for several structural motifs of the HDV ribozyme active site, expanding the known roles of these motifs within all HDV-like ribozymes and other structured RNAs. PMID:25631765

  5. Conserved phosphorylation sites in the activation loop of the Arabidopsis phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity

    PubMed Central

    Hartmann, Jens; Linke, Dennis; Bönniger, Christine; Tholey, Andreas; Sauter, Margret

    2015-01-01

    PSK (phytosulfokine) is a plant peptide hormone perceived by a leucine-rich repeat receptor kinase. Phosphosite mapping of epitope-tagged PSKR1 (phytosulfokine receptor 1) from Arabidopsis thaliana plants identified Ser696 and Ser698 in the JM (juxtamembrane) region and probably Ser886 and/or Ser893 in the AL (activation loop) as in planta phosphorylation sites. In vitro-expressed kinase was autophosphorylated at Ser717 in the JM, and at Ser733, Thr752, Ser783, Ser864, Ser911, Ser958 and Thr998 in the kinase domain. The LC–ESI–MS/MS spectra provided support that up to three sites (Thr890, Ser893 and Thr894) in the AL were likely to be phosphorylated in vitro. These sites are evolutionarily highly conserved in PSK receptors, indicative of a conserved function. Site-directed mutagenesis of the four conserved residues in the activation segment, Thr890, Ser893, Thr894 and Thr899, differentially altered kinase activity in vitro and growth-promoting activity in planta. The T899A and the quadruple-mutated TSTT-A (T890A/S893A/T894A/T899A) mutants were both kinase-inactive, but PSKR1(T899A) retained growth-promoting activity. The T890A and S893A/T894A substitutions diminished kinase activity and growth promotion. We hypothesize that phosphorylation within the AL activates kinase activity and receptor function in a gradual and distinctive manner that may be a means to modulate the PSK response. PMID:26472115

  6. Human activities in Natura 2000 sites: a highly diversified conservation network.

    PubMed

    Tsiafouli, Maria A; Apostolopoulou, Evangelia; Mazaris, Antonios D; Kallimanis, Athanasios S; Drakou, Evangelia G; Pantis, John D

    2013-05-01

    The Natura 2000 network was established across the European Union's (EU) Member States with the aim to conserve biodiversity, while ensuring the sustainability of human activities. However, to what kind and to what extent Natura 2000 sites are subject to human activities and how this varies across Member States remains unspecified. Here, we analyzed 111,269 human activity records from 14,727 protected sites in 20 Member States. The frequency of occurrence of activities differs among countries, with more than 86 % of all sites being subjected to agriculture or forestry. Activities like hunting, fishing, urbanization, transportation, and tourism are more frequently recorded in south European sites than in northern or eastern ones. The observed variations indicate that Natura 2000 networks are highly heterogeneous among EU Member States. Our analysis highlights the importance of agriculture in European landscapes and indicates possible targets for policy interventions at national, European, or "sub-European" level. The strong human presence in the Natura 2000 network throughout Member States, shows that conservation initiatives could succeed only by combining social and ecological sustainability and by ensuring the integration of policies affecting biodiversity.

  7. Kv3 channel assembly, trafficking and activity are regulated by zinc through different binding sites.

    PubMed

    Gu, Yuanzheng; Barry, Joshua; Gu, Chen

    2013-05-15

    Zinc, a divalent heavy metal ion and an essential mineral for life, regulates synaptic transmission and neuronal excitability via ion channels. However, its binding sites and regulatory mechanisms are poorly understood. Here, we report that Kv3 channel assembly, localization and activity are regulated by zinc through different binding sites. Local perfusion of zinc reversibly reduced spiking frequency of cultured neurons most likely by suppressing Kv3 channels. Indeed, zinc inhibited Kv3.1 channel activity and slowed activation kinetics, independent of its site in the N-terminal T1 domain. Biochemical assays surprisingly identified a novel zinc-binding site in the Kv3.1 C-terminus, critical for channel activity and axonal targeting, but not for the zinc inhibition. Finally, mutagenesis revealed an important role of the junction between the first transmembrane (TM) segment and the first extracellular loop in sensing zinc. Its mutant enabled fast spiking with relative resistance to the zinc inhibition. Therefore, our studies provide novel mechanistic insights into the multifaceted regulation of Kv3 channel activity and localization by divalent heavy metal ions.

  8. Active-Site Monovalent Cations Revealed in a 1.55 Å Resolution Hammerhead Ribozyme Structure

    PubMed Central

    Anderson, Michael; Schultz, Eric P.; Martick, Monika; Scott, William G.

    2013-01-01

    We have obtained a 1.55 Å crystal structure of a hammerhead ribozyme derived from Schistosoma mansoni in conditions that permit detailed observations of Na+ ion binding in the ribozyme's active site. At least two such Na+ ions are observed. The first Na+ ion binds to the N7 of G10.1 and the adjacent A9 phosphate in a manner identical to that previously observed for divalent cations. A second Na+ ion binds to the Hoogsteen face of G12, the general base in the hammerhead cleavage reaction, thereby potentially dissipating the negative charge of the catalytically active enolate form of the nucleotide base. A potential but more ambiguous third site bridges the A9 and scissile phosphates in a manner consistent with previous predictions. Hammerhead ribozymes have been observed to be active in the presence of high concentrations of monovalent cations, including Na+, but the mechanism by which monovalent cations substitute for divalent cations in hammerhead catalysis remains unclear. Our results enable us to suggest that Na+ directly and specifically substitutes for divalent cations in the hammerhead active site. The detailed geometry of the pre-catalytic active site complex is also revealed with a new level of precision, thanks to the quality of the electron density maps obtained from what is currently the highest resolution ribozyme structure in the protein data bank. PMID:23711504

  9. Tuned by metals: the TET peptidase activity is controlled by 3 metal binding sites.

    PubMed

    Colombo, Matteo; Girard, Eric; Franzetti, Bruno

    2016-02-08

    TET aminopeptidases are dodecameric particles shared in the three life domains involved in various biological processes, from carbon source provider in archaea to eye-pressure regulation in humans. Each subunit contains a dinuclear metal site (M1 and M2) responsible for the enzyme catalytic activity. However, the role of each metal ion is still uncharacterized. Noteworthy, while mesophilic TETs are activated by Mn(2+), hyperthermophilic TETs prefers Co(2+). Here, by means of anomalous x-ray crystallography and enzyme kinetics measurements of the TET3 aminopeptidase from the hyperthermophilic organism Pyrococcus furiosus (PfTET3), we show that M2 hosts the catalytic activity of the enzyme, while M1 stabilizes the TET3 quaternary structure and controls the active site flexibility in a temperature dependent manner. A new third metal site (M3) was found in the substrate binding pocket, modulating the PfTET3 substrate preferences. These data show that TET activity is tuned by the molecular interplay among three metal sites.

  10. Impact of cysteine variants on the structure, activity, and stability of recombinant human α-galactosidase A.

    PubMed

    Qiu, Huawei; Honey, Denise M; Kingsbury, Jonathan S; Park, Anna; Boudanova, Ekaterina; Wei, Ronnie R; Pan, Clark Q; Edmunds, Tim

    2015-09-01

    Recombinant human α-galactosidase A (rhαGal) is a homodimeric glycoprotein deficient in Fabry disease, a lysosomal storage disorder. In this study, each cysteine residue in rhαGal was replaced with serine to understand the role each cysteine plays in the enzyme structure, function, and stability. Conditioned media from transfected HEK293 cells were assayed for rhαGal expression and enzymatic activity. Activity was only detected in the wild type control and in mutants substituting the free cysteine residues (C90S, C174S, and the C90S/C174S). Cysteine-to-serine substitutions at the other sites lead to the loss of expression and/or activity, consistent with their involvement in the disulfide bonds found in the crystal structure. Purification and further characterization confirmed that the C90S, C174S, and the C90S/C174S mutants are enzymatically active, structurally intact and thermodynamically stable as measured by circular dichroism and thermal denaturation. The purified inactive C142S mutant appeared to have lost part of its alpha-helix secondary structure and had a lower apparent melting temperature. Saturation mutagenesis study on Cys90 and Cys174 resulted in partial loss of activity for Cys174 mutants but multiple mutants at Cys90 with up to 87% higher enzymatic activity (C90T) compared to wild type, suggesting that the two free cysteines play differential roles and that the activity of the enzyme can be modulated by side chain interactions of the free Cys residues. These results enhanced our understanding of rhαGal structure and function, particularly the critical roles that cysteines play in structure, stability, and enzymatic activity.

  11. The cys-loop ligand-gated ion channel gene superfamily of the parasitoid wasp, Nasonia vitripennis.

    PubMed

    Jones, A K; Bera, A N; Lees, K; Sattelle, D B

    2010-03-01

    Members of the cys-loop ligand-gated ion channel (cysLGIC) superfamily mediate chemical neurotransmission and are studied extensively as potential targets of drugs used to treat neurological disorders, such as Alzheimer's disease. Insect cys-loop LGICs also have central roles in the nervous system and are targets of highly successful insecticides. Here, we describe the cysLGIC superfamily of the parasitoid wasp, Nasonia vitripennis, which is emerging as a highly useful model organism and is deployed as a biological control of insect pests. The wasp superfamily consists of 26 genes, which is the largest insect cysLGIC superfamily characterized, whereas Drosophila melanogaster, Apis mellifera and Tribolium castaneum have 23, 21 and 24, respectively. As with Apis, Drosophila and Tribolium, Nasonia possesses ion channels predicted to be gated by acetylcholine, gamma-amino butyric acid, glutamate and histamine, as well as orthologues of the Drosophila pH-sensitive chloride channel (pHCl), CG8916 and CG12344. Similar to other insects, wasp cysLGIC diversity is broadened by alternative splicing and RNA A-to-I editing, which may also serve to generate species-specific receptor isoforms. These findings on N. vitripennis enhance our understanding of cysLGIC functional genomics and provide a useful basis for the study of their function in the wasp model, as well as for the development of improved insecticides that spare a major beneficial insect species.

  12. Docking and molecular dynamics studies at trypanothione reductase and glutathione reductase active sites.

    PubMed

    Iribarne, Federico; Paulino, Margot; Aguilera, Sara; Murphy, Miguel; Tapia, Orlando

    2002-05-01

    A theoretical docking study on the active sites of trypanothione reductase (TR) and glutathione reductase (GR) with the corresponding natural substrates, trypanothione disulfide (T[S]2) and glutathione disulfide (GSSG), is reported. Molecular dynamics simulations were carried out in order to check the robustness of the docking results. The energetic results are in agreement with previous experimental findings and show the crossed complexes have lower stabilization energies than the natural ones. To test DOCK3.5, four nitro furanic compounds, previously designed as potentially active anti-chagasic molecules, were docked at the GR and TR active sites with the DOCK3.5 procedure. A good correlation was found between differential inhibitory activity and relative interaction energy (affinity). The results provide a validation test for the use of DOCK3.5 in connection with the design of anti-chagasic drugs.

  13. Role of free Cys121 in stabilization of bovine beta-lactoglobulin B.

    PubMed

    Burova, T V; Choiset, Y; Tran, V; Haertlé, T

    1998-11-01

    Mixed disulfide derivatives of bovine beta-lactoglobulin (BLG) were studied by circular dichroism (CD), gel-permeation HPLC and high-sensitivity differential scanning calorimetry (HS-DSC). It was shown that modification of Cys121 with mercaptopropionic acid and mercaptoethanol does not affect the secondary structure of BLG, but results instead in tertiary and quaternary structure changes. At neutral pH, the equilibrium dimer<==>monomer of modified beta-lactoglobulin is shifted towards monomeric form. In contrast to native BLG, thermal denaturation of modified beta-lactoglobulin is fully reversible in neutral and acidic pH as demonstrated by CD and HS-DSC measurements. Modification of Cys121 results in a significant decrease of transition temperature (-6 degrees C) and enthalpy (-106 kJ/mol) at pH 2.05 while unfolding heat capacity increment remains unchanged. Thermal unfolding transitions of native and modified beta-lactoglobulin at pH 2.05 are well approximated by a two-state model suggesting that no intermediate states appear after modification. The difference in Gibbs energy of denaturation between native and modified beta-lactoglobulin, 8.5 kJ/mol at 37 degrees C and pH 2.05, does not depend on the nature of the introduced group (charged or neutral). Computer analysis of possible interactions involving Cys121 in a three-dimensional structure of beta-lactoglobulin revealed that the thiol group is too far away from neighboring residues to form side-chain hydrogen bonds. This suggests that the sulfhydryl group of Cys121 may contribute to the maintenance of BLG tertiary structure via water mediated H-bonding.

  14. Active layer dynamics in three sites with contrasted topography in the Byers Peninsula (Livingston Island, Antarctica)

    NASA Astrophysics Data System (ADS)

    Oliva, Marc; Ruiz-Fernández, Jesús; Vieira, Gonçalo

    2015-04-01

    Topography exerts a key role on permafrost distribution in areas where mean annual temperatures are slightly negative. This is the case of low-altitude environments in Maritime Antarctica, namely in the South Shetland Islands, where permafrost is marginal to discontinuous until elevations of 20-40 m asl turning to continuous at higher areas. Consequently, the active layer dynamics is also strongly conditioned by the geomorphological setting. In January 2014 we installed three sites for monitoring the active layer dynamics across the Byers Peninsula (Livingston Island, South Shetland Islands) in different geomorphological environments at elevations between 60 and 100 m. The purpo