Science.gov

Sample records for active site glutamate

  1. Asymmetry of the active site loop conformation between subunits of glutamate-1-semialdehyde aminomutase in solution.

    PubMed

    Campanini, Barbara; Bettati, Stefano; di Salvo, Martino Luigi; Mozzarelli, Andrea; Contestabile, Roberto

    2013-01-01

    Glutamate-1-semialdehyde aminomutase (GSAM) is a dimeric, pyridoxal 5'-phosphate (PLP)- dependent enzyme catalysing in plants and some bacteria the isomerization of L-glutamate-1-semialdehyde to 5-aminolevulinate, a common precursor of chlorophyll, haem, coenzyme B12, and other tetrapyrrolic compounds. During the catalytic cycle, the coenzyme undergoes conversion from pyridoxamine 5'-phosphate (PMP) to PLP. The entrance of the catalytic site is protected by a loop that is believed to switch from an open to a closed conformation during catalysis. Crystallographic studies indicated that the structure of the mobile loop is related to the form of the cofactor bound to the active site, allowing for asymmetry within the dimer. Since no information on structural and functional asymmetry of the enzyme in solution is available in the literature, we investigated the active site accessibility by determining the cofactor fluorescence quenching of PMP- and PLP-GSAM forms. PLP-GSAM is partially quenched by potassium iodide, suggesting that at least one catalytic site is accessible to the anionic quencher and therefore confirming the asymmetry observed in the crystal structure. Iodide induces release of the cofactor from PMP-GSAM, apparently from only one catalytic site, therefore suggesting an asymmetry also in this form of the enzyme in solution, in contrast with the crystallographic data.

  2. [Enhancing glutamate decarboxylase activity by site-directed mutagenesis: an insight from Ramachandran plot].

    PubMed

    Ke, Piyu; Huang, Jun; Hu, Sheng; Zhao, Weirui; Lü, Changjiang; Yu, Kai; Lei, Yinlin; Wang, Jinbo; Mei, Lehe

    2016-01-01

    Glutamate decarboxylase (GAD) can catalyze the decarboxylation of glutamate into γ-aminobutyrate (GABA) and is the only enzyme of GABA biosynthesis. Improving GAD activity and thermostability will be helpful for the highly efficient biosynthesis of GABA. According to the Ramachandran plot information of GAD 1407 three-dimensional structure from Lactobacillus brevis CGMCC No. 1306, we identified the unstable site K413 as the mutation target, constructed the mutant GAD by site-directed mutagenesis and measured the thermostability and activity of the wide type and mutant GAD. Mutant K413A led to a remarkably slower inactivation rate, and its half-life at 50 °C reached 105 min which was 2.1-fold higher than the wild type GAD1407. Moreover, mutant K413I exhibited 1.6-fold higher activity in comparison with the wide type GAD1407, although it had little improvement in thermostability of GAD. Ramachandran plot can be considered as a potential approach to increase GAD thermostability and activity. PMID:27443004

  3. [Enhancing glutamate decarboxylase activity by site-directed mutagenesis: an insight from Ramachandran plot].

    PubMed

    Ke, Piyu; Huang, Jun; Hu, Sheng; Zhao, Weirui; Lü, Changjiang; Yu, Kai; Lei, Yinlin; Wang, Jinbo; Mei, Lehe

    2016-01-01

    Glutamate decarboxylase (GAD) can catalyze the decarboxylation of glutamate into γ-aminobutyrate (GABA) and is the only enzyme of GABA biosynthesis. Improving GAD activity and thermostability will be helpful for the highly efficient biosynthesis of GABA. According to the Ramachandran plot information of GAD 1407 three-dimensional structure from Lactobacillus brevis CGMCC No. 1306, we identified the unstable site K413 as the mutation target, constructed the mutant GAD by site-directed mutagenesis and measured the thermostability and activity of the wide type and mutant GAD. Mutant K413A led to a remarkably slower inactivation rate, and its half-life at 50 °C reached 105 min which was 2.1-fold higher than the wild type GAD1407. Moreover, mutant K413I exhibited 1.6-fold higher activity in comparison with the wide type GAD1407, although it had little improvement in thermostability of GAD. Ramachandran plot can be considered as a potential approach to increase GAD thermostability and activity.

  4. Mechanistic insights into ferredoxin-NADP(H) reductase catalysis involving the conserved glutamate in the active site.

    PubMed

    Dumit, Verónica I; Essigke, Timm; Cortez, Néstor; Ullmann, G Matthias

    2010-04-01

    Plant-type ferredoxin-NADP(H) reductases (FNRs) are flavoenzymes harboring one molecule of noncovalently bound flavin adenine dinucleotide that catalyze reversible reactions between obligatory one-electron carriers and obligatory two-electron carriers. A glutamate next to the C-terminus is strictly conserved in FNR and has been proposed to function as proton donor/acceptor during catalysis. However, experimental studies of this proposed function led to contradicting conclusions about the role of this glutamate in the catalytic mechanism. In the present work, we study the titration behavior of the glutamate in the active site of FNR using theoretical methods. Protonation probabilities for maize FNR were computed for the reaction intermediates of the catalytic cycle by Poisson-Boltzmann electrostatic calculations and Metropolis Monte Carlo titration. The titration behavior of the highly conserved glutamate was found to vary depending on the bound substrates NADP(H) and ferredoxin and also on the redox states of these substrates and the flavin adenine dinucleotide. Our results support the involvement of the glutamate in the FNR catalytic mechanism not only as a proton donor but also as a key residue for stabilizing and destabilizing reaction intermediates. On the basis of our findings, we propose a model rationalizing the function of the glutamate in the reaction cycle, which allows reinterpretation of previous experimental results.

  5. Green Tea Polyphenols Control Dysregulated Glutamate Dehydrogenase in Transgenic Mice by Hijacking the ADP Activation Site

    SciTech Connect

    Li, Changhong; Li, Ming; Chen, Pan; Narayan, Srinivas; Matschinsky, Franz M.; Bennett, Michael J.; Stanley, Charles A.; Smith, Thomas J.

    2012-05-09

    Glutamate dehydrogenase (GDH) catalyzes the oxidative deamination of L-glutamate and, in animals, is extensively regulated by a number of metabolites. Gain of function mutations in GDH that abrogate GTP inhibition cause the hyperinsulinism/hyperammonemia syndrome (HHS), resulting in increased pancreatic {beta}-cell responsiveness to leucine and susceptibility to hypoglycemia following high protein meals. We have previously shown that two of the polyphenols from green tea (epigallocatechin gallate (EGCG) and epicatechin gallate (ECG)) inhibit GDH in vitro and that EGCG blocks GDH-mediated insulin secretion in wild type rat islets. Using structural and site-directed mutagenesis studies, we demonstrate that ECG binds to the same site as the allosteric regulator, ADP. Perifusion assays using pancreatic islets from transgenic mice expressing a human HHS form of GDH demonstrate that the hyperresponse to glutamine caused by dysregulated GDH is blocked by the addition of EGCG. As observed in HHS patients, these transgenic mice are hypersensitive to amino acid feeding, and this is abrogated by oral administration of EGCG prior to challenge. Finally, the low basal blood glucose level in the HHS mouse model is improved upon chronic administration of EGCG. These results suggest that this common natural product or some derivative thereof may prove useful in controlling this genetic disorder. Of broader clinical implication is that other groups have shown that restriction of glutamine catabolism via these GDH inhibitors can be useful in treating various tumors. This HHS transgenic mouse model offers a highly useful means to test these agents in vivo.

  6. Green tea polyphenols control dysregulated glutamate dehydrogenase in transgenic mice by hijacking the ADP activation site.

    PubMed

    Li, Changhong; Li, Ming; Chen, Pan; Narayan, Srinivas; Matschinsky, Franz M; Bennett, Michael J; Stanley, Charles A; Smith, Thomas J

    2011-09-30

    Glutamate dehydrogenase (GDH) catalyzes the oxidative deamination of L-glutamate and, in animals, is extensively regulated by a number of metabolites. Gain of function mutations in GDH that abrogate GTP inhibition cause the hyperinsulinism/hyperammonemia syndrome (HHS), resulting in increased pancreatic β-cell responsiveness to leucine and susceptibility to hypoglycemia following high protein meals. We have previously shown that two of the polyphenols from green tea (epigallocatechin gallate (EGCG) and epicatechin gallate (ECG)) inhibit GDH in vitro and that EGCG blocks GDH-mediated insulin secretion in wild type rat islets. Using structural and site-directed mutagenesis studies, we demonstrate that ECG binds to the same site as the allosteric regulator, ADP. Perifusion assays using pancreatic islets from transgenic mice expressing a human HHS form of GDH demonstrate that the hyperresponse to glutamine caused by dysregulated GDH is blocked by the addition of EGCG. As observed in HHS patients, these transgenic mice are hypersensitive to amino acid feeding, and this is abrogated by oral administration of EGCG prior to challenge. Finally, the low basal blood glucose level in the HHS mouse model is improved upon chronic administration of EGCG. These results suggest that this common natural product or some derivative thereof may prove useful in controlling this genetic disorder. Of broader clinical implication is that other groups have shown that restriction of glutamine catabolism via these GDH inhibitors can be useful in treating various tumors. This HHS transgenic mouse model offers a highly useful means to test these agents in vivo.

  7. Glutamate regulates kainate-binding protein expression in cultured chick Bergmann glia through an activator protein-1 binding site.

    PubMed

    Aguirre, A; López, T; López-Bayghen, E; Ortega, A

    2000-12-15

    The expression of the chick kainate-binding protein, a member of the ionotropic glutamate receptor family, is restricted to the cerebellum, specifically to Bergmann glia. Glutamate induces a membrane to nuclei signaling involved in gene expression regulation. Exposure of cultured chick Bergmann glia cells to glutamate leads to an increase in kainate binding protein and mRNA levels, suggesting a transcriptional level of regulation. The 5' proximal region of the chick kainate binding gene was cloned and transfected 4into Bergmann glia cells. Three main regulatory regions could be defined, a minimal promoter region, a negative regulatory region, and interestingly, a glutamate-responsive element. Deletion of this element abolishes the agonist effect. Moreover, electrophoretic mobility shift assays, cotransfection experiments, and site-directed mutagenesis clearly suggest that the glutamate effect is mediated through an AP-1 site by a Fos/Jun heterodimer. The present results favor the notion of a functional role of kainate-binding protein in glutamatergic cerebellar neurotransmission.

  8. Active-site mutations of diphtheria toxin: effects of replacing glutamic acid-148 with aspartic acid, glutamine, or serine.

    PubMed

    Wilson, B A; Reich, K A; Weinstein, B R; Collier, R J

    1990-09-18

    Glutamic acid-148, an active-site residue of diphtheria toxin identified by photoaffinity labeling with NAD, was replaced with aspartic acid, glutamine, or serine by directed mutagenesis of the F2 fragment of the toxin gene. Wild-type and mutant F2 proteins were synthesized in Escherichia coli, and the corresponding enzymic fragment A moieties (DTA) were derived, purified, and characterized. The Glu----Asp (E148D), Glu----Gln (E148Q), and Glu----Ser (E148S) mutations caused reductions in NAD:EF-2 ADP-ribosyltransferase activity of ca. 100-, 250-, and 300-fold, respectively, while causing only minimal changes in substrate affinity. The effects of the mutations on NAD-glycohydrolase activity were considerably different; only a 10-fold reduction in activity was observed for E148S, and the E148D and E148Q mutants actually exhibited a small but reproducible increase in NAD-glycohydrolytic activity. Photolabeling by nicotinamide-radiolabeled NAD was diminished ca. 8-fold in the E148D mutant and was undetectable in the other mutants. The results confirm that Glu-148 plays a crucial role in the ADP-ribosylation of EF-2 and imply an important function for the side-chain carboxyl group in catalysis. The carboxyl group is also important for photochemical labeling by NAD but not for NAD-glycohydrolase activity. The pH dependence of the catalytic parameters for the ADP-ribosyltransferase reaction revealed a group in DTA-wt that titrates with an apparent pKa of 6.2-6.3 and is in the protonated state in the rate-determining step.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. High resolution crystal structures of triosephosphate isomerase complexed with its suicide inhibitors: The conformational flexibility of the catalytic glutamate in its closed, liganded active site

    PubMed Central

    Venkatesan, Rajaram; Alahuhta, Markus; Pihko, Petri M; Wierenga, Rik K

    2011-01-01

    The key residue of the active site of triosephosphate isomerase (TIM) is the catalytic glutamate, which is proposed to be important (i) as a catalytic base, for initiating the reaction, as well as (ii) for the subsequent proton shuttling steps. The structural properties of this glutamate in the liganded complex have been investigated by studying the high resolution crystal structures of typanosomal TIM, complexed with three suicide inhibitors: (S)-glycidol phosphate ((S)-GOP, at 0.99 Å resolution), (R)-glycidol phosphate, ((R)-GOP, at 1.08 Å resolution), and bromohydroxyacetone phosphate (BHAP, at 1.97 Å resolution). The structures show that in the (S)-GOP active site this catalytic glutamate is in the well characterized, competent conformation. However, an unusual side chain conformation is observed in the (R)-GOP and BHAP complexes. In addition, Glu97, salt bridged to the catalytic lysine in the competent active site, adopts an unusual side chain conformation in these two latter complexes. The higher chemical reactivity of (S)-GOP compared with (R)-GOP, as known from solution studies, can be understood: the structures indicate that in the case of (S)-GOP, Glu167 can attack the terminal carbon of the epoxide in a stereoelectronically favored, nearly linear O–C–O arrangement, but this is not possible for the (R)-GOP isomer. These structures confirm the previously proposed conformational flexibility of the catalytic glutamate in its closed, liganded state. The importance of this conformational flexibility for the proton shuttling steps in the TIM catalytic cycle, which is apparently achieved by a sliding motion of the side chain carboxylate group above the enediolate plane, is also discussed. PMID:21633986

  10. Physical location of the site for N-acetyl-L-glutamate, the allosteric activator of carbamoyl phosphate synthetase, in the 20-kilodalton COOH-terminal domain.

    PubMed

    Rodriguez-Aparicio, L B; Guadalajara, A M; Rubio, V

    1989-04-01

    Mammalian liver mitochondrial carbamoyl phosphate synthetase, a polypeptide of 160 kDa, is activated allosterically by N-acetyl-L-glutamate. The analogue of this activator N-(chloroacetyl)-L-[14C]glutamate has been found to serve as a photoaffinity label for this enzyme. The specificity was demonstrated by the drastic reduction in the radioactivity bound to the protein when (a) an excess of unlabeled acetylglutamate was present during the irradiation and (b) the enzyme was replaced by pyruvate kinase, an enzyme that is not affected by acetylglutamate. The labeling was due to the photoactivation of the chloroacetyl group since there was no labeling under equal conditions with acetyl[14C]glutamate. To localize the binding site, limited proteolysis was used. Trypsin cleaves carbamoyl phosphate synthetase into complementary NH2- and COOH-terminal fragments of about 140 and 20 kDa, respectively [Powers-Lee, S. G., & Corina, K. (1986) J. Biol. Chem. 261, 15349-15352], but only the latter was found to be labeled. Similarly, of the various fragments generated by elastase, only two, of 20 and 120 kDa, contain the COOH terminus [see Powers-Lee and Corina (1986) above] and were found to be labeled. Thus, the binding site for acetylglutamate is within 20 kDa from the COOH terminus. This excludes the possibility that the acetylglutamate binding site evolved from an ancestral substrate site for glutamine: this substrate binds to the small subunit of the Escherichia coli enzyme, which is homologous to the NH2-terminal domain of the rat liver enzyme. Exhaustive tryptic digestion of photolabeled carbamoyl phosphate synthetase yielded a single radioactive peak, suggesting that the labeling is restricted to a single minimal tryptic peptide. PMID:2742825

  11. Neuronal Activity and Glutamate Uptake Decrease Mitochondrial Mobility in Astrocytes and Position Mitochondria Near Glutamate Transporters

    PubMed Central

    Jackson, Joshua G.; O'Donnell, John C.; Takano, Hajime; Coulter, Douglas A.

    2014-01-01

    Within neurons, mitochondria are nonuniformly distributed and are retained at sites of high activity and metabolic demand. Glutamate transport and the concomitant activation of the Na+/K+-ATPase represent a substantial energetic demand on astrocytes. We hypothesized that mitochondrial mobility within astrocytic processes might be regulated by neuronal activity and glutamate transport. We imaged organotypic hippocampal slice cultures of rat, in which astrocytes maintain their highly branched morphologies and express glutamate transporters. Using time-lapse confocal microscopy, the mobility of mitochondria within individual astrocytic processes and neuronal dendrites was tracked. Within neurons, a greater percentage of mitochondria were mobile than in astrocytes. Furthermore, they moved faster and farther than in astrocytes. Inhibiting neuronal activity with tetrodotoxin (TTX) increased the percentage of mobile mitochondria in astrocytes. Mitochondrial movement in astrocytes was inhibited by vinblastine and cytochalasin D, demonstrating that this mobility depends on both the microtubule and actin cytoskeletons. Inhibition of glutamate transport tripled the percentage of mobile mitochondria in astrocytes. Conversely, application of the transporter substrate d-aspartate reversed the TTX-induced increase in the percentage of mobile mitochondria. Inhibition of reversed Na+/Ca2+ exchange also increased the percentage of mitochondria that were mobile. Last, we demonstrated that neuronal activity increases the probability that mitochondria appose GLT-1 particles within astrocyte processes, without changing the proximity of GLT-1 particles to VGLUT1. These results imply that neuronal activity and the resulting clearance of glutamate by astrocytes regulate the movement of astrocytic mitochondria and suggest a mechanism by which glutamate transporters might retain mitochondria at sites of glutamate uptake. PMID:24478345

  12. Mechanism for the activation of glutamate receptors

    Cancer.gov

    Scientists at the NIH have used a technique called cryo-electron microscopy to determine a molecular mechanism for the activation and desensitization of ionotropic glutamate receptors, a prominent class of neurotransmitter receptors in the brain and spina

  13. Glutamates 78 and 122 in the active site of saccharopine dehydrogenase contribute to reactant binding and modulate the basicity of the acid-base catalysts.

    PubMed

    Ekanayake, Devi K; Andi, Babak; Bobyk, Kostyantyn D; West, Ann H; Cook, Paul F

    2010-07-01

    Saccharopine dehydrogenase catalyzes the NAD-dependent oxidative deamination of saccharopine to give l-lysine and alpha-ketoglutarate. There are a number of conserved hydrophilic, ionizable residues in the active site, all of which must be important to the overall reaction. In an attempt to determine the contribution to binding and rate enhancement of each of the residues in the active site, mutations at each residue are being made, and double mutants are being made to estimate the interrelationship between residues. Here, we report the effects of mutations of active site glutamate residues, Glu(78) and Glu(122), on reactant binding and catalysis. Site-directed mutagenesis was used to generate E78Q, E122Q, E78Q/E122Q, E78A, E122A, and E78A/E122A mutant enzymes. Mutation of these residues increases the positive charge of the active site and is expected to affect the pK(a) values of the catalytic groups. Each mutant enzyme was completely characterized with respect to its kinetic and chemical mechanism. The kinetic mechanism remains the same as that of wild type enzymes for all of the mutant enzymes, with the exception of E78A, which exhibits binding of alpha-ketoglutarate to E and E.NADH. Large changes in V/K(Lys), but not V, suggest that Glu(78) and Glu(122) contribute binding energy for lysine. Shifts of more than a pH unit to higher and lower pH of the pK(a) values observed in the V/K(Lys) pH-rate profile of the mutant enzymes suggests that the presence of Glu(78) and Glu(122) modulates the basicity of the catalytic groups.

  14. Structure of Bacillus subtilis γ-glutamyltranspeptidase in complex with acivicin: diversity of the binding mode of a classical and electrophilic active-site-directed glutamate analogue

    SciTech Connect

    Ida, Tomoyo; Suzuki, Hideyuki; Fukuyama, Keiichi; Hiratake, Jun; Wada, Kei

    2014-02-01

    The binding modes of acivicin, a classical and an electrophilic active-site-directed glutamate analogue, to bacterial γ-glutamyltranspeptidases were found to be diverse. γ-Glutamyltranspeptidase (GGT) is an enzyme that plays a central role in glutathione metabolism, and acivicin is a classical inhibitor of GGT. Here, the structure of acivicin bound to Bacillus subtilis GGT determined by X-ray crystallography to 1.8 Å resolution is presented, in which it binds to the active site in a similar manner to that in Helicobacter pylori GGT, but in a different binding mode to that in Escherichia coli GGT. In B. subtilis GGT, acivicin is bound covalently through its C3 atom with sp{sup 2} hybridization to Thr403 O{sup γ}, the catalytic nucleophile of the enzyme. The results show that acivicin-binding sites are common, but the binding manners and orientations of its five-membered dihydroisoxazole ring are diverse in the binding pockets of GGTs.

  15. Identification of glutamic acid 78 as the active site nucleophile in Bacillus subtilis xylanase using electrospray tandem mass spectrometry.

    PubMed

    Miao, S; Ziser, L; Aebersold, R; Withers, S G

    1994-06-14

    A new mechanism-based inactivator of beta-1,4-xylanases, 2',4'-dinitrophenyl 2-deoxy-2-fluoro-beta-xylobioside, has been synthesized and used to trap the covalent intermediate formed during catalysis by Bacillus subtilis xylanase. Electrospray mass spectrometry confirmed the 1:1 stoichiometry of the incorporation of inactivator into the enzyme. Inactivation of xylanase followed the expected pseudo-first-order kinetic behavior, and kinetic parameters were determined. The intermediate trapped was relatively stable toward hydrolytic turnover (t1/2 = 350 min). However, turnover could be facilitated by transglycosylation following the addition of the acceptor benzyl thio-beta-xylobioside, thus demonstrating the catalytic competence of the trapped intermediate. Reactivation kinetic parameters for this process of kre = 0.03 min-1 and Kre = 46 mM were determined. The nucleophilic amino acid was identified as Glu78 by a tandem mass spectrometric technique which does not require the use of radiolabels. The peptic digest of the labeled enzyme was separated by high-performance liquid chromatography and the eluent fed into a tandem mass spectrometer via an electrospray ionization device. The labeled peptide was identified as one of m/z = 826 (doubly charged) which fragmented in the collision chamber between the mass analyzers with loss of the mass of a 2-fluoroxylobiosyl unit. Confirmation of the peptide identity was obtained both by tandem mass spectrometric sequencing and by Edman degradation of the purified peptide. Glu78 is completely conserved in all members of this xylanase family and indeed is shown to be located in the active site in the recently determined X-ray crystal structure.

  16. An examination of aspartate decarboxylase and glutamate decarboxylase activity in mosquitoes

    PubMed Central

    Richardson, Graham; Ding, Haizhen; Rocheleau, Tom; Mayhew, George; Reddy, Erin; Han, Qian; Christensen, Bruce M.; Li, Jianyong

    2010-01-01

    A major pathway of beta-alanine synthesis in insects is through the alpha-decarboxylation of aspartate, but the enzyme involved in the decarboxylation of aspartate has not been clearly defined in mosquitoes and characterized in any insect species. In this study, we expressed two putative mosquito glutamate decarboxylase-like enzymes of mosquitoes and critically analyzed their substrate specificity and biochemical properties. Our results provide clear biochemical evidence establishing that one of them is an aspartate decarboxylase and the other is a glutamate decarboxylase. The mosquito aspartate decarboxylase functions exclusively on the production of beta-alanine with no activity with glutamate. Likewise the mosquito glutamate decarboxylase is highly specific to glutamate with essentially no activity with aspartate. Although insect aspartate decarboxylase shares high sequence identity with glutamate decarboxylase, we are able to closely predict aspartate decarboxylase from glutamate decarboxylase based on the difference of their active site residues. PMID:19842059

  17. Glutamate Mediated Astrocytic Filtering of Neuronal Activity

    PubMed Central

    Herzog, Nitzan; De Pittà, Maurizio; Jacob, Eshel Ben; Berry, Hugues; Hanein, Yael

    2014-01-01

    Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocytes specifically respond to the frequency of neuronal stimulation by intracellular Ca2+ transients, with a clear onset of astrocytic activation at neuron firing rates around 3-5 Hz. The cell-to-cell heterogeneity of the astrocyte Ca2+ response was however large and increasing with stimulation frequency. Astrocytic activation by neurons was abolished with antagonists of type I metabotropic glutamate receptor, validating the glutamate-dependence of this neuron-to-astrocyte pathway. Using a realistic biophysical model of glutamate-based intracellular calcium signaling in astrocytes, we suggest that the stepwise response is due to the supralinear dynamics of intracellular IP3 and that the heterogeneity of the responses may be due to the heterogeneity of the astrocyte-to-astrocyte couplings via gap junction channels. Therefore our results present astrocyte intracellular Ca2+ activity as a nonlinear integrator of glutamate-dependent neuronal activity. PMID:25521344

  18. Nicotine Recruits Glutamate Receptors to Postsynaptic Sites

    PubMed Central

    Duan, Jing-jing; Lozada, Adrian F.; Gou, Chen-yu; Xu, Jing; Chen, Yuan; Berg, Darwin K.

    2015-01-01

    Cholinergic neurons project throughout the nervous system and activate nicotinic receptors to modulate synaptic function in ways that shape higher order brain function. The acute effects of nicotinic signaling on long-term synaptic plasticity have been well-characterized. Less well understood is how chronic exposure to low levels of nicotine, such as those encountered by habitual smokers, can alter neural connections to promote addiction and other lasting behavioral effects. We show here that chronic exposure of hippocampal neurons in culture to low levels of nicotine recruits AMPA and NMDA receptors to the cell surface and sequesters them at postsynaptic sites. The receptors include GluA2-containing AMPA receptors, which are responsible for most of the excitatory postsynaptic current mediated by AMPA receptors on the neurons, and include NMDA receptors containing GluN1 and GluN2B subunits. Moreover, we find that the nicotine treatment also increases expression of the presynaptic component synapsin 1 and arranges it in puncta juxtaposed to the additional AMPA and NMDA receptor puncta, suggestive of increases in synaptic contacts. Consistent with increased synaptic input, we find that the nicotine treatment leads to an increase in the excitatory postsynaptic currents mediated by AMPA and NMDA receptors. Further, the increases skew the ratio of excitatory-to-inhibitory input the cell receives, and this holds both for pyramidal neurons and inhibitory neurons in the hippocampal CA1 region. The GluN2B-containing NMDA receptor redistribution at synapses is associated with a significant increase in GluN2B phosphorylation at Tyr1472, a site known to prevent GluN2B endocytosis. These results suggest that chronic exposure to low levels of nicotine not only alters functional connections but also is likely to change excitability levels across networks. Further, it may increase the propensity for synaptic plasticity, given the increase in synaptic NMDA receptors. PMID:26365992

  19. Nicotine recruits glutamate receptors to postsynaptic sites.

    PubMed

    Duan, Jing-Jing; Lozada, Adrian F; Gou, Chen-Yu; Xu, Jing; Chen, Yuan; Berg, Darwin K

    2015-09-01

    Cholinergic neurons project throughout the nervous system and activate nicotinic receptors to modulate synaptic function in ways that shape higher order brain function. The acute effects of nicotinic signaling on long-term synaptic plasticity have been well-characterized. Less well understood is how chronic exposure to low levels of nicotine, such as those encountered by habitual smokers, can alter neural connections to promote addiction and other lasting behavioral effects. We show here that chronic exposure of hippocampal neurons in culture to low levels of nicotine recruits AMPA and NMDA receptors to the cell surface and sequesters them at postsynaptic sites. The receptors include GluA2-containing AMPA receptors, which are responsible for most of the excitatory postsynaptic current mediated by AMPA receptors on the neurons, and include NMDA receptors containing GluN1 and GluN2B subunits. Moreover, we find that the nicotine treatment also increases expression of the presynaptic component synapsin 1 and arranges it in puncta juxtaposed to the additional AMPA and NMDA receptor puncta, suggestive of increases in synaptic contacts. Consistent with increased synaptic input, we find that the nicotine treatment leads to an increase in the excitatory postsynaptic currents mediated by AMPA and NMDA receptors. Further, the increases skew the ratio of excitatory-to-inhibitory input that the cell receives, and this holds both for pyramidal neurons and inhibitory neurons in the hippocampal CA1 region. The GluN2B-containing NMDA receptor redistribution at synapses is associated with a significant increase in GluN2B phosphorylation at Tyr1472, a site known to prevent GluN2B endocytosis. These results suggest that chronic exposure to low levels of nicotine not only alters functional connections but also is likely to change excitability levels across networks. Further, it may increase the propensity for synaptic plasticity, given the increase in synaptic NMDA receptors.

  20. Beta-D-xylosidase from Selenomonas ruminantium: Role of Glutamate 186 in Catalysis Revealed by Site-Directed Mutagenesis, Alternate Substrates, and Active-site Inhibitor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beta-D-xylosidase/alpha-L-arabinofuranosidase from Selenomonas ruminantium (SXA) is the most active enzyme known for catalyzing hydrolysis of 1,4-beta-D-xylooligosaccharides to D xylose. Catalysis and inhibitor binding by the GH43 beta-xylosidase are governed by the protonation states of catalytic ...

  1. Human γ-Glutamyl Transpeptidase 1: STRUCTURES OF THE FREE ENZYME, INHIBITOR-BOUND TETRAHEDRAL TRANSITION STATES, AND GLUTAMATE-BOUND ENZYME REVEAL NOVEL MOVEMENT WITHIN THE ACTIVE SITE DURING CATALYSIS.

    PubMed

    Terzyan, Simon S; Burgett, Anthony W G; Heroux, Annie; Smith, Clyde A; Mooers, Blaine H M; Hanigan, Marie H

    2015-07-10

    γ-Glutamyl transpeptidase 1 (GGT1) is a cell surface, N-terminal nucleophile hydrolase that cleaves glutathione and other γ-glutamyl compounds. GGT1 expression is essential in cysteine homeostasis, and its induction has been implicated in the pathology of asthma, reperfusion injury, and cancer. In this study, we report four new crystal structures of human GGT1 (hGGT1) that show conformational changes within the active site as the enzyme progresses from the free enzyme to inhibitor-bound tetrahedral transition states and finally to the glutamate-bound structure prior to the release of this final product of the reaction. The structure of the apoenzyme shows flexibility within the active site. The serine-borate-bound hGGT1 crystal structure demonstrates that serine-borate occupies the active site of the enzyme, resulting in an enzyme-inhibitor complex that replicates the enzyme's tetrahedral intermediate/transition state. The structure of GGsTop-bound hGGT1 reveals its interactions with the enzyme and why neutral phosphonate diesters are more potent inhibitors than monoanionic phosphonates. These structures are the first structures for any eukaryotic GGT that include a molecule in the active site covalently bound to the catalytic Thr-381. The glutamate-bound structure shows the conformation of the enzyme prior to release of the final product and reveals novel information regarding the displacement of the main chain atoms that form the oxyanion hole and movement of the lid loop region when the active site is occupied. These data provide new insights into the mechanism of hGGT1-catalyzed reactions and will be invaluable in the development of new classes of hGGT1 inhibitors for therapeutic use.

  2. Bromopyruvate, an active site-directed inactivator of E. coli 2-keto-4-hydroxyglutarate(KHG) aldolase, modifies glutamic acid residue-45

    SciTech Connect

    Vlahos, C.J.; Dekker, E.E.

    1987-05-01

    E. coli KHG-aldolase (2-keto-4-hydroxyglutarate in equilibrium pyruvate + glyoxylate), a novel trimeric Class I aldolase, requires one active-site lysine residue (Lys 133)/subunit for Schiff-base formation as well as one arginine residue (Arg 49)/subunit for catalytic activity. The substrate analog, 3-bromopyruvate (BRPY), causes a time- and concentration-dependent loss of KHG-aldolase activity. This inactivation is regarded as active site-directed since: (a) BRPY modification results in complete loss of enzymatic activity; (b) saturation kinetics are exhibited, suggesting that a reversible complex is formed between the aldolase and BRPY prior to the rate-limiting inactivation step; (c) over 90% of the initial aldolase activity is protected by either substrate, pyruvate or KHG; (d) 1.1 mol of /sup 14/C-BRPY is bound/enzyme subunit. Peptide isolation and sequencing show that the incorporated radioactivity is associated with residue Glu-45. Denaturation of the enzyme with guanidine x HCl following treatment with excess /sup 14/C-BRPY allows for the incorporation of carbon-14 at Cys-159 and Cys-180 as well. The presence of pyruvate protects Glu-45 from being esterified but does not prevent the alkylation of the two cysteine residues. These results suggest that Glu-45 is essential for the catalytic activity of E. coli KHG-aldolase, most likely functioning as the active-site amphoteric proton donor/acceptor moiety that is involved in the overall mechanism of the reaction catalyzed by this enzyme.

  3. Allosteric activation of membrane-bound glutamate receptors using coordination chemistry within living cells

    NASA Astrophysics Data System (ADS)

    Kiyonaka, Shigeki; Kubota, Ryou; Michibata, Yukiko; Sakakura, Masayoshi; Takahashi, Hideo; Numata, Tomohiro; Inoue, Ryuji; Yuzaki, Michisuke; Hamachi, Itaru

    2016-10-01

    The controlled activation of proteins in living cells is an important goal in protein-design research, but to introduce an artificial activation switch into membrane proteins through rational design is a significant challenge because of the structural and functional complexity of such proteins. Here we report the allosteric activation of two types of membrane-bound neurotransmitter receptors, the ion-channel type and the G-protein-coupled glutamate receptors, using coordination chemistry in living cells. The high programmability of coordination chemistry enabled two His mutations, which act as an artificial allosteric site, to be semirationally incorporated in the vicinity of the ligand-binding pockets. Binding of Pd(2,2‧-bipyridine) at the allosteric site enabled the active conformations of the glutamate receptors to be stabilized. Using this approach, we were able to activate selectively a mutant glutamate receptor in live neurons, which initiated a subsequent signal-transduction pathway.

  4. Allosteric activation of membrane-bound glutamate receptors using coordination chemistry within living cells.

    PubMed

    Kiyonaka, Shigeki; Kubota, Ryou; Michibata, Yukiko; Sakakura, Masayoshi; Takahashi, Hideo; Numata, Tomohiro; Inoue, Ryuji; Yuzaki, Michisuke; Hamachi, Itaru

    2016-10-01

    The controlled activation of proteins in living cells is an important goal in protein-design research, but to introduce an artificial activation switch into membrane proteins through rational design is a significant challenge because of the structural and functional complexity of such proteins. Here we report the allosteric activation of two types of membrane-bound neurotransmitter receptors, the ion-channel type and the G-protein-coupled glutamate receptors, using coordination chemistry in living cells. The high programmability of coordination chemistry enabled two His mutations, which act as an artificial allosteric site, to be semirationally incorporated in the vicinity of the ligand-binding pockets. Binding of Pd(2,2'-bipyridine) at the allosteric site enabled the active conformations of the glutamate receptors to be stabilized. Using this approach, we were able to activate selectively a mutant glutamate receptor in live neurons, which initiated a subsequent signal-transduction pathway. PMID:27657873

  5. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci.

    PubMed

    Peralta, Guillermo Hugo; Bergamini, Carina Viviana; Hynes, Erica Rut

    2016-01-01

    Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor. PMID:27266631

  6. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci.

    PubMed

    Peralta, Guillermo Hugo; Bergamini, Carina Viviana; Hynes, Erica Rut

    2016-01-01

    Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor.

  7. Postsynaptic activation at the squid giant synapse by photolytic release of L-glutamate from a 'caged' L-glutamate.

    PubMed Central

    Corrie, J E; DeSantis, A; Katayama, Y; Khodakhah, K; Messenger, J B; Ogden, D C; Trentham, D R

    1993-01-01

    1. Pharmacological evidence suggests L-glutamate is a strong candidate as a transmitter at the giant synapse of the squid. Postsynaptic activation at the giant synapse cannot be effected by conventional application of putative neurotransmitters by iontophoresis or perfusion, apparently because the complex structure of the synapse prevents a sufficiently rapid change in concentration at the postsynaptic membrane. Flash photolytic release of L-glutamate from a pharmacologically inert 'caged' L-glutamate pre-equilibrated in the stellate ganglion of Alloteuthis or Loligo was used to determine whether L-glutamate can produce postsynaptic activation when released rapidly in the synaptic clefts. 2. The preparation, reaction mechanism and properties of the caged L-glutamate, N-1-(2-nitrophenyl)ethoxycarbonyl-L-glutamate, are described. The product quantum yield on photolysis was 0.65 (+/- 0.05). On flash photolysis glutamate release followed a single exponential time-course in the pH range 5.5-7.8. The rate constant was proportional to [H+] and was 93 s-1 at pH 5.5 and 16 degrees C in artificial sea water (ionic strength, I = 0.68 M). 3. At pH 7.8 flash photolysis of caged glutamate pre-equilibrated in the synapse caused only a slow depolarization. A second photolytic release of L-glutamate or transsynaptic activation produced no further depolarization, suggesting desensitization and inactivation of postsynaptic mechanisms by the initial pulse of L-glutamate. 4. Synaptic transmission in the giant synapse was normal at pH 5.5. Flash photolysis at pH 5.5 caused rapid production of L-glutamate within the synaptic cleft and a fast postsynaptic depolarization which generated postsynaptic action potentials.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7901400

  8. Correlation of loss of activity of human aldehyde dehydrogenase with reaction of bromoacetophenone with glutamic acid-268 and cysteine-302 residues. Partial-sites reactivity of aldehyde dehydrogenase.

    PubMed Central

    Abriola, D P; MacKerell, A D; Pietruszko, R

    1990-01-01

    Bromoacetophenone (2-bromo-1-phenylethanone) has been characterized as an affinity reagent for human aldehyde dehydrogenase (EC 1.2.1.3) [MacKerell, MacWright & Pietruszko (1986) Biochemistry 25, 5182-5189], and has been shown to react specifically with the Glu-268 residue [Abriola, Fields, Stein, MacKerell & Pietruszko (1987) Biochemistry 26, 5679-5684] with an apparent inactivation stoichiometry of two molecules of bromoacetophenone per molecule of enzyme. The specificity of bromoacetophenone for reaction with Glu-268, however, is not absolute, owing to the extreme reactivity of this reagent. When bromo[14C]acetophenone was used to label the human cytoplasmic E1 isoenzyme radioactively and tryptic fragmentation was carried out, peptides besides that containing Glu-268 were found to have reacted with reagent. These peptides were purified by h.p.l.c. and analysed by sequencing and scintillation counting to quantify radioactive label in the material from each cycle of sequencing. Reaction of bromoacetophenone with the aldehyde dehydrogenase molecule during enzyme activity loss occurs with two residues, Glu-268 and Cys-302. The activity loss, however, appears to be proportional to incorporation of label at Glu-268. The large part of incorporation of label at Cys-302 occurs after the activity loss is essentially complete. With both Glu-268 and Cys-302, however, the incorporation of label stops after one molecule of bromoacetophenone has reacted with each residue. Reaction with other residues continues after activity loss is complete. PMID:1968743

  9. Among the twenty classical L-amino acids, only glutamate directly activates metabotropic glutamate receptors.

    PubMed

    Frauli, Mélanie; Neuville, Pascal; Vol, Claire; Pin, Jean-Philippe; Prézeau, Laurent

    2006-02-01

    Under pathophysiological conditions, cellular amino acids can be profusely released from cells into the cerebral interstitial space. Because several class-C G protein coupled receptors (GPCRs) display a broad natural ligand spectrum, being sensitive to more than one endogenous ligand, we wondered whether the related metabotropic glutamate (mGlu) receptors could be modulated by various types of L-amino acids, allowing them to sense large increase in extracellular amino acid concentration. Here, the agonist, antagonist and allosteric effects of the twenty classical L-amino acids were evaluated on the eight mGlu receptor subtypes. We show that, in addition to glutamate (Glu), cysteine, aspartate and asparagine also lead to the activation of mGlu3, 4 and 5. Interestingly, our data demonstrate that the effect of these three amino acids did not result from a direct activation of the receptors, but from an indirect action involving Glu-transporters/exchangers. These data first demonstrate that mGlu receptors, unlike other class-C GPCRs, display an extremely high selectivity towards one ligand. Moreover, our results also show that Glu transport systems allow mGlu receptors to sense large increase in the extracellular concentration of some amino acids. Such a system will certainly lead to a large increase in some mGlu receptor activity under pathological conditions, such as seizure, ischemia or other brain injuries. PMID:16310227

  10. Proton transfer roles of lysine 64 and glutamic acid 64 replacing histidine 64 in the active site of human carbonic anhydrase II.

    PubMed

    Engstrand, C; Forsman, C; Liang, Z; Lindskog, S

    1992-08-21

    The CO2 hydration activities of cloned human carbonic anhydrase II (carbonate hydro-lyase, EC 4.2.1.1) and variants with Lys, Glu, Gln or Ala replacing His at sequence position 64 have been measured in a variety of different buffers in the pH range 6-9. The variants with Lys-64, Gln-64 and Ala-64 showed non-Michaelis-Menten behavior under some conditions, apparent substrate inhibition being prominent near pH 9. However, asymptotic Michaelis-Menten parameters could be estimated for the limit of low substrate concentrations. All variants show distinct buffer specificities, and imidazole derivatives, Ches and phosphate buffers yield higher kcat values that Bicine, Taps and Mops buffers under otherwise similar conditions. These results are interpreted in terms of different pathways for a rate-limiting proton transfer. In unmodified enzyme, the very high catalytic activity depends on His-64 functioning as an efficient proton transfer group, but this pathway is not available in the variants with Gln-64 and Ala-64. Imidazoles, Ches and phosphate are thought to participate in a metal center-to-buffer proton transfer pathway, whereas Bicine, Taps, Mops and Mes appear to lack this capacity, so that the rate-limiting proton transfer occurs in a metal center-to-bulk water pathway for these variants. The Lys-64 and Glu-64 variants give significantly higher kcat values in Taps, Mops and Mes buffers than the Ala-64 and Gln-64 variants. The pH dependencies of these kcat values are compatible with the hypothesis that Lys-64 and Glu-64 can function as proton transfer groups. Thus, at pH near 9, Lys-64 appears to be only 5-times less efficient than His-64, while Glu-64 is inefficient. At pH 6, Lys-64 is an inefficient proton transfer group, but Glu-64 is only 2-3-times less efficient than His-64. The data indicate that Lys-64 and Glu-64 have pKa values near 8 and below 6, respectively.

  11. Binding sites for L-(/sup 3/H)glutamate in hippocampus

    SciTech Connect

    Werling, L.L.

    1983-01-01

    Three binding sites for L-(/sup 3/H)glutamate on freshly-prepared hippocampal synaptic membranes were identified on the basis of their differing affinities for L-glutamate or quisqualate. The high affinity site yielded K/sub D/ and B/sub max/ values of 12 nM and 2.5 pmol/mg protein, respectively. Binding sites of lower affinity had K/sub D/ values of 200 nM (GLU A) and 1 ..mu..M (GLU B) and B/sub max/ values of about 30 and 60 pmol/mg protein, respectively. GLU A sites bound quisqualate with about 70 times the affinity fo GLU B sites, and thus quisoqualate could be used as a tool to discriminate them. Hill slopes indicated that each site represented a single population of non-interacting binding sites. Freezing drastically decreased GLU A binding, but nearly tripled GLU B binding. Both sites bound L-glutamate with 10-30 times the affinity of D-glutamate. The GLU A site also bound L-glutamate with about 10 times the affinity of L-asparate and discriminated poorly between L- and D-asparate. In contrast, the GLU B site bound L-aspartate with similar affinity to L-gluamate, and with much higher affinity than it bound D-aspartate. Both lesions of perforant path and destruction of the granule cells with colchicine markedly reduced radioligand binding to the GLU A site in the fascia dentata, but only the perforant path lesion significantly reduced binding to the GLU B site. The structural specificity of the GLU A site is consistent with its identification as a type of quisqualate receptor.

  12. Regulation of the mouse Na+-dependent glutamate/aspartate transporter GLAST: putative role of an AP-1 DNA binding site.

    PubMed

    Ramírez-Sotelo, Guadalupe; López-Bayghen, Esther; Hernández-Kelly, L Clara R; Arias-Montaño, J Antonio; Bernabé, Alfonso; Ortega, Arturo

    2007-01-01

    Appropriate removal of L: -glutamate from the synaptic cleft is important for prevention of the excitotoxic effects of this neurotransmitter. The Na+-dependent glutamate/aspartate transporter GLAST is regulated in the short term, by a transporter-dependent decrease in uptake activity while in the long term, a receptor's-dependent decrease in GLAST protein levels leads to a severe reduction in glutamate uptake. The promoter region of the mouse glast gene harbors an Activator Protein-1 site (AP-1). To gain insight into the molecular mechanisms triggered by Glu-receptors activation involved in GLAST regulation, we took advantage of the neonatal mouse cerebellar prisms model. We characterized the glutamate uptake activity; the glutamate-dependent effect on GLAST protein levels and over the interaction of nuclear proteins with a mouse glast promoter AP-1 probe. A time and dose dependent decrease in transporter activity matching with a decrease in GLAST levels was recorded upon glutamate treatment. Moreover, a significant increase in glast AP-1 DNA binding was found. Pharmacological experiments established that both effects are mediated through alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors, favoring the notion of the critical involvement of glutamate in the regulation of its binding partners: receptors and transporters.

  13. Structural and biochemical characterization of the folyl-poly-γ-l-glutamate hydrolyzing activity of human glutamate carboxypeptidase II.

    PubMed

    Navrátil, Michal; Ptáček, Jakub; Šácha, Pavel; Starková, Jana; Lubkowski, Jacek; Bařinka, Cyril; Konvalinka, Jan

    2014-07-01

    In addition to its well-characterized role in the central nervous system, human glutamate carboxypeptidase II (GCPII; Uniprot ID Q04609) acts as a folate hydrolase in the small intestine, participating in the absorption of dietary polyglutamylated folates (folyl-n-γ-l-glutamic acid), which are the provitamin form of folic acid (also known as vitamin B9 ). Despite the role of GCPII as a folate hydrolase, nothing is known about the processing of polyglutamylated folates by GCPII at the structural or enzymological level. Moreover, many epidemiologic studies on the relationship of the naturally occurring His475Tyr polymorphism to folic acid status suggest that this polymorphism may be associated with several pathologies linked to impaired folate metabolism. In the present study, we report: (a) a series X-ray structures of complexes between a catalytically inactive GCPII mutant (Glu424Ala) and a panel of naturally occurring polyglutamylated folates; (b) the X-ray structure of the His475Tyr variant at a resolution of 1.83 Å; (c) the study of the recently identified arene-binding site of GCPII through mutagenesis (Arg463Leu, Arg511Leu and Trp541Ala), inhibitor binding and enzyme kinetics with polyglutamylated folates as substrates; and (d) a comparison of the thermal stabilities and folate-hydrolyzing activities of GCPII wild-type and His475Tyr variants. As a result, the crystallographic data reveal considerable details about the binding mode of polyglutamylated folates to GCPII, especially the engagement of the arene binding site in recognizing the folic acid moiety. Additionally, the combined structural and kinetic data suggest that GCPII wild-type and His475Tyr variant are functionally identical. PMID:24863754

  14. Electrogenic glutamate uptake in glial cells is activated by intracellular potassium

    NASA Astrophysics Data System (ADS)

    Barbour, Boris; Brew, Helen; Attwell, David

    1988-09-01

    Uptake of glutamate into glial cells in the CNS maintains the extracellular glutamate concentration below neurotoxic levels and helps terminate its action as a neurotransmitter 1. The co-transport of two sodium ions on the glutamate carrier is thought to provide the energy needed to transport glutamate into cells2,3. We have shown recently that glutamate uptake can be detected electrically because the excess of Na+ ions transported with each glutamate anion results in a net current flow into the cell4. We took advantage of the control of the environment, both inside and outside the cell, provided by whole-cell patch-clamping and now report that glutamate uptake is activated by intracellular potassium and inhibited by extracellular potassium. Our results indicate that one K+ ion is transported out of the cell each time a glutamate anion and three Na+ ions are transported in. A carrier with this stoichiometry can accumulate glutamate against a much greater concentration gradient than a carrier co-transporting one glutamate anion and two Na+ ions. Pathological rises in extracellular potassium concentration will inhibit glutamate uptake by depolarizing glial cells and by preventing the loss of K+ from the glutamate carrier. This will facilitate a rise in the extracellular glutamate concentration to neurotoxic levels and contribute to the neuronal death occurring in brain anoxia and ischaemia.

  15. Tolerance to LSD and DOB induced shaking behaviour: differential adaptations of frontocortical 5-HT(2A) and glutamate receptor binding sites.

    PubMed

    Buchborn, Tobias; Schröder, Helmut; Dieterich, Daniela C; Grecksch, Gisela; Höllt, Volker

    2015-03-15

    Serotonergic hallucinogens, such as lysergic acid diethylamide (LSD) and dimethoxy-bromoamphetamine (DOB), provoke stereotype-like shaking behaviour in rodents, which is hypothesised to engage frontocortical glutamate receptor activation secondary to serotonin2A (5-HT2A) related glutamate release. Challenging this hypothesis, we here investigate whether tolerance to LSD and DOB correlates with frontocortical adaptations of 5-HT2A and/or overall-glutamate binding sites. LSD and DOB (0.025 and 0.25 mg/kg, i.p.) induce a ketanserin-sensitive (0.5 mg/kg, i.p., 30-min pretreatment) increase in shaking behaviour (including head twitches and wet dog shakes), which with repeated application (7× in 4 ds) is undermined by tolerance. Tolerance to DOB, as indexed by DOB-sensitive [(3)H]spiroperidol and DOB induced [(35)S]GTP-gamma-S binding, is accompanied by a frontocortical decrease in 5-HT2A binding sites and 5-HT2 signalling, respectively; glutamate-sensitive [(3)H]glutamate binding sites, in contrast, remain unchanged. As to LSD, 5-HT2 signalling and 5-HT2A binding, respectively, are not or only marginally affected, yet [(3)H]glutamate binding is significantly decreased. Correlation analysis interrelates tolerance to DOB to the reduced 5-HT2A (r=.80) as well as the unchanged [(3)H]glutamate binding sites (r=.84); tolerance to LSD, as opposed, shares variance with the reduction in [(3)H]glutamate binding sites only (r=.86). Given that DOB and LSD both induce tolerance, one correlating with 5-HT2A, the other with glutamate receptor adaptations, it might be inferred that tolerance can arise at either level. That is, if a hallucinogen (like LSD in our study) fails to induce 5-HT2A (down-)regulation, glutamate receptors (activated postsynaptic to 5-HT2A related glutamate release) might instead adapt and thus prevent further overstimulation of the cortex. PMID:25513973

  16. Tolerance to LSD and DOB induced shaking behaviour: differential adaptations of frontocortical 5-HT(2A) and glutamate receptor binding sites.

    PubMed

    Buchborn, Tobias; Schröder, Helmut; Dieterich, Daniela C; Grecksch, Gisela; Höllt, Volker

    2015-03-15

    Serotonergic hallucinogens, such as lysergic acid diethylamide (LSD) and dimethoxy-bromoamphetamine (DOB), provoke stereotype-like shaking behaviour in rodents, which is hypothesised to engage frontocortical glutamate receptor activation secondary to serotonin2A (5-HT2A) related glutamate release. Challenging this hypothesis, we here investigate whether tolerance to LSD and DOB correlates with frontocortical adaptations of 5-HT2A and/or overall-glutamate binding sites. LSD and DOB (0.025 and 0.25 mg/kg, i.p.) induce a ketanserin-sensitive (0.5 mg/kg, i.p., 30-min pretreatment) increase in shaking behaviour (including head twitches and wet dog shakes), which with repeated application (7× in 4 ds) is undermined by tolerance. Tolerance to DOB, as indexed by DOB-sensitive [(3)H]spiroperidol and DOB induced [(35)S]GTP-gamma-S binding, is accompanied by a frontocortical decrease in 5-HT2A binding sites and 5-HT2 signalling, respectively; glutamate-sensitive [(3)H]glutamate binding sites, in contrast, remain unchanged. As to LSD, 5-HT2 signalling and 5-HT2A binding, respectively, are not or only marginally affected, yet [(3)H]glutamate binding is significantly decreased. Correlation analysis interrelates tolerance to DOB to the reduced 5-HT2A (r=.80) as well as the unchanged [(3)H]glutamate binding sites (r=.84); tolerance to LSD, as opposed, shares variance with the reduction in [(3)H]glutamate binding sites only (r=.86). Given that DOB and LSD both induce tolerance, one correlating with 5-HT2A, the other with glutamate receptor adaptations, it might be inferred that tolerance can arise at either level. That is, if a hallucinogen (like LSD in our study) fails to induce 5-HT2A (down-)regulation, glutamate receptors (activated postsynaptic to 5-HT2A related glutamate release) might instead adapt and thus prevent further overstimulation of the cortex.

  17. Metabolic pathways and activity-dependent modulation of glutamate concentration in the human brain.

    PubMed

    Mangia, Silvia; Giove, Federico; Dinuzzo, Mauro

    2012-11-01

    Glutamate is one of the most versatile molecules present in the human brain, involved in protein synthesis, energy production, ammonia detoxification, and transport of reducing equivalents. Aside from these critical metabolic roles, glutamate plays a major part in brain function, being not only the most abundant excitatory neurotransmitter, but also the precursor for γ-aminobutyric acid, the predominant inhibitory neurotransmitter. Regulation of glutamate levels is pivotal for normal brain function, as abnormal extracellular concentration of glutamate can lead to impaired neurotransmission, neurodegeneration and even neuronal death. Understanding how the neuron-astrocyte functional and metabolic interactions modulate glutamate concentration during different activation status and under physiological and pathological conditions is a challenging task, and can only be tentatively estimated from current literature. In this paper, we focus on describing the various metabolic pathways which potentially affect glutamate concentration in the brain, and emphasize which ones are likely to produce the variations in glutamate concentration observed during enhanced neuronal activity in human studies.

  18. Overlapping binding sites drive allosteric agonism and positive cooperativity in type 4 metabotropic glutamate receptors.

    PubMed

    Rovira, Xavier; Malhaire, Fanny; Scholler, Pauline; Rodrigo, Jordi; Gonzalez-Bulnes, Patricia; Llebaria, Amadeu; Pin, Jean-Philippe; Giraldo, Jesús; Goudet, Cyril

    2015-01-01

    Type 4 metabotropic glutamate (mGlu4) receptors are emerging targets for the treatment of various disorders. Accordingly, numerous mGlu4-positive allosteric modulators (PAMs) have been identified, some of which also display agonist activity. To identify the structural bases for their allosteric action, we explored the relationship between the binding pockets of mGlu4 PAMs with different chemical scaffolds and their functional properties. By use of innovative mGlu4 biosensors and second-messenger assays, we show that all PAMs enhance agonist action on the receptor through different degrees of allosteric agonism and positive cooperativity. For example, whereas VU0155041 and VU0415374 display equivalent efficacies [log(τ(B)) = 1.15 ± 0.38 and 1.25 ± 0.44, respectively], they increase the ability of L-AP4 to stabilize the active conformation of the receptor by 4 and 39 times, respectively. Modeling and docking studies identify 2 overlapping binding pockets as follows: a first site homologous to the pocket of natural agonists of class A GPCRs linked to allosteric agonism and a second one pointing toward a site topographically homologous to the Na(+) binding pocket of class A GPCRs, occupied by PAMs exhibiting the strongest cooperativity. These results reveal that intrinsic efficacy and cooperativity of mGlu4 PAMs are correlated with their binding mode, and vice versa, integrating structural and functional knowledge from different GPCR classes. PMID:25342125

  19. Activity-Dependent Plasticity of Astroglial Potassium and Glutamate Clearance

    PubMed Central

    Cheung, Giselle; Sibille, Jérémie; Zapata, Jonathan; Rouach, Nathalie

    2015-01-01

    Recent evidence has shown that astrocytes play essential roles in synaptic transmission and plasticity. Nevertheless, how neuronal activity alters astroglial functional properties and whether such properties also display specific forms of plasticity still remain elusive. Here, we review research findings supporting this aspect of astrocytes, focusing on their roles in the clearance of extracellular potassium and glutamate, two neuroactive substances promptly released during excitatory synaptic transmission. Their subsequent removal, which is primarily carried out by glial potassium channels and glutamate transporters, is essential for proper functioning of the brain. Similar to neurons, different forms of short- and long-term plasticity in astroglial uptake have been reported. In addition, we also present novel findings showing robust potentiation of astrocytic inward currents in response to repetitive stimulations at mild frequencies, as low as 0.75 Hz, in acute hippocampal slices. Interestingly, neurotransmission was hardly affected at this frequency range, suggesting that astrocytes may be more sensitive to low frequency stimulation and may exhibit stronger plasticity than neurons to prevent hyperexcitability. Taken together, these important findings strongly indicate that astrocytes display both short- and long-term plasticity in their clearance of excess neuroactive substances from the extracellular space, thereby regulating neuronal activity and brain homeostasis. PMID:26346563

  20. Neuronal activity regulates remyelination via glutamate signalling to oligodendrocyte progenitors

    PubMed Central

    Gautier, Hélène O. B.; Evans, Kimberley A.; Volbracht, Katrin; James, Rachel; Sitnikov, Sergey; Lundgaard, Iben; James, Fiona; Lao-Peregrin, Cristina; Reynolds, Richard; Franklin, Robin J. M.; Káradóttir, Ragnhildur T

    2015-01-01

    Myelin regeneration can occur spontaneously in demyelinating diseases such as multiple sclerosis (MS). However, the underlying mechanisms and causes of its frequent failure remain incompletely understood. Here we show, using an in-vivo remyelination model, that demyelinated axons are electrically active and generate de novo synapses with recruited oligodendrocyte progenitor cells (OPCs), which, early after lesion induction, sense neuronal activity by expressing AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)/kainate receptors. Blocking neuronal activity, axonal vesicular release or AMPA receptors in demyelinated lesions results in reduced remyelination. In the absence of neuronal activity there is a ∼6-fold increase in OPC number within the lesions and a reduced proportion of differentiated oligodendrocytes. These findings reveal that neuronal activity and release of glutamate instruct OPCs to differentiate into new myelinating oligodendrocytes that recover lost function. Co-localization of OPCs with the presynaptic protein VGluT2 in MS lesions implies that this mechanism may provide novel targets to therapeutically enhance remyelination. PMID:26439639

  1. [Inhibition of glutamine synthetase activity by biologically active derivatives of glutamic acid].

    PubMed

    Firsova, N A; Selivanova, K M; Alekseeva, L V; Evstigneeva, Z G

    1986-05-01

    The inhibition of activity of glutamine synthetase from Chlorella and porcine brain by 4-hydroxy-D-4-fluoro-D,L- and 4-amino-D,L-glutamic acids diastereoisomers was studied. Each compound was shown to exert the same inhibiting effect on glutamine synthetase from both sources. In case of threo-4-hydroxy-D-glutamic acid the inhibition of the Chlorella enzyme was of a competitive and of a completely mixed type. The enzyme inhibition by 4-fluoro-D, L-glutamic acids seemed to be of a completely non-competitive type. The Ki values for all inhibition reactions were determined. A comparison of biochemical parameters and biological activity revealed that the most effective inhibitors of the enzyme exert a most potent antitumour and antiviral action.

  2. Glutamate and GABA-metabolizing enzymes in post-mortem cerebellum in Alzheimer's disease: phosphate-activated glutaminase and glutamic acid decarboxylase.

    PubMed

    Burbaeva, G Sh; Boksha, I S; Tereshkina, E B; Savushkina, O K; Prokhorova, T A; Vorobyeva, E A

    2014-10-01

    Enzymes of glutamate and GABA metabolism in postmortem cerebellum from patients with Alzheimer's disease (AD) have not been comprehensively studied. The present work reports results of original comparative study on levels of phosphate-activated glutaminase (PAG) and glutamic acid decarboxylase isoenzymes (GAD65/67) in autopsied cerebellum samples from AD patients and matched controls (13 cases in each group) as well as summarizes published evidence for altered levels of PAG and GAD65/67 in AD brain. Altered (decreased) levels of these enzymes and changes in links between amounts of these enzymes and other glutamate-metabolizing enzymes (such as glutamate dehydrogenase and glutamine synthetase-like protein) in AD cerebella suggest significantly impaired glutamate and GABA metabolism in this brain region, which was previously regarded as not substantially involved in AD pathogenesis.

  3. Acute Modulation of Cortical Glutamate and GABA Content by Physical Activity.

    PubMed

    Maddock, Richard J; Casazza, Gretchen A; Fernandez, Dione H; Maddock, Michael I

    2016-02-24

    Converging evidence demonstrates that physical activity evokes a brain state characterized by distinctive changes in brain metabolism and cortical function. Human studies have shown that physical activity leads to a generalized increase in electroencephalography power across regions and frequencies, and a global increase in brain nonoxidative metabolism of carbohydrate substrates. This nonoxidative consumption of carbohydrate has been hypothesized to include increased de novo synthesis of amino acid neurotransmitters, especially glutamate and GABA. Here, we conducted a series of proton magnetic resonance spectroscopy studies in human volunteers before and after vigorous exercise (≥80% of predicted maximal heart rate). Results showed that the resonance signals of both glutamate and GABA increased significantly in the visual cortex following exercise. We further demonstrated a similar increase in glutamate following exercise in an executive region, the anterior cingulate cortex. The increase in glutamate was similar when using echo times of 30 and 144 ms, indicating that exercise-related T2 relaxation effects across this range of relaxation times did not account for the findings. In addition, we found preliminary evidence that more physical activity during the preceding week predicts higher resting glutamate levels. Overall, the results are consistent with an exercise-induced expansion of the cortical pools of glutamate and GABA, and add to a growing understanding of the distinctive brain state associated with physical activity. A more complete understanding of this brain state may reveal important insights into mechanisms underlying the beneficial effects of physical exercise in neuropsychiatric disorders, neurorehabilitation, aging, and cognition.

  4. Activation of muscarinic receptors inhibits glutamate-induced GSK-3β overactivation in PC12 cells

    PubMed Central

    Ma, Ke; Yang, Li-min; Chen, Hong-zhuan; Lu, Yang

    2013-01-01

    Aim: To investigate the actions of the muscarinic agonist carbachol on glutamate-induced neurotoxicity in PC12 cells, and the underlying mechanisms. Methods: PC12 cells were treated with different concentrations of glutamate for 24 or 48 h. The cell viability was measured using MTT assay, and the expression and activation of GSK-3β were detected with Western blot. β-Catenin translocation was detected using immunofluorescence. Luciferase reporter assay and real-time PCR were used to analyze the transcriptional activity of β-catenin. Results: Glutamate (1, 3, and 10 mmol/L) induced PC12 cell death in a dose-dependent manner. Moreover, treatment of the cells with glutamate (1 mmol/L) caused significant overactivation of GSK-3β and prevented β-catenin translocation to the nucleus. Pretreatment with carbachol (0.01 μmol/L) blocked glutamate-induced cell death and GSK-3β overactivation, and markedly enhanced β-catenin transcriptional activity. Conclusion: Activation of muscarinic receptors exerts neuroprotection in PC12 cells by attenuating glutamate-induced GSK-3β overactivation, suggesting potential benefits of muscarinic agonists for Alzheimer's disease. PMID:23685950

  5. Maternal inflammation leads to impaired glutamate homeostasis and up-regulation of glutamate carboxypeptidase II in activated microglia in the fetal/newborn rabbit brain.

    PubMed

    Zhang, Zhi; Bassam, Bassam; Thomas, Ajit G; Williams, Monica; Liu, Jinhuan; Nance, Elizabeth; Rojas, Camilo; Slusher, Barbara S; Kannan, Sujatha

    2016-10-01

    Astrocyte dysfunction and excessive activation of glutamatergic systems have been implicated in a number of neurologic disorders, including periventricular leukomalacia (PVL) and cerebral palsy (CP). However, the role of chorioamnionitis on glutamate homeostasis in the fetal and neonatal brains is not clearly understood. We have previously shown that intrauterine endotoxin administration results in intense microglial 'activation' and increased pro-inflammatory cytokines in the periventricular region (PVR) of the neonatal rabbit brain. In this study, we assessed the effect of maternal inflammation on key components of the glutamate pathway and its relationship to astrocyte and microglial activation in the fetal and neonatal New Zealand white rabbit brain. We found that intrauterine endotoxin exposure at gestational day 28 (G28) induced acute and prolonged glutamate elevation in the PVR of fetal (G29, 1day post-injury) and postnatal day 1 (PND1, 3days post-injury) brains along with prominent morphological changes in the astrocytes (soma hypertrophy and retracted processes) in the white matter tracts. There was a significant increase in glutaminase and N-Methyl-d-Aspartate receptor (NMDAR) NR2 subunit expression along with decreased glial L-glutamate transporter 1 (GLT-1) in the PVR at G29, that would promote acute dysregulation of glutamate homeostasis. This was accompanied with significantly decreased TGF-β1 at PND1 in CP kits indicating ongoing neuroinflammation. We also show for the first time that glutamate carboxypeptidase II (GCPII) was significantly increased in the activated microglia at the periventricular white matter area in both G29 and PND1 CP kits. This was confirmed by in vitro studies demonstrating that LPS activated primary microglia markedly upregulate GCPII enzymatic activity. These results suggest that maternal intrauterine endotoxin exposure results in early onset and long-lasting dysregulation of glutamate homeostasis, which may be mediated by

  6. Neuroprotective Activity of Pongamia pinnata in Monosodium Glutamate-induced Neurotoxicity in Rats

    PubMed Central

    Swamy, A. H. M. VISWANATHA; Patel, N. L.; Gadad, P. C.; Koti, B. C.; Patel, U. M.; Thippeswamy, A. H. M.; Manjula, D. V.

    2013-01-01

    This study was designed to evaluate the neuroprotective activity of ethanol extract of Pongamia pinnata stem bark in monosodium glutamate-induced neurotoxicity in rats. Neurotoxicity was induced by intraperitoneal injection of monosodium glutamate 2 g per kg body weight daily for 7 days. Ethanol extract of Pongamia pinnata stem bark (200 and 400 mg/kg) was administered orally after 1 h of monosodium glutamate treatment. Dextromethorphan (30 mg/kg, p.o.) was used as standard drug for the comparison. The degree of protection was determined by various behavioural, locomotor, muscle grip activity, lipid peroxidation and measurement of antioxidant status of glutathione, catalase and superoxide dismutase. Estimation of calcium, sodium and potassium ions in brain tissue and gamma aminobutyric acid level in serum was carried out. The histopathological study of brain tissue was also carried out. Treatment with Pongamia pinnata significantly improved monosodium glutamate-induced alteration in behavioural and locomotor activity and muscle strength. Significant decrease in lipid peroxidation and increase in glutathione, superoxide dismutase and catalase was observed in Pongamia pinnata treated group. Further, Pongamia pinnata also significantly reduced the monosodium glutamate-induced excitotoxicity by decreasing the level of Ca+2 and Na+ with concomitant increase in the level of K+. Serum gamma aminobutyric acid level was also increased in Pongamia pinnata treated animals. Further, the histopathological evidence supports the neuroprotective activity of Pongamia pinnata. In conclusion, the present study suggests that the ethanol extract of stem bark of Pongamia pinnata possesses significant neuroprotective activity in albino rats. PMID:24591740

  7. Neuroprotective Activity of Pongamia pinnata in Monosodium Glutamate-induced Neurotoxicity in Rats.

    PubMed

    Swamy, A H M Viswanatha; Patel, N L; Gadad, P C; Koti, B C; Patel, U M; Thippeswamy, A H M; Manjula, D V

    2013-11-01

    This study was designed to evaluate the neuroprotective activity of ethanol extract of Pongamia pinnata stem bark in monosodium glutamate-induced neurotoxicity in rats. Neurotoxicity was induced by intraperitoneal injection of monosodium glutamate 2 g per kg body weight daily for 7 days. Ethanol extract of Pongamia pinnata stem bark (200 and 400 mg/kg) was administered orally after 1 h of monosodium glutamate treatment. Dextromethorphan (30 mg/kg, p.o.) was used as standard drug for the comparison. The degree of protection was determined by various behavioural, locomotor, muscle grip activity, lipid peroxidation and measurement of antioxidant status of glutathione, catalase and superoxide dismutase. Estimation of calcium, sodium and potassium ions in brain tissue and gamma aminobutyric acid level in serum was carried out. The histopathological study of brain tissue was also carried out. Treatment with Pongamia pinnata significantly improved monosodium glutamate-induced alteration in behavioural and locomotor activity and muscle strength. Significant decrease in lipid peroxidation and increase in glutathione, superoxide dismutase and catalase was observed in Pongamia pinnata treated group. Further, Pongamia pinnata also significantly reduced the monosodium glutamate-induced excitotoxicity by decreasing the level of Ca(+2) and Na(+) with concomitant increase in the level of K(+). Serum gamma aminobutyric acid level was also increased in Pongamia pinnata treated animals. Further, the histopathological evidence supports the neuroprotective activity of Pongamia pinnata. In conclusion, the present study suggests that the ethanol extract of stem bark of Pongamia pinnata possesses significant neuroprotective activity in albino rats.

  8. Glutamine synthetase activity and glutamate uptake in hippocampus and frontal cortex in portal hypertensive rats

    PubMed Central

    Acosta, Gabriela Beatriz; Fernández, María Alejandra; Roselló, Diego Martín; Tomaro, María Luján; Balestrasse, Karina; Lemberg, Abraham

    2009-01-01

    AIM: To study glutamine synthetase (GS) activity and glutamate uptake in the hippocampus and frontal cortex (FC) from rats with prehepatic portal vein hypertension. METHODS: Male Wistar rats were divided into sham-operated group and a portal hypertension (PH) group with a regulated stricture of the portal vein. Animals were sacrificed by decapitation 14 d after portal vein stricture. GS activity was determined in the hippocampus and FC. Specific uptake of radiolabeled L-glutamate was studied using synaptosome-enriched fractions that were freshly prepared from both brain areas. RESULTS: We observed that the activity of GS increased in the hippocampus of PH rats, as compared to control animals, and decreased in the FC. A significant decrease in glutamate uptake was found in both brain areas, and was more marked in the hippocampus. The decrease in glutamate uptake might have been caused by a deficient transport function, significantly and persistent increase in this excitatory neurotransmitter activity. CONCLUSION: The presence of moderate ammonia blood levels may add to the toxicity of excitotoxic glutamate in the brain, which causes alterations in brain function. Portal vein stricture that causes portal hypertension modifies the normal function in some brain regions. PMID:19533812

  9. Physiological Characterization of Pseudomonas aeruginosa during Exotoxin A Synthesis: Glutamate, Iron Limitation, and Aconitase Activity

    PubMed Central

    Somerville, Greg; Mikoryak, Carole Ann; Reitzer, Larry

    1999-01-01

    Glutamate enhances the yield of exotoxin A (ETA), which is induced by iron limitation, from Pseudomonas aeruginosa. We tested the possibility that glutamate affects growth during iron restriction. We confirmed that iron limitation caused early entry into stationary phase but had no effect on the exponential growth rate. We showed that glutamate, as well as citrate and isocitrate, partially overcame this growth limitation. Glutamate had no effect on toxA (ETA-encoding) transcription, which implies that glutamate primarily increases the number of toxin-producing cells. In contrast, citrate and isocitrate diminished toxA transcription. Since glutamate, citrate, and isocitrate stimulated growth, we suspected a block in the citric acid cycle. Iron limitation reduced the activity of the iron-containing aconitase 12-fold but had no effect on isocitrate dehydrogenase activity, which was assayed as a control. There is a reciprocal relationship between aconitase activity and ETA synthesis, and this correlation does not appear to be coincidental because aconitase-specific effectors affect ETA synthesis. We tested whether a metabolic block is sufficient to induce ETA synthesis, but an aconitase-specific inhibitor diminished ETA production, which argues against this possibility. Finally, we present preliminary evidence that iron limitation may reversibly and posttranslationally inactivate aconitase in vivo. In summary, the environmental factors that stimulate ETA synthesis are related: glutamate bypasses an iron limitation-dependent metabolic block that causes entry into stationary phase. We speculate that one or more of the aconitases in P. aeruginosa may contribute to the control of virulence factor synthesis. PMID:9973331

  10. Elevated venous glutamate levels in (pre)catabolic conditions result at least partly from a decreased glutamate transport activity.

    PubMed

    Hack, V; Stütz, O; Kinscherf, R; Schykowski, M; Kellerer, M; Holm, E; Dröge, W

    1996-06-01

    Abnormally high postabsorptive venous plasma glutamate levels have been reported for several diseases that are associated with a loss of body cell mass including cancer, human/simian immunodeficiency virus infection, and amyotrophic lateral sclerosis. Studies on exchange rates in well-nourished cancer patients now show that high venous plasma glutamate levels may serve as a bona fide indicator for a decreased uptake of glutamate by the peripheral muscle tissue in the postabsorptive period and may be indicative for a precachectic state. High glutamate levels are also moderately correlated with a decreased uptake of glucose and ketone bodies. Relatively high venous glutamate levels have also been found in non-insulin-dependent diabetes mellitus and to some extent also in the cubital vein of normal elderly subjects, i.e., in conditions commonly associated with a decreased glucose tolerance and progressive loss of body cell mass.

  11. Traumatic Brain Injury Increases Cortical Glutamate Network Activity by Compromising GABAergic Control

    PubMed Central

    Cantu, David; Walker, Kendall; Andresen, Lauren; Taylor-Weiner, Amaro; Hampton, David; Tesco, Giuseppina; Dulla, Chris G.

    2015-01-01

    Traumatic brain injury (TBI) is a major risk factor for developing pharmaco-resistant epilepsy. Although disruptions in brain circuitry are associated with TBI, the precise mechanisms by which brain injury leads to epileptiform network activity is unknown. Using controlled cortical impact (CCI) as a model of TBI, we examined how cortical excitability and glutamatergic signaling was altered following injury. We optically mapped cortical glutamate signaling using FRET-based glutamate biosensors, while simultaneously recording cortical field potentials in acute brain slices 2–4 weeks following CCI. Cortical electrical stimulation evoked polyphasic, epileptiform field potentials and disrupted the input–output relationship in deep layers of CCI-injured cortex. High-speed glutamate biosensor imaging showed that glutamate signaling was significantly increased in the injured cortex. Elevated glutamate responses correlated with epileptiform activity, were highest directly adjacent to the injury, and spread via deep cortical layers. Immunoreactivity for markers of GABAergic interneurons were significantly decreased throughout CCI cortex. Lastly, spontaneous inhibitory postsynaptic current frequency decreased and spontaneous excitatory postsynaptic current increased after CCI injury. Our results suggest that specific cortical neuronal microcircuits may initiate and facilitate the spread of epileptiform activity following TBI. Increased glutamatergic signaling due to loss of GABAergic control may provide a mechanism by which TBI can give rise to post-traumatic epilepsy. PMID:24610117

  12. Voltage-dependent drug blockade of L-glutamate activated channels of the crayfish.

    PubMed Central

    Dekin, M S; Edwards, C

    1983-01-01

    The actions of d-tubocurarine (d-TC) and local anaesthetics on the L-glutamate activated channel at the voltage-clamped crayfish neuromuscular junction were studied. The effect of d-TC and local anaesthetics on the dose-response relationship between ionophoretically applied L-glutamate and synaptic current suggested that both acted as non-competitive inhibitors. The amount of inhibition was voltage dependent, and increased as the membrane potential was hyperpolarized. This voltage-dependent block was also manifest in a flattening of the I-V relationship between L-glutamate induced current and membrane potential in the presence of d-TC. However, the reversal potential for the L-glutamate activated channel was not affected; it was about +7 mV in both the presence and absence of d-TC. The neurally evoked excitatory post-synaptic current (e.p.s.c.) was depressed in the presence of these drugs and this effect was also voltage dependent. The time course of the e.p.s.c. was affected, but less so than expected if the L-glutamate activated channel were identical to the channel opened by acetylcholine at the vertebrate neuromuscular junction. Possible reasons for this discrepancy are discussed. PMID:6312026

  13. Solubilization, partial purification, and reconstitution of glutamate- and N-methyl-D-aspartate-activated cation channels from brain synaptic membranes

    SciTech Connect

    Ly, A.M.; Michaelis, E.K. )

    1991-04-30

    L-Glutamate-activated cation channel proteins from rat brain synaptic membranes were solubilized, partially purified, and reconstituted into liposomes. Optimal conditions for solubilization and reconstitution included treatment of the membranes with nonionic detergents in the presence of neutral phospholipids plus glycerol. Quench-flow procedures were developed to characterize the rapid kinetics of ion flux induced by receptor agonists. ({sup 14}C)Methylamine, a cation that permeates through the open channel of both vertebrate and invertebrate glutamate receptors, was used to measure the activity of glutamate receptor-ion channel complexes in reconstituted liposomes. L-Glutamate caused an increase in the rate of ({sup 14}C)methylamine influx into liposomes reconstituted with either solubilized membrane proteins or partially purified glutamate-binding proteins. Of the major glutamate receptor agonists, only N-methyl-D-aspartate activated cation fluxes in liposomes reconstituted with glutamate-binding proteins. In liposomes reconstituted with glutamate-binding proteins, N-methyl-D-aspartate- or glutamate-induced influx of NA{sup +} led to a transient increase in the influx of the lipid-permeable anion probe S{sup 14}CN{sup {minus}}. These results indicate the functional reconstitution of N-methyl-D-aspartate-sensitive glutamate receptors and the role of the {approximately}69-kDa protein in the function of these ion channels.

  14. Construction of a dimeric form of glutamate dehydrogenase from Clostridium symbiosum by site-directed mutagenesis.

    PubMed

    Pasquo, A; Britton, K L; Stillman, T J; Rice, D W; Cölfen, H; Harding, S E; Scandurra, R; Engel, P C

    1996-10-17

    By using site-directed mutagenesis, Phe-187, one of the amino-acid residues involved in hydrophobic interaction between the three identical dimers comprising the hexamer of Clostridium symbiosum glutamate dehydrogenase (GDH), has been replaced by an aspartic acid residue. Over-expression in Escherichia coli led to production of large amounts of a soluble protein which, though devoid of GDH activity, showed the expected subunit M(r) on SDS-PAGE, and cross-reacted with an anti-GDH antibody preparation in Western blots. The antibody was used to monitor purification of the inactive protein. F187D GDH showed altered mobility on non-denaturing electrophoresis, consistent with changed size and/or surface charge. Gel filtration on a calibrated column indicated an M(r) of 87000 +/- 3000. The mutant enzyme did not bind to the dye column routinely used in preparing wild-type GDH. Nevertheless suspicions of major misfolding were allayed by the results of chemical modification studies: as with wild-type GDH, NAD+ completely protected one-SH group against modification by DTNB, implying normal coenzyme binding. A significant difference, however, is that in the mutant enzyme both cysteine groups were modified by DTNB, rather than C320 only. The CD spectrum in the far-UV region indicated no major change in secondary structure in the mutant protein. The near-UV CD spectrum, however, was less intense and showed a pronounced Phe contribution, possibly reflecting the changed environment of Phe-199, which would be buried in the hexamer. Sedimentation velocity experiments gave corrected coefficients S20,W of 11.08 S and 5.29 S for the wild-type and mutant proteins. Sedimentation equilibrium gave weight average molar masses M(r,app) of 280000 +/- 5000 g/mol. consistent with the hexameric structure for the wild-type protein and 135000 +/- 3000 g/mol for F187D. The value for the mutant is intermediate between the values expected for a dimer (98000) and a trimer (147000). To investigate the

  15. EVALUATING THE NMDA-GLUTAMATE RECEPTOR AS A SITE OF ACTION FOR TOLUENE, IN VIVO

    EPA Science Inventory

    In vitro, toluene disrupts the function of NMDA-glutamate receptors, indicating that effects on NMDA receptor function may contribute to toluene neurotoxicity. NMDA-glutamate receptors are widely present in the visual system and contribute to pattern-elicited visual evoked potent...

