Science.gov

Sample records for active site histidine

  1. Changes in active site histidine hydrogen bonding trigger cryptochrome activation.

    PubMed

    Ganguly, Abir; Manahan, Craig C; Top, Deniz; Yee, Estella F; Lin, Changfan; Young, Michael W; Thiel, Walter; Crane, Brian R

    2016-09-06

    Cryptochrome (CRY) is the principal light sensor of the insect circadian clock. Photoreduction of the Drosophila CRY (dCRY) flavin cofactor to the anionic semiquinone (ASQ) restructures a C-terminal tail helix (CTT) that otherwise inhibits interactions with targets that include the clock protein Timeless (TIM). All-atom molecular dynamics (MD) simulations indicate that flavin reduction destabilizes the CTT, which undergoes large-scale conformational changes (the CTT release) on short (25 ns) timescales. The CTT release correlates with the conformation and protonation state of conserved His378, which resides between the CTT and the flavin cofactor. Poisson-Boltzmann calculations indicate that flavin reduction substantially increases the His378 pKa Consistent with coupling between ASQ formation and His378 protonation, dCRY displays reduced photoreduction rates with increasing pH; however, His378Asn/Arg variants show no such pH dependence. Replica-exchange MD simulations also support CTT release mediated by changes in His378 hydrogen bonding and verify other responsive regions of the protein previously identified by proteolytic sensitivity assays. His378 dCRY variants show varying abilities to light-activate TIM and undergo self-degradation in cellular assays. Surprisingly, His378Arg/Lys variants do not degrade in light despite maintaining reactivity toward TIM, thereby implicating different conformational responses in these two functions. Thus, the dCRY photosensory mechanism involves flavin photoreduction coupled to protonation of His378, whose perturbed hydrogen-bonding pattern alters the CTT and surrounding regions.

  2. Changes in active site histidine hydrogen bonding trigger cryptochrome activation

    PubMed Central

    Ganguly, Abir; Manahan, Craig C.; Top, Deniz; Yee, Estella F.; Lin, Changfan; Young, Michael W.; Thiel, Walter; Crane, Brian R.

    2016-01-01

    Cryptochrome (CRY) is the principal light sensor of the insect circadian clock. Photoreduction of the Drosophila CRY (dCRY) flavin cofactor to the anionic semiquinone (ASQ) restructures a C-terminal tail helix (CTT) that otherwise inhibits interactions with targets that include the clock protein Timeless (TIM). All-atom molecular dynamics (MD) simulations indicate that flavin reduction destabilizes the CTT, which undergoes large-scale conformational changes (the CTT release) on short (25 ns) timescales. The CTT release correlates with the conformation and protonation state of conserved His378, which resides between the CTT and the flavin cofactor. Poisson-Boltzmann calculations indicate that flavin reduction substantially increases the His378 pKa. Consistent with coupling between ASQ formation and His378 protonation, dCRY displays reduced photoreduction rates with increasing pH; however, His378Asn/Arg variants show no such pH dependence. Replica-exchange MD simulations also support CTT release mediated by changes in His378 hydrogen bonding and verify other responsive regions of the protein previously identified by proteolytic sensitivity assays. His378 dCRY variants show varying abilities to light-activate TIM and undergo self-degradation in cellular assays. Surprisingly, His378Arg/Lys variants do not degrade in light despite maintaining reactivity toward TIM, thereby implicating different conformational responses in these two functions. Thus, the dCRY photosensory mechanism involves flavin photoreduction coupled to protonation of His378, whose perturbed hydrogen-bonding pattern alters the CTT and surrounding regions. PMID:27551082

  3. Active site histidine in spinach ribulosebisphosphate carboxylase/oxygenase modified by diethyl pyrocarbonate

    SciTech Connect

    Igarashi, Y.; McFadden, B.A.; el-Gul, T.

    1985-07-16

    (TH) Diethyl pyrocarbonate was synthesized from (TH) ethanol prepared by the reduction of acetaldehyde by NaB3H4. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) from spinach was inactivated with this reagent at pH 7.0 the presence of 20 mM MgS , and tryptic peptides that contained modified histidine residues were isolated by reverse-phase high-performance liquid chromatography. Labeling of the enzyme was conducted in the presence and absence of the competitive inhibitor sedoheptulose 1,7-bisphosphate. The amount of one peptide that was heavily labeled in the absence of this compound was reduced 10-fold in its presence. The labeled residue was histidine-298. This result, in combination with earlier experiments, suggests that His-298 in spinach RuBisCO is located in the active site domain and is essential to enzyme activity. This region of the primary structure is strongly conserved in seven other ribulosebisphosphate carboxylases from divergent sources.

  4. The amino acid sequence around the active-site cysteine and histidine residues, and the buried cysteine residue in ficin.

    PubMed

    Husain, S S; Lowe, G

    1970-04-01

    Ficin that had been prepared from the latex of Ficus glabrata by salt fractionation and chromatography on carboxymethylcellulose was completely and irreversibly inhibited with 1,3-dibromo[2-(14)C]acetone and then treated with N-(4-dimethylamino-3,5-dinitrophenyl)maleimide in 6m-guanidinium chloride. After reduction and carboxymethylation of the labelled protein, it was digested with trypsin and alpha-chymotrypsin. Two radioactive peptides and two coloured peptides were isolated chromatographically and their sequences determined. The radioactive peptides revealed the amino acid sequences around the active-site cysteine and histidine residues and showed a high degree of homology with the omino acid sequence around the active-site cysteine and histidine residues in papain. The coloured peptides allowed the amino acid sequence around the buried cysteine residue in ficin to be determined.

  5. Single active-site histidine in D-xylose isomerase from Streptomyces violaceoruber. Identification by chemical derivatization and peptide mapping.

    PubMed

    Vangrysperre, W; Ampe, C; Kersters-Hilderson, H; Tempst, P

    1989-10-01

    Group-specific chemical modifications of D-xylose isomerase from Streptomyces violaceruber indicated that complete loss of activity is fully correlated with the acylation of a single histidine. Active-site protection, by the ligand combination of xylitol plus Mg2+, completely blocked diethyl pyrocarbonate derivatization of this particular residue [Vangrysperre, Callens, Kersters-Hilderson & De Bruyne (1988) Biochem. J. 250, 153-160]. Differential peptide mapping between D-xylose isomerase, which has previously been treated with diethyl pyrocarbonate in the presence or absence of xylitol plus Mg2+, allowed specific isolation and sequencing of a peptide containing this active-site histidine. For this purpose we used two essentially new techniques: first, a highly reproducible peptide cleavage protocol for protease-resistant, carbethoxylated proteins with guanidinium hydrochloride as denaturing agent and subtilisin for proteolysis; and second, reverse-phase liquid chromatography with dual-wavelength detection at 214 and 238 nm, and calculation of absorbance ratios. It allowed us to locate the single active-site histidine at position 54 in the primary structure of Streptomyces violaceoruber D-xylose isomerase. The sequence around this residue is conserved in D-xylose isomerases from a diversity of micro-organisms, suggesting that this is a structurally and/or functionally essential part of the molecule.

  6. Understanding the role of histidine in the GHSxG acyltransferase active site motif: Evidence for histidine stabilization of the malonyl-enzyme intermediate

    SciTech Connect

    Poust, Sean; Yoon, Isu; Adams, Paul D.; Katz, Leonard; Petzold, Christopher J.; Keasling, Jay D.

    2014-10-06

    Acyltransferases determine which extender units are incorporated into polyketide and fatty acid products. Thus, the ping-pong acyltransferase mechanism utilizes a serine in a conserved GHSxG motif. However, the role of the conserved histidine in this motif is poorly understood. We observed that a histidine to alanine mutation (H640A) in the GHSxG motif of the malonyl-CoA specific yersiniabactin acyltransferase results in an approximately seven-fold higher hydrolysis rate over the wildtype enzyme, while retaining transacylation activity. We propose two possibilities for the reduction in hydrolysis rate: either H640 structurally stabilizes the protein by hydrogen bonding with a conserved asparagine in the ferredoxin-like subdomain of the protein, or a water-mediated hydrogen bond between H640 and the malonyl moiety stabilizes the malonyl-O-AT ester intermediate.

