Science.gov

Sample records for active site features

  1. Crystal structures of human CtBP in complex with substrate MTOB reveal active site features useful for inhibitor design

    PubMed Central

    Hilbert, Brendan J.; Grossman, Steven R.; Schiffer, Celia A.; Royer, William E.

    2014-01-01

    The oncogenic corepressors C-terminal Binding Protein (CtBP) 1 and 2 harbor regulatory D-isomer specific 2-hydroxyacid dehydrogenase (D2-HDH) domains. 4-Methylthio 2-oxobutyric acid (MTOB) exhibits substrate inhibition and can interfere with CtBP oncogenic activity in cell culture and mice. Crystal structures of human CtBP1 and CtBP2 in complex with MTOB and NAD+ revealed two key features: a conserved tryptophan that likely contributes to substrate specificity and a hydrophilic cavity that links MTOB with an NAD+ phosphate. Neither feature is present in other D2-HDH enzymes. These structures thus offer key opportunities for the development of highly selective anti-neoplastic CtBP inhibitors. PMID:24657618

  2. List 9 - Active CERCLIS Sites:

    EPA Pesticide Factsheets

    The List 9 displays the sequence of activities undertaken at active CERCLIS sites. An active site is one at which site assessment, removal, remedial, enforcement, cost recovery, or oversight activities are being planned or conducted.

  3. Crystal structure of the cystic fibrosis transmembrane conductance regulator inhibitory factor Cif reveals novel active-site features of an epoxide hydrolase virulence factor.

    PubMed

    Bahl, Christopher D; Morisseau, Christophe; Bomberger, Jennifer M; Stanton, Bruce A; Hammock, Bruce D; O'Toole, George A; Madden, Dean R

    2010-04-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif) is a virulence factor secreted by Pseudomonas aeruginosa that reduces the quantity of CFTR in the apical membrane of human airway epithelial cells. Initial sequence analysis suggested that Cif is an epoxide hydrolase (EH), but its sequence violates two strictly conserved EH motifs and also is compatible with other alpha/beta hydrolase family members with diverse substrate specificities. To investigate the mechanistic basis of Cif activity, we have determined its structure at 1.8-A resolution by X-ray crystallography. The catalytic triad consists of residues Asp129, His297, and Glu153, which are conserved across the family of EHs. At other positions, sequence deviations from canonical EH active-site motifs are stereochemically conservative. Furthermore, detailed enzymatic analysis confirms that Cif catalyzes the hydrolysis of epoxide compounds, with specific activity against both epibromohydrin and cis-stilbene oxide, but with a relatively narrow range of substrate selectivity. Although closely related to two other classes of alpha/beta hydrolase in both sequence and structure, Cif does not exhibit activity as either a haloacetate dehalogenase or a haloalkane dehalogenase. A reassessment of the structural and functional consequences of the H269A mutation suggests that Cif's effect on host-cell CFTR expression requires the hydrolysis of an extended endogenous epoxide substrate.

  4. Crystal Structure of the Cystic Fibrosis Transmembrane Conductance Regulator Inhibitory Factor Cif Reveals Novel Active-Site Features of an Epoxide Hydrolase Virulence Factor

    SciTech Connect

    Bahl, C.; Morisseau, C; Bomberger, J; Stanton, B; Hammock, B; O' Toole, G; Madden, D

    2010-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif) is a virulence factor secreted by Pseudomonas aeruginosa that reduces the quantity of CFTR in the apical membrane of human airway epithelial cells. Initial sequence analysis suggested that Cif is an epoxide hydrolase (EH), but its sequence violates two strictly conserved EH motifs and also is compatible with other {alpha}/{beta} hydrolase family members with diverse substrate specificities. To investigate the mechanistic basis of Cif activity, we have determined its structure at 1.8-{angstrom} resolution by X-ray crystallography. The catalytic triad consists of residues Asp129, His297, and Glu153, which are conserved across the family of EHs. At other positions, sequence deviations from canonical EH active-site motifs are stereochemically conservative. Furthermore, detailed enzymatic analysis confirms that Cif catalyzes the hydrolysis of epoxide compounds, with specific activity against both epibromohydrin and cis-stilbene oxide, but with a relatively narrow range of substrate selectivity. Although closely related to two other classes of {alpha}/{beta} hydrolase in both sequence and structure, Cif does not exhibit activity as either a haloacetate dehalogenase or a haloalkane dehalogenase. A reassessment of the structural and functional consequences of the H269A mutation suggests that Cif's effect on host-cell CFTR expression requires the hydrolysis of an extended endogenous epoxide substrate.

  5. 1. VIEW OF DUPLEX (FEATURE 9), FACING NORTHEAST. MILL SITE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF DUPLEX (FEATURE 9), FACING NORTHEAST. MILL SITE IS SHOWN IN UPPER RIGHT CORNER OF PHOTOGRAPH. - Copper Canyon Camp of the International Smelting & Refining Company, Duplex, Copper Canyon, Battle Mountain, Lander County, NV

  6. Contrasting features of ERK1/2 activity and synapsin I phosphorylation at the ERK1/2-dependent site in the rat brain in status epilepticus induced by kainic acid in vivo

    PubMed Central

    Yamagata, Yoko; Nairn, Angus C.

    2015-01-01

    Extracellular signal-regulated kinase 1/2 (ERK1/2) plays diverse roles in the central nervous system. Activation of ERK1/2 has been observed in various types of neuronal excitation, including seizure activity in vivo and in vitro. However, studies examining ERK1/2 activity and its substrate phosphorylation in parallel are scarce especially in seizure models. We have been studying the phosphorylation state of the presynaptic protein, synapsin I at ERK1/2-dependent and -independent sites in various types of seizure models and showed that ERK1/2-dependent phosphorylation of synapsin I was indeed under control of ERK1/2 activity in vivo. To further expand our study, here we examined the effects of prolonged seizure activity on ERK1/2 activity and synapsin I phosphorylation by using status epilepticus induced by kainic acid (KA-SE) in rats in vivo. In KA-SE, robust ERK1/2 activation was observed in the hippocampus, a representative limbic structure, with lesser activation in the parietal cortex, a representative non-limbic structure. In contrast, the phosphorylation level of synapsin I at ERK1/2-dependent phospho-site 4/5 was profoundly decreased, the extent of which was much larger in the hippocampus than in the parietal cortex. In addition, phosphorylation at other ERK1/2-independent phospho-sites in synapsin I also showed an even larger decrease. All these changes disappeared after recovery from KA-SE. These results indicate that the phosphorylation state of synapsin I is dynamically regulated by the balance between kinase and phosphatase activities. The contrasting features of robust ERK1/2 activation yet synapsin I dephosphorylation may be indicative of an irreversible pathological outcome of the epileptic state in vivo. PMID:26320550

  7. Aeolian features and processes at the Mars Pathfinder landing site

    USGS Publications Warehouse

    Greeley, Ronald; Kraft, Michael; Sullivan, Robert; Wilson, Gregory; Bridges, Nathan; Herkenhoff, Ken; Kuzmin, Ruslan O.; Malin, Michael; Ward, Wes

    1999-01-01

    The Mars Pathfinder landing site contains abundant features attributed to aeolian, or wind, processes. These include wind tails, drift deposits, duneforms of various types, ripplelike features, and ventifacts (the first clearly seen on Mars). Many of these features are consistant with formation involving sand-size particles. Although some features, such as dunes, could develop from saltating sand-size aggregates of finer grains, the discovery of ventifact flutes cut in rocks strongly suggests that at least some of the grains are crystalline, rather than aggregates. Excluding the ventifacts, the orientations of the wind-related features correlate well with the orientations of bright wind steaks seen on Viking Orbiter images in the general area. They also correlate with wind direction predictions from the NASA-Ames General Circulation Model (GCM) which show that the strongest winds in the area occur in the northern hemisphere winter and are directed toward 209°. Copyright 1999 by the American Geophysical Union.

  8. Aeolin Features and Processes at the Mars Pathfinder Landing Site

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Kraft, Michael; Sullivan, Robert; Wilson, Gregory; Bridges, Nathan; Herkenhoff, Ken; Kuzmin, Ruslan; Malin, Michael; Ward, Wes

    1999-01-01

    The Mars Pathfinder landing site contains abundant features attributed to aeolian, or wind, processes. These include wind tails, drift deposits, duneforms of various types, ripplelike features, and ventifacts (the first clearly seen on Mars). Many of these features are consistant with formation involving sand-size particles. Although some features, such as dunes, could develop from saltating sand-size aggregates of finer grains, the discovery of ventifact flutes cut in rocks strongly suggests that at least some of the grains are crystalline, rather than aggregates. Excluding the ventifacts, the orientations of the wind-related features correlate well with the orientations of bright wind steaks seen on Viking Orbiter images in the general area. They also correlate with wind direction predictions from the NASA-Ames General Circulation Model (GCM) which show that the strongest winds in the area occur in the northern hemisphere winter and are directed toward 209 degrees.

  9. Salt site performance assessment activities

    SciTech Connect

    Kircher, J.F.; Gupta, S.K.

    1983-01-01

    During this year the first selection of the tools (codes) for performance assessments of potential salt sites have been tentatively selected and documented; the emphasis has shifted from code development to applications. During this period prior to detailed characterization of a salt site, the focus is on bounding calculations, sensitivity and with the data available. The development and application of improved methods for sensitivity and uncertainty analysis is a focus for the coming years activities and the subject of a following paper in these proceedings. Although the assessments to date are preliminary and based on admittedly scant data, the results indicate that suitable salt sites can be identified and repository subsystems designed which will meet the established criteria for protecting the health and safety of the public. 36 references, 5 figures, 2 tables.

  10. Site-specific features influence sediment stability of intertidal flats

    NASA Astrophysics Data System (ADS)

    Defew, Emma C.; Tolhurst, Trevor J.; Paterson, David M.

    The factors that influence the sediment stability and the transport of estuarine mudflats are not yet fully understood but knowledge of them is essential in coastal engineering applications and pollution ecology studies. The suggestion that variation in predictive models of sediment stability might be due to site-specific characteristics is investigated using data from four estuarine mudflats (Eden Estuary, Scotland, the Biezelingsche Ham, Zandkreek, and Molenplaat mudflats in The Netherlands). These estuaries differ in their environmental conditions, macrofaunal species composition and local features (e.g. Enteromorpha mats, migratory biofilms). Stable and unstable sediments were compared, and mean chlorophyll-a concentrations and granulometry of the sediments were significantly different between the two groups. Step-wise multiple linear regressions were applied to the sediment stability data of all sites to establish the influences on erosion threshold of microphytobenthic biomass, water content, granulometry, organic carbon content and the abundance of dominant macrofaunal species. The stability of each site was influenced by different factors. Sediment stability of the Eden Estuary was affected by the Enteromorpha bloom; Biezelingsche Ham was influenced by the highly migratory nature of the diatom biofilms and the abundance of Corophium volutator; the polychaete worm Arenicola marina had a net negative effect on sediment stability of the Zandkreek; and the Molenplaat was influenced by microphytobenthic biomass. This research highlights the need for site-specific calibration of models and suggests that a universal proxy parameter for sediment stability is unlikely to be obtained.

  11. Structural and Dynamic Features of F-recruitment Site Driven Substrate Phosphorylation by ERK2

    PubMed Central

    Piserchio, Andrea; Ramakrishan, Venkatesh; Wang, Hsin; Kaoud, Tamer S.; Arshava, Boris; Dutta, Kaushik; Dalby, Kevin N.; Ghose, Ranajeet

    2015-01-01

    The F-recruitment site (FRS) of active ERK2 binds F-site (Phe-x-Phe-Pro) sequences found downstream of the Ser/Thr phospho-acceptor on cellular substrates. Here we apply NMR methods to analyze the interaction between active ERK2 (ppERK2), and a 13-residue F-site-bearing peptide substrate derived from its cellular target, the transcription factor Elk-1. Our results provide detailed insight into previously elusive structural and dynamic features of FRS/F-site interactions and FRS-driven substrate phosphorylation. We show that substrate F-site engagement significantly quenches slow dynamics involving the ppERK2 activation-loop and the FRS. We also demonstrate that the F-site phenylalanines make critical contacts with ppERK2, in contrast to the proline whose cis-trans isomerization has no significant effect on F-site recognition by the kinase FRS. Our results support a mechanism where phosphorylation of the disordered N-terminal phospho-acceptor is facilitated by its increased productive encounters with the ppERK2 active site due to docking of the proximal F-site at the kinase FRS. PMID:26054059

  12. A machine-learning approach for predicting palmitoylation sites from integrated sequence-based features.

    PubMed

    Li, Liqi; Luo, Qifa; Xiao, Weidong; Li, Jinhui; Zhou, Shiwen; Li, Yongsheng; Zheng, Xiaoqi; Yang, Hua

    2017-02-01

    Palmitoylation is the covalent attachment of lipids to amino acid residues in proteins. As an important form of protein posttranslational modification, it increases the hydrophobicity of proteins, which contributes to the protein transportation, organelle localization, and functions, therefore plays an important role in a variety of cell biological processes. Identification of palmitoylation sites is necessary for understanding protein-protein interaction, protein stability, and activity. Since conventional experimental techniques to determine palmitoylation sites in proteins are both labor intensive and costly, a fast and accurate computational approach to predict palmitoylation sites from protein sequences is in urgent need. In this study, a support vector machine (SVM)-based method was proposed through integrating PSI-BLAST profile, physicochemical properties, [Formula: see text]-mer amino acid compositions (AACs), and [Formula: see text]-mer pseudo AACs into the principal feature vector. A recursive feature selection scheme was subsequently implemented to single out the most discriminative features. Finally, an SVM method was implemented to predict palmitoylation sites in proteins based on the optimal features. The proposed method achieved an accuracy of 99.41% and Matthews Correlation Coefficient of 0.9773 for a benchmark dataset. The result indicates the efficiency and accuracy of our method in prediction of palmitoylation sites based on protein sequences.

  13. Coevolution of active vision and feature selection.

    PubMed

    Floreano, Dario; Kato, Toshifumi; Marocco, Davide; Sauser, Eric

    2004-03-01

    We show that complex visual tasks, such as position- and size-invariant shape recognition and navigation in the environment, can be tackled with simple architectures generated by a coevolutionary process of active vision and feature selection. Behavioral machines equipped with primitive vision systems and direct pathways between visual and motor neurons are evolved while they freely interact with their environments. We describe the application of this methodology in three sets of experiments, namely, shape discrimination, car driving, and robot navigation. We show that these systems develop sensitivity to a number of oriented, retinotopic, visual-feature-oriented edges, corners, height, and a behavioral repertoire to locate, bring, and keep these features in sensitive regions of the vision system, resembling strategies observed in simple insects.

  14. Evaluating Web Sites Featuring Primary Sources on United States History

    ERIC Educational Resources Information Center

    Congleton, Robert J.

    2005-01-01

    Most library Web sites offer lists of recommended Web sites for primary sources with only cursory summaries of the sites. While many of the resources listed are outstanding, too many are dubious in quality, often referring to dead URLs or sites containing no information on their sponsor, source of material, or other information needed to evaluate…

  15. Perceptions of Business Students' Feature Requirements in Educational Web Sites

    ERIC Educational Resources Information Center

    Hazari, Sunil; Johnson, Barbara

    2007-01-01

    There is paucity of original research that explains phenomena related to content organization and site design of educational Web sites. Educational Web sites are often used to provide Web-based instruction, which itself is a relatively recent phenomenon for business schools, and additional research is needed in this area. Educational Web sites are…

  16. Normal Modes Expose Active Sites in Enzymes

    PubMed Central

    Glantz-Gashai, Yitav; Samson, Abraham O.

    2016-01-01

    Accurate prediction of active sites is an important tool in bioinformatics. Here we present an improved structure based technique to expose active sites that is based on large changes of solvent accessibility accompanying normal mode dynamics. The technique which detects EXPOsure of active SITes through normal modEs is named EXPOSITE. The technique is trained using a small 133 enzyme dataset and tested using a large 845 enzyme dataset, both with known active site residues. EXPOSITE is also tested in a benchmark protein ligand dataset (PLD) comprising 48 proteins with and without bound ligands. EXPOSITE is shown to successfully locate the active site in most instances, and is found to be more accurate than other structure-based techniques. Interestingly, in several instances, the active site does not correspond to the largest pocket. EXPOSITE is advantageous due to its high precision and paves the way for structure based prediction of active site in enzymes. PMID:28002427

  17. Incorporating distant sequence features and radial basis function networks to identify ubiquitin conjugation sites.

    PubMed

    Lee, Tzong-Yi; Chen, Shu-An; Hung, Hsin-Yi; Ou, Yu-Yen

    2011-03-09

    Ubiquitin (Ub) is a small protein that consists of 76 amino acids about 8.5 kDa. In ubiquitin conjugation, the ubiquitin is majorly conjugated on the lysine residue of protein by Ub-ligating (E3) enzymes. Three major enzymes participate in ubiquitin conjugation. They are E1, E2 and E3 which are responsible for activating, conjugating and ligating ubiquitin, respectively. Ubiquitin conjugation in eukaryotes is an important mechanism of the proteasome-mediated degradation of a protein and regulating the activity of transcription factors. Motivated by the importance of ubiquitin conjugation in biological processes, this investigation develops a method, UbSite, which uses utilizes an efficient radial basis function (RBF) network to identify protein ubiquitin conjugation (ubiquitylation) sites. This work not only investigates the amino acid composition but also the structural characteristics, physicochemical properties, and evolutionary information of amino acids around ubiquitylation (Ub) sites. With reference to the pathway of ubiquitin conjugation, the substrate sites for E3 recognition, which are distant from ubiquitylation sites, are investigated. The measurement of F-score in a large window size (-20∼+20) revealed a statistically significant amino acid composition and position-specific scoring matrix (evolutionary information), which are mainly located distant from Ub sites. The distant information can be used effectively to differentiate Ub sites from non-Ub sites. As determined by five-fold cross-validation, the model that was trained using the combination of amino acid composition and evolutionary information performs best in identifying ubiquitin conjugation sites. The prediction sensitivity, specificity, and accuracy are 65.5%, 74.8%, and 74.5%, respectively. Although the amino acid sequences around the ubiquitin conjugation sites do not contain conserved motifs, the cross-validation result indicates that the integration of distant sequence features of Ub

  18. 77 FR 48550 - Technicolor Creative Services, Post Production Feature Mastering Division Including On-Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ... Employment and Training Administration Technicolor Creative Services, Post Production Feature Mastering... Feature Mastering Division, Hollywood, California (subject firm). The worker group also included on-site... related to post-production services for films. The initial investigation resulted in a...

  19. Modern erosion rates and loss of coastal features and sites, Beaufort Sea coastline, Alaska

    USGS Publications Warehouse

    Jones, Benjamin M.; Hinkel, Kenneth M.; Arp, C.D.; Eisner, Wendy R.

    2008-01-01

    This study presents modern erosion rate measurements based upon vertical aerial photography captured in 1955, 1979, and 2002 for a 100 km segment of the Beaufort Sea coastline. Annual erosion rates from 1955 to 2002 averaged 5.6 m a-1. However, mean erosion rates increased from 5.0 m a-1 in 1955-79 to 6.2 m a-1 in 1979-2002. Furthermore, from the first period to the second, erosion rates increased at 60% (598) of the 992 sites analyzed, decreased at 31% (307), and changed less than ?? 30 cm at 9% (87). Historical observations and quantitative studies over the past 175 years allowed us to place our erosion rate measurements into a longer-term context. Several of the coastal features along this stretch of coastline received Western place names during the Dease and Simpson expedition in 1837, and the majority of those features had been lost by the early 1900s as a result of coastline erosion, suggesting that erosion has been active over at least the historical record. Incorporation of historical and modern observations also allowed us to detect the loss of both cultural and historical sites and modern infrastructure. U.S. Geological Survey topographic maps reveal a number of known cultural and historical sites, as well as sites with modern infrastructure constructed as recently as the 1950s, that had disappeared by the early 2000s as a result of coastal erosion. We were also able to identify sites that are currently being threatened by an encroaching coastline. Our modern erosion rate measurements can potentially be used to predict when a historical site or modern infrastructure will be affected if such erosion rates persist. ?? The Arctic Institute of North America.

  20. Validated ligand mapping of ACE active site

    NASA Astrophysics Data System (ADS)

    Kuster, Daniel J.; Marshall, Garland R.

    2005-08-01

    Crystal structures of angiotensin-converting enzyme (ACE) complexed with three inhibitors (lisinopril, captopril, enalapril) provided experimental data for testing the validity of a prior active site model predicting the bound conformation of the inhibitors. The ACE active site model - predicted over 18 years ago using a series of potent ACE inhibitors of diverse chemical structure - was recreated using published data and commercial software. Comparison between the predicted structures of the three inhibitors bound to the active site of ACE and those determined experimentally yielded root mean square deviation (RMSD) values of 0.43-0.81 Å, among the distances defining the active site map. The bound conformations of the chemically relevant atoms were accurately deduced from the geometry of ligands, applying the assumption that the geometry of the active site groups responsible for binding and catalysis of amide hydrolysis was constrained. The mapping of bound inhibitors at the ACE active site was validated for known experimental compounds, so that the constrained conformational search methodology may be applied with confidence when no experimentally determined structure of the enzyme yet exists, but potent, diverse inhibitors are available.

  1. Improved coordinates of features in the vicinity of the Viking lander site on Mars

    NASA Astrophysics Data System (ADS)

    Davies, M. E.; Dole, S. H.

    1980-03-01

    The measurement of longitude of the Viking 1 landing site and the accuracy of the coordinates of features in the area around the landing site are discussed. The longitude must be measured photogrammatically from the small crater, Airy 0, which defines the 0 deg meridian on Mars. The computer program, GIANT, which was used to perform the analytical triangulations, and the photogrammetric computation of the longitude of the Viking 1 lander site are described. Improved coordinates of features in the vicinity of the Viking 1 lander site are presented.

  2. Improved coordinates of features in the vicinity of the Viking lander site on Mars

    NASA Technical Reports Server (NTRS)

    Davies, M. E.; Dole, S. H.

    1980-01-01

    The measurement of longitude of the Viking 1 landing site and the accuracy of the coordinates of features in the area around the landing site are discussed. The longitude must be measured photogrammatically from the small crater, Airy 0, which defines the 0 deg meridian on Mars. The computer program, GIANT, which was used to perform the analytical triangulations, and the photogrammetric computation of the longitude of the Viking 1 lander site are described. Improved coordinates of features in the vicinity of the Viking 1 lander site are presented.

  3. Functional interaction of nitrogenous organic bases with cytochrome P450: a critical assessment and update of substrate features and predicted key active-site elements steering the access, binding, and orientation of amines.

    PubMed

    Hlavica, Peter

    2006-04-01

    The widespread use of nitrogenous organic bases as environmental chemicals, food additives, and clinically important drugs necessitates precise knowledge about the molecular principles governing biotransformation of this category of substrates. In this regard, analysis of the topological background of complex formation between amines and P450s, acting as major catalysts in C- and N-oxidative attack, is of paramount importance. Thus, progress in collaborative investigations, combining physico-chemical techniques with chemical-modification as well as genetic engineering experiments, enables substantiation of hypothetical work resulting from the design of pharmacophores or homology modelling of P450s. Based on a general, CYP2D6-related construct, the majority of prospective amine-docking residues was found to cluster near the distal heme face in the six known SRSs, made up by the highly variant helices B', F and G as well as the N-terminal portion of helix C and certain beta-structures. Most of the contact sites examined show a frequency of conservation < 20%, hinting at the requirement of some degree of conformational versatility, while a limited number of amino acids exhibiting a higher level of conservation reside close to the heme core. Some key determinants may have a dual role in amine binding and/or maintenance of protein integrity. Importantly, a series of non-SRS elements are likely to be operative via long-range effects. While hydrophobic mechanisms appear to dominate orientation of the nitrogenous compounds toward the iron-oxene species, polar residues seem to foster binding events through H-bonding or salt-bridge formation. Careful uncovering of structure-function relationships in amine-enzyme association together with recently developed unsupervised machine learning approaches will be helpful in both tailoring of novel amine-type drugs and early elimination of potentially toxic or mutagenic candidates. Also, chimeragenesis might serve in the construction

  4. Formal Features of Cyberspace: Relationships between Web Page Complexity and Site Traffic.

    ERIC Educational Resources Information Center

    Bucy, Erik P.; Lang, Annie; Potter, Robert F.; Grabe, Maria Elizabeth

    1999-01-01

    Examines differences between the formal features of commercial versus noncommercial Web sites, and the relationship between Web page complexity and amount of traffic a site receives. Findings indicate that, although most pages in this stage of the Web's development remain technologically simple and noninteractive, there are significant…

  5. The Foreign Language Feature Film and Language Teaching Activities.

    ERIC Educational Resources Information Center

    Chappell, Martin

    1986-01-01

    Analysis of foreign language films, featuring consideration of film sequence, image and film analysis, and literary adaptation, is an effective teaching activity with foreign language students. An example illustrates film analysis activities in a first-year French class. (CB)

  6. Corrosion Research And Web Site Activities

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2001-01-01

    This report covers corrosion-related activities at the NASA Kennedy Space Center during the summer of 2000. The NASA Kennedy Space Center's corrosion web site, corrosion.ksc.nasa.gov, was updated with new information based on feedback over the past two years. The methodology for a two-year atmospheric exposure testing program to study the effectiveness of commercial chemicals sold for rinsing aircraft and other equipment was developed and some preliminary laboratory chemical analyses are presented.

  7. Corrosion Research and Web Site Activities

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2002-01-01

    This report covers corrosion-related activities at the NASA Kennedy Space Center during the summer of 2000. The NASA Kennedy Space Center's corrosion web site, corrosion.ksc.nasa.gov, was updated with new information based on feedback over the past two years. The methodology for a two-year atmospheric exposure testing program to study the effectiveness of commercial chemicals sold for rinsing aircraft and other equipment was developed and some preliminary laboratory chemical analyses are presented.

  8. Improved Species-Specific Lysine Acetylation Site Prediction Based on a Large Variety of Features Set

    PubMed Central

    Wuyun, Qiqige; Zheng, Wei; Zhang, Yanping; Ruan, Jishou; Hu, Gang

    2016-01-01

    Lysine acetylation is a major post-translational modification. It plays a vital role in numerous essential biological processes, such as gene expression and metabolism, and is related to some human diseases. To fully understand the regulatory mechanism of acetylation, identification of acetylation sites is first and most important. However, experimental identification of protein acetylation sites is often time consuming and expensive. Therefore, the alternative computational methods are necessary. Here, we developed a novel tool, KA-predictor, to predict species-specific lysine acetylation sites based on support vector machine (SVM) classifier. We incorporated different types of features and employed an efficient feature selection on each type to form the final optimal feature set for model learning. And our predictor was highly competitive for the majority of species when compared with other methods. Feature contribution analysis indicated that HSE features, which were firstly introduced for lysine acetylation prediction, significantly improved the predictive performance. Particularly, we constructed a high-accurate structure dataset of H.sapiens from PDB to analyze the structural properties around lysine acetylation sites. Our datasets and a user-friendly local tool of KA-predictor can be freely available at http://sourceforge.net/p/ka-predictor. PMID:27183223

  9. 47 CFR 79.109 - Activating accessibility features.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ACCESSIBILITY OF VIDEO PROGRAMMING Apparatus § 79.109 Activating accessibility features. (a) Requirements... video programming transmitted in digital format simultaneously with sound, including apparatus designed to receive or display video programming transmitted in digital format using Internet protocol,...

  10. Extract the Relational Information of Static Features and Motion Features for Human Activities Recognition in Videos

    PubMed Central

    2016-01-01

    Both static features and motion features have shown promising performance in human activities recognition task. However, the information included in these features is insufficient for complex human activities. In this paper, we propose extracting relational information of static features and motion features for human activities recognition. The videos are represented by a classical Bag-of-Word (BoW) model which is useful in many works. To get a compact and discriminative codebook with small dimension, we employ the divisive algorithm based on KL-divergence to reconstruct the codebook. After that, to further capture strong relational information, we construct a bipartite graph to model the relationship between words of different feature set. Then we use a k-way partition to create a new codebook in which similar words are getting together. With this new codebook, videos can be represented by a new BoW vector with strong relational information. Moreover, we propose a method to compute new clusters from the divisive algorithm's projective function. We test our work on the several datasets and obtain very promising results. PMID:27656199

  11. Integrated metagenomics and field measurements of polygon features at the NGEE-Arctic Barrow site

    NASA Astrophysics Data System (ADS)

    Tas, N.; Wu, Y.; Smith, L. J.; Ulrich, C.; Kneafsey, T. J.; Torn, M. S.; Hubbard, S. S.; Wullschleger, S. D.; Jansson, J.

    2013-12-01

    Arctic soils contain an estimated 12-42% of terrestrial carbon, most of which is sequestered in permafrost. High latitudes have experienced the greatest regional warming in recent decades and observations suggest that permafrost degradation is now commonly observed in the region. With increasing global temperatures, permafrost soils are becoming a potential source of greenhouse gas (GHG) emissions. Because of widespread permafrost thaw much of the soil organic matter may be available for rapid mineralization by microorganisms in the soil. Yet little is known about the vulnerability of permafrost and the potential response of soil microorganisms to availability of new carbon sources. On the Alaskan North Slope the collapse and rise of soil due to formation of ice wedges and permafrost thaw create distinct features called polygons. As part of the U.S. Department of Energy (DOE) Next Generation Ecosystem Experiment (NGEE) in the Arctic, we aimed to determine the distribution of microbial populations across a range of polygon features and to correlate the microbial data to GHG flux data. To determine the microbial community distribution and metabolic potential, we collected seasonally thawed active layer soil samples along two polygon transects (Site 0 and AB), including high-centered, transitional and low-centered polygons. Illumina HiSeq technology was used to sequence 16SrRNA genes and metagenomes from these active layer soils. The sequence data was correlated to GHG flux measurements and to environmental data from the site, including geophysical and geochemical soil characteristics. Both the microbial communities and the flux measurements varied along the polygon transect. Each polygon had a distinct microbial community structure; however, these microbial communities shared many metabolic capabilities. For example, many genes involved in degradation of chitin could be found all three polygons. Functional genes involved in methanogenesis and CH4-flux measurements

  12. Terrestrial Analogs to Wind-Related Features at the Viking and Pathfinder Landing Sites on Mars

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Bridges, Nathan T.; Kuzmin, Ruslan O.; Laity, Julie E.

    2002-01-01

    Features in the Mojave Desert and Iceland provide insight into the characteristics and origin of Martian wind-related landforms seen by the Viking and Pathfinder landers. The terrestrial sites were chosen because they exhibit diverse wind features that are generally well understood. These features have morphologies comparable to those on Mars and include origins by deposition and erosion, with erosional processes modifying both soils and rocks. Duneforms and drifts are the most common depositional features seen at the Martian landing sites and indicate supplies of sand-sized particles blown by generally unidirectional winds. Erosional features include lag deposits, moat-like depressions around some rocks, and exhumed soil horizons. They indicate that wind can deflate at least some sediments and that this process is particularly effective where the wind interacts with rocks. The formation of ripples and wind tails involves a combination of depositional and erosional processes. Rock erosional features, or ventifacts, are recognized by their overall shapes, erosional flutes, and characteristic surface textures resulting from abrasion by windblown particles. The physics of saltation requires that particles in ripples and duneforms are predominantly sand-sized (60-2000 microns). The orientations of duneforms, wind tails, moats, and ventifacts are correlated with surface winds above particle threshold. Such winds are influenced by local topography and are correlated with winds at higher altitudes predicted by atmospheric models.

  13. Active transportation safety features around schools in Canada.

    PubMed

    Pinkerton, Bryn; Rosu, Andrei; Janssen, Ian; Pickett, William

    2013-10-31

    The purpose of this study was to describe the presence and quality of active transportation safety features in Canadian school environments that relate to pedestrian and bicycle safety. Variations in these features and associated traffic concerns as perceived by school administrators were examined by geographic status and school type. The study was based on schools that participated in 2009/2010 Health Behaviour in School-aged Children (HBSC) survey. ArcGIS software version 10 and Google Earth were used to assess the presence and quality of ten different active transportation safety features. Findings suggest that there are crosswalks and good sidewalk coverage in the environments surrounding most Canadian schools, but a dearth of bicycle lanes and other traffic calming measures (e.g., speed bumps, traffic chokers). Significant urban/rural inequities exist with a greater prevalence of sidewalk coverage, crosswalks, traffic medians, and speed bumps in urban areas. With the exception of bicycle lanes, the active transportation safety features that were present were generally rated as high quality. Traffic was more of a concern to administrators in urban areas. This study provides novel information about active transportation safety features in Canadian school environments. This information could help guide public health efforts aimed at increasing active transportation levels while simultaneously decreasing active transportation injuries.

  14. Active Transportation Safety Features around Schools in Canada

    PubMed Central

    Pinkerton, Bryn; Rosu, Andrei; Janssen, Ian; Pickett, William

    2013-01-01

    The purpose of this study was to describe the presence and quality of active transportation safety features in Canadian school environments that relate to pedestrian and bicycle safety. Variations in these features and associated traffic concerns as perceived by school administrators were examined by geographic status and school type. The study was based on schools that participated in 2009/2010 Health Behaviour in School-aged Children (HBSC) survey. ArcGIS software version 10 and Google Earth were used to assess the presence and quality of ten different active transportation safety features. Findings suggest that there are crosswalks and good sidewalk coverage in the environments surrounding most Canadian schools, but a dearth of bicycle lanes and other traffic calming measures (e.g., speed bumps, traffic chokers). Significant urban/rural inequities exist with a greater prevalence of sidewalk coverage, crosswalks, traffic medians, and speed bumps in urban areas. With the exception of bicycle lanes, the active transportation safety features that were present were generally rated as high quality. Traffic was more of a concern to administrators in urban areas. This study provides novel information about active transportation safety features in Canadian school environments. This information could help guide public health efforts aimed at increasing active transportation levels while simultaneously decreasing active transportation injuries. PMID:24185844

  15. PROSPER: An Integrated Feature-Based Tool for Predicting Protease Substrate Cleavage Sites

    PubMed Central

    Perry, Andrew J.; Akutsu, Tatsuya; Webb, Geoffrey I.; Whisstock, James C.; Pike, Robert N.

    2012-01-01

    The ability to catalytically cleave protein substrates after synthesis is fundamental for all forms of life. Accordingly, site-specific proteolysis is one of the most important post-translational modifications. The key to understanding the physiological role of a protease is to identify its natural substrate(s). Knowledge of the substrate specificity of a protease can dramatically improve our ability to predict its target protein substrates, but this information must be utilized in an effective manner in order to efficiently identify protein substrates by in silico approaches. To address this problem, we present PROSPER, an integrated feature-based server for in silico identification of protease substrates and their cleavage sites for twenty-four different proteases. PROSPER utilizes established specificity information for these proteases (derived from the MEROPS database) with a machine learning approach to predict protease cleavage sites by using different, but complementary sequence and structure characteristics. Features used by PROSPER include local amino acid sequence profile, predicted secondary structure, solvent accessibility and predicted native disorder. Thus, for proteases with known amino acid specificity, PROSPER provides a convenient, pre-prepared tool for use in identifying protein substrates for the enzymes. Systematic prediction analysis for the twenty-four proteases thus far included in the database revealed that the features we have included in the tool strongly improve performance in terms of cleavage site prediction, as evidenced by their contribution to performance improvement in terms of identifying known cleavage sites in substrates for these enzymes. In comparison with two state-of-the-art prediction tools, PoPS and SitePrediction, PROSPER achieves greater accuracy and coverage. To our knowledge, PROSPER is the first comprehensive server capable of predicting cleavage sites of multiple proteases within a single substrate sequence using

  16. Active Sites Environmental Monitoring Program: Program plan

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  17. Building a sense of virtual community: the role of the features of social networking sites.

    PubMed

    Chen, Chi-Wen; Lin, Chiun-Sin

    2014-07-01

    In recent years, social networking sites have received increased attention because of the potential of this medium to transform business by building virtual communities. However, theoretical and empirical studies investigating how specific features of social networking sites contribute to building a sense of virtual community (SOVC)-an important dimension of a successful virtual community-are rare. Furthermore, SOVC scales have been developed, and research on this issue has been called for, but few studies have heeded this call. On the basis of prior literature, this study proposes that perceptions of the three most salient features of social networking sites-system quality (SQ), information quality (IQ), and social information exchange (SIE)-play a key role in fostering SOVC. In particular, SQ is proposed to increase IQ and SIE, and SIE is proposed to enhance IQ, both of which thereafter build SOVC. The research model was examined in the context of Facebook, one of the most popular social networking sites in the world. We adopted Blanchard's scales to measure SOVC. Data gathered using a Web-based questionnaire, and analyzed with partial least squares, were utilized to test the model. The results demonstrate that SIE, SQ, and IQ are the factors that form SOVC. The findings also suggest that SQ plays a fundamental role in supporting SIE and IQ in social networking sites. Implications for theory, practice, and future research directions are discussed.

  18. [Structural regularities in activated cleavage sites of thrombin receptors].

    PubMed

    Mikhaĭlik, I V; Verevka, S V

    1999-01-01

    Comparison of thrombin receptors activation splitting sites sequences testifies to their similarity both in activation splitting sites of protein precursors and protein proteinase inhibitors reactive sites. In all these sites corresponded to effectory sites P2'-positions are placed by hydrophobic amino-acids only. The regularity defined conforms with previous thesis about the role of effectory S2'-site in regulation of the processes mediated by serine proteinases.

  19. Individual variation in nest size and nest site features of the Bornean orangutans (Pongo pygmaeus).

    PubMed

    Rayadin, Yaya; Saitoh, Takashi

    2009-05-01

    Nest construction is a daily habit of independent orangutans for sleeping or resting. Data on their nests have been used in various ecological studies (e.g., density estimation, ranging behavior, evolution of material culture) because they are the most observable field signs. We investigated nest size and nest site features of Bornean orangutans in the wild during 10 months' fieldwork at three sites in East Kalimantan, Indonesia: Kutai National Park, Birawa, and Meratus. To examine individual variation, we followed 31 individual orangutans and recorded the 92 nests they made for nest size (diameter) and nest site features (height of nest above ground, tree species used for the nest site, the diameter and height of the tree, whether the nest was new or reused, and nest location within the tree). Analyses taking age-sex classes of the focal individuals into consideration showed significant age-sex differences in nest size and location, but not in nest height or nest tree features (diameter, height of tree, and height of lowest branch). Mature orangutans (adult females, unflanged and flanged males) made larger nests than immatures (juveniles and adolescents). Flanged male orangutans with larger nests used stable locations for nesting sites and reused old nests more frequently than immatures. The overall proportion of nests in open (exposed) locations was higher than in closed (sheltered) locations. Flanged males and immatures frequently made open nests, whereas adult females with an infant preferred closed locations. The good correspondence between nest size and age-sex classes indicates that nest size variation may reflect body size and therefore age-sex variation in the population.

  20. Active sites in char gasification: Final technical report

    SciTech Connect

    Wojtowicz, M.; Lilly, W.D.; Perkins, M.T.; Hradil, G.; Calo, J.M.; Suuberg, E.M.

    1987-09-01

    Among the key variables in the design of gasifiers and combustors is the reactivity of the chars which must be gasified or combusted. Significant loss of unburned char is unacceptable in virtually any process; the provision of sufficient residence time for complete conversion is essential. A very wide range of reactivities are observed, depending upon the nature of the char in a process. The current work focuses on furthering the understanding of gasification reactivities of chars. It has been well established that the reactivity of char to gasification generally depends upon three principal factors: (1) the concentration of ''active sites'' in the char; (2) mass transfer within the char; and (3) the type and concentration of catalytic impurities in the char. The present study primarily addresses the first factor. The subject of this research is the origin, nature, and fate of active sites in chars derived from parent hydrocarbons with coal-like structure. The nature and number of the active sites and their reactivity towards oxygen are examined in ''model'' chars derived from phenol-formaldehyde type resins. How the active sites are lost by the process of thermal annealing during heat treatment of chars are studied, and actual rate for the annealing process is derived. Since intrinsic char reactivities are of primary interest in the present study, a fair amount of attention was given to the model char synthesis and handling so that the effect of catalytic impurities and oxygen-containing functional groups in the chemical structure of the material were minimized, if not completely eliminated. The project would not be considered complete without comparing characteristic features of synthetic chars with kinetic behavior exhibited by natural chars, including coal chars.

  1. Potentially disruptive hydrologic features, events and processes at the Yucca Mountain Site, Nevada

    SciTech Connect

    Hoxie, D.T.

    1995-04-01

    Yucca Mountain, Nevada, has been selected by the United States to be evaluated as a potential site for the development of a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. If the site is determined to be suitable for repository development and construction is authorized, the repository at the Yucca Mountain site is planned to be constructed in unsaturated tuff at a depth of about 250 meters below land surface and at a distance of about 250 meters above the water table. The intent of locating a repository in a thick unsaturated-zone geohydrologic setting, such as occurs at Yucca Mountain under the arid to semi-arid climatic conditions that currently prevail in the region, is to provide a natural setting for the repository system in which little ground water will be available to contact emplaced waste or to transport radioactive material from the repository to the biosphere. In principle, an unsaturated-zone repository will be vulnerable to water entry from both above and below. Consequently, a major effort within the site-characterization program at the Yucca Mountain site is concerned with identifying and evaluating those features, events, and processes, such as increased net infiltration or water-table rise, whose presence or future occurrence could introduce water into a potential repository at the site in quantities sufficient to compromise the waste-isolation capability of the repository system.

  2. The gravity of pollination: integrating at-site features into spatial analysis of contemporary pollen movement.

    PubMed

    DiLeo, Michelle F; Siu, Jenna C; Rhodes, Matthew K; López-Villalobos, Adriana; Redwine, Angela; Ksiazek, Kelly; Dyer, Rodney J

    2014-08-01

    Pollen-mediated gene flow is a major driver of spatial genetic structure in plant populations. Both individual plant characteristics and site-specific features of the landscape can modify the perceived attractiveness of plants to their pollinators and thus play an important role in shaping spatial genetic variation. Most studies of landscape-level genetic connectivity in plants have focused on the effects of interindividual distance using spatial and increasingly ecological separation, yet have not incorporated individual plant characteristics or other at-site ecological variables. Using spatially explicit simulations, we first tested the extent to which the inclusion of at-site variables influencing local pollination success improved the statistical characterization of genetic connectivity based upon examination of pollen pool genetic structure. The addition of at-site characteristics provided better models than those that only considered interindividual spatial distance (e.g. IBD). Models parameterized using conditional genetic covariance (e.g. population graphs) also outperformed those assuming panmixia. In a natural population of Cornus florida L. (Cornaceae), we showed that the addition of at-site characteristics (clumping of primary canopy opening above each maternal tree and maternal tree floral output) provided significantly better models describing gene flow than models including only between-site spatial (IBD) and ecological (isolation by resistance) variables. Overall, our results show that including interindividual and local ecological variation greatly aids in characterizing landscape-level measures of contemporary gene flow.

  3. Occurrence of neanderthal features in mandibles from the Atapuerca-SH site.

    PubMed

    Rosas, A

    2001-01-01

    Analysis of variation and distribution of evolutionary novelties is meaningful in understanding evolutionary processes. The mandible, as a morphological complex, comprises a large number of derived Neanderthal features. The present study investigates whether the features usually considered as European lineage apomorphies evolved independently; the occurrence of these features is studied in the mandibles from the Sima de los Huesos (SH) site (Atapuerca, Spain). For comparative purposes, a large sample of Neanderthal mandibles as well as older fossil Homo specimens have been used for the study. Chi-square tests were employed to test for independence. The SH mandibles present a set of features that clearly show the basic architecture of the Neanderthal mandible. A highly significant association is detected in the variation of the position of the mental foramen, the lateral prominence, and the anterior marginal tubercle, as well as in the development of retromolar space. However, a much weaker association is detected in the features of the internal aspect of the mandible, with a few exceptions. Features of the external aspect of the mandible occur chronologically earlier than those observed in the internal aspect. The hypothesis that two distinct and consecutive morphological processes have driven the emergence of the European lineage throughout the Middle Pleistocene is proposed. A first transformation affects the mandible by means of backwards displacement of the structures located at the external aspect, as well as the position of the condyle. A second process would modify the features of the internal aspect of the mandible, in which the relief of the masseteric and pterygoid fossae are affected, in association with a spatial rearrangement of the corpus and ramus. Analyzed individually, some of the considered features may be questioned as Neanderthal apomorphies (Trinkaus,1993; Franciscus and Trinkaus, 995); however, the joint occurrence of many of them suggests

  4. Learning Behavior Characterization with Multi-Feature, Hierarchical Activity Sequences

    ERIC Educational Resources Information Center

    Ye, Cheng; Segedy, James R.; Kinnebrew, John S.; Biswas, Gautam

    2015-01-01

    This paper discusses Multi-Feature Hierarchical Sequential Pattern Mining, MFH-SPAM, a novel algorithm that efficiently extracts patterns from students' learning activity sequences. This algorithm extends an existing sequential pattern mining algorithm by dynamically selecting the level of specificity for hierarchically-defined features…

  5. Unconscious Semantic Activation Depends on Feature-Specific Attention Allocation

    ERIC Educational Resources Information Center

    Spruyt, Adriaan; De Houwer, Jan; Everaert, Tom; Hermans, Dirk

    2012-01-01

    We examined whether semantic activation by subliminally presented stimuli is dependent upon the extent to which participants assign attention to specific semantic stimulus features and stimulus dimensions. Participants pronounced visible target words that were preceded by briefly presented, masked prime words. Both affective and non-affective…

  6. Actively controlled multiple-sensor system for feature extraction

    NASA Astrophysics Data System (ADS)

    Daily, Michael J.; Silberberg, Teresa M.

    1991-08-01

    Typical vision systems which attempt to extract features from a visual image of the world for the purposes of object recognition and navigation are limited by the use of a single sensor and no active sensor control capability. To overcome limitations and deficiencies of rigid single sensor systems, more and more researchers are investigating actively controlled, multisensor systems. To address these problems, we have developed a self-calibrating system which uses active multiple sensor control to extract features of moving objects. A key problem in such systems is registering the images, that is, finding correspondences between images from cameras of differing focal lengths, lens characteristics, and positions and orientations. The authors first propose a technique which uses correlation of edge magnitudes for continuously calibrating pan and tilt angles of several different cameras relative to a single camera with a wide angle field of view, which encompasses the views of every other sensor. A simulation of a world of planar surfaces, visual sensors, and a robot platform used to test active control for feature extraction is then described. Motion in the field of view of at least one sensor is used to center the moving object for several sensors, which then extract object features such as color, boundary, and velocity from the appropriate sensors. Results are presented from real cameras and from the simulated world.

  7. Masked Primes Activate Feature Representations in Reading Aloud

    ERIC Educational Resources Information Center

    Mousikou, Petroula; Roon, Kevin D.; Rastle, Kathleen

    2015-01-01

    Theories of reading aloud are silent about the role of subphonemic/subsegmental representations in translating print to sound. However, there is empirical evidence suggesting that feature representations are activated in speech production and visual word recognition. In the present study, we sought to determine whether masked primes activate…

  8. Site selectivity for protein tyrosine nitration: insights from features of structure and topological network.

    PubMed

    Cheng, Shangli; Lian, Baofeng; Liang, Juan; Shi, Ting; Xie, Lu; Zhao, Yi-Lei

    2013-11-01

    Tyrosine nitration is a covalent post-translational modification, which regulates protein functions such as hindering tyrosine phosphorylation and affecting essential signal transductions in cells. Based on up-to-date proteomics data, tyrosine nitration appears to be a highly selective process since not all tyrosine residues in proteins or all proteins are nitrated in vivo. Quite a few investigations included the protein structural information from the RCSB PDB database, where near 100,000 high-quality three-dimensional structures are available. In this work, we analyzed the local protein structures and amino acid topological networks of the nitrated and non-nitrated tyrosine sites in nitrated proteins, including neighboring atomic distribution, amino acid pair (AAP) and amino acid triangle (AAT). It has been found that aromatic and aliphatic residues, particularly with large volume, aromatic, aliphatic, or acidic side chains, are disfavored for the nitration. After integrating these structural features and topological network features with traditional sequence features, the predictive model achieves a sensitivity of 63.30% and a specificity of 92.24%, resulting in a much better accuracy compared to the previous models with only protein sequence information. Our investigation implies that the site selectivity may stem from a more open, hydrophilic and high-pH chemical environment around the tyrosine residue.

  9. MYST protein acetyltransferase activity requires active site lysine autoacetylation.

    PubMed

    Yuan, Hua; Rossetto, Dorine; Mellert, Hestia; Dang, Weiwei; Srinivasan, Madhusudan; Johnson, Jamel; Hodawadekar, Santosh; Ding, Emily C; Speicher, Kaye; Abshiru, Nebiyu; Perry, Rocco; Wu, Jiang; Yang, Chao; Zheng, Y George; Speicher, David W; Thibault, Pierre; Verreault, Alain; Johnson, F Bradley; Berger, Shelley L; Sternglanz, Rolf; McMahon, Steven B; Côté, Jacques; Marmorstein, Ronen

    2012-01-04

    The MYST protein lysine acetyltransferases are evolutionarily conserved throughout eukaryotes and acetylate proteins to regulate diverse biological processes including gene regulation, DNA repair, cell-cycle regulation, stem cell homeostasis and development. Here, we demonstrate that MYST protein acetyltransferase activity requires active site lysine autoacetylation. The X-ray crystal structures of yeast Esa1 (yEsa1/KAT5) bound to a bisubstrate H4K16CoA inhibitor and human MOF (hMOF/KAT8/MYST1) reveal that they are autoacetylated at a strictly conserved lysine residue in MYST proteins (yEsa1-K262 and hMOF-K274) in the enzyme active site. The structure of hMOF also shows partial occupancy of K274 in the unacetylated form, revealing that the side chain reorients to a position that engages the catalytic glutamate residue and would block cognate protein substrate binding. Consistent with the structural findings, we present mass spectrometry data and biochemical experiments to demonstrate that this lysine autoacetylation on yEsa1, hMOF and its yeast orthologue, ySas2 (KAT8) occurs in solution and is required for acetylation and protein substrate binding in vitro. We also show that this autoacetylation occurs in vivo and is required for the cellular functions of these MYST proteins. These findings provide an avenue for the autoposttranslational regulation of MYST proteins that is distinct from other acetyltransferases but draws similarities to the phosphoregulation of protein kinases.

  10. MYST protein acetyltransferase activity requires active site lysine autoacetylation

    PubMed Central

    Yuan, Hua; Rossetto, Dorine; Mellert, Hestia; Dang, Weiwei; Srinivasan, Madhusudan; Johnson, Jamel; Hodawadekar, Santosh; Ding, Emily C; Speicher, Kaye; Abshiru, Nebiyu; Perry, Rocco; Wu, Jiang; Yang, Chao; Zheng, Y George; Speicher, David W; Thibault, Pierre; Verreault, Alain; Johnson, F Bradley; Berger, Shelley L; Sternglanz, Rolf; McMahon, Steven B; Côté, Jacques; Marmorstein, Ronen

    2012-01-01

    The MYST protein lysine acetyltransferases are evolutionarily conserved throughout eukaryotes and acetylate proteins to regulate diverse biological processes including gene regulation, DNA repair, cell-cycle regulation, stem cell homeostasis and development. Here, we demonstrate that MYST protein acetyltransferase activity requires active site lysine autoacetylation. The X-ray crystal structures of yeast Esa1 (yEsa1/KAT5) bound to a bisubstrate H4K16CoA inhibitor and human MOF (hMOF/KAT8/MYST1) reveal that they are autoacetylated at a strictly conserved lysine residue in MYST proteins (yEsa1-K262 and hMOF-K274) in the enzyme active site. The structure of hMOF also shows partial occupancy of K274 in the unacetylated form, revealing that the side chain reorients to a position that engages the catalytic glutamate residue and would block cognate protein substrate binding. Consistent with the structural findings, we present mass spectrometry data and biochemical experiments to demonstrate that this lysine autoacetylation on yEsa1, hMOF and its yeast orthologue, ySas2 (KAT8) occurs in solution and is required for acetylation and protein substrate binding in vitro. We also show that this autoacetylation occurs in vivo and is required for the cellular functions of these MYST proteins. These findings provide an avenue for the autoposttranslational regulation of MYST proteins that is distinct from other acetyltransferases but draws similarities to the phosphoregulation of protein kinases. PMID:22020126

  11. Application of musical timbre discrimination features to active sonar classification

    NASA Astrophysics Data System (ADS)

    Young, Victor W.; Hines, Paul C.; Pecknold, Sean

    2005-04-01

    In musical acoustics significant effort has been devoted to uncovering the physical basis of timbre perception. Most investigations into timbre rely on multidimensional scaling (MDS), in which different musical sounds are arranged as points in multidimensional space. The Euclidean distance between points corresponds to the perceptual distance between sounds and the multidimensional axes are linked to measurable properties of the sounds. MDS has identified numerous temporal and spectral features believed to be important to timbre perception. There is reason to believe that some of these features may have wider application in the disparate field of underwater acoustics, since anecdotal evidence suggests active sonar returns from metallic objects sound different than natural clutter returns when auralized by human operators. This is particularly encouraging since attempts to develop robust automatic classifiers capable of target-clutter discrimination over a wide range of operational conditions have met with limited success. Spectral features relevant to target-clutter discrimination are believed to include click-pitch and envelope irregularity; relevant temporal features are believed to include duration, sub-band attack/decay time, and time separation pitch. Preliminary results from an investigation into the role of these timbre features in target-clutter discrimination will be presented. [Work supported by NSERC and GDC.

  12. Two primes priming: does feature integration occur before response activation?

    PubMed

    Grainger, Julianne E; Scharnowski, Frank; Schmidt, Thomas; Herzog, Michael H

    2013-07-17

    Responses to a target can be sped up or slowed down by a congruent or incongruent prime, respectively. Even though presentations are rapid, the prime and the target are thought to activate motor responses in strict sequence, with prime activation preceding target activation. In feature fusion, the opposite seems to be the case. For example, a vernier offset to the left is immediately followed by a vernier offset to the right at the same location. The two verniers are not perceived as two elements in sequence but as a single, aligned vernier. Here, we ask the question as to how features are integrated: before or after motor activation? We presented two vernier primes with opposite offset directions preceding a single vernier target. No priming effect occurred when the vernier primes were presented at the same location, indicating that verniers integrate before motor activation. There was also no priming effect when the primes were presented simultaneously at different locations, indicating that there is an integration stage different from the perceptual fusion stage. When the second prime is delayed, it determines priming, even for very long delays. To explain these long integration times, we argue that there is a buffer preceding motor activation.

  13. Enriched MORB in the Northeastern Pacific, Petrological and Geochemical Features of igneous Basement at Site 1224, ODP Leg200

    NASA Astrophysics Data System (ADS)

    Haraguchi, S.; Ishii, T.

    2004-12-01

    result from a magma generation environment that was different from other units. The parent mantle of Unit 2 basalt was probably of a different, depleted composition compared to Units 1 and 3. Perhaps the most interesting result from this site is isotope characterization. The Sr and Nd isotope ratios are more enriched than typical Pacific MORB (Hickey-Vargas et al., 1995). These characteristics are attributed to mantle enrichment, and this enriched component is thought to still exist in the Pacific mantle. Many drill sites in the eastern Pacific show compositions similar to N-MORB (Sun and McDonough, 1989) (i.e. ODP Leg148; Brewer et al., 1996). Brewer et al. (1996) studied chemostratigraphy of the basement at from Holes 896A and 504B. They concluded that variations in chemostratigraohy were mainly caused by differentiation. When the Leg148 sites and Site 1224 results, are compared, Site 1224 basement shows more than twice the HFSE content than Sites 896 and 504, and the compositional changes is noted at Sites 896 and 504 differ from those of Site 1224. It is thought that the mid-ocean-ridge volcanism at Site 1224 was produced from more enriched mantle than that of the recent Eastern Pacific Rise and that these activities were associated with different mantle sources simultaneously. Chemostratigraphic and lithologic differences between the basement units correlate to differences in physical properties between the three units. Each lithologic unit displays different P-wave velocity, bulk density, and other physical properties. Physical properties are thought to be associated with petrological features.

  14. Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features

    PubMed Central

    Cayrou, Christelle; Coulombe, Philippe; Vigneron, Alice; Stanojcic, Slavica; Ganier, Olivier; Peiffer, Isabelle; Rivals, Eric; Puy, Aurore; Laurent-Chabalier, Sabine; Desprat, Romain; Méchali, Marcel

    2011-01-01

    In metazoans, thousands of DNA replication origins (Oris) are activated at each cell cycle. Their genomic organization and their genetic nature remain elusive. Here, we characterized Oris by nascent strand (NS) purification and a genome-wide analysis in Drosophila and mouse cells. We show that in both species most CpG islands (CGI) contain Oris, although methylation is nearly absent in Drosophila, indicating that this epigenetic mark is not crucial for defining the activated origin. Initiation of DNA synthesis starts at the borders of CGI, resulting in a striking bimodal distribution of NS, suggestive of a dual initiation event. Oris contain a unique nucleotide skew around NS peaks, characterized by G/T and C/A overrepresentation at the 5′ and 3′ of Ori sites, respectively. Repeated GC-rich elements were detected, which are good predictors of Oris, suggesting that common sequence features are part of metazoan Oris. In the heterochromatic chromosome 4 of Drosophila, Oris correlated with HP1 binding sites. At the chromosome level, regions rich in Oris are early replicating, whereas Ori-poor regions are late replicating. The genome-wide analysis was coupled with a DNA combing analysis to unravel the organization of Oris. The results indicate that Oris are in a large excess, but their activation does not occur at random. They are organized in groups of site-specific but flexible origins that define replicons, where a single origin is activated in each replicon. This organization provides both site specificity and Ori firing flexibility in each replicon, allowing possible adaptation to environmental cues and cell fates. PMID:21750104

  15. First Principles Computational Study of the Active Site of Arginase

    SciTech Connect

    Ivanov, Ivaylo; Klien, Micheal

    2004-01-14

    Ab initio density functional theory (DFT) methods were used to investigate the structural features of the active site of the binuclear enzyme rat liver arginase. Special emphasis was placed on the crucial role of the second shell ligand interactions. These interactions were systematically studied by performing calculations on models of varying size. It was determined that a water molecule, and not hydroxide, is the bridging exogenous ligand. The carboxylate ligands facilitate the close approach of the Mn (II) ions by attenuating the metal-metal electrostatic repulsion. Of the two metals, MnA was shown to carry a larger positive charge. Analysis of the electronic properties of the active site revealed that orbitals involving the terminal Asp234 residue, as well as the flexible -1,1 bridging Asp232, lie at high energies, suggesting weaker coordination. This is reflected in certain structural variability present in our models and is also consistent with recent experimental findings. Finally, implications of our findings for the biological function of the enzyme are delineated.

  16. Features of the Active Evening Plasma Sheet from MMS

    NASA Astrophysics Data System (ADS)

    Moore, T. E.; Chandler, M. O.; Avanov, L. A.; Burch, J. L.; Coffey, V. N.; Ergun, R. E.; Fuselier, S. A.; Gershman, D. J.; Giles, B. L.; Lavraud, B.; MacDonald, E.; Mauk, B.; Mukai, T.; Nakamura, R.; Pollock, C. J.; Russell, C. T.; Saito, Y.; Sauvaud, J. A.; Torbert, R. B.; Yokota, S.

    2015-12-01

    The Magnetospheric Multiscale (MMS) mission, consisting of four identical plasmas and fields observatories, was launched into a 12 RE elliptical equatorial orbit in March 2015 and was in the process of being commissioned through August 2015. During commissioning, the orbit apogee rotated from near midnight through the evening toward the dusk sector and occasionally captured new observations of the plasma sheet, its boundary layers, and the magnetospheric tail lobes. On 22-23 June, an especially active plasma sheet was involved in a major geospace storm that developed a ring current with 200 nT DST. We report on the ion kinetic and flow features of this active plasma sheet, comparing them with familiar observations from earlier missions, as an exercise in validating the MMS observations and assessing their capabilities to provide higher time resolution in multi-point views of thin, fast-moving structures. The observed features include but are not limited to cold lobal wind streams in the lobes, tailward flowing auroral beams and conics, hot earthward field-aligned flows and counter-flows, fast cross-field convection of some flows toward the neutral sheet, and the hot isotropic plasma sheet proper. Relationships between these features, the ionosphere, and the reconnecting magnetotail will be explored and discussed, seeking preliminary conclusions.

  17. Mapping shallow underground features that influence site-specific agricultural production

    NASA Astrophysics Data System (ADS)

    Freeland, Robert S.; Yoder, Ronald E.; Ammons, John T.

    1998-10-01

    Modern agricultural production practices are rapidly evolving in the United States of America (USA). These new production practices present significant applications for nonintrusive subsurface imaging. One such imaging technology is GPR, and it is now being incorporated within site-specific agriculture in the detection of soil horizons, perched water (episaturation), fragipans, hydrological preferential flow paths, and soil compaction. These features traditionally have been mapped by soil scientists using intrusive measurements (e.g., soil augers, soil pits, coring tools). Rather than developing a tool for soil mapping, our studies are targeting the identification, dimensioning, and position of subsurface features that directly influence agricultural productivity. It is foreseen that this information will allow for an increase in agricultural efficiency through infield machinery automation, and it will also greatly enhance development of highly efficient crop production strategies. The field sensing methodologies that we have developed using existing geophysical technologies are highly dependent upon both the soil and site characteristics due to seasonal variations. The GPR applications presented herein were conducted primarily in a region of loess soil that extends east of the Mississippi River into western Tennessee. GPR studies were also conducted in central Tennessee on the Cumberland Plateau within a region of shallow, sandy loam soils. Additional studies were conducted on the karst area of central Kentucky. Although targeting site-specific agriculture, our results and procedures may benefit the traditional users of GPR technology. We suggest that large-scale agricultural applications of the technology would be enhanced by integrating global positioning (GPS) technology in future hardware and software products.

  18. Active Site Hydrophobicity and the Convergent Evolution of Paraoxonase Activity in Structurally Divergent Enzymes: The Case of Serum Paraoxonase 1

    PubMed Central

    2016-01-01

    Serum paraoxonase 1 (PON1) is a native lactonase capable of promiscuously hydrolyzing a broad range of substrates, including organophosphates, esters, and carbonates. Structurally, PON1 is a six-bladed β-propeller with a flexible loop (residues 70–81) covering the active site. This loop contains a functionally critical Tyr at position 71. We have performed detailed experimental and computational analyses of the role of selected Y71 variants in the active site stability and catalytic activity in order to probe the role of Y71 in PON1’s lactonase and organophosphatase activities. We demonstrate that the impact of Y71 substitutions on PON1’s lactonase activity is minimal, whereas the kcat for the paraoxonase activity is negatively perturbed by up to 100-fold, suggesting greater mutational robustness of the native activity. Additionally, while these substitutions modulate PON1’s active site shape, volume, and loop flexibility, their largest effect is in altering the solvent accessibility of the active site by expanding the active site volume, allowing additional water molecules to enter. This effect is markedly more pronounced in the organophosphatase activity than the lactonase activity. Finally, a detailed comparison of PON1 to other organophosphatases demonstrates that either a similar “gating loop” or a highly buried solvent-excluding active site is a common feature of these enzymes. We therefore posit that modulating the active site hydrophobicity is a key element in facilitating the evolution of organophosphatase activity. This provides a concrete feature that can be utilized in the rational design of next-generation organophosphate hydrolases that are capable of selecting a specific reaction from a pool of viable substrates. PMID:28026940

  19. Genome wide features, distribution and correlations of NF-Y binding sites.

    PubMed

    Zambelli, Federico; Pavesi, Giulio

    2016-10-18

    NF-Y is a trimeric transcription factor that binds on DNA the CCAAT-box motif. In this article we reviewed and complemented with additional bioinformatic analysis existing data on genome-wide NF-Y binding characterization in human, reaching the following main conclusions: (1) about half of NF-Y binding sites are located at promoters, about 60-80 base pairs from transcription start sites; NF-Y binding to distal genomic regions takes place at inactive chromatin loci and/or DNA repetitive elements more often than active enhancers; (2) on almost half of its binding sites, regardless of their genomic localization (promoters or distal regions), NF-Y finds on DNA more than one CCAAT-box, and most of those multiple CCAAT binding loci present precise spacing and organization of the elements composing them; (3) there exists a well defined class of transcription factors that show genome-wide co-localization with NF-Y. Some of them lack their canonical binding site in binding regions overlapping with NF-Y, hence hinting at NF-Y mediated recruitment, while others show a precise positioning on DNA of their binding sites with respect to the CCAAT box bound by NF-Y. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.

  20. Desired features of smartphone applications promoting physical activity.

    PubMed

    Rabin, Carolyn; Bock, Beth

    2011-12-01

    Approximately one-third of adults in the United States are physically inactive. This is a significant public health concern as physical activity (PA) can influence the risk of cardiovascular disease, diabetes, and certain forms of cancer. To minimize these health risks, effective PA interventions must be developed and disseminated to the vast number of individuals who remain sedentary. Smartphone technology presents an exciting opportunity for delivering PA interventions remotely. Although a number of PA applications are currently available for smartphones, these "apps" are not based on established theories of health behavior change and most do not include evidence-based features (e.g., reinforcement and goal setting). Our aim was to collect formative data to develop a smartphone PA app that is empirically and theoretically-based and incorporates user preferences. We recruited 15 sedentary adults to test three currently available PA smartphone apps and provide qualitative and quantitative feedback. Findings indicate that users have a number of specific preferences with regard to PA app features, including that apps provide automatic tracking of PA (e.g., steps taken and calories burned), track progress toward PA goals, and integrate a music feature. Participants also preferred that PA apps be flexible enough to be used with several types of PA, and have well-documented features and user-friendly interfaces (e.g., a one-click main page). When queried by the researcher, most participants endorsed including goal-setting and problem-solving features. These findings provide a blue print for developing a smartphone PA app that incorporates evidence-based components and user preferences.

  1. An evaluation of applicability of seismic refraction method in identifying shallow archaeological features A case study at archaeological site

    NASA Astrophysics Data System (ADS)

    Jahangardi, Morteza; Hafezi Moghaddas, Naser; Keivan Hosseini, Sayyed; Garazhian, Omran

    2015-04-01

    We applied the seismic refraction method at archaeological site, Tepe Damghani located in Sabzevar, NE of Iran, in order to determine the structures of archaeological interests. This pre-historical site has special conditions with respect to geographical location and geomorphological setting, so it is an urban archaeological site, and in recent years it has been used as an agricultural field. In spring and summer of 2012, the third season of archaeological excavation was carried out. Test trenches of excavations in this site revealed that cultural layers were often disturbed adversely due to human activities such as farming and road construction in recent years. Conditions of archaeological cultural layers in southern and eastern parts of Tepe are slightly better, for instance, in test trench 3×3 m²1S03, third test trench excavated in the southern part of Tepe, an adobe in situ architectural structure was discovered that likely belongs to cultural features of a complex with 5 graves. After conclusion of the third season of archaeological excavation, all of the test trenches were filled with the same soil of excavated test trenches. Seismic refraction method was applied with12 channels of P geophones in three lines with a geophone interval of 0.5 meter and a 1.5 meter distance between profiles on test trench 1S03. The goal of this operation was evaluation of applicability of seismic method in identification of archaeological features, especially adobe wall structures. Processing of seismic data was done with the seismic software, SiesImager. Results were presented in the form of seismic section for every profile, so that identification of adobe wall structures was achieved hardly. This could be due to that adobe wall had been built with the same materials of the natural surrounding earth. Thus, there is a low contrast and it has an inappropriate effect on seismic processing and identifying of archaeological features. Hence the result could be that application of

  2. Evolutionarily distinct bacteriophage endolysins featuring conserved peptidoglycan cleavage sites protect mice from MRSA infection

    PubMed Central

    Schmelcher, Mathias; Shen, Yang; Nelson, Daniel C.; Eugster, Marcel R.; Eichenseher, Fritz; Hanke, Daniela C.; Loessner, Martin J.; Dong, Shengli; Pritchard, David G.; Lee, Jean C.; Becker, Stephen C.; Foster-Frey, Juli; Donovan, David M.