  16. Resveratrol Prevents Retinal Dysfunction by Regulating Glutamate Transporters, Glutamine Synthetase Expression and Activity in Diabetic Retina.

    PubMed

    Zeng, Kaihong; Yang, Na; Wang, Duozi; Li, Suping; Ming, Jian; Wang, Jing; Yu, Xuemei; Song, Yi; Zhou, Xue; Yang, Yongtao

    2016-05-01

    This study investigated the effects of resveratrol (RSV) on retinal functions, glutamate transporters (GLAST) and glutamine synthetase (GS) expression in diabetic rats retina, and on glutamate uptake, GS activity, GLAST and GS expression in high glucose-cultured Müller cells. The electroretinogram was used to evaluate retinal functions. Müller cells cultures were prepared from 5- to 7-day-old Sprague-Dawley rats. The expression of GLAST and GS was examined by qRT-PCR, ELISA and western-blotting. Glutamate uptake was measured as (3)H-glutamate contents of the lysates. GS activity was assessed by a spectrophotometric assay. 1- to 7-month RSV administrations (5 and 10 mg/kg/day) significantly alleviated hyperglycemia and weight loss in diabetic rats. RSV administrations also significantly attenuated diabetes-induced decreases in amplitude of a-wave in rod response, decreases in amplitude of a-, and b-wave in cone and rod response and decreases in amplitude of OP2 in oscillatory potentials. 1- to 7-month RSV treatments also significantly inhibited diabetes-induced delay in OP2 implicit times in scotopic 3.0 OPS test. The down-regulated mRNA and protein expression of GLAST and GS in diabetic rats retina was prevented by RSV administrations. In high glucose-treated cultures, Müller cells' glutamate uptake, GS activity, GLAST and GS expression were decreased significantly compared with normal control cultures. RSV (10, 20, and 30 mmol/l) significantly inhibited the HG-induced decreases in glutamate uptake, GS activity, GLAST and GS expression (at least P < 0.05). These beneficial results suggest that RSV may be considered as a therapeutic option to prevent from diabetic retinopathy.

  17. A role for glutamate decarboxylase during tomato ripening: the characterisation of a cDNA encoding a putative glutamate decarboxylase with a calmodulin-binding site.

    PubMed

    Gallego, P P; Whotton, L; Picton, S; Grierson, D; Gray, J E

    1995-03-01

    A tomato fruit cDNA library was differentially screened to identify mRNAs present at higher levels in fruit of the tomato ripening mutant rin (ripening inhibitor). Complete sequencing of a unique clone ERT D1 revealed an open reading frame with homology to several glutamate decarboxylases. The deduced polypeptide sequence has 80% overall amino acid sequence similarity to a Petunia hybrida glutamate decarboxylase (petGAD) which carries a calmodulin-binding site at its carboxyl terminus and ERT D1 appears to have a similar domain. ERT D1 mRNA levels peaked at the first visible sign of fruit colour change during normal tomato ripening and then declined, whereas in fruit of the ripening impaired mutant, rin, accumulation of this mRNA continued until at least 14 days after the onset of ripening. This mRNA was present at much lower levels in other tissues, such as leaves, roots and stem, and was not increased by wounding. Possible roles for GAD, and its product gamma-aminobutyric acid (GABA) in fruit, are discussed.

  18. Neurotransmitters, neuropeptides and binding sites in the rat mediobasal hypothalamus: effects of monosodium glutamate (MSG) lesions.

    PubMed

    Meister, B; Ceccatelli, S; Hökfelt, T; Andén, N E; Andén, M; Theodorsson, E

    1989-01-01

    Indirect immunofluorescence histochemistry and receptor autoradiography were used to study the localization of transmitter-/peptide-containing neurons and peptide binding sites in the mediobasal hypothalamus in normal rats and in rats treated neonatally with repeated doses of the neurotoxin monosodium-glutamate (MSG). In the arcuate nucleus, the results showed a virtually complete loss of cell bodies containing immunoreactivity for growth hormone-releasing factor (GRF), galanin (GAL), dynorphin (DYN), enkephalin (ENK), corticotropin-like intermediate peptide (CLIP), neuropeptide Y (NPY), and neuropeptide K (NPK). Tyrosine hydroxylase(TH)-glutamic acid decarboxylase(GAD)-, neurotensin(NT)- and somatostatin(SOM)-immunoreactive (IR) cells were, however, always detected in the ventrally dislocated, dorsomedial division of the arcuate nucleus. In the median eminence, marked decreases in numbers of GAD-, NT-, GAL-, GRF-, DYN-, and ENK-IR fibers were observed. The numbers of TH-, SOM- and NPY-IR fibers were in contrast not or only affected to a very small extent, as revealed with the immunofluorescence technique. Biochemical analysis showed a tendency for MSG to reduce dopamine levels in the median eminence of female rats, whereas no effect was observed in male rats. Autoradiographic studies showed high to moderate NT binding sites, including strong binding over presumably dorsomedial dopamine cells. In MSG-treated rats, there was a marked reduction in GAL binding in the ventromedial nucleus. The findings implicate that most neurons in the ventrolateral and ventromedial arcuate nucleus are sensitive to the toxic effects of MSG, whereas a subpopulation of cells in the dorsomedial division of the arcuate nucleus, including dopamine neurons, are not susceptible to MSG-neurotoxicity. The results indicate, moreover that the very dense TH-IR fiber network in the median eminence predominantly arises from the dorsomedial TH-IR arcuate cells, whereas the GAD-, NT-, GAL-, GRF- and

  19. Α-amino-β-fluorocyclopropanecarboxylic acids as a new tool for drug development: synthesis of glutamic acid analogs and agonist activity towards metabotropic glutamate receptor 4.

    PubMed

    Lemonnier, Gérald; Lion, Cédric; Quirion, Jean-Charles; Pin, Jean-Philippe; Goudet, Cyril; Jubault, Philippe

    2012-08-01

    Herein we describe the diastereoselective synthesis of glutamic acid analogs and the evaluation of their agonist activity towards metabotropic glutamate receptor subtype 4 (mGluR4). These analogs are based on a monofluorinated cyclopropane core substituted with an α-aminoacid function. The potential of this new building block as a tool for the development of a novel class of drugs is demonstrated with racemic analog 11a that displayed the best agonist activity with an EC50 of 340 nM.

  20. Effects of 3-aminoglutarate, a "silent" false transmitter for glutamate neurons, on synaptic transmission and epileptiform activity.

    PubMed

    Wu, Zheng; Foster, Alan C; Staubli, Ursula; Wu, Xia; Sun, Chicheng; Tang, Xin; Li, Yong-Xin; Chen, Gong

    2015-10-01

    Pharmacological tools that interact with the mechanisms that regulate vesicular filling and release of the neurotransmitter L-glutamate would be of enormous value. In this study, we provide physiological evidence that the glutamate analog, 3-aminoglutarate (3-AG), acts as a false transmitter to reduce presynaptic glutamate release. 3-AG inhibits glutamate-mediated neurotransmission both in primary neuronal cultures and in brain slices with more intact neural circuits. When assayed with the low affinity glutamate receptor antagonist γ-DGG, we demonstrate that 3-AG significantly reduces the synaptic cleft glutamate concentration, suggesting that 3-AG may act as a false transmitter to compete with glutamate during vesicle filling. Furthermore, using three different epileptic models (Mg(2+)-free, 4-AP, and high K(+)), we demonstrate that 3-AG is capable of suppressing epileptiform activity both before and after its induction. Our studies, along with those of the companion paper by Foster et al. (2015) indicate that 3-AG is a "silent" false transmitter for glutamate neurons that is a useful pharmacological tool to probe the mechanisms governing vesicular storage and release of glutamate under both physiological and pathophysiological conditions. 3-AG may have potential therapeutic value in conditions where the glutamate neurotransmitter system is pathologically overactive.

  1. Exposure to high glutamate concentration activates aerobic glycolysis but inhibits ATP-linked respiration in cultured cortical astrocytes.

    PubMed

    Shen, Yao; Tian, Yueyang; Shi, Xiaojie; Yang, Jianbo; Ouyang, Li; Gao, Jieqiong; Lu, Jianxin

    2014-08-01

    Astrocytes play a key role in removing the synaptically released glutamate from the extracellular space and maintaining the glutamate below neurotoxic level in the brain. However, high concentration of glutamate leads to toxicity in astrocytes, and the underlying mechanisms are unclear. The purpose of this study was to investigate whether energy metabolism disorder, especially impairment of mitochondrial respiration, is involved in the glutamate-induced gliotoxicity. Exposure to 10-mM glutamate for 48 h stimulated glycolysis and respiration in astrocytes. However, the increased oxygen consumption was used for proton leak and non-mitochondrial respiration, but not for oxidative phosphorylation and ATP generation. When the exposure time extended to 72 h, glycolysis was still activated for ATP generation, but the mitochondrial ATP-linked respiration of astrocytes was reduced. The glutamate-induced astrocyte damage can be mimicked by the non-metabolized substrate d-aspartate but reversed by the non-selective glutamate transporter inhibitor TBOA. In addition, the glutamate toxicity can be partially reversed by vitamin E. These findings demonstrate that changes of bioenergetic profile occur in cultured cortical astrocytes exposed to high concentration of glutamate and highlight the role of mitochondria respiration in glutamate-induced gliotoxicity in cortical astrocytes.

  2. Valine but not leucine or isoleucine supports neurotransmitter glutamate synthesis during synaptic activity in cultured cerebellar neurons.

    PubMed

    Bak, Lasse K; Johansen, Maja L; Schousboe, Arne; Waagepetersen, Helle S

    2012-09-01

    Synthesis of neuronal glutamate from α-ketoglutarate for neurotransmission necessitates an amino group nitrogen donor; however, it is not clear which amino acid(s) serves this role. Thus, the ability of the three branched-chain amino acids (BCAAs), leucine, isoleucine, and valine, to act as amino group nitrogen donors for synthesis of vesicular neurotransmitter glutamate was investigated in cultured mouse cerebellar (primarily glutamatergic) neurons. The cultures were superfused in the presence of (15) N-labeled BCAAs, and synaptic activity was induced by pulses of N-methyl-D-aspartate (300 μM), which results in release of vesicular glutamate. At the end of the superfusion experiment, the vesicular pool of glutamate was released by treatment with α-latrotoxin (3 nM, 5 min). This experimental paradigm allows a separate analysis of the cytoplasmic and vesicular pools of glutamate. Amount and extent of (15) N labeling of intracellular amino acids plus vesicular glutamate were analyzed employing HPLC and LC-MS analysis. Only when [(15) N]valine served as precursor did the labeling of both cytoplasmic and vesicular glutamate increase after synaptic activity. In addition, only [(15) N]valine was able to maintain the amount of vesicular glutamate during synaptic activity. This indicates that, among the BCAAs, only valine supports the increased need for synthesis of vesicular glutamate.

  3. Identification by mutagenesis of a conserved glutamate (Glu487) residue important for catalytic activity in rat liver carnitine palmitoyltransferase II.

    PubMed

    Zheng, Guolu; Dai, Jia; Woldegiorgis, Gebre

    2002-11-01

    Mammalian mitochondrial membranes express two active but distinct carnitine palmitoyltransferases: carnitine palmitoyltransferase I (CPTI), which is malonyl coA-sensitive and detergent-labile; and carnitine palmitoyltransferase II (CPTII), which is malonyl coA-insensitive and detergent-stable. To determine the role of the highly conserved C-terminal acidic residues glutamate 487 (Glu(487)) and glutamate 500 (Glu(500)) on catalytic activity in rat liver CPTII, we separately mutated these residues to alanine, aspartate, or lysine, and the effect of the mutations on CPTII activity was determined in the Escherichia coli-expressed mutants. Substitution of Glu(487) with alanine, aspartate, or lysine resulted in almost complete loss in CPTII activity. Because a conservative substitution mutation of this residue, Glu(487) with aspartate (E487D), resulted in a 97% loss in activity, we predicted that Glu(487) would be at the active-site pocket of CPTII. The substantial loss in CPTII activity observed with the E487K mutant, along with the previously reported loss in activity observed in a child with a CPTII deficiency disease, establishes that Glu(487) is crucial for maintaining the configuration of the liver isoform of the CPTII active site. Substitution of the conserved Glu(500) in CPTII with alanine or aspartate reduced the V(max) for both substrates, suggesting that Glu(500) may be important in stabilization of the enzyme-substrate complex. A conservative substitution of Glu(500) to aspartate resulted in a significant decrease in the V(max) for the substrates. Thus, Glu(500) may play a role in substrate binding and catalysis. Our site-directed mutagenesis studies demonstrate that Glu(487) in the liver isoform of CPTII is essential for catalysis. PMID:12200419

  4. Glutamate activation of Oct-2 in cultured chick Bergmann glia cells: involvement of NFkappaB.

    PubMed

    Méndez, J Alfredo; López-Bayghen, Esther; Ortega, Arturo

    2005-07-01

    Glutamate, the major excitatory neurotransmitter in the central nervous system, is critically involved in gene expression regulation at the transcriptional and translational levels. Its activity through ionotropic as well as metabotropic receptors modifies the protein repertoire in neurons and glial cells. In avian cerebellar Bergmann glia cells, glutamate receptors trigger a diverse array of signaling cascades that include activity-dependent transcription factors such as the activator protein-1, the cAMP response-element binding protein, and Oct-2. We analyze the upstream regulatory elements involved in Oct-2 activation. Our results demonstrate that Ca2+ influx, protein kinase C, phosphatidylinositol-3 kinase, Src, and nuclear factor (NF)kappaB are involved in this signaling pathway. Our findings link alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor activation to a negative phase of chkbp gene regulation, controlled by NFkappaB.

  5. Convergence of dopamine and glutamate signaling onto striatal ERK activation in response to drugs of abuse

    PubMed Central

    Cahill, Emma; Salery, Marine; Vanhoutte, Peter; Caboche, Jocelyne

    2014-01-01

    Despite their distinct targets, all addictive drugs commonly abused by humans evoke increases in dopamine (DA) concentration within the striatum. The main DA Guanine nucleotide binding protein couple receptors (GPCRs) expressed by medium-sized spiny neurons of the striatum are the D1R and D2R, which are positively and negatively coupled to cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling, respectively. These two DA GPCRs are largely segregated into distinct neuronal populations, where they are co-expressed with glutamate receptors in dendritic spines. Direct and indirect interactions between DA GPCRs and glutamate receptors are the molecular basis by which DA modulates glutamate transmission and controls striatal plasticity and behavior induced by drugs of abuse. A major downstream target of striatal D1R is the extracellular signal-regulated kinase (ERK) kinase pathway. ERK activation by drugs of abuse behaves as a key integrator of D1R and glutamate NMDAR signaling. Once activated, ERK can trigger chromatin remodeling and induce gene expression that permits long-term cellular alterations and drug-induced morphological and behavioral changes. Besides the classical cAMP/PKA pathway, downstream of D1R, recent evidence implicates a cAMP-independent crosstalk mechanism by which the D1R potentiates NMDAR-mediated calcium influx and ERK activation. The mounting evidence of reciprocal modulation of DA and glutamate receptors adds further intricacy to striatal synaptic signaling and is liable to prove relevant for addictive drug-induced signaling, plasticity, and behavior. Herein, we review the evidence that built our understanding of the consequences of this synergistic signaling for the actions of drugs of abuse. PMID:24409148

  6. Gabapentin inhibits the activity of the rat excitatory glutamate transporter 3 expressed in Xenopus oocytes.

    PubMed

    Gil, Yang Sook; Kim, Jong Hak; Kim, Chi Hyo; Han, Jong In; Zuo, Zhiyi; Baik, Hee Jung

    2015-09-01

    Gabapentin, a derivative of γ-aminobutyric acid (GABA), is used to treat epilepsy and neuropathic pain. The pharmacological mechanisms for gabapentin effects are not completely elucidated. We investigated the effect of gabapentin on the activity of excitatory amino acid transporter 3 (EAAT3) that can regulate extracellular glutamate concentrations. EAAT3 was expressed in Xenopus oocytes. Membrane currents were recorded after application of l-glutamate in the presence or absence of different concentrations of gabapentin (1-300μM) by using a two-electrode voltage clamp. To determine the effect of gabapentin on Vmax and Km of EAAT3 for l-glutamate, l-glutamate at 3-300μM was used. To study the effects of protein kinase C (PKC) and phosphatidylinositol 3-kinase (PI3K) on gabapentin-induced changes in EAAT3 activity, oocytes were incubated with the PKC activator (Phorbol 12-myristate 13-acetate, PMA), the PKC inhibitors (chelerythrine or staurosporine), and the PI3K inhibitor wortmannin. Gabapentin decreased EAAT3 activity in a concentration-dependent manner and EAAT3 activity was significantly inhibited by 10-300μM gabapentin. Gabapentin significantly decreased Vmax without affecting Km. PMA increased EAAT3 activity; however, gabapentin attenuated the PMA-induced increase in EAAT3 activity. Pre-incubation of oocytes with chelerythrine, staurosporine, or wortmannin decreased basal EAAT3 activity, which was further reduced by gabapentin. We conclude that gabapentin decreases EAAT3 activity at clinically relevant and higher concentrations, in which PKC and PI3K may not be involved. The results suggest that EAAT3 might not be a target for the anticonvulsant action of gabapentin.

  7. Position of the Third Na+ Site in the Aspartate Transporter GltPh and the Human Glutamate Transporter, EAAT1

    PubMed Central

    Bastug, Turgut; Heinzelmann, Germano; Kuyucak, Serdar; Salim, Marietta; Vandenberg, Robert J.; Ryan, Renae M.

    2012-01-01

    Glutamate transport via the human excitatory amino acid transporters is coupled to the co-transport of three Na+ ions, one H+ and the counter-transport of one K+ ion. Transport by an archaeal homologue of the human glutamate transporters, GltPh, whose three dimensional structure is known is also coupled to three Na+ ions but only two Na+ ion binding sites have been observed in the crystal structure of GltPh. In order to fully utilize the GltPh structure in functional studies of the human glutamate transporters, it is essential to understand the transport mechanism of GltPh and accurately determine the number and location of Na+ ions coupled to transport. Several sites have been proposed for the binding of a third Na+ ion from electrostatic calculations and molecular dynamics simulations. In this study, we have performed detailed free energy simulations for GltPh and reveal a new site for the third Na+ ion involving the side chains of Threonine 92, Serine 93, Asparagine 310, Aspartate 312, and the backbone of Tyrosine 89. We have also studied the transport properties of alanine mutants of the coordinating residues Threonine 92 and Serine 93 in GltPh, and the corresponding residues in a human glutamate transporter, EAAT1. The mutant transporters have reduced affinity for Na+ compared to their wild type counterparts. These results confirm that Threonine 92 and Serine 93 are involved in the coordination of the third Na+ ion in GltPh and EAAT1. PMID:22427946

  8. Uptake of gamma-aminobutyric acid and L-glutamic acid by synaptosomes from postmortem human cerebral cortex: multiple sites, sodium dependence and effect of tissue preparation.

    PubMed

    Dodd, P R; Watson, W E; Morrison, M M; Johnston, G A; Bird, E D; Cowburn, R F; Hardy, J A

    1989-06-26

    The uptake of gamma-aminobutyric acid (GABA) and L-glutamic acid by synaptosomes prepared from frozen postmortem human brain was shown to be effected via distinct high and low affinity sites. At approximately 17 h postmortem delay, the kinetic parameters for GABA uptake were: high affinity site, Km 7.1 +/- 2.5 microM, Vmax 18.7 +/- 4.8 nmol.min-1 per 100 mg protein; low affinity site, Km 2 +/- 1 mM, Vmax 425 +/- 250 nmol.min-1 per 100 mg protein (means +/- S.E.M., n = 13). Kinetic parameters for L-glutamate uptake were: high affinity site, Km 7.5 +/- 1.0 microM, Vmax 85 +/- 8 nmol.min-1 per 100 mg protein; low affinity site, Km 1.8 +/- 1.2 mM. Vmax 780 +/- 175 nmol.min-1 per 100 mg protein (n = 11). A detailed kinetic analysis of high affinity GABA uptake was performed over a range of sodium ion concentrations. The results were consistent with a coupling ratio of one Na+ ion to one GABA molecule; a similar result was found with rat brain synaptosomes. However, rat and human synaptosomes differed in the degree to which the substrate affinity of the high affinity GABA uptake site varied with decreasing Na+ ion concentration. High affinity GABA uptake was markedly affected by the method used to freeze and divide the tissue, but did not vary greatly in different cortical regions. There was some decline of high affinity GABA uptake activity with postmortem delay, apparently due to a loss of sites rather than a change in site affinity.

  9. Activation of metabotropic glutamate receptor 5 in the amygdala modulates pain-like behavior.

    PubMed

    Kolber, Benedict J; Montana, Michael C; Carrasquillo, Yarimar; Xu, Jian; Heinemann, Stephen F; Muglia, Louis J; Gereau, Robert W

    2010-06-16

    The central nucleus of the amygdala (CeA) has been identified as a site of nociceptive processing important for sensitization induced by peripheral injury. However, the cellular signaling components underlying this function remain unknown. Here, we identify metabotropic glutamate receptor 5 (mGluR5) as an integral component of nociceptive processing in the CeA. Pharmacological activation of mGluRs with (R,S)-3,5-dihydroxyphenylglycine (DHPG) in the CeA of mice is sufficient to induce peripheral hypersensitivity in the absence of injury. DHPG-induced peripheral hypersensitivity is reduced via pharmacological blockade of mGluR5 or genetic disruption of mGluR5. Furthermore, pharmacological blockade or conditional deletion of mGluR5 in the CeA abrogates inflammation-induced hypersensitivity, demonstrating the necessity of mGluR5 in CeA-mediated pain modulation. Moreover, we demonstrate that phosphorylation of extracellular-signal regulated kinase 1/2 (ERK1/2) is downstream of mGluR5 activation in the CeA and is necessary for the full expression of peripheral inflammation-induced behavioral sensitization. Finally, we present evidence of right hemispheric lateralization of mGluR5 modulation of amygdalar nociceptive processing. We demonstrate that unilateral pharmacological activation of mGluR5 in the CeA produces distinct behavioral responses depending on whether the right or left amygdala is injected. We also demonstrate significantly higher levels of mGluR5 expression in the right amygdala compared with the left under baseline conditions, suggesting a potential mechanism for right hemispheric lateralization of amygdala function in pain processing. Together, these results establish an integral role for mGluR5 and ERK1/2 in nociceptive processing in the CeA. PMID:20554871

  10. Peptidyl prolyl isomerase Pin1-inhibitory activity of D-glutamic and D-aspartic acid derivatives bearing a cyclic aliphatic amine moiety.

    PubMed

    Nakagawa, Hidehiko; Seike, Suguru; Sugimoto, Masatoshi; Ieda, Naoya; Kawaguchi, Mitsuyasu; Suzuki, Takayoshi; Miyata, Naoki

    2015-12-01

    Pin1 is a peptidyl prolyl isomerase that specifically catalyzes cis-trans isomerization of phosphorylated Thr/Ser-Pro peptide bonds in substrate proteins and peptides. Pin1 is involved in many important cellular processes, including cancer progression, so it is a potential target of cancer therapy. We designed and synthesized a novel series of Pin1 inhibitors based on a glutamic acid or aspartic acid scaffold bearing an aromatic moiety to provide a hydrophobic surface and a cyclic aliphatic amine moiety with affinity for the proline-binding site of Pin1. Glutamic acid derivatives bearing cycloalkylamino and phenylthiazole groups showed potent Pin1-inhibitory activity comparable with that of known inhibitor VER-1. The results indicate that steric interaction of the cyclic alkyl amine moiety with binding site residues plays a key role in enhancing Pin1-inhibitory activity.

  11. Glutamate excitotoxicity and Ca2+-regulation of respiration: Role of the Ca2+ activated mitochondrial transporters (CaMCs).

    PubMed

    Rueda, Carlos B; Llorente-Folch, Irene; Traba, Javier; Amigo, Ignacio; Gonzalez-Sanchez, Paloma; Contreras, Laura; Juaristi, Inés; Martinez-Valero, Paula; Pardo, Beatriz; Del Arco, Araceli; Satrustegui, Jorgina

    2016-08-01

    Glutamate elicits Ca(2+) signals and workloads that regulate neuronal fate both in physiological and pathological circumstances. Oxidative phosphorylation is required in order to respond to the metabolic challenge caused by glutamate. In response to physiological glutamate signals, cytosolic Ca(2+) activates respiration by stimulation of the NADH malate-aspartate shuttle through Ca(2+)-binding to the mitochondrial aspartate/glutamate carrier (Aralar/AGC1/Slc25a12), and by stimulation of adenine nucleotide uptake through Ca(2+) binding to the mitochondrial ATP-Mg/Pi carrier (SCaMC-3/Slc25a23). In addition, after Ca(2+) entry into the matrix through the mitochondrial Ca(2+) uniporter (MCU), it activates mitochondrial dehydrogenases. In response to pathological glutamate stimulation during excitotoxicity, Ca(2+) overload, reactive oxygen species (ROS), mitochondrial dysfunction and delayed Ca(2+) deregulation (DCD) lead to neuronal death. Glutamate-induced respiratory stimulation is rapidly inactivated through a mechanism involving Poly (ADP-ribose) Polymerase-1 (PARP-1) activation, consumption of cytosolic NAD(+), a decrease in matrix ATP and restricted substrate supply. Glutamate-induced Ca(2+)-activation of SCaMC-3 imports adenine nucleotides into mitochondria, counteracting the depletion of matrix ATP and the impaired respiration, while Aralar-dependent lactate metabolism prevents substrate exhaustion. A second mechanism induced by excitotoxic glutamate is permeability transition pore (PTP) opening, which critically depends on ROS production and matrix Ca(2+) entry through the MCU. By increasing matrix content of adenine nucleotides, SCaMC-3 activity protects against glutamate-induced PTP opening and lowers matrix free Ca(2+), resulting in protracted appearance of DCD and protection against excitotoxicity in vitro and in vivo, while the lack of lactate protection during in vivo excitotoxicity explains increased vulnerability to kainite-induced toxicity in Aralar

  12. Synthesis and antiproliferative activity of glutamic acid-based dipeptides.

    PubMed

    Silveira-Dorta, Gastón; Martín, Víctor S; Padrón, José M

    2015-08-01

    A small and focused library of 22 dipeptides derived from N,N-dibenzylglutamic acid α- and γ-benzyl esters was prepared in a straightforward manner. The evaluation of the antiproliferative activity in the human solid tumor cell lines HBL-100 (breast), HeLa (cervix), SW1573 (non-small cell lung), T-47D (breast), and WiDr (colon) provided γ-glutamyl methionine (GI50 = 6.0-41 μM) and α-glutamyl proline (GI50 = 7.5-18 μM) as lead compounds. In particular, glutamyl serine and glutamyl proline dipeptides were more active in the resistant cancer cell line WiDr than the conventional anticancer drugs cisplatin and etoposide. Glutamyl tryptophan dipeptides did not affect cell growth of HBL-100, while in T-47D cells, proliferation was inhibited. This result might be attributed to the inhibition of the ATB(0,+) transporter.

  13. Synthesis and antiproliferative activity of glutamic acid-based dipeptides.

    PubMed

    Silveira-Dorta, Gastón; Martín, Víctor S; Padrón, José M

    2015-08-01

    A small and focused library of 22 dipeptides derived from N,N-dibenzylglutamic acid α- and γ-benzyl esters was prepared in a straightforward manner. The evaluation of the antiproliferative activity in the human solid tumor cell lines HBL-100 (breast), HeLa (cervix), SW1573 (non-small cell lung), T-47D (breast), and WiDr (colon) provided γ-glutamyl methionine (GI50 = 6.0-41 μM) and α-glutamyl proline (GI50 = 7.5-18 μM) as lead compounds. In particular, glutamyl serine and glutamyl proline dipeptides were more active in the resistant cancer cell line WiDr than the conventional anticancer drugs cisplatin and etoposide. Glutamyl tryptophan dipeptides did not affect cell growth of HBL-100, while in T-47D cells, proliferation was inhibited. This result might be attributed to the inhibition of the ATB(0,+) transporter. PMID:25900811

  14. CPG2 Recruits Endophilin B2 to the Cytoskeleton for Activity-Dependent Endocytosis of Synaptic Glutamate Receptors.

    PubMed

    Loebrich, Sven; Benoit, Marc Robert; Konopka, Jaclyn Aleksandra; Cottrell, Jeffrey Richard; Gibson, Joanne; Nedivi, Elly

    2016-02-01

    Internalization of glutamate receptors at the postsynaptic membrane via clathrin-mediated endocytosis (CME) is a key mechanism for regulating synaptic strength. A role for the F-actin cytoskeleton in CME is well established, and recently, PKA-dependent association of candidate plasticity gene 2 (CPG2) with the spine-cytoskeleton has been shown to mediate synaptic glutamate receptor internalization. Yet, how the endocytic machinery is physically coupled to the actin cytoskeleton to facilitate glutamate receptor internalization has not been demonstrated. Moreover, there has been no distinction of endocytic-machinery components that are specific to activity-dependent versus constitutive glutamate receptor internalization. Here, we show that CPG2, through a direct physical interaction, recruits endophilin B2 (EndoB2) to F-actin, thus anchoring the endocytic machinery to the spine cytoskeleton and facilitating glutamate receptor internalization. Regulation of CPG2 binding to the actin cytoskeleton by protein kinase A directly impacts recruitment of EndoB2 and clathrin. Specific disruption of EndoB2 or the CPG2-EndoB2 interaction impairs activity-dependent, but not constitutive, internalization of both NMDA- and AMPA-type glutamate receptors. These results demonstrate that, through direct interactions with F-actin and EndoB2, CPG2 physically bridges the spine cytoskeleton and the endocytic machinery, and this tripartite association is critical specifically for activity-dependent CME of synaptic glutamate receptors. PMID:26776730

  15. Modulation of pineal melatonin synthesis by glutamate involves paracrine interactions between pinealocytes and astrocytes through NF-κB activation.

    PubMed

    Villela, Darine; Atherino, Victoria Fairbanks; Lima, Larissa de Sá; Moutinho, Anderson Augusto; do Amaral, Fernanda Gaspar; Peres, Rafael; Martins de Lima, Thais; Torrão, Andréa da Silva; Cipolla-Neto, José; Scavone, Cristóforo; Afeche, Solange Castro

    2013-01-01

    The glutamatergic modulation of melatonin synthesis is well known, along with the importance of astrocytes in mediating glutamatergic signaling in the central nervous system. Pinealocytes and astrocytes are the main cell types in the pineal gland. The objective of this work was to investigate the interactions between astrocytes and pinealocytes as a part of the glutamate inhibitory effect on melatonin synthesis. Rat pinealocytes isolated or in coculture with astrocytes were incubated with glutamate in the presence of norepinephrine, and the melatonin content, was quantified. The expression of glutamate receptors, the intracellular calcium content and the NF- κ B activation were analyzed in astrocytes and pinealocytes. TNF- α 's possible mediation of the effect of glutamate was also investigated. The results showed that glutamate's inhibitory effect on melatonin synthesis involves interactions between astrocytes and pinealocytes, possibly through the release of TNF- α . Moreover, the activation of the astrocytic NF- κ B seems to be a necessary step. In astrocytes and pinealocytes, AMPA, NMDA, and group I metabotropic glutamate receptors were observed, as well as the intracellular calcium elevation. In conclusion, there is evidence that the modulation of melatonin synthesis by glutamate involves paracrine interactions between pinealocytes and astrocytes through the activation of the astrocytic NF- κ B transcription factor and possibly by subsequent TNF- α release.

  16. Glutamate protects against Ca(2+) paradox-induced injury and inhibits calpain activity in isolated rat hearts.

    PubMed

    Zhang, Jian-Ying; Kong, Ling-Heng; Lai, Dong; Jin, Zhen-Xiao; Gu, Xiao-Ming; Zhou, Jing-Jun

    2016-10-01

    This study determined the effects of glutamate on the Ca(2+) paradoxical heart, which is a model for Ca(2+) overload-induced injury during myocardial ischaemia and reperfusion, and evaluated its effect on a known mediator of injury, calpain. An isolated rat heart was retrogradely perfused in a Langendorff apparatus. Ca(2+) paradox was elicited via perfusion with a Ca(2+) -free Krebs-Henseleit (KH) solution for 3 minutes followed by Ca(2+) -containing normal KH solution for 30 minutes. The Ca(2+) paradoxical heart exhibited almost no viable tissue on triphenyltetrazolium chloride staining and markedly increased LDH release, caspase-3 activity, cytosolic cytochrome c content, and apoptotic index. These hearts also displayed significantly increased LVEDP and a disappearance of LVDP. Glutamate (5 and 20 mmol/L) significantly alleviated Ca(2+) paradox-induced injury. In contrast, 20 mmol/L mannitol had no effect on Ca(2+) paradox. Ca(2+) paradox significantly increased the extent of the translocation of μ-calpain to the sarcolemmal membrane and the proteolysis of α-fodrin, which suggests calpain activation. Glutamate also blocked these effects. A non-selective inhibitor of glutamate transporters, dl-TBOA (10 μmol/L), had no effect on control hearts, but it reversed glutamate-induced cardioprotection and reduction in calpain activity. Glutamate treatment significantly increased intracellular glutamate content in the Ca(2+) paradoxical heart, which was also blocked by dl-TBOA. We conclude that glutamate protects the heart against Ca(2+) overload-induced injury via glutamate transporters, and the inhibition of calpain activity is involved in this process.

  17. Exploring the active conformation of cyclohexane carboxylate positive allosteric modulators of the type 4 metabotropic glutamate receptor.

    PubMed

    Rovira, Xavier; Harrak, Youssef; Trapero, Ana; González-Bulnes, Patricia; Malhaire, Fanny; Pin, Jean-Philippe; Goudet, Cyril; Giraldo, Jesús; Llebaria, Amadeu

    2014-12-01

    The active conformation of a family of metabotropic glutamate receptor subtype 4 (mGlu4 ) positive allosteric modulators (PAMs) with the cyclohexane 1,2-dicarboxylic scaffold present in cis-2-(3,5-dichlorophenylcarbamoyl)cyclohexanecarboxylic acid (VU0155041) was investigated by testing structurally similar six-membered ring compounds that have a locked conformation. The norbornane and cyclohexane molecules designed as mGlu4 conformational probes and the enantiomers of the trans diastereomer were computationally characterized and tested in mGlu4 pharmacological assays. The results support a VU0155041 active conformation, with the chair cyclohexane having the aromatic amide substituent in an axial position and the carboxylate in an equatorial position. Moreover, the receptor displays enantiomeric discrimination of the chiral PAMs. The constructed pharmacophore characterized a highly constrained mGlu4 allosteric binding site, thus providing a step forward in structure-based drug design for mGlu4 PAMs.

  18. Oligomers of Amyloid β Prevent Physiological Activation of the Cellular Prion Protein-Metabotropic Glutamate Receptor 5 Complex by Glutamate in Alzheimer Disease.

    PubMed

    Haas, Laura T; Strittmatter, Stephen M

    2016-08-12

    The dysfunction and loss of synapses in Alzheimer disease are central to dementia symptoms. We have recently demonstrated that pathological Amyloid β oligomer (Aβo) regulates the association between intracellular protein mediators and the synaptic receptor complex composed of cellular prion protein (PrP(C)) and metabotropic glutamate receptor 5 (mGluR5). Here we sought to determine whether Aβo alters the physiological signaling of the PrP(C)-mGluR5 complex upon glutamate activation. We provide evidence that acute exposure to Aβo as well as chronic expression of familial Alzheimer disease mutant transgenes in model mice prevents protein-protein interaction changes of the complex induced by the glutamate analog 3,5-dihydroxyphenylglycine. We further show that 3,5-dihydroxyphenylglycine triggers the phosphorylation and activation of protein-tyrosine kinase 2-β (PTK2B, also referred to as Pyk2) and of calcium/calmodulin-dependent protein kinase II in wild-type brain slices but not in Alzheimer disease transgenic brain slices or wild-type slices incubated with Aβo. This study further distinguishes two separate Aβo-dependent signaling cascades, one dependent on extracellular Ca(2+) and Fyn kinase activation and the other dependent on the release of Ca(2+) from intracellular stores. Thus, Aβo triggers multiple distinct PrP(C)-mGluR5-dependent events implicated in neurodegeneration and dementia. We propose that targeting the PrP(C)-mGluR5 complex will reverse aberrant Aβo-triggered states of the complex to allow physiological fluctuations of glutamate signaling.

  19. Electrogenic Steps Associated with Substrate Binding to the Neuronal Glutamate Transporter EAAC1.

    PubMed

    Tanui, Rose; Tao, Zhen; Silverstein, Nechama; Kanner, Baruch; Grewer, Christof

    2016-05-27

    Glutamate transporters actively take up glutamate into the cell, driven by the co-transport of sodium ions down their transmembrane concentration gradient. It was proposed that glutamate binds to its binding site and is subsequently transported across the membrane in the negatively charged form. With the glutamate binding site being located partially within the membrane domain, the possibility has to be considered that glutamate binding is dependent on the transmembrane potential and, thus, is electrogenic. Experiments presented in this report test this possibility. Rapid application of glutamate to the wild-type glutamate transporter subtype EAAC1 (excitatory amino acid carrier 1) through photo-release from caged glutamate generated a transient inward current, as expected for the electrogenic inward movement of co-transported Na(+) In contrast, glutamate application to a transporter with the mutation A334E induced transient outward current, consistent with movement of negatively charged glutamate into its binding site within the dielectric of the membrane. These results are in agreement with electrostatic calculations, predicting a valence for glutamate binding of -0.27. Control experiments further validate and rule out other possible explanations for the transient outward current. Electrogenic glutamate binding can be isolated in the mutant glutamate transporter because reactions, such as glutamate translocation and/or Na(+) binding to the glutamate-bound state, are inhibited by the A334E substitution. Electrogenic glutamate binding has to be considered together with other voltage-dependent partial reactions to cooperatively determine the voltage dependence of steady-state glutamate uptake and glutamate buffering at the synapse. PMID:27044739

  20. Postsynaptic actin regulates active zone spacing and glutamate receptor apposition at the Drosophila neuromuscular junction.

    PubMed

    Blunk, Aline D; Akbergenova, Yulia; Cho, Richard W; Lee, Jihye; Walldorf, Uwe; Xu, Ke; Zhong, Guisheng; Zhuang, Xiaowei; Littleton, J Troy

    2014-07-01

    Synaptic communication requires precise alignment of presynaptic active zones with postsynaptic receptors to enable rapid and efficient neurotransmitter release. How transsynaptic signaling between connected partners organizes this synaptic apparatus is poorly understood. To further define the mechanisms that mediate synapse assembly, we carried out a chemical mutagenesis screen in Drosophila to identify mutants defective in the alignment of active zones with postsynaptic glutamate receptor fields at the larval neuromuscular junction. From this screen we identified a mutation in Actin 57B that disrupted synaptic morphology and presynaptic active zone organization. Actin 57B, one of six actin genes in Drosophila, is expressed within the postsynaptic bodywall musculature. The isolated allele, act(E84K), harbors a point mutation in a highly conserved glutamate residue in subdomain 1 that binds members of the Calponin Homology protein family, including spectrin. Homozygous act(E84K) mutants show impaired alignment and spacing of presynaptic active zones, as well as defects in apposition of active zones to postsynaptic glutamate receptor fields. act(E84K) mutants have disrupted postsynaptic actin networks surrounding presynaptic boutons, with the formation of aberrant actin swirls previously observed following disruption of postsynaptic spectrin. Consistent with a disruption of the postsynaptic actin cytoskeleton, spectrin, adducin and the PSD-95 homolog Discs-Large are all mislocalized in act(E84K) mutants. Genetic interactions between act(E84K) and neurexin mutants suggest that the postsynaptic actin cytoskeleton may function together with the Neurexin-Neuroligin transsynaptic signaling complex to mediate normal synapse development and presynaptic active zone organization.

  1. Cinnabarinic acid, an endogenous metabolite of the kynurenine pathway, activates type 4 metabotropic glutamate receptors.

    PubMed

    Fazio, F; Lionetto, L; Molinaro, G; Bertrand, H O; Acher, F; Ngomba, R T; Notartomaso, S; Curini, M; Rosati, O; Scarselli, P; Di Marco, R; Battaglia, G; Bruno, V; Simmaco, M; Pin, J P; Nicoletti, F; Goudet, C

    2012-05-01

    Cinnabarinic acid is an endogenous metabolite of the kynurenine pathway that meets the structural requirements to interact with glutamate receptors. We found that cinnabarinic acid acts as a partial agonist of type 4 metabotropic glutamate (mGlu4) receptors, with no activity at other mGlu receptor subtypes. We also tested the activity of cinnabarinic acid on native mGlu4 receptors by examining 1) the inhibition of cAMP formation in cultured cerebellar granule cells; 2) protection against excitotoxic neuronal death in mixed cultures of cortical cells; and 3) protection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in mice after local infusion into the external globus pallidus. In all these models, cinnabarinic acid behaved similarly to conventional mGlu4 receptor agonists, and, at least in cultured neurons, the action of low concentrations of cinnabarinic acid was largely attenuated by genetic deletion of mGlu4 receptors. However, high concentrations of cinnabarinic acid were still active in the absence of mGlu4 receptors, suggesting that the compound may have off-target effects. Mutagenesis and molecular modeling experiments showed that cinnabarinic acid acts as an orthosteric agonist interacting with residues of the glutamate binding pocket of mGlu4. Accordingly, cinnabarinic acid did not activate truncated mGlu4 receptors lacking the N-terminal Venus-flytrap domain, as opposed to the mGlu4 receptor enhancer, N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC). Finally, we could detect endogenous cinnabarinic acid in brain tissue and peripheral organs by high-performance liquid chromatography-tandem mass spectrometry analysis. Levels increased substantially during inflammation induced by lipopolysaccharide. We conclude that cinnabarinic acid is a novel endogenous orthosteric agonist of mGlu4 receptors endowed with neuroprotective activity. PMID:22311707

  2. Activation of glutamate transport evokes rapid glutamine release from perisynaptic astrocytes

    PubMed Central

    Uwechue, Nneka M; Marx, Mari-Carmen; Chevy, Quentin; Billups, Brian

    2012-01-01

    Stimulation of astrocytes by neuronal activity and the subsequent release of neuromodulators is thought to be an important regulator of synaptic communication. In this study we show that astrocytes juxtaposed to the glutamatergic calyx of Held synapse in the rat medial nucleus of the trapezoid body (MNTB) are stimulated by the activation of glutamate transporters and consequently release glutamine on a very rapid timescale. MNTB principal neurones express electrogenic system A glutamine transporters, and were exploited as glutamine sensors in this study. By simultaneous whole-cell voltage clamping astrocytes and neighbouring MNTB neurones in brainstem slices, we show that application of the excitatory amino acid transporter (EAAT) substrate d-aspartate stimulates astrocytes to rapidly release glutamine, which is detected by nearby MNTB neurones. This release is significantly reduced by the toxins l-methionine sulfoximine and fluoroacetate, which reduce glutamine concentrations specifically in glial cells. Similarly, glutamine release was also inhibited by localised inactivation of EAATs in individual astrocytes, using internal dl-threo-β-benzyloxyaspartic acid (TBOA) or dissipating the driving force by modifying the patch-pipette solution. These results demonstrate that astrocytes adjacent to glutamatergic synapses can release glutamine in a temporally precise, controlled manner in response to glial glutamate transporter activation. Since glutamine can be used by neurones as a precursor for glutamate and GABA synthesis, this represents a potential feedback mechanism by which astrocytes can respond to synaptic activation and react in a way that sustains or enhances further communication. This would therefore represent an additional manifestation of the tripartite relationship between synapses and astrocytes. PMID:22411007

  3. Transcriptional regulation through glutamate receptors: Involvement of tyrosine kinases.

    PubMed

    López-Bayghen, Esther; Aguirre, Adán; Ortega, Arturo

    2003-12-01

    Glutamate receptors play a key role in neuronal plasticity, learning and memory, and in several neuropathologies. Short-term and long-term changes in synaptic efficacy are triggered by glutamate. Although an enhanced glutamate-dependent tyrosine phosphorylation has been described in several systems, its role in membrane-to-nuclei signaling is unclear. Taking advantage of the fact that the gene encoding the chick kainate-binding protein undergoes a glutamate-dependent transcriptional regulation via an activator protein-1 (AP-1) site, we evaluated the involvement of tyrosine kinases in this process. We describe here the participation of receptor and non-receptor tyrosine kinases in the signaling cascade triggered by glutamate. Our results suggest that in Bergmann glia cells, glutamate receptors transactivate receptor tyrosine kinases, favoring the idea of a complex network of signals activated by this excitatory neurotransmitter that results in regulation of gene expression.

  4. Chicken liver glutamate dehydrogenase (GDH) demonstrates a histone H3 specific protease (H3ase) activity in vitro.

    PubMed

    Purohit, Jogeswar S; Tomar, Raghuvir S; Panigrahi, Anil K; Pandey, Shashibhal M; Singh, Divya; Chaturvedi, Madan M

    2013-11-01

    Site-specific proteolysis of the N or C-terminus of histone tails has emerged as a novel form of irreversible post-translational modifications assigned to histones. Though there are many reports describing histone specific proteolysis, there are very few studies on purification of a histone specific protease. Here, we demonstrate a histone H3 specific protease (H3ase) activity in chicken liver nuclear extract. H3ase was purified to homogeneity and identified as glutamate dehydrogenase (GDH) by sequencing. A series of biochemical experiments further confirmed that the H3ase activity was due to GDH. The H3ase clipped histone H3 products were sequenced by N-terminal sequencing and the precise clipping sites of H3ase were mapped. H3ase activity was only specific to chicken liver as it was not demonstrated in other tissues like heart, muscle and brain of chicken. We assign a novel serine like protease activity to GDH which is specific to histone H3. PMID:23856561

  5. Regulation of Glutamate Dehydrogenase Activity in Relation to Carbon Limitation and Protein Catabolism in Carrot Cell Suspension Cultures 1

    PubMed Central

    Robinson, Sharon A.; Stewart, George R.; Phillips, Richard

    1992-01-01

    Glutamate dehydrogenase (GDH) specific activity and function have been studied in cell suspension cultures of carrot (Daucus carota L. cv Chantenay) in response to carbon and nitrogen supply in the culture medium. The specific activity of GDH was derepressed in sucrose-starved cells concomitant with protein catabolism, ammonium excretion, and the accumulation of metabolically active amino acids. The addition of sucrose led to a rapid decrease in GDH specific activity, an uptake of ammonium from the medium, and a decrease in amino acid levels. The extent of GDH derepression was correlated positively with cellular glutamate concentration. These findings strengthen the view that the function of GDH is the catabolism of glutamate, which under conditions of carbon stress provides carbon skeletons for tricarboxylic acid cycle activity. PMID:16668745

  6. A high-throughput colorimetric assay to measure the activity of glutamate decarboxylase.

    PubMed

    Yu, Kai; Hu, Sheng; Huang, Jun; Mei, Le-He

    2011-08-10

    A pH-sensitive colorimetric assay has been established to quantitatively measure glutamate decarboxylase (GAD) activity in bacterial cell extracts using a microplate format. GAD catalyzes the irreversible α-decarboxylation of L-glutamate to γ-aminobutyrate. The assay is based on the color change of bromocresol green due to an increase in pH as protons are consumed during the enzyme-catalyzed reaction. Bromocresol green was chosen as the indicator because it has a similar pK(a) to the acetate buffer used. The corresponding absorbance change at 620 nm was recorded with a microplate reader as the reaction proceeded. A difference in the enzyme preparation pH and optimal pH for GAD activity of 2.5 did not prevent this method from successfully allowing the determination of reaction kinetic parameters and the detection of improvements in enzymatic activity with a low coefficient of variance. Our assay is simple, rapid, requires minimal sample concentration and can be carried out in robotic high-throughput devices used as standard in directed evolution experiments. In addition, it is also applicable to other reactions that involve a change in pH.

  7. KCa2 channels activation prevents [Ca2+]i deregulation and reduces neuronal death following glutamate toxicity and cerebral ischemia

    PubMed Central

    Dolga, A M; Terpolilli, N; Kepura, F; Nijholt, I M; Knaus, H-G; D'Orsi, B; Prehn, J H M; Eisel, U L M; Plant, T; Plesnila, N; Culmsee, C

    2011-01-01

    Exacerbated activation of glutamate receptor-coupled calcium channels and subsequent increase in intracellular calcium ([Ca2+]i) are established hallmarks of neuronal cell death in acute and chronic neurological diseases. Here we show that pathological [Ca2+]i deregulation occurring after glutamate receptor stimulation is effectively modulated by small conductance calcium-activated potassium (KCa2) channels. We found that neuronal excitotoxicity was associated with a rapid downregulation of KCa2.2 channels within 3 h after the onset of glutamate exposure. Activation of KCa2 channels preserved KCa2 expression and significantly reduced pathological increases in [Ca2+]i providing robust neuroprotection in vitro and in vivo. These data suggest a critical role for KCa2 channels in excitotoxic neuronal cell death and propose their activation as potential therapeutic strategy for the treatment of acute and chronic neurodegenerative disorders. PMID:21509037

  8. Inhibition of mammillary body neurons by direct activation of Group II metabotropic glutamate receptors

    PubMed Central

    Lee, Charles C.

    2016-01-01

    The mammillary body is an important neural component of limbic circuitry implicated in learning and memory. Excitatory and inhibitory inputs, primarily mediated by glutamate and gamma-amino butyric acid (GABA), respectively, converge and integrate in this region, before sending information to the thalamus. One potentially overlooked mechanism for inhibition of mammillary body neurons is through direct activation of Group II metabotropic glutamate receptors (mGluRs). Here, whole-cell patch clamp recordings of in vitro slice preparations containing the mammillary body nuclei of the mouse were employed to record responses to bath application of pharmacological agents to isolate the direct effect of activating Group II mGluRs. Application of the Group II mGluR specific agonist, APDC, resulted in a hyperpolarization of the membrane potential in mammillary body neurons, likely resulting from the opening of a potassium conductance. These data suggest that glutamatergic inputs to the mammillary body may be attenuated via Group II mGluRs and implicates a functional role for these receptors in memory-related circuits and broadly throughout the central nervous system. PMID:27390777

  9. Modulation of activity of Bacillus subtilis regulatory proteins GltC and TnrA by glutamate dehydrogenase.

    PubMed

    Belitsky, Boris R; Sonenshein, Abraham L

    2004-06-01

    The Bacillus subtilis gltAB operon, encoding glutamate synthase, requires a specific positive regulator, GltC, for its expression and is repressed by the global regulatory protein TnrA. The factor that controls TnrA activity, a complex of glutamine synthetase and a feedback inhibitor, such as glutamine, is known, but the signal for modulation of GltC activity has remained elusive. GltC-dependent gltAB expression was drastically reduced when cells were grown in media containing arginine or ornithine or proline, all of which are inducers and substrates of the Roc catabolic pathway. Analysis of gltAB expression in mutants with various defects in the Roc pathway indicated that rocG-encoded glutamate dehydrogenase was required for such repression, suggesting that the substrates or products of this enzyme are the real effectors of GltC. Given that RocG is an enzyme of glutamate catabolism, the main regulatory role of GltC may be prevention of a futile cycle of glutamate synthesis and degradation in the presence of arginine-related amino acids or proline. In addition, high activity of glutamate dehydrogenase was incompatible with activity of TnrA.

  10. Effects of aluminum on activity of krebs cycle enzymes and glutamate dehydrogenase in rat brain homogenate.

    PubMed

    Zatta, P; Lain, E; Cagnolini, C

    2000-05-01

    Aluminum is a neurotoxic agent for animals and humans that has been implicated as an etiological factor in several neurodegenerative diseases and as a destabilizer of cell membranes. Due to its high reactivity, Al3+ is able to interfere with several biological functions, including enzymatic activities in key metabolic pathways. In this paper we report that, among the enzymes that constitute the Krebs cycle, only two are activated by aluminum: alpha-ketoglutarate dehydrogenase and succinate dehydrogenase. In contrast, aconitase, shows decreased activity in the presence of the metal ion. Al3+ also inhibits glutamate dehydrogenase, an allosteric enzyme that is closely linked to the Krebs cycle. A possible correlation between aluminum, the Krebs cycle and aging processes is discussed.

  11. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway

    SciTech Connect

    Son, Tae Gen; Kawamoto, Elisa M.; Yu, Qian-Sheng; Greig, Nigel H.; Mattson, Mark P.; Camandola, Simonetta

    2013-04-19

    Highlights: •Naphthazarin activates the Nrf2/ARE pathway. •Naphthazarin induces Nrf2-driven genes in neurons and astrocytes. •Naphthazarin protects neurons against excitotoxicity. -- Abstract: Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal and glial cultures, and protects neurons against glutamate-induced excitotoxicity.

  12. Neuronal activity mediated regulation of glutamate transporter GLT‐1 surface diffusion in rat astrocytes in dissociated and slice cultures

    PubMed Central

    Al Awabdh, Sana; Gupta‐Agarwal, Swati; Sheehan, David F.; Muir, James; Norkett, Rosalind; Twelvetrees, Alison E.; Griffin, Lewis D.

    2016-01-01

    The astrocytic GLT‐1 (or EAAT2) is the major glutamate transporter for clearing synaptic glutamate. While the diffusion dynamics of neurotransmitter receptors at the neuronal surface are well understood, far less is known regarding the surface trafficking of transporters in subcellular domains of the astrocyte membrane. Here, we have used live‐cell imaging to study the mechanisms regulating GLT‐1 surface diffusion in astrocytes in dissociated and brain slice cultures. Using GFP‐time lapse imaging, we show that GLT‐1 forms stable clusters that are dispersed rapidly and reversibly upon glutamate treatment in a transporter activity‐dependent manner. Fluorescence recovery after photobleaching and single particle tracking using quantum dots revealed that clustered GLT‐1 is more stable than diffuse GLT‐1 and that glutamate increases GLT‐1 surface diffusion in the astrocyte membrane. Interestingly, the two main GLT‐1 isoforms expressed in the brain, GLT‐1a and GLT‐1b, are both found to be stabilized opposed to synapses under basal conditions, with GLT‐1b more so. GLT‐1 surface mobility is increased in proximity to activated synapses and alterations of neuronal activity can bidirectionally modulate the dynamics of both GLT‐1 isoforms. Altogether, these data reveal that astrocytic GLT‐1 surface mobility, via its transport activity, is modulated during neuronal firing, which may be a key process for shaping glutamate clearance and glutamatergic synaptic transmission. GLIA 2016;64:1252–1264 PMID:27189737

  13. Second-generation sulfonamide inhibitors of D-glutamic acid-adding enzyme: activity optimisation with conformationally rigid analogues of D-glutamic acid.

    PubMed

    Sosič, Izidor; Barreteau, Hélène; Simčič, Mihael; Sink, Roman; Cesar, Jožko; Zega, Anamarija; Grdadolnik, Simona Golič; Contreras-Martel, Carlos; Dessen, Andréa; Amoroso, Ana; Joris, Bernard; Blanot, Didier; Gobec, Stanislav

    2011-07-01

    D-Glutamic acid-adding enzyme (MurD) catalyses the essential addition of d-glutamic acid to the cytoplasmic peptidoglycan precursor UDP-N-acetylmuramoyl-l-alanine, and as such it represents an important antibacterial drug-discovery target enzyme. Based on a series of naphthalene-N-sulfonyl-d-Glu derivatives synthesised recently, we synthesised two series of new, optimised sulfonamide inhibitors of MurD that incorporate rigidified mimetics of d-Glu. The compounds that contained either constrained d-Glu or related rigid d-Glu mimetics showed significantly better inhibitory activities than the parent compounds, thereby confirming the advantage of molecular rigidisation in the design of MurD inhibitors. The binding modes of the best inhibitors were examined with high-resolution NMR spectroscopy and X-ray crystallography. We have solved a new crystal structure of the complex of MurD with an inhibitor bearing a 4-aminocyclohexane-1,3-dicarboxyl moiety. These data provide an additional step towards the development of sulfonamide inhibitors with potential antibacterial activities. PMID:21524830

  14. Glutamate-activated chloride channels: Unique fipronil targets present in insects but not in mammals

    PubMed Central

    Narahashi, Toshio; Zhao, Xilong; Ikeda, Tomoko; Salgado, Vincent L.; Yeh, Jay Z.

    2009-01-01

    Selectivity to insects over mammals is one of the important characteristics for a chemical to become a useful insecticide. Fipronil was found to block cockroach GABA receptors more potently than rat GABAA receptors. Furthermore, glutamate-activated chloride channels (GluCls), which are present in cockroaches but not in mammals, were very sensitive to the blocking action of fipronil. The IC50s of fipronil block were 30 nM in cockroach GABA receptors and 1600 nM in rat GABAA receptors. Moreover, GluCls of cockroach neurons had low IC50s for fipronil. Two types of glutamate-induced chloride current were obswerved: desensitizing and non-desensitizing, with fipronil IC50s of 800 and 10 nM, respectively. We have developed methods to separately record these two types of GluCls. The non-desensitizing and desensitizing currents were selectively inhibited by trypsin and polyvinylpyrrolidone, respectively. In conclusion, in addition to GABA receptors, GluCls play a crucial role in selectivity of fipronil to insects over mammals. GluCls form the basis for development of selective and safe insecticides. PMID:20563240

  15. Alleviating pain hypersensitivity through activation of type 4 metabotropic glutamate receptor.

    PubMed

    Vilar, Bruno; Busserolles, Jérôme; Ling, Bing; Laffray, Sophie; Ulmann, Lauriane; Malhaire, Fanny; Chapuy, Eric; Aissouni, Youssef; Etienne, Monique; Bourinet, Emmanuel; Acher, Francine; Pin, Jean-Philippe; Eschalier, Alain; Goudet, Cyril

    2013-11-27

    Hyperactivity of the glutamatergic system is involved in the development of central sensitization in the pain neuraxis, associated with allodynia and hyperalgesia observed in patients with chronic pain. Herein we study the ability of type 4 metabotropic glutamate receptors (mGlu4) to regulate spinal glutamate signaling and alleviate chronic pain. We show that mGlu4 are located both on unmyelinated C-fibers and spinal neurons terminals in the inner lamina II of the spinal cord where they inhibit glutamatergic transmission through coupling to Cav2.2 channels. Genetic deletion of mGlu4 in mice alters sensitivity to strong noxious mechanical compression and accelerates the onset of the nociceptive behavior in the inflammatory phase of the formalin test. However, responses to punctate mechanical stimulation and nocifensive responses to thermal noxious stimuli are not modified. Accordingly, pharmacological activation of mGlu4 inhibits mechanical hypersensitivity in animal models of inflammatory or neuropathic pain while leaving acute mechanical perception unchanged in naive animals. Together, these results reveal that mGlu4 is a promising new target for the treatment of chronic pain. PMID:24285900

  16. Activation of metabotropic glutamate receptors regulates ribosomes of cochlear nucleus neurons.

    PubMed

    Carzoli, Kathryn L; Hyson, Richard L

    2014-01-01

    The brain stem auditory system of the chick is an advantageous model for examining changes that occur as a result of deafness. Elimination of acoustic input through cochlear ablation results in the eventual death of approximately 30% of neurons in the chick cochlear nucleus, nucleus magnocellularis (NM). One early change following deafness is an alteration in NM ribosomes, evidenced both by a decrease in protein synthesis and reduction in antigenicity for Y10B, a monoclonal antibody that recognizes a ribosomal epitope. Previous studies have shown that mGluR activation is necessary to maintain Y10B antigenicity and NM viability. What is still unclear, however, is whether or not mGluR activation is sufficient to prevent deafness-induced changes in these neurons, or if other activity-dependent factors are also necessary. The current study investigated the ability of mGluR activation to regulate cochlear nucleus ribosomes in the absence of auditory nerve input. In vitro methods were employed to periodically pressure eject glutamate or mGluR agonists over neurons on one side of a slice preparation leaving the opposite side of the same slice untreated. Immunohistochemistry was then performed using Y10B in order to assess ribosomal changes. Application of glutamate and both group I and II selective mGluR agonists effectively rescued ribosomal antigenicity on the treated side of the slice in comparison to ribosomes on the untreated side. These findings suggest that administration of mGluR agonists is sufficient to reduce the early interruption of normal ribosomal integrity that is typically seen following loss of auditory nerve activity.

  17. TRPA1 activation by lidocaine in nerve terminals results in glutamate release increase

    SciTech Connect

    Piao, L.-H.; Fujita, Tsugumi; Jiang, C.-Y.; Liu Tao; Yue, H.-Y.; Nakatsuka, Terumasa; Kumamoto, Eiichi

    2009-02-20

    We examined the effects of local anesthetics lidocaine and procaine on glutamatergic spontaneous excitatory transmission in substantia gelatinosa (SG) neurons in adult rat spinal cord slices with whole-cell patch-clamp techniques. Bath-applied lidocaine (1-5 mM) dose-dependently and reversibly increased the frequency but not the amplitude of spontaneous excitatory postsynaptic current (sEPSC) in SG neurons. Lidocaine activity was unaffected by the Na{sup +}-channel blocker, tetrodotoxin, and the TRPV1 antagonist, capsazepine, but was inhibited by the TRP antagonist, ruthenium red. In the same neuron, the TRPA1 agonist, allyl isothiocyanate, and lidocaine both increased sEPSC frequency. In contrast, procaine did not produce presynaptic enhancement. These results indicate that lidocaine activates TRPA1 in nerve terminals presynaptic to SG neurons to increase the spontaneous release of L-glutamate.

  18. Pituitary Adenylate cyclase-activating polypeptide orchestrates neuronal regulation of the astrocytic glutamate-releasing mechanism system xc (.).

    PubMed

    Kong, Linghai; Albano, Rebecca; Madayag, Aric; Raddatz, Nicholas; Mantsch, John R; Choi, SuJean; Lobner, Doug; Baker, David A

    2016-05-01

    Glutamate signaling is achieved by an elaborate network involving neurons and astrocytes. Hence, it is critical to better understand how neurons and astrocytes interact to coordinate the cellular regulation of glutamate signaling. In these studies, we used rat cortical cell cultures to examine whether neurons or releasable neuronal factors were capable of regulating system xc (-) (Sxc), a glutamate-releasing mechanism that is expressed primarily by astrocytes and has been shown to regulate synaptic transmission. We found that astrocytes cultured with neurons or exposed to neuronal-conditioned media displayed significantly higher levels of Sxc activity. Next, we demonstrated that the pituitary adenylate cyclase-activating polypeptide (PACAP) may be a neuronal factor capable of regulating astrocytes. In support, we found that PACAP expression was restricted to neurons, and that PACAP receptors were expressed in astrocytes. Interestingly, blockade of PACAP receptors in cultures comprised of astrocytes and neurons significantly decreased Sxc activity to the level observed in purified astrocytes, whereas application of PACAP to purified astrocytes increased Sxc activity to the level observed in cultures comprised of neurons and astrocytes. Collectively, these data reveal that neurons coordinate the actions of glutamate-related mechanisms expressed by astrocytes, such as Sxc, a process that likely involves PACAP. A critical gap in modeling excitatory signaling is how distinct components of the glutamate system expressed by neurons and astrocytes are coordinated. In these studies, we found that system xc (-) (Sxc), a glutamate release mechanism expressed by astrocytes, is regulated by releasable neuronal factors including PACAP. This represents a novel form of neuron-astrocyte communication, and highlights the possibility that pathological changes involving astrocytic Sxc may stem from altered neuronal activity.

  19. Overexpression of α-synuclein simultaneously increases glutamate NMDA receptor phosphorylation and reduces glucocerebrosidase activity.

    PubMed

    Yang, Junfeng; Hertz, Ellen; Zhang, Xiaoqun; Leinartaité, Lina; Lundius, Ebba Gregorsson; Li, Jie; Svenningsson, Per

    2016-01-12

    Progressive accumulation of α-synuclein (α-syn)-containing protein aggregates throughout the nervous system is a pathological hallmark of Parkinson's disease (PD). The mechanisms whereby α-syn exerts neurodegeneration remain to be fully understood. Here we show that overexpression of α-syn in transgenic mice leads to increased phosphorylation of glutamate NMDA receptor (NMDAR) subunits NR1 and NR2B in substantia nigra and striatum as well as reduced glucocerebrosidase (GCase) levels. Similarly, molecular studies performed in mouse N2A cells stably overexpressing human α-syn ((α-syn)N2A) showed that phosphorylation states of the same NMDAR subunits were increased, whereas GCase levels and lysosomal GCase activity were reduced. (α-syn)N2A cells showed an increased sensitivity to neurotoxicity towards 6-hydroxydopamine and NMDA. However, wildtype N2A, but not (α-syn)N2A cells, showed a further reduction in viability when co-incubated with 6-hydroxydopamine and the lysosomal inhibitors NH4Cl and leupeptin, suggesting that α-syn per se perturbs lysosomal functions. NMDA treatment reduced lysosomal GCase activity to the same extent in (α-syn)N2A cells as in wildtype N2A cells, indicating that the α-syn-dependent difference in NMDA neurotoxicity is unrelated to an altered GCase activity. Nevertheless, these data provide molecular evidence that overexpression of α-syn simultaneously induces two potential neurotoxic hits by increasing glutamate NMDA receptor phosphorylation, consistent with increased NMDA receptors functionality, and reducing GCase activity. PMID:26610904

  20. Glutamate Stimulates Local Protein Synthesis in the Axons of Rat Cortical Neurons by Activating α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors and Metabotropic Glutamate Receptors.

    PubMed

    Hsu, Wei-Lun; Chung, Hui-Wen; Wu, Chih-Yueh; Wu, Huei-Ing; Lee, Yu-Tao; Chen, En-Chan; Fang, Weilun; Chang, Yen-Chung

    2015-08-21

    Glutamate is the principal excitatory neurotransmitter in the mammalian CNS. By analyzing the metabolic incorporation of azidohomoalanine, a methionine analogue, in newly synthesized proteins, we find that glutamate treatments up-regulate protein translation not only in intact rat cortical neurons in culture but also in the axons emitting from cortical neurons before making synapses with target cells. The process by which glutamate stimulates local translation in axons begins with the binding of glutamate to the ionotropic AMPA receptors and metabotropic glutamate receptor 1 and members of group 2 metabotropic glutamate receptors on the plasma membrane. Subsequently, the activated mammalian target of rapamycin (mTOR) signaling pathway and the rise in Ca(2+), resulting from Ca(2+) influxes through calcium-permeable AMPA receptors, voltage-gated Ca(2+) channels, and transient receptor potential canonical channels, in axons stimulate the local translation machinery. For comparison, the enhancement effects of brain-derived neurotrophic factor (BDNF) on the local protein synthesis in cortical axons were also studied. The results indicate that Ca(2+) influxes via transient receptor potential canonical channels and activated the mTOR pathway in axons also mediate BDNF stimulation to local protein synthesis. However, glutamate- and BDNF-induced enhancements of translation in axons exhibit different kinetics. Moreover, Ca(2+) and mTOR signaling appear to play roles carrying different weights, respectively, in transducing glutamate- and BDNF-induced enhancements of axonal translation. Thus, our results indicate that exposure to transient increases of glutamate and more lasting increases of BDNF would stimulate local protein synthesis in migrating axons en route to their targets in the developing brain.

  1. A conserved glutamate residue in the C-terminal deaminase domain of pentatricopeptide repeat proteins is required for RNA editing activity.

    PubMed

    Hayes, Michael L; Dang, Kim N; Diaz, Michael F; Mulligan, R Michael

    2015-04-17

    Many transcripts expressed from plant organelle genomes are modified by C-to-U RNA editing. Nuclear encoded pentatricopeptide repeat (PPR) proteins include an RNA binding domain that provides site specificity. In addition, many PPR proteins include a C-terminal DYW deaminase domain with characteristic zinc binding motifs (CXXC, HXE) and has recently been shown to bind zinc ions. The glutamate residue of the HXE motif is catalytically required in the reaction catalyzed by cytidine deaminase. In this work, we examine the activity of the DYW deaminase domain through truncation or mutagenesis of the HXE motif. OTP84 is required for editing three chloroplast sites, and transgenes expressing OTP84 with C-terminal truncations were capable of editing only one of the three cognate sites at high efficiency. These results suggest that the deaminase domain of OTP84 is required for editing two of the sites, but another deaminase is able to supply the deamination activity for the third site. OTP84 and CREF7 transgenes were mutagenized to replace the glutamate residue of the HXE motif, and transgenic plants expressing OTP84-E824A and CREF7-E554A were unable to efficiently edit the cognate editing sites for these genes. In addition, plants expressing CREF7-E554A exhibited substantially reduced capacity to edit a non-cognate site, rpoA C200. These results indicate that the DYW deaminase domains of PPR proteins are involved in editing their cognate editing sites, and in some cases may participate in editing additional sites in the chloroplast. PMID:25739442

  2. Experimentally induced diabetes causes glial activation, glutamate toxicity and cellular damage leading to changes in motor function

    PubMed Central

    Nagayach, Aarti; Patro, Nisha; Patro, Ishan

    2014-01-01

    Behavioral impairments are the most empirical consequence of diabetes mellitus documented in both humans and animal models, but the underlying causes are still poorly understood. As the cerebellum plays a major role in coordination and execution of the motor functions, we investigated the possible involvement of glial activation, cellular degeneration and glutamate transportation in the cerebellum of rats, rendered diabetic by a single injection of streptozotocin (STZ; 45 mg/kg body weight; intraperitoneally). Motor function alterations were studied using Rotarod test (motor coordination) and grip strength (muscle activity) at 2nd, 4th, 6th, 8th, 10th, and 12th week post-diabetic confirmation. Scenario of glial (astroglia and microglia) activation, cell death and glutamate transportation was gaged using immunohistochemistry, histological study and image analysis. Cellular degeneration was clearly demarcated in the diabetic cerebellum. Glial cells were showing sequential and marked activation following diabetes in terms of both morphology and cell number. Bergmann glial cells were hypertrophied and distorted. Active caspase-3 positive apoptotic cells were profoundly present in all three cerebellar layers. Reduced co-labeling of GLT-1 and GFAP revealed the altered glutamate transportation in cerebellum following diabetes. These results, exclusively derived from histology, immunohistochemistry and cellular quantification, provide first insight over the associative reciprocity between the glial activation, cellular degeneration and reduced glutamate transportation, which presumably lead to the behavioral alterations following STZ-induced diabetes. PMID:25400546

  3. Induction of an Olfactory Memory by the Activation of a Metabotropic Glutamate Receptor

    NASA Astrophysics Data System (ADS)

    Kaba, Hideto; Hayashi, Yasunori; Higuchi, Takashi; Nakanishi, Shigetada

    1994-07-01

    Female mice form an olfactory memory of male pheromones at mating; exposure to the pheromones of a strange male after that mating will block pregnancy. The formation of this memory is mediated by the accessory olfactory system, in which an increase in norepinephrine after mating reduces inhibitory transmission of γ-aminobutyric acid from the granule cells to the mitral cells. This study shows that the activation of mGluR2, a metabotropic glutamate receptor that suppresses the γ-aminobutyric acid inhibition of the mitral cells, permits the formation of a specific olfactory memory without the occurrence of mating by infusion of mGluR2 agonists into the female's accessory olfactory bulb. This memory faithfully reflects the memory formed at mating.

  4. Endogenous activation of metabotropic glutamate receptors supports the proliferation and survival of neural progenitor cells.

    PubMed

    Di Giorgi-Gerevini, V; Melchiorri, D; Battaglia, G; Ricci-Vitiani, L; Ciceroni, C; Busceti, C L; Biagioni, F; Iacovelli, L; Canudas, A M; Parati, E; De Maria, R; Nicoletti, F

    2005-08-01

    The use of neural progenitor cells (NPCs) is limited by the incomplete knowledge of the extracellular signals regulating their proliferation and survival. We report that cultured mouse NPCs express functional mGlu3 and mGlu5 metabotropic glutamate receptors. Pharmacological blockade of both receptors reduced NPC proliferation and survival, whereas activation of mGlu5 receptors substantially enhanced cell proliferation. Adult mice lacking mGlu5 receptors or treated with mGlu5 or mGlu3 receptor antagonists showed a dramatic reduction in the number of dividing neuroprogenitors present in the subventricular zone and in the dentate gyrus of the hippocampus. These data disclose a novel function of mGlu receptors and offer new potential strategies for the optimization of cell replacement therapy in neurodegenerative disorders. PMID:15947794

  5. Effect of aspartame on N-methyl-D-aspartate-sensitive L-[3H]glutamate binding sites in rat brain synaptic membranes.

    PubMed

    Pan-Hou, H; Suda, Y; Ohe, Y; Sumi, M; Yoshioka, M

    1990-06-18

    Aspartame (L-aspartyl-L-phenylalanine methyl ester), an artificial low-calorie sweetener, was shown to dose-dependently inhibit L-[3H]glutamate binding to its N-methyl-D-aspartate-specific receptors. L-Aspartic acid, a major endogenous metabolite of aspartame, inhibited the binding more stronger than aspartame, while the other metabolites, L-phenylalanine and methanol, had no effect at the same concentration. Aspartame caused a significant change in the affinities of L-[3H]glutamate binding without altering the Vmax values of the binding, suggesting the inhibition is competitive. These in vitro findings suggested that aspartame may act directly on the N-methyl-D-aspartate-sensitive glutamate recognition sites in the brain synaptic membranes.

  6. Single channel currents of different amplitude activated by glutamate in a tonic (slow) crayfish muscle.

    PubMed

    Finger, W; Pareto, A

    1987-09-11

    Single channel currents were recorded by means of the patch-clamp technique from a tonic (slow) crayfish muscle in the presence of 5 mM glutamate. The experiments were carried out with 'Gigaohm-seals' in the 'cell-attached' mode at 15-17 degrees C. Five classes of single channel currents with different mean amplitudes were resolved: i1 = -0.75 +/- 0.43 (S.D.) pA, i2 = -1.4 +/- 0.4 pA, i3 = -3.5 +/- 0.63 pA, i4 = -8.5 +/- 0.92 pA and i5 approximately equal to 2 X i4, i2, i3 and i4 were recorded at resting membrane potential, Eo approximately equal to -80 mV (pipette potential Vp = 0), while i1 and i5 were recorded at 40 mV hyperpolarized to Eo (Vp = +40 mV). The current most frequently seen was i4 which is the excitatory glutamate-activated single channel current recorded previously by Franke et al. The membrane reversal potentials and channel conductances for i2 and i4 were estimated to be +60 mV (Eo + 140 mV), 13 pS for i2 and +40 mV (Eo + 120 mV), 80 pS for i4. It was assumed that up to 40 i1 currents could superpose in a single patch to generate a DC current of up to -30 pA with current fluctuations the intensity of which increased with the DC current amplitude. Often variable combinations of i1 to i4 currents could be recorded simultaneously in a single patch. In particular, simultaneous activity of i1, i4; i2, i4 and i3, i4 currents was observed in different single patches.

  7. Mammalian folylpoly-. gamma. -glutamate synthetase. 3. Specificity for folate analogues

    SciTech Connect

    George, S.; Cichowicz, D.J.; Shane, B.

    1987-01-27

    A variety of folate analogues were synthesized to explore the specificity of the folate binding site of hog liver folypolyglutamate synthetase and the requirements for catalysis. Modifications of the internal and terminal glutamate moieties of folate cause large drops in on rates and/or affinity for the protein. The only exceptions are glutamine, homocysteate, and ornithine analogues, indicating a less stringent specificity around the delta-carbon of glutamate. It is proposed that initial folate binding to the enzyme involves low-affinity interactions at a pterin and a glutamate site and that the first glutamate bound is the internal residue adjacent to the benzoyl group. Processive movement of the polyglutamate chain through the glutamate site and a possible conformational change in the protein when the terminal residue is bound would result in tight binding and would position the ..gamma..-carboxyl of the terminal glutamate in the correct position for catalysis. The 4-amino substitution of folate increases the on rate for monoglutamate derivatives but severely impairs catalysis with diglutamate derivatives. Pteroylornithine derivatives are the first potent and specific inhibitors of folylpolyglutamate synthetase to be identified and may act as analogues of reaction intermediates. Other folate derivatives with tetrahedral chemistry replacing the peptide bond, such as pteroyl-..gamma..-glutamyl-(psi,CH/sub 2/-NH)-glutamate, retain affinity for the protein but are considerably less effective inhibitors than the ornithine derivatives. Enzyme activity was assayed using (/sup 14/C)glutamate.

  8. Thinking outside the cleft to understand synaptic activity: contribution of the cystine-glutamate antiporter (System xc-) to normal and pathological glutamatergic signaling.

    PubMed

    Bridges, Richard; Lutgen, Victoria; Lobner, Doug; Baker, David A

    2012-07-01

    System x(c)(-) represents an intriguing target in attempts to understand the pathological states of the central nervous system. Also called a cystine-glutamate antiporter, system x(c)(-) typically functions by exchanging one molecule of extracellular cystine for one molecule of intracellular glutamate. Nonvesicular glutamate released during cystine-glutamate exchange activates extrasynaptic glutamate receptors in a manner that shapes synaptic activity and plasticity. These findings contribute to the intriguing possibility that extracellular glutamate is regulated by a complex network of release and reuptake mechanisms, many of which are unique to glutamate and rarely depicted in models of excitatory signaling. Because system x(c)(-) is often expressed on non-neuronal cells, the study of cystine-glutamate exchange may advance the emerging viewpoint that glia are active contributors to information processing in the brain. It is noteworthy that system x(c)(-) is at the interface between excitatory signaling and oxidative stress, because the uptake of cystine that results from cystine-glutamate exchange is critical in maintaining the levels of glutathione, a critical antioxidant. As a result of these dual functions, system x(c)(-) has been implicated in a wide array of central nervous system diseases ranging from addiction to neurodegenerative disorders to schizophrenia. In the current review, we briefly discuss the major cellular components that regulate glutamate homeostasis, including glutamate release by system x(c)(-). This is followed by an in-depth discussion of system x(c)(-) as it relates to glutamate release, cystine transport, and glutathione synthesis. Finally, the role of system x(c)(-) is surveyed across a number of psychiatric and neurodegenerative disorders.

  9. Activation of Group II Metabotropic Glutamate Receptors Induces Depotentiation in Amygdala Slices and Reduces Fear-Potentiated Startle in Rats

    ERIC Educational Resources Information Center

    Lin, Chia-Ho; Lee, Chia-Ching; Huang, Ya-Chun; Wang, Su-Jane; Gean, Po-Wu

    2005-01-01

    There is a close correlation between long-term potentiation (LTP) in the synapses of lateral amygdala (LA) and fear conditioning in animals. We predict that reversal of LTP (depotentiation) in this area of the brain may ameliorate conditioned fear. Activation of group II metabotropic glutamate receptors (mGluR II) with DCG-IV induces…

  10. Augmented cystine-glutamate exchange by pituitary adenylate cyclase-activating polypeptide signaling via the VPAC1 receptor.