  7. Understanding the role of histidine in the GHSxG acyltransferase active site motif: Evidence for histidine stabilization of the malonyl-enzyme intermediate

    DOE PAGES

    Poust, Sean; Yoon, Isu; Adams, Paul D.; ...

    2014-10-06

    Acyltransferases determine which extender units are incorporated into polyketide and fatty acid products. Thus, the ping-pong acyltransferase mechanism utilizes a serine in a conserved GHSxG motif. However, the role of the conserved histidine in this motif is poorly understood. We observed that a histidine to alanine mutation (H640A) in the GHSxG motif of the malonyl-CoA specific yersiniabactin acyltransferase results in an approximately seven-fold higher hydrolysis rate over the wildtype enzyme, while retaining transacylation activity. We propose two possibilities for the reduction in hydrolysis rate: either H640 structurally stabilizes the protein by hydrogen bonding with a conserved asparagine in the ferredoxin-likemore » subdomain of the protein, or a water-mediated hydrogen bond between H640 and the malonyl moiety stabilizes the malonyl-O-AT ester intermediate.« less

  8. The roles of histidine residues at the starch-binding site in streptococcal-binding activities of human salivary amylase.

    PubMed

    Tseng, C C; Miyamoto, M; Ramalingam, K; Hemavathy, K C; Levine, M J; Ramasubbu, N

    1999-02-01

    Human salivary alpha-amylase participates in the initial digestion of starch and may be involved in the colonization of viridans streptococci in the mouth. To elucidate the role of histidine residues located near the starch-binding site on the streptococcal-binding activity, the wild type and three histidine mutants, H52A, H299A and H305A were constructed and expressed in a baculovirus system. While His52 is located near the non-reducing end of the starch-binding pocket (subsite S3/S4), the residues His299 and His305 are located near the subsites S1/S1'. For the wild type, the cDNA encoding the leader and secreted sequences of human salivary amylase was amplified by polymerase chain reaction from a human submandibular salivary-gland cDNA library, and subcloned into the baculovirus shuttle vector pVL1392 downstream of the polyhedrin promoter. Oligonucleotide-based, site-directed mutagenesis was used to generate the mutants expressed in the baculovirus system. Replacing His52 or His299 or His305 to Ala residue did not alter the bacterial-binding activity significantly, but these mutants did show differences in their catalytic activities. The mutant H52A showed negligible reduction in enzymatic activity compared to that of wild type for the hydrolysis of starch and oligosaccharides. In contrast, the H299A and H305A mutants showed a 12 to 13-fold reduction (90-92%) in starch-hydrolysing activity. In addition, the k(cat) for the hydrolysis of oligosaccharides by H299A decreased by as much as 11-fold for maltoheptaoside. This reduction was even higher (40-fold) for the hydrolysis of p-nitrophenyl maltoside, with a significant change in K(M). The mutant H305A, however, exhibited a reduction in k(cat) only, with no changes in the K(M) for the hydrolysis of oligosaccharides. The reduction in the k(cat) for the H305A mutant was almost 93% for maltoheptaoside hydrolysis. The pH activity profile for the H305A mutant was also significantly different from that of the wild type

  9. The anti-angiogenic agent fumagillin covalently modifies a conserved active-site histidine in the Escherichia coli methionine aminopeptidase

    PubMed Central

    Lowther, W. Todd; McMillen, Debra A.; Orville, Allen M.; Matthews, Brian W.

    1998-01-01

    Methionine aminopeptidase (MetAP) exists in two forms (type I and type II), both of which remove the N-terminal methionine from proteins. It previously has been shown that the type II enzyme is the molecular target of fumagillin and ovalicin, two epoxide-containing natural products that inhibit angiogenesis and suppress tumor growth. By using mass spectrometry, N-terminal sequence analysis, and electronic absorption spectroscopy we show that fumagillin and ovalicin covalently modify a conserved histidine residue in the active site of the MetAP from Escherichia coli, a type I enzyme. Because all of the key active site residues are conserved, it is likely that a similar modification occurs in the type II enzymes. This modification, by occluding the active site, may prevent the action of MetAP on proteins or peptides involved in angiogenesis. In addition, the results suggest that these compounds may be effective pharmacological agents against pathogenic and resistant forms of E. coli and other microorganisms. PMID:9770455

  10. Catalytic and Structural Role of a Conserved Active Site Histidine in Berberine Bridge Enzyme

    PubMed Central

    2012-01-01

    Berberine bridge enzyme (BBE) is a paradigm for the class of bicovalently flavinylated oxidases, which catalyzes the oxidative cyclization of (S)-reticuline to (S)-scoulerine. His174 was identified as an important active site residue because of its role in the stabilization of the reduced state of the flavin cofactor. It is also strictly conserved in the family of BBE-like oxidases. Here, we present a detailed biochemical and structural characterization of a His174Ala variant supporting its importance during catalysis and for the structural organization of the active site. Substantial changes in all kinetic parameters and a decrease in midpoint potential were observed for the BBE His174Ala variant protein. Moreover, the crystal structure of the BBE His174Ala variant showed significant structural rearrangements compared to wild-type enzyme. On the basis of our findings, we propose that His174 is part of a hydrogen bonding network that stabilizes the negative charge at the N1–C2=O locus via interaction with the hydroxyl group at C2′ of the ribityl side chain of the flavin cofactor. Hence, replacement of this residue with alanine reduces the stabilizing effect for the transiently formed negative charge and results in drastically decreased kinetic parameters as well as a lower midpoint redox potential. PMID:22757961

  11. New insights into the catalytic mechanism of histidine phosphatases revealed by a functionally essential arginine residue within the active site of the Sts phosphatases.

    PubMed

    San Luis, Boris; Nassar, Nicolas; Carpino, Nick

    2013-07-01

    Sts (suppressor of T-cell receptor signalling)-1 and Sts-2 are HPs (histidine phosphatases) that negatively regulate TCR (T-cell receptor) signalling pathways, including those involved in cytokine production. HPs play key roles in such varied biological processes as metabolism, development and intracellular signalling. They differ considerably in their primary sequence and substrate specificity, but possess a catalytic core formed by an invariant quartet of active-site residues. Two histidine and two arginine residues cluster together within the HP active site and are thought to participate in a two-step dephosphorylation reaction. To date there has been little insight into any additional residues that might play an important functional role. In the present study, we identify and characterize an additional residue within the Sts phosphatases (Sts-1 Arg383 or Sts-2 Arg369) that is critical for catalytic activity and intracellular function. Mutation of Sts-1 Arg383 to an alanine residue compromises the enzyme's activity and renders Sts-1 unable to suppress TCR-induced cytokine induction. Of the multiple amino acids substituted for Arg383, only lysine partially rescues the catalytic activity of Sts-1. Although Sts-1 Arg383 is conserved in all Sts homologues, it is only conserved in one of the two sub-branches of HPs. The results of the present study highlight an essential role for Sts-1 phosphatase activity in regulating T-cell activation and add a new dimension of complexity to our understanding of HP catalytic activity.

  12. Probing the location and function of the conserved histidine residue of phosphoglucose isomerase by using an active site directed inhibitor N-bromoacetylethanolamine phosphate.

    PubMed Central

    Meng, M.; Chane, T. L.; Sun, Y. J.; Hsiao, C. D.

    1999-01-01

    Phosphoglucose isomerase (EC 5.3.1.9) catalyzes the interconversion of D-glucopyranose-6-phosphate and D-fructofuranose-6-phosphate by promoting an intrahydrogen transfer between C1 and C2. A conserved histidine exists throughout all phosphoglucose isomerases and was hypothesized to be the base catalyzing the isomerization reaction. In the present study, this conserved histidine, His311, of the enzyme from Bacillus stearothermophilus was subjected to mutational analysis, and the mutational effect on the inactivation kinetics by N-bromoacetylethanolamine phosphate was investigated. The substitution of His311 with alanine, asparagine, or glutamine resulted in the decrease of activity, in k(cat)/K(M), by a factor of 10(3), indicating the importance of this residue. N-bromoacetylethanolamine phosphate inactivated irreversibly the activity of wild-type phosphoglucose isomerase; however, His311 --> Ala became resistant to this inhibitor, indicating that His311 is located in the active site and is responsible for the inactivation of the enzyme by this active site-directed inhibitor. The pKa of His311 was estimated to be 6.31 according to the pH dependence of the inactivation. The proximity of this value with the pKa value of 6.35, determined from the pH dependence of k(cat)/K(M), supports a role of His311 as a general base in the catalysis. PMID:10595547

  13. Structural Basis for Substrate and Oxygen Activation in Homoprotocatechuate 2,3-Dioxygenase: Roles of Conserved Active Site Histidine-200

    PubMed Central

    Kovaleva, Elena G.; Rogers, Melanie S.; Lipscomb, John D.