    2015-01-01

    Objectives In the light of increasing drug resistance in Staphylococcus aureus, bacteriophage endolysins [peptidoglycan hydrolases (PGHs)] have been suggested as promising antimicrobial agents. The aim of this study was to determine the antimicrobial activity of nine enzymes representing unique homology groups within a diverse class of staphylococcal PGHs. Methods PGHs were recombinantly expressed, purified and tested for staphylolytic activity in multiple in vitro assays (zymogram, turbidity reduction assay and plate lysis) and against a comprehensive set of strains (S. aureus and CoNS). PGH cut sites in the staphylococcal peptidoglycan were determined by biochemical assays (Park–Johnson and Ghuysen procedures) and MS analysis. The enzymes were tested for their ability to eradicate static S. aureus biofilms and compared for their efficacy against systemic MRSA infection in a mouse model. Results Despite similar modular architectures and unexpectedly conserved cleavage sites in the peptidoglycan (conferred by evolutionarily divergent catalytic domains), the enzymes displayed varying degrees of in vitro lytic activity against numerous staphylococcal strains, including cell surface mutants and drug-resistant strains, and proved effective against static biofilms. In a mouse model of systemic MRSA infection, six PGHs provided 100% protection from death, with animals being free of clinical signs at the end of the experiment. Conclusions Our results corroborate the high potential of PGHs for treatment of S. aureus infections and reveal unique antimicrobial and biochemical properties of the different enzymes, suggesting a high diversity of potential applications despite highly conserved peptidoglycan target sites. PMID:25630640

  3. Age mediation of frontoparietal activation during visual feature search.

    PubMed

    Madden, David J; Parks, Emily L; Davis, Simon W; Diaz, Michele T; Potter, Guy G; Chou, Ying-hui; Chen, Nan-kuei; Cabeza, Roberto

    2014-11-15

    Activation of frontal and parietal brain regions is associated with attentional control during visual search. We used fMRI to characterize age-related differences in frontoparietal activation in a highly efficient feature search task, detection of a shape singleton. On half of the trials, a salient distractor (a color singleton) was present in the display. The hypothesis was that frontoparietal activation mediated the relation between age and attentional capture by the salient distractor. Participants were healthy, community-dwelling individuals, 21 younger adults (19-29 years of age) and 21 older adults (60-87 years of age). Top-down attention, in the form of target predictability, was associated with an improvement in search performance that was comparable for younger and older adults. The increase in search reaction time (RT) associated with the salient distractor (attentional capture), standardized to correct for generalized age-related slowing, was greater for older adults than for younger adults. On trials with a color singleton distractor, search RT increased as a function of increasing activation in frontal regions, for both age groups combined, suggesting increased task difficulty. Mediational analyses disconfirmed the hypothesized model, in which frontal activation mediated the age-related increase in attentional capture, but supported an alternative model in which age was a mediator of the relation between frontal activation and capture.

  4. Suggestive value of predilection site and imaging features of pediatric brainstem ganglioglioma including a case report.

    PubMed

    Anqi, X; Zhenlin, L; Xin, H; Chao, Y

    2015-02-01

    Brainstem ganglioglioma is rarely reported. Due to its low incidence and atypical site, a brainstem ganglioglioma could easily be misdiagnosed as occurs with other pathological neoplasms radiologically. Here, we report an 8-year-old girl with a brainstem tumor confirmed as a ganglioglioma based on postoperative pathology results. We suggest that when a tumor located in the lower brainstem with benign radiological characteristics occurs in a child with a long-term history, the possibility of brainstem ganglioglioma should be considered in the preoperative diagnosis in addition to other low-grade neoplasms. Early stage diagnosis of brainstem ganglioglioma based on the clinical and imaging features is valuable for clinicians in order to perform effective treatment and achieve a good prognosis.

  5. Physiological and genomic features of highly alkaliphilic hydrogen-utilizing Betaproteobacteria from a continental serpentinizing site

    PubMed Central

    Suzuki, Shino; Kuenen, J. Gijs; Schipper, Kira; van der Velde, Suzanne; Ishii, Shun’ichi; Wu, Angela; Sorokin, Dimitry Y.; Tenney, Aaron; Meng, XianYing; Morrill, Penny L.; Kamagata, Yoichi; Muyzer, Gerard; Nealson, Kenneth H.

    2014-01-01

    Serpentinization, or the aqueous alteration of ultramafic rocks, results in challenging environments for life in continental sites due to the combination of extremely high pH, low salinity and lack of obvious electron acceptors and carbon sources. Nevertheless, certain Betaproteobacteria have been frequently observed in such environments. Here we describe physiological and genomic features of three related Betaproteobacterial strains isolated from highly alkaline (pH 11.6) serpentinizing springs at The Cedars, California. All three strains are obligate alkaliphiles with an optimum for growth at pH 11 and are capable of autotrophic growth with hydrogen, calcium carbonate and oxygen. The three strains exhibit differences, however, regarding the utilization of organic carbon and electron acceptors. Their global distribution and physiological, genomic and transcriptomic characteristics indicate that the strains are adapted to the alkaline and calcium-rich environments represented by the terrestrial serpentinizing ecosystems. We propose placing these strains in a new genus ‘Serpentinomonas’. PMID:24845058

  6. Active shape models with optimised texture features for radiotherapy

    NASA Astrophysics Data System (ADS)

    Cheng, K.; Montgomery, D.; Yang, F.; McLaren, D. B.; McLaughlin, S.; Nailon, W. H.

    2014-03-01

    There is now considerable interest in radiation oncology on the use of shape models of anatomy to improve target delineation and assess anatomical disparity at time of radiotherapy. In this paper a texture based active shape model (ASM) is presented for automatic delineation of the gross tumor volume (GTV), containing the prostate, on computed tomography (CT) images of prostate cancer patients. The model was trained on two-dimensional (2D) contours identified by a radiation oncologist on sequential CT image slices. A three-dimensional (3D) GTV shape was constructed from these and iteratively aligned using Procrustes analysis. To train the model the shape deformation variance was learnt using the Active Shape Model (ASM) approach. In a novel development to this approach a profile feature was selected from pre-computed texture features by minimizing the Mahalanobis distance to obtain the most distinct feature for each landmark. The interior of the GTV was modelled using quantile histograms to initialize the shape model on new cases. From the archive of 42 cases of contoured CT scans, 32 cases were randomly selected for training the model and 10 cases for evaluating performance. The gold standard was defined by the radiation oncologist. The shape model achieved an overall Dice coefficient of 0.81 for all test cases. Performance was found to increase, mean Dice coefficient of 0.87, when the volume size of the new case was similar to the mean shape of the model. With further work the approach has the potential to be used in real-time delineation of target volumes and improve segmentation accuracy.

  7. The active site of ribulose-bisphosphate carboxylase/oxygenase

    SciTech Connect

    Hartman, F.C.

    1991-01-01

    The active site of ribulose-bisphosphate carboxylase/oxygenase requires interacting domains of adjacent, identical subunits. Most active-site residues are located within the loop regions of an eight-stranded {beta}/{alpha}-barrel which constitutes the larger C-terminal domain; additional key residues are located within a segment of the smaller N-terminal domain which partially covers the mouth of the barrel. Site-directed mutagenesis of the gene encoding the enzyme from Rhodospirillum rubrum has been used to delineate functions of active-site residues. 6 refs., 2 figs.

  8. DOE site performance assessment activities. Radioactive Waste Technical Support Program

    SciTech Connect

    Not Available

    1990-07-01

    Information on performance assessment capabilities and activities was collected from eight DOE sites. All eight sites either currently dispose of low-level radioactive waste (LLW) or plan to dispose of LLW in the near future. A survey questionnaire was developed and sent to key individuals involved in DOE Order 5820.2A performance assessment activities at each site. The sites surveyed included: Hanford Site (Hanford), Idaho National Engineering Laboratory (INEL), Los Alamos National Laboratory (LANL), Nevada Test Site (NTS), Oak Ridge National Laboratory (ORNL), Paducah Gaseous Diffusion Plant (Paducah), Portsmouth Gaseous Diffusion Plant (Portsmouth), and Savannah River Site (SRS). The questionnaire addressed all aspects of the performance assessment process; from waste source term to dose conversion factors. This report presents the information developed from the site questionnaire and provides a comparison of site-specific performance assessment approaches, data needs, and ongoing and planned activities. All sites are engaged in completing the radioactive waste disposal facility performance assessment required by DOE Order 5820.2A. Each site has achieved various degrees of progress and have identified a set of critical needs. Within several areas, however, the sites identified common needs and questions.

  9. Savannah River Site prioritization of transition activities

    SciTech Connect

    Finley, R.H.

    1993-11-01

    Effective management of SRS conversion from primarily a production facility to other missions (or Decontamination and Decommissioning (D&D)) requires a systematic and consistent method of prioritizing the transition activities. This report discusses the design of a prioritizing method developed to achieve systematic and consistent methods of prioritizing these activities.

  10. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    SciTech Connect

    Zull, Lawrence M.; Yeniscavich, William

    2008-01-15

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

  11. Controlled Orientation of Active Sites in a Nanostructured Multienzyme Complex

    PubMed Central

    Lim, Sung In; Yang, Byungseop; Jung, Younghan; Cha, Jaehyun; Cho, Jinhwan; Choi, Eun-Sil; Kim, Yong Hwan; Kwon, Inchan

    2016-01-01

    Multistep cascade reactions in nature maximize reaction efficiency by co-assembling related enzymes. Such organization facilitates the processing of intermediates by downstream enzymes. Previously, the studies on multienzyme nanocomplexes assembled on DNA scaffolds demonstrated that closer interenzyme distance enhances the overall reaction efficiency. However, it remains unknown how the active site orientation controlled at nanoscale can have an effect on multienzyme reaction. Here, we show that controlled alignment of active sites promotes the multienzyme reaction efficiency. By genetic incorporation of a non-natural amino acid and two compatible bioorthogonal chemistries, we conjugated mannitol dehydrogenase to formate dehydrogenase with the defined active site arrangement with the residue-level accuracy. The study revealed that the multienzyme complex with the active sites directed towards each other exhibits four-fold higher relative efficiency enhancement in the cascade reaction and produces 60% more D-mannitol than the other complex with active sites directed away from each other. PMID:28004799

  12. Improving model predictions for RNA interference activities that use support vector machine regression by combining and filtering features

    PubMed Central

    Peek, Andrew S

    2007-01-01

    Background RNA interference (RNAi) is a naturally occurring phenomenon that results in the suppression of a target RNA sequence utilizing a variety of possible methods and pathways. To dissect the factors that result in effective siRNA sequences a regression kernel Support Vector Machine (SVM) approach was used to quantitatively model RNA interference activities. Results Eight overall feature mapping methods were compared in their abilities to build SVM regression models that predict published siRNA activities. The primary factors in predictive SVM models are position specific nucleotide compositions. The secondary factors are position independent sequence motifs (N-grams) and guide strand to passenger strand sequence thermodynamics. Finally, the factors that are least contributory but are still predictive of efficacy are measures of intramolecular guide strand secondary structure and target strand secondary structure. Of these, the site of the 5' most base of the guide strand is the most informative. Conclusion The capacity of specific feature mapping methods and their ability to build predictive models of RNAi activity suggests a relative biological importance of these features. Some feature mapping methods are more informative in building predictive models and overall t-test filtering provides a method to remove some noisy features or make comparisons among datasets. Together, these features can yield predictive SVM regression models with increased predictive accuracy between predicted and observed activities both within datasets by cross validation, and between independently collected RNAi activity datasets. Feature filtering to remove features should be approached carefully in that it is possible to reduce feature set size without substantially reducing predictive models, but the features retained in the candidate models become increasingly distinct. Software to perform feature prediction and SVM training and testing on nucleic acid sequences can be found at

  13. Perspective: On the active site model in computational catalyst screening

    NASA Astrophysics Data System (ADS)

    Reuter, Karsten; Plaisance, Craig P.; Oberhofer, Harald; Andersen, Mie

    2017-01-01

    First-principles screening approaches exploiting energy trends in surface adsorption represent an unparalleled success story in recent computational catalysis research. Here we argue that our still limited understanding of the structure of active sites is one of the major bottlenecks towards an ever extended and reliable use of such computational screening for catalyst discovery. For low-index transition metal surfaces, the prevalently chosen high-symmetry (terrace and step) sites offered by the nominal bulk-truncated crystal lattice might be justified. For more complex surfaces and composite catalyst materials, computational screening studies will need to actively embrace a considerable uncertainty with respect to what truly are the active sites. By systematically exploring the space of possible active site motifs, such studies might eventually contribute towards a targeted design of optimized sites in future catalysts.

  14. Diffusional correlations among multiple active sites in a single enzyme.

    PubMed

    Echeverria, Carlos; Kapral, Raymond

    2014-04-07

    Simulations of the enzymatic dynamics of a model enzyme containing multiple substrate binding sites indicate the existence of diffusional correlations in the chemical reactivity of the active sites. A coarse-grain, particle-based, mesoscopic description of the system, comprising the enzyme, the substrate, the product and solvent, is constructed to study these effects. The reactive and non-reactive dynamics is followed using a hybrid scheme that combines molecular dynamics for the enzyme, substrate and product molecules with multiparticle collision dynamics for the solvent. It is found that the reactivity of an individual active site in the multiple-active-site enzyme is reduced substantially, and this effect is analyzed and attributed to diffusive competition for the substrate among the different active sites in the enzyme.

  15. Robotics at Savannah River site: activity report

    SciTech Connect

    Byrd, J.S.

    1984-09-01

    The objectives of the Robotics Technology Group at the Savannah River Laboratory are to employ modern industrial robots and to develop unique automation and robotic systems to enhance process operations at the Savannah River site (SRP and SRL). The incentives are to improve safety, reduce personnel radiation exposure, improve product quality and productivity, and to reduce operating costs. During the past year robotic systems have been installed to fill chemical dilution vials in a SRP laboratory at 772-F and remove radioactive waste materials in the SRL Californium Production Facility at 773-A. A robotic system to lubricate an extrusion press has been developed and demonstrated in the SRL robotics laboratory and is scheduled for installation at the 321-M fuel fabrication area. A mobile robot was employed by SRP for a radiation monitoring task at a waste tank top in H-Area. Several other robots are installed in the SRL robotics laboratories and application development programs are underway. The status of these applications is presented in this report.

  16. Weak Palindromic Consensus Sequences Are a Common Feature Found at the Integration Target Sites of Many Retroviruses

    PubMed Central

    Wu, Xiaolin; Li, Yuan; Crise, Bruce; Burgess, Shawn M.; Munroe, David J.

    2005-01-01

    Integration into the host genome is one of the hallmarks of the retroviral life cycle and is catalyzed by virus-encoded integrases. While integrase has strict sequence requirements for the viral DNA ends, target site sequences have been shown to be very diverse. We carefully examined a large number of integration target site sequences from several retroviruses, including human immunodeficiency virus type 1, simian immunodeficiency virus, murine leukemia virus, and avian sarcoma-leukosis virus, and found that a statistical palindromic consensus, centered on the virus-specific duplicated target site sequence, was a common feature at integration target sites for these retroviruses. PMID:15795304

  17. Active sites of thioredoxin reductases: why selenoproteins?

    PubMed

    Gromer, Stephan; Johansson, Linda; Bauer, Holger; Arscott, L David; Rauch, Susanne; Ballou, David P; Williams, Charles H; Schirmer, R Heiner; Arnér, Elias S J

    2003-10-28

    Selenium, an essential trace element for mammals, is incorporated into a selected class of selenoproteins as selenocysteine. All known isoenzymes of mammalian thioredoxin (Trx) reductases (TrxRs) employ selenium in the C-terminal redox center -Gly-Cys-Sec-Gly-COOH for reduction of Trx and other substrates, whereas the corresponding sequence in Drosophila melanogaster TrxR is -Ser-Cys-Cys-Ser-COOH. Surprisingly, the catalytic competence of these orthologous enzymes is similar, whereas direct Sec-to-Cys substitution of mammalian TrxR, or other selenoenzymes, yields almost inactive enzyme. TrxRs are therefore ideal for studying the biology of selenocysteine by comparative enzymology. Here we show that the serine residues flanking the C-terminal Cys residues of Drosophila TrxRs are responsible for activating the cysteines to match the catalytic efficiency of a selenocysteine-cysteine pair as in mammalian TrxR, obviating the need for selenium. This finding suggests that the occurrence of selenoenzymes, which implies that the organism is selenium-dependent, is not necessarily associated with improved enzyme efficiency. Our data suggest that the selective advantage of selenoenzymes is a broader range of substrates and a broader range of microenvironmental conditions in which enzyme activity is possible.

  18. Novel structural features of autoantibodies in murine lupus: a possible superantigen binding site?

    PubMed

    Zack, D J; Wong, A L; Weisbart, R H

    1994-12-01

    The stimulus for the production of anti-DNA autoantibodies in lupus remains unknown. Since double-stranded DNA (dsDNA) is a weak immunogen, other stimuli such as B cell superantigens or anti-idiotypic antibodies may provide an alternative mechanism for their production. The presence of regulatory determinants on autoantibodies might be revealed through their structural characterization, but they have eluded detection, perhaps because they may be three-dimensional and require closer analysis. In this report we cloned and sequenced the heavy chain variable region (VH) of a monoclonal anti-dsDNA antibody, mAb 3E10, derived from MRL/lpr mice with lupus nephritis previously shown to express an idiotype associated with nephritis in murine and human lupus. We now show that mAb 3E10 VH contains novel structural features unrelated to DNA binding which are shared only by a subset of autoantibodies expressed in murine lupus. These lupus autoantibodies can be distinguished from antibodies of non-autoimmune strains by the presence of a specific sequence at the junction of the diversity and joining genes combined with the use of variable region genes with conserved sequences in framework 1 (FR1) and FR3. The location of the novel sequences indicates the possibility of a three-dimensional solvent-exposed determinant located distant from the classical antigen binding site that could regulate their production, possibly through binding B cell superantigens or other infectious agents.

  19. DNA damage is a feature of feline injection-site sarcoma.

    PubMed

    Kang, S; Southard, T; Hume, K R

    2016-01-19

    Feline injection-site sarcoma (FISS) is commonly treated with surgery and radiation therapy. Despite aggressive therapy, FISS has a high recurrence rate. The true benefit of adjuvant chemotherapy is not known. DNA damage response mechanisms help protect against genomic instability but can also promote chemoresistance. In order to determine whether DNA damage is a feature of FISS, we evaluated tumour tissues with γH2AX immunohistochemistry. H2AX is phosphorylated to form γH2AX following DNA double strand breaks. Seventeen FISS specimens were evaluated prospectively. DNA damage ranged from 2.18 to33.7%, with a median of 16.2%. Significant differences were noted between cats (P < 0.0001). Mitotic index ranged from 0 to 57 with a median of 13 and did not correlate with γH2AX positivity (P = 0.2). Further studies are needed to determine if γH2AX expression may predict chemosensitivity and have independent value as a prognostic factor.

  20. Modeling place field activity with hierarchical slow feature analysis

    PubMed Central

    Schönfeld, Fabian; Wiskott, Laurenz

    2015-01-01

    What are the computational laws of hippocampal activity? In this paper we argue for the slowness principle as a fundamental processing paradigm behind hippocampal place cell firing. We present six different studies from the experimental literature, performed with real-life rats, that we replicated in computer simulations. Each of the chosen studies allows rodents to develop stable place fields and then examines a distinct property of the established spatial encoding: adaptation to cue relocation and removal; directional dependent firing in the linear track and open field; and morphing and scaling the environment itself. Simulations are based on a hierarchical Slow Feature Analysis (SFA) network topped by a principal component analysis (ICA) output layer. The slowness principle is shown to account for the main findings of the presented experimental studies. The SFA network generates its responses using raw visual input only, which adds to its biological plausibility but requires experiments performed in light conditions. Future iterations of the model will thus have to incorporate additional information, such as path integration and grid cell activity, in order to be able to also replicate studies that take place during darkness. PMID:26052279

  1. Near-surface gas mapping studies of salt geologic features at Weeks Island and other sites

    SciTech Connect

    Molecke, M.A.; Carney, K.R.; Autin, W.J.; Overton, E.B.

    1996-10-01

    Field sampling and rapid gas analysis techniques were used to survey near-surface soil gases for geotechnical diagnostic purposes at the Weeks Island Strategic Petroleum Reserve (SPR) site and other salt dome locations in southern Louisiana. This report presents the complete data, results and interpretations obtained during 1995. Weeks Island 1994 gas survey results are also briefly summarized; this earlier study did not find a definitive correlation between sinkhole No. 1 and soil gases. During 1995, several hundred soil gas samples were obtained and analyzed in the field by gas chromatography, for profiling low concentrations and gas anomalies at ppm to percent levels. The target gases included hydrogen, methane, ethane and ethylene. To supplement the field data, additional gas samples were collected at various site locations for laboratory analysis of target gases at ppb levels. Gases in the near-surface soil originate predominantly from the oil, from petrogenic sources within the salt, or from surface microbial activity. Surveys were conducted across two Weeks Island sinkholes, several mapped anomalous zones in the salt, and over the SPR repository site and its perimeter. Samples were also taken at other south Louisiana salt dome locations for comparative purposes. Notable results from these studies are that elevated levels of hydrogen and methane (1) were positively associated with anomalous gassy or shear zones in the salt dome(s) and (2) are also associated with suspected salt fracture (dilatant) zones over the edges of the SPR repository. Significantly elevated areas of hydrogen, methane, plus some ethane, were found over anomalous shear zones in the salt, particularly in a location over high pressure gas pockets in the salt, identified in the mine prior to SPR operations. Limited stable isotope ratio analyses, SIRA, were also conducted and determined that methane samples were of petrogenic origin, not biogenic.

  2. Habitat selection in a rocky landscape: experimentally decoupling the influence of retreat site attributes from that of landscape features.

    PubMed

    Croak, Benjamin M; Pike, David A; Webb, Jonathan K; Shine, Richard

    2012-01-01

    Organisms selecting retreat sites may evaluate not only the quality of the specific shelter, but also the proximity of that site to resources in the surrounding area. Distinguishing between habitat selection at these two spatial scales is complicated by co-variation among microhabitat factors (i.e., the attributes of individual retreat sites often correlate with their proximity to landscape features). Disentangling this co-variation may facilitate the restoration or conservation of threatened systems. To experimentally examine the role of landscape attributes in determining retreat-site quality for saxicolous ectotherms, we deployed 198 identical artificial rocks in open (sun-exposed) sites on sandstone outcrops in southeastern Australia, and recorded faunal usage of those retreat sites over the next 29 months. Several landscape-scale attributes were associated with occupancy of experimental rocks, but different features were important for different species. For example, endangered broad-headed snakes (Hoplocephalus bungaroides) preferred retreat sites close to cliff edges, flat rock spiders (Hemicloea major) preferred small outcrops, and velvet geckos (Oedura lesueurii) preferred rocks close to the cliff edge with higher-than-average sun exposure. Standardized retreat sites can provide robust experimental data on the effects of landscape-scale attributes on retreat site selection, revealing interspecific divergences among sympatric taxa that use similar habitats.

  3. Community Update on Site Activities, July 19, 2013

    EPA Pesticide Factsheets

    In an effort to engage and inform community members interested in the New Bedford Harbor Superfund Site cleanup, EPA will be issuing periodic topic-based fact sheets that will provide background information and updates about ongoing activities.

  4. Particular Features of Surgical Site Infection in Posterior Lumbar Interbody Fusion

    PubMed Central

    Kim, Jin Hak; Kim, Jin Woo; Kim, Go We

    2015-01-01

    Background Previous reports have observed differences only in infection rates between posterolateral fusion and posterior lumbar interbody fusion (PLIF). There have been no reports that describe the particular features of surgical site infection (SSI) in PLIF. In this study, we endeavor to identify the distinguishing characteristics and risk factors of SSI in PLIF. Methods Our study undertook a review of a case series of an institute. Patients who had undergone PLIF consecutively in the author's hospital were reviewed. Two proactive procedures were introduced during the study period. One was irrigation of the autolocal bone, and the other was the intradiscal space irrigation with a nozzle. Infection rate and risk factors were analyzed. For subgroup analysis, the elapsed time to a diagnosis (ETD), clinical manifestations, hematologic findings, and causative bacteria were examined in patients with SSI. Results In a total of 1,831 cases, there were 30 cases of SSI (1.6%). Long operation time was an independent risk factor (p = 0.008), and local bone irrigation was an independent protective factor (p = 0.001). Two cases of referred SSI were included in the subgroup analysis. There were 6/32 (19%) superficial incisional infections (SII), 6/32 (19%) deep incisional infections (DII), and 20/32 (62%) organ/space infections (O/SI). The difference of incidence among three groups was significant (p = 0.002).The most common bacteria encountered were methicillin-resistant Staphylococcus epidermidis followed by methicillin-resistant S. aureus in incisional infections, and no growth followed by S. epidermidis in O/SI. ETD was 8.5 ± 2.3 days in SII, 8.7 ± 2.3 days in DII and 164.5 ± 131.1 days in O/SI (p = 0.013). Conclusions The rate of SSI in PLIF was 1.6%, with the most common type being O/SI. The causative bacteria of O/SI was of lower virulence than in the incisional infection, and thus diagnosis was delayed due to its latent and insidious feature. Contamination of auto

  5. Xenoestrogenic gene expression: structural features of active polycyclic aromatic hydrocarbons.

    PubMed

    Schultz, T Wayne; Sinks, Glendon D

    2002-04-01

    Estrogenicity was assessed using the Saccharomyces cerevisiae-based Lac-Z reporter assay and was reported as the logarithm of the inverse of the 50% molar beta-galactosidase activity (log[EC50(-1)]). In an effort to quantify the relationship between molecular structure of polycyclic aromatic hydrocarbons (PAHs) and estrogenic gene expression, a series of PAHs were evaluated. With noted exceptions, the results of these studies indicate that the initial two-dimensional structural warning for estrogenicity, the superpositioning of a hydroxylated aromatic system on the phenolic A-ring of 17-beta-estradiol, can be extended to the PAHs. This two-dimensional-alignment criterion correctly identified estrogenicity of 22 of the 29 PAHs evaluated. Moreover, the estrogenic potency of these compounds was directly related to the size of the hydrophobic backbone. The seven compounds classified incorrectly by this structural feature were either dihydroxylated naphthalenes or aromatic nitrogen-heterocyclic compounds; all such compounds were false positives. Results with dihydroxylated naphthalenes reveal derivatives that were nonestrogenic when superimposed on the phenolic A-ring of 17-beta-estradiol had the second hydroxyl group in the position of the C-ring or were catechol-like in structure. Structural alerts for nitrogen-heterocyclic compounds must take into account the position of the hydroxyl group and the in-ring nitrogen atom; compounds with the hydroxyl group and nitrogen atom involved with the same ring were observed to be nonactive.

  6. Feature-based active contour model and occluding object detection.

    PubMed

    Memar, Sara; Ksantini, Riadh; Boufama, Boubakeur

    2016-04-01

    This paper presents a method for image segmentation and object detection. The proposed strategy consists of two major stages. The first one corresponds to image segmentation, which is based on the active contour model (ACM) algorithm, using an automatic selection of the best candidate features among gradient, polarity, and depth, coupled with a combination of them by the kernel support vector machine (KSVM). Although existing techniques, such as the ones based on ACM, perform well in the single-object case and non-noisy environments, these techniques fail when the scene consists of multiple occluding objects, with possibly similar colors. Thus, the second stage corresponds to the identification of salient and occluded objects based on the fuzzy C-mean algorithm (FCM). In this stage, the depth is included as another clue that allows us to estimate the cluster number and to make the clustering process more robust. In particular, complex occlusions can be handled this way, and the objects can be properly segmented and identified. Experimental results on real images and on several standard datasets have shown the success and effectiveness of the proposed method.

  7. Meteorological data for four sites at surface-disruption features in Yucca Flat, Nevada Test Site, Nye County, Nevada, 1985--1986

    SciTech Connect

    Carman, R.L.

    1994-12-01

    Surface-disruption features, or craters, resulting from underground nuclear testing at the Nevada Test Site may increase the potential for ground-water recharge in an area that would normally produce little, if any, recharge. This report presents selected meteorological data resulting from a study of two surface-disruption features during May 1985 through June 1986. The data were collected at four adjacent sites in Yucca Flat, about 56 kilometers north of Mercury, Nevada. Three sites (one in each of two craters and one at an undisturbed site at the original land surface) were instrumented to collect meteorological data for calculating bare-soil evaporation. These data include (1) long-wave radiation, (2) short-wave radiation, (3) net radiation, (4) air temperature, and (5) soil surface temperature. Meteorological data also were collected at a weather station at an undisturbed site near the study craters. Data collected at this site include (1) air temperature, (2) relative humidity, (3) wind velocity, and (4) wind direction.

  8. Meteorological data for four sites at surface-disruption features in Yucca Flat, Nevada Test Site, Nye County, Nevada, 1985-86

    USGS Publications Warehouse

    Carman, Rita L.

    1994-01-01

    Surface-disruption features, or craters, resulting from underground nuclear testing at the Nevada Test Site may increase the potential for ground-water recharge in an area that would normally produce little, if any, recharge. This report presents selected meteorological data resulting from a study of two surface-disruption features during May 1985 through June 1986. The data were collected at four adjacent sites in Yucca Flat, about 56 kilometers north of Mercury, Nevada. Three sites (one in each of two craters and one at an undisturbed site at the original land surface) were instrumented to collect meteorological data for calculating bare-soil evaporation. These data include (1) long-wave radiation, (2) short-wave radiation, (3) net radiation, (4) air temperae, and (5) soil surface temperature. Meteorological data also were collected at a weather station at an undisturbed site near the study craters. Data collected at this site include (1) air temperature, (2) relative humidity, (3) wind velocity, and (4) wind direction.

  9. Functional biomimetic models for the active site in the respiratory enzyme cytochrome c oxidase.

    PubMed

    Collman, James P; Decréau, Richard A

    2008-11-07

    A functional analog of the active site in the respiratory enzyme, cytochrome c oxidase (CcO) reproduces every feature in CcO's active site: a myoglobin-like heme (heme a3), a distal tridentate imidazole copper complex (Cu(B)), a phenol (Tyr244), and a proximal imidazole. When covalently attached to a liquid-crystalline SAM film on an Au electrode, this functional model continuously catalyzes the selective four-electron reduction of dioxygen at physiological potential and pH, under rate-limiting electron flux (as occurs in CcO).

  10. Large-scale assessment of activity landscape feature probabilities of bioactive compounds.

    PubMed

    Kayastha, Shilva; Dimova, Dilyana; Iyer, Preeti; Vogt, Martin; Bajorath, Jürgen

    2014-02-24

    Activity landscape representations integrate pairwise compound similarity and potency relationships and provide direct access to characteristic structure-activity relationship features in compound data sets. Because pairwise compound comparisons provide the foundation of activity landscape design, the assessment of specific landscape features such as activity cliffs has generally been confined to the level of compound pairs. A conditional probability-based approach has been applied herein to assign most probable activity landscape features to individual compounds. For example, for a given data set compound, it was determined if it would preferentially engage in the formation of activity cliffs or other landscape features. In a large-scale effort, we have determined conditional activity landscape feature probabilities for more than 160,000 compounds with well-defined activity annotations contained in 427 different target-based data sets. These landscape feature probabilities provide a detailed view of how different activity landscape features are distributed over currently available bioactive compounds.

  11. A Matriptase-Prostasin Reciprocal Zymogen Activation Complex with Unique Features

    PubMed Central

    Friis, Stine; Uzzun Sales, Katiuchia; Godiksen, Sine; Peters, Diane E.; Lin, Chen-Yong; Vogel, Lotte K.; Bugge, Thomas H.

    2013-01-01

    Matriptase and prostasin are part of a cell surface proteolytic pathway critical for epithelial development and homeostasis. Here we have used a reconstituted cell-based system and transgenic mice to investigate the mechanistic interrelationship between the two proteases. We show that matriptase and prostasin form a reciprocal zymogen activation complex with unique features. Prostasin serves as a critical co-factor for matriptase activation. Unexpectedly, however, prostasin-induced matriptase activation requires neither prostasin zymogen conversion nor prostasin catalytic activity. Prostasin zymogen conversion to active prostasin is dependent on matriptase but does not require matriptase zymogen conversion. Consistent with these findings, wild type prostasin, activation cleavage site-mutated prostasin, and catalytically inactive prostasin all were biologically active in vivo when overexpressed in the epidermis of transgenic mice, giving rise to a severe skin phenotype. Our finding of non-enzymatic stimulation of matriptase activation by prostasin and activation of prostasin by the matriptase zymogen provides a tentative mechanistic explanation for several hitherto unaccounted for genetic and biochemical observations regarding these two membrane-anchored serine proteases and their downstream targets. PMID:23673661

  12. Identification of putative active site residues of ACAT enzymes.

    PubMed

    Das, Akash; Davis, Matthew A; Rudel, Lawrence L

    2008-08-01

    In this report, we sought to determine the putative active site residues of ACAT enzymes. For experimental purposes, a particular region of the C-terminal end of the ACAT protein was selected as the putative active site domain due to its high degree of sequence conservation from yeast to humans. Because ACAT enzymes have an intrinsic thioesterase activity, we hypothesized that by analogy with the thioesterase domain of fatty acid synthase, the active site of ACAT enzymes may comprise a catalytic triad of ser-his-asp (S-H-D) amino acid residues. Mutagenesis studies revealed that in ACAT1, S456, H460, and D400 were essential for activity. In ACAT2, H438 was required for enzymatic activity. However, mutation of D378 destabilized the enzyme. Surprisingly, we were unable to identify any S mutations of ACAT2 that abolished catalytic activity. Moreover, ACAT2 was insensitive to serine-modifying reagents, whereas ACAT1 was not. Further studies indicated that tyrosine residues may be important for ACAT activity. Mutational analysis showed that the tyrosine residue of the highly conserved FYXDWWN motif was important for ACAT activity. Furthermore, Y518 was necessary for ACAT1 activity, whereas the analogous residue in ACAT2, Y496, was not. The available data suggest that the amino acid requirement for ACAT activity may be different for the two ACAT isozymes.

  13. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site

    PubMed Central

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-01-01

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2 domains reveal that the (HhH)2 domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2 domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2 domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2 domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide. PMID:26908655

  14. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site.

    PubMed

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-04-20

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2 domains reveal that the (HhH)2 domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2 domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2 domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2 domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide.

  15. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate.

    PubMed

    Johnson, Joseph L; Cusack, Bernadette; Davies, Matthew P; Fauq, Abdul; Rosenberry, Terrone L

    2003-05-13

    Acetylcholinesterase (AChE) contains a narrow and deep active site gorge with two sites of ligand binding, an acylation site (or A-site) at the base of the gorge, and a peripheral site (or P-site) near the gorge entrance. The P-site contributes to catalytic efficiency by transiently binding substrates on their way to the acylation site, where a short-lived acyl enzyme intermediate is produced. A conformational interaction between the A- and P-sites has recently been found to modulate ligand affinities. We now demonstrate that this interaction is of functional importance by showing that the acetylation rate constant of a substrate bound to the A-site is increased by a factor a when a second molecule of substrate binds to the P-site. This demonstration became feasible through the introduction of a new acetanilide substrate analogue of acetylcholine, 3-(acetamido)-N,N,N-trimethylanilinium (ATMA), for which a = 4. This substrate has a low acetylation rate constant and equilibrates with the catalytic site, allowing a tractable algebraic solution to the rate equation for substrate hydrolysis. ATMA affinities for the A- and P-sites deduced from the kinetic analysis were confirmed by fluorescence titration with thioflavin T as a reporter ligand. Values of a >1 give rise to a hydrolysis profile called substrate activation, and the AChE site-specific mutant W86F, and to a lesser extent wild-type human AChE itself, showed substrate activation with acetylthiocholine as the substrate. Substrate activation was incorporated into a previous catalytic scheme for AChE in which a bound P-site ligand can also block product dissociation from the A-site, and two additional features of the AChE catalytic pathway were revealed. First, the ability of a bound P-site ligand to increase the substrate acetylation rate constant varied with the structure of the ligand: thioflavin T accelerated ATMA acetylation by a factor a(2) of 1.3, while propidium failed to accelerate. Second, catalytic rate

  16. Kinetics of nucleotide entry into RNA polymerase active site provides mechanism for efficiency and fidelity.

    PubMed

    Wang, Beibei; Sexton, Rachel E; Feig, Michael

    2017-04-01

    During transcription, RNA polymerase II elongates RNA by adding nucleotide triphosphates (NTPs) complementary to a DNA template. Structural studies have suggested that NTPs enter and exit the active site via the narrow secondary pore but details have remained unclear. A kinetic model is presented that integrates molecular dynamics simulations with experimental data. Previous simulations of trigger loop dynamics and the dynamics of matched and mismatched NTPs in and near the active site were combined with new simulations describing NTP exit from the active site via the secondary pore. Markov state analysis was applied to identify major states and estimate kinetic rates for transitions between those states. The kinetic model predicts elongation and misincorporation rates in close agreement with experiment and provides mechanistic hypotheses for how NTP entry and exit via the secondary pore is feasible and a key feature for achieving high elongation and low misincorporation rates during RNA elongation.

  17. Promoter-proximal polyadenylation sites reduce transcription activity

    PubMed Central

    Andersen, Pia K.; Lykke-Andersen, Søren; Jensen, Torben Heick

    2012-01-01

    Gene expression relies on the functional communication between mRNA processing and transcription. We previously described the negative impact of a point-mutated splice donor (SD) site on transcription. Here we demonstrate that this mutation activates an upstream cryptic polyadenylation (CpA) site, which in turn causes reduced transcription. Functional depletion of U1 snRNP in the context of the wild-type SD triggers the same CpA event accompanied by decreased RNA levels. Thus, in accordance with recent findings, U1 snRNP can shield premature pA sites. The negative impact of unshielded pA sites on transcription requires promoter proximity, as demonstrated using artificial constructs and supported by a genome-wide data set. Importantly, transcription down-regulation can be recapitulated in a gene context devoid of splice sites by placing a functional bona fide pA site/transcription terminator within ∼500 base pairs of the promoter. In contrast, promoter-proximal positioning of a pA site-independent histone gene terminator supports high transcription levels. We propose that optimal communication between a pA site-dependent gene terminator and its promoter critically depends on gene length and that short RNA polymerase II-transcribed genes use specialized termination mechanisms to maintain high transcription levels. PMID:23028143

  18. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    PubMed

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined.

  19. Active Sites Environmental Monitoring Program: Mid-FY 1991 report

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1991-10-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1990 through March 1991. The ASEMP was established in 1989 by Solid Waste Operations and the Environmental Sciences Division to provide early detection and performance monitoring at active low-level radioactive waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. Monitoring results continue to demonstrate the no LLW is being leached from the storage vaults on the tumulus pads. Loading of vaults on Tumulus II began during this reporting period and 115 vaults had been loaded by the end of March 1991.

  20. Active and regulatory sites of cytosolic 5'-nucleotidase.

    PubMed

    Pesi, Rossana; Allegrini, Simone; Careddu, Maria Giovanna; Filoni, Daniela Nicole; Camici, Marcella; Tozzi, Maria Grazia

    2010-12-01

    Cytosolic 5'-nucleotidase (cN-II), which acts preferentially on 6-hydroxypurine nucleotides, is essential for the survival of several cell types. cN-II catalyses both the hydrolysis of nucleotides and transfer of their phosphate moiety to a nucleoside acceptor through formation of a covalent phospho-intermediate. Both activities are regulated by a number of phosphorylated compounds, such as diadenosine tetraphosphate (Ap₄A), ADP, ATP, 2,3-bisphosphoglycerate (BPG) and phosphate. On the basis of a partial crystal structure of cN-II, we mutated two residues located in the active site, Y55 and T56. We ascertained that the ability to catalyse the transfer of phosphate depends on the presence of a bulky residue in the active site very close to the aspartate residue that forms the covalent phospho-intermediate. The molecular model indicates two possible sites at which adenylic compounds may interact. We mutated three residues that mediate interaction in the first activation site (R144, N154, I152) and three in the second (F127, M436 and H428), and found that Ap₄A and ADP interact with the same site, but the sites for ATP and BPG remain uncertain. The structural model indicates that cN-II is a homotetrameric protein that results from interaction through a specific interface B of two identical dimers that have arisen from interaction of two identical subunits through interface A. Point mutations in the two interfaces and gel-filtration experiments indicated that the dimer is the smallest active oligomerization state. Finally, gel-filtration and light-scattering experiments demonstrated that the native enzyme exists as a tetramer, and no further oligomerization is required for enzyme activation.

  1. Quantitative analysis of anthropogenic relief features: automated mapping of charcoal kiln sites from high-resolution ALS data

    NASA Astrophysics Data System (ADS)

    Schneider, Anna; Takla, Melanie; Nicolay, Alexander; Raab, Alexandra; Raab, Thomas

    2014-05-01

    High-resolution digital elevation data from airborne laser scanning (ALS) allow for identification and mapping of so far unknown small-scale relief features that are hidden by forest cover. Especially as a result of historic land use, small anthropogenic landforms can occur, e.g., remains of charcoal kilns on sites that were used for charcoal production or ridge and furrow systems in former farmland areas. Mapping such relief features and analyzing their spatial distribution patterns can help to understand past land-use systems and their effects on landscapes. To efficiently detect and quantify small-scale relief features from high-resolution DEMs for larger areas, (semi-) automated mapping routines are required. In order to describe the number and spatial distribution of historic charcoal kiln sites in the area around Cottbus, Germany, we developed a GIS-based routine for the detection and mapping of kiln remnants from ALS elevation models with a resolution of 1 or 2 meters. The method is based on a template matching algorithm, using a combination of morphometric parameters, and is implemented within ArcGIS. The mapping results could be validated against a comprehensive database of kiln sites and diameters recorded from archaeological excavations in the forefield of the opencast mine Jänschwalde and from manual digitization of kiln remnants from Shaded Relief maps for the Jänschwalder Heide and the Tauersche Forst, north of Cottbus. A considerably high number of charcoal kiln sites could be detected in ALS data, and the diameters of the identified charcoal kilns are remarkable large in the area. For the Jänschwalder Heide, more than 5000 kiln sites in an area of 32 km2 were detected by manual digitization, with 1355 kiln sites that are wider than 12 m. These relatively large kiln sites could be mapped with detection rates that are close to those of manual digitization using the automated mapping routine. Detection quality was improved by the combination of

  2. Point Cloud Mapping Methods for Documenting Cultural Landscape Features at the Wormsloe State Historic Site, Savannah, Georgia, USA

    NASA Astrophysics Data System (ADS)

    Jordana, T. R.; Goetcheus, C. L.; Madden, M.

    2016-06-01

    Documentation of the three-dimensional (3D) cultural landscape has traditionally been conducted during site visits using conventional photographs, standard ground surveys and manual measurements. In recent years, there have been rapid developments in technologies that produce highly accurate 3D point clouds, including aerial LiDAR, terrestrial laser scanning, and photogrammetric data reduction from unmanned aerial systems (UAS) images and hand held photographs using Structure from Motion (SfM) methods. These 3D point clouds can be precisely scaled and used to conduct measurements of features even after the site visit has ended. As a consequence, it is becoming increasingly possible to collect non-destructive data for a wide variety of cultural site features, including landscapes, buildings, vegetation, artefacts and gardens. As part of a project for the U.S. National Park Service, a variety of data sets have been collected for the Wormsloe State Historic Site, near Savannah, Georgia, USA. In an effort to demonstrate the utility and versatility of these methods at a range of scales, comparisons of the features mapped with different techniques will be discussed with regards to accuracy, data set completeness, cost and ease-of-use.

  3. Mapping Surface Features Produced by an Active Landslide

    NASA Astrophysics Data System (ADS)

    Parise, Mario; Gueguen, Erwan; Vennari, Carmela

    2016-10-01

    A large landslide reactivated on December 2013, at Montescaglioso, southern Italy, after 56 hours of rainfall. The landslide disrupted over 500 m of a freeway, involved a few warehouses, a supermarket, and private homes. After the event, it has been performed field surveys, aided by visual analysis of terrestrial and helicopter photographs, to compile a map of the surface deformations. The geomorphological features mapped included single fractures, sets of fractures, tension cracks, trenches, and pressure ridges. In this paper we present the methodology used, the map obtained through the intensive field work, and discuss the main surface features produced by the landslide.

  4. BAX Activation is Initiated at a Novel Interaction Site

    PubMed Central

    Gavathiotis, Evripidis; Suzuki, Motoshi; Davis, Marguerite L.; Pitter, Kenneth; Bird, Gregory H.; Katz, Samuel G.; Tu, Ho-Chou; Kim, Hyungjin; Cheng, Emily H.-Y.; Tjandra, Nico; Walensky, Loren D.

    2008-01-01

    BAX is a pro-apoptotic protein of the BCL-2 family stationed in the cytosol until activated by a diversity of stress stimuli to induce cell death. Anti-apoptotic proteins such as BCL-2 counteract BAX-mediated cell death. Although an interaction site that confers survival functionality has been defined for anti-apoptotic proteins, an activation site has not been identified for BAX, rendering its explicit trigger mechanism unknown. We previously developed Stabilized Alpha-Helix of BCL-2 domains (SAHBs) that directly initiate BAX-mediated mitochondrial apoptosis. Here we demonstrate by NMR analysis that BIM SAHB binds BAX at an interaction site that is distinct from the canonical binding groove characterized for anti-apoptotic proteins. The specificity of the BIM SAHB-BAX interaction is highlighted by point mutagenesis that abrogates functional activity, confirming that BAX activation is initiated at this novel structural location. Thus, we have now defined a BAX interaction site for direct activation, establishing a new target for therapeutic modulation of apoptosis. PMID:18948948

  5. Special Feature: Liquids and Structural Glasses Special Feature: An active biopolymer network controlled by molecular motors

    NASA Astrophysics Data System (ADS)

    Koenderink, Gijsje H.; Dogic, Zvonimir; Nakamura, Fumihiko; Bendix, Poul M.; MacKintosh, Frederick C.; Hartwig, John H.; Stossel, Thomas P.; Weitz, David A.

    2009-09-01

    We describe an active polymer network in which processive molecular motors control network elasticity. This system consists of actin filaments cross-linked by filamin A (FLNa) and contracted by bipolar filaments of muscle myosin II. The myosin motors stiffen the network by more than two orders of magnitude by pulling on actin filaments anchored in the network by FLNa cross-links, thereby generating internal stress. The stiffening response closely mimics the effects of external stress applied by mechanical shear. Both internal and external stresses can drive the network into a highly nonlinear, stiffened regime. The active stress reaches values that are equivalent to an external stress of 14 Pa, consistent with a 1-pN force per myosin head. This active network mimics many mechanical properties of cells and suggests that adherent cells exert mechanical control by operating in a nonlinear regime where cell stiffness is sensitive to changes in motor activity. This design principle may be applicable to engineering novel biologically inspired, active materials that adjust their own stiffness by internal catalytic control.

  6. Involvement of novel autophosphorylation sites in ATM activation.

    PubMed

    Kozlov, Sergei V; Graham, Mark E; Peng, Cheng; Chen, Philip; Robinson, Phillip J; Lavin, Martin F

    2006-08-09

    ATM kinase plays a central role in signaling DNA double-strand breaks to cell cycle checkpoints and to the DNA repair machinery. Although the exact mechanism of ATM activation remains unknown, efficient activation requires the Mre11 complex, autophosphorylation on S1981 and the involvement of protein phosphatases and acetylases. We report here the identification of several additional phosphorylation sites on ATM in response to DNA damage, including autophosphorylation on pS367 and pS1893. ATM autophosphorylates all these sites in vitro in response to DNA damage. Antibodies against phosphoserine 1893 revealed rapid and persistent phosphorylation at this site after in vivo activation of ATM kinase by ionizing radiation, paralleling that observed for S1981 phosphorylation. Phosphorylation was dependent on functional ATM and on the Mre11 complex. All three autophosphorylation sites are physiologically important parts of the DNA damage response, as phosphorylation site mutants (S367A, S1893A and S1981A) were each defective in ATM signaling in vivo and each failed to correct radiosensitivity, genome instability and cell cycle checkpoint defects in ataxia-telangiectasia cells. We conclude that there are at least three functionally important radiation-induced autophosphorylation events in ATM.

  7. Resonant active sites in catalytic ammonia synthesis: A structural model

    NASA Astrophysics Data System (ADS)

    Cholach, Alexander R.; Bryliakova, Anna A.; Matveev, Andrey V.; Bulgakov, Nikolai N.

    2016-03-01

    Adsorption sites Mn consisted of n adjacent atoms M, each bound to the adsorbed species, are considered within a realistic model. The sum of bonds Σ lost by atoms in a site in comparison with the bulk atoms was used for evaluation of the local surface imperfection, while the reaction enthalpy at that site was used as a measure of activity. The comparative study of Mn sites (n = 1-5) at basal planes of Pt, Rh, Ir, Fe, Re and Ru with respect to heat of N2 dissociative adsorption QN and heat of Nad + Had → NHad reaction QNH was performed using semi-empirical calculations. Linear QN(Σ) increase and QNH(Σ) decrease allowed to specify the resonant Σ for each surface in catalytic ammonia synthesis at equilibrium Nad coverage. Optimal Σ are realizable for Ru2, Re2 and Ir4 only, whereas other centers meet steric inhibition or unreal crystal structure. Relative activity of the most active sites in proportion 5.0 × 10- 5: 4.5 × 10- 3: 1: 2.5: 3.0: 1080: 2270 for a sequence of Pt4, Rh4, Fe4(fcc), Ir4, Fe2-5(bcc), Ru2, Re2, respectively, is in agreement with relevant experimental data. Similar approach can be applied to other adsorption or catalytic processes exhibiting structure sensitivity.

  8. Cosmic ray exposure ages of features and events at the Apollo landing sites

    NASA Technical Reports Server (NTRS)

    Arvidson, R.; Crozaz, G.; Drozd, R. J.; Hohenberg, C. M.; Morgan, C. J.

    1975-01-01

    Cosmic-ray exposure ages of lunar samples have been used to date surface features related to impact cratering and downslope movement of material. Only when multiple samples related to a feature have the same rare-gas exposure age or when a single sample has the same Kr-81 -Kr and track-exposure age can a feature be considered as reliably dated. Based on these criteria, there are only five well-dated lunar features: Cone Crater (Apollo 14), 26 m.y,; North Ray Crater (Apollo 16), 50 m.y.; South Ray Crater (Apollo 16), 2 m.y.; the emplacement of the Station 6 boulders (Apollo 17), 22 m.y.; and the emplacement of the Station 7 boulder (Apollo 17), 28 m.y. Other features are tentatively dated or have limits set on their ages: Bench Crater (Apollo 12), upper limit of 99 m.y.; Baby Ray Crater (Apollo 16), upper limit of 2 m.y.; Shorty Crater (Apollo 17), approximately 30 m.y.; Camelot Crater (Apollo 17) upper limit of 140 m.y.; the emplacement of the Station 2 boulder 1 (Apollo 17), 45 to 55 m.y.; and the slide which generated the light mantle (Apollo 17), lower limit of 50 m.y.

  9. Geologic features of dam sites in the Nehalem, Rogue, and Willamette River basins, Oregon, 1935-37

    USGS Publications Warehouse

    Piper, A.M.

    1947-01-01

    The present report comprises brief descriptions of geologic features at 19 potential dam sites in the Nehalem, Rogue, and Willamette River basins in western Oregon. The topography of these site and of the corresponding reservoir site was mapped in 1934-36 under an allocation of funds, by the Public Works Administration for river-utilization surveys by the Conservation Branch of the United States Geological Survey. The field program in Oregon has been under the immediate charge of R. O. Helland. The 19 dam sites are distributed as follows: three on the Nehalem River, on the west or Pacific slope of the Oregon Coast range; four on Little Butte Creek and two on Evans Creek, tributaries of the Rogue River in the eastern part of the Klamath Mountains; four on the South and Middle Santiam Rivers, tributaries of the Willamette River from the west slope of the Cascade mountains; and six on tributaries of the Willamette River from the east slope of the Coast Range. Except in the Evans Creek basin, all the rocks in the districts that were studied are of comparatively late geological age. They include volcanic rocks, crystalline rocks of several types, marine and nonmarine sedimentary rocks, and recent stream deposits. The study of geologic features has sought to estimate the bearing power and water-tightness of the rocks at each dam site, also to place rather broad limits on the type of dam for which the respective sites seem best suited. It was not considered necessary to study the corresponding reservoir sites in detail for excessive leakage appears to be unlikely. Except at three of the four site in the Santiam River basin, no test pits have been dug nor exploratory holes drilled, so that geologic features have been interpreted wholly from natural outcrops and from highway and railroad cuts. Because these outcrops and cuts are few, many problems related to the construction and maintenance of dams can not be answered at the this time and all critical features of the sites

  10. Chemical Modification of Papain and Subtilisin: An Active Site Comparison

    ERIC Educational Resources Information Center

    St-Vincent, Mireille; Dickman, Michael

    2004-01-01

    An experiment using methyle methanethiosulfonate (MMTS) and phenylmethylsulfonyl flouride (PMSF) to specifically modify the cysteine and serine residues in the active sites of papain and subtilism respectively is demonstrated. The covalent modification of these enzymes and subsequent rescue of papain shows the beginning biochemist that proteins…

  11. Spectroscopic studies of the active site of galactose oxidase

    SciTech Connect

    Knowles, P.F.; Brown, R.D. III; Koenig, S.H.

    1995-07-19

    X-ray absorption and EPR spectroscopy have been used to probe the copper site structure in galactose oxidase at pH 4.5 and 7.0. the results suggest that there are no major differences in the structure of the tetragonal Cu(II) site at these pH values. Analysis of the extended X-ray absorption fine structure (EXAFS) indicates that four N,O scatterers are present at approximately 2 {Angstrom}; these are presumably the equatorial ligands. In addition, the EXAFS data establish that oxidative activation to produce the active-site tyrosine radical does not cause major changes in the copper coordination environment. Therefore results obtained on the one-electron reduced enzyme, containing Cu(II) but not the tyrosine radical, probably also apply to the catalytically active Cu(II)/tyrosine radical state. Solvent water exchange, inhibitor binding, and substrate binding have been probed via nuclear magnetic relaxation dispersion (NMRD) measurements. The NMRD profile of galactose oxidase is quantitatively consistent with the rapid exchange of a single, equatorial water ligand with a Cu(II)-O separation of about 2.4 {Angstrom}. Azide and cyanide displace this coordinated water. The binding of azide and the substrate dihydroxyacetone produce very similar effects on the NMRD profile of galactose oxidase, indicating that substrates also bind to the active site Cu(II) in an equatorial position.

  12. Energy transfer at the active sites of heme proteins

    SciTech Connect

    Dlott, D.D.; Hill, J.R.

    1995-12-31

    Experiments using a picosecond pump-probe apparatus at the Picosecond Free-electron Laser Center at Stanford University, were performed to investigate the relaxation of carbon monoxide bound to the active sites of heme proteins. The significance of these experiments is two-fold: (1) they provide detailed information about molecular dynamics occurring at the active sites of proteins; and (2) they provide insight into the nature of vibrational relaxation processes in condensed matter. Molecular engineering is used to construct various molecular systems which are studied with the FEL. We have studied native proteins, mainly myoglobin obtained from different species, mutant proteins produced by genetic engineering using recombinant DNA techniques, and a variety of model systems which mimic the structures of the active sites of native proteins, which are produced using molecular synthesis. Use of these different systems permits us to investigate how specific molecular structural changes affect dynamical processes occurring at the active sites. This research provides insight into the problems of how different species needs are fulfilled by heme proteins which have greatly different functionality, which is induced by rather small structural changes.

  13. Multiple active site residues are important for photochemical efficiency in the light-activated enzyme protochlorophyllide oxidoreductase (POR).

    PubMed

    Menon, Binuraj R K; Hardman, Samantha J O; Scrutton, Nigel S; Heyes, Derren J

    2016-08-01

    Protochlorophyllide oxidoreductase (POR) catalyzes the light-driven reduction of protochlorophyllide (Pchlide), an essential, regulatory step in chlorophyll biosynthesis. The unique requirement of the enzyme for light has provided the opportunity to investigate how light energy can be harnessed to power biological catalysis and enzyme dynamics. Excited state interactions between the Pchlide molecule and the protein are known to drive the subsequent reaction chemistry. However, the structural features of POR and active site residues that are important for photochemistry and catalysis are currently unknown, because there is no crystal structure for POR. Here, we have used static and time-resolved spectroscopic measurements of a number of active site variants to study the role of a number of residues, which are located in the proposed NADPH/Pchlide binding site based on previous homology models, in the reaction mechanism of POR. Our findings, which are interpreted in the context of a new improved structural model, have identified several residues that are predicted to interact with the coenzyme or substrate. Several of the POR variants have a profound effect on the photochemistry, suggesting that multiple residues are important in stabilizing the excited state required for catalysis. Our work offers insight into how the POR active site geometry is finely tuned by multiple active site residues to support enzyme-mediated photochemistry and reduction of Pchlide, both of which are crucial to the existence of life on Earth.

  14. A model of the rabies virus glycoprotein active site.

    PubMed

    Rustici, M; Bracci, L; Lozzi, L; Neri, P; Santucci, A; Soldani, P; Spreafico, A; Niccolai, N

    1993-06-01

    The glycoprotein from the neurotropic rabies virus shows a significant homology with the alpha neurotoxin that binds to the nicotinic acetylcholine receptor. The crystal structure of the alpha neurotoxins suggests that the Arg 37 guanidinium group and the Asp 31 side-chain carboxylate of the erabutoxin have stereochemical features resembling those of acetylcholine. Conformational studies on the Asn194-Ser195-Arg196-Gly197 tetrapeptide, an essential part of the binding site of the rabies virus glycoprotein, indicate that the side chains of Asn and Arg could also mimic the acetylcholine structure. This observation is consistent with the recently proposed mechanism of the viral infection.

  15. Activation of phenylalanine hydroxylase by phenylalanine does not require binding in the active site.

    PubMed

    Roberts, Kenneth M; Khan, Crystal A; Hinck, Cynthia S; Fitzpatrick, Paul F

    2014-12-16

    Phenylalanine hydroxylase (PheH), a liver enzyme that catalyzes the hydroxylation of excess phenylalanine in the diet to tyrosine, is activated by phenylalanine. The lack of activity at low levels of phenylalanine has been attributed to the N-terminus of the protein's regulatory domain acting as an inhibitory peptide by blocking substrate access to the active site. The location of the site at which phenylalanine binds to activate the enzyme is unknown, and both the active site in the catalytic domain and a separate site in the N-terminal regulatory domain have been proposed. Binding of catecholamines to the active-site iron was used to probe the accessibility of the active site. Removal of the regulatory domain increases the rate constants for association of several catecholamines with the wild-type enzyme by ∼2-fold. Binding of phenylalanine in the active site is effectively abolished by mutating the active-site residue Arg270 to lysine. The k(cat)/K(phe) value is down 10⁴ for the mutant enzyme, and the K(m) value for phenylalanine for the mutant enzyme is >0.5 M. Incubation of the R270K enzyme with phenylalanine also results in a 2-fold increase in the rate constants for catecholamine binding. The change in the tryptophan fluorescence emission spectrum seen in the wild-type enzyme upon activation by phenylalanine is also seen with the R270K mutant enzyme in the presence of phenylalanine. Both results establish that activation of PheH by phenylalanine does not require binding of the amino acid in the active site. This is consistent with a separate allosteric site, likely in the regulatory domain.

  16. Changes in active site histidine hydrogen bonding trigger cryptochrome activation.

    PubMed

    Ganguly, Abir; Manahan, Craig C; Top, Deniz; Yee, Estella F; Lin, Changfan; Young, Michael W; Thiel, Walter; Crane, Brian R

    2016-09-06

    Cryptochrome (CRY) is the principal light sensor of the insect circadian clock. Photoreduction of the Drosophila CRY (dCRY) flavin cofactor to the anionic semiquinone (ASQ) restructures a C-terminal tail helix (CTT) that otherwise inhibits interactions with targets that include the clock protein Timeless (TIM). All-atom molecular dynamics (MD) simulations indicate that flavin reduction destabilizes the CTT, which undergoes large-scale conformational changes (the CTT release) on short (25 ns) timescales. The CTT release correlates with the conformation and protonation state of conserved His378, which resides between the CTT and the flavin cofactor. Poisson-Boltzmann calculations indicate that flavin reduction substantially increases the His378 pKa Consistent with coupling between ASQ formation and His378 protonation, dCRY displays reduced photoreduction rates with increasing pH; however, His378Asn/Arg variants show no such pH dependence. Replica-exchange MD simulations also support CTT release mediated by changes in His378 hydrogen bonding and verify other responsive regions of the protein previously identified by proteolytic sensitivity assays. His378 dCRY variants show varying abilities to light-activate TIM and undergo self-degradation in cellular assays. Surprisingly, His378Arg/Lys variants do not degrade in light despite maintaining reactivity toward TIM, thereby implicating different conformational responses in these two functions. Thus, the dCRY photosensory mechanism involves flavin photoreduction coupled to protonation of His378, whose perturbed hydrogen-bonding pattern alters the CTT and surrounding regions.

  17. Changes in active site histidine hydrogen bonding trigger cryptochrome activation

    PubMed Central

    Ganguly, Abir; Manahan, Craig C.; Top, Deniz; Yee, Estella F.; Lin, Changfan; Young, Michael W.; Thiel, Walter; Crane, Brian R.

    2016-01-01

    Cryptochrome (CRY) is the principal light sensor of the insect circadian clock. Photoreduction of the Drosophila CRY (dCRY) flavin cofactor to the anionic semiquinone (ASQ) restructures a C-terminal tail helix (CTT) that otherwise inhibits interactions with targets that include the clock protein Timeless (TIM). All-atom molecular dynamics (MD) simulations indicate that flavin reduction destabilizes the CTT, which undergoes large-scale conformational changes (the CTT release) on short (25 ns) timescales. The CTT release correlates with the conformation and protonation state of conserved His378, which resides between the CTT and the flavin cofactor. Poisson-Boltzmann calculations indicate that flavin reduction substantially increases the His378 pKa. Consistent with coupling between ASQ formation and His378 protonation, dCRY displays reduced photoreduction rates with increasing pH; however, His378Asn/Arg variants show no such pH dependence. Replica-exchange MD simulations also support CTT release mediated by changes in His378 hydrogen bonding and verify other responsive regions of the protein previously identified by proteolytic sensitivity assays. His378 dCRY variants show varying abilities to light-activate TIM and undergo self-degradation in cellular assays. Surprisingly, His378Arg/Lys variants do not degrade in light despite maintaining reactivity toward TIM, thereby implicating different conformational responses in these two functions. Thus, the dCRY photosensory mechanism involves flavin photoreduction coupled to protonation of His378, whose perturbed hydrogen-bonding pattern alters the CTT and surrounding regions. PMID:27551082

  18. Accurate in silico identification of species-specific acetylation sites by integrating protein sequence-derived and functional features

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Wang, Mingjun; Wang, Huilin; Tan, Hao; Zhang, Ziding; Webb, Geoffrey I.; Song, Jiangning

    2014-07-01

    Lysine acetylation is a reversible post-translational modification, playing an important role in cytokine signaling, transcriptional regulation, and apoptosis. To fully understand acetylation mechanisms, identification of substrates and specific acetylation sites is crucial. Experimental identification is often time-consuming and expensive. Alternative bioinformatics methods are cost-effective and can be used in a high-throughput manner to generate relatively precise predictions. Here we develop a method termed as SSPKA for species-specific lysine acetylation prediction, using random forest classifiers that combine sequence-derived and functional features with two-step feature selection. Feature importance analysis indicates functional features, applied for lysine acetylation site prediction for the first time, significantly improve the predictive performance. We apply the SSPKA model to screen the entire human proteome and identify many high-confidence putative substrates that are not previously identified. The results along with the implemented Java tool, serve as useful resources to elucidate the mechanism of lysine acetylation and facilitate hypothesis-driven experimental design and validation.

  19. Probing the promiscuous active site of myo-inositol dehydrogenase using synthetic substrates, homology modeling, and active site modification.

    PubMed

    Daniellou, Richard; Zheng, Hongyan; Langill, David M; Sanders, David A R; Palmer, David R J

    2007-06-26

    The active site of myo-inositol dehydrogenase (IDH, EC 1.1.1.18) from Bacillus subtilis recognizes a variety of mono- and disaccharides, as well as 1l-4-O-substituted inositol derivatives. It catalyzes the NAD+-dependent oxidation of the axial alcohol of these substrates with comparable kinetic constants. We have found that 4-O-p-toluenesulfonyl-myo-inositol does not act as a substrate for IDH, in contrast to structurally similar compounds such as those bearing substituted benzyl substituents in the same position. X-ray crystallographic analysis of 4-O-p-toluenesulfonyl-myo-inositol and 4-O-(2-naphthyl)methyl-myo-inositol, which is a substrate for IDH, shows a distinct difference in the preferred conformation of the aryl substituent. Conformational analysis of known substrates of IDH suggests that this conformational difference may account for the difference in reactivity of 4-O-p-toluenesulfonyl-myo-inositol in the presence of IDH. A sequence alignment of IDH with the homologous glucose-fructose oxidoreductase allowed the construction of an homology model of inositol dehydrogenase, to which NADH and 4-O-benzyl-scyllo-inosose were docked and the active site energy minimized. The active site model is consistent with all experimental results and suggests that a conserved tyrosine-glycine-tyrosine motif forms the hydrophobic pocket adjoining the site of inositol recognition. Y233F and Y235F retain activity, while Y233R and Y235R do not. A histidine-aspartate pair, H176 and D172, are proposed to act as a dyad in which H176 is the active site acid/base. The enzyme is inactivated by diethyl pyrocarbonate, and the mutants H176A and D172N show a marked loss of activity. Kinetic isotope effect experiments with D172N indicate that chemistry is rate-determining for this mutant.

  20. The active site structure and mechanism of phosphoenolpyruvate utilizing enzymes

    SciTech Connect

    Cheng, K.C.

    1989-01-01

    Arginine specific reagents showed irreversible inhibition of avian liver mitochondrial phosphoenolpyruvate carboxykinase. Potent protection against modification was elicited by CO{sub 2} or CO{sub 2} in the presence of other substrates. Labeling of enzyme with (7-{sup 14}C) phenylglyoxal showed that 1 or 2 arginines are involved in CO{sub 2} binding and activation. Peptide map studies showed this active site arginine residues is located at position 289. Histidine specific reagents showed pseudo first order inhibition of avian mitochondrial phosphoenolpyruvate carboxykinase activity. The best protection against modification was elicited by IDP or IDP and Mn{sup +2}. One histidine residue is at or near the phosphoenolpyruvate binding site as demonstrated in the increased absorbance at 240 nm and proton relaxation rate studies. Circular dichroism studies reveal that enzyme structure was perturbed by diethylpyrocarbonate modification. Metal binding studies suggest that this enzyme has only one metal binding site. The putative binding sites from several GTP and phosphoenolpyruvate utilizing enzymes are observed in P-enolpyruvate carboxykinase from different species.

  1. Phytase activity as a novel metabolic feature in Bifidobacterium.

    PubMed

    Haros, Monica; Bielecka, Maria; Sanz, Yolanda

    2005-06-15

    Phytase activity has been detected for the first time in Bifidobacterium spp. These bacteria were able to dephosphorylate phytic acid (myo-inositol hexaphosphate, IP(6)) and generate several myo-inositol phosphate intermediates (IP(3)-IP(5)). B. globosum and B. pseudocatenulatum were optimally active at neutral-alkaline pH and B. adolescentis, B. angulatum and B. longum at acid pH. B. pseudocatenulatum showed the highest levels of phytase activity. This species produced maximum activity in the exponential phase of growth and when fructo-oligosaccharides were used as carbon source in the culture medium. The potential role of phytase activity from Bifidobacterium spp. in the reduction of the antinutritional properties of IP(6) is discussed.

  2. Universal features in the growth dynamics of religious activities

    NASA Astrophysics Data System (ADS)

    Picoli, S., Jr.; Mendes, R. S.

    2008-03-01

    We quantify and analyze the growth dynamics of a religious group in 140 countries for a 47-year period (1959-2005). We find that (i) the distribution of annual logarithmic growth rates exhibits the same functional form for distinct size scales and (ii) the standard deviation of growth rates scales with size as a power law. Both findings hold for distinct measures of religious activity. These results are in surprising agreement with those found in the study of economic activities and scientific research, suggesting that religious activities are governed by universal growth mechanisms. We also compare the empirical findings on religious activities with the predictions of general models recently proposed in the context of complex organizations. Our findings should provide useful information for a better understanding of the mechanisms governing the growth of religion.

  3. Feature Selection in Classification of Eye Movements Using Electrooculography for Activity Recognition

    PubMed Central

    Mala, S.; Latha, K.