    PubMed

    Resch, Jon M; Albano, Rebecca; Liu, XiaoQian; Hjelmhaug, Julie; Lobner, Doug; Baker, David A; Choi, SuJean

    2014-07-28

    In the central nervous system, cystine import in exchange for glutamate through system xc(-) is critical for the production of the antioxidant glutathione by astrocytes, as well as the maintenance of extracellular glutamate. Therefore, regulation of system xc(-) activity affects multiple aspects of cellular physiology and may contribute to disease states. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuronally-derived peptide that has already been demonstrated to modulate multiple aspects of glutamate signaling suggesting PACAP may also target activity of cystine-glutamate exchange via system xc(-) . In the current study, 24-hour treatment of primary cortical cultures containing neurons and glia with PACAP concentration-dependently increased system xc(-) function as measured by radiolabeled cystine uptake. Furthermore, the increase in cystine uptake was completely abolished by the system xc(-) inhibitor, (S)-4-carboxyphenylglycine (CPG), attributing increases in cystine uptake specifically to system xc(-) activity. Time course and quantitative PCR results indicate that PACAP signaling may increase cystine-glutamate exchange by increasing expression of xCT, the catalytic subunit of system xc(-) . Furthermore, the potentiation of system xc(-) activity by PACAP occurs via a PKA-dependent pathway that is not mediated by the PAC1R, but rather the shared vasoactive intestinal polypeptide receptor VPAC1R. Finally, assessment of neuronal, astrocytic, and microglial-enriched cultures demonstrated that only astrocyte-enriched cultures exhibit enhanced cystine uptake following both PACAP and VIP treatment. These data introduce a novel mechanism by which both PACAP and VIP regulate system xc(-) activity. Synapse, 2014. © 2014 Wiley Periodicals, Inc.

  11. Activity of the lactate-alanine shuttle is independent of glutamate-glutamine cycle activity in cerebellar neuronal-astrocytic cultures.

    PubMed

    Bak, Lasse K; Sickmann, Helle M; Schousboe, Arne; Waagepetersen, Helle S

    The glutamate-glutamine cycle describes the neuronal release of glutamate into the synaptic cleft, astrocytic uptake, and conversion into glutamine, followed by release for use as a neuronal glutamate precursor. This only explains the fate of the carbon atoms, however, and not that of the ammonia. Recently, a role for alanine has been proposed in transfer of ammonia between glutamatergic neurons and astrocytes, denoted the lactate-alanine shuttle (Waagepetersen et al. [ 2000] J. Neurochem. 75:471-479). The role of alanine in this context has been studied further using cerebellar neuronal cultures and corresponding neuronal-astrocytic cocultures. A superfusion paradigm was used to induce repetitively vesicular glutamate release by N-methyl-D-aspartate (NMDA) in the neurons, allowing the relative activity dependency of the lactate-alanine shuttle to be assessed. [(15)N]Alanine (0.2 mM), [2-(15)N]/[5-(15)N]glutamine (0.25 mM), and [(15)N]ammonia (0.3 mM) were used as precursors and cell extracts were analyzed by mass spectrometry. Labeling from [(15)N]alanine in glutamine, aspartate, and glutamate in cerebellar cocultures was independent of depolarization of the neurons. Employing glutamine with the amino group labeled ([2-(15)N]glutamine) as the precursor, an activity-dependent increase in the labeling of both glutamate and aspartate (but not alanine) was observed in the cerebellar neurons. When the amide group of glutamine was labeled ([5-(15)N]glutamine), no labeling could be detected in the analyzed metabolites. Altogether, the results of this study support the existence of the lactate-alanine shuttle and the associated glutamate-glutamine cycle. No direct coupling of the two shuttles was observed, however, and only the glutamate-glutamine cycle seemed activity dependent.

  12. Post-synaptic calcium influx at the giant synapse of the squid during activation by glutamate.

    PubMed Central

    Eusebi, F; Miledi, R; Parker, I; Stinnakre, J

    1985-01-01

    Changes in free calcium were monitored in the post-synaptic axon of the giant synapse of the squid, using the calcium indicators aequorin and Arsenazo III. The peak size of the calcium-dependent optical signals recorded from aequorin and Arsenazo III both showed a linear relation with the amount of calcium injected ionophoretically into the axon, but the Arsenazo signal had a slower time course than the aequorin. Ionophoretic application of glutamate to the post-synaptic axon depolarized the axon and caused a rise in intracellular free calcium. Aequorin signals were detected in natural sea water, and their size increased when the calcium concentration in the sea water was raised. Arsenazo signals could be detected only in high-calcium (55 mM) sea water. Intracellular calcium signals were detected also during bath application of several glutamate analogues, including kainate, ibotenate, and aspartate. The peak amplitude of the intracellular calcium signal, monitored with both indicators, increased with increasing ionophoretic glutamate dose, and varied linearly with the integral of the glutamate-induced membrane depolarization. No calcium signals were detected when depolarizations, similar to those produced by glutamate, were induced by current injection in the absence of glutamate. We conclude that glutamate increases the calcium permeability of the post-synaptic membrane, independently of the glutamate-induced depolarization. The glutamate-induced depolarization and the rise in intracellular free calcium increased roughly linearly as the membrane potential was made more negative. Extrapolation of these data indicated that the glutamate depolarization would reduce to zero at about -30 mV, while the calcium signals would be suppressed at about +50 mV. PMID:2869144

  13. The neuroprotective action of pyrroloquinoline quinone against glutamate-induced apoptosis in hippocampal neurons is mediated through the activation of PI3K/Akt pathway

    SciTech Connect

    Zhang Qi; Shen Mi; Ding Mei; Shen Dingding; Ding Fei

    2011-04-01

    Pyrroloquinoline quinone (PQQ), a cofactor in several enzyme-catalyzed redox reactions, possesses a potential capability of scavenging reactive oxygen species (ROS) and inhibiting cell apoptosis. In this study, we investigated the effects of PQQ on glutamate-induced cell death in primary cultured hippocampal neurons and the possible underlying mechanisms. We found that glutamate-induced apoptosis in cultured hippocampal neurons was significantly attenuated by the ensuing PQQ treatment, which also inhibited the glutamate-induced increase in Ca2+ influx, caspase-3 activity, and ROS production, and reversed the glutamate-induced decrease in Bcl-2/Bax ratio. The examination of signaling pathways revealed that PQQ treatment activated the phosphorylation of Akt and suppressed the glutamate-induced phosphorylation of c-Jun N-terminal protein kinase (JNK). And inhibition of phosphatidylinositol-3-kinase (PI3K)/Akt cascade by LY294002 and wortmannin significantly blocked the protective effects of PQQ, and alleviated the increase in Bcl-2/Bax ratio. Taken together, our results indicated that PQQ could protect primary cultured hippocampal neurons against glutamate-induced cell damage by scavenging ROS, reducing Ca2+ influx, and caspase-3 activity, and suggested that PQQ-activated PI3K/Akt signaling might be responsible for its neuroprotective action through modulation of glutamate-induced imbalance between Bcl-2 and Bax. - Research Highlights: >PQQ attenuated glutamate-induced cell apoptosis of cultured hippocampal neurons. >PQQ inhibited glutamate-induced Ca{sup 2+} influx and caspase-3 activity. >PQQ reduced glutamate-induced increase in ROS production. >PQQ affected phosphorylation of Akt and JNK signalings after glutamate injury. >PI3K/Akt was required for neuroprotection of PQQ by modulating Bcl-2/Bax ratio.

  14. Effect of MS-153, a glutamate transporter activator, on the conditioned rewarding effects of morphine, methamphetamine and cocaine in mice.

    PubMed

    Nakagawa, Takayuki; Fujio, Mayumi; Ozawa, Tohru; Minami, Masabumi; Satoh, Masamichi

    2005-01-30

    There is a body of evidence implying the involvement of the glutamatergic system in the conditioned rewarding effects of drugs of abuse. It is recognized that the release of extracellular glutamate from nerve terminals is counterbalanced by the functions of neuronal and glial glutamate transporters. In the present study, we investigated the effects of (R)-(-)-5-methyl-1-nicotinoyl-2-pyrazoline (MS-153), a glutamate transporter activator, on the induction of the conditioned place preference to morphine, methamphetamine and cocaine in mice. In the conditioned place preference paradigm, mice were conditioned with repeated subcutaneous injections of morphine (5 mg/kg), methamphetamine (2 mg/kg) or cocaine (8 mg/kg) in combination with or without MS-153 (3 and 10 mg/kg). Co-administration of MS-153 at a dose of 10 mg/kg, but not 3 mg/kg, significantly attenuated the induction of conditioned place preference to morphine, methamphetamine and cocaine. However, MS-153 itself produced neither conditioned place preference nor aversion. On the other hand, co-administration of MS-153 (10 mg/kg) did not alter the acute locomotor activation elicited by a single injection of morphine, methamphetamine and cocaine. These results suggest that MS-153, a glutamate transporter activator, has an inhibitory effect on the conditioned rewarding effects of morphine, methamphetamine and cocaine without affecting their acute locomotor responses.

  15. Dynamic changes in gamma-aminobutyric acid and glutamate decarboxylase activity in oats (Avena nuda L.) during steeping and germination.

    PubMed

    Xu, Jian Guo; Hu, Qing Ping; Duan, Jiang Lian; Tian, Cheng Rui

    2010-09-01

    Gamma-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the central nervous system and provides beneficial effects for human and other animals health. To accumulate GABA, samples from two different naked oat cultivars, Baiyan II and Bayou I, were steeped and germinated in an incubator. The content of GABA and glutamic acid as well as the activity of the glutamate decarboxylase (GAD) in oats during steeping and germination were investigated with an amino acid automatic analyzer. Compared with raw groats, an increase in GABA content of oat groats during steeping and germination was continuously observed for two oat cultivars. The activity of GAD increased greatly at the end of steeping and the second stage of germination for Baiyan II and Bayou I, respectively. Glutamic acid content of treated oat groats was significantly lower than that in raw groats until the later period of germination. GABA was correlated (p<0.01) significantly and positively with the glutamic acid rather than GAD activity in the current study. The results indicates that steeping and germination process under highly controlled conditions can effectively accumulate the GABA in oat groats for Baiyan II and Bayou I, which would greatly facilitate production of nutraceuticals or food ingredients that enable consumers to gain greater access to the health benefits of oats. However, more assays need to be further performed with more oat cultivars.

  16. Topiramate protects against glutamate excitotoxicity via activating BDNF/TrkB-dependent ERK pathway in rodent hippocampal neurons.

    PubMed

    Mao, Xiao-Yuan; Cao, Yong-Gang; Ji, Zhong; Zhou, Hong-Hao; Liu, Zhao-Qian; Sun, Hong-Li

    2015-07-01

    Topiramate (TPM) was previously found to have neuroprotection against neuronal injury in epileptic and ischemic models. However, whether TPM protects against glutamate-induced excitotoxicity in hippocampal neurons is elusive. Our present work aimed to evaluate the protective effect of TPM against glutamate toxicity in hippocampal neurons and further figure out the potential molecular mechanisms. The in vitro glutamate excitotoxic model was prepared with 125μM glutamate for 20min. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) analysis and Hoechst 33342 staining were conducted to detect neuronal survival. The protein expressions of brain-derived neurotrophic factor (BDNF), TrkB, mitogen-activated protein kinase (MAPK) cascade (including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 MAPK), cyclic AMP response element binding protein (CREB), Bcl-2, Bax and β-actin were detected via Western blot assay. Our results demonstrated that TPM protected hippocampal neurons from glutamate toxicity. Meanwhile, the pretreatment of TPM for 10min significantly prevented the down-regulation of BDNF and the phosphorylation of TrkB. Furthermore, the elevation of phosphorylated EKR expression was significantly inhibited after blockade of TrkB by TrkB IgG, while no alterations of phosphorylated JNK and p38 MAPK were found in the cultured hippocampal neurons. Besides, it was also found that the enhanced phosphorylation of CREB was evidently reversed under excitotoxic conditions after treating with U0126 (the selective inhibitor of ERK). The protein level of Bcl-2 was also observed to be remarkably increased after TPM treatment. In conclusion, these findings implicate that TPM exerts neuroprotective effects against glutamate excitotoxicity in hippocampal neurons and its protection may be modulated through BDNF/TrkB-dependent ERK pathway.

  17. Preferential binding of allosteric modulators to active and inactive conformational states of metabotropic glutamate receptors

    PubMed Central

    Yanamala, Naveena; Tirupula, Kalyan C; Klein-Seetharaman, Judith

    2008-01-01

    Metabotropic glutamate receptors (mGluRs) are G protein coupled receptors that play important roles in synaptic plasticity and other neuro-physiological and pathological processes. Allosteric mGluR ligands are particularly promising drug targets because of their modulatory effects – enhancing or suppressing the response of mGluRs to glutamate. The mechanism by which this modulation occurs is not known. Here, we propose the hypothesis that positive and negative modulators will differentially stabilize the active and inactive conformations of the receptors, respectively. To test this hypothesis, we have generated computational models of the transmembrane regions of different mGluR subtypes in two different conformations. The inactive conformation was modeled using the crystal structure of the inactive, dark state of rhodopsin as template and the active conformation was created based on a recent model of the light-activated state of rhodopsin. Ligands for which the nature of their allosteric effects on mGluRs is experimentally known were docked to the modeled mGluR structures using ArgusLab and Autodock softwares. We find that the allosteric ligand binding pockets of mGluRs are overlapping with the retinal binding pocket of rhodopsin, and that ligands have strong preferences for the active and inactive states depending on their modulatory nature. In 8 out of 14 cases (57%), the negative modulators bound the inactive conformations with significant preference using both docking programs, and 6 out of 9 cases (67%), the positive modulators bound the active conformations. Considering results by the individual programs only, even higher correlations were observed: 12/14 (86%) and 8/9 (89%) for ArgusLab and 10/14 (71%) and 7/9 (78%) for AutoDock. These findings strongly support the hypothesis that mGluR allosteric modulation occurs via stabilization of different conformations analogous to those identified in rhodopsin where they are induced by photochemical isomerization

  18. Retour aux sources: defining the structural basis of glutamate receptor activation.

    PubMed

    Dawe, G Brent; Aurousseau, Mark R; Daniels, Bryan A; Bowie, Derek

    2015-01-01

    Ionotropic glutamate receptors (iGluRs) are the major excitatory neurotransmitter receptor in the vertebrate CNS and, as a result, their activation properties lie at the heart of much of the neuronal network activity observed in the developing and adult brain. iGluRs have also been implicated in many nervous system disorders associated with postnatal development (e.g. autism, schizophrenia), cerebral insult (e.g. stroke, epilepsy), and disorders of the ageing brain (e.g. Alzheimer's disease, Parkinsonism). In view of this, an emphasis has been placed on understanding how iGluRs activate and desensitize in functional and structural terms. Early structural models of iGluRs suggested that the strength of the agonist response was primarily governed by the degree of closure induced in the ligand-binding domain (LBD). However, recent studies have suggested a more nuanced role for the LBD with current evidence identifying the iGluR LBD interface as a "hotspot" regulating agonist behaviour. Such ideas remain to be consolidated with recently solved structures of full-length iGluRs to account for the global changes that underlie channel activation and desensitization.

  19. Stimulation of endocannabinoid formation in brain slice cultures through activation of group I metabotropic glutamate receptors.

    PubMed

    Jung, Kwang-Mook; Mangieri, Regina; Stapleton, Christopher; Kim, Janet; Fegley, Darren; Wallace, Matthew; Mackie, Ken; Piomelli, Daniele

    2005-11-01

    Activation of group I metabotropic glutamate (mGlu) receptors drives the endocannabinoid system to cause both short- and long-term changes of synaptic strength in the striatum, hippocampus, and other brain areas. Although there is strong electrophysiological evidence for a role of endocannabinoid release in mGlu receptor-dependent plasticity, the identity of the endocannabinoid transmitter mediating this phenomenon remains undefined. In this study, we show that activation of group I mGlu receptors triggers the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG), but not anandamide, in primary cultures of corticostriatal and hippocampal slices prepared from early postnatal rat brain. Pharmacological studies suggest that 2-AG biosynthesis is initiated by activation of mGlu5 receptors, is catalyzed by phospholipase C (PLC) and 1,2-diacylglycerol lipase (DGL) activities, and is dependent on intracellular Ca2+ ions. Realtime polymerase chain reaction and immunostaining analyses indicate that DGL-beta is the predominant DGL isoform expressed in corticostriatal and hippocampal slices and that this enzyme is highly expressed in striatal neurons, where it is colocalized with PLC-beta1. The results suggest that 2-AG is a primary endocannabinoid mediator of mGlu receptor-dependent neuronal plasticity.

  20. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    PubMed

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-01

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  1. N-methyl-D-aspartate recognition site ligands modulate activity at the coupled glycine recognition site.

    PubMed

    Hood, W F; Compton, R P; Monahan, J B

    1990-03-01

    In synaptic plasma membranes from rat forebrain, the potencies of glycine recognition site agonists and antagonists for modulating [3H]1-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP) binding and for displacing strychnine-insensitive [3H]glycine binding are altered in the presence of N-methyl-D-aspartate (NMDA) recognition site ligands. The NMDA competitive antagonist, cis-4-phosphonomethyl-2-piperidine carboxylate (CGS 19755), reduces [3H]glycine binding, and the reduction can be fully reversed by the NMDA recognition site agonist, L-glutamate. Scatchard analysis of [3H]glycine binding shows that in the presence of CGS 19755 there is no change in Bmax (8.81 vs. 8.79 pmol/mg of protein), but rather a decrease in the affinity of glycine (KD of 0.202 microM vs. 0.129 microM). Similar decreases in affinity are observed for the glycine site agonists, D-serine and 1-aminocyclopropane-1-carboxylate, in the presence of CGS 19755. In contrast, the affinity of glycine antagonists, 1-hydroxy-3-amino-2-pyrrolidone and 1-aminocyclobutane-1-carboxylate, at this [3H]glycine recognition site increases in the presence of CGS 19755. The functional consequence of this change in affinity was addressed using the modulation of [3H]TCP binding. In the presence of L-glutamate, the potency of glycine agonists for the stimulation of [3H]TCP binding increases, whereas the potency of glycine antagonists decreases. These data are consistent with NMDA recognition site ligands, through their interactions at the NMDA recognition site, modulating activity at the associated glycine recognition site.

  2. Characterization of the glutamate dehydrogenase activity of Gigantocotyle explanatum and Gastrothylax crumenifer (Trematoda: Digenea).

    PubMed

    Abidi, S M A; Khan, P; Saifullah, M K

    2009-12-01

    Glutamate dehydrogenase (GLDH) (EC 1.4.1.3) is a ubiquitous enzyme, which is present at the protein and carbohydrate metabolism crossroads. The enzyme activity was investigated in biliary and rumen amphistomes, Gigantocotyle explanatum and Gastrothylax crumenifer, respectively, infecting the Indian water buffalo Bubalus bubalis. The enzyme activity was consistently higher in G. explanatum as compared to G. crumenifer, where NAD(H) was utilized as coenzyme and the pH optima was recorded at 8. The K(m) and V(max) values for α-ketoglutarate were 2.1 mM and 9.09 units in G. explanatum, whereas 3.03 mM and 1.90 units in G. crumenifer, respectively. Among the allosteric modulator nucleotides, AMP, ADP, ATP, GMP, CMP and UMP, only AMP enhanced GLDH activity in G. crumenifer while ADP was stimulatory in G. explanatum. The amino acid leucine stimulated the GLDH activity in both the amphistomes while alanine was stimulatory only in G. crumenifer. Pronounced interspecific differences in response to different metabolic inhibitors like diethyldithiocarbamate, semicarbazide hydrochloride and mercurial ions were also observed. The osmotic stress alters the enzyme activity, particularly in hypertonic saline the GLDH activity increased significantly (p < 0.01) in G. explanatum, while insignificant effects were observed in rumen dwelling G. crumenifer. Histoenzymology revealed region/tissue specific distribution of GLDH with prominent staining in tissues like vitellaria, lymph system and tegument/subtegument, thus showing specific distribution of GLDH indicating differential metabolic state. Such intergeneric differences in GLDH activity could also be a consequence of occupying different microenvironments within the same host.

  3. Structure-activity relationship study of spider polyamine toxins as inhibitors of ionotropic glutamate receptors.

    PubMed

    Xiong, Xiao-Feng; Poulsen, Mette H; Hussein, Rama A; Nørager, Niels G; Strømgaard, Kristian

    2014-12-01

    The spider polyamine toxins Joro spider toxin-3 (JSTX-3) and Nephila polyamine toxins-1 and -8 (NPTX-1 and NPTX-8) are isolated from the venom of the orb-weaver spider Nephila clavata (Joro spider). They share a high degree of structural resemblance, their aromatic head groups being the only difference, and were recently found to be very potent open-channel blockers of ionotropic glutamate (iGlu) receptors. In this study we designed and synthesized a collection of 24 analogues of these toxins using a recently developed solid-phase synthetic methodology. Systematic variation in two regions of the toxins and subsequent evaluation of biological activity at AMPA and NMDA subtypes of iGlu receptors provided succinct information on structure-activity relationships. In particular, one set of analogues were found to display exquisite selectivity and potency for AMPA receptors relative to the natural products. Thus, this systematic SAR study has provided new pharmacological tools for studies of iGlu receptors.

  4. Modulation of glutamatergic transmission by metabotropic glutamate receptor activation in second-order neurons of the guinea pig nucleus tractus solitarius.

    PubMed

    Ohi, Yoshiaki; Kimura, Satoko; Haji, Akira

    2014-09-18

    Activity of second-order relay neurons in the nucleus tractus solitarius (NTS) is regulated by peripheral and intrinsic synaptic inputs, and modulation of those inputs by metabotropic glutamate receptors (mGluRs) has been proposed. This study investigated effects of mGluR activation on glutamatergic transmission in the NTS second-order neurons of guinea pigs. Whole-cell patch-clamp recordings from the brainstem slices revealed that activation of mGluRs exerted its effects on the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) but not on the amplitude. The sEPSC frequency was increased by an agonist of group I mGluRs, and it was decreased by an mGluR1 antagonist but not by an mGluR5 antagonist. The agonists of group II and III mGluRs decreased the sEPSC frequency, while their antagonists alone had no effect. Perfusion of cystine or TBOA, either of which elevates extracellular glutamate concentration, resulted in an increase in the sEPSC frequency, leaving the amplitude unchanged. The increased frequency of sEPSCs was returned to control by an mGluR1 antagonist. The tractus solitarius-evoked EPSCs were not altered by an agonist of group I mGluRs, whereas they were decreased along with an increase in paired-pulse ratio by agonists of group II and III mGluRs. These results suggest that mGluRs are present at the presynaptic sites in the NTS second-order neurons in guinea pigs. The mGluR1s function to facilitate the release of glutamate from axon terminals of intrinsic interneurons and the group II and III mGluRs play an inhibitory role in glutamatergic transmission.

  5. Bruchpilot and Synaptotagmin collaborate to drive rapid glutamate release and active zone differentiation.

    PubMed

    Paul, Mila M; Pauli, Martin; Ehmann, Nadine; Hallermann, Stefan; Sauer, Markus; Kittel, Robert J; Heckmann, Manfred

    2015-01-01

    The active zone (AZ) protein Bruchpilot (Brp) is essential for rapid glutamate release at Drosophila melanogaster neuromuscular junctions (NMJs). Quantal time course and measurements of action potential-waveform suggest that presynaptic fusion mechanisms are altered in brp null mutants (brp(69) ). This could account for their increased evoked excitatory postsynaptic current (EPSC) delay and rise time (by about 1 ms). To test the mechanism of release protraction at brp(69) AZs, we performed knock-down of Synaptotagmin-1 (Syt) via RNAi (syt(KD) ) in wildtype (wt), brp(69) and rab3 null mutants (rab3(rup) ), where Brp is concentrated at a small number of AZs. At wt and rab3(rup) synapses, syt(KD) lowered EPSC amplitude while increasing rise time and delay, consistent with the role of Syt as a release sensor. In contrast, syt(KD) did not alter EPSC amplitude at brp(69) synapses, but shortened delay and rise time. In fact, following syt(KD) , these kinetic properties were strikingly similar in wt and brp(69) , which supports the notion that Syt protracts release at brp(69) synapses. To gain insight into this surprising role of Syt at brp(69) AZs, we analyzed the structural and functional differentiation of synaptic boutons at the NMJ. At 'tonic' type Ib motor neurons, distal boutons contain more AZs, more Brp proteins per AZ and show elevated and accelerated glutamate release compared to proximal boutons. The functional differentiation between proximal and distal boutons is Brp-dependent and reduced after syt(KD) . Notably, syt(KD) boutons are smaller, contain fewer Brp positive AZs and these are of similar number in proximal and distal boutons. In addition, super-resolution imaging via dSTORM revealed that syt(KD) increases the number and alters the spatial distribution of Brp molecules at AZs, while the gradient of Brp proteins per AZ is diminished. In summary, these data demonstrate that normal structural and functional differentiation of Drosophila AZs requires

  6. Bruchpilot and Synaptotagmin collaborate to drive rapid glutamate release and active zone differentiation

    PubMed Central

    Paul, Mila M.; Pauli, Martin; Ehmann, Nadine; Hallermann, Stefan; Sauer, Markus; Kittel, Robert J.; Heckmann, Manfred

    2015-01-01

    The active zone (AZ) protein Bruchpilot (Brp) is essential for rapid glutamate release at Drosophila melanogaster neuromuscular junctions (NMJs). Quantal time course and measurements of action potential-waveform suggest that presynaptic fusion mechanisms are altered in brp null mutants (brp69). This could account for their increased evoked excitatory postsynaptic current (EPSC) delay and rise time (by about 1 ms). To test the mechanism of release protraction at brp69 AZs, we performed knock-down of Synaptotagmin-1 (Syt) via RNAi (sytKD) in wildtype (wt), brp69 and rab3 null mutants (rab3rup), where Brp is concentrated at a small number of AZs. At wt and rab3rup synapses, sytKD lowered EPSC amplitude while increasing rise time and delay, consistent with the role of Syt as a release sensor. In contrast, sytKD did not alter EPSC amplitude at brp69 synapses, but shortened delay and rise time. In fact, following sytKD, these kinetic properties were strikingly similar in wt and brp69, which supports the notion that Syt protracts release at brp69synapses. To gain insight into this surprising role of Syt at brp69 AZs, we analyzed the structural and functional differentiation of synaptic boutons at the NMJ. At ‘tonic’ type Ib motor neurons, distal boutons contain more AZs, more Brp proteins per AZ and show elevated and accelerated glutamate release compared to proximal boutons. The functional differentiation between proximal and distal boutons is Brp-dependent and reduced after sytKD. Notably, sytKD boutons are smaller, contain fewer Brp positive AZs and these are of similar number in proximal and distal boutons. In addition, super-resolution imaging via dSTORM revealed that sytKD increases the number and alters the spatial distribution of Brp molecules at AZs, while the gradient of Brp proteins per AZ is diminished. In summary, these data demonstrate that normal structural and functional differentiation of Drosophila AZs requires concerted action of Brp and Syt. PMID

  7. Salt site performance assessment activities

    SciTech Connect

    Kircher, J.F.; Gupta, S.K.

    1983-01-01

    During this year the first selection of the tools (codes) for performance assessments of potential salt sites have been tentatively selected and documented; the emphasis has shifted from code development to applications. During this period prior to detailed characterization of a salt site, the focus is on bounding calculations, sensitivity and with the data available. The development and application of improved methods for sensitivity and uncertainty analysis is a focus for the coming years activities and the subject of a following paper in these proceedings. Although the assessments to date are preliminary and based on admittedly scant data, the results indicate that suitable salt sites can be identified and repository subsystems designed which will meet the established criteria for protecting the health and safety of the public. 36 references, 5 figures, 2 tables.

  8. Glutamate signalling in roots.

    PubMed

    Forde, Brian G

    2014-03-01

    As a signalling molecule, glutamate is best known for its role as a fast excitatory neurotransmitter in the mammalian nervous system, a role that requires the activity of a family of ionotropic glutamate receptors (iGluRs). The unexpected discovery in 1998 that Arabidopsis thaliana L. possesses a family of iGluR-related (GLR) genes laid the foundations for an assessment of glutamate's potential role as a signalling molecule in plants that is still in progress. Recent advances in elucidating the function of Arabidopsis GLR receptors has revealed similarities with iGluRs in their channel properties, but marked differences in their ligand specificities. The ability of plant GLR receptors to act as amino-acid-gated Ca(2+) channels with a broad agonist profile, combined with their expression throughout the plant, makes them strong candidates for a multiplicity of amino acid signalling roles. Although root growth is inhibited in the presence of a number of amino acids, only glutamate elicits a specific sequence of changes in growth, root tip morphology, and root branching. The recent finding that the MEKK1 gene is a positive regulator of glutamate sensitivity at the root tip has provided genetic evidence for the existence in plants of a glutamate signalling pathway analogous to those found in animals. This short review will discuss the most recent advances in understanding glutamate signalling in roots, considering them in the context of previous work in plants and animals.

  9. Computational study on the roles of amino acid residues in the active site formation mechanism of blue-light photoreceptors

    NASA Astrophysics Data System (ADS)

    Sato, Ryuma; Kitoh-Nishioka, Hirotaka; Ando, Koji; Yamato, Takahisa

    2015-07-01

    To examine the functional roles of the active site methionine (M-site) and glutamic acid (E-site) residues of blue-light photoreceptors, we performed in silico mutation at the M-site in a systematic manner and focused on the hydrogen bonding between the E-site and the substrate: the cyclobutane-pyrimidine dimer (CPD). Fragment molecular orbital calculations with electron correlations demonstrated that substitution of the M-site methionine with either alanine or glutamine always destabilizes the interaction energy between the E-site and the CPD by more than 12.0 kcal/mol, indicating that the methionine and glutamic acid residues cooperatively facilitate the enzymatic reaction in the active site.

  10. Evidence for synergistic control of glutamate biosynthesis by glutamate dehydrogenases and glutamate in Bacillus subtilis.

    PubMed

    Stannek, Lorena; Thiele, Martin J; Ischebeck, Till; Gunka, Katrin; Hammer, Elke; Völker, Uwe; Commichau, Fabian M

    2015-09-01

    In the Gram-positive bacterium, Bacillus subtilis glutamate is synthesized by the glutamine synthetase and the glutamate synthase (GOGAT). During growth with carbon sources that exert carbon catabolite repression, the rocG glutamate dehydrogenase (GDH) gene is repressed and the transcription factor GltC activates the expression of the GOGAT encoding gltAB genes. In the presence of amino acids of the glutamate family, the GDH RocG is synthesized and the enzyme prevents GltC from binding to DNA. The dual control of glutamate biosynthesis allows the efficient utilization of the available nutrients. Here we provide genetic and biochemical evidence that, like RocG, also the paralogous GDH GudB can inhibit the transcription factor GltC, thereby controlling glutamate biosynthesis. Contradictory previous observations show that high level of GDH activity does not result in permanent inhibition of GltC. By controlling the intracellular levels of glutamate through feeding with exogenous arginine, we observed that the GDH-dependent control of GltC and thus expression of the gltAB genes inversely correlates with the glutamate pool. These results suggest that the B. subtilis GDHs RocG and GudB in fact act as glutamate sensors. In conclusion, the GDH-mediated control of glutamate biosynthesis seems to depend on the intracellular glutamate concentration. PMID:25711804

  11. Glutamate transporters alterations in the reorganizing dentate gyrus are associated with progressive seizure activity in chronic epileptic rats.

    PubMed

    Gorter, Jan A; Van Vliet, Erwin A; Proper, Evelien A; De Graan, Pierre N E; Ghijsen, Wim E J M; Lopes Da Silva, Fernando H; Aronica, Eleonora

    2002-01-21

    The expression of glial and neuronal glutamate transporter proteins was investigated in the hippocampal region at different time points after electrically induced status epilepticus (SE) in the rat. This experimental rat model for mesial temporal lobe epilepsy is characterized by cell loss, gliosis, synaptic reorganization, and chronic seizures after a latent period. Despite extensive gliosis, immunocytochemistry revealed only an up-regulation of both glial transporters localized at the outer aspect of the inner molecular layer (iml) in chronic epileptic rats. The neuronal EAAC1 transporter was increased in many somata of individual CA1-3 neurons and granule cells that had survived after SE; this up-regulation was still present in the chronic epileptic phase. In contrast, a permanent decrease of EAAC1 immunoreactivity was observed in the iml of the dentate gyrus. This permanent decrease in EAAC1 expression, which was only observed in rats that experienced progressive spontaneous seizure activity, could lead to abnormal glutamate levels in the iml once new abnormal glutamatergic synaptic contacts are formed by means of sprouted mossy fibers. Considering the steady growth of reorganizing mossy fibers in the iml, the absence of a glutamate reuptake mechanism in this region could contribute to progression of spontaneous seizure activity, which occurs with a similar time course.

  12. Pyridoxine Supplementation Improves the Activity of Recombinant Glutamate Decarboxylase and the Enzymatic Production of Gama-Aminobutyric Acid

    PubMed Central

    Huang, Yan; Su, Lingqia; Wu, Jing

    2016-01-01

    Glutamate decarboxylase (GAD) catalyzes the irreversible decarboxylation of L-glutamate to the valuable food supplement γ-aminobutyric acid (GABA). In this study, GAD from Escherichia coli K12, a pyridoxal phosphate (PLP)-dependent enzyme, was overexpressed in E. coli. The GAD produced in media supplemented with 0.05 mM soluble vitamin B6 analog pyridoxine hydrochloride (GAD-V) activity was 154.8 U mL-1, 1.8-fold higher than that of GAD obtained without supplementation (GAD-C). Purified GAD-V exhibited increased activity (193.4 U mg-1, 1.5-fold higher than that of GAD-C), superior thermostability (2.8-fold greater than that of GAD-C), and higher kcat/Km (1.6-fold higher than that of GAD-C). Under optimal conditions in reactions mixtures lacking added PLP, crude GAD-V converted 500 g L-1 monosodium glutamate (MSG) to GABA with a yield of 100%, and 750 g L-1 MSG with a yield of 88.7%. These results establish the utility of pyridoxine supplementation and lay the foundation for large-scale enzymatic production of GABA. PMID:27438707

  13. Activation of presynaptic oxytocin receptors enhances glutamate release in the ventral hippocampus of prenatally restraint stressed rats.

    PubMed

    Mairesse, Jérôme; Gatta, Eleonora; Reynaert, Marie-Line; Marrocco, Jordan; Morley-Fletcher, Sara; Soichot, Marion; Deruyter, Lucie; Camp, Gilles Van; Bouwalerh, Hammou; Fagioli, Francesca; Pittaluga, Anna; Allorge, Delphine; Nicoletti, Ferdinando; Maccari, Stefania

    2015-12-01

    Oxytocin receptors are known to modulate synaptic transmission and network activity in the hippocampus, but their precise function has been only partially elucidated. Here, we have found that activation of presynaptic oxytocin receptor with the potent agonist, carbetocin, enhanced depolarization-evoked glutamate release in the ventral hippocampus with no effect on GABA release. This evidence paved the way for examining the effect of carbetocin treatment in "prenatally restraint stressed" (PRS) rats, i.e., the offspring of dams exposed to repeated episodes of restraint stress during pregnancy. Adult PRS rats exhibit an anxious/depressive-like phenotype associated with an abnormal glucocorticoid feedback regulation of the hypothalamus-pituitary-adrenal (HPA) axis, and, remarkably, with a reduced depolarization-evoked glutamate release in the ventral hippocampus. Chronic systemic treatment with carbetocin (1mg/kg, i.p., once a day for 2-3 weeks) in PRS rats corrected the defect in glutamate release, anxiety- and depressive-like behavior, and abnormalities in social behavior, in the HPA response to stress, and in the expression of stress-related genes in the hippocampus and amygdala. Of note, carbetocin treatment had no effect on these behavioral and neuroendocrine parameters in prenatally unstressed (control) rats, with the exception of a reduced expression of the oxytocin receptor gene in the amygdala. These findings disclose a novel function of oxytocin receptors in the hippocampus, and encourage the use of oxytocin receptor agonists in the treatment of stress-related psychiatric disorders in adult life.

  14. Pyridoxine Supplementation Improves the Activity of Recombinant Glutamate Decarboxylase and the Enzymatic Production of Gama-Aminobutyric Acid.

    PubMed

    Huang, Yan; Su, Lingqia; Wu, Jing

    2016-01-01

    Glutamate decarboxylase (GAD) catalyzes the irreversible decarboxylation of L-glutamate to the valuable food supplement γ-aminobutyric acid (GABA). In this study, GAD from Escherichia coli K12, a pyridoxal phosphate (PLP)-dependent enzyme, was overexpressed in E. coli. The GAD produced in media supplemented with 0.05 mM soluble vitamin B6 analog pyridoxine hydrochloride (GAD-V) activity was 154.8 U mL-1, 1.8-fold higher than that of GAD obtained without supplementation (GAD-C). Purified GAD-V exhibited increased activity (193.4 U mg-1, 1.5-fold higher than that of GAD-C), superior thermostability (2.8-fold greater than that of GAD-C), and higher kcat/Km (1.6-fold higher than that of GAD-C). Under optimal conditions in reactions mixtures lacking added PLP, crude GAD-V converted 500 g L-1 monosodium glutamate (MSG) to GABA with a yield of 100%, and 750 g L-1 MSG with a yield of 88.7%. These results establish the utility of pyridoxine supplementation and lay the foundation for large-scale enzymatic production of GABA. PMID:27438707

  15. II. Glutamine and glutamate.

    PubMed

    Tapiero, H; Mathé, G; Couvreur, P; Tew, K D

    2002-11-01

    plays a role in the formation and function of the cytoskeleton. Glutamine via glutamate is converted to alpha-ketoglutarate, an integral component of the citric acid cycle. It is a component of the antioxidant glutathione and of the polyglutamated folic acid. The cyclization of glutamate produces proline, an amino acid important for synthesis of collagen and connective tissue. Our aim here is to review on some amino acids with high functional priority such as glutamine and to define their effective activity in human health and pathologies.

  16. Glutamic acid as anticancer agent: An overview.

    PubMed

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K

    2013-10-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed.

  17. Glycine activated ion channel subunits encoded by ctenophore glutamate receptor genes.

    PubMed

    Alberstein, Robert; Grey, Richard; Zimmet, Austin; Simmons, David K; Mayer, Mark L

    2015-11-01

    Recent genome projects for ctenophores have revealed the presence of numerous ionotropic glutamate receptors (iGluRs) in Mnemiopsis leidyi and Pleurobrachia bachei, among our earliest metazoan ancestors. Sequence alignments and phylogenetic analysis show that these form a distinct clade from the well-characterized AMPA, kainate, and NMDA iGluR subtypes found in vertebrates. Although annotated as glutamate and kainate receptors, crystal structures of the ML032222a and PbiGluR3 ligand-binding domains (LBDs) reveal endogenous glycine in the binding pocket, whereas ligand-binding assays show that glycine binds with nanomolar affinity; biochemical assays and structural analysis establish that glutamate is occluded from the binding cavity. Further analysis reveals ctenophore-specific features, such as an interdomain Arg-Glu salt bridge, present only in subunits that bind glycine, but also a conserved disulfide in loop 1 of the LBD that is found in all vertebrate NMDA but not AMPA or kainate receptors. We hypothesize that ctenophore iGluRs are related to an early ancestor of NMDA receptors, suggesting a common evolutionary path for ctenophores and bilaterian species, and suggest that future work should consider both glycine and glutamate as candidate neurotransmitters in ctenophore species. PMID:26460032

  18. Glycine activated ion channel subunits encoded by ctenophore glutamate receptor genes

    PubMed Central

    Alberstein, Robert; Grey, Richard; Zimmet, Austin; Simmons, David K.; Mayer, Mark L.

    2015-01-01

    Recent genome projects for ctenophores have revealed the presence of numerous ionotropic glutamate receptors (iGluRs) in Mnemiopsis leidyi and Pleurobrachia bachei, among our earliest metazoan ancestors. Sequence alignments and phylogenetic analysis show that these form a distinct clade from the well-characterized AMPA, kainate, and NMDA iGluR subtypes found in vertebrates. Although annotated as glutamate and kainate receptors, crystal structures of the ML032222a and PbiGluR3 ligand-binding domains (LBDs) reveal endogenous glycine in the binding pocket, whereas ligand-binding assays show that glycine binds with nanomolar affinity; biochemical assays and structural analysis establish that glutamate is occluded from the binding cavity. Further analysis reveals ctenophore-specific features, such as an interdomain Arg-Glu salt bridge, present only in subunits that bind glycine, but also a conserved disulfide in loop 1 of the LBD that is found in all vertebrate NMDA but not AMPA or kainate receptors. We hypothesize that ctenophore iGluRs are related to an early ancestor of NMDA receptors, suggesting a common evolutionary path for ctenophores and bilaterian species, and suggest that future work should consider both glycine and glutamate as candidate neurotransmitters in ctenophore species. PMID:26460032

  19. Bovine neuronal vesicular glutamate transporter activity is inhibited by ergovaline and other ergopeptines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    L-Glutamate (Glu) is the major excitatory neurotransmitter responsible for neurotransmission in the vertebrate central nervous system, including the gastrointestinal tract (GIT) of cattle. Vesicular Glu transporters VGLUT1 and VGLUT2 concentrate (50 mM) Glu (Km = 1 to 4 mM) into synaptic vesicles (S...

  20. Glycine activated ion channel subunits encoded by ctenophore glutamate receptor genes.

    PubMed

    Alberstein, Robert; Grey, Richard; Zimmet, Austin; Simmons, David K; Mayer, Mark L

    2015-11-01

    Recent genome projects for ctenophores have revealed the presence of numerous ionotropic glutamate receptors (iGluRs) in Mnemiopsis leidyi and Pleurobrachia bachei, among our earliest metazoan ancestors. Sequence alignments and phylogenetic analysis show that these form a distinct clade from the well-characterized AMPA, kainate, and NMDA iGluR subtypes found in vertebrates. Although annotated as glutamate and kainate receptors, crystal structures of the ML032222a and PbiGluR3 ligand-binding domains (LBDs) reveal endogenous glycine in the binding pocket, whereas ligand-binding assays show that glycine binds with nanomolar affinity; biochemical assays and structural analysis establish that glutamate is occluded from the binding cavity. Further analysis reveals ctenophore-specific features, such as an interdomain Arg-Glu salt bridge, present only in subunits that bind glycine, but also a conserved disulfide in loop 1 of the LBD that is found in all vertebrate NMDA but not AMPA or kainate receptors. We hypothesize that ctenophore iGluRs are related to an early ancestor of NMDA receptors, suggesting a common evolutionary path for ctenophores and bilaterian species, and suggest that future work should consider both glycine and glutamate as candidate neurotransmitters in ctenophore species.

  1. Enzymatic synthesis of γ-glutamylmethylamide from glutamic acid γ-methyl ester and methylamine catalyzed by Escherichia coli having γ-glutamyltranspeptidase activity.

    PubMed

    Xu, Lisheng; Gao, Guizhen; Wengen, Cao; Xu, Jigui; Zhao, Liang; Shi, Hongwei; Zhang, Xingtao

    2014-06-01

    A new method for the synthesis of γ-glutamylmethylamide is presented. Glutamic acid γ-methyl ester was used as substrate for γ-glutamylmethylamide synthesis catalyzed by Escherichia coli with γ-glutamyltranspeptidase activity. Reaction conditions were optimized by using 300 mM glutamic acid γ-methyl ester and 3,000 mM methylamine at pH 10 and 40 °C. Bioconversion rate of γ-glutamylmethylamide reached 87 % after 10 h. γ-Glutamyltranspeptidase was reversibly inhibited only when glutamic acid γ-methyl ester was above 300 mM.

  2. EVALUATING THE NMDA-GLUTAMATE RECEPTOR AS A SITE OF ACTION FOR TOLUENE USING PATTERN ELICITED VISUAL EVOKED POTENTIALS.

    EPA Science Inventory

    In vitro studies have demonstrated that toluene disrupts the function of NMDA-glutamate receptors, as well as other channels. This has led to the hypothesis that effects on NMDA receptor function may contribute to toluene neurotoxicity, CNS depression, and altered visual evoked ...

  3. Burst firing in gonadotrophin-releasing hormone neurones does not require ionotrophic GABA or glutamate receptor activation.

    PubMed

    Lee, K; Liu, X; Herbison, A E

    2012-12-01

    Burst firing is a feature of many neuroendocrine cell types, including the hypothalamic gonadotrophin-releasing hormone (GnRH) neurones that control fertility. The role of intrinsic and extrinsic influences in generating GnRH neurone burst firing is presently unclear. In the present study, we investigated the role of fast amino acid transmission in burst firing by examining the effects of receptor antagonists on bursting displayed by green fluorescent protein GnRH neurones in sagittal brain slices prepared from adult male mice. Blockade of AMPA and NMDA glutamate receptors with a cocktail of CNQX and AP5 was found to have no effects on burst firing in GnRH neurones. The frequency of bursts, dynamics of individual bursts, or percentage of firing clustered in bursts was not altered. Similarly, GABA(A) receptor antagonists bicuculline and picrotoxin had no effects upon burst firing in GnRH neurones. To examine the importance of both glutamate and GABA ionotrophic signalling, a cocktail including picrotoxin, CNQX and AP5 was used but, again, this was found to have no effects on GnRH neurone burst firing. To further question the impact of endogenous amino acid release on burst firing, electrical activation of anteroventral periventricular nuclei GABA/glutamate inputs to GnRH neurones was undertaken and found to have no impact on burst firing. Taken together, these observations indicate that bursting in GnRH neurones is not dependent upon acute ionotrophic GABA and glutamate signalling and suggest that extrinsic inputs to GnRH neurones acting through AMPA, NMDA and GABA(A) receptors are unlikely to be required for burst initiation in these cells.

  4. Medial Septal NMDA Glutamate Receptors are Involved in Modulation of Blood Natural Killer Cell Activity in Rats.

    PubMed

    Podlacha, Magdalena; Glac, Wojciech; Listowska, Magdalena; Grembecka, Beata; Majkutewicz, Irena; Myślińska, Dorota; Plucińska, Karolina; Jerzemowska, Grażyna; Grzybowska, Maria; Wrona, Danuta

    2016-03-01

    The purpose of the present study was to determine the specific role of the medial septal (MS) NMDA glutamate receptors on peripheral blood natural killer cell cytotoxicity (NKCC) and their (large granular lymphocyte, LGL) number, as well as the plasma concentration of tumor necrosis factor α (TNF-α) and corticosterone in male Wistar rats exposed to elevated plus maze (EPM) stress or non-stress conditions. The NMDA groups were injected with NMDA glutamate receptor agonist (N-methyl-D-aspartate; 0.25 μg/rat), the D-AP7 group was injected with DL-2-amino-7-phosphoheptanoate (0.1 μg/rat), an antagonist of NMDA glutamate receptors, and the control Sal group with saline (0.5 μl/rat) via previously implanted cannulae into the MS. There was an increase in the NKCC, NK/LGL number and plasma TNF-α concentration after the NMDA injections, being much stronger within the rats under non-stress conditions rather than the rats exposed to EPM stress. These parameters were decreased in the D-AP7 rats, suggesting receptor/ion channel specificity. Moreover, a lower plasma corticosterone concentration within the NMDA rather than the Sal and D-AP7 groups was found. The obtained results suggest that activation of the NMDA glutamate receptors in the MS, accompanied by changes in the corticosterone and cytokine responses, may be involved in modulation of the blood natural anti-tumor response, under EPM stress and non-stress conditions. PMID:26454750

  5. Activation of synaptic group II metabotropic glutamate receptors induces long-term depression at GABAergic synapses in CNS neurons.

    PubMed

    Tang, Zheng-Quan; Liu, Yu-Wei; Shi, Wei; Dinh, Emilie Hoang; Hamlet, William R; Curry, Rebecca J; Lu, Yong

    2013-10-01

    Metabotropic glutamate receptor (mGluR)-dependent homosynaptic long-term depression (LTD) has been studied extensively at glutamatergic synapses in the CNS. However, much less is known about heterosynaptic long-term plasticity induced by mGluRs at inhibitory synapses. Here we report that pharmacological or synaptic activation of group II mGluRs (mGluR II) induces LTD at GABAergic synapses without affecting the excitatory glutamatergic transmission in neurons of the chicken cochlear nucleus. Coefficient of variation and failure rate analysis suggested that the LTD was expressed presynaptically. The LTD requires presynaptic spike activity, but does not require the activation of NMDA receptors. The classic cAMP-dependent protein kinase A signaling is involved in the transduction pathway. Remarkably, blocking mGluR II increased spontaneous GABA release, indicating the presence of tonic activation of mGluR II by ambient glutamate. Furthermore, synaptically released glutamate induced by electrical stimulations that concurrently activated both the glutamatergic and GABAergic pathways resulted in significant and constant suppression of GABA release at various stimulus frequencies (3.3, 100, and 300 Hz). Strikingly, low-frequency stimulation (1 Hz, 15 min) of the glutamatergic synapses induced heterosynaptic LTD of GABAergic transmission, and the LTD was blocked by mGluR II antagonist, indicating that synaptic activation of mGluR II induced the LTD. This novel form of long-term plasticity in the avian auditory brainstem may play a role in the development as well as in temporal processing in the sound localization circuit.

  6. Metabolic Control of Vesicular Glutamate Transport and Release

    PubMed Central

    Juge, Narinobu; Gray, John A.; Omote, Hiroshi; Miyaji, Takaaki; Inoue, Tsuyoshi; Hara, Chiaki; Uneyama, Hisayuki; Edwards, Robert H.; Nicoll, Roger A.; Moriyama, Yoshinori

    2010-01-01

    Fasting has been used to control epilepsy since antiquity, but the mechanism of coupling between metabolic state and excitatory neurotransmission remains unknown. Previous work has shown that the vesicular glutamate transporters (VGLUTs) required for exocytotic release of glutamate undergo an unusual form of regulation by Cl−. Using functional reconstitution of the purified VGLUTs into proteoliposomes, we now show that Cl− acts as an allosteric activator, and the ketone bodies that increase with fasting inhibit glutamate release by competing with Cl− at the site of allosteric regulation. Consistent with these observations, acetoacetate reduced quantal size at hippocampal synapses, and suppresses glutamate release and seizures evoked with 4-aminopyridine in the brain. The results indicate an unsuspected link between metabolic state and excitatory neurotransmission through anion-dependent regulation of VGLUT activity. PMID:20920794

  7. The cannabinoid CB1 receptor biphasically modulates motor activity and regulates dopamine and glutamate release region dependently.

    PubMed

    Polissidis, Alexia; Galanopoulos, Andreas; Naxakis, George; Papahatjis, Demetris; Papadopoulou-Daifoti, Zeta; Antoniou, Katerina

    2013-03-01

    Cannabinoid administration modulates both dopaminergic and glutamatergic neurotransmission. The present study examines the effects of high and low dose WIN55,212-2, a CB1 receptor agonist, on extracellular dopamine and glutamate release in vivo via brain microdialysis in the nucleus accumbens (NAc), striatum and prefrontal cortex (PFC) in parallel to its effects on locomotor activity. WIN55,212-2 increased extracellular dopamine in the NAc (1 mg/kg i.p.), striatum (0.1 and 1 mg/kg i.p.) and PFC (1 mg/kg i.p.). Glutamate release was also elevated by WIN55,212-2 in the PFC (1 mg/kg i.p.) whereas in the NAc (0.1 and 1 mg/kg i.p.) and striatum, it was reduced (1 mg/kg i.p.). WIN55,212-2 administration produced hyperlocomotion at the lower dose (0.1 mg/kg i.p.) and hypolocomotion at the higher dose (1 mg/kg i.p.). Co-administration with the CB1 antagonist, SR-141716A (0.03 mg/kg i.p.), prevented the above effects. According to the present results, WIN55,212-2 affected locomotor activity biphasically while exerting converging effects on dopamine activity but diverging effects on glutamate release between cortical and subcortical regions, especially at the higher dose. These findings emphasize the involvement of the CB1 receptor in the simultaneous modulation of dopaminergic and glutamatergic neurotransmission in brain regions involved in reward and locomotion and suggest possible underlying mechanisms of acute cannabinoid exposure and its psychoactive and behavioural manifestations.

  8. Lysine and Arginine Reduce the Effects of Cerebral Ischemic Insults and Inhibit Glutamate-Induced Neuronal Activity in Rats

    PubMed Central

    Kondoh, Takashi; Kameishi, Makiko; Mallick, Hruda Nanda; Ono, Taketoshi; Torii, Kunio

    2010-01-01

    Intravenous administration of arginine was shown to be protective against cerebral ischemic insults via nitric oxide production and possibly via additional mechanisms. The present study aimed at evaluating the neuroprotective effects of oral administration of lysine (a basic amino acid), arginine, and their combination on ischemic insults (cerebral edema and infarction) and hemispheric brain swelling induced by transient middle cerebral artery occlusion/reperfusion in rats. Magnetic resonance imaging and 2,3,5-triphenyltetrazolium chloride staining were performed 2 days after ischemia induction. In control animals, the major edematous areas were observed in the cerebral cortex and striatum. The volumes associated with cortical edema were significantly reduced by lysine (2.0 g/kg), arginine (0.6 g/kg), or their combined administration (0.6 g/kg each). Protective effects of these amino acids on infarction were comparable to the inhibitory effects on edema formation. Interestingly, these amino acids, even at low dose (0.6 g/kg), were effective to reduce hemispheric brain swelling. Additionally, the effects of in vivo microiontophoretic (juxtaneuronal) applications of these amino acids on glutamate-evoked neuronal activity in the ventromedial hypothalamus were investigated in awake rats. Glutamate-induced neuronal activity was robustly inhibited by microiontophoretic applications of lysine or arginine onto neuronal membranes. Taken together, our results demonstrate the neuroprotective effects of oral ingestion of lysine and arginine against ischemic insults (cerebral edema and infarction), especially in the cerebral cortex, and suggest that suppression of glutamate-induced neuronal activity might be the primary mechanism associated with these neuroprotective effects. PMID:20589237

  9. Inhibitory Interactions between Phosphorylation Sites in the C Terminus of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid-type Glutamate Receptor GluA1 Subunits*

    PubMed Central

    Gray, Erin E.; Guglietta, Ryan; Khakh, Baljit S.; O'Dell, Thomas J.

    2014-01-01

    The C terminus of AMPA-type glutamate receptor (AMPAR) GluA1 subunits contains several phosphorylation sites that regulate AMPAR activity and trafficking at excitatory synapses. Although many of these sites have been extensively studied, little is known about the signaling mechanisms regulating GluA1 phosphorylation at Thr-840. Here, we report that neuronal depolarization in hippocampal slices induces a calcium and protein phosphatase 1/2A-dependent dephosphorylation of GluA1 at Thr-840 and a nearby site at Ser-845. Despite these similarities, inhibitors of NMDA-type glutamate receptors and protein phosphatase 2B prevented depolarization-induced Ser-845 dephosphorylation but had no effect on Thr-840 dephosphorylation. Instead, depolarization-induced Thr-840 dephosphorylation was prevented by blocking voltage-gated calcium channels, indicating that distinct Ca2+ sources converge to regulate GluA1 dephosphorylation at Thr-840 and Ser-845 in separable ways. Results from immunoprecipitation/depletion assays indicate that Thr-840 phosphorylation inhibits protein kinase A (PKA)-mediated increases in Ser-845 phosphorylation. Consistent with this, PKA-mediated increases in AMPAR currents, which are dependent on Ser-845 phosphorylation, were inhibited in HEK-293 cells expressing a Thr-840 phosphomimetic version of GluA1. Conversely, mimicking Ser-845 phosphorylation inhibited protein kinase C phosphorylation of Thr-840 in vitro, and PKA activation inhibited Thr-840 phosphorylation in hippocampal slices. Together, the regulation of Thr-840 and Ser-845 phosphorylation by distinct sources of Ca2+ influx and the presence of inhibitory interactions between these sites highlight a novel mechanism for conditional regulation of AMPAR phosphorylation and function. PMID:24706758

  10. Effect of mutation of two critical glutamic acid residues on the activity and stability of human carboxypeptidase M and characterization of its signal for glycosylphosphatidylinositol anchoring.

    PubMed

    Tan, Fulong; Balsitis, Scott; Black, Judy K; Blöchl, Andrea; Mao, Ji-Fang; Becker, Robert P; Schacht, David; Skidgel, Randal A

    2003-03-01

    Human carboxypeptidase (CP) M was expressed in baculovirus-infected insect cells in a glycosylphosphatidylinositol-anchored form, whereas a truncated form, lacking the putative signal sequence for glycosylphosphatidylinositol anchoring, was secreted at high levels into the medium. Both forms had lower molecular masses (50 kDa) than native placental CPM (62 kDa), indicating minimal glycosylation. The predicted glycosylphosphatidylinositol-anchor attachment site was investigated by mutation of Ser(406) to Ala, Thr or Pro and expression in HEK-293 and COS-7 cells. The wild-type and S406A and S406T mutants were expressed on the plasma membrane in glycosylphosphatidylinositol-anchored form, but the S406P mutant was not and was retained in a perinuclear location. The roles of Glu(260) and Glu(264) in CPM were investigated by site-directed mutagenesis. Mutation of Glu(260) to Gln had minimal effects on kinetic parameters, but decreased heat stability, whereas mutation to Ala reduced the k(cat)/ K(m) by 104-fold and further decreased stability. In contrast, mutation of Glu(264) to Gln resulted in a 10000-fold decrease in activity, but the enzyme still bound to p-aminobenzoylarginine-Sepharose and was resistant to trypsin treatment, indicating that the protein was folded properly. These results show that Glu(264) is the critical catalytic glutamic acid and that Glu(260) probably stabilizes the conformation of the active site.

  11. Antipsychotic profiles of TASP0443294, a novel and orally active positive allosteric modulator of metabotropic glutamate 2 receptor.

    PubMed

    Hikichi, Hirohiko; Hiyoshi, Tetsuaki; Marumo, Toshiyuki; Tomishima, Yasumitsu; Kaku, Ayaka; Iida, Izumi; Urabe, Hiroki; Tamita, Tomoko; Yasuhara, Akito; Karasawa, Jun-ichi; Chaki, Shigeyuki

    2015-03-01

    Glutamatergic dysfunction has been implicated in psychiatric disorders such as schizophrenia. The stimulation of metabotropic glutamate (mGlu) 2 receptor has been shown to be effective in a number of animal models of schizophrenia. In this study, we investigated the antipsychotic profiles of (2S)-5-methyl-2-{[4-(1,1,1-trifluoro-2-methylpropan-2-yl)phenoxy]methyl}-2,3-dihydroimidazo[2,1-b][1,3]oxazole-6-carboxamide (TASP0443294), a newly synthesized positive allosteric modulator of the mGlu2 receptor. TASP0443294 potentiated the response of human mGlu2 and rat mGlu2 receptors to glutamate with EC50 values of 277 and 149 nM, respectively, without affecting the glutamate response of human mGlu3 receptor. TASP0443294 was distributed in the brain and cerebrospinal fluid after peroral administration in rats. The peroral administration of TASP0443294 inhibited methamphetamine-induced hyperlocomotion in rats, which was attenuated by an mGlu2/3 receptor antagonist, and improved social memory impairment induced by 5R,10S-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801) in rats. Furthermore, TASP0443294 reduced the ketamine-induced basal gamma hyperactivity in the prefrontal cortex and suppressed rapid eye movement (REM) sleep in rats. These findings indicate that TASP0443294 is an mGlu2 receptor positive allosteric modulator with antipsychotic activity, and that the suppression of aberrant gamma oscillations and REM sleep could be considered as neurophysiological biomarkers for TASP0443294. PMID:25837934

  12. Neuroprotection Promoted by Guanosine Depends on Glutamine Synthetase and Glutamate Transporters Activity in Hippocampal Slices Subjected to Oxygen/Glucose Deprivation.

    PubMed

    Dal-Cim, Tharine; Martins, Wagner C; Thomaz, Daniel T; Coelho, Victor; Poluceno, Gabriela Godoy; Lanznaster, Débora; Vandresen-Filho, Samuel; Tasca, Carla I

    2016-05-01

    Guanosine (GUO) has been shown to act as a neuroprotective agent against glutamatergic excitotoxicity by increasing glutamate uptake and decreasing its release. In this study, a putative effect of GUO action on glutamate transporters activity modulation was assessed in hippocampal slices subjected to oxygen and glucose deprivation (OGD), an in vitro model of brain ischemia. Slices subjected to OGD showed increased excitatory amino acids release (measured by D-[(3)H]aspartate release) that was prevented in the presence of GUO (100 µM). The glutamate transporter blockers, DL-TBOA (10 µM), DHK (100 µM, selective inhibitor of GLT-1), and sulfasalazine (SAS, 250 µM, Xc(-) system inhibitor) decreased OGD-induced D-aspartate release. Interestingly, DHK or DL-TBOA blocked the decrease in glutamate release induced by GUO, whereas SAS did not modify the GUO effect. GUO protected hippocampal slices from cellular damage by modulation of glutamate transporters, however selective blockade of GLT-1 or Xc- system only did not affect this protective action of GUO. OGD decreased hippocampal glutamine synthetase (GS) activity and GUO recovered GS activity to control levels without altering the kinetic parameters of GS activity, thus suggesting GUO does not directly interact with GS. Additionally, the pharmacological inhibition of GS activity with methionine sulfoximine abolished the effect of GUO in reducing D-aspartate release and cellular damage evoked by OGD. Altogether, results in hippocampal slices subjected to OGD show that GUO counteracts the release of excitatory amino acids, stimulates the activity of GS, and decreases the cellular damage by modulation of glutamate transporters activity.

  13. Side-chain interactions in the regulatory domain of human glutamate dehydrogenase determine basal activity and regulation.

    PubMed

    Mastorodemos, Vasileios; Kanavouras, Konstantinos; Sundaram, Shobana; Providaki, Maria; Petraki, Zoe; Kokkinidis, Michael; Zaganas, Ioannis; Logothetis, Diomedes E; Plaitakis, Andreas

    2015-04-01

    Glutamate Dehydrogenase (GDH) is central to the metabolism of glutamate, a major excitatory transmitter in mammalian central nervous system (CNS). hGDH1 is activated by ADP and L-leucine and powerfully inhibited by GTP. Besides this housekeeping hGDH1, duplication led to an hGDH2 isoform that is expressed in the human brain dissociating its function from GTP control. The novel enzyme has reduced basal activity (4-6% of capacity) while remaining remarkably responsive to ADP/L-leucine activation. While the molecular basis of this evolutionary adaptation remains unclear, substitution of Ser for Arg443 in hGDH1 is shown to diminish basal activity (< 2% of capacity) and abrogate L-leucine activation. To explore whether the Arg443Ser mutation disrupts hydrogen bonding between Arg443 and Ser409 of adjacent monomers in the regulatory domain ('antenna'), we replaced Ser409 by Arg or Asp in hGDH1. The Ser409Arg-1 change essentially replicated the Arg443Ser-1 mutation effects. Molecular dynamics simulation predicted that Ser409 and Arg443 of neighboring monomers come in close proximity in the open conformation and that introduction of Ser443-1 or Arg409-1 causes them to separate with the swap mutation (Arg409/Ser443) reinstating their proximity. A swapped Ser409Arg/Arg443Ser-1 mutant protein, obtained in recombinant form, regained most of the wild-type hGDH1 properties. Also, when Ser443 was replaced by Arg443 in hGDH2 (as occurs in hGDH1), the Ser443Arg-2 mutant acquired most of the hGDH1 properties. Hence, side-chain interactions between 409 and 443 positions in the 'antenna' region of hGDHs are crucial for basal catalytic activity, allosteric regulation, and relative resistance to thermal inactivation. PMID:25620628

  14. Xanthurenic Acid Activates mGlu2/3 Metabotropic Glutamate Receptors and is a Potential Trait Marker for Schizophrenia.

    PubMed

    Fazio, Francesco; Lionetto, Luana; Curto, Martina; Iacovelli, Luisa; Cavallari, Michele; Zappulla, Cristina; Ulivieri, Martina; Napoletano, Flavia; Capi, Matilde; Corigliano, Valentina; Scaccianoce, Sergio; Caruso, Alessandra; Miele, Jessica; De Fusco, Antonio; Di Menna, Luisa; Comparelli, Anna; De Carolis, Antonella; Gradini, Roberto; Nisticò, Robert; De Blasi, Antonio; Girardi, Paolo; Bruno, Valeria; Battaglia, Giuseppe; Nicoletti, Ferdinando; Simmaco, Maurizio

    2015-12-08

    The kynurenine pathway of tryptophan metabolism has been implicated in the pathophysiology of psychiatric disorders, including schizophrenia. We report here that the kynurenine metabolite, xanturenic acid (XA), interacts with, and activates mGlu2 and mGlu3 metabotropic glutamate receptors in heterologous expression systems. However, the molecular nature of this interaction is unknown, and our data cannot exclude that XA acts primarily on other targets, such as the vesicular glutamate transporter, in the CNS. Systemic administration of XA in mice produced antipsychotic-like effects in the MK-801-induced model of hyperactivity. This effect required the presence of mGlu2 receptors and was abrogated by the preferential mGlu2/3 receptor antagonist, LY341495. Because the mGlu2 receptor is a potential drug target in the treatment of schizophrenia, we decided to measure serum levels of XA and other kynurenine metabolites in patients affected by schizophrenia. Serum XA levels were largely reduced in a large cohort of patients affected by schizophrenia, and, in patients with first-episode schizophrenia, levels remained low after 12 months of antipsychotic medication. As opposed to other kynurenine metabolites, XA levels were also significantly reduced in first-degree relatives of patients affected by schizophrenia. We suggest that lowered serum XA levels might represent a novel trait marker for schizophrenia.

  15. Xanthurenic Acid Activates mGlu2/3 Metabotropic Glutamate Receptors and is a Potential Trait Marker for Schizophrenia.

    PubMed

    Fazio, Francesco; Lionetto, Luana; Curto, Martina; Iacovelli, Luisa; Cavallari, Michele; Zappulla, Cristina; Ulivieri, Martina; Napoletano, Flavia; Capi, Matilde; Corigliano, Valentina; Scaccianoce, Sergio; Caruso, Alessandra; Miele, Jessica; De Fusco, Antonio; Di Menna, Luisa; Comparelli, Anna; De Carolis, Antonella; Gradini, Roberto; Nisticò, Robert; De Blasi, Antonio; Girardi, Paolo; Bruno, Valeria; Battaglia, Giuseppe; Nicoletti, Ferdinando; Simmaco, Maurizio

    2015-01-01

    The kynurenine pathway of tryptophan metabolism has been implicated in the pathophysiology of psychiatric disorders, including schizophrenia. We report here that the kynurenine metabolite, xanturenic acid (XA), interacts with, and activates mGlu2 and mGlu3 metabotropic glutamate receptors in heterologous expression systems. However, the molecular nature of this interaction is unknown, and our data cannot exclude that XA acts primarily on other targets, such as the vesicular glutamate transporter, in the CNS. Systemic administration of XA in mice produced antipsychotic-like effects in the MK-801-induced model of hyperactivity. This effect required the presence of mGlu2 receptors and was abrogated by the preferential mGlu2/3 receptor antagonist, LY341495. Because the mGlu2 receptor is a potential drug target in the treatment of schizophrenia, we decided to measure serum levels of XA and other kynurenine metabolites in patients affected by schizophrenia. Serum XA levels were largely reduced in a large cohort of patients affected by schizophrenia, and, in patients with first-episode schizophrenia, levels remained low after 12 months of antipsychotic medication. As opposed to other kynurenine metabolites, XA levels were also significantly reduced in first-degree relatives of patients affected by schizophrenia. We suggest that lowered serum XA levels might represent a novel trait marker for schizophrenia. PMID:26643205

  16. Xanthurenic Acid Activates mGlu2/3 Metabotropic Glutamate Receptors and is a Potential Trait Marker for Schizophrenia

    PubMed Central

    Fazio, Francesco; Lionetto, Luana; Curto, Martina; Iacovelli, Luisa; Cavallari, Michele; Zappulla, Cristina; Ulivieri, Martina; Napoletano, Flavia; Capi, Matilde; Corigliano, Valentina; Scaccianoce, Sergio; Caruso, Alessandra; Miele, Jessica; De Fusco, Antonio; Di Menna, Luisa; Comparelli, Anna; De Carolis, Antonella; Gradini, Roberto; Nisticò, Robert; De Blasi, Antonio; Girardi, Paolo; Bruno, Valeria; Battaglia, Giuseppe; Nicoletti, Ferdinando; Simmaco, Maurizio

    2015-01-01

    The kynurenine pathway of tryptophan metabolism has been implicated in the pathophysiology of psychiatric disorders, including schizophrenia. We report here that the kynurenine metabolite, xanturenic acid (XA), interacts with, and activates mGlu2 and mGlu3 metabotropic glutamate receptors in heterologous expression systems. However, the molecular nature of this interaction is unknown, and our data cannot exclude that XA acts primarily on other targets, such as the vesicular glutamate transporter, in the CNS. Systemic administration of XA in mice produced antipsychotic-like effects in the MK-801-induced model of hyperactivity. This effect required the presence of mGlu2 receptors and was abrogated by the preferential mGlu2/3 receptor antagonist, LY341495. Because the mGlu2 receptor is a potential drug target in the treatment of schizophrenia, we decided to measure serum levels of XA and other kynurenine metabolites in patients affected by schizophrenia. Serum XA levels were largely reduced in a large cohort of patients affected by schizophrenia, and, in patients with first-episode schizophrenia, levels remained low after 12 months of antipsychotic medication. As opposed to other kynurenine metabolites, XA levels were also significantly reduced in first-degree relatives of patients affected by schizophrenia. We suggest that lowered serum XA levels might represent a novel trait marker for schizophrenia. PMID:26643205

  17. Curcumin attenuates glutamate neurotoxicity in the hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK

    SciTech Connect

    Li, Ying; Li, Jia; Li, Shanshan; Li, Yi; Wang, Xiangxiang; Liu, Baolin; Fu, Qiang; Ma, Shiping

    2015-07-01

    Curcumin is a natural polyphenolic compound in Curcuma longa with beneficial effects on neuronal protection. This study aims to investigate the action of curcumin in the hippocampus subjected to glutamate neurotoxicity. Glutamate stimulation induced reactive oxygen species (ROS), endoplasmic reticulum stress (ER stress) and TXNIP/NLRP3 inflammasome activation, leading to damage in the hippocampus. Curcumin treatment in the hippocampus or SH-SY5Y cells inhibited IRE1α and PERK phosphorylation with suppression of intracellular ROS production. Curcumin increased AMPK activity and knockdown of AMPKα with specific siRNA abrogated its inhibitory effects on IRE1α and PERK phosphorylation, indicating that AMPK activity was essential for the suppression of ER stress. As a result, curcumin reduced TXNIP expression and inhibited NLRP3 inflammasome activation by downregulation of NLRP3 and cleaved caspase-1 induction, and thus reduced IL-1β secretion. Specific fluorescent probe and flow cytometry analysis showed that curcumin prevented mitochondrial malfunction and protected cell survival from glutamate neurotoxicity. Moreover, oral administration of curcumin reduced brain infarct volume and attenuated neuronal damage in rats subjected to middle cerebral artery occlusion. Immunohistochemistry showed that curcumin inhibited p-IRE1α, p-PERK and NLRP3 expression in hippocampus CA1 region. Together, these results showed that curcumin attenuated glutamate neurotoxicity by inhibiting ER stress-associated TXNIP/NLRP3 inflammasome activation via the regulation of AMPK, and thereby protected the hippocampus from ischemic insult. - Highlights: • Curcumin attenuates glutamate neurotoxicity in the hippocampus. • Curcumin suppresses ER stress in glutamate-induced hippocampus slices. • Curcumin inhibits TXNIP/NLRP3 inflammasome activation. • Regulation of AMPK by curcumin contributes to suppressing ER stress.

  18. Enhanced degradation of benzene by percarbonate activated with Fe(II)-glutamate complex.

    PubMed

    Fu, Xiaori; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Zhang, Xiang; Danish, Muhammad; Cui, Hang; Farooq, Usman; Qiu, Zhaofu; Sui, Qian

    2016-04-01

    Effective degradation of benzene was achieved in sodium percarbonate (SPC)/Fe(II)-Glu system. The presence of glutamate (Glu) could enhance the regeneration of Fe(III) to Fe(II), which ensures the benzene degradation efficiency at wider pH range and eliminate the influence of HCO3 (-) in low concentration. Meanwhile, the significant scavenging effects of high HCO3 (-) concentration could also be overcome by increasing the Glu/SPC/Fe(II)/benzene molar ratio. Free radical probe compound tests, free radical scavenger tests, and electron paramagnetic resonance (EPR) analysis were conducted to explore the reaction mechanism for benzene degradation, in which hydroxyl radical (HO•) and superoxide anion radical (O2 (•-)) were confirmed as the predominant species responsible for benzene degradation. In addition, the results obtained in actual groundwater test strongly indicated that SPC/Fe(II)-Glu system is applicable for the remediation of benzene-contaminated groundwater in practice. PMID:26662563

  19. Enhanced degradation of benzene by percarbonate activated with Fe(II)-glutamate complex.

    PubMed

    Fu, Xiaori; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Zhang, Xiang; Danish, Muhammad; Cui, Hang; Farooq, Usman; Qiu, Zhaofu; Sui, Qian

    2016-04-01

    Effective degradation of benzene was achieved in sodium percarbonate (SPC)/Fe(II)-Glu system. The presence of glutamate (Glu) could enhance the regeneration of Fe(III) to Fe(II), which ensures the benzene degradation efficiency at wider pH range and eliminate the influence of HCO3 (-) in low concentration. Meanwhile, the significant scavenging effects of high HCO3 (-) concentration could also be overcome by increasing the Glu/SPC/Fe(II)/benzene molar ratio. Free radical probe compound tests, free radical scavenger tests, and electron paramagnetic resonance (EPR) analysis were conducted to explore the reaction mechanism for benzene degradation, in which hydroxyl radical (HO•) and superoxide anion radical (O2 (•-)) were confirmed as the predominant species responsible for benzene degradation. In addition, the results obtained in actual groundwater test strongly indicated that SPC/Fe(II)-Glu system is applicable for the remediation of benzene-contaminated groundwater in practice.

  20. Long-Term Activation of Group I Metabotropic Glutamate Receptors Increases Functional TRPV1-Expressing Neurons in Mouse Dorsal Root Ganglia

    PubMed Central

    Masuoka, Takayoshi; Kudo, Makiko; Yoshida, Junko; Ishibashi, Takaharu; Muramatsu, Ikunobu; Kato, Nobuo; Imaizumi, Noriko; Nishio, Matomo

    2016-01-01

    Damaged tissues release glutamate and other chemical mediators for several hours. These chemical mediators contribute to modulation of pruritus and pain. Herein, we investigated the effects of long-term activation of excitatory glutamate receptors on functional expression of transient receptor potential vaniloid type 1 (TRPV1) in dorsal root ganglion (DRG) neurons and then on thermal pain behavior. In order to detect the TRPV1-mediated responses in cultured DRG neurons, we monitored intracellular calcium responses to capsaicin, a TRPV1 agonist, with Fura-2. Long-term (4 h) treatment with glutamate receptor agonists (glutamate, quisqualate or DHPG) increased the proportion of neurons responding to capsaicin through activation of metabotropic glutamate receptor mGluR1, and only partially through the activation of mGluR5; engagement of these receptors was evident in neurons responding to allylisothiocyanate (AITC), a transient receptor potential ankyrin type 1 (TRPA1) agonist. Increase in the proportion was suppressed by phospholipase C (PLC), protein kinase C, mitogen/extracellular signal-regulated kinase, p38 mitogen-activated protein kinase or transcription inhibitors. Whole-cell recording was performed to record TRPV1-mediated membrane current; TRPV1 current density significantly increased in the AITC-sensitive neurons after the quisqualate treatment. To elucidate the physiological significance of this phenomenon, a hot plate test was performed. Intraplantar injection of quisqualate or DHPG induced heat hyperalgesia that lasted for 4 h post injection. This chronic hyperalgesia was attenuated by treatment with either mGluR1 or mGluR5 antagonists. These results suggest that long-term activation of mGluR1/5 by peripherally released glutamate may increase the number of neurons expressing functional TRPV1 in DRG, which may be strongly associated with chronic hyperalgesia. PMID:27064319

  1. The cystine/glutamate antiporter regulates indoleamine 2,3-dioxygenase protein levels and enzymatic activity in human dendritic cells.

    PubMed

    Mattox, Mildred L; D'Angelo, June A; Grimes, Zachary M; Fiebiger, Edda; Dickinson, Bonny L

    2012-11-30

    Indoleamine 2,3-dioxygenase (IDO) is the rate-limiting enzyme in the tryptophan-catabolizing pathway and a key regulator of peripheral immune tolerance. As the suppressive effects of IDO are predominantly mediated by dendritic cells (DCs) and IDO-competent DCs promote long-term immunologic tolerance, a detailed understanding of how IDO expression and activity is regulated in these cells is central to the rational design of therapies to induce robust immune tolerance. We previously reported that the cystine/glutamate antiporter modulates the functional expression of IDO in human monocyte-derived DCs. Specifically, we showed that blocking antiporter uptake of cystine significantly increased both IDO mRNA and IDO enzymatic activity and that this correlated with impaired DC presentation of exogenous antigen to T cells via MHC class II and the cross-presentation pathway. The antiporter regulates intracellular and extracellular redox by transporting cystine into the cell in exchange for glutamate. Intracellular cystine is reduced to cysteine to support biosynthesis of the major cellular antioxidant glutathione and cysteine is exported from the cell where it functions as an extracellular antioxidant. Here we show that antiporter control of IDO expression in DCs is reversible, independent of interferon-γ, regulated by redox, and requires active protein synthesis. These findings highlight a role for antiporter regulation of cellular redox as a critical control point for modulating IDO expression and activity in DCs. Thus, systemic disease and aging, processes that perturb redox homeostasis, may adversely affect immunity by promoting the generation of IDO-competent DCs.

  2. The cystine/glutamate antiporter regulates indoleamine 2,3-dioxygenase protein levels and enzymatic activity in human dendritic cells

    PubMed Central

    Mattox, Mildred L; D’Angelo, June A; Grimes, Zachary M; Fiebiger, Edda; Dickinson, Bonny L

    2012-01-01

    Indoleamine 2,3-dioxygenase (IDO) is the rate-limiting enzyme in the tryptophan-catabolizing pathway and a key regulator of peripheral immune tolerance. As the suppressive effects of IDO are predominantly mediated by dendritic cells (DCs) and IDO-competent DCs promote long-term immunologic tolerance, a detailed understanding of how IDO expression and activity is regulated in these cells is central to the rational design of therapies to induce robust immune tolerance. We previously reported that the cystine/glutamate antiporter modulates the functional expression of IDO in human monocyte-derived DCs. Specifically, we showed that blocking antiporter uptake of cystine significantly increased both IDO mRNA and IDO enzymatic activity and that this correlated with impaired DC presentation of exogenous antigen to T cells via MHC class II and the cross-presentation pathway. The antiporter regulates intracellular and extracellular redox by transporting cystine into the cell in exchange for glutamate. Intracellular cystine is reduced to cysteine to support biosynthesis of the major cellular antioxidant glutathione and cysteine is exported from the cell where it functions as an extracellular antioxidant. Here we show that antiporter control of IDO expression in DCs is reversible, independent of interferon-γ, regulated by redox, and requires active protein synthesis. These findings highlight a role for antiporter regulation of cellular redox as a critical control point for modulating IDO expression and activity in DCs. Thus, systemic disease and aging, processes that perturb redox homeostasis, may adversely affect immunity by promoting the generation of IDO-competent DCs. PMID:23243629

  3. Activation of group II metabotropic glutamate receptors underlies microglial reactivity and neurotoxicity following stimulation with chromogranin A, a peptide up-regulated in Alzheimer's disease.