    2015-01-01

    Kinetic and spectroscopic studies have shown that the conserved active site residue His200 of the extradiol ring-cleaving homoprotocatechuate 2,3-dioxygenase (FeHPCD) from Brevibacterium fuscum is critical for efficient catalysis. The roles played by this residue are probed here by analysis of the steady state kinetics, pH dependence, and X-ray crystal structures of the FeHPCD position 200 variants His200Asn, His200Gln, and His200Glu alone and in complex with three catecholic substrates (homoprotocatechuate, 4-sulfonylcatechol, and 4-nitrocatechol) possessing substituents with different inductive capacity. Structures solved at 1.35 –1.75 Å resolution show that there is essentially no change in overall active site architecture or substrate binding mode for these variants when compared to the structures of the wild type enzyme and its analogous complexes. This shows that the maximal 50-fold decrease in kcat for ring cleavage, the dramatic changes in pH dependence, and the switch from ring cleavage to ring oxidation of 4-nitrocatechol by the FeHPCD variants can be attributed specifically to the properties of the altered second sphere residue and the substrate. The results suggest that proton transfer is necessary for catalysis, and that it occurs most efficiently when the substrate provides the proton and His200 serves as a catalyst. However, in the absence of an available substrate proton, a defined proton-transfer pathway in the protein can be utilized. Changes in steric bulk and charge of the residue at position 200 appear capable of altering the rate-limiting step in catalysis, and perhaps, the nature of the reactive species. PMID:26267790

  14. On the multiple functional roles of the active site histidine in catalysis and allosteric regulation of Escherichia coli glucosamine 6-phosphate deaminase.

    PubMed

    Montero-Morán, G M; Lara-González, S; Alvarez-Añorve, L I; Plumbridge, J A; Calcagno, M L

    2001-08-28

    The active site of glucosamine-6-phosphate deaminase (EC 3.5.99.6, formerly 5.3.1.10) from Escherichia coli was first characterized on the basis of the crystallographic structure of the enzyme bound to the competitive inhibitor 2-amino-2-deoxy-glucitol 6-phosphate. The structure corresponds to the R allosteric state of the enzyme; it shows the side-chain of His143 in close proximity to the O5 atom of the inhibitor. This arrangement suggests that His143 could have a role in the catalysis of the ring-opening step of glucosamine 6-phosphate whose alpha-anomer is the true substrate. The imidazole group of this active-site histidine contacts the carboxy groups from Glu148 and Asp141, via its Ndelta1 atom [Oliva et al. (1995) Structure 3, 1323-1332]. These interactions change in the T state because the side chain of Glu148 moves toward the allosteric site, leaving at the active site the dyad Asp141-His143 [Horjales et al. (1999) Structure 7, 527-536]. In this research, a dual approach using site-directed mutagenesis and controlled chemical modification of histidine residues has been used to investigate the role of the active-site histidine. Our results support a multifunctional role of His143; in the forward reaction, it is involved in the catalysis of the ring-opening step of the substrate, glucosamine 6-P. In the reverse reaction, the substrate fructose 6-P binds in its open chain, carbonylic form. The role of His143 in the binding of both glucosamine 6-P and reaction intermediates in their extended-chain forms was demonstrated by binding experiments using the reaction intermediate analogue, 2-amino-2-deoxy-D-glucitol 6-phosphate. His143 was also shown to be a critical residue for the conformational coupling between active and allosteric sites. From the pH dependence of the reactivity of the active site histidine to diethyl dicarbonate, we observed a pK(a) change of 1.2 units to the acid side when the enzyme undergoes the allosteric T to R transition during which the

  15. Functional analyses for tRNase Z variants: an aspartate and a histidine in the active site are essential for the catalytic activity.

    PubMed

    Elbarbary, Reyad A; Takaku, Hiroaki; Nashimoto, Masayuki

    2008-12-01

    We performed functional analyses for various single amino-acid substitution variants of Escherichia coli, Bacillus subtilis, and human tRNase Zs. The well-conserved six histidine, His(I)-His(VI), and two aspartate, Asp(I) and Asp(II), residues together with metal ions are thought to form the active site of tRNase Z. The Mn(2+)-rescue analysis for Thermotoga maritima tRNase Z(S) has suggested that Asp(I) and His(V) directly contribute the proton transfer for the catalysis, and a catalytic mechanism has been proposed. However, experimental evidence supporting the proposed mechanism was limited. Here we intensively examined E. coli and B. subtilis tRNase Z(S) variants and human tRNase Z(L) variants for cleavage activities on pre-tRNAs in the presence of Mg(2+) or Mn(2+) ions. We observed that the Mn(2+) ions cannot rescue the activities of Asp(I)Ala and His(V)Ala variants from each species, which are lost in the presence of Mg(2+). This observation may support the proposed catalytic mechanism.

  16. Loss of a histidine residue at the active site of S-locus ribonuclease is associated with self-compatibility in Lycopersicon peruvianum.

    PubMed Central

    Royo, J; Kunz, C; Kowyama, Y; Anderson, M; Clarke, A E; Newbigin, E

    1994-01-01

    Gametophytic self-incompatibility in the Solanaceae is controlled by a single, multiallelic locus, the S locus. We have recently described an allele of the S locus of Lycopersicon peruvianum that caused this normally self-incompatible plant to become self-compatible. We have now characterized two glycoproteins present in the styles of self-compatible and self-incompatible accessions of L. peruvianum: one is a ribonuclease that cosegregates with a functional self-incompatibility allele (S6 allele); the other cosegregates with the self-compatible allele (Sc allele) but has no ribonuclease activity. The derived amino acid sequences of the cDNAs encoding the S6 and Sc glycoproteins resemble sequences of other ribonucleases encoded by the S locus. The derived sequence for the Sc glycoprotein differs from the others by lacking one of the histidine residues found in all other S-locus ribonucleases. These findings demonstrate the essential role of ribonuclease activity in self-incompatibility and lend further weight to evidence that this histidine residue is involved in the catalytic site of the enzyme. Images PMID:8022814

  17. Evidence for a Dual Role of an Active Site Histidine in [alpha]-Amino-[beta]-carboxymuconate-[epsilon]-semialdehyde Decarboxylase

    SciTech Connect

    Huo, Lu; Fielding, Andrew J.; Chen, Yan; Li, Tingfeng; Iwaki, Hiroaki; Hosler, Jonathan P.; Chen, Lirong; Hasegawa, Yoshie; Que, Jr., Lawrence; Liu, Aimin

    2012-10-09

    The previously reported crystal structures of {alpha}-amino-{beta}-carboxymuconate-{epsilon}-semialdehyde decarboxylase (ACMSD) show a five-coordinate Zn(II)(His){sub 3}(Asp)(OH{sub 2}) active site. The water ligand is H-bonded to a conserved His228 residue adjacent to the metal center in ACMSD from Pseudomonas fluorescens (PfACMSD). Site-directed mutagenesis of His228 to tyrosine and glycine in this study results in a complete or significant loss of activity. Metal analysis shows that H228Y and H228G contain iron rather than zinc, indicating that this residue plays a role in the metal selectivity of the protein. As-isolated H228Y displays a blue color, which is not seen in wild-type ACMSD. Quinone staining and resonance Raman analyses indicate that the blue color originates from Fe(III)-tyrosinate ligand-to-metal charge transfer. Co(II)-substituted H228Y ACMSD is brown in color and exhibits an electron paramagnetic resonance spectrum showing a high-spin Co(II) center with a well-resolved {sup 59}Co (I = 7/2) eight-line hyperfine splitting pattern. The X-ray crystal structures of as-isolated Fe-H228Y (2.8 {angstrom}) and Co-substituted (2.4 {angstrom}) and Zn-substituted H228Y (2.0 {angstrom} resolution) support the spectroscopic assignment of metal ligation of the Tyr228 residue. The crystal structure of Zn-H228G (2.6 {angstrom}) was also determined. These four structures show that the water ligand present in WT Zn-ACMSD is either missing (Fe-H228Y, Co-H228Y, and Zn-H228G) or disrupted (Zn-H228Y) in response to the His228 mutation. Together, these results highlight the importance of His228 for PfACMSD's metal specificity as well as maintaining a water molecule as a ligand of the metal center. His228 is thus proposed to play a role in activating the metal-bound water ligand for subsequent nucleophilic attack on the substrate.