    2014-01-01

    Activity recognition is needed in different requisition, for example, reconnaissance system, patient monitoring, and human-computer interfaces. Feature selection plays an important role in activity recognition, data mining, and machine learning. In selecting subset of features, an efficient evolutionary algorithm Differential Evolution (DE), a very efficient optimizer, is used for finding informative features from eye movements using electrooculography (EOG). Many researchers use EOG signals in human-computer interactions with various computational intelligence methods to analyze eye movements. The proposed system involves analysis of EOG signals using clearness based features, minimum redundancy maximum relevance features, and Differential Evolution based features. This work concentrates more on the feature selection algorithm based on DE in order to improve the classification for faultless activity recognition. PMID:25574185

  4. Mal-Lys: prediction of lysine malonylation sites in proteins integrated sequence-based features with mRMR feature selection

    PubMed Central

    Xu, Yan; Ding, Ya-Xin; Ding, Jun; Wu, Ling-Yun; Xue, Yu

    2016-01-01

    Lysine malonylation is an important post-translational modification (PTM) in proteins, and has been characterized to be associated with diseases. However, identifying malonyllysine sites still remains to be a great challenge due to the labor-intensive and time-consuming experiments. In view of this situation, the establishment of a useful computational method and the development of an efficient predictor are highly desired. In this study, a predictor Mal-Lys which incorporated residue sequence order information, position-specific amino acid propensity and physicochemical properties was proposed. A feature selection method of minimum Redundancy Maximum Relevance (mRMR) was used to select optimal ones from the whole features. With the leave-one-out validation, the value of the area under the curve (AUC) was calculated as 0.8143, whereas 6-, 8- and 10-fold cross-validations had similar AUC values which showed the robustness of the predictor Mal-Lys. The predictor also showed satisfying performance in the experimental data from the UniProt database. Meanwhile, a user-friendly web-server for Mal-Lys is accessible at http://app.aporc.org/Mal-Lys/. PMID:27910954

  5. A GIS analysis of suitability for construction aggregate recycling sites using regional transportation network and population density features

    USGS Publications Warehouse

    Robinson, G.R.; Kapo, K.E.

    2004-01-01

    Aggregate is used in road and building construction to provide bulk, strength, support, and wear resistance. Reclaimed asphalt pavement (RAP) and reclaimed Portland cement concrete (RPCC) are abundant and available sources of recycled aggregate. In this paper, current aggregate production operations in Virginia, Maryland, and the District of Columbia are used to develop spatial association models for the recycled aggregate industry with regional transportation network and population density features. The cost of construction aggregate to the end user is strongly influenced by the cost of transporting processed aggregate from the production site to the construction site. More than 60% of operations recycling aggregate in the mid-Atlantic study area are located within 4.8 km (3 miles) of an interstate highway. Transportation corridors provide both sites of likely road construction where aggregate is used and an efficient means to move both materials and on-site processing equipment back and forth from various work sites to the recycling operations. Urban and developing areas provide a high market demand for aggregate and a ready source of construction debris that may be processed into recycled aggregate. Most aggregate recycling operators in the study area are sited in counties with population densities exceeding 77 people/km2 (200 people/mile 2). No aggregate recycling operations are sited in counties with less than 19 people/km2 (50 people/mile2), reflecting the lack of sufficient long-term sources of construction debris to be used as an aggregate source, as well as the lack of a sufficient market demand for aggregate in most rural areas to locate a recycling operation there or justify the required investment in the equipment to process and produce recycled aggregate. Weights of evidence analyses (WofE), measuring correlation on an area-normalized basis, and weighted logistic regression (WLR), are used to model the distribution of RAP and RPCC operations relative

  6. Kinetic Features of L,D-Transpeptidase Inactivation Critical for β-Lactam Antibacterial Activity

    PubMed Central

    Lecoq, Lauriane; Bougault, Catherine; Mainardi, Jean-Luc; Rice, Louis B.; Ethève-Quelquejeu, Mélanie; Gutmann, Laurent; Marie, Arul; Dubost, Lionel; Hugonnet, Jean-Emmanuel; Simorre, Jean-Pierre; Arthur, Michel

    2013-01-01

    Active-site serine D,D-transpeptidases belonging to the penicillin-binding protein family (PBPs) have been considered for a long time as essential for peptidoglycan cross-linking in all bacteria. However, bypass of the PBPs by an L,D-transpeptidase (Ldtfm) conveys high-level resistance to β-lactams of the penam class in Enterococcus faecium with a minimal inhibitory concentration (MIC) of ampicillin >2,000 µg/ml. Unexpectedly, Ldtfm does not confer resistance to β-lactams of the carbapenem class (imipenem MIC = 0.5 µg/ml) whereas cephems display residual activity (ceftriaxone MIC = 128 µg/ml). Mass spectrometry, fluorescence kinetics, and NMR chemical shift perturbation experiments were performed to explore the basis for this specificity and identify β-lactam features that are critical for efficient L,D-transpeptidase inactivation. We show that imipenem, ceftriaxone, and ampicillin acylate Ldtfm by formation of a thioester bond between the active-site cysteine and the β-lactam-ring carbonyl. However, slow acylation and slow acylenzyme hydrolysis resulted in partial Ldtfm inactivation by ampicillin and ceftriaxone. For ampicillin, Ldtfm acylation was followed by rupture of the C5–C6 bond of the β-lactam ring and formation of a secondary acylenzyme prone to hydrolysis. The saturable step of the catalytic cycle was the reversible formation of a tetrahedral intermediate (oxyanion) without significant accumulation of a non-covalent complex. In agreement, a derivative of Ldtfm blocked in acylation bound ertapenem (a carbapenem), ceftriaxone, and ampicillin with similar low affinities. Thus, oxyanion and acylenzyme stabilization are both critical for rapid L,D-transpeptidase inactivation and antibacterial activity. These results pave the way for optimization of the β-lactam scaffold for L,D-transpeptidase-inactivation. PMID:23861815

  7. A genome-wide analysis of common fragile sites: What features determine chromosomal instability in the human genome?

    PubMed Central

    Fungtammasan, Arkarachai; Walsh, Erin; Chiaromonte, Francesca; Eckert, Kristin A.; Makova, Kateryna D.

    2012-01-01

    Chromosomal common fragile sites (CFSs) are unstable genomic regions that break under replication stress and are involved in structural variation. They frequently are sites of chromosomal rearrangements in cancer and of viral integration. However, CFSs are undercharacterized at the molecular level and thus difficult to predict computationally. Newly available genome-wide profiling studies provide us with an unprecedented opportunity to associate CFSs with features of their local genomic contexts. Here, we contrasted the genomic landscape of cytogenetically defined aphidicolin-induced CFSs (aCFSs) to that of nonfragile sites, using multiple logistic regression. We also analyzed aCFS breakage frequencies as a function of their genomic landscape, using standard multiple regression. We show that local genomic features are effective predictors both of regions harboring aCFSs (explaining ∼77% of the deviance in logistic regression models) and of aCFS breakage frequencies (explaining ∼45% of the variance in standard regression models). In our optimal models (having highest explanatory power), aCFSs are predominantly located in G-negative chromosomal bands and away from centromeres, are enriched in Alu repeats, and have high DNA flexibility. In alternative models, CpG island density, transcription start site density, H3K4me1 coverage, and mononucleotide microsatellite coverage are significant predictors. Also, aCFSs have high fragility when colocated with evolutionarily conserved chromosomal breakpoints. Our models are predictive of the fragility of aCFSs mapped at a higher resolution. Importantly, the genomic features we identified here as significant predictors of fragility allow us to draw valuable inferences on the molecular mechanisms underlying aCFSs. PMID:22456607

  8. Feature integration with random forests for real-time human activity recognition

    NASA Astrophysics Data System (ADS)

    Kataoka, Hirokatsu; Hashimoto, Kiyoshi; Aoki, Yoshimitsu

    2015-02-01

    This paper presents an approach for real-time human activity recognition. Three different kinds of features (flow, shape, and a keypoint-based feature) are applied in activity recognition. We use random forests for feature integration and activity classification. A forest is created at each feature that performs as a weak classifier. The international classification of functioning, disability and health (ICF) proposed by WHO is applied in order to set the novel definition in activity recognition. Experiments on human activity recognition using the proposed framework show - 99.2% (Weizmann action dataset), 95.5% (KTH human actions dataset), and 54.6% (UCF50 dataset) recognition accuracy with a real-time processing speed. The feature integration and activity-class definition allow us to accomplish high-accuracy recognition match for the state-of-the-art in real-time.

  9. Identification of Ice Nucleation Active Sites on Silicate Dust Particles

    NASA Astrophysics Data System (ADS)

    Zolles, Tobias; Burkart, Julia; Häusler, Thomas; Pummer, Bernhard; Hitzenberger, Regina; Grothe, Hinrich

    2015-04-01

    Mineral dusts originating from Earth's crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts [1-3]. Nevertheless, among those structures K-feldspar showed by far the highest ice nucleation activity. In this study, the reasons for its activity and the difference in the activity of the different feldspars were investigated in closer details. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. We give a potential explanation of the increased ice nucleation activity of K-feldspar. The ice nucleating sites are very much dependent on the alkali ion present by altering the water structure and the feldspar surface. The higher activity of K-feldspar can be attributed to the presence of potassium ions on the surface and surface bilayer. The alkali-ions have different hydration shells and thus an influence on the ice nucleation activity of feldspar. Chaotropic behavior of Calcium and Sodium ions are lowering the ice nucleation potential of the other feldspars, while kosmotropic Potassium has a neutral or even positive effect. Furthermore we investigated the influence of milling onto the ice nucleation of quartz particles. The ice nucleation activity can be increased by mechanical milling, by introducing more molecular, nucleation active defects to the particle surface. This effect is larger than expected by plane surface increase. [1] Atkinson et al. The Importance of Feldspar for Ice Nucleation by Mineral Dust in Mixed-Phase Clouds. Nature 2013, 498, 355-358. [2] Yakobi-Hancock et al.. Feldspar Minerals as Efficient Deposition Ice Nuclei. Atmos. Chem. Phys. 2013, 13, 11175-11185. [3] Zolles et al. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles. J. Phys. Chem. A 2015 accepted.

  10. Asymmetric behavior of different solar activity features over solar cycles 20-23

    NASA Astrophysics Data System (ADS)

    Bankoti, Neeraj Singh; Joshi, Navin Chandra; Pande, Bimal; Pande, Seema; Uddin, Wahab; Pandey, Kavita

    2011-07-01

    This paper presents the study of normalized north-south asymmetry, cumulative normalized north-south asymmetry and cumulative difference indices of sunspot areas, solar active prominences (at total, low (⩽40°) and high (⩾50°) latitudes) and H α solar flares from 1964 to 2008 spanning the solar cycles 20-23. Three different statistical methods are used to obtain the asymmetric behavior of different solar activity features. Hemispherical distribution of activity features shows the dominance of activities in northern hemisphere for solar cycle 20 and in southern hemisphere for solar cycles 21-23 excluding solar active prominences at high latitudes. Cumulative difference index of solar activity features in each solar cycle is observed at the maximum of the respective solar cycle suggesting a cyclic behavior of approximately one solar cycle length. Asymmetric behavior of all activity features except solar active prominences at high latitudes hints at the long term periodic trend of eight solar cycles. North-south asymmetries of SAP (H) express the specific behavior of solar activity at high solar latitudes and its behavior in long-time scale is distinctly opposite to those of other activity features. Our results show that in most cases the asymmetry is statistically highly significant meaning thereby that the asymmetries are real features in the N-S distribution of solar activity features.

  11. Munitions integrity and corrosion features observed during the HUMMA deep-sea munitions disposal site investigations

    NASA Astrophysics Data System (ADS)

    Silva, Jeff A. K.; Chock, Taylor

    2016-06-01

    An evaluation of the current condition of sea-disposed military munitions observed during the 2009 Hawaii Undersea Military Munitions Assessment Project investigation is presented. The 69 km2 study area is located south of Pearl Harbor, Oahu, Hawaii, and is positioned within a former deep-sea disposal area designated as Hawaii-05 or HI-05 by the United States Department of Defense. HI-05 is known to contain both conventional and chemical munitions that were sea-disposed between 1920 and 1951. Digital images and video reconnaissance logs collected during six remotely operated vehicle and 16 human-occupied vehicle surveys were used to classify the integrity and state of corrosion of the 1842 discarded military munitions (DMM) objects encountered. Of these, 5% (or 90 individual DMM objects) were found to exhibit a mild-moderate degree of corrosion. The majority (66% or 1222 DMM objects) were observed to be significantly corroded, but visually intact on the seafloor. The remaining 29% of DMM encountered were found to be severely corroded and breached, with their contents exposed. Chemical munitions were not identified during the 2009 investigation. In general, identified munitions known to have been constructed with thicker casings were better preserved. Unusual corrosion features were also observed, including what are termed here as 'corrosion skirts' that resembled the flow and cementation of corrosion products at and away from the base of many munitions, and 'corrosion pedestal' features resembling a combination of cemented corrosion products and seafloor sediments that were observed to be supporting munitions above the surface of the seafloor. The origin of these corrosion features could not be determined due to the lack of physical samples collected. However, a microbial-mediated formation hypothesis is presented, based on visual analysis, which can serve as a testable model for future field programs.

  12. Face the Edges: Catalytic Active Sites of Nanomaterials

    PubMed Central

    Ni, Bing

    2015-01-01

    Edges are special sites in nanomaterials. The atoms residing on the edges have different environments compared to those in other parts of a nanomaterial and, therefore, they may have different properties. Here, recent progress in nanomaterial fields is summarized from the viewpoint of the edges. Typically, edge sites in MoS2 or metals, other than surface atoms, can perform as active centers for catalytic reactions, so the method to enhance performance lies in the optimization of the edge structures. The edges of multicomponent interfaces present even more possibilities to enhance the activities of nanomaterials. Nanoframes and ultrathin nanowires have similarities to conventional edges of nanoparticles, the application of which as catalysts can help to reduce the use of costly materials. Looking beyond this, the edge structures of graphene are also essential for their properties. In short, the edge structure can influence many properties of materials. PMID:27980960

  13. Robust Classification and Segmentation of Planar and Linear Features for Construction Site Progress Monitoring and Structural Dimension Compliance Control

    NASA Astrophysics Data System (ADS)

    Maalek, R.; Lichti, D. D.; Ruwanpura, J.

    2015-08-01

    The application of terrestrial laser scanners (TLSs) on construction sites for automating construction progress monitoring and controlling structural dimension compliance is growing markedly. However, current research in construction management relies on the planned building information model (BIM) to assign the accumulated point clouds to their corresponding structural elements, which may not be reliable in cases where the dimensions of the as-built structure differ from those of the planned model and/or the planned model is not available with sufficient detail. In addition outliers exist in construction site datasets due to data artefacts caused by moving objects, occlusions and dust. In order to overcome the aforementioned limitations, a novel method for robust classification and segmentation of planar and linear features is proposed to reduce the effects of outliers present in the LiDAR data collected from construction sites. First, coplanar and collinear points are classified through a robust principal components analysis procedure. The classified points are then grouped using a robust clustering method. A method is also proposed to robustly extract the points belonging to the flat-slab floors and/or ceilings without performing the aforementioned stages in order to preserve computational efficiency. The applicability of the proposed method is investigated in two scenarios, namely, a laboratory with 30 million points and an actual construction site with over 150 million points. The results obtained by the two experiments validate the suitability of the proposed method for robust segmentation of planar and linear features in contaminated datasets, such as those collected from construction sites.

  14. Mid-level Features Improve Recognition of Interactive Activities

    DTIC Science & Technology

    2012-11-14

    Recognizing action as clouds of space-time interest points. In CVPR, 2009. [5] W. Brendel, A. Fern , and S. Todorovic. Probabilistic event logic for interval...context. In CVPR, 2009. [27] R. Messing, C. Pal, and H. Kautz. Activity recognition using the velocity histories of tracked keypoints. In ICCV, 2009

  15. Structural features of the combining site region of Erythrina corallodendron lectin: role of tryptophan 135.

    PubMed Central

    Adar, R.; Moreno, E.; Streicher, H.; Karlsson, K. A.; Angström, J.; Sharon, N.

    1998-01-01

    The role of Trp 135 and Tyr 108 in the combining site of Erythrina corallodendron lectin (ECorL) was investigated by physicochemical characterization of mutants obtained by site-directed mutagenesis, hemagglutination-inhibition studies, and molecular modeling, including dynamics simulations. The findings demonstrate that Trp 135 in ECorL: (1) is required for the tight binding of Ca2+ and Mn2+ to the lectin because mutation of this residue into alanine results in loss of these ions upon dialysis and concomitant reversible inactivation of the mutant; (2) contributes to the high affinity of methyl alpha-N-dansylgalactosaminide (MealphaGalNDns) to the lectin; and (3) is solely responsible for the fluorescence energy transfer between the aromatic residues of the lectin and the dansyl group in the ECorL-MealphaGalNDns complex. Docking of MealphaGalNDns into the combining site of the lectin reveals that the dansyl moiety is parallel with the indole of Trp 135, as required for efficient fluorescence energy transfer, in one of the two possible conformations that this ligand assumes in the bound state. In the W135A mutant, which still binds MealphaGalNDns strongly, the dansyl group may partially insert itself into the place formerly occupied by Trp 135, a process that from dynamics simulations does not appear to be energetically favored unless the loop containing this residue assumes an open conformation. However, a small fraction of the W135A molecules must be able to bind MealphaGalNDns in order to explain the relatively high affinity, as compared to galactose, still remaining for this ligand. A model for the molecular events leading to inactivation of the W135A mutant upon demetallization is also presented in which the cis-trans isomerization of the Ala 88-Asp 89 peptide bond, observed in high-temperature dynamics simulations, appears not to be a required step. PMID:9514259

  16. Identifying structural features of fibrillar islet amyloid polypeptide using site-directed spin labeling.

    PubMed

    Jayasinghe, Sajith A; Langen, Ralf

    2004-11-12

    Pancreatic amyloid deposits, composed primarily of the 37-residue islet amyloid polypeptide (IAPP), are a characteristic feature found in more than 90% of patients with type II diabetes. Although IAPP amyloid deposits are associated with areas of pancreatic islet beta-cell dysfunction and depletion and are thought to play a role in disease, their structure is unknown. We used electron paramagnetic resonance spectroscopy to analyze eight spin-labeled derivatives of IAPP in an effort to determine structural features of the peptide. In solution, all eight derivatives gave rise to electron paramagnetic resonance spectra with sharp lines indicative of rapid motion on the sub-nanosecond time scale. These spectra are consistent with a rapidly tumbling and highly dynamic peptide. In contrast, spectra for the fibrillar form exhibit reduced mobility and the presence of strong intermolecular spin-spin interactions. The latter implies that the peptide subunits are ordered and that the same residues from neighboring peptides are in close proximity to one another. Our data are consistent with a parallel arrangement of IAPP peptides within the amyloid fibril. Analysis of spin label mobility indicates a high degree of order throughout the peptide, although the N-terminal region is slightly less ordered. Possible similarities with respect to the domain organization and parallelism of Alzheimer's amyloid beta peptide fibrils are discussed.

  17. Nest predation increases with parental activity: Separating nest site and parental activity effects

    USGS Publications Warehouse

    Martin, T.E.; Scott, J.; Menge, C.

    2000-01-01

    Alexander Skutch hypothesized that increased parental activity can increase the risk of nest predation. We tested this hypothesis using ten open-nesting bird species in Arizona, USA. Parental activity was greater during the nestling than incubation stage because parents visited the nest frequently to feed their young during the nestling stage. However, nest predation did not generally increase with parental activity between nesting stages across the ten study species. Previous investigators have found similar results. We tested whether nest site effects might yield higher predation during incubation because the most obvious sites are depredated most rapidly. We conducted experiments using nest sites from the previous year to remove parental activity. Our results showed that nest sites have highly repeatable effects on nest predation risk; poor nest sites incurred rapid predation and caused predation rates to be greater during the incubation than nestling stage. This pattern also was exhibited in a bird species with similar (i.e. controlled) parental activity between nesting stages. Once nest site effects are taken into account, nest predation shows a strong proximate increase with parental activity during the nestling stage within and across species. Parental activity and nest sites exert antagonistic influences on current estimates of nest predation between nesting stages and both must be considered in order to understand current patterns of nest predation, which is an important source of natural selection.

  18. Nest predation increases with parental activity: separating nest site and parental activity effects.

    PubMed Central

    Martin, T E; Scott, J; Menge, C

    2000-01-01

    Alexander Skutch hypothesized that increased parental activity can increase the risk of nest predation. We tested this hypothesis using ten open-nesting bird species in Arizona, USA. Parental activity was greater during the nestling than incubation stage because parents visited the nest frequently to feed their young during the nestling stage. However, nest predation did not generally increase with parental activity between nesting stages across the ten study species. Previous investigators have found similar results. We tested whether nest site effects might yield higher predation during incubation because the most obvious sites are depredated most rapidly. We conducted experiments using nest sites from the previous year to remove parental activity. Our results showed that nest sites have highly repeatable effects on nest predation risk; poor nest sites incurred rapid predation and caused predation rates to be greater during the incubation than nestling stage. This pattern also was exhibited in a bird species with similar (i.e. controlled) parental activity between nesting stages. Once nest site effects are taken into account, nest predation shows a strong proximate increase with parental activity during the nestling stage within and across species. Parental activity and nest sites exert antagonistic influences on current estimates of nest predation between nesting stages and both must be considered in order to understand current patterns of nest predation, which is an important source of natural selection. PMID:11413645

  19. Active site amino acid sequence of human factor D.

    PubMed

    Davis, A E

    1980-08-01

    Factor D was isolated from human plasma by chromatography on CM-Sephadex C50, Sephadex G-75, and hydroxylapatite. Digestion of reduced, S-carboxymethylated factor D with cyanogen bromide resulted in three peptides which were isolated by chromatography on Sephadex G-75 (superfine) equilibrated in 20% formic acid. NH2-Terminal sequences were determined by automated Edman degradation with a Beckman 890C sequencer using a 0.1 M Quadrol program. The smallest peptide (CNBr III) consisted of the NH2-terminal 14 amino acids. The other two peptides had molecular weights of 17,000 (CNBr I) and 7000 (CNBr II). Overlap of the NH2-terminal sequence of factor D with the NH2-terminal sequence of CNBr I established the order of the peptides. The NH2-terminal 53 residues of factor D are somewhat more homologous with the group-specific protease of rat intestine than with other serine proteases. The NH2-terminal sequence of CNBr II revealed the active site serine of factor D. The typical serine protease active site sequence (Gly-Asp-Ser-Gly-Gly-Pro was found at residues 12-17. The region surrounding the active site serine does not appear to be more highly homologous with any one of the other serine proteases. The structural data obtained point out the similarities between factor D and the other proteases. However, complete definition of the degree of relationship between factor D and other proteases will require determination of the remainder of the primary structure.

  20. Brownian aggregation rate of colloid particles with several active sites

    SciTech Connect

    Nekrasov, Vyacheslav M.; Yurkin, Maxim A.; Chernyshev, Andrei V.; Polshchitsin, Alexey A.; Yakovleva, Galina E.; Maltsev, Valeri P.

    2014-08-14

    We theoretically analyze the aggregation kinetics of colloid particles with several active sites. Such particles (so-called “patchy particles”) are well known as chemically anisotropic reactants, but the corresponding rate constant of their aggregation has not yet been established in a convenient analytical form. Using kinematic approximation for the diffusion problem, we derived an analytical formula for the diffusion-controlled reaction rate constant between two colloid particles (or clusters) with several small active sites under the following assumptions: the relative translational motion is Brownian diffusion, and the isotropic stochastic reorientation of each particle is Markovian and arbitrarily correlated. This formula was shown to produce accurate results in comparison with more sophisticated approaches. Also, to account for the case of a low number of active sites per particle we used Monte Carlo stochastic algorithm based on Gillespie method. Simulations showed that such discrete model is required when this number is less than 10. Finally, we applied the developed approach to the simulation of immunoagglutination, assuming that the formed clusters have fractal structure.

  1. [Mechanism of arginine deiminase activity by site-directed mutagenesis].

    PubMed

    Li, Lifeng; Ni, Ye; Sun, Zhihao

    2012-04-01

    Arginine deiminase (ADI) has been studied as a potential anti-cancer agent for inhibiting arginine-auxotrophic tumors (such as melanomas and hepatocellular carcinomas) in phase III clinical trials. In this work, we studied the molecular mechanism of arginine deiminase activity by site-directed mutagenesis. Three mutation sites, A128, H404 and 1410, were introduced into wild-type ADI gene by QuikChange site-directed mutagenesis method, and four ADI mutants M1 (A128T), M2 (H404R), M3 (I410L), and M4 (A128T, H404R) were obtained. The ADI mutants were individually expressed in Escherichia coli BL21 (DE3), and the enzymatic properties of the purified mutant proteins were determined. The results show that both A128T and H404R had enhanced optimum pH, higher activity and stability of ADI under physiological condition (pH 7.4), as well as reduced K(m) value. This study provides an insight into the molecular mechanism of the ADI activity, and also the experimental evidence for the rational protein evolution in the future.

  2. Preliminary Safety Analysis of the Gorleben Site: Safety Concept and Application to Scenario Development Based on a Site-Specific Features, Events and Processes (FEP) Database - 13304

    SciTech Connect

    Moenig, Joerg; Beuth, Thomas; Wolf, Jens; Lommerzheim, Andre; Mrugalla, Sabine

    2013-07-01

    Based upon the German safety criteria, released in 2010 by the Federal Ministry of the Environment (BMU), a safety concept and a safety assessment concept for the disposal of heat-generating high-level waste have both been developed in the framework of the preliminary safety case for the Gorleben site (Project VSG). The main objective of the disposal is to contain the radioactive waste inside a defined rock zone, which is called containment-providing rock zone. The radionuclides shall remain essentially at the emplacement site, and at the most, a small defined quantity of material shall be able to leave this rock zone. This shall be accomplished by the geological barrier and a technical barrier system, which is required to seal the inevitable penetration of the geological barrier by the construction of the mine. The safe containment has to be demonstrated for probable and less probable evolutions of the site, while evolutions with very low probability (less than 1 % over the demonstration period of 1 million years) need not to be considered. Owing to the uncertainty in predicting the real evolution of the site, plausible scenarios have been derived in a systematic manner. Therefore, a comprehensive site-specific features, events and processes (FEP) data base for the Gorleben site has been developed. The safety concept was directly taken into account, e.g. by identification of FEP with direct influence on the barriers that provide the containment. No effort was spared to identify the interactions of the FEP, their probabilities of occurrence, and their characteristics (values). The information stored in the data base provided the basis for the development of scenarios. The scenario development methodology is based on FEP related to an impairment of the functionality of a subset of barriers, called initial barriers. By taking these FEP into account in their probable characteristics the reference scenario is derived. Thus, the reference scenario describes a

  3. Potential sites of CFTR activation by tyrosine kinases

    PubMed Central

    Billet, Arnaud; Jia, Yanlin; Jensen, Timothy J.; Hou, Yue-Xian; Chang, Xiu-Bao; Riordan, John R.; Hanrahan, John W.

    2016-01-01

    ABSTRACT The CFTR chloride channel is tightly regulated by phosphorylation at multiple serine residues. Recently it has been proposed that its activity is also regulated by tyrosine kinases, however the tyrosine phosphorylation sites remain to be identified. In this study we examined 2 candidate tyrosine residues near the boundary between the first nucleotide binding domain and the R domain, a region which is important for channel function but devoid of PKA consensus sequences. Mutating tyrosines at positions 625 and 627 dramatically reduced responses to Src or Pyk2 without altering the activation by PKA, suggesting they may contribute to CFTR regulation. PMID:26645934

  4. MSK1 activity is controlled by multiple phosphorylation sites

    PubMed Central

    McCOY, Claire E.; Campbell, David G.; Deak, Maria; Bloomberg, Graham B.; Arthur, J. Simon C.

    2004-01-01

    MSK1 (mitogen- and stress-activated protein kinase) is a kinase activated in cells downstream of both the ERK1/2 (extracellular-signal-regulated kinase) and p38 MAPK (mitogen-activated protein kinase) cascades. In the present study, we show that, in addition to being phosphorylated on Thr-581 and Ser-360 by ERK1/2 or p38, MSK1 can autophosphorylate on at least six sites: Ser-212, Ser-376, Ser-381, Ser-750, Ser-752 and Ser-758. Of these sites, the N-terminal T-loop residue Ser-212 and the ‘hydrophobic motif’ Ser-376 are phosphorylated by the C-terminal kinase domain of MSK1, and their phosphorylation is essential for the catalytic activity of the N-terminal kinase domain of MSK1 and therefore for the phosphorylation of MSK1 substrates in vitro. Ser-381 is also phosphorylated by the C-terminal kinase domain, and mutation of Ser-381 decreases MSK1 activity, probably through the inhibition of Ser-376 phosphorylation. Ser-750, Ser-752 and Ser-758 are phosphorylated by the N-terminal kinase domain; however, their function is not known. The activation of MSK1 in cells therefore requires the activation of the ERK1/2 or p38 MAPK cascades and does not appear to require additional signalling inputs. This is in contrast with the closely related RSK (p90 ribosomal S6 kinase) proteins, whose activity requires phosphorylation by PDK1 (3-phosphoinositide-dependent protein kinase 1) in addition to phosphorylation by ERK1/2. PMID:15568999

  5. Structural features important for the biological activity of the potassium channel blocking dendrotoxins.

    PubMed

    Hollecker, M; Marshall, D L; Harvey, A L

    1993-10-01

    1. Dendrotoxins from mamba snake venoms are small proteins that block neuronal K+ channels. In order to investigate structural features associated with their biological activity, partially folded versions of dendrotoxins I and K from black mamba (Dendroaspis polylepis) were prepared by selectively reducing one or more of their three S-S bonds. 2. The modified toxins were tested for ability to compete with 125I-labelled native toxin I to high affinity binding sites on rat brain synaptosomal membranes and for the ability to increase acetylcholine release in a neuromuscular preparation. 3. Binding affinity increased progressively as the toxins folded to the native conformation and the most biologically active of the modified species were those in which only the disulphide bond between residues 14 and 38 was not formed. These intermediates had native-like conformations as determined by circular dichroism but still had about 5-10 times lower affinity than native toxins. 4. Addition of negatively charged groups to block the free sulthydryls at positions 14 and 38 caused a further, marked loss of activity. 5. The results are consistent with the existence of two important regions in the dendrotoxin molecules. The region containing two of the disulphide bonds (around Cys5-Cys55 and Cys30-Cys51) and much of the secondary structure is essential for the binding affinity of the toxins, while the region around Cys14 and Cys38, equivalent to part of the antiprotease site of the homologous protease inhibitor from bovine pancreas (BPTI), plays an important role in the potency of dendrotoxins.

  6. Pattern recognition of genomic features with microarrays: site typing of Mycobacterium tuberculosis strains

    PubMed Central

    Raychaudhuri, Soumya; Stuart, Joshua M.; Liu, Xuemin; Small, Peter M.; Altman, Russ B.

    2009-01-01

    Mycobacterium tuberculosis (M. tb.) strains differ in the number and locations of a transposon-like insertion sequence known as IS6110. Accurate detection of this sequence can be used as a fingerprint for individual strains, but can be difficult because of noisy data. In this paper, we propose a non-parametric discriminant analysis method for predicting the locations of the IS6110 sequence from microarray data. Polymerase chain reaction extension products generated from primers specific for the insertion sequence are hybridized to a microarray containing targets corresponding to each open reading frame in M. tb. To test for insertion sites, we use microarray intensity values extracted from small windows of contiguous open reading frames. Rank-transformation of spot intensities and first-order differences in local windows provide enough information to reliably determine the presence of an insertion sequence. The non-parametric approach outperforms all other methods tested in this study. PMID:10977090

  7. Novel architectural features of Bordetella pertussis fimbrial subunit promoters and their activation by the global virulence regulator BvgA

    PubMed Central

    Chen, Qing; Decker, Kimberly Baxter; Boucher, Philip E.; Hinton, Deborah; Stibitz, Scott

    2010-01-01

    SUMMARY A prominent feature of the promoters of Bordetella pertussis fimbrial subunit genes fim2, fim3, and fimX is the presence of a “C-stretch”, a monotonic run of C residues. The C-stretch renders these genes capable of phase-variation, through spontaneous variations in its length. For each of these we determined the length of the C-stretch that gave maximal transcriptional activity, and found that the three optimized promoters align perfectly, with identical distances between conserved upstream sequences and the downstream −10 elements and transcriptional start sites. We also demonstrated, for Pfim3, that the conserved sequence corresponds to BvgA-binding sites. The more upstream of the two binding sites is predicted to be high affinity, by comparison to a functionally-derived consensus BvgA-binding sequence. The other binding site is a fairly poor match to this consensus, with 10 of 14 bp belonging to the C-stretch. Interestingly, the center of this downstream site of BvgA binding coincides exactly with the center of the expected typical location of a −35 sequence. However, the lack of a recognizable −35 element (CCCCCC vs. TTGACA), and the occupation of this site by BvgA~P suggest that activation of the fim promoters involves unusual interactions among BvgA, RNA polymerase, and promoter DNA. PMID:20662776

  8. Managing Dive Tourism for the Sustainable Use of Coral Reefs: Validating Diver Perceptions of Attractive Site Features

    NASA Astrophysics Data System (ADS)

    Uyarra, Maria C.; Watkinson, Andrew R.; Côté, Isabelle M.

    2009-01-01

    It has been argued that strategies to manage natural areas important for tourism and recreation should integrate an understanding of tourist preferences for specific natural features. However, the accuracy of tourist recalled perceptions of environmental attributes, which are usually derived from post hoc surveys and used to establish management priorities, is currently unmeasured. We tested the validity of the relationship between tourist-stated preferences and actual condition of coral reefs around the Caribbean island of Bonaire. Using standardized questionnaires, we asked 200 divers to select their most and least favorite dive sites and the attributes that contributed to that selection. We also carried out ecological surveys at 76 of the 81 dives sites around the island to assess the actual conditions of the attributes indicated as important for site selection. Fish- and coral-related attributes were key features affecting dive enjoyment. In general, divers appeared to be able to perceive differences between sites in the true condition of biological attributes such as fish species richness, total number of fish schools, live coral cover, coral species richness, and reef structural complexity, although men and women divers differed in their ability to perceive/recall some of the attributes. Perceived differences in environmental attributes, such as surface conditions, underwater current, and the likelihood of encountering rare fish and sea turtles, were not empirically validated. The fact that divers perceive correctly differences in the condition of some of the key biological attributes that affect dive enjoyment reinforces the need to maintain overall reef condition at satisfactory levels. However, variation in accuracy of perceptions owing to demographic factors and attribute type suggests the need for caution when using public perceptions to develop environmental management strategies, particularly for coral reefs.

  9. Managing dive tourism for the sustainable use of coral reefs: validating diver perceptions of attractive site features.

    PubMed

    Uyarra, Maria C; Watkinson, Andrew R; Côté, Isabelle M

    2009-01-01

    It has been argued that strategies to manage natural areas important for tourism and recreation should integrate an understanding of tourist preferences for specific natural features. However, the accuracy of tourist recalled perceptions of environmental attributes, which are usually derived from post hoc surveys and used to establish management priorities, is currently unmeasured. We tested the validity of the relationship between tourist-stated preferences and actual condition of coral reefs around the Caribbean island of Bonaire. Using standardized questionnaires, we asked 200 divers to select their most and least favorite dive sites and the attributes that contributed to that selection. We also carried out ecological surveys at 76 of the 81 dives sites around the island to assess the actual conditions of the attributes indicated as important for site selection. Fish- and coral-related attributes were key features affecting dive enjoyment. In general, divers appeared to be able to perceive differences between sites in the true condition of biological attributes such as fish species richness, total number of fish schools, live coral cover, coral species richness, and reef structural complexity, although men and women divers differed in their ability to perceive/recall some of the attributes. Perceived differences in environmental attributes, such as surface conditions, underwater current, and the likelihood of encountering rare fish and sea turtles, were not empirically validated. The fact that divers perceive correctly differences in the condition of some of the key biological attributes that affect dive enjoyment reinforces the need to maintain overall reef condition at satisfactory levels. However, variation in accuracy of perceptions owing to demographic factors and attribute type suggests the need for caution when using public perceptions to develop environmental management strategies, particularly for coral reefs.

  10. Site History and Edaphic Features Override the Influence of Plant Species on Microbial Communities in Restored Tidal Freshwater Wetlands

    PubMed Central

    Prasse, Christine E.; Baldwin, Andrew H.

    2015-01-01

    Restored wetland soils differ significantly in physical and chemical properties from their natural counterparts even when plant community compositions are similar, but effects of restoration on microbial community composition and function are not well understood. Here, we investigate plant-microbe relationships in restored and natural tidal freshwater wetlands from two subestuaries of the Chesapeake Bay. Soil samples were collected from the root zone of Typha latifolia, Phragmites australis, Peltandra virginica, and Lythrum salicaria. Soil microbial composition was assessed using 454 pyrosequencing, and genes representing bacteria, archaea, denitrification, methanogenesis, and methane oxidation were quantified. Our analysis revealed variation in some functional gene copy numbers between plant species within sites, but intersite comparisons did not reveal consistent plant-microbe trends. We observed more microbial variations between plant species in natural wetlands, where plants have been established for a long period of time. In the largest natural wetland site, sequences putatively matching methanogens accounted for ∼17% of all sequences, and the same wetland had the highest numbers of genes coding for methane coenzyme A reductase (mcrA). Sequences putatively matching aerobic methanotrophic bacteria and anaerobic methane-oxidizing archaea (ANME) were detected in all sites, suggesting that both aerobic and anaerobic methane oxidation are possible in these systems. Our data suggest that site history and edaphic features override the influence of plant species on microbial communities in restored wetlands. PMID:25769832

  11. Site history and edaphic features override the influence of plant species on microbial communities in restored tidal freshwater wetlands.

    PubMed

    Prasse, Christine E; Baldwin, Andrew H; Yarwood, Stephanie A

    2015-05-15

    Restored wetland soils differ significantly in physical and chemical properties from their natural counterparts even when plant community compositions are similar, but effects of restoration on microbial community composition and function are not well understood. Here, we investigate plant-microbe relationships in restored and natural tidal freshwater wetlands from two subestuaries of the Chesapeake Bay. Soil samples were collected from the root zone of Typha latifolia, Phragmites australis, Peltandra virginica, and Lythrum salicaria. Soil microbial composition was assessed using 454 pyrosequencing, and genes representing bacteria, archaea, denitrification, methanogenesis, and methane oxidation were quantified. Our analysis revealed variation in some functional gene copy numbers between plant species within sites, but intersite comparisons did not reveal consistent plant-microbe trends. We observed more microbial variations between plant species in natural wetlands, where plants have been established for a long period of time. In the largest natural wetland site, sequences putatively matching methanogens accounted for ∼17% of all sequences, and the same wetland had the highest numbers of genes coding for methane coenzyme A reductase (mcrA). Sequences putatively matching aerobic methanotrophic bacteria and anaerobic methane-oxidizing archaea (ANME) were detected in all sites, suggesting that both aerobic and anaerobic methane oxidation are possible in these systems. Our data suggest that site history and edaphic features override the influence of plant species on microbial communities in restored wetlands.

  12. [Study of intellectual activity in twins. I. Developmental features].

    PubMed

    Kantonistova, N S

    1980-01-01

    The investigation of 234 twins and 100 singletons at the age from 7 till 16 years old was carried out by WISC method. The intellectual development of twins was established to fall behind singletons at the expense of lower level of verbal intellectual functions. It is due to organic changes of nervous system, arising as the result of the action of unfavourable factors during antenatal period. Slight asphyxia and prematurity as well as the order of birth do not exert essential effect on intellectual development of twins. Low weight at birth combines with lower intellectual index only in cases when lowering of weight is due to the action of unfavourable factors during intrauterine period. "Twins situation" apparently renders positive influence on twins intellectual activity during school are, distracting children's attention in cases of unfavourable psychological situation in family. Intellectual environment renders positive influence on intellectual development of twins.

  13. Functional diversity, soil features and community functioning: a test in a cerrado site.

    PubMed

    Freitas, J R; Cianciaruso, M V; Batalha, M A

    2012-08-01

    Community functioning may be affected by functional diversity, which measures the extent of complementarity in resource use. We tested whether there was a relationship between functional diversity of woody species and community functioning on a fine scale, using FD as a measure of functional diversity and litter decomposition rate as a surrogate for community functioning. We measured eight functional traits from a woodland cerrado community in southeastern Brazil. Then, we tested the correlation between FD and the decomposition rate taking into account differences in soil features and between decomposition rate and each trait separately. The decomposition rate was related to the aluminium and phosphorus concentration in soil, but not to FD, pointing out that functional diversity was not a good predictor of community functioning. There was a non-significant relationship between FD and the decomposition rate even when we considered each trait separately. Most studies in the relationships between biodiversity and community functioning on fine scales were carried out by experimental manipulation of diversity and in temperate regions. We carried out this fine scale study as a mensurative experiment and in a tropical savanna. Our findings indicated that the relationship between biodiversity and community functioning is not as straightforward as usually assumed.

  14. Current activities handbook: formerly utilized sites remedial action program

    SciTech Connect

    1981-02-27

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the activities each of the thirteen state legislatures potentially affected by the Formerly Utilized Sites Remedial Action Program. It contains a description of the state legislative procedural rules and a schedule of each legislative session; a summary of pending relevant legislation; the name and telephone number of legislative and state agency contacts; and the full text of all bills identified.

  15. Vitamin K epoxide reductase: homology, active site and catalytic mechanism.

    PubMed

    Goodstadt, Leo; Ponting, Chris P

    2004-06-01

    Vitamin K epoxide reductase (VKOR) recycles reduced vitamin K, which is used subsequently as a co-factor in the gamma-carboxylation of glutamic acid residues in blood coagulation enzymes. VKORC1, a subunit of the VKOR complex, has recently been shown to possess this activity. Here, we show that VKORC1 is a member of a large family of predicted enzymes that are present in vertebrates, Drosophila, plants, bacteria and archaea. Four cysteine residues and one residue, which is either serine or threonine, are identified as likely active-site residues. In some plant and bacterial homologues the VKORC1 homologous domain is fused with domains of the thioredoxin family of oxidoreductases. These might reduce disulfide bonds of VKORC1-like enzymes as a prerequisite for their catalytic activities.

  16. 3D modelling of facade features on large sites acquired by vehicle based laser scanning

    NASA Astrophysics Data System (ADS)

    Boulaassal, H.; Landes, T.; Grussenmeyer, P.

    2011-12-01

    Mobile mapping laser scanning systems have become more and more widespread for the acquisition of millions of 3D points on large and geometrically complex urban sites. Vehicle-based Laser Scanning (VLS) systems travel many kilometers while acquiring raw point clouds which are registered in real time in a common coordinate system. Improvements of the acquisition steps as well as the automatic processing of the collected point clouds are still a conundrum for researchers. This paper shows some results obtained by application, on mobile laser scanner data, of segmentation and reconstruction algorithms intended initially to generate individual vector facade models using stationary Terrestrial Laser Scanner (TLS) data. The operating algorithms are adapted so as to take into account characteristics of VLS data. The intrinsic geometry of a point cloud as well as the relative geometry between registered point clouds are different from that obtained by a static TLS. The amount of data provided by this acquisition technique is another issue. Such particularities should be taken into consideration while processing this type of point clouds. The segmentation of VLS data is carried out based on an adaptation of RANSAC algorithm. Edge points of each element are extracted by applying a second algorithm. Afterwards, the vector models of each facade element are reconstructed. In order to validate the results, large samples with different characteristics have been introduced in the developed processing chain. The limitations as well as the capabilities of each process will be emphasized in terms of geometry and processing time.

  17. Observing the formation of ice and organic crystals in active sites.

    PubMed

    Campbell, James M; Meldrum, Fiona C; Christenson, Hugo K

    2017-01-31

    Heterogeneous nucleation is vital to a wide range of areas as diverse as ice nucleation on atmospheric aerosols and the fabrication of high-performance thin films. There is excellent evidence that surface topography is a key factor in directing crystallization in real systems; however, the mechanisms by which nanoscale pits and pores promote nucleation remain unclear. Here, we use natural cleavage defects on Muscovite mica to investigate the activity of topographical features in the nucleation from vapor of ice and various organic crystals. Direct observation of crystallization within surface pockets using optical microscopy and also interferometry demonstrates that these sharply acute features provide extremely effective nucleation sites and allows us to determine the mechanism by which this occurs. A confined phase is first seen to form along the apex of the wedge and then grows out of the pocket opening to generate a bulk crystal after a threshold saturation has been achieved. Ice nucleation proceeds in a comparable manner, although our resolution is insufficient to directly observe a condensate before the growth of a bulk crystal. These results provide insight into the mechanism of crystal deposition from vapor on real surfaces, where this will ultimately enable us to use topography to control crystal deposition on surfaces. They are also particularly relevant to our understanding of processes such as cirrus cloud formation, where such topographical features are likely candidates for the "active sites" that make clay particles effective nucleants for ice in the atmosphere.

  18. Identification of covalent active site inhibitors of dengue virus protease

    PubMed Central

    Koh-Stenta, Xiaoying; Joy, Joma; Wang, Si Fang; Kwek, Perlyn Zekui; Wee, John Liang Kuan; Wan, Kah Fei; Gayen, Shovanlal; Chen, Angela Shuyi; Kang, CongBao; Lee, May Ann; Poulsen, Anders; Vasudevan, Subhash G; Hill, Jeffrey; Nacro, Kassoum

    2015-01-01

    Dengue virus (DENV) protease is an attractive target for drug development; however, no compounds have reached clinical development to date. In this study, we utilized a potent West Nile virus protease inhibitor of the pyrazole ester derivative class as a chemical starting point for DENV protease drug development. Compound potency and selectivity for DENV protease were improved through structure-guided small molecule optimization, and protease-inhibitor binding interactions were validated biophysically using nuclear magnetic resonance. Our work strongly suggests that this class of compounds inhibits flavivirus protease through targeted covalent modification of active site serine, contrary to an allosteric binding mechanism as previously described. PMID:26677315

  19. Assessment of activation products in the Savannah River Site environment

    SciTech Connect

    Carlton, W.H.; Denham, M.

    1996-07-01

    This document assesses the impact of radioactive activation products released from SRS facilities since the first reactor became operational late in 1953. The isotopes reported here are those whose release resulted in the highest dose to people living near SRS: {sup 32}P, {sup 51}Cr, {sup 60}C, and {sup 65}Zn. Release pathways, emission control features, and annual releases to the aqueous and atmospheric environments are discussed. No single incident has resulted in a major acute release of activation products to the environment. The releases were the result of normal operations of the reactors and separations facilities. Releases declined over the years as better controls were established and production was reduced. The overall radiological impact of SRS activation product atmospheric releases from 1954 through 1994 on the offsite maximally exposed individual can be characterized by a total dose of 0.76 mrem. During the same period, such an individual received a total dose of 14,400 mrem from non-SRS sources of ionizing radiation present in the environment. SRS activation product aqueous releases between 1954 and 1994 resulted in a total dose of 54 mrem to the offsite maximally exposed individual. The impact of SRS activation product releases on offsite populations also has been evaluated.

  20. Independent component feature-based human activity recognition via Linear Discriminant Analysis and Hidden Markov Model.

    PubMed

    Uddin, Md; Lee, J J; Kim, T S

    2008-01-01

    In proactive computing, human activity recognition from image sequences is an active research area. This paper presents a novel approach of human activity recognition based on Linear Discriminant Analysis (LDA) of Independent Component (IC) features from shape information. With extracted features, Hidden Markov Model (HMM) is applied for training and recognition. The recognition performance using LDA of IC features has been compared to other approaches including Principle Component Analysis (PCA), LDA of PC, and ICA. The preliminary results show much improved performance in the recognition rate with our proposed method.

  1. Neural Detection of Malicious Network Activities Using a New Direct Parsing and Feature Extraction Technique

    DTIC Science & Technology

    2015-09-01

    NETWORK ACTIVITIES USING A NEW DIRECT PARSING AND FEATURE EXTRACTION TECHNIQUE by Cheng Hong Low September 2015 Thesis Advisor: Phillip Pace Co...FEATURE EXTRACTION TECHNIQUE 5. FUNDING NUMBERS 6. AUTHOR(S) Low, Cheng Hong 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Center for...FEATURE EXTRACTION TECHNIQUE Cheng Hong Low Civlian, ST Aerospace, Singapore M.Sc., National University of Singapore, 2012 Submitted in

  2. Structural evolution of luciferase activity in Zophobas mealworm AMP/CoA-ligase (protoluciferase) through site-directed mutagenesis of the luciferin binding site.

    PubMed

    Prado, R A; Barbosa, J A; Ohmiya, Y; Viviani, V R

    2011-07-01

    The structural origin and evolution of bioluminescent activity of beetle luciferases from AMP/CoA ligases remains a mystery. Previously we cloned the luciferase-like enzyme from Zophobas morio mealworm, a reasonable protoluciferase model that could shine light on this mystery. Kinetic characterization and studies with D- and L-luciferin and their adenylates showed that stereoselectivity constitutes a critical feature for the origin of luciferase activity in AMP/CoA ligases. Comparison of the primary structures and modeling studies of this protoluciferase and the three main families of beetle luciferases showed that the carboxylic acid substrate binding site of this enzyme is smaller and more hydrophobic than the luciferin binding site of beetle luciferases, showing several substitutions of otherwise conserved residues. Thus, here we performed a site-directed mutagenesis survey of the carboxylic binding site motifs of the protoluciferase by replacing their residues by the respective conserved ones found in beetle luciferases in order to identify the structural determinants of luciferase/oxygenase activity. Although most of the substitutions had negative impact on the luminescence activity of the protoluciferase, only the substitution I327T improved the luminescence activity, resulting in a broad and 15 nm blue-shifted luminescence spectrum. Such substitution indicates the importance of the loop motif 322YGMSEI327 (341YGLTETT347 in Photinus pyralis luciferase) for luciferase activity, and indicates a possible route for the evolution of bioluminescence function of beetle luciferases.

  3. Organisation and features of hospital, intermediate care and social services in English sites with low rates of delayed discharge.

    PubMed

    Baumann, Matt; Evans, Sherrill; Perkins, Margaret; Curtis, Lesley; Netten, Ann; Fernandez, Jose-Luis; Huxley, Peter

    2007-07-01

    In recent years, there has been significant concern, and policy activity, in relation to the problem of delayed discharges from hospital. Key elements of policy to tackle delays include new investment, the establishment of the Health and Social Care Change Agent Team, and the implementation of the Community Care (Delayed Discharge) Act 2003. Whilst the problem of delays has been widespread, some authorities have managed to tackle delays successfully. The aim of the qualitative study reported here was to investigate discharge practice and the organisation of services at sites with consistently low rates of delay, in order to identify factors supporting such good performance. Six 'high performing' English sites (each including a hospital trust, a local authority, and a primary care trust) were identified using a statistical model, and 42 interviews were undertaken with health and social services staff involved in discharge arrangements. Additionally, the authors set out to investigate the experiences of patients in the sites to examine whether there was a cost to patient care and outcomes of discharge arrangements in these sites, but unfortunately, it was not possible to secure sufficient patient participation. Whilst acknowledging the lack of patient experience and outcome data, a range of service elements was identified at the sites that contribute to the avoidance of delays, either through supporting efficiency within individual agencies or enabling more efficient joint working. Sites still struggling with delays should benefit from knowledge of this range. The government's reimbursement scheme appears to have been largely helpful in the study sites, prompting efficiency-driven changes to the organisation of services and discharge systems, but further focused research is required to provide clear evidence of its impact nationally, and in particular, how it impacts on staff, and patients and their families.

  4. Target-classification approach applied to active UXO sites

    NASA Astrophysics Data System (ADS)

    Shubitidze, F.; Fernández, J. P.; Shamatava, Irma; Barrowes, B. E.; O'Neill, K.

    2013-06-01

    This study is designed to illustrate the discrimination performance at two UXO active sites (Oklahoma's Fort Sill and the Massachusetts Military Reservation) of a set of advanced electromagnetic induction (EMI) inversion/discrimination models which include the orthonormalized volume magnetic source (ONVMS), joint diagonalization (JD), and differential evolution (DE) approaches and whose power and flexibility greatly exceed those of the simple dipole model. The Fort Sill site is highly contaminated by a mix of the following types of munitions: 37-mm target practice tracers, 60-mm illumination mortars, 75-mm and 4.5'' projectiles, 3.5'', 2.36'', and LAAW rockets, antitank mine fuzes with and without hex nuts, practice MK2 and M67 grenades, 2.5'' ballistic windshields, M2A1-mines with/without bases, M19-14 time fuzes, and 40-mm practice grenades with/without cartridges. The site at the MMR site contains targets of yet different sizes. In this work we apply our models to EMI data collected using the MetalMapper (MM) and 2 × 2 TEMTADS sensors. The data for each anomaly are inverted to extract estimates of the extrinsic and intrinsic parameters associated with each buried target. (The latter include the total volume magnetic source or NVMS, which relates to size, shape, and material properties; the former includes location, depth, and orientation). The estimated intrinsic parameters are then used for classification performed via library matching and the use of statistical classification algorithms; this process yielded prioritized dig-lists that were submitted to the Institute for Defense Analyses (IDA) for independent scoring. The models' classification performance is illustrated and assessed based on these independent evaluations.

  5. Function Follows Form: Activation of Shape and Function Features during Object Identification

    ERIC Educational Resources Information Center

    Yee, Eiling; Huffstetler, Stacy; Thompson-Schill, Sharon L.

    2011-01-01

    Most theories of semantic memory characterize knowledge of a given object as comprising a set of semantic features. But how does conceptual activation of these features proceed during object identification? We present the results of a pair of experiments that demonstrate that object recognition is a dynamically unfolding process in which function…

  6. Identification of Phosphorylation Sites Altering Pollen Soluble Inorganic Pyrophosphatase Activity.

    PubMed

    Eaves, Deborah J; Haque, Tamanna; Tudor, Richard L; Barron, Yoshimi; Zampronio, Cleidiane G; Cotton, Nicholas P J; de Graaf, Barend H J; White, Scott A; Cooper, Helen J; Franklin, F Christopher H; Harper, Jeffery F; Franklin-Tong, Vernonica E

    2017-03-01

    Protein phosphorylation regulates numerous cellular processes. Identifying the substrates and protein kinases involved is vital to understand how these important posttranslational modifications modulate biological function in eukaryotic cells. Pyrophosphatases catalyze the hydrolysis of inorganic phosphate (PPi) to inorganic phosphate Pi, driving biosynthetic reactions; they are essential for low cytosolic inorganic phosphate. It was suggested recently that posttranslational regulation of Family I soluble inorganic pyrophosphatases (sPPases) may affect their activity. We previously demonstrated that two pollen-expressed sPPases, Pr-p26.1a and Pr-p26.1b, from the flowering plant Papaver rhoeas were inhibited by phosphorylation. Despite the potential significance, there is a paucity of data on sPPase phosphorylation and regulation. Here, we used liquid chromatographic tandem mass spectrometry to map phosphorylation sites to the otherwise divergent amino-terminal extensions on these pollen sPPases. Despite the absence of reports in the literature on mapping phosphorylation sites on sPPases, a database survey of various proteomes identified a number of examples, suggesting that phosphorylation may be a more widely used mechanism to regulate these enzymes. Phosphomimetic mutants of Pr-p26.1a/b significantly and differentially reduced PPase activities by up to 2.5-fold at pH 6.8 and 52% in the presence of Ca(2+) and hydrogen peroxide over unmodified proteins. This indicates that phosphoregulation of key sites can inhibit the catalytic responsiveness of these proteins in concert with key intracellular events. As sPPases are essential for many metabolic pathways in eukaryotic cells, our findings identify the phosphorylation of sPPases as a potential master regulatory mechanism that could be used to attenuate metabolism.

  7. Evidence for segmental mobility in the active site of pepsin

    SciTech Connect

    Pohl, J.; Strop, P.; Senn, H.; Foundling, S.; Kostka, V.

    1986-05-01

    The low hydrolytic activity (k/sub cat/ < 0.001 s/sup -1/) of chicken pepsin (CP) towards tri- and tetrapeptides is enhanced at least 100 times by modification of its single sulfhydryl group of Cys-115, with little effect on K/sub m/-values. Modification thus simulates the effect of secondary substrate binding on pepsin catalysis. The rate of Cys-115 modification is substantially decreased in the presence of some competitive inhibitors, suggesting its active site location. Experiments with CP alkylated at Cys-115 with Acrylodan as a fluorescent probe or with N-iodoacetyl-(4-fluoro)-aniline as a /sup 19/F-nmr probe suggest conformation change around Cys-115 to occur on substrate or substrate analog binding. The difference /sup 1/H-nmr spectra (500 MHz) of unmodified free and inhibitor-complexed CP reveal chemical shifts almost exclusively in the aromatic region. The effects of Cu/sup + +/ on /sup 19/F- and /sup 1/H-nmr spectra have been studied. Examination of a computer graphics model of CP based on E. parasitica pepsin-inhibitor complex X-ray coordinates suggests that Cys-115 is located near the S/sub 3//S/sub 5/ binding site. The results are interpreted in favor of segmental mobility of this region important for pepsin substrate binding and catalysis.

  8. Identifying Key Features of Effective Active Learning: The Effects of Writing and Peer Discussion

    ERIC Educational Resources Information Center

    Linton, Debra L.; Pangle, Wiline M.; Wyatt, Kevin H.; Powell, Karli N.; Sherwood, Rachel E.

    2014-01-01

    We investigated some of the key features of effective active learning by comparing the outcomes of three different methods of implementing active-learning exercises in a majors introductory biology course. Students completed activities in one of three treatments: discussion, writing, and discussion + writing. Treatments were rotated weekly between…

  9. C-H Activation on Co,O Sites: Isolated Surface Sites versus Molecular Analogs.

    PubMed

    Estes, Deven P; Siddiqi, Georges; Allouche, Florian; Kovtunov, Kirill V; Safonova, Olga V; Trigub, Alexander L; Koptyug, Igor V; Copéret, Christophe

    2016-11-16

    The activation and conversion of hydrocarbons is one of the most important challenges in chemistry. Transition-metal ions (V, Cr, Fe, Co, etc.) isolated on silica surfaces are known to catalyze such processes. The mechanisms of these processes are currently unknown but are thought to involve C-H activation as the rate-determining step. Here, we synthesize well-defined Co(II) ions on a silica surface using a metal siloxide precursor followed by thermal treatment under vacuum at 500 °C. We show that these isolated Co(II) sites are catalysts for a number of hydrocarbon conversion reactions, such as the dehydrogenation of propane, the hydrogenation of propene, and the trimerization of terminal alkynes. We then investigate the mechanisms of these processes using kinetics, kinetic isotope effects, isotopic labeling experiments, parahydrogen induced polarization (PHIP) NMR, and comparison with a molecular analog. The data are consistent with all of these reactions occurring by a common mechanism, involving heterolytic C-H or H-H activation via a 1,2 addition across a Co-O bond.

  10. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer

    PubMed Central

    Dinpajooh, Mohammadhasan; Martin, Daniel R.; Matyushov, Dmitry V.

    2016-01-01

    Enzymes in biology’s energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work. PMID:27306204

  11. Active Sites Environmental Monitoring Program: Program plan. Revision 1

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  12. A concept for extraction of habitat features from laser scanning and hypersprectral imaging for evaluation of Natura 2000 sites - the ChangeHabitats2 project approach

    NASA Astrophysics Data System (ADS)

    Székely, B.; Kania, A.; Pfeifer, N.; Heilmeier, H.; Tamás, J.; Szöllősi, N.; Mücke, W.

    2012-04-01

    The goal of the ChangeHabitats2 project is the development of cost- and time-efficient habitat assessment strategies by employing effective field work techniques supported by modern airborne remote sensing methods, i.e. hyperspectral imagery and laser scanning (LiDAR). An essential task of the project is the design of a novel field work technique that on the one hand fulfills the reporting requirements of the Flora-Fauna-Habitat (FFH-) directive and on the other hand serves as a reference for the aerial data analysis. Correlations between parameters derived from remotely sensed data and terrestrial field measurements shall be exploited in order to create half- or fully-automated methods for the extraction of relevant Natura2000 habitat parameters. As a result of these efforts a comprehensive conceptual model has been developed for extraction and integration of Natura 2000 relevant geospatial data. This scheme is an attempt to integrate various activities within ChangeHabitats2 project defining pathways of development, as well as encompassing existing data processing chains, theoretical approaches and field work. The conceptual model includes definition of processing levels (similar to those existing in remote sensing), whereas these levels cover the range from the raw data to the extracted habitat feature. For instance, the amount of dead wood (standing or lying on the surface) is an important evaluation criterion for the habitat. The tree trunks lying on the ground surface typically can be extracted from the LiDAR point cloud, and the amount of wood can be estimated accordingly. The final result will be considered as a habitat feature derived from laser scanning data. Furthermore, we are also interested not only in the determination of the specific habitat feature, but also in the detection of its variations (especially in deterioration). In this approach the variation of this important habitat feature is considered to be a differential habitat feature, that can

  13. Active Site and Laminarin Binding in Glycoside Hydrolase Family 55*

    PubMed Central

    Bianchetti, Christopher M.; Takasuka, Taichi E.; Deutsch, Sam; Udell, Hannah S.; Yik, Eric J.; Bergeman, Lai F.; Fox, Brian G.

    2015-01-01

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100–10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. PMID:25752603

  14. The crystal structure of Pseudomonas putida azoreductase - the active site revisited.

    PubMed

    Gonçalves, Ana Maria D; Mendes, Sónia; de Sanctis, Daniele; Martins, Lígia O; Bento, Isabel

    2013-12-01

    The enzymatic degradation of azo dyes begins with the reduction of the azo bond. In this article, we report the crystal structures of the native azoreductase from Pseudomonas putida MET94 (PpAzoR) (1.60 Å), of PpAzoR in complex with anthraquinone-2-sulfonate (1.50 Å), and of PpAzoR in complex with Reactive Black 5 dye (1.90 Å). These structures reveal the residues and subtle changes that accompany substrate binding and release. Such changes highlight the fine control of access to the catalytic site that is required by the ping-pong mechanism, and in turn the specificity offered by the enzyme towards different substrates. The topology surrounding the active site shows novel features of substrate recognition and binding that help to explain and differentiate the substrate specificity observed among different bacterial azoreductases.

  15. Metal active site elasticity linked to activation of homocysteine in methionine synthases

    SciTech Connect

    Koutmos, Markos; Pejchal, Robert; Bomer, Theresa M.; Matthews, Rowena G.; Smith, Janet L.; Ludwig, Martha L.

    2008-04-02

    Enzymes possessing catalytic zinc centers perform a variety of fundamental processes in nature, including methyl transfer to thiols. Cobalamin-independent (MetE) and cobalamin-dependent (MetH) methionine synthases are two such enzyme families. Although they perform the same net reaction, transfer of a methyl group from methyltetrahydrofolate to homocysteine (Hcy) to form methionine, they display markedly different catalytic strategies, modular organization, and active site zinc centers. Here we report crystal structures of zinc-replete MetE and MetH, both in the presence and absence of Hcy. Structural investigation of the catalytic zinc sites of these two methyltransferases reveals an unexpected inversion of zinc geometry upon binding of Hcy and displacement of an endogenous ligand in both enzymes. In both cases a significant movement of the zinc relative to the protein scaffold accompanies inversion. These structures provide new information on the activation of thiols by zinc-containing enzymes and have led us to propose a paradigm for the mechanism of action of the catalytic zinc sites in these and related methyltransferases. Specifically, zinc is mobile in the active sites of MetE and MetH, and its dynamic nature helps facilitate the active site conformational changes necessary for thiol activation and methyl transfer.

  16. An Active Site Water Network in the Plasminogen Activator Pla from Yersinia pestis

    SciTech Connect

    Eren, Elif; Murphy, Megan; Goguen, Jon; van den Berg, Bert

    2010-08-13

    The plasminogen activator Pla from Yersinia pestis is an outer membrane protease (omptin) that is important for the virulence of plague. Here, we present the high-resolution crystal structure of wild-type, enzymatically active Pla at 1.9 {angstrom}. The structure shows a water molecule located between active site residues D84 and H208, which likely corresponds to the nucleophilic water. A number of other water molecules are present in the active site, linking residues important for enzymatic activity. The R211 sidechain in loop L4 is close to the nucleophilic water and possibly involved in the stabilization of the oxyanion intermediate. Subtle conformational changes of H208 result from the binding of lipopolysaccharide to the outside of the barrel, explaining the unusual dependence of omptins on lipopolysaccharide for activity. The Pla structure suggests a model for the interaction with plasminogen substrate and provides a more detailed understanding of the catalytic mechanism of omptin proteases.

  17. An active site water network in the plasminogen activator pla from Yersinia pestis.

    PubMed

    Eren, Elif; Murphy, Megan; Goguen, Jon; van den Berg, Bert

    2010-07-14

    The plasminogen activator Pla from Yersinia pestis is an outer membrane protease (omptin) that is important for the virulence of plague. Here, we present the high-resolution crystal structure of wild-type, enzymatically active Pla at 1.9 A. The structure shows a water molecule located between active site residues D84 and H208, which likely corresponds to the nucleophilic water. A number of other water molecules are present in the active site, linking residues important for enzymatic activity. The R211 sidechain in loop L4 is close to the nucleophilic water and possibly involved in the stabilization of the oxyanion intermediate. Subtle conformational changes of H208 result from the binding of lipopolysaccharide to the outside of the barrel, explaining the unusual dependence of omptins on lipopolysaccharide for activity. The Pla structure suggests a model for the interaction with plasminogen substrate and provides a more detailed understanding of the catalytic mechanism of omptin proteases.

  18. Orientations and other features of the Neolithic 'giants' churches' of Finland from on-site and lidar observations

    NASA Astrophysics Data System (ADS)

    Ridderstad, M. P.

    2015-07-01

    The orientations and placement of 52 Neolithic stone enclosures in Finland known as 'Giants' Churches' were analysed. In addition, other characteristic features, such as cairns and standing stones in or near the Giants' Churches, were investigated. The axis and gate orientations of the structures were measured using both on-site and airborne laser scanning (lidar) observations. The results showed lidar observations to be useful in archaeoastronomical analysis as a complementary tool to be used with on-site measurements and observations. The Giants' Churches were found to be orientations towards certain solar and lunar events that could have acted as 'seasonal pointers'. The orientations of the gates of the GCs were found to replicate the axis orientations to a large degree. The majority (over 90%) of the GCs were positioned on the eastern or southeastern side of the ridge they were built on, indicating the interest of the builders in the eastern horizon and possibly the rising of celestial bodies. The orientations of large (>35-m long) Giants' Churches and small (≤35-m long) ones were compared. The observed differences in the orientations of these two groups suggested that the structures traditionally known as Giants' Churches may be a heterogeneous group consisting of at least two types of structures represented in this study by the two selected size groups. Many large GCs were found to have been oriented towards the solstices, while the smaller ones did not show this feature. It is possible that the smaller Giants' Churches were oriented towards the Moon, while the larger ones were associated to solar events. The smaller Giants' Churches could be the remains of large houses or otherwise belong to a different tradition of construction.

  19. Human activity recognition based on feature selection in smart home using back-propagation algorithm.

    PubMed

    Fang, Hongqing; He, Lei; Si, Hao; Liu, Peng; Xie, Xiaolei

    2014-09-01

    In this paper, Back-propagation(BP) algorithm has been used to train the feed forward neural network for human activity recognition in smart home environments, and inter-class distance method for feature selection of observed motion sensor events is discussed and tested. And then, the human activity recognition performances of neural network using BP algorithm have been evaluated and compared with other probabilistic algorithms: Naïve Bayes(NB) classifier and Hidden Markov Model(HMM). The results show that different feature datasets yield different activity recognition accuracy. The selection of unsuitable feature datasets increases the computational complexity and degrades the activity recognition accuracy. Furthermore, neural network using BP algorithm has relatively better human activity recognition performances than NB classifier and HMM.