    PubMed

    Taylor, D L; Diemel, L T; Cuzner, M L; Pocock, J M

    2002-09-01

    Regulation of microglial reactivity and neurotoxicity is critical for neuroprotection in neurodegenerative diseases. Here we report that microglia possess functional group II metabotropic glutamate receptors, expressing mRNA and receptor protein for mGlu2 and mGlu3, negatively coupled to adenylate cyclase. Two different agonists of these receptors were able to induce a neurotoxic microglial phenotype which was attenuated by a specific antagonist. Chromogranin A, a secretory peptide expressed in amyloid plaques in Alzheimer's disease, activates microglia to a reactive neurotoxic phenotype. Chromogranin A-induced microglial activation and subsequent neurotoxicity may also involve an underlying stimulation of group II metabotropic glutamate receptors since their inhibition reduced chromogranin A-induced microglial reactivity and neurotoxicity. These results show that selective inhibition of microglial group II metabotropic glutamate receptors has a positive impact on neuronal survival, and may prove a therapeutic target in Alzheimer's disease. PMID:12358765

  4. Design of highly potent urea-based, exosite-binding inhibitors selective for glutamate carboxypeptidase II.

    PubMed

    Tykvart, Jan; Schimer, Jiří; Jančařík, Andrej; Bařinková, Jitka; Navrátil, Václav; Starková, Jana; Šrámková, Karolína; Konvalinka, Jan; Majer, Pavel; Šácha, Pavel

    2015-05-28

    We present here a structure-aided design of inhibitors targeting the active site as well as exosites of glutamate carboxypeptidase II (GCPII), a prostate cancer marker, preparing potent and selective inhibitors that are more than 1000-fold more active toward GCPII than its closest human homologue, glutamate carboxypeptidase III (GCPIII). Additionally, we demonstrate that the prepared inhibitor conjugate can be used for sensitive and selective imaging of GCPII in mammalian cells. PMID:25923815

  5. Metabotropic glutamate receptor 3 activation is required for long-term depression in medial prefrontal cortex and fear extinction.

    PubMed

    Walker, Adam G; Wenthur, Cody J; Xiang, Zixiu; Rook, Jerri M; Emmitte, Kyle A; Niswender, Colleen M; Lindsley, Craig W; Conn, P Jeffrey

    2015-01-27

    Clinical studies have revealed that genetic variations in metabotropic glutamate receptor 3 (mGlu3) affect performance on cognitive tasks dependent upon the prefrontal cortex (PFC) and may be linked to psychiatric conditions such as schizophrenia, bipolar disorder, and addiction. We have performed a series of studies aimed at understanding how mGlu3 influences PFC function and cognitive behaviors. In the present study, we found that activation of mGlu3 can induce long-term depression in the mouse medial PFC (mPFC) in vitro. Furthermore, in vivo administration of a selective mGlu3 negative allosteric modulator impaired learning in the mPFC-dependent fear extinction task. The results of these studies implicate mGlu3 as a major regulator of PFC function and cognition. Additionally, potentiators of mGlu3 may be useful in alleviating prefrontal impairments associated with several CNS disorders. PMID:25583490

  6. Metabotropic glutamate receptor 3 activation is required for long-term depression in medial prefrontal cortex and fear extinction

    PubMed Central

    Walker, Adam G.; Wenthur, Cody J.; Xiang, Zixiu; Rook, Jerri M.; Emmitte, Kyle A.; Niswender, Colleen M.; Lindsley, Craig W.; Conn, P. Jeffrey

    2015-01-01

    Clinical studies have revealed that genetic variations in metabotropic glutamate receptor 3 (mGlu3) affect performance on cognitive tasks dependent upon the prefrontal cortex (PFC) and may be linked to psychiatric conditions such as schizophrenia, bipolar disorder, and addiction. We have performed a series of studies aimed at understanding how mGlu3 influences PFC function and cognitive behaviors. In the present study, we found that activation of mGlu3 can induce long-term depression in the mouse medial PFC (mPFC) in vitro. Furthermore, in vivo administration of a selective mGlu3 negative allosteric modulator impaired learning in the mPFC-dependent fear extinction task. The results of these studies implicate mGlu3 as a major regulator of PFC function and cognition. Additionally, potentiators of mGlu3 may be useful in alleviating prefrontal impairments associated with several CNS disorders. PMID:25583490

  7. Fluvoxamine increased glutamate release by activating both 5-HT(3) and sigma-1 receptors in prelimbic cortex of chronic restraint stress C57BL/6 mice.

    PubMed

    Fu, Yingmei; Yu, Shunying; Guo, Xiaoyun; Li, Xia; Li, Ting; Li, Huafang; Dong, Yi

    2012-04-01

    Emerging evidence from therapeutic trials in humans and animal models suggests that in the treatment of depression, antidepressants play a role by targeting the glutamatergic system. Fluvoxamine is one of the widely used SSRIs which has been considered to target monoamine neurotransmitter reuptake mechanisms. However, whether fluvoxamine has an effect on the glutamate release is still unclear. The present experiment studied the effect of fluvoxamine on presynaptic glutamate release in prelimbic cortex, both in control C57BL/6 mice and chronic restraint stress C57BL/6 mice, and further investigated the mechanism underlying this effect by using patch clamp, on-line fluorimetry, pharmacological approaches combined with other techniques. The results showed that fluvoxamine increased the glutamate release in the depression model mice but it had no effect on the glutamate release in the control mice. The mechanism underlying these effects in depression model mice was that, fluvoxamine firstly activated presynaptic 5-HT(3) receptors, which transiently increased the Ca(2+) concentration. The increase of Ca(2+) concentration via 5-HT(3) receptors caused the activation of sigma-1 receptors, which were activated by fluvoxamine. The activation of sigma-1 receptors increased the intrasynaptosomal Ca(2+) concentration significantly through the outflow of endoplasmic reticulum calcium and finally activated PKC. These results suggested that fluvoxamine may have a selective effect and different mechanism based on the condition of animal. PMID:22306004

  8. Curcumin attenuates glutamate neurotoxicity in the hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK.

    PubMed

    Li, Ying; Li, Jia; Li, Shanshan; Li, Yi; Wang, Xiangxiang; Liu, Baolin; Fu, Qiang; Ma, Shiping

    2015-07-01

    Curcumin is a natural polyphenolic compound in Curcuma longa with beneficial effects on neuronal protection. This study aims to investigate the action of curcumin in the hippocampus subjected to glutamate neurotoxicity. Glutamate stimulation induced reactive oxygen species (ROS), endoplasmic reticulum stress (ER stress) and TXNIP/NLRP3 inflammasome activation, leading to damage in the hippocampus. Curcumin treatment in the hippocampus or SH-SY5Y cells inhibited IRE1α and PERK phosphorylation with suppression of intracellular ROS production. Curcumin increased AMPK activity and knockdown of AMPKα with specific siRNA abrogated its inhibitory effects on IRE1α and PERK phosphorylation, indicating that AMPK activity was essential for the suppression of ER stress. As a result, curcumin reduced TXNIP expression and inhibited NLRP3 inflammasome activation by downregulation of NLRP3 and cleaved caspase-1 induction, and thus reduced IL-1β secretion. Specific fluorescent probe and flow cytometry analysis showed that curcumin prevented mitochondrial malfunction and protected cell survival from glutamate neurotoxicity. Moreover, oral administration of curcumin reduced brain infarct volume and attenuated neuronal damage in rats subjected to middle cerebral artery occlusion. Immunohistochemistry showed that curcumin inhibited p-IRE1α, p-PERK and NLRP3 expression in hippocampus CA1 region. Together, these results showed that curcumin attenuated glutamate neurotoxicity by inhibiting ER stress-associated TXNIP/NLRP3 inflammasome activation via the regulation of AMPK, and thereby protected the hippocampus from ischemic insult. PMID:25791922

  9. Glutamate Limitation, BvgAS Activation, and (p)ppGpp Regulate the Expression of the Bordetella pertussis Type 3 Secretion System

    PubMed Central

    Kamachi, Kazunari; Yonezawa, Hideo; Fukutomi, Toshiyuki; Kawakami, Hayato; Kamiya, Shigeru

    2015-01-01

    ABSTRACT Bordetella pertussis is a bacterium that is considered to be highly adapted to humans, and it has not been isolated from the environment. As this bacterium does not utilize sugars, the abundant supply of glutamate in Stainer Scholte (SS) medium enables B. pertussis to grow efficiently in liquid culture in vitro, and as such, SS medium is a popular choice for laboratory experiments. However, the concentration of glutamate in the in vivo niche of B. pertussis is quite low. We investigated the bacterial response to low concentrations of glutamate to elucidate bacterial physiology via the expression of the type 3 secretion system (T3SS), and we discuss its relationship to the Bvg mode in which the two-component regulator of pathogenesis (BvgAS) is activated. Glutamate limitation induced the expression of both the T3SS apparatus and effector genes at the transcriptional level. (p)ppGpp, a modulator of the stringent response, was necessary for maximum expression of the T3SS genes. These observations indicate that the expression of the T3SS is managed by nutrient starvation. In addition, the autoaggregation ability was high in the absence of glutamate and no autoaggregation was observed in glutamate-replete medium. Taken together, glutamate-limited conditions in Bvg+ mode elicit the high expression of T3SS genes in B. pertussis and promotes its sessile form. IMPORTANCE Bordetella pertussis is a highly contagious pathogen that causes respiratory infectious disease. In spite of the increasing use of vaccination, the number of patients with pertussis is increasing. The proteins produced in vivo often are different from the protein profile under laboratory conditions; therefore, the development of conditions reflecting the host environment is important to understand native bacterial behavior. In the present study, we examined the effect of glutamate limitation, as its concentration in vivo is much lower than that in the culture medium currently used for B. pertussis

  10. Tissue-type plasminogen activator-plasmin-BDNF modulate glutamate-induced phase-shifts of the mouse suprachiasmatic circadian clock in vitro.

    PubMed

    Mou, Xiang; Peterson, Cynthia B; Prosser, Rebecca A

    2009-10-01

    The mammalian circadian clock in the suprachiasmatic nucleus (SCN) maintains environmental synchrony through light signals transmitted by glutamate released from retinal ganglion terminals. Brain-derived neurotrophic factor (BDNF) is required for light/glutamate to reset the clock. In the hippocampus, BDNF is activated by the extracellular protease, plasmin, which is produced from plasminogen by tissue-type plasminogen activator (tPA). We provide data showing expression of proteins from the plasminogen activation cascade in the SCN and their involvement in circadian clock phase-resetting. Early night glutamate application to SCN-containing brain slices resets the circadian clock. Plasminogen activator inhibitor-1 (PAI-1) blocked these shifts in slices from wild-type mice but not mice lacking its stabilizing protein, vitronectin (VN). Plasmin, but not plasminogen, prevented inhibition by PAI-1. Both plasmin and active BDNF reversed alpha(2)-antiplasmin inhibition of glutamate-induced shifts. alpha(2)-Antiplasmin decreased the conversion of inactive to active BDNF in the SCN. Finally, both tPA and BDNF allowed daytime glutamate-induced phase-resetting. Together, these data are the first to demonstrate expression of these proteases in the SCN, their involvement in modulating photic phase-shifts, and their activation of BDNF in the SCN, a potential 'gating' mechanism for photic phase-resetting. These data also demonstrate a functional interaction between PAI-1 and VN in adult brain. Given the usual association of these proteins with the extracellular matrix, these data suggest new lines of investigation into the locations and processes modulating mammalian circadian clock phase-resetting.

  11. Role of Glutamate 64 in the Activation of the Prodrug 5-fluorocytosine by Yeast Cytosine Deaminase†

    PubMed Central

    Wang, Jifeng; Sklenak, Stepan; Liu, Aizhuo; Felczak, Krzysztof; Wu, Yan; Li, Yue; Yan, Honggao

    2012-01-01

    Yeast cytosine deaminase catalyzes the hydrolytic deamination of cytosine to uracil as well as the deamination of the prodrug 5-fluorocytosine (5FC) to the anticancer drug 5-fluorouracil. In this study, the role of Glu64 in the activation of the prodrug 5FC was investigated by site-directed mutagenesis, biochemical, NMR, and computational studies. Steady-state kinetics studies showed that the mutation of Glu64 causes a dramatic decrease in kcat and a dramatic increase in Km, indicating Glu64 is important for both binding and catalysis in the activation of 5FC. 19F-NMR experiments showed that binding of the inhibitor 5-fluoro-1H-pyrimidin-2-one (5FPy) to the wild type yCD causes an upfield shift, indicating that the bound inhibitor is in the hydrated form, mimicking the transition state or the tetrahedral intermediate in the activation of 5FC. However, binding of 5FPy to the E64A mutant enzyme causes a downfield shift, indicating that the bound 5FPy remains in an unhydrated form in the complex with the mutant enzyme. 1H and 15N NMR analysis revealed trans-hydrogen-bond D/H isotope effects on the hydrogen of the amide of Glu64, indicating that the carboxylate of Glu64 forms two hydrogen bonds with the hydrated 5FPy. ONIOM calculations showed that the wild type yCD complex with the hydrated form of the inhibitor 1H-pyrimidin-2-one is more stable than the initial binding complex, and in contrast, with the E64A mutant enzyme, the hydrated inhibitor is no longer favored and the conversion has higher activation energy as well. The hydrated inhibitor is stabilized in the wild-type yCD by two hydrogen bonds between it and the carboxylate of Glu64 as revealed by 1H and 15N NMR analysis. To explore the functional role of Glu64 in catalysis, deamination of cytosine catalyzed by the E64A mutant was investigated by ONIOM calculations. The results showed that without the assistance of Glu64, both proton transfers before and after the formation of the tetrahedral reaction

  12. Functional magnetic resonance spectroscopy of glutamate in schizophrenia and major depressive disorder: anterior cingulate activity during a color-word Stroop task

    PubMed Central

    Taylor, Reggie; Neufeld, Richard W J; Schaefer, Betsy; Densmore, Maria; Rajakumar, Nagalingam; Osuch, Elizabeth A; Williamson, Peter C; Théberge, Jean

    2015-01-01

    Background: Glutamate abnormalities have been suggested to be associated with symptoms of schizophrenia. Using functional magnetic resonance spectroscopy (1H-fMRS), it is possible to monitor glutamate dynamically in the activated brain areas, which has yet to be reported in schizophrenia. It was hypothesized that subjects with schizophrenia would have weaker glutamatergic responses in the anterior cingulate to a color-word Stroop Task. AIMS: The aim of this study was to gain insight into the health of GLU neurotransmission and the GLU-GLN cycle in SZ using a 1H-fMRS protocol. Methods: Spectra were acquired from the anterior cingulate of 16 participants with schizophrenia, 16 healthy controls and 16 participants with major depressive disorder (MDD) while performing the Stroop task in a 7T magnetic resonance imaging scanner. 1H-fMRS spectra were acquired for 20 min in which there were three 4-min blocks of cross fixation interleaved with two 4-min blocks of the Stroop paradigm. Results: A repeated-measures analysis of variance revealed a main effect of time for glutamate concentrations of all groups (P<0.001). The healthy control group increased glutamate concentrations in the first run of the Stroop task (P=0.006) followed by a decrease in the recovery period (P=0.007). Neither the schizophrenia (P=0.107) nor MDD (P=0.081) groups had significant glutamate changes in the first run of the task, while the schizophrenia group had a significant increase in glutamine (P=0.005). The MDD group decreased glutamate concentrations in the second run of the task (P=0.003), as did all the groups combined (P=0.003). Conclusions: 1H-fMRS data were successfully acquired from psychiatric subjects with schizophrenia and mood disorder using a cognitive paradigm for the first time. Future study designs should further elucidate the glutamatergic response to functional activation in schizophrenia. PMID:27336037

  13. The peroxisome proliferator activated receptor gamma agonist pioglitazone increases functional expression of the glutamate transporter excitatory amino acid transporter 2 (EAAT2) in human glioblastoma cells

    PubMed Central

    Ching, Jared; Amiridis, Stephanie; Stylli, Stanley S.; Bjorksten, Andrew R.; Kountouri, Nicole; Zheng, Thomas; Paradiso, Lucy; Luwor, Rodney B.; Morokoff, Andrew P.; O'Brien, Terence J.; Kaye, Andrew H.

    2015-01-01

    Glioma cells release glutamate through expression of system xc−, which exchanges intracellular glutamate for extracellular cysteine. Lack of the excitatory amino acid transporter 2 (EAAT2) expression maintains high extracellular glutamate levels in the glioma microenvironment, causing excitotoxicity to surrounding parenchyma. Not only does this contribute to the survival and proliferation of glioma cells, but is involved in the pathophysiology of tumour-associated epilepsy (TAE). We investigated the role of the peroxisome proliferator activated receptor gamma (PPARγ) agonist pioglitazone in modulating EAAT2 expression in glioma cells. We found that EAAT2 expression was increased in a dose dependent manner in both U87MG and U251MG glioma cells. Extracellular glutamate levels were reduced with the addition of pioglitazone, where statistical significance was reached in both U87MG and U251MG cells at a concentration of ≥ 30 μM pioglitazone (p < 0.05). The PPARγ antagonist GW9662 inhibited the effect of pioglitazone on extracellular glutamate levels, indicating PPARγ dependence. In addition, pioglitazone significantly reduced cell viability of U87MG and U251MG cells at ≥ 30 μM and 100 μM (p < 0.05) respectively. GW9662 also significantly reduced viability of U87MG and U251MG cells with 10 μM and 30 μM (p < 0.05) respectively. The effect on viability was partially dependent on PPARγ activation in U87MG cells but not U251MG cells, whereby PPARγ blockade with GW9662 had a synergistic effect. We conclude that PPARγ agonists may be therapeutically beneficial in the treatment of gliomas and furthermore suggest a novel role for these agents in the treatment of tumour associated seizures through the reduction in extracellular glutamate. PMID:26046374

  14. Synaptic activation of metabotropic glutamate receptors in the parallel fibre-Purkinje cell pathway in rat cerebellar slices.

    PubMed

    Batchelor, A M; Madge, D J; Garthwaite, J

    1994-12-01

    Glutamate, the major excitatory neurotransmitter in the central nervous system, acts through two broad classes of receptors: ion channel-linked (ionotropic) receptors, which include N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, and metabotropic receptors which couple via G-proteins to intracellular messenger cascades. Seven subtypes of mGluR are known to exist but their roles in synaptic physiology are poorly understood. In cerebellar Purkinje cells, application of the mGluR agonist, trans-1-aminocyclopentane-1,3-dicarboxylic acid, or the active enantiomer, 1S,3R-ACPD, results in a depolarization associated with an inward current and an elevation of intracellular Ca2+ (for review see Ref. 29). Moreover, using an extracellular (grease-gap) technique that monitors population responses, we have previously discovered that, in Purkinje cells of adult rat cerebellum, brief tetanic stimulation of the glutamatergic parallel fibre input gives rise to a slow depolarising synaptic potential that is resistant to ionotropic glutamate receptor blockers and to antagonists acting at GABA receptors. It was suggested that this novel potential is mediated by metabotropic receptors. The advent of antagonists for metabotropic receptors has allowed us to test this hypothesis. We find that the S-enantiomer of alpha-methyl-4-carboxyphenylglycine stereoselectively antagonizes the slow synaptic potential recorded using the grease-gap method. The results were confirmed by intracellular recording from Purkinje cells. To our knowledge this is the first direct evidence of an mGluR-mediated EPSP in intact brain tissue. PMID:7535396

  15. Altered acetylation and succinylation profiles in Corynebacterium glutamicum in response to conditions inducing glutamate overproduction.

    PubMed

    Mizuno, Yuta; Nagano-Shoji, Megumi; Kubo, Shosei; Kawamura, Yumi; Yoshida, Ayako; Kawasaki, Hisashi; Nishiyama, Makoto; Yoshida, Minoru; Kosono, Saori

    2016-02-01

    The bacterium Corynebacterium glutamicum is utilized during industrial fermentation to produce amino acids such as L-glutamate. During L-glutamate fermentation, C. glutamicum changes the flux of central carbon metabolism to favor L-glutamate production, but the molecular mechanisms that explain these flux changes remain largely unknown. Here, we found that the profiles of two major lysine acyl modifications were significantly altered upon glutamate overproduction in C. glutamicum; acetylation decreased, whereas succinylation increased. A label-free semi-quantitative proteomic analysis identified 604 acetylated proteins with 1328 unique acetylation sites and 288 succinylated proteins with 651 unique succinylation sites. Acetylation and succinylation targeted enzymes in central carbon metabolic pathways that are directly related to glutamate production, including the 2-oxoglutarate dehydrogenase complex (ODHC), a key enzyme regulating glutamate overproduction. Structural mapping revealed that several critical lysine residues in the ODHC components were susceptible to acetylation and succinylation. Furthermore, induction of glutamate production was associated with changes in the extent of acetylation and succinylation of lysine, suggesting that these modifications may affect the activity of enzymes involved in glutamate production. Deletion of phosphotransacetylase decreased the extent of protein acetylation in nonproducing condition, suggesting that acetyl phosphate-dependent acetylation is active in C. glutamicum. However, no effect was observed on the profiles of acetylation and succinylation in glutamate-producing condition upon disruption of acetyl phosphate metabolism or deacetylase homologs. It was considered likely that the reduced acetylation in glutamate-producing condition may reflect metabolic states where the flux through acid-producing pathways is very low, and substrates for acetylation do not accumulate in the cell. Succinylation would occur more

  16. Glutamate and GABA activate different receptors and Cl(-) conductances in crab peptide-secretory neurons.

    PubMed

    Duan, S; Cooke, I M

    2000-01-01

    Responses to rapid application of glutamic acid (Glu) and gamma-aminobutyric acid (GABA), 0.01-3 mM, were recorded by whole-cell patch clamp of cultured crab (Cardisoma carnifex) X-organ neurons. Responses peaked within 200 ms. Both Glu and GABA currents had reversal potentials that followed the Nernst Cl(-) potential when [Cl(-)](i) was varied. A Boltzmann fit to the normalized, averaged dose-response curve for Glu indicated an EC(50) of 0.15 mM and a Hill coefficient of 1.05. Rapid (t(1/2) approximately 1 s) desensitization occurred during Glu but not GABA application that required >2 min for recovery. Desensitization was unaffected by concanavalin A or cyclothiazide. N-methyl-D-aspartate, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, quisqualate, and kainate (to 1 mM) were ineffective, nor were Glu responses influenced by glycine (1 microM) or Mg(2+) (0-26 mM). Glu effects were imitated by ibotenic acid (0.1 mM). The following support the conclusion that Glu and GABA act on different receptors: 1) responses sum; 2) desensitization to Glu or ibotenic acid did not diminish GABA responses; 3) the Cl(-)-channel blockers picrotoxin and niflumic acid (0.5 mM) inhibited Glu responses by approximately 90 and 80% but GABA responses by approximately 50 and 20%; and 4) polyvinylpyrrolydone-25 (2 mM in normal crab saline) eliminated Glu responses but left GABA responses unaltered. Thus crab secretory neurons have separate receptors responsive to Glu and to GABA, both probably ionotropic, and mediating Cl(-) conductance increases. In its responses and pharmacology, this crustacean Glu receptor resembles Cl(-)-permeable Glu receptors previously described in invertebrates and differs from cation-permeable Glu receptors of vertebrates and invertebrates.

  17. Enzymatic synthesis of theanine from glutamic acid γ-methyl ester and ethylamine by immobilized Escherichia coli cells with γ-glutamyltranspeptidase activity.

    PubMed

    Zhang, Fei; Zheng, Qing-Zhong; Jiao, Qing-Cai; Liu, Jun-Zhong; Zhao, Gen-Hai

    2010-11-01

    Theanine (γ-glutamylethylamide) is the main amino acid component in green tea. The demand for theanine in the food and pharmaceutical industries continues to increase because of its special flavour and multiple physiological effects. In this research, an improved method for enzymatic theanine synthesis is reported. An economical substrate, glutamic acid γ-methyl ester, was used in the synthesis catalyzed by immobilized Escherichia coli cells with γ-glutamyltranspeptidase (GGT) activity. The results show that GGT activity with glutamic acid γ-methyl ester as substrate was about 1.2-folds higher than that with glutamine as substrate. Reaction conditions were optimized by using 300 mmol/l glutamic acid γ-methyl ester, 3,000 mmol/l ethylamine, and 0.1 g/ml of immobilized GGT cells at pH 10 and 50°C. Under these conditions, the immobilized cells were continuously used ten times, yielding an average glutamic acid γ-methyl ester to theanine conversion rate of 69.3%. Bead activity did not change significantly the first six times they were used, and the average conversion rate during the first six instances was 87.2%. The immobilized cells exhibited favourable operational stability.

  18. A mass-spectrometric method for the estimation of the ratio of gamma-carboxyglutamic acid to glutamic acid at specific sites in proteins. Application to the N-terminal region of bovine prothrombin.

    PubMed

    Rose, K; Priddle, J D; Offord, R E; Esnouf, M P

    1980-04-01

    When a polypeptide containing gamma-carboxyglutamic acid is decarboxylated in 2H2O, residue of (gamma gamma-2H2)glutamic acid are formed. Subsequent proteolytic digestion produces peptides which contain at each site 2H2-substituted and unsubstituted glutamic acid in the same ratio as existed for gramma-carboxy-substitution. The peptides may be identified and this ratio determined by combined gas chromatography--mass spectrometry. We also discuss decarboxylation in 3H2O followed by amino-acid analysis and Edman degradation.

  19. Site-directed mutation of arginine 282 to glutamate uncouples the movement of peptides and protons by the rabbit proton-peptide cotransporter PepT1.

    PubMed

    Meredith, David

    2004-04-16

    A conserved positive residue in the seventh transmembrane domain of the mammalian proton-coupled di- and tripeptide transporter PepT1 has been shown by site-directed mutagenesis to be a key residue for protein function. Substitution of arginine 282 with a glutamate residue (R282E-PepT1) gave a protein at the plasma membrane of Xenopus laevis oocytes that was able to transport the non-hydrolyzable dipeptide [3H]d-Phe-l-Gln, although unlike the wild type, the rate of transport by R282E-PepT1 was independent of the extracellular pH level, and the substrate could not be accumulated above equilibrium. The binding affinity of the mutant transport protein was unchanged from the wild type. Thus, R282E-Pept1 appears to have been changed from a proton-driven to a facilitated transporter for peptides. In addition, peptide transport by R282E-PepT1 still induced depolarization as measured by microelectrode recordings of membrane potential. A more detailed study by two-electrode voltage clamping revealed that R282E-PepT1 behaved as a peptide-gated non-selective cation channel with the ion selectivity series lithium > sodium > N-methyl-d-glucamine at pH 7.4. There was also a proton conductance (comparing pH 7.4 and 8.4), and at pH 5.5 the predominant conductance was for potassium ions. Therefore, it can be concluded that changing arginine 282 to a glutamate not only uncouples the cotransport of protons and peptides of the wild-type PepT1 but also creates a peptide-gated cation channel in the protein.

  20. Activation of type 5 metabotropic glutamate receptors and diacylglycerol lipase-α initiates 2-arachidonoylglycerol formation and endocannabinoid-mediated analgesia.

    PubMed

    Gregg, Laura C; Jung, Kwang-Mook; Spradley, Jessica M; Nyilas, Rita; Suplita, Richard L; Zimmer, Andreas; Watanabe, Masahiko; Mackie, Ken; Katona, István; Piomelli, Daniele; Hohmann, Andrea G

    2012-07-11

    Acute stress reduces pain sensitivity by engaging an endocannabinoid signaling circuit in the midbrain. The neural mechanisms governing this process and molecular identity of the endocannabinoid substance(s) involved are unknown. We combined behavior, pharmacology, immunohistochemistry, RNA interference, quantitative RT-PCR, enzyme assays, and lipidomic analyses of endocannabinoid content to uncover the role of the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG) in controlling pain sensitivity in vivo. Here, we show that footshock stress produces antinociception in rats by activating type 5 metabotropic glutamate receptors (mGlu(5)) in the dorsolateral periaqueductal gray (dlPAG) and mobilizing 2-AG. Stimulation of mGlu(5) in the dlPAG with DHPG [(S)-3,5-dihydroxyphenylglycine] triggered 2-AG formation and enhanced stress-dependent antinociception through a mechanism dependent upon both postsynaptic diacylglycerol lipase (DGL) activity, which releases 2-AG, and presynaptic CB(1) cannabinoid receptors. Pharmacological blockade of DGL activity in the dlPAG with RHC80267 [1,6-bis(cyclohexyloximinocarbonylamino)hexane] and (-)-tetrahydrolipstatin (THL), which inhibit activity of DGL-α and DGL-β isoforms, suppressed stress-induced antinociception. Inhibition of DGL activity in the dlPAG with THL selectively decreased accumulation of 2-AG without altering levels of anandamide. The putative 2-AG-synthesizing enzyme DGL-α colocalized with mGlu(5) at postsynaptic sites of the dlPAG, whereas CB(1) was confined to presynaptic terminals, consistent with a role for 2-AG as a retrograde signaling messenger. Finally, virally mediated silencing of DGL-α, but not DGL-β, transcription in the dlPAG mimicked effects of DGL inhibition in suppressing both endocannabinoid-mediated stress antinociception and 2-AG formation. The results indicate that activation of the postsynaptic mGlu(5)-DGL-α cascade triggers retrograde 2-AG signaling in vivo. This pathway is required for

  1. Metabotropic glutamate receptors activate dendritic calcium waves and TRPM channels which drive rhythmic respiratory patterns in mice

    PubMed Central

    Mironov, S L

    2008-01-01

    Respiration in vertebrates is generated by a compact network which is located in the lower brainstem but cellular mechanisms which underlie persistent oscillatory activity of the respiratory network are yet unknown. Using two-photon imaging and patch-clamp recordings in functional brainstem preparations of mice containing pre-Bötzinger complex (preBötC), we examined the actions of metabotropic glutamate receptors (mGluR1/5) on the respiratory patterns. The agonist DHPG potentiated and antagonist LY367385 depressed respiration-related activities. In the inspiratory neurons, we observed rhythmic activation of non-selective channels which had a conductance of 24 pS. Their activity was enhanced with membrane depolarization and after elevation of calcium from the cytoplasmic side of the membrane. They were activated by a non-hydrolysable PIP2 analogue and blocked by flufenamate, ATP4− and Gd3+. All these properties correspond well to those of TRPM4 channels. Calcium imaging of functional slices revealed rhythmic transients in small clusters of neurons present in a network. Calcium transients in the soma were preceded by the waves in dendrites which were dependent on mGluR activation. Initiation and propagation of waves required calcium influx and calcium release from internal stores. Calcium waves activated TPRM4-like channels in the soma and promoted generation of inspiratory bursts. Simulations of activity of neurons communicated via dendritic calcium waves showed emerging activity within neuronal clusters and its synchronization between the clusters. The experimental and theoretical data provide a subcellular basis for a recently proposed group-pacemaker hypothesis and describe a novel mechanism of rhythm generation in neuronal networks. PMID:18308826

  2. Estrogen Receptor β Activation Rapidly Modulates Male Sexual Motivation through the Transactivation of Metabotropic Glutamate Receptor 1a.

    PubMed

    Seredynski, Aurore L; Balthazart, Jacques; Ball, Gregory F; Cornil, Charlotte A

    2015-09-23

    In addition to the transcriptional activity of their liganded nuclear receptors, estrogens, such as estradiol (E2), modulate cell functions, and consequently physiology and behavior, within minutes through membrane-initiated events. The membrane-associated receptors (mERs) underlying the acute effects of estrogens on behavior have mostly been documented in females where active estrogens are thought to be of ovarian origin. We determined here, by acute intracerebroventricular injections of specific agonists and antagonists, the type(s) of mERs that modulate rapid effects of brain-derived estrogens on sexual motivation in male Japanese quail. Brain aromatase blockade acutely inhibited sexual motivation. Diarylpropionitrile (DPN), an estrogen receptor β (ERβ)-specific agonist, and to a lesser extent 17α-estradiol, possibly acting through ER-X, prevented this effect. In contrast, drugs targeting ERα (PPT and MPP), GPR30 (G1 and G15), and the Gq-mER (STX) did not affect sexual motivation. The mGluR1a antagonist LY367385 significantly inhibited sexual motivation but mGluR2/3 and mGluR5 antagonists were ineffective. LY367385 also blocked the behavioral restoration induced by E2 or DPN, providing functional evidence that ERβ interacts with metabotropic glutamate receptor 1a (mGluR1a) signaling to acutely regulate male sexual motivation. Together these results show that ERβ plays a key role in sexual behavior regulation and the recently uncovered cooperation between mERs and mGluRs is functional in males where it mediates the acute effects of estrogens produced centrally in response to social stimuli. The presence of an ER-mGluR interaction in birds suggests that this mechanism emerged relatively early in vertebrate history and is well conserved. Significance statement: The membrane-associated receptors underlying the acute effects of estrogens on behavior have mostly been documented in females, where active estrogens are thought to be of ovarian origin. Using acute

  3. Glutamate regulates Oct-2 DNA-binding activity through alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors in cultured chick Bergmann glia cells.

    PubMed

    Méndez, J Alfredo; López-Bayghen, Esther; Rojas, Fausto; Hernández, María Elena; Ortega, Arturo

    2004-02-01

    Ionotropic glutamate receptors in cerebellar Bergmann glial cells are linked to transcriptional regulation and, by these means, are thought to play an important role in plasticity, learning and memory and in several neuropathologies. Within the CNS, the transcription factors of the POU family bind their target DNA sequences after a growth factor-dependent phosphorylation-dephosphorylation cascade. Exposure of cultured Bergmann glial cells to glutamate leads to a time- and dose-dependent increase in Oct-2 DNA-binding activity. The use of specific pharmacological tools established the involvement of Ca2+-permeable alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors. Furthermore, the signaling cascade includes phosphatidyl inositol 3-kinase as well as protein kinase C activation. Interestingly, transcriptional as well as translational inhibitors abolish the glutamate effect, suggesting a transcriptional up-regulation of the oct-2 gene. These data demonstrate that Oct-2 expression is not restricted to neurons and further strengthen the notion that the glial glutamate receptors participate in the modulation of glutamatergic cerebellar neurotransmission.

  4. Stimulation of lateral hypothalamic glutamate and acetylcholine efflux by nicotine: implications for mechanisms of nicotine-induced activation of orexin neurons.

    PubMed

    Pasumarthi, Ravi K; Fadel, Jim

    2010-05-01

    The hypothalamus is a prominent target of nicotine action. We have previously shown that acute systemic nicotine treatment induces Fos expression in the lateral hypothalamus and perifornical area (LH/PFA), with orexin/hypocretin neurons being particularly responsive. However, the neurochemical correlates of acute nicotine treatment in the LH/PFA have not been described. Anatomical studies have revealed that this area receives afferents from cholinergic, glutamatergic, and GABAergic telencephalic brain regions, suggesting a potential role for these neurotransmitters in mediating the hypothalamic component of nicotine effects on homeostatic phenomena, such as arousal and appetite. Here, we used in vivo microdialysis to determine the effect of acute systemic or local nicotine on glutamate, acetylcholine, and GABA efflux in the LH/PFA of rats. Local administration of nicotine significantly increased acetylcholine and glutamate, but not GABA, in the LH/PFA. Thus, we further tested the role of afferent sources of glutamate and acetylcholine in mediating acute nicotine-induced activation of orexin neurons by unilaterally lesioning the prefrontal cortex or basal forebrain cholinergic regions. Lesioned animals showed reduced Fos-positive orexin neurons following nicotine treatment. These data suggest that both acetylcholine and glutamate may mediate the effects of acute nicotine on the activity of hypothalamic neurons, including orexin/hypocretin cells. Changes in cholinergic or glutamatergic transmission in this region with chronic nicotine may contribute to long-term alterations in functions mediated by LH/PFA neurons, including feeding and arousal.

  5. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase.

    PubMed

    Fenwick, Michael K; Mehta, Angad P; Zhang, Yang; Abdelwahed, Sameh H; Begley, Tadhg P; Ealick, Steven E

    2015-03-27

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active site metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.

  6. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase

    SciTech Connect

    Fenwick, Michael K.; Mehta, Angad P.; Zhang, Yang; Abdelwahed, Sameh H.; Begley, Tadhg P.; Ealick, Steven E.

    2015-03-27

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active site metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.

  7. Methylglyoxal and carboxyethyllysine reduce glutamate uptake and S100B secretion in the hippocampus independently of RAGE activation.

    PubMed

    Hansen, Fernanda; Battú, Cíntia Eickhoff; Dutra, Márcio Ferreira; Galland, Fabiana; Lirio, Franciane; Broetto, Núbia; Nardin, Patrícia; Gonçalves, Carlos-Alberto

    2016-02-01

    Diabetes is a metabolic disease characterized by high fasting-glucose levels. Diabetic complications have been associated with hyperglycemia and high levels of reactive compounds, such as methylglyoxal (MG) and advanced glycation endproducts (AGEs) formation derived from glucose. Diabetic patients have a higher risk of developing neurodegenerative diseases, such as Alzheimer's disease or Parkinson's disease. Herein, we examined the effect of high glucose, MG and carboxyethyllysine (CEL), a MG-derived AGE of lysine, on oxidative, metabolic and astrocyte-specific parameters in acute hippocampal slices, and investigated some of the mechanisms that could mediate these effects. Glucose, MG and CEL did not alter reactive oxygen species (ROS) formation, glucose uptake or glutamine synthetase activity. However, glutamate uptake and S100B secretion were decreased after MG and CEL exposure. RAGE activation and glycation reactions, examined by aminoguanidine and L-lysine co-incubation, did not mediate these changes. Acute MG and CEL exposure, but not glucose, were able to induce similar effects on hippocampal slices, suggesting that conditions of high glucose concentrations are primarily toxic by elevating the rates of these glycation compounds, such as MG, and by generation of protein cross-links. Alterations in the secretion of S100B and the glutamatergic activity mediated by MG and AGEs can contribute to the brain dysfunction observed in diabetic patients.

  8. Glutamatergic or GABAergic neuron-specific, long-term expression in neocortical neurons from helper virus-free HSV-1 vectors containing the phosphate-activated glutaminase, vesicular glutamate transporter-1, or glutamic acid decarboxylase promoter.

    PubMed

    Rasmussen, Morten; Kong, Lingxin; Zhang, Guo-rong; Liu, Meng; Wang, Xiaodan; Szabo, Gabor; Curthoys, Norman P; Geller, Alfred I

    2007-05-01

    Many potential uses of direct gene transfer into neurons require restricting expression to one of the two major types of forebrain neurons, glutamatergic or GABAergic neurons. Thus, it is desirable to develop virus vectors that contain either a glutamatergic or GABAergic neuron-specific promoter. The brain/kidney phosphate-activated glutaminase (PAG), the product of the GLS1 gene, produces the majority of the glutamate for release as neurotransmitter, and is a marker for glutamatergic neurons. A PAG promoter was partially characterized using a cultured kidney cell line. The three vesicular glutamate transporters (VGLUTs) are expressed in distinct populations of neurons, and VGLUT1 is the predominant VGLUT in the neocortex, hippocampus, and cerebellar cortex. Glutamic acid decarboxylase (GAD) produces GABA; the two molecular forms of the enzyme, GAD65 and GAD67, are expressed in distinct, but largely overlapping, groups of neurons, and GAD67 is the predominant form in the neocortex. In transgenic mice, an approximately 9 kb fragment of the GAD67 promoter supports expression in most classes of GABAergic neurons. Here, we constructed plasmid (amplicon) Herpes Simplex Virus (HSV-1) vectors that placed the Lac Z gene under the regulation of putative PAG, VGLUT1, or GAD67 promoters. Helper virus-free vector stocks were delivered into postrhinal cortex, and the rats were sacrificed 4 days or 2 months later. The PAG or VGLUT1 promoters supported approximately 90% glutamatergic neuron-specific expression. The GAD67 promoter supported approximately 90% GABAergic neuron-specific expression. Long-term expression was observed using each promoter. Principles for obtaining long-term expression from HSV-1 vectors, based on these and other results, are discussed. Long-term glutamatergic or GABAergic neuron-specific expression may benefit specific experiments on learning or specific gene therapy approaches. Of note, promoter analyses might identify regulatory elements that determine

  9. Catalysis: Elusive active site in focus

    NASA Astrophysics Data System (ADS)

    Labinger, Jay A.

    2016-08-01

    The identification of the active site of an iron-containing catalyst raises hopes of designing practically useful catalysts for the room-temperature conversion of methane to methanol, a potential fuel for vehicles. See Letter p.317

  10. Effect of ageing and ischemia on enzymatic activities linked to Krebs' cycle, electron transfer chain, glutamate and aminoacids metabolism of free and intrasynaptic mitochondria of cerebral cortex.

    PubMed

    Villa, Roberto Federico; Gorini, Antonella; Hoyer, Siegfried

    2009-12-01

    The effect of ageing and the relationships between the catalytic properties of enzymes linked to Krebs' cycle, electron transfer chain, glutamate and aminoacid metabolism of cerebral cortex, a functional area very sensitive to both age and ischemia, were studied on mitochondria of adult and aged rats, after complete ischemia of 15 minutes duration. The maximum rate (Vmax) of the following enzyme activities: citrate synthase, malate dehydrogenase, succinate dehydrogenase for Krebs' cycle; NADH-cytochrome c reductase as total (integrated activity of Complex I-III), rotenone sensitive (Complex I) and cytochrome oxidase (Complex IV) for electron transfer chain; glutamate dehydrogenase, glutamate-oxaloacetate-and glutamate-pyruvate transaminases for glutamate metabolism were assayed in non-synaptic, perikaryal mitochondria and in two populations of intra-synaptic mitochondria, i.e., the light and heavy mitochondrial fraction. The results indicate that in normal, steady-state cerebral cortex, the value of the same enzyme activity markedly differs according (a) to the different populations of mitochondria, i.e., non-synaptic or intra-synaptic light and heavy, (b) and respect to ageing. After 15 min of complete ischemia, the enzyme activities of mitochondria located near the nucleus (perikaryal mitochondria) and in synaptic structures (intra-synaptic mitochondria) of the cerebral tissue were substantially modified by ischemia. Non-synaptic mitochondria seem to be more affected by ischemia in adult and particularly in aged animals than the intra-synaptic light and heavy mitochondria. The observed modifications in enzyme activities reflect the metabolic state of the tissue at each specific experimental condition, as shown by comparative evaluation with respect to the content of energy-linked metabolites and substrates. The derangements in enzyme activities due to ischemia is greater in aged than in adult animals and especially the non-synaptic and the intra-synaptic light

  11. Regulation of Synaptic Transmission by Ambient Extracellular Glutamate

    PubMed Central

    FEATHERSTONE, DAVID E.; SHIPPY, SCOTT A.

    2008-01-01

    Many neuroscientists assume that ambient extracellular glutamate concentrations in the nervous system are biologically negligible under nonpathological conditions. This assumption is false. Hundreds of studies over several decades suggest that ambient extracellular glutamate levels in the intact mammalian brain are ~0.5 to ~5 μM. This has important implications. Glutamate receptors are desensitized by glutamate concentrations significantly lower than needed for receptor activation; 0.5 to 5 μM of glutamate is high enough to cause constitutive desensitization of most glutamate receptors. Therefore, most glutamate receptors in vivo may be constitutively desensitized, and ambient extracellular glutamate and receptor desensitization may be potent but generally unrecognized regulators of synaptic transmission. Unfortunately, the mechanisms regulating ambient extracellular glutamate and glutamate receptor desensitization remain poorly understood and understudied. PMID:17947494

  12. The Degradation of 14C-Glutamic Acid by L-Glutamic Acid Decarboxylase.

    ERIC Educational Resources Information Center

    Dougherty, Charles M; Dayan, Jean

    1982-01-01

    Describes procedures and semi-micro reaction apparatus (carbon dioxide trap) to demonstrate how a particular enzyme (L-Glutamic acid decarboxylase) may be used to determine the site or sites of labeling in its substrate (carbon-14 labeled glutamic acid). Includes calculations, solutions, and reagents used. (Author/SK)

  13. Phenotypic Characterization of Mice Heterozygous for a Null Mutation of Glutamate Carboxypeptidase II

    PubMed Central

    Han, Liqun; Picker, Jonathan D.; Schaevitz, Laura R.; Tsai, Guochuan; Feng, Jiamin; Jiang, Zhichun; Chu, Hillary C.; Basu, Alo C.; Berger-Sweeney, Joanne; Coyle, Joseph T.

    2009-01-01

    Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. Disturbed glutamate signaling resulting in hypofunction of NMDA receptors has been implicated in the pathophysiology of schizophrenia. Glutamate Carboxypeptidase II (GCP II) hydrolyzes N-acetyl-alpha L-aspartyl-L-glutamate (NAAG) into glutamate and N-acetyl-aspartate (NAA). NAAG is a neuropeptide that is an NMDA receptor antagonist as well as an agonist for the metabotropic glutamate receptor-3 (mGluR3), which inhibits glutamate release. The aggregate effect of NAAG is thus to attenuate NMDA receptor activation. To manipulate the expression of GCP II, loxP sites were inserted flanking exon 1 and 2, which were excised by crossing with a Cre-expressing mouse. The mice heterozygous for this deletion showed a 50% reduction in the expression level of protein and functional activity of GCP II in brain samples. Heterozygous mutant crosses did not yield any homozygous null animals at birth or as embryos (N >200 live births and fetuses). These data are consistent with the previous report that GCP II homozygous mutant mice generated by removing exons 9 and 10 of GCP II gene were embryonically lethal and confirm our hypothesis that GCP II plays an essential role early in embryonic development. Heterozygous mice, however, developed normally to adulthood and exhibited increased locomotor activity, reduced social interaction, and a subtle cognitive deficit in working memory. PMID:19347959

  14. Brain energy metabolism in glutamate-receptor activation and excitotoxicity: role for APC/C-Cdh1 in the balance glycolysis/pentose phosphate pathway.

    PubMed

    Rodriguez-Rodriguez, Patricia; Almeida, Angeles; Bolaños, Juan P

    2013-04-01

    Recent advances in the field of brain energy metabolism strongly suggest that glutamate receptor-mediated neurotransmission is coupled with molecular signals that switch-on glucose utilization pathways to meet the high energetic requirements of neurons. Failure to adequately coordinate energy supply for neurotransmission ultimately results in a positive amplifying loop of receptor over-activation leading to neuronal death, a process known as excitotoxicity. In this review, we revisited current concepts in excitotoxic mechanisms, their involvement in energy substrate utilization, and the signaling pathways that coordinate both processes. In particular, we have focused on the novel role played by the E3 ubiquitin ligase, anaphase-promoting complex/cyclosome (APC/C)-Cdh1, in cell metabolism. Our laboratory identified 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) -a key glycolytic-promoting enzyme- as an APC/C-Cdh1 substrate. Interestingly, APC/C-Cdh1 activity is inhibited by over-activation of glutamate receptors through a Ca(2+)-mediated mechanism. Furthermore, by inhibiting APC/C-Cdh1 activity, glutamate-receptors activation promotes PFKFB3 stabilization, leading to increased glycolysis and decreased pentose-phosphate pathway activity. This causes a loss in neuronal ability to regenerate glutathione, triggering oxidative stress and delayed excitotoxicity. Further investigation is critical to identify novel molecules responsible for the coupling of energy metabolism with glutamatergic neurotransmission and excitotoxicity, as well as to help developing new therapeutic strategies against neurodegeneration.

  15. Glutamate-dependent transcriptional regulation of the chkbp gene: signaling mechanisms.

    PubMed

    Aguirre, Adán; López-Bayghen, Esther; Ortega, Arturo

    2002-10-01

    Glutamate, the major excitatory neurotransmitter, induces a signal from the membrane to the nucleus that regulates gene expression. The gene encoding the chick kainate binding protein undergoes a glutamate-dependent transcriptional regulation via an activator protein-1 site within its promoter region. To characterize this event, cultured chick Bergmann glia cells were exposed to glutamate, and a dose-dependent increase in promoter activity was established. The glutamate effect is mediated through Ca(2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate receptors. The signaling cascade includes phosphatidyl inositol 3-kinase, Ca(2+)/calmodulin-dependent protein kinase II, mitogen-activated protein kinase, and p90 ribosomal S6 kinase activation. The cAMP response-element binding protein becomes phosphorylated and activates fos transcription. Finally, the activator protein-1 complex binds to the glutamate response element in the chick kainate binding protein promoter region inducing its activity. We propose that the mitogen-activated protein kinase/p90 ribosomal S6 kinase pathway plays a critical role in glutamate-induced gene transcription.

  16. [Autoimmune mechanisms of modulation of the activity of glutamate receptors in children with epilepsy and craniocerebral injury].

    PubMed

    Pinelis, V G; Sorokina, E G

    2008-01-01

    The role of glutamate receptors and their hyperstimulation in the development of autoimmune processes is discussed with reference to brain pathology associated with hypoxia and ischemia. Epilepsy, paroxismal condition, and craniocerebral injury (CCI) in children are shown to be accompanied by a rise in the levels of antibodies against AMPA and NMDA receptors of glutamate and nitric oxide markers (cGMP, nitrates + nitrites). Also enhanced in epilepsy and paroxismal condition are the levels of cGMP and antibodies against AMPA(GluR1) receptors of glutamate. Acute CCI period is characterized by a marked change in the levels of NO metabolites and antibodies to two subtypes of glutamate receptor, AMPA and NMDA. The levels of antibodies to NMDA(NR2A) receptors are significantly different within 1 day after CCI depending on its outcome. Unfavourable outcome of CCI is associated with the lowest level of antibodies and high NO metabolite content. Relationship between the levels of NO and antibodies against glutamate receptors is discussed with the use of experimental data. It is concluded that antibodies to glutamate receptors and receptor hyperstimulation play an important role in pathogenesis of hypoxia. PMID:19189459

  17. Chemoenzymatic synthesis of new 2,4-syn-functionalized (S)-glutamate analogues and structure-activity relationship studies at ionotropic glutamate receptors and excitatory amino acid transporters.

    PubMed

    Assaf, Zeinab; Larsen, Anja P; Venskutonytė, Raminta; Han, Liwei; Abrahamsen, Bjarke; Nielsen, Birgitte; Gajhede, Michael; Kastrup, Jette S; Jensen, Anders A; Pickering, Darryl S; Frydenvang, Karla; Gefflaut, Thierry; Bunch, Lennart

    2013-02-28

    In the mammalian central nervous system, (S)-glutamate (Glu) is released from the presynaptic neuron where it activates a plethora of pre- and postsynaptic Glu receptors. The fast acting ionotropic Glu receptors (iGluRs) are ligand gated ion channels and are believed to be involved in a vast number of neurological functions such as memory and learning, synaptic plasticity, and motor function. The synthesis of 14 enantiopure 2,4-syn-Glu analogues 2b-p is accessed by a short and efficient chemoenzymatic approach starting from readily available cyclohexanone 3. Pharmacological characterization at the iGluRs and EAAT1-3 subtypes revealed analogue 2i as a selective GluK1 ligand with low nanomolar affinity. Two X-ray crystal structures of the key analogue 2i in the ligand-binding domain (LBD) of GluA2 and GluK3 were determined. Partial domain closure was seen in the GluA2-LBD complex with 2i comparable to that induced by kainate. In contrast, full domain closure was observed in the GluK3-LBD complex with 2i, similar to that of GluK3-LBD with glutamate bound.

  18. Scavenging of blood glutamate for enhancing brain-to-blood glutamate efflux.

    PubMed

    Li, Yunhong; Hou, Xiaolin; Qi, Qi; Wang, Le; Luo, Lan; Yang, Shaoqi; Zhang, Yumei; Miao, Zhenhua; Zhang, Yanli; Wang, Fei; Wang, Hongyan; Huang, Weidong; Wang, Zhenhai; Shen, Ying; Wang, Yin

    2014-01-01

    The presence of excess glutamate in the brain interstitial fluid characterizes several acute pathological conditions of the brain, including traumatic brain injury and stroke. It has been demonstrated that it is possible to eliminate excess glutamate in the brain by decreasing blood glutamate levels and, accordingly, accelerating the brain-to-blood glutamate efflux. It is feasible to accomplish this process by activating blood resident enzymes in the presence of the respective glutamate cosubstrates. In the present study, several glutamate cosubstrates and cofactors were studied in an attempt to identify the optimal conditions to reduce blood glutamate levels. The administration of a mixture of 1 mM pyruvate and oxaloacetate (Pyr/Oxa) for 1 h decreased blood glutamate levels by ≤50%. The addition of lipoamide to this mixture resulted in a further reduction in blood glutamate levels of >80%. In addition, in vivo experiments showed that lipoamide together with Pyr/Oxa is able to decrease blood glutamate levels to a greater extent than Pyr/Oxa alone, and accordingly, this enhances the glutamate efflux from the brain to the blood. These results may outline a novel neuroprotective strategy with increased effectiveness for the removal of excess brain glutamate in various neurodegenerative conditions.

  19. Neuronal activity patterns in the mediodorsal thalamus and related cognitive circuits are modulated by metabotropic glutamate receptors

    PubMed Central

    Copeland, C.S.; Neale, S.A.; Salt, T.E.

    2015-01-01

    The mediodorsal thalamus (MD) likely plays an important role in cognition as it receives abundant afferent connections from the amygdala and prefrontal cortex (PFC). Indeed, disturbed activity within the MD is thought to precipitate cognitive deficits associated with schizophrenia. As compounds acting at the Group II metabotropic glutamate (mGlu) receptors (subtypes mGlu2/mGlu3) have efficacy in animal models of schizophrenia, we investigated whether a Group II agonist and an mGlu2 positive allosteric modulator (PAM) could modulate MD activity. Extracellular single-unit recordings were made in vivo from MD neurones in anaesthetised rats. Responses were elicited by electrical stimulation of the PFC and/or amygdala, with Group II compounds locally applied as required. The Group II agonist reduced inhibition evoked in the MD: an effect manifested as an increase in short-latency responses, and a decrease in long-latency burst-firing. This disinhibitory action of the Group II receptors in the MD represents a mechanism of potential therapeutic importance as increased inhibition in the MD has been associated with cognitive deficit-onset. Furthermore, as co-application of the mGlu2 PAM did not potentiate the Group II agonist effects in the MD, we suggest that the Group II disinhibitory effect is majority-mediated via mGlu3. This heterogeneity in Group II receptor thalamic physiology bears consequence, as compounds active exclusively at the mGlu2 subtype are unlikely to perturb maladapted MD firing patterns associated with cognitive deficits, with activity at mGlu3 receptors possibly more appropriate. Indeed, polymorphisms in the mGlu3, but not the mGlu2, gene have been detected in patients with schizophrenia. PMID:25576798

  20. Neuronal activity patterns in the mediodorsal thalamus and related cognitive circuits are modulated by metabotropic glutamate receptors.

    PubMed

    Copeland, C S; Neale, S A; Salt, T E

    2015-05-01

    The mediodorsal thalamus (MD) likely plays an important role in cognition as it receives abundant afferent connections from the amygdala and prefrontal cortex (PFC). Indeed, disturbed activity within the MD is thought to precipitate cognitive deficits associated with schizophrenia. As compounds acting at the Group II metabotropic glutamate (mGlu) receptors (subtypes mGlu2/mGlu3) have efficacy in animal models of schizophrenia, we investigated whether a Group II agonist and an mGlu2 positive allosteric modulator (PAM) could modulate MD activity. Extracellular single-unit recordings were made in vivo from MD neurones in anaesthetised rats. Responses were elicited by electrical stimulation of the PFC and/or amygdala, with Group II compounds locally applied as required. The Group II agonist reduced inhibition evoked in the MD: an effect manifested as an increase in short-latency responses, and a decrease in long-latency burst-firing. This disinhibitory action of the Group II receptors in the MD represents a mechanism of potential therapeutic importance as increased inhibition in the MD has been associated with cognitive deficit-onset. Furthermore, as co-application of the mGlu2 PAM did not potentiate the Group II agonist effects in the MD, we suggest that the Group II disinhibitory effect is majority-mediated via mGlu3. This heterogeneity in Group II receptor thalamic physiology bears consequence, as compounds active exclusively at the mGlu2 subtype are unlikely to perturb maladapted MD firing patterns associated with cognitive deficits, with activity at mGlu3 receptors possibly more appropriate. Indeed, polymorphisms in the mGlu3, but not the mGlu2, gene have been detected in patients with schizophrenia. PMID:25576798

  1. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination.

    PubMed

    Rowley, Paul A; Kachroo, Aashiq H; Ma, Chien-Hui; Maciaszek, Anna D; Guga, Piotr; Jayaram, Makkuni

    2015-07-13

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5' to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions. PMID:25999343

  2. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination.

    PubMed

    Rowley, Paul A; Kachroo, Aashiq H; Ma, Chien-Hui; Maciaszek, Anna D; Guga, Piotr; Jayaram, Makkuni

    2015-07-13

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5' to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions.

  3. Interplay among platelet-activating factor, oxidative stress, and group I metabotropic glutamate receptors modulates neuronal survival.

    PubMed

    Zhu, Peimin; DeCoster, Mark A; Bazan, Nicolas G

    2004-08-15

    Platelet-activating factor (PAF) is a potent phospholipid messenger in the nervous system that participates in synaptic plasticity and in pathologic processes, including neurodegeneration. Oxidative stress plays important roles in neuronal cell death. To define the interaction between PAF and oxidative radicals in neuronal death, we studied the effects of PAF in the presence of oxidative radicals in primary neurons in culture. Exogenous PAF (50 microM) caused PAF receptor-independent injury to neurons. A nonneurotoxic PAF concentration (500 nM) potentiated neuronal death caused by hydrogen peroxide as determined by lactate dehydrogenase (LDH) assay, Hoechst staining, and TUNEL analysis, but it did not potentiate neuronal death caused by menadione, a superoxide donor, or by the nitric oxide donors 3-morpholino-sydnonimine (SIN-1) and sodium nitroprusside (SNP). This potentiation of the hydrogen peroxide effect was selectively blocked by a PAF membrane-receptor antagonist, BN52021 (5 microM). The neurotoxic effect of PAF and hydrogen peroxide was also completely blocked by ebselen and partially decreased by pretreatment with (S)-3,5-dihydroxyphenylglycine (DHPG), a group I metabotropic glutamate receptor (mGluR) agonist. This study suggests that PAF-receptor antagonists may be useful for neuroprotection. A similar effect might also be obtained with group I mGluR agonists, probably by way of a different underlying mechanism.

  4. Low dielectric response in enzyme active site

    PubMed Central

    Mertz, Edward L.; Krishtalik, Lev I.

    2000-01-01

    The kinetics of charge transfer depend crucially on the dielectric reorganization of the medium. In enzymatic reactions that involve charge transfer, atomic dielectric response of the active site and of its surroundings determines the efficiency of the protein as a catalyst. We report direct spectroscopic measurements of the reorganization energy associated with the dielectric response in the active site of α-chymotrypsin. A chromophoric inhibitor of the enzyme is used as a spectroscopic probe. We find that water strongly affects the dielectric reorganization in the active site of the enzyme in solution. The reorganization energy of the protein matrix in the vicinity of the active site is similar to that of low-polarity solvents. Surprisingly, water exhibits an anomalously high dielectric response that cannot be described in terms of the dielectric continuum theory. As a result, sequestering the active site from the aqueous environment inside low-dielectric enzyme body dramatically reduces the dielectric reorganization. This reduction is particularly important for controlling the rate of enzymatic reactions. PMID:10681440

  5. Site-directed substitution of Ser1406 of hamster CAD with glutamic acid alters allosteric regulation of carbamyl phosphate synthetase II.

    PubMed

    Banerjei, L C; Davidson, J N

    1997-01-01

    Ser1406 of the allosteric region of the hamster CAD enzyme, carbamyl phosphate synthetase II (CPSase), is known to be phosphorylated in vitro by cAMP-dependent protein kinase (PKA). Metabolic labeling experiments described here demonstrate that CAD is phosphorylated in somatic cells in culture. Phosphorylation is stimulated by treating cells with 8-bromo-cAMP, a PKA activator. The stimulation is essentially prevented by pretreatment with H-89, a PKA specific inhibitor. Substitution of Ser1406 with alanine results in an enzyme with kinetics and allosteric regulation indistinguishable from unsubstituted CAD. However, substitution to glutamic acid increases CPSase activity by reducing the apparent Km (ATP). The UTP concentration required to give 50% inhibition is increased rendering this altered enzyme significantly less sensitive to feedback inhibition, but allosteric activation by PRPP is unaffected. While these data do not prove that Ser1406 is phosphorylated in vivo, they do indicate that a specific alteration at this residue can affect allosteric regulation. PMID:9218000

  6. Mutational Analysis of Substrate Interactions with the Active Site of Dialkylglycine Decarboxylase

    PubMed Central

    Fogle, Emily J.; Toney, Michael D.

    2010-01-01

    Pyridoxal phosphate (PLP) dependent enzymes catalyze many different types of reactions at the α-, β-, and γ-carbons of amine and amino acid substrates. Dialkylglycine decarboxylase (DGD) is an unusual PLP dependent enzyme that catalyzes two reaction types, decarboxylation and transamination, in the same active site. A structurally-based, functional model has been proposed for the DGD active site, which maintains that R406 is important in determining substrate specificity through interactions with the substrate carboxylate while W138 provides specificity for short-chain alkyl groups. The mechanistic roles of R406 and W138 were investigated using site directed mutagenesis, alternate substrates, and analysis of steady-state and half-reaction kinetics. Experiments on the R406M and R406K mutants confirm the importance of R406 in substrate binding. Surprisingly, this work also shows that the positive charge of R406 facilitates catalysis of decarboxylation. The W138F mutant demonstrates that W138 indeed acts to limit the size of the subsite C binding pocket, determining specificity for 2,2-dialkylglycines with small side chains as predicted by the model. Finally, work with the double mutant W138F/M141R shows that these mutations expand substrate specificity to include L-glutamate and lead to an increase in specificity for L-glutamate over 2-aminoisobutyrate of approximately eight orders of magnitude compared to WT DGD. PMID:20540501

  7. Glutamate-dependent transcriptional regulation of GLAST/EAAT1: a role for YY1.

    PubMed

    Rosas, Sandra; Vargas, Miguel A; López-Bayghen, Esther; Ortega, Arturo

    2007-05-01

    Glutamate is the major excitatory transmitter in the vertebrate brain and its extracellular levels are tightly regulated to prevent excitotoxic effects. The Na(+)-dependent glutamate/aspartate transporter GLAST/EAAT1 is regulated in the short and in the long term by glutamate. A receptors-independent change in its membrane translocation rate, accounts for an acute modulation in GLAST/EAAT1 transport. In contrast, activation of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate subtype of glutamate receptors represses the transcription of the chick glast gene. A glutamate responsive element has been mapped to the promoter region of this gene containing a bonafide binding site for the transcription factor Ying-Yang 1. Using cultured chick cerebellar Bergmann glia cells, glutamate elicited a time and dose-dependent increase in Ying-Yang 1 DNA binding consistent with the negative response generated in a reporter gene construct controlled for Ying-Yang 1. Over-expression of this transcription factor leads to a substantial reduction in GLAST/EAAT1 transporter uptake and an important decrease in mRNA levels, all associated with the transcriptional repression of the chick glast promoter activity. These results provide evidence for an involvement of Ying-Yang 1 in the transcriptional response to glutamate in glial cells and favor the notion of a relevant role of this factor in GLAST/EAAT1 transcriptional control.

  8. Coordinated activation of distinct Ca2+ sources and metabotropic glutamate receptors encodes Hebbian synaptic plasticity

    PubMed Central

    Tigaret, Cezar M.; Olivo, Valeria; Sadowski, Josef H.L.P.; Ashby, Michael C.; Mellor, Jack R.

    2016-01-01

    At glutamatergic synapses, induction of associative synaptic plasticity requires time-correlated presynaptic and postsynaptic spikes to activate postsynaptic NMDA receptors (NMDARs). The magnitudes of the ensuing Ca2+ transients within dendritic spines are thought to determine the amplitude and direction of synaptic change. In contrast, we show that at mature hippocampal Schaffer collateral synapses the magnitudes of Ca2+ transients during plasticity induction do not match this rule. Indeed, LTP induced by time-correlated pre- and postsynaptic spikes instead requires the sequential activation of NMDARs followed by voltage-sensitive Ca2+ channels within dendritic spines. Furthermore, LTP requires inhibition of SK channels by mGluR1, which removes a negative feedback loop that constitutively regulates NMDARs. Therefore, rather than being controlled simply by the magnitude of the postsynaptic calcium rise, LTP induction requires the coordinated activation of distinct sources of Ca2+ and mGluR1-dependent facilitation of NMDAR function. PMID:26758963

  9. Impact of fumonisin B1 on glutamate toxicity and low magnesium-induced seizure activity in neuronal primary culture.

    PubMed

    Domijan, A-M; Kovac, S; Abramov, A Y

    2012-01-27

    Fumonisin B(1) (FB(1)) is a mycotoxin produced by Fusarium spp. mould that contaminates maize world-wide. Although its neurodegenerative potential is well established, mechanisms and acute effects of FB(1) on neurons are still not completely understood. Our previous study on astrocytes and neuroblastoma cells demonstrated that acute FB(1) exposure inhibits mitochondrial complex I and leads to mitochondrial membrane potential depolarization and calcium deregulation. To further explore the mechanisms of FB(1) neurotoxicity, we here investigated the effects of acute FB(1) co-exposure with glutamate and in the low magnesium model of epilepsy on neuronal calcium level, mitochondrial membrane potential, and cell death in glio-neuronal cultures. FB(1) increased the glutamate-induced calcium signal in neurons and changed neuronal calcium signals to more sustained intracellular calcium rises in the low magnesium model of epilepsy that coincided with mitochondrial membrane potential depolarization. FB(1) co-exposure increased the percentage of dead neurons in low magnesium conditions dose dependently when compared with low magnesium exposure only, whereas in FB(1) and glutamate co-exposure neuronal death remained unchanged when compared with glutamate treatment only. Our results show that FB(1) makes neurons more vulnerable to glutamate-induced toxicity and epileptiform conditions, indicating that FB(1) can enhance the detrimental effect of these conditions on neurons. PMID:22178271

  10. Block by gabapentin of the facilitation of glutamate release from rat trigeminal nucleus following activation of protein kinase C or adenylyl cyclase

    PubMed Central

    Maneuf, Yannick P; McKnight, Alexander T

    2001-01-01

    The effect of activation of protein kinase C (PKC) or adenylyl cyclase on release of glutamate has been investigated in a perfused slice preparation from the rat caudal trigeminal nucleus. Stimulation of PKC by phorbol 12-myristate 13-acetate (PMA) produced a concentration-dependent increase in K+-evoked release of [2H]-glutamate (maximum increase 45%, EC50 11.8 nM), but in the presence of gabapentin (30 μM) the facilitation of release was blocked. The adenylyl cyclase activator forskolin (FSK) also induced a concentration-dependent increase in K+-evoked release of [3H]-glutamate (maximum increase 36%, EC50 2.4 μM), and again this facilitatory effect was blocked by gabapentin (30 μM). We suggest that these results may be of relevance to the antihyperalgesic properties of gabapentin, in conditions where concomitant release of substance P and CGRP produces activation of PKC and adenylyl cyclase respectively. PMID:11564640

  11. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity

    PubMed Central

    Woo, Ji-Min; Kim, Ji-Won; Song, Ji-Won; Blank, Lars M.; Park, Jin-Byung

    2016-01-01

    The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The metabolic and genomic responses of E. coli BL21(DE3) and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR) system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3). Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3) expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1)) into n-heptanoic acid (5) and 11-hydroxyundec-9-enoic acid (4). This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass. PMID:27681369

  12. Role of the -PEWY- Glutamate in Catalysis at the Qo-site of the Cyt bc1 Complex

    PubMed Central

    Victoria, Doreen; Burton, Rodney; Crofts, Antony R.

    2012-01-01

    We re-examine the pH dependence of partial processes of QH2 turnover in Glu-295 mutants in Rhodobacter sphaeroides to clarify the mechanistic role. In more crippled mutants, the bell-shaped pH profile of wildtype was replaced by dependence on a single pK at ~8.5 favoring electron transfer. Loss of the pK at 6.5 reflects a change in the rate-limiting step from the first to the second electron transfer. Over the range of pH 6–8, no major pH dependence of formation of the initial reaction complex was seen, and the rates of bypass reactions were similar to wildtype. Occupancy of the Qo-site by semiquinone (SQ) was similar in wildtype and the Glu→Trp mutant. Since heme bL is initially oxidized in the latter, the bifurcated reaction can still occur, allowing estimation of an empirical rate constant <103 s−1 for reduction of heme bL by SQ from the domain distal from heme bL, a value 1000-fold smaller than that expected from distance. If the pK ~8.5 in mutant strains is due to deprotonation of the neutral semiquinone, with Q.- as electron donor to heme bL, then in wildtype this low value would preclude mechanisms for normal flux in which semiquinone is constrained to this domain. A kinetic model in which Glu-295 catalyzes H+ transfer from QH., and delivery of the H+ to exit channel(s) by rotational displacement, and facilitates rapid electron transfer from SQ to heme bL by allowing Q.- to move closer to the heme, accounts well for the observations. PMID:23123515

  13. Glutamine Assimilation and Feedback Regulation of L-acetyl-N-glutamate Kinase Activity in Chlorella variabilis NC64A Results in Changes in Arginine Pools.

    PubMed

    Minaeva, Ekaterina; Forchhammer, Karl; Ermilova, Elena

    2015-11-01

    Glutamine is a metabolite of central importance in nitrogen metabolism of microorganisms and plants. The Chlorella PII signaling protein controls, in a glutamine-dependent manner, the key enzyme of the ornithine/arginine biosynthesis pathway, N-acetyl-L-glutamate kinase (NAGK) that leads to arginine formation. We provide evidence that glutamine promotes effective growth of C. variabilis strain NC64A. The present study shows that externally supplied glutamine directly influences the internal pool of arginine in NC64A. Glutamine synthetase (GS) catalyzes the ATP-dependent conversion of glutamate and ammonium to glutamine. The results of this study demonstrate that glutamine acts as a negative effector of GS activity. These data emphasize the importance of glutamine-dependent coupling of metabolism and signaling as components of an efficient pathway allowing the maintenance of metabolic homeostasis and sustaining growth of Chlorella.

  14. Glutamine Assimilation and Feedback Regulation of L-acetyl-N-glutamate Kinase Activity in Chlorella variabilis NC64A Results in Changes in Arginine Pools.

    PubMed

    Minaeva, Ekaterina; Forchhammer, Karl; Ermilova, Elena

    2015-11-01

    Glutamine is a metabolite of central importance in nitrogen metabolism of microorganisms and plants. The Chlorella PII signaling protein controls, in a glutamine-dependent manner, the key enzyme of the ornithine/arginine biosynthesis pathway, N-acetyl-L-glutamate kinase (NAGK) that leads to arginine formation. We provide evidence that glutamine promotes effective growth of C. variabilis strain NC64A. The present study shows that externally supplied glutamine directly influences the internal pool of arginine in NC64A. Glutamine synthetase (GS) catalyzes the ATP-dependent conversion of glutamate and ammonium to glutamine. The results of this study demonstrate that glutamine acts as a negative effector of GS activity. These data emphasize the importance of glutamine-dependent coupling of metabolism and signaling as components of an efficient pathway allowing the maintenance of metabolic homeostasis and sustaining growth of Chlorella. PMID:26356535

  15. Glutamate Transporter-Mediated Glutamate Secretion in the Mammalian Pineal Gland

    PubMed Central

    Kim, Mean-Hwan; Uehara, Shunsuke; Muroyama, Akiko; Hille, Bertil; Moriyama, Yoshinori; Koh, Duk-Su

    2008-01-01

    Glutamate transporters are expressed throughout the central nervous system where their major role is to clear released glutamate from presynaptic terminals. Here we report a novel function of the transporter in rat pinealocytes. This electrogenic transporter conducted inward current in response to L-glutamate and L- or D-aspartate and depolarized the membrane in patch clamp experiments. Ca2+ imaging demonstrated that the transporter-mediated depolarization induced a significant Ca2+ influx through voltage-gated Ca2+ channels. The Ca2+ rise finally evoked glutamate exocytosis as detected by carbon-fiber amperometry and by high-performance liquid chromatography. In pineal slices with densely packed pinealocytes, glutamate released from the cells effectively activated glutamate transporters in neighboring cells. The Ca2+ signal generated by KCl depolarization or acetylcholine propagated through several cell layers by virtue of the regenerative ‘glutamate-induced glutamate release’. Therefore we suggest that glutamate transporters mediate synchronized elevation of L-glutamate and thereby efficiently down-regulate melatonin secretion via previously identified inhibitory metabotropic glutamate receptors in the pineal gland. PMID:18945893

  16. Mechanism of hyperinsulinism in short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency involves activation of glutamate dehydrogenase.

    PubMed

    Li, Changhong; Chen, Pan; Palladino, Andrew; Narayan, Srinivas; Russell, Laurie K; Sayed, Samir; Xiong, Guoxiang; Chen, Jie; Stokes, David; Butt, Yasmeen M; Jones, Patricia M; Collins, Heather W; Cohen, Noam A; Cohen, Akiva S; Nissim, Itzhak; Smith, Thomas J; Strauss, Arnold W; Matschinsky, Franz M; Bennett, Michael J; Stanley, Charles A

    2010-10-01

    The mechanism of insulin dysregulation in children with hyperinsulinism associated with inactivating mutations of short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD) was examined in mice with a knock-out of the hadh gene (hadh(-/-)). The hadh(-/-) mice had reduced levels of plasma glucose and elevated plasma insulin levels, similar to children with SCHAD deficiency. hadh(-/-) mice were hypersensitive to oral amino acid with decrease of glucose level and elevation of insulin. Hypersensitivity to oral amino acid in hadh(-/-) mice can be explained by abnormal insulin responses to a physiological mixture of amino acids and increased sensitivity to leucine stimulation in isolated perifused islets. Measurement of cytosolic calcium showed normal basal levels and abnormal responses to amino acids in hadh(-/-) islets. Leucine, glutamine, and alanine are responsible for amino acid hypersensitivity in islets. hadh(-/-) islets have lower intracellular glutamate and aspartate levels, and this decrease can be prevented by high glucose. hadh(-/-) islets also have increased [U-(14)C]glutamine oxidation. In contrast, hadh(-/-) mice have similar glucose tolerance and insulin sensitivity compared with controls. Perifused hadh(-/-) islets showed no differences from controls in response to glucose-stimulated insulin secretion, even with addition of either a medium-chain fatty acid (octanoate) or a long-chain fatty acid (palmitate). Pull-down experiments with SCHAD, anti-SCHAD, or anti-GDH antibodies showed protein-protein interactions between SCHAD and GDH. GDH enzyme kinetics of hadh(-/-) islets showed an increase in GDH affinity for its substrate, α-ketoglutarate. These studies indicate that SCHAD deficiency causes hyperinsulinism by activation of GDH via loss of inhibitory regulation of GDH by SCHAD.

  17. Simulation of Postsynaptic Glutamate Receptors Reveals Critical Features of Glutamatergic Transmission

    PubMed Central

    Greget, Renaud; Pernot, Fabien; Bouteiller, Jean-Marie C.; Ghaderi, Viviane; Allam, Sushmita; Keller, Anne Florence; Ambert, Nicolas; Legendre, Arnaud; Sarmis, Merdan; Haeberle, Olivier; Faupel, Michel; Bischoff, Serge; Berger, Theodore W.; Baudry, Michel

    2011-01-01

    Activation of several subtypes of glutamate receptors contributes to changes in postsynaptic calcium concentration at hippocampal synapses, resulting in various types of changes in synaptic strength. Thus, while activation of NMDA receptors has been shown to be critical for long-term potentiation (LTP) and long term depression (LTD) of synaptic transmission, activation of metabotropic glutamate receptors (mGluRs) has been linked to either LTP or LTD. While it is generally admitted that dynamic changes in postsynaptic calcium concentration represent the critical elements to determine the direction and amplitude of the changes in synaptic strength, it has been difficult to quantitatively estimate the relative contribution of the different types of glutamate receptors to these changes under different experimental conditions. Here we present a detailed model of a postsynaptic glutamatergic synapse that incorporates ionotropic and mGluR type I receptors, and we use this model to determine the role of the different receptors to the dynamics of postsynaptic calcium with different patterns of presynaptic activation. Our modeling framework includes glutamate vesicular release and diffusion in the cleft and a glutamate transporter that modulates extracellular glutamate concentration. Our results indicate that the contribution of mGluRs to changes in postsynaptic calcium concentration is minimal under basal stimulation conditions and becomes apparent only at high frequency of stimulation. Furthermore, the location of mGluRs in the postsynaptic membrane is also a critical factor, as activation of distant receptors contributes significantly less to calcium dynamics than more centrally located ones. These results confirm the important role of glutamate transporters and of the localization of mGluRs in postsynaptic sites in their signaling properties, and further strengthen the notion that mGluR activation significantly contributes to postsynaptic calcium dynamics only following

  18. Effect of activity at metabotropic, as well as ionotropic (NMDA), glutamate receptors on morphine dependence.

    PubMed Central

    Fundytus, M E; Coderre, T J

    1994-01-01

    1. The contribution of various excitatory amino acid (EAA) receptors (NMDA, AMPA/kainate and metabotropic) in the brain to the development of morphine dependence was examined. This was performed by measuring the severity of the precipitated withdrawal syndrome following chronic subcutaneous (s.c.) morphine and intracerebroventricular (i.c.v.) EAA antagonist treatment. 2. Continuous subcutaneous (s.c.) treatment with morphine sulphate (36.65 mumol day-1) produced an intense and reliable naloxone-precipitated withdrawal syndrome. 3. Chronic i.c.v. treatment with antagonists selective for metabotropic and NMDA receptors, but not AMPA/kainate receptors, significantly attenuated abstinence symptoms. Conversely, EAA antagonists had very little effect on non-withdrawal behaviours. 4. These results suggest that, as well as changes elicited by activation of NMDA receptors, metabotropic receptors and intracellular changes in the phosphatidylinositol (PI) second-messenger system or the cyclic adenosine 3',5'-monophosphate (cAMP) second messenger system, to which EAA metabotropic receptors are linked, may be involved in the development of opioid dependence with chronic morphine treatment. PMID:7889275

  19. Concomitant activation of two types of glutamate receptor mediates excitation of salamander retinal ganglion cells.

    PubMed Central

    Mittman, S; Taylor, W R; Copenhagen, D R

    1990-01-01

    faster non-NMDA-receptor-mediated component having a time-to-peak of 28 +/- 10 ms and an e-fold decay time of 43 +/- 20 ms at -31 mV (n = 8). 7. A similar analysis of sustained EPSCs of on ganglion cells showed that these currents resulted from sustained activation of both NMDA and non-NMDA receptors. PMID:2172521

  20. A peripheral neuroimmune link: glutamate agonists upregulate NMDA NR1 receptor mRNA and protein, vimentin, TNF-alpha, and RANTES in cultured human synoviocytes.