  18. Direct NMR resonance assignments of the active site histidine residue in Escherichia coli thioesterase I/protease I/lysophospholipase L1.

    PubMed

    Wu, Wen-Jin; Tyukhtenko, Sergiy I; Huang, Tai-Huang

    2006-11-01

    Owing to the hydrogen-bond interaction and rapid exchange rate with the bulk water, the transverse relaxation time for the N(delta1)-H proton of the catalytic histidine in Escherichia coli thioesterase I/protease I/lysophospholipase L1 (TEP-I) is rather short. Because of its catalytic importance, it is desirable to detect and assign this proton resonance. In this paper, we report the first direct NMR correlation between the short-lived N(delta1)-H proton and its covalently attached N(delta1)-nitrogen of the catalytic His157 residue in E. coli thioesterase/protease I. We have used gradient-enhanced jump-return spin-echo HMQC (GE-JR SE HMQC) to obtain a direct correlation between the short-lived N(delta1)-H proton and its covalently attached N(delta1)-nitrogen. The sensitivity of detection for the short-lived N(delta1)-H proton was enhanced substantially by improved water suppression, in particular, the suppression of radiation damping via pulsed field gradients.

  19. Tautomeric states of the active-site histidines of phosphorylated and unphosphorylated IIIGlc, a signal-transducing protein from Escherichia coli, using two-dimensional heteronuclear NMR techniques.

    PubMed Central

    Pelton, J. G.; Torchia, D. A.; Meadow, N. D.; Roseman, S.

    1993-01-01

    IIIGlc is an 18.1-kDa signal-transducing phosphocarrier protein of the phosphoenolpyruvate:glycose phosphotransferase system from Escherichia coli. The 1H, 15N, and 13C histidine ring NMR signals of both the phosphorylated and unphosphorylated forms of IIIGlc have been assigned using two-dimensional 1H-15N and 1H-13C heteronuclear multiple-quantum coherence (HMQC) experiments and a two-dimensional 13C-13C-1H correlation spectroscopy via JCC coupling experiment. The data were acquired on uniformly 15N-labeled and uniformly 15N/13C-labeled protein samples. The experiments rely on one-bond and two-bond J couplings that allowed for assignment of the signals without the need for the analysis of through-space (nuclear Overhauser effect spectroscopy) correlations. The 15N and 13C chemical shifts were used to determine that His-75 exists predominantly in the N epsilon 2-H tautomeric state in both the phosphorylated and unphosphorylated forms of IIIGlc, and that His-90 exists primarily in the N delta 1-H state in the unphosphorylated protein. Upon phosphorylation of the N epsilon 2 nitrogen of His-90, the N delta 1 nitrogen remains protonated, resulting in the formation of a charged phospho-His-90 moiety. The 1H, 15N, and 13C signals of the phosphorylated and unphosphorylated proteins showed only minor shifts in the pH range from 6.0 to 9.0. These data indicate that the pK alpha values for both His-75 and His-90 in IIIGlc and His-75 in phospho-IIIGlc are less than 5.0, and that the pK alpha value for phospho-His-90 is greater than 10. The results are presented in relation to previously obtained structural data on IIIGlc, and implications for proposed mechanisms of phosphoryl transfer are discussed. PMID:8518729

  20. Histidine-regulated activity of M-ficolin.

    PubMed

    Tanio, Michikazu; Kohno, Toshiyuki

    2009-01-15

    Human M-ficolin is a pathogen-associated molecular recognition molecule in the innate immune system, and it binds to some sugars, such as GlcNAc (N-acetylglucosamine), on pathogen surfaces. From previous structural and functional studies of the FD1 (M-ficolin fibrinogen-like domain), we proposed that the ligand-binding region of FD1 exists in a conformational equilibrium between active and non-active states depending on three groups with a pK(a) of 6.2, which are probably histidine residues, and suggested that the 2-state conformational equilibrium as well as the trimer formation contributes to the discrimination mechanism between self and non-self of FD1 [Tanio, M., Kondo, S., Sugio, S. and Kohno, T. (2007) J. Biol. Chem. 282, 3889-3895]. To investigate the origins of the pH dependency, mutational analyses were performed on FD1 expressed by Brevibacillus choshinensis. The GlcNAc binding study of a series of single histidine mutants of FD1 demonstrated that His(251), His(284) and His(297) are required for the activity, and thus we concluded that the three histidines are the origins of the pH dependency of FD1. Monomeric mutants of FD1 show weaker affinity for the ligand than the trimeric wild-type, indicating that trimer formation confers high avidity for the ligand. In addition, analyses of the GlcNAc association and dissociation of FD1 provided evidence that FD1 always exchanges between the active and non-active states with the pH-dependent populations in solution. The biological roles of the histidine-regulated conformational equilibrium of M-ficolin are discussed in terms of the self and non-self discrimination mechanism.

  1. Novel metal chelating molecules with anticancer activity. Striking effect of the imidazole substitution of the histidine-pyridine-histidine system.

    PubMed

    Ali, Taha F S; Iwamaru, Kana; Ciftci, Halil Ibrahim; Koga, Ryoko; Matsumoto, Masahiro; Oba, Yasunori; Kurosaki, Hiromasa; Fujita, Mikako; Okamoto, Yoshinari; Umezawa, Kazuo; Nakao, Mitsuyoshi; Hide, Takuichiro; Makino, Keishi; Kuratsu, Jun-ichi; Abdel-Aziz, Mohamed; Abuo-Rahma, Gamal El-Din A A; Beshr, Eman A M; Otsuka, Masami

    2015-09-01

    Previously we have reported a metal chelating histidine-pyridine-histidine system possessing a trityl group on the histidine imidazole, namely HPH-2Trt, which induces apoptosis in human pancreatic adenocarcinoma AsPC-1 cells. Herein the influence of the imidazole substitution of HPH-2Trt was examined. Five related compounds, HPH-1Trt, HPH-2Bzl, HPH-1Bzl, HPH-2Me, and HPH-1Me were newly synthesized and screened for their activity against AsPC-1 and brain tumor cells U87 and U251. HPH-1Trt and HPH-2Trt were highly active among the tested HPH compounds. In vitro DNA cleavage assay showed both HPH-1Trt and HPH-2Trt completely disintegrate pUC19 DNA. The introduction of trityl group decisively potentiated the activity.

  2. Biological activities of histidine-rich peptides; merging biotechnology and nanomedicine

    PubMed Central

    2011-01-01

    Histidine-rich peptides are commonly used in recombinant protein production as purification tags, allowing the one-step affinity separation of the His-tagged proteins from the extracellular media or cell extracts. Genetic engineering makes feasible the post-purification His-tag removal by inserting, between the tag and the main protein body, a target site for trans-acting proteases or a self-proteolytic peptide with regulatable activities. However, for technical ease, His tags are often not removed and the fusion proteins eventually used in this form. In this commentary, we revise the powerful biological properties of histidine-rich peptides as endosomolytic agents and as architectonic tags in nanoparticle formation, for which they are exploited in drug delivery and other nanomedical applications. These activities, generally unknown to biotechnologists, can unwillingly modulate the functionality and biotechnological performance of recombinant proteins in which they remain trivially attached. PMID:22136342

  3. [Histidine triad protein superfamily--biological function and enzymatic activity].

    PubMed

    Krakowiak, Agnieszka; Fryc, Izabela

    2012-01-01

    The HIT superfamily consists of proteins that share the histidine triad motif, His-X-His-X-His-X-X (where X is a hydrophobic amino acid), which constitutes enzymatic catalytic center. These enzymes act as nucleotidylyl hydrolase or transferase, and the mutation of the second histidine in the triad abolishes their activity. HIT proteins were found ubiquitous in all organisms and they were classified into 5 branches, which are represented by human proteins: HINT1, FHIT, Aprataxin, GALT and DCPS. Because HINT1 orthologs, which belong to the evolutionally oldest family branch, were found from prokaryotes to eukaryotes, it is clear that HIT motif was conserved during the evolution what means that the enzymatic activity is necessary for functions of these proteins. However, in few cases, e.g. HINT1 and FHIT, the connection between the biological function and the enzymatic activity is still obscure. In this review, the relations between biology and activity for 7 HIT proteins, which were found in human, are highlighted.