  20. Active Site Loop Conformation Regulates Promiscuous Activity in a Lactonase from Geobacillus kaustophilus HTA426

    PubMed Central

    Zhang, Yu; An, Jiao; Yang, Guang-Yu; Bai, Aixi; Zheng, Baisong; Lou, Zhiyong; Wu, Geng; Ye, Wei; Chen, Hai-Feng; Feng, Yan; Manco, Giuseppe

    2015-01-01

    Enzyme promiscuity is a prerequisite for fast divergent evolution of biocatalysts. A phosphotriesterase-like lactonase (PLL) from Geobacillus kaustophilus HTA426 (GkaP) exhibits main lactonase and promiscuous phosphotriesterase activities. To understand its catalytic and evolutionary mechanisms, we investigated a “hot spot” in the active site by saturation mutagenesis as well as X-ray crystallographic analyses. We found that position 99 in the active site was involved in substrate discrimination. One mutant, Y99L, exhibited 11-fold improvement over wild-type in reactivity (kcat/Km) toward the phosphotriesterase substrate ethyl-paraoxon, but showed 15-fold decrease toward the lactonase substrate δ-decanolactone, resulting in a 157-fold inversion of the substrate specificity. Structural analysis of Y99L revealed that the mutation causes a ∼6.6 Å outward shift of adjacent loop 7, which may cause increased flexibility of the active site and facilitate accommodation and/or catalysis of organophosphate substrate. This study provides for the PLL family an example of how the evolutionary route from promiscuity to specificity can derive from very few mutations, which promotes alteration in the conformational adjustment of the active site loops, in turn draws the capacity of substrate binding and activity. PMID:25706379

  1. Redd site selection and spawning habitat use by fall chinook salmon: The importance of geomorphic features in large rivers

    SciTech Connect

    Geist, D.R. |; Dauble, D.D.

    1998-09-01

    Knowledge of the three-dimensional connectivity between rivers and groundwater within the hyporheic zone can be used to improve the definition of fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat. Information exists on the microhabitat characteristics that define suitable salmon spawning habitat. However, traditional spawning habitat models that use these characteristics to predict available spawning habitat are restricted because they can not account for the heterogeneous nature of rivers. The authors present a conceptual spawning habitat model for fall chinook salmon that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Two case studies based on empirical data from fall chinook salmon spawning areas in the Hanford Reach of the Columbia River are presented to illustrate important aspects of the conceptual model. The authors suggest that traditional habitat models and the conceptual model be combined to predict the limits of suitable fall chinook salmon spawning habitat. This approach can incorporate quantitative measures of river channel morphology, including general descriptors of geomorphic features at different spatial scales, in order to understand the processes influencing redd site selection and spawning habitat use. This information is needed in order to protect existing salmon spawning habitat in large rivers, as well as to recover habitat already lost.

  2. Characterization of the active site of ADP-ribosyl cyclase.

    PubMed

    Munshi, C; Thiel, D J; Mathews, I I; Aarhus, R; Walseth, T F; Lee, H C

    1999-10-22

    ADP-ribosyl cyclase synthesizes two Ca(2+) messengers by cyclizing NAD to produce cyclic ADP-ribose and exchanging nicotinic acid with the nicotinamide group of NADP to produce nicotinic acid adenine dinucleotide phosphate. Recombinant Aplysia cyclase was expressed in yeast and co-crystallized with a substrate, nicotinamide. x-ray crystallography showed that the nicotinamide was bound in a pocket formed in part by a conserved segment and was near the central cleft of the cyclase. Glu(98), Asn(107) and Trp(140) were within 3.5 A of the bound nicotinamide and appeared to coordinate it. Substituting Glu(98) with either Gln, Gly, Leu, or Asn reduced the cyclase activity by 16-222-fold, depending on the substitution. The mutant N107G exhibited only a 2-fold decrease in activity, while the activity of W140G was essentially eliminated. The base exchange activity of all mutants followed a similar pattern of reduction, suggesting that both reactions occur at the same active site. In addition to NAD, the wild-type cyclase also cyclizes nicotinamide guanine dinucleotide to cyclic GDP-ribose. All mutant enzymes had at least half of the GDP-ribosyl cyclase activity of the wild type, some even 2-3-fold higher, indicating that the three coordinating amino acids are responsible for positioning of the substrate but not absolutely critical for catalysis. To search for the catalytic residues, other amino acids in the binding pocket were mutagenized. E179G was totally devoid of GDP-ribosyl cyclase activity, and both its ADP-ribosyl cyclase and the base exchange activities were reduced by 10,000- and 18,000-fold, respectively. Substituting Glu(179) with either Asn, Leu, Asp, or Gln produced similar inactive enzymes, and so was the conversion of Trp(77) to Gly. However, both E179G and the double mutant E179G/W77G retained NAD-binding ability as shown by photoaffinity labeling with [(32)P]8-azido-NAD. These results indicate that both Glu(179) and Trp(77) are crucial for catalysis and

  3. Mutations inducing an active-site aperture in Rhizobium sp. sucrose isomerase confer hydrolytic activity.

    PubMed

    Lipski, Alexandra; Watzlawick, Hildegard; Ravaud, Stéphanie; Robert, Xavier; Rhimi, Moez; Haser, Richard; Mattes, Ralf; Aghajari, Nushin

    2013-02-01

    Sucrose isomerase is an enzyme that catalyzes the production of sucrose isomers of high biotechnological and pharmaceutical interest. Owing to the complexity of the chemical synthesis of these isomers, isomaltulose and trehalulose, enzymatic conversion remains the preferred method for obtaining these products. Depending on the microbial source, the ratio of the sucrose-isomer products varies significantly. In studies aimed at understanding and explaining the underlying molecular mechanisms of these reactions, mutations obtained using a random-mutagenesis approach displayed a major hydrolytic activity. Two of these variants, R284C and F164L, of sucrose isomerase from Rhizobium sp. were therefore crystallized and their crystal structures were determined. The three-dimensional structures of these mutants allowed the identification of the molecular determinants that favour hydrolytic activity compared with transferase activity. Substantial conformational changes resulting in an active-site opening were observed, as were changes in the pattern of water molecules bordering the active-site region.

  4. Prominent features in isotopic, chemical and dust stratigraphies from GV7, a drilling site in East Antarctica

    NASA Astrophysics Data System (ADS)

    Caiazzo, Laura

    2016-04-01

    In the framework of the new project "The IPICS 2k Array: a network of ice core climate and climate forcing records for the last two millennia", which represents a thematic research line of International Partnerships in Ice Core Sciences (IPICS), a 250 m deep ice core was retrieved (spanning roughly the last millennium) at GV7 site, together with several shallow firn cores and snow pits. The PNRA (Programma Nazionale di Ricerche in Antartide) project "IPICS-2kyr-It" represents the Italian contribution to IPICS "The 2k Array" and it is being accomplished in collaboration with KOPRI (Korean Polar Reasearch Institute). The availability of various records from the same site all spanning a temporal period ranging from the last decades to the last centuries will allow achieving a stacked record of chemical and isotopic markers and accumulation rate that is basic for a reliable climatic reconstruction. Previous surveys in the area of GV7 (70°41' S - 158°51' E, 1950 m a.s.l., East Antarctica) showed that this site is characterized by a relatively high snow accumulation (about 240 mm water eq./year), allowing a high resolution study of the climatic variability in the last millennium. Here we present the isotopic, chemical and dust stratigraphies of the snow pits sampled at GV7 during the 2013/14 field season and analysed in Italy and in Korea. Reversibly deposited components such as nitrate and methansulphonic acid (MSA) appear to be well preserved and show a clear seasonal profiles, as one can observe from the records achieved both by Italian and Korean labs. Such a feature, together with the high accumulation rate, allowed obtaining an accurate dating of the snow pits, based on the counting of annual layers. At this purpose, a multi-parametric approach was chosen by using MSA, non-sea-salt sulphate, and d18O as seasonal markers. The dating confirmed the value of the accumulation rate found during previous samplings.

  5. Analysis of Hydrogen Tunneling in an Enzyme Active Site using von Neumann Measurements

    PubMed Central

    Sumner, Isaiah; Iyengar, Srinivasan S.

    2010-01-01

    We build on our earlier quantum wavepacket study of hydrogen transfer in the biological enzyme, soybean lipoxygenase-1, by using von Neumann quantum measurement theory to gain qualitative insights into the transfer event. We treat the enzyme active site as a measurement device which acts on the tunneling hydrogen nucleus via the potential it exerts at each configuration. A series of changing active site geometries during the tunneling process effects a sequential projection of the initial, reactant state onto the final, product state. We study this process using several different kinds of von Neumann measurements and show how a discrete sequence of such measurements not only progressively increases the projection of the hydrogen nuclear wavepacket onto the product side but also favors proton over deuteron transfer. Several qualitative features of the hydrogen tunneling problem found in wavepacket dynamics studies are also recovered here. These include the shift in the “transition state” towards the reactant as a result of nuclear quantization, greater participation of excited states in the case of deuterium, and presence of critical points along the reaction coordinate that facilitate hydrogen and deuterium transfer and coincide with surface crossings. To further “tailor” the dynamics, we construct a perturbation to the sequence of measurements, that is a perturbation to the dynamical sequence of active site geometry evolution, which leads us to insight on the existence of sensitive regions of the reaction profile where subtle changes to the dynamics of the active site can have an effect on the hydrogen and deuterium transfer process. PMID:22933858

  6. Microscopic features for initial diagnosis and disease activity evaluation in inflammatory bowel disease.

    PubMed

    Bressenot, Aude; Geboes, Karel; Vignaud, Jean-Michel; Guéant, Jean-Louis; Peyrin-Biroulet, Laurent

    2013-07-01

    Inflammatory bowel disease is characterized by 2 major entities: Crohn's disease (CD) and ulcerative colitis (UC). In clinical practice, separation of UC and CD has been based on a variety of clinical features, symptoms, endoscopic and radiological, gross and microscopic characteristics. The microscopic diagnosis of inflammatory bowel disease is based on a combination of 2 types of lesions: architectural abnormalities and inflammatory features. However, microscopic distinction between these 2 entities can be difficult and often results in an interim diagnosis of "indeterminate colitis." Recommendations are made to encourage pathologists to give an indication of the activity of the disease: in UC, biopsies are used to discriminate between quiescent disease, inactive disease, and different grades of activity; in CD, evaluation of disease activity is limited and inactivity in the biopsy may not reflect inactivity in the patient. The aim of this review was to summarize microscopic features of inflammatory bowel disease for initial diagnosis and evaluation of disease activity in both CD and UC.

  7. Site-specific PEGylation of lidamycin and its antitumor activity

    PubMed Central

    Li, Liang; Shang, Boyang; Hu, Lei; Shao, Rongguang; Zhen, Yongsu

    2015-01-01

    In this study, N-terminal site-specific mono-PEGylation of the recombinant lidamycin apoprotein (rLDP) of lidamycin (LDM) was prepared using a polyethyleneglycol (PEG) derivative (Mw 20 kDa) through a reactive terminal aldehyde group under weak acidic conditions (pH 5.5). The biochemical properties of mPEG-rLDP-AE, an enediyne-integrated conjugate, were analyzed by SDS-PAGE, RP-HPLC, SEC-HPLC and MALDI-TOF. Meanwhile, in vitro and in vivo antitumor activity of mPEG-rLDP-AE was evaluated by MTT assays and in xenograft model. The results indicated that mPEG-rLDP-AE showed significant antitumor activity both in vitro and in vivo. After PEGylation, mPEG-rLDP still retained the binding capability to the enediyne AE and presented the physicochemical characteristics similar to that of native LDP. It is of interest that the PEGylation did not diminish the antitumor efficacy of LDM, implying the possibility that this derivative may function as a payload to deliver novel tumor-targeted drugs. PMID:26579455

  8. Allosteric site-mediated active site inhibition of PBP2a using Quercetin 3-O-rutinoside and its combination.

    PubMed

    Rani, Nidhi; Vijayakumar, Saravanan; P T V, Lakshmi; Arunachalam, Annamalai

    2016-08-01

    Recent crystallographic study revealed the involvement of allosteric site in active site inhibition of penicillin binding protein (PBP2a), where one molecule of Ceftaroline (Cef) binds to the allosteric site of PBP2a and paved way for the other molecule (Cef) to bind at the active site. Though Cef has the potency to inhibit the PBP2a, its adverse side effects are of major concern. Previous studies have reported the antibacterial property of Quercetin derivatives, a group of natural compounds. Hence, the present study aims to evaluate the effect of Quercetin 3-o-rutinoside (Rut) in allosteric site-mediated active site inhibition of PBP2a. The molecular docking studies between allosteric site and ligands (Rut, Que, and Cef) revealed a better binding efficiency (G-score) of Rut (-7.790318) and Cef (-6.194946) with respect to Que (-5.079284). Molecular dynamic (MD) simulation studies showed significant changes at the active site in the presence of ligands (Rut and Cef) at allosteric site. Four different combinations of Rut and Cef were docked and their G-scores ranged between -6.320 and -8.623. MD studies revealed the stability of the key residue (Ser403) with Rut being at both sites, compared to other complexes. Morphological analysis through electron microscopy confirmed that combination of Rut and Cefixime was able to disturb the bacterial cell membrane in a similar fashion to that of Rut and Cefixime alone. The results of this study indicate that the affinity of Rut at both sites were equally good, with further validations Rut could be considered as an alternative for inhibiting MRSA growth.

  9. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site

    PubMed Central

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel

    2015-01-01

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called ‘catalytic residues’ are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes. DOI: http://dx.doi.org/10.7554/eLife.06181.001 PMID:25902402

  10. A split active site couples cap recognition by Dcp2 to activation

    PubMed Central

    Floor, Stephen N.; Jones, Brittnee N.; Hernandez, Gail A.; Gross, John D.

    2010-01-01

    Decapping by Dcp2 is an essential step in 5′-3′ mRNA decay. In yeast, decapping requires an open-to-closed transition in Dcp2, though the link between closure and catalysis remains elusive. Here we show using NMR that cap binds conserved residues on both the catalytic and regulatory domains of Dcp2. Lesions in the cap-binding site on the regulatory domain reduce the catalytic step two orders of magnitude and block formation of the closed state whereas Dcp1 enhances the catalytic step by a factor of ten and promotes closure. We conclude that closure occurs during the rate-limiting catalytic step of decapping, juxtaposing the cap-binding region of each domain to form a composite active site. This work suggests a model for regulation of decapping, where coactivators trigger decapping by stabilizing a labile composite active site. PMID:20711189

  11. Feature activation during word recognition: action, visual, and associative-semantic priming effects

    PubMed Central

    Lam, Kevin J. Y.; Dijkstra, Ton; Rueschemeyer, Shirley-Ann

    2015-01-01

    Embodied theories of language postulate that language meaning is stored in modality-specific brain areas generally involved in perception and action in the real world. However, the temporal dynamics of the interaction between modality-specific information and lexical-semantic processing remain unclear. We investigated the relative timing at which two types of modality-specific information (action-based and visual-form information) contribute to lexical-semantic comprehension. To this end, we applied a behavioral priming paradigm in which prime and target words were related with respect to (1) action features, (2) visual features, or (3) semantically associative information. Using a Go/No-Go lexical decision task, priming effects were measured across four different inter-stimulus intervals (ISI = 100, 250, 400, and 1000 ms) to determine the relative time course of the different features. Notably, action priming effects were found in ISIs of 100, 250, and 1000 ms whereas a visual priming effect was seen only in the ISI of 1000 ms. Importantly, our data suggest that features follow different time courses of activation during word recognition. In this regard, feature activation is dynamic, measurable in specific time windows but not in others. Thus the current study (1) demonstrates how multiple ISIs can be used within an experiment to help chart the time course of feature activation and (2) provides new evidence for embodied theories of language. PMID:26074836

  12. Lessons Learned from WIPP Site Characteriztion, Performance Assessment, and Regulatory Review Related to Radionuclide Migration through Water-Conducting Features

    SciTech Connect

    Beauheim, R.L.: Larson. K.W.

    1998-11-11

    Many lessons have been learned over the past 24 years as the Waste Isolation Pilot Plant (WIPP) project has progressed from initial site characterization to final licensing that may be of relevance to other nuclear-waste-disposal projects. These lessons pertain to the manner in which field and laboratory investigations are planned, how experiments are interpreted, how conceptual and numerical models are developed and simplified~ and how defensibility and credibility are achieved and maintained. These lessons include 1) Site characterization and performance assessment (PA) should evolve together through an iterative process, with neither activity completely dominating the other. 2) Defensibility and credibility require a much greater depth of understanding than can be represented in PA models. 3) Experimentalists should be directly involved in model and parameter abstraction and simplification for PA. 4) External expert review should be incorporated at all stages of a project~ not just after an experiment or modeling activity is completed. 5) Key individuals should be retained for the life of a project or a process must be established to transfer their working knowledge to new individuals. 6) An effective QA program needs to be stable and consistent for the duration of a project and rests on best scientific practices. All of these lessons relate to the key point that consideration must be given from the earliest planning stages to maximizing the defensibility and credibility of all work.

  13. In-Silico Analysis of Binding Site Features and Substrate Selectivity in Plant Flavonoid-3-O Glycosyltransferases (F3GT) through Molecular Modeling, Docking and Dynamics Simulation Studies

    PubMed Central

    Sharma, Ranu; Panigrahi, Priyabrata; Suresh, C.G.

    2014-01-01

    Flavonoids are a class of plant secondary metabolites that act as storage molecules, chemical messengers, as well as participate in homeostasis and defense processes. They possess pharmaceutical properties important for cancer treatment such as antioxidant and anti-tumor activities. The drug-related properties of flavonoids can be improved by glycosylation. The enzymes glycosyltransferases (GTs) glycosylate acceptor molecules in a regiospecific manner with the help of nucleotide sugar donor molecules. Several plant GTs have been characterized and their amino acid sequences determined. However, three-dimensional structures of only a few are reported. Here, phylogenetic analysis using amino acid sequences have identified a group of GTs with the same regiospecific activity. The structures of these closely related GTs were modeled using homologous GT structures. Their substrate binding sites were elaborated by docking flavonoid acceptor and UDP-sugar donor molecules in the modeled structures. Eight regions near the acceptor binding site in the N- and C- terminal domain of GTs have been identified that bind and specifically glycosylate the 3-OH group of acceptor flavonoids. Similarly, a conserved motif in the C-terminal domain is known to bind a sugar donor substrate. In certain GTs, the substitution of a specific glutamine by histidine in this domain changes the preference of sugar from glucose to galactose as a result of changed pattern of interactions. The molecular modeling, docking, and molecular dynamics simulation studies have revealed the chemical and topological features of the binding site and thus provided insights into the basis of acceptor and donor recognition by GTs. PMID:24667893

  14. Functional properties and active-site topographies of factor X Gla- and prothrombin Gla-domain chimeras of activated protein C.

    PubMed

    Qureshi, Shabir H; Yang, Likui; Manithody, Chandrashekhara; Bae, Jong-Sup; Rezaie, Alireza R

    2008-09-01

    Substitution of the Gla-domain of activated protein C (APC) with the Gla-domain of prothrombin (APC-PTGla) improves the anticoagulant activity of APC independent of protein S. Previous FRET studies showed that this substitution alters the active-site topography of this mutant, rendering it identical to the active site of the APC-protein S complex. In this study, we characterized the functional properties and the active-site topography of another APC chimera containing the Gla-domain of factor X (APC-FXGla). We discovered that the anticoagulant activity of this mutant was similarly improved independent of protein S. The average distance of the closest approach (L) between the donor dye fluorescein attached to the active site of APC derivatives and the acceptor dye octadecylrhodamine incorporated into PC/PS vesicles was determined to be 99 A for APC and 84-86 A for both APC-PTGla and APC-FXGla. Protein S minimally influenced the L values of the APC chimeras, however, it lowered this value to 87 A for wild-type APC. Further studies revealed that neither chimera elicits a protective signaling response in the TNF-alpha-activated endothelial cells. These results suggest that unique structural features within the Gla-domain of APC enable the protease to interact with endothelial protein C receptor in the antiinflammatory pathway, while the same features also cause an inherently lower specific activity for APC in the anticoagulant pathway. This adaptation has made APC a cofactor-dependent protease, requiring the cofactor function of protein S for its optimal anticoagulant function, which appears to involve the alteration of the active-site topography of APC above the membrane surface.

  15. Design of an activity landscape view taking compound-based feature probabilities into account.

    PubMed

    Zhang, Bijun; Vogt, Martin; Bajorath, Jürgen

    2014-09-01

    Activity landscapes (ALs) of compound data sets are rationalized as graphical representations that integrate similarity and potency relationships between active compounds. ALs enable the visualization of structure-activity relationship (SAR) information and are thus computational tools of interest for medicinal chemistry. For AL generation, similarity and potency relationships are typically evaluated in a pairwise manner and major AL features are assessed at the level of compound pairs. In this study, we add a conditional probability formalism to AL design that makes it possible to quantify the probability of individual compounds to contribute to characteristic AL features. Making this information graphically accessible in a molecular network-based AL representation is shown to further increase AL information content and helps to quickly focus on SAR-informative compound subsets. This feature probability-based AL variant extends the current spectrum of AL representations for medicinal chemistry applications.

  16. Design of an activity landscape view taking compound-based feature probabilities into account

    NASA Astrophysics Data System (ADS)

    Zhang, Bijun; Vogt, Martin; Bajorath, Jürgen

    2014-09-01

    Activity landscapes (ALs) of compound data sets are rationalized as graphical representations that integrate similarity and potency relationships between active compounds. ALs enable the visualization of structure-activity relationship (SAR) information and are thus computational tools of interest for medicinal chemistry. For AL generation, similarity and potency relationships are typically evaluated in a pairwise manner and major AL features are assessed at the level of compound pairs. In this study, we add a conditional probability formalism to AL design that makes it possible to quantify the probability of individual compounds to contribute to characteristic AL features. Making this information graphically accessible in a molecular network-based AL representation is shown to further increase AL information content and helps to quickly focus on SAR-informative compound subsets. This feature probability-based AL variant extends the current spectrum of AL representations for medicinal chemistry applications.

  17. Characteristic tandem mass spectral features under various collision chemistries for site-specific identification of protein S-glutathionylation.

    PubMed

    Chou, Chi-Chi; Chiang, Bing-Yu; Lin, Jason Ching-Yao; Pan, Kuan-Ting; Lin, Chun-Hung; Khoo, Kay-Hooi

    2015-01-01

    Protein S-glutathionylation is a reversible post-translational modification widely implicated in redox regulated biological functions. Conventional biochemical methods, however, often do not allow such a mixed disulfide modification to be reliably identified on specific cysteine residues or be distinguished from other related oxidized forms. To develop more efficient mass spectrometry (MS)-based analytical strategies for this purpose, we first investigated the MS/MS fragmentation pattern of S-glutathionylated peptides under various dissociation modes, including collision-induced dissociation (CID), higher-energy C-trap dissociation (HCD), and electron transfer dissociation (ETD), using synthetic peptides derived from protein tyrosine phosphatase as models. Our results indicate that a MALDI-based high energy CID MS/MS on a TOF/TOF affords the most distinctive spectral features that would facilitate rapid and unambiguous identification of site-specific S-glutathionylation. For more complex proteomic samples best tackled by LC-MS/MS approach, we demonstrate that HCD performed on an LTQ-Orbitrap hybrid instrument fairs better than trap-based CID and ETD in allowing more protein site-specific S-glutathionylation to be confidently identified by direct database searching of the generated MS/MS dataset using Mascot. Overall, HCD afforded more peptide sequence-informative fragment ions retaining the glutathionyl modification with less neutral losses of side chains to compromise scoring. In conjunction with our recently developed chemo-enzymatic tagging strategy, our nanoLC-HCD-MS/MS approach is sufficiently sensitive to identify endogenous S-glutathionylated peptides prepared from non-stressed cells. It is anticipated that future applications to global scale analysis of protein S-glutathionylation will benefit further from current advances in both speed and mass accuracy afforded by HCD MS/MS mode on the Orbitrap series.

  18. Characteristic Tandem Mass Spectral Features Under Various Collision Chemistries for Site-Specific Identification of Protein S-Glutathionylation

    NASA Astrophysics Data System (ADS)

    Chou, Chi-Chi; Chiang, Bing-Yu; Lin, Jason Ching-Yao; Pan, Kuan-Ting; Lin, Chun-Hung; Khoo, Kay-Hooi

    2015-01-01

    Protein S-glutathionylation is a reversible post-translational modification widely implicated in redox regulated biological functions. Conventional biochemical methods, however, often do not allow such a mixed disulfide modification to be reliably identified on specific cysteine residues or be distinguished from other related oxidized forms. To develop more efficient mass spectrometry (MS)-based analytical strategies for this purpose, we first investigated the MS/MS fragmentation pattern of S-glutathionylated peptides under various dissociation modes, including collision-induced dissociation (CID), higher-energy C-trap dissociation (HCD), and electron transfer dissociation (ETD), using synthetic peptides derived from protein tyrosine phosphatase as models. Our results indicate that a MALDI-based high energy CID MS/MS on a TOF/TOF affords the most distinctive spectral features that would facilitate rapid and unambiguous identification of site-specific S-glutathionylation. For more complex proteomic samples best tackled by LC-MS/MS approach, we demonstrate that HCD performed on an LTQ-Orbitrap hybrid instrument fairs better than trap-based CID and ETD in allowing more protein site-specific S-glutathionylation to be confidently identified by direct database searching of the generated MS/MS dataset using Mascot. Overall, HCD afforded more peptide sequence-informative fragment ions retaining the glutathionyl modification with less neutral losses of side chains to compromise scoring. In conjunction with our recently developed chemo-enzymatic tagging strategy, our nanoLC-HCD-MS/MS approach is sufficiently sensitive to identify endogenous S-glutathionylated peptides prepared from non-stressed cells. It is anticipated that future applications to global scale analysis of protein S-glutathionylation will benefit further from current advances in both speed and mass accuracy afforded by HCD MS/MS mode on the Orbitrap series.

  19. Molecular features of the prazosin molecule required for activation of Transport-P.

    PubMed

    da Silva, Joaquim Fernando Mendes; Walters, Marcus; Al-Damluji, Saad; Ganellin, C Robin

    2008-08-01

    Closely related structural analogues of prazosin have been synthesised and tested for inhibition and activation of Transport-P in order to identify the structural features of the prazosin molecule that appear to be necessary for activation of Transport-P. So far, all the compounds tested are less active than prazosin. It is shown that the structure of prazosin appears to be very specific for the activation. Only quinazolines have been found to activate, and the presence of the 6,7-dimethoxy and 4-amino groups appears to be critically important.

  20. Characterization of Active Site Residues of Nitroalkane Oxidase†

    PubMed Central

    Valley, Michael P.; Fenny, Nana S.; Ali, Shah R.; Fitzpatrick, Paul F.

    2010-01-01

    The flavoenzyme nitroalkane oxidase catalyzes the oxidation of primary and secondary nitrolkanes to the corresponding aldehydes and ketones plus nitrite. The structure of the enzyme shows that Serl71 forms a hydrogen bond to the flavin N5, suggesting that it plays a role in catalysis. Cys397 and Tyr398 were previously identified by chemical modification as potential active site residues. To more directly probe the roles of these residues, the S171A, S171V, S171T, C397S, and Y398F enzymes have been characterized with nitroethane as substrate. The C397S and Y398 enzymes were less stable than the wild-type enzyme, and the C397S enzyme routinely contained a substoichiometric amount of FAD. Analysis of the steady-state kinetic parameters for the mutant enzymes, including deuterium isotope effects, establishes that all of the mutations result in decreases in the rate constants for removal of the substrate proton by ~5-fold and decreases in the rate constant for product release of ~2-fold. Only the S171V and S171T mutations alter the rate constant for flavin oxidation. These results establish that these residues are not involved in catalysis, but rather are required for maintaining the protein structure. PMID:20056514

  1. Detection limit for activation measurements in ultralow background sites

    NASA Astrophysics Data System (ADS)

    Trache, Livius; Chesneanu, D.; Margineanu, R.; Pantelica, A.; Ghita, D. G.; Burducea, I.; Straticiuc, M.; Tang, X. D.

    2014-09-01

    We used 12C +13C fusion at the beam energies E = 6, 7 and 8 MeV to determine the sensitivity and the limits of activation method measurements in ultralow background sites. A 13C beam of 0.5 μA from the 3 MV Tandem accelerator of the Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH impinged on thick graphite targets. After about 24 hrs of irradiation targets were measured in two different laboratories: one with a heavy shielded Ge detector in the institute (at the surface) and one located underground in the microBequerel laboratory, in the salt mine of Slanic-Prahova, Romania. The 1369- and 2754 keV peaks from 24Na deactivation were clearly observed in the γ-ray spectra obtained for acquisitions lasting a few hours, or a few days. Determination of the detection limit in evaluating the cross sections for the target irradiated at Ec . m = 3 MeV indicates the fact that it is possible to measure gamma spectrum in underground laboratory down to Ec . m = 2 . 6 MeV. Cleaning the spectra with beta-gamma coincidences and increasing beam intensity 20 times will take as further down. The measurements are motivated by the study of the 12 C +12 C reaction at astrophysical energies.

  2. Disturbance opens recruitment sites for bacterial colonization in activated sludge.

    PubMed

    Vuono, David C; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E

    2016-01-01

    Little is known about the role of immigration in shaping bacterial communities or the factors that may dictate success or failure of colonization by bacteria from regional species pools. To address these knowledge gaps, the influence of bacterial colonization into an ecosystem (activated sludge bioreactor) was measured through a disturbance gradient (successive decreases in the parameter solids retention time) relative to stable operational conditions. Through a DNA sequencing approach, we show that the most abundant bacteria within the immigrant community have a greater probability of colonizing the receiving ecosystem, but mostly as low abundance community members. Only during the disturbance do some of these bacterial populations significantly increase in abundance beyond background levels and in few cases become dominant community members post-disturbance. Two mechanisms facilitate the enhanced enrichment of immigrant populations during disturbance: (i) the availability of resources left unconsumed by established species and (ii) the increased availability of niche space for colonizers to establish and displace resident populations. Thus, as a disturbance decreases local diversity, recruitment sites become available to promote colonization. This work advances our understanding of microbial resource management and diversity maintenance in complex ecosystems.

  3. Improvement in the prediction of the translation initiation site through balancing methods, inclusion of acquired knowledge and addition of features to sequences of mRNA

    PubMed Central

    2011-01-01

    Background The accurate prediction of the initiation of translation in sequences of mRNA is an important activity for genome annotation. However, obtaining an accurate prediction is not always a simple task and can be modeled as a problem of classification between positive sequences (protein codifiers) and negative sequences (non-codifiers). The problem is highly imbalanced because each molecule of mRNA has a unique translation initiation site and various others that are not initiators. Therefore, this study focuses on the problem from the perspective of balancing classes and we present an undersampling balancing method, M-clus, which is based on clustering. The method also adds features to sequences and improves the performance of the classifier through the inclusion of knowledge obtained by the model, called InAKnow. Results Through this methodology, the measures of performance used (accuracy, sensitivity, specificity and adjusted accuracy) are greater than 93% for the Mus musculus and Rattus norvegicus organisms, and varied between 72.97% and 97.43% for the other organisms evaluated: Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens, Nasonia vitripennis. The precision increases significantly by 39% and 22.9% for Mus musculus and Rattus norvegicus, respectively, when the knowledge obtained by the model is included. For the other organisms, the precision increases by between 37.10% and 59.49%. The inclusion of certain features during training, for example, the presence of ATG in the upstream region of the Translation Initiation Site, improves the rate of sensitivity by approximately 7%. Using the M-Clus balancing method generates a significant increase in the rate of sensitivity from 51.39% to 91.55% (Mus musculus) and from 47.45% to 88.09% (Rattus norvegicus). Conclusions In order to solve the problem of TIS prediction, the results indicate that the methodology proposed in this work is adequate, particularly when using the

  4. Training Classifiers with Shadow Features for Sensor-Based Human Activity Recognition

    PubMed Central

    Fong, Simon; Song, Wei; Cho, Kyungeun; Wong, Raymond; Wong, Kelvin K. L.

    2017-01-01

    In this paper, a novel training/testing process for building/using a classification model based on human activity recognition (HAR) is proposed. Traditionally, HAR has been accomplished by a classifier that learns the activities of a person by training with skeletal data obtained from a motion sensor, such as Microsoft Kinect. These skeletal data are the spatial coordinates (x, y, z) of different parts of the human body. The numeric information forms time series, temporal records of movement sequences that can be used for training a classifier. In addition to the spatial features that describe current positions in the skeletal data, new features called ‘shadow features’ are used to improve the supervised learning efficacy of the classifier. Shadow features are inferred from the dynamics of body movements, and thereby modelling the underlying momentum of the performed activities. They provide extra dimensions of information for characterising activities in the classification process, and thereby significantly improve the classification accuracy. Two cases of HAR are tested using a classification model trained with shadow features: one is by using wearable sensor and the other is by a Kinect-based remote sensor. Our experiments can demonstrate the advantages of the new method, which will have an impact on human activity detection research. PMID:28264470

  5. Identification of photospheric activity features from SOHO/MDI data using the ASAP tool

    NASA Astrophysics Data System (ADS)

    Ashamari, Omar; Qahwaji, Rami; Ipson, Stan; Schöll, Micha; Nibouche, Omar; Haberreiter, Margit

    2015-06-01

    The variation of solar irradiance is one of the natural forcing mechanisms of the terrestrial climate. Hence, the time-dependent solar irradiance is an important input parameter for climate modelling. The solar surface magnetic field is a powerful proxy for solar irradiance reconstruction. The analyses of data obtained with the Michelson Doppler Imager (MDI) on board the SOHO mission are therefore useful for the identification of solar surface magnetic features to be used in solar irradiance reconstruction models. However, there is still a need for automated technologies that would enable the identification of solar activity features from large databases. To achieve this we present a series of enhanced segmentation algorithms developed to detect and calculate the area coverages of specific magnetic features from MDI intensitygrams and magnetograms. These algorithms are part of the Automated Solar Activity Prediction (ASAP) tool. The segmentation algorithms allow us to identify the areas on the solar disk covered by magnetic elements inside and outside boundaries of active regions. Depending on their contrast properties, magnetic features within an active region boundary are classified as sunspot umbra and penumbra, or faculae. Outside an active region boundary magnetic elements are identified as network. We present the detailed steps involved in the segmentation process and provide the area coverages of the segmented MDI intensitygrams and magnetograms. The feature segmentation was carried out on daily intensitygrams and magnetograms from April 21, 1996 to April 11, 2011. This offers an exciting opportunity to undertake further investigations that benefit from solar features segmentations, such as solar irradiance reconstruction, which we plan to investigate in the future.

  6. Disentangling planetary and stellar activity features in the CoRoT-2 light curve

    NASA Astrophysics Data System (ADS)

    Bruno, G.; Deleuil, M.; Almenara, J.-M.; Barros, S. C. C.; Lanza, A. F.; Montalto, M.; Boisse, I.; Santerne, A.; Lagrange, A.-M.; Meunier, N.

    2016-11-01

    Aims: Stellar activity is an important source of systematic errors and uncertainties in the characterization of exoplanets. Most of the techniques used to correct for this activity focus on an ad hoc data reduction. Methods: We have developed a software for the combined fit of transits and stellar activity features in high-precision long-duration photometry. Our aim is to take advantage of the modelling to derive correct stellar and planetary parameters, even in the case of strong stellar activity. Results: We use an analytic approach to model the light curve. The code KSint, modified by adding the evolution of active regions, is implemented into our Bayesian modelling package PASTIS. The code is then applied to the light curve of CoRoT-2. The light curve is divided in segments to reduce the number of free parameters needed by the fit. We perform a Markov chain Monte Carlo analysis in two ways. In the first, we perform a global and independent modelling of each segment of the light curve, transits are not normalized and are fitted together with the activity features, and occulted features are taken into account during the transit fit. In the second, we normalize the transits with a model of the non-occulted activity features, and then we apply a standard transit fit, which does not take the occulted features into account. Conclusions: Our model recovers the activity features coverage of the stellar surface and different rotation periods for different features. We find variations in the transit parameters of different segments and show that they are likely due to the division applied to the light curve. Neglecting stellar activity or even only bright spots while normalizing the transits yields a 1.2σ larger and 2.3σ smaller transit depth, respectively. The stellar density also presents up to 2.5σ differences depending on the normalization technique. Our analysis confirms the inflated radius of the planet (1.475 ± 0.031RJ) found by other authors. We show that

  7. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing...

  8. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing...

  9. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  10. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  11. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  12. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  13. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  14. Robotics and Automation Activities at the Savannah River Site: A Site Report for SUBWOG 39F

    SciTech Connect

    Teese, G.D.

    1995-09-28

    The Savannah River Site has successfully used robots, teleoperators, and remote video to reduce exposure to ionizing radiation, improve worker safety, and improve the quality of operations. Previous reports have described the use of mobile teleoperators in coping with a high level liquid waste spill, the removal of highly contaminated equipment, and the inspection of nuclear reactor vessels. This report will cover recent applications at the Savannah River, as well as systems which SRS has delivered to other DOE site customers.

  15. GAS HYDRATES AT TWO SITES OF AN ACTIVE CONTINENTAL MARGIN.

    USGS Publications Warehouse

    Kvenvolden, K.A.

    1985-01-01

    Sediment containing gas hydrates from two distant Deep Sea Drilling Project sites (565 and 568), located about 670 km apart on the landward flank of the Middle America Trench, was studied to determine the geochemical conditions that characterize the occurrence of gas hydrates. Site 565 was located in the Pacific Ocean offshore the Nicoya Peninsula of Costa Rica in 3,111 m of water. The depth of the hole at this site was 328 m, and gas hydrates were recovered from 285 and 319 m. Site 568 was located about 670 km to the northwest offshore Guatemala in 2,031 m of water. At this site the hole penetrated to 418 m, and gas hydrates were encountered at 404 m.

  16. Activation induced deaminase mutational signature overlaps with CpG methylation sites in follicular lymphoma and other cancers

    PubMed Central

    Rogozin, Igor B.; Lada, Artem G.; Goncearenco, Alexander; Green, Michael R.; De, Subhajyoti; Nudelman, German; Panchenko, Anna R.; Koonin, Eugene V.; Pavlov, Youri I.

    2016-01-01

    Follicular lymphoma (FL) is an uncurable cancer characterized by progressive severity of relapses. We analyzed sequence context specificity of mutations in the B cells from a large cohort of FL patients. We revealed substantial excess of mutations within a novel hybrid nucleotide motif: the signature of somatic hypermutation (SHM) enzyme, Activation Induced Deaminase (AID), which overlaps the CpG methylation site. This finding implies that in FL the SHM machinery acts at genomic sites containing methylated cytosine. We identified the prevalence of this hybrid mutational signature in many other types of human cancer, suggesting that AID-mediated, CpG-methylation dependent mutagenesis is a common feature of tumorigenesis. PMID:27924834

  17. Prediction of P53 Mutants (Multiple Sites) Transcriptional Activity Based on Structural (2D&3D) Properties

    PubMed Central

    Geetha Ramani, R.; Jacob, Shomona Gracia

    2013-01-01

    Prediction of secondary site mutations that reinstate mutated p53 to normalcy has been the focus of intense research in the recent past owing to the fact that p53 mutants have been implicated in more than half of all human cancers and restoration of p53 causes tumor regression. However laboratory investigations are more often laborious and resource intensive but computational techniques could well surmount these drawbacks. In view of this, we formulated a novel approach utilizing computational techniques to predict the transcriptional activity of multiple site (one-site to five-site) p53 mutants. The optimal MCC obtained by the proposed approach on prediction of one-site, two-site, three-site, four-site and five-site mutants were 0.775,0.341,0.784,0.916 and 0.655 respectively, the highest reported thus far in literature. We have also demonstrated that 2D and 3D features generate higher prediction accuracy of p53 activity and our findings revealed the optimal results for prediction of p53 status, reported till date. We believe detection of the secondary site mutations that suppress tumor growth may facilitate better understanding of the relationship between p53 structure and function and further knowledge on the molecular mechanisms and biological activity of p53, a targeted source for cancer therapy. We expect that our prediction methods and reported results may provide useful insights on p53 functional mechanisms and generate more avenues for utilizing computational techniques in biological data analysis. PMID:23468845

  18. Lidar research activities and observations at NARL site, Gadanki, India

    NASA Astrophysics Data System (ADS)

    Yellapragada, Bhavani Kumar

    2016-05-01

    The National Atmospheric Research Laboratory (NARL), a unit of Department of Space (DOS), located at Gadanki village (13.5°N, 79.2°E, 370 m AMSL) in India, is involved in the development of lidar remote sensing technologies for atmospheric research. Several advanced lidar technologies employing micropulse, polarization, Raman and scanning have been developed at this site and demonstrated for atmospheric studies during the period between 2008 and 2015. The technology of micropulse lidar, operates at 532 nm wavelength, was successfully transferred to an industry and the commercial version has been identified for Indian Lidar network (I-LINK) programme. Under this lidar network activity, several lidar units were installed at different locations in India to study tropospheric aerosols and clouds. The polarization sensitive lidar technology was realized using a set of mini photomultiplier tube (PMT) units and has the capability to operate during day and night without a pause. The lidar technology uses a compact flashlamp pumped Qswitched laser and employs biaxial configuration between the transmitter and receiver units. The lidar technology has been utilized for understanding the polarization characteristics of boundary layer aerosols during the mixed layer development. The demonstrated Raman lidar technology, uses the third harmonic wavelength of Nd:YAG laser, provides the altitude profiles of aerosol backscattering, extinction and water vapor covering the boundary layer range and allows operation during nocturnal periods. The Raman lidar derived height profiles of aerosol backscattering and extinction coefficient, lidar ratio, and watervapor mixing ratio inform the tropical boundary layer aerosol characteristics. The scanning lidar technology uses a near infrared laser wavelength for probing the lower atmosphere and has been utilized for high resolution cloud profiling during convective periods. The lidar technology is also used for rain rate measurement during

  19. Dynamically achieved active site precision in enzyme catalysis.

    PubMed

    Klinman, Judith P

    2015-02-17

    CONSPECTUS: The grand challenge in enzymology is to define and understand all of the parameters that contribute to enzymes' enormous rate accelerations. The property of hydrogen tunneling in enzyme reactions has moved the focus of research away from an exclusive focus on transition state stabilization toward the importance of the motions of the heavy atoms of the protein, a role for reduced barrier width in catalysis, and the sampling of a protein conformational landscape to achieve a family of protein substates that optimize enzyme-substrate interactions and beyond. This Account focuses on a thermophilic alcohol dehydrogenase for which the chemical step of hydride transfer is rate determining across a wide range of experimental conditions. The properties of the chemical coordinate have been probed using kinetic isotope effects, indicating a transition in behavior below 30 °C that distinguishes nonoptimal from optimal C-H activation. Further, the introduction of single site mutants has the impact of either enhancing or eliminating the temperature dependent transition in catalysis. Biophysical probes, which include time dependent hydrogen/deuterium exchange and fluorescent lifetimes and Stokes shifts, have also been pursued. These studies allow the correlation of spatially resolved transitions in protein motions with catalysis. It is now possible to define a long-range network of protein motions in ht-ADH that extends from a dimer interface to the substrate binding domain across to the cofactor binding domain, over a distance of ca. 30 Å. The ongoing challenge to obtaining spatial and temporal resolution of catalysis-linked protein motions is discussed.

  20. Effect of particle surface area on ice active site densities retrieved from droplet freezing spectra

    NASA Astrophysics Data System (ADS)

    Beydoun, Hassan; Polen, Michael; Sullivan, Ryan C.

    2016-10-01

    Heterogeneous ice nucleation remains one of the outstanding problems in cloud physics and atmospheric science. Experimental challenges in properly simulating particle-induced freezing processes under atmospherically relevant conditions have largely contributed to the absence of a well-established parameterization of immersion freezing properties. Here, we formulate an ice active, surface-site-based stochastic model of heterogeneous freezing with the unique feature of invoking a continuum assumption on the ice nucleating activity (contact angle) of an aerosol particle's surface that requires no assumptions about the size or number of active sites. The result is a particle-specific property g that defines a distribution of local ice nucleation rates. Upon integration, this yields a full freezing probability function for an ice nucleating particle. Current cold plate droplet freezing measurements provide a valuable and inexpensive resource for studying the freezing properties of many atmospheric aerosol systems. We apply our g framework to explain the observed dependence of the freezing temperature of droplets in a cold plate on the concentration of the particle species investigated. Normalizing to the total particle mass or surface area present to derive the commonly used ice nuclei active surface (INAS) density (ns) often cannot account for the effects of particle concentration, yet concentration is typically varied to span a wider measurable freezing temperature range. A method based on determining what is denoted an ice nucleating species' specific critical surface area is presented and explains the concentration dependence as a result of increasing the variability in ice nucleating active sites between droplets. By applying this method to experimental droplet freezing data from four different systems, we demonstrate its ability to interpret immersion freezing temperature spectra of droplets containing variable particle concentrations. It is shown that general

  1. From Monty Python to Total Recall: A Feature Film Activity for the Cognitive Psychology Course.

    ERIC Educational Resources Information Center

    Conner, David B.

    1996-01-01

    Describes a college psychology course activity designed to help students define the parameters of cognitive psychology. Students selected a feature film and a journal article that represented some aspect of cognitive psychology. They then wrote a paper discussing the theoretical and empirical connections between the sources and the topic. (MJP)

  2. Active-site zinc ligands and activated H2O of zinc enzymes.

    PubMed Central

    Vallee, B L; Auld, D S

    1990-01-01

    The x-ray crystallographic structures of 12 zinc enzymes have been chosen as standards of reference to identify the ligands to the catalytic and structural zinc atoms of other members of their respective enzyme families. Universally, H2O is a ligand and critical component of the catalytically active zinc sites. In addition, three protein side chains bind to the catalytic zinc atom, whereas four protein ligands bind to the structural zinc atom. The geometry and coordination number of zinc can vary greatly to accommodate particular ligands. Zinc forms complexes with nitrogen and oxygen just as readily as with sulfur, and this is reflected in catalytic zinc sites having a binding frequency of His much greater than Glu greater than Asp = Cys, three of which bind to the metal atom. The systematic spacing between the ligands is striking. For all catalytic zinc sites except the coenzyme-dependent alcohol dehydrogenase, the first two ligands are separated by a "short-spacer" consisting of 1 to 3 amino acids. These ligands are separated from the third ligand by a "long spacer" of approximately 20 to approximately 120 amino acids. The spacer enables formation of a primary bidentate zinc complex, whereas the long spacer contributes flexibility to the coordination sphere, which can poise the zinc for catalysis as well as bring other catalytic and substrate binding groups into apposition with the active site. The H2O is activated by ionization, polarization, or poised for displacement. Collectively, the data imply that the preferred mechanistic pathway for activating the water--e.g., zinc hydroxide or Lewis acid catalysis--will be determined by the identity of the other three ligands and their spacing. Images PMID:2104979

  3. Tracking structural features leading to resistance of activated protein C to alpha 1-antitrypsin.

    PubMed

    Shen, L; Dahlbäck, B; Villoutreix, B O

    2000-03-21

    Activated protein C (APC) is a multi-modular anticoagulant serine protease, which degrades factor V/Va and factor VIIIa. Human APC (hAPC) is inhibited by human alpha 1-antitrypsin (AAT), while the bovine enzyme (bAPC) is fully resistant to this serpin. Structural features in the catalytic domains between the two species cause this difference, but detailed knowledge about the causal molecular difference is missing. To gain insight into the APC-AAT interaction and to create a human protein C resistant to AAT inhibition, we have used molecular modeling and site-directed mutagenesis. First, a structural model for bAPC based on the Gla-domainless X-ray structure of hAPC was built. Screening the molecular surface of the human and bovine APC enzymes suggested that a hAPC molecule resistant to AAT inhibition could be constructed by substituting only a few amino acids. We thus produced recombinant hAPC molecules with a single mutation (S173E, the numbering follows the chymotrypsinogen nomenclature), two mutations (E60aS/S61R) or a combination of all these substitutions (E60aS/S61R/S173E). Amidolytic and anticoagulant activities of the three mutant APC molecules were similar to those of wild-type hAPC. Inhibition of wild-type hAPC by AAT was characterized by a second-order rate constant (k2) of 2.71 M-1 s-1. The amino acid substitution at position 173 (S173E mutant) led to partial resistance to AAT (k2 = 0.84 M-1 s-1). The E60aS/S61R mutant displayed mild resistance to AAT inhibition (k2 = 1.70 M-1 s-1), whereas the E60aS/S61R/S173E mutant was inefficiently inactivated by AAT (k2 = 0.40 M-1 s-1). Inhibition of recombinant APC molecules by the serpin protein C inhibitor (PCI) in the presence and absence of heparin was also investigated.

  4. Molybdenum and tungsten oxygen transferases--and functional diversity within a common active site motif.

    PubMed

    Pushie, M Jake; Cotelesage, Julien J; George, Graham N

    2014-01-01

    Molybdenum and tungsten are the only second and third-row transition elements with a known function in living organisms. The molybdenum and tungsten enzymes show common structural features, with the metal being bound by a pyranopterin-dithiolene cofactor called molybdopterin. They catalyze a variety of oxygen transferase reactions coupled with two-electron redox chemistry in which the metal cycles between the +6 and +4 oxidation states usually with water, either product or substrate, providing the oxygen. The functional roles filled by the molybdenum and tungsten enzymes are diverse; for example, they play essential roles in microbial respiration, in the uptake of nitrogen in green plants, and in human health. Together, the enzymes form a superfamily which is among the most prevalent known, being found in all kingdoms of life. This review discusses what is known of the active site structures and the mechanisms, together with some recent insights into the evolution of these important enzyme systems.

  5. Active sites in heterogeneous ice nucleation—the example of K-rich feldspars

    NASA Astrophysics Data System (ADS)

    Kiselev, Alexei; Bachmann, Felix; Pedevilla, Philipp; Cox, Stephen J.; Michaelides, Angelos; Gerthsen, Dagmar; Leisner, Thomas

    2017-01-01

    Ice formation on aerosol particles is a process of crucial importance to Earth’s climate and the environmental sciences, but it is not understood at the molecular level. This is partly because the nature of active sites, local surface features where ice growth commences, is still unclear. Here we report direct electron-microscopic observations of deposition growth of aligned ice crystals on feldspar, an atmospherically important component of mineral dust. Our molecular-scale computer simulations indicate that this alignment arises from the preferential nucleation of prismatic crystal planes of ice on high-energy (100) surface planes of feldspar. The microscopic patches of (100) surface, exposed at surface defects such as steps, cracks, and cavities, are thought to be responsible for the high ice nucleation efficacy of potassium (K)–feldspar particles.

  6. Experimental warming differentially affects microbial structure and activity in two contrasted moisture sites in a Sphagnum-dominated peatland.

    PubMed

    Delarue, Frédéric; Buttler, Alexandre; Bragazza, Luca; Grasset, Laurent; Jassey, Vincent E J; Gogo, Sébastien; Laggoun-Défarge, Fatima

    2015-04-01

    Several studies on the impact of climate warming have indicated that peat decomposition/mineralization will be enhanced. Most of these studies deal with the impact of experimental warming during summer when prevalent abiotic conditions are favorable to decomposition. Here, we investigated the effect of experimental air warming by open-top chambers (OTCs) on water-extractable organic matter (WEOM), microbial biomasses and enzymatic activities in two contrasted moisture sites named Bog and Fen sites, the latter considered as the wetter ones. While no or few changes in peat temperature and water content appeared under the overall effect of OTCs, we observed that air warming smoothed water content differences and led to a decrease in mean peat temperature at the warmed Bog sites. This thermal discrepancy between the two sites led to contrasting changes in microbial structure and activities: a rise in hydrolytic activity at the warmed Bog sites and a relative enhancement of bacterial biomass at the warmed Fen sites. These features were not associated with any change in WEOM properties namely carbon and sugar contents and aromaticity, suggesting that air warming did not trigger any shift in OM decomposition. Using various tools, we show that the use of single indicators of OM decomposition can lead to fallacious conclusions. Lastly, these patterns may change seasonally as a consequence of complex interactions between groundwater level and air warming, suggesting the need to improve our knowledge using a high time-resolution approach.

  7. QM/MM Analysis of Cellulase Active Sites and Actions of the Enzymes on Substrates

    SciTech Connect

    Saharay, Moumita; Guo, Hao-Bo; Smith, Jeremy C; Guo, Hong

    2010-01-01

    Biodegradation of cellulosic biomass requires the actions of three types of secreted enzymes; endoglucanase (EC 3.2.1.4), cellobiohydrolase or exoglucanase (EC 3.2.1.91), and -glucosidase (EC 4.2.1.21). These enzymes act synergistically to hydrolyse the -1,4 bonds of cellulose and converts it into simple sugar. Hydrolysis of the glycosidic bond can occur either by net retention or by inversion of anomeric configuration at the anomeric center. QM/MM simulations are useful tools to study the energetics of the reactions and analyze the active-site structures at different states of the catalysis, including the formation of unstable transition states. Here, a brief description of previous work on glycoside hydrolases is first given. The results of the QM/MM potential energy and free energy simulations corresponding to glycosylation and deglycosylation processes are then provided for two retaining endoglucanases, Cel12A and Cel5A. The active-site structural features are analyzed based on the QM/MM results. The role of different residues and hydrogen bonding interactions during the catalysis and the importance of the sugar ring distortion are discussed for these two enzymes.

  8. Multiple, Ligand-Dependent Routes from the Active Site of Cytochrome P450 2C9

    SciTech Connect

    Cojocaru, Vlad; Winn, Peter J.; Wade, Rebecca C.

    2012-02-13

    The active site of liver-specific, drug-metabolizing cytochrome P450 (CYP) monooxygenases is deeply buried in the protein and is connected to the protein surface through multiple tunnels, many of which were found open in different CYP crystal structures. It has been shown that different tunnels could serve as ligand passage routes in different CYPs. However, it is not understood whether one CYP uses multiple routes for substrate access and product release and whether these routes depend on ligand properties. From 300 ns of molecular dynamics simulations of CYP2C9, the second most abundant CYP in the human liver we found four main ligand exit routes, the occurrence of each depending on the ligand type and the conformation of the F-G loop, which is likely to be affected by the CYP-membrane interaction. A non-helical F-G loop favored exit towards the putative membrane-embedded region. Important protein features that direct ligand exit include aromatic residues that divide the active site and whose motions control access to two pathways. The ligands interacted with positively charged residues on the protein surface through hydrogen bonds that appear to select for acidic substrates. The observation of multiple, ligand-dependent routes in a CYP aids understanding of how CYP mutations affect drug metabolism and provides new possibilities for CYP inhibition.

  9. [Aluminum coordination and active sites on aluminas, Y-zeolites and pillared layered silicates]. Progress report

    SciTech Connect

    Fripiat, J.J.

    1994-02-01

    This report is organized in four sections. In the first the authors will outline structural features which are common to all fine grained alumina, as well as to non-framework alumina in zeolites. This section will be followed by a study of the surface vs. bulk coordination of aluminum. The third section will deal with measurement of the number of acid sites and the scaling of their strength. The fourth and last section will describe three model reactions: the isomerization of 1-butene and of 2 cis-butene; the isomerization and disproportionation of oxtho-xylene; and the transformation of trichloroethane into vinyl chloride followed by the polymerization of the vinyl chloride. The relationship between chemical activity and selectivity and what is known of the local structure of the active catalytic sites will be underlined. Other kinds of zeolites besides Y zeolite have been studied. Instead of the aluminum pillared silicates they found it more interesting to study the substitution of silicon by aluminum in a layered structure containing a permanent porosity (aluminated sepiolite).

  10. Feature Statistics Modulate the Activation of Meaning During Spoken Word Processing.

    PubMed

    Devereux, Barry J; Taylor, Kirsten I; Randall, Billi; Geertzen, Jeroen; Tyler, Lorraine K

    2016-03-01

    Understanding spoken words involves a rapid mapping from speech to conceptual representations. One distributed feature-based conceptual account assumes that the statistical characteristics of concepts' features--the number of concepts they occur in (distinctiveness/sharedness) and likelihood of co-occurrence (correlational strength)--determine conceptual activation. To test these claims, we investigated the role of distinctiveness/sharedness and correlational strength in speech-to-meaning mapping, using a lexical decision task and computational simulations. Responses were faster for concepts with higher sharedness, suggesting that shared features are facilitatory in tasks like lexical decision that require access to them. Correlational strength facilitated responses for slower participants, suggesting a time-sensitive co-occurrence-driven settling mechanism. The computational simulation showed similar effects, with early effects of shared features and later effects of correlational strength. These results support a general-to-specific account of conceptual processing, whereby early activation of shared features is followed by the gradual emergence of a specific target representation.

  11. Using Activity-Related Behavioural Features towards More Effective Automatic Stress Detection

    PubMed Central

    Giakoumis, Dimitris; Drosou, Anastasios; Cipresso, Pietro; Tzovaras, Dimitrios; Hassapis, George; Gaggioli, Andrea; Riva, Giuseppe

    2012-01-01

    This paper introduces activity-related behavioural features that can be automatically extracted from a computer system, with the aim to increase the effectiveness of automatic stress detection. The proposed features are based on processing of appropriate video and accelerometer recordings taken from the monitored subjects. For the purposes of the present study, an experiment was conducted that utilized a stress-induction protocol based on the stroop colour word test. Video, accelerometer and biosignal (Electrocardiogram and Galvanic Skin Response) recordings were collected from nineteen participants. Then, an explorative study was conducted by following a methodology mainly based on spatiotemporal descriptors (Motion History Images) that are extracted from video sequences. A large set of activity-related behavioural features, potentially useful for automatic stress detection, were proposed and examined. Experimental evaluation showed that several of these behavioural features significantly correlate to self-reported stress. Moreover, it was found that the use of the proposed features can significantly enhance the performance of typical automatic stress detection systems, commonly based on biosignal processing. PMID:23028461

  12. Lethal Factor Active-Site Mutations Affect Catalytic Activity In Vitro

    PubMed Central

    Hammond, S. E.; Hanna, P. C.

    1998-01-01

    The lethal factor (LF) protein of Bacillus anthracis lethal toxin contains the thermolysin-like active-site and zinc-binding consensus motif HEXXH (K. R. Klimpel, N. Arora, and S. H. Leppla, Mol. Microbiol. 13:1093–1100, 1994). LF is hypothesized to act as a Zn2+ metalloprotease in the cytoplasm of macrophages, but no proteolytic activities have been previously shown on any target substrate. Here, synthetic peptides are hydrolyzed by LF in vitro. Mass spectroscopy and peptide sequencing of isolated cleavage products separated by reverse-phase high-pressure liquid chromatography indicate that LF seems to prefer proline-containing substrates. Substitution mutations within the consensus active-site residues completely abolish all in vitro catalytic functions, as does addition of 1,10-phenanthroline, EDTA, and certain amino acid hydroxamates, including the novel zinc metalloprotease inhibitor ZINCOV. In contrast, the protease inhibitors bestatin and lysine CMK, previously shown to block LF activity on macrophages, did not block LF activity in vitro. These data provide the first direct evidence that LF may act as an endopeptidase. PMID:9573135

  13. Contribution of active-site glutamine to rate enhancement in ubiquitin carboxy terminal hydrolases

    PubMed Central

    Boudreaux, David; Chaney, Joseph; Maiti, Tushar K.; Das, Chittaranjan

    2012-01-01

    Ubiquitin carboxy terminal hydrolases (UCHs) are cysteine proteases featuring a classical cysteine-histidine-aspartate catalytic triad, also a highly conserved glutamine thought to be a part of the oxyanion hole. However, the contribution of this side chain to the catalysis by UCH enzymes is not known. Herein, we demonstrate that the glutamine side chain contributes to rate enhancement in UCHL1, UCHL3 and UCHL5. Mutation of the glutamine to alanine in these enzymes impairs the catalytic efficiency mainly due to a 16 to 30-fold reduction in kcat, which is consistent with a loss of approximately 2 kcal/mol in transition-state stabilization. However, the contribution to transition-state stabilization observed here is rather modest for the side chain’s role in oxyanion stabilization. Interestingly, we discovered that the carbonyl oxygen of this side chain is engaged in a C—H•••O hydrogen-bonding contact with the CεH group of the catalytic histidine. Upon further analysis, we found that this interaction is a common active-site structural feature in most cysteine proteases, including papain, belonging to families with the QCH(N/D) type of active-site configuration. It is possible that removal of the glutamine side chain might have abolished the C—H•••O interaction, which typically accounts for 2 kcal/mol of stabilization, leading to the effect on catalysis observed here. Additional studies performed on UCHL3 by mutating the glutamine to glutamate (strong C—H•••O acceptor but oxyanion destabilizer) and to lysine (strong oxyanion stabilizer but lacking C—H•••O hydrogen-bonding property) suggest that the C—H•••O hydrogen bond could contribute to catalysis. PMID:22284438

  14. The yeast regulator of transcription protein Rtr1 lacks an active site and phosphatase activity.

    PubMed

    Xiang, Kehui; Manley, James L; Tong, Liang

    2012-07-10

    The activity of RNA polymerase II (Pol II) is controlled in part by the phosphorylation state of the C-terminal domain (CTD) of its largest subunit. Recent reports have suggested that yeast regulator of transcription protein, Rtr1, and its human homologue RPAP2, possess Pol II CTD Ser5 phosphatase activity. Here we report the crystal structure of Kluyveromyces lactis Rtr1, which reveals a new type of zinc finger protein and does not have any close structural homologues. Importantly, the structure does not show evidence of an active site, and extensive experiments to demonstrate its CTD phosphatase activity have been unsuccessful, suggesting that Rtr1 has a non-catalytic role in CTD dephosphorylation.

  15. Characterization of quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus: enzymatic activity and active site structure.

    PubMed

    Terasaka, Erina; Okada, Norihiro; Sato, Nozomi; Sako, Yoshihiko; Shiro, Yoshitsugu; Tosha, Takehiko

    2014-07-01

    Nitric oxide reductase (NOR) catalyzes the reduction of nitric oxide to generate nitrous oxide. We recently reported on the crystal structure of a quinol-dependent NOR (qNOR) from Geobacillus stearothermophilus [Y. Matsumoto, T. Tosha, A.V. Pisliakov, T. Hino, H. Sugimoto, S. Nagano, Y. Sugita and Y. Shiro, Nat. Struct. Mol. Biol. 19 (2012) 238-246], and suggested that a water channel from the cytoplasm, which is not observed in cytochrome c-dependent NOR (cNOR), functions as a pathway transferring catalytic protons. Here, we further investigated the functional and structural properties of qNOR, and compared the findings with those for cNOR. The pH optimum for the enzymatic reaction of qNOR was in the alkaline range, whereas Pseudomonas aeruginosa cNOR showed a higher activity at an acidic pH. The considerably slower reduction rate, and a correlation of the pH dependence for enzymatic activity and the reduction rate suggest that the reduction process is the rate-determining step for the NO reduction by qNOR, while the reduction rate for cNOR was very fast and therefore is unlikely to be the rate-determining step. A close examination of the heme/non-heme iron binuclear center by resonance Raman spectroscopy indicated that qNOR has a more polar environment at the binuclear center compared with cNOR. It is plausible that a water channel enhances the accessibility of the active site to solvent water, creating a more polar environment in qNOR. This structural feature could control certain properties of the active site, such as redox potential, which could explain the different catalytic properties of the two NORs. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.

  16. FUNCTION FOLLOWS FORM: ACTIVATION OF SHAPE & FUNCTION FEATURES DURING OBJECT IDENTIFICATION

    PubMed Central

    Yee, Eiling; Huffstetler, Stacy; Thompson-Schill, Sharon L.

    2011-01-01

    Most theories of semantic memory characterize knowledge of a given object as comprising a set of semantic features. But how does conceptual activation of these features proceed during object identification? We present the results of a pair of experiments that demonstrate that object recognition is a dynamically unfolding process in which function follows form. We used eye movements to explore whether activating one object’s concept leads to the activation of others that share perceptual (shape) or abstract (function) features. Participants viewed four-picture displays and clicked on the picture corresponding to a heard word. In critical trials, the conceptual representation of one of the objects in the display was similar in shape or function (i.e., its purpose) to the heard word. Importantly, this similarity was not apparent in the visual depictions (e.g., for the target “frisbee,” the shape-related object was a triangular slice of pizza – a shape that a frisbee cannot take); preferential fixations on the related object were therefore attributable to overlap of the conceptual representations on the relevant features. We observed relatedness effects for both shape and function, but shape effects occurred earlier than function effects. We discuss the implications of these findings for current accounts of the representation of semantic memory. PMID:21417543

  17. Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities

    PubMed Central

    Itakura, Haruka; Achrol, Achal S.; Mitchell, Lex A.; Loya, Joshua J.; Liu, Tiffany; Westbroek, Erick M.; Feroze, Abdullah H.; Rodriguez, Scott; Echegaray, Sebastian; Azad, Tej D.; Yeom, Kristen W.; Napel, Sandy; Rubin, Daniel L.; Chang, Steven D.; Harsh, Griffith R.; Gevaert, Olivier

    2015-01-01

    Glioblastoma (GBM) is the most common and highly lethal primary malignant brain tumor in adults. There is a dire need for easily accessible, noninvasive biomarkers that can delineate underlying molecular activities and predict response to therapy. To this end, we sought to identify subtypes of GBM, differentiated solely by quantitative MR imaging features, that could be used for better management of GBM patients. Quantitative image features capturing the shape, texture, and edge sharpness of each lesion were extracted from MR images of 121 patients with de novo, solitary, unilateral GBM. Three distinct phenotypic “clusters” emerged in the development cohort using consensus clustering with 10,000 iterations on these image features. These three clusters—pre-multifocal, spherical, and rim-enhancing, names reflecting their image features—were validated in an independent cohort consisting of 144 multi-institution patients with similar tumor characteristics from The Cancer Genome Atlas (TCGA). Each cluster mapped to a unique set of molecular signaling pathways using pathway activity estimates derived from analysis of TCGA tumor copy number and gene expression data with the PARADIGM algorithm. Distinct pathways, such as c-Kit and FOXA, were enriched in each cluster, indicating differential molecular activities as determined by image features. Each cluster also demonstrated differential probabilities of survival, indicating prognostic importance. Our imaging method offers a noninvasive approach to stratify GBM patients and also provides unique sets of molecular signatures to inform targeted therapy and personalized treatment of GBM. PMID:26333934

  18. Multifractal features of magnetospheric dynamics and their dependence on solar activity

    NASA Astrophysics Data System (ADS)

    Gopinath, Sumesh

    2016-09-01

    In the present study, novel wavelet leaders (WL) based multifractal analysis has been used to get a better knowledge of the self-organization phenomena inherent in complex magnetospheric dynamics during disturbance and quiescent periods, focusing mainly on the intermittent features of auroral electrojet (AE) index. The results derived from the analysis certainly exhibit the phase transition property of magnetosphere system with respect to variabilities in the driving conditions. By using the novel WL method, solar activity dependence/independence of intermittency of magnetospheric proxies such as AE, SYM-H and Dst indices have been compared. The results indicate that the multifractality of AE index does not follow the solar activity cycle while intermittent features of SYM-H and Dst indices show high degree of solar activity dependence. This shows that along with the external solar wind perturbations, certain complex phenomena of internal origin also significantly modulate the dynamics of geomagnetic fluctuations in the auroral region.

  19. Sedative effects of inhaled benzylacetone and structural features contributing to its activity.

    PubMed

    Miyoshi, Takashi; Ito, Michiho; Kitayama, Takashi; Isomori, Sachiko; Yamashita, Fumiyoshi

    2013-01-01

    Benzylacetone is released by heated agarwood, when inhaled it has a potent effect on reducing the locomotor activity of mice. This study investigated the relationships between the sedative activities of benzylacetone and its derivatives as well as the chemical structures of these compounds by comparing their activities in mice treated with a series of compounds. It was demonstrated that benzylacetone-like compounds had sedative activities and their intensities varied depending on the functional group in the carbon chain, the substituent in the benzene ring, and their combinations. A quantitative structure-activity relationship study was carried out using a series of 17 benzylacetone derivatives to determine the structural features with significant for the sedative activity.

  20. Towards global age-friendly cities: determining urban features that promote active aging.

    PubMed

    Plouffe, Louise; Kalache, Alexandre

    2010-09-01

    At the same time as cities are growing, their share of older residents is increasing. To engage and assist cities to become more "age-friendly," the World Health Organization (WHO) prepared the Global Age-Friendly Cities Guide and a companion "Checklist of Essential Features of Age-Friendly Cities". In collaboration with partners in 35 cities from developed and developing countries, WHO determined the features of age-friendly cities in eight domains of urban life: outdoor spaces and buildings; transportation; housing; social participation; respect and social inclusion; civic participation and employment; communication and information; and community support and health services. In 33 cities, partners conducted 158 focus groups with persons aged 60 years and older from lower- and middle-income areas of a locally defined geographic area (n = 1,485). Additional focus groups were held in most sites with caregivers of older persons (n = 250 caregivers) and with service providers from the public, voluntary, and commercial sectors (n = 515). No systematic differences in focus group themes were noted between cities in developed and developing countries, although the positive, age-friendly features were more numerous in cities in developed countries. Physical accessibility, service proximity, security, affordability, and inclusiveness were important characteristics everywhere. Based on the recurring issues, a set of core features of an age-friendly city was identified. The Global Age-Friendly Cities Guide and companion "Checklist of Essential Features of Age-Friendly Cities" released by WHO serve as reference for other communities to assess their age readiness and plan change.