    PubMed

    McNearney, Terry A; Ma, Yinghong; Chen, Yueping; Taglialatela, Giulio; Yin, Huaizhi; Zhang, Wen-Ru; Westlund, Karin N

    2010-03-01

    Human primary and clonal synovial cells were incubated with glutamate receptor agonists to assess their modulating influence on glutamate receptors N-methyl-d-aspartate (NMDA) NR1 and NR2 and inflammatory cytokines to determine potential for paracrine or autocrine (neurocrine) upregulation of glutamate receptors, as has been shown for bone and chondrocytes. Clonal SW982 synoviocytes constitutively express vimentin, smooth muscle actin (SMA), and NMDA NR1 and NR2. Coincubation (6 h) with glutamate agonists NMDA (5 microM), and the NMDA NR1 glycine site activator (+/-)1-aminocyclopentane-cis-1,3-dicarboxylic acid (5 muM), significantly increases cellular mRNA and protein levels of glutamate receptors, as well as increasing vimentin, SMA, tumor necrosis factor-alpha, and RANTES (regulated on activation, normal T-cell expressed and secreted), assessed qualitatively and quantitatively with nucleotide amplification, image analysis of immunocytochemical staining, fluorescein-activated cell sorting, Western blotting, and immunoassays. Human primary synovial cells harvested from patients with arthritic conditions also constitutively expressed NMDA NR1 with increases after agonist treatment. Glutamate receptor agonist-induced increases were blocked by the noncompetitive glutamate antagonist MK-801 (8 microg/ml) and NR1 blocking antibody. Coincubation with glutamate agonists and phorbol 12-myristate 13-acetate, a protein kinase C activator, significantly enhanced mean levels of TNF-alpha and RANTES in SW982 cell supernatants compared with incubation with either agent alone. Increases were diminished with protein kinase inhibitor and NR1 blocking antibody. The functional activation of glutamate receptors on human synoviocytes establishes a neurogenic cell signaling link between neurotransmitter glutamate released from nerve terminals and target cells in the joint capsule. The influence of glutamate on subsequent release of cellular proinflammatory mediators in non

  1. A membrane-bound form of glutamate dehydrogenase possesses an ATP-dependent high-affinity microtubule-binding activity.

    PubMed Central

    Rajas, F; Rousset, B

    1993-01-01

    We previously identified a 50 kDa membrane protein which bound to in vitro assembled microtubules [Mithieux and Rousset (1989) J. Biol. Chem. 264, 4664-4668]. This protein exhibited the expected properties for mediating the ATP-dependent association of vesicles with microtubules [Mithieux, Audebet and Rousset (1988) Biochim. Biophys. Acta 969, 121-130]. The 50 kDa membrane protein (MP50), initially extracted in very low amount from isolated pig thyroid lysosomes/endosomes, has now been purified from membrane preparations of crude vesicle fractions from pig liver and brain. MP50 was isolated from detergent-solubilized membrane protein by affinity chromatography on immobilized ATP; 3-5 mg of MP50 was obtained from 100 g of liver tissue. Phase partitioning in Triton X-114 indicated that MP50 is a peripheral membrane protein. Radioiodinated liver MP50 bound to microtubules assembled in vitro. The binding was inhibited by ATP (Ki = 0.76 mM) and displaced by unlabelled liver or brain MP50. Equilibrium binding studies yielded KD values of 1.8 x 10(-7) M. By N-terminal amino acid sequence analysis, MP50 was identified as glutamate dehydrogenase (GDH), by comparison of V8 protease peptide maps of MP50 with purified liver GDH. Liver MP50 exhibited a low GDH activity; 4-5 units/mg compared with 18 and 34 units/mg for purified bovine and rat liver GDH respectively. Bovine and rat liver GDH yielded six spots from pI 5.7 to 7.2 when analysed by two-dimensional electrophoresis; in contrast, MP50 gave one main spot (corresponding to spot 2 of liver GDH) with a pI of approx. 6.5. Soluble liver GDH from commercial sources exhibited a very low or no microtubule-binding activity. In conclusion, we have found a membrane-bound form of GDH capable of specific and nucleotide-sensitive interaction with microtubules. Our data suggest that GDH isoproteins, the number of which has been undervalued up to now, could have cellular functions other than that of an enzyme. Images Figure 1 Figure 3

  2. STEREOLOGICAL ESTIMATES OF THE BASAL FOREBRAIN CELL POPULATION IN THE RAT, INCLUDING NEURONS CONTAINING CHOLINE ACETYLTRANSFERASE (ChAT), GLUTAMIC ACID DECARBOXYLASE (GAD) OR PHOSPHATE-ACTIVATED GLUTAMINASE (PAG) AND COLOCALIZING VESICULAR GLUTAMATE TRANSPORTERS (VGluTs)

    PubMed Central

    GRITTI, I.; HENNY, P.; GALLONI, F.; MAINVILLE, L.; MARIOTTI, M.; JONES, B. E.

    2006-01-01

    The basal forebrain (BF) plays an important role in modulating cortical activity and influencing attention, learning and memory. These activities are fulfilled importantly yet not entirely by cholinergic neurons. Noncholinergic neurons also contribute and are comprised by GABAergic neurons and other possibly glutamatergic neurons. The aim of the present study was to estimate the total number of cells in the BF of the rat and the proportions of that total represented by cholinergic, GABAergic and glutamatergic neurons. For this purpose, cells were counted using unbiased stereological methods within the medial septum, diagonal band, magnocellular preoptic nucleus, substantia innominata and globus pallidus in sections stained for Nissl substance and/or the neurotransmitter enzymes, choline acetyltransferase (ChAT), glutamic acid decarboxylase (GAD) or phosphate-activated glutaminase (PAG). In Nissl-stained sections, the total number of neurons in the BF was estimated as ~355,000 and the numbers of ChAT-immuno-positive (+) as ~22,000, GAD+ ~119,000 and PAG+ ~316,000, corresponding to ~5%, ~35% and ~90% of the total. Thus, of the large population of BF neurons, only a small proportion has the capacity to synthesize acetylcholine (ACh), one third to synthesize GABA and the vast majority to synthesize glutamate (Glu). Moreover, through the presence of PAG, a proportion of ACh- and GABA-synthesizing neurons also have the capacity to synthesize Glu. In sections dual fluorescent immunostained for vesicular transporters, VGluT3 and not VGluT2 was present in the cell bodies of most PAG+ and ChAT+ and half the GAD+ cells. Given previous results showing that VGluT2 and not VGluT3 was present in BF axon terminals and not colocalized with VAChT or VGAT, we conclude that the BF cell population influences cortical and subcortical regions through neurons which release ACh, GABA or Glu from their terminals but which in part can also synthesize and release Glu from their soma or

  3. Active Sites Environmental Monitoring Program: Action levels

    SciTech Connect

    Ashwood, J.S.; Ashwood, T.L.

    1991-10-01

    The Active Sites Environmental Monitoring Program (ASEMP) was established at Oak Ridge National Laboratory to provide for early leak detection and to monitor performance of the active low-level waste disposal facilities in Solid Waste Storage Area (SWSA) 6 and the transuranic waste storage areas in SWSA 5 North. Early leak detection is accomplished by sampling runoff, groundwater, and perched water in burial trenches. Sample results are compared to action levels that represent background contamination by naturally occurring and fallout-derived radionuclides. 15 refs., 3 figs., 12 tabs.

  4. Vesicular glutamate transporter 2 is required for the respiratory and parasympathetic activation produced by optogenetic stimulation of catecholaminergic neurons in the rostral ventrolateral medulla of mice in vivo.

    PubMed

    Abbott, Stephen B G; Holloway, Benjamin B; Viar, Kenneth E; Guyenet, Patrice G

    2014-01-01

    Catecholaminergic neurons of the rostral ventrolateral medulla (RVLM-CA neurons; C1 neurons) contribute to the sympathetic, parasympathetic and neuroendocrine responses elicited by physical stressors such as hypotension, hypoxia, hypoglycemia, and infection. Most RVLM-CA neurons express vesicular glutamate transporter (VGLUT)2, and may use glutamate as a ionotropic transmitter, but the importance of this mode of transmission in vivo is uncertain. To address this question, we genetically deleted VGLUT2 from dopamine-β-hydroxylase-expressing neurons in mice [DβH(Cre/0) ;VGLUT2(flox/flox) mice (cKO mice)]. We compared the in vivo effects of selectively stimulating RVLM-CA neurons in cKO vs. control mice (DβH(Cre/0) ), using channelrhodopsin-2 (ChR2-mCherry) optogenetics. ChR2-mCherry was expressed by similar numbers of rostral ventrolateral medulla (RVLM) neurons in each strain (~400 neurons), with identical selectivity for catecholaminergic neurons (90-99% colocalisation with tyrosine hydroxylase). RVLM-CA neurons had similar morphology and axonal projections in DβH(Cre/0) and cKO mice. Under urethane anesthesia, photostimulation produced a similar pattern of activation of presumptive ChR2-positive RVLM-CA neurons in DβH(Cre/0) and cKO mice. Photostimulation in conscious mice produced frequency-dependent respiratory activation in DβH(Cre/0) mice but no effect in cKO mice. Similarly, photostimulation under urethane anesthesia strongly activated efferent vagal nerve activity in DβH(Cre/0) mice only. Vagal responses were unaffected by α1 -adrenoreceptor blockade. In conclusion, two responses evoked by RVLM-CA neuron stimulation in vivo require the expression of VGLUT2 by these neurons, suggesting that the acute autonomic responses driven by RVLM-CA neurons are mediated by glutamate.

  5. Spontaneous L-glutamate release enhancement in rat substantia gelatinosa neurons by (-)-carvone and (+)-carvone which activate different types of TRP channel.

    PubMed

    Kang, Qin; Jiang, Chang-Yu; Fujita, Tsugumi; Kumamoto, Eiichi

    2015-04-10

    Transient receptor potential (TRP) channels in the spinal dorsal horn lamina II (substantia gelatinosa; SG), which are involved in the modulation of nociceptive transmission, have not yet been fully examined in property. Activation of the TRP channels by various plant-derived chemicals results in an increase in the spontaneous release of L-glutamate onto the SG neurons. We examined the effects of a monoterpene ketone (-)-carvone (contained in spearmint) and its stereoisomer (+)-carvone (in caraway) on glutamatergic spontaneous excitatory transmission in SG neurons of adult rat spinal cord slices by using the whole-cell patch-clamp technique. (-)-Carvone and (+)-carvone increased the frequency of spontaneous excitatory postsynaptic current (sEPSC) in a reversible and concentration-dependent manner with a small increase in its amplitude. Half-maximal effective concentrations of (-)-carvone and (+)-carvone in increasing sEPSC frequency were 0.70 mM and 0.72 mM, respectively. The (-)-carvone but not (+)-carvone activity was inhibited by a TRPV1 antagonist capsazepine. On the other hand, the (+)-carvone but not (-)-carvone activity was inhibited by a TRPA1 antagonist HC-030031. These results indicate that (-)-carvone and (+)-carvone activate TRPV1 and TRPA1 channels, respectively, resulting in an increase in spontaneous L-glutamate release onto SG neurons, with almost the same efficacy. Such a difference in TRP activation between the stereoisomers may serve to know the properties of TRP channels in the SG. PMID:25747716

  6. Characterization of active sites in zeolite catalysts

    SciTech Connect

    Eckert, J.; Bug, A.; Nicol, J.M.

    1997-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Atomic-level details of the interaction of adsorbed molecules with active sites in catalysts are urgently needed to facilitate development of more effective and/or environmentally benign catalysts. To this end the authors have carried out neutron scattering studies combined with theoretical calculations of the dynamics of small molecules inside the cavities of zeolite catalysts. The authors have developed the use of H{sub 2} as a probe of adsorption sites by observing the hindered rotations of the adsorbed H{sub 2} molecule, and they were able to show that an area near the four-rings is the most likely adsorption site for H{sub 2} in zeolite A while adsorption of H{sub 2} near cations located on six-ring sites decreases in strength as Ni {approximately} Co > Ca > Zn {approximately} Na. Vibrational and rotational motions of ethylene and cyclopropane adsorption complexes were used as a measure for zeolite-adsorbate interactions. Preliminary studies of the binding of water, ammonia, and methylamines were carried out in a number of related guest-host materials.

  7. Structural and functional analysis of two glutamate racemase isozymes from Bacillus anthracis and implications for inhibitor design†‡

    PubMed Central

    May, Melissa; Mehboob, Shahila; Mulhearn, Debbie C.; Wang, Zhiqiang; Yu, Huidong; Thatcher, Gregory R.J.; Santarsiero, Bernard D.; Johnson, Michael E.; Mesecar, Andrew D.

    2009-01-01

    Glutamate racemase (RacE) is responsible for converting L-glutamate to D-glutamate, which is an essential component of peptidoglycan biosynthesis, and the primary constituent of the poly-γ-D-glutamate capsule of the pathogen Bacillus anthracis. RacE enzymes are essential for bacterial growth and lack a human homolog, making them attractive targets for the design and development of antibacterial therapeutics. We have cloned, expressed and purified the two glutamate racemase isozymes, RacE1 and RacE2, from the B. anthracis genome. Through a series of steady-state kinetic studies, and based upon the ability of both RacE1 and RacE2 to catalyze the rapid formation of D-glutamate, we have determined that RacE1 and RacE2 are bona fide isozymes. The x-ray structures of B. anthracis RacE1 and RacE2, in complex with D-glutamate, were determined to resolutions of 1.75 Å and 2.0 Å. Both enzymes are dimers with monomers arranged in a “tail-to-tail” orientation, similar to the B. subtilis RacE structure, but differing substantially from the A. pyrophilus RacE structure. The differences in quaternary structures produce differences in the active sites of racemases among the various species, which has important implications for structure-based, inhibitor design efforts within this class of enzymes. We found a Val to Ala variance at the entrance of the active site between RacE1 and RacE2 which results in the active site entrance being less sterically hindered for RacE1. Using a series of inhibitors, we show that this variance results in differences in the inhibitory activity against the two isozymes and suggest a strategy for structure-based inhibitor design to obtain broad-spectrum inhibitors for glutamate racemases. PMID:17610893

  8. Glutamate Receptor Stimulation Up-Regulates Glutamate Uptake in Human Müller Glia Cells.

    PubMed

    López-Colomé, Ana María; López, Edith; Mendez-Flores, Orquidia G; Ortega, Arturo

    2016-07-01

    Glutamate, the main excitatory amino acid in the vertebrate retina, is a well know activator of numerous signal transduction pathways, and has been critically involved in long-term synaptic changes acting through ionotropic and metabotropic glutamate receptors. However, recent findings underlining the importance of intensity and duration of glutamate stimuli for specific neuronal responses, including excitotoxicity, suggest a crucial role for Na(+)-dependent glutamate transporters, responsible for the removal of this neurotransmitter from the synaptic cleft, in the regulation of glutamate-induced signaling. Transporter proteins are expressed in neurons and glia cells, albeit most of glutamate uptake occurs in the glial compartment. Within the retina, Müller glia cells are in close proximity to glutamatergic synapses and participate in the recycling of glutamate through the glutamate/glutamine shuttle. In this context, we decided to investigate a plausible role of glutamate as a regulatory signal for its own transport in human retinal glia cells. To this end, we determined [(3)H]-D-aspartate uptake in cultures of spontaneously immortalized human Müller cells (MIO-M1) exposed to distinct glutamatergic ligands. A time and dose-dependent increase in the transporter activity was detected. This effect was dependent on the activation of the N-methyl D-aspartate subtype of glutamate receptors, due to a dual effect: an increase in affinity and an augmented expression of the transporter at the plasma membrane, as established via biotinylation experiments. Furthermore, a NMDA-dependent association of glutamate transporters with the cystoskeletal proteins ezrin and glial fibrillary acidic protein was also found. These results add a novel mediator of the glutamate transporter modulation and further strengthen the notion of the critical involvement of glia cells in synaptic function. PMID:27017513

  9. Synergistic activities of a silver(I) glutamic acid complex and reactive oxygen species (ROS): a novel antimicrobial and chemotherapeutic agent.

    PubMed

    Batarseh, K I; Smith, M A

    2012-01-01

    The antimicrobial and chemotherapeutic activities of a silver(I) glutamic acid complex with the synergistic concomitant generation of reactive oxygen species (ROS) were investigated here. The ROS generation system employed was via Fenton chemistry. The antimicrobial and chemotherapeutic activities were investigated on Staphylococcus aureus ATCC 43300 and Escherichia coli bacteria, and Vero and MCF-7 tumor cell lines, respectively. Antimicrobial activities were conducted by determining minimum inhibitory concentration (MIC), while chemotherapeutic efficacies were done by serial dilution using standard techniques to determine the half maximal inhibitory concentration (IC50). The antimicrobial and chemotherapeutic results obtained were compared with positive control drugs gentamicin, oxacillin, penicillin, streptomycin and cisplatin, a ubiquitously used platinum-based antitumor drug, and with the silver(I) glutamic acid complex and hydrogen peroxide separately. Based on MIC and IC50 values, it was determined that this synergistic approach was very effective at extremely low concentrations, especially when compared with the other drugs evaluated here. This finding might be of great significance regarding metronomic dosing when this synergistic approach is clinically implemented. Since silver at low concentrations exhibits no toxic, mutagenic and carcinogenic activities, this might offer an alternative approach for the development of safer silver-based antimicrobial and chemotherapeutic drugs, thereby reducing or even eliminating the toxicity associated with current drugs. Accordingly, the present approach might be integrated into the systemic clinical treatment of infectious diseases and cancer. PMID:22680634

  10. Effects of a metabotropic glutamate receptor subtype 7 negative allosteric modulator in the periaqueductal grey on pain responses and rostral ventromedial medulla cell activity in rat.

    PubMed

    Palazzo, Enza; Marabese, Ida; Luongo, Livio; Boccella, Serena; Bellini, Giulia; Giordano, Maria Elvira; Rossi, Francesca; Scafuro, Mariantonietta; Novellis, Vito de; Maione, Sabatino

    2013-09-03

    The metabotropic glutamate receptor 7 (mGluR7) negative allosteric modulator, 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazolo[4,5-c]pyridin-4(5H)-one (MMPIP), was locally microinjected into the ventrolateral periaqueductal gray (VL PAG) and the effect on pain responses in formalin and spare nerve injury (SNI) -induced neuropathic pain models was monitored in the rat. The activity of rostral ventromedial medulla (RVM) "pronociceptive" ON and "antinociceptive" OFF cells was also evaluated. Intra-VL PAG MMPIP blocked the first and second phase of nocifensive behaviour in the formalin pain model. MMPIP increased the tail flick latency and simultaneously increased the activity of the OFF cells while inhibiting that of ON cells in rats with SNI of the sciatic nerve. MMPIP failed to modify nociceptive responses and associated RVM ON and OFF cell activity in sham rats. An increase in mGluR7 gene, protein and staining, the latter being associated with vesicular glutamate transporter-positive profiles, has been found in the VL PAG in SNI rats. Blockade of mGluR7 within the VL PAG has an antinociceptive effect in formalin and neuropathic pain models. VL PAG mGluR7 blockade offers a target for dis-inhibiting the VL PAG-RVM pathway and silencing pain in inflammatory and neuropathic pain models.

  11. Modes of glutamate receptor gating

    PubMed Central

    Popescu, Gabriela K

    2012-01-01

    Abstract The time course of excitatory synaptic currents, the major means of fast communication between neurons of the central nervous system, is encoded in the dynamic behaviour of post-synaptic glutamate-activated channels. First-pass attempts to explain the glutamate-elicited currents with mathematical models produced reaction mechanisms that included only the most basic functionally defined states: resting vs. liganded, closed vs. open, responsive vs. desensitized. In contrast, single-molecule observations afforded by the patch-clamp technique revealed an unanticipated kinetic multiplicity of transitions: from microseconds-lasting flickers to minutes-long modes. How these kinetically defined events impact the shape of the synaptic response, how they relate to rearrangements in receptor structure, and whether and how they are physiologically controlled represent currently active research directions. Modal gating, which refers to the slowest, least frequently observed ion-channel transitions, has been demonstrated for representatives of all ion channel families. However, reaction schemes have been largely confined to the short- and medium-range time scales. For glutamate receptors as well, modal gating has only recently come under rigorous scrutiny. This article reviews the evidence for modal gating of glutamate receptors and the still developing hypotheses about the mechanism(s) by which modal shifts occur and the ways in which they may impact the time course of synaptic transmission. PMID:22106181

  12. Active site of ribulosebisphosphate carboxylase/oxygenase

    SciTech Connect

    Hartman, F.C.; Stringer, C.D.; Milanez, S.; Lee, E.H.

    1985-01-01

    Previous affinity labeling studies and comparative sequence analyses have identified two different lysines at the active site of ribulosebisphosphate carboxylase/oxygenase and have suggested their essentiality to function. The essential lysines occupy positions 166 and 329 in the Rhodospirillum rubrum enzyme and positions 175 and 334 in the spinach enzyme. Based on the pH-dependencies of inactivations of the two enzymes by trinitrobenzene sulfonate, Lys-166 (R. rubrum enzyme) exhibits a pK/sub a/ of 7.9 and Lys-334 (spinach enzyme) exhibits a pK/sub a/ of 9.0. These low pK/sub a/ values as well as the enhanced nucleophilicities of the lysyl residues argue that both are important to catalysis rather than to substrate binding. Lys-166 may correspond to the essential base that initiates catalysis and that displays a pK/sub a/ of 7.5 in the pH-curve for V/sub max//K/sub m/. Cross-linking experiments with 4,4'-diisothiocyano-2,2'-disulfonate stilbene demonstrate that the two active-site lysines are within 12 A. 50 refs., 7 figs., 1 tab.

  13. Orally Active Metabotropic Glutamate Subtype 2 Receptor Positive Allosteric Modulators: Structure-Activity Relationships and Assessment in a Rat Model of Nicotine Dependence

    PubMed Central

    Sidique, Shyama; Dhanya, Raveendra-Panickar; Sheffler, Douglas J.; Nickols, Hilary Highfield; Yang, Li; Dahl, Russell; Mangravita-Novo, Arianna; Smith, Layton H.; D’Souza, Manoranjan S.; Semenova, Svetlana; Conn, P. Jeffrey; Markou, Athina; Cosford, Nicholas D. P.

    2012-01-01

    Compounds that modulate metabotropic glutamate subtype 2 (mGlu2) receptors have the potential to treat several disorders of the central nervous system (CNS) including drug dependence. Herein we describe the synthesis and structure-activity relationship (SAR) studies around a series of mGlu2 receptor positive allosteric modulators (PAMs). The effects of N-substitution (R1) and substitutions on the aryl ring (R2) were identified as key areas for SAR exploration (Figure 3). Investigation of the effects of varying substituents in both the isoindolinone (2) and benzisothiazolone (3) series led to compounds with improved in vitro potency and/or efficacy. In addition, several analogues exhibited promising pharmacokinetic (PK) properties. Furthermore, compound 2 was shown to dose-dependently decrease nicotine self-administration in rats following oral administration. Our data, showing for the first time efficacy of an mGlu2 receptor PAM in this in vivo model, suggest potential utility for the treatment of nicotine dependence in humans. PMID:23009245

  14. The actions of L-glutamate at the postsynaptic membrane of the squid giant synapse.

    PubMed

    Adams, D J; Gillespie, J I

    1988-11-01

    The actions of L-glutamate on the postsynaptic membrane of the squid giant synapse were investigated using two methods of application: ionophoresis and bath perfusion. Bath perfusion of 10 mmoll-1 sodium glutamate did not produce an appreciable depolarization of the postsynaptic membrane but reversibly blocked the neurally evoked postsynaptic potential (PSP). The postsynaptic membrane depolarized when L-glutamate was applied ionophoretically. The sensitivity to glutamate application was not uniform, but sharply localized to sites which may correspond to synaptic contacts made by branching colaterals from the postsynaptic axon. The relationship between membrane potential and amplitude of the glutamate-activated postsynaptic potential (PSP) examined under current-clamp conditions was linear over the voltage range studied (-110 to -60 mV) with an extrapolated reversal potential of -36 mV. The amplitude of the glutamate-activated PSP was reduced either by replacing Na+ in the external solution with Tris+ (Na+-free) or by raising the extracellular K+ concentration to 20 mmoll-1 and was abolished by removing both Na+ and Ca2+ from the bath solution. The PSP amplitude was insensitive to changes in the extracellular Mg2+ concentration. The extrapolated reversal potential of the glutamate PSP was shifted to more positive potentials in both Na+-free and raised-K+ bathing solutions and was unchanged by anion substitution. The depolarization induced by L-glutamate increased with increasing ionophoretic current and reached a maximum with large pulses. Double logarithmic plots of the coulomb dose-response relationship gave a limiting slope in the range 1.7-2.2, suggesting that two glutamate molecules are required for receptor activation. The time course of desensitization of the glutamate response was studied using a double-pulse method. The initial decrease in the ratio, PSP2/PSP1, is followed by a slower time-dependent recovery of the postsynaptic response with a time constant

  15. Theoretical analysis of the glutamate dehydrogenase kinetics under physiological conditions.

    PubMed

    Popova, S V; Reich, J G

    1983-01-01

    A kinetic model of the glutamate dehydrogenase reaction has been formulated for the reversible reaction including all seven reactants (substrates and cofactors NAD(H) and NADP(H)). The model parameters have been evaluated from published initial-rate data. Analysis of the model at cofactor concentration near to that in the intact mitochondrion has shown that the competition for active sites between cofactors and substrates simultaneously present in mitochondria diminishes the steady-state rate of the reaction by a factor of 10 to 100 as compared to the maximal reaction rate. The model predicts near-equilibrium of the reaction substrates with NAD+/NADH cofactor pair and off-equilibrium with NADP+/NADPH. Substrate cycling with futile transfer of hydrogen from NADP+-system to NAD+-system has been found to account under in vivo conditions for no more than 2% of the maximal glutamate dehydrogenase activity in the mitochondria.

  16. Active Sites Environmental Monitoring Program: Program plan

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  17. Mechanistic Details of Glutathione Biosynthesis Revealed by Crystal Structures of Saccharomyces cerevisiae Glutamate Cysteine Ligase

    SciTech Connect

    Biterova, Ekaterina I.; Barycki, Joseph J.

    2009-12-01

    Glutathione is a thiol-disulfide exchange peptide critical for buffering oxidative or chemical stress, and an essential cofactor in several biosynthesis and detoxification pathways. The rate-limiting step in its de novo biosynthesis is catalyzed by glutamate cysteine ligase, a broadly expressed enzyme for which limited structural information is available in higher eukaryotic species. Structural data are critical to the understanding of clinical glutathione deficiency, as well as rational design of enzyme modulators that could impact human disease progression. Here, we have determined the structures of Saccharomyces cerevisiae glutamate cysteine ligase (ScGCL) in the presence of glutamate and MgCl{sub 2} (2.1 {angstrom}; R = 18.2%, R{sub free} = 21.9%), and in complex with glutamate, MgCl{sub 2}, and ADP (2.7 {angstrom}; R = 19.0%, R{sub free} = 24.2%). Inspection of these structures reveals an unusual binding pocket for the {alpha}-carboxylate of the glutamate substrate and an ATP-independent Mg{sup 2+} coordination site, clarifying the Mg{sup 2+} dependence of the enzymatic reaction. The ScGCL structures were further used to generate a credible homology model of the catalytic subunit of human glutamate cysteine ligase (hGCLC). Examination of the hGCLC model suggests that post-translational modifications of cysteine residues may be involved in the regulation of enzymatic activity, and elucidates the molecular basis of glutathione deficiency associated with patient hGCLC mutations.

  18. Blockage of acquisition and expression of morphine-induced conditioned place preference in rats due to activation of glutamate receptors type II/III in nucleus accumbens.

    PubMed

    Baharlouei, Negar; Sarihi, Abdolrahman; Komaki, Alireza; Shahidi, Siamak; Haghparast, Abbas

    2015-08-01

    Numerous studies have shown that glutamate in the nucleus accumbens (NAc) is an essential neurotransmitter for the extension of morphine-induced place preference. mGlu2/3 glutamate receptors in the NAc have important roles in the reward pathway. However, less is known about the role of this glutamate receptor subtype in morphine-induced conditioned place preference (CPP). In this study, we examined the effects of bilateral intra-accumbal administration of LY379268, an mGlu2/3 receptor agonist on the acquisition and expression of morphine-induced CPP in rats. Adult male Wistar rats (n=136; 220-250g) were evaluated in a CPP paradigm. Doses of LY379268 (0.3, 1 and 3μg/0.5μL saline per side) were administered into the NAc on both sides during the 3days of the conditioning (acquisition) or post-conditioning (expression) phase. The results show that bilateral intra-accumbal administration of LY379268 (0.3, 1 and 3μg) markedly decreased the acquisition of morphine-induced CPP in a dose-dependent manner. In a second series of experiments, we determined that injection of LY379268 into the NAc considerably attenuated the expression of morphine CPP only at the highest dose (3μg). Our findings suggest that activation of mGlu2/3 receptors in the NAc dose-dependently blocked both the establishment and the maintenance of morphine-induced CPP and confirmed the role of this system as a potential therapeutic target for addiction.

  19. Diphenyl diselenide elicits antidepressant-like activity in rats exposed to monosodium glutamate: A contribution of serotonin uptake and Na(+), K(+)-ATPase activity.

    PubMed

    Quines, Caroline B; Rosa, Suzan G; Velasquez, Daniela; Da Rocha, Juliana T; Neto, José S S; Nogueira, Cristina W

    2016-03-15

    Depression is a disorder with symptoms manifested at the psychological, behavioral and physiological levels. Monosodium glutamate (MSG) is the most widely used additive in the food industry; however, some adverse effects induced by this additive have been demonstrated in experimental animals and humans, including functional and behavioral alterations. The aim of this study was to investigate the possible antidepressant-like effect of diphenyl diselenide (PhSe)2, an organoselenium compound with pharmacological properties already documented, in the depressive-like behavior induced by MSG in rats. Male and female newborn Wistar rats were divided in control and MSG groups, which received, respectively, a daily subcutaneous injection of saline (0.9%) or MSG (4g/kg/day) from the 1st to 5th postnatal day. At 60th day of life, animals received (PhSe)2 (10mg/kg, intragastrically) 25min before spontaneous locomotor and forced swimming tests (FST). The cerebral cortices of rats were removed to determine [(3)H] serotonin (5-HT) uptake and Na(+), K(+)-ATPase activity. A single administration of (PhSe)2 was effective against locomotor hyperactivity caused by MSG in rats. (PhSe)2 treatment protected against the increase in the immobility time and a decrease in the latency for the first episode of immobility in the FST induced by MSG. Furthermore, (PhSe)2 reduced the [(3)H] 5-HT uptake and restored Na(+), K(+)-ATPase activity altered by MSG. In the present study a single administration of (PhSe)2 elicited an antidepressant-like effect and decrease the synaptosomal [(3)H] 5-HT uptake and an increase in the Na(+), K(+)-ATPase activity in MSG-treated rats.

  20. The combination of glutamate receptor antagonist MK-801 with tamoxifen and its active metabolites potentiates their antiproliferative activity in mouse melanoma K1735-M2 cells

    SciTech Connect

    Ribeiro, Mariana P.C.; Nunes-Correia, Isabel; Santos, Armanda E.; Custódio, José B.A.

    2014-02-15

    Recent reports suggest that N-methyl-D-aspartate receptor (NMDAR) blockade by MK-801 decreases tumor growth. Thus, we investigated whether other ionotropic glutamate receptor (iGluR) antagonists were also able to modulate the proliferation of melanoma cells. On the other hand, the antiestrogen tamoxifen (TAM) decreases the proliferation of melanoma cells, and is included in combined therapies for melanoma. As the efficacy of TAM is limited by its metabolism, we investigated the effects of the NMDAR antagonist MK-801 in combination with TAM and its active metabolites, 4-hydroxytamoxifen (OHTAM) and endoxifen (EDX). The NMDAR blockers MK-801 and memantine decreased mouse melanoma K1735-M2 cell proliferation. In contrast, the NMDAR competitive antagonist APV and the AMPA and kainate receptor antagonist NBQX did not affect cell proliferation, suggesting that among the iGluR antagonists only the NMDAR channel blockers inhibit melanoma cell proliferation. The combination of antiestrogens with MK-801 potentiated their individual effects on cell biomass due to diminished cell proliferation, since it decreased the cell number and DNA synthesis without increasing cell death. Importantly, TAM metabolites combined with MK-801 promoted cell cycle arrest in G1. Therefore, the data obtained suggest that the activity of MK-801 and antiestrogens in K1735-M2 cells is greatly enhanced when used in combination. - Highlights: • MK-801 and memantine decrease melanoma cell proliferation. • The combination of MK-801 with antiestrogens inhibits melanoma cell proliferation. • These combinations greatly enhance the effects of the compounds individually. • MK-801 combined with tamoxifen active metabolites induces cell cycle arrest in G1. • The combination of MK-801 and antiestrogens is an innovative strategy for melanoma.

  1. Function of the active site lysine autoacetylation in Tip60 catalysis.

    PubMed

    Yang, Chao; Wu, Jiang; Zheng, Y George

    2012-01-01

    The 60-kDa HIV-Tat interactive protein (Tip60) is a key member of the MYST family of histone acetyltransferases (HATs) that plays critical roles in multiple cellular processes. We report here that Tip60 undergoes autoacetylation at several lysine residues, including a key lysine residue (i.e. Lys-327) in the active site of the MYST domain. The mutation of K327 to arginine led to loss of both the autoacetylation activity and the cognate HAT activity. Interestingly, deacetylated Tip60 still kept a substantial degree of HAT activity. We also investigated the effect of cysteine 369 and glutamate 403 in Tip60 autoacetylation in order to understand the molecular pathway of the autoacetylation at K327. Together, we conclude that the acetylation of K327 which is located in the active site of Tip60 regulates but is not obligatory for the catalytic activity of Tip60. Since acetylation at this key residue appears to be evolutionarily conserved amongst all MYST proteins, our findings provide an interesting insight into the regulatory mechanism of MYST activities. PMID:22470428

  2. Synthesis and photodynamic activity of unsymmetrical A3B tetraarylporphyrins functionalized with l-glutamate and their Zn(II) and Cu(II) metal complex derivatives.

    PubMed

    Arredondo-Espinoza, Eder U; López-Cortina, Susana T; Ramírez-Cabrera, Mónica A; Balderas-Rentería, Isaías

    2016-08-01

    Four novel unsymmetrical A3B porphyrins 1, 2, 3 and 4 were synthesized following Lindsey procedure. Porphyrins 3 and 4 include one and three l-glutamate groups, respectively, and all porphyrins were metallated with Zn(II) (1a-4a) or Cu(II) (1b-4b). Porphyrins and metalloporphyrins presented values of singlet oxygen quantum yields (ΦD) ranging from 0.21 to 0.67. The tetraaryl derivatives in this study showed phototoxicity in SiHa cells with IC50 values ranging from <0.01 to 6.56±0.11μM, the metalloporphyrin 4a showed the lowest IC50 value. Comparing the phototoxic activity between all porphyrins, functionalization of porphyrins with glutamate increased 100 times phototoxic activity (1 (IC50 4.81±0.34μM) vs. 3 (IC50 0.04±0.02μM) and 2 (IC50 5.19±0.42μM) vs. 4 (IC50 0.05±0.01μM)). This increased activity could be attributed to reduced hydrophobicity and increased ΦΔ, given by functionalization with l-glutamate. Metalloporphyrins 3a (IC50 0.04±0.01μM) and 4a (IC50<0.01μM) presented the best values ​​of phototoxic activity. Therefore, functionalization and zinc metalation increased the phototoxic activity. SiHa cells treated with porphyrins 3, 4, 3a and 4a at a final concentration of 10μM, showed increased activity of caspase-3 enzyme compared to the negative control; indicating the induction of apoptosis. Differential gene expression pattern in SiHa cells was determined; treatments with metalloporphyrins 4a and 4b were performed, respectively, comparing the expression with untreated control. Treatments in both cases showed similar gene expression pattern in upregulated genes, since they share about 25 biological pathways and a large number of genes. According to the new photophysical properties related to the structural improvement and phototoxic activity, these molecules may have the potential application as photosensitizers in the photodynamic therapy.

  3. Discovery of Novel Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 5 Reveals Chemical and Functional Diversity and In Vivo Activity in Rat Behavioral Models of Anxiolytic and Antipsychotic ActivityS⃞

    PubMed Central

    Rodriguez, Alice L.; Grier, Mark D.; Jones, Carrie K.; Herman, Elizabeth J.; Kane, Alexander S.; Smith, Randy L.; Williams, Richard; Zhou, Ya; Marlo, Joy E.; Days, Emily L.; Blatt, Tasha N.; Jadhav, Satyawan; Menon, Usha N.; Vinson, Paige N.; Rook, Jerri M.; Stauffer, Shaun R.; Niswender, Colleen M.; Lindsley, Craig W.; Weaver, C. David

    2010-01-01

    Modulators of metabotropic glutamate receptor subtype 5 (mGluR5) may provide novel treatments for multiple central nervous system (CNS) disorders, including anxiety and schizophrenia. Although compounds have been developed to better understand the physiological roles of mGluR5 and potential usefulness for the treatment of these disorders, there are limitations in the tools available, including poor selectivity, low potency, and limited solubility. To address these issues, we developed an innovative assay that allows simultaneous screening for mGluR5 agonists, antagonists, and potentiators. We identified multiple scaffolds that possess diverse modes of activity at mGluR5, including both positive and negative allosteric modulators (PAMs and NAMs, respectively). 3-Fluoro-5-(3-(pyridine-2-yl)-1,2,4-oxadiazol-5-yl)benzonitrile (VU0285683) was developed as a novel selective mGluR5 NAM with high affinity for the 2-methyl-6-(phenylethynyl)-pyridine (MPEP) binding site. VU0285683 had anxiolytic-like activity in two rodent models for anxiety but did not potentiate phencyclidine-induced hyperlocomotor activity. (4-Hydroxypiperidin-1-yl)(4-phenylethynyl)phenyl)methanone (VU0092273) was identified as a novel mGluR5 PAM that also binds to the MPEP site. VU0092273 was chemically optimized to an orally active analog, N-cyclobutyl-6-((3-fluorophenyl)ethynyl)nicotinamide hydrochloride (VU0360172), which is selective for mGluR5. This novel mGluR5 PAM produced a dose-dependent reversal of amphetamine-induced hyperlocomotion, a rodent model predictive of antipsychotic activity. Discovery of structurally and functionally diverse allosteric modulators of mGluR5 that demonstrate in vivo efficacy in rodent models of anxiety and antipsychotic activity provide further support for the tremendous diversity of chemical scaffolds and modes of efficacy of mGluR5 ligands. In addition, these studies provide strong support for the hypothesis that multiple structurally distinct mGluR5 modulators have

  4. Developmental changes in choline acetyltransferase and glutamate decarboxylase activity in various regions of the brain of the male, female, and neonatally androgenized female rat.

    PubMed

    Brown, R; Brooksbank, B W

    1979-04-01

    In attempt to discern effects of sex hormones on the development of neurotransmitter systems in the rat brain, choline acetyltransferase (ChAT) and glutamate decarboxylase (GAD) have been measured at postnatal days 8, 12, 25, and 60 in five regions (amygdala, anterior hypothalamus, hippocampus, olfactory bulbs, and cerebral cortex) of the brains of normal male, normal female, and neonatally androgen-treated female rats. Essentially no association between sex or of neonatal "androgenization" on either enzymol were found. The data, however, provide new information on the relative rates of development of ChAT and GAD in five regions of the rat brain which supplement the limited information already available in the literature. ChAT activity was highest in amygdala and hypothalamus, but developed most rapidly in hippocampus and cerebral cortex. The relative activities and patterns of development of GAD activity were similar to those of ChAT.

  5. Mammalian folylpoly-. gamma. -glutamate synthetase. 2. Substrate specificity and kinetic properties

    SciTech Connect

    Cichowicz, D.J.; Shane, B.

    1987-01-27

    The specificity of hog liver folylpolyglutamate synthetase for folate substrates and for nucleotide and L-(/sup 14/C)glutamate substrates and analogues has been investigated. The kinetic mechanism, determined by using aminopterin as the folate substrate, is ordered Ter-Ter with MgATP binding first, folate second, and glutamate last. This mechanism precludes the sequential addition of glutamate moieties to enzyme-bound folate. Folate, dihydrofolate, and tetrahydrofolate possess the optimal configurations for catalysis while 5- and 10-position substitutions of the folate molecule impair catalysis. k/sub cat/ values decrease with increasing glutamate chain length, and the rate of decrease varies depending on the state of reduction and substitution of the folate molecule. Folate binding, as assessed by on rates, is slow. Dihydrofolate exhibits the fastest rate, and the rates are slightly reduced for tetrahydrofolate and 10-formyltetrahydrofolate and greatly reduced for 5-methyltetrahydrofolate and folic acid. Tetrahydrofolate polyglutamates are the only long glutamate chain length folates with detectable substrate activity. The specificity of the L-glutamate binding site is very narrow. L-Homocysteate and 4-threo-fluoroglutamate are alternate substrates and act as chain termination inhibitors in that their addition to the folate molecule prevents or severely retards the further addition of glutamate moieties. The K/sub m/ for glutamate is dependent on the folate substrate used. MgATP is the preferred nucleotide substrate, and ..beta..,..gamma..-methylene-ATP, ..beta..,..gamma..-imido-ATP, adenosine 5'-O-(3-thiotriphosphate), P/sup 1/,P/sup 5/-di(adenosine-5') pentaphosphate, and free ATP/sup 4 -/ are potent inhibitors of the reaction.

  6. Ca2+ Activation kinetics of the two aspartate-glutamate mitochondrial carriers, aralar and citrin: role in the heart malate-aspartate NADH shuttle.

    PubMed

    Contreras, Laura; Gomez-Puertas, Paulino; Iijima, Mikio; Kobayashi, Keiko; Saheki, Takeyori; Satrústegui, Jorgina

    2007-03-01

    Ca(2+) regulation of the Ca(2+) binding mitochondrial carriers for aspartate/glutamate (AGCs) is provided by their N-terminal extensions, which face the intermembrane space. The two mammalian AGCs, aralar and citrin, are members of the malate-aspartate NADH shuttle. We report that their N-terminal extensions contain up to four pairs of EF-hand motifs plus a single vestigial EF-hand, and have no known homolog. Aralar and citrin contain one fully canonical EF-hand pair and aralar two additional half-pairs, in which a single EF-hand is predicted to bind Ca(2+). Shuttle activity in brain or skeletal muscle mitochondria, which contain aralar as the major AGC, is activated by Ca(2+) with S(0.5) values of 280-350 nm; higher than those obtained in liver mitochondria (100-150 nm) that contain citrin as the major AGC. We have used aralar- and citrin-deficient mice to study the role of the two isoforms in heart, which expresses both AGCs. The S(0.5) for Ca(2+) activation of the shuttle in heart mitochondria is about 300 nm, and it remains essentially unchanged in citrin-deficient mice, although it undergoes a drastic reduction to about 100 nm in aralar-deficient mice. Therefore, aralar and citrin, when expressed as single isoforms in heart, confer differences in Ca(2+) activation of shuttle activity, probably associated with their structural differences. In addition, the results reveal that the two AGCs fully account for shuttle activity in mouse heart mitochondria and that no other glutamate transporter can replace the AGCs in this pathway.

  7. Synthesis and structure-activity relationship studies of novel 2-diarylethyl substituted (2-carboxycycloprop-1-yl)glycines as high-affinity group II metabotropic glutamate receptor ligands.

    PubMed

    Sørensen, Ulrik S; Bleisch, Thomas J; Kingston, Anne E; Wright, Rebecca A; Johnson, Bryan G; Schoepp, Darryle D; Ornstein, Paul L

    2003-01-17

    The major excitatory neurotransmitter in the central nervous system, (S)-glutamic acid , activates both ionotropic and metabotropic excitatory amino acid receptors. Its importance in connection to neurological and psychiatric disorders has directed great attention to the development of compounds that modulate the effects of this endogenous ligand. Whereas L-carboxycyclopropylglycine (L-CCG-1) is a potent agonist at, primarily, group II metabotropic glutamate receptors, alkylation of at the alpha-carbon notoriously result in group II mGluR antagonists, of which the most potent compound described so far, LY341495, displays IC(50) values of 23 and 10 nM at the group II receptor subtypes mGlu2 and mGlu3, respectively. In this study we synthesized a series of structural analogues of in which the xanthyl moiety is replaced by two substituted-phenyl groups. The pharmacological characterization shows that these novel compounds have very high affinity for group II mGluRs when tested as their racemates. The most potent analogues demonstrate K(i) values in the range of 5-12 nM, being thus comparable to LY341495. PMID:12470714

  8. Glutamate and Neurodegenerative Disease

    NASA Astrophysics Data System (ADS)

    Schaeffer, Eric; Duplantier, Allen

    As the main excitatory neurotransmitter in the mammalian central nervous system, glutamate is critically involved in most aspects of CNS function. Given this critical role, it is not surprising that glutamatergic dysfunction is associated with many CNS disorders. In this chapter, we review the literature that links aberrant glutamate neurotransmission with CNS pathology, with a focus on neurodegenerative diseases. The biology and pharmacology of the various glutamate receptor families are discussed, along with data which links these receptors with neurodegenerative conditions. In addition, we review progress that has been made in developing small molecule modulators of glutamate receptors and transporters, and describe how these compounds have helped us understand the complex pharmacology of glutamate in normal CNS function, as well as their potential for the treatment of neurodegenerative diseases.

  9. Plasma aspartate aminotransferase (AST), glutamate dehydrogenase (GLDH) and gamma-glutamyl transpeptidase (GGT) activities in water buffaloes with experimental subclinical fasciolosis.

    PubMed

    Yang, Q; Mao, W H; Ferre, I; Bayón, J E; Mao, X Z; González-Gallego, J

    1998-07-31

    The effect of chronic Fasciola hepatica infection on the activity of plasma aspartate aminotransferase (AST), glutamate dehydrogenase (GLDH) and gamma-glutamyl transpeptidase (GGT) was investigated in water buffaloes dosed daily with 60 F. hepatica metacercariae over 20 days. Experimental fluke infection caused no clinical signs but provoked an increase in plasma level of IgG directed against F. hepatica from 4 weeks after infection. There was a significant increase in plasma AST from 6 weeks post-infection. Maximal values were reached at 14 weeks and remained significantly elevated by 23 weeks. Plasma GLDH was significantly elevated from 6 to 21 weeks post-infection. Significant increases in plasma GGT occurred from 8 to 26 weeks post-infection, reaching maximal values at 15 weeks. This study shows that plasma enzyme activities may be useful in studies of fluke-induced liver damage in water buffaloes.

  10. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase

    NASA Astrophysics Data System (ADS)

    Fenwick, Michael K.; Mehta, Angad P.; Zhang, Yang; Abdelwahed, Sameh H.; Begley, Tadhg P.; Ealick, Steven E.

    2015-03-01

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5‧-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active site metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.

  11. Regulation of brain glutamate metabolism by nitric oxide and S-nitrosylation

    PubMed Central

    Raju, Karthik; Doulias, Paschalis-Thomas; Evans, Perry; Krizman, Elizabeth N.; Jackson, Joshua G.; Horyn, Oksana; Daikhin, Yevgeny; Nissim, Ilana; Yudkoff, Marc; Nissim, Itzhak; Sharp, Kim A.; Robinson, Michael B.; Ischiropoulos, Harry

    2016-01-01

    Nitric oxide (NO) is a signaling intermediate during glutamatergic neurotransmission in the central nervous system (CNS). NO signaling is in part accomplished through cysteine S-nitrosylation, a posttranslational modification by which NO regulates protein function and signaling. In our investigation of the protein targets and functional impact of S-nitrosylation in the CNS under physiological conditions, we identified 269 S-nitrosocysteine residues in 136 proteins in the wild-type mouse brain. The number of sites was significantly reduced in the brains of mice lacking endothelial nitric oxide synthase (eNOS−/−) or neuronal nitric oxide synthase (nNOS−/−). In particular, nNOS−/− animals showed decreased S-nitrosylation of proteins that participate in the glutamate/glutamine cycle, a metabolic process by which synaptic glutamate is recycled or oxidized to provide energy. 15N-glutamine–based metabolomic profiling and enzymatic activity assays indicated that brain extracts from nNOS−/− mice converted less glutamate to glutamine and oxidized more glutamate than those from mice of the other genotypes. GLT1 [also known as EAAT2 (excitatory amino acid transporter 2)], a glutamate transporter in astrocytes, was S-nitrosylated at Cys373 and Cys561 in wild-type and eNOS−/− mice, but not in nNOS−/− mice. A form of rat GLT1 that could not be S-nitrosylated at the equivalent sites had increased glutamate uptake compared to wild-type GLT1 in cells exposed to an S-nitrosylating agent. Thus, NO modulates glutamatergic neurotransmission through the selective, nNOS-dependent S-nitrosylation of proteins that govern glutamate transport and metabolism. PMID:26152695

  12. A unique serpin P1' glutamate and a conserved β-sheet C arginine are key residues for activity, protease recognition and stability of serpinA12 (vaspin).

    PubMed

    Ulbricht, David; Pippel, Jan; Schultz, Stephan; Meier, René; Sträter, Norbert; Heiker, John T

    2015-09-15

    SerpinA12 (vaspin) is thought to be mainly expressed in adipose tissue and has multiple beneficial effects on metabolic, inflammatory and atherogenic processes related to obesity. KLK7 (kallikrein 7) is the only known protease target of vaspin to date and is inhibited with a moderate inhibition rate. In the crystal structure, the cleavage site (P1-P1') of the vaspin reactive centre loop is fairly rigid compared with the flexible residues before P2, possibly supported by an ionic interaction of P1' glutamate (Glu(379)) with an arginine residue (Arg(302)) of the β-sheet C. A P1' glutamate seems highly unusual and unfavourable for the protease KLK7. We characterized vaspin mutants to investigate the roles of these two residues in protease inhibition and recognition by vaspin. Reactive centre loop mutations changing the P1' residue or altering the reactive centre loop conformation significantly increased inhibition parameters, whereas removal of the positive charge within β-sheet C impeded the serpin-protease interaction. Arg(302) is a crucial contact to enable vaspin recognition by KLK7 and it supports moderate inhibition of the serpin despite the presence of the detrimental P1' Glu(379), which clearly represents a major limiting factor for vaspin-inhibitory activity. We also show that the vaspin-inhibition rate for KLK7 can be modestly increased by heparin and demonstrate that vaspin is a heparin-binding serpin. Noteworthily, we observed vaspin as a remarkably thermostable serpin and found that Glu(379) and Arg(302) influence heat-induced polymerization. These structural and functional results reveal the mechanistic basis of how reactive centre loop sequence and exosite interaction in vaspin enable KLK7 recognition and regulate protease inhibition as well as stability of this adipose tissue-derived serpin.

  13. A novel GSK-3β inhibitor YQ138 prevents neuronal injury induced by glutamate and brain ischemia through activation of the Nrf2 signaling pathway

    PubMed Central

    Pang, Tao; Wang, Yun-jie; Gao, Yuan-xue; Xu, Yuan; Li, Qiu; Zhou, Yu-bo; Xu, Lei; Huang, Zhang-jian; Liao, Hong; Zhang, Lu-yong; Gao, Jian-rong; Ye, Qing; Li, Jia

    2016-01-01

    Aim: To discover neuroprotective compounds and to characterize the discovered active compound YQ138 as a novel GSK-3β inhibitor. Methods: Primary rat cerebellar granule cells (CGCs) were treated with glutamate, and cell viability was analyzed with MTT assay, which was used as in vitro model for screening neuroprotective compounds. Active compound was further tested in OGD- or serum deprivation-induced neuronal injury models. The expression levels of GSK-3β downstream proteins (Nrf2, HO-1, NQO1, Tau and β-catenin) were detected with Western blotting. For evaluating the neuroprotective effects in vivo, adult male rats were subjected to transient middle cerebral artery occlusion (tMCAO), then treated with YQ138 (10 mg/kg, iv) at 2, 4 and 6 h after ischemia onset. Results: From a compound library consisting of about 2000 potential kinase inhibitors, YQ138 was found to exert neuroprotective effects: pretreatment with YQ138 (0.1–40 μmol/L) dose-dependently inhibited glutamate-induced neuronal death. Furthermore, pretreatment with YQ138 (10 μmol/L) significantly inhibited OGD- or serum deprivation-induced neuronal death. Among a panel of seven kinases tested, YQ138 selectively inhibited the activity of GSK-3β (IC50=0.52 nmol/L). Furthermore, YQ138 dose-dependently increased the expression of β-catenin, and decreased the phosphorylation of Tau in CGCs. Moreover, YQ138 significantly increased the expression of GSK-3β downstream antioxidative proteins Nrf2, HO-1, NQO1, GSH and SOD in CGCs. In rats with tMCAO, administration of YQ138 significantly decreased infarct volume, improved the neurological deficit, and increased the expression of Nrf2 and HO-1 and the activities of SOD and GSH in the cerebral cortex. Conclusion: A novel GSK-3β inhibitor YQ138 effectively suppresses brain ischemic injury in vitro and in vivo. PMID:27108601

  14. Activation of Metabotropic Glutamate Receptor 7 Is Required for Induction of Long-Term Potentiation at SC-CA1 Synapses in the Hippocampus

    PubMed Central

    Klar, Rebecca; Walker, Adam G.; Ghose, Dipanwita; Grueter, Brad A.; Engers, Darren W.; Hopkins, Corey R.; Lindsley, Craig W.; Xiang, Zixiu

    2015-01-01

    Of the eight metabotropic glutamate (mGlu) receptor subtypes, only mGlu7 is expressed presynaptically at the Schaffer collateral (SC)-CA1 synapse in the hippocampus in adult animals. Coupled with the inhibitory effects of Group III mGlu receptor agonists on transmission at this synapse, mGlu7 is thought to be the predominant autoreceptor responsible for regulating glutamate release at SC terminals. However, the lack of mGlu7-selective pharmacological tools has hampered direct testing of this hypothesis. We used a novel, selective mGlu7-negative allosteric modulator (NAM), ADX71743, and a newly described Group III mGlu receptor agonist, LSP4-2022, to elucidate the role of mGlu7 in modulating transmission in hippocampal area CA1 in adult C57BL/6J male mice. Interestingly, although mGlu7 agonists inhibit SC-CA1 EPSPs, we found no evidence for activation of mGlu7 by stimulation of SC-CA1 afferents. However, LSP4-2022 also reduced evoked monosynaptic IPSCs in CA1 pyramidal cells and, in contrast to its effect on SC-CA1 EPSPs, ADX71743 reversed the ability of high-frequency stimulation of SC afferents to reduce IPSC amplitudes. Furthermore, blockade of mGlu7 prevented induction of LTP at the SC-CA1 synapse and activation of mGlu7 potentiated submaximal LTP. Together, these data suggest that mGlu7 serves as a heteroreceptor at inhibitory synapses in area CA1 and that the predominant effect of activation of mGlu7 by stimulation of glutamatergic afferents is disinhibition, rather than reduced excitatory transmission. Furthermore, this mGlu7-mediated disinhibition is required for induction of LTP at the SC-CA1 synapse, suggesting that mGlu7 could serve as a novel therapeutic target for treatment of cognitive disorders. PMID:25972184

  15. Fear potentiated startle increases phospholipase D (PLD) expression/activity and PLD-linked metabotropic glutamate receptor mediated post-tetanic potentiation in rat amygdala.

    PubMed

    Krishnan, Balaji; Scott, Michael T; Pollandt, Sebastian; Schroeder, Bradley; Kurosky, Alexander; Shinnick-Gallagher, Patricia

    2016-02-01

    Long-term memory (LTM) of fear stores activity dependent modifications that include changes in amygdala signaling. Previously, we identified an enhanced probability of release of glutamate mediated signaling to be important in rat fear potentiated startle (FPS), a well-established translational behavioral measure of fear. Here, we investigated short- and long-term synaptic plasticity in FPS involving metabotropic glutamate receptors (mGluRs) and associated downstream proteomic changes in the thalamic-lateral amygdala pathway (Th-LA). Aldolase A, an inhibitor of phospholipase D (PLD), expression was reduced, concurrent with significantly elevated PLD protein expression. Blocking the PLD-mGluR signaling significantly reduced PLD activity. While transmitter release probability increased in FPS, PLD-mGluR agonist and antagonist actions were occluded. In the unpaired group (UNP), blocking the PLD-mGluR increased while activating the receptor decreased transmitter release probability, consistent with decreased synaptic potentials during tetanic stimulation. FPS Post-tetanic potentiation (PTP) immediately following long-term potentiation (LTP) induction was significantly increased. Blocking PLD-mGluR signaling prevented PTP and reduced cumulative PTP probability but not LTP maintenance in both groups. These effects are similar to those mediated through mGluR7, which is co-immunoprecipitated with PLD in FPS. Lastly, blocking mGluR-PLD in the rat amygdala was sufficient to prevent behavioral expression of fear memory. Thus, our study in the Th-LA pathway provides the first evidence for PLD as an important target of mGluR signaling in amygdala fear-associated memory. Importantly, the PLD-mGluR provides a novel therapeutic target for treating maladaptive fear memories in posttraumatic stress and anxiety disorders.

  16. Ginkgo biloba Extract (EGb 761®) Inhibits Glutamate-induced Up-regulation of Tissue Plasminogen Activator Through Inhibition of c-Fos Translocation in Rat Primary Cortical Neurons.

    PubMed

    Cho, Kyu Suk; Lee, Ian Myungwon; Sim, Seobo; Lee, Eun Joo; Gonzales, Edson Luck; Ryu, Jong Hoon; Cheong, Jae Hoon; Shin, Chan Young; Kwon, Kyoung Ja; Han, Seol-Heui

    2016-01-01

    EGb 761(®) , a standardized extract of Ginkgo biloba leaves, has antioxidant and antiinflammatory properties in experimental models of neurodegenerative disorders such as stroke and Alzheimer's disease. Tissue plasminogen activator (tPA) acts a neuromodulator and plays a crucial role in the manifestation of neurotoxicity leading to exaggerated neuronal cell death in neurological insult conditions. In this study, we investigated the effects of EGb 761 on the basal and glutamate-induced activity and expression of tPA in rat primary cortical neurons. Under basal condition, EGb 761 inhibited both secreted and cellular tPA activities, without altering tPA mRNA level, as modulated by the activation of p38. Compared with basal condition, EGb 761 inhibited the glutamate-induced up-regulation of tPA mRNA resulting in the normalization of overt tPA activity and expression. c-Fos is a component of AP-1, which plays a critical role in the modulation of tPA expression. Interestingly, EGb 761 inhibited c-Fos nuclear translocation without affecting c-Fos expression in glutamate-induced rat primary cortical neurons. These results demonstrated that EGb 761 can modulate tPA activity under basal and glutamate-stimulated conditions by both translational and transcriptional mechanisms. Thus, EGb 761 could be a potential and effective therapeutic strategy in tPA-excessive neurotoxic conditions.

  17. Control of active sites in flocculation: Concept of equivalent active sites''

    SciTech Connect

    Behl, S.; Moudgil, B.M. . Dept. of Materials Science and Engineering)

    1993-12-01

    Flocculation and dispersion of solids are strong functions of the amount and conformation of the adsorbed polymer. Regions of dispersion and flocculation of solids with particular polymer molecules may be deduced from saturation adsorption data. The concept of equivalent active sites'' is proposed to explain flocculation and dispersion behavior irrespective of the amount or conformation of the adsorbed polymer. The concept has been further extended to study the selective flocculation process.

  18. In vitro mutagenesis study of two critical glutamic acids in the calcium binding loop of the factor IX heavy chain.

    PubMed

    Hamaguchi, N; Stafford, D

    1994-12-01

    We investigated the structural and functional significance of calcium binding in the factor IXa heavy chain by introducing point mutations into the probable calcium binding site (residues 235 and 245). According to factor IXa computer modelling based on trypsin x-ray structure, side chains of two glutamic acid residues, 235 and 245, together with backbone carbonyl groups of residues 237 and 240, bind a calcium ion. Factor IX clotting activity decreased approximately 25 percent on substitution of glutamic acid 235 with lysine. Activity decreased more than 90 percent on substitution of glutamic acid 245 with lysine. Activity also decreased more than 90 percent on substitution of both glutamic acids by lysines. Factor XIa cleavage of factor IXGlu235Lys and factor IXGlu245Lys appeared normal by polyacrylamide gel analysis. (Factor IXGlu235Lys: Factor IX with Lysine substituted for Glutamic acid at residue 235. Factor IXGlu245Lys: Factor IX with Lysine substituted for Glutamic acid at residue 245. Factor IXGlu235&245Lys: Factor IX with Lysine substituted for Glutamic acid at residues 235 and 245.) Activated factor IXGlu235Lys bound the fluorescent active site probe, p-aminobenzamidine, normally, while factor XIa cleaved factor IXGlu245Lys and factor IXGlu235&245Lys failed to bind p-aminobenzamidine. Plasma purified factor IX titrated with terbium showed an increase in luminescence; however, factor IXGlu235Lys and factor IXGlu245Lys had no effect on terbium luminescence. Radioimmunoassays indicate that in calcium's absence, factor IXGlu245Lys adopts a conformation similar to normal factor IX in the presence of calcium. By contrast, factor IXGlu245Lys's conformation in the presence of calcium is similar to that of plasma purified factor IX in the absence of calcium.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7740454

  19. Adaptation of methods for glutamate dehydrogenase and alcohol dehydrogenase activities to a centrifugal analyser: assessment of their clinical use in anoxic states of the liver.

    PubMed Central

    Shephard, M D; Penberthy, L A; Berry, M N

    1987-01-01

    Sensitive, precise, and rapid methods for the measurement of alcohol dehydrogenase (ADH) and glutamate dehydrogenase (GDH) were developed on the Cobas Bio centrifugal analyser. The optimal pH for ADH in caucasians was 9.8. Non-linearity of ADH enzyme activity was observed when samples were diluted in saline; linearity was restored when inactivated serum was used as diluent. ADH was shown to be a sensitive index of liver anoxia due to cardiorespiratory disturbance (clinical sensitivity 90%) and generalised anoxia. GDH exhibited sensitivity equal to that of alanine aminotransferase (ALT) but was inferior to gamma-glutamyltransferase (GGT) in the detection of specific liver disease. Both ADH and GDH were sensitive indicators of alcoholic liver disease. PMID:2890662

  20. Srchi24, A Chitinase Homolog Lacking an Essential Glutamic Acid Residue for Hydrolytic Activity, Is Induced during Nodule Development on Sesbania rostrata1

    PubMed Central

    Goormachtig, Sofie; Van de Velde, Willem; Lievens, Sam; Verplancke, Christa; Herman, Sylvia; De Keyser, Annick; Holsters, Marcelle

    2001-01-01

    The interaction between the tropical legume Sesbania rostrata and the bacterium Azorhizobium caulinodans results in the formation of nodules on both stem and roots. Stem nodulation was used as a model system to isolate early markers by differential display. One of them, Srchi24 is a novel early nodulin whose transcript level increased already 4 h after inoculation. This enhancement depended on Nod factor-producing bacteria. Srchi24 transcript levels were induced also by exogenous cytokinins. In situ hybridization and immunolocalization experiments showed that Srchi24 transcripts and proteins were present in the outermost cortical cell layers of the developing nodules. Sequence analyses revealed that Srchi24 is similar to class III chitinases, but lacks an important catalytic glutamate residue. A fusion between a maltose-binding protein and Srchi24 had no detectable hydrolytic activity. A function in nodulation is proposed for the Srchi24 protein. PMID:11553736

  1. Neutralizing Aspartate 83 Modifies Substrate Translocation of Excitatory Amino Acid Transporter 3 (EAAT3) Glutamate Transporters*

    PubMed Central

    Hotzy, Jasmin; Machtens, Jan-Philipp; Fahlke, Christoph

    2012-01-01

    Excitatory amino acid transporters (EAATs) terminate glutamatergic synaptic transmission by removing glutamate from the synaptic cleft into neuronal and glial cells. EAATs are not only secondary active glutamate transporters but also function as anion channels. Gating of EAAT anion channels is tightly coupled to transitions within the glutamate uptake cycle, resulting in Na+- and glutamate-dependent anion currents. A point mutation neutralizing a conserved aspartic acid within the intracellular loop close to the end of transmembrane domain 2 was recently shown to modify the substrate dependence of EAAT anion currents. To distinguish whether this mutation affects transitions within the uptake cycle or directly modifies the opening/closing of the anion channel, we used voltage clamp fluorometry. Using three different sites for fluorophore attachment, V120C, M205C, and A430C, we observed time-, voltage-, and substrate-dependent alterations of EAAT3 fluorescence intensities. The voltage and substrate dependence of fluorescence intensities can be described by a 15-state model of the transport cycle in which several states are connected to branching anion channel states. D83A-mediated changes of fluorescence intensities, anion currents, and secondary active transport can be explained by exclusive modifications of substrate translocation rates. In contrast, sole modification of anion channel opening and closing is insufficient to account for all experimental data. We conclude that D83A has direct effects on the glutamate transport cycle and that these effects result in changed anion channel function. PMID:22532568

  2. Glutamate induces the rapid formation of spine head protrusions in hippocampal slice cultures

    PubMed Central

    Richards, David A.; Mateos, José Maria; Hugel, Sylvain; de Paola, Vincenzo; Caroni, Pico; Gähwiler, Beat H.; McKinney, R. Anne

    2005-01-01

    Synaptic plasticity at neuronal connections has been well characterized functionally by using electrophysiological approaches, but the structural basis for this phenomenon remains controversial. We have studied the dynamic interactions between presynaptic and postsynaptic structures labeled with FM 4-64 and a membrane-targeted GFP, respectively, in hippocampal slices. Under conditions of reduced neuronal activity (1 μM tetrodotoxin), we observed extension of glutamate receptor-dependent processes from dendritic spines of CA1 pyramidal cells to presynaptic boutons. The formation of these spine head protrusions is blocked by α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor antagonists and by agents that reduce the release of glutamate from presynaptic terminals. Moreover, spine head protrusions form in response to exogenously applied glutamate, with clear directionality toward the glutamate electrode. Our results suggest that spontaneously released glutamate is sufficient to activate nearby spines, which can then lead to the growth of new postsynaptic processes connecting to a presynaptic site. Spines thus can compare their recent history with that of neighboring synapses and modify local connectivity accordingly. PMID:15831587

  3. Glutamic acid decarboxylase activity is stimulated in quail retina neuronal cells transformed by Rous sarcoma virus and is regulated by pp60v-src.

    PubMed Central

    Crisanti, P; Lorinet, A M; Calothy, G; Pessac, B

    1985-01-01

    Rous sarcoma virus (RSV) stimulates in quail embryo neuro-retina (NR) cultures the specific activity of glutamic acid decarboxylase (GAD), the enzyme responsible for the synthesis of gamma-aminobutyric acid, a major inhibitory neurotransmitter in NR and in central nervous system. In quail embryo NR cultures transformed by ts NY-68, a thermodependent transformation-defective mutant of RSV, stimulation of GAD activity is regulated by pp60v-src, the product of the src gene of RSV. Fibroblasts and myoblasts have a very low GAD activity that is not stimulated after transformation by RSV. Neuronal clones, previously derived from ts NY-68-transformed established NR cell lines, have a high GAD activity which is regulated by pp60v-src, while other clones have a low GAD activity apparently not regulated by pp60v-src. These data indicate that pp60v-src selectively activates the expression of GAD in distinct neuronal cells of quail embryo NR cultures transformed by RSV. GAD activity is also stimulated in NR cells infected with viruses containing v-mil. PMID:2992933

  4. EndoS from Streptococcus pyogenes is hydrolyzed by the cysteine proteinase SpeB and requires glutamic acid 235 and tryptophans for IgG glycan-hydrolyzing activity

    PubMed Central

    Allhorn, Maria; Olsén, Arne; Collin, Mattias

    2008-01-01

    Background The endoglycosidase EndoS and the cysteine proteinase SpeB from the human pathogen Streptococcus pyogenes are functionally related in that they both hydrolyze IgG leading to impairment of opsonizing antibodies and thus enhance bacterial survival in human blood. In this study, we further investigated the relationship between EndoS and SpeB by examining their in vitro temporal production and stability and activity of EndoS. Furthermore, theoretical structure modeling of EndoS combined with site-directed mutagenesis and chemical blocking of amino acids was used to identify amino acids required for the IgG glycan-hydrolyzing activity of EndoS. Results We could show that during growth in vitro S. pyogenes secretes the IgG glycan-hydrolyzing endoglycosidase EndoS prior to the cysteine proteinase SpeB. Upon maturation SpeB hydrolyzes EndoS that then loses its IgG glycan-hydrolyzing activity. Sequence analysis and structural homology modeling of EndoS provided a basis for further analysis of the prerequisites for IgG glycan-hydrolysis. Site-directed mutagenesis and chemical modification of amino acids revealed that glutamic acid 235 is an essential catalytic residue, and that tryptophan residues, but not the abundant lysine or the single cysteine residues, are important for EndoS activity. Conclusion We present novel information about the amino acid requirements for IgG glycan-hydrolyzing activity of the immunomodulating enzyme EndoS. Furthermore, we show that the cysteine proteinase SpeB processes/degrades EndoS and thus emphasize the importance of the SpeB as a degrading/processing enzyme of proteins from the bacterium itself. PMID:18182097

  5. Brain glutamate decarboxylase and pyrroloquinoline quinone.

    PubMed

    Choi, S Y; Khemlani, L S; Churchich, J E

    1992-01-01

    Porcine brain glutamate decarboxylase was examined for the presence of covalently bound pyrroloquinoline quinone (PQQ). HPLC analysis of pure glutamate decarboxylase subjected to the hexanol extraction procedure gave negative results when monitored at 320 nm, the maximum of absorbance of 4-hydroxy-5-hexoxy-PQQ. Resolved glutamate decarboxylase exhibits a structureless absorption band at wavelengths longer than 300 nm which cannot be attributed to PQQ. The holoenzyme is not a pyridoxal-quinoprotein; its catalytic mechanism involves the participation of only one cofactor, i.e. pyridoxal-5-P. Free PQQ is a strong inhibitor of the decarboxylase (Ki = 13 microM) and the reaction with the protein results in spectral changes resembling those of polylysine treated with PQQ. If the concentration of free PQQ in some regions of the brain reaches the micromolar level, then PQQ might play a role in the regulation of glutamate decarboxylase activity.

  6. [Glutamate transporter dysfunction and major mental illnesses].

    PubMed

    Tanaka, Kohichi

    2016-01-01

    Glutamate is the main excitatory neurotransmitter in the central nervous system and plays an important role in most aspects of normal brain function. In spite of its importance as a neurotransmitter, excess glutamate is toxic to neurons. Clearance of extracellular glutamate is critical for maintenance of low extracellular glutamate concentration, and occurs in large part through the activity of GLT1 (EAAT2) and GLAST (EAAT1), which are primarily expressed by astrocytes. Rare variants and down-regulation of GLT1 and GLAST, in psychiatric disorders have been reported. In this review, we demonstrate that various kinds of GLT1 and/or GLAST knockout mice replicate many aspects of the behavioral abnormalities seen in major mental illnesses including schizophrenia, depression, obsessive -compulsive disorders, autism, epilepsy and addiction. PMID:26793898

  7. Glutamate Racemase Dimerization Inhibits Dynamic Conformational Flexibility and Reduces Catalytic Rates

    SciTech Connect

    Mehboob, Shahila; Guo, Liang; Fu, Wentao; Mittal, Anuradha; Yau, Tiffany; Truong, Kent; Johlfs, Mary; Long, Fei; Fung, Leslie W.-M.; Johnson, Michael E.

    2009-09-15

    Glutamate racemase (RacE) is a bacterial enzyme that converts L-glutamate to D-glutamate, an essential precursor for peptidoglycan synthesis. In prior work, we have shown that both isoforms cocrystallize with D-glutamate as dimers, and the enzyme is in a closed conformation with limited access to the active site [May, M., et al. (2007) J. Mol. Biol. 371, 1219-1237]. The active site of RacE2 is especially restricted. We utilize several computational and experimental approaches to understand the overall conformational dynamics involved during catalysis when the ligand enters and the product exits the active site. Our steered molecular dynamics simulations and normal-mode analysis results indicate that the monomeric form of the enzyme is more flexible than the native dimeric form. These results suggest that the monomeric enzyme might be more active than the dimeric form. We thus generated site-specific mutations that disrupt dimerization and find that the mutants exhibit significantly higher catalytic rates in the D-Glu to L-Glu reaction direction than the native enzyme. Low-resolution models restored from solution X-ray scattering studies correlate well with the first six normal modes of the dimeric form of the enzyme, obtained from NMA. Thus, along with the local active site residues, global domain motions appear to be implicated in the catalytically relevant structural dynamics of this enzyme and suggest that increased flexibility may accelerate catalysis. This is a novel observation that residues distant from the catalytic site restrain catalytic activity through formation of the dimer structure.

  8. Ligands for Ionotropic Glutamate Receptors

    NASA Astrophysics Data System (ADS)

    Swanson, Geoffrey T.; Sakai, Ryuichi

    Marine-derived small molecules and peptides have played a central role in elaborating pharmacological specificities and neuronal functions of mammalian ionotropic glutamate receptors (iGluRs), the primary mediators of excitatory syn-aptic transmission in the central nervous system (CNS). As well, the pathological sequelae elicited by one class of compounds (the kainoids) constitute a widely-used animal model for human mesial temporal lobe epilepsy (mTLE). New and existing molecules could prove useful as lead compounds for the development of therapeutics for neuropathologies that have aberrant glutamatergic signaling as a central component. In this chapter we discuss natural source origins and pharmacological activities of those marine compounds that target ionotropic glutamate receptors.

  9. Ligands for Ionotropic Glutamate Receptors

    PubMed Central

    Swanson, Geoffrey T.; Sakai, Ryuichi

    2010-01-01

    Marine-derived small molecules and peptides have played a central role in elaborating pharmacological specificities and neuronal functions of mammalian ionotropic glutamate receptors (iGluRs), the primary mediators of excitatory synaptic transmission in the central nervous system (CNS). As well, the pathological sequelae elicited by one class of compounds (the kainoids) constitute a widely-used animal model for human mesial temporal lobe epilepsy (mTLE). New and existing molecules could prove useful as lead compounds for the development of therapeutics for neuropathologies that have aberrant glutamatergic signaling as a central component. In this chapter we discuss natural source origins and pharmacological activities of those marine compounds that target ionotropic glutamate receptors. PMID:19184587

  10. Activators of the Glutamate-Dependent Acid Resistance System Alleviate Deleterious Effects of YidC Depletion in Escherichia coli▿

    PubMed Central

    Yu, Zhong; Bekker, Martijn; Tramonti, Angela; Cook, Gregory M.; van Ulsen, Peter; Scheffers, Dirk-Jan; de Mattos, Joost Teixeira; De Biase, Daniela; Luirink, Joen

    2011-01-01

    The function of the essential inner membrane protein (IMP) YidC in Escherichia coli has been studied for a limited number of model IMPs and primarily using targeted approaches. These studies suggested that YidC acts at the level of insertion, folding, and quality control of IMPs, both in the context of the Sec translocon and as a separate entity. To further our understanding of YidC's role in IMP biogenesis, we screened a random overexpression library for factors that rescued the growth of cells upon YidC depletion. We found that the overexpression of the GadX and GadY regulators of the glutamate-dependent acid resistance system complemented the growth defect of YidC-depleted cells. Evidence is presented that GadXY overexpression counteracts the deleterious effects of YidC depletion on at least two fronts. First, GadXY prepares the cells for the decrease in respiratory capacity upon the depletion of YidC. Most likely, GadXY-regulated processes reduce the drop in proton-motive force that impairs the fitness of YidC-depleted cells. Second, in GadXY-overproducing cells increased levels of the general chaperone GroEL cofractionate with the inner membranes, which may help to keep newly synthesized inner membrane proteins in an insertion-competent state when YidC levels are limiting. PMID:21216990

  11. Nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase expression and activity in response to different nitrogen sources in nitrogen-starved wheat seedlings.

    PubMed

    Balotf, Sadegh; Kavoosi, Gholamreza; Kholdebarin, Bahman

    2016-01-01

    The objective of this study was to examine the expression and activity of nitrate reductase (NR, EC 1.7.1.1), nitrite reductase (NiR, EC 1.7.2.2), glutamine synthetase (GS, EC 6.3.1.2), and glutamate synthase (GOGAT, EC 1.4.7.1) in response to potassium nitrate, ammonium chloride, and ammonium nitrate in nitrogen-starved wheat seedlings. Plants were grown in standard nutrient solution for 17 days and then subjected to nitrogen starvation for 7 days. The starved plants were supplied with potassium nitrate ammonium nitrate and ammonium chloride (50 mM) for 4 days and the leaves were harvested. The relative expression of NR, NiR, GS, and GOGAT as well as the enzyme activities were investigated. Nitrogen starvation caused a significant decrease both in transcript levels and in NR, NiR, GS, and GOGAT activities. Potassium nitrate and ammonium nitrate treatments restored NR, NiR, GS, and GOGAT expressions and activities. Ammonium chloride increased only the expressions and activities of GS and GOGAT in a dose-dependent manner. The results of our study highlight the differential effects between the type and the amount of nitrogen salts on NR, NiR, GS, and GOGAT activities in wheat seedlings while potassium nitrate being more effective.

  12. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase

    DOE PAGES

    Fenwick, Michael K.; Mehta, Angad P.; Zhang, Yang; Abdelwahed, Sameh H.; Begley, Tadhg P.; Ealick, Steven E.

    2015-03-27

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active sitemore » metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.« less

  13. Analogies between respiration and a light-driven proton pump as sources of energy for active glutamate transport in Halobacterium halobium

    NASA Technical Reports Server (NTRS)

    Belliveau, J. W.; Lanyi, J. K.

    1977-01-01

    Halobacterium halobium is known to contain sheets of bacteriorhodopsin, a pigment which upon exposure to light undergoes cyclic protonation and deprotonation, resulting in net H(+) translocation. In this paper, experiments were conducted to test H. halobium cell envelope vesicles for respiration-induced glutamate uptake. It is shown that glutamate transport in H. halobium cell envelope vesicles can occur as a result of respiration, as well as light acting on bacteriorhodopsin. Glutamate transport can be energized by the oxidation of dimethyl phenylenediamine, and the properties of the transport system are entirely analogous to those observed with illumination as the source of energy. In the case of respiration-dependent glutamate transport, the transportation is also driven by a Na(+) gradient, thereby confirming the existence of a single glutamate transport system independent of the source of energy. The analogy observed is indirect evidence that the cytochrome oxidase of H. halobium functions as a H(+) pump.

  14. Characterization of glutamate decarboxylase from Lactobacillus plantarum and its C-terminal function for the pH dependence of activity.

    PubMed

    Shin, Sun-Mi; Kim, Hana; Joo, Yunhye; Lee, Sang-Jae; Lee, Yong-Jik; Lee, Sang Jun; Lee, Dong-Woo

    2014-12-17

    The gadB gene encoding glutamate decarboxylase (GAD) from Lactobacillus plantarum was cloned and expressed in Escherichia coli. The recombinant enzyme exhibited maximal activity at 40 °C and pH 5.0. The 3D model structure of L. plantarum GAD proposed that its C-terminal region (Ile454-Thr468) may play an important role in the pH dependence of catalysis. Accordingly, C-terminally truncated (Δ3 and Δ11 residues) mutants were generated and their enzyme activities compared with that of the wild-type enzyme at different pH values. Unlike the wild-type GAD, the mutants showed pronounced catalytic activity in a broad pH range of 4.0-8.0, suggesting that the C-terminal region is involved in the pH dependence of GAD activity. Therefore, this study may provide effective target regions for engineering pH dependence of GAD activity, thereby meeting industrial demands for the production of γ-aminobutyrate in a broad range of pH values.

  15. Chronic SO2 inhalation above environmental standard impairs neuronal behavior and represses glutamate receptor gene expression and memory-related kinase activation via neuroinflammation in rats.