  4. Histidines in potential substrate recognition sites affect thyroid hormone transport by monocarboxylate transporter 8 (MCT8).

    PubMed

    Braun, Doreen; Lelios, Iva; Krause, Gerd; Schweizer, Ulrich

    2013-07-01

    Mutations in monocarboxylate transporter 8 (MCT8; SLC16A2) cause the Allan-Herndon-Dudley syndrome, a severe X-linked psychomotor retardation syndrome. MCT8 belongs to the major facilitator superfamily of 12 transmembrane-spanning proteins and transports thyroid hormones across the blood-brain barrier and into neurons. How MCT8 distinguishes thyroid hormone substrates from structurally closely related compounds is not known. The goal of this study was to identify critical amino acids along the transport channel cavity, which participate in thyroid hormone recognition. The fact that T3 is bound between a His-Arg clamp in the crystal structure of the T3 receptor/T3 complex prompted us to investigate whether such a motif might potentially be relevant for T3 recognition in MCT8. We therefore replaced candidate histidines and arginines by site-directed mutagenesis and performed activity assays in MDCK-1 cells and Xenopus oocytes. Histidines were replaced by alanine, phenylalanine, and glutamine to probe for molecular properties like aromatic ring structure and H-bonding properties. It was found that some mutations in His192 and His415 significantly changed substrate transport kinetics. Arg301 at the intracellular end of the substrate channel is at an ideal distance to His415 to participate in a His-Arg clamp and mutation to alanine-abrogated hormone transport. Molecular modeling demonstrates a perfect fit of T3 poised into the substrate channel between His415 and Arg301 and observing the same geometry as in the T3 receptor.

  5. Activity of histidine in peripheral blood erythrocytes of pregnant women during exacerbation of cytomegalovirus infection.

    PubMed

    Lutsenko, M T; Andrievskaya, I A

    2014-10-01

    We studied the effect of active cytomegalovirus infection on histidine content in peripheral blood erythrocytes of pregnant women at gestation weeks 20-22 and its involvement into hemoglobin oxygenation. Using the histochemical technique developed by us, we studied the distribution of products of specific reaction for histidine in peripheral blood erythrocytes of pregnant women. The percentage of histidine-positive erythrocytes and their area were evaluated. The relationship between the distribution of the products of the reaction for histidine in peripheral blood erythrocytes of pregnant women and the titer of anti-cytomegalovirus IgG was revealed. The histidine content in peripheral blood erythrocytes of pregnant women with active cytomegalovirus infection was reduced, which impaired heme binding to globin and decreased the formation of oxyhemoglobin.

  6. Derepression and repression of the histidine operon: role of the feedback site of the first enzyme.

    PubMed Central

    Fernández, V M; Martíndelrío, R; Tébar, A R; Guisán, J M; Ballesteros, A O

    1975-01-01

    Thiazolealanine, a false feedback inhibitor, causes transient repression of the his operon previously derepressed by a severe histidine limitation in strains with a wild-type or feedback-hypersensitive first enzyme but not in feedback-resistant mutants. Since experiments reported here clearly demonstrate that thiazolealanine is not transferred to tRNAHis, it is proposed that this "transient repression" is effected through the interaction of thiazolealanine with the feedback site of the enzyme. Experiments in the presence of rifampin indicate that this thiazolealanine-mediated effect is exerted at the level of translation. We conclude that histidine (free), in addition to forming co-repressor, also represses the operon at the level of translation through feedback interaction with the first enzyme of the pathway (adenosine 5'-triphosphate phosphoribosyltransferase). Rates of derepression in feedback-resistant strains are roughly half of those observed in controls, suggesting a positive role played by a first enzyme with a normal but unoccupied feedback site. Some feedback-resistant mutants, in contrast to the wild type, were unable to exhibit derepression under histidine limitation caused by aminotriazole. PMID:1104584

  7. Structural Insights into the HWE Histidine Kinase Family: The Brucella Blue Light-Activated Histidine Kinase Domain.

    PubMed

    Rinaldi, Jimena; Arrar, Mehrnoosh; Sycz, Gabriela; Cerutti, María Laura; Berguer, Paula M; Paris, Gastón; Estrín, Darío Ariel; Martí, Marcelo Adrián; Klinke, Sebastián; Goldbaum, Fernando Alberto

    2016-03-27

    In response to light, as part of a two-component system, the Brucella blue light-activated histidine kinase (LOV-HK) increases its autophosphorylation, modulating the virulence of this microorganism. The Brucella histidine kinase (HK) domain belongs to the HWE family, for which there is no structural information. The HWE family is exclusively present in proteobacteria and usually coupled to a wide diversity of light sensor domains. This work reports the crystal structure of the Brucella HK domain, which presents two different dimeric assemblies in the asymmetric unit: one similar to the already described canonical parallel homodimers (C) and the other, an antiparallel non-canonical (NC) dimer, each with distinct relative subdomain orientations and dimerization interfaces. Contrary to these crystallographic structures and unlike other HKs, in solution, the Brucella HK domain is monomeric and still active, showing an astonishing instability of the dimeric interface. Despite this instability, using cross-linking experiments, we show that the C dimer is the functionally relevant species. Mutational analysis demonstrates that the autophosphorylation activity occurs in cis. The different relative subdomain orientations observed for the NC and C states highlight the large conformational flexibility of the HK domain. Through the analysis of these alternative conformations by means of molecular dynamics simulations, we also propose a catalytic mechanism for Brucella LOV-HK.

  8. Autophosphorylation Activity of a Soluble Hexameric Histidine Kinase Correlates with the Shift in Protein Conformational Equilibrium

    PubMed Central

    Wojnowska, Marta; Yan, Jun; Sivalingam, Ganesh N.; Cryar, Adam; Gor, Jayesh; Thalassinos, Konstantinos; Djordjevic, Snezana

    2013-01-01

    Summary In a commonly accepted model, in response to stimuli, bacterial histidine kinases undergo a conformational transition between an active and inactive form. Structural information on histidine kinases is limited. By using ion mobility-mass spectrometry (IM-MS), we demonstrate an exchange between two conformational populations of histidine kinase ExsG that are linked to different levels of kinase activity. ExsG is an atypical signaling protein that incorporates an uncommon histidine kinase catalytic core at the C terminus preceded by an N-terminal “receiver domain” that is normally associated with the response regulator proteins in two-component signal transduction systems. IM-MS analysis and enzymatic assays indicate that phosphorylation of the ExsG receiver domain stabilizes the “compact” form of the protein and inhibits kinase core activity; in contrast, nucleotide binding required for kinase activity is associated with the more open conformation of ExsG. PMID:24210218

  9. Histidine tag fusion increases expression levels of active recombinant amelogenin in Escherichia coli.

    PubMed

    Svensson, Johan; Andersson, Christer; Reseland, Janne E; Lyngstadaas, Petter; Bülow, Leif

    2006-07-01

    Amelogenin is a dental enamel matrix protein involved in formation of dental enamel. In this study, we have expressed two different recombinant murine amelogenins in Escherichia coli: the untagged rM179, and the histidine tagged rp(H)M180, identical to rM179 except that it carries the additional N-terminal sequence MRGSHHHHHHGS. The effects of the histidine tag on expression levels, and on growth properties of the amelogenin expressing cells were studied. Purification of a crude protein extract containing rp(H)M180 was also carried out using IMAC and reverse-phase HPLC. The results of this study showed clearly that both growth properties and amelogenin expression levels were improved for E. coli cells expressing the histidine tagged amelogenin rp(H)M180, compared to cells expressing the untagged amelogenin rM179. The positive effect of the histidine tag on amelogenin expression is proposed to be due to the hydrophilic nature of the histidine tag, generating a more hydrophilic amelogenin, which is more compatible with the host cell. Human osteoblasts treated with the purified rp(H)M180 showed increased levels of secreted osteocalcin, compared to untreated cells. This response was similar to cells treated with enamel matrix derivate, mainly composed by amelogenin, suggesting that the recombinant protein is biologically active. Thus, the histidine tag favors expression and purification of biologically active recombinant amelogenin.