  1. Partial order optimum likelihood (POOL): maximum likelihood prediction of protein active site residues using 3D Structure and sequence properties.

    PubMed

    Tong, Wenxu; Wei, Ying; Murga, Leonel F; Ondrechen, Mary Jo; Williams, Ronald J

    2009-01-01

    A new monotonicity-constrained maximum likelihood approach, called Partial Order Optimum Likelihood (POOL), is presented and applied to the problem of functional site prediction in protein 3D structures, an important current challenge in genomics. The input consists of electrostatic and geometric properties derived from the 3D structure of the query protein alone. Sequence-based conservation information, where available, may also be incorporated. Electrostatics features from THEMATICS are combined with multidimensional isotonic regression to form maximum likelihood estimates of probabilities that specific residues belong to an active site. This allows likelihood ranking of all ionizable residues in a given protein based on THEMATICS features. The corresponding ROC curves and statistical significance tests demonstrate that this method outperforms prior THEMATICS-based methods, which in turn have been shown previously to outperform other 3D-structure-based methods for identifying active site residues. Then it is shown that the addition of one simple geometric property, the size rank of the cleft in which a given residue is contained, yields improved performance. Extension of the method to include predictions of non-ionizable residues is achieved through the introduction of environment variables. This extension results in even better performance than THEMATICS alone and constitutes to date the best functional site predictor based on 3D structure only, achieving nearly the same level of performance as methods that use both 3D structure and sequence alignment data. Finally, the method also easily incorporates such sequence alignment data, and when this information is included, the resulting method is shown to outperform the best current methods using any combination of sequence alignments and 3D structures. Included is an analysis demonstrating that when THEMATICS features, cleft size rank, and alignment-based conservation scores are used individually or in combination

  2. Nuclear Site Security in the Event of Terrorist Activity

    SciTech Connect

    Thomson, M.L.; Sims, J.

    2008-07-01

    This paper, presented as a poster, identifies why ballistic protection should now be considered at nuclear sites to counter terrorist threats. A proven and flexible form of multi purpose protection is described in detail with identification of trial results that show its suitability for this role. (authors)

  3. Feature integration in visual working memory: parietal gamma activity is related to cognitive coordination

    PubMed Central

    Muthukumaraswamy, Suresh D.; Hibbs, Carina S.; Shapiro, Kimron L.; Bracewell, R. Martyn; Singh, Krish D.; Linden, David E. J.

    2011-01-01

    The mechanism by which distinct subprocesses in the brain are coordinated is a central conundrum of systems neuroscience. The parietal lobe is thought to play a key role in visual feature integration, and oscillatory activity in the gamma frequency range has been associated with perception of coherent objects and other tasks requiring neural coordination. Here, we examined the neural correlates of integrating mental representations in working memory and hypothesized that parietal gamma activity would be related to the success of cognitive coordination. Working memory is a classic example of a cognitive operation that requires the coordinated processing of different types of information and the contribution of multiple cognitive domains. Using magnetoencephalography (MEG), we report parietal activity in the high gamma (80–100 Hz) range during manipulation of visual and spatial information (colors and angles) in working memory. This parietal gamma activity was significantly higher during manipulation of visual-spatial conjunctions compared with single features. Furthermore, gamma activity correlated with successful performance during the conjunction task but not during the component tasks. Cortical gamma activity in parietal cortex may therefore play a role in cognitive coordination. PMID:21940605

  4. Feature integration in visual working memory: parietal gamma activity is related to cognitive coordination.

    PubMed

    Morgan, Helen M; Muthukumaraswamy, Suresh D; Hibbs, Carina S; Shapiro, Kimron L; Bracewell, R Martyn; Singh, Krish D; Linden, David E J

    2011-12-01

    The mechanism by which distinct subprocesses in the brain are coordinated is a central conundrum of systems neuroscience. The parietal lobe is thought to play a key role in visual feature integration, and oscillatory activity in the gamma frequency range has been associated with perception of coherent objects and other tasks requiring neural coordination. Here, we examined the neural correlates of integrating mental representations in working memory and hypothesized that parietal gamma activity would be related to the success of cognitive coordination. Working memory is a classic example of a cognitive operation that requires the coordinated processing of different types of information and the contribution of multiple cognitive domains. Using magnetoencephalography (MEG), we report parietal activity in the high gamma (80-100 Hz) range during manipulation of visual and spatial information (colors and angles) in working memory. This parietal gamma activity was significantly higher during manipulation of visual-spatial conjunctions compared with single features. Furthermore, gamma activity correlated with successful performance during the conjunction task but not during the component tasks. Cortical gamma activity in parietal cortex may therefore play a role in cognitive coordination.

  5. Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory

    SciTech Connect

    Taylor, D.D.; Hoskinson, R.L.; Kingsford, C.O.; Ball, L.W.

    1994-09-01

    The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria.

  6. Ultra-low-molecular-weight heparins: precise structural features impacting specific anticoagulant activities.

    PubMed

    Lima, Marcelo A; Viskov, Christian; Herman, Frederic; Gray, Angel L; de Farias, Eduardo H C; Cavalheiro, Renan P; Sassaki, Guilherme L; Hoppensteadt, Debra; Fareed, Jawed; Nader, Helena B

    2013-03-01

    Ultra-low-molecular-weight heparins (ULMWHs) with better efficacy and safety ratios are under development; however, there are few structural data available. The main structural features and molecular weight of ULMWHs were studied and compared to enoxaparin. Their monosaccharide composition and average molecular weights were determined and preparations studied by nuclear magnetic resonance spectroscopy, scanning ultraviolet spectroscopy, circular dichroism and gel permeation chromatography. In general, ULMWHs presented higher 3-O-sulphated glucosamine and unsaturated uronic acid residues, the latter being comparable with their higher degree of depolymerisation. The analysis showed that ULMWHs are structurally related to LMWHs; however, their monosaccharide/oligosaccharide compositions and average molecular weights differed considerably explaining their different anticoagulant activities. The results relate structural features to activity, assisting the development of new and improved therapeutic agents, based on depolymerised heparin, for the prophylaxis and treatment of thrombotic disorders.

  7. Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities.

    PubMed

    Ferreira, Isabel C F R; Heleno, Sandrina A; Reis, Filipa S; Stojkovic, Dejan; Queiroz, Maria João R P; Vasconcelos, M Helena; Sokovic, Marina

    2015-06-01

    Ganoderma genus comprises one of the most commonly studied species worldwide, Ganoderma lucidum. However, other Ganoderma species have been also reported as important sources of bioactive compounds. Polysaccharides are important contributors to the medicinal properties reported for Ganoderma species, as demonstrated by the numerous publications, including reviews, on this matter. Yet, what are the chemical features of Ganoderma polysaccharides that have bioactivity? In the present manuscript, the chemical features of Ganoderma polysaccharides with reported antioxidant, antitumor and antimicrobial activities (the most studied worldwide) are analyzed in detail. The composition of sugars (homo- versus hetero-glucans and other polysaccharides), type of glycosidic linkages, branching patterns, and linkage to proteins are discussed. Methods for extraction, isolation and identification are evaluated and, finally, the bioactivity of polysaccharidic extracts and purified compounds are discussed. The integration of data allows deduction of structure-activity relationships and gives clues to the chemical aspects involved in Ganoderma bioactivity.

  8. Revealing the nature of the active site on the carbon catalyst for C-H bond activation.

    PubMed

    Sun, XiaoYing; Li, Bo; Su, Dangsheng

    2014-09-28

    A reactivity descriptor for the C-H bond activation on the nanostructured carbon catalyst is proposed. Furthermore the calculations reveal that the single ketone group can be an active site in ODH reaction.

  9. Cellular Active N-Hydroxyurea FEN1 Inhibitors Block Substrate Entry to the Active Site

    PubMed Central

    Exell, Jack C.; Thompson, Mark J.; Finger, L. David; Shaw, Steven J.; Debreczeni, Judit; Ward, Thomas A.; McWhirter, Claire; Siöberg, Catrine L. B.; Martinez Molina, Daniel; Mark Abbott, W.; Jones, Clifford D.; Nissink, J. Willem M.; Durant, Stephen T.; Grasby, Jane A.

    2016-01-01

    The structure-specific nuclease human flap endonuclease-1 (hFEN1) plays a key role in DNA replication and repair and may be of interest as an oncology target. We present the first crystal structure of inhibitor-bound hFEN1 and show a cyclic N-hydroxyurea bound in the active site coordinated to two magnesium ions. Three such compounds had similar IC50 values but differed subtly in mode of action. One had comparable affinity for protein and protein–substrate complex and prevented reaction by binding to active site catalytic metal ions, blocking the unpairing of substrate DNA necessary for reaction. Other compounds were more competitive with substrate. Cellular thermal shift data showed engagement of both inhibitor types with hFEN1 in cells with activation of the DNA damage response evident upon treatment. However, cellular EC50s were significantly higher than in vitro inhibition constants and the implications of this for exploitation of hFEN1 as a drug target are discussed. PMID:27526030

  10. Active Layer and Moisture Measurements for Intensive Site 0 and 1, Barrow, Alaska

    DOE Data Explorer

    John Peterson

    2015-04-17

    These are measurements of Active Layer Thickness collected along several lines beginning in September, 2011 to the present. The data were collected at several time periods along the Site0 L2 Line, the Site1 AB Line, and an ERT Monitoring Line near Area A in Site1.

  11. Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations

    PubMed Central

    Steinkellner, Georg; Gruber, Christian C.; Pavkov-Keller, Tea; Binter, Alexandra; Steiner, Kerstin; Winkler, Christoph; Łyskowski, Andrzej; Schwamberger, Orsolya; Oberer, Monika; Schwab, Helmut; Faber, Kurt; Macheroux, Peter; Gruber, Karl

    2014-01-01

    The exploitation of catalytic promiscuity and the application of de novo design have recently opened the access to novel, non-natural enzymatic activities. Here we describe a structural bioinformatic method for predicting catalytic activities of enzymes based on three-dimensional constellations of functional groups in active sites (‘catalophores’). As a proof-of-concept we identify two enzymes with predicted promiscuous ene-reductase activity (reduction of activated C–C double bonds) and compare them with known ene-reductases, that is, members of the Old Yellow Enzyme family. Despite completely different amino acid sequences, overall structures and protein folds, high-resolution crystal structures reveal equivalent binding modes of typical Old Yellow Enzyme substrates and ligands. Biochemical and biocatalytic data show that the two enzymes indeed possess ene-reductase activity and reveal an inverted stereopreference compared with Old Yellow Enzymes for some substrates. This method could thus be a tool for the identification of viable starting points for the development and engineering of novel biocatalysts. PMID:24954722

  12. Are nest sites actively chosen? Testing a common assumption for three non-resource limited birds

    NASA Astrophysics Data System (ADS)

    Goodenough, A. E.; Elliot, S. L.; Hart, A. G.

    2009-09-01

    Many widely-accepted ecological concepts are simplified assumptions about complex situations that remain largely untested. One example is the assumption that nest-building species choose nest sites actively when they are not resource limited. This assumption has seen little direct empirical testing: most studies on nest-site selection simply assume that sites are chosen actively (and seek explanations for such behaviour) without considering that sites may be selected randomly. We used 15 years of data from a nestbox scheme in the UK to test the assumption of active nest-site choice in three cavity-nesting bird species that differ in breeding and migratory strategy: blue tit ( Cyanistes caeruleus), great tit ( Parus major) and pied flycatcher ( Ficedula hypoleuca). Nest-site selection was non-random (implying active nest-site choice) for blue and great tits, but not for pied flycatchers. We also considered the relative importance of year-specific and site-specific factors in determining occupation of nest sites. Site-specific factors were more important than year-specific factors for the tit species, while the reverse was true for pied flycatchers. Our results show that nest-site selection, in birds at least, is not always the result of active choice, such that choice should not be assumed automatically in studies of nesting behaviour. We use this example to highlight the need to test key ecological assumptions empirically, and the importance of doing so across taxa rather than for single "model" species.

  13. Active site conformational changes of prostasin provide a new mechanism of protease regulation by divalent cations

    SciTech Connect

    Spraggon, Glen; Hornsby, Michael; Shipway, Aaron; Tully, David C.; Bursulaya, Badry; Danahay, Henry; Harris, Jennifer L.; Lesley, Scott A.

    2010-01-12

    Prostasin or human channel-activating protease 1 has been reported to play a critical role in the regulation of extracellular sodium ion transport via its activation of the epithelial cell sodium channel. Here, the structure of the extracellular portion of the membrane associated serine protease has been solved to high resolution in complex with a nonselective d-FFR chloromethyl ketone inhibitor, in an apo form, in a form where the apo crystal has been soaked with the covalent inhibitor camostat and in complex with the protein inhibitor aprotinin. It was also crystallized in the presence of the divalent cation Ca{sup +2}. Comparison of the structures with each other and with other members of the trypsin-like serine protease family reveals unique structural features of prostasin and a large degree of conformational variation within specificity determining loops. Of particular interest is the S1 subsite loop which opens and closes in response to basic residues or divalent ions, directly binding Ca{sup +2} cations. This induced fit active site provides a new possible mode of regulation of trypsin-like proteases adapted in particular to extracellular regions with variable ionic concentrations such as the outer membrane layer of the epithelial cell.

  14. Multiple allosteric sites are involved in the modulation of insulin-degrading-enzyme activity by somatostatin.

    PubMed

    Tundo, Grazia R; Di Muzio, Elena; Ciaccio, Chiara; Sbardella, Diego; Di Pierro, Donato; Polticelli, Fabio; Coletta, Massimo; Marini, Stefano

    2016-10-01

    Somatostatin is a cyclic peptide, released in the gastrointestinal system and the central nervous system, where it is involved in the regulation of cognitive and sensory functions, motor activity and sleep. It is a substrate of insulin-degrading enzyme (IDE), as well as a modulator of its activity and expression. In the present study, we have investigated the modulatory role of somatostatin on IDE activity at 37 °C and pH 7.3 for various substrates [i.e. insulin, β-amyloid (Aβ)1-40 and bradykinin], aiming to quantitatively characterize the correlation between the specific features of the substrates and the regulatory mechanism. Functional data indicate that somatostatin, in addition to the catalytic site of IDE (being a substrate), is also able to bind to two additional exosites, which play different roles according to the size of the substrate and its binding mode to the IDE catalytic cleft. In particular, one exosite, which displays high affinity for somatostatin, regulates only the interaction of IDE with larger substrates (such as insulin and Aβ1-40 ) in a differing fashion according to their various modes of binding to the enzyme. A second exosite, which is involved in the regulation of enzymatic processing by IDE of all substrates investigated (including a 10-25 amino acid long amyloid-like peptide, bradykinin and somatostatin itself, which had been studied previously), probably acts through the alteration of an 'open-closed' equilibrium.

  15. Music-induced emotions can be predicted from a combination of brain activity and acoustic features.

    PubMed

    Daly, Ian; Williams, Duncan; Hallowell, James; Hwang, Faustina; Kirke, Alexis; Malik, Asad; Weaver, James; Miranda, Eduardo; Nasuto, Slawomir J

    2015-12-01

    It is widely acknowledged that music can communicate and induce a wide range of emotions in the listener. However, music is a highly-complex audio signal composed of a wide range of complex time- and frequency-varying components. Additionally, music-induced emotions are known to differ greatly between listeners. Therefore, it is not immediately clear what emotions will be induced in a given individual by a piece of music. We attempt to predict the music-induced emotional response in a listener by measuring the activity in the listeners electroencephalogram (EEG). We combine these measures with acoustic descriptors of the music, an approach that allows us to consider music as a complex set of time-varying acoustic features, independently of any specific music theory. Regression models are found which allow us to predict the music-induced emotions of our participants with a correlation between the actual and predicted responses of up to r=0.234,p<0.001. This regression fit suggests that over 20% of the variance of the participant's music induced emotions can be predicted by their neural activity and the properties of the music. Given the large amount of noise, non-stationarity, and non-linearity in both EEG and music, this is an encouraging result. Additionally, the combination of measures of brain activity and acoustic features describing the music played to our participants allows us to predict music-induced emotions with significantly higher accuracies than either feature type alone (p<0.01).

  16. Excited state potential energy surfaces and their interactions in Fe(IV)=O active sites.

    PubMed

    Srnec, Martin; Wong, Shaun D; Solomon, Edward I

    2014-12-21

    The non-heme ferryl active sites are of significant interest for their application in biomedical and green catalysis. These sites have been shown to have an S = 1 or S = 2 ground spin state; the latter is functional in biology. Low-temperature magnetic circular dichroism (LT MCD) spectroscopy probes the nature of the excited states in these species including ligand-field (LF) states that are otherwise difficult to study by other spectroscopies. In particular, the temperature dependences of MCD features enable their unambiguous assignment and thus determination of the low-lying excited states in two prototypical S = 1 and S = 2 NHFe(IV)[double bond, length as m-dash]O complexes. Furthermore, some MCD bands exhibit vibronic structures that allow mapping of excited-state interactions and their effects on the potential energy surfaces (PESs). For the S = 2 species, there is also an unusual spectral feature in both near-infrared absorption and MCD spectra - Fano antiresonance (dip in Abs) and Fano resonance (sharp peak in MCD) that indicates the weak spin-orbit coupling of an S = 1 state with the S = 2 LF state. These experimental data are correlated with quantum-chemical calculations that are further extended to analyze the low-lying electronic states and the evolution of their multiconfigurational characters along the Fe-O PESs. These investigations show that the lowest-energy states develop oxyl Fe(III) character at distances that are relevant to the transition state (TS) for H-atom abstraction and define the frontier molecular orbitals that participate in the reactivity of S = 1 vs. S = 2 non-heme Fe(IV)[double bond, length as m-dash]O active sites. The S = 1 species has only one available channel that requires the C-H bond of a substrate to approach perpendicular to the Fe-oxo bond (the π channel). In contrast, there are three channels (one σ and two π) available for the S = 2 non-heme Fe(IV)[double bond, length as m-dash]O system allowing C-H substrate approach

  17. Early Site Permit Demonstration Program: Recommendations for communication activities and public participation in the Early Site Permit Demonstration Program

    SciTech Connect

    Not Available

    1993-01-27

    On October 24, 1992, President Bush signed into law the National Energy Policy Act of 1992. The bill is a sweeping, comprehensive overhaul of the Nation`s energy laws, the first in more than a decade. Among other provisions, the National Energy Policy Act reforms the licensing process for new nuclear power plants by adopting a new approach developed by the US Nuclear Regulatory Commission (NRC) in 1989, and upheld in court in 1992. The NRC 10 CFR Part 52 rule is a three-step process that guarantees public participation at each step. The steps are: early site permit approval; standard design certifications; and, combined construction/operating licenses for nuclear power reactors. Licensing reform increases an organization`s ability to respond to future baseload electricity generation needs with less financial risk for ratepayers and the organization. Costly delays can be avoided because design, safety and siting issues will be resolved before a company starts to build a plant. Specifically, early site permit approval allows for site suitability and acceptability issues to be addressed prior to an organization`s commitment to build a plant. Responsibility for site-specific activities, including communications and public participation, rests with those organizations selected to try out early site approval. This plan has been prepared to assist those companies (referred to as sponsoring organizations) in planning their communications and public involvement programs. It provides research findings, information and recommendations to be used by organizations as a resource and starting point in developing their own plans.

  18. Structural characterization of single nucleotide variants at ligand binding sites and enzyme active sites of human proteins

    PubMed Central

    Yamada, Kazunori D.; Nishi, Hafumi; Nakata, Junichi; Kinoshita, Kengo

    2016-01-01

    Functional sites on proteins play an important role in various molecular interactions and reactions between proteins and other molecules. Thus, mutations in functional sites can severely affect the overall phenotype. Progress of genome sequencing projects has yielded a wealth of information on single nucleotide variants (SNVs), especially those with less than 1% minor allele frequency (rare variants). To understand the functional influence of genetic variants at a protein level, we investigated the relationship between SNVs and protein functional sites in terms of minor allele frequency and the structural position of variants. As a result, we observed that SNVs were less abundant at ligand binding sites, which is consistent with a previous study on SNVs and protein interaction sites. Additionally, we found that non-rare variants tended to be located slightly apart from enzyme active sites. Examination of non-rare variants revealed that most of the mutations resulted in moderate changes of the physico-chemical properties of amino acids, suggesting the existence of functional constraints. In conclusion, this study shows that the mapping of genetic variants on protein structures could be a powerful approach to evaluate the functional impact of rare genetic variations. PMID:27924270

  19. Lamellipodial actin mechanically links myosin activity with adhesion site formation

    PubMed Central

    Giannone, Gregory; Dubin-Thaler, Benjamin; Rossier, Olivier; Cai, Yunfei; Chaga, Oleg; Jiang, Guoying; Beaver, William; Döbereiner, Hans-Günther; Freund, Yoav; Borisy, Gary; Sheetz, Michael P.

    2013-01-01

    Summary Cell motility proceeds by cycles of edge protrusion, adhesion and retraction. Whether these functions are coordinated by biochemical or biomechanical processes is unknown. We find that myosin II pulls the rear of the lamellipodial actin network, causing upward bending, edge retraction and initiation of new adhesion sites. The network then separates from the edge and condenses over the myosin. Protrusion resumes as lamellipodial actin regenerates from the front and extends rearward until it reaches newly assembled myosin, initiating the next cycle. Upward bending, observed by evanescence and electron microscopy, results in ruffle formation when adhesion strength is low. Correlative fluorescence and electron microscopy shows that the regenerating lamellipodium forms a cohesive, separable layer of actin above the lamellum. Thus, actin polymerization periodically builds a mechanical link, the lamellipodium, connecting myosin motors with the initiation of adhesion sites, suggesting that the major functions driving motility are coordinated by a biomechanical process. PMID:17289574

  20. Feature transformation of neural activity with sparse and low-rank decomposition

    NASA Astrophysics Data System (ADS)

    Ni, Kang-Yu; Benvenuto, James; Bhattacharyya, Rajan; Millin, Rachel

    2015-03-01

    We propose a novel application of the sparse and low-rank (SLR) decomposition method to decode cognitive states for concept activity measured using fMRI BOLD. Current decoding methods attempt to reduce the dimensionality of fMRI BOLD signals to increase classification rate, but do not address the separable issues of multiple noise sources and complexity in the underlying data. Our feature transformation method extends SLR to separate task activity from the resting state and extract concept specific cognitive state. We show a significant increase in single trial decoding of concepts from fMRI BOLD using SLR to extract task specific cognitive state.

  1. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination.

    PubMed

    Rowley, Paul A; Kachroo, Aashiq H; Ma, Chien-Hui; Maciaszek, Anna D; Guga, Piotr; Jayaram, Makkuni

    2015-07-13

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5' to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions.

  2. Active-Site Hydration and Water Diffusion in Cytochrome P450cam: A Highly Dynamic Process

    SciTech Connect

    Miao, Yinglong; Baudry, Jerome Y

    2011-01-01

    Long-timescale molecular dynamics simulations (300 ns) are performed on both the apo- (i.e., camphor-free) and camphor-bound cytochrome P450cam (CYP101). Water diffusion into and out of the protein active site is observed without biased sampling methods. During the course of the molecular dynamics simulation, an average of 6.4 water molecules is observed in the camphor-binding site of the apo form, compared to zero water molecules in the binding site of the substrate-bound form, in agreement with the number of water molecules observed in crystal structures of the same species. However, as many as 12 water molecules can be present at a given time in the camphor-binding region of the active site in the case of apo-P450cam, revealing a highly dynamic process for hydration of the protein active site, with water molecules exchanging rapidly with the bulk solvent. Water molecules are also found to exchange locations frequently inside the active site, preferentially clustering in regions surrounding the water molecules observed in the crystal structure. Potential-of-mean-force calculations identify thermodynamically favored trans-protein pathways for the diffusion of water molecules between the protein active site and the bulk solvent. Binding of camphor in the active site modifies the free-energy landscape of P450cam channels toward favoring the diffusion of water molecules out of the protein active site.

  3. Structural mechanism of RuBisCO activation by carbamylation of the active site lysine.

    PubMed

    Stec, Boguslaw

    2012-11-13

    Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is a crucial enzyme in carbon fixation and the most abundant protein on earth. It has been studied extensively by biochemical and structural methods; however, the most essential activation step has not yet been described. Here, we describe the mechanistic details of Lys carbamylation that leads to RuBisCO activation by atmospheric CO(2). We report two crystal structures of nitrosylated RuBisCO from the red algae Galdieria sulphuraria with O(2) and CO(2) bound at the active site. G. sulphuraria RuBisCO is inhibited by cysteine nitrosylation that results in trapping of these gaseous ligands. The structure with CO(2) defines an elusive, preactivation complex that contains a metal cation Mg(2+) surrounded by three H(2)O/OH molecules. Both structures suggest the mechanism for discriminating gaseous ligands by their quadrupole electric moments. We describe conformational changes that allow for intermittent binding of the metal ion required for activation. On the basis of these structures we propose the individual steps of the activation mechanism. Knowledge of all these elements is indispensable for engineering RuBisCO into a more efficient enzyme for crop enhancement or as a remedy to global warming.

  4. Silver-Coated Nylon Dressing Plus Active DC Microcurrent for Healing of Autogenous Skin Donor Sites

    DTIC Science & Technology

    2013-08-01

    Silver-Coated Nylon Dressing Plus Active DC Microcurrent for Healing of Autogenous Skin Donor Sites Edward W. Malin, MD, Chaya M. Galin, BSN, RN... microcurrent in comparison to silver-coated dressing with sham microcurrent on wound-closure time for autogenous skin donor sites. Methods: Four...hundred five patients were screened for treatment of their donor sites using a silver-coated nylon dressing with either sham or active microcurrent

  5. A proposal of Texture Features for interactive CTA Segmentation by Active Learning.

    PubMed

    Maiora, J; Papakostas, G A; Kaburlasos, V G; Grana, M

    2014-01-01

    Our objective is to create an interactive image segmentation system of the abdominal area for quick volumetric segmentation of the aorta requiring minimal intervention of the human operator. The aforementioned goal is to be achieved by an Active Learning image segmentation system over enhanced image texture features, obtained from the standard Gray Level Co-occurrence Matrix (GLCM) and the Local Binary Patterns (LBP). The process iterates the following steps: first, image segmentation is produced by a Random Forest (RF) classifier trained on a set of image texture features for labeled voxels. The human operator is presented with the most uncertain unlabeled voxels to select some of them for inclusion in the training set, retraining the RF classifier. The approach will be applied to the segmentation of the thrombus in Computed Tomography Angiography (CTA) data of Abdominal Aortic Aneurysm (AAA) patients. A priori knowledge on the expected shape of the target structures is used to filter out undesired detections. On going preliminary experiments on datasets containing diverse number of CT slices (between 216 and 560), each one consisting a real human contrast-enhanced sample of the abdominal area, are underway. The segmentation results obtained with simple image features were promising and highlight the capacity of the used texture features to describe the local variation of the AAA thrombus and thus to provide useful information to the classifier.

  6. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles

    PubMed Central

    2015-01-01

    Mineral dusts originating from Earth’s crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts. Here we investigated in closer detail the reasons for its activity and the difference in the activity of the different feldspars. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. K-feldspar showed by far the highest ice nucleation activity. Finally, we give a potential explanation of this effect, finding alkali-metal ions having different hydration shells and thus an influence on the ice nucleation activity of feldspar surfaces. PMID:25584435

  7. 76 FR 30696 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites AGENCY: Department of... eligible active uranium and thorium processing site licensees for reimbursement under Title X of the Energy... requires DOE to reimburse eligible uranium and thorium licensees for certain costs of...

  8. 76 FR 24871 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites AGENCY: Department of... from eligible active uranium and thorium processing site licensees for reimbursement under Title X of...). Title X requires DOE to reimburse eligible uranium and thorium licensees for certain costs...

  9. The active site of hen egg-white lysozyme: flexibility and chemical bonding

    SciTech Connect

    Held, Jeanette Smaalen, Sander van

    2014-04-01

    Chemical bonding at the active site of lysozyme is analyzed on the basis of a multipole model employing transferable multipole parameters from a database. Large B factors at low temperatures reflect frozen-in disorder, but therefore prevent a meaningful free refinement of multipole parameters. Chemical bonding at the active site of hen egg-white lysozyme (HEWL) is analyzed on the basis of Bader’s quantum theory of atoms in molecules [QTAIM; Bader (1994 ▶), Atoms in Molecules: A Quantum Theory. Oxford University Press] applied to electron-density maps derived from a multipole model. The observation is made that the atomic displacement parameters (ADPs) of HEWL at a temperature of 100 K are larger than ADPs in crystals of small biological molecules at 298 K. This feature shows that the ADPs in the cold crystals of HEWL reflect frozen-in disorder rather than thermal vibrations of the atoms. Directly generalizing the results of multipole studies on small-molecule crystals, the important consequence for electron-density analysis of protein crystals is that multipole parameters cannot be independently varied in a meaningful way in structure refinements. Instead, a multipole model for HEWL has been developed by refinement of atomic coordinates and ADPs against the X-ray diffraction data of Wang and coworkers [Wang et al. (2007), Acta Cryst. D63, 1254–1268], while multipole parameters were fixed to the values for transferable multipole parameters from the ELMAM2 database [Domagala et al. (2012), Acta Cryst. A68, 337–351] . Static and dynamic electron densities based on this multipole model are presented. Analysis of their topological properties according to the QTAIM shows that the covalent bonds possess similar properties to the covalent bonds of small molecules. Hydrogen bonds of intermediate strength are identified for the Glu35 and Asp52 residues, which are considered to be essential parts of the active site of HEWL. Furthermore, a series of weak C

  10. Reflection features in the Galactic Center and past activity of Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Clavel, Maïca; Terrier, Regis; Goldwurm, Andrea; Morris, Mark; Jin, Chichuan; Ponti, Gabriele; Chuard, Dimitri

    2016-07-01

    X-ray observations carried out over the past two decades have captured an increasing number of reflection features within the molecular clouds located in the inner regions of our Galaxy. The intensity of these structures along with the correlated variations which are detected over the entire central molecular zone are strong evidence that this diffuse emission is created by the past activity of the supermassive black hole at the Galactic center, Sagittarius A*. In particular, within the last centuries, Sgr A* is likely to have experienced several short outbursts during which the black hole was at least a million times brighter than today. However, the precise description of the corresponding past catastrophic events is difficult to assess, mainly because the properties of the reflection features that they create while propagating away from Sgr A* depend on the line-of-sight distance, the geometry, and the size of the reflecting clouds, all of which are poorly known. I will review the different attempts to reconstruct Sgr A*'s past activity from the constraints obtained through the observation of the reflection features in the Galactic center, including the current Chandra monitoring.

  11. Increasing AIP Macrocycle Size Reveals Key Features of agr Activation in Staphylococcus aureus.

    PubMed

    Johnson, Jeffrey G; Wang, Boyuan; Debelouchina, Galia T; Novick, Richard P; Muir, Tom W

    2015-05-04

    The agr locus in the commensal human pathogen, Staphylococcus aureus, is a two-promoter regulon with allelic variability that produces a quorum-sensing circuit involved in regulating virulence within the bacterium. Secretion of unique autoinducing peptides (AIPs) and detection of their concentrations by AgrC, a transmembrane receptor histidine kinase, coordinates local bacterial population density with global changes in gene expression. The finding that staphylococcal virulence can be inhibited through antagonism of this quorum-sensing pathway has fueled tremendous interest in understanding the structure-activity relationships underlying the AIP-AgrC interaction. The defining structural feature of the AIP is a 16-membered, thiolactone-containing macrocycle. Surprisingly, the importance of ring size on agr activation or inhibition has not been explored. In this study, we address this deficiency through the synthesis and functional analysis of AIP analogues featuring enlarged and reduced macrocycles. Notably, this study is the first to interrogate AIP function by using both established cell-based reporter gene assays and newly developed in vitro AgrC-I binding and autophosphorylation activity assays. Based on our data, we present a model for robust agr activation involving a cooperative, three-points-of-contact interaction between the AIP macrocycle and AgrC.

  12. Conformational transition of FGFR kinase activation revealed by site-specific unnatural amino acid reporter and single molecule FRET

    PubMed Central

    Perdios, Louis; Lowe, Alan R.; Saladino, Giorgio; Bunney, Tom D.; Thiyagarajan, Nethaji; Alexandrov, Yuriy; Dunsby, Christopher; French, Paul M. W.; Chin, Jason W.; Gervasio, Francesco Luigi; Tate, Edward W.; Katan, Matilda

    2017-01-01

    Protein kinases share significant structural similarity; however, structural features alone are insufficient to explain their diverse functions. Thus, bridging the gap between static structure and function requires a more detailed understanding of their dynamic properties. For example, kinase activation may occur via a switch-like mechanism or by shifting a dynamic equilibrium between inactive and active states. Here, we utilize a combination of FRET and molecular dynamics (MD) simulations to probe the activation mechanism of the kinase domain of Fibroblast Growth Factor Receptor (FGFR). Using genetically-encoded, site-specific incorporation of unnatural amino acids in regions essential for activation, followed by specific labeling with fluorescent moieties, we generated a novel class of FRET-based reporter to monitor conformational differences corresponding to states sampled by non phosphorylated/inactive and phosphorylated/active forms of the kinase. Single molecule FRET analysis in vitro, combined with MD simulations, shows that for FGFR kinase, there are populations of inactive and active states separated by a high free energy barrier resulting in switch-like activation. Compared to recent studies, these findings support diversity in features of kinases that impact on their activation mechanisms. The properties of these FRET-based constructs will also allow further studies of kinase dynamics as well as applications in vivo. PMID:28045057

  13. Conformational transition of FGFR kinase activation revealed by site-specific unnatural amino acid reporter and single molecule FRET

    NASA Astrophysics Data System (ADS)

    Perdios, Louis; Lowe, Alan R.; Saladino, Giorgio; Bunney, Tom D.; Thiyagarajan, Nethaji; Alexandrov, Yuriy; Dunsby, Christopher; French, Paul M. W.; Chin, Jason W.; Gervasio, Francesco Luigi; Tate, Edward W.; Katan, Matilda

    2017-01-01

    Protein kinases share significant structural similarity; however, structural features alone are insufficient to explain their diverse functions. Thus, bridging the gap between static structure and function requires a more detailed understanding of their dynamic properties. For example, kinase activation may occur via a switch-like mechanism or by shifting a dynamic equilibrium between inactive and active states. Here, we utilize a combination of FRET and molecular dynamics (MD) simulations to probe the activation mechanism of the kinase domain of Fibroblast Growth Factor Receptor (FGFR). Using genetically-encoded, site-specific incorporation of unnatural amino acids in regions essential for activation, followed by specific labeling with fluorescent moieties, we generated a novel class of FRET-based reporter to monitor conformational differences corresponding to states sampled by non phosphorylated/inactive and phosphorylated/active forms of the kinase. Single molecule FRET analysis in vitro, combined with MD simulations, shows that for FGFR kinase, there are populations of inactive and active states separated by a high free energy barrier resulting in switch-like activation. Compared to recent studies, these findings support diversity in features of kinases that impact on their activation mechanisms. The properties of these FRET-based constructs will also allow further studies of kinase dynamics as well as applications in vivo.

  14. Proteome-wide analysis of nonsynonymous single-nucleotide variations in active sites of human proteins.

    PubMed

    Dingerdissen, Hayley; Motwani, Mona; Karagiannis, Konstantinos; Simonyan, Vahan; Mazumder, Raja

    2013-03-01

    An enzyme's active site is essential to normal protein activity such that any disruptions at this site may lead to dysfunction and disease. Nonsynonymous single-nucleotide variations (nsSNVs), which alter the amino acid sequence, are one type of disruption that can alter the active site. When this occurs, it is assumed that enzyme activity will vary because of the criticality of the site to normal protein function. We integrate nsSNV data and active site annotations from curated resources to identify all active-site-impacting nsSNVs in the human genome and search for all pathways observed to be associated with this data set to assess the likely consequences. We find that there are 934 unique nsSNVs that occur at the active sites of 559 proteins. Analysis of the nsSNV data shows an over-representation of arginine and an under-representation of cysteine, phenylalanine and tyrosine when comparing the list of nsSNV-impacted active site residues with the list of all possible proteomic active site residues, implying a potential bias for or against variation of these residues at the active site. Clustering analysis shows an abundance of hydrolases and transferases. Pathway and functional analysis shows several pathways over- or under-represented in the data set, with the most significantly affected pathways involved in carbohydrate metabolism. We provide a table of 32 variation-substrate/product pairs that can be used in targeted metabolomics experiments to assay the effects of specific variations. In addition, we report the significant prevalence of aspartic acid to histidine variation in eight proteins associated with nine diseases including glycogen storage diseases, lacrimo-auriculo-dento-digital syndrome, Parkinson's disease and several cancers.

  15. Distance, shape and more: recognition of object features during active electrolocation in a weakly electric fish.

    PubMed

    von der Emde, Gerhard; Fetz, Steffen

    2007-09-01

    In the absence of light, the weakly electric fish Gnathonemus petersii detects and distinguishes objects in the environment through active electrolocation. In order to test which features of an object the fish use under these conditions to discriminate between differently shaped objects, we trained eight individuals in a food-rewarded, two-alternative, forced-choice procedure. All fish learned to discriminate between two objects of different shapes and volumes. When new object combinations were offered in non-rewarded test trials, fish preferred those objects that resembled the one they had been trained to (S+) and avoided objects resembling the one that had not been rewarded (S-). For a decision, fish paid attention to the relative differences between the two objects they had to discriminate. For discrimination, fish used several object features, the most important ones being volume, material and shape. The importance of shape was demonstrated by reducing the objects to their 3-dimensional contours, which sufficed for the fish to distinguish differently shaped objects. Our results also showed that fish attended strongly to the feature ;volume', because all individuals tended to avoid the larger one of two objects. When confronted with metal versus plastic objects, all fish avoided metal and preferred plastic objects, irrespective of training. In addition to volume, material and shape, fish attended to additional parameters, such as corners or rounded edges. When confronted with two unknown objects, fish weighed up the positive and negative properties of these novel objects and based their decision on the outcome of this comparison. Our results suggest that fish are able to link and assemble local features of an electrolocation pattern to construct a representation of an object, suggesting that some form of a feature extraction mechanism enables them to solve a complex object recognition task.

  16. Exploring functionally related enzymes using radially distributed properties of active sites around the reacting points of bound ligands

    PubMed Central

    2012-01-01

    Background Structural genomics approaches, particularly those solving the 3D structures of many proteins with unknown functions, have increased the desire for structure-based function predictions. However, prediction of enzyme function is difficult because one member of a superfamily may catalyze a different reaction than other members, whereas members of different superfamilies can catalyze the same reaction. In addition, conformational changes, mutations or the absence of a particular catalytic residue can prevent inference of the mechanism by which catalytic residues stabilize and promote the elementary reaction. A major hurdle for alignment-based methods for prediction of function is the absence (despite its importance) of a measure of similarity of the physicochemical properties of catalytic sites. To solve this problem, the physicochemical features radially distributed around catalytic sites should be considered in addition to structural and sequence similarities. Results We showed that radial distribution functions (RDFs), which are associated with the local structural and physicochemical properties of catalytic active sites, are capable of clustering oxidoreductases and transferases by function. The catalytic sites of these enzymes were also characterized using the RDFs. The RDFs provided a measure of the similarity among the catalytic sites, detecting conformational changes caused by mutation of catalytic residues. Furthermore, the RDFs reinforced the classification of enzyme functions based on conventional sequence and structural alignments. Conclusions Our results demonstrate that the application of RDFs provides advantages in the functional classification of enzymes by providing information about catalytic sites. PMID:22536854

  17. Structural Characterization of Mutations at the Oxygen Activation Site in Monomeric Sarcosine Oxidase

    SciTech Connect

    Schuman Jorns, Marilyn; Chen, Zhi-wei; Mathews, F. Scott

    2010-04-30

    Oxygen reduction and sarcosine oxidation in monomeric sarcosine oxidase (MSOX) occur at separate sites above the si- and re-faces, respectively, of the flavin ring. Mutagenesis studies implicate Lys265 as the oxygen activation site. Substitution of Lys265 with a neutral (Met, Gln, or Ala) or basic (Arg) residue results in an {approx}10{sup 4}- or 250-fold decrease, respectively, in the reaction rate. The overall structure of MSOX and residue conformation in the sarcosine binding cavity are unaffected by replacement of Lys265 with Met or Arg. The side chain of Met265 exhibits the same configuration in each molecule of Lys265Met crystals and is nearly congruent with Lys265 in wild-type MSOX. The side chain of Arg265 is, however, dramatically shifted (4-5 {angstrom}) compared with Lys265, points in the opposite direction, and exhibits significant conformational variability between molecules of the same crystal. The major species in solutions of Lys265Arg is likely to contain a 'flipped-out' Arg265 and exhibit negligible oxygen activation, similar to Lys265Met. The 400-fold higher oxygen reactivity observed with Lys265Arg is attributed to a minor (<1%) 'flipped-in' Arg265 conformer whose oxygen reactivity is similar to that of wild-type MSOX. A structural water (WAT1), found above the si-face of the flavin ring in all previously determined MSOX structures, is part of an apparent proton relay system that extends from FAD N(5) to bulk solvent. WAT1 is strikingly absent in Lys265Met and Lys265Arg, a feature that may account for the apparent kinetic stabilization of a reductive half-reaction intermediate that is detectable with the mutants but not wild-type MSOX.

  18. Quantum mechanics study of the hydroxyethylamines-BACE-1 active site interaction energies.

    PubMed

    Gueto-Tettay, Carlos; Drosos, Juan Carlos; Vivas-Reyes, Ricardo

    2011-06-01

    The identification of BACE-1, a key enzyme in the production of Amyloid-β (Aβ) peptides, generated by the proteolytic processing of amyloid precursor protein, was a major advance in the field of Alzheimer's disease as this pathology is characterized by the presence of extracellular senile plaques, mainly comprised of Aβ peptides. Hydroxyethylamines have demonstrated a remarkable potential, like candidate drugs, for this disease using BACE-1 as target. Density Functional Theory calculations were employed to estimate interaction energies for the complexes formed between the hydroxyethylamine derivated inhibitors and 24 residues in the BACE-1 active site. The collected data offered not only a general but a particular quantitative description that gives a deep insight of the interactions in the active site, showing at the same time how ligand structural variations affect them. Polar interactions are the major energetic contributors for complex stabilization and those ones with charged aspartate residues are highlighted, as they contribute over 90% of the total attractive interaction energy. Ligand-ARG296 residue interaction reports the most repulsive value and decreasing of the magnitude of this repulsion can be a key feature for the design of novel and more potent BACE-1 inhibitors. Also it was explained why sultam derivated BACE-1 inhibitors are better ones than lactam based. Hydrophobic interactions concentrated at S1 zone and other relevant repulsions and attractions were also evaluated. The comparison of two different theory levels (X3LYP and M062X) allowed to confirm the relevance of the detected interactions as each theory level has its own strength to depict the forces involved, as is the case of M062X which is better describing the hydrophobic interactions. Those facts were also evaluated and confirmed by comparing the quantitative trend, of selected ligand-residue interactions, with MP2 theory level as reference standard method for electrostatic plus

  19. Quantum mechanics study of the hydroxyethylamines-BACE-1 active site interaction energies

    NASA Astrophysics Data System (ADS)

    Gueto-Tettay, Carlos; Drosos, Juan Carlos; Vivas-Reyes, Ricardo

    2011-06-01

    The identification of BACE-1, a key enzyme in the production of Amyloid-β (Aβ) peptides, generated by the proteolytic processing of amyloid precursor protein, was a major advance in the field of Alzheimer's disease as this pathology is characterized by the presence of extracellular senile plaques, mainly comprised of Aβ peptides. Hydroxyethylamines have demonstrated a remarkable potential, like candidate drugs, for this disease using BACE-1 as target. Density Functional Theory calculations were employed to estimate interaction energies for the complexes formed between the hydroxyethylamine derivated inhibitors and 24 residues in the BACE-1 active site. The collected data offered not only a general but a particular quantitative description that gives a deep insight of the interactions in the active site, showing at the same time how ligand structural variations affect them. Polar interactions are the major energetic contributors for complex stabilization and those ones with charged aspartate residues are highlighted, as they contribute over 90% of the total attractive interaction energy. Ligand-ARG296 residue interaction reports the most repulsive value and decreasing of the magnitude of this repulsion can be a key feature for the design of novel and more potent BACE-1 inhibitors. Also it was explained why sultam derivated BACE-1 inhibitors are better ones than lactam based. Hydrophobic interactions concentrated at S1 zone and other relevant repulsions and attractions were also evaluated. The comparison of two different theory levels (X3LYP and M062X) allowed to confirm the relevance of the detected interactions as each theory level has its own strength to depict the forces involved, as is the case of M062X which is better describing the hydrophobic interactions. Those facts were also evaluated and confirmed by comparing the quantitative trend, of selected ligand-residue interactions, with MP2 theory level as reference standard method for electrostatic plus

  20. 47 CFR 79.110 - Complaint procedures for user interfaces, menus and guides, and activating accessibility features...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and guides, and activating accessibility features on digital apparatus and navigation devices. 79.110..., and activating accessibility features on digital apparatus and navigation devices. (a) Complaints... entity; (iii) Information sufficient to identify the software or digital apparatus/navigation device...

  1. Identifying key features of effective active learning: the effects of writing and peer discussion.

    PubMed

    Linton, Debra L; Pangle, Wiline M; Wyatt, Kevin H; Powell, Karli N; Sherwood, Rachel E

    2014-01-01

    We investigated some of the key features of effective active learning by comparing the outcomes of three different methods of implementing active-learning exercises in a majors introductory biology course. Students completed activities in one of three treatments: discussion, writing, and discussion + writing. Treatments were rotated weekly between three sections taught by three different instructors in a full factorial design. The data set was analyzed by generalized linear mixed-effect models with three independent variables: student aptitude, treatment, and instructor, and three dependent (assessment) variables: change in score on pre- and postactivity clicker questions, and coding scores on in-class writing and exam essays. All independent variables had significant effects on student performance for at least one of the dependent variables. Students with higher aptitude scored higher on all assessments. Student scores were higher on exam essay questions when the activity was implemented with a writing component compared with peer discussion only. There was a significant effect of instructor, with instructors showing different degrees of effectiveness with active-learning techniques. We suggest that individual writing should be implemented as part of active learning whenever possible and that instructors may need training and practice to become effective with active learning.

  2. Sunspot groups with high flare activity: Specific features of magnetic configuration, morphology, and dynamics

    NASA Astrophysics Data System (ADS)

    Fursyak, Yu. A.

    2016-12-01

    Specific features of the magnetic configuration, morphological structure, dynamics, and evolution of sunspot groups of the current (24th) cycle of solar activity with high flare activity are considered. The gradients of longitudinal magnetic fields at places of δ-configuration are calculated. The main finding is a time delay of 24-30 h between the time when the magnetic field gradient reaches a critical level of 0.1 G/km and the time when the first of powerful flares occurs in the active region. The study is based on data from the SDO and GOES-15 spacecrafts and ground-based solar telescopes (TST-2 at the Crimean Astrophysical Observatory of the Russian Academy of Sciences and the 150-foot telescope at the Mount Wilson Observatory).

  3. Distinctive microstructural features of aged sodium silicate-activated slag concretes

    SciTech Connect

    San Nicolas, Rackel; Bernal, Susan A.; Mejía de Gutiérrez, Ruby; Deventer, Jannie S.J. van; Provis, John L.

    2014-11-15

    Electron microscopic characterisation of 7-year old alkali-activated blast-furnace slag concretes enabled the identification of distinct microstructural features, providing insight into the mechanisms by which these materials evolve over time. Backscattered electron images show the formation of Liesegang-type ring formations, suggesting that the reaction at advanced age is likely to follow an Oswald supersaturation–nucleation–depletion cycle. Segregation of Ca-rich veins, related to the formation of Ca(OH){sub 2}, is observed in microcracked regions due to the ongoing reaction between the pore solution and available calcium from remnant slag grains. A highly dense and uniform interfacial transition zone is identified between siliceous aggregate particles and the alkali activated slag binders, across the concretes assessed. Alkali-activated slag concretes retain a highly dense and stable microstructure at advanced ages, where any microcracks induced at early ages seem to be partially closing, and the remnant slag grains continue reacting.

  4. Structure of Arabidopsis thaliana 5-methylthioribose kinase reveals a more occluded active site than its bacterial homolog

    PubMed Central

    Ku, Shao-Yang; Cornell, Kenneth A; Howell, P Lynne

    2007-01-01

    Background Metabolic variations exist between the methionine salvage pathway of humans and a number of plants and microbial pathogens. 5-Methylthioribose (MTR) kinase is a key enzyme required for methionine salvage in plants and many bacteria. The absence of a mammalian homolog suggests that MTR kinase is a good target for the design of specific herbicides or antibiotics. Results The structure of Arabidopsis thaliana MTR kinase co-crystallized with ATPγS and MTR has been determined at 1.9 Å resolution. The structure is similar to B. subtilis MTR kinase and has the same protein kinase fold observed in other evolutionarily related protein kinase-like phosphotransferases. The active site is comparable between the two enzymes with the DXE-motif coordinating the nucleotide-Mg, the D238 of the HGD catalytic loop polarizing the MTR O1 oxygen, and the RR-motif interacting with the substrate MTR. Unlike its bacterial homolog, however, the Gly-rich loop (G-loop) of A. thaliana MTR kinase has an extended conformation, which shields most of the active site from solvent, a feature that resembles eukaryotic protein kinases more than the bacterial enzyme. The G- and W-loops of A. thaliana and B. subtilis MTR kinase adopt different conformations despite high sequence similarity. The ATPγS analog was hydrolyzed during the co-crystallization procedure, resulting in ADP in the active site. This suggests that the A. thaliana enzyme, like its bacterial homolog, may have significant ATPase activity in the absence of MTR. Conclusion The structure of A. thaliana MTR kinase provides a template for structure-based design of agrochemicals, particularly herbicides whose effectiveness could be regulated by nutrient levels. Features of the MTR binding site offer an opportunity for a simple organic salt of an MTR analog to specifically inhibit MTR kinase. PMID:17961230

  5. Structure of Arabidopsis thaliana 5-methylthioribose Kinase Reveals a More Occluded Active Site Than its Bacterial Homolog

    SciTech Connect

    Ku,S.; Cornell, K.; Howell, P.

    2007-01-01

    Metabolic variations exist between the methionine salvage pathway of humans and a number of plants and microbial pathogens. 5-Methylthioribose (MTR) kinase is a key enzyme required for methionine salvage in plants and many bacteria. The absence of a mammalian homolog suggests that MTR kinase is a good target for the design of specific herbicides or antibiotics. The structure of Arabidopsis thaliana MTR kinase co-crystallized with ATP?S and MTR has been determined at 1.9 Angstroms resolution. The structure is similar to B. subtilis MTR kinase and has the same protein kinase fold observed in other evolutionarily related protein kinase-like phosphotransferases. The active site is comparable between the two enzymes with the DXE-motif coordinating the nucleotide-Mg, the D238 of the HGD catalytic loop polarizing the MTR O1 oxygen, and the RR-motif interacting with the substrate MTR. Unlike its bacterial homolog, however, the Gly-rich loop (G-loop) of A. thaliana MTR kinase has an extended conformation, which shields most of the active site from solvent, a feature that resembles eukaryotic protein kinases more than the bacterial enzyme. The G- and W-loops of A. thaliana and B. subtilis MTR kinase adopt different conformations despite high sequence similarity. The ATP?S analog was hydrolyzed during the co-crystallization procedure, resulting in ADP in the active site. This suggests that the A. thaliana enzyme, like its bacterial homolog, may have significant ATPase activity in the absence of MTR. The structure of A. thaliana MTR kinase provides a template for structure-based design of agrochemicals, particularly herbicides whose effectiveness could be regulated by nutrient levels. Features of the MTR binding site offer an opportunity for a simple organic salt of an MTR analog to specifically inhibit MTR kinase.

  6. Examination of CRISPR/Cas9 design tools and the effect of target site accessibility on Cas9 activity.

    PubMed

    Lee, Ciaran M; Davis, Timothy H; Bao, Gang

    2017-03-16

    The recent adaptation of the CRISPR/Cas9 system for targeted genome engineering has led to its widespread applications in many fields worldwide. In order to better understand the design rules of CRISPR/Cas9 systems, several groups have carried out large library-based screens leading to some insight into sequence preferences among highly active target sites. To facilitate CRISPR/Cas9 design these studies have spawned a plethora of gRNA design tools with algorithms based solely on direct or indirect sequence features. Here we demonstrate that the predictive power of these tools is poor, suggesting that sequence features alone cannot accurately inform the cutting efficiency of a particular CRISPR/Cas9 gRNA design. Furthermore we demonstrate that DNA target site accessibility influences the activity of CRISPR/Cas9. With further optimisation we hypothesise that it will be possible to increase the predictive power of gRNA design tools by including both sequence and target site accessibility metrics. This article is protected by copyright. All rights reserved.

  7. All the catalytic active sites of MoS2 for hydrogen evolution

    DOE PAGES

    Li, Guoqing; Zhang, Du; Qiao, Qiao; ...

    2016-11-29

    MoS2 presents a promising low-cost catalyst for the hydrogen evolution reaction (HER), but the understanding about its active sites has remained limited. Here we present an unambiguous study of the catalytic activities of all possible reaction sites of MoS2, including edge sites, sulfur vacancies, and grain boundaries. We demonstrate that, in addition to the well-known catalytically active edge sites, sulfur vacancies provide another major active site for the HER, while the catalytic activity of grain boundaries is much weaker. Here, the intrinsic turnover frequencies (Tafel slopes) of the edge sites, sulfur vacancies, and grain boundaries are estimated to be 7.5more » s–1 (65–75 mV/dec), 3.2 s–1 (65–85 mV/dec), and 0.1 s–1 (120–160 mV/dec), respectively. We also demonstrate that the catalytic activity of sulfur vacancies strongly depends on the density of the vacancies and the local crystalline structure in proximity to the vacancies. Unlike edge sites, whose catalytic activity linearly depends on the length, sulfur vacancies show optimal catalytic activities when the vacancy density is in the range of 7–10%, and the number of sulfur vacancies in high crystalline quality MoS2 is higher than that in low crystalline quality MoS2, which may be related with the proximity of different local crystalline structures to the vacancies.« less

  8. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts

    PubMed Central

    Sahraie, Nastaran Ranjbar; Kramm, Ulrike I.; Steinberg, Julian; Zhang, Yuanjian; Thomas, Arne; Reier, Tobias; Paraknowitsch, Jens-Peter; Strasser, Peter

    2015-01-01

    Carbon materials doped with transition metal and nitrogen are highly active, non-precious metal catalysts for the electrochemical conversion of molecular oxygen in fuel cells, metal air batteries, and electrolytic processes. However, accurate measurement of their intrinsic turn-over frequency and active-site density based on metal centres in bulk and surface has remained difficult to date, which has hampered a more rational catalyst design. Here we report a successful quantification of bulk and surface-based active-site density and associated turn-over frequency values of mono- and bimetallic Fe/N-doped carbons using a combination of chemisorption, desorption and 57Fe Mössbauer spectroscopy techniques. Our general approach yields an experimental descriptor for the intrinsic activity and the active-site utilization, aiding in the catalyst development process and enabling a previously unachieved level of understanding of reactivity trends owing to a deconvolution of site density and intrinsic activity. PMID:26486465

  9. Marine Biology Field Trip Sites. Ocean Related Curriculum Activities.

    ERIC Educational Resources Information Center

    Pauls, John

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  10. Structure of a Berberine Bridge Enzyme-Like Enzyme with an Active Site Specific to the Plant Family Brassicaceae

    PubMed Central

    Daniel, Bastian; Wallner, Silvia; Steiner, Barbara; Oberdorfer, Gustav; Kumar, Prashant; van der Graaff, Eric; Roitsch, Thomas; Sensen, Christoph W.; Gruber, Karl; Macheroux, Peter

    2016-01-01

    Berberine bridge enzyme-like (BBE-like) proteins form a multigene family (pfam 08031), which is present in plants, fungi and bacteria. They adopt the vanillyl alcohol-oxidase fold and predominantly show bi-covalent tethering of the FAD cofactor to a cysteine and histidine residue, respectively. The Arabidopsis thaliana genome was recently shown to contain genes coding for 28 BBE-like proteins, while featuring four distinct active site compositions. We determined the structure of a member of the AtBBE-like protein family (termed AtBBE-like 28), which has an active site composition that has not been structurally and biochemically characterized thus far. The most salient and distinguishing features of the active site found in AtBBE-like 28 are a mono-covalent linkage of a histidine to the 8α-position of the flavin-isoalloxazine ring and the lack of a second covalent linkage to the 6-position, owing to the replacement of a cysteine with a histidine. In addition, the structure reveals the interaction of a glutamic acid (Glu426) with an aspartic acid (Asp369) at the active site, which appear to share a proton. This arrangement leads to the delocalization of a negative charge at the active site that may be exploited for catalysis. The structure also indicates a shift of the position of the isoalloxazine ring in comparison to other members of the BBE-like family. The dioxygen surrogate chloride was found near the C(4a) position of the isoalloxazine ring in the oxygen pocket, pointing to a rapid reoxidation of reduced enzyme by dioxygen. A T-DNA insertional mutant line for AtBBE-like 28 results in a phenotype, that is characterized by reduced biomass and lower salt stress tolerance. Multiple sequence analysis showed that the active site composition found in AtBBE-like 28 is only present in the Brassicaceae, suggesting that it plays a specific role in the metabolism of this plant family. PMID:27276217

  11. An active site mutation increases the polymerase activity of the guinea pig-lethal Marburg virus.

    PubMed

    Koehler, Alexander; Kolesnikova, Larissa; Becker, Stephan

    2016-10-01

    Marburg virus (MARV) causes severe, often fatal, disease in humans and transient illness in rodents. Sequential passaging of MARV in guinea pigs resulted in selection of a lethal virus containing 4 aa changes. A D184N mutation in VP40 (VP40D184N), which leads to a species-specific gain of viral fitness, and three mutations in the active site of viral RNA-dependent RNA polymerase L, which were investigated in the present study for functional significance in human and guinea pig cells. The transcription/replication activity of L mutants was strongly enhanced by a substitution at position 741 (S741C), and inhibited by other substitutions (D758A and A759D) in both species. The polymerase activity of L carrying the S741C substitution was eightfold higher in guinea pig cells than in human cells upon co-expression with VP40D184N, suggesting that the additive effect of the two mutations provides MARV a replicative advantage in the new host.

  12. PSNO: predicting cysteine S-nitrosylation sites by incorporating various sequence-derived features into the general form of Chou's PseAAC.

    PubMed

    Zhang, Jian; Zhao, Xiaowei; Sun, Pingping; Ma, Zhiqiang

    2014-06-25

    S-nitrosylation (SNO) is one of the most universal reversible post-translational modifications involved in many biological processes. Malfunction or dysregulation of SNO leads to a series of severe diseases, such as developmental abnormalities and various diseases. Therefore, the identification of SNO sites (SNOs) provides insights into disease progression and drug development. In this paper, a new bioinformatics tool, named PSNO, is proposed to identify SNOs from protein sequences. Firstly, we explore various promising sequence-derived discriminative features, including the evolutionary profile, the predicted secondary structure and the physicochemical properties. Secondly, rather than simply combining the features, which may bring about information redundancy and unwanted noise, we use the relative entropy selection and incremental feature selection approach to select the optimal feature subsets. Thirdly, we train our model by the technique of the k-nearest neighbor algorithm. Using both informative features and an elaborate feature selection scheme, our method, PSNO, achieves good prediction performance with a mean Mathews correlation coefficient (MCC) value of about 0.5119 on the training dataset using 10-fold cross-validation. These results indicate that PSNO can be used as a competitive predictor among the state-of-the-art SNOs prediction tools. A web-server, named PSNO, which implements the proposed method, is freely available at http://59.73.198.144:8088/PSNO/.

  13. Encroachment of Human Activity on Sea Turtle Nesting Sites

    NASA Astrophysics Data System (ADS)

    Ziskin, D.; Aubrecht, C.; Elvidge, C.; Tuttle, B.; Baugh, K.; Ghosh, T.

    2008-12-01

    The encroachment of anthropogenic lighting on sea turtle nesting sites poses a serious threat to the survival of these animals [Nicholas, 2001]. This danger is quantified by combining two established data sets. The first is the Nighttime Lights data produced by the NOAA National Geophysical Data Center [Elvidge et al., 1997]. The second is the Marine Turtle Database produced by the World Conservation Monitoring Centre (WCMC). The technique used to quantify the threat of encroachment is an adaptation of the method described in Aubrecht et al. [2008], which analyzes the stress on coral reef systems by proximity to nighttime lights near the shore. Nighttime lights near beaches have both a direct impact on turtle reproductive success since they disorient hatchlings when they mistake land-based lights for the sky-lit surf [Lorne and Salmon, 2007] and the lights are also a proxy for other anthropogenic threats. The identification of turtle nesting sites with high rates of encroachment will hopefully steer conservation efforts to mitigate their effects [Witherington, 1999]. Aubrecht, C, CD Elvidge, T Longcore, C Rich, J Safran, A Strong, M Eakin, KE Baugh, BT Tuttle, AT Howard, EH Erwin, 2008, A global inventory of coral reef stressors based on satellite observed nighttime lights, Geocarto International, London, England: Taylor and Francis. In press. Elvidge, CD, KE Baugh, EA Kihn, HW Kroehl, ER Davis, 1997, Mapping City Lights with Nighttime Data from the DMSP Operational Linescan System, Photogrammatic Engineering and Remote Sensing, 63:6, pp. 727-734. Lorne, JK, M Salmon, 2007, Effects of exposure to artificial lighting on orientation of hatchling sea turtles on the beach and in the ocean, Endangered Species Research, Vol. 3: 23-30. Nicholas, M, 2001, Light Pollution and Marine Turtle Hatchlings: The Straw that Breaks the Camel's Back?, George Wright Forum, 18:4, p77-82. Witherington, BE, 1999, Reducing Threats To Nesting Habitat, Research and Management Techniques for

  14. Molecular Basis for Enzymatic Sulfite Oxidation -- HOW THREE CONSERVED ACTIVE SITE RESIDUES SHAPE ENZYME ACTIVITY

    SciTech Connect

    Bailey, Susan; Rapson, Trevor; Johnson-Winters, Kayunta; Astashkin, Andrei; Enemark, John; Kappler, Ulrike

    2008-11-10

    Sulfite dehydrogenases (SDHs) catalyze the oxidation and detoxification of sulfite to sulfate, a reaction critical to all forms of life. Sulfite-oxidizing enzymes contain three conserved active site amino acids (Arg-55, His-57, and Tyr-236) that are crucial for catalytic competency. Here we have studied the kinetic and structural effects of two novel and one previously reported substitution (R55M, H57A, Y236F) in these residues on SDH catalysis. Both Arg-55 and His-57 were found to have key roles in substrate binding. An R55M substitution increased Km(sulfite)(app) by 2-3 orders of magnitude, whereas His-57 was required for maintaining a high substrate affinity at low pH when the imidazole ring is fully protonated. This effect may be mediated by interactions of His-57 with Arg-55 that stabilize the position of the Arg-55 side chain or, alternatively, may reflect changes in the protonation state of sulfite. Unlike what is seen for SDHWT and SDHY236F, the catalytic turnover rates of SDHR55M and SDHH57A are relatively insensitive to pH (~;;60 and 200 s-1, respectively). On the structural level, striking kinetic effects appeared to correlate with disorder (in SDHH57A and SDHY236F) or absence of Arg-55 (SDHR55M), suggesting that Arg-55 and the hydrogen bonding interactions it engages in are crucial for substrate binding and catalysis. The structure of SDHR55M has sulfate bound at the active site, a fact that coincides with a significant increase in the inhibitory effect of sulfate in SDHR55M. Thus, Arg-55 also appears to be involved in enabling discrimination between the substrate and product in SDH.

  15. Identification of inhibitors against the potential ligandable sites in the active cholera toxin.

    PubMed

    Gangopadhyay, Aditi; Datta, Abhijit

    2015-04-01

    The active cholera toxin responsible for the massive loss of water and ions in cholera patients via its ADP ribosylation activity is a heterodimer of the A1 subunit of the bacterial holotoxin and the human cytosolic ARF6 (ADP Ribosylation Factor 6). The active toxin is a potential target for the design of inhibitors against cholera. In this study we identified the potential ligandable sites of the active cholera toxin which can serve as binding sites for drug-like molecules. By employing an energy-based approach to identify ligand binding sites, and comparison with the results of computational solvent mapping, we identified two potential ligandable sites in the active toxin which can be targeted during structure-based drug design against cholera. Based on the probe affinities of the identified ligandable regions, docking-based virtual screening was employed to identify probable inhibitors against these sites. Several indole-based alkaloids and phosphates showed strong interactions to the important residues of the ligandable region at the A1 active site. On the other hand, 26 top scoring hits were identified against the ligandable region at the A1 ARF6 interface which showed strong hydrogen bonding interactions, including guanidines, phosphates, Leucopterin and Aristolochic acid VIa. This study has important implications in the application of hybrid structure-based and ligand-based methods against the identified ligandable sites using the identified inhibitors as reference ligands, for drug design against the active cholera toxin.

  16. Barium ions selectively activate BK channels via the Ca2+-bowl site.

    PubMed

    Zhou, Yu; Zeng, Xu-Hui; Lingle, Christopher J

    2012-07-10

    Activation of Ca(2+)-dependent BK channels is increased via binding of micromolar Ca(2+) to two distinct high-affinity sites per BK α-subunit. One site, termed the Ca(2+) bowl, is embedded within the second RCK domain (RCK2; regulator of conductance for potassium) of each α-subunit, while oxygen-containing residues in the first RCK domain (RCK1) have been linked to a separate Ca(2+) ligation site. Although both sites are activated by Ca(2+) and Sr(2+), Cd(2+) selectively favors activation via the RCK1 site. Divalent cations of larger ionic radius than Sr(2+) are thought to be ineffective at activating BK channels. Here we show that Ba(2+), better known as a blocker of K(+) channels, activates BK channels and that this effect arises exclusively from binding at the Ca(2+)-bowl site. Compared with previous estimates for Ca(2+) bowl-mediated activation by Ca(2+), the affinity of Ba(2+) to the Ca(2+) bowl is reduced about fivefold, and coupling of binding to activation is reduced from ∼3.6 for Ca(2+) to about ∼2.8 for Ba(2+). These results support the idea that ionic radius is an important determinant of selectivity differences among different divalent cations observed for each Ca(2+)-binding site.

  17. Activation of brown adipose tissue mitochondrial GDP binding sites

    SciTech Connect

    Swick, A.G.

    1987-01-01

    The primary function of brown adipose tissue (BAT) is heat production. This ability is attributed to the existence of a unique inner mitochondrial membrane protein termed the uncoupling protein or thermogenin. This protein is permeable to H+ and thus allows respiration (and therefore thermogenesis) to proceed at a rapid rate, independent of ADP phosphorylation. Proton conductance can be inhibited by the binding of purine nucleotides to the uncoupling protein. The binding of (/sup 3/H)-GDP to BAT mitochondria is frequently used as a measure of BAT thermogenic activity. Rats fed a diet that was low but adequate in protein exhibited a decrease in feed efficiency. In addition, BAT thermogenesis was activated as indicated by an elevation in the level of GDP binding to BAT mitochondria. This phenomena occurred in older rats and persisted over time.

  18. Structure and Reactivity of the Phosphotriesterase Active Site

    DTIC Science & Technology

    2002-01-01

    characterize different catalytic conformations for chorismate mutase . Preliminary evidence for water binding in phosphotriesterase suggests that activity in...MD/QM study of the chorismate mutase catalyzed Claisen rearrangement reaction. 2001.subm. J.Phys.Chem.B 22.Day, P.N.J., J.H.; Gordon,M.S.; Webb,S.P...Claisen rearrangement of an unusual substrate in chorismate mutase . 2001.subm. J.Phys.Chem.B 38.Stevens, W.J., Basch,H., Krauss,M., Compact effective

  19. Active site proton delivery and the lyase activity of human CYP17A1

    SciTech Connect

    Khatri, Yogan; Gregory, Michael C.; Grinkova, Yelena V.; Denisov, Ilia G.; Sligar, Stephen G.

    2014-01-03

    equivalents and protons are funneled into non-productive pathways. This is similar to previous work with other P450 catalyzed hydroxylation. However, catalysis of carbon–carbon bond scission by the T306A mutant was largely unimpeded by disruption of the CYP17A1 acid-alcohol pair. The unique response of CYP17A1 lyase activity to mutation of Thr306 is consistent with a reactive intermediate formed independently of proton delivery in the active site, and supports involvement of a nucleophilic peroxo-anion rather than the traditional Compound I in catalysis.