    PubMed

    Yao, Gaoyi; Yue, Huifeng; Yun, Yang; Sang, Nan

    2015-02-01

    Sulfur dioxide (SO2), as a ubiquitous air pollutant implicated in the genesis of pulmonary disease, is now being considered to be involved in neurotoxicity and increased risk for hospitalization of brain disorders. However, comparatively little is known about the impact of chronically SO2 inhalation on neuronal function. In the present study, by exposing male Wistar rats to SO2 at 3.50 and 7.00 mg/m(3) (approximately 1225 and 2450 ppb, 4.08-8.16 (24h average concentration) times higher than the EPA standard for environmental air concentrations) or filtered air for 90 days, we investigated the impact of chronic SO2 inhalation on performance in Morris water maze, and probed the accompanying neurobiological effects, including activity-regulated cytoskeletal associated gene (Arc) and glutamate receptor gene expression, memory-related kinase level and inflammatory cytokine release in the hippocampus. Here, we found that SO2 exposure reduced the number of target zone crossings and time spent in the target quadrant during the test session in the spatial memory retention of the Morris water maze. Following the neuro-functional abnormality, we detected that SO2 inhalation reduced the expression of Arc and glutamate receptor subunits (GluR1, GluR2, NR1, NR2A, and NR2B) with a concentration-dependent property in comparison to controls. Additionally, the expression of memory kinases was attenuated statistically in the animals receiving the higher concentration, including protein kinase A (PKA), protein kinase C (PKC) and calcium/calmodulin-dependent protein kinaseIIα (CaMKIIα). And the inflammatory cytokine release was increased in rats exposed to SO2. Taken together, our results suggest that long-term exposure to SO2 air pollution at concentrations above the environmental standard in rats impaired spatial learning and memory, and indicate a close link between the neurobiological changes highlighted in the brain and the behavioral disturbances.

  16. Analysis of a soluble calmodulin binding protein from fava bean roots: identification of glutamate decarboxylase as a calmodulin-activated enzyme.

    PubMed

    Ling, V; Snedden, W A; Shelp, B J; Assmann, S M

    1994-08-01

    The identity of a soluble 62-kD Ca(2+)-dependent calmodulin binding protein (CaM-BP) from fava bean seedlings was determined. Using 125I-CaM overlay assays, a class of soluble CaM-BPs was detected in extracts of tissues comprising the axis of 1.5-week-old seedlings, excluding the root tip and emergent leaves. The size of these CaM-BPs was not uniform within all parts of the plant; the apparent molecular masses were 62 kD in roots, 60 kD in stems, and 64 kD in nodules. The root 62-kD CaM-BP was purified, and internal microsequence analysis was performed on the protein. A tryptic peptide derived from the CaM-BP consisted of a 13-residue sequence corresponding to a highly conserved region of glutamate decarboxylase (GAD), an enzyme that catalyzes the alpha-decarboxylation of glutamate to form the stress-related metabolite gamma-aminobutyrate. Activity assays of partially purified, desalted, root GAD revealed a 50% stimulation by the addition of 100 microM Ca2+, a 100% stimulation by the addition of 100 microM Ca2+ plus 100 nM CaM, and no appreciable stimulation by CaM in the absence of added Ca2+. The demonstration that plant GAD is a Ca(2+)-CaM-stimulated enzyme provides a model in which stress-linked metabolism is modulated by a Ca(2+)-mediated signal transduction pathway.

  17. Analysis of a soluble calmodulin binding protein from fava bean roots: identification of glutamate decarboxylase as a calmodulin-activated enzyme.

    PubMed

    Ling, V; Snedden, W A; Shelp, B J; Assmann, S M

    1994-08-01

    The identity of a soluble 62-kD Ca(2+)-dependent calmodulin binding protein (CaM-BP) from fava bean seedlings was determined. Using 125I-CaM overlay assays, a class of soluble CaM-BPs was detected in extracts of tissues comprising the axis of 1.5-week-old seedlings, excluding the root tip and emergent leaves. The size of these CaM-BPs was not uniform within all parts of the plant; the apparent molecular masses were 62 kD in roots, 60 kD in stems, and 64 kD in nodules. The root 62-kD CaM-BP was purified, and internal microsequence analysis was performed on the protein. A tryptic peptide derived from the CaM-BP consisted of a 13-residue sequence corresponding to a highly conserved region of glutamate decarboxylase (GAD), an enzyme that catalyzes the alpha-decarboxylation of glutamate to form the stress-related metabolite gamma-aminobutyrate. Activity assays of partially purified, desalted, root GAD revealed a 50% stimulation by the addition of 100 microM Ca2+, a 100% stimulation by the addition of 100 microM Ca2+ plus 100 nM CaM, and no appreciable stimulation by CaM in the absence of added Ca2+. The demonstration that plant GAD is a Ca(2+)-CaM-stimulated enzyme provides a model in which stress-linked metabolism is modulated by a Ca(2+)-mediated signal transduction pathway. PMID:7919983

  18. Analysis of a soluble calmodulin binding protein from fava bean roots: identification of glutamate decarboxylase as a calmodulin-activated enzyme.

    PubMed Central

    Ling, V; Snedden, W A; Shelp, B J; Assmann, S M

    1994-01-01

    The identity of a soluble 62-kD Ca(2+)-dependent calmodulin binding protein (CaM-BP) from fava bean seedlings was determined. Using 125I-CaM overlay assays, a class of soluble CaM-BPs was detected in extracts of tissues comprising the axis of 1.5-week-old seedlings, excluding the root tip and emergent leaves. The size of these CaM-BPs was not uniform within all parts of the plant; the apparent molecular masses were 62 kD in roots, 60 kD in stems, and 64 kD in nodules. The root 62-kD CaM-BP was purified, and internal microsequence analysis was performed on the protein. A tryptic peptide derived from the CaM-BP consisted of a 13-residue sequence corresponding to a highly conserved region of glutamate decarboxylase (GAD), an enzyme that catalyzes the alpha-decarboxylation of glutamate to form the stress-related metabolite gamma-aminobutyrate. Activity assays of partially purified, desalted, root GAD revealed a 50% stimulation by the addition of 100 microM Ca2+, a 100% stimulation by the addition of 100 microM Ca2+ plus 100 nM CaM, and no appreciable stimulation by CaM in the absence of added Ca2+. The demonstration that plant GAD is a Ca(2+)-CaM-stimulated enzyme provides a model in which stress-linked metabolism is modulated by a Ca(2+)-mediated signal transduction pathway. PMID:7919983

  19. Pharmacological activation of group-II metabotropic glutamate receptors corrects a schizophrenia-like phenotype induced by prenatal stress in mice.

    PubMed

    Matrisciano, Francesco; Tueting, Patricia; Maccari, Stefania; Nicoletti, Ferdinando; Guidotti, Alessandro

    2012-03-01

    Prenatal exposure to restraint stress causes long-lasting changes in neuroplasticity that likely reflect pathological modifications triggered by early-life stress. We found that the offspring of dams exposed to repeated episodes of restraint stress during pregnancy (here named 'prenatal restraint stress mice' or 'PRS mice') developed a schizophrenia-like phenotype, characterized by a decreased expression of brain-derived neurotrophic factor and glutamic acid decarboxylase 67, an increased expression of type-1 DNA methyl transferase (DNMT1) in the frontal cortex, and a deficit in social interaction, locomotor activity, and prepulse inhibition. PRS mice also showed a marked decrease in metabotropic glutamate 2 (mGlu2) and mGlu3 receptor mRNA and protein levels in the frontal cortex, which was manifested at birth and persisted in adult life. This decrease was associated with an increased binding of DNMT1 to CpG-rich regions of mGlu2 and mGlu3 receptor promoters and an increased binding of MeCP2 to the mGlu2 receptor promoter. Systemic treatment with the selective mGlu2/3 receptor agonist LY379268 (0.5 mg/kg, i.p., twice daily for 5 days), corrected all the biochemical and behavioral abnormalities shown in PRS mice. Our data show for the first time that PRS induces a schizophrenia-like phenotype in mice, and suggest that epigenetic changes in mGlu2 and mGlu3 receptors lie at the core of the pathological programming induced by early-life stress.

  20. Pharmacological activation of group-II metabotropic glutamate receptors corrects a schizophrenia-like phenotype induced by prenatal stress in mice.

    PubMed

    Matrisciano, Francesco; Tueting, Patricia; Maccari, Stefania; Nicoletti, Ferdinando; Guidotti, Alessandro

    2012-03-01

    Prenatal exposure to restraint stress causes long-lasting changes in neuroplasticity that likely reflect pathological modifications triggered by early-life stress. We found that the offspring of dams exposed to repeated episodes of restraint stress during pregnancy (here named 'prenatal restraint stress mice' or 'PRS mice') developed a schizophrenia-like phenotype, characterized by a decreased expression of brain-derived neurotrophic factor and glutamic acid decarboxylase 67, an increased expression of type-1 DNA methyl transferase (DNMT1) in the frontal cortex, and a deficit in social interaction, locomotor activity, and prepulse inhibition. PRS mice also showed a marked decrease in metabotropic glutamate 2 (mGlu2) and mGlu3 receptor mRNA and protein levels in the frontal cortex, which was manifested at birth and persisted in adult life. This decrease was associated with an increased binding of DNMT1 to CpG-rich regions of mGlu2 and mGlu3 receptor promoters and an increased binding of MeCP2 to the mGlu2 receptor promoter. Systemic treatment with the selective mGlu2/3 receptor agonist LY379268 (0.5 mg/kg, i.p., twice daily for 5 days), corrected all the biochemical and behavioral abnormalities shown in PRS mice. Our data show for the first time that PRS induces a schizophrenia-like phenotype in mice, and suggest that epigenetic changes in mGlu2 and mGlu3 receptors lie at the core of the pathological programming induced by early-life stress. PMID:22089319

  1. Hippocampal glutamate receptors in fear memory consolidation.

    PubMed

    Cammarota, Martín; Bevilaqua, Lia R M; Bonini, Juliana S; Rossatto, Janine I; Medina, Jorge H; Izquierdo, N

    2004-01-01

    It is thought that activity-dependent changes in synaptic efficacy driven by biochemical pathways responsive to the action of the excitatory neurotransmitter glutamate are critical components of the mechanisms responsible for memory formation. In particular, the early activation of the NMDA (rNMDA) and AMPA (rAMPA) subtypes of ionotropic glutamate receptors has been demonstrated to be a necessary event for the acquisition of several types of memory. In the rat, consolidation of the long-term memory for a one-trial, step-down inhibitory avoidance task is blocked by antagonists of the rNMDA and rAMPA infused into the CA1 region of the dorsal hippocampus early after training and is associated with a rapid and reversible increase in the total number of [3H]AMPA binding sites. The learning-induced increase in [[3H]AMPA is accompanied by translocation of the GluR1 subunit of the rAMPA to the post-synaptic terminal together with its phosphorylation at Ser831. In addition, learning of the mentioned fear-motivated task induces the activation and rNMDA-dependent translocation of CaMKII to the post-synaptic density. Inhibition of this protein kinase as well as blockade of the rNMDA abolishes both the learning-induced translocation of GluR1 and its phosphorylation. Our data suggest that learning of an avoidance task enhances hippocampal rAMPA signaling through rNMDA and CaMKII-dependent mechanisms.

  2. New GABA/Glutamate Receptor Target for [3H]Isoxazoline Insecticide

    PubMed Central

    García-Reynaga, Pablo; Zhao, Chunqing; Sarpong, Richmond; Casida, John E.

    2013-01-01

    The highly-effective and selective isoxazoline insecticide A1443 is known to potently displace [3H]ethynylbicycloorthobenzoate ([3H]EBOB) binding to house fly head membranes with an IC50 of 0.2 nM in a manner characteristic of GABA-gated chloride channel antagonists. To further define its mode of action, we prepared phenyl-labeled [3H]A1443 as described with a specific activity of 14 Ci/mmol. This new radioligand with an apparent IC50 of about 0.4 nM is poorly displaced by most insecticides acting at the [3H]EBOB site. Interestingly, the isoxazoline binding site is directly coupled to the avermectin GABA/glutamate chloride channels activator site. These findings revive interest in the insect GABA/glutamate receptor as an insecticide target. PMID:23465072

  3. New GABA/glutamate receptor target for [³H]isoxazoline insecticide.

    PubMed

    García-Reynaga, Pablo; Zhao, Chunqing; Sarpong, Richmond; Casida, John E

    2013-04-15

    The highly effective and selective isoxazoline insecticide A1443 is known to potently displace [(3)H]ethynylbicycloorthobenzoate ([(3)H]EBOB) binding to house fly head membranes with an IC50 of 0.2 nM in a manner characteristic of GABA-gated chloride channel antagonists. To further define its mode of action, we prepared phenyl-labeled [(3)H]A1443 as described with a specific activity of 14 Ci/mmol. This new radioligand with an apparent IC50 of about 0.4 nM is poorly displaced by most insecticides acting at the [(3)H]EBOB site. Interestingly, the isoxazoline binding site is directly coupled to the avermectin GABA/glutamate chloride channel activator site. These findings revive interest in the insect GABA/glutamate receptor as an insecticide target.

  4. Dissecting the active site of a photoreceptor protein

    NASA Astrophysics Data System (ADS)

    Hoff, Wouter; Hara, Miwa; Ren, Jie; Moghadam, Farzaneh; Xie, Aihua; Kumauchi, Masato

    While enzymes are quite large molecules, functionally important chemical events are often limited to a small region of the protein: the active site. The physical and chemical properties of residues at such active sites are often strongly altered compared to the same groups dissolved in water. Understanding such effects is important for unraveling the mechanisms underlying protein function and for protein engineering, but has proven challenging. Here we report on our ongoing efforts on using photoactive yellow protein (PYP), a bacterial photoreceptor, as a model system for such effects. We will report on the following questions: How many residues affect active site properties? Are these residues in direct physical contact with the active site? Can functionally important residues be recognized in the crystal structure of a protein? What structural resolution is needed to understand active sites? What spectroscopic techniques are most informative? Which weak interactions dominate active site properties?

  5. The Relevance of Group II Glutamate Receptors Expression to Anxiety.

    PubMed

    Ravid, Jonathan D; Mostofsky, David I

    2016-01-01

    The interface of receptor-mediated regulation of cellular signaling and neurological outputs remains an active field of investigation. The metabotropic G protein-coupled glutamate receptors, and in particular, the group II cyclic adenosine mono-phosphate (cAMP)-lowering metabotropic glutamate receptors 2 and 3 (mGlu2/3 glutamate receptors), have gained interest as therapeutic targets in different forms of neurological disorders. This review explores mGlu2/3 glutamate receptors expression, pharmacological activation, and signaling links to anxiety, as assessed in animal models and in clinical trials. PMID:27650988

  6. ATPase active-site electrostatic interactions control the global conformation of the 100 kDa SecA translocase.

    PubMed

    Kim, Dorothy M; Zheng, Haiyan; Huang, Yuanpeng J; Montelione, Gaetano T; Hunt, John F

    2013-02-27

    SecA is an intensively studied mechanoenzyme that uses ATP hydrolysis to drive processive extrusion of secreted proteins through a protein-conducting channel in the cytoplasmic membrane of eubacteria. The ATPase motor of SecA is strongly homologous to that in DEAD-box RNA helicases. It remains unclear how local chemical events in its ATPase active site control the overall conformation of an ~100 kDa multidomain enzyme and drive protein transport. In this paper, we use biophysical methods to establish that a single electrostatic charge in the ATPase active site controls the global conformation of SecA. The enzyme undergoes an ATP-modulated endothermic conformational transition (ECT) believed to involve similar structural mechanics to the protein transport reaction. We have characterized the effects of an isosteric glutamate-to-glutamine mutation in the catalytic base, a mutation which mimics the immediate electrostatic consequences of ATP hydrolysis in the active site. Calorimetric studies demonstrate that this mutation facilitates the ECT in Escherichia coli SecA and triggers it completely in Bacillus subtilis SecA. Consistent with the substantial increase in entropy observed in the course of the ECT, hydrogen-deuterium exchange mass spectrometry demonstrates that it increases protein backbone dynamics in domain-domain interfaces at remote locations from the ATPase active site. The catalytic glutamate is one of ~250 charged amino acids in SecA, and yet neutralization of its side chain charge is sufficient to trigger a global order-disorder transition in this 100 kDa enzyme. The intricate network of structural interactions mediating this effect couples local electrostatic changes during ATP hydrolysis to global conformational and dynamic changes in SecA. This network forms the foundation of the allosteric mechanochemistry that efficiently harnesses the chemical energy stored in ATP to drive complex mechanical processes. PMID:23167435

  7. [Glutamate neurotransmission, stress and hormone secretion].

    PubMed

    Jezová, D; Juránková, E; Vigas, M

    1995-11-01

    Glutamate neurotransmission has been investigated in relation to several physiological processes (learning, memory) as well as to neurodegenerative and other disorders. Little attention has been paid to its involvement in neuroendocrine response during stress. Penetration of excitatory amino acids from blood to the brain is limited by the blood-brain barrier. As a consequence, several toxic effects but also bioavailability for therapeutic purposes are reduced. A free access to circulating glutamate is possible only in brain structures lacking the blood-brain barrier or under conditions of its increased permeability. Excitatory amino acids were shown to stimulate the pituitary hormone release, though the mechanism of their action is still not fully understood. Stress exposure in experimental animals induced specific changes in mRNA levels coding the glutamate receptor subunits in the hippocampus and hypothalamus. The results obtained with the use of glutamate receptor antagonists indicate that a number of specific receptor subtypes contribute to the stimulation of ACTH release during stress. The authors provided also data on the role of NMDA receptors in the control of catecholamine release, particularly in stress-induced secretion of epinephrine. These results were the first piece of evidence on the involvement of endogenous excitatory amino acids in neuroendocrine activation during stress. Neurotoxic effects of glutamate in animals are well described, especially after its administration in the neonatal period. In men, glutamate toxicity and its use as a food additive are a continuous subject of discussions. The authors found an increase in plasma cortisol and norepinephrine, but not epinephrine and prolactin, in response to the administration of a high dose of glutamate. It cannot be excluded that these effects might be induced even by lower doses in situations with increased vulnerability to glutamate action (age, individual variability). (Tab. 1, Fig. 6, Ref. 44

  8. Mars Surveyor Project Landing Site Activities

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C.; Briggs, Geoffrey; Saunders, R. Stephen; Gilmore, Martha; Soderblom, Larry

    1999-01-01

    The Mars Surveyor Program --now a cooperative program led by NASA and CNES along with other international partners -- is underway. It has the primary science objective of furthering our understanding of the biological potential and possible biological history of Mars and has the complementary objective of improving our understanding of martian climate evolution and planetary history The missions will develop technology and acquire data necessary for eventual human Exploration. Launches of orbiters, landers and rovers will take place in 2001 and in 2003; in 2005 a complete system will be launched capable of returning samples to Earth by 2008. A key aspect of the program is the selection of landing sites. This abstract 1) reports on the status of the landing site selection process that begins with the 2001 lander mission and 2) outlines be opportunities for the Mars community to provide input into the landing site selection process.

  9. Mars Surveyor Project Landing Site Activities

    NASA Technical Reports Server (NTRS)

    Gulick, V. C.; Briggs, Geoffrey; Saunders, R. Stephen; Gilmore, Martha; Soderblom, Larry

    1999-01-01

    The Mars Surveyor Program -- now a cooperative program led by NASA and CNES along with other international partners -- is underway. It has the primary science objective of furthering our understanding of the biological potential and possible biological history of Mars and has the complementary objective of improving our understanding of martian climate evolution and planetary history. The missions will develop technology and acquire data necessary for eventual human exploration. Launches of orbiters, landers and rovers will take place in 2001 and in 2003; in 2005 a complete system will be launched capable of returning samples to Earth by 2008. A key aspect of the program is the selection of landing sites. This abstract 1) reports on the status of the landing site selection process that begins with the 2001 lander mission and 2) outlines the opportunities for the Mars community to provide input into the landing site selection process.

  10. Exercise increases mitochondrial glutamate oxidation in the mouse cerebral cortex.

    PubMed

    Herbst, Eric A F; Holloway, Graham P

    2016-07-01

    The present study investigated the impact of acute exercise on stimulating mitochondrial respiratory function in mouse cerebral cortex. Where pyruvate-stimulated respiration was not affected by acute exercise, glutamate respiration was enhanced following the exercise bout. Additional assessment revealed that this affect was dependent on the presence of malate and did not occur when substituting glutamine for glutamate. As such, our results suggest that glutamate oxidation is enhanced with acute exercise through activation of the malate-aspartate shuttle. PMID:27184881

  11. Activation of Inhibitors by Sortase Triggers Irreversible Modification of the Active Site*S

    PubMed Central

    Maresso, Anthony W.; Wu, Ruiying; Kern, Justin W.; Zhang, Rongguang; Janik, Dorota; Missiakas, Dominique M.; Duban, Mark-Eugene; Joachimiak, Andrzej; Schneewind, Olaf

    2011-01-01

    Sortases anchor surface proteins to the cell wall of Gram-positive pathogens through recognition of specific motif sequences. Loss of sortase leads to large reductions in virulence, which identifies sortase as a target for the development of antibacterials. By screening 135,625 small molecules for inhibition, we report here that aryl (β-amino)ethyl ketones inhibit sortase enzymes from staphylococci and bacilli. Inhibition of sortases occurs through an irreversible, covalent modification of their active site cysteine. Sortases specifically activate this class of molecules via β-elimination, generating a reactive olefin intermediate that covalently modifies the cysteine thiol. Analysis of the three-dimensional structure of Bacillus anthracis sortase B with and without inhibitor provides insights into the mechanism of inhibition and reveals binding pockets that can be exploited for drug discovery. PMID:17545669

  12. The bifunctional active site of s-adenosylmethionine synthetase. Roles of the active site aspartates.

    PubMed

    Taylor, J C; Markham, G D

    1999-11-12

    S-Adenosylmethionine (AdoMet) synthetase catalyzes the biosynthesis of AdoMet in a unique enzymatic reaction. Initially the sulfur of methionine displaces the intact tripolyphosphate chain (PPP(i)) from ATP, and subsequently PPP(i) is hydrolyzed to PP(i) and P(i) before product release. The crystal structure of Escherichia coli AdoMet synthetase shows that the active site contains four aspartate residues. Aspartate residues Asp-16* and Asp-271 individually provide the sole protein ligand to one of the two required Mg(2+) ions (* denotes a residue from a second subunit); aspartates Asp-118 and Asp-238* are proposed to interact with methionine. Each aspartate has been changed to an uncharged asparagine, and the metal binding residues were also changed to alanine, to assess the roles of charge and ligation ability on catalytic efficiency. The resultant enzyme variants all structurally resemble the wild type enzyme as indicated by circular dichroism spectra and are tetramers. However, all have k(cat) reductions of approximately 10(3)-fold in AdoMet synthesis, whereas the MgATP and methionine K(m) values change by less than 3- and 8-fold, respectively. In the partial reaction of PPP(i) hydrolysis, mutants of the Mg(2+) binding residues have >700-fold reduced catalytic efficiency (k(cat)/K(m)), whereas the D118N and D238*N mutants are impaired less than 35-fold. The catalytic efficiency for PPP(i) hydrolysis by Mg(2+) site mutants is improved by AdoMet, like the wild type enzyme. In contrast AdoMet reduces the catalytic efficiency for PPP(i) hydrolysis by the D118N and D238*N mutants, indicating that the events involved in AdoMet activation are hindered in these methionyl binding site mutants. Ca(2+) uniquely activates the D271A mutant enzyme to 15% of the level of Mg(2+), in contrast to the approximately 1% Ca(2+) activation of the wild type enzyme. This indicates that the Asp-271 side chain size is a discriminator between the activating ability of Ca(2+) and the

  13. Activation of Group II and Group III metabotropic glutamate receptors by endogenous ligand(s) and the modulation of synaptic transmission in the superficial superior colliculus.

    PubMed

    Thompson, H; Neale, S A; Salt, T E

    2004-11-01

    Previous work from this laboratory indicates that Group II/III metabotropic glutamate (mGlu) receptors modulate responses of SC neurones to visual stimuli in vivo. It is thought that tonic levels of glutamate may be sufficient to activate some mGlu receptors. We wished to investigate if these receptors are activated under ambient conditions in SC. Field excitatory postsynaptic potentials (fEPSPs) evoked by optic tract stimulation were recorded from 300 microm slices of the adult pigmented rat superior colliculus at 34 degrees C. The Group II receptor selective agonist LY354740 (100-300 nM) had no significant effect on the peak amplitude of the fEPSP, although it did enhance the late phase of the fEPSP. In order to test for activation of Group II receptors by endogenous ligand, the selective antagonists LY341495 (50 nM) or EGLU (200 microM) were applied: these either enhanced or reduced the fEPSP amplitude. In similar experiments carried out at 22 degrees C, no effect was seen. The fEPSP enhancements, but not the fEPSP reductions, could be occluded by GABA antagonists. Application of higher concentrations of LY341495 (300, 600 nM-known to also affect Group III receptors, particularly mGlu8), or co-application of 50 nM LY341495 and the Group III-selective antagonist CPPG (100 microM) produced enhancements of responses, or counteracted response reductions over those seen with 50 nM LY341495 alone. The predominant Group II receptor in SC is mGlu3. It is known that this can be located presynaptically on GABAergic and glutamatergic terminals, postsynaptically, and on glia. Our results indicate that such receptors are tonically activated by endogenous transmitter, have distinct effects, and influence retino-collicular transmission. Furthermore, there is a segregation of effects where receptors exert some of their effects via modulation of GABAergic circuitry. PMID:15527816

  14. Intragenic suppression of an active site mutation in the human apurinic/apyrimidinic endonuclease.

    PubMed

    Izumi, T; Malecki, J; Chaudhry, M A; Weinfeld, M; Hill, J H; Lee, J C; Mitra, S

    1999-03-19

    The apurinic/apyrimidinic endonucleases (APE) contain several highly conserved sequence motifs. The glutamic acid residue in a consensus motif, LQE96TK98 in human APE (hAPE-1), is crucial because of its role in coordinating Mg2+, an essential cofactor. Random mutagenesis of the inactive E96A mutant cDNA, followed by phenotypic screening in Escherichia coli, led to isolation of an intragenic suppressor with a second site mutation, K98R. Although the Km of the suppressor mutant was about sixfold higher than that of the wild-type enzyme, their kcat values were similar for AP endonuclease activity. These results suggest that the E96A mutation affects only the DNA-binding step, but not the catalytic step of the enzyme. The 3' DNA phosphoesterase activities of the wild-type and the suppressor mutant were also comparable. No global change of the protein conformation is induced by the single or double mutations, but a local perturbation in the structural environment of tryptophan residues may be induced by the K98R mutation. The wild-type and suppressor mutant proteins have similar Mg2+ requirement for activity. These results suggest a minor perturbation in conformation of the suppressor mutant enabling an unidentified Asp or Glu residue to substitute for Glu96 in positioning Mg2+ during catalysis. The possibility that Asp70 is such a residue, based on its observed proximity to the metal-binding site in the wild-type protein, was excluded by site-specific mutation studies. It thus appears that another acidic residue coordinates with Mg2+ in the mutant protein. These results suggest a rather flexible conformation of the region surrounding the metal binding site in hAPE-1 which is not obvious from the X-ray crystallographic structure. PMID:10074406

  15. Extracellular glutamate alters mature osteoclast and osteoblast functions.

    PubMed

    Seidlitz, Eric P; Sharma, Mohit K; Singh, Gurmit

    2010-09-01

    Glutamatergic intercellular communication is involved in many aspects of metabolic homeostasis in normal bone. In bone metastasis, the balance between bone formation and degradation is disrupted. Although the responsible mechanisms are not clear, we have previously identified that cancer cell lines used in bone tumour models secrete glutamate, suggesting that tumour-derived glutamate may disrupt sensitive signalling systems in bone. This study examines the role of glutamate in mature osteoclastic bone resorption, osteoblast differentiation, and bone nodule formation. Glutamate was found to have no effect on the survival or activity of mature osteoclasts, although glutamate transporter inhibition and receptor blockade increased the number of bone resorption pits. Furthermore, transporter inhibition increased the area of resorbed bone while significantly decreasing the number of osteoclasts. Alkaline phosphatase activity and extracellular matrix mineralization were used as measurements of osteoblast differentiation. Glutamate significantly increased osteoblast differentiation and mineralization, but transport inhibitors had no effect. These studies support earlier findings suggesting that glutamate may be more important for osteoclastogenesis than for osteoclast proliferation or functions. Since glutamate is capable of changing the differentiation and activities of both osteoclast and osteoblast cell types in bone, it is reasonable to postulate that tumour-derived glutamate may impact bone homeostasis in bone metastasis.

  16. The Isoenzyme 7 of Tobacco NAD(H)-Dependent Glutamate Dehydrogenase Exhibits High Deaminating and Low Aminating Activities in Vivo1[OA

    PubMed Central

    Skopelitis, Damianos S.; Paranychianakis, Nikolaos V.; Kouvarakis, Antonios; Spyros, Apostolis; Stephanou, Euripides G.; Roubelakis-Angelakis, Kalliopi A.

    2007-01-01

    Following the discovery of glutamine synthetase/glutamate (Glu) synthase, the physiological roles of Glu dehydrogenase (GDH) in nitrogen metabolism in plants remain obscure and is the subject of considerable controversy. Recently, transgenics were used to overexpress the gene encoding for the β-subunit polypeptide of GDH, resulting in the GDH-isoenzyme 1 deaminating in vivo Glu. In this work, we present transgenic tobacco (Nicotiana tabacum) plants overexpressing the plant gdh gene encoding for the α-subunit polypeptide of GDH. The levels of transcript correlated well with the levels of total GDH protein, the α-subunit polypeptide, and the abundance of GDH-anionic isoenzymes. Assays of transgenic plant extracts revealed high in vitro aminating and low deaminating activities. However, gas chromatography/mass spectrometry analysis of the metabolic fate of 15NH4 or [15N]Glu revealed that GDH-isoenzyme 7 mostly deaminates Glu and also exhibits low ammonium assimilating activity. These and previous results firmly establish the direction of the reactions catalyzed by the anionic and cationic isoenzymes of GDH in vivo under normal growth conditions and reveal a paradox between the in vitro and in vivo enzyme activities. PMID:17932305

  17. Changes in D-aspartic acid and D-glutamic acid levels in the tissues and physiological fluids of mice with various D-aspartate oxidase activities.

    PubMed

    Han, Hai; Miyoshi, Yurika; Koga, Reiko; Mita, Masashi; Konno, Ryuichi; Hamase, Kenji

    2015-12-10

    D-Aspartic acid (D-Asp) and D-glutamic acid (D-Glu) are currently paid attention as modulators of neuronal transmission and hormonal secretion. These two D-amino acids are metabolized only by D-aspartate oxidase (DDO) in mammals. Therefore, in order to design and develop new drugs controlling the D-Asp and D-Glu amounts via regulation of the DDO activities, changes in these acidic D-amino acid amounts in various tissues are expected to be clarified in model animals having various DDO activities. In the present study, the amounts of Asp and Glu enantiomers in 6 brain tissues, 11 peripheral tissues and 2 physiological fluids of DDO(+/+), DDO(+/-) and DDO(-/-) mice were determined using a sensitive and selective two-dimensional HPLC system. As a result, the amounts of D-Asp were drastically increased with the decrease in the DDO activity in all the tested tissues and physiological fluids. On the other hand, the amounts of D-Glu were almost the same among the 3 strains of mice. The present results are useful for designing new drug candidates, such as DDO inhibitors, and further studies are expected.

  18. Pharmacology of glutamate receptor antagonists in the kindling model of epilepsy.

    PubMed

    Löscher, W

    1998-04-01

    It is widely accepted that excitatory amino acid transmitters such as glutamate are involved in the initiation of seizures and their propagation. Most attention has been directed to synapses using NMDA receptors, but more recent evidence indicates potential roles for ionotropic non-NMDA (AMPA/kainate) and metabotropic glutamate receptors as well. Based on the role of glutamate in the development and expression of seizures, antagonism of glutamate receptors has long been thought to provide a rational strategy in the search for new, effective anticonvulsant drugs. Furthermore, because glutamate receptor antagonists, particularly those acting on NMDA receptors, protect effectively in the induction of kindling, it was suggested that they may have utility in epilepsy prophylaxis, for example, after head trauma. However, first clinical trials with competitive and uncompetitive NMDA receptor antagonists in patients with partial (focal) seizures, showed that these drugs lack convincing anticonvulsant activity but induce severe neurotoxic adverse effects in doses which were well tolerated in healthy volunteers. Interestingly, the only animal model which predicted the unfavorable clinical activity of competitive NMDA antagonists in patients with chronic epilepsy was the kindling model of temporal lobe epilepsy, indicating that this model should be used in the search for more effective and less toxic glutamate receptor antagonists. In this review, results from a large series of experiments on different categories of glutamate receptor antagonists in fully kindled rats are summarized and discussed. NMDA antagonists, irrespective whether they are competitive, high- or low-affinity uncompetitive, glycine site or polyamine site antagonists, do not counteract focal seizure activity and only weakly, if at all, attenuate propagation to secondarily generalized seizures in this model, indicating that once kindling is established, NMDA receptors are not critical for the expression of

  19. The active site of ribulose-bisphosphate carboxylase/oxygenase

    SciTech Connect

    Hartman, F.C.

    1991-01-01

    The active site of ribulose-bisphosphate carboxylase/oxygenase requires interacting domains of adjacent, identical subunits. Most active-site residues are located within the loop regions of an eight-stranded {beta}/{alpha}-barrel which constitutes the larger C-terminal domain; additional key residues are located within a segment of the smaller N-terminal domain which partially covers the mouth of the barrel. Site-directed mutagenesis of the gene encoding the enzyme from Rhodospirillum rubrum has been used to delineate functions of active-site residues. 6 refs., 2 figs.

  20. Savannah River Site prioritization of transition activities

    SciTech Connect

    Finley, R.H.

    1993-11-01

    Effective management of SRS conversion from primarily a production facility to other missions (or Decontamination and Decommissioning (D&D)) requires a systematic and consistent method of prioritizing the transition activities. This report discusses the design of a prioritizing method developed to achieve systematic and consistent methods of prioritizing these activities.

  1. DOE site performance assessment activities. Radioactive Waste Technical Support Program

    SciTech Connect

    Not Available

    1990-07-01

    Information on performance assessment capabilities and activities was collected from eight DOE sites. All eight sites either currently dispose of low-level radioactive waste (LLW) or plan to dispose of LLW in the near future. A survey questionnaire was developed and sent to key individuals involved in DOE Order 5820.2A performance assessment activities at each site. The sites surveyed included: Hanford Site (Hanford), Idaho National Engineering Laboratory (INEL), Los Alamos National Laboratory (LANL), Nevada Test Site (NTS), Oak Ridge National Laboratory (ORNL), Paducah Gaseous Diffusion Plant (Paducah), Portsmouth Gaseous Diffusion Plant (Portsmouth), and Savannah River Site (SRS). The questionnaire addressed all aspects of the performance assessment process; from waste source term to dose conversion factors. This report presents the information developed from the site questionnaire and provides a comparison of site-specific performance assessment approaches, data needs, and ongoing and planned activities. All sites are engaged in completing the radioactive waste disposal facility performance assessment required by DOE Order 5820.2A. Each site has achieved various degrees of progress and have identified a set of critical needs. Within several areas, however, the sites identified common needs and questions.

  2. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    SciTech Connect

    Zull, Lawrence M.; Yeniscavich, William

    2008-01-15

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

  3. Luminal l-glutamate enhances duodenal mucosal defense mechanisms via multiple glutamate receptors in rats

    PubMed Central

    Watanabe, Chikako; Mizumori, Misa; Kaunitz, Jonathan D.

    2009-01-01

    Presence of taste receptor families in the gastrointestinal mucosa suggests a physiological basis for local and early detection of a meal. We hypothesized that luminal l-glutamate, which is the primary nutrient conferring fundamental umami or proteinaceous taste, influences mucosal defense mechanisms in rat duodenum. We perfused the duodenal mucosa of anesthetized rats with l-glutamate (0.1–10 mM). Intracellular pH (pHi) of the epithelial cells, blood flow, and mucus gel thickness (MGT) were simultaneously and continuously measured in vivo. Some rats were pretreated with indomethacin or capsaicin. Duodenal bicarbonate secretion (DBS) was measured with flow-through pH and CO2 electrodes. We tested the effects of agonists or antagonists for metabotropic glutamate receptor (mGluR) 1 or 4 or calcium-sensing receptor (CaSR) on defense factors. Luminal l-glutamate dose dependently increased pHi and MGT but had no effect on blood flow in the duodenum. l-glutamate (10 mM)-induced cellular alkalinization and mucus secretion were inhibited by pretreatment with indomethacin or capsaicin. l-glutamate effects on pHi and MGT were mimicked by mGluR4 agonists and inhibited by an mGluR4 antagonist. CaSR agonists acidified cells with increased MGT and DBS, unlike l-glutamate. Perfusion of l-glutamate with inosinate (inosine 5′-monophosphate, 0.1 mM) enhanced DBS only in combination, suggesting synergistic activation of the l-glutamate receptor, typical of taste receptor type 1. l-leucine or l-aspartate had similar effects on DBS without any effect on pHi and MGT. Preperfusion of l-glutamate prevented acid-induced cellular injury, suggesting that l-glutamate protects the mucosa by enhancing mucosal defenses. Luminal l-glutamate may activate multiple receptors and afferent nerves and locally enhance mucosal defenses to prevent subsequent injury attributable to acid exposure in the duodenum. PMID:19643955

  4. Production of D-Glutamate from L-Glutamate with Glutamate Racemase and L-Glutamate Oxidase.

    PubMed

    Oikawa, T; Watanabe, M; Makiura, H; Kusakabe, H; Yamade, K; Soda, K

    1999-01-01

    We studied production of D-glutamate from L-glutamate using a bioreactor consisting of two columns of sequentially connected immobilized glutamate racemase (EC 5.1.1.3, from Bacillus subtilis IFO 3336) and L-glutamate oxidase (EC 1.4.3.11, from Streptomyces sp. X119-6): L-glutamate was racemized by the glutamate racemase column, and then L-glutamate was oxidized by the L-glutamate oxidase column. Consequently only D-glutamate remained, and was easily separated from the α-ketoglutarate formed by anion-exchange chromatography. Both enzymes were highly stabilized by immobilization. The pH and temperature optima of immobilized glutamate racemase (pH 8, 40°C) were similar to those of immobilized L-glutamate oxidase (pH 7, 50°C). Accordingly, we connected the two columns tandemly to do both enzyme reactions under the same conditions. Actually 4.5 μmol of D-glutamate was produced and isolated from 10 μmol of L-glutamate, about 90% of the theoretical yield. PMID:27373918

  5. Astroglial glutamate transporters coordinate excitatory signaling and brain energetics.

    PubMed

    Robinson, Michael B; Jackson, Joshua G

    2016-09-01

    In the mammalian brain, a family of sodium-dependent transporters maintains low extracellular glutamate and shapes excitatory signaling. The bulk of this activity is mediated by the astroglial glutamate transporters GLT-1 and GLAST (also called EAAT2 and EAAT1). In this review, we will discuss evidence that these transporters co-localize with, form physical (co-immunoprecipitable) interactions with, and functionally couple to various 'energy-generating' systems, including the Na(+)/K(+)-ATPase, the Na(+)/Ca(2+) exchanger, glycogen metabolizing enzymes, glycolytic enzymes, and mitochondria/mitochondrial proteins. This functional coupling is bi-directional with many of these systems both being regulated by glutamate transport and providing the 'fuel' to support glutamate uptake. Given the importance of glutamate uptake to maintaining synaptic signaling and preventing excitotoxicity, it should not be surprising that some of these systems appear to 'redundantly' support the energetic costs of glutamate uptake. Although the glutamate-glutamine cycle contributes to recycling of neurotransmitter pools of glutamate, this is an over-simplification. The ramifications of co-compartmentalization of glutamate transporters with mitochondria for glutamate metabolism are discussed. Energy consumption in the brain accounts for ∼20% of the basal metabolic rate and relies almost exclusively on glucose for the production of ATP. However, the brain does not possess substantial reserves of glucose or other fuels. To ensure adequate energetic supply, increases in neuronal activity are matched by increases in cerebral blood flow via a process known as 'neurovascular coupling'. While the mechanisms for this coupling are not completely resolved, it is generally agreed that astrocytes, with processes that extend to synapses and endfeet that surround blood vessels, mediate at least some of the signal that causes vasodilation. Several studies have shown that either genetic deletion or

  6. Mutations of fumarase that distinguish between the active site and a nearby dicarboxylic acid binding site.

    PubMed Central

    Weaver, T.; Lees, M.; Banaszak, L.

    1997-01-01

    Two mutant forms of fumarase C from E. coli have been made using PCR and recombinant DNA. The recombinant form of the protein included a histidine arm on the C-terminal facilitating purification. Based on earlier studies, two different carboxylic acid binding sites, labeled A- and B-, were observed in crystal structures of the wild type and inhibited forms of the enzyme. A histidine at each of the sites was mutated to an asparagine. H188N at the A-site resulted in a large decrease in specific activity, while the H129N mutation at the B-site had essentially no effect. From the results, we conclude that the A-site is indeed the active site, and a dual role for H188 as a potential catalytic base is proposed. Crystal structures of the two mutant proteins produced some unexpected results. Both mutations reduced the affinity for the carboxylic acids at their respective sites. The H129N mutant should be particularly useful in future kinetic studies because it sterically blocks the B-site with the carboxyamide of asparagine assuming the position of the ligand's carboxylate. In the H188N mutation at the active site, the new asparagine side chain still interacts with an active site water that appears to have moved slightly as a result of the mutation. PMID:9098893

  7. Ionizable Side Chains at Catalytic Active Sites of Enzymes

    PubMed Central

    Jimenez-Morales, David; Liang, Jie

    2012-01-01

    Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1072 Å3. The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes. PMID:22484856

  8. Glutamate involvement in calcium–dependent migration of astrocytoma cells

    PubMed Central

    2014-01-01

    Background Astrocytoma are known to have altered glutamate machinery that results in the release of large amounts of glutamate into the extracellular space but the precise role of glutamate in favoring cancer processes has not yet been fully established. Several studies suggested that glutamate might provoke active killing of neurons thereby producing space for cancer cells to proliferate and migrate. Previously, we observed that calcium promotes disassembly of integrin-containing focal adhesions in astrocytoma, thus providing a link between calcium signaling and cell migration. The aim of this study was to determine how calcium signaling and glutamate transmission cooperate to promote enhanced astrocytoma migration. Methods The wound-healing model was used to assay migration of human U87MG astrocytoma cells and allowed to monitor calcium signaling during the migration process. The effect of glutamate on calcium signaling was evaluated together with the amount of glutamate released by astrocytoma during cell migration. Results We observed that glutamate stimulates motility in serum-starved cells, whereas in the presence of serum, inhibitors of glutamate receptors reduce migration. Migration speed was also reduced in presence of an intracellular calcium chelator. During migration, cells displayed spontaneous Ca2+ transients. L-THA, an inhibitor of glutamate re-uptake increased the frequency of Ca2+ oscillations in oscillating cells and induced Ca2+ oscillations in quiescent cells. The frequency of migration-associated Ca2+ oscillations was reduced by prior incubation with glutamate receptor antagonists or with an anti-β1 integrin antibody. Application of glutamate induced increases in internal free Ca2+ concentration ([Ca2+]i). Finally we found that compounds known to increase [Ca2+]i in astrocytomas such as thapsigagin, ionomycin or the metabotropic glutamate receptor agonist t-ACPD, are able to induce glutamate release. Conclusion Our data demonstrate that

  9. The kinetic mechanism of the glutamate-aspartate carrier in rat intestinal brush-border membrane vesicles: the role of potassium.

    PubMed

    Scalera, V; Mola, M G; Prezioso, G

    2002-04-01

    The sodium dependent transport system for L-glutamate and L-aspartate localized in the apical part of rat enterocytes has previously been kinetically characterized (Prezioso, G., and Scalera, V. (1996). Biochim. Biophys. Acta 1279, 144-148). In this paper the mechanism by which the potassium cation specifically activates the L-glutamate-sodium cotransport process is investigated. Potassium has been found to act as an activator when it is present inside the membrane vesicles, while its presence outside is ineffective, and the effect is saturable. The kinetic parameters with respect to sodium and glutamate have been compared in the presence and in the absence of the activator. The results indicate that the ordered sodium-sodium glutamate mechanism is not altered by potassium, and that the activation is probably exerted on both the rate determining steps of the transport process. It is proposed that (1) a specific binding site for potassium is present on the inside hydrophilic part of the membrane carrier, (2) the binding of the effector accelerates the intramembrane rearrangement steps of both the disodium glutamate-carrier complex and the free carrier, (3) the affinity of the carrier is lowered with respect to sodium whereas it is increased for glutamate, and (4) K+ antiport is not performed by this carrier.

  10. Butachlor impact on protein, free amino acid and glutamine contents, and on activity levels of aminotransferases, glutamate dehydrogenase and glutamine synthetase in the fresh water snail, Pila globosa (Swainson).

    PubMed

    Rajyalakshmi, T; Srinivas, T; Swamy, K V; Mohan, P M

    1996-08-01

    Biochemical changes followed in the freshwater snail Pila globosa (Swainson) during exposure to sublethal concentrations of the herbicide butachlor (26.6 ppm) in the ambient medium, at 3,6,12,24 and 48 h intervals, were marked by a significant decrease in total and soluble proteins, and an increase in free amino acids in foot and hepatopancreas up to 12 h before gradually recovering. Aminotransferase activities and glutamine content decreased during the early periods of exposure, while glutamate dehydrogenase activity increased. After an initial elevation, glutamate synthetase activity decreased at later intervals. Maximum effect of butachlor on the enzymes was seen after 12 h exposure. The extent of increase or decrease in different parameters examined varied between the two tissues studied. These changes are discussed in relation to the toxic stress of butachlor.

  11. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator#

    PubMed Central

    Wu, Huixian; Wang, Chong; Gregory, Karen J.; Han, Gye Won; Cho, Hyekyung P.; Xia, Yan; Niswender, Colleen M.; Katritch, Vsevolod; Meiler, Jens; Cherezov, Vadim; Conn, P. Jeffrey; Stevens, Raymond C.

    2014-01-01

    The excitatory neurotransmitter glutamate induces modulatory actions via the metabotropic glutamate receptors (mGlus), which are class C G protein-coupled receptors (GPCRs). We determined the 2.8 Å resolution structure of the human mGlu1 receptor seven-transmembrane (7TM) domain bound to a negative allosteric modulator FITM. The modulator binding site partially overlaps with the orthosteric binding sites of class A GPCRs, but is more restricted compared to most other GPCRs. We observed a parallel 7TM dimer, mediated by cholesterols, suggesting that signaling initiated by glutamate’s interaction with the extracellular domain might be mediated via 7TM interactions within the full-length receptor dimer. A combination of crystallography, structure-activity relationships, mutagenesis, and full-length dimer modeling provides insights on the allosteric modulation and activation mechanism of class C GPCRs. PMID:24603153

  12. Glutamate Signaling in Benign and Malignant Disorders: Current Status, Future Perspectives, and Therapeutic Implications

    PubMed Central

    Willard, Stacey S.; Koochekpour, Shahriar

    2013-01-01

    Glutamate, a nonessential amino acid, is the major excitatory neurotransmitter in the central nervous system. As such, glutamate has been shown to play a role in not only neural processes, such as learning and memory, but also in bioenergetics, biosynthetic and metabolic oncogenic pathways. Glutamate has been the target of intense investigation for its involvement not only in the pathogenesis of benign neurodegenerative diseases (NDDs) such as Parkinson's disease, Alzheimer's disease, schizophrenia, multiple sclerosis, and amyotropic lateral sclerosis (ALS), but also in carcinogenesis and progression of malignant diseases. In addition to its intracellular activities, glutamate in secreted form is a phylogenetically conserved cell signaling molecule. Glutamate binding activates multiple major receptor families including the metabotropic glutamate receptors (mGluRs) and ionotropic glutamate receptors (iGluRs), both of which have been implicated in various signaling pathways in cancer. Inhibition of extracellular glutamate release or glutamate receptor activation via competitive or non-competitive antagonists decreases growth, migration and invasion and induces apoptosis in breast cancer, melanoma, glioma and prostate cancer cells. In this review, we discuss the current state of glutamate signaling research as it relates to benign and malignant diseases. In addition, we provide a synopsis of clinical trials using glutamate antagonists for the treatment of NDD and malignant diseases. We conclude that in addition to its potential role as a metabolic biomarker, glutamate receptors and glutamate-initiated signaling pathways may provide novel therapeutic opportunities for cancer. PMID:23983606

  13. Mutational and Structural Analyses of Caldanaerobius polysaccharolyticus Man5B Reveal Novel Active Site Residues for Family 5 Glycoside Hydrolases

    PubMed Central

    Han, Yejun; Burnett, Alanna; Nagasawa, Naoko; Mackie, Roderick I.; Nakamura, Haruki; Morikawa, Kosuke; Cann, Isaac

    2013-01-01

    CpMan5B is a glycoside hydrolase (GH) family 5 enzyme exhibiting both β-1,4-mannosidic and β-1,4-glucosidic cleavage activities. To provide insight into the amino acid residues that contribute to catalysis and substrate specificity, we solved the structure of CpMan5B at 1.6 Å resolution. The structure revealed several active site residues (Y12, N92 and R196) in CpMan5B that are not present in the active sites of other structurally resolved GH5 enzymes. Residue R196 in GH5 enzymes is thought to be strictly conserved as a histidine that participates in an electron relay network with the catalytic glutamates, but we show that an arginine fulfills a functionally equivalent role and is found at this position in every enzyme in subfamily GH5_36, which includes CpMan5B. Residue N92 is required for full enzymatic activity and forms a novel bridge over the active site that is absent in other family 5 structures. Our data also reveal a role of Y12 in establishing the substrate preference for CpMan5B. Using these molecular determinants as a probe allowed us to identify Man5D from Caldicellulosiruptor bescii as a mannanase with minor endo-glucanase activity. PMID:24278284

  14. Classical conditioning of the rabbit eyelid response increases glutamate receptor binding in hippocampal synaptic membranes.

    PubMed Central

    Mamounas, L A; Thompson, R F; Lynch, G; Baudry, M

    1984-01-01

    Hippocampal pyramidal neurons exhibit a rapid within-trial increase in firing frequency during classical conditioning of the rabbit eyelid response. It has been proposed that the cellular mechanisms responsible for hippocampal long-term potentiation (LTP) may also mediate this learning-dependent increase in neuronal activity. The induction of LTP in rat hippocampal slices results in an increase in the number of [3H]glutamate-binding sites in the potentiated region. The present study investigates the kinetics of [3H]glutamate binding to hippocampal synaptic membranes after eyelid conditioning in the rabbit. We report that the regional distribution of [3H]glutamate binding across the layers of rabbit hippocampus is compatible with a dendritic localization. The pharmacological and ionic properties of the binding suggest that it is associated with an excitatory amino acid receptor. After eyelid conditioning, the maximal number of hippocampal [3H]glutamate-binding sites is increased in animals receiving paired presentations of the tone conditioned stimulus and corneal air-puff unconditioned stimulus relative to that found in naive or unpaired control animals. These results strengthen the hypothesis that an LTP-like mechanism underlies the increase in hippocampal firing frequency during rabbit eyelid conditioning. PMID:6144101

  15. Glutamate and neurotrophic factors in neuronal plasticity and disease.

    PubMed

    Mattson, Mark P

    2008-11-01

    Glutamate's role as a neurotransmitter at synapses has been known for 40 years, but glutamate has since been shown to regulate neurogenesis, neurite outgrowth, synaptogenesis, and neuron survival in the developing and adult mammalian nervous system. Cell-surface glutamate receptors are coupled to Ca(2+) influx and release from endoplasmic reticulum stores, which causes rapid (kinase- and protease-mediated) and delayed (transcription-dependent) responses that change the structure and function of neurons. Neurotrophic factors and glutamate interact to regulate developmental and adult neuroplasticity. For example, glutamate stimulates the production of brain-derived neurotrophic factor (BDNF), which, in turn, modifies neuronal glutamate sensitivity, Ca(2+) homeostasis, and plasticity. Neurotrophic factors may modify glutamate signaling directly, by changing the expression of glutamate receptor subunits and Ca(2+)-regulating proteins, and also indirectly by inducing the production of antioxidant enzymes, energy-regulating proteins, and antiapoptotic Bcl-2 family members. Excessive activation of glutamate receptors, under conditions of oxidative and metabolic stress, may contribute to neuronal dysfunction and degeneration in diseases ranging from stroke and Alzheimer's disease to psychiatric disorders. By enhancing neurotrophic factor signaling, environmental factors such as exercise and dietary energy restriction, and chemicals such as antidepressants may optimize glutamatergic signaling and protect against neurological disorders.

  16. The poly-γ-d-glutamic acid capsule surrogate of the Bacillus anthracis capsule induces nitric oxide production via the platelet activating factor receptor signaling pathway.

    PubMed

    Lee, Hae-Ri; Jeon, Jun Ho; Park, Ok-Kyu; Chun, Jeong-Hoon; Park, Jungchan; Rhie, Gi-Eun

    2015-12-01

    The poly-γ-d-glutamic acid (PGA) capsule, a major virulence factor of Bacillus anthracis, confers protection of the bacillus from phagocytosis and allows its unimpeded growth in the host. PGA capsules released from B. anthracis are associated with lethal toxin in the blood of experimentally infected animals and enhance the cytotoxic effect of lethal toxin on macrophages. In addition, PGA capsule itself activates macrophages and dendritic cells to produce proinflammatory cytokine such as IL-1β, indicating multiple roles of PGA capsule in anthrax pathogenesis. Here we report that PGA capsule of Bacillus licheniformis, a surrogate of B. anthracis capsule, induces production of nitric oxide (NO) in RAW264.7 cells and bone marrow-derived macrophages. NO production was induced by PGA in a dose-dependent manner and was markedly reduced by inhibitors of inducible NO synthase (iNOS), suggesting iNOS-dependent production of NO. Induction of NO production by PGA was not observed in macrophages from TLR2-deficient mice and was also substantially inhibited in RAW264.7 cells by pretreatment of TLR2 blocking antibody. Subsequently, the downstream signaling events such as ERK, JNK and p38 of MAPK pathways as well as NF-κB activation were required for PGA-induced NO production. In addition, the induced NO production was significantly suppressed by treatment with antagonists of platelet activating factor receptor (PAFR) or PAFR siRNA, and mediated through PAFR/Jak2/STAT-1 signaling pathway. These findings suggest that PGA capsule induces NO production in macrophages by triggering both TLR2 and PAFR signaling pathways which lead to activation of NF-kB and STAT-1, respectively.

  17. Glutamate Receptor Agonists and Glutamate Transporter Antagonists Regulate Differentiation of Osteoblast Lineage Cells.

    PubMed

    Xie, Wenjie; Dolder, Silvia; Siegrist, Mark; Wetterwald, Antoinette; Hofstetter, Willy

    2016-08-01

    Development and function of osteoblast lineage cells are regulated by a complex microenvironment consisting of the bone extracellular matrix, cells, systemic hormones and cytokines, autocrine and paracrine factors, and mechanical load. Apart from receptors that transduce extracellular signals into the cell, molecular transporters play a crucial role in the cellular response to the microenvironment. Transporter molecules are responsible for cellular uptake of nutritional components, elimination of metabolites, ion transport, and cell-cell communication. In this report, the expression of molecular transporters in osteoblast lineage cells was investigated to assess their roles in cell development and activity. Low-density arrays, covering membrane and vesicular transport molecules, were used to assess gene expression in osteoblasts representing early and late differentiation states. Receptors and transporters for the amino acid glutamate were found to be differentially expressed during osteoblast development. Glutamate is a neurotransmitter in the central nervous system, and the mechanisms of its release, signal transduction, and cellular reabsorption in the synaptic cleft are well understood. Less clear, however, is the control of equivalent processes in peripheral tissues. In primary osteoblasts, inhibition of glutamate transporters with nonselective inhibitors leads to an increase in the concentration of extracellular glutamate. This change was accompanied by a decrease in osteoblast proliferation, stimulation of alkaline phosphatase, and the expression of transcripts encoding osteocalcin. Enzymatic removal of extracellular glutamate abolished these pro-differentiation effects, as did the inhibition of PKC- and Erk1/2-signaling pathways. These findings demonstrate that glutamate signaling promotes differentiation and activation of osteoblast lineage cells. Consequently, the glutamate system may represent a putative therapeutic target to induce an anabolic response

  18. The synthesis and characterization of poly(γ-glutamic acid)-coated magnetite nanoparticles and their effects on antibacterial activity and cytotoxicity

    NASA Astrophysics Data System (ADS)

    Inbaraj, B. Stephen; Kao, T. H.; Tsai, T. Y.; Chiu, C. P.; Kumar, R.; Chen, B. H.

    2011-02-01

    Magnetite nanoparticles (MNPs) modified with sodium and calcium salts of poly(γ-glutamic acid) (NaPGA and CaPGA) were synthesized by the coprecipitation method, followed by characterization and evaluation of their antibacterial and cytotoxic effects. Superparamagnetic MNPs are particularly attractive for magnetic driving as well as bacterial biofilm and cell targeting in in vivo applications. Characterization of synthesized MNPs by the Fourier transform infrared spectra and magnetization curves confirmed the PGA coating on MNPs. The mean diameter of NaPGA- and CaPGA-coated MNPs as determined by transmission electron microscopy was 11.8 and 14 nm, respectively, while the x-ray diffraction pattern revealed the as-synthesized MNPs to be pure magnetite. Based on agar dilution assay, both NaPGA- and CaPGA-coated MNPs showed a lower minimum inhibitory concentration in Salmonella enteritidis SE 01 than the commercial antibiotics linezolid and cefaclor, but the former was effective against Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 10832, whereas the latter was effective against Escherichia coli O157:H7 TWC 01. An in vitro cytotoxicity study in human skin fibroblast cells as measured by MTT assay implied the as-synthesized MNPs to be nontoxic. This outcome demonstrated that both γ-PGA-modified MNPs are cytocompatible and possess antibacterial activity in vitro, and thereby should be useful in in vivo studies for biomedical applications.

  19. On the regulative role of the glutamate receptor in mitochondria.

    PubMed

    Selin, Alexey A; Lobysheva, Natalia V; Nesterov, Semen V; Skorobogatova, Yulia A; Byvshev, Ivan M; Pavlik, Lyubov L; Mikheeva, Irina B; Moshkov, Dmitry A; Yaguzhinsky, Lev S; Nartsissov, Yaroslav R

    2016-05-01

    The purpose of this work was to study the regulative role of the glutamate receptor found earlier in the brain mitochondria. In the present work a glutamate-dependent signaling system with similar features was detected in mitochondria of the heart. The glutamate-dependent signaling system in the heart mitochondria was shown to be suppressed by γ-aminobutyric acid (GABA). The GABA receptor presence in the heart mitochondria was shown by golding with the use of antibodies to α- and β-subunits of the receptor. The activity of glutamate receptor was assessed according to the rate of synthesis of hydrogen peroxide. The glutamate receptor in mitochondria could be activated only under conditions of hypoxic stress, which in model experiments was imitated by blocking Complex I by rotenone or fatty acids. The glutamate signal in mitochondria was shown to be calcium- and potential-dependent and the activation of the glutamate cascade was shown to be accompanied by production of hydrogen peroxide. It was discovered that H2O2 synthesis involves two complexes of the mitochondrial electron transfer system - succinate dehydrogenase (SDH) and fatty acid dehydrogenase (ETF:QO). Thus, functions of the glutamate signaling system are associated with the system of respiration-glycolysis switching (the Pasteur-Crabtree) under conditions of hypoxia. PMID:26812870

  20. Glutamate receptor antibodies in neurological diseases: anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies, anti-NMDA-NR2A/B antibodies, anti-mGluR1 antibodies or anti-mGluR5 antibodies are present in subpopulations of patients with either: epilepsy, encephalitis, cerebellar ataxia, systemic lupus erythematosus (SLE) and neuropsychiatric SLE, Sjogren's syndrome, schizophrenia, mania or stroke. These autoimmune anti-glutamate receptor antibodies can bind neurons in few brain regions, activate glutamate receptors, decrease glutamate receptor's expression, impair glutamate-induced signaling and function, activate blood brain barrier endothelial cells, kill neurons, damage the brain, induce behavioral/psychiatric/cognitive abnormalities and ataxia in animal models, and can be removed or silenced in some patients by immunotherapy.

    PubMed

    Levite, Mia

    2014-08-01

    Glutamate is the major excitatory neurotransmitter of the Central Nervous System (CNS), and it is crucially needed for numerous key neuronal functions. Yet, excess glutamate causes massive neuronal death and brain damage by excitotoxicity--detrimental over activation of glutamate receptors. Glutamate-mediated excitotoxicity is the main pathological process taking place in many types of acute and chronic CNS diseases and injuries. In recent years, it became clear that not only excess glutamate can cause massive brain damage, but that several types of anti-glutamate receptor antibodies, that are present in the serum and CSF of subpopulations of patients with a kaleidoscope of human neurological diseases, can undoubtedly do so too, by inducing several very potent pathological effects in the CNS. Collectively, the family of anti-glutamate receptor autoimmune antibodies seem to be the most widespread, potent, dangerous and interesting anti-brain autoimmune antibodies discovered up to now. This impression stems from taking together the presence of various types of anti-glutamate receptor antibodies in a kaleidoscope of human neurological and autoimmune diseases, their high levels in the CNS due to intrathecal production, their multiple pathological effects in the brain, and the unique and diverse mechanisms of action by which they can affect glutamate receptors, signaling and effects, and subsequently impair neuronal signaling and induce brain damage. The two main families of autoimmune anti-glutamate receptor antibodies that were already found in patients with neurological and/or autoimmune diseases, and that were already shown to be detrimental to the CNS, include the antibodies directed against ionotorpic glutamate receptors: the anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies and anti-NMDA-NR2 antibodies, and the antibodies directed against Metabotropic glutamate receptors: the anti-mGluR1 antibodies and the anti-mGluR5 antibodies. Each type of these anti-glutamate

  1. Activation of A(1) adenosine or mGlu3 metabotropic glutamate receptors enhances the release of nerve growth factor and S-100beta protein from cultured astrocytes.

    PubMed

    Ciccarelli, R; Di Iorio, P; Bruno, V; Battaglia, G; D'Alimonte, I; D'Onofrio, M; Nicoletti, F; Caciagli, F

    1999-09-01

    Pharmacological activation of A(1) adenosine receptor with 2-chloro-N6-cyclopentyladenosine (CCPA) or mGlu3 metabotropic glutamate receptors with (2S,2'R,3'R)-2-(2', 3'-dicarboxycyclopropyl)glycine (DCG-IV) or aminopyrrolidine-2R, 4R-dicarboxylate (2R,4R-APDC) enhanced the release of nerve growth factor (NGF) or S-100beta protein from rat cultured astrocytes. Stimulation of release by CCPA and DCG-IV or 2R,4R-APDC was inhibited by the A(1) adenosine receptor antagonist 8-cyclopentyl-1, 3-dipropylxanthine and by the mGlu2/3 receptor antagonist (2S,1'S, 2'S,3'R)-2-(2'-carboxy-3'-phenylcyclopropyl)glycine (PCCG-4), respectively. Time-course studies revealed a profound difference between the release of S-100beta protein and the release of NGF in response to extracellular signals. Stimulation of S-100beta protein exhibited rapid kinetics, peaking after 1 h of drug treatment, whereas the enhancement of NGF release was much slower, requiring at least 6 h of A(1) adenosine or mGlu3 receptor activation. In addition, stimulation of NGF but not S-100beta release was substantially reduced in cultures treated with the protein synthesis inhibitor cycloheximide. In addition, a 6-8 h treatment of cultured astrocytes with A(1) or mGlu3 receptor agonists increased the levels of both NGF mRNA and NGF-like immunoreactive proteins, including NGF prohormone. We conclude that activation of A(1) adenosine or mGlu3 receptors produces pleiotropic effects in astrocytes, stimulating the synthesis and/or the release of protein factors. Astrocytes may therefore become targets for drugs that stimulate the local production of neurotrophic factors in the CNS, and this may provide the basis for a novel therapeutic strategy in chronic neurodegenerative disorders. PMID:10457374

  2. C-terminal residues of plant glutamate decarboxylase are required for oligomerization of a high-molecular weight complex and for activation by calcium/calmodulin.

    PubMed

    Zik, Moriyah; Fridmann-Sirkis, Yael; Fromm, Hillel

    2006-05-01

    Bacterial glutamate decarboxylase (GAD) is a homohexameric enzyme of about 330 kDa. Plant GAD differs from the bacterial enzyme in having a C-terminal extension of 33 amino acids within which resides a calmodulin (CaM)-binding domain. In order to assess the role of the C-terminal extension in the formation of GAD complexes and in activation by Ca2+/CaM, we examined complexes formed with the purified full-length recombinant petunia GAD expressed in E. coli, and with a 9 amino acid C-terminal deletion mutant (GADDeltaC9). Size exclusion chromatography revealed that the full-length GAD formed complexes of about 580 kDa and 300 kDa in the absence of Ca2+/CaM, whereas in the presence of Ca2+/CaM all complexes shifted to approximately 680 kDa. With deletion of 9 amino acids from the C-terminus (KKKKTNRVC(500)), the ability to bind CaM in the presence of Ca2+, and to purify it by CaM-affinity chromatography was retained, but the formation of GAD complexes larger than 340 kDa and enzyme activation by Ca2+/CaM were completely abolished. Hence, responsiveness to Ca2+/CaM is associated with the formation of protein complexes of 680 kDa, and requires some or all of the nine C-terminal amino acid residues. We suggest that evolution of plant GAD from a bacterial ancestral enzyme involved the formation of higher molecular weight complexes required for activation by Ca2+/CaM.

  3. Chronic Glutamate Toxicity in Neurodegenerative Diseases—What is the Evidence?

    PubMed Central

    Lewerenz, Jan; Maher, Pamela

    2015-01-01

    Together with aspartate, glutamate is the major excitatory neurotransmitter in the brain. Glutamate binds and activates both ligand-gated ion channels (ionotropic glutamate receptors) and a class of G-protein coupled receptors (metabotropic glutamate receptors). Although the intracellular glutamate concentration in the brain is in the millimolar range, the extracellular glutamate concentration is kept in the low micromolar range by the action of excitatory amino acid transporters that import glutamate and aspartate into astrocytes and neurons. Excess extracellular glutamate may lead to excitotoxicity in vitro and in vivo in acute insults like ischemic stroke via the overactivation of ionotropic glutamate receptors. In addition, chronic excitotoxicity has been hypothesized to play a role in numerous neurodegenerative diseases including amyotrophic lateral sclerosis, Alzheimer's disease and Huntington's disease. Based on this hypothesis, a good deal of effort has been devoted to develop and test drugs that either inhibit glutamate receptors or decrease extracellular glutamate. In this review, we provide an overview of the different pathways that are thought to lead to an over-activation of the glutamatergic system and glutamate toxicity in neurodegeneration. In addition, we summarize the available experimental evidence for glutamate toxicity in animal models of neurodegenerative diseases. PMID:26733784

  4. Impaired circadian photosensitivity in mice lacking glutamate transmission from retinal melanopsin cells

    PubMed Central

    Fuller, Patrick M.; Hattar, Samer; Saper, Clifford B.; Lu, Jun

    2015-01-01

    Intrinsically photoreceptive retinal ganglion cells (ipRGC) contain the photopigment melanopsin and convey retinal light inputs to the circadian system via the retinohypothalamic tract (RHT) projection to the suprachiasmatic nucleus (SCN). The principal neurotransmitter of this projection is glutamate, and ipRGCs use the vesicular glutamate transporter 2 (VGLUT2) to package glutamate into synaptic vesicles. However, these neurons contain other potential neurotransmitters, such as PACAP. To test the role of glutamate in mediating ipRGC light inputs into the SCN, we crossed mice in which Cre-recombinase expression is driven by the melanopsin promotor (Opn4Cre/+) with mice in which the second exon of VGLUT2 is flanked by loxP sites (VGLUT2fl/fl), producing ipRGCs that are unable to package glutamate into synaptic vesicles. Such mice had free-running circadian rhythms that did not entrain to a 12:12 light-dark (12:12 LD) cycle, nor did they show a phase delay after a 45 minute light pulse administered at circadian time (CT) 14. A small subset of the mice did appear to entrain to the 12:12 LD cycle with a positive phase angle to lights-off; a similar entrainment pattern could be achieved in free-running mice if they were exposed to a 12:12 LD cycle with light of a greater intensity. Glutamate transmission from the ipRGCs is necessary for normal light entrainment of the SCN at moderate (0.35 W/m2) light levels, but residual transmission (possibly by PACAP in ipRGCs or by other RGCs) can weakly entrain animals, particularly at very high (6.53 W/m2) light levels, although it may be less effective at suppressing locomotor activity (light masking). PMID:25512304

  5. Glutamate Synaptic Inputs to Ventral Tegmental Area Neurons in the Rat Derive Primarily from Subcortical Sources

    PubMed Central

    Omelchenko, Natalia; Sesack, Susan R.

    2007-01-01

    Dopamine and GABA neurons in the ventral tegmental area project to the nucleus accumbens and prefrontal cortex and modulate locomotor and reward behaviors as well as cognitive and affective processes. Both midbrain cell types receive synapses from glutamate afferents that provide an essential control of behaviorally-linked activity patterns, although the sources of glutamate inputs have not yet been completely characterized. We used antibodies against the vesicular glutamate transporters VGlut1 and VGlut2 to investigate the morphology and synaptic organization of axons containing these proteins as putative markers of glutamate afferents from cortical versus subcortical sites, respectively. We also characterized the ventral tegmental area cell populations receiving VGlut1+ or VGlut2+ synapses according to their transmitter phenotype (dopamine or GABA) and major projection target (nucleus accumbens or prefrontal cortex). By light and electron microscopic examination, VGlut2+ as opposed to VGlut1+ axon terminals were more numerous, had a larger average size, synapsed more proximally, and were more likely to form convergent synapses onto the same target. Both axon types formed predominantly asymmetric synapses, although VGlut2+ terminals more often formed synapses with symmetric morphology. No absolute selectivity was observed for VGlut1+ or VGlut2+ axons to target any particular cell population. However, the synapses onto mesoaccumbens neurons more often involved VGlut2+ terminals, whereas mesoprefrontal neurons received relatively equal synaptic inputs from VGlut1+ and VGlut2+ profiles. The distinct morphological features of VGlut1 and VGlut2 positive axons suggest that glutamate inputs from presumed cortical and subcortical sources, respectively, differ in the nature and intensity of their physiological actions on midbrain neurons. More specifically, our findings imply that subcortical glutamate inputs to the ventral tegmental area expressing VGlut2 predominate over

  6. Kinemage of action - Proposed reaction mechanism of glutamate-1-semialdehyde aminomutase at an atomic level

    SciTech Connect

    Sorensen, John L.; Stetefeld, Joerg

    2011-10-07

    Highlights: {yields} Inhibitors of tetrapyrrole cofactor biosynthesis may be useful antibiotics. {yields} Mechanism of critical enzyme, glutamate-1-semialdehyde aminomutase, is presented. {yields} Unique vitamin B6-dependant enzyme traps intermediate in active site. {yields} Molecular dynamics show that a re-orientation of the substrate is required. -- Abstract: Glutamate-1-semialdehyde aminomutase (GSAM), a key enzyme in tetrapyrrole cofactor biosynthesis, performs a unique transamination on a single substrate. The substrate, glutamate-1-semialdehyde (GSA), undergoes a reaction that exchanges the position of an amine and a carbonyl group to produce 5-aminolevulinic acid (ALA). This transamination reaction is unique in the fact that is does not require an external cofactor to act as a nitrogen donor or acceptor in this transamination reaction. One of the other remarkable features of the catalytic mechanism is the release free in the enzyme active site of the intermediate 4,5-diaminovaleric acid (DAVA). The action of a gating loop prevents the escape of DAVA from the active site. In a MD simulation approach, using snapshots provided by X-ray crystallography and protein crystal absorption spectrometry data, the individual catalytic steps in this unique intramolecular transamination have been elucidated.

  7. The cystine/glutamate antiporter system xc− drives breast tumor cell glutamate release and cancer-induced bone pain

    PubMed Central

    Slosky, Lauren M.; BassiriRad, Neemah M.; Symons, Ashley M.; Thompson, Michelle; Doyle, Timothy; Forte, Brittany L.; Staatz, William D.; Bui, Lynn; Neumann, William L.; Mantyh, Patrick W.; Salvemini, Daniela; Largent-Milnes, Tally M.; Vanderah, Todd W.

    2016-01-01

    Abstract Bone is one of the leading sites of metastasis for frequently diagnosed malignancies, including those arising in the breast, prostate and lung. Although these cancers develop unnoticed and are painless in their primary sites, bone metastases result in debilitating pain. Deeper investigation of this pain may reveal etiology and lead to early cancer detection. Cancer-induced bone pain (CIBP) is inadequately managed with current standard-of-care analgesics and dramatically diminishes patient quality of life. While CIBP etiology is multifaceted, elevated levels of glutamate, an excitatory neurotransmitter, in the bone-tumor microenvironment may drive maladaptive nociceptive signaling. Here, we establish a relationship between the reactive nitrogen species peroxynitrite, tumor-derived glutamate, and CIBP. In vitro and in a syngeneic in vivo model of breast CIBP, murine mammary adenocarcinoma cells significantly elevated glutamate via the cystine/glutamate antiporter system xc−. The well-known system xc− inhibitor sulfasalazine significantly reduced levels of glutamate and attenuated CIBP-associated flinching and guarding behaviors. Peroxynitrite, a highly reactive species produced in tumors, significantly increased system xc− functional expression and tumor cell glutamate release. Scavenging peroxynitrite with the iron and mangano-based porphyrins, FeTMPyP and SRI10, significantly diminished tumor cell system xc− functional expression, reduced femur glutamate levels and mitigated CIBP. In sum, we demonstrate how breast cancer bone metastases upregulate a cystine/glutamate co-transporter to elevate extracellular glutamate. Pharmacological manipulation of peroxynitrite or system xc− attenuates CIBP, supporting a role for tumor-derived glutamate in CIBP and validating the targeting of system xc− as a novel therapeutic strategy for the management of metastatic bone pain. PMID:27482630

  8. Active site - a site of binding of affinity inhibitors in baker's yeast inorganic pyrophosphatase

    SciTech Connect

    Svyato, I.E.; Sklyankina, V.A.; Avaeva, S.M.

    1986-03-20

    The interaction of the enzyme-substrate complex with methyl phosphate, O-phosphoethanolamine, O-phosphopropanolamine, N-acetylphosphoserine, and phosphoglyolic acid, as well as pyrophosphatase, modified by monoesters of phosphoric acid, with pyrophosphate and tripolyphosphate, was investigated. It was shown that the enzyme containing the substrate in the active site does not react with monophosphates, but modified pyrophosphatase entirely retains the ability to bind polyanions to the regulatory site. It is concluded that the inactivation of baker's yeast inorganic pyrophosphatase by monoesters of phosphoric acid, which are affinity inhibitors of it, is the result of modification of the active site of the enzyme.

  9. A novel approach to predict active sites of enzyme molecules.

    PubMed

    Chou, Kuo-Chen; Cai, Yu-dong

    2004-04-01

    Enzymes are critical in many cellular signaling cascades. With many enzyme structures being solved, there is an increasing need to develop an automated method for identifying their active sites. However, given the atomic coordinates of an enzyme molecule, how can we predict its active site? This is a vitally important problem because the core of an enzyme molecule is its active site from the viewpoints of both pure scientific research and industrial application. In this article, a topological entity was introduced to characterize the enzymatic active site. Based on such a concept, the covariant discriminant algorithm was formulated for identifying the active site. As a paradigm, the serine hydrolase family was demonstrated. The overall success rate by jackknife test for a data set of 88 enzyme molecules was 99.92%, and that for a data set of 50 independent enzyme molecules was 99.91%. Meanwhile, it was shown through an example that the prediction algorithm can also be used to find any typographic error of a PDB file in annotating the constituent amino acids of catalytic triad and to suggest a possible correction. The very high success rates are due to the introduction of a covariance matrix in the prediction algorithm that makes allowance for taking into account the coupling effects among the key constituent atoms of active site. It is anticipated that the novel approach is quite promising and may become a useful high throughput tool in enzymology, proteomics, and structural bioinformatics. PMID:14997541

  10. Neuronal vs glial glutamate uptake: Resolving the conundrum.

    PubMed

    Danbolt, N C; Furness, D N; Zhou, Y

    2016-09-01

    Neither normal brain function nor the pathological processes involved in neurological diseases can be adequately understood without knowledge of the release, uptake and metabolism of glutamate. The reason for this is that glutamate (a) is the most abundant amino acid in the brain, (b) is at the cross-roads between several metabolic pathways, and (c) serves as the major excitatory neurotransmitter. In fact most brain cells express glutamate receptors and are thereby influenced by extracellular glutamate. In agreement, brain cells have powerful uptake systems that constantly remove glutamate from the extracellular fluid and thereby limit receptor activation. It has been clear since the 1970s that both astrocytes and neurons express glutamate transporters. However the relative contribution of neuronal and glial transporters to the total glutamate uptake activity, however, as well as their functional importance, has been hotly debated ever since. The present short review provides (a) an overview of what we know about neuronal glutamate uptake as well as an historical description of how we got there, and (b) a hypothesis reconciling apparently contradicting observations thereby possibly resolving the paradox. PMID:27235987

  11. Modulation of intestinal L-glutamate transport by luminal leptin.

    PubMed

    Fanjul, Carmen; Barrenetxe, Jaione; Lostao, María Pilar; Ducroc, Robert

    2015-06-01

    Leptin is secreted into the digestive tract and contributes to the absorption of dietary molecules by regulating transporters activity. Here, we studied the effect of luminal leptin on the intestinal transport of L-glutamate, an important component of human diet. We examined the effect of leptin on L-glutamate uptake in rat intestine in vitro measuring glutamate-induced short-circuit current (Isc) in Ussing chambers and L-[(3)H (U)]-glutamate uptake in jejunal everted rings. Glutamate-induced Isc was only observed in Na(+)-free conditions. This Isc was concentration (1-60 mmol L(-1)) and pH dependent. Luminal leptin increased glutamate Isc (∼100 %). Dose-response curve showed a biphasic pattern, with maximal stimulations observed at 10(-13) and 10(-10) mmol L(-1), that were sensitive to leptin receptor antagonist. In everted rings, two glutamate transport mechanisms were distinguished: a Na(+)-dependent, H(+)-independent, that was inhibited by leptin (∼20 %), and a Na(+)-independent but H(+)-dependent, that was enhanced by leptin (∼20 %), in line with data obtained in Ussing chambers. Altogether, these data reveal original non-monotonic effect of luminal leptin in the intestine and demonstrate a new role for this hormone in the modulation of L-glutamate transport, showing that luminal active gut peptides can influence absorption of amino acids.

  12. Growth exponents in surface models with non-active sites

    NASA Astrophysics Data System (ADS)

    Santos, M.; Figueiredo, W.; Aarão Reis, F. D. A.

    2006-11-01

    In this work, we studied the role played by the inactive sites present on the substrate of a growing surface. In our model, one particle sticks at the surface if the site where it falls is an active site. However, we allow the deposited particle to diffuse along the surface in accordance with some mechanism previously defined. Using Monte Carlo simulations, and some analytical results, we have investigated the model in (1+1) and (2+1) dimensions considering different relaxation mechanisms. We show that the consideration of non-active sites is a crucial point in the model. In fact, we have seen that the saturation regime is not observed for any value of the density of inactive sites. Besides, the growth exponent β turns to be one, at long times, whatever the mechanism of diffusion we consider in one and two dimensions.

  13. Activation of Phosphatidylinositol-Linked Dopamine Receptors Induces a Facilitation of Glutamate-Mediated Synaptic Transmission in the Lateral Entorhinal Cortex

    PubMed Central

    Glovaci, Iulia; Chapman, C. Andrew

    2015-01-01

    The lateral entorhinal cortex receives strong inputs from midbrain dopamine neurons that can modulate its sensory and mnemonic function. We have previously demonstrated that 1 µM dopamine facilitates synaptic transmission in layer II entorhinal cortex cells via activation of D1-like receptors, increased cAMP-PKA activity, and a resulting enhancement of AMPA-receptor mediated currents. The present study assessed the contribution of phosphatidylinositol (PI)-linked D1 receptors to the dopaminergic facilitation of transmission in layer II of the rat entorhinal cortex, and the involvement of phospholipase C activity and release of calcium from internal stores. Whole-cell patch-clamp recordings of glutamate-mediated evoked excitatory postsynaptic currents were obtained from pyramidal and fan cells. Activation of D1-like receptors using SKF38393, SKF83959, or 1 µM dopamine induced a reversible facilitation of EPSCs which was abolished by loading cells with either the phospholipase C inhibitor U-73122 or the Ca2+ chelator BAPTA. Neither the L-type voltage-gated Ca2+ channel blocker nifedipine, nor the L/N-type channel blocker cilnidipine, blocked the facilitation of synaptic currents. However, the facilitation was blocked by blocking Ca2+ release from internal stores via inositol 1,4,5-trisphosphate (InsP3) receptors or ryanodine receptors. Follow-up studies demonstrated that inhibiting CaMKII activity with KN-93 failed to block the facilitation, but that application of the protein kinase C inhibitor PKC(19-36) completely blocked the dopamine-induced facilitation. Overall, in addition to our previous report indicating a role for the cAMP-PKA pathway in dopamine-induced facilitation of synaptic transmission, we demonstrate here that the dopaminergic facilitation of synaptic responses in layer II entorhinal neurons also relies on a signaling cascade dependent on PI-linked D1 receptors, PLC, release of Ca2+ from internal stores, and PKC activation which is likely dependent

  14. A small ribozyme with dual-site kinase activity

    PubMed Central

    Biondi, Elisa; Maxwell, Adam W.R.; Burke, Donald H.

    2012-01-01

    Phosphoryl transfer onto backbone hydroxyls is a recognized catalytic activity of nucleic acids. We find that kinase ribozyme K28 possesses an unusually complex active site that promotes (thio)phosphorylation of two residues widely separated in primary sequence. After allowing the ribozyme to radiolabel itself by phosphoryl transfer from [γ-32P]GTP, DNAzyme-mediated cleavage yielded two radiolabeled cleavage fragments, indicating phosphorylation sites within each of the two cleavage fragments. These sites were mapped by alkaline digestion and primer extension pausing. Enzymatic digestion and mutational analysis identified nucleotides important for activity and established the active structure as being a constrained pseudoknot with unusual connectivity that may juxtapose the two reactive sites. Nuclease sensitivities for nucleotides near the pseudoknot core were altered in the presence of GTPγS, indicating donor-induced folding. The 5′ target site was more strongly favored in full-length ribozyme K28 (128 nt) than in truncated RNAs (58 nt). Electrophoretic mobilities of self-thiophosphorylated products on organomercurial gels are distinct from the 5′ mono-thiophosphorylated product produced by reaction with polynucleotide kinase, potentially indicating simultaneous labeling of both sites within individual RNA strands. Our evidence supports a single, compact structure with local dynamics, rather than global rearrangement, as being responsible for dual-site phosphorylation. PMID:22618879

  15. Rat odontoblasts may use glutamate to signal dentin injury.

    PubMed

    Cho, Yi Sul; Ryu, Chang Hyun; Won, Jong Hwa; Vang, Hue; Oh, Seog Bae; Ro, Jin Young; Bae, Yong Chul

    2016-10-29

    Accumulating evidence indicates that odontoblasts act as sensor cells, capable of triggering action potentials in adjacent pulpal nociceptive axons, suggesting a paracrine signaling via a currently unknown mediator. Since glutamate can mediate signaling by non-neuronal cells, and peripheral axons may express glutamate receptors (GluR), we hypothesized that the expression of high levels of glutamate, and of sensory receptors in odontoblasts, combined with an expression of GluR in adjacent pulpal axons, is the morphological basis for odontoblastic sensory signaling. To test this hypothesis, we investigated the expression of glutamate, the thermo- and mechanosensitive ion channels transient receptor potential vanilloid 1 (TRPV1), transient receptor potential ankyrin 1 (TRPA1), and TWIK-1-related K+channel (TREK-1), and the glutamate receptor mGluR5, in a normal rat dental pulp, and following dentin injury. We also examined the glutamate release from odontoblast in cell culture. Odontoblasts were enriched with glutamate, at the level as high as in adjacent pulpal axons, and showed immunoreactivity for TRPV1, TRPA1, and TREK-1. Pulpal sensory axons adjacent to odontoblasts expressed mGluR5. Both the levels of glutamate in odontoblasts, and the expression of mGluR5 in nearby axons, were upregulated following dentin injury. The extracellular glutamate concentration was increased significantly after treating of odontoblast cell line with calcium permeable ionophore, suggesting glutamate release from odontoblasts. These findings lend morphological support to the hypothesis that odontoblasts contain glutamate as a potential neuroactive substance that may activate adjacent pulpal axons, and thus contribute to dental pain and hypersensitivity.

  16. Rat odontoblasts may use glutamate to signal dentin injury.

    PubMed

    Cho, Yi Sul; Ryu, Chang Hyun; Won, Jong Hwa; Vang, Hue; Oh, Seog Bae; Ro, Jin Young; Bae, Yong Chul

    2016-10-29

    Accumulating evidence indicates that odontoblasts act as sensor cells, capable of triggering action potentials in adjacent pulpal nociceptive axons, suggesting a paracrine signaling via a currently unknown mediator. Since glutamate can mediate signaling by non-neuronal cells, and peripheral axons may express glutamate receptors (GluR), we hypothesized that the expression of high levels of glutamate, and of sensory receptors in odontoblasts, combined with an expression of GluR in adjacent pulpal axons, is the morphological basis for odontoblastic sensory signaling. To test this hypothesis, we investigated the expression of glutamate, the thermo- and mechanosensitive ion channels transient receptor potential vanilloid 1 (TRPV1), transient receptor potential ankyrin 1 (TRPA1), and TWIK-1-related K+channel (TREK-1), and the glutamate receptor mGluR5, in a normal rat dental pulp, and following dentin injury. We also examined the glutamate release from odontoblast in cell culture. Odontoblasts were enriched with glutamate, at the level as high as in adjacent pulpal axons, and showed immunoreactivity for TRPV1, TRPA1, and TREK-1. Pulpal sensory axons adjacent to odontoblasts expressed mGluR5. Both the levels of glutamate in odontoblasts, and the expression of mGluR5 in nearby axons, were upregulated following dentin injury. The extracellular glutamate concentration was increased significantly after treating of odontoblast cell line with calcium permeable ionophore, suggesting glutamate release from odontoblasts. These findings lend morphological support to the hypothesis that odontoblasts contain glutamate as a potential neuroactive substance that may activate adjacent pulpal axons, and thus contribute to dental pain and hypersensitivity. PMID:27555550

  17. Neurotoxic Potential of Lunar and Martian Dust: Influence on Em, Proton Gradient, Active Transport, and Binding of Glutamate in Rat Brain Nerve Terminals

    PubMed Central

    Krisanova, Natalia; Kasatkina, Ludmila; Sivko, Roman; Borysov, Arseniy; Nazarova, Anastasiya; Slenzka, Klaus; Borisova, Tatiana

    2013-01-01

    Abstract The harmful effects of lunar dust (LD) on directly exposed tissues are documented in the literature, whereas researchers are only recently beginning to consider its effects on indirectly exposed tissues. During inhalation, nano-/microsized particles are efficiently deposited in nasal, tracheobronchial, and alveolar regions and transported to the central nervous system. The neurotoxic potential of LD and martian dust (MD) has not yet been assessed. Glutamate is the main excitatory neurotransmitter involved in most aspects of normal brain function, whereas disturbances in glutamate homeostasis contribute to the pathogenesis of major neurological disorders. The research was focused on the analysis of the effects of LD/MD simulants (JSC-1a/JSC, derived from volcanic ash) on the key characteristics of glutamatergic neurotransmission. The average size of LD and MD particles (even minor fractions) before and after sonication was determined by dynamic light scattering. With the use of radiolabeled l-[14C]glutamate, it was shown that there is an increase in l-[14C]glutamate binding to isolated rat brain nerve terminals (synaptosomes) in low [Na+] media and at low temperature in the presence of LD. MD caused significantly lesser changes under the same conditions, whereas nanoparticles of magnetite had no effect at all. Fluorimetric experiments with potential-sensitive dye rhodamine 6G and pH-sensitive dye acridine orange showed that the potential of the plasma membrane of the nerve terminals and acidification of synaptic vesicles were not altered by LD/MD (and nanoparticles of magnetite). Thus, the unique effect of LD to increase glutamate binding to the nerve terminals was shown. This can have deleterious effects on extracellular glutamate homeostasis in the central nervous system and cause alterations in the ambient level of glutamate, which is extremely important for proper synaptic transmission. During a long-term mission, a combination of constant irritation

  18. Glutamate-dependent transcriptional regulation of GLAST: role of PKC.

    PubMed

    López-Bayghen, Esther; Ortega, Arturo

    2004-10-01

    The Na+-dependent glutamate/aspartate transporter GLAST plays a major role in the removal of glutamate from the synaptic cleft. Short-term, as well as long-term changes in transporter activity are triggered by glutamate. An important locus of regulation is the density of transporter molecules present at the plasma membrane. A substrate-dependent change in the translocation rate of the transporter molecules accounts for the short-term effect, whereas the long-term modulation apparently involves transcriptional regulation. Using cultured chick cerebellar Bergmann glial cells, we report here that glutamate receptors activation mediate a substantial reduction in the transcriptional activity of the chglast promoter through the Ca2+/diacylglicerol-dependent protein kinase (PKC) signaling cascade. Overexpression of constitutive active PKC isoforms of mimic the glutamate effect. Accordingly, increased levels of c-Jun or c-Fos, but not Jun-B, Jun-D or Fos-B, lower the chglast promoter activity. Serial deletions and electrophorectic mobility shift assays were used to define a specific region within the 5' proximal region of the chglast promoter, associated with transcriptional repression. A putative glutamate response element could be defined in the proximal promoter stretch more likely between nts -40 and -78. These results demonstrate that GLAST is under glutamate-dependent transcriptional control through PKC, and support the notion of a pivotal role of this neurotransmitter in the regulation of its own removal from the synaptic cleft, thereby modulating, mainly in the long term, glutamatergic transmission.

  19. Antagonism of glutamate receptors in the intermediate and caudal NTS of awake rats produced no changes in the hypertensive response to chemoreflex activation.

    PubMed

    Machado, Benedito H; Bonagamba, Leni G H

    2005-01-15

    The role of excitatory amino acid (EAA) receptors in the neurotransmission of the sympathoexcitatory component of the chemoreflex (pressor response) in the intermediate and caudal aspects of the commissural nucleus tractus solitarii (NTS) of awake rats was evaluated. Microinjection of kynurenic acid, a non-selective antagonist of EAA receptors, into the intermediate and caudal commissural NTS produced a large increase in the baseline mean arterial pressure (MAP), which may reduce the magnitude of the pressor response to chemoreflex activation. To avoid this problem sodium nitroprusside (SNP) was infused (i.v.) after microinjections of kynurenic acid (2 nmol/50 nl) into the NTS, in order to normalize the MAP and then the chemoreflex was activated and the magnitude of the pressor response evaluated. Microinjection of kynurenic acid into the intermediate (bilaterally) and caudal (midline) commissural NTS (n=6) produced a significant increase in baseline MAP (103+/-5 vs. 137+/-6 mm Hg) normalized by SNP infusion (107+/-4 mm Hg) and under this experimental condition the pressor response to chemoreflex activation was not statistically different in relation to the control (37+/-7 vs. 44+/-6 mm Hg). Bilateral microinjections of kynurenic acid into the caudal NTS (n=8) also produced a significant increase in baseline MAP (109+/-4 vs. 145+/-6 mm Hg) normalized by SNP infusion (109+/-6 mm Hg). After normalization of MAP, the pressor response to chemoreflex activation at 3 (34+/-6 mm Hg) and 10 min (37+/-6 mm Hg) was also not different in relation to the control (46+/-5 mm Hg). These data indicate that the antagonism of EAA receptors simultaneously in the intermediate (bilateral) and caudal (midline) commissural NTS or only in the caudal commissural NTS (bilateral) of awake rats had no effect on the hypertensive response to chemoreflex activation. We suggest that neurotransmitter other than l-glutamate may take part in the neurotransmission of the sympathoexcitatory component

  20. Chloride is an Agonist of Group II and III Metabotropic Glutamate Receptors.

    PubMed

    DiRaddo, John O; Miller, Eric J; Bowman-Dalley, Carrie; Wroblewska, Barbara; Javidnia, Monica; Grajkowska, Ewa; Wolfe, Barry B; Liotta, Dennis C; Wroblewski, Jarda T

    2015-09-01

    The elemental anion chloride is generally considered a passive participant in neuronal excitability, and has never been shown to function as an agonist in its own right. We show that the antagonist-mediated, glutamate-independent inverse agonism of group II and III metabotropic glutamate (mGlu) receptors results from inhibition of chloride-mediated activation. In silico molecular modeling, site-directed mutagenesis, and functional assays demonstrate (1) that chloride is an agonist of mGlu3, mGlu4, mGlu6, and mGlu8 receptors with its own orthosteric site, and (2) that chloride is not an agonist of mGlu2 receptors. Molecular modeling-predicted and site-directed mutagenesis supported that this unique property of mGlu2 receptors results from a single divergent amino acid, highlighting a molecular switch for chloride insensitivity that is transduced through an arginine flip. Ultimately, these results suggest that activation of group II and III mGlu receptors is mediated not only by glutamate, but also by physiologically relevant concentrations of chloride. PMID:26089372

  1. Structural Features of the Glutamate Transporter Family

    PubMed Central

    Slotboom, Dirk Jan; Konings, Wil N.; Lolkema, Juke S.

    1999-01-01

    Neuronal and glial glutamate transporters remove the excitatory neurotransmitter glutamate from the synaptic cleft and thus prevent neurotoxicity. The proteins belong to a large and widespread family of secondary transporters, including bacterial glutamate, serine, and C4-dicarboxylate transporters; mammalian neutral-amino-acid transporters; and an increasing number of bacterial, archaeal, and eukaryotic proteins that have not yet been functionally characterized. Sixty members of the glutamate transporter family were found in the databases on the basis of sequence homology. The amino acid sequences of the carriers have diverged enormously. Homology between the members of the family is most apparent in a stretch of approximately 150 residues in the C-terminal part of the proteins. This region contains four reasonably well-conserved sequence motifs, all of which have been suggested to be part of the translocation pore or substrate binding site. Phylogenetic analysis of the C-terminal stretch revealed the presence of five subfamilies with characterized members: (i) the eukaryotic glutamate transporters, (ii) the bacterial glutamate transporters, (iii) the eukaryotic neutral-amino-acid transporters, (iv) the bacterial C4-dicarboxylate transporters, and (v) the bacterial serine transporters. A number of other subfamilies that do not contain characterized members have been defined. In contrast to their amino acid sequences, the hydropathy profiles of the members of the family are extremely well conserved. Analysis of the hydropathy profiles has suggested that the glutamate transporters have a global structure that is unique among secondary transporters. Experimentally, the unique structure of the transporters was recently confirmed by membrane topology studies. Although there is still controversy about part of the topology, the most likely model predicts the presence of eight membrane-spanning α-helices and a loop-pore structure which is unique among secondary

  2. Glutamate dehydrogenase: structure, allosteric regulation, and role in insulin homeostasis.

    PubMed

    Li, Ming; Li, Changhong; Allen, Aron; Stanley, Charles A; Smith, Thomas J

    2014-01-01

    Glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of L-glutamate to 2-oxoglutarate. Only in the animal kingdom is this enzyme heavily allosterically regulated by a wide array of metabolites. The major activators are ADP and leucine and inhibitors include GTP, palmitoyl CoA, and ATP. Spontaneous mutations in the GTP inhibitory site that lead to the hyperinsulinism/hyperammonemia (HHS) syndrome have shed light as to why mammalian GDH is so tightly regulated. Patients with HHS exhibit hypersecretion of insulin upon consumption of protein and concomitantly extremely high levels of ammonium in the serum. The atomic structures of four new inhibitors complexed with GDH complexes have identified three different allosteric binding sites. Using a transgenic mouse model expressing the human HHS form of GDH, at least three of these compounds blocked the dysregulated form of GDH in pancreatic tissue. EGCG from green tea prevented the hyper-response to amino acids in whole animals and improved basal serum glucose levels. The atomic structure of the ECG-GDH complex and mutagenesis studies is directing structure-based drug design using these polyphenols as a base scaffold. In addition, all of these allosteric inhibitors are elucidating the atomic mechanisms of allostery in this complex enzyme.

  3. The structure and allosteric regulation of mammalian glutamate dehydrogenase.

    PubMed

    Li, Ming; Li, Changhong; Allen, Aron; Stanley, Charles A; Smith, Thomas J

    2012-03-15

    Glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of l-glutamate to 2-oxoglutarate. Only in the animal kingdom is this enzyme heavily allosterically regulated by a wide array of metabolites. The major activators are ADP and leucine, while the most important inhibitors include GTP, palmitoyl CoA, and ATP. Recently, spontaneous mutations in the GTP inhibitory site that lead to the hyperinsulinism/hyperammonemia (HHS) syndrome have shed light as to why mammalian GDH is so tightly regulated. Patients with HHS exhibit hypersecretion of insulin upon consumption of protein and concomitantly extremely high levels of ammonium in the serum. The atomic structures of four new inhibitors complexed with GDH complexes have identified three different allosteric binding sites. Using a transgenic mouse model expressing the human HHS form of GDH, at least three of these compounds were found to block the dysregulated form of GDH in pancreatic tissue. EGCG from green tea prevented the hyper-response to amino acids in whole animals and improved basal serum glucose levels. The atomic structure of the ECG-GDH complex and mutagenesis studies is directing structure-based drug design using these polyphenols as a base scaffold. In addition, all of these allosteric inhibitors are elucidating the atomic mechanisms of allostery in this complex enzyme.

  4. Lithium stimulates glutamate "release" and inositol 1,4,5-trisphosphate accumulation via activation of the N-methyl-D-aspartate receptor in monkey and mouse cerebral cortex slices.

    PubMed Central

    Dixon, J F; Los, G V; Hokin, L E

    1994-01-01

    Beginning at therapeutic concentrations (1-1.5 mM), the anti-manic-depressive drug lithium stimulated the release of glutamate, a major excitatory neurotransmitter in the brain, in monkey cerebral cortex slices in a time- and concentration-dependent manner, and this was associated with increased inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] accumulation. (+/-)-3-(2-Carboxypiperazin-4-yl)propyl-1-phosphoric acid (CPP), dizocilpine (MK-801), ketamine, and Mg(2+)-antagonists to the N-methyl-D-aspartate (NMDA) receptor/channel complex selectively inhibited lithium-stimulated Ins(1,4,5)P3 accumulation. Antagonists to cholinergic-muscarinic, alpha 1-adrenergic, 5-hydroxytryptamine2 (serotoninergic), and H1 histaminergic receptors had no effect. Antagonists to non-NMDA glutamate receptors had no effect on lithium-stimulated Ins(1,4,5)P3 accumulation. Possible reasons for this are discussed. Similar results were obtained in mouse cerebral cortex slices. Carbetapentane, which inhibits glutamate release, inhibited lithium-induced Ins(1,4,5)P3 accumulation in this model. It is concluded that the primary effect of lithium in the cerebral cortex slice model is stimulation of glutamate release, which, presumably via activation of the NMDA receptor, leads to Ca2+ entry. Ins(1,4,5)P3 accumulation increases due to the presumed increased influx of intracellular Ca2+, which activates phospholipase C. These effects may have relevance to the therapeutic action of lithium in the treatment of manic depression as well as its toxic effects, especially at lithium blood levels above 1.5 mM. Images PMID:8078888

  5. Deletion of Metabotropic Glutamate Receptors 2 and 3 (mGlu2 & mGlu3) in Mice Disrupts Sleep and Wheel-Running Activity, and Increases the Sensitivity of the Circadian System to Light.

    PubMed

    Pritchett, David; Jagannath, Aarti; Brown, Laurence A; Tam, Shu K E; Hasan, Sibah; Gatti, Silvia; Harrison, Paul J; Bannerman, David M; Foster, Russell G; Peirson, Stuart N

    2015-01-01

    Sleep and/or circadian rhythm disruption (SCRD) is seen in up to 80% of schizophrenia patients. The co-morbidity of schizophrenia and SCRD may in part stem from dysfunction in common brain mechanisms, which include the glutamate system, and in particular, the group II metabotropic glutamate receptors mGlu2 and mGlu3 (encoded by the genes Grm2 and Grm3). These receptors are relevant to the pathophysiology and potential treatment of schizophrenia, and have also been implicated in sleep and circadian function. In the present study, we characterised the sleep and circadian rhythms of Grm2/3 double knockout (Grm2/3-/-) mice, to provide further evidence for the involvement of group II metabotropic glutamate receptors in the regulation of sleep and circadian rhythms. We report several novel findings. Firstly, Grm2/3-/- mice demonstrated a decrease in immobility-determined sleep time and an increase in immobility-determined sleep fragmentation. Secondly, Grm2/3-/- mice showed heightened sensitivity to the circadian effects of light, manifested as increased period lengthening in constant light, and greater phase delays in response to nocturnal light pulses. Greater light-induced phase delays were also exhibited by wildtype C57Bl/6J mice following administration of the mGlu2/3 negative allosteric modulator RO4432717. These results confirm the involvement of group II metabotropic glutamate receptors in photic entrainment and sleep regulation pathways. Finally, the diurnal wheel-running rhythms of Grm2/3-/- mice were perturbed under a standard light/dark cycle, but their diurnal rest-activity rhythms were unaltered in cages lacking running wheels, as determined with passive infrared motion detectors. Hence, when assessing the diurnal rest-activity rhythms of mice, the choice of assay can have a major bearing on the results obtained.

  6. Deletion of Metabotropic Glutamate Receptors 2 and 3 (mGlu2 & mGlu3) in Mice Disrupts Sleep and Wheel-Running Activity, and Increases the Sensitivity of the Circadian System to Light

    PubMed Central

    Pritchett, David; Jagannath, Aarti; Brown, Laurence A.; Tam, Shu K. E.; Hasan, Sibah; Gatti, Silvia; Harrison, Paul J.; Bannerman, David M.; Foster, Russell G.; Peirson, Stuart N.

    2015-01-01

    Sleep and/or circadian rhythm disruption (SCRD) is seen in up to 80% of schizophrenia patients. The co-morbidity of schizophrenia and SCRD may in part stem from dysfunction in common brain mechanisms, which include the glutamate system, and in particular, the group II metabotropic glutamate receptors mGlu2 and mGlu3 (encoded by the genes Grm2 and Grm3). These receptors are relevant to the pathophysiology and potential treatment of schizophrenia, and have also been implicated in sleep and circadian function. In the present study, we characterised the sleep and circadian rhythms of Grm2/3 double knockout (Grm2/3-/-) mice, to provide further evidence for the involvement of group II metabotropic glutamate receptors in the regulation of sleep and circadian rhythms. We report several novel findings. Firstly, Grm2/3-/- mice demonstrated a decrease in immobility-determined sleep time and an increase in immobility-determined sleep fragmentation. Secondly, Grm2/3-/- mice showed heightened sensitivity to the circadian effects of light, manifested as increased period lengthening in constant light, and greater phase delays in response to nocturnal light pulses. Greater light-induced phase delays were also exhibited by wildtype C57Bl/6J mice following administration of the mGlu2/3 negative allosteric modulator RO4432717. These results confirm the involvement of group II metabotropic glutamate receptors in photic entrainment and sleep regulation pathways. Finally, the diurnal wheel-running rhythms of Grm2/3-/- mice were perturbed under a standard light/dark cycle, but their diurnal rest-activity rhythms were unaltered in cages lacking running wheels, as determined with passive infrared motion detectors. Hence, when assessing the diurnal rest-activity rhythms of mice, the choice of assay can have a major bearing on the results obtained. PMID:25950516

  7. Deletion of Metabotropic Glutamate Receptors 2 and 3 (mGlu2 & mGlu3) in Mice Disrupts Sleep and Wheel-Running Activity, and Increases the Sensitivity of the Circadian System to Light.

    PubMed

    Pritchett, David; Jagannath, Aarti; Brown, Laurence A; Tam, Shu K E; Hasan, Sibah; Gatti, Silvia; Harrison, Paul J; Bannerman, David M; Foster, Russell G; Peirson, Stuart N

    2015-01-01

    Sleep and/or circadian rhythm disruption (SCRD) is seen in up to 80% of schizophrenia patients. The co-morbidity of schizophrenia and SCRD may in part stem from dysfunction in common brain mechanisms, which include the glutamate system, and in particular, the group II metabotropic glutamate receptors mGlu2 and mGlu3 (encoded by the genes Grm2 and Grm3). These receptors are relevant to the pathophysiology and potential treatment of schizophrenia, and have also been implicated in sleep and circadian function. In the present study, we characterised the sleep and circadian rhythms of Grm2/3 double knockout (Grm2/3-/-) mice, to provide further evidence for the involvement of group II metabotropic glutamate receptors in the regulation of sleep and circadian rhythms. We report several novel findings. Firstly, Grm2/3-/- mice demonstrated a decrease in immobility-determined sleep time and an increase in immobility-determined sleep fragmentation. Secondly, Grm2/3-/- mice showed heightened sensitivity to the circadian effects of light, manifested as increased period lengthening in constant light, and greater phase delays in response to nocturnal light pulses. Greater light-induced phase delays were also exhibited by wildtype C57Bl/6J mice following administration of the mGlu2/3 negative allosteric modulator RO4432717. These results confirm the involvement of group II metabotropic glutamate receptors in photic entrainment and sleep regulation pathways. Finally, the diurnal wheel-running rhythms of Grm2/3-/- mice were perturbed under a standard light/dark cycle, but their diurnal rest-activity rhythms were unaltered in cages lacking running wheels, as determined with passive infrared motion detectors. Hence, when assessing the diurnal rest-activity rhythms of mice, the choice of assay can have a major bearing on the results obtained. PMID:25950516

  8. Mood disorders: regulation by metabotropic glutamate receptors.

    PubMed

    Pilc, Andrzej; Chaki, Shigeyuki; Nowak, Gabriel; Witkin, Jeffrey M

    2008-03-01

    Medicinal therapies for mood disorders neither fully serve the efficacy needs of patients nor are they free of side-effect issues. Although monoamine-based therapies are the primary current treatment approaches, both preclinical and clinical findings have implicated the excitatory neurotransmitter glutamate in the pathogenesis of major depressive disorders. The present commentary focuses on the metabotropic glutamate receptors and their relationship to mood disorders. Metabotropic glutamate (mGlu) receptors regulate glutamate transmission by altering the release of neurotransmitter and/or modulating the post-synaptic responses to glutamate. Convergent biochemical, pharmacological, behavioral, and clinical data will be reviewed that establish glutamatergic neurotransmission via mGlu receptors as a biologically relevant process in the regulation of mood and that these receptors may serve as novel targets for the discovery of small molecule modulators with unique antidepressant properties. Specifically, compounds that antagonize mGlu2, mGlu3, and/or mGlu5 receptors (e.g. LY341495, MGS0039, MPEP, MTEP) exhibit biochemical effects indicative of antidepressant effects as well as in vivo activity in animal models predictive of antidepressant efficacy. Both preclinical and clinical data have previously been presented to define NMDA and AMPA receptors as important targets for the modulation of major depression. In the present review, we present a model suggesting how the interplay of glutamate at the mGlu and at the ionotropic AMPA and NMDA receptors might account for the antidepressant-like effects of glutamatergic- and monoaminergic-based drugs affecting mood in patients. The current data lead to the hypothesis that mGlu-based compounds and conventional antidepressants impact a network of interactive effects that converge upon a down regulation of NMDA receptor function and an enhancement in AMPA receptor signaling. PMID:18164691

  9. The novel isoxazoline ectoparasiticide fluralaner: selective inhibition of arthropod γ-aminobutyric acid- and L-glutamate-gated chloride channels and insecticidal/acaricidal activity.

    PubMed

    Gassel, Michael; Wolf, Christian; Noack, Sandra; Williams, Heike; Ilg, Thomas

    2014-02-01

    Isoxazolines are a novel class of parasiticides that are potent inhibitors of γ-aminobutyric acid (GABA)-gated chloride channels (GABACls) and L-glutamate-gated chloride channels (GluCls). In this study, the effects of the isoxazoline drug fluralaner on insect and acarid GABACl (RDL) and GluCl and its parasiticidal potency were investigated. We report the identification and cDNA cloning of Rhipicephalus (R.) microplus RDL and GluCl genes, and their functional expression in Xenopus laevis oocytes. The generation of six clonal HEK293 cell lines expressing Rhipicephalus microplus RDL and GluCl, Ctenocephalides felis RDL-A285 and RDL-S285, as well as Drosophila melanogaster RDLCl-A302 and RDL-S302, combined with the development of a membrane potential fluorescence dye assay allowed the comparison of ion channel inhibition by fluralaner with that of established insecticides addressing RDL and GluCl as targets. In these assays fluralaner was several orders of magnitude more potent than picrotoxinin and dieldrin, and performed 5-236 fold better than fipronil on the arthropod RDLs, while a rat GABACl remained unaffected. Comparative studies showed that R. microplus RDL is 52-fold more sensitive than R. microplus GluCl to fluralaner inhibition, confirming that the GABA-gated chloride channel is the primary target of this new parasiticide. In agreement with the superior RDL on-target activity, fluralaner outperformed dieldrin and fipronil in insecticidal screens on cat fleas (Ctenocephalides felis), yellow fever mosquito larvae (Aedes aegypti) and sheep blowfly larvae (Lucilia cuprina), as well as in acaricidal screens on cattle tick (R. microplus) adult females, brown dog tick (Rhipicephalus sanguineus) adult females and Ornithodoros moubata nymphs. These findings highlight the potential of fluralaner as a novel ectoparasiticide. PMID:24365472

  10. Modulation of low-frequency-induced synaptic depression in the developing CA3-CA1 hippocampal synapses by NMDA and metabotropic glutamate receptor activation.

    PubMed

    Strandberg, Joakim; Wasling, Pontus; Gustafsson, Bengt

    2009-05-01

    Brief test-pulse stimulation (0.2-0.05 Hz) of naïve (previously nonstimulated) developing hippocampal CA3-CA1 synapses leads to a substantial synaptic depression, explained by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) silencing. Using field recordings in hippocampal slices from P8 to P12 rats, we examined this depression of naïve synapses using more prolonged test-pulse stimulation as well as low-frequency (1 Hz) stimulation (LFS). We found that 900 stimuli produced depression during stimulation to approximately 40% of the naïve level independent of whether test-pulse stimulation or LFS was used. This result was also observed during combined blockade of N-methyl-d-aspartate/metabotropic glutamate receptors (NMDAR/mGluRs) although the depression was smaller (to approximately 55% of naïve level). Using separate blockade of either NMDARs or mGluRs, we found that this impairment of the depression resulted from the NMDAR, and not from the mGluR, blockade. In fact, during NMDAR blockade alone, depression was smaller even than that observed during combined blockade. We also found that mGluR blockade alone facilitated the LFS-induced depression. In conclusion, test-pulse stimulation produced as much depression as LFS when applied to naïve synapses even when allowing for NMDAR and mGluR activation. Our results seem in line with the notion that NMDARs and mGluRs may exert a bidirectional control on AMPA receptor recruitment to synapses.

  11. The neuroprotective activity of group-II metabotropic glutamate receptors requires new protein synthesis and involves a glial-neuronal signaling.

    PubMed

    Bruno, V; Sureda, F X; Storto, M; Casabona, G; Caruso, A; Knopfel, T; Kuhn, R; Nicoletti, F

    1997-03-15

    The group-II metabotropic glutamate (mGlu) receptor agonists (2S,1'R, 2'R,3'R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV), S-4-carboxy-3-hydroxyphenylglycine (4C3HPG), and (2S,1'S, 2'S)-2-(carboxycyclopropyl)glycine (L-CCG-I) protected mouse cortical neurons grown in mixed cultures against excitotoxic degeneration induced by a 10 min pulse with NMDA. Protection was observed not only when agonists were added in combination with NMDA but also when they were transiently applied to cultures 6-20 hr before the NMDA pulse. In both cases, neuroprotection was reduced by the group-II mGlu receptor antagonist (2S,1'S,2'S,3'R)-2-(2'-carboxy-3'-phenylcyclopropyl)glycine (PCCG-IV), as well as by the protein synthesis inhibitor cycloheximide (CHX). Both neurons and astrocytes in mixed cultures were immunostained with an antibody that recognized mGlu2 and mGlu3 receptors in recombinant cells. To determine whether astrocytes played any role in the neuroprotection mediated by group-II mGlu receptors, we exposed pure cultures of cortical astrocytes to DCG-IV, 4C3HPG, or L-CCG-I for 10 min. The astrocyte medium collected 2-20 hr after the exposure to any of these drugs was highly neuroprotective when transferred to mixed cultures treated with NMDA. This protective activity was reduced when CHX was applied to astrocyte cultures immediately after the transient exposure to group-II mGlu receptor agonists. We conclude that neuroprotection mediated by group-II mGlu receptors in cultured cortical cells requires new protein synthesis and involves an interaction between neurons and astrocytes. PMID:9045718

  12. The novel isoxazoline ectoparasiticide fluralaner: selective inhibition of arthropod γ-aminobutyric acid- and L-glutamate-gated chloride channels and insecticidal/acaricidal activity.

    PubMed

    Gassel, Michael; Wolf, Christian; Noack, Sandra; Williams, Heike; Ilg, Thomas

    2014-02-01

    Isoxazolines are a novel class of parasiticides that are potent inhibitors of γ-aminobutyric acid (GABA)-gated chloride channels (GABACls) and L-glutamate-gated chloride channels (GluCls). In this study, the effects of the isoxazoline drug fluralaner on insect and acarid GABACl (RDL) and GluCl and its parasiticidal potency were investigated. We report the identification and cDNA cloning of Rhipicephalus (R.) microplus RDL and GluCl genes, and their functional expression in Xenopus laevis oocytes. The generation of six clonal HEK293 cell lines expressing Rhipicephalus microplus RDL and GluCl, Ctenocephalides felis RDL-A285 and RDL-S285, as well as Drosophila melanogaster RDLCl-A302 and RDL-S302, combined with the development of a membrane potential fluorescence dye assay allowed the comparison of ion channel inhibition by fluralaner with that of established insecticides addressing RDL and GluCl as targets. In these assays fluralaner was several orders of magnitude more potent than picrotoxinin and dieldrin, and performed 5-236 fold better than fipronil on the arthropod RDLs, while a rat GABACl remained unaffected. Comparative studies showed that R. microplus RDL is 52-fold more sensitive than R. microplus GluCl to fluralaner inhibition, confirming that the GABA-gated chloride channel is the primary target of this new parasiticide. In agreement with the superior RDL on-target activity, fluralaner outperformed dieldrin and fipronil in insecticidal screens on cat fleas (Ctenocephalides felis), yellow fever mosquito larvae (Aedes aegypti) and sheep blowfly larvae (Lucilia cuprina), as well as in acaricidal screens on cattle tick (R. microplus) adult females, brown dog tick (Rhipicephalus sanguineus) adult females and Ornithodoros moubata nymphs. These findings highlight the potential of fluralaner as a novel ectoparasiticide.

  13. Architecture and active site of particulate methane monooxygenase

    PubMed Central

    Culpepper, Megen A.; Rosenzweig, Amy C.

    2012-01-01

    Particulate methane monooxygenase (pMMO) is an integral membrane metalloenzyme that oxidizes methane to methanol in methanotrophic bacteria, organisms that live on methane gas as their sole carbon source. Understanding pMMO function has important implications for bioremediation applications and for the development of new, environmentally friendly catalysts for the direct conversion of methane to methanol. Crystal structures of pMMOs from three different methanotrophs reveal a trimeric architecture, consisting of three copies each of the pmoB, pmoA, and pmoC subunits. There are three distinct metal centers in each protomer of the trimer, mononuclear and dinuclear copper sites in the periplasmic regions of pmoB and a mononuclear site within the membrane that can be occupied by copper or zinc. Various models for the pMMO active site have been proposed within these structural constraints, including dicopper, tricopper, and diiron centers. Biochemical and spectroscopic data on pMMO and recombinant soluble fragments, denoted spmoB proteins, indicate that the active site involves copper and is located at the site of the dicopper center in the pmoB subunit. Initial spectroscopic evidence for O2 binding at this site has been obtained. Despite these findings, questions remain about the active site identity and nuclearity and will be the focus of future studies. PMID:22725967

  14. Glial glutamate transporters: new actors in brain signaling.

    PubMed

    López-Bayghen, Esther; Ortega, Arturo

    2011-10-01

    Glutamate, the main excitatory amino acid in the vertebrate brain, is critically involved in most of the physiological functions of the central nervous system. It has traditionally been assumed that glutamate triggers a wide array of signaling cascades through the activation of specific membrane receptors. The extracellular levels are tightly regulated to prevent neurotoxic insults. Electrogenic Na(+)-dependent glial glutamate transporters remove the bulk of the neurotransmitter from the synaptic cleft. An exquisitely ordered coupling between glutamatergic neurons and surrounding glia cells is fundamental for excitatory transmission. The glutamate/glutamine and astrocyte/neuron lactate shuttles provide the biochemical framework of this compulsory association. In this context, recent advances show that glial glutamate transporters act as signal transducers that regulate the expression of proteins involved in their compartmentalization with neurons in the so-called tripartite synapse.

  15. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site.

    PubMed

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-04-20

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2 domains reveal that the (HhH)2 domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2 domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2 domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2 domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide. PMID:26908655

  16. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site

    PubMed Central

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-01-01

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2 domains reveal that the (HhH)2 domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2 domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2 domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2 domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide. PMID:26908655

  17. mGlu2 metabotropic glutamate receptors restrain inflammatory pain and mediate the analgesic activity of dual mGlu2/mGlu3 receptor agonists.

    PubMed

    Zammataro, Magda; Chiechio, Santina; Montana, Michael C; Traficante, Anna; Copani, Agata; Nicoletti, Ferdinando; Gereau, Robert W

    2011-01-01

    Group II metabotropic glutamate receptors (mGluRs) couple to the inhibitory G-protein Gi. The group II mGluRs include two subtypes, mGlu2 and mGlu3, and their pharmacological activation produces analgesic effects in inflammatory and neuropathic pain states. However, the specific contribution of each one of the two subtypes has not been clarified due to the lack of selective orthosteric ligands that can discriminate between mGlu2 and mGlu3 subtypes.In this study we used mGlu2 or mGlu3 knock-out mice to dissect the specific role for these two receptors in the endogenous control of inflammatory pain and their specific contribution to the analgesic activity of mixed mGlu2/3 receptor agonists.Our results showed that mGlu2⁻(/)⁻ mice display a significantly greater pain response compared to their wild type littermates. Interestingly the increased pain sensitivity in mGlu2⁻(/)⁻ mice occurred only in the second phase of the formalin test. No differences were observed in the first phase. In contrast, mGlu3⁻(/)⁻ mice did not significantly differ from their wild type littermates in either phase of the formalin test.When systemically injected, a single administration of the mGlu2/3 agonist, LY379268 (3 mg/kg, ip), showed a significant reduction of both phases in wild-type mice and in mGlu3⁻(/)⁻ but not in mGlu2⁻(/)⁻ mice. However tolerance to the analgesic effect of LY379268 (3 mg/kg, ip) in mGlu3⁻(/)⁻ mice developed following 5 consecutive days of injection.Taken together, these results demonstrate that: (i) mGlu2 receptors play a predominant role over mGlu3 receptors in the control of inflammatory pain in mice; (ii) the analgesic activity of mixed mGlu2/3 agonists is entirely mediated by the activation of the mGlu2 subtype and (iii) the development of tolerance to the analgesic effect of mGlu2/3 agonists develops despite the lack of mGlu3 receptors. PMID:21235748

  18. Activation of group II metabotropic glutamate receptors induces long-term depression of excitatory synaptic transmission in the substantia nigra pars reticulata.

    PubMed

    Johnson, Kari A; Niswender, Colleen M; Conn, P Jeffrey; Xiang, Zixiu

    2011-10-24

    Activation of group II metabotropic glutamate receptors (mGlu2 and mGlu3) has been implicated as a potential therapeutic strategy for treating both motor symptoms and progressive neurodegeneration in Parkinson's disease (PD). Modulation of excitatory transmission in the basal ganglia represents a possible mechanism by which group II mGlu agonists could exert antiparkinsonian effects. Previous studies have identified reversible effects of mGlu2/3 activation on excitatory transmission at various synapses in the basal ganglia, including the excitatory synapse between the subthalamic nucleus (STN) and the substantia nigra pars reticulata (SNr). Using whole-cell patch clamp studies of GABAergic SNr neurons in rat midbrain slices, we have found that a prolonged activation of group II mGlus by the selective agonist LY379268 induces a long-term depression (LTD) of evoked excitatory postsynaptic current (EPSC) amplitude. Bath application of LY379268 (100nM, 10min) induced a marked reduction in EPSC amplitude, and excitatory transmission remained depressed for at least 40min after agonist washout. The effect of LY379268 was concentration-dependent and was completely blocked by the group II mGlu-preferring antagonist LY341495 (500nM). To determine the relative contributions of mGlu2 and mGlu3 to the LTD induced by LY379268, we tested the ability of LY379268 (100nM) to induce LTD in wild type mice and mice lacking mGlu2 or mGlu3. LY379268 induced similar LTD in wild type mice and mGlu3 knockout mice, whereas LTD was absent in mGlu2 knockout mice, indicating that mGlu2 activation is necessary for the induction of LTD in the SNr. These studies suggest a novel role for mGlu2 in the long-term regulation of excitatory transmission in the SNr and invite further exploration of mGlu2 as a therapeutic target for treating the motor symptoms of PD. PMID:21945652

  19. Contribution of active-site glutamine to rate enhancement in ubiquitin carboxy terminal hydrolases

    PubMed Central

    Boudreaux, David; Chaney, Joseph; Maiti, Tushar K.; Das, Chittaranjan

    2012-01-01

    Ubiquitin carboxy terminal hydrolases (UCHs) are cysteine proteases featuring a classical cysteine-histidine-aspartate catalytic triad, also a highly conserved glutamine thought to be a part of the oxyanion hole. However, the contribution of this side chain to the catalysis by UCH enzymes is not known. Herein, we demonstrate that the glutamine side chain contributes to rate enhancement in UCHL1, UCHL3 and UCHL5. Mutation of the glutamine to alanine in these enzymes impairs the catalytic efficiency mainly due to a 16 to 30-fold reduction in kcat, which is consistent with a loss of approximately 2 kcal/mol in transition-state stabilization. However, the contribution to transition-state stabilization observed here is rather modest for the side chain’s role in oxyanion stabilization. Interestingly, we discovered that the carbonyl oxygen of this side chain is engaged in a C—H•••O hydrogen-bonding contact with the CεH group of the catalytic histidine. Upon further analysis, we found that this interaction is a common active-site structural feature in most cysteine proteases, including papain, belonging to families with the QCH(N/D) type of active-site configuration. It is possible that removal of the glutamine side chain might have abolished the C—H•••O interaction, which typically accounts for 2 kcal/mol of stabilization, leading to the effect on catalysis observed here. Additional studies performed on UCHL3 by mutating the glutamine to glutamate (strong C—H•••O acceptor but oxyanion destabilizer) and to lysine (strong oxyanion stabilizer but lacking C—H•••O hydrogen-bonding property) suggest that the C—H•••O hydrogen bond could contribute to catalysis. PMID:22284438

  20. A review of glutamate's role in traumatic brain injury mechanisms

    NASA Astrophysics Data System (ADS)

    Good, Cameron H.

    2013-05-01

    Glutamate is the primary excitatory neurotransmitter used by the central nervous system (CNS) for synaptic communication, and its extracellular concentration is tightly regulated by glutamate transporters located on nearby astrocytes. Both animal models and human clinical studies have demonstrated elevated glutamate levels immediately following a traumatic brain event, with the duration and severity of the rise corresponding to prognosis. This rise in extracellular glutamate likely results from a combination of excessive neurotransmitter release from damaged neurons and down regulation of uptake mechanisms in local astrocytes. The immediate results of a traumatic event can lead to necrotic tissue in severely injured regions, while prolonged increases in excitatory transmission can cause secondary excitotoxic injury through activation of delayed apoptotic pathways. Initial TBI animal studies utilized a variety of broad glutamate receptor antagonists to successfully combat secondary injury mechanisms, but unfortunately this same strategy has proven inconclusive in subsequent human trials due to deleterious side effects and heterogeneity of injuries. More recent treatment strategies have utilized specific glutamate receptor subunit antagonists in an effort to minimize side effects and have shown promising results. Future challenges will be detecting the concentration and kinetics of the glutamate rise following injury, determining which patient populations could benefit from antagonist treatment based on their extracellular glutamate concentrations and when drugs should be administered to maximize efficacy.

  1. Small molecule glutaminase inhibitors block glutamate release from stimulated microglia.

    PubMed

    Thomas, Ajit G; O'Driscoll, Cliona M; Bressler, Joseph; Kaufmann, Walter; Rojas, Camilo J; Slusher, Barbara S

    2014-01-01

    Glutaminase plays a critical role in the generation of glutamate, a key excitatory neurotransmitter in the CNS. Excess glutamate release from activated macrophages and microglia correlates with upregulated glutaminase suggesting a pathogenic role for glutaminase. Both glutaminase siRNA and small molecule inhibitors have been shown to decrease excess glutamate and provide neuroprotection in multiple models of disease, including HIV-associated dementia (HAD), multiple sclerosis and ischemia. Consequently, inhibition of glutaminase could be of interest for treatment of these diseases. Bis-2-(5-phenylacetimido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) and 6-diazo-5-oxo-l-norleucine (DON), two most commonly used glutaminase inhibitors, are either poorly soluble or non-specific. Recently, several new BPTES analogs with improved physicochemical properties were reported. To evaluate these new inhibitors, we established a cell-based microglial activation assay measuring glutamate release. Microglia-mediated glutamate levels were significantly augmented by tumor necrosis factor (TNF)-α, phorbol 12-myristate 13-acetate (PMA) and Toll-like receptor (TLR) ligands coincident with increased glutaminase activity. While several potent glutaminase inhibitors abrogated the increase in glutamate, a structurally related analog devoid of glutaminase activity was unable to block the increase. In the absence of glutamine, glutamate levels were significantly attenuated. These data suggest that the in vitro microglia assay may be a useful tool in developing glutaminase inhibitors of therapeutic interest. PMID:24269238

  2. Structural Studies of Yeast Δ1-Pyrroline-5-carboxylate Dehydrogenase (ALDH4A1): Active Site Flexibility and Oligomeric State

    PubMed Central

    2015-01-01

    The proline catabolic enzyme Δ1-pyrroline-5-carboxylate dehydrogenase (ALDH4A1) catalyzes the NAD+-dependent oxidation of γ-glutamate semialdehyde to l-glutamate. In Saccharomyces cerevisiae, ALDH4A1 is encoded by the PUT2 gene and known as Put2p. Here we report the steady-state kinetic parameters of the purified recombinant enzyme, two crystal structures of Put2p, and the determination of the oligomeric state and quaternary structure from small-angle X-ray scattering and sedimentation velocity. Using Δ1-pyrroline-5-carboxylate as the substrate, catalytic parameters kcat and Km were determined to be 1.5 s–1 and 104 μM, respectively, with a catalytic efficiency of 14000 M–1 s–1. Although Put2p exhibits the expected aldehyde dehydrogenase superfamily fold, a large portion of the active site is disordered in the crystal structure. Electron density for the 23-residue aldehyde substrate-binding loop is absent, implying substantial conformational flexibility in solution. We furthermore report a new crystal form of human ALDH4A1 (42% identical to Put2p) that also shows disorder in this loop. The crystal structures provide evidence of multiple active site conformations in the substrate-free form of the enzyme, which is consistent with a conformational selection mechanism of substrate binding. We also show that Put2p forms a trimer-of-dimers hexamer in solution. This result is unexpected because human ALDH4A1 is dimeric, whereas some bacterial ALDH4A1s are hexameric. Thus, global sequence identity and domain of life are poor predictors of the oligomeric states of ALDH4A1. Mutation of a single Trp residue that forms knob-in-hole interactions across the dimer–dimer interface abrogates hexamer formation, suggesting that this residue is the center of a protein–protein association hot spot. PMID:24502590

  3. Activation of Metabotropic Glutamate Receptor Type 2/3 Supports the Involvement of the Hippocampal Mossy Fiber Pathway on Contextual Fear Memory Consolidation

    ERIC Educational Resources Information Center

    Daumas, Stephanie; Ceccom, Johnatan; Halley, Helene; Frances, Bernard; Lassalle, Jean-Michel

    2009-01-01

    Elucidating the functional properties of the dentate gyrus (DG), CA3, and CA1 areas is critical for understanding the role of the dorsal hippocampus in contextual fear memory processing. In order to specifically disrupt various hippocampal inputs, we used region-specific infusions of DCG-IV, the metabotropic glutamate receptor agonist, which…

  4. Neurotoxic potential of lunar and martian dust: influence on em, proton gradient, active transport, and binding of glutamate in rat brain nerve terminals.

    PubMed

    Krisanova, Natalia; Kasatkina, Ludmila; Sivko, Roman; Borysov, Arseniy; Nazarova, Anastasiya; Slenzka, Klaus; Borisova, Tatiana

    2013-08-01

    The harmful effects of lunar dust (LD) on directly exposed tissues are documented in the literature, whereas researchers are only recently beginning to consider its effects on indirectly exposed tissues. During inhalation, nano-/microsized particles are efficiently deposited in nasal, tracheobronchial, and alveolar regions and transported to the central nervous system. The neurotoxic potential of LD and martian dust (MD) has not yet been assessed. Glutamate is the main excitatory neurotransmitter involved in most aspects of normal brain function, whereas disturbances in glutamate homeostasis contribute to the pathogenesis of major neurological disorders. The research was focused on the analysis of the effects of LD/MD simulants (JSC-1a/JSC, derived from volcanic ash) on the key characteristics of glutamatergic neurotransmission. The average size of LD and MD particles (even minor fractions) before and after sonication was determined by dynamic light scattering. With the use of radiolabeled l-[(14)C]glutamate, it was shown that there is an increase in l-[(14)C]glutamate binding to isolated rat brain nerve terminals (synaptosomes) in low [Na(+)] media and at low temperature in the presence of LD. MD caused significantly lesser changes under the same conditions, whereas nanoparticles of magnetite had no effect at all. Fluorimetric experiments with potential-sensitive dye rhodamine 6G and pH-sensitive dye acridine orange showed that the potential of the plasma membrane of the nerve terminals and acidification of synaptic vesicles were not altered by LD/MD (and nanoparticles of magnetite). Thus, the unique effect of LD to increase glutamate binding to the nerve terminals was shown. This can have deleterious effects on extracellular glutamate homeostasis in the central nervous system and cause alterations in the ambient level of glutamate, which is extremely important for proper synaptic transmission. During a long-term mission, a combination of constant irritation due

  5. Neurotoxic potential of lunar and martian dust: influence on em, proton gradient, active transport, and binding of glutamate in rat brain nerve terminals.

    PubMed

    Krisanova, Natalia; Kasatkina, Ludmila; Sivko, Roman; Borysov, Arseniy; Nazarova, Anastasiya; Slenzka, Klaus; Borisova, Tatiana

    2013-08-01

    The harmful effects of lunar dust (LD) on directly exposed tissues are documented in the literature, whereas researchers are only recently beginning to consider its effects on indirectly exposed tissues. During inhalation, nano-/microsized particles are efficiently deposited in nasal, tracheobronchial, and alveolar regions and transported to the central nervous system. The neurotoxic potential of LD and martian dust (MD) has not yet been assessed. Glutamate is the main excitatory neurotransmitter involved in most aspects of normal brain function, whereas disturbances in glutamate homeostasis contribute to the pathogenesis of major neurological disorders. The research was focused on the analysis of the effects of LD/MD simulants (JSC-1a/JSC, derived from volcanic ash) on the key characteristics of glutamatergic neurotransmission. The average size of LD and MD particles (even minor fractions) before and after sonication was determined by dynamic light scattering. With the use of radiolabeled l-[(14)C]glutamate, it was shown that there is an increase in l-[(14)C]glutamate binding to isolated rat brain nerve terminals (synaptosomes) in low [Na(+)] media and at low temperature in the presence of LD. MD caused significantly lesser changes under the same conditions, whereas nanoparticles of magnetite had no effect at all. Fluorimetric experiments with potential-sensitive dye rhodamine 6G and pH-sensitive dye acridine orange showed that the potential of the plasma membrane of the nerve terminals and acidification of synaptic vesicles were not altered by LD/MD (and nanoparticles of magnetite). Thus, the unique effect of LD to increase glutamate binding to the nerve terminals was shown. This can have deleterious effects on extracellular glutamate homeostasis in the central nervous system and cause alterations in the ambient level of glutamate, which is extremely important for proper synaptic transmission. During a long-term mission, a combination of constant irritation due

  6. Multifunctional PLGA particles containing poly(l-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity.

    PubMed

    Stevanović, Magdalena; Bračko, Ines; Milenković, Marina; Filipović, Nenad; Nunić, Jana; Filipič, Metka; Uskoković, Dragan P

    2014-01-01

    A water-soluble antioxidant (ascorbic acid, vitamin C) was encapsulated together with poly(l-glutamic acid)-capped silver nanoparticles (AgNpPGA) within a poly(lactide-co-glycolide) (PLGA) polymeric matrix and their synergistic effects were studied. The PLGA/AgNpPGA/ascorbic acid particles synthesized by a physicochemical method with solvent/non-solvent systems are spherical, have a mean diameter of 775 nm and a narrow size distribution with a polydispersity index of 0.158. The encapsulation efficiency of AgNpPGA/ascorbic acid within PLGA was determined to be >90%. The entire amount of encapsulated ascorbic acid was released in 68 days, and the entire amount of AgNpPGAs was released in 87 days of degradation. The influence of PLGA/AgNpPGA/ascorbic acid on cell viability, generation of reactive oxygen species (ROS) in HepG2 cells, as well as antimicrobial activity against seven different pathogens was investigated. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay indicated good biocompatibility of these PLGA/AgNpPGA/ascorbic acid particles. We measured the kinetics of ROS formation in HepG2 cells by a DCFH-DA assay, and found that PLGA/AgNpPGA/ascorbic acid caused a significant decrease in DCF fluorescence intensity, which was 2-fold lower than that in control cells after a 5h exposure. This indicates that the PLGA/AgNpPGA/ascorbic acid microspheres either act as scavengers of intracellular ROS and/or reduce their formation. Also, the results of antimicrobial activity of PLGA/AgNpPGA/ascorbic acid obtained by the broth microdilution method showed superior and extended activity of these particles. The samples were characterized using Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, zeta potential and particle size analysis. This paper presents a new approach to the treatment of infection that at the same time offers a very pronounced antioxidant effect.

  7. Large conductance calcium-activated potassium channels: their expression and modulation of glutamate release from nerve terminals isolated from rat trigeminal caudal nucleus and cerebral cortex.

    PubMed

    Samengo, Irene; Currò, Diego; Barrese, Vincenzo; Taglialatela, Maurizio; Martire, Maria

    2014-05-01

    Large conductance, calcium-activated potassium channels [big potassium (BK) channel] consist of a tetramer of pore-forming α-subunit and distinct accessory β-subunits (β1-4) that modify the channel's properties. In this study, we analyzed the effects of BK channel activators and blockers on glutamate and γ-aminobutyric acid (GABA) release from synaptosomes isolated from the cerebral cortices or trigeminal caudal nuclei (TCN) of rats. Real-time polymerase chain reaction was used to characterize BK channel α and β(1-4) subunit expression in the cortex and in the trigeminal ganglia (TG), whose neurons project primary terminal afferents into the TCN. Immunocytochemistry was used to localize these subunits on cortical and TCN synaptosomes. The BK channels regulating [(3)H]D-aspartate release from primary afferent nerve terminals projecting into the TCN displayed limited sensitivity to iberiotoxin, whereas those expressed on cortical synaptosomes were highly sensitive to this toxin. BK channels did not appear to be present on GABAergic nerve terminals from the TCN since [(3)H]-γ-aminobutyric acid release in this model was unaffected by BK channel activators or blockers. Gene expression studies revealed expression levels of the α subunit in the TG that were only 31.2 ± 2.1% of those found in cortical tissues. The β4 subunit was the accessory subunit expressed most abundantly in both the cortex and TG. Levels of β1 and β2 were low in both these areas although β2 expression in the TG was higher than that found in the cortex. Immunocytochemistry experiments showed that co-localization of α and β4 subunits (the accessory subunit most abundantly expressed in both brain areas) was more common in TCN synaptosomes than in cortical synaptosomes. On the basis of these findings, it is reasonable to hypothesize that BK channels expressed on glutamatergic terminals in the TCN and cortex have distinct pharmacological profiles, which probably reflect different α and

  8. Multifunctional PLGA particles containing poly(l-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity.

    PubMed

    Stevanović, Magdalena; Bračko, Ines; Milenković, Marina; Filipović, Nenad; Nunić, Jana; Filipič, Metka; Uskoković, Dragan P

    2014-01-01

    A water-soluble antioxidant (ascorbic acid, vitamin C) was encapsulated together with poly(l-glutamic acid)-capped silver nanoparticles (AgNpPGA) within a poly(lactide-co-glycolide) (PLGA) polymeric matrix and their synergistic effects were studied. The PLGA/AgNpPGA/ascorbic acid particles synthesized by a physicochemical method with solvent/non-solvent systems are spherical, have a mean diameter of 775 nm and a narrow size distribution with a polydispersity index of 0.158. The encapsulation efficiency of AgNpPGA/ascorbic acid within PLGA was determined to be >90%. The entire amount of encapsulated ascorbic acid was released in 68 days, and the entire amount of AgNpPGAs was released in 87 days of degradation. The influence of PLGA/AgNpPGA/ascorbic acid on cell viability, generation of reactive oxygen species (ROS) in HepG2 cells, as well as antimicrobial activity against seven different pathogens was investigated. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay indicated good biocompatibility of these PLGA/AgNpPGA/ascorbic acid particles. We measured the kinetics of ROS formation in HepG2 cells by a DCFH-DA assay, and found that PLGA/AgNpPGA/ascorbic acid caused a significant decrease in DCF fluorescence intensity, which was 2-fold lower than that in control cells after a 5h exposure. This indicates that the PLGA/AgNpPGA/ascorbic acid microspheres either act as scavengers of intracellular ROS and/or reduce their formation. Also, the results of antimicrobial activity of PLGA/AgNpPGA/ascorbic acid obtained by the broth microdilution method showed superior and extended activity of these particles. The samples were characterized using Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, zeta potential and particle size analysis. This paper presents a new approach to the treatment of infection that at the same time offers a very pronounced antioxidant effect. PMID:23988864

  9. Beta-D-xylosidase from Selenomonas ruminantium: Role of Glutamate 186 in Catalysis Revealed by Site-directed Mutagenesis, Alternate Substrates, and Inhibitor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beta-D-xylosidase/alpha-L-arabinofuranosidase from Selenomonas ruminantium (SXA) is the most active enzyme known for catalyzing hydrolysis of 1,4-beta-D-xylooligosaccharides to D-xylose. Catalysis and inhibitor binding by the GH43 beta-xylosidase are governed by the protonation states of catalytic ...

  10. Site-directed mutagenesis of Lysine{sup 382}, the activator-binding site, of ADP-Glucose pyrophosphorylase from Anabaena PCC 6120

    SciTech Connect

    Sheng, Jun; Charng, Yee-yung; Preiss, J.

    1996-03-05

    Previous studies have shown that a highly conserved lysyl residue (Lys{sup 419}) near the C-terminus of Anabaena ADP-glucose pyrophosphorylase is involved in the binding of 3-P-glycerate, the allosteric activator. Phosphopyridoxylation of the K419R mutant enzyme modified another conserved lysyl residue (Lys{sup 382}), suggesting that this residue might be also located within the activator-binding site. Site-directed mutagenesis of Lys{sup 382} of the Anabaena enzyme was performed to determine the role of this residue. Replacing Lys{sup 382} with either arginine, alanine, or glutamine produced mutant enzymes with apparent affinities for 3-P-glycerate 10-160-fold lower than that of the wild-type enzyme. The glutamic acid mutant enzyme was inhibited by 3-P-glycerate. These mutations had lesser impact on the kinetic constants for the substrates and inhibitor, P{sub i}, and on the thermal stability. These results indicate that both the charge and size of the residue at position 382 influence the binding of 3-P-glycerate. Site-directed mutagenesis was also performed to obtain a K382R-K419R double mutant. The apparent affinity for 3-P-glycerate of this double-mutant enzyme was 104-fold lower than that of the wild-type enzyme, and the specificity for activator of this mutant enzyme was altered. The K382R-K419R enzyme could not be phosphopyridoxylated, suggesting that other lysine residues are not involved in the binding of 3-P-glycerate. 32 refs., 2 figs., 3 tabs.

  11. Active Sites Environmental Monitoring Program: Mid-FY 1991 report

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1991-10-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1990 through March 1991. The ASEMP was established in 1989 by Solid Waste Operations and the Environmental Sciences Division to provide early detection and performance monitoring at active low-level radioactive waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. Monitoring results continue to demonstrate the no LLW is being leached from the storage vaults on the tumulus pads. Loading of vaults on Tumulus II began during this reporting period and 115 vaults had been loaded by the end of March 1991.

  12. Hypoxia regulates glutamate metabolism and membrane transport in rat PC12 cells.

    PubMed

    Kobayashi, S; Millhorn, D E

    2001-03-01

    We investigated the effect of hypoxia on glutamate metabolism and uptake in rat pheochromocytoma (PC12) cells. Various key enzymes relevant to glutamate production, metabolism and transport were coordinately regulated by hypoxia. PC12 cells express two glutamate-metabolizing enzymes, glutamine synthetase (GS) and glutamate decarboxylase (GAD), as well as the glutamate-producing enzyme, phosphate-activated glutaminase (PAG). Exposure to hypoxia (1% O(2)) for 6 h or longer increased expression of GS mRNA and protein and enhanced GS enzymatic activity. In contrast, hypoxia caused a significant decrease in expression of PAG mRNA and protein, and also decreased PAG activity. In addition, hypoxia led to an increase in GAD65 and GAD67 protein levels and GAD enzymatic activity. PC12 cells express three Na(+)-dependent glutamate transporters; EAAC1, GLT-1 and GLAST. Hypoxia increased EAAC1 and GLT-1 protein levels, but had no effect on GLAST. Chronic hypoxia significantly enhanced the Na(+)-dependent component of glutamate transport. Furthermore, chronic hypoxia decreased cellular content of glutamate, but increased that of glutamine. Taken together, the hypoxia-induced changes in enzymes related to glutamate metabolism and transport are consistent with a decrease in the extracellular concentration of glutamate. This may have a role in protecting PC12 cells from the cytotoxic effects of glutamate during chronic hypoxia. PMID:11259512

  13. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    PubMed

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined.

  14. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    PubMed

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined. PMID:27243042

  15. Studies on the active site of pig plasma amine oxidase.

    PubMed Central

    Collison, D; Knowles, P F; Mabbs, F E; Rius, F X; Singh, I; Dooley, D M; Cote, C E; McGuirl, M

    1989-01-01

    Amine oxidase from pig plasma (PPAO) has two bound Cu2+ ions and at least one pyrroloquinoline quinone (PQQ) moiety as cofactors. It is shown that recovery of activity by copper-depleted PPAO is linear with respect to added Cu2+ ions. Recovery of e.s.r. and optical spectral characteristics of active-site copper parallel the recovery of catalytic activity. These results are consistent with both Cu2+ ions contributing to catalysis. Further e.s.r. studies indicate that the two copper sites in PPAO, unlike those in amine oxidases from other sources, are chemically distinct. These comparative studies establish that non-identity of the Cu2+ ions in PPAO is not a requirement for amine oxidase activity. It is shown through the use of a new assay procedure that there are two molecules of PQQ bound per molecule of protein in PPAO; only the more reactive of these PQQ moieties is required for activity. PMID:2559715

  16. Inhibition of NMDA Type Glutamate Receptors Induces Arousal from Torpor in Hibernating Arctic Ground Squirrels (Urocitellus parryii)

    PubMed Central

    Jinka, Tulasi R.; Rasley, Brian T.; Drew, Kelly L.

    2012-01-01

    Hibernation is an adaptation to overcome periods of resource limitation often associated with extreme climatic conditions. The hibernation season consists of prolonged bouts of torpor that are interrupted by brief interbout arousals. Physiological mechanisms regulating spontaneous arousals are poorly understood, but may be related to a need for gluconeogenesis or elimination of metabolic wastes. Glutamate is derived from glutamine through the glutamate-glutamine cycle and from glucose via the pyruvate carboxylase pathway when nitrogen balance favors formation of glutamine. The present study tests the hypothesis that activation of NMDA type glutamate receptors (NMDAR) maintains torpor in arctic ground squirrel (AGS; Urocitellus parryii).Administration of NMDAR antagonists MK-801 (5mg/kg,ip) that crosses blood-brain barrier and AP5 (5mg/kg,ip) that does not cross the blood brain barrier induced arousal in AGS. Central administration of MK-801 (0.2, 2, 20 or 200 μg; icv) to hibernating AGS failed to induce arousal. Results suggest that activation of NMDAR at a peripheral or circumventricular site is necessary to maintain prolonged torpor and that a decrease in glutamate at these sites may contribute to spontaneous arousal in AGS. PMID:22697356

  17. Computer simulation of the active site of human serum cholinesterase

    SciTech Connect

    Kefang Jiao; Song Li; Zhengzheng Lu

    1996-12-31

    The first 3D-structure of acetylchelinesterase from Torpedo California electric organ (T.AChE) was published by JL. Sussman in 1991. We have simulated 3D-structure of human serum cholinesterase (H.BuChE) and the active site of H.BuChE. It is discovered by experiment that the residue of H.BuChE is still active site after a part of H.BuChE is cut. For example, the part of 21KD + 20KD is active site of H.BuChE. The 20KD as it is. Studies on these peptides by Hemelogy indicate that two active peptides have same negative electrostatic potential maps diagram. These negative electrostatic areas attached by acetyl choline with positive electrostatic potency. We predict that 147...236 peptide of AChE could be active site because it was as 20KD as with negative electrostatic potential maps. We look forward to proving from other ones.

  18. Resonant active sites in catalytic ammonia synthesis: A structural model

    NASA Astrophysics Data System (ADS)

    Cholach, Alexander R.; Bryliakova, Anna A.; Matveev, Andrey V.; Bulgakov, Nikolai N.

    2016-03-01

    Adsorption sites Mn consisted of n adjacent atoms M, each bound to the adsorbed species, are considered within a realistic model. The sum of bonds Σ lost by atoms in a site in comparison with the bulk atoms was used for evaluation of the local surface imperfection, while the reaction enthalpy at that site was used as a measure of activity. The comparative study of Mn sites (n = 1-5) at basal planes of Pt, Rh, Ir, Fe, Re and Ru with respect to heat of N2 dissociative adsorption QN and heat of Nad + Had → NHad reaction QNH was performed using semi-empirical calculations. Linear QN(Σ) increase and QNH(Σ) decrease allowed to specify the resonant Σ for each surface in catalytic ammonia synthesis at equilibrium Nad coverage. Optimal Σ are realizable for Ru2, Re2 and Ir4 only, whereas other centers meet steric inhibition or unreal crystal structure. Relative activity of the most active sites in proportion 5.0 × 10- 5: 4.5 × 10- 3: 1: 2.5: 3.0: 1080: 2270 for a sequence of Pt4, Rh4, Fe4(fcc), Ir4, Fe2-5(bcc), Ru2, Re2, respectively, is in agreement with relevant experimental data. Similar approach can be applied to other adsorption or catalytic processes exhibiting structure sensitivity.

  19. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes.

    PubMed

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H; Skytt, Dorte M; Waagepetersen, Helle S

    2015-12-01

    Astrocytes take up glutamate in the synaptic area subsequent to glutamatergic transmission by the aid of high affinity glutamate transporters. Glutamate is converted to glutamine or metabolized to support intermediary metabolism and energy production. Glutamate dehydrogenase (GDH) and aspartate aminotransferase (AAT) catalyze the reversible reaction between glutamate and α-ketoglutarate, which is the initial step for glutamate to enter TCA cycle metabolism. In contrast to GDH, AAT requires a concomitant interconversion of oxaloacetate and aspartate. We have investigated the role of GDH in astrocyte glutamate and glucose metabolism employing siRNA mediated knock down (KD) of GDH in cultured astrocytes using stable and radioactive isotopes for metabolic mapping. An increased level of aspartate was observed upon exposure to [U-(13) C]glutamate in astrocytes exhibiting reduced GDH activity. (13) C Labeling of aspartate and TCA cycle intermediates confirmed that the increased amount of aspartate is associated with elevated TCA cycle flux from α-ketoglutarate to oxaloacetate, i.e. truncated TCA cycle. (13) C Glucose metabolism was elevated in GDH deficient astrocytes as observed by increased de novo synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle. A reduction in GDH activity seems to cause the astrocytes to up-regulate activity in pathways involved in maintaining the amount of TCA cycle intermediates such as pyruvate carboxylation as well as utilization of alternate substrates such as branched chain amino acids.

  20. Multi-site Phosphorylation Regulates Bim Stability and Apoptotic Activity

    PubMed Central

    Hübner, Anette; Barrett, Tamera; Flavell, Richard A.; Davis, Roger J.

    2008-01-01

    The pro-apoptotic BH3-only protein Bim is established to be an important mediator of signaling pathways that induce cell death. Multi-site phosphorylation of Bim by several members of the MAP kinase group is implicated as a regulatory mechanism that controls the apoptotic activity of Bim. To test the role of Bim phosphorylation in vivo, we constructed mice with a series of mutant alleles that express phosphorylation-defective Bim proteins. We show that mutation of the phosphorylation site Thr-112 causes decreased binding of Bim to the anti-apoptotic protein Bcl2 and can increase cell survival. In contrast, mutation of the phosphorylation sites Ser-55, Ser-65, and Ser-73 can cause increased apoptosis because of reduced proteasomal degradation of Bim. Together, these data indicate that phosphorylation can regulate Bim by multiple mechanisms and that the phosphorylation of Bim on different sites can contribute to the sensitivity of cellular apoptotic responses. PMID:18498746

  1. Increasing the Receptor Tyrosine Kinase EphB2 Prevents Amyloid-β-induced Depletion of Cell Surface Glutamate Receptors by a Mechanism That Requires the PDZ-binding Motif of EphB2 and Neuronal Activity*

    PubMed Central

    Miyamoto, Takashi; Kim, Daniel; Knox, Joseph A.; Johnson, Erik; Mucke, Lennart

    2016-01-01

    Diverse lines of evidence suggest that amyloid-β (Aβ) peptides causally contribute to the pathogenesis of Alzheimer disease (AD), the most frequent neurodegenerative disorder. However, the mechanisms by which Aβ impairs neuronal functions remain to be fully elucidated. Previous studies showed that soluble Aβ oligomers interfere with synaptic functions by depleting NMDA-type glutamate receptors (NMDARs) from the neuronal surface and that overexpression of the receptor tyrosine kinase EphB2 can counteract this process. Through pharmacological treatments and biochemical analyses of primary neuronal cultures expressing wild-type or mutant forms of EphB2, we demonstrate that this protective effect of EphB2 depends on its PDZ-binding motif and the presence of neuronal activity but not on its kinase activity. We further present evidence that the protective effect of EphB2 may be mediated by the AMPA-type glutamate receptor subunit GluA2, which can become associated with the PDZ-binding motif of EphB2 through PDZ domain-containing proteins and can promote the retention of NMDARs in the membrane. In addition, we show that the Aβ-induced depletion of surface NMDARs does not depend on several factors that have been implicated in the pathogenesis of Aβ-induced neuronal dysfunction, including aberrant neuronal activity, tau, prion protein (PrPC), and EphB2 itself. Thus, although EphB2 does not appear to be directly involved in the Aβ-induced depletion of NMDARs, increasing its expression may counteract this pathogenic process through a neuronal activity- and PDZ-dependent regulation of AMPA-type glutamate receptors. PMID:26589795

  2. Transport Mechanism of a Bacterial Homologue of Glutamate Transporters

    SciTech Connect

    Reyes, N.; Ginter, C; Boudker, O

    2009-01-01

    Glutamate transporters are integral membrane proteins that catalyse a thermodynamically uphill uptake of the neurotransmitter glutamate from the synaptic cleft into the cytoplasm of glia and neuronal cells by harnessing the energy of pre-existing electrochemical gradients of ions. Crucial to the reaction is the conformational transition of the transporters between outward and inward facing states, in which the substrate binding sites are accessible from the extracellular space and the cytoplasm, respectively. Here we describe the crystal structure of a double cysteine mutant of a glutamate transporter homologue from Pyrococcus horikoshii, GltPh, which is trapped in the inward facing state by cysteine crosslinking. Together with the previously determined crystal structures of Glt{sub Ph} in the outward facing state, the structure of the crosslinked mutant allows us to propose a molecular mechanism by which Glt{sub Ph} and, by analogy, mammalian glutamate transporters mediate sodium-coupled substrate uptake.

  3. Investigation of the Roles of Allosteric Domain Arginine, Aspartate, and Glutamate Residues of Rhizobium etli Pyruvate Carboxylase in Relation to Its Activation by Acetyl CoA.

    PubMed

    Sirithanakorn, Chaiyos; Jitrapakdee, Sarawut; Attwood, Paul V

    2016-08-01

    The mechanism of allosteric activation of pyruvate carboxylase by acetyl CoA is not fully understood. Here we have examined the roles of residues near the acetyl CoA binding site in the allosteric activation of Rhizobium etli pyruvate carboxylase using site-directed mutagenesis. Arg429 was found to be especially important for acetyl CoA binding as substitution with serine resulted in a 100-fold increase in the Ka of acetyl CoA activation and a large decrease in the cooperativity of this activation. Asp420 and Arg424, which do not make direct contact with bound acetyl CoA, were nonetheless found to affect acetyl CoA binding when mutated, probably through changed interactions with another acetyl CoA binding residue, Arg427. Thermodynamic activation parameters for the pyruvate carboxylation reaction were determined from modified Arrhenius plots and showed that acetyl CoA acts to decrease the activation free energy of the reaction by both increasing the activation entropy and decreasing the activation enthalpy. Most importantly, mutations of Asp420, Arg424, and Arg429 enhanced the activity of the enzyme in the absence of acetyl CoA. A main focus of this work was the detailed investigation of how this increase in activity occurred in the R424S mutant. This mutation decreased the activation enthalpy of the pyruvate carboxylation reaction by an amount consistent with removal of a single hydrogen bond. It is postulated that Arg424 forms a hydrogen bonding interaction with another residue that stabilizes the asymmetrical conformation of the R. etli pyruvate carboxylase tetramer, constraining its interconversion to the symmetrical conformer that is required for catalysis. PMID:27379711

  4. Water in the Active Site of Ketosteroid Isomerase

    PubMed Central

    Hanoian, Philip; Hammes-Schiffer, Sharon

    2011-01-01

    Classical molecular dynamics simulations were utilized to investigate the structural and dynamical properties of water in the active site of ketosteroid isomerase (KSI) to provide insight into the role of these water molecules in the enzyme-catalyzed reaction. This reaction is thought to proceed via a dienolate intermediate that is stabilized by hydrogen bonding with residues Tyr16 and Asp103. A comparative study was performed for the wild-type (WT) KSI and the Y16F, Y16S, and Y16F/Y32F/Y57F (FFF) mutants. These systems were studied with three different bound ligands: equilenin, which is an intermediate analog, and the intermediate states of two steroid substrates. Several distinct water occupation sites were identified in the active site of KSI for the WT and mutant systems. Three additional sites were identified in the Y16S mutant that were not occupied in WT KSI or the other mutants studied. The number of water molecules directly hydrogen bonded to the ligand oxygen was approximately two waters in the Y16S mutant, one water in the Y16F and FFF mutants, and intermittent hydrogen bonding of one water molecule in WT KSI. The molecular dynamics trajectories of the Y16F and FFF mutants reproduced the small conformational changes of residue 16 observed in the crystal structures of these two mutants. Quantum mechanical/molecular mechanical calculations of 1H NMR chemical shifts of the protons in the active site hydrogen-bonding network suggest that the presence of water in the active site does not prevent the formation of short hydrogen bonds with far-downfield chemical shifts. The molecular dynamics simulations indicate that the active site water molecules exchange much more frequently for WT KSI and the FFF mutant than for the Y16F and Y16S mutants. This difference is most likely due to the hydrogen-bonding interaction between Tyr57 and an active site water molecule that is persistent in the Y16F and Y16S mutants but absent in the FFF mutant and significantly less

  5. Activation of phenylalanine hydroxylase by phenylalanine does not require binding in the active site.

    PubMed

    Roberts, Kenneth M; Khan, Crystal A; Hinck, Cynthia S; Fitzpatrick, Paul F

    2014-12-16

    Phenylalanine hydroxylase (PheH), a liver enzyme that catalyzes the hydroxylation of excess phenylalanine in the diet to tyrosine, is activated by phenylalanine. The lack of activity at low levels of phenylalanine has been attributed to the N-terminus of the protein's regulatory domain acting as an inhibitory peptide by blocking substrate access to the active site. The location of the site at which phenylalanine binds to activate the enzyme is unknown, and both the active site in the catalytic domain and a separate site in the N-terminal regulatory domain have been proposed. Binding of catecholamines to the active-site iron was used to probe the accessibility of the active site. Removal of the regulatory domain increases the rate constants for association of several catecholamines with the wild-type enzyme by ∼2-fold. Binding of phenylalanine in the active site is effectively abolished by mutating the active-site residue Arg270 to lysine. The k(cat)/K(phe) value is down 10⁴ for the mutant enzyme, and the K(m) value for phenylalanine for the mutant enzyme is >0.5 M. Incubation of the R270K enzyme with phenylalanine also results in a 2-fold increase in the rate constants for catecholamine binding. The change in the tryptophan fluorescence emission spectrum seen in the wild-type enzyme upon activation by phenylalanine is also seen with the R270K mutant enzyme in the presence of phenylalanine. Both results establish that activation of PheH by phenylalanine does not require binding of the amino acid in the active site. This is consistent with a separate allosteric site, likely in the regulatory domain.

  6. [Effect of vitamin B3-active compounds on the content of free and combined gamma-aminobutyric acid and glutamic acid in the brain of mice].

    PubMed

    Rozanov, V A; Reĭtarova, T E

    1983-01-01

    The bound and free GABA and glutamic acid content in the brain of F1 (CBA X C57B1/6) hybrid mice was investigated by the Eliott method. A tendency to a decrease of GABA and glutamate content in the brain with their practically constant bound/free ratio was observed 24 h after calcium-D-pantothenate injections (150 mumole/kg, 9 injections for 3 days). Calcium-D-homopantothenate injected in the same way caused a significant decrease in the GABA content, and a sharp drop of the bound/free GABA ratio. The effect is not associated with the influence of calcium ions in the composition of the injected compounds. PMID:6140785

  7. Translational neurophysiological markers for activity of the metabotropic glutamate receptor (mGluR2) modulator JNJ-40411813: Sleep EEG correlates in rodents and healthy men.