  10. Blue-light-activated histidine kinases: two-component sensors in bacteria.

    PubMed

    Swartz, Trevor E; Tseng, Tong-Seung; Frederickson, Marcus A; Paris, Gastón; Comerci, Diego J; Rajashekara, Gireesh; Kim, Jung-Gun; Mudgett, Mary Beth; Splitter, Gary A; Ugalde, Rodolfo A; Goldbaum, Fernando A; Briggs, Winslow R; Bogomolni, Roberto A

    2007-08-24

    Histidine kinases, used for environmental sensing by bacterial two-component systems, are involved in regulation of bacterial gene expression, chemotaxis, phototaxis, and virulence. Flavin-containing domains function as light-sensory modules in plant and algal phototropins and in fungal blue-light receptors. We have discovered that the prokaryotes Brucella melitensis, Brucella abortus, Erythrobacter litoralis, and Pseudomonas syringae contain light-activated histidine kinases that bind a flavin chromophore and undergo photochemistry indicative of cysteinyl-flavin adduct formation. Infection of macrophages by B. abortus was stimulated by light in the wild type but was limited in photochemically inactive and null mutants, indicating that the flavin-containing histidine kinase functions as a photoreceptor regulating B. abortus virulence.

  11. Activation of ATP binding for the autophosphorylation of DosS, a Mycobacterium tuberculosis histidine kinase lacking an ATP lid motif.

    PubMed

    Cho, Ha Yeon; Lee, Young-Hoon; Bae, Young-Seuk; Kim, Eungbin; Kang, Beom Sik

    2013-05-03

    The sensor histidine kinases of Mycobacterium tuberculosis, DosS and DosT, are responsible for sensing hypoxic conditions and consist of sensor and kinase cores responsible for accepting signals and phosphorylation activity, respectively. The kinase core contains a dimerization and histidine phosphate-accepting (DHp) domain and an ATP binding domain (ABD). The 13 histidine kinase genes of M. tuberculosis can be grouped based on the presence or absence of the ATP lid motif and F box (elements known to play roles in ATP binding) in their ABDs; DosS and DosT have ABDs lacking both these elements, and the crystal structures of their ABDs indicated that they were unsuitable for ATP binding, as a short loop covers the putative ATP binding site. Although the ABD alone cannot bind ATP, the kinase core is functional in autophosphorylation. Appropriate spatial arrangement of the ABD and DHp domain within the kinase core is required for both autophosphorylation and ATP binding. An ionic interaction between Arg(440) in the DHp domain and Glu(537) in the short loop of the ABD is available and may open the ATP binding site, by repositioning the short loop away from the site. Mutations at Arg(440) and Glu(537) reduce autophosphorylation activity. Unlike other histidine kinases containing an ATP lid, which protects bound ATP, DosS is unable to accept ATP until the ABD is properly positioned relative to the histidine; this may prevent unexpected ATP reactions. ATP binding can, therefore, function as a control mechanism for histidine kinase activity.

  12. The histidine utilization (hut) genes of Pseudomonas fluorescens SBW25 are active on plant surfaces, but are not required for competitive colonization of sugar beet seedlings.

    PubMed

    Zhang, Xue-Xian; George, Andrew; Bailey, Mark J; Rainey, Paul B

    2006-06-01

    The ability to monitor the spatial and temporal distribution of signals in complex environments is necessary for an understanding of the function of bacteria in the wild. To this end, an existing recombinase-based transcriptional reporter strategy (recombinase-based in vivo expression technology, RIVET) has been extended and applied to the plant-colonizing bacterium Pseudomonas fluorescens SBW25. Central to the project was a rhizosphere-inducible locus, rhi14, which functional analyses show is hutT, a histidine-inducible gene that is required for histidine utilization. A transcriptional fusion between hutT and a promoterless site-specific recombinase (tnpR(mut168)) results in excision of a chromosomally integrated tetracycline-resistance cassette in a histidine-dependent manner. The dose- and time-responsiveness of the promoterless recombinase to histidine closely mirrored the histidine responsiveness of an identical hutT fusion to promoterless lacZ. To demonstrate the effectiveness of the strategy, the activity of hutT was monitored on sugar beet seedlings. Low levels of transcriptional activity were detected in the phyllosphere, rhizosphere and in plant extract, but not in vermiculite devoid of seedlings. The histidine concentration in the rhizosphere was estimated to be 0.6 microg ml(-1). The ecological significance of the hut locus was examined by competing a hutT deletion mutant against the wild-type during colonization of sugar beet seedlings. No impact on competitive fitness was detected, suggesting that the ability to utilize plant-derived histidine is not essential for bacterial colonization.

  13. Identifying cysteines and histidines in transition-metal-binding sites using support vector machines and neural networks.

    PubMed

    Passerini, Andrea; Punta, Marco; Ceroni, Alessio; Rost, Burkhard; Frasconi, Paolo

    2006-11-01

    Accurate predictions of metal-binding sites in proteins by using sequence as the only source of information can significantly help in the prediction of protein structure and function, genome annotation, and in the experimental determination of protein structure. Here, we introduce a method for identifying histidines and cysteines that participate in binding of several transition metals and iron complexes. The method predicts histidines as being in either of two states (free or metal bound) and cysteines in either of three states (free, metal bound, or in disulfide bridges). The method uses only sequence information by utilizing position-specific evolutionary profiles as well as more global descriptors such as protein length and amino acid composition. Our solution is based on a two-stage machine-learning approach. The first stage consists of a support vector machine trained to locally classify the binding state of single histidines and cysteines. The second stage consists of a bidirectional recurrent neural network trained to refine local predictions by taking into account dependencies among residues within the same protein. A simple finite state automaton is employed as a postprocessing in the second stage in order to enforce an even number of disulfide-bonded cysteines. We predict histidines and cysteines in transition-metal-binding sites at 73% precision and 61% recall. We observe significant differences in performance depending on the ligand (histidine or cysteine) and on the metal bound. We also predict cysteines participating in disulfide bridges at 86% precision and 87% recall. Results are compared to those that would be obtained by using expert information as represented by PROSITE motifs and, for disulfide bonds, to state-of-the-art methods.

  14. Increase of histidine decarboxylase activity in mice hypothalamus after intracerebroventricular administration of lipopolysaccharide.

    PubMed

    Niimi, M; Mochizuki, T; Cacabelos, R; Yamatodani, A

    1993-10-01

    The effect of intracerebroventricular (icv) administration of lipopolysaccharide on histidine decarboxylase activity and histamine content in the hypothalamus were investigated in male mice of ddY strain in vivo. Two-fold increase in histidine decarboxylase activity (HDC) was observed 4 h after administration of 50 mcg lipopolysaccharide, and HDC activity returned to the basal level within 12 h after injection. Furthermore, histamine contents showed a slight decrease at 1 and 2 h and a mild increase at 12 h after administration. However, changes in histamine content were not statistically significant. These results suggest that the increase of HDC activity in the hypothalamus by lipopolysaccharide may be involved in the central neuroimmune responses.

  15. Modification in hydrophobic packing of HAMP domain induces a destabilization of the auto-phosphorylation site in the histidine kinase CpxA.

    PubMed

    Martinez, Marlet; Duclert-Savatier, Nathalie; Betton, Jean-Michel; Alzari, Pedro M; Nilges, Michael; Malliavin, Thérèse E

    2016-10-01

    The histidine kinases belong to the family of two-component systems, which serves in bacteria to couple environmental stimuli to adaptive responses. Most of the histidine kinases are homodimers, in which the HAMP and DHp domains assemble into an elongated helical region flanked by two CA domains. Recently, X-ray crystallographic structures of the cytoplasmic region of the Escherichia coli histidine kinase CpxA were determined and a phosphotransferase-defective mutant, M228V, located in HAMP, was identified. In the present study, we recorded 1 μs molecular dynamics trajectories to compare the behavior of the WT and M228V protein dimers. The M228V modification locally induces the appearance of larger voids within HAMP as well as a perturbation of the number of voids within DHp, thus destabilizing the HAMP and DHp hydrophobic packing. In addition, a disruption of the stacking interaction between F403 located in the lid of the CA domain involved in the auto-phosphorylation and R296 located in the interacting DHp region, is more often observed in the presence of the M228V modification. Experimental modifications R296A and R296D of CpxA have been observed to reduce also the CpxA activity. These observations agree with the destabilization of the R296/F403 stacking, and could be the sign of the transmission of a conformational event taking place in HAMP to the auto-phosphorylation site of histidine kinase. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 670-682, 2016.