  20. Pathways of H2 toward the Active Site of [NiFe]-Hydrogenase

    PubMed Central

    Teixeira, Vitor H.; Baptista, António M.; Soares, Cláudio M.

    2006-01-01

    Hydrogenases catalyze the reversible oxidation of molecular hydrogen (H2), but little is known about the diffusion of H2 toward the active site. Here we analyze pathways for H2 permeation using molecular dynamics (MD) simulations in explicit solvent. Various MD simulation replicates were done, to improve the sampling of the system states. H2 easily permeates hydrogenase in every simulation and it moves preferentially in channels. All H2 molecules that reach the active site made their approach from the side of the Ni ion. H2 is able to reach distances of <4 Å from the active site, although after 6 Å permeation is difficult. In this region we mutated Val-67 into alanine and perform new MD simulations. These simulations show an increase of H2 inside the protein and at lower distances from the active site. This valine can be a control point in the H2 access to the active center. PMID:16731562

  1. Maintenance of plastid RNA editing activities independently of their target sites.

    PubMed

    Tillich, Michael; Poltnigg, Peter; Kushnir, Sergei; Schmitz-Linneweber, Christian

    2006-03-01

    RNA editing in plant organelles is mediated by site-specific, nuclear-encoded factors. Previous data suggested that the maintenance of these factors depends on the presence of their rapidly evolving cognate sites. The surprising ability of allotetraploid Nicotiana tabacum (tobacco) to edit a foreign site in the chloroplast ndhA messenger RNA was thought to be inherited from its diploid male ancestor, Nicotiana tomentosiformis. Here, we show that the same ndhA editing activity is also present in Nicotiana sylvestris, which is the female diploid progenitor of tobacco and which lacks the ndhA site. Hence, heterologous editing is not simply a result of tobacco's allopolyploid genome organization. Analyses of other editing sites after sexual or somatic transfer between land plants showed that heterologous editing occurs at a surprisingly high frequency. This suggests that the corresponding editing activities are conserved despite the absence of their target sites, potentially because they serve other functions in the plant cell.

  2. Patient prognosis based on feature extraction, selection and classification of EEG periodic activity.

    PubMed

    Sánchez-González, Alain; García-Zapirain, Begoña; Maestro Saiz, Iratxe; Yurrebaso Santamaría, Izaskun

    2015-01-01

    Periodic activity in electroencephalography (PA-EEG) is shown as comprising a series of repetitive wave patterns that may appear in different cerebral regions and are due to many different pathologies. The diagnosis based on PA-EEG is an arduous task for experts in Clinical Neurophysiology, being mainly based on other clinical features of patients. Considering this difficulty in the diagnosis it is also very complicated to establish the prognosis of patients who present PA-EEG. The goal of this paper is to propose a method capable of determining patient prognosis based on characteristics of the PA-EEG activity. The approach, based on a parallel classification architecture and a majority vote system has proven successful by obtaining a success rate of 81.94% in the classification of patient prognosis of our database.

  3. Age-related increase in top-down activation of visual features

    PubMed Central

    Madden, David J.; Spaniol, Julia; Bucur, Barbara; Whiting, Wythe L.

    2007-01-01

    Previous research suggests that, during visual search and discrimination tasks, older adults place greater emphasis than younger adults on top-down attention. This experiment investigated the relative contribution of target activation and distractor inhibition to this age difference. Younger and older adults performed a singleton discrimination task in which either an E or an R target (colour singleton) was present among distractor letters. Relative to a baseline condition in which the colours of the targets and distractors remained constant, an age-related slowing of performance was evident when either the colour of the target or that of the distractors varied across trials. The age-related slowing was more pronounced in response to target colour variation, suggesting that older adults place relatively greater emphasis on the top-down activation of target features. PMID:17455072

  4. Active Contours Driven by Multi-Feature Gaussian Distribution Fitting Energy with Application to Vessel Segmentation.

    PubMed

    Wang, Lei; Zhang, Huimao; He, Kan; Chang, Yan; Yang, Xiaodong

    2015-01-01

    Active contour models are of great importance for image segmentation and can extract smooth and closed boundary contours of the desired objects with promising results. However, they cannot work well in the presence of intensity inhomogeneity. Hence, a novel region-based active contour model is proposed by taking image intensities and 'vesselness values' from local phase-based vesselness enhancement into account simultaneously to define a novel multi-feature Gaussian distribution fitting energy in this paper. This energy is then incorporated into a level set formulation with a regularization term for accurate segmentations. Experimental results based on publicly available STructured Analysis of the Retina (STARE) demonstrate our model is more accurate than some existing typical methods and can successfully segment most small vessels with varying width.

  5. A Processive Carbohydrate Polymerase That Mediates Bifunctional Catalysis Using a Single Active Site

    PubMed Central

    May, John F.; Levengood, Matthew R.; Splain, Rebecca A.; Brown, Christopher D.; Kiessling, Laura L.

    2012-01-01

    Even in the absence of a template, glycosyltransferases can catalyze the synthesis of carbohydrate polymers of specific sequence. The paradigm has been that one enzyme catalyzes the formation of one type of glycosidic linkage, yet certain glycosyltransferases generate polysaccharide sequences composed of two distinct linkage types. In principle, bifunctional glycosyltransferases can possess separate active sites for each catalytic activity or one active site with dual activities. We encountered the fundamental question of one or two distinct active sites in our investigation of the galactosyltransferase GlfT2. GlfT2 catalyzes the formation of mycobacterial galactan, a critical cell-wall polymer composed of galactofuranose residues connected with alternating, regioisomeric linkages. We found that GlfT2 mediates galactan polymerization using only one active site that manifests dual regioselectivity. Structural modeling of the bifunctional glycosyltransferases hyaluronan synthase and cellulose synthase suggests that these enzymes also generate multiple glycosidic linkages using a single active site. These results highlight the versatility of glycosyltransferases for generating polysaccharides of specific sequence. We postulate that a hallmark of processive elongation of a carbohydrate polymer by a bifunctional enzyme is that one active site can give rise to two separate types of glycosidic bonds. PMID:22217153

  6. Genomic features of uncultured methylotrophs in activated-sludge microbiomes grown under different enrichment procedures

    PubMed Central

    Fujinawa, Kazuki; Asai, Yusuke; Miyahara, Morio; Kouzuma, Atsushi; Abe, Takashi; Watanabe, Kazuya

    2016-01-01

    Methylotrophs are organisms that are able to grow on C1 compounds as carbon and energy sources. They play important roles in the global carbon cycle and contribute largely to industrial wastewater treatment. To identify and characterize methylotrophs that are involved in methanol degradation in wastewater-treatment plants, methanol-fed activated-sludge (MAS) microbiomes were subjected to phylogenetic and metagenomic analyses, and genomic features of dominant methylotrophs in MAS were compared with those preferentially grown in laboratory enrichment cultures (LECs). These analyses consistently indicate that Hyphomicrobium plays important roles in MAS, while Methylophilus occurred predominantly in LECs. Comparative analyses of bin genomes reconstructed for the Hyphomicrobium and Methylophilus methylotrophs suggest that they have different C1-assimilation pathways. In addition, function-module analyses suggest that their cell-surface structures are different. Comparison of the MAS bin genome with genomes of closely related Hyphomicrobium isolates suggests that genes unnecessary in MAS (for instance, genes for anaerobic respiration) have been lost from the genome of the dominant methylotroph. We suggest that genomic features and coded functions in the MAS bin genome provide us with insights into how this methylotroph adapts to activated-sludge ecosystems. PMID:27221669

  7. THE INTRINSIC VALUE OF HFO FEATURES AS A BIOMARKER OF EPILEPTIC ACTIVITY

    PubMed Central

    Gliske, Stephen V.; Stacey, William C.; Moon, Kevin R.; Hero, Alfred O.

    2016-01-01

    High frequency oscillations (HFOs) are a promising biomarker of epileptic brain tissue and activity. HFOs additionally serve as a prototypical example of challenges in the analysis of discrete events in high-temporal resolution, intracranial EEG data. Two primary challenges are 1) dimensionality reduction, and 2) assessing feasibility of classification. Dimensionality reduction assumes that the data lie on a manifold with dimension less than that of the features space. However, previous HFO analysis have assumed a linear manifold, global across time, space (i.e. recording electrode/channel), and individual patients. Instead, we assess both a) whether linear methods are appropriate and b) the consistency of the manifold across time, space, and patients. We also estimate bounds on the Bayes classification error to quantify the distinction between two classes of HFOs (those occurring during seizures and those occurring due to other processes). This analysis provides the foundation for future clinical use of HFO features and guides the analysis for other discrete events, such as individual action potentials or multi-unit activity. PMID:27453693

  8. The energy balance and pressure in the solar transition zone for network and active region features

    NASA Technical Reports Server (NTRS)

    Nicolas, K. R.; Bartoe, J.-D. F.; Brueckner, G. E.; Vanhoosier, M. E.

    1979-01-01

    The electron pressure and energy balance in the solar transition zone are determined for about 125 network and active region features on the basis of high spectral and spatial resolution extreme ultraviolet spectra. Si III line intensity ratios obtained from the Naval Research Laboratory high-resolution telescope and spectrograph during a rocket flight are used as diagnostics of electron density and pressure for solar features near 3.5 x 10 to the 4th K. Observed ratios are compared with the calculated dependence of the 1301 A/1312 A and 1301 A/1296 A line intensity ratios on electron density, temperature and pressure. Electron densities ranging from 2 x 10 to the 10th/cu cm to 10 to the 12th/cu cm and active region pressures from 3 x 10 to the 15th to 10 to the 16th/cu cm K are obtained. Energy balance calculations reveal the balance of the divergence of the conductive flux and turbulent energy dissipation by radiative energy losses in a plane-parallel homogeneous transition zone (fill factor of 1), and an energy source requirement for a cylindrical zone geometry (fill factor less than 0.04).

  9. An Accessory Agonist Binding Site Promotes Activation of α4β2* Nicotinic Acetylcholine Receptors*

    PubMed Central

    Wang, Jingyi; Kuryatov, Alexander; Sriram, Aarati; Jin, Zhuang; Kamenecka, Theodore M.; Kenny, Paul J.; Lindstrom, Jon

    2015-01-01

    Neuronal nicotinic acetylcholine receptors containing α4, β2, and sometimes other subunits (α4β2* nAChRs) regulate addictive and other behavioral effects of nicotine. These nAChRs exist in several stoichiometries, typically with two high affinity acetylcholine (ACh) binding sites at the interface of α4 and β2 subunits and a fifth accessory subunit. A third low affinity ACh binding site is formed when this accessory subunit is α4 but not if it is β2. Agonists selective for the accessory ACh site, such as 3-[3-(3-pyridyl)-1,2,4-oxadiazol-5-yl]benzonitrile (NS9283), cannot alone activate a nAChR but can facilitate more efficient activation in combination with agonists at the canonical α4β2 sites. We therefore suggest categorizing agonists according to their site selectivity. NS9283 binds to the accessory ACh binding site; thus it is termed an accessory site-selective agonist. We expressed (α4β2)2 concatamers in Xenopus oocytes with free accessory subunits to obtain defined nAChR stoichiometries and α4/accessory subunit interfaces. We show that α2, α3, α4, and α6 accessory subunits can form binding sites for ACh and NS9283 at interfaces with α4 subunits, but β2 and β4 accessory subunits cannot. To permit selective blockage of the accessory site, α4 threonine 126 located on the minus side of α4 that contributes to the accessory site, but not the α4β2 sites, was mutated to cysteine. Alkylation of this cysteine with a thioreactive reagent blocked activity of ACh and NS9283 at the accessory site. Accessory agonist binding sites are promising drug targets. PMID:25869137

  10. Extending the Diffuse Layer Model of Surface Acidity Behavior: III. Estimating Bound Site Activity Coefficients

    EPA Science Inventory

    Although detailed thermodynamic analyses of the 2-pK diffuse layer surface complexation model generally specify bound site activity coefficients for the purpose of accounting for those non-ideal excess free energies contributing to bound site electrochemical potentials, in applic...

  11. 75 FR 71677 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites AGENCY: Department of... uranium and thorium processing site licensees for reimbursement under Title X of the Energy Policy Act of... requires DOE to reimburse eligible uranium and thorium licensees for certain costs of...

  12. Highly Selective Adsorption of Ethylene over Ethane in a MOF Featuring the Combination of Open Metal Site and -Complexation

    DOE PAGES

    Zhang, Yiming; Li, Baiyan; Wu, Zili; ...

    2015-01-01

    The introduction of the combination of open metal site (OMS) and -complexation into MOF has led to very high ethylene/ethane adsorption selectivity at 318K, as illustrated in the context of MIL-101-Cr-SO3Ag. The interactions with ethylene from both OMS and -complexation in MIL-101-Cr-SO3Ag have been investigated by in situ IR spectroscopic studies and computational calculations, which suggest -complexation contributes dominantly to the high ethylene/ethane adsorption selectivity.

  13. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...). (e) For all asbestos-containing waste material received, the owner or operator of the active waste... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an...

  14. Sulfide-Binding Hemoglobins: Effects of Mutations on Active-Site Flexibility

    PubMed Central

    Fernandez-Alberti, S.; Bacelo, D. E.; Binning, R. C.; Echave, J.; Chergui, M.; Lopez-Garriga, J.

    2006-01-01

    The dynamics of Hemoglobin I (HbI) from the clam Lucina pectinata, from wild-type sperm whale (SW) myoglobin, and from the L29F/H64Q/V68F triple mutant of SW, both unligated and bound to hydrogen sulfide (H2S), have been studied in molecular dynamics simulations. Features that account for differences in H2S affinity among the three have been examined. Our results verify the existence of an unusual heme rocking motion in unligated HbI that can promote the entrance of large ligands such as H2S. The FQF-mutant partially reproduces the amplitude and relative orientation of the motion of HbI's heme group. Therefore, besides introducing favorable electrostatic interactions with H2S, the three mutations in the distal pocket change the dynamic properties of the heme group. The active-site residues Gln-64(E7), Phe-43(CD1), and His-93(F8) are also shown to be more flexible in unligated HbI than in FQF-mutant and SW. Further contributions to H2S affinity come from differences in hydrogen bonding between the heme propionate groups and nearby amino acid residues. PMID:16782787

  15. Rotation of nucleotide sites is not required for the enzymatic activity of chloroplast coupling factor

    SciTech Connect

    Musier, K.M.; Hammes, G.G.

    1987-09-22

    New heterobifunctional photoaffinity cross-linking reagents, 6-maleimido-N-(4-benzoylphenyl)hexanamide, 12-maleimido-N-(4-benzoylphenyl)dodecanamide, and 12-(/sup 14/C)maleimido-N-(4-benzoylphenyo)dodecanamide, were synthesized to investigate the mechanism of ATP hydrolysis by chloroplast coupling factor 1. These reagents react with sulfhydryl groups on the ..gamma..-polypeptide. Subsequent photolysis cross-links the ..gamma..-polypeptide covalently to ..cap alpha..- and ..beta..-polypeptides. The cross-linkers prevent major movements of the ..gamma..-polypeptide with respect to the ..cap alpha..- and ..beta..-polypeptides but are sufficiently long to permit some flexibility in the enzyme structure. When approx. 50% of the ..gamma..-polypeptide was cross-linked to a ..cap alpha..- and ..beta..-polypeptides, a 7% loss in ATPase activity was observed for the longer cross-linker and a 12% loss for the shorter. These results indicate that large movements of ..cap alpha..- and ..beta..-polypeptides with respect to the ..gamma..-polypeptide are not essential for catalysis. In particular, rotation of the polypeptide chains to crease structurally equivalent sites during catalysis is not a required feature of the enzyme mechanism.

  16. Structure and nuclearity of active sites in Fe-zeolites: comparison with iron sites in enzymes and homogeneous catalysts.

    PubMed

    Zecchina, Adriano; Rivallan, Mickaël; Berlier, Gloria; Lamberti, Carlo; Ricchiardi, Gabriele

    2007-07-21

    Fe-ZSM-5 and Fe-silicalite zeolites efficiently catalyse several oxidation reactions which find close analogues in the oxidation reactions catalyzed by homogeneous and enzymatic compounds. The iron centres are highly dispersed in the crystalline matrix and on highly diluted samples, mononuclear and dinuclear structures are expected to become predominant. The crystalline and robust character of the MFI framework has allowed to hypothesize that the catalytic sites are located in well defined crystallographic positions. For this reason these catalysts have been considered as the closest and best defined heterogeneous counterparts of heme and non heme iron complexes and of Fenton type Fe(2+) homogeneous counterparts. On this basis, an analogy with the methane monooxygenase has been advanced several times. In this review we have examined the abundant literature on the subject and summarized the most widely accepted views on the structure, nuclearity and catalytic activity of the iron species. By comparing the results obtained with the various characterization techniques, we conclude that Fe-ZSM-5 and Fe-silicalite are not the ideal samples conceived before and that many types of species are present, some active and some other silent from adsorptive and catalytic point of view. The relative concentration of these species changes with thermal treatments, preparation procedures and loading. Only at lowest loadings the catalytically active species become the dominant fraction of the iron species. On the basis of the spectroscopic titration of the active sites by using NO as a probe, we conclude that the active species on very diluted samples are isolated and highly coordinatively unsaturated Fe(2+) grafted to the crystalline matrix. Indication of the constant presence of a smaller fraction of Fe(2+) presumably located on small clusters is also obtained. The nitrosyl species formed upon dosing NO from the gas phase on activated Fe-ZSM-5 and Fe-silicalite, have been analyzed

  17. Monocopper active site for partial methane oxidation in Cu-exchanged 8MR zeolites

    SciTech Connect

    Kulkarni, Ambarish R.; Zhao, Zhi -Jian; Siahrostami, Samira; Nørskov, Jens K.; Studt, Felix

    2016-08-17

    Direct conversion of methane to methanol using oxygen is experiencing renewed interest owing to the availability of new natural gas resources. Copper-exchanged zeolites such as mordenite and ZSM-5 have shown encouraging results, and di- and tri-copper species have been suggested as active sites. Recently, small eight-membered ring (8MR) zeolites including SSZ-13, -16, and -39 have been shown to be active for methane oxidation, but the active sites and reaction mechanisms in these 8MR zeolites are not known. In this work, we use density functional theory (DFT) calculations to systematically evaluate monocopper species as active sites for the partial methane oxidation reaction in Cu-exchanged SSZ-13. On the basis of kinetic and thermodynamic arguments, we suggest that [CuIIOH]+ species in the 8MR are responsible for the experimentally observed activity. Furthermore, our results successfully explain the available spectroscopic data and experimental observations including (i) the necessity of water for methanol extraction and (ii) the effect of Si/Al ratio on the catalyst activity. Monocopper species have not yet been suggested as an active site for the partial methane oxidation reaction, and our results suggest that [CuIIOH]+ active site may provide complementary routes for methane activation in zeolites in addition to the known [Cu–O–Cu]2+ and Cu3O3 motifs.

  18. Monocopper active site for partial methane oxidation in Cu-exchanged 8MR zeolites

    DOE PAGES

    Kulkarni, Ambarish R.; Zhao, Zhi -Jian; Siahrostami, Samira; ...

    2016-08-17

    Direct conversion of methane to methanol using oxygen is experiencing renewed interest owing to the availability of new natural gas resources. Copper-exchanged zeolites such as mordenite and ZSM-5 have shown encouraging results, and di- and tri-copper species have been suggested as active sites. Recently, small eight-membered ring (8MR) zeolites including SSZ-13, -16, and -39 have been shown to be active for methane oxidation, but the active sites and reaction mechanisms in these 8MR zeolites are not known. In this work, we use density functional theory (DFT) calculations to systematically evaluate monocopper species as active sites for the partial methane oxidationmore » reaction in Cu-exchanged SSZ-13. On the basis of kinetic and thermodynamic arguments, we suggest that [CuIIOH]+ species in the 8MR are responsible for the experimentally observed activity. Furthermore, our results successfully explain the available spectroscopic data and experimental observations including (i) the necessity of water for methanol extraction and (ii) the effect of Si/Al ratio on the catalyst activity. Monocopper species have not yet been suggested as an active site for the partial methane oxidation reaction, and our results suggest that [CuIIOH]+ active site may provide complementary routes for methane activation in zeolites in addition to the known [Cu–O–Cu]2+ and Cu3O3 motifs.« less

  19. 1993 annual report of hazardous waste activities for the Oak Ridge K-25 site

    SciTech Connect

    Not Available

    1994-02-01

    This report is a detailed listing of all of the Hazardous Waste activities occurring at Martin Marietta`s K-25 site. Contained herein are hazardous waste notification forms, waste stream reports, generator fee forms and various TSDR reports.

  20. Relationship between the latest activity of mare volcanism and topographic features of the Moon

    NASA Astrophysics Data System (ADS)

    Kato, Shinsuke; Morota, Tomokatsu; Yamaguchi, Yasushi; Watanabe, Sei-ichiro; Otake, Hisashi; Ohtake, Makiko

    2016-04-01

    Lunar mare basalts provide insights into compositions and thermal history of lunar mantle. According to crater counting analysis with remote sensing data, the model ages of mare basalt units indicate a second peak of magma activity at the end of mare volcanism (~2 Ga), and the latest eruptions were limited in the Procellarum KREEP Terrane (PKT), which has high abundances of heat-producing elements. In order to understand the mechanism for causing the second peak and its magma source, we examined the correlation between the titanium contents and eruption ages of mare basalt units using compositional and chronological data updated by SELENE/Kaguya. Although no systematic relationship is observed globally, a rapid increase in mean titanium (Ti) content occurred at 2.3 Ga in the PKT, suggesting that the magma source of mare basalts changed at that time. The high-Ti basaltic eruption, which occurred at the late stage of mare volcanism, can be correlated with the second peak of volcanic activity at ~2 Ga. The latest volcanic activity can be explained by a high-Ti hot plume originated from the core-mantle boundary. If the hot plume was occurred, the topographic features formed by the hot plume may be remained. We calculated the difference between topography and selenoid and found the circular feature like a plateau in the center of the PKT, which scale is ~1000 km horizontal and ~500 m vertical. We investigated the timing of ridge formation in the PKT by using stratigraphic relationship between mare basalts and ridges. The ridges were formed before and after the high-Ti basaltic eruptions and seem to be along with the plateau. These results suggest that the plateau formation is connected with the high-Ti basaltic eruptions.

  1. Comparative evaluation of features and techniques for identifying activity type and estimating energy cost from accelerometer data.

    PubMed

    Kate, Rohit J; Swartz, Ann M; Welch, Whitney A; Strath, Scott J

    2016-03-01

    Wearable accelerometers can be used to objectively assess physical activity. However, the accuracy of this assessment depends on the underlying method used to process the time series data obtained from accelerometers. Several methods have been proposed that use this data to identify the type of physical activity and estimate its energy cost. Most of the newer methods employ some machine learning technique along with suitable features to represent the time series data. This paper experimentally compares several of these techniques and features on a large dataset of 146 subjects doing eight different physical activities wearing an accelerometer on the hip. Besides features based on statistics, distance based features and simple discrete features straight from the time series were also evaluated. On the physical activity type identification task, the results show that using more features significantly improve results. Choice of machine learning technique was also found to be important. However, on the energy cost estimation task, choice of features and machine learning technique were found to be less influential. On that task, separate energy cost estimation models trained specifically for each type of physical activity were found to be more accurate than a single model trained for all types of physical activities.

  2. N2O reduction by the mu4-sulfide-bridged tetranuclear CuZ cluster active site.

    PubMed

    Chen, Peng; Gorelsky, Serge I; Ghosh, Somdatta; Solomon, Edward I

    2004-08-13

    Nitrous oxide (N2O) reduction is a chemical challenge both in the selective oxidation of organic substrates by N2O and in the removal of N2O as a green-house gas. The reduction of N2O is thermodynamically favorable but kinetically inert, and requires activating transition-metal centers. In biological systems, N2O reduction is the last step in the denitrification process of the bacterial nitrogen cycle and is accomplished by the enzyme nitrous oxide reductase, whose active site consists of a micro4-sulfide-bridged tetranuclear CuZ cluster which has many unusual spectroscopic features. Recent studies have developed a detailed electronic-structure description of the resting CuZ cluster, determined its catalytically relevant state, and provided insight into the role of this tetranuclear copper cluster in N2O activation and reduction.

  3. Engineered feature used to enhance gardening at a 3800-year-old site on the Pacific Northwest Coast.

    PubMed

    Hoffmann, Tanja; Lyons, Natasha; Miller, Debbie; Diaz, Alejandra; Homan, Amy; Huddlestan, Stephanie; Leon, Roma

    2016-12-01

    Humans use a variety of deliberate means to modify biologically rich environs in pursuit of resource stability and predictability. Empirical evidence suggests that ancient hunter-gatherer populations engineered ecological niches to enhance the productivity and availability of economically significant resources. An archaeological excavation of a 3800-year-old wetland garden in British Columbia, Canada, provides the first direct evidence of an engineered feature designed to facilitate wild plant food production among mid-to-late Holocene era complex fisher-hunter-gatherers of the Northwest Coast. This finding provides an example of environmental, economic, and sociopolitical coevolutionary relationships that are triggered when humans manipulate niche environs.

  4. Engineered feature used to enhance gardening at a 3800-year-old site on the Pacific Northwest Coast

    PubMed Central

    Hoffmann, Tanja; Lyons, Natasha; Miller, Debbie; Diaz, Alejandra; Homan, Amy; Huddlestan, Stephanie; Leon, Roma

    2016-01-01

    Humans use a variety of deliberate means to modify biologically rich environs in pursuit of resource stability and predictability. Empirical evidence suggests that ancient hunter-gatherer populations engineered ecological niches to enhance the productivity and availability of economically significant resources. An archaeological excavation of a 3800-year-old wetland garden in British Columbia, Canada, provides the first direct evidence of an engineered feature designed to facilitate wild plant food production among mid-to-late Holocene era complex fisher-hunter-gatherers of the Northwest Coast. This finding provides an example of environmental, economic, and sociopolitical coevolutionary relationships that are triggered when humans manipulate niche environs. PMID:28028536

  5. The surface chemistry of heterogeneous catalysis: mechanisms, selectivity, and active sites.

    PubMed

    Zaera, Francisco

    2005-01-01

    The role of chemical kinetics in defining the requirements for the active sites of heterogeneous catalysts is discussed. A personal view is presented, with specific examples from our laboratory to illustrate the role of the chemical composition, structure, and electronic properties of specific surface sites in determining reaction activity and selectivity. Manipulation of catalytic behavior via the addition of chemical modifiers and by tuning of the reaction conditions is also introduced.

  6. Nuclear waste: Status of DOE`s nuclear waste site characterization activities

    SciTech Connect

    1987-12-31

    Three potential nuclear waste repository sites have been selected to carry out characterization activities-the detailed geological testing to determine the suitability of each site as a repository. The sites are Hanford in south-central Washington State, Yucca Mountain in southern Nevada, and Deaf Smith in the Texas Panhandle. Two key issues affecting the total program are the estimations of the site characterization completion data and costs and DOE`s relationship with the Nuclear Regulatory Commission which has been limited and its relations with affected states and Indian tribes which continue to be difficult.

  7. Targeting Breast Cancers Featuring Activating Mutations in PIK3CA by Generating a Lethal Dose of PIP3

    DTIC Science & Technology

    2009-02-01

    AD_________________ AWARD NUMBER: W81XWH-06-1-0341 TITLE: Targeting Breast Cancers Featuring...ORGANIZATION: Dana-Farber Cancer Institute Boston, MA 02115 REPORT DATE...2006 – 31 Jan 2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Targeting Breast Cancers Featuring Activating Mutations in PIK3CA by Generating a

  8. Frequencies, Laboratory Features, and Granulocyte Activation in Chinese Patients with CALR-Mutated Myeloproliferative Neoplasms

    PubMed Central

    Tian, Ruiyuan; Chang, Jianmei; Li, Jianlan; Tan, Yanhong; Xu, Zhifang; Ren, Fanggang; Zhao, Junxia; Pan, Jie; Zhang, Na; Wang, Xiaojuan; He, Jianxia; Yang, Wanfang; Wang, Hongwei

    2015-01-01

    Somatic mutations in the CALR gene have been recently identified as acquired alterations in myeloproliferative neoplasms (MPNs). In this study, we evaluated mutation frequencies, laboratory features, and granulocyte activation in Chinese patients with MPNs. A combination of qualitative allele-specific polymerase chain reaction and Sanger sequencing was used to detect three driver mutations (i.e., CALR, JAK2V617F, and MPL). CALR mutations were identified in 8.4% of cases with essential thrombocythemia (ET) and 5.3% of cases with primary myelofibrosis (PMF). Moreover, 25% of polycythemia vera, 29.5% of ET, and 48.1% of PMF were negative for all three mutations (JAK2V617F, MPL, and CALR). Compared with those patients with JAK2V617F mutation, CALR-mutated ET patients displayed unique hematological phenotypes, including higher platelet counts, and lower leukocyte counts and hemoglobin levels. Significant differences were not found between Chinese PMF patients with mutants CALR and JAK2V617F in terms of laboratory features. Interestingly, patients with CALR mutations showed markedly decreased levels of leukocyte alkaline phosphatase (LAP) expression, whereas those with JAK2V617F mutation presented with elevated levels. Overall, a lower mutant rate of CALR gene and a higher triple-negative rate were identified in the cohort of Chinese patients with MPNs. This result indicates that an undiscovered mutant gene may have a significant role in these patients. Moreover, these pathological features further imply that the disease biology varies considerably between mutants CALR and JAK2V617F. PMID:26375990

  9. Integration site-dependent expression of a transgene reveals specialized features of cells associated with neuromuscular junctions

    PubMed Central

    1991-01-01

    After skeletal muscle is denervated, fibroblasts near neuromuscular junctions proliferate more than fibroblasts distant from synaptic sites, and they accumulate adhesive molecules such as tenascin (Gatchalian, C. L., M. Schachner, and J. R. Sanes. 1989. J. Cell Biol. 108:1873-1890). This response could reflect signals that arise perisynaptically after denervation, preexisting differences between perisynaptic and extrasynaptic fibroblasts, or both. Here, we describe a line of transgenic mice in which patterns of transgene expression provide direct evidence for differences between perisynaptic and extrasynaptic fibroblasts in normal muscle. Transgenic mice were generated using regulatory elements from a major histocompatibility complex (MHC) class I gene linked to the Escherichia coli beta- galactosidase (lacZ) gene. Expression of lacZ was detected histochemically. In each of eight lines, lacZ was detected in different subsets of cells, none of which included lymphocytes. In contrast, endogenous MHC is expressed in most tissues and at high levels in lymphocytes. Thus, the MHC gene sequences appeared inactive in the transgene, and lacZ expression was apparently controlled by genomic regulatory elements that were specific for the insertion site. In one line, cells close to the neuromuscular junction were lacZ positive in embryonic and young postnatal mice. Electron microscopy identified these cells as fibroblasts and Schwann cells associated with motor nerve terminals, as well as endoneurial fibroblasts, perineurial cells, and Schwann cells in the distal branches of motor nerves. No intramuscular cells greater than 200 microns from synaptic sites were lacZ positive. These results indicate that there are molecular differences between perisynaptic and extrasynaptic fibroblasts even in normal muscle and that diverse perisynaptic cell types share a specific pattern of gene expression. PMID:1904446

  10. Highly Selective Adsorption of Ethylene over Ethane in a MOF Featuring the Combination of Open Metal Site and -Complexation

    SciTech Connect

    Zhang, Yiming; Li, Baiyan; Wu, Zili; Ma, Shengqian

    2015-01-01

    The introduction of the combination of open metal site (OMS) and -complexation into MOF has led to very high ethylene/ethane adsorption selectivity at 318K, as illustrated in the context of MIL-101-Cr-SO3Ag. The interactions with ethylene from both OMS and -complexation in MIL-101-Cr-SO3Ag have been investigated by in situ IR spectroscopic studies and computational calculations, which suggest -complexation contributes dominantly to the high ethylene/ethane adsorption selectivity.

  11. Microscopic and mesoscopic structural features of an activated carbon sample, prepared from sorghum via activation by phosphoric acid

    SciTech Connect

    Temleitner, László; Pusztai, László; Rubio-Arroyo, Manuel F.; Aguilar-López, Sergio; Pizio, Orest

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Preparation of a new activated carbon sample from sorghum. ► Characterization by adsorption/desorption methods. ► Determination of the structure by synchrotron X-ray diffraction. ► The sample is amorphous and contains distorted graphene fragments. ► A characteristic nanoscale distance is established from the radial distribution function. -- Abstract: An acidic chemical activation procedure has been used for preparing activated carbon with a surface area exceeding 1000 m{sup 2}/g from sorghum. In order to reveal structural features, synchrotron X-ray diffraction measurements have been performed. The structure of the material has been characterized by the total scattering structure factor and the radial distribution function describing short-range arrangement of atoms at distances of the order of a few atomic diameters as well as correlations at a longer scale, of the order of nanometers. The atomic arrangement has been found to be consistent with that of amorphous graphite-like carbon. As far as the mesoscopic structure is concerned, the presence of a characteristic distance is suggested on the basis of the clear nanometer scale oscillations of the radial distribution function, which distance may be assigned as the mesopore size in the material. It is suggested that the approach devized here may later be applied routinely for other activated carbon samples, too, for characterizing atomic and nanoscale order simultaneously.

  12. Number and locations of agonist binding sites required to activate homomeric Cys-loop receptors.

    PubMed

    Rayes, Diego; De Rosa, María José; Sine, Steven M; Bouzat, Cecilia

    2009-05-06

    Homo-pentameric Cys-loop receptors contain five identical agonist binding sites, each formed at a subunit interface. To determine the number and locations of binding sites required to generate a stable active state, we constructed a receptor subunit with a mutation that disables the agonist binding site and a reporter mutation that alters unitary conductance and coexpressed mutant and nonmutant subunits. Although receptors with a range of different subunit compositions are produced, patch-clamp recordings reveal that the amplitude of each single-channel opening event reports the number and, for certain subunit combinations, the locations of subunits with intact binding sites. We find that receptors with three binding sites at nonconsecutive subunit interfaces exhibit maximal mean channel open time, receptors with binding sites at three consecutive or two nonconsecutive interfaces exhibit intermediate open time, and receptors with binding sites at two consecutive or one interface exhibit brief open time. Macroscopic recordings after rapid application of agonist reveal that channel activation slows and the extent of desensitization decreases as the number of binding sites per receptor decreases. The overall results provide a framework for defining mechanisms of activation and drug modulation for homo-pentameric Cys-loop receptors.

  13. Feature Selection for Wearable Smartphone-Based Human Activity Recognition with Able bodied, Elderly, and Stroke Patients

    PubMed Central

    2015-01-01

    Human activity recognition (HAR), using wearable sensors, is a growing area with the potential to provide valuable information on patient mobility to rehabilitation specialists. Smartphones with accelerometer and gyroscope sensors are a convenient, minimally invasive, and low cost approach for mobility monitoring. HAR systems typically pre-process raw signals, segment the signals, and then extract features to be used in a classifier. Feature selection is a crucial step in the process to reduce potentially large data dimensionality and provide viable parameters to enable activity classification. Most HAR systems are customized to an individual research group, including a unique data set, classes, algorithms, and signal features. These data sets are obtained predominantly from able-bodied participants. In this paper, smartphone accelerometer and gyroscope sensor data were collected from populations that can benefit from human activity recognition: able-bodied, elderly, and stroke patients. Data from a consecutive sequence of 41 mobility tasks (18 different tasks) were collected for a total of 44 participants. Seventy-six signal features were calculated and subsets of these features were selected using three filter-based, classifier-independent, feature selection methods (Relief-F, Correlation-based Feature Selection, Fast Correlation Based Filter). The feature subsets were then evaluated using three generic classifiers (Naïve Bayes, Support Vector Machine, j48 Decision Tree). Common features were identified for all three populations, although the stroke population subset had some differences from both able-bodied and elderly sets. Evaluation with the three classifiers showed that the feature subsets produced similar or better accuracies than classification with the entire feature set. Therefore, since these feature subsets are classifier-independent, they should be useful for developing and improving HAR systems across and within populations. PMID:25885272

  14. Features of the electronic structure of the active center of an HbS molecule

    NASA Astrophysics Data System (ADS)

    Novoselov, D. Yu.; Korotin, Dm. M.; Anisimov, V. I.

    2016-01-01

    Features of the electronic structure of the nonprotein part of the mutant form of the human hemoglobin molecule, HbS, are studied along with the magnetic state of the iron ion that is the "nucleus" of the active center of the molecule. It is found that the mutant form of the HbS molecule differs from a normal hemoglobin molecule by the distortion of the local environment of the iron ion, which changes the energy level splitting by a crystal field. As a result of ab initio calculations, the magnetic transition in the iron atom from the high-spin state to the low-spin state upon the addition of molecular oxygen to hemoglobin molecule is reproduced. It is established for the first time that a change in the crystal and electronic structure of the active center as a result of a mutation can lead to a substantial change in the energy of the bond between the active center of the hemoglobin molecule and an oxygen molecule.

  15. Molecular pathway activation features of pediatric acute myeloid leukemia (AML) and acute lymphoblast leukemia (ALL) cells.

    PubMed

    Petrov, Ivan; Suntsova, Maria; Mutorova, Olga; Sorokin, Maxim; Garazha, Andrew; Ilnitskaya, Elena; Spirin, Pavel; Larin, Sergey; Kovalchuk, Olga; Prassolov, Vladimir; Zhavoronkov, Alex; Roumiantsev, Alexander; Buzdin, Anton

    2016-11-19

    Acute lymphoblast leukemia (ALL) is characterized by overproduction of immature white blood cells in the bone marrow. ALL is most common in the childhood and has high (>80%) cure rate. In contrast, acute myeloid leukemia (AML) has far greater mortality rate than the ALL and is most commonly affecting older adults. However, AML is a leading cause of childhood cancer mortality. In this study, we compare gene expression and molecular pathway activation patterns in three normal blood, seven pediatric ALL and seven pediatric AML bone marrow samples. We identified 172/94 and 148/31 characteristic gene expression/pathway activation signatures, clearly distinguishing pediatric ALL and AML cells, respectively, from the normal blood. The pediatric AML and ALL cells differed by 139/34 gene expression/pathway activation biomarkers. For the adult 30 AML and 17 normal blood samples, we found 132/33 gene expression/pathway AML-specific features, of which only 7/2 were common for the adult and pediatric AML and, therefore, age-independent. At the pathway level, we found more differences than similarities between the adult and pediatric forms. These findings suggest that the adult and pediatric AMLs may require different treatment strategies.

  16. Molecular pathway activation features of pediatric acute myeloid leukemia (AML) and acute lymphoblast leukemia (ALL) cells

    PubMed Central

    Petrov, Ivan; Suntsova, Maria; Mutorova, Olga; Sorokin, Maxim; Garazha, Andrew; Ilnitskaya, Elena; Spirin, Pavel; Larin, Sergey; Zhavoronkov, Alex; Kovalchuk, Olga; Prassolov, Vladimir; Roumiantsev, Alexander; Buzdin, Anton

    2016-01-01

    Acute lymphoblast leukemia (ALL) is characterized by overproduction of immature white blood cells in the bone marrow. ALL is most common in the childhood and has high (>80%) cure rate. In contrast, acute myeloid leukemia (AML) has far greater mortality rate than the ALL and is most commonly affecting older adults. However, AML is a leading cause of childhood cancer mortality. In this study, we compare gene expression and molecular pathway activation patterns in three normal blood, seven pediatric ALL and seven pediatric AML bone marrow samples. We identified 172/94 and 148/31 characteristic gene expression/pathway activation signatures, clearly distinguishing pediatric ALL and AML cells, respectively, from the normal blood. The pediatric AML and ALL cells differed by 139/34 gene expression/pathway activation biomarkers. For the adult 30 AML and 17 normal blood samples, we found 132/33 gene expression/pathway AML-specific features, of which only 7/2 were common for the adult and pediatric AML and, therefore, age-independent. At the pathway level, we found more differences than similarities between the adult and pediatric forms. These findings suggest that the adult and pediatric AMLs may require different treatment strategies. PMID:27870639

  17. Features associated with radar micro-Doppler signatures of various human activities

    NASA Astrophysics Data System (ADS)

    Zenaldin, Matthew; Narayanan, Ram M.

    2015-05-01

    This paper presents the results of our experimental investigation into the radar micro-Doppler signatures (MDS) of various human activities both in free-space and through-wall environments. The collection of MDS signatures was divided into two categories: stationary and forward-moving. Each category of MDS signatures encompassed a variety of movements associated with it, adding up to a total of 14 human movements. Using a 6.5-GHz C-band coherent radar, the MDS of six human subjects were gathered in free-space and through-wall environments. The MDS for these cases were analyzed in detail and the general properties of the signatures were related to their associated phenomenological characteristics. Based upon the MDS, specific features for designing detectors and classifiers of human targets performing such movements are extracted.

  18. Semantic features and semantic categories: differences in rapid activation of the lexicon.

    PubMed

    Frenck-Mestre, C; Bueno, S

    Robust priming was shown in a semantic categorization task for prime-target pairs which shared semantic features (e.g., pumpkin-squash). Priming facilitation for these pairs was demonstrated at extremely rapid prime exposures (28 and 43 ms) and increased with prime duration. The onset and amount of facilitation differed significantly for these semantic, nonassociative pairs and for associative-semantic prime-target pairs (e.g., cow-bull). The latter pairs produced facilitation, but later (at prime-target SOAs of 70 and 200 ms) and of lesser magnitude. These results are discussed in relation to three current models of semantic memory: spreading activation, compound cue, and distributed models.

  19. Structural features and biological activity of xyloglucans from suspension-cultured plant cells.

    PubMed

    Joseleau, J P; Cartier, N; Chambat, G; Faik, A; Ruel, K

    1992-01-01

    Different xyloglucan (XG) fractions were isolated from Rubus fruticosus cells cultured in suspension. Sequential extraction showed that two distinct xyloglucans existed in the primary walls. The first could be easily extracted in alkali and the second was tightly associated to cellulose. A third fraction was isolated from the extracellular polysaccharides of the culture medium. The alkali-soluble XG and the extracellular XG showed many structural features in common. By use of an anti-XG polyclonal antibody, electron microscopy examination suggests that the extracellular hemicellulose is progressively released from the wall by a sloughing mechanism. Oligosaccharides prepared from the extracellular XG were purified and their structure examined by FAB-ms technique. When the nonasaccharide was added at low concentrations (10(-5) mg/ml) to the culture medium it was able to elicit several different glycanohydrolase activities associated to the cell wall.

  20. Medicinal properties of mangiferin, structural features, derivative synthesis, pharmacokinetics and biological activities.

    PubMed

    Benard, Outhiriaradjou; Chi, Yuling

    2015-01-01

    The identification of biologically active and potentially therapeutically useful pharmacophores from natural products has been a long-term focus in the pharmaceutical industry. The recent emergence of a worldwide obesity and Type II diabetes epidemic has increased focus upon small molecules that can modulate energy metabolism, insulin sensitivity and fat biology. Interesting preliminary work done on mangiferin (MGF), the predominant constituent of extracts of the mango plant Mangifera indica L., portends potential for this pharmacophore as a novel parent compound for treating metabolic disorders. MGF is comprised of a C-glucosylated xanthone. Owing to the xanthone chemical structure, MGF has a redox active aromatic system and has antioxidant properties. MGF exerts varied and impressive metabolic effects in animals, improving metabolic disorders. For example we have discovered that MGF is a novel activator of the mammalian pyruvate dehydrogenase complex, leading to enhancement of carbohydrate utilization in oxidative metabolism, and leading to increased insulin sensitivity in animal models of obesity and insulin resistance. In addition, recent unbiased proteomics studies revealed that MGF upregulates proteins pivotal for mitochondrial bioenergetics and downregulates proteins controlling de novo lipogenesis in liver, helping to explain protective effects of MGF in prevention of liver steatosis. Several chemical studies have achieved synthesis of MGF, suggesting possible synthetic strategies to alter its chemical structure for development of structure-activity relationship (SAR) information. Ultimately, chemical derivatization studies could lead to the eventual development of novel therapeutics based upon the parent pharmacophore structure. Here we provide comprehensive review on chemical features of MGF, synthesis of its derivatives, its pharmacokinetics and biological activities.

  1. Molecular dynamics explorations of active site structure in designed and evolved enzymes.

    PubMed

    Osuna, Sílvia; Jiménez-Osés, Gonzalo; Noey, Elizabeth L; Houk, K N

    2015-04-21

    This Account describes the use of molecular dynamics (MD) simulations to reveal how mutations alter the structure and organization of enzyme active sites. As proposed by Pauling about 70 years ago and elaborated by many others since then, biocatalysis is efficient when functional groups in the active site of an enzyme are in optimal positions for transition state stabilization. Changes in mechanism and covalent interactions are often critical parts of enzyme catalysis. We describe our explorations of the dynamical preorganization of active sites using MD, studying the fluctuations between active and inactive conformations normally concealed to static crystallography. MD shows how the various arrangements of active site residues influence the free energy of the transition state and relates the populations of the catalytic conformational ensemble to the enzyme activity. This Account is organized around three case studies from our laboratory. We first describe the importance of dynamics in evaluating a series of computationally designed and experimentally evolved enzymes for the Kemp elimination, a popular subject in the enzyme design field. We find that the dynamics of the active site is influenced not only by the original sequence design and subsequent mutations but also by the nature of the ligand present in the active site. In the second example, we show how microsecond MD has been used to uncover the role of remote mutations in the active site dynamics and catalysis of a transesterase, LovD. This enzyme was evolved by Tang at UCLA and Codexis, Inc., and is a useful commercial catalyst for the production of the drug simvastatin. X-ray analysis of inactive and active mutants did not reveal differences in the active sites, but relatively long time scale MD in solution showed that the active site of the wild-type enzyme preorganizes only upon binding of the acyl carrier protein (ACP) that delivers the natural acyl group to the active site. In the absence of bound ACP

  2. Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site

    SciTech Connect

    Grossman, Moran; Born, Benjamin; Heyden, Matthias; Tworowski, Dmitry; Fields, Gregg B.; Sagi, Irit; Havenith, Martina

    2011-09-18

    Solvent dynamics can play a major role in enzyme activity, but obtaining an accurate, quantitative picture of solvent activity during catalysis is quite challenging. Here, we combine terahertz spectroscopy and X-ray absorption analyses to measure changes in the coupled water-protein motions during peptide hydrolysis by a zinc-dependent human metalloprotease. These changes were tightly correlated with rearrangements at the active site during the formation of productive enzyme-substrate intermediates and were different from those in an enzyme–inhibitor complex. Molecular dynamics simulations showed a steep gradient of fast-to-slow coupled protein-water motions around the protein, active site and substrate. Our results show that water retardation occurs before formation of the functional Michaelis complex. We propose that the observed gradient of coupled protein-water motions may assist enzyme-substrate interactions through water-polarizing mechanisms that are remotely mediated by the catalytic metal ion and the enzyme active site.

  3. Brochothrix thermosphacta Bacteriophages Feature Heterogeneous and Highly Mosaic Genomes and Utilize Unique Prophage Insertion Sites ▿ †

    PubMed Central

    Kilcher, Samuel; Loessner, Martin J.; Klumpp, Jochen

    2010-01-01

    Brochothrix belongs to the low-GC branch of Gram-positive bacteria (Firmicutes), closely related to Listeria, Staphylococcus, Clostridium, and Bacillus. Brochothrix thermosphacta is a nonproteolytic food spoilage organism, adapted to growth in vacuum-packaged meats. We report the first genome sequences and characterization of Brochothrix bacteriophages. Phage A9 is a myovirus with an 89-nm capsid diameter and a 171-nm contractile tail; it belongs to the Spounavirinae subfamily and shares significant homologies with Listeria phage A511, Staphylococcus phage Twort, and others. The A9 unit genome is 127 kb long with 11-kb terminal redundancy; it encodes 198 proteins and 6 tRNAs. Phages BL3 and NF5 are temperate siphoviruses with a head diameter of 56 to 59 nm. The BL3 tail is 270 nm long, whereas NF5 features a short tail of only 94 nm. The NF5 genome (36.95 kb) encodes 57 gene products, BL3 (41.52 kb) encodes 65 products, and both are arranged in life cycle-specific modules. Surprisingly, BL3 and NF5 show little relatedness to Listeria phages but rather demonstrate relatedness to lactococcal phages. Peptide mass fingerprinting of viral proteins indicate programmed −1 translational frameshifts in the NF5 capsid and the BL3 major tail protein. Both NF5 and BL3 feature circularly permuted, terminally redundant genomes, packaged by a headful mechanism, and integrases of the serine (BL3) and tyrosine (NF5) types. They utilize unique target sequences not previously described: BL3 inserts into the 3′ end of a RNA methyltransferase, whereas NF5 integrates into the 5′-terminal part of a putative histidinol-phosphatase. Interestingly, both genes are reconstituted by phage sequence. PMID:20709901

  4. Two interacting binding sites for quinacrine derivatives in the active site of trypanothione reductase – a template for drug design

    PubMed Central

    Saravanamuthu, Ahilan; Vickers, Tim J.; Bond, Charles S.; Peterson, Mark R.; Hunter, William N.; Fairlamb, Alan H.

    2012-01-01

    SUMMARY Trypanothione reductase is a key enzyme in the trypanothione-based redox metabolism of pathogenic trypanosomes. Since this system is absent in humans, being replaced with glutathione and glutathione reductase, it offers a target for selective inhibition. The rational design of potent inhibitors requires accurate structures of enzyme-inhibitor complexes, but this is lacking for trypanothione reductase. We therefore used quinacrine mustard, an alkylating derivative of the competitive inhibitor quinacrine, to probe the active site of this dimeric flavoprotein. Quinacrine mustard irreversibly inactivates Trypanosoma cruzi trypanothione reductase, but not human glutathione reductase, in a time-dependent manner with a stoichiometry of two inhibitors bound per monomer. The rate of inactivation is dependent upon the oxidation state of trypanothione reductase, with the NADPH-reduced form being inactivated significantly faster than the oxidised form. Inactivation is slowed by clomipramine and a melarsen oxide-trypanothione adduct (both are competitive inhibitors) but accelerated by quinacrine. The structure of the trypanothione reductase-quinacrine mustard adduct was determined to 2.7 Å, revealing two molecules of inhibitor bound in the trypanothione-binding site. The acridine moieties interact with each other through π-stacking effects, and one acridine interacts in a similar fashion with a tryptophan residue. These interactions provide a molecular explanation for the differing effects of clomipramine and quinacrine on inactivation by quinacrine mustard. Synergism with quinacrine occurs as a result of these planar acridines being able to stack together in the active site cleft, thereby gaining an increased number of binding interactions, whereas antagonism occurs with non-planar molecules, such as clomipramine, where stacking is not possible. PMID:15102853

  5. The three Mycobacterium tuberculosis antigen 85 isoforms have unique substrates and activities determined by non-active site regions.

    PubMed

    Backus, Keriann M; Dolan, Michael A; Barry, Conor S; Joe, Maju; McPhie, Peter; Boshoff, Helena I M; Lowary, Todd L; Davis, Benjamin G; Barry, Clifton E

    2014-09-05

    The three isoforms of antigen 85 (A, B, and C) are the most abundant secreted mycobacterial proteins and catalyze transesterification reactions that synthesize mycolated arabinogalactan, trehalose monomycolate (TMM), and trehalose dimycolate (TDM), important constituents of the outermost layer of the cellular envelope of Mycobacterium tuberculosis. These three enzymes are nearly identical at the active site and have therefore been postulated to exist to evade host immunity. Distal to the active site is a second putative carbohydrate-binding site of lower homology. Mutagenesis of the three isoforms at this second site affected both substrate selectivity and overall catalytic activity in vitro. Using synthetic and natural substrates, we show that these three enzymes exhibit unique selectivity; antigen 85A more efficiently mycolates TMM to form TDM, whereas C (and to a lesser extent B) has a higher rate of activity using free trehalose to form TMM. This difference in substrate selectivity extends to the hexasaccharide fragment of cell wall arabinan. Mutation of secondary site residues from the most active isoform (C) into those present in A or B partially interconverts this substrate selectivity. These experiments in combination with molecular dynamics simulations reveal that differences in the N-terminal helix α9, the adjacent Pro(216)-Phe(228) loop, and helix α5 are the likely cause of changes in activity and substrate selectivity. These differences explain the existence of three isoforms and will allow for future work in developing inhibitors.

  6. Automatic Recognition of Solar Features for Developing Data Driven Prediction Models of Solar Activity and Space Weather

    DTIC Science & Technology

    2013-05-01

    Aschwanden, M. J. 2005, Physics of the Solar Corona . An Introduction with Problems and Solutions (2nd edition), ed. Aschwanden, M. J. Balasubramaniam, K...AFRL-OSR-VA-TR-2013-0020 Automatic Recognition of Solar Features for Developing Data Driven Prediction Models of Solar Activity...Automatic Recognition of Solar Features for Developing Data Driven Prediction Models of Solar Activity and Space Weather 5a. CONTRACT NUMBER FA9550-09

  7. Fragment-based identification of determinants of conformational and spectroscopic change at the ricin active site

    SciTech Connect

    Carra,J.; McHugh, C.; Mulligan, S.; Machiesky, L.; Soares, A.; Millard, C.

    2007-01-01

    We found that amide ligands can bind weakly but specifically to the ricin active site, producing significant shifts in positions of the critical active site residues Arg180 and Tyr80. These results indicate that fragment-based drug discovery methods are capable of identifying minimal bonding determinants of active-site side-chain rearrangements and the mechanistic origins of spectroscopic shifts. Our results suggest that tryptophan fluorescence provides a sensitive probe for the geometric relationship of arginine-tryptophan pairs, which often have significant roles in protein function. Using the unusual characteristics of the RTA system, we measured the still controversial thermodynamic changes of site-specific urea binding to a protein, results that are relevant to understanding the physical mechanisms of protein denaturation.

  8. Exploring the active site of tripeptidyl-peptidase II through studies of pH dependence of reaction kinetics.

    PubMed

    Eklund, Sandra; Lindås, Ann-Christin; Hamnevik, Emil; Widersten, Mikael; Tomkinson, Birgitta

    2012-04-01

    Tripeptidyl-peptidase II (TPP II) is a subtilisin-like serine protease which forms a large enzyme complex (>4MDa). It is considered a potential drug target due to its involvement in specific physiological processes. However, information is scarce concerning the kinetic characteristics of TPP II and its active site features, which are important for design of efficient inhibitors. To amend this, we probed the active site by determining the pH dependence of TPP II catalysis. Access to pure enzyme is a prerequisite for kinetic investigations and herein we introduce the first efficient purification system for heterologously expressed mammalian TPP II. The pH dependence of kinetic parameters for hydrolysis of two different chromogenic substrates, Ala-Ala-Phe-pNA and Ala-Ala-Ala-pNA, was determined for murine, human and Drosophila melanogaster TPP II as well as mutant variants thereof. The investigation demonstrated that TPP II, in contrast to subtilisin, has a bell-shaped pH dependence of k(cat)(app)/K(M) probably due to deprotonation of the N-terminal amino group of the substrate at higher pH. Since both the K(M) and k(cat)(app) are lower for cleavage of AAA-pNA than for AAF-pNA we propose that the former can bind non-productively to the active site of the enzyme, a phenomenon previously observed with some substrates for subtilisin. Two mutant variants, H267A and D387G, showed bell-shaped pH-dependence of k(cat)(app), possibly due to an impaired protonation of the leaving group. This work reveals previously unknown differences between TPP II orthologues and subtilisin as well as features that might be conserved within the entire family of subtilisin-like serine peptidases.

  9. Activation of cryptic 3' splice sites within introns of cellular genes following gene entrapment.

    PubMed

    Osipovich, Anna B; White-Grindley, Erica K; Hicks, Geoffrey G; Roshon, Michael J; Shaffer, Christian; Moore, Jason H; Ruley, H Earl

    2004-01-01

    Gene trap vectors developed for genome-wide mutagenesis can be used to study factors governing the expression of exons inserted throughout the genome. For example, entrapment vectors consisting of a partial 3'-terminal exon [i.e. a neomycin resistance gene (Neo), a poly(A) site, but no 3' splice site] were typically expressed following insertion into introns, from cellular transcripts that spliced to cryptic 3' splice sites present either within the targeting vector or in the adjacent intron. A vector (U3NeoSV1) containing the wild-type Neo sequence preferentially disrupted genes that spliced in-frame to a cryptic 3' splice site in the Neo coding sequence and expressed functional neomycin phosphotransferase fusion proteins. Removal of the cryptic Neo 3' splice site did not reduce the proportion of clones with inserts in introns; rather, the fusion transcripts utilized cryptic 3' splice sites present in the adjacent intron or generated by virus integration. However, gene entrapment with U3NeoSV2 was considerably more random than with U3NeoSV1, consistent with the widespread occurrence of potential 3' splice site sequences in the introns of cellular genes. These results clarify the mechanisms of gene entrapment by U3 gene trap vectors and illustrate features of exon definition required for 3' processing and polyadenylation of cellular transcripts.

  10. Activation of cryptic 3′ splice sites within introns of cellular genes following gene entrapment

    PubMed Central

    Osipovich, Anna B.; White-Grindley, Erica K.; Hicks, Geoffrey G.; Roshon, Michael J.; Shaffer, Christian; Moore, Jason H.; Ruley, H. Earl

    2004-01-01

    Gene trap vectors developed for genome-wide mutagenesis can be used to study factors governing the expression of exons inserted throughout the genome. For example, entrapment vectors consisting of a partial 3′-terminal exon [i.e. a neomycin resistance gene (Neo), a poly(A) site, but no 3′ splice site] were typically expressed following insertion into introns, from cellular transcripts that spliced to cryptic 3′ splice sites present either within the targeting vector or in the adjacent intron. A vector (U3NeoSV1) containing the wild-type Neo sequence preferentially disrupted genes that spliced in-frame to a cryptic 3′ splice site in the Neo coding sequence and expressed functional neomycin phosphotransferase fusion proteins. Removal of the cryptic Neo 3′ splice site did not reduce the proportion of clones with inserts in introns; rather, the fusion transcripts utilized cryptic 3′ splice sites present in the adjacent intron or generated by virus integration. However, gene entrapment with U3NeoSV2 was considerably more random than with U3NeoSV1, consistent with the widespread occurrence of potential 3′ splice site sequences in the introns of cellular genes. These results clarify the mechanisms of gene entrapment by U3 gene trap vectors and illustrate features of exon definition required for 3′ processing and polyadenylation of cellular transcripts. PMID:15155860

  11. Structural and Kinetic Analyses of Macrophage Migration Inhibitory Factor Active Site Interactions

    SciTech Connect

    Crichlow, G.; Lubetsky, J; Leng, L; Bucala, R; Lolis, E

    2009-01-01

    Macrophage migration inhibitory factor (MIF) is a secreted protein expressed in numerous cell types that counters the antiinflammatory effects of glucocorticoids and has been implicated in sepsis, cancer, and certain autoimmune diseases. Interestingly, the structure of MIF contains a catalytic site resembling the tautomerase/isomerase sites of microbial enzymes. While bona fide physiological substrates remain unknown, model substrates have been identified. Selected compounds that bind in the tautomerase active site also inhibit biological functions of MIF. It had previously been shown that the acetaminophen metabolite, N-acetyl-p-benzoquinone imine (NAPQI), covalently binds to the active site of MIF. In this study, kinetic data indicate that NAPQI inhibits MIF both covalently and noncovalently. The structure of MIF cocrystallized with NAPQI reveals that the NAPQI has undergone a chemical alteration forming an acetaminophen dimer (bi-APAP) and binds noncovalently to MIF at the mouth of the active site. We also find that the commonly used protease inhibitor, phenylmethylsulfonyl fluoride (PMSF), forms a covalent complex with MIF and inhibits the tautomerase activity. Crystallographic analysis reveals the formation of a stable, novel covalent bond for PMSF between the catalytic nitrogen of the N-terminal proline and the sulfur of PMSF with complete, well-defined electron density in all three active sites of the MIF homotrimer. Conclusions are drawn from the structures of these two MIF-inhibitor complexes regarding the design of novel compounds that may provide more potent reversible and irreversible inhibition of MIF.

  12. All the catalytic active sites of MoS2 for hydrogen evolution

    SciTech Connect

    Li, Guoqing; Zhang, Du; Qiao, Qiao; Yu, Yifei; Peterson, David; Zafar, Abdullah; Kumar, Raj; Curtarolo, Stefano; Hunte, Frank; Shannon, Steve; Zhu, Yimei; Yang, Weitao; Cao, Linyou

    2016-11-29

    MoS2 presents a promising low-cost catalyst for the hydrogen evolution reaction (HER), but the understanding about its active sites has remained limited. Here we present an unambiguous study of the catalytic activities of all possible reaction sites of MoS2, including edge sites, sulfur vacancies, and grain boundaries. We demonstrate that, in addition to the well-known catalytically active edge sites, sulfur vacancies provide another major active site for the HER, while the catalytic activity of grain boundaries is much weaker. Here, the intrinsic turnover frequencies (Tafel slopes) of the edge sites, sulfur vacancies, and grain boundaries are estimated to be 7.5 s–1 (65–75 mV/dec), 3.2 s–1 (65–85 mV/dec), and 0.1 s–1 (120–160 mV/dec), respectively. We also demonstrate that the catalytic activity of sulfur vacancies strongly depends on the density of the vacancies and the local crystalline structure in proximity to the vacancies. Unlike edge sites, whose catalytic activity linearly depends on the length, sulfur vacancies show optimal catalytic activities when the vacancy density is in the range of 7–10%, and the number of sulfur vacancies in high crystalline quality MoS2 is higher than that in low crystalline quality MoS2, which may be related with the proximity of different local crystalline structures to the vacancies.

  13. Circular dichroism and site-directed spin labeling reveal structural and dynamical features of high-pressure states of myoglobin

    PubMed Central

    Lerch, Michael T.; Horwitz, Joseph; McCoy, John; Hubbell, Wayne L.

    2013-01-01

    Excited states of proteins may play important roles in function, yet are difficult to study spectroscopically because of their sparse population. High hydrostatic pressure increases the equilibrium population of excited states, enabling their characterization [Akasaka K (2003) Biochemistry 42:10875–85]. High-pressure site-directed spin-labeling EPR (SDSL-EPR) was developed recently to map the site-specific structure and dynamics of excited states populated by pressure. To monitor global secondary structure content by circular dichroism (CD) at high pressure, a modified optical cell using a custom MgF2 window with a reduced aperture is introduced. Here, a combination of SDSL-EPR and CD is used to map reversible structural transitions in holomyoglobin and apomyoglobin (apoMb) as a function of applied pressure up to 2 kbar. CD shows that the high-pressure excited state of apoMb at pH 6 has helical content identical to that of native apoMb, but reversible changes reflecting the appearance of a conformational ensemble are observed by SDSL-EPR, suggesting a helical topology that fluctuates slowly on the EPR time scale. Although the high-pressure state of apoMb at pH 6 has been referred to as a molten globule, the data presented here reveal significant differences from the well-characterized pH 4.1 molten globule of apoMb. Pressure-populated states of both holomyoglobin and apoMb at pH 4.1 have significantly less helical structure, and for the latter, that may correspond to a transient folding intermediate. PMID:24248390

  14. Scenarios constructed for basaltic igneous activity at Yucca Mountain and vicinity; Yucca Mountain Site Characterization Project

    SciTech Connect

    Barr, G.E.; Dunn, E.; Dockery, H.; Barnard, R.; Valentine, G.; Crowe, B.

    1993-08-01

    Basaltic volcanism has been identified as a possible future event initiating a release of radionuclides from a potential repository at the proposed Yucca Mountain high-level waste repository site. The performance assessment method set forth in the Site Characterization Plan (DOE, 1988) requires that a set of scenarios encompassing all significant radionuclide release paths to the accessible environment be described. This report attempts to catalogue the details of the interactions between the features and processes produced by basaltic volcanism in the presence of the presumed groundwater flow system and a repository structure, the engineered barrier system (EBS), and waste. This catalogue is developed in the form of scenarios. We define a scenario as a well-posed problem, starting from an initiating event or process and proceeding through a logically connected and physically possible combination or sequence of features, events, and processes (FEPs) to the release of contaminants.

  15. Combining EEG Microstates with fMRI Structural Features for Modeling Brain Activity.

    PubMed

    Michalopoulos, Kostas; Bourbakis, Nikolaos

    2015-12-01

    Combining information from Electroencephalography (EEG) and Functional Magnetic Resonance Imaging (fMRI) has been a topic of increased interest recently. The main advantage of the EEG is its high temporal resolution, in the scale of milliseconds, while the main advantage of fMRI is the detection of functional activity with good spatial resolution. The advantages of each modality seem to complement each other, providing better insight in the neuronal activity of the brain. The main goal of combining information from both modalities is to increase the spatial and the temporal localization of the underlying neuronal activity captured by each modality. This paper presents a novel technique based on the combination of these two modalities (EEG, fMRI) that allow a better representation and understanding of brain activities in time. EEG is modeled as a sequence of topographies, based on the notion of microstates. Hidden Markov Models (HMMs) were used to model the temporal evolution of the topography of the average Event Related Potential (ERP). For each model the Fisher score of the sequence is calculated by taking the gradient of the trained model parameters. The Fisher score describes how this sequence deviates from the learned HMM. Canonical Partial Least Squares (CPLS) were used to decompose the two datasets and fuse the EEG and fMRI features. In order to test the effectiveness of this method, the results of this methodology were compared with the results of CPLS using the average ERP signal of a single channel. The presented methodology was able to derive components that co-vary between EEG and fMRI and present significant differences between the two tasks.

  16. The DnaE polymerase from Deinococcus radiodurans features RecA-dependent DNA polymerase activity

    PubMed Central

    Randi, Lorenzo; Perrone, Alessandro; Maturi, Mirko; Dal Piaz, Fabrizio; Camerani, Michela; Hochkoeppler, Alejandro

    2016-01-01

    We report in the present study on the catalytic properties of the Deinococcus radiodurans DNA polymerase III α subunit (αDr). The αDr enzyme was overexpressed in Escherichia coli, both in soluble form and as inclusion bodies. When purified from soluble protein extracts, αDr was found to be tightly associated with E. coli RNA polymerase, from which αDr could not be dissociated. On the contrary, when refolded from inclusion bodies, αDr was devoid of E. coli RNA polymerase and was purified to homogeneity. When assayed with different DNA substrates, αDr featured slower DNA extension rates when compared with the corresponding enzyme from E. coli (E. coli DNA Pol III, αEc), unless under high ionic strength conditions or in the presence of manganese. Further assays were performed using a ssDNA and a dsDNA, whose recombination yields a DNA substrate. Surprisingly, αDr was found to be incapable of recombination-dependent DNA polymerase activity, whereas αEc was competent in this action. However, in the presence of the RecA recombinase, αDr was able to efficiently extend the DNA substrate produced by recombination. Upon comparing the rates of RecA-dependent and RecA-independent DNA polymerase activities, we detected a significant activation of αDr by the recombinase. Conversely, the activity of αEc was found maximal under non-recombination conditions. Overall, our observations indicate a sharp contrast between the catalytic actions of αDr and αEc, with αDr more performing under recombination conditions, and αEc preferring DNA substrates whose extension does not require recombination events. PMID:27789781

  17. Using Citizen Scientists to Gather, Analyze, and Disseminate Information About Neighborhood Features That Affect Active Living.

    PubMed

    Winter, Sandra J; Goldman Rosas, Lisa; Padilla Romero, Priscilla; Sheats, Jylana L; Buman, Matthew P; Baker, Cathleen; King, Abby C

    2016-10-01

    Many Latinos are insufficiently active, partly due to neighborhoods with little environmental support for physical activity. Multi-level approaches are needed to create health-promoting neighborhoods in disadvantaged communities. Participant "citizen scientists" were adolescent (n = 10, mean age = 12.8 ± 0.6 years) and older adult (n = 10, mean age = 71.3 ± 6.5 years), low income Latinos in North Fair Oaks, California. Citizen scientists conducted environmental assessments to document perceived barriers to active living using the Stanford Healthy Neighborhood Discovery Tool, which records GPS-tracked walking routes, photographs, audio narratives, and survey responses. Using a community-engaged approach, citizen scientists subsequently attended a community meeting to engage in advocacy training, review assessment data, prioritize issues to address and brainstorm potential solutions and partners. Citizen scientists each conducted a neighborhood environmental assessment and recorded 366 photographs and audio narratives. Adolescents (n = 4), older adults (n = 7) and community members (n = 4) collectively identified reducing trash and improving personal safety and sidewalk quality as the priority issues to address. Three adolescent and four older adult citizen scientists volunteered to present study findings to key stakeholders. This study demonstrated that with minimal training, low-income, Latino adolescent and older adult citizen scientists can: (1) use innovative technology to gather information about features of their neighborhood environment that influence active living, (2) analyze their information and identify potential solutions, and (3) engage with stakeholders to advocate for the development of healthier neighborhoods.

  18. Oxalate decarboxylase and oxalate oxidase activities can be interchanged with a specificity switch of up to 282,000 by mutating an active site lid.

    PubMed

    Burrell, Matthew R; Just, Victoria J; Bowater, Laura; Fairhurst, Shirley A; Requena, Laura; Lawson, David M; Bornemann, Stephen

    2007-10-30

    Oxalate decarboxylases and oxalate oxidases are members of the cupin superfamily of proteins that have many common features: a manganese ion with a common ligand set, the substrate oxalate, and dioxygen (as either a unique cofactor or a substrate). We have hypothesized that these enzymes share common catalytic steps that diverge when a carboxylate radical intermediate becomes protonated. The Bacillus subtilis decarboxylase has two manganese binding sites, and we proposed that Glu162 on a flexible lid is the site 1 general acid. We now demonstrate that a decarboxylase can be converted into an oxidase by mutating amino acids of the lid that include Glu162 with specificity switches of 282,000 (SEN161-3DAS), 275,000 (SENS161-4DSSN), and 225,000 (SENS161-4DASN). The structure of the SENS161-4DSSN mutant showed that site 2 was not affected. The requirement for substitutions other than of Glu162 was, at least in part, due to the need to decrease the Km for dioxygen for the oxidase reaction. Reversion of decarboxylase activity could be achieved by reintroducing Glu162 to the SENS161-4DASN mutant to give a relative specificity switch of 25,600. This provides compelling evidence for the crucial role of Glu162 in the decarboxylase reaction consistent with it being the general acid, for the role of the lid in controlling the Km for dioxygen, and for site 1 being the sole catalytically active site. We also report the trapping of carboxylate radicals produced during turnover of the mutant with the highest oxidase activity. Such radicals were also observed with the wild-type decarboxylase.

  19. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes

    PubMed Central

    Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data. PMID:27504624

  20. Clinical features reflect exon sites of EGFR mutations in patients with resected non-small-cell lung cancer.

    PubMed

    Na, Im Il; Rho, Jin Kyung; Choi, Yun Jung; Kim, Cheol Hyeon; Koh, Jae Soo; Ryoo, Baek-Yeol; Yang, Sung Hyun; Lee, Jae Cheol

    2007-06-01

    The aim of the current study was to determine the clinical significance according to the subtypes of epidermal growth factor receptor (EGFR) mutations and presence of KRAS mutations in operable non-small-cell lung cancer (NSCLC). We sequenced exons 18-21 of the EGFR tyrosine kinase domain and examined mutations in codons 12 and 13 of KRAS in tissues of patients with NSCLC who had undergone surgical resection. EGFR mutations were more frequent in never-smokers than smokers (33% vs. 14%, respectively; p=0.009) and in females than in males (31% vs. 16%, respectively; p=0.036). Mutations in exon 18-19 and 20-21 were found in 10 and 22 patients, respectively. Never-smokers and broncho-alveolar cell carcinoma features were positively associated with a mutation in exon 18-19 (p=0.027 and 0.016, respectively). The five-year survival rate in patients with a mutation in exons 18-19 (100%) was higher than that in patients without such mutation (47%; p=0.021). KRAS mutations were found in 16 patients (12%) and were not related to the overall survival (p=0.742). Patients with an EGFR mutation in exons 18-19 had better survival than patients without such mutation. Subtypes of EGFR mutations may be prognostic factors in patients undergoing curative resection.

  1. Satellite SAR imagery for site discovery, change detection and monitoring activities in cultural heritage sites: experiments on the Nasca region, Peru

    NASA Astrophysics Data System (ADS)

    Tapete, D.; Cigna, F.; Masini, N.; Lasaponara, R.

    2012-04-01

    Besides their suitability for multi-temporal and spatial deformation analysis, the Synthetic Aperture Radar (SAR) image archives acquired by space-borne radar sensors can be exploited to support archaeological investigations over huge sites, even those partially or totally buried and still to be excavated. Amplitude information is one of the main properties of SAR data from which it is possible to retrieve evidences of buried structures, using feature extraction and texture analysis. Multi-temporality allows the reconstruction of past and recent evolution of both landscape and built-up environment, with the possibility to detect natural and/or anthropogenic changes, including human-induced damages to the conservation of cultural heritage. We present the methodology and first results of the experiments currently undertaken using SAR data in the Nasca region (Southern Peru), where two important civilizations such as Paracas and Nasca developed and flourished from 4th century BC to the 6th century AD. The study areas include a wide spectrum of archaeological and environmental elements to be preserved, among which: the archaeological site of Cahuachi and its surroundings, considered the largest adobe Ceremonial Centre in the World; the Nasca lines and geoglyphs in the areas of Palpa, Atarco and Nasca; the ancient networks of aqueducts and drainage galleries in the Puquios area, built by Nasca in the 1st-6th centuries AD. Archaeological prospection and multi-purpose remote sensing activities are currently carried out in the framework of the Italian mission of heritage Conservation and Archaeogeophysics (ITACA), with the direct involvement of researchers from the Institute for Archaeological and Monumental Heritage and the Institute of Methodologies for Environmental Analysis, Italian National Research Council. In this context, C- and L-band SAR images covering the Nasca region since 2001 were identified for the purposes of this research and, in particular, the following

  2. Crystal Structures and Functional Characterization of Wild Type and Active Sites Mutants of CYP101D1

    PubMed Central

    Batabyal, Dipanwita; Poulos, Thomas L.

    2014-01-01

    Although CYP101D1 and P450cam catayze the same reaction at a similar rate and share strikingly similar active site architectures, there are significance functional differences. CYP101D1 thus provides an opportunity to probe what structural and functional features must be shared and what can differ yet maintain high catalytic efficiency. Crystal structures of the cyanide complex of wild type CYP101D1 and it active site mutants, D259N and T260A, have been solved. The conformational changes in CYP101D1 upon cyanide binding are very similar to P450cam indicating a similar mechanism for proton delivery during oxygen activation using solvent assisted proton transfer. The D259N-CN− complex shows a perturbed solvent structure compared to wild type which is similar to what was observed in the oxy-complex of the corresonding D251N mutant in P450cam. As in P450cam the T260A mutant is highly uncoupled while the D259N gives barely detectable activity. Despite these similarities, CYP101D1 is able to use the P450cam redox partners while P450cam cannot use the CYP101D1 redox partners. Thus the strict requirement of P450cam for its own redox partner is relaxed in CYP101D1. Differences in the local environment of the essential Asp (Asp259 in CYP101D1) provides a strucutral basis for understanding these functional differences. PMID:24261604

  3. Purification, structural features, antioxidant and moisture-preserving activities of an exopolysaccharide from Lachnum YM262.

    PubMed

    Chen, Tianle; Xu, Ping; Zong, Shuai; Wang, Yufen; Su, Nana; Ye, Ming

    2017-03-01

    A water-soluble exopolysaccharide, designated as LEP-2a, was isolated from Lachnum YM262 and purified by DEAE-Cellulose 52 and Sepharose CL-6B chromatographic columns. LEP-2a was a homogeneous polysaccharide, with a molecular weight of 1.52×10(5) Da. It was composed of mannose and galactose in a molar ratio of 20.6:1.0. Its structural features were investigated and elucidated by methylation analysis, periodate oxidation and Smith degradation, FT-IR and NMR spectroscopy. Based on obtained data, the backbone of LEP-2a consisted of 1,2-linked-α-d-mannose, 1,3-linked-α-d-mannose, 1,2,6-linked-α-d-mannose and 1,3-linked-β-d-galactose and the side chains were attached to the backbone at O-6 position of 1,2,6-linked-α-d-mannose. In vitro antioxidant activity assay proved that LEP-2a possessed significant scavenging activities on superoxide, hydroxyl and DPPH radical. Furthermore, LEP-2a had strong in vitro moisture-absorption and -retention capacities as compared to chitosan and glycerol. These results suggested that LEP-2a might have a good potential to be applied as a multifunctional cosmetic additive in cosmetics.

  4. Structural features of endocrine active chemicals--A comparison of in vivo and in vitro data.

    PubMed

    Lewin, Geertje; Escher, Sylvia E; van der Burg, Bart; Simetska, Nelly; Mangelsdorf, Inge

    2015-08-01

    Studies on reproductive toxicity need high numbers of test animals. Therefore, we investigated whether chemical structural features (SF) in combination with in vitro data on specific adverse outcome pathways (AOPs) may be used for predicting reproductive toxicity of untested chemicals. Using the OECD Toolbox and expert judgment, we identified 89 structure groups for 275 chemicals for which the results of prenatal developmental toxicity or multigeneration studies were present in the Fraunhofer database on Fertility and Developmental Toxicity in experimental animals (FeDTex) database. Likewise, we evaluated 220 chemicals which had been tested in reporter gene assays on endocrine ((anti)estrogenic and (anti)androgenic) properties in the CALUX(®) test battery. There was a large spread of effect levels for substances within the chemical structure groups for both, in vivo and in vitro results. The groups of highest concern (diphenyl derivatives, planar conjugated systems with fused rings, phenols and organophosphates) correlated quite well, however, between the in vivo and in vitro data on estrogenic activity. For the 56 chemicals represented in both databases, lowest effect doses in vivo correlated well with the estrogenic activity in vitro. These results suggest that a panel of assays covering relevant AOPs and data on metabolism and toxicokinetics may allow prediction of relative reproductive or development toxicity potency within the identified chemical structure groups.

  5. Mutations in the Drosophila alphaPS2 integrin subunit uncover new features of adhesion site assembly.

    PubMed

    Devenport, Danelle; Bunch, Thomas A; Bloor, James W; Brower, Danny L; Brown, Nicholas H

    2007-08-15

    The Drosophila alphaPS2betaPS integrin is required for diverse development events, including muscle attachment. We characterized six unusual mutations in the alphaPS2 gene that cause a subset of the null phenotype. One mutation changes a residue in alphaPS2 that is equivalent to the residue in alphaV that contacts the arginine of RGD. This change severely reduced alphaPS2betaPS affinity for soluble ligand, abolished the ability of the integrin to recruit laminin to muscle attachment sites in the embryo and caused detachment of integrins and talin from the ECM. Three mutations that alter different parts of the alphaPS2 beta-propeller, plus a fourth that eliminated a late phase of alphaPS2 expression, all led to a strong decrease in alphaPS2betaPS at muscle ends, but, surprisingly, normal levels of talin were recruited. Thus, although talin recruitment requires alphaPS2betaPS, talin levels are not simply specified by the amount of integrin at the adhesive junction. These mutations caused detachment of talin and actin from integrins, suggesting that the integrin-talin link is weaker than the ECM-integrin link.

  6. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand

    SciTech Connect

    Parashar, Abhinav; Venkatachalam, Avanthika; Gideon, Daniel Andrew; Manoj, Kelath Murali

    2014-12-12

    Highlights: • Cyanide (CN) is a well-studied toxic principle, known to inhibit heme-enzymes. • Inhibition is supposed to result from CN binding at the active site as a ligand. • Diverse heme enzymes’ CN inhibition profiles challenge prevailing mechanism. • Poor binding efficiency of CN at low enzyme concentrations and ligand pressures. • CN-based diffusible radicals cause ‘non-productive electron transfers’ (inhibition). - Abstract: The toxicity of cyanide is hitherto attributed to its ability to bind to heme proteins’ active site and thereby inhibit their activity. It is shown herein that the long-held interpretation is inadequate to explain several observations in heme-enzyme reaction systems. Generation of cyanide-based diffusible radicals in heme-enzyme reaction milieu could shunt electron transfers (by non-active site processes), and thus be detrimental to the efficiency of oxidative outcomes.

  7. Synergistic effect between defect sites and functional groups on the hydrolysis of cellulose over activated carbon.

    PubMed

    Foo, Guo Shiou; Sievers, Carsten

    2015-02-01

    The chemical oxidation of activated carbon by H2 O2 and H2 SO4 is investigated, structural and chemical modifications are characterized, and the materials are used as catalysts for the hydrolysis of cellulose. Treatment with H2 O2 enlarges the pore size and imparts functional groups such as phenols, lactones, and carboxylic acids. H2 SO4 treatment targets the edges of carbon sheets primarily, and this effect is more pronounced with a higher temperature. Adsorption isotherms demonstrate that the adsorption of oligomers on functionalized carbon is dominated by van der Waals forces. The materials treated chemically are active for the hydrolysis of cellulose despite the relative weakness of most of their acid sites. It is proposed that a synergistic effect between defect sites and functional groups enhances the activity by inducing a conformational change in the glucan chains if they are adsorbed at defect sites. This activates the glycosidic bonds for hydrolysis by in-plane functional groups.

  8. Denaturation studies of active-site labeled papain using electron paramagnetic resonance and fluorescence spectroscopy.

    PubMed Central

    Ping, Z A; Butterfiel, D A

    1991-01-01

    A spin-labeled p-chloromercuribenzoate (SL-PMB) and a fluorescence probe, 6-acryloyl-2-dimethylaminonaphthalene (Acrylodan), both of which bind to the single SH group located in the active site of papain, were used to investigate the interaction of papain (EC 3.4.22.2) with two protein denaturants. It was found that the active site of papain was highly stable in urea solution, but underwent a large conformational change in guanidine hydrochloride solution. Electron paramagnetic resonance and fluorescence results were in agreement and both paralleled enzymatic activity of papain with respect to both the variation in pH and denaturation. These results strongly suggest that SL-PMB and Acrylodan labels can be used to characterize the physical state of the active site of the enzyme. PMID:1657229

  9. Enhancement of Polymerase Activity of the Large Fragment in DNA Polymerase I from Geobacillus stearothermophilus by Site-Directed Mutagenesis at the Active Site

    PubMed Central

    Ma, Yi; Zhang, Beilei; Wang, Meng; Ou, Yanghui

    2016-01-01

    The large fragment of DNA polymerase I from Geobacillus stearothermophilus GIM1.543 (Bst DNA polymerase) with 5′-3′ DNA polymerase activity while in absence of 5′-3′ exonuclease activity possesses high thermal stability and polymerase activity. Bst DNA polymerase was employed in isothermal multiple self-matching initiated amplification (IMSA) which amplified the interest sequence with high selectivity and was widely applied in the rapid detection of human epidemic diseases. However, the detailed information of commercial Bst DNA polymerase is unpublished and well protected by patents, which makes the high price of commercial kits. In this study, wild-type Bst DNA polymerase (WT) and substitution mutations for improving the efficiency of DNA polymerization were expressed and purified in E. coli. Site-directed substitutions of four conserved residues (Gly310, Arg412, Lys416, and Asp540) in the activity site of Bst DNA polymerase influenced efficiency of polymerizing dNTPs. The substitution of residue Gly310 by alanine or leucine and residue Asp540 by glutamic acid increased the efficiency of polymerase activity. All mutants with higher polymerizing efficiency were employed to complete the rapid detection of EV71-associated hand, foot, and mouth disease (HFMD) by IMSA approach with relatively shorter period which is suitable for the primary diagnostics setting in rural and underdeveloped areas. PMID:27981047

  10. Strong Nonadditivity as a Key Structure–Activity Relationship Feature: Distinguishing Structural Changes from Assay Artifacts

    PubMed Central

    2015-01-01

    Nonadditivity in protein–ligand affinity data represents highly instructive structure–activity relationship (SAR) features that indicate structural changes and have the potential to guide rational drug design. At the same time, nonadditivity is a challenge for both basic SAR analysis as well as many ligand-based data analysis techniques such as Free-Wilson Analysis and Matched Molecular Pair analysis, since linear substituent contribution models inherently assume additivity and thus do not work in such cases. While structural causes for nonadditivity have been analyzed anecdotally, no systematic approaches to interpret and use nonadditivity prospectively have been developed yet. In this contribution, we lay the statistical framework for systematic analysis of nonadditivity in a SAR series. First, we develop a general metric to quantify nonadditivity. Then, we demonstrate the non-negligible impact of experimental uncertainty that creates apparent nonadditivity, and we introduce techniques to handle experimental uncertainty. Finally, we analyze public SAR data sets for strong nonadditivity and use recourse to the original publications and available X-ray structures to find structural explanations for the nonadditivity observed. We find that all cases of strong nonadditivity (ΔΔpKi and ΔΔpIC50 > 2.0 log units) with sufficient structural information to generate reasonable hypothesis involve changes in binding mode. With the appropriate statistical basis, nonadditivity analysis offers a variety of new attempts for various areas in computer-aided drug design, including the validation of scoring functions and free energy perturbation approaches, binding pocket classification, and novel features in SAR analysis tools. PMID:25760829

  11. Geologic framework and hydrogeologic features of the Glen Rose Limestone, Camp Bullis Training Site, Bexar County, Texas

    USGS Publications Warehouse

    Clark, Allan K.

    2003-01-01

    The Glen Rose Limestone crops out over most of the Camp Bullis Training Site in northern Bexar County, Texas, where it consists of upper and lower members and composes the upper zone and the upper part of the middle zone of the Trinity aquifer. Uncharacteristically permeable in northern Bexar County, the Glen Rose Limestone can provide avenues for recharge to and potential contamination of the downgradient Edwards aquifer, which occupies the southeastern corner of Camp Bullis.The upper member of the Glen Rose Limestone characteristically is thin-bedded and composed mostly of soft limestone and marl, and the lower Glen Rose typically is composed mostly of relatively massive, fossiliferous limestone. The upper member, about 410 to 450 feet thick at Camp Bullis, was divided in this study into five hydrogeologic subdivisions, A through E (youngest to oldest).The approximately 120-foot-thick Interval A has an abundance of caves, which is indicative of its generally well developed fracture, channel, and cavern porosity that in places provides appreciable permeability. The 120- to 150-foot-thick Interval B is similar to Interval A but with less cave development and considerably less permeability. The 10- to 20-foot-thick Interval C, a layer of partly to mostly dissolved soluble carbonate minerals, is characterized by breccia porosity, boxwork permeability, and collapse structures that typically divert ground water laterally to discharge at land surface. The 135- to 180-foot-thick Interval D generally has low porosity and little permeability with some local exceptions, most notably the caprinid biostrome just below the top of the interval, which appears to be permeable by virtue of excellent moldic, vug, fracture, and cavern porosity. The 10- to 20-foot-thick Interval E, a layer of partly to mostly dissolved evaporites similar to Interval C, has similar hydrogeologic properties and a tendency to divert ground water laterally.

  12. In silico analysis of Pycnoporus cinnabarinus laccase active site with toxic industrial dyes.

    PubMed

    Prasad, Nirmal K; Vindal, Vaibhav; Narayana, Siva Lakshmi; Ramakrishna, V; Kunal, Swaraj Priyaranjan; Srinivas, M

    2012-05-01

    Laccases belong to multicopper oxidases, a widespread class of enzymes implicated in many oxidative functions in various industrial oxidative processes like production of fine chemicals to bioremediation of contaminated soil and water. In order to understand the mechanisms of substrate binding and interaction between substrates and Pycnoporus cinnabarinus laccase, a homology model was generated. The resulted model was further validated and used for docking studies with toxic industrial dyes- acid blue 74, reactive black 5 and reactive blue 19. Interactions of chemical mediators with the laccase was also examined. The docking analysis showed that the active site always cannot accommodate the dye molecules, due to constricted nature of the active site pocket and steric hindrance of the residues whereas mediators are relatively small and can easily be accommodated into the active site pocket, which, thereafter leads to the productive binding. The binding properties of these compounds along with identification of critical active site residues can be used for further site-directed mutagenesis experiments in order to identify their role in activity and substrate specificity, ultimately leading to improved mutants for degradation of these toxic compounds.

  13. Conformational Change in the Active Site of Streptococcal Unsaturated Glucuronyl Hydrolase Through Site-Directed Mutagenesis at Asp-115.

    PubMed

    Nakamichi, Yusuke; Oiki, Sayoko; Mikami, Bunzo; Murata, Kousaku; Hashimoto, Wataru

    2016-08-01

    Bacterial unsaturated glucuronyl hydrolase (UGL) degrades unsaturated disaccharides generated from mammalian extracellular matrices, glycosaminoglycans, by polysaccharide lyases. Two Asp residues, Asp-115 and Asp-175 of Streptococcus agalactiae UGL (SagUGL), are completely conserved in other bacterial UGLs, one of which (Asp-175 of SagUGL) acts as a general acid and base catalyst. The other Asp (Asp-115 of SagUGL) also affects the enzyme activity, although its role in the enzyme reaction has not been well understood. Here, we show substitution of Asp-115 in SagUGL with Asn caused a conformational change in the active site. Tertiary structures of SagUGL mutants D115N and D115N/K370S with negligible enzyme activity were determined at 2.00 and 1.79 Å resolution, respectively, by X-ray crystallography. The side chain of Asn-115 is drastically shifted in both mutants owing to the interaction with several residues, including Asp-175, by formation of hydrogen bonds. This interaction between Asn-115 and Asp-175 probably prevents the mutants from triggering the enzyme reaction using Asp-175 as an acid catalyst.

  14. Substrate shuttling between active sites of uroporphyrinogen decarboxylase is not required to generate coproporphyrinogen

    PubMed Central

    Phillips, John D.; Warby, Christy A.; Whitby, Frank G.; Kushner, James P.; Hill, Christopher P.

    2009-01-01

    Summary Uroporphyrinogen Decarboxylase (URO-D; EC 4.1.1.37), the fifth enzyme of the heme biosynthetic pathway, is required for the production of heme, vitamin B12, siroheme, and chlorophyll precursors. URO-D catalyzes the sequential decarboxylation of the four acetate side chains on the pyrrole groups of uroporphyrinogen to produce coproporphyrinogen. URO-D is a stable homodimer with the active site clefts of the two subunits adjacent to each other. It has been hypothesized that the two catalytic centers interact functionally, perhaps by shuttling of reaction intermediates between subunits. We tested this hypothesis by construction of a single chain protein (scURO-D) in which the two subunits were connected by a flexible linker. The crystal structure of this protein was shown to be superimposible with wild-type activity and have comparable catalytic activity. Mutations that impaired one or the other of the two active sites of scURO-D resulted in approximately half of wild-type activity. The distribution of reaction intermediates was the same for mutant and wild-type sequences, and was unaltered in a competition experiment using the I and III isomer substrates. These observations indicate that communication between active sites is not required for enzyme function, and suggest that the dimeric structure of URO-D is required to achieve conformational stability and create a large active site cleft. PMID:19362562

  15. Substrate Shuttling Between Active Sites of Uroporphyrinogen Decarboxylase in Not Required to Generate Coproporphyrinogen

    SciTech Connect

    Phillips, J.; Warby, C; Whitby, F; Kushner, J; Hill, C

    2009-01-01

    Uroporphyrinogen decarboxylase (URO-D; EC 4.1.1.37), the fifth enzyme of the heme biosynthetic pathway, is required for the production of heme, vitamin B12, siroheme, and chlorophyll precursors. URO-D catalyzes the sequential decarboxylation of four acetate side chains in the pyrrole groups of uroporphyrinogen to produce coproporphyrinogen. URO-D is a stable homodimer, with the active-site clefts of the two subunits adjacent to each other. It has been hypothesized that the two catalytic centers interact functionally, perhaps by shuttling of reaction intermediates between subunits. We tested this hypothesis by construction of a single-chain protein (single-chain URO-D) in which the two subunits were connected by a flexible linker. The crystal structure of this protein was shown to be superimposable with wild-type activity and to have comparable catalytic activity. Mutations that impaired one or the other of the two active sites of single-chain URO-D resulted in approximately half of wild-type activity. The distributions of reaction intermediates were the same for mutant and wild-type sequences and were unaltered in a competition experiment using I and III isomer substrates. These observations indicate that communication between active sites is not required for enzyme function and suggest that the dimeric structure of URO-D is required to achieve conformational stability and to create a large active-site cleft.

  16. Crystal structure of an avian influenza polymerase PA[subscript N] reveals an endonuclease active site

    SciTech Connect

    Yuan, Puwei; Bartlam, Mark; Lou, Zhiyong; Chen, Shoudeng; Zhou, Jie; He, Xiaojing; Lv, Zongyang; Ge, Ruowen; Li, Xuemei; Deng, Tao; Fodor, Ervin; Rao, Zihe; Liu, Yingfang

    2009-11-10

    The heterotrimeric influenza virus polymerase, containing the PA, PB1 and PB2 proteins, catalyses viral RNA replication and transcription in the nucleus of infected cells. PB1 holds the polymerase active site and reportedly harbours endonuclease activity, whereas PB2 is responsible for cap binding. The PA amino terminus is understood to be the major functional part of the PA protein and has been implicated in several roles, including endonuclease and protease activities as well as viral RNA/complementary RNA promoter binding. Here we report the 2.2 angstrom (A) crystal structure of the N-terminal 197 residues of PA, termed PA(N), from an avian influenza H5N1 virus. The PA(N) structure has an alpha/beta architecture and reveals a bound magnesium ion coordinated by a motif similar to the (P)DX(N)(D/E)XK motif characteristic of many endonucleases. Structural comparisons and mutagenesis analysis of the motif identified in PA(N) provide further evidence that PA(N) holds an endonuclease active site. Furthermore, functional analysis with in vivo ribonucleoprotein reconstitution and direct in vitro endonuclease assays strongly suggest that PA(N) holds the endonuclease active site and has critical roles in endonuclease activity of the influenza virus polymerase, rather than PB1. The high conservation of this endonuclease active site among influenza strains indicates that PA(N) is an important target for the design of new anti-influenza therapeutics.

  17. Transcriptional activation by LR1 at the Eµ enhancer and switch region sites

    PubMed Central

    Hanakahi, L. A.; Maizels, Nancy

    2000-01-01

    LR1 is a B cell-specific, sequence-specific duplex DNA binding activity which is induced in B cells carrying out class switch recombination. Here we identify several properties of LR1 which enable it to function in transcriptional regulation. We show that LR1 contributes to transcriptional activation by the Eµ immunoglobulin heavy chain intron enhancer by binding to a site within the enhancer core. We further show that LR1 bends DNA upon binding. In addition, we show that LR1 is itself a bona fide transcriptional activator, as multimerized LR1 sites produce an element which can enhance transcription from a minimal promoter. In order for class switch recombination to occur, an activating signal must be transmitted via the Eµ core, and both S regions targeted for recombination must be actively transcribed. The properties of LR1 that we have identified suggest distinct potential functions of LR1 duplex DNA binding activity in class switch recombination. First, LR1 may contribute to recombinational activation by the Eµ core. Second, there are multiple potential LR1 duplex binding sites in each of the G-rich switch regions, and LR1 bound at contiguous sites may enhance recombination by stimulating transcription of the S regions. PMID:10908319

  18. Regulation of Dpp activity by tissue-specific cleavage of an upstream site within the prodomain

    PubMed Central

    Sopory, Shailaja; Kwon, Sunjong; Wehrli, Marcel; Christian, Jan L.

    2010-01-01

    BMP4 is synthesized as an inactive precursor that is cleaved at two sites during maturation: initially at a site (S1) adjacent to the ligand domain, and then at an upstream site (S2) within the prodomain. Cleavage at the second site regulates the stability of mature BMP4 and this in turn influences its signaling intensity and range of action. The Drosophila ortholog of BMP4, Dpp, functions as a long- or short-range signaling molecule in the wing disc or embryonic midgut, respectively but mechanisms that differentially regulate its bioactivity in these tissues have not been explored. In the current studies we demonstrate, by dpp mutant rescue, that cleavage at the S2 site of proDpp is required for development of the wing and leg imaginal discs, whereas cleavage at the S1 site is sufficient to rescue Dpp function in the midgut. Both the S1 and S2 site of proDpp are cleaved in the wing disc, and S2-cleavage is essential to generate sufficient ligand to exceed the threshold for pMAD activation at both short- and long-range in most cells. By contrast, proDpp is cleaved at the S1 site alone in the embryonic mesoderm and this generates sufficient ligand to activate physiological target genes in neighboring cells. These studies provide the first biochemical and genetic evidence that that selective cleavage of the S2 site of proDPP provides a tissue-specific mechanism for regulating Dpp activity, and that differential cleavage can contribute to, but is not an absolute determinant of signaling range. PMID:20659445

  19. An Electromagnetic Interference Study of Potential Transmitter Sites for the HF Active Auroral Research Program (HAARP)

    DTIC Science & Technology

    1993-07-19

    heating . The measurements described in this report were conducted at a number of candidate HAARP transmitter sites in the vicinity of Fairbanks...employ the High Power Auroral Stimulation (HIPAS) RF heating facility [1], located in the Chena River valley area near Fairbanks. HAARP will be an...Potential Transmitter Sites for the HF Active Auroral Research Program ( HAARP ) JOSEP11 A. GOLDSTEIN EDWARD 1. KENNEDY ADRIAN S. ELEY 4 IMICHlAEL A. RuPAR C

  20. Probing the catalytic mechanism of bovine CD38/NAD+ glycohydrolase by site directed mutagenesis of key active site residues.

    PubMed

    Kuhn, Isabelle; Kellenberger, Esther; Cakir-Kiefer, Céline; Muller-Steffner, Hélène; Schuber, Francis

    2014-07-01

    Bovine CD38/NAD(+) glycohydrolase catalyzes the hydrolysis of NAD(+) to nicotinamide and ADP-ribose and the formation of cyclic ADP-ribose via a stepwise reaction mechanism. Our recent crystallographic study of its Michaelis complex and covalently-trapped intermediates provided insights into the modalities of substrate binding and the molecular mechanism of bCD38. The aim of the present work was to determine the precise role of key conserved active site residues (Trp118, Glu138, Asp147, Trp181 and Glu218) by focusing mainly on the cleavage of the nicotinamide-ribosyl bond. We analyzed the kinetic parameters of mutants of these residues which reside within the bCD38 subdomain in the vicinity of the scissile bond of bound NAD(+). To address the reaction mechanism we also performed chemical rescue experiments with neutral (methanol) and ionic (azide, formate) nucleophiles. The crucial role of Glu218, which orients the substrate for cleavage by interacting with the N-ribosyl 2'-OH group of NAD(+), was highlighted. This contribution to catalysis accounts for almost half of the reaction energy barrier. Other contributions can be ascribed notably to Glu138 and Asp147 via ground-state destabilization and desolvation in the vicinity of the scissile bond. Key interactions with Trp118 and Trp181 were also proven to stabilize the ribooxocarbenium ion-like transition state. Altogether we propose that, as an alternative to a covalent acylal reaction intermediate with Glu218, catalysis by bCD38 proceeds through the formation of a discrete and transient ribooxocarbenium intermediate which is stabilized within the active site mostly by electrostatic interactions.

  1. Dynamics of an Active-Site Flap Contributes to Catalysis in a JAMM Family Metallo Deubiquitinase.

    PubMed

    Bueno, Amy N; Shrestha, Rashmi K; Ronau, Judith A; Babar, Aditya; Sheedlo, Michael J; Fuchs, Julian E; Paul, Lake N; Das, Chittaranjan

    2015-10-06

    The endosome-associated deubiquitinase (DUB) AMSH is a member of the JAMM family of zinc-dependent metallo isopeptidases with high selectivity for Lys63-linked polyubiquitin chains, which play a key role in endosomal-lysosomal sorting of activated cell surface receptors. The catalytic domain of the enzyme features a flexible flap near the active site that opens and closes during its catalytic cycle. Structural analysis of its homologues, AMSH-LP (AMSH-like protein) and the fission yeast counterpart, Sst2, suggests that a conserved Phe residue in the flap may be critical for substrate binding and/or catalysis. To gain insight into the contribution of this flap in substrate recognition and catalysis, we generated mutants of Sst2 and characterized them using a combination of enzyme kinetics, X-ray crystallography, molecular dynamics simulations, and isothermal titration calorimetry (ITC). Our analysis shows that the Phe residue in the flap contributes key interactions during the rate-limiting step but not to substrate binding, since mutants of Phe403 exhibit a defect only in kcat but not in KM. Moreover, ITC studies show Phe403 mutants have similar KD for ubiquitin compared to the wild-type enzyme. The X-ray structures of both Phe403Ala and the Phe403Trp, in both the free and ubiquitin bound form, reveal no appreciable structural change that might impair substrate or alter product binding. We observed that the side chain of the Trp residue is oriented identically with respect to the isopeptide moiety of the substrate as the Phe residue in the wild-type enzyme, so the loss of activity seen in this mutant cannot be explained by the absence of a group with the ability to provide van der Waals interactions that facilitate the hyrdolysis of the Lys63-linked diubiquitin. Molecular dynamics simulations indicate that the flap in the Trp mutant is quite flexible, allowing almost free rotation of the indole side chain. Therefore, it is possible that these different dynamic

  2. Evolution of anatase surface active sites probed by in situ sum-frequency phonon spectroscopy.

    PubMed

    Cao, Yue; Chen, Shiyou; Li, Yadong; Gao, Yi; Yang, Deheng; Shen, Yuen Ron; Liu, Wei-Tao

    2016-09-01

    Surface active sites of crystals often govern their relevant surface chemistry, yet to monitor them in situ in real atmosphere remains a challenge. Using surface-specific sum-frequency spectroscopy, we identified the surface phonon mode associated with the active sites of undercoordinated titanium ions and conjoint oxygen vacancies, and used it to monitor them on anatase (TiO2) (101) under ambient conditions. In conjunction with theory, we determined related surface structure around the active sites and tracked the evolution of oxygen vacancies under ultraviolet irradiation. We further found that unlike in vacuum, the surface oxygen vacancies, which dominate the surface reactivity, are strongly regulated by ambient gas molecules, including methanol and water, as well as weakly associated species, such as nitrogen and hydrogen. The result revealed a rich interplay between prevailing ambient species and surface reactivity, which can be omnipresent in environmental and catalytic applications of titanium dioxides.

  3. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase

    SciTech Connect

    Fenwick, Michael K.; Mehta, Angad P.; Zhang, Yang; Abdelwahed, Sameh H.; Begley, Tadhg P.; Ealick, Steven E.

    2015-03-27

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active site metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.

  4. Evolution of anatase surface active sites probed by in situ sum-frequency phonon spectroscopy

    PubMed Central

    Cao, Yue; Chen, Shiyou; Li, Yadong; Gao, Yi; Yang, Deheng; Shen, Yuen Ron; Liu, Wei-Tao

    2016-01-01

    Surface active sites of crystals often govern their relevant surface chemistry, yet to monitor them in situ in real atmosphere remains a challenge. Using surface-specific sum-frequency spectroscopy, we identified the surface phonon mode associated with the active sites of undercoordinated titanium ions and conjoint oxygen vacancies, and used it to monitor them on anatase (TiO2) (101) under ambient conditions. In conjunction with theory, we determined related surface structure around the active sites and tracked the evolution of oxygen vacancies under ultraviolet irradiation. We further found that unlike in vacuum, the surface oxygen vacancies, which dominate the surface reactivity, are strongly regulated by ambient gas molecules, including methanol and water, as well as weakly associated species, such as nitrogen and hydrogen. The result revealed a rich interplay between prevailing ambient species and surface reactivity, which can be omnipresent in environmental and catalytic applications of titanium dioxides. PMID:27704049

  5. Gamma exposure rates due to neutron activation of soil: site of Hood detonation, Operation Plumbbob

    SciTech Connect

    Auxier, J.A.; Ohnesorge, W.F.

    1980-06-01

    This paper is the result of some recent discussions of exposure rates within the first few hours of the Hood detonation of the Plumbbob series due to neutron activation of soil. We estimated the exposure rates from 1/2 to 3 h after the detonation from ground zero to 1000 yards from ground zero. The area was assumed to be uncontaminated by fallout. Soil samples from the area of the Nevada Test Site at which the Hood device was detonated were sent to ORNL by Dr. John Malik of Los Alamos and by Mr. Gordon Jacks of the Nevada Test Site. These samples were irradiated at the DOSAR facility and the resulting activity analyzed. Calculations of exposure rates were then made based on the analyzed activity and the measured thermal neutron fluences at DOSAR and at the Hood Site.

  6. Systematic mutagenesis of the active site omega loop of TEM-1 beta-lactamase.

    PubMed Central

    Petrosino, J F; Palzkill, T

    1996-01-01

    Beta-Lactamase is a bacterial protein that provides resistance against beta-lactam antibiotics. TEM-1 beta-lactamase is the most prevalent plasmid-mediated beta-lactamase in gram-negative bacteria. Normally, this enzyme has high levels of hydrolytic activity for penicillins, but mutant beta-lactamases have evolved with activity toward a variety of beta-lactam antibiotics. It has been shown that active site substitutions are responsible for changes in the substrate specificity. Since mutant beta-lactamases pose a serious threat to antimicrobial therapy, the mechanisms by which mutations can alter the substrate specificity of TEM-1 beta-lactamase are of interest. Previously, screens of random libraries encompassing 31 of 55 active site amino acid positions enabled the identification of the residues responsible for maintaining the substrate specificity of TEM-1 beta-lactamase. In addition to substitutions found in clinical isolates, many other specificity-altering mutations were also identified. Interestingly, many nonspecific substitutions in the N-terminal half of the active site omega loop were found to increase ceftazidime hydrolytic activity and decrease ampicillin hydrolytic activity. To complete the active sight study, eight additional random libraries were constructed and screened for specificity-altering mutations. All additional substitutions found to alter the substrate specificity were located in the C-terminal half of the active site loop. These mutants, much like the N-terminal omega loop mutants, appear to be less stable than the wild-type enzyme. Further analysis of a 165-YYG-167 triple mutant, selected for high levels of ceftazidime hydrolytic activity, provides an example of the correlation which exists between enzyme instability and increased ceftazidime hydrolytic activity in the ceftazidime-selected omega loop mutants. PMID:8606154

  7. Improving the neutral phytase activity from Bacillus amyloliquefaciens DSM 1061 by site-directed mutagenesis.

    PubMed

    Xu, Wei; Shao, Rong; Wang, Zupeng; Yan, Xiuhua

    2015-03-01

    Neutral phytase is used as a feed additive for degradation of anti-nutritional phytate in aquatic feed industry. Site-directed mutagenesis of Bacillus amyloliquefaciens DSM 1061 phytase was performed with an aim to increase its activity. Mutation residues were chosen based on multiple sequence alignments and structure analysis of neutral phytsaes from different microorganisms. The mutation sites on surface (D148E, S197E and N156E) and around the active site (D52E) of phytase were selected. Analysis of the phytase variants showed that the specific activities of mutants D148E and S197E remarkably increased by about 35 and 13% over a temperature range of 40-75 °C at pH 7.0, respectively. The k cat of mutants D148E and S197E were 1.50 and 1.25 times than that of the wild-type phytase, respectively. Both D148E and S197E showed much higher thermostability than that of the wild-type phytase. However, mutants N156E and D52E led to significant loss of specific activity of the enzyme. Structural analysis revealed that these mutations may affect conformation of the active site of phytase. The present mutant phytases D148E and S197E with increased activities and thermostabilities have application potential as additives in aquaculture feed.

  8. A mutational analysis of the active site of human type II inosine 5'-monophosphate dehydrogenase.

    PubMed

    Futer, Olga; Sintchak, Michael D; Caron, Paul R; Nimmesgern, Elmar; DeCenzo, Maureen T; Livingston, David J; Raybuck, Scott A

    2002-01-31

    The oxidation of IMP to XMP is the rate-limiting step in the de novo synthesis of guanine ribonucleotides. This NAD-dependent reaction is catalyzed by the enzyme inosine monophosphate dehydrogenase (IMPDH). Based upon the recent structural determination of IMPDH complexed to oxidized IMP (XMP*) and the potent uncompetitive inhibitor mycophenolic acid (MPA), we have selected active site residues and prepared mutants of human type II IMPDH. The catalytic parameters of these mutants were determined. Mutations G326A, D364A, and the active site nucleophile C331A all abolish enzyme activity to less than 0.1% of wild type. These residues line the IMP binding pocket and are necessary for correct positioning of the substrate, Asp364 serving to anchor the ribose ring of the nucleotide. In the MPA/NAD binding site, significant loss of activity was seen by mutation of any residue of the triad Arg322, Asn303, Asp274 which form a hydrogen bonding network lining one side of this pocket. From a model of NAD bound to the active site consistent with the mutational data, we propose that these resides are important in binding the ribose ring of the nicotinamide substrate. Additionally, mutations in the pair Thr333, Gln441, which lies close to the xanthine ring, cause a significant drop in the catalytic activity of IMPDH. It is proposed that these residues serve to deliver the catalytic water molecule required for hydrolysis of the cysteine-bound XMP* intermediate formed after oxidation by NAD.

  9. Features of the planetary distribution of ion precipitation at different levels of magnetic activity

    NASA Astrophysics Data System (ADS)

    Vorobjev, V. G.; Yagodkina, O. I.; Antonova, E. E.

    2015-09-01

    Observations from DMSP F6 and F7 spacecraft were used to examine the features of the planetary distribution of ion precipitation. Ion characteristics were defined within the boundaries of different types of auroral electron precipitation, which in accordance with the conclusions from (Starkov et al., 2002) were divided into a structured precipitation of an auroral oval (AOP) and zones of diffuse precipitation DAZ and SDP located equatorward and poleward of AOP, respectively. Analogous to electron precipitation, ion precipitation did not demonstrate dependences of the average energy and the average energy flux of precipitating particles on the Dst index value. In the diffuse precipitation zone (DAZ) equatorward of the auroral oval, ion energies clearly peaked in the sector of 1500-1800 MLT. The average energy value grows as magnetic activity increases from ~12 keV at AL =-1000 nT to ~18 keV at AL =-1000 nT. In the region of structured precipitation (AOP), the minimum of the average ion energy is observed in the dawn sector of 0600-0900 MLT. Ion energy fluxes ( F i ) are maximal in the nighttime MLT sectors. In the zone of soft diffuse precipitation (SDP) poleward of AOP, the highest ion energy fluxes are observed in the daytime sector, while the nightside F i values are insignificant. Ion energy fluxes in the SDP zone show an anticorrelation with the average ion energy in the same MLT sector. An ion precipitation model was created which yields a global distribution of both the average ion energies and the ion energy fluxes depending on the magnetic activity expressed by AL and Dst indices. Comparison of this model with the model of electron precipitation shows that the planetary power of ion precipitation at low magnetic activity (| AL| = 100 nT) is ~12% of the electron precipitation power and exponentially decreases to ~4% at | AL| > 1000 nT. The ion precipitation model was used to calculate the plasma pressure at the ionospheric altitudes. The planetary

  10. Threatened and endangered wildlife species of the Hanford Site related to CERCLA characterization activities

    SciTech Connect

    Fitzner, R.E.; Weiss, S.G.; Stegen, J.A.

    1994-06-01

    The US Department of Energy`s (DOE) Hanford Site has been placed on the National Priorities List, which requires that it be remediated under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) or Superfund. Potentially contaminated areas of the Hanford Site were grouped into operable units, and detailed characterization and investigation plans were formulated. The DOE Richland Operations Office requested Westinghouse Hanford Company (WHC) to conduct a biological assessment of the potential impact of these characterization activities on the threatened, endangered, and sensitive wildlife species of the Hanford Site. Additional direction for WHC compliances with wildlife protection can be found in the Environmental Compliance Manual. This document is intended to meet these requirements, in part, for the CERCLA characterization activities, as well as for other work comparable in scope. This report documents the biological assessment and describes the pertinent components of the Hanford Site as well as the planned characterization activities. Also provided are accounts of endangered, threatened, and federal candidate wildlife species on the Hanford Site and information as to how human disturbances can affect these species. Potential effects of the characterization activities are described with recommendations for mitigation measures.

  11. Efficiency of integron cassette insertion in correct orientation is ensured by the interplay of the three unpaired features of attC recombination sites

    PubMed Central

    Nivina, Aleksandra; Escudero, José Antonio; Vit, Claire; Mazel, Didier; Loot, Céline

    2016-01-01

    The integron is a bacterial recombination system that allows acquisition, stockpiling and expression of cassettes carrying protein-coding sequences, and is responsible for the emergence and rise of multiresistance in Gram-negative bacteria. The functionality of this system depends on the insertion of promoterless cassettes in correct orientation, allowing their expression from the promoter located upstream of the cassette array. Correct orientation is ensured by strand selectivity of integron integrases for the bottom strand of cassette recombination sites (attC), recombined in form of folded single-stranded hairpins. Here, we investigated the basis of such strand selectivity by comparing recombination of wild-type and mutated attC sites with different lengths, sequences and structures. We show that all three unpaired structural features that distinguish the bottom and top strands contribute to strand selectivity. The localization of Extra-Helical Bases (EHBs) directly favors integrase binding to the bottom strand. The Unpaired Central Spacer (UCS) and the Variable Terminal Structure (VTS) influence strand selectivity indirectly, probably through the stabilization of the bottom strand and the resulting synapse due to the nucleotide skew between the two strands. These results underscore the importance of the single-stranded nature of the attC site that allows such tight control over integron cassette orientation. PMID:27496283

  12. Testing the applicability of rapid on-site enzymatic activity detection for surface water monitoring

    NASA Astrophysics Data System (ADS)

    Stadler, Philipp; Vogl, Wolfgang; Juri, Koschelnik; Markus, Epp; Maximilian, Lackner; Markus, Oismüller; Monika, Kumpan; Peter, Strauss; Regina, Sommer; Gabriela, Ryzinska-Paier; Farnleitner Andreas, H.; Matthias, Zessner

    2015-04-01

    On-site detection of enzymatic activities has been suggested as a rapid surrogate for microbiological pollution monitoring of water resources (e.g. using glucuronidases, galactosidases, esterases). Due to the possible short measuring intervals enzymatic methods have high potential as near-real time water quality monitoring tools. This presentation describes results from a long termed field test. For twelve months, two ColiMinder devices (Vienna Water Monitoring, Austria) for on-site determination of enzymatic activity were tested for stream water monitoring at the experimental catchment HOAL (Hydrological Open Air Laboratory, Center for Water Resource Systems, Vienna University of Technology). The devices were overall able to follow and reflect the diverse hydrological and microbiological conditions of the monitored stream during the test period. Continuous data in high temporal resolution captured the course of enzymatic activity in stream water during diverse rainfall events. The method also proofed sensitive enough to determine diurnal fluctuations of enzymatic activity in stream water during dry periods. The method was able to capture a seasonal trend of enzymatic activity in stream water that matches the results gained from Colilert18 analysis for E. coli and coliform bacteria of monthly grab samples. Furthermore the comparison of ColiMinder data with measurements gained at the same test site with devices using the same method but having different construction design (BACTcontrol, microLAN) showed consistent measuring results. Comparative analysis showed significant differences between measured enzymatic activity (modified fishman units and pmol/min/100ml) and cultivation based analyses (most probable number, colony forming unit). Methods of enzymatic activity measures are capable to detect ideally the enzymatic activity caused by all active target bacteria members, including VBNC (viable but nonculturable) while cultivation based methods cannot detect VBNC

  13. Common features and peculiarities of the seismic activity at Phlegraean Fields, Long Valley, and Vesuvius

    USGS Publications Warehouse

    Marzocchi, W.; Vilardo, G.; Hill, D.P.; Ricciardi, G.P.; Ricco, C.

    2001-01-01

    We analyzed and compared the seismic activity that has occurred in the last two to three decades in three distinct volcanic areas: Phlegraean Fields, Italy; Vesuvius, Italy; and Long Valley, California. Our main goal is to identify and discuss common features and peculiarities in the temporal evolution of earthquake sequences that may reflect similarities and differences in the generating processes between these volcanic systems. In particular, we tried to characterize the time series of the number of events and of the seismic energy release in terms of stochastic, deterministic, and chaotic components. The time sequences from each area consist of thousands of earthquakes that allow a detailed quantitative analysis and comparison. The results obtained showed no evidence for either deterministic or chaotic components in the earthquake sequences in Long Valley caldera, which appears to be dominated by stochastic behavior. In contrast, earthquake sequences at Phlegrean Fields and Mount Vesuvius show a deterministic signal mainly consisting of a 24-hour periodicity. Our analysis suggests that the modulation in seismicity is in some way related to thermal diurnal processes, rather than luni-solar tidal effects. Independently from the process that generates these periodicities on the seismicity., it is suggested that the lack (or presence) of diurnal cycles is seismic swarms of volcanic areas could be closely linked to the presence (or lack) of magma motion.

  14. Immature monocytes recruited to the ischemic mouse brain differentiate into macrophages with features of alternative activation.

    PubMed

    Miró-Mur, Francesc; Pérez-de-Puig, Isabel; Ferrer-Ferrer, Maura; Urra, Xabier; Justicia, Carles; Chamorro, Angel; Planas, Anna M

    2016-03-01

    Acute stroke induces a local inflammatory reaction causing leukocyte infiltration. Circulating monocytes are recruited to the ischemic brain and become tissue macrophages morphologically indistinguishable from reactive microglia. However, monocytes are a heterogeneous population of cells with different functions. Herein, we investigated the infiltration and fate of the monocyte subsets in a mouse model of focal brain ischemia by permanent occlusion of the distal portion of the middle cerebral artery. We separated two main subtypes of CD11b(hi) monocytes according to their expression of the surface markers Ly6C and CD43. Using adoptive transfer of reporter monocytes and monocyte depletion, we identified the pro-inflammatory Ly6C(hi)CD43(lo)CCR2(+) subset as the predominant monocytes recruited to the ischemic tissue. Monocytes were seen in the leptomeninges from where they entered the cortex along the penetrating arterioles. Four days post-ischemia, they had invaded the infarcted core, where they were often located adjacent to blood vessels. At this time, Iba-1(-) and Iba-1(+) cells in the ischemic tissue incorporated BrdU, but BrdU incorporation was rare in the reporter monocytes. The monocyte phenotype progressively changed by down-regulating Ly6C, up-regulating F4/80, expressing low or intermediate levels of Iba-1, and developing macrophage morphology. Moreover, monocytes progressively acquired the expression of typical markers of alternatively activated macrophages, like arginase-1 and YM-1. Collectively, the results show that stroke mobilized immature pro-inflammatory Ly6C(hi)CD43(lo) monocytes that acutely infiltrated the ischemic tissue reaching the core of the lesion. Monocytes differentiated to macrophages with features of alternative activation suggesting possible roles in tissue repair during the sub-acute phase of stroke.

  15. A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol

    PubMed Central

    Woertink, Julia S.; Smeets, Pieter J.; Groothaert, Marijke H.; Vance, Michael A.; Sels, Bert F.; Schoonheydt, Robert A.; Solomon, Edward I.

    2009-01-01

    Driven by the depletion of crude oil, the direct oxidation of methane to methanol has been of considerable interest. Promising low-temperature activity of an oxygen-activated zeolite, Cu-ZSM-5, has recently been reported in this selective oxidation and the active site in this reaction correlates with an absorption feature at 22,700 cm−1. In the present study, this absorption band is used to selectively resonance enhance Raman vibrations of this active site. 18O2 labeling experiments allow definitive assignment of the observed vibrations and exclude all previously characterized copper-oxygen species for the active site. In combination with DFT and normal coordinate analysis calculations, the oxygen activated Cu core is uniquely defined as a bent mono-(μ-oxo)dicupric site. Spectroscopically validated electronic structure calculations show polarization of the low-lying singly-occupied molecular orbital of the [Cu2O]2+ core, which is directed into the zeolite channel, upon approach of CH4. This induces significant oxyl character into the bridging O atom leading to a low transition state energy consistent with experiment and explains why the bent mono-(μ-oxo)dicupric core is highly activated for H atom abstraction from CH4. The oxygen intermediate of Cu-ZSM-5 is now the most well defined species active in the methane monooxygenase reaction. PMID:19864626

  16. A Variable Active Site Residue Influences the Kinetics of Response Regulator Phosphorylation and Dephosphorylation.

    PubMed

    Immormino, Robert M; Silversmith, Ruth E; Bourret, Robert B

    2016-10-04

    Two-component regulatory systems, minimally composed of a sensor kinase and a response regulator protein, are common mediators of signal transduction in microorganisms. All response regulators contain a receiver domain with conserved active site residues that catalyze the signal activating and deactivating phosphorylation and dephosphorylation reactions. We explored the impact of variable active site position T+1 (one residue C-terminal to the conserved Thr/Ser) on reaction kinetics and signaling fidelity, using wild type and mutant Escherichia coli CheY, CheB, and NarL to represent the three major sequence classes observed across response regulators: Ala/Gly, Ser/Thr, and Val/Ile/Met, respectively, at T+1. Biochemical and structural data together suggested that different amino acids at T+1 impacted reaction kinetics by altering access to the active site while not perturbing overall protein structure. A given amino acid at position T+1 had similar effects on autodephosphorylation in each protein background tested, likely by modulating access of the attacking water molecule to the active site. Similarly, rate constants for CheY autophosphorylation with three different small molecule phosphodonors were consistent with the steric constraints on access to the phosphorylation site arising from combination of specific phosphodonors with particular amino acids at T+1. Because other variable active site residues also influence response regulator phosphorylation biochemistry, we began to explore how context (here, the amino acid at T+2) affected the influence of position T+1 on CheY autocatalytic reactions. Finally, position T+1 affected the fidelity and kinetics of phosphotransfer between sensor kinases and response regulators but was not a primary determinant of their interaction.

  17. The active site of low-temperature methane hydroxylation in iron-containing zeolites

    NASA Astrophysics Data System (ADS)

    Snyder, Benjamin E. R.; Vanelderen, Pieter; Bols, Max L.; Hallaert, Simon D.; Böttger, Lars H.; Ungur, Liviu; Pierloot, Kristine; Schoonheydt, Robert A.; Sels, Bert F.; Solomon, Edward I.

    2016-08-01

    An efficient catalytic process for converting methane into methanol could have far-reaching economic implications. Iron-containing zeolites (microporous aluminosilicate minerals) are noteworthy in this regard, having an outstanding ability to hydroxylate methane rapidly at room temperature to form methanol. Reactivity occurs at an extra-lattice active site called α-Fe(II), which is activated by nitrous oxide to form the reactive intermediate α-O; however, despite nearly three decades of research, the nature of the active site and the factors determining its exceptional reactivity are unclear. The main difficulty is that the reactive species—α-Fe(II) and α-O—are challenging to probe spectroscopically: data from bulk techniques such as X-ray absorption spectroscopy and magnetic susceptibility are complicated by contributions from inactive ‘spectator’ iron. Here we show that a site-selective spectroscopic method regularly used in bioinorganic chemistry can overcome this problem. Magnetic circular dichroism reveals α-Fe(II) to be a mononuclear, high-spin, square planar Fe(II) site, while the reactive intermediate, α-O, is a mononuclear, high-spin Fe(IV)=O species, whose exceptional reactivity derives from a constrained coordination geometry enforced by the zeolite lattice. These findings illustrate the value of our approach to exploring active sites in heterogeneous systems. The results also suggest that using matrix constraints to activate metal sites for function—producing what is known in the context of metalloenzymes as an ‘entatic’ state—might be a useful way to tune the activity of heterogeneous catalysts.

  18. Dynamics of the Active Sites of Dimeric Seryl tRNA Synthetase from Methanopyrus kandleri.

    PubMed

    Dutta, Saheb; Nandi, Nilashis

    2015-08-27

    Aminoacyl tRNA synthetases (aaRSs) carry out the first step of protein biosynthesis. Several aaRSs are multimeric, and coordination between the dynamics of active sites present in each monomer is a prerequisite for the fast and accurate aminoacylation. However, important lacunae of understanding exist concerning the conformational dynamics of multimeric aaRSs. Questions remained unanswered pertaining to the dynamics of the active site. Little is known concerning the conformational dynamics of the active sites in response to the substrate binding, reorganization of the catalytic residues around reactants, time-dependent changes at the reaction center, which are essential for facilitating the nucleophilic attack, and interactions at the interface of neighboring monomers. In the present work, we carried out all-atom molecular dynamics simulation of dimeric (mk)SerRS from Methanopyrus kandleri bound with tRNA using an explicit solvent system. Two dimeric states of seryl tRNA synthetase (open, substrate bound, and adenylate bound) and two monomeric states (open and substrate bound) are simulated with bound tRNA. The aim is to understand the conformational dynamics of (mk)SerRS during its reaction cycle. While the present results provide a clear dynamical perspective of the active sites of (mk)SerRS, they corroborate with the results from the time-averaged experimental data such as crystallographic and mutation analysis of methanogenic SerRS from M. kandleri and M. barkeri. It is observed from the present simulation that the motif 2 loop gates the active site and its Glu351 and Arg360 stabilizes ATP in a bent state favorable for nucleophilic attack. The flexibility of the walls of the active site gradually reduces near reaction center, which is a more organized region compared to the lid region. The motif 2 loop anchors Ser and ATP using Arg349 in a hydrogen bonded geometry crucial for nucleophilic attack and favorably influences the electrostatic potential at the

  19. Counting Active Sites on Titanium Oxide-Silica Catalysts for Hydrogen Peroxide Activation through In Situ Poisoning with Phenylphosphonic Acid

    SciTech Connect

    Eaton, Todd R.; Boston, Andrew M.; Thompson, Anthony B.; Gray, Kimberly A.; Notestein, Justin M.

    2015-06-04

    Quantifying specific active sites in supported catalysts improves our understanding and assists in rational design. Supported oxides can undergo significant structural changes as surface densities increase from site-isolated cations to monolayers and crystallites, which changes the number of kinetically relevant sites. Herein, TiOx domains are titrated on TiOx–SiO2 selectively with phenylphosphonic acid (PPA). An ex situ method quantifies all fluid-accessible TiOx, whereas an in situ titration during cis-cyclooctene epoxidation provides previously unavailable values for the number of tetrahedral Ti sites on which H2O2 activation occurs. We use this method to determine the active site densities of 22 different catalysts with different synthesis methods, loadings, and characteristic spectra and find a single intrinsic turnover frequency for cis-cyclooctene epoxidation of (40±7) h-1. This simple method gives molecular-level insight into catalyst structure that is otherwise hidden when bulk techniques are used.

  20. Aerosol optical properties at a coastal site in Hong Kong, South China: temporal features, size dependencies and source analysis

    NASA Astrophysics Data System (ADS)

    Wang, Jiaping; Ding, Aijun; Virkkula, Aki; Lee, Shuncheng; Shen, Yicheng; Chi, Xuguang; Xu, Zheng

    2016-04-01

    Hong Kong is a typical coastal city adjacent to the Pearl River Delta (PRD) region in southern China, which is one of the regions suffering from severe air pollution. Atmospheric aerosols can affect the earth's radiative balance by scattering and absorbing incoming solar radiation. Black Carbon (BC) aerosol is a particularly emphasized component due to its strong light absorption. Aerosol transported from different source areas consists of distinct size distributions, leading to different optical properties. As the byproducts of the incomplete oxidation, BC and CO both have relatively long life time, their relationship is a good indicator for distinguishing different pollutant sources. In this study, temporal variations of aerosol optical properties and concentrations of BC and CO at a coastal background station in Hong Kong were investigated. Transport characteristics and origins of aerosol were elucidated by analyzing backward Lagrangian particle dispersion modeling (LPDM) results, together with related parameters including the relationships between optical properties and particle size, BC-CO correlations, ship location data and meteorological variables. From February 2012 to September 2013 and March 2014 to February 2015, continuous in-situ measurements of light scattering and absorption coefficients, particle size distribution and concentrations of BC and CO were conducted at Hok Tsui (HT), a coastal background station on the southeast tip of Hong Kong Island (22.22°N, 114.25°E, 60 m above the sea level) with few local anthropogenic activities. Affected by the Asian monsoon, this region is dominated by continental outflow in winter and by marine inflow from the South China Sea in summer, which is an ideal station for identifying the transport characteristics of aerosol and their effects on optical properties from different anthropogenic emission sources. 7-day backward Lagrangian particle dispersion modeling was performed for source identification. Three

  1. New active site oriented glyoxyl-agarose derivatives of Escherichia coli penicillin G acylase

    PubMed Central

    Cecchini, Davide A; Serra, Immacolata; Ubiali, Daniela; Terreni, Marco; Albertini, Alessandra M

    2007-01-01

    Background Immobilized Penicillin G Acylase (PGA) derivatives are biocatalysts that are industrially used for the hydrolysis of Penicillin G by fermentation and for the kinetically controlled synthesis of semi-synthetic β-lactam antibiotics. One of the most used supports for immobilization is glyoxyl-activated agarose, which binds the protein by reacting through its superficial Lys residues. Since in E. coli PGA Lys are also present near the active site, an immobilization that occurs through these residues may negatively affect the performance of the biocatalyst due to the difficult diffusion of the substrate into the active site. A preferential orientation of the enzyme with the active site far from the support surface would be desirable to avoid this problem. Results Here we report how it is possible to induce a preferential orientation of the protein during the binding process on aldehyde activated supports. A superficial region of PGA, which is located on the opposite side of the active site, is enriched in its Lys content. The binding of the enzyme onto the support is consequently forced through the Lys rich region, thus leaving the active site fully accessible to the substrate. Different mutants with an increasing number of Lys have been designed and, when active, immobilized onto glyoxyl agarose. The synthetic performances of these new catalysts were compared with those of the immobilized wild-type (wt) PGA. Our results show that, while the synthetic performance of the wt PGA sensitively decreases after immobilization, the Lys enriched mutants have similar performances to the free enzyme even after immobilization. We also report the observations made with other mutants which were unable to undergo a successful maturation process for the production of active enzymes or which resulted toxic for the host cell. Conclusion The desired orientation of immobilized PGA with the active site freely accessible can be obtained by increasing the density of Lys residues

  2. Structural features and activity of Brazzein and its mutants upon substitution of a surfaced exposed alanine.

    PubMed

    Ghanavatian, Parisa; Khalifeh, Khosrow; Jafarian, Vahab

    2016-12-01

    Brazzein (Brz) is a member of sweet-tasting protein containing four disulfide bonds. It was reported as a compact and heat-resistant protein. Here, we have used site-directed mutagenesis and replaced a surface-exposed alanine with aspartic acid (A19D mutant), lysine (A19K mutant) and glycine (A19G mutant). Activity comparisons of wild-type (WT) and mutants using taste panel test procedure showed that A19G variant has the same activity as WT protein. However, introduction of a positive charge in A19K mutant led to significant increase in Brz's sweetness, while A19D has reduced sweetness compared to WT protein. Docking studies showed that mutation at position 19 results in slight chain mobility of protein at the binding surface and changing the patterns of interactions toward more effective binding of E9K variant in the concave surface of sweet taste receptor. Far-UV CD data spectra have a characteristic shape of beta structure for all variants, however different magnitudes of spectra suggest that beta-sheet structure in WT and A19G is more stable than that of A19D and A19K. Equilibrium unfolding studies with fluorescence spectroscopy and using urea and dithiothritol (DTT) as chemical denaturants indicates that A19G mutant gains more stability against urea denaturation; while conformational stability of A19D and A19K decreases when compared with WT and A19G variants. We concluded that the positive charge at the surface of protein is important factor responsible for the interaction of protein with the human sweet receptor and Ala(19) can be considered as a key region for investigating the mechanism of the interaction of Brz with corresponding receptor.

  3. Utility of passive photography to objectively audit built environment features of active transport journeys: an observational study

    PubMed Central

    2013-01-01

    Background Active transport can contribute to physical activity accumulation and improved health in adults. The built environment is an established associate of active transport behaviours; however, assessment of environmental features encountered during journeys remains challenging. The purpose of this study was to examine the utility of wearable cameras to objectively audit and quantify environmental features along work-related walking and cycling routes. Methods A convenience sample of employed adults was recruited in New Zealand, in June 2011. Participants wore a SenseCam for all journeys over three weekdays and completed travel diaries and demographic questionnaires. SenseCam images for work-related active transport journeys were coded for presence of environmental features hypothesised to be related to active transport. Differences in presence of features by transport mode and in participant-reported and SenseCam-derived journey duration were determined using two-sample tests of proportion and an independent samples t-test, respectively. Results Fifteen adults participated in the study, yielding 1749 SenseCam images from 30 work-related active transport journeys for coding. Significant differences in presence of features were found between walking and cycling journeys. Almost a quarter of images were uncodeable due to being too dark to determine features. There was a non-significant tendency for respondents to under-report their journey duration. Conclusion This study provides proof of concept for the use of the SenseCam to capture built environment data in real time that may be related to active transportation. Further work is required to test and refine coding methodologies across a range of settings, travel behaviours, and demographic groups. PMID:23575288

  4. Wearable Sensor-Based Human Activity Recognition Method with Multi-Features Extracted from Hilbert-Huang Transform

    PubMed Central

    Xu, Huile; Liu, Jinyi; Hu, Haibo; Zhang, Yi

    2016-01-01

    Wearable sensors-based human activity recognition introduces many useful applications and services in health care, rehabilitation training, elderly monitoring and many other areas of human interaction. Existing works in this field mainly focus on recognizing activities by using traditional features extracted from Fourier transform (FT) or wavelet transform (WT). However, these signal processing approaches are suitable for a linear signal but not for a nonlinear signal. In this paper, we investigate the characteristics of the Hilbert-Huang transform (HHT) for dealing with activity data with properties such as nonlinearity and non-stationarity. A multi-features extraction method based on HHT is then proposed to improve the effect of activity recognition. The extracted multi-features include instantaneous amplitude (IA) and instantaneous frequency (IF) by means of empirical mode decomposition (EMD), as well as instantaneous energy density (IE) and marginal spectrum (MS) derived from Hilbert spectral analysis. Experimental studies are performed to verify the proposed approach by using the PAMAP2 dataset from the University of California, Irvine for wearable sensors-based activity recognition. Moreover, the effect of combining multi-features vs. a single-feature are investigated and discussed in the scenario of a dependent subject. The experimental results show that multi-features combination can further improve the performance measures. Finally, we test the effect of multi-features combination in the scenario of an independent subject. Our experimental results show that we achieve four performance indexes: recall, precision, F-measure, and accuracy to 0.9337, 0.9417, 0.9353, and 0.9377 respectively, which are all better than the achievements of related works. PMID:27918414

  5. Wearable Sensor-Based Human Activity Recognition Method with Multi-Features Extracted from Hilbert-Huang Transform.

    PubMed

    Xu, Huile; Liu, Jinyi; Hu, Haibo; Zhang, Yi

    2016-12-02

    Wearable sensors-based human activity recognition introduces many useful applications and services in health care, rehabilitation training, elderly monitoring and many other areas of human interaction. Existing works in this field mainly focus on recognizing activities by using traditional features extracted from Fourier transform (FT) or wavelet transform (WT). However, these signal processing approaches are suitable for a linear signal but not for a nonlinear signal. In this paper, we investigate the characteristics of the Hilbert-Huang transform (HHT) for dealing with activity data with properties such as nonlinearity and non-stationarity. A multi-features extraction method based on HHT is then proposed to improve the effect of activity recognition. The extracted multi-features include instantaneous amplitude (IA) and instantaneous frequency (IF) by means of empirical mode decomposition (EMD), as well as instantaneous energy density (IE) and marginal spectrum (MS) derived from Hilbert spectral analysis. Experimental studies are performed to verify the proposed approach by using the PAMAP2 dataset from the University of California, Irvine for wearable sensors-based activity recognition. Moreover, the effect of combining multi-features vs. a single-feature are investigated and discussed in the scenario of a dependent subject. The experimental results show that multi-features combination can further improve the performance measures. Finally, we test the effect of multi-features combination in the scenario of an independent subject. Our experimental results show that we achieve four performance indexes: recall, precision, F-measure, and accuracy to 0.9337, 0.9417, 0.9353, and 0.9377 respectively, which are all better than the achievements of related works.

  6. Wobble Pairs of the HDV Ribozyme Play Specific Roles in Stabilization of Active Site Dynamics

    PubMed Central

    Sripathi, Kamali N.; Banáš, Pavel; Reblova, Kamila; Šponer, Jiři; Otyepka, Michal

    2015-01-01

    The hepatitis delta virus (HDV) is the only known human pathogen whose genome contains a catalytic RNA motif (ribozyme). The overall architecture of the HDV ribozyme is that of a double-nested pseudoknot, with two GU pairs flanking the active site. Although extensive studies have shown that mutation of either wobble results in decreased catalytic activity, little work has focused on linking these mutations to specific structural effects on catalytic fitness. Here we use molecular dynamics simulations based on an activated structure to probe the active site dynamics as a result of wobble pair mutations. In both wild-type and mutant ribozymes, the in-line fitness of the active site (as a measure of catalytic proficiency) strongly depends on the presence of a C75(N3H3+)N1(O5′) hydrogen bond, which positions C75 as the general acid for the reaction. Our mutational analyses show that each GU wobble supports catalytically fit conformations in distinct ways; the reverse G25U20 wobble promotes high in-line fitness, high occupancy of the C75(N3H3+)G1(O5′) general-acid hydrogen bond and stabilization of the G1U37 wobble, while the G1U37 wobble acts more locally by stabilizing high in-line fitness and the C75(N3H3+)G1(O5′) hydrogen bond. We also find that stable type I A-minor and P1.1 hydrogen bonding above and below the active site, respectively, prevent local structural disorder from spreading and disrupting global conformation. Taken together, our results define specific, often redundant architectural roles for several structural motifs of the HDV ribozyme active site, expanding the known roles of these motifs within all HDV-like ribozymes and other structured RNAs. PMID:25631765

  7. Conserved phosphorylation sites in the activation loop of the Arabidopsis phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity

    PubMed Central

    Hartmann, Jens; Linke, Dennis; Bönniger, Christine; Tholey, Andreas; Sauter, Margret

    2015-01-01

    PSK (phytosulfokine) is a plant peptide hormone perceived by a leucine-rich repeat receptor kinase. Phosphosite mapping of epitope-tagged PSKR1 (phytosulfokine receptor 1) from Arabidopsis thaliana plants identified Ser696 and Ser698 in the JM (juxtamembrane) region and probably Ser886 and/or Ser893 in the AL (activation loop) as in planta phosphorylation sites. In vitro-expressed kinase was autophosphorylated at Ser717 in the JM, and at Ser733, Thr752, Ser783, Ser864, Ser911, Ser958 and Thr998 in the kinase domain. The LC–ESI–MS/MS spectra provided support that up to three sites (Thr890, Ser893 and Thr894) in the AL were likely to be phosphorylated in vitro. These sites are evolutionarily highly conserved in PSK receptors, indicative of a conserved function. Site-directed mutagenesis of the four conserved residues in the activation segment, Thr890, Ser893, Thr894 and Thr899, differentially altered kinase activity in vitro and growth-promoting activity in planta. The T899A and the quadruple-mutated TSTT-A (T890A/S893A/T894A/T899A) mutants were both kinase-inactive, but PSKR1(T899A) retained growth-promoting activity. The T890A and S893A/T894A substitutions diminished kinase activity and growth promotion. We hypothesize that phosphorylation within the AL activates kinase activity and receptor function in a gradual and distinctive manner that may be a means to modulate the PSK response. PMID:26472115

  8. Human activities in Natura 2000 sites: a highly diversified conservation network.

    PubMed

    Tsiafouli, Maria A; Apostolopoulou, Evangelia; Mazaris, Antonios D; Kallimanis, Athanasios S; Drakou, Evangelia G; Pantis, John D

    2013-05-01

    The Natura 2000 network was established across the European Union's (EU) Member States with the aim to conserve biodiversity, while ensuring the sustainability of human activities. However, to what kind and to what extent Natura 2000 sites are subject to human activities and how this varies across Member States remains unspecified. Here, we analyzed 111,269 human activity records from 14,727 protected sites in 20 Member States. The frequency of occurrence of activities differs among countries, with more than 86 % of all sites being subjected to agriculture or forestry. Activities like hunting, fishing, urbanization, transportation, and tourism are more frequently recorded in south European sites than in northern or eastern ones. The observed variations indicate that Natura 2000 networks are highly heterogeneous among EU Member States. Our analysis highlights the importance of agriculture in European landscapes and indicates possible targets for policy interventions at national, European, or "sub-European" level. The strong human presence in the Natura 2000 network throughout Member States, shows that conservation initiatives could succeed only by combining social and ecological sustainability and by ensuring the integration of policies affecting biodiversity.

  9. Kv3 channel assembly, trafficking and activity are regulated by zinc through different binding sites.

    PubMed

    Gu, Yuanzheng; Barry, Joshua; Gu, Chen

    2013-05-15

    Zinc, a divalent heavy metal ion and an essential mineral for life, regulates synaptic transmission and neuronal excitability via ion channels. However, its binding sites and regulatory mechanisms are poorly understood. Here, we report that Kv3 channel assembly, localization and activity are regulated by zinc through different binding sites. Local perfusion of zinc reversibly reduced spiking frequency of cultured neurons most likely by suppressing Kv3 channels. Indeed, zinc inhibited Kv3.1 channel activity and slowed activation kinetics, independent of its site in the N-terminal T1 domain. Biochemical assays surprisingly identified a novel zinc-binding site in the Kv3.1 C-terminus, critical for channel activity and axonal targeting, but not for the zinc inhibition. Finally, mutagenesis revealed an important role of the junction between the first transmembrane (TM) segment and the first extracellular loop in sensing zinc. Its mutant enabled fast spiking with relative resistance to the zinc inhibition. Therefore, our studies provide novel mechanistic insights into the multifaceted regulation of Kv3 channel activity and localization by divalent heavy metal ions.

  10. Active-Site Monovalent Cations Revealed in a 1.55 Å Resolution Hammerhead Ribozyme Structure

    PubMed Central

    Anderson, Michael; Schultz, Eric P.; Martick, Monika; Scott, William G.

    2013-01-01

    We have obtained a 1.55 Å crystal structure of a hammerhead ribozyme derived from Schistosoma mansoni in conditions that permit detailed observations of Na+ ion binding in the ribozyme's active site. At least two such Na+ ions are observed. The first Na+ ion binds to the N7 of G10.1 and the adjacent A9 phosphate in a manner identical to that previously observed for divalent cations. A second Na+ ion binds to the Hoogsteen face of G12, the general base in the hammerhead cleavage reaction, thereby potentially dissipating the negative charge of the catalytically active enolate form of the nucleotide base. A potential but more ambiguous third site bridges the A9 and scissile phosphates in a manner consistent with previous predictions. Hammerhead ribozymes have been observed to be active in the presence of high concentrations of monovalent cations, including Na+, but the mechanism by which monovalent cations substitute for divalent cations in hammerhead catalysis remains unclear. Our results enable us to suggest that Na+ directly and specifically substitutes for divalent cations in the hammerhead active site. The detailed geometry of the pre-catalytic active site complex is also revealed with a new level of precision, thanks to the quality of the electron density maps obtained from what is currently the highest resolution ribozyme structure in the protein data bank. PMID:23711504

  11. Tuned by metals: the TET peptidase activity is controlled by 3 metal binding sites.

    PubMed

    Colombo, Matteo; Girard, Eric; Franzetti, Bruno

    2016-02-08

    TET aminopeptidases are dodecameric particles shared in the three life domains involved in various biological processes, from carbon source provider in archaea to eye-pressure regulation in humans. Each subunit contains a dinuclear metal site (M1 and M2) responsible for the enzyme catalytic activity. However, the role of each metal ion is still uncharacterized. Noteworthy, while mesophilic TETs are activated by Mn(2+), hyperthermophilic TETs prefers Co(2+). Here, by means of anomalous x-ray crystallography and enzyme kinetics measurements of the TET3 aminopeptidase from the hyperthermophilic organism Pyrococcus furiosus (PfTET3), we show that M2 hosts the catalytic activity of the enzyme, while M1 stabilizes the TET3 quaternary structure and controls the active site flexibility in a temperature dependent manner. A new third metal site (M3) was found in the substrate binding pocket, modulating the PfTET3 substrate preferences. These data show that TET activity is tuned by the molecular interplay among three metal sites.

  12. New features of site-specific horseradish peroxidase (HRP) glycosylation uncovered by nano-LC-MS with repeated ion-isolation/fragmentation cycles.

    PubMed

    Wuhrer, Manfred; Balog, Crina I A; Koeleman, Carolien A M; Deelder, André M; Hokke, Cornelis H

    2005-05-25

    Horseradish peroxidase (HRP) is widely used in biomedical research as a reporter enzyme in diagnostic assays. In addition, it is of considerable interest as a model glycoprotein with core-xylosylated and -(alpha1-3)-fucosylated N-glycans that form antigenic elements of plant allergens and parasitic helminths. Using a combination of techniques comprising (1) nano-liquid chromatography (LC)-mass spectrometry (MS)/MS with multiple selection/fragmentation cycles of HRP tryptic (glyco-)peptides, (2) nano-electrospray MS of intact HRP, and (3) carbohydrate linkage analysis, it was revealed that most of the HRP N-glycosylation sites can be occupied with an alternative Fuc(1-3)GlcNAc-disaccharide. Two main variants of HRP occur: The major population (approximately 60%) has eight glycosylation sites carrying core(1-3)fucosylated, xylosylated, trimannosyl N-glycans, with the ninth potential N-glycosylation site Asn316 not occupied. Another group of HRP carries seven of the above-mentioned N-glycans, with an eighth N-glycosylation site carrying the alternative Fuc(1-3)GlcNAc-unit (approximately 35%). In addition, minor subsets of HRP were found to contain a xylosylated, trimannosyl N-glycan lacking core-fucosylation as a ninth N-glycan attached to Asn316, which has hitherto been assumed to be unoccupied. The finding of these new features of glycosylation of an already exceptionally well-studied glycoprotein underscores the potential of the nano-LC-MS(n) based analytical approach followed.

  13. Feature Statistics Modulate the Activation of Meaning during Spoken Word Processing

    ERIC Educational Resources Information Center

    Devereux, Barry J.; Taylor, Kirsten I.; Randall, Billi; Geertzen, Jeroen; Tyler, Lorraine K.

    2016-01-01

    Understanding spoken words involves a rapid mapping from speech to conceptual representations. One distributed feature-based conceptual account assumes that the statistical characteristics of concepts' features--the number of concepts they occur in ("distinctiveness/sharedness") and likelihood of co-occurrence ("correlational…

  14. Molecular protein adaptor with genetically encoded interaction sites guiding the hierarchical assembly of plasmonically active nanoparticle architectures

    NASA Astrophysics Data System (ADS)

    Schreiber, Andreas; Huber, Matthias C.; Cölfen, Helmut; Schiller, Stefan M.

    2015-03-01

    The control over the defined assembly of nano-objects with nm-precision is important to create systems and materials with enhanced properties, for example, metamaterials. In nature, the precise assembly of inorganic nano-objects with unique features, for example, magnetosomes, is accomplished by efficient and reliable recognition schemes involving protein effectors. Here we present a molecular approach using protein-based ‘adaptors/connectors’ with genetically encoded interaction sites to guide the assembly and functionality of different plasmonically active gold nanoparticle architectures (AuNP). The interaction of the defined geometricaly shaped protein adaptors with the AuNP induces the self-assembly of nanoarchitectures ranging from AuNP encapsulation to one-dimensional chain-like structures, complex networks and stars. Synthetic biology and bionanotechnology are applied to co-translationally encode unnatural amino acids as additional site-specific modification sites to generate functionalized biohybrid nanoarchitectures. This protein adaptor-based nano-object assembly approach might be expanded to other inorganic nano-objects creating biohybrid materials with unique electronic, photonic, plasmonic and magnetic properties.

  15. Ice nucleation properties of mineral dust particles: Determination of onset RHi, IN active fraction, nucleation time-lag, and the effect of active sites on contact angles

    SciTech Connect

    Kulkarni, Gourihar R.; Dobbie, Steven

    2010-01-08

    A newly developed ice nucleation experimental set up was used to investigate the heterogeneous ice nucleation properties of three Saharan and one Spanish dust particle samples. It is observed that the spread in the onset relative humidities with respect to ice (RHi) for Saharan dust particles varies from 104% to 110%, whereas for the Spanish dust from 106% to 110%. The elemental composition analysis shows a prominent Ca feature in the Spanish dust sample which could potentially explain the differences in nucleation threshold. Although spread in the onset RHi for Saharan dust samples were in agreement, their active fractions and nucleation time-lags calculated at various temperature and RHi conditions, for two Saharan dust samples, were not found to be in complete agreement. This could be because of the subtle variation in the elemental composition of the dust samples, and the surface irregularities like steps, cracks, cavities etc. A combination of classical nucleation theory and active site theory is used to understand the importance of these surface irregularities, expressed in terms of active sites, on the nucleability parameter (contact angle) that is widely used in the ice cloud modeling studies. These calculations show that the surface irregularities reduce the contact angle by approximately 10 degrees.

  16. Masked priming of conceptual features reveals differential brain activation during unconscious access to conceptual action and sound information.

    PubMed

    Trumpp, Natalie M; Traub, Felix; Kiefer, Markus

    2013-01-01

    Previous neuroimaging studies suggested an involvement of sensory-motor brain systems during conceptual processing in support of grounded cognition theories of conceptual memory. However, in these studies with visible stimuli, contributions of strategic imagery or semantic elaboration processes to observed sensory-motor activity cannot be entirely excluded. In the present study, we therefore investigated the electrophysiological correlates of unconscious feature-specific priming of action- and sound-related concepts within a novel feature-priming paradigm to specifically probe automatic processing of conceptual features without the contribution of possibly confounding factors such as orthographic similarity or response congruency. Participants were presented with a masked subliminal prime word and a subsequent visible target word. In the feature-priming conditions primes as well as targets belonged to the same conceptual feature dimension (action or sound, e.g., typewriter or radio) whereas in the two non-priming conditions, either the primes or the targets consisted of matched control words with low feature relevance (e.g., butterfly or candle). Event-related potential analyses revealed unconscious feature-specific priming effects at fronto-central electrodes within 100 to 180 ms after target stimulus onset that differed with regard to topography and underlying neural generators. In congruency with previous findings under visible stimulation conditions, these differential subliminal ERP feature-priming effects demonstrate an unconscious automatic access to action versus sound features of concepts. The present results therefore support grounded cognition theory suggesting that activity in sensory and motor areas during conceptual processing can also occur unconsciously and is not mandatorily accompanied by a vivid conscious experience of the conceptual content such as in imagery.

  17. Docking and molecular dynamics studies at trypanothione reductase and glutathione reductase active sites.

    PubMed

    Iribarne, Federico; Paulino, Margot; Aguilera, Sara; Murphy, Miguel; Tapia, Orlando

    2002-05-01

    A theoretical docking study on the active sites of trypanothione reductase (TR) and glutathione reductase (GR) with the corresponding natural substrates, trypanothione disulfide (T[S]2) and glutathione disulfide (GSSG), is reported. Molecular dynamics simulations were carried out in order to check the robustness of the docking results. The energetic results are in agreement with previous experimental findings and show the crossed complexes have lower stabilization energies than the natural ones. To test DOCK3.5, four nitro furanic compounds, previously designed as potentially active anti-chagasic molecules, were docked at the GR and TR active sites with the DOCK3.5 procedure. A good correlation was found between differential inhibitory activity and relative interaction energy (affinity). The results provide a validation test for the use of DOCK3.5 in connection with the design of anti-chagasic drugs.

  18. Role of tectonic and volcanic activity in hydrothermal systems at the southern Mariana Trough: detailed bathymetric characteristics of the hydrothermal sites

    NASA Astrophysics Data System (ADS)

    Yoshikawa, S.; Okino, K.; Asada, M.; Nogi, Y.; Mochizuki, N.; Nakamura, K.

    2012-12-01

    We present the detailed bathymetric characterization of field-scale geological features associated with hydrothermal systems in the southern Mariana Trough near 12°57'N, 143°37'E, using near-bottom swath mapping data collected by the autonomous underwater vehicle (AUV) Urashima during cruise YK09-08 and dive observation data acquired by the submersible Shinkai6500 during cruise YK10-11. In the study area, two of the hydrothermal sites are located on the active backarc spreading axis (the Snail and Yamanaka sites), one is located at the eastern foot of the axial high (the Archean site), and two are located on an off-axis knoll about 5 km from the spreading axis (the Pika and Urashima sites). We examined 1) the nature of' tectonic and volcanic controls on the hydrothermal systems, and 2) the relationship between geomorphological characteristics and hydrothermal activity based on the survey results (Yoshikawa et al., 2012). The two on-axis hydrothermal sites are possibly locally developed on a 4th order spreading segment, in association with diking events (on the basis of comparisons with previously studied cases on the East Pacific Rise). The three off-axis sites (the Archean, Urashima, and Pika sites) appear to represent locations of sustained hydrothermal activity that has created relatively large-scale hydrothermal features compared with those in the on-axis area. The formation of off-axis hydrothermal sites is likely to be closely related to an off-axis magma upwelling system, as evidenced by the absence of fault systems and the undeformed morphology of the mound and knoll. The three off-axis hydrothermal sites are composed mainly of breccia assemblages that probably originated from hydrothermal activity with black smoker venting. These areas are characterized by numerous ridge lines (height, mainly 1-6 m), conical mounds (height: < 100 m, diameter: < 300 m), and bumpy seabed. Most of the ridge lines have formed as a result of collapse of the seafloor. The

  19. Active layer dynamics in three sites with contrasted topography in the Byers Peninsula (Livingston Island, Antarctica)

    NASA Astrophysics Data System (ADS)

    Oliva, Marc; Ruiz-Fernández, Jesús; Vieira, Gonçalo

    2015-04-01

    Topography exerts a key role on permafrost distribution in areas where mean annual temperatures are slightly negative. This is the case of low-altitude environments in Maritime Antarctica, namely in the South Shetland Islands, where permafrost is marginal to discontinuous until elevations of 20-40 m asl turning to continuous at higher areas. Consequently, the active layer dynamics is also strongly conditioned by the geomorphological setting. In January 2014 we installed three sites for monitoring the active layer dynamics across the Byers Peninsula (Livingston Island, South Shetland Islands) in different geomorphological environments at elevations between 60 and 100 m. The purpose was to examine the role of the topography and microclimatic conditions on the active layer dynamics. At each site a set of loggers was set up to monitor: air temperatures, snow thickness, ground temperatures until 80 cm together with the coupling atmosphere-ground temperatures. During the first year of monitoring the mean annual air temperatures show similar values in the three sites, in all cases slightly below freezing. The snowy conditions during this year in this archipelago have resulted in a late melting of snow, which has also conditioned the duration of frozen conditions in the uppermost soil layers. Topography has a strong influence on snow cover duration, which in turn affects frozen ground conditions. The Domo site is located in a higher position with respect to the central plateau of Byers; here, the wind is stronger and snow cover thinner, which has conditioned a longer thawing season than in the other two sites (Cerro Negro, Escondido). These two sites are located in topographically protected areas favouring snow accumulation. The longer persistence of snow conditions a longer duration of negative temperatures in the active layer of the permafrost. This research was financially supported by the HOLOANTAR project (Portuguese Science Foundation) and the AXA Research Fund.

  20. 78 FR 8190 - Commercial Wind Leasing and Site Assessment Activities on the Atlantic Outer Continental Shelf...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management Commercial Wind Leasing and Site Assessment Activities on the Atlantic... Notice of Intent to Prepare an Environmental Assessment (EA) for Commercial Wind Leasing and...

  1. Organized Agents: Canadian Teacher Unions as Alternative Sites for Social Justice Activism

    ERIC Educational Resources Information Center

    Rottmann, Cindy

    2008-01-01

    Historically teachers' federations have been some of the major organizational sites for social justice leadership in K-12 public education. Despite this history of activism, social justice teacher unionism remains a relatively underdeveloped concept. This article merges four philosophical conceptions of social justice in education: liberal…

  2. Penicillin Use in Meningococcal Disease Management: Active Bacterial Core Surveillance Sites, 2009

    PubMed Central

    Blain, Amy E.; Mandal, Sema; Wu, Henry; MacNeil, Jessica R.; Harrison, Lee H.; Farley, Monica M.; Lynfield, Ruth; Miller, Lisa; Nichols, Megin; Petit, Sue; Reingold, Arthur; Schaffner, William; Thomas, Ann; Zansky, Shelley M.; Anderson, Raydel; Harcourt, Brian H.; Mayer, Leonard W.; Clark, Thomas A.; Cohn, Amanda C.

    2016-01-01

    In 2009, in the Active Bacterial Core surveillance sites, penicillin was not commonly used to treat meningococcal disease. This is likely because of inconsistent availability of antimicrobial susceptibility testing and ease of use of third-generation cephalosporins. Consideration of current practices may inform future meningococcal disease management guidelines. PMID:27704009

  3. 77 FR 5830 - Commercial Wind Leasing and Site Assessment Activities on the Atlantic Outer Continental Shelf...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... Bureau of Ocean Energy Management Commercial Wind Leasing and Site Assessment Activities on the Atlantic... of involving Federal agencies, states, tribes, local governments, offshore wind energy developers, and the public in the Department of the Interior's (DOI) ``Smart from the Start'' wind...

  4. Penicillin Use in Meningococcal Disease Management: Active Bacterial Core Surveillance Sites, 2009.

    PubMed

    Blain, Amy E; Mandal, Sema; Wu, Henry; MacNeil, Jessica R; Harrison, Lee H; Farley, Monica M; Lynfield, Ruth; Miller, Lisa; Nichols, Megin; Petit, Sue; Reingold, Arthur; Schaffner, William; Thomas, Ann; Zansky, Shelley M; Anderson, Raydel; Harcourt, Brian H; Mayer, Leonard W; Clark, Thomas A; Cohn, Amanda C

    2016-09-01

    In 2009, in the Active Bacterial Core surveillance sites, penicillin was not commonly used to treat meningococcal disease. This is likely because of inconsistent availability of antimicrobial susceptibility testing and ease of use of third-generation cephalosporins. Consideration of current practices may inform future meningococcal disease management guidelines.

  5. The active site of cytochrome P-450 nifedipine oxidase: a model-building study.

    PubMed

    Ferenczy, G G; Morris, G M

    1989-12-01

    A model of the active site of cytochrome P-450 nifedipine oxidase is built on the basis of sequence homology with cytochrome P-450CAM. Substrates are docked into the binding pocket, and molecular mechanical energy minimization is performed to analyze the forces between the substrates and the enzyme.

  6. 77 FR 74218 - Commercial Wind Leasing and Site Assessment Activities on the Atlantic Outer Continental Shelf...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... identified in the document entitled, Commercial Leasing for Wind Power on the Outer Continental Shelf... Bureau of Ocean Energy Management Commercial Wind Leasing and Site Assessment Activities on the Atlantic... agencies, states, tribes, local governments, offshore wind energy developers, and the public in...

  7. Archaeological Activity Report: Post-Review Discoveries Within 45BN431 at Solid Waste Site 128-F-2

    SciTech Connect

    T. E. Marceau; J. J. Sharpe

    2006-12-21

    During monitoring of remedial activities at Solid Waste Site 128-F-2 on August 19, 2005, a concentration of mussel shell was discovered in the west wall of a trench in the northen section of the waste site.

  8. A facile reflux procedure to increase active surface sites form highly active and durable supported palladium@platinum bimetallic nanodendrites

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Li, Yingjun; Liu, Baocang; Xu, Guangran; Zhang, Geng; Zhao, Qi; Zhang, Jun

    2015-11-01

    A series of well-dispersed bimetallic Pd@Pt nanodendrites uniformly supported on XC-72 carbon black are fabricated by using different capping agents. These capping agents are essential for the branched morphology control. However, the surfactant adsorbed on the nanodendrites surface blocks the access of reactant molecules to the active surface sites, and the catalytic activities of these bimetallic nanodendrites are significantly restricted. Herein, a facile reflux procedure to effectively remove the capping agent molecules without significantly affecting their sizes is reported for activating supported nanocatalysts. More significantly, the structure and morphology of the nanodendrites can also be retained, enhancing the numbers of active surface sites, catalytic activity and stability toward methanol and ethanol electro-oxidation reactions. The as-obtained hot water reflux-treated Pd@Pt/C catalyst manifests superior catalytic activity and stability both in terms of surface and mass specific activities, as compared to the untreated catalysts and the commercial Pt/C and Pd/C catalysts. We anticipate that this effective and facile removal method has more general applicability to highly active nanocatalysts prepared with various surfactants, and should lead to improvements in environmental protection and energy production.

  9. Kinetic and Spectroscopic Studies of Bicupin Oxalate Oxidase and Putative Active Site Mutants

    PubMed Central

    Moomaw, Ellen W.; Hoffer, Eric; Moussatche, Patricia; Salerno, John C.; Grant, Morgan; Immelman, Bridget; Uberto, Richard; Ozarowski, Andrew; Angerhofer, Alexander

    2013-01-01

    Ceriporiopsis subvermispora oxalate oxidase (CsOxOx) is the first bicupin enzyme identified that catalyzes manganese-dependent oxidation of oxalate. In previous work, we have shown that the dominant contribution to catalysis comes from the monoprotonated form of oxalate binding to a form of the enzyme in which an active site carboxylic acid residue must be unprotonated. CsOxOx shares greatest sequence homology with bicupin microbial oxalate decarboxylases (OxDC) and the 241-244DASN region of the N-terminal Mn binding domain of CsOxOx is analogous to the lid region of OxDC that has been shown to determine reaction specificity. We have prepared a series of CsOxOx mutants to probe this region and to identify the carboxylate residue implicated in catalysis. The pH profile of the D241A CsOxOx mutant suggests that the protonation state of aspartic acid 241 is mechanistically significant and that catalysis takes place at the N-terminal Mn binding site. The observation that the D241S CsOxOx mutation eliminates Mn binding to both the N- and C- terminal Mn binding sites suggests that both sites must be intact for Mn incorporation into either site. The introduction of a proton donor into the N-terminal Mn binding site (CsOxOx A242E mutant) does not affect reaction specificity. Mutation of conserved arginine residues further support that catalysis takes place at the N-terminal Mn binding site and that both sites must be intact for Mn incorporation into either site. PMID:23469254

  10. Transfer hydrogenation over sodium-modified ceria: Enrichment of redox sites active for alcohol dehydrogenation

    DOE PAGES

    Nelson, Nicholas C.; Boote, Brett W.; Naik, Pranjali; ...

    2017-01-17

    Ceria (CeO2) and sodium-modified ceria (Ce-Na) were prepared through combustion synthesis. Palladium was deposited onto the supports (Pd/CeO2 and Pd/Ce-Na) and their activity for the aqueous-phase transfer hydrogenation of phenol using 2-propanol under liquid flow conditions was studied. Pd/Ce-Na showed a marked increase (6×) in transfer hydrogenation activity over Pd/CeO2. Material characterization indicated that water-stable sodium species were not doped into the ceria lattice, but rather existed as subsurface carbonates. Modification of ceria by sodium provided more adsorption and redox active sites (i.e. defects) for 2-propanol dehydrogenation. This effect was an intrinsic property of the Ce-Na support and independent ofmore » Pd. The redox sites active for 2-propanol dehydrogenation were thermodynamically equivalent on both supports/catalysts. At high phenol concentrations, the reaction was limited by 2-propanol adsorption. Furthermore, the difference in catalytic activity was attributed to the different numbers of 2-propanol adsorption and redox active sites on each catalyst.« less

  11. X-ray absorption spectroscopic studies of the active sites of nickel- and copper-containing metalloproteins

    SciTech Connect

    Tan, G.O.

    1993-06-01

    X-ray absorption spectroscopy (XAS) is a useful tool for obtaining structural and chemical information about the active sites of metalloproteins and metalloenzymes. Information may be obtained from both the edge region and the extended X-ray absorption fine structure (EXAFS) or post-edge region of the K-edge X-ray absorption spectrum of a metal center in a compound. The edge contains information about the valence electronic structure of the atom that absorbs the X-rays. It is possible in some systems to infer the redox state of the metal atom in question, as well as the geometry and nature of ligands connected to it, from the features in the edge in a straightforward manner. The EXAFS modulations, being produced by the backscattering of the ejected photoelectron from the atoms surrounding the metal atom, provide, when analyzed, information about the number and type of neighbouring atoms, and the distances at which they occur. In this thesis, analysis of both the edge and EXAFS regions has been used to gain information about the active sites of various metalloproteins. The metalloproteins studied were plastocyanin (Pc), laccase and nickel carbon monoxide dehydrogenase (Ni CODH). Studies of Cu(I)-imidazole compounds, related to the protein hemocyanin, are also reported here.

  12. The Sortase A enzyme that attaches proteins to the cell wall of Bacillus anthracis contains an unusual active site architecture.

    PubMed

    Weiner, Ethan M; Robson, Scott; Marohn, Melanie; Clubb, Robert T

    2010-07-23

    The pathogen Bacillus anthracis uses the Sortase A (SrtA) enzyme to anchor proteins to its cell wall envelope during vegetative growth. To gain insight into the mechanism of protein attachment to the cell wall in B. anthracis we investigated the structure, backbone dynamics, and function of SrtA. The NMR structure of SrtA has been determined with a backbone coordinate precision of 0.40 +/- 0.07 A. SrtA possesses several novel features not previously observed in sortase enzymes including the presence of a structurally ordered amino terminus positioned within the active site and in contact with catalytically essential histidine residue (His(126)). We propose that this appendage, in combination with a unique flexible active site loop, mediates the recognition of lipid II, the second substrate to which proteins are attached during the anchoring reaction. pK(a) measurements indicate that His(126) is uncharged at physiological pH compatible with the enzyme operating through a "reverse protonation" mechanism. Interestingly, NMR relaxation measurements and the results of a model building study suggest that SrtA recognizes the LPXTG sorting signal through a lock-in-key mechanism in contrast to the prototypical SrtA enzyme from Staphylococcus aureus.

  13. The Sortase A Enzyme That Attaches Proteins to the Cell Wall of Bacillus anthracis Contains an Unusual Active Site Architecture*

    PubMed Central

    Weiner, Ethan M.; Robson, Scott; Marohn, Melanie; Clubb, Robert T.

    2010-01-01

    The pathogen Bacillus anthracis uses the Sortase A (SrtA) enzyme to anchor proteins to its cell wall envelope during vegetative growth. To gain insight into the mechanism of protein attachment to the cell wall in B. anthracis we investigated the structure, backbone dynamics, and function of SrtA. The NMR structure of SrtA has been determined with a backbone coordinate precision of 0.40 ± 0.07 Å. SrtA possesses several novel features not previously observed in sortase enzymes including the presence of a structurally ordered amino terminus positioned within the active site and in contact with catalytically essential histidine residue (His126). We propose that this appendage, in combination with a unique flexible active site loop, mediates the recognition of lipid II, the second substrate to which proteins are attached during the anchoring reaction. pKa measurements indicate that His126 is uncharged at physiological pH compatible with the enzyme operating through a “reverse protonation” mechanism. Interestingly, NMR relaxation measurements and the results of a model building study suggest that SrtA recognizes the LPXTG sorting signal through a lock-in-key mechanism in contrast to the prototypical SrtA enzyme from Staphylococcus aureus. PMID:20489200

  14. Structural and biochemical characterisation of Archaeoglobus fulgidus esterase reveals a bound CoA molecule in the vicinity of the active site

    PubMed Central

    Sayer, Christopher; Finnigan, William; Isupov, Michail N.; Levisson, Mark; Kengen, Servé W. M.; van der Oost, John; Harmer, Nicholas J.; Littlechild, Jennifer A.

    2016-01-01

    A new carboxyl esterase, AF-Est2, from the hyperthermophilic archaeon Archaeoglobus fulgidus has been cloned, over-expressed in Escherichia coli and biochemically and structurally characterized. The enzyme has high activity towards short- to medium-chain p-nitrophenyl carboxylic esters with optimal activity towards the valerate ester. The AF-Est2 has good solvent and pH stability and is very thermostable, showing no loss of activity after incubation for 30 min at 80 °C. The 1.4 Å resolution crystal structure of AF-Est2 reveals Coenzyme A (CoA) bound in the vicinity of the active site. Despite the presence of CoA bound to the AF-Est2 this enzyme has no CoA thioesterase activity. The pantetheine group of CoA partially obstructs the active site alcohol pocket suggesting that this ligand has a role in regulation of the enzyme activity. A comparison with closely related α/β hydrolase fold enzyme structures shows that the AF-Est2 has unique structural features that allow CoA binding. A comparison of the structure of AF-Est2 with the human carboxyl esterase 1, which has CoA thioesterase activity, reveals that CoA is bound to different parts of the core domain in these two enzymes and approaches the active site from opposite directions. PMID:27160974

  15. Site-directed mutagenesis of the Anabaena sp. strain PCC 7120 nitrogenase active site to increase photobiological hydrogen production.

    PubMed

    Masukawa, Hajime; Inoue, Kazuhito; Sakurai, Hidehiro; Wolk, C Peter; Hausinger, Robert P

    2010-10-01

    Cyanobacteria use sunlight and water to produce hydrogen gas (H₂), which is potentially useful as a clean and renewable biofuel. Photobiological H₂ arises primarily as an inevitable by-product of N₂ fixation by nitrogenase, an oxygen-labile enzyme typically containing an iron-molybdenum cofactor (FeMo-co) active site. In Anabaena sp. strain 7120, the enzyme is localized to the microaerobic environment of heterocysts, a highly differentiated subset of the filamentous cells. In an effort to increase H₂ production by this strain, six nitrogenase amino acid residues predicted to reside within 5 Å of the FeMo-co were mutated in an attempt to direct electron flow selectively toward proton reduction in the presence of N₂. Most of the 49 variants examined were deficient in N₂-fixing growth and exhibited decreases in their in vivo rates of acetylene reduction. Of greater interest, several variants examined under an N₂ atmosphere significantly increased their in vivo rates of H₂ production, approximating rates equivalent to those under an Ar atmosphere, and accumulated high levels of H₂ compared to the reference strains. These results demonstrate the feasibility of engineering cyanobacterial strains for enhanced photobiological production of H₂ in an aerobic, nitrogen-containing environment.

  16. On the active site of mononuclear B1 metallo β-lactamases: a computational study

    NASA Astrophysics Data System (ADS)

    Sgrignani, Jacopo; Magistrato, Alessandra; Dal Peraro, Matteo; Vila, Alejandro J.; Carloni, Paolo; Pierattelli, Roberta

    2012-04-01

    Metallo-β-lactamases (MβLs) are Zn(II)-based bacterial enzymes that hydrolyze β-lactam antibiotics, hampering their beneficial effects. In the most relevant subclass (B1), X-ray crystallography studies on the enzyme from Bacillus Cereus point to either two zinc ions in two metal sites (the so-called `3H' and `DCH' sites) or a single Zn(II) ion in the 3H site, where the ion is coordinated by Asp120, Cys221 and His263 residues. However, spectroscopic studies on the B1 enzyme from B. Cereus in the mono-zinc form suggested the presence of the Zn(II) ion also in the DCH site, where it is bound to an aspartate, a cysteine, a histidine and a water molecule. A structural model of this enzyme in its DCH mononuclear form, so far lacking, is therefore required for inhibitor design and mechanistic studies. By using force field based and mixed quantum-classical (QM/MM) molecular dynamics (MD) simulations of the protein in aqueous solution we constructed such structural model. The geometry and the H-bond network at the catalytic site of this model, in the free form and in complex with two common β-lactam drugs, is compared with experimental and theoretical findings of CphA and the recently solved crystal structure of new B2 MβL from Serratia fonticola (Sfh-I). These are MβLs from the B2 subclass, which features an experimentally well established mono-zinc form, in which the Zn(II) is located in the DCH site. From our simulations the ɛɛδ and δɛδ protomers emerge as possible DCH mono-zinc reactive species, giving a novel contribution to the discussion on the MβL reactivity and to the drug design process.

  17. Site-specific profiles of estrogenic activity in agricultural areas of California's inland waters.

    PubMed

    Lavado, Ramon; Loyo-Rosales, Jorge E; Floyd, Emily; Kolodziej, Edward P; Snyder, Shane A; Sedlak, David L; Schlenk, Daniel

    2009-12-15

    To evaluate the occurrence and sources of compounds capable of feminizing fish in agriculturally impacted waterways of the Central Valley of California, water samples were extracted and subjected to chemical analyses as well as in vitro and in vivo measurements of vitellogenin in juvenile rainbow trout (Oncorhynchus mykiss). Among the 16 sites sampled, 6 locations frequently exhibited elevated concentrations of estrogenic substances with 17beta-estradiol equivalents up to 242 ng/L in vitro and 12 microg/kg in vivo. The patterns of activity varied among sites, with two sites showing elevated activity only in vitro, two showing elevated activity only in vivo, and two showing elevated activity in both assays. Sequential elution of solid-phase extraction (SPE) disks followed by bioassay-guided fractionation was used to characterize water samples from the two locations where activity was observed in both bioassays. The highest estrogenic activity was observed in the most nonpolar fractions (80-100% methanol eluent) from the Napa River, while most of the activity in the Sacramento River Delta eluted in the 60% methanol eluent. Quantitative analyses of SPE extracts and additional HPLC fractionation of the SPE extracts by GC-MS/MS and LC-MS/MS indicated concentrations of steroid hormones, alkylphenol polyethoxylates, and herbicides that were at least 1-3 orders of magnitude below bioassay 17beta-estradiol equivalent calculations. Given the different patterns of activity and chemical properties of the estrogenic compounds, it appears that estrogenic activity in these agriculturally impacted surface waters is attributable to multiple compounds. Further investigation is needed to identify the compounds causing the estrogenic activity and to determine the potential impacts of these compounds on feral fish.

  18. How different are structurally flexible and rigid binding sites? Sequence and structural features discriminating proteins that do and do not undergo conformational change upon ligand binding.

    PubMed

    Gunasekaran, Kannan; Nussinov, Ruth

    2007-01-05

    Proteins are dynamic molecules and often undergo conformational change upon ligand binding. It is widely accepted that flexible loop regions have a critical functional role in enzymes. Lack of consideration of binding site flexibility has led to failures in predicting protein functions and in successfully docking ligands with protein receptors. Here we address the question: which sequence and structural features distinguish the structurally flexible and rigid binding sites? We analyze high-resolution crystal structures of ligand bound (holo) and free (apo) forms of 41 proteins where no conformational change takes place upon ligand binding, 35 examples with moderate conformational change, and 22 cases where a large conformational change has been observed. We find that the number of residue-residue contacts observed per-residue (contact density) does not distinguish flexible and rigid binding sites, suggesting a role for specific interactions and amino acids in modulating the conformational changes. Examination of hydrogen bonding and hydrophobic interactions reveals that cases that do not undergo conformational change have high polar interactions constituting the binding pockets. Intriguingly, the large, aromatic amino acid tryptophan has a high propensity to occur at the binding sites of examples where a large conformational change has been noted. Further, in large conformational change examples, hydrophobic-hydrophobic, aromatic-aromatic, and hydrophobic-polar residue pair interactions are dominant. Further analysis of the Ramachandran dihedral angles (phi, psi) reveals that the residues adopting disallowed conformations are found in both rigid and flexible cases. More importantly, the binding site residues adopting disallowed conformations clustered narrowly into two specific regions of the L-Ala Ramachandran map. Examination of the dihedral angles changes upon ligand binding shows that the magnitude of phi, psi changes are in general minimal, although some large

  19. Site-directed mutagenesis of an alkaline phytase: influencing specificity, activity and stability in acidic milieu.

    PubMed

    Tran, Thuy T; Mamo, Gashaw; Búxo, Laura; Le, Nhi N; Gaber, Yasser; Mattiasson, Bo; Hatti-Kaul, Rajni

    2011-07-10

    Site-directed mutagenesis of a thermostable alkaline phytase from Bacillus sp. MD2 was performed with an aim to increase its specific activity and activity and stability in an acidic environment. The mutation sites are distributed on the catalytic surface of the enzyme (P257R, E180N, E229V and S283R) and in the active site (K77R, K179R and E227S). Selection of the residues was based on the idea that acid active phytases are more positively charged around their catalytic surfaces. Thus, a decrease in the content of negatively charged residues or an increase in the positive charges in the catalytic region of an alkaline phytase was assumed to influence the enzyme activity and stability at low pH. Moreover, widening of the substrate-binding pocket is expected to improve the hydrolysis of substrates that are not efficiently hydrolysed by wild type alkaline phytase. Analysis of the phytase variants revealed that E229V and S283R mutants increased the specific activity by about 19% and 13%, respectively. Mutation of the active site residues K77R and K179R led to severe reduction in the specific activity of the enzyme. Analysis of the phytase mutant-phytate complexes revealed increase in hydrogen bonding between the enzyme and the substrate, which might retard the release of the product, resulting in decreased activity. On the other hand, the double mutant (K77R-K179R) phytase showed higher stability at low pH (pH 2.6-3.0). The E227S variant was optimally active at pH 5.5 (in contrast to the wild type enzyme that had an optimum pH of 6) and it exhibited higher stability in acidic condition. This mutant phytase, displayed over 80% of its initial activity after 3h incubation at pH 2.6 while the wild type phytase retained only about 40% of its original activity. Moreover, the relative activity of this mutant phytase on calcium phytate, sodium pyrophosphate and p-nitro phenyl phosphate was higher than that of the wild type phytase.

  20. Fibromodulin Interacts with Collagen Cross-linking Sites and Activates Lysyl Oxidase*

    PubMed Central

    Bihan, Dominique; Bonna, Arkadiusz; Rubin, Kristofer; Farndale, Richard W.

    2016-01-01

    The hallmark of fibrotic disorders is a highly cross-linked and dense collagen matrix, a property driven by the oxidative action of lysyl oxidase. Other fibrosis-associated proteins also contribute to the final collagen matrix properties, one of which is fibromodulin. Its interactions with collagen affect collagen cross-linking, packing, and fibril diameter. We investigated the possibility that a specific relationship exists between fibromodulin and lysyl oxidase, potentially imparting a specific collagen matrix phenotype. We mapped the fibromodulin-collagen interaction sites using the collagen II and III Toolkit peptide libraries. Fibromodulin interacted with the peptides containing the known collagen cross-linking sites and the MMP-1 cleavage site in collagens I and II. Interestingly, the interaction sites are closely aligned within the quarter-staggered collagen fibril, suggesting a multivalent interaction between fibromodulin and several collagen helices. Furthermore, we detected an interaction between fibromodulin and lysyl oxidase (a major collagen cross-linking enzyme) and mapped the interaction site to 12 N-terminal amino acids on fibromodulin. This interaction also increases the activity of lysyl oxidase. Together, the data suggest a fibromodulin-modulated collagen cross-linking mechanism where fibromodulin binds to a specific part of the collagen domain and also forms a complex with lysyl oxidase, targeting the enzyme toward specific cross-linking sites. PMID:26893379

  1. Multiple DNA binding activities of the novel site-specific recombinase, Piv, from Moraxella lacunata.

    PubMed

    Tobiason, D M; Lenich, A G; Glasgow, A C

    1999-04-02

    The recombinase, Piv, is essential for site-specific DNA inversion of the type IV pilin DNA segment in Moraxella lacunata and Moraxella bovis. Piv shows significant homology with the transposases of the IS110/IS492 family of insertion elements, but, surprisingly, Piv contains none of the conserved amino acid motifs of the lambda Int or Hin/Res families of site-specific recombinases. Therefore, Piv may mediate site-specific recombination by a novel mechanism. To begin to determine how Piv may assemble a synaptic nucleoprotein structure for DNA cleavage and strand exchange, we have characterized the interaction of Piv with the DNA inversion region of M. lacunata. Gel shift and nuclease/chemical protection assays, competition and dissociation rate analyses, and cooperativity studies indicate that Piv binds two distinct recognition sequences. One recognition sequence, found at multiple sites within and outside of the invertible segment, is bound by Piv protomers with high affinity. The second recognition sequence is located at the recombination cross-over sites at the ends of the invertible element; Piv interacts with this sequence as an oligomer with apparent low affinity. A model is proposed for the role of the different Piv binding sites of the M. lacunata inversion region in the formation of an active synaptosome.

  2. Fibromodulin Interacts with Collagen Cross-linking Sites and Activates Lysyl Oxidase.

    PubMed

    Kalamajski, Sebastian; Bihan, Dominique; Bonna, Arkadiusz; Rubin, Kristofer; Farndale, Richard W

    2016-04-08

    The hallmark of fibrotic disorders is a highly cross-linked and dense collagen matrix, a property driven by the oxidative action of lysyl oxidase. Other fibrosis-associated proteins also contribute to the final collagen matrix properties, one of which is fibromodulin. Its interactions with collagen affect collagen cross-linking, packing, and fibril diameter. We investigated the possibility that a specific relationship exists between fibromodulin and lysyl oxidase, potentially imparting a specific collagen matrix phenotype. We mapped the fibromodulin-collagen interaction sites using the collagen II and III Toolkit peptide libraries. Fibromodulin interacted with the peptides containing the known collagen cross-linking sites and the MMP-1 cleavage site in collagens I and II. Interestingly, the interaction sites are closely aligned within the quarter-staggered collagen fibril, suggesting a multivalent interaction between fibromodulin and several collagen helices. Furthermore, we detected an interaction between fibromodulin and lysyl oxidase (a major collagen cross-linking enzyme) and mapped the interaction site to 12 N-terminal amino acids on fibromodulin. This interaction also increases the activity of lysyl oxidase. Together, the data suggest a fibromodulin-modulated collagen cross-linking mechanism where fibromodulin binds to a specific part of the collagen domain and also forms a complex with lysyl oxidase, targeting the enzyme toward specific cross-linking sites.

  3. FIBRONECTIN-FRAGMENTATION IS A FEATURE OF BOTH PERIODONTAL DISEASE SITES AND DIABETIC FOOT AND LEG WOUNDS AND MODIFIES CELL BEHAVIOR

    PubMed Central

    Stanley, Corey M.; Wang, Yao; Pal, Sanjay; Klebe, Robert J.; Harkless, Lawrence B.; Xu, Xiaoping; Chen, Zhihua; Steffensen, Bjorn

    2009-01-01

    Background: Fibronectin (FN) undergoes fragmentation in periodontal disease sites and in poorly-healing diabetic wounds. The biological effects of FN fragments on wound healing remain unresolved. This study characterized the pattern of FN fragmentation and its effects on cellular behavior compared to intact FN. Methods: Polyclonal antibodies were raised against FN and three defined recombinant segments of FN and used to analyze gingival crevicular fluid (GCF) from periodontal disease sites in systemically healthy and diabetic patients as well as chronic leg and foot wound exudates from patients with diabetes. Subsequently, the behavior of human gingival fibroblasts (hGF) and HT1080 reference cells were analyzed by measuring cell attachment, migration, and chemotaxis in the presence of intact FN or recombinant FN fragments. Results: FN fragmentation was evident in fluids from periodontal disease sites and diabetic leg and foot wounds. However, no fragmentation pattern distinguished systemically healthy patients from patients with diabetes. Both hGF and HT1080 cells required significantly higher concentrations of FN fragments to achieve attachment comparable to intact FN. Cells cultured on FN fragments also were morphologically very different from cells cultured on full-length FN. Migration was reduced for hGF cultured on FN fragments relative to full-length FN. In contrast, FN fragments increased HT1080 fibrosarcoma cell migration over intact FN. Conclusions: These experiments demonstrated that FN fragmentation is a prominent feature of both periodontal and chronic leg and foot wounds in diabetes. Furthermore, cell culture assays confirmed the hypothesis that exposure to defined FN fragments significantly alters cell behavior. PMID:18454665

  4. Locomotor activity influences muscle architecture and bone growth but not muscle attachment site morphology

    PubMed Central

    Rabey, Karyne N.; Green, David J.; Taylor, Andrea B.; Begun, David R.; Richmond, Brian G.; McFarlin, Shannon C.

    2014-01-01

    The ability to make behavioural inferences from skeletal remains is critical to understanding the lifestyles and activities of past human populations and extinct animals. Muscle attachment site (enthesis) morphology has long been assumed to reflect muscle strength and activity during life, but little experimental evidence exists to directly link activity patterns with muscle development and the morphology of their attachments to the skeleton. We used a mouse model to experimentally test how the level and type of activity influences forelimb muscle architecture of spinodeltoideus, acromiodeltoideus, and superficial pectoralis, bone growth rate and gross morphology of their insertion sites. Over an 11-week period, we collected data on activity levels in one control group and two experimental activity groups (running, climbing) of female wild-type mice. Our results show that both activity type and level increased bone growth rates influenced muscle architecture, including differences in potential muscular excursion (fibre length) and potential force production (physiological cross-sectional area). However, despite significant influences on muscle architecture and bone development, activity had no observable effect on enthesis morphology. These results suggest that the gross morphology of entheses is less reliable than internal bone structure for making inferences about an individual’s past behaviour. PMID:25467113

  5. Roles of s3 site residues of nattokinase on its activity and substrate specificity.

    PubMed

    Wu, Shuming; Feng, Chi; Zhong, Jin; Huan, Liandong

    2007-09-01

    Nattokinase (Subtilisin NAT, NK) is a bacterial serine protease with high fibrinolytic activity. To probe their roles on protease activity and substrate specificity, three residues of S3 site (Gly(100), Ser(101) and Leu(126)) were mutated by site-directed mutagenesis. Kinetics parameters of 20 mutants were measured using tetrapeptides as substrates, and their fibrinolytic activities were determined by fibrin plate method. Results of mutation analysis showed that Gly(100) and Ser(101) had reverse steric and electrostatic effects. Residues with bulky or positively charged side chains at position 100 decreased the substrate binding and catalytic activity drastically, while residues with the same characters at position 101 could obviously enhance protease and fibrinolytic activity of NK. Mutation of Leu(126) might impair the structure of the active cleft and drastically decreased the activity of NK. Kinetics studies of the mutants showed that S3 residues were crucial to keep protease activity while they moderately affected substrate specificity of NK. The present study provided some original insight into the P3-S3 interaction in NK and other subtilisins, as well as showed successful protein engineering cases to improve NK as a potential therapeutic agent.

  6. Locomotor activity influences muscle architecture and bone growth but not muscle attachment site morphology.

    PubMed

    Rabey, Karyne N; Green, David J; Taylor, Andrea B; Begun, David R; Richmond, Brian G; McFarlin, Shannon C

    2015-01-01

    The ability to make behavioural inferences from skeletal remains is critical to understanding the lifestyles and activities of past human populations and extinct animals. Muscle attachment site (enthesis) morphology has long been assumed to reflect muscle strength and activity during life, but little experimental evidence exists to directly link activity patterns with muscle development and the morphology of their attachments to the skeleton. We used a mouse model to experimentally test how the level and type of activity influences forelimb muscle architecture of spinodeltoideus, acromiodeltoideus, and superficial pectoralis, bone growth rate and gross morphology of their insertion sites. Over an 11-week period, we collected data on activity levels in one control group and two experimental activity groups (running, climbing) of female wild-type mice. Our results show that both activity type and level increased bone growth rates influenced muscle architecture, including differences in potential muscular excursion (fibre length) and potential force production (physiological cross-sectional area). However, despite significant influences on muscle architecture and bone development, activity had no observable effect on enthesis morphology. These results suggest that the gross morphology of entheses is less reliable than internal bone structure for making inferences about an individual's past behaviour.

  7. Interaction of aspartic acid-104 and proline-287 with the active site of m-calpain.

    PubMed Central

    Arthur, J S; Elce, J S

    1996-01-01

    In an ongoing study of the mechanisms of calpain catalysis and Ca(2+)-induced activation, the effects of Asp-104-->Ser and Pro-287-->Ser large subunit mutations on m-calpain activity, the pH-activity profile, Ca(2+)-sensitivity, and autolysis were measured. The importance of these positions was suggested by sequence comparisons between the calpain and papain families of cysteine proteinases. Asp-104 is adjacent to the active-site Cys-105, and Pro-287 is adjacent to the active-site Asn-286 and probably to the active-site His-262; both Asp-104 and Pro-287 are absolutely conserved in the known calpains, but are replaced by highly conserved serine residues in the papains. The single mutants had approx. 10-15% of wild-type activity, due mainly to a decrease in kcat, since Km was only slightly increased. The Pro-287-->Ser mutation appeared to cause a local perturbation of the catalytic Cys-105/His-262 catalytic ion pair, reducing its efficiency without major effect on the conformation and stability of the enzyme. The Asp-104-->Ser mutation caused a marked narrowing of the pH-activity curve, a 9-fold increase in Ca2+ requirement, and an acceleration of autolysis, when compared with the wild-type enzyme. The results indicated that Asp-104 alters the nature of its interaction with the catalytic ion pair during Ca(2+)-induced conformational change in calpain. This interaction may be direct or indirect, but is important in activation of the enzyme. PMID:8912692

  8. Structure of Saccharomyces cerevisiae Rtr1 reveals an active site for an atypical phosphatase.

    PubMed

    Irani, Seema; Yogesha, S D; Mayfield, Joshua; Zhang, Mengmeng; Zhang, Yong; Matthews, Wendy L; Nie, Grace; Prescott, Nicholas A; Zhang, Yan Jessie

    2016-03-01

    Changes in the phosphorylation status of the carboxyl-terminal domain (CTD) of RNA polymerase II (RNAPII) correlate with the process of eukaryotic transcription. The yeast protein regulator of transcription 1 (Rtr1) and the human homolog RNAPII-associated protein 2 (RPAP2) may function as CTD phosphatases; however, crystal structures of Kluyveromyces lactis Rtr1 lack a consensus active site. We identified a phosphoryl transfer domain in Saccharomyces cerevisiae Rtr1 by obtaining and characterizing a 2.6 Å resolution crystal structure. We identified a putative substrate-binding pocket in a deep groove between the zinc finger domain and a pair of helices that contained a trapped sulfate ion. Because sulfate mimics the chemistry of a phosphate group, this structural data suggested that this groove represents the phosphoryl transfer active site. Mutagenesis of the residues lining this groove disrupted catalytic activity of the enzyme assayed in vitro with a fluorescent chemical substrate, and expression of the mutated Rtr1 failed to rescue growth of yeast lacking Rtr1. Characterization of the phosphatase activity of RPAP2 and a mutant of the conserved putative catalytic site in the same chemical assay indicated a conserved reaction mechanism. Our data indicated that the structure of the phosphoryl transfer domain and reaction mechanism for the phosphoryl transfer activity of Rtr1 is distinct from those of other phosphatase families.

  9. Mutational analysis of the lac regulatory region: second-site changes that activate mutant promoters.

    PubMed Central

    Rothmel, R K; LeClerc, J E

    1989-01-01

    Second-site mutations that restored activity to severe lacP1 down-promoter mutants were isolated. This was accomplished by using a bacteriophage f1 vector containing a fusion of the mutant E. coli lac promoters with the structural gene for chloramphenicol acetyltransferase (CAT), so that a system was provided for selecting phage revertants (or pseudorevertants) that conferred resistance of phage-infected cells to chloramphenicol. Among the second-site changes that relieved defects in mutant lac promoters, the only one that restored lacP1 activity was a T----G substitution at position -14, a weakly conserved site in E. coli promoters. Three other sequence changes, G----A at -2, A----T at +1, and C----A at +10, activated nascent promoters in the lac regulatory region. The nascent promoters conformed to the consensus rule, that activity is gained by sequence changes toward homology with consensus sequences at the -35 and -10 regions of the promoter. However, the relative activities of some promoters cannot be explained solely by consideration of their conserved sequence elements. Images PMID:2660105

  10. Structure of Saccharomyces cerevisiae Rtr1 reveals an active site for an atypical phosphatase

    PubMed Central

    Mayfield, Joshua; Zhang, Mengmeng; Zhang, Yong; Matthews, Wendy L.; Nie, Grace; Prescott, Nicholas A.; Zhang, Yan Jessie

    2016-01-01

    Changes in the phosphorylation status of the carboxyl-terminal domain (CTD) of RNA polymerase II (RNAPII) correlate with the process of eukaryotic transcription. The yeast protein regulator of transcription 1 (Rtr1) and the human homolog RNAPII-associated protein 2 (RPAP2) may function as CTD phosphatases; however, crystal structures of Kluyveromyces lactis Rtr1 lack a consensus active site. We identified a phosphoryl transfer domain in Saccharomyces cerevisiae Rtr1 by obtaining and characterizing a 2.6 Å resolution crystal structure. We identified a putative substrate-binding pocket in a deep groove between the zinc finger domain and a pair of helices that contained a trapped sulfate ion. Because sulfate mimics the chemistry of a phosphate group, this structural data suggested that this groove represents the phosphoryl transfer active site. Mutagenesis of the residues lining this groove disrupted catalytic activity of the enzyme assayed in vitro with a fluorescent chemical substrate, and expression of the mutated Rtr1 failed to rescue growth of yeast lacking Rtr1. Characterization of the phosphatase activity of RPAP2 and a mutant of the conserved putative catalytic site in the same chemical assay indicated a conserved reaction mechanism. Our data indicated that the structure of the phosphoryl transfer domain and reaction mechanism for the phosphoryl transfer activity of Rtr1 is distinct from those of other phosphatase families. PMID:26933063

  11. Sequences flanking the core-binding site modulate glucocorticoid receptor structure and activity

    PubMed Central

    Schöne, Stefanie; Jurk, Marcel; Helabad, Mahdi Bagherpoor; Dror, Iris; Lebars, Isabelle; Kieffer, Bruno; Imhof, Petra; Rohs, Remo; Vingron, Martin; Thomas-Chollier, Morgane; Meijsing, Sebastiaan H.

    2016-01-01

    The glucocorticoid receptor (GR) binds as a homodimer to genomic response elements, which have particular sequence and shape characteristics. Here we show that the nucleotides directly flanking the core-binding site, differ depending on the strength of GR-dependent activation of nearby genes. Our study indicates that these flanking nucleotides change the three-dimensional structure of the DNA-binding site, the DNA-binding domain of GR and the quaternary structure of the dimeric complex. Functional studies in a defined genomic context show that sequence-induced changes in GR activity cannot be explained by differences in GR occupancy. Rather, mutating the dimerization interface mitigates DNA-induced changes in both activity and structure, arguing for a role of DNA-induced structural changes in modulating GR activity. Together, our study shows that DNA sequence identity of genomic binding sites modulates GR activity downstream of binding, which may play a role in achieving regulatory specificity towards individual target genes. PMID:27581526

  12. Selective targeting of the conserved active site cysteine of Mycobacterium tuberculosis methionine aminopeptidase with electrophilic reagents.

    PubMed

    Reddi, Ravikumar; Arya, Tarun; Kishor, Chandan; Gumpena, Rajesh; Ganji, Roopa J; Bhukya, Supriya; Addlagatta, Anthony

    2014-09-01

    Methionine aminopeptidases (MetAPs) cleave initiator methionine from ~ 70% of the newly synthesized proteins in every living cell, and specific inhibition or knockdown of this function is detrimental. MetAPs are metalloenzymes, and are broadly classified into two subtypes, type I and type II. Bacteria contain only type I MetAPs, and the active site of these enzymes contains a conserved cysteine. By contrast, in type II enzymes the analogous position is occupied by a conserved glycine. Here, we report the reactivity of the active site cysteine in a type I MetAP, MetAP1c, of Mycobacterium tuberculosis (MtMetAP1c) towards highly selective cysteine-specific reagents. The authenticity of selective modification of Cys105 of MtMetAP1c was established by using site-directed mutagenesis and crystal structure determination of covalent and noncovalent complexes. On the basis of these observations, we propose that metal ions in the active site assist in the covalent modification of Cys105 by orienting the reagents appropriately for a successful reaction. These studies establish, for the first time, that the conserved cysteine of type I MetAPs can be targeted for selective inhibition, and we believe that this chemistry can be exploited for further drug discovery efforts regarding microbial MetAPs.

  13. The Ribotoxin Restrictocin Recognizes Its RNA Substrate by Selective Engagement of Active Site Residues

    PubMed Central

    2011-01-01

    Restrictocin and related fungal endoribonucleases from the α-sarcin family site-specifically cleave the sarcin/ricin loop (SRL) on the ribosome to inhibit translation and ultimately trigger cell death. Previous studies showed that the SRL folds into a bulged-G motif and tetraloop, with restrictocin achieving a specificity of ∼1000-fold by recognizing both motifs only after the initial binding step. Here, we identify contacts within the protein−RNA interface and determine the extent to which each one contributes to enzyme specificity by examining the effect of protein mutations on the cleavage of the SRL substrate compared to a variety of other RNA substrates. As with other biomolecular interfaces, only a subset of contacts contributes to specificity. One contact of this subset is critical, with the H49A mutation resulting in quantitative loss of specificity. Maximum catalytic activity occurs when both motifs of the SRL are present, with the major contribution involving the bulged-G motif recognized by three lysine residues located adjacent to the active site: K110, K111, and K113. Our findings support a kinetic proofreading mechanism in which the active site residues H49 and, to a lesser extent, Y47 make greater catalytic contributions to SRL cleavage than to suboptimal substrates. This systematic and quantitative analysis begins to elucidate the principles governing RNA recognition by a site-specific endonuclease and may thus serve as a mechanistic model for investigating other RNA modifying enzymes. PMID:21417210

  14. Computational approaches to find the active binding sites of biological targets against busulfan.

    PubMed

    Karthick, T; Tandon, Poonam

    2016-06-01

    Determination of electrophilic and nucleophilic sites of a molecule is the primary task to find the active sites of the lead molecule. In the present study, the active sites of busulfan have been predicted by molecular electrostatic potential surface and Fukui function analysis with the help of dispersion corrected density functional theory. Similarly, the identification of active binding sites of the proteins against lead compound plays a vital role in the field of drug discovery. Rigid and flexible molecular docking approaches are used for this purpose. For rigid docking, Hex 8.0.0 software employing fast Fourier transform (FFT) algorithm has been used. The partial flexible blind docking simulations have been performed with AutoDock 4.2 software; where a Lamarckian genetic algorithm is employed. The results showed that the most electrophilic atoms of busulfan bind with the targets. It is clear from the docking studies that busulfan has inhibition capability toward the targets 12CA and 1BZM. Graphical Abstract Docking of ligand and protein.

  15. A Frontier Molecular Orbital determination of the active sites on dispersed metal catalysts

    SciTech Connect

    Augustine, R.L.; Lahanas, K.M.

    1992-11-01

    An angular overlap calculation has been used to determine the s, p and d orbital energy levels of the different types of surface sites present on a dispersed metal catalysts. The basis for these calculations is the reported finding that a large number of catalyzed reactions take place on single atom active sites on the metal surface. Thus, these sites can be considered as surface complexes made up of the central active atom surrounded by near-neighbor metal atom ``ligands`` with localized surface orbitals perturbed only by these ``ligands``. These ``complexes`` are based on a twelve coordinate species with the ``ligands`` attached to the t{sub 2g} orbitals and the coordinate axes coincident with the direction of the e{sub g} orbitals on the central atom. These data can permit a Frontier Molecular Orbital treatment of specific site activities as long as the surface orbital availability for overlap with adsorbed substrates is considered along with its energy value and symmetry.

  16. A Frontier Molecular Orbital determination of the active sites on dispersed metal catalysts

    SciTech Connect

    Augustine, R.L.; Lahanas, K.M.

    1992-01-01

    An angular overlap calculation has been used to determine the s, p and d orbital energy levels of the different types of surface sites present on a dispersed metal catalysts. The basis for these calculations is the reported finding that a large number of catalyzed reactions take place on single atom active sites on the metal surface. Thus, these sites can be considered as surface complexes made up of the central active atom surrounded by near-neighbor metal atom ligands'' with localized surface orbitals perturbed only by these ligands''. These complexes'' are based on a twelve coordinate species with the ligands'' attached to the t{sub 2g} orbitals and the coordinate axes coincident with the direction of the e{sub g} orbitals on the central atom. These data can permit a Frontier Molecular Orbital treatment of specific site activities as long as the surface orbital availability for overlap with adsorbed substrates is considered along with its energy value and symmetry.

  17. Lymphokine-activated killer (LAK) cells can be focused at sites of tumor growth by products of macrophage activation

    SciTech Connect

    Migliori, R.J.; Gruber, S.A.; Sawyer, M.D.; Hoffman, R.; Ochoa, A.; Bach, F.H.; Simmons, R.L.

    1987-08-01

    Successful adoptive cancer immunotherapy presumably depends on the accumulation of tumoricidal leukocytes at the sites of tumor growth. Large numbers of lymphokine-activated killer (LAK) cells can be generated in vitro by growth in high concentrations of interleukin-2 (IL-2), but relatively few arrive at the tumor site after intravenous injection. We hypothesize that the delivery of LAK cells to tumor sites may be augmented by previously demonstrated lymphocyte-recruiting factors, including activated macrophage products such as interleukin-1 (IL-1) and tumor necrosis factor. /sup 111/Indium-labeled LAK cells were injected intravenously into syngeneic mice bearing the macrophage activator endotoxin (LPS) in one hind footpad, and saline solution was injected into the contralateral footpad. Significantly more activity was recovered from the LPS-bearing footpad at all times during a 96-hour period. Recombinant IL-1 also attracted more LAK cells after injection into tumor-free hind footpads. Furthermore, LAK cells preferentially homed to hind footpads that were bearing 3-day established sarcomas after intralesional injections of LPS, IL-1, or tumor necrosis factor when compared with contralateral tumor-bearing footpads injected with saline solution alone. In preliminary experiments, mice with hind-footpad tumors appeared to survive longer after combined systemic IL-2 and LAK therapy if intralesional LPS was administered. These studies demonstrate that macrophage activation factors that have been shown capable of attracting circulating normal lymphocytes can also effectively attract LAK cells from the circulation. By the stimulation of macrophages at the sites of tumor growth, more LAK cells can be attracted. It is hoped that by focusing the migration of LAK cells to tumors, LAK cells and IL-2 would effect tumor regression more efficiently and with less toxicity.

  18. Technical basis for classification of low-activity waste fraction from Hanford site tanks

    SciTech Connect

    Petersen, C.A., Westinghouse Hanford

    1996-07-17

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level wastes, for disposal in a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  19. Technical basis for classification of low-activity waste fraction from Hanford site tanks

    SciTech Connect

    Petersen, C.A.

    1996-09-20

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level waste, for disposal is a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  20. Particle Size Distribution Data From Existing Boreholes at the Immobilized Low-Activity Waste Site

    SciTech Connect

    Valenta, Michelle M.; Martin, Maria B.; Moreno, Jorge R.; Ferri, Rosalie M.; Horton, Duane G.; Reidel, Stephen P.

    2000-09-25

    This report provides particle size distribution data for samples near the Immobilized Low-Activity Waste (ILAW) Site that were archived in the Hanford Geotechnical Sample Library. Seventy-nine sediment samples were analyzed from four boreholes. Samples were collected from every ten feet in the boreholes. Eightly percent of the samples were classified as slightly gravelly sand. Fifteen percent were classified as gravelly sand, gravelly silty sand, or sandy gravels. These data indicate that the particle size of the sediment is consistent across the ILAW site and is dominated by sand in the upper part of the Hanford formation with more gravel rich units in the lower part.

  1. Communication: Active space decomposition with multiple sites: Density matrix renormalization group algorithm

    SciTech Connect

    Parker, Shane M.; Shiozaki, Toru

    2014-12-07

    We extend the active space decomposition method, recently developed by us, to more than two active sites using the density matrix renormalization group algorithm. The fragment wave functions are described by complete or restricted active-space wave functions. Numerical results are shown on a benzene pentamer and a perylene diimide trimer. It is found that the truncation errors in our method decrease almost exponentially with respect to the number of renormalization states M, allowing for numerically exact calculations (to a few μE{sub h} or less) with M = 128 in both cases. This rapid convergence is because the renormalization steps are used only for the interfragment electron correlation.

  2. Building Model NASA Satellites: Elementary Students Studying Science Using a NASA-Themed Transmedia Book Featuring Digital Fabrication Activities

    ERIC Educational Resources Information Center

    Tillman, Daniel; An, Song; Boren, Rachel; Slykhuis, David

    2014-01-01

    This study assessed the impact of nine lessons incorporating a NASA-themed transmedia book featuring digital fabrication activities on 5th-grade students (n = 29) recognized as advanced in mathematics based on their academic record. Data collected included a pretest and posttest of science content questions taken from released Virginia Standards…

  3. Structural features of piperazinyl-linked ciprofloxacin dimers required for activity against drug-resistant strains of Staphylococcus aureus.

    PubMed

    Kerns, Robert J; Rybak, Michael J; Kaatz, Glenn W; Vaka, Flamur; Cha, Raymond; Grucz, Richard G; Diwadkar, Veena U

    2003-07-07

    We previously demonstrated that piperazinyl-linked fluoroquinolone dimers possess potent antibacterial activity against drug-resistant strains of Staphylococcus aureus. In this study, we report the preparation and evaluation of a series of incomplete dimers toward ascertaining structural features of piperazinyl-linked ciprofloxacin dimers that render these agents refractory to fluoroquinolone-resistance mechanisms in Staphylococcus aureus.

  4. Some features of the bioelectric activity of the muscles with prolonged hypokinesia

    NASA Technical Reports Server (NTRS)

    Belaya, N. A.; Amirov, R. Z.; Shaposhnikov, Y. A.; Lebedeva, I. P.; Sologub, B. S.

    1978-01-01

    The effects of prolonged hypokinesia, brought on by confinement to bed and the attendant lack of motor activity, on the bioelectric activity of muscles are studied. Electromyographic measurements of amplitude and frequency indicators o