    PubMed

    Ahnaou, A; de Boer, P; Lavreysen, H; Huysmans, H; Sinha, V; Raeymaekers, L; Van De Casteele, T; Cid, J M; Van Nueten, L; Macdonald, G J; Kemp, J A; Drinkenburg, W H I M

    2016-04-01

    Alterations in rapid eye movement sleep (REM) have been suggested as valid translational efficacy markers: activation of the metabotropic glutamate receptor 2 (mGluR2) was shown to increase REM latency and to decrease REM duration. The present paper addresses the effects on vigilance states of the mGluR2 positive allosteric modulator (PAM) JNJ-40411813 at different circadian times in rats and after afternoon dosing in humans. Due to its dual mGluR2 PAM/serotonin 2A (5-HT2A) receptor antagonism in rodents, mGlu2R specificity of effects was studied in wild-type (WT) and mGluR2 (-/-) mice. 5-HT2A receptor occupancy was determined in humans using positron emission tomography (PET). Tolerance development was examined in rats after chronic dosing. EEG oscillations and network connectivity were assessed using multi-channel EEG. In rats, JNJ-40411813 increased deep sleep time and latency of REM onset but reduced REM time when administered 2 h after 'lights on' (CT2): this was sustained after chronic dosing. At CT5 similar effects were elicited, at CT10 only deep sleep was enhanced. Withdrawal resulted in baseline values, while re-administration reinstated drug effects. Parieto-occipital cortical slow theta and gamma oscillations were correlated with low locomotion. The specificity of functional response was confirmed in WT but not mGluR2 (-/-) mice. A double-blind, placebo-controlled polysomnographic study in healthy, elderly subjects showed that 500 mg of JNJ-40411813 consistently increased deep sleep time, but had no effect on REM parameters. This deep sleep effect was not explained by 5-HT2A receptor binding, as in the PET study even 700 mg only marginally displaced the tracer. JNJ-40411813 elicited comparable functional responses in rodents and men if circadian time of dosing was taken into account. These findings underscore the translational potential of sleep mechanisms in evaluating mGluR2 therapeutics when administered at the appropriate circadian time.

  8. Chemical Modification of Papain and Subtilisin: An Active Site Comparison

    ERIC Educational Resources Information Center

    St-Vincent, Mireille; Dickman, Michael

    2004-01-01

    An experiment using methyle methanethiosulfonate (MMTS) and phenylmethylsulfonyl flouride (PMSF) to specifically modify the cysteine and serine residues in the active sites of papain and subtilism respectively is demonstrated. The covalent modification of these enzymes and subsequent rescue of papain shows the beginning biochemist that proteins…

  9. Energy transfer at the active sites of heme proteins

    SciTech Connect

    Dlott, D.D.; Hill, J.R.

    1995-12-31

    Experiments using a picosecond pump-probe apparatus at the Picosecond Free-electron Laser Center at Stanford University, were performed to investigate the relaxation of carbon monoxide bound to the active sites of heme proteins. The significance of these experiments is two-fold: (1) they provide detailed information about molecular dynamics occurring at the active sites of proteins; and (2) they provide insight into the nature of vibrational relaxation processes in condensed matter. Molecular engineering is used to construct various molecular systems which are studied with the FEL. We have studied native proteins, mainly myoglobin obtained from different species, mutant proteins produced by genetic engineering using recombinant DNA techniques, and a variety of model systems which mimic the structures of the active sites of native proteins, which are produced using molecular synthesis. Use of these different systems permits us to investigate how specific molecular structural changes affect dynamical processes occurring at the active sites. This research provides insight into the problems of how different species needs are fulfilled by heme proteins which have greatly different functionality, which is induced by rather small structural changes.

  10. Changes in active site histidine hydrogen bonding trigger cryptochrome activation.

    PubMed

    Ganguly, Abir; Manahan, Craig C; Top, Deniz; Yee, Estella F; Lin, Changfan; Young, Michael W; Thiel, Walter; Crane, Brian R

    2016-09-01

    Cryptochrome (CRY) is the principal light sensor of the insect circadian clock. Photoreduction of the Drosophila CRY (dCRY) flavin cofactor to the anionic semiquinone (ASQ) restructures a C-terminal tail helix (CTT) that otherwise inhibits interactions with targets that include the clock protein Timeless (TIM). All-atom molecular dynamics (MD) simulations indicate that flavin reduction destabilizes the CTT, which undergoes large-scale conformational changes (the CTT release) on short (25 ns) timescales. The CTT release correlates with the conformation and protonation state of conserved His378, which resides between the CTT and the flavin cofactor. Poisson-Boltzmann calculations indicate that flavin reduction substantially increases the His378 pKa Consistent with coupling between ASQ formation and His378 protonation, dCRY displays reduced photoreduction rates with increasing pH; however, His378Asn/Arg variants show no such pH dependence. Replica-exchange MD simulations also support CTT release mediated by changes in His378 hydrogen bonding and verify other responsive regions of the protein previously identified by proteolytic sensitivity assays. His378 dCRY variants show varying abilities to light-activate TIM and undergo self-degradation in cellular assays. Surprisingly, His378Arg/Lys variants do not degrade in light despite maintaining reactivity toward TIM, thereby implicating different conformational responses in these two functions. Thus, the dCRY photosensory mechanism involves flavin photoreduction coupled to protonation of His378, whose perturbed hydrogen-bonding pattern alters the CTT and surrounding regions. PMID:27551082

  11. Vitamin C neuroprotection against dose-dependent glutamate-induced neurodegeneration in the postnatal brain.

    PubMed

    Shah, Shahid Ali; Yoon, Gwang Ho; Kim, Hyun-Ok; Kim, Myeong Ok

    2015-05-01

    Glutamate-induced excitotoxicity due to over-activation of glutamate receptors and associated energy depletion (phosphorylation and activation of AMPK) results in neuronal cell death in various neurological disorders. Restoration of energy balance during an excitotoxic insult is critical for neuronal survival. Ascorbic acid (vitamin C), an essential nutrient with well-known antioxidant potential, protects the brain from oxidative damage in various models of neurodegeneration. In this study, we reported the therapeutic efficacy of vitamin C in response to glutamate-induced excitation, resulting in energy depletion and apoptosis in the hippocampus of the developing rat brain. A single subcutaneous injection of glutamate at two different concentrations (5 and 10 mg/kg) in postnatal day 7 rat pups increased brain glutamate levels and increased the protein expression of neuronal apoptotic markers. Both doses of glutamate upregulated the ratio of pro-apoptotic Bax to anti-apoptotic Bcl-2, cytochrome-c release, caspase-3 activation and the expression of PARP-1. However, co-treatment of vitamin C (250 mg/kg) with glutamate decreased brain glutamate levels and reversed the changes induced by glutamate in the developing hippocampus. Interestingly, only a high dose of glutamate caused the phosphorylation and activation of AMPK and induced neuronal cell death, whereas a low dose of glutamate failed to mediate these effects. Vitamin C supplementation reduced the glutamate-induced phosphorylation of AMPK and attenuated neuronal cell death, as assessed morphologically by Fluoro Jade B in the hippocampal CA1 region of the developing brain. Taken together, our results indicated that glutamate in both concentrations is toxic to the immature rat brain, whereas vitamin C is pharmacologically effective against glutamate-induced neurodegeneration. PMID:25701025

  12. Vitamin C neuroprotection against dose-dependent glutamate-induced neurodegeneration in the postnatal brain.

    PubMed

    Shah, Shahid Ali; Yoon, Gwang Ho; Kim, Hyun-Ok; Kim, Myeong Ok

    2015-05-01

    Glutamate-induced excitotoxicity due to over-activation of glutamate receptors and associated energy depletion (phosphorylation and activation of AMPK) results in neuronal cell death in various neurological disorders. Restoration of energy balance during an excitotoxic insult is critical for neuronal survival. Ascorbic acid (vitamin C), an essential nutrient with well-known antioxidant potential, protects the brain from oxidative damage in various models of neurodegeneration. In this study, we reported the therapeutic efficacy of vitamin C in response to glutamate-induced excitation, resulting in energy depletion and apoptosis in the hippocampus of the developing rat brain. A single subcutaneous injection of glutamate at two different concentrations (5 and 10 mg/kg) in postnatal day 7 rat pups increased brain glutamate levels and increased the protein expression of neuronal apoptotic markers. Both doses of glutamate upregulated the ratio of pro-apoptotic Bax to anti-apoptotic Bcl-2, cytochrome-c release, caspase-3 activation and the expression of PARP-1. However, co-treatment of vitamin C (250 mg/kg) with glutamate decreased brain glutamate levels and reversed the changes induced by glutamate in the developing hippocampus. Interestingly, only a high dose of glutamate caused the phosphorylation and activation of AMPK and induced neuronal cell death, whereas a low dose of glutamate failed to mediate these effects. Vitamin C supplementation reduced the glutamate-induced phosphorylation of AMPK and attenuated neuronal cell death, as assessed morphologically by Fluoro Jade B in the hippocampal CA1 region of the developing brain. Taken together, our results indicated that glutamate in both concentrations is toxic to the immature rat brain, whereas vitamin C is pharmacologically effective against glutamate-induced neurodegeneration.

  13. Conformational Transitions in Human AP Endonuclease 1 and Its Active Site Mutant during Abasic Site Repair†

    PubMed Central

    Kanazhevskaya, Lyubov Yu.; Koval, Vladimir V.; Zharkov, Dmitry O.; Strauss, Phyllis R.; Fedorova, Olga S.

    2010-01-01

    AP endonuclease 1 (APE 1) is a crucial enzyme of the base excision repair pathway (BER) in human cells. APE1 recognizes apurinic/apyrimidinic (AP) sites and makes a nick in the phosphodiester backbone 5′ to them. The conformational dynamics and presteady-state kinetics of wild-type APE1 and its active site mutant, Y171F-P173L-N174K, have been studied. To observe conformational transitions occurring in the APE1 molecule during the catalytic cycle, we detected intrinsic tryptophan fluorescence of the enzyme under single turnover conditions. DNA duplexes containing a natural AP site, its tetrahydrofuran analogue, or a 2′-deoxyguanosine residue in the same position were used as specific substrates or ligands. The stopped-flow experiments have revealed high flexibility of the APE1 molecule and the complexity of the catalytic process. The fluorescent traces indicate that wild-type APE1 undergoes at least four conformational transitions during the processing of abasic sites in DNA. In contrast, nonspecific interactions of APE1 with undamaged DNA can be described by a two-step kinetic scheme. Rate and equilibrium constants were extracted from the stopped-flow and fluorescence titration data for all substrates, ligands, and products. A replacement of three residues at the enzymatic active site including the replacement of tyrosine 171 with phenylalanine in the enzyme active site resulted in a 2 × 104-fold decrease in the reaction rate and reduced binding affinity. Our data indicate the important role of conformational changes in APE1 for substrate recognition and catalysis. PMID:20575528

  14. Identification of essential residues involved in the glutamate binding pocket of the group II metabotropic glutamate receptor.

    PubMed

    Malherbe, P; Knoflach, F; Broger, C; Ohresser, S; Kratzeisen, C; Adam, G; Stadler, H; Kemp, J A; Mutel, V

    2001-11-01

    Metabotropic glutamate (mGlu) receptors are a family of G-protein-coupled receptors that play central roles as modulators of both glutamatergic and other major neurotransmitter systems in CNS. Using molecular modeling, site-directed mutagenesis, [(3)H]LY354740 binding, [(35)S]GTPgammaS binding, and activation of GIRK current, we have been able to identify residues crucial for the binding of LY354740 and glutamate to rat mGlu2 receptors. Several of the crucial residues located in the binding site (Arg-57, Tyr-144, Tyr-216, Asp-295) have not been identified previously. We propose that the gamma-carboxyl group of LY354740 forms H-bonds to Arg-57, whereas the alpha-carboxyl group forms an H-bond with the hydroxyl group of Ser-145. The alpha-amino group of LY354740 forms H-bonds to Asp-295 and to the side-chain hydroxyl group of Thr-168. In addition, Tyr-144 may establish a hydrophobic (C-H/pi)-interaction with the bicyclo-hexane ring of LY354740. Furthermore, the mutation of residues Ser-148 and Arg-183, which are too remote for a direct interaction, affected the ligand affinity dramatically. These results suggest that Ser-148 and Arg-183 may be important for the 3D structure and/or are involved in closure of the domain. Finally, Asp-146, which is also remote from the binding site, was shown to be involved in the differential binding affinity of [(3)H]LY354740 for mGlu2 versus mGlu3 receptors. All the mGlu receptors except mGlu2 are activated by Ca(2+) and have serine instead of aspartic acid at this position, which suggests a critical role of this aspartic acid residue in the binding properties of this unique receptor. PMID:11641422

  15. Mechanisms of glutamate toxicity in multiple sclerosis: biomarker and therapeutic opportunities.

    PubMed

    Macrez, Richard; Stys, Peter K; Vivien, Denis; Lipton, Stuart A; Docagne, Fabian

    2016-09-01

    Research advances support the idea that excessive activation of the glutamatergic pathway plays an important part in the pathophysiology of multiple sclerosis. Beyond the well established direct toxic effects on neurons, additional sites of glutamate-induced cell damage have been described, including effects in oligodendrocytes, astrocytes, endothelial cells, and immune cells. Such toxic effects could provide a link between various pathological aspects of multiple sclerosis, such as axonal damage, oligodendrocyte cell death, demyelination, autoimmunity, and blood-brain barrier dysfunction. Understanding of the mechanisms underlying glutamate toxicity in multiple sclerosis could help in the development of new approaches for diagnosis, treatment, and follow-up in patients with this debilitating disease. While several clinical trials of glutamatergic modulators have had disappointing results, our growing understanding suggests that there is reason to remain optimistic about the therapeutic potential of these drugs. PMID:27571160

  16. TM4 of the glutamate transporter GLT-1 experiences substrate-induced motion during the transport cycle

    PubMed Central

    Rong, Xiuliang; Tan, Feng; Wu, Xiaojuan; Zhang, Xiuping; Lu, Lingli; Zou, Xiaoming; Qu, Shaogang

    2016-01-01

    Excitatory amino acid transporter 2 (EAAT2), also known as glial glutamate transporter type 1 (GLT-1), plays an important role in maintaining the extracellular glutamate concentrations below neurotoxic levels. The highly conserved TM2 transmembrane domain of GLT-1 maintains a stable position during the transport cycle; however, the effect of the transport cycle on the topology of TM4 in not well established. To further reveal the function of TM4, two cysteine pairs between TM2 and TM4 were introduced using site-directed mutagenesis. A significant decrease of transport activity was observed in the I93C/V241C and I97C/V241C mutants upon application of the oxidative cross-linking reagent, copper (II) (1,10-phenanthroline)3 (CuPh), which suggests that a conformational shift is essential for transporter activity. Furthermore, the decrease in activity by CuPh crosslinking was enhanced in external media with glutamate or potassium, which suggests that TM2 and TM4 assume closer proximity in the inward-facing conformation of the transporter. Our results suggest that the TM4 domain of GLT-1, and potentially other glutamate transporters, undergoes a complex conformational shift during substrate translocation, which involves an increase in the proximity of the TM2 and TM4 domains in the inward-facing conformation. PMID:27698371

  17. Control of active sites in selective flocculation: I -- Mathematical model

    SciTech Connect

    Behl, S.; Moudgil, B.M.; Prakash, T.S. . Dept. of Materials Science and Engineering)

    1993-12-01

    Heteroflocculation has been determined to be another major reason for loss in selectivity for flocculation process. In a mathematical model developed earlier, conditions for controlling heteroflocculation were discussed. Blocking active sites to control selective adsorption of a flocculant oil a desirable solid surface is discussed. It has been demonstrated that the lower molecular weight fraction of a flocculant which is incapable of flocculating the particles is an efficient site blocking agent. The major application of selective flocculation has been in mineral processing but many potential uses exist in biological and other colloidal systems. These include purification of ceramic powders, separating hazardous solids from chemical waste, and removal of deleterious components from paper pulp.

  18. Sodium-Dependent Glutamate Uptake by an Alkaliphilic, Thermophilic Bacillus Strain, TA2.A1

    PubMed Central

    Peddie, Catherine J.; Cook, Gregory M.; Morgan, Hugh W.

    1999-01-01

    A strain of Bacillus designated TA2.A1, isolated from a thermal spring in Te Aroha, New Zealand, grew optimally at pH 9.2 and 70°C. Bacillus strain TA2.A1 utilized glutamate as a sole carbon and energy source for growth, and sodium chloride (>5 mM) was an obligate requirement for growth. Growth on glutamate was inhibited by monensin and amiloride, both inhibitors that collapse the sodium gradient (ΔpNa) across the cell membrane. N,N-Dicyclohexylcarbodiimide inhibited the growth of Bacillus strain TA2.A1, suggesting that an F1F0-ATPase (H type) was being used to generate cellular ATP needed for anabolic reactions. Vanadate, an inhibitor of V-type ATPases, did not affect the growth of Bacillus strain TA2.A1. Glutamate transport by Bacillus strain TA2.A1 could be driven by an artificial membrane potential (ΔΨ), but only when sodium was present. In the absence of sodium, the rate of ΔΨ-driven glutamate uptake was fourfold lower. No glutamate transport was observed in the presence of ΔpNa alone (i.e., no ΔΨ). Glutamate uptake was specifically inhibited by monensin, and the Km for sodium was 5.6 mM. The Hill plot had a slope of approximately 1, suggesting that sodium binding was noncooperative and that the glutamate transporter had a single binding site for sodium. Glutamate transport was not affected by the protonophore carbonyl cyanide m-chlorophenylhydrazone, suggesting that the transmembrane pH gradient was not required for glutamate transport. The rate of glutamate transport increased with increasing glutamate concentration; the Km for glutamate was 2.90 μM, and the Vmax was 0.7 nmol · min−1 mg of protein. Glutamate transport was specifically inhibited by glutamate analogues. PMID:10322019

  19. Bidirectional Control of Synaptic GABAAR Clustering by Glutamate and Calcium

    PubMed Central

    Bannai, Hiroko; Niwa, Fumihiro; Sherwood, Mark W.; Shrivastava, Amulya Nidhi; Arizono, Misa; Miyamoto, Akitoshi; Sugiura, Kotomi; Lévi, Sabine; Triller, Antoine; Mikoshiba, Katsuhiko

    2015-01-01

    Summary GABAergic synaptic transmission regulates brain function by establishing the appropriate excitation-inhibition (E/I) balance in neural circuits. The structure and function of GABAergic synapses are sensitive to destabilization by impinging neurotransmitters. However, signaling mechanisms that promote the restorative homeostatic stabilization of GABAergic synapses remain unknown. Here, by quantum dot single-particle tracking, we characterize a signaling pathway that promotes the stability of GABAA receptor (GABAAR) postsynaptic organization. Slow metabotropic glutamate receptor signaling activates IP3 receptor-dependent calcium release and protein kinase C to promote GABAAR clustering and GABAergic transmission. This GABAAR stabilization pathway counteracts the rapid cluster dispersion caused by glutamate-driven NMDA receptor-dependent calcium influx and calcineurin dephosphorylation, including in conditions of pathological glutamate toxicity. These findings show that glutamate activates distinct receptors and spatiotemporal patterns of calcium signaling for opposing control of GABAergic synapses. PMID:26711343

  20. Vesicular release of glutamate from unmyelinated axons in white matter

    PubMed Central

    Ziskin, Jennifer L; Nishiyama, Akiko; Rubio, Maria; Fukaya, Masahiro; Bergles, Dwight E

    2007-01-01

    Directed fusion of transmitter-laden vesicles enables rapid intercellular signaling in the central nervous system and occurs at synapses within gray matter. Here we show that action potentials also induce the release of glutamate from axons in the corpus callosum, a white matter region responsible for interhemispheric communication. Callosal axons release glutamate by vesicular fusion, which induces quantal AMPA receptor–mediated currents in NG2+ glial progenitors at anatomically distinct axo–glial synaptic junctions. Glutamate release from axons was facilitated by repetitive stimulation and could be inhibited through activation of metabotropic autoreceptors. Although NG2+ cells form associations with nodes of Ranvier in white matter, measurements of conduction velocity indicated that unmyelinated fibers are responsible for glutamatergic signaling with NG2+ glia. This activity-dependent secretion of glutamate was prevalent in the developing and mature mouse corpus callosum, indicating that axons within white matter both conduct action potentials and engage in rapid neuron-glia communication. PMID:17293857

  1. The site of activation of factor X by cancer procoagulant.

    PubMed

    Gordon, S G; Mourad, A M

    1991-12-01

    Cancer procoagulant (CP) is a cysteine proteinase found in a variety of malignant cells and tissues and in human amnion-chorion tissue. It initiates coagulation by activating factor X. However, the amino acid sequence of the substrate protein that determines the cleavage site of cysteine proteinases is different from that of the serine proteinases that normally activate factor X, such as factor IXa, VIIa and Russell's Viper Venom (RVV). Therefore, it was of interest to determine the site of cleavage of human factor X by CP. Purified CP was incubated with purified factor X and the reaction mixture was electrophoresed on a 10% Tris-tricine SDS-PAGE gel. The proteins were electroeluted on to a polyvinylidene difluoride (PVDF) membrane, and stained with Coomassie blue. The heavy chain of activated factor X was cut out of the PVDF membrane and sequenced with an Applied Biosystems 477A with on-line HPLC. The primary cleavage sequence was Asp-Ala-Ala-Asp-Leu-Asp-Pro-; two other secondary sequences Ser-Ile-Thr-Trp-Lys-Pro- and Glu-Asn-Pro-Phe-Asp-Leu were found. The penultimate amino acid on the carbonyl side of the hydrolysed amide bond plays a critical role for the recognition of the cleavage site of cysteine proteinases. These data indicate that the penultimate amino acid for the primary cleavage site of factor X by CP is proline-20 and for the secondary sites, proline-13 and proline-28. This is in contrast to arginine-52 that determines the specificity of the cleavage by normal serine proteinase activation.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Effect of insulin on the compartmentation of glutamate for protein synthesis

    SciTech Connect

    Brown, A.B.; Mohan, C.; Bessman, S.P.

    1986-03-05

    The effect of insulin on the formation of CO/sub 2/ and incorporation of 1-/sup 14/C glutamine and U-/sup 14/C acetate into protein was studied in isolated rat hepatocytes. Insulin caused an 18% increase in /sup 14/CO/sub 2/ production from U-/sup 14/C acetate in comparison to a 10% increase from 1-/sup 14/C glutamate. Insulin caused a greater increase in the incorporation of tracer acetate carbons into hepatocyte protein. Hydrolysis of labeled protein and subsequent determination of glutamate specific activity revealed that incorporation of acetate carbons into protein as glutamate was about 52% greater in the presence of insulin. These results demonstrate the existence of two compartments of glutamate for protein synthesis: (i) glutamate generated in the Krebs cycle through transamination of a-ketoglutarate; (ii) cytosolic glutamate. Insulin had a greater stimulatory effect on the incorporation of glutamate generated in the Krebs cycle.

  3. Active-Site-Accessible, Porphyrinic Metal;#8722;Organic Framework Materials

    SciTech Connect

    Farha, Omar K.; Shultz, Abraham M.; Sarjeant, Amy A.; Nguyen, SonBinh T.; Hupp, Joseph T.

    2012-02-06

    On account of their structural similarity to cofactors found in many metallo-enzymes, metalloporphyrins are obvious potential building blocks for catalytically active, metal-organic framework (MOF) materials. While numerous porphyrin-based MOFs have already been described, versions featuring highly accessible active sites and permanent microporosity are remarkably scarce. Indeed, of the more than 70 previously reported porphyrinic MOFs, only one has been shown to be both permanently microporous and contain internally accessible active sites for chemical catalysis. Attempts to generalize the design approach used in this single successful case have failed. Reported here, however, is the synthesis of an extended family of MOFs that directly incorporate a variety of metalloporphyrins (specifically Al{sup 3+}, Zn{sup 2+}, Pd{sup 2+}, Mn{sup 3+}, and Fe{sup 3+} complexes). These robust porphyrinic materials (RPMs) feature large channels and readily accessible active sites. As an illustrative example, one of the manganese-containing RPMs is shown to be catalytically competent for the oxidation of alkenes and alkanes.

  4. Functional constituents of the active site of human neutrophil collagenase.

    PubMed

    Mookhtiar, K A; Wang, F; Van Wart, H E

    1986-05-01

    A series of chemical modification reactions has been carried out to identify functional constituents of the active site of human neutrophil collagenase. The enzyme is reversibly inhibited by the transition metal chelating agent 1,10-phenanthroline, and inhibition is fully reversed by zinc. Removal of weakly bound metal ions by gel filtration inactivates collagenase, and activity is fully restored on immediate readdition of calcium. The enzyme is unaffected by reagents that modify serine, cysteine, and arginine residues. However, reaction with the carboxyl reagents cyclohexylmorpholinocarbodiimide and Woodward's Reagent K lowers the activity of the enzyme substantially. Acetylimidazole inactivates the enzyme, but activity is completely restored on addition of hydroxylamine. The enzyme is also inactivated by tetranitromethane, indicating that it contains an essential tyrosine residue. Acylation of collagenase with diethyl pyrocarbonate, diketene, acetic anhydride, or trinitrobenzenesulfonate inactivates the enzyme, and activity is not restored on addition of hydroxylamine, indicating the presence of an essential lysine residue.

  5. Nest predation increases with parental activity: Separating nest site and parental activity effects

    USGS Publications Warehouse

    Martin, T.E.; Scott, J.; Menge, C.

    2000-01-01

    Alexander Skutch hypothesized that increased parental activity can increase the risk of nest predation. We tested this hypothesis using ten open-nesting bird species in Arizona, USA. Parental activity was greater during the nestling than incubation stage because parents visited the nest frequently to feed their young during the nestling stage. However, nest predation did not generally increase with parental activity between nesting stages across the ten study species. Previous investigators have found similar results. We tested whether nest site effects might yield higher predation during incubation because the most obvious sites are depredated most rapidly. We conducted experiments using nest sites from the previous year to remove parental activity. Our results showed that nest sites have highly repeatable effects on nest predation risk; poor nest sites incurred rapid predation and caused predation rates to be greater during the incubation than nestling stage. This pattern also was exhibited in a bird species with similar (i.e. controlled) parental activity between nesting stages. Once nest site effects are taken into account, nest predation shows a strong proximate increase with parental activity during the nestling stage within and across species. Parental activity and nest sites exert antagonistic influences on current estimates of nest predation between nesting stages and both must be considered in order to understand current patterns of nest predation, which is an important source of natural selection.

  6. Active site mapping, biochemical properties and subcellular localization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense.

    PubMed

    Caffrey, C R; Hansell, E; Lucas, K D; Brinen, L S; Alvarez Hernandez, A; Cheng, J; Gwaltney, S L; Roush, W R; Stierhof, Y D; Bogyo, M; Steverding, D; McKerrow, J H

    2001-11-01

    Cysteine protease activity of African trypanosome parasites is a target for new chemotherapy using synthetic protease inhibitors. To support this effort and further characterize the enzyme, we expressed and purified rhodesain, the target protease of Trypanosoma brucei rhodesiense (MVAT4 strain), in reagent quantities from Pichia pastoris. Rhodesain was secreted as an active, mature protease. Site-directed mutagenesis of a cryptic glycosylation motif not previously identified allowed production of rhodesain suitable for crystallization. An invariable ER(A/V)FNAA motif in the pro-peptide sequence of rhodesain was identified as being unique to the genus Trypanosoma. Antibodies to rhodesain localized the protease in the lysosome and identified a 40-kDa protein in long slender forms of T. b. rhodesiense and all life-cycle stages of T. b. brucei. With the latter parasite, protease expression was five times greater in short stumpy trypanosomes than in the other stages. Radiolabeled active site-directed inhibitors identified brucipain as the major cysteine protease in T. b. brucei. Peptidomimetic vinyl sulfone and epoxide inhibitors designed to interact with the S2, S1 and S' subsites of the active site cleft revealed differences between rhodesain and the related trypanosome protease cruzain. Using fluorogenic dipeptidyl substrates, rhodesain and cruzain had acid pH optima, but unlike some mammalian cathepsins retained significant activity and stability up to pH 8.0, consistent with a possible extracellular function. S2 subsite mapping of rhodesain and cruzain with fluorogenic peptidyl substrates demonstrates that the presence of alanine rather than glutamate at S2 prevents rhodesain from cleaving substrates in which P2 is arginine. PMID:11704274

  7. Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells

    NASA Astrophysics Data System (ADS)

    Brew, Helen; Attwell, David

    1987-06-01

    Glutamate is taken up avidly by glial cells in the central nervous system1. Glutamate uptake may terminate the transmitter action of glutamate released from neurons1, and keep extracellular glutamate at concentrations below those which are neurotoxic. We report here that glutamate evokes a large inward current in retinal glial cells which have their membrane potential and intracellular ion concentrations controlled by the whole-cell patch-clamp technique2. This current seems to be due to an electrogenic glutamate uptake carrier, which transports at least two sodium ions with every glutamate anion carried into the cell. Glutamate uptake is strongly voltage-dependent, decreasing at depolarized potentials: when fully activated, it contributes almost half of the conductance in the part of the glial cell membrane facing the retinal neurons. The spatial localization, glutamate affinity and magnitude of the uptake are appropriate for terminating the synaptic action of glutamate released from photoreceptors and bipolar cells. These data challenge present explanations of how the b-wave of the electroretinogram is generated, and suggest a mechanism for non-vesicular voltage-dependent release of glutamate from neurons.

  8. Bacterial cell-surface displaying of thermo-tolerant glutamate dehydrogenase and its application in L-glutamate assay.

    PubMed

    Song, Jianxia; Liang, Bo; Han, Dongfei; Tang, Xiangjiang; Lang, Qiaolin; Feng, Ruirui; Han, Lihui; Liu, Aihua

    2015-03-01

    In this paper, glutamate dehydrogenase (Gldh) is reported to efficiently display on Escherichia coli cell surface by using N-terminal region of ice the nucleation protein as an anchoring motif. The presence of Gldh was confirmed by SDS-PAGE and enzyme activity assay. Gldh was detected mainly in the outer membrane fraction, suggesting that the Gldh was displayed on the bacterial cell surface. The optimal temperature and pH for the bacteria cell-surface displayed Gldh (bacteria-Gldh) were 70°C and 9.0, respectively. Additionally, the fusion protein retained almost 100% of its initial enzymatic activity after 1 month incubation at 4°C. Transition metal ions could inhibit the enzyme activity to different extents, while common anions had little adverse effect on enzyme activity. Importantly, the displayed Gldh is most specific to l-glutamate reported so far. The bacterial Gldh was enabled to catalyze oxidization of l-glutamate with NADP(+) as cofactor, and the resultant NADPH can be detected spectrometrically at 340nm. The bacterial-Gldh based l-glutamate assay was established, where the absorbance at 340nm increased linearly with the increasing l-glutamate concentration within the range of 10-400μM. Further, the proposed approach was successfully applied to measure l-glutamate in real samples. PMID:25659635

  9. Glutamate Receptor Ion Channels: Structure, Regulation, and Function

    PubMed Central

    Wollmuth, Lonnie P.; McBain, Chris J.; Menniti, Frank S.; Vance, Katie M.; Ogden, Kevin K.; Hansen, Kasper B.; Yuan, Hongjie; Myers, Scott J.; Dingledine, Ray

    2010-01-01

    The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors. PMID:20716669

  10. Current approaches to enhance glutamate transporter function and expression.

    PubMed

    Fontana, Andréia C K

    2015-09-01

    L-glutamate is the predominant excitatory neurotransmitter in the CNS and has a central role in a variety of brain functions. The termination of glutamate neurotransmission by excitatory amino acid transporters (EAATs) is essential to maintain glutamate concentration low in extracellular space and avoid excitotoxicity. EAAT2/GLT-1, being the most abundant subtype of glutamate transporter in the CNS, plays a key role in regulation of glutamate transmission. Dysfunction of EAAT2 has been correlated with various pathologies such as traumatic brain injury, stroke, amyotrophic lateral sclerosis, Alzheimer's disease, among others. Therefore, activators of the function or enhancers of the expression of EAAT2/GLT-1 could serve as a potential therapy for these conditions. Translational activators of EAAT2/GLT-1, such as ceftriaxone and LDN/OSU-0212320, have been described to have significant protective effects in animal models of amyotrophic lateral sclerosis and epilepsy. In addition, pharmacological activators of the activity of EAAT2/GLT-1 have been explored for decades and are currently emerging as promising tools for neuroprotection, having potential advantages over expression activators. This review describes the current status of the search for EAAT2/GLT-1 activators and addresses challenges and limitations that this approach might encounter. Termination of glutamate neurotransmission by glutamate transporter EAAT2 is essential to maintain homeostasis in the brain and to avoid excitotoxicity. Dysfunction of EAAT2 has been correlated with various neurological pathologies. Therefore, activators of the function or enhancers of the expression of EAAT2 (green arrows) could serve as a potential therapy for these conditions. This review describes the current status of the search for EAAT2 activators and addresses challenges and limitations of this approach. PMID:26096891

  11. Active sites in char gasification: Final technical report

    SciTech Connect

    Wojtowicz, M.; Lilly, W.D.; Perkins, M.T.; Hradil, G.; Calo, J.M.; Suuberg, E.M.

    1987-09-01

    Among the key variables in the design of gasifiers and combustors is the reactivity of the chars which must be gasified or combusted. Significant loss of unburned char is unacceptable in virtually any process; the provision of sufficient residence time for complete conversion is essential. A very wide range of reactivities are observed, depending upon the nature of the char in a process. The current work focuses on furthering the understanding of gasification reactivities of chars. It has been well established that the reactivity of char to gasification generally depends upon three principal factors: (1) the concentration of ''active sites'' in the char; (2) mass transfer within the char; and (3) the type and concentration of catalytic impurities in the char. The present study primarily addresses the first factor. The subject of this research is the origin, nature, and fate of active sites in chars derived from parent hydrocarbons with coal-like structure. The nature and number of the active sites and their reactivity towards oxygen are examined in ''model'' chars derived from phenol-formaldehyde type resins. How the active sites are lost by the process of thermal annealing during heat treatment of chars are studied, and actual rate for the annealing process is derived. Since intrinsic char reactivities are of primary interest in the present study, a fair amount of attention was given to the model char synthesis and handling so that the effect of catalytic impurities and oxygen-containing functional groups in the chemical structure of the material were minimized, if not completely eliminated. The project would not be considered complete without comparing characteristic features of synthetic chars with kinetic behavior exhibited by natural chars, including coal chars.

  12. Purification and characterization of moschins, arginine-glutamate-rich proteins with translation-inhibiting activity from brown pumpkin (Cucurbita moschata) seeds.

    PubMed

    Ng, T B; Parkash, A; Tso, W W

    2002-10-01

    From fresh brown pumpkin seeds, two proteins with a molecular mass of 12kDa and an N-terminal sequence rich in arginine and glutamate residues were obtained. The protein designated alpha-moschin closely resembled the fruitfly programmed-cell death gene product and the protein designated beta-moschin demonstrated striking similarity to prepro 2S albumin in N-terminal sequence. alpha- and beta-moschins inhibited translation in the rabbit reticulocyte lysate system with an IC(50) of 17 microM and 300nM, respectively.

  13. Brownian aggregation rate of colloid particles with several active sites

    SciTech Connect

    Nekrasov, Vyacheslav M.; Yurkin, Maxim A.; Chernyshev, Andrei V.; Polshchitsin, Alexey A.; Yakovleva, Galina E.; Maltsev, Valeri P.

    2014-08-14

    We theoretically analyze the aggregation kinetics of colloid particles with several active sites. Such particles (so-called “patchy particles”) are well known as chemically anisotropic reactants, but the corresponding rate constant of their aggregation has not yet been established in a convenient analytical form. Using kinematic approximation for the diffusion problem, we derived an analytical formula for the diffusion-controlled reaction rate constant between two colloid particles (or clusters) with several small active sites under the following assumptions: the relative translational motion is Brownian diffusion, and the isotropic stochastic reorientation of each particle is Markovian and arbitrarily correlated. This formula was shown to produce accurate results in comparison with more sophisticated approaches. Also, to account for the case of a low number of active sites per particle we used Monte Carlo stochastic algorithm based on Gillespie method. Simulations showed that such discrete model is required when this number is less than 10. Finally, we applied the developed approach to the simulation of immunoagglutination, assuming that the formed clusters have fractal structure.

  14. Active Sites Environmental Monitoring Program: FY 1991 report

    SciTech Connect

    Ashwood, T.L.; Hicks, D.S.; Morrissey, C.M.

    1992-11-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from April 1991 through September 1991. The ASEMP was established in 1989 by Solid Waste Operations (SWO) and the Environmental Sciences Division, both of Oak Ridge National Laboratory, to provide early detection and performance monitoring at active low-level (radioactive) waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. A new set of action levels was developed on the basis of a statistical analysis of background contamination. These new action levels have been used to evaluate results in this report. Results of ASEMP monitoring continue to demonstrate that no LLW (except [sup 3]H) is being leached from the storage vaults on the tumulus pads. Loading of vaults on Tumulus II, which began in early FY 1991, was >90% complete at the end of September 1991. Results of sampling of groundwater and surface waters is presented.

  15. Inhibition and active-site modelling of prolidase.

    PubMed

    King, G F; Crossley, M J; Kuchel, P W

    1989-03-15

    Consideration of the active-site model of prolidase led us to examine azetidine, pyrrolidine and piperidine substrate analogs as potential in vivo inhibitors of the enzyme. One of these, N-benzyloxycarbonyl-L-proline, was shown to be a potent competitive inhibitor of porcine kidney prolidase (Ki = 90 microM); its rapid protein-mediated permeation of human and sheep erythrocytes suggests that it may be effective in vivo. The higher homolog, N-benzyloxycarbonyl-L-pipecolic acid, was also a potent inhibitor of the enzyme while the antihypertensive drugs, captopril and enalaprilat, were shown to have mild and no inhibitory effects, respectively. Analysis of inhibitor action and consideration of X-ray crystallographic data of relevant Mn2+ complexes allowed the active-site model of prolidase to be further refined; a new model is presented in which the substrate acts as a bidentate ligand towards the active-site manganous ion. Various aspects of the new model help to explain why Mn2+ has been 'chosen' by the enzyme in preference to other biologically available metal ions. PMID:2924773

  16. Protein kinase C -dependent regulation of synaptosomal glutamate uptake under conditions of hypergravity

    NASA Astrophysics Data System (ADS)

    Borisova, Tatiana; Krisanova, Natalia; Borisov, Arseniy; Sivko, Roman

    Glutamate is not only the main excitatory neurotransmitter in the mammalian CNS, but also a potent neurotoxin. Excessive concentration of ambient glutamate over activates glutamate receptors and causes neurotoxicity. Uptake of glutamate from the extracellular space into nerve cells was mediated by sodium-dependent glutamate transporters located in the plasma membrane. It was shown that the activity of glutamate transporters in rat brain nerve terminals was decreased after hypergravity (centrifugation of rats in special containers at 10 G for 1 hour). This decrease may result from the reduction in the number of glutamate transporters expressed in the plasma membrane of nerve terminals after hypergravity that was regulated by protein kinase C. The possibility of the involvement of protein kinase C in the regulation of the activity of glutamate transporters was assessed under conditions of hypergravity. The effect of protein kinase C inhibitor GF 109 203X on synaptosomal L-[14C]glutamate uptake was analysed. It was shown that the inhibitor decreased L-[14C]glutamate uptake by 15 % in control but did not influence it after hypergravity. In control, the initial velocity of L-[14C]glutamate uptake in the presence of the inhibitor decreased from 2.5 ± 0.2 nmol x min-1 x mg-1 of proteins to 2.17 ± 0.1 nmol x min-1 x mg-1 of proteins, whereas after hypergravity this value lowered from 2.05 ± 0.1 nmol x min-1 x mg-1 of proteins to 2.04 ± 0.1 nmol x min-1 x mg-1 of proteins. Thus, protein kinase C -dependent alteration in the cell surface expression of glutamate transporters may be one of the causes of a decrease in the activity of glutamate transporters after hypergravity.

  17. The Structure of RalF, an ADP-Ribosylation Factor Guanine Nucleotide Exchange Factor from Legionella pneumophila, Reveals the Presence of a Cap over the Active Site

    SciTech Connect

    Amor,J.; Swails, J.; Zhu, X.; Roy, C.; Nagai, H.; Ingmundson, A.; Cheng, X.; Kahn, R.

    2005-01-01

    The Legionella pneumophila protein RalF is secreted into host cytosol via the Dot/Icm type IV transporter where it acts to recruit ADP-ribosylation factor (Arf) to pathogen-containing phagosomes in the establishment of a replicative organelle. The presence in RalF of the Sec7 domain, present in all Arf guanine nucleotide exchange factors, has suggested that recruitment of Arf is an early step in pathogenesis. We have determined the crystal structure of RalF and of the isolated Sec7 domain and found that RalF is made up of two domains. The Sec7 domain is homologous to mammalian Sec7 domains. The C-terminal domain forms a cap over the active site in the Sec7 domain and contains a conserved folding motif, previously observed in adaptor subunits of vesicle coat complexes. The importance of the capping domain and of the glutamate in the 'glutamic finger,' conserved in all Sec7 domains, to RalF functions was examined using three different assays. These data highlight the functional importance of domains other than Sec7 in Arf guanine nucleotide exchange factors to biological activities and suggest novel mechanisms of regulation of those activities.

  18. Neuroprotective Effects of Glutamate Antagonists and Extracellular Acidity

    NASA Astrophysics Data System (ADS)

    Kaku, David A.; Giffard, Rona G.; Choi, Dennis W.

    1993-06-01

    Glutamate antagonists protect neurons from hypoxic injury both in vivo and in vitro, but in vitro studies have not been done under the acidic conditions typical of hypoxia-ischemia in vivo. Consistent with glutamate receptor antagonism, extracellular acidity reduced neuronal death in murine cortical cultures that were deprived of oxygen and glucose. Under these acid conditions, N-methyl-D-aspartate and α-amino-3-hydroxy-5-methyl-4-isox-azolepropionate-kainate antagonists further reduced neuronal death, such that some neurons tolerated prolonged oxygen and glucose deprivation almost as well as did astrocytes. Neuroprotection induced by this combination exceeded that induced by glutamate antagonists alone, suggesting that extracellular acidity has beneficial effects beyond the attenuation of ionotropic glutamate receptor activation.

  19. Glutamate 636 of the Escherichia coli pyruvate dehydrogenase-E1 participates in active center communication and behaves as an engineered acetolactate synthase with unusual stereoselectivity.

    PubMed

    Nemeria, Natalia; Tittmann, Kai; Joseph, Ebenezer; Zhou, Leon; Vazquez-Coll, Michelle B; Arjunan, Palaniappa; Hübner, Gerhard; Furey, William; Jordan, Frank

    2005-06-01

    The residue Glu636 is located near the thiamine diphosphate (ThDP) binding site of the Escherichia coli pyruvate dehydrogenase complex E1 subunit (PDHc-E1), and to probe its function two variants, E636A and E636Q were created with specific activities of 2.5 and 26% compared with parental PDHc-E1. According to both fluorescence binding and kinetic assays, the E636A variant behaved according to half-of-the-sites mechanism with respect to ThDP. In contrast, with the E636Q variant a K(d,ThDP) = 4.34 microM and K(m,ThDP) = 11 microM were obtained with behavior more reminiscent of the parental enzyme. The CD spectra of both variants gave evidence for formation of the 1',4'-iminopyrimidine tautomer on binding of phosphonolactylthiamine diphosphate, a stable analog of the substrate-ThDP covalent complex. Rapid formation of optically active (R)-acetolactate by both variants, but not by the parental enzyme, was observed by CD and NMR spectroscopy. The acetolactate configuration produced by the Glu636 variants is opposite that produced by the enzyme acetolactate synthase and the Asp28-substituted variants of yeast pyruvate decarboxylase, suggesting that the active centers of the two sets of enzymes exhibit different facial selectivity (re or si) vis à vis pyruvate. The tryptic peptide map (mass spectral analysis) revealed that the Glu636 substitution changed the mobility of a loop comprising amino acid residues from the ThDP binding fold. Apparently, the residue Glu636 has important functions both in active center communication and in protecting the active center from undesirable "carboligase" side reactions.

  20. Inflammation, glutamate, and glia in depression: a literature review.

    PubMed

    McNally, Leah; Bhagwagar, Zubin; Hannestad, Jonas

    2008-06-01

    Multiple lines of evidence suggest that inflammation and glutamate dysfunction contribute to the pathophysiology of depression. In this review we provide an overview of how these two systems may interact. Excess levels of inflammatory mediators occur in a subgroup of depressed patients. Studies of acute experimental activation of the immune system with endotoxin and of chronic activation during interferon-alpha treatment show that inflammation can cause depression. Peripheral inflammation leads to microglial activation which could interfere with excitatory amino acid metabolism leading to inappropriate glutamate receptor activation. Loss of astroglia, a feature of depression, upsets the balance of anti- and pro-inflammatory mediators and further impairs the removal of excitatory amino acids. Microglia activated by excess inflammation, astroglial loss, and inappropriate glutamate receptor activation ultimately disrupt the delicate balance of neuroprotective versus neurotoxic effects in the brain, potentially leading to depression. PMID:18567974

  1. Mesenchymal stem cells protect CNS neurons against glutamate excitotoxicity by inhibiting glutamate receptor expression and function.

    PubMed

    Voulgari-Kokota, A; Fairless, R; Karamita, M; Kyrargyri, V; Tseveleki, V; Evangelidou, M; Delorme, B; Charbord, P; Diem, R; Probert, L

    2012-07-01

    Mesenchymal stem cells (MSC) promote functional recovery in experimental models of central nervous system (CNS) pathology and are currently being tested in clinical trials for stroke, multiple sclerosis and CNS injury. Their beneficial effects are attributed to the activation of endogenous CNS protection and repair processes as well as immune regulation but their mechanisms of action are poorly understood. Here we investigated the neuroprotective effects of mouse MSC in rodent MSC-neuron co-cultures and mice using models of glutamate excitotoxicity. A 24h pre-culture of mouse primary cortical neurons with MSC protected them against glutamate (NMDA) receptor-induced death and conditioned medium from MSC (MSC CM) was sufficient for this effect. Protection by MSC CM was associated with reduced mRNA levels of genes encoding NMDA receptor subunits, and increased levels for genes associated with non-neuronal and stem cell types, as shown by RT-PCR and cDNA microarray analyses. Changes in gene expression were not associated with alterations in cell lineage representation within the cultures. Further, MSC CM-mediated neuroprotection in rat retinal ganglion cells was associated with reduced glutamate-induced calcium influx. The adoptive transfer of EGFP(+)MSC in a mouse kainic acid epilepsy model also provided neuroprotection against glutamate excitotoxicity in vivo, as shown by reduced neuron damage and glial cell activation in the hippocampus. These results show that MSC mediate direct neuroprotection by reducing neuronal sensitivity to glutamate receptor ligands and altering gene expression, and suggest a link between the therapeutic effects of MSC and the activation of cell plasticity in the damaged CNS. PMID:22561409

  2. Computational Studies of Glutamate Transporters

    PubMed Central

    Setiadi, Jeffry; Heinzelmann, Germano; Kuyucak, Serdar

    2015-01-01

    Glutamate is the major excitatory neurotransmitter in the human brain whose binding to receptors on neurons excites them while excess glutamate are removed from synapses via transporter proteins. Determination of the crystal structures of bacterial aspartate transporters has paved the way for computational investigation of their function and dynamics at the molecular level. Here, we review molecular dynamics and free energy calculation methods used in these computational studies and discuss the recent applications to glutamate transporters. The focus of the review is on the insights gained on the transport mechanism through computational methods, which otherwise is not directly accessible by experimental probes. Recent efforts to model the mammalian glutamate and other amino acid transporters, whose crystal structures have not been solved yet, are included in the review. PMID:26569328

  3. Structure of a Berberine Bridge Enzyme-Like Enzyme with an Active Site Specific to the Plant Family Brassicaceae

    PubMed Central

    Daniel, Bastian; Wallner, Silvia; Steiner, Barbara; Oberdorfer, Gustav; Kumar, Prashant; van der Graaff, Eric; Roitsch, Thomas; Sensen, Christoph W.; Gruber, Karl; Macheroux, Peter

    2016-01-01

    Berberine bridge enzyme-like (BBE-like) proteins form a multigene family (pfam 08031), which is present in plants, fungi and bacteria. They adopt the vanillyl alcohol-oxidase fold and predominantly show bi-covalent tethering of the FAD cofactor to a cysteine and histidine residue, respectively. The Arabidopsis thaliana genome was recently shown to contain genes coding for 28 BBE-like proteins, while featuring four distinct active site compositions. We determined the structure of a member of the AtBBE-like protein family (termed AtBBE-like 28), which has an active site composition that has not been structurally and biochemically characterized thus far. The most salient and distinguishing features of the active site found in AtBBE-like 28 are a mono-covalent linkage of a histidine to the 8α-position of the flavin-isoalloxazine ring and the lack of a second covalent linkage to the 6-position, owing to the replacement of a cysteine with a histidine. In addition, the structure reveals the interaction of a glutamic acid (Glu426) with an aspartic acid (Asp369) at the active site, which appear to share a proton. This arrangement leads to the delocalization of a negative charge at the active site that may be exploited for catalysis. The structure also indicates a shift of the position of the isoalloxazine ring in comparison to other members of the BBE-like family. The dioxygen surrogate chloride was found near the C(4a) position of the isoalloxazine ring in the oxygen pocket, pointing to a rapid reoxidation of reduced enzyme by dioxygen. A T-DNA insertional mutant line for AtBBE-like 28 results in a phenotype, that is characterized by reduced biomass and lower salt stress tolerance. Multiple sequence analysis showed that the active site composition found in AtBBE-like 28 is only present in the Brassicaceae, suggesting that it plays a specific role in the metabolism of this plant family. PMID:27276217

  4. Structure of a Berberine Bridge Enzyme-Like Enzyme with an Active Site Specific to the Plant Family Brassicaceae.

    PubMed

    Daniel, Bastian; Wallner, Silvia; Steiner, Barbara; Oberdorfer, Gustav; Kumar, Prashant; van der Graaff, Eric; Roitsch, Thomas; Sensen, Christoph W; Gruber, Karl; Macheroux, Peter

    2016-01-01

    Berberine bridge enzyme-like (BBE-like) proteins form a multigene family (pfam 08031), which is present in plants, fungi and bacteria. They adopt the vanillyl alcohol-oxidase fold and predominantly show bi-covalent tethering of the FAD cofactor to a cysteine and histidine residue, respectively. The Arabidopsis thaliana genome was recently shown to contain genes coding for 28 BBE-like proteins, while featuring four distinct active site compositions. We determined the structure of a member of the AtBBE-like protein family (termed AtBBE-like 28), which has an active site composition that has not been structurally and biochemically characterized thus far. The most salient and distinguishing features of the active site found in AtBBE-like 28 are a mono-covalent linkage of a histidine to the 8α-position of the flavin-isoalloxazine ring and the lack of a second covalent linkage to the 6-position, owing to the replacement of a cysteine with a histidine. In addition, the structure reveals the interaction of a glutamic acid (Glu426) with an aspartic acid (Asp369) at the active site, which appear to share a proton. This arrangement leads to the delocalization of a negative charge at the active site that may be exploited for catalysis. The structure also indicates a shift of the position of the isoalloxazine ring in comparison to other members of the BBE-like family. The dioxygen surrogate chloride was found near the C(4a) position of the isoalloxazine ring in the oxygen pocket, pointing to a rapid reoxidation of reduced enzyme by dioxygen. A T-DNA insertional mutant line for AtBBE-like 28 results in a phenotype, that is characterized by reduced biomass and lower salt stress tolerance. Multiple sequence analysis showed that the active site composition found in AtBBE-like 28 is only present in the Brassicaceae, suggesting that it plays a specific role in the metabolism of this plant family. PMID:27276217

  5. Structural insight into the evolutionary and pharmacologic homology of glutamate carboxypeptidases II and III

    SciTech Connect

    Hlouchova, Klara; Barinka, Cyril; Konvalinka, Jan; Lubkowski, Jacek

    2009-10-23

    Glutamate carboxypeptidase III (GCPIII) is a metalloenzyme that belongs to the transferrin receptor/glutamate carboxypeptidase II (GCPII; EC 3.4.17.21) superfamily. GCPIII has been studied mainly because of its evolutionary relationship to GCPII, an enzyme involved in a variety of neuropathologies and malignancies, such as glutamatergic neurotoxicity and prostate cancer. Given the potential functional and pharmacological overlap between GCPIII and GCPII, studies addressing the structural and physiological properties of GCPIII are crucial for obtaining a deeper understanding of the GCPII/GCPIII system. In the present study, we report high-resolution crystal structures of the human GCPIII ectodomain in a 'pseudo-unliganded' state and in a complex with: (a) L-glutamate (a product of hydrolysis); (b) a phosphapeptide transition state mimetic, namely (2S,3'S)-{l_brace}[(3'-amino-3'-carboxy-propyl)-hydroxyphosphinoyl]methyl{r_brace}-pentanedioic acid; and (c) quisqualic acid, a glutamate biostere. Our data reveal the overall fold and quaternary arrangement of the GCPIII molecule, define the architecture of the GCPIII substrate-binding cavity, and offer an experimental evidence for the presence of Zn{sup 2+} ions in the bimetallic active site. Furthermore, the structures allow us to detail interactions between the enzyme and its ligands and to characterize the functional flexibility of GCPIII, which is essential for substrate recognition. A comparison of these GCPIII structures with the equivalent GCPII complexes reveals differences in the organization of specificity pockets, in surface charge distribution, and in the occupancy of the co-catalytic zinc sites. The data presented here provide information that should prove to be essential for the structurally-aided design of GCPIII-specific inhibitors and might comprise guidelines for future comparative GCPII/GCPIII studies.

  6. Druggability analysis and classification of protein tyrosine phosphatase active sites

    PubMed Central

    Ghattas, Mohammad A; Raslan, Noor; Sadeq, Asil; Al Sorkhy, Mohammad; Atatreh, Noor

    2016-01-01

    Protein tyrosine phosphatases (PTP) play important roles in the pathogenesis of many diseases. The fact that no PTP inhibitors have reached the market so far has raised many questions about their druggability. In this study, the active sites of 17 PTPs were characterized and assessed for its ability to bind drug-like molecules. Consequently, PTPs were classified according to their druggability scores into four main categories. Only four members showed intermediate to very druggable pocket; interestingly, the rest of them exhibited poor druggability. Particularly focusing on PTP1B, we also demonstrated the influence of several factors on the druggability of PTP active site. For instance, the open conformation showed better druggability than the closed conformation, while the tight-bound water molecules appeared to have minimal effect on the PTP1B druggability. Finally, the allosteric site of PTP1B was found to exhibit superior druggability compared to the catalytic pocket. This analysis can prove useful in the discovery of new PTP inhibitors by assisting researchers in predicting hit rates from high throughput or virtual screening and saving unnecessary cost, time, and efforts via prioritizing PTP targets according to their predicted druggability. PMID:27757011

  7. The maximum activities of hexokinase, phosphorylase, phosphofructokinase, glycerol phosphate dehydrogenases, lactate dehydrogenase, octopine dehydrogenase, phosphoenolpyruvate carboxykinase, nucleoside diphosphatekinase, glutamate-oxaloacetate transaminase and arginine kinase in relation to carbohydrate utilization in muscles from marine invertebrates.

    PubMed Central

    Zammit, V A; Newsholme, E A

    1976-01-01

    Comparison of the activities of hexokinase, phosphorylase and phosphofructokinase in muscles from marine invertebrates indicates that they can be divided into three groups. First, the activities of the three enzymes are low in coelenterate muscles, catch muscles of molluscs and muscles of echinoderms; this indicates a low rate of carbohydrate (and energy) utilization by these muscles. Secondly, high activities of phosphorylase and phosphofructokinase relative to those of hexokinase are found in, for example, lobster abdominal and scallop snap muscles; this indicates that these muscles depend largely on anaerobic degradation of glycogen for energy production. Thirdly, high activities of hexokinase are found in the radular muscles of prosobranch molluscs and the fin muscles of squids; this indicates a high capacity for glucose utilization, which is consistent with the high activities of enzymes of the tricarboxylic acid cycle in these muscles [Alp, Newsholme & Zammit (1976) Biochem. J. 154, 689-700]. 2. The activities of lactate dehydrogenase, octopine dehydrogenase, phosphoenolpyruvate carboxykinase, cytosolic and mitochondrial glycerol 3-phosphate dehydrogenase and glutamate-oxaloacetate transaminase were measured in order to provide a qualitative indication of the importance of different processes for oxidation of glycolytically formed NADH. The muscles are divided into four groups: those that have a high activity of lactate dehydrogenase relative to the activities of phosphofructokinase (e.g. crustacean muscles); those that have high activities of octopine dehydrogenase but low activities of lactate dehydrogenase (e.g. scallop snap muscle); those that have moderate activities of both lactate dehydrogenase and octopine dehydrogenase (radular muscles of prosobranchs), and those that have low activities of both lactate dehydrogenase and octopine dehydrogenase, but which possess activities of phosphoenolpyruvate carboxykinase (oyster adductor muscles). It is

  8. Bicyclic glutamic acid derivatives.

    PubMed

    Meyer, Udo; Bisel, Philippe; Weckert, Edgar; Frahm, August Wilhelm

    2006-05-15

    For the second-generation asymmetric synthesis of the trans-tris(homoglutamic) acids via Strecker reaction of chiral ketimines, the cyanide addition as the key stereodifferentiating step produces mixtures of diastereomeric alpha-amino nitrile esters the composition of which is independent of the reaction temperature and the type of the solvent, respectively. The subsequent hydrolysis is exclusively achieved with concentrated H(2)SO(4) yielding diastereomeric mixtures of three secondary alpha-amino alpha-carbamoyl-gamma-esters and two diastereomeric cis-fused angular alpha-carbamoyl gamma-lactams as bicyclic glutamic acid derivatives, gained from in situ stereomer differentiating cyclisation of the secondary cis-alpha-amino alpha-carbamoyl-gamma-esters. Separation was achieved by CC. The pure secondary trans-alpha-amino alpha-carbamoyl-gamma-esters cyclise on heating and treatment with concentrated H(2)SO(4), respectively, to diastereomeric cis-fused angular secondary alpha-amino imides. Their hydrogenolysis led to the enantiomeric cis-fused angular primary alpha-amino imides. The configuration of all compounds was completely established by NMR methods, CD-spectra, and by X-ray analyses of the (alphaR,1R,5R)-1-carbamoyl-2-(1-phenylethyl)-2-azabicyclo[3.3.0]octan-3-one and of the trans-alphaS,1S,2R-2-ethoxycarbonylmethyl-1-(1-phenylethylamino)cyclopentanecarboxamide. PMID:16596563

  9. Molecular signalling mediating the protective effect of A1 adenosine and mGlu3 metabotropic glutamate receptor activation against apoptosis by oxygen/glucose deprivation in cultured astrocytes.

    PubMed

    Ciccarelli, Renata; D'Alimonte, Iolanda; Ballerini, Patrizia; D'Auro, Mariagrazia; Nargi, Eleonora; Buccella, Silvana; Di Iorio, Patrizia; Bruno, Valeria; Nicoletti, Ferdinando; Caciagli, Francesco

    2007-05-01

    Astrocyte death may occur in neurodegenerative disorders and complicates the outcome of brain ischemia, a condition associated with high extracellular levels of adenosine and glutamate. We show that pharmacological activation of A(1) adenosine and mGlu3 metabotropic glutamate receptors with N(6)-chlorocyclopentyladenosine (CCPA) and (-)2-oxa-4-aminocyclo-[3.1.0]hexane-4,6-dicarboxylic acid (LY379268), respectively, protects cultured astrocytes against apoptosis induced by a 3-h exposure to oxygen/glucose deprivation (OGD). Protection by CCPA and LY379268 was less than additive and was abrogated by receptor blockade with selective competitive antagonists or pertussis toxin. Both in control astrocytes and in astrocytes exposed to OGD, CCPA and LY379268 induced a rapid activation of the phosphatidylinositol-3-kinase (PI3K) and extracellular signal-regulated kinases 1 and 2 (ERK1/2)/mitogen-activated protein kinase (MAPK) pathways, which are known to support cell survival. In cultures exposed to OGD, CCPA and LY379268 reduced the activation of c-Jun N-terminal kinase and p38/MAPK, reduced the levels of the proapoptotic protein Bad, increased the levels of the antiapoptotic protein Bcl-X(L), and were highly protective against apoptotic death, as shown by nuclear 4'-6-diamidino-2-phenylindole staining and measurements of caspase-3 activity. All of these effects were attenuated by treatment with 1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene (U0126) and 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002), which inhibit the MAPK and the PI3K pathways, respectively. These data suggest that pharmacological activation of A(1) and mGlu3 receptors protects astrocytes against hypoxic/ischemic damage by stimulating the PI3K and ERK1/2 MAPK pathways. PMID:17293559

  10. Current activities handbook: formerly utilized sites remedial action program

    SciTech Connect

    1981-02-27

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the activities each of the thirteen state legislatures potentially affected by the Formerly Utilized Sites Remedial Action Program. It contains a description of the state legislative procedural rules and a schedule of each legislative session; a summary of pending relevant legislation; the name and telephone number of legislative and state agency contacts; and the full text of all bills identified.

  11. An arginine-aspartate network in the active site of bacterial TruB is critical for catalyzing pseudouridine formation

    PubMed Central

    Friedt, Jenna; Leavens, Fern M. V.; Mercier, Evan; Wieden, Hans-Joachim; Kothe, Ute

    2014-01-01

    Pseudouridine synthases introduce the most common RNA modification and likely use the same catalytic mechanism. Besides a catalytic aspartate residue, the contributions of other residues for catalysis of pseudouridine formation are poorly understood. Here, we have tested the role of a conserved basic residue in the active site for catalysis using the bacterial pseudouridine synthase TruB targeting U55 in tRNAs. Substitution of arginine 181 with lysine results in a 2500-fold reduction of TruB’s catalytic rate without affecting tRNA binding. Furthermore, we analyzed the function of a second-shell aspartate residue (D90) that is conserved in all TruB enzymes and interacts with C56 of tRNA. Site-directed mutagenesis, biochemical and kinetic studies reveal that this residue is not critical for substrate binding but influences catalysis significantly as replacement of D90 with glutamate or asparagine reduces the catalytic rate 30- and 50-fold, respectively. In agreement with molecular dynamics simulations of TruB wild type and TruB D90N, we propose an electrostatic network composed of the catalytic aspartate (D48), R181 and D90 that is important for catalysis by fine-tuning the D48-R181 interaction. Conserved, negatively charged residues similar to D90 are found in a number of pseudouridine synthases, suggesting that this might be a general mechanism. PMID:24371284

  12. An arginine-aspartate network in the active site of bacterial TruB is critical for catalyzing pseudouridine formation.

    PubMed

    Friedt, Jenna; Leavens, Fern M V; Mercier, Evan; Wieden, Hans-Joachim; Kothe, Ute

    2014-04-01

    Pseudouridine synthases introduce the most common RNA modification and likely use the same catalytic mechanism. Besides a catalytic aspartate residue, the contributions of other residues for catalysis of pseudouridine formation are poorly understood. Here, we have tested the role of a conserved basic residue in the active site for catalysis using the bacterial pseudouridine synthase TruB targeting U55 in tRNAs. Substitution of arginine 181 with lysine results in a 2500-fold reduction of TruB's catalytic rate without affecting tRNA binding. Furthermore, we analyzed the function of a second-shell aspartate residue (D90) that is conserved in all TruB enzymes and interacts with C56 of tRNA. Site-directed mutagenesis, biochemical and kinetic studies reveal that this residue is not critical for substrate binding but influences catalysis significantly as replacement of D90 with glutamate or asparagine reduces the catalytic rate 30- and 50-fold, respectively. In agreement with molecular dynamics simulations of TruB wild type and TruB D90N, we propose an electrostatic network composed of the catalytic aspartate (D48), R181 and D90 that is important for catalysis by fine-tuning the D48-R181 interaction. Conserved, negatively charged residues similar to D90 are found in a number of pseudouridine synthases, suggesting that this might be a general mechanism.

  13. Recent progress in the synthesis and characterization of group II metabotropic glutamate receptor allosteric modulators.

    PubMed

    Sheffler, Douglas J; Pinkerton, Anthony B; Dahl, Russell; Markou, Athina; Cosford, Nicholas D P

    2011-08-17

    Group II metabotropic glutamate (mGlu) receptors consist of the metabotropic glutamate 2 (mGlu(2)) and metabotropic glutamate 3 (mGlu(3)) receptor subtypes which modulate glutamate transmission by second messenger activation to negatively regulate the activity of adenylyl cyclase. Excessive accumulation of glutamate in the perisynaptic extracellular region triggers mGlu(2) and mGlu(3) receptors to inhibit further release of glutamate. There is growing evidence that the modulation of glutamatergic neurotransmission by small molecule modulators of Group II mGlu receptors has significant potential for the treatment of several neuropsychiatric and neurodegenerative diseases. This review provides an overview of recent progress on the synthesis and pharmacological characterization of positive and negative allosteric modulators of the Group II mGlu receptors. PMID:22860167

  14. Recent Progress in the Synthesis and Characterization of Group II Metabotropic Glutamate Receptor Allosteric Modulators

    PubMed Central

    2011-01-01

    Group II metabotropic glutamate (mGlu) receptors consist of the metabotropic glutamate 2 (mGlu2) and metabotropic glutamate 3 (mGlu3) receptor subtypes which modulate glutamate transmission by second messenger activation to negatively regulate the activity of adenylyl cyclase. Excessive accumulation of glutamate in the perisynaptic extracellular region triggers mGlu2 and mGlu3 receptors to inhibit further release of glutamate. There is growing evidence that the modulation of glutamatergic neurotransmission by small molecule modulators of Group II mGlu receptors has significant potential for the treatment of several neuropsychiatric and neurodegenerative diseases. This review provides an overview of recent progress on the synthesis and pharmacological characterization of positive and negative allosteric modulators of the Group II mGlu receptors. PMID:22860167

  15. [The effect of cerebral glutamate enhanced level on the respiratory system of anesthetized rats].

    PubMed

    Aleksandrov, V G; Buĭ Tkhi, Kh; Aleksandrova, N P

    2012-07-01

    A cerebral level of glutamate is one of the determinants of the central mechanisms of respiratory control. It had been hypothesized that endogenous glutamate could have a modulating effect on the functioning of mechanisms for neural control of respiratory function. Acute experiments on spontaneuosly breathing, urethane-anesthetized rats had been performed to study the respiratory effects of cerebroventricular microinjection of glutamate. It has been shown that a higher level of cerebral glutamate increases breathing rate and electrical activity of the diaphragm, and strengthen the Hering-Breuer reflex. These effects had a clear character of the phase. The results confirm the hypothesis suggested and prove that the increase in cerebral levels of glutamate leads to the activation of glutamate receptors of various types.

  16. Electrostatic fields in the active sites of lysozymes.

    PubMed

    Sun, D P; Liao, D I; Remington, S J

    1989-07-01

    Considerable experimental evidence is in support of several aspects of the mechanism that has been proposed for the catalytic activity of lysozyme. However, the enzymatically catalyzed hydrolysis of polysaccharides proceeds over 5 orders of magnitude faster than that of model compounds that mimic the configuration of the substrate in the active site of the enzyme. Although several possible explanations for this rate enhancement have been discussed elsewhere, a definitive mechanism has not emerged. Here we report striking results obtained by classical electrodynamics, which suggest that bond breakage and the consequent separation of charge in lysozyme is promoted by a large electrostatic field across the active site cleft, produced in part by a very asymmetric distribution of charged residues on the enzyme surface. Lysozymes unrelated in amino acid sequence have similar distributions of charged residues and electric fields. The results reported here suggest that the electrostatic component of the rate enhancement is greater than 9 kcal.mol-1. Thus, electrostatic interactions may play a more important role in the enzymatic mechanism than has generally been appreciated.

  17. Histidine at the active site of Neurospora tyrosinase.

    PubMed

    Pfiffner, E; Lerch, K

    1981-10-13

    The involvement of histidyl residues as potential ligands to the binuclear active-site copper of Neurospora tyrosinase was explored by dye-sensitized photooxidation. The enzymatic activity of the holoenzyme was shown to be unaffected by exposure to light in the presence of methylene blue; however, irradiation of the apoenzyme under the same conditions led to a progressive loss of its ability to be reactivated with Cu2+. This photoinactivation was paralleled by a decrease in the histidine content whereas the number of histidyl residues in the holoenzyme remained constant. Copper measurements of photooxidized, reconstituted apoenzyme demonstrated the loss of binding of one copper atom per mole of enzyme as a consequence of photosensitized oxidation of three out of nine histidine residues. Their sequence positions were determined by a comparison of the relative yields of the histidine containing peptides of photooxidized holo- and apotyrosinases. The data obtained show the preferential modification of histidyl residues 188, 193, and 289 and suggest that they constitute metal ligands to one of the two active-site copper atoms. Substitution of copper by cobalt was found to afford complete protection of the histidyl residues from being modified by dye-sensitized photooxidation. PMID:6458322

  18. Structure of the complex of Neisseria gonorrhoeae N-acetyl-L-glutamate synthase with a bound bisubstrate analog

    PubMed Central

    ZHAO, GENGXIANG; ALLEWELL, NORMA M.; TUCHMAN, MENDEL; SHI, DASHUANG

    2013-01-01

    N -acetyl-L-glutamate synthase catalyzes the conversion of AcCoA and glutamate to CoA and N-acetyl-L-glutamate (NAG), the first step of the arginine biosynthetic pathway in lower organisms. In mammals, NAG is an obligate cofactor of carbamoyl phosphate synthetase I in the urea cycle. We have previously reported the structures of NAGS from Neisseria gonorrhoeae (ngNAGS) with various substrates bound. Here we reported the preparation of the bisubstrate analog, CoA-S-acetyl-L-glutamate, the crystal structure of ngNAGS with CoA-NAG bound, and kinetic studies of several active site mutants. The results are consistent with a one-step nucleophilic addition-elimination mechanism with Glu353 as the catalytic base and Ser392 as the catalytic acid. The structure of the ngNAGS-bisubstrate complex together with the previous ngNAGS structures delineates the catalytic reaction path for ngNAGS. PMID:23261468

  19. Structure of the complex of Neisseria gonorrhoeae N-acetyl-L-glutamate synthase with a bound bisubstrate analog.

    PubMed

    Zhao, Gengxiang; Allewell, Norma M; Tuchman, Mendel; Shi, Dashuang

    2013-01-25

    N-Acetyl-L-glutamate synthase catalyzes the conversion of AcCoA and glutamate to CoA and N-acetyl-L-glutamate (NAG), the first step of the arginine biosynthetic pathway in lower organisms. In mammals, NAG is an obligate cofactor of carbamoyl phosphate synthetase I in the urea cycle. We have previously reported the structures of NAGS from Neisseria gonorrhoeae (ngNAGS) with various substrates bound. Here we reported the preparation of the bisubstrate analog, CoA-S-acetyl-L-glutamate, the crystal structure of ngNAGS with CoA-NAG bound, and kinetic studies of several active site mutants. The results are consistent with a one-step nucleophilic addition-elimination mechanism with Glu353 as the catalytic base and Ser392 as the catalytic acid. The structure of the ngNAGS-bisubstrate complex together with the previous ngNAGS structures delineates the catalytic reaction path for ngNAGS. PMID:23261468

  20. Activation of protein kinase C induces a long-term depression of glutamate sensitivity of cerebellar Purkinje cells. An in vitro study.

    PubMed

    Crepel, F; Krupa, M

    1988-08-23

    In immature rat cerebellar slices in vitro, a long term depression (LTD) of the responses of Purkinje cells (PCs) to L-glutamate (Glu) was achieved in 30% of the recorded cells by simultaneous stimulation of the neurones by Glu and by climbing fibres (CFs). This effect was not observed for L-aspartate (Asp)-induced responses. Similarly, selective LTD of Glu-induced responses was obtained in 22% of the cells by pairing Glu applications with direct stimulation of the cells which elicited calcium spikes in these neurones. Finally, bath application of phorbol esters also induced a selective LTD of Glu-induced responses in all cells tested. These results suggest that protein kinase C is involved in cerebellar synaptic plasticity.

  1. Trichodiene synthase. Identification of active site residues by site-directed mutagenesis.

    PubMed

    Cane, D E; Shim, J H; Xue, Q; Fitzsimons, B C; Hohn, T M

    1995-02-28

    Derivatization of 5,5'-dithiobis(2-nitrobenzoic acid)-treated trichodiene synthase with [methyl-14C]methyl methanethiosulfonate and analysis of the derived tryptic peptides suggested the presence of two cysteine residues at the active site. The corresponding C146A and C190A mutants were constructed by site-directed mutagenesis. The C190A mutant displayed partial but significantly reduced activity, with a reduction in kcat/Km of 3000 compared to the wild-type trichodiene synthase, while the C146A mutant was essentially inactive. A hybrid trichodiene synthase, constructed from amino acids 1-309 of the Fusarium sporotrichioides enzyme and amino acids 310-383 of the Gibberella pulicaris cyclase, had steady state kinetic parameters nearly identical to those of the wild-type F. sporotrichioides enzyme. From this parent hybrid, a series of mutants was constructed by site-directed mutagenesis in which the amino acids in the base-rich region, 302-306 (DRRYR), were systematically modified. Three of these mutants were overexpressed and purified to homogeneity. The importance of Arg304 for catalysis was established by the observation that the R304K mutant showed a more than 25-fold increase in Km, as well as a 200-fold reduction in kcat. In addition, analysis of the incubation products of the R304K mutant by gas chromatography-mass spectrometry (GC-MS) indicated that farnesyl diphosphate was converted not only to trichodiene but to at least two additional C15H24 hydrocarbons, mle 204. Replacement of the Tyr305 residue of trichodiene synthase with Phe had little effect on kcat, while increasing the Km by a factor of ca. 7-8.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7873527

  2. Morphine Protects Spinal Cord Astrocytes from Glutamate-Induced Apoptosis via Reducing Endoplasmic Reticulum Stress

    PubMed Central

    Zhang, Chao; Wang, Chendan; Ren, Jianbo; Guo, Xiangjie; Yun, Keming

    2016-01-01

    Glutamate is not only a neurotransmitter but also an important neurotoxin in central nervous system (CNS). Chronic elevation of glutamate induces both neuronal and glial cell apoptosis. However, its effect on astrocytes is complex and still remains unclear. In this study, we investigated whether morphine, a common opioid ligand, could affect glutamate-induced apoptosis in astrocytes. Primary cultured astrocytes were incubated with glutamate in the presence/absence of morphine. It was found that morphine could reduce glutamate-induced apoptosis of astrocytes. Furthermore, glutamate activated Ca2+ release, thereby inducing endoplasmic reticulum (ER) stress in astrocytes, while morphine attenuated this deleterious effect. Using siRNA to reduce the expression of κ-opioid receptor, morphine could not effectively inhibit glutamate-stimulated Ca2+ release in astrocytes, the protective effect of morphine on glutamate-injured astrocytes was also suppressed. These results suggested that morphine could protect astrocytes from glutamate-induced apoptosis via reducing Ca2+ overload and ER stress pathways. In conclusion, this study indicated that excitotoxicity participated in the glutamate mediated apoptosis in astrocytes, while morphine attenuated this deleterious effect via regulating Ca2+ release and ER stress. PMID:27783050

  3. Glutamate-mediated protection of crayfish glial cells from PDT-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Rudkovskii, M. V.; Romanenko, N. P.; Berezhnaya, E. V.; Kovaleva, V. D.; Uzdensky, A. B.

    2010-10-01

    Photodynamic treatment that causes intense oxidative stress and kills cells is currently used in neurooncology. However, along with tumor it damages surrounding healthy neurons and glial cells. In order to study the possible role of glutamate-related signaling pathways in photodynamic injury of neurons and glia, we investigated photodynamic effect of alumophthalocyanine Photosens on isolated crayfish stretch receptor that consists of a single neuron surrounded by glial cells. The laser diode (670 nm, 0.4 W/cm2) was used for dye photoexcitation. Application of glutamate increased photodynamically induced necrosis of neurons and glial cells but significantly decreased glial apoptosis. The natural neuroglial mediator N-acetylaspartylglutamate, which releases glutamate after cleavage in the extracellular space by glutamate carboxypeptidase II, also inhibited photoinduced apoptosis. Inhibition of glutamate carboxypeptidase II, oppositely, enhanced apoptosis of glial cells. These data confirm the anti-apoptotic activity of glutamate. Application of NMDA or inhibition of NMDA receptors by MK801 did not influence photodynamic death of neurons and glial cells that indicated nonparticipation of NMDA receptors in these processes. Inhibition of metabotropic glutamate receptors by AP-3 decreased PDT-induced apoptosis. One can suggest that crayfish neurons naturally secrete NAAG, which being cleaved by GCOP produces glutamate. Glutamate prevents photoinduced apoptosis of glial cells possibly through metabotropic but not ionotropic glutamate receptors.

  4. Glutamate-mediated protection of crayfish glial cells from PDT-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Rudkovskii, M. V.; Romanenko, N. P.; Berezhnaya, E. V.; Kovaleva, V. D.; Uzdensky, A. B.

    2011-03-01

    Photodynamic treatment that causes intense oxidative stress and kills cells is currently used in neurooncology. However, along with tumor it damages surrounding healthy neurons and glial cells. In order to study the possible role of glutamate-related signaling pathways in photodynamic injury of neurons and glia, we investigated photodynamic effect of alumophthalocyanine Photosens on isolated crayfish stretch receptor that consists of a single neuron surrounded by glial cells. The laser diode (670 nm, 0.4 W/cm2) was used for dye photoexcitation. Application of glutamate increased photodynamically induced necrosis of neurons and glial cells but significantly decreased glial apoptosis. The natural neuroglial mediator N-acetylaspartylglutamate, which releases glutamate after cleavage in the extracellular space by glutamate carboxypeptidase II, also inhibited photoinduced apoptosis. Inhibition of glutamate carboxypeptidase II, oppositely, enhanced apoptosis of glial cells. These data confirm the anti-apoptotic activity of glutamate. Application of NMDA or inhibition of NMDA receptors by MK801 did not influence photodynamic death of neurons and glial cells that indicated nonparticipation of NMDA receptors in these processes. Inhibition of metabotropic glutamate receptors by AP-3 decreased PDT-induced apoptosis. One can suggest that crayfish neurons naturally secrete NAAG, which being cleaved by GCOP produces glutamate. Glutamate prevents photoinduced apoptosis of glial cells possibly through metabotropic but not ionotropic glutamate receptors.

  5. Delayed post-conditioning reduces post-ischemic glutamate level and improves protein synthesis in brain.

    PubMed

    Bonova, Petra; Burda, Jozef; Danielisova, Viera; Nemethova, Miroslava; Gottlieb, Miroslav

    2013-05-01

    In the clinic delayed post-conditioning would represent an attractive strategy for the survival of vulnerable neurons after an ischemic event. In this paper we studied the impact of ischemia and delayed post-conditioning on blood and brain tissue concentrations of glutamate and protein synthesis. We designed two groups of animals for analysis of brain tissues and blood after global ischemia and post-conditioning, and one for analysis of blood glutamate after transient focal ischemia. Our results showed elevated blood glutamate in two models of transient brain ischemia and decreases in blood glutamate to control in the first 20min of post-conditioning recirculation followed by a consecutive drop of about 20.5% on the first day. Similarly, we recorded reduced protein synthesis in hippocampus and cortex 2 and 3days after ischemia. However, increase