  16. protonation behavior of histidine during HSF1 activation by physiological acidification.

    PubMed

    Lu, Ming; Park, Jang-Su

    2015-06-01

    The expression of eukaryotic molecular chaperones (heat shock proteins, HSPs) is triggered in response to a wide range of environmental stresses, including: heat shock, hydrogen peroxide, heavy metal, low-pH, or virus infection. Biochemical and genetic studies have clearly shown the fundamental roles of heat shock factor 1 (HSF1) in stress-inducible HSP gene expression, resistance to stress-induced cell death, carcinogenesis, and other biological phenomena. Previous studies show that acidic pH changes within the physiological range directly activate the HSF1 function in vitro. However, the detailed mechanism is unclear. Though computational pKa-predications of the amino acid side-chain, acidic-pH induced protonation of a histidine residue was found to be most-likely involved in this process. The histidine 83 (His83) residue, which could be protonated by mild decrease in pH, causes mild acidic-induced HSF1 activation (including in-vitro trimerization, DNA binding, in-vivo nuclear accumulation, and HSPs expression). His83, which is located in the loop region of the HSF1 DNA binding domain, was suggested to enhance the intermolecular force with Arginine 79, which helps HSF1 form a DNA-binding competent. Therefore, low-pH-induced activation of HSF1 by the protonation of histidine can help us better to understand the HSF1 mechanism and develop more therapeutic applications (particularly in cancer therapy). J. Cell. Biochem. 116: 977-984, 2015. © 2015 Wiley Periodicals, Inc.

  17. Crystallographic snapshot of the Escherichia coli EnvZ histidine kinase in an active conformation.

    PubMed

    Ferris, Hedda U; Coles, Murray; Lupas, Andrei N; Hartmann, Marcus D

    2014-06-01

    Sensor histidine kinases are important sensors of the extracellular environment and relay signals via conformational changes that trigger autophosphorylation of the kinase and subsequent phosphorylation of a response regulator. The exact mechanism and the regulation of this protein family are a matter of ongoing investigation. Here we present a crystal structure of a functional chimeric protein encompassing the entire catalytic part of the Escherichia coli EnvZ histidine kinase, fused to the HAMP domain of the Archaeoglobus fulgidus Af1503 receptor. The construct is thus equivalent to the full cytosolic part of EnvZ. The structure shows a putatively active conformation of the catalytic domain and gives insight into how this conformation could be brought about in response to sensory input. Our analysis suggests a sequential flip-flop autokinase mechanism.

  18. Heterogeneity in the Histidine-brace Copper Coordination Sphere in Auxiliary Activity Family 10 (AA10) Lytic Polysaccharide Monooxygenases.

    PubMed

    Chaplin, Amanda K; Wilson, Michael T; Hough, Michael A; Svistunenko, Dimitri A; Hemsworth, Glyn R; Walton, Paul H; Vijgenboom, Erik; Worrall, Jonathan A R

    2016-06-10

    Copper-dependent lytic polysaccharide monooxygenases (LPMOs) are enzymes that oxidatively deconstruct polysaccharides. The active site copper in LPMOs is coordinated by a histidine-brace. This utilizes the amino group and side chain of the N-terminal His residue with the side chain of a second His residue to create a T-shaped arrangement of nitrogen ligands. We report a structural, kinetic, and thermodynamic appraisal of copper binding to the histidine-brace in an auxiliary activity family 10 (AA10) LPMO from Streptomyces lividans (SliLPMO10E). Unexpectedly, we discovered the existence of two apo-SliLPMO10E species in solution that can each bind copper at a single site with distinct kinetic and thermodynamic (exothermic and endothermic) properties. The experimental EPR spectrum of copper-bound SliLPMO10E requires the simulation of two different line shapes, implying two different copper-bound species, indicative of three and two nitrogen ligands coordinating the copper. Amino group coordination was probed through the creation of an N-terminal extension variant (SliLPMO10E-Ext). The kinetics and thermodynamics of copper binding to SliLPMO10E-Ext are in accord with copper binding to one of the apo-forms in the wild-type protein, suggesting that amino group coordination is absent in the two-nitrogen coordinate form of SliLPMO10E. Copper binding to SliLPMO10B was also investigated, and again it revealed the presence of two apo-forms with kinetics and stoichiometry of copper binding identical to that of SliLPMO10E. Our findings highlight that heterogeneity exists in the active site copper coordination sphere of LPMOs that may have implications for the mechanism of loading copper in the cell.

  19. Assignment of histidine resonances in the sup 1 H NMR (500 MHz) spectrum of subtilisin BPN prime using site-directed mutagenesis

    SciTech Connect

    Bycroft, M.; Fersht, A.R. )

    1988-09-20

    A spin-echo pulse sequence has been used to resolve the six histidine C-2H protons in the 500-MHz NMR spectrum of subtilisin BPN{prime}. Five of these residues have been substituted by site-directed mutagenesis, and this has enabled a complete assignment of these protons to be obtained. Analysis of the pH titration curves of these signals has provided microscopic pK{sub a}'s for the six histidines in this enzyme. The pK{sub a}'s of the histidine residues in subtilisin BPN{prime} have been compared with the values obtained for the histidines in the homologous enzyme from Bacillus licheniformis (subtilisin Carlsberg). Four of the five conserved histidines titrate with essentially identical pK{sub a}'s in the two enzymes. It therefore appears that the assignments made for these residues in subtilisin BPN{prime} can be transferred to subtilisin Carlsberg. On the basis of these assignments, the one histidine that titrates with a substantially different pK{sub a} in the two enzymes can be assigned to histidine-238. This difference in pK{sub a} has been attributed to a Trp to Lys substitution at position 241 in subtilisin Carlsberg.

  20. Identification by site-directed mutagenesis of three essential histidine residues in membrane dipeptidase, a novel mammalian zinc peptidase.

    PubMed Central

    Keynan, S; Hooper, N M; Turner, A J

    1997-01-01

    Membrane dipeptidase (EC 3.4.13.19) is a plasma membrane zinc peptidase that is involved in the renal metabolism of glutathione and its conjugates, such as leukotriene D4. The enzyme lacks the classical signatures of other zinc-dependent hydrolases and shows no homology with any other mammalian protein. We have used site-directed mutagenesis to explore the roles of five histidine residues in pig membrane dipeptidase that are conserved among mammalian species. When expressed in COS-1 cells, the mutants H49K and H128L exhibited a specific activity and Km for the substrate Gly-D-Phe comparable with those of the wild-type enzyme. However, the mutants H20L, H152L and H198K were inactive, but were expressed at the cell surface at equivalent levels to the wild-type, as assessed by immunoblotting and immunofluorescence. These three mutants were compared with regard to their ability to bind to the competitive inhibitor cilastatin, which binds with equal efficacy to native and EDTA-treated pig kidney membrane dipeptidase. Expressed wild-type enzyme and mutants H20L and H198K were efficiently bound by cilastatin-Sepharose, but H152L failed to bind. Thus His-152 appears to be involved in the binding of substrate or inhibitor, whereas His-20 and His-198 appear to be involved in catalysis. Membrane dipeptidase shares some similarity with a dipeptidase recently cloned from Acinetobacter calcoaceticus. In particular, His-20 and His-198 of membrane dipeptidase are conserved in the bacterial enzyme, as are Glu-125 and His-219, previously shown to be required for catalytic activity. PMID:9337849

  1. Dual Mode Fluorophore-Doped Nickel Nitrilotriacetic Acid-Modified Silica Nanoparticles Combine Histidine-Tagged Protein Purification with Site-Specific Fluorophore Labeling

    PubMed Central

    Kim, Sung Hoon; Jeyakumar, M.; Katzenellenbogen, John A.

    2008-01-01

    We present the first example of a fluorophore-doped nickel chelate surface- modified silica nanoparticle that functions in a dual mode, combining histidine-tagged protein purification with site-specific fluorophore labeling. Tetramethylrhodamine (TMR)-doped silica nanoparticles, estimated to contain 700–900 TMRs per ca. 23-nm particle, were surface modified with nitrilotriacetic acid (NTA), producing TMR-SiO2-NTA-Ni+2. Silica-embedded TMR retains very high quantum yield, is resistant to quenching by buffer components and is modestly quenched and only to a certain depth (ca. 2 nm) by surface-attached Ni+2. When exposed to a bacterial lysate containing estrogen receptor α ligand binding domain (ERα) as a minor component, these beads showed very high specificity binding, enabling protein purification in one step. The capacity and specificity of these beads for binding a his-tagged protein were characterized by electrophoresis, radiometric counting, and MALDI-TOF MS. ERα, bound to TMR-SiO2-NTA-Ni++ beads in a site-specific manner, exhibited good activity for ligand binding and for ligand-induced binding to coactivators in solution FRET experiments and protein microarray fluorometric and FRET assays. This dual-mode type TMR-SiO2-NTA-Ni++ system represents a powerful combination of one-step histidine-tagged protein purification and site-specific labeling with multiple fluorophore species. BRIEFS Tetramethylrhodamine-doped silica nanoparticles surface modified with nitrilotriacetic acid are dual-mode agents that can be used to purify and site-specifically fluorophore label his-tagged proteins in one step for fluorometric and FRET experiments. PMID:17910454

  2. Crystal Structures of Trypanosoma cruzi UDP-Galactopyranose Mutase Implicate Flexibility of the Histidine Loop in Enzyme Activation

    SciTech Connect

    Dhatwalia, Richa; Singh, Harkewal; Oppenheimer, Michelle; Sobrado, Pablo; Tanner, John J.

    2012-11-01

    Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. Here we report crystal structures of the galactofuranose biosynthetic enzyme UDP-galactopyranose mutase (UGM) from T. cruzi, which are the first structures of this enzyme from a protozoan parasite. UGM is an attractive target for drug design because galactofuranose is absent in humans but is an essential component of key glycoproteins and glycolipids in trypanosomatids. Analysis of the enzyme-UDP noncovalent interactions and sequence alignments suggests that substrate recognition is exquisitely conserved among eukaryotic UGMs and distinct from that of bacterial UGMs. This observation has implications for inhibitor design. Activation of the enzyme via reduction of the FAD induces profound conformational changes, including a 2.3 {angstrom} movement of the histidine loop (Gly60-Gly61-His62), rotation and protonation of the imidazole of His62, and cooperative movement of residues located on the si face of the FAD. Interestingly, these changes are substantially different from those described for Aspergillus fumigatus UGM, which is 45% identical to T. cruzi UGM. The importance of Gly61 and His62 for enzymatic activity was studied with the site-directed mutant enzymes G61A, G61P, and H62A. These mutations lower the catalytic efficiency by factors of 10-50, primarily by decreasing k{sub cat}. Considered together, the structural, kinetic, and sequence data suggest that the middle Gly of the histidine loop imparts flexibility that is essential for activation of eukaryotic UGMs. Our results provide new information about UGM biochemistry and suggest a unified strategy for designing inhibitors of UGMs from the eukaryotic pathogens.

  3. Novel Organotin(IV) Schiff Base Complexes with Histidine Derivatives: Synthesis, Characterization, and Biological Activity

    PubMed Central

    Garza-Ortiz, Ariadna; Camacho-Camacho, Carlos; Sainz-Espuñes, Teresita; Rojas-Oviedo, Irma; Gutiérrez-Lucas, Luis Raúl; Gutierrez Carrillo, Atilano; Vera Ramirez, Marco A.

    2013-01-01

    Five novel tin Schiff base complexes with histidine analogues (derived from the condensation reaction between L-histidine and 3,5-di-tert-butyl-2-hydroxybenzaldehyde) have been synthesized and characterized. Characterization has been completed by IR and high-resolution mass spectroscopy, 1D and 2D solution NMR (1H, 13C  and 119Sn), as well as solid state 119Sn NMR. The spectroscopic evidence shows two types of structures: a trigonal bipyramidal stereochemistry with the tin atom coordinated to five donating atoms (two oxygen atoms, one nitrogen atom, and two carbon atoms belonging to the alkyl moieties), where one molecule of ligand is coordinated in a three dentate fashion. The second structure is spectroscopically described as a tetrahedral tin complex with four donating atoms (one oxygen atom coordinated to the metal and three carbon atoms belonging to the alkyl or aryl substituents), with one molecule of ligand attached. The antimicrobial activity of the tin compounds has been tested against the growth of bacteria in vitro to assess their bactericidal properties. While pentacoordinated compounds 1, 2, and 3 are described as moderate effective to noneffective drugs against both Gram-positive and Gram-negative bacteria, tetracoordinated tin(IV) compounds 4 and 5 are considered as moderate effective and most effective compounds, respectively, against the methicillin-resistant Staphylococcus aureus strains (Gram-positive). PMID:23864839

  4. Histidine Triad-Like Motif of the Rotavirus NSP2 Octamer Mediates Both RTPase and NTPase Activities

    PubMed Central

    Carpio, Rodrigo Vasquez-Del; Gonzalez-Nilo, Fernando D.; Riadi, Gonzalo; Taraporewala, Zenobia F.; Patton., John T.

    2006-01-01

    SUMMARY Rotavirus NSP2 is an abundant nonstructural RNA-binding protein essential for forming the viral factories that support replication of the double-stranded RNA genome. NSP2 exists as stable doughnut-shaped octamers within the infected cell, representing the tail-to-tail interaction of two tetramers. Extending diagonally across the surface of each octamer are four highly basic grooves that function as binding sites for single-stranded RNA. Between the N and C-terminal domains of each monomer is a deep electropositive cleft containing a catalytic site that hydrolyzes the γ-β phosphoanhydride bond of any NTP. The catalytic site has similarity to those of the histidine triad (HIT) family of nucleotide-binding proteins. Due to the close proximity of the grooves and clefts, we investigated the possibility that the RNA-binding activity of the groove promoted the insertion of the 5′-triphosphate moiety of the RNA into the cleft, and the subsequent hydrolysis of its γ-β phosphoanhydride bond. Our results show that NSP2 hydrolyzes the γP from RNAs and NTPs through Mg2+-dependent activities that proceed with similar reaction velocities, that require the catalytic His225 residue, and that produce a phosphorylated intermediate. Competition assays indicate that although both substrates enter the active site, RNA is the preferred substrate due to its higher affinity for the octamer. The RTPase activity of NSP2 may account for the absence of 5′-terminal γP on the (−) strands of the dsRNA genome segments. This is the first report of a HIT-like protein with a multifunctional catalytic site, capable of accommodating both NTPs and RNAs during γP hydrolysis. PMID:16934294

  5. A systematic survey of conserved histidines in the core subunits of Photosystem I by site-directed mutagenesis reveals the likely axial ligands of P700.

    PubMed Central

    Redding, K; MacMillan, F; Leibl, W; Brettel, K; Hanley, J; Rutherford, A W; Breton, J; Rochaix, J D

    1998-01-01

    The Photosystem I complex catalyses the transfer of an electron from lumenal plastocyanin to stromal ferredoxin, using the energy of an absorbed photon. The initial photochemical event is the transfer of an electron from the excited state of P700, a pair of chlorophylls, to a monomer chlorophyll serving as the primary electron acceptor. We have performed a systematic survey of conserved histidines in the last six transmembrane segments of the related polytopic membrane proteins PsaA and PsaB in the green alga Chlamydomonas reinhardtii. These histidines, which are present in analogous positions in both proteins, were changed to glutamine or leucine by site-directed mutagenesis. Double mutants in which both histidines had been changed to glutamine were screened for changes in the characteristics of P700 using electron paramagnetic resonance, Fourier transform infrared and visible spectroscopy. Only mutations in the histidines of helix 10 (PsaA-His676 and PsaB-His656) resulted in changes in spectroscopic properties of P700, leading us to conclude that these histidines are most likely the axial ligands to the P700 chlorophylls. PMID:9427740

  6. Structural insights into the histidine trimethylation activity of EgtD from Mycobacterium smegmatis.

    PubMed

    Jeong, Jae-Hee; Cha, Hyung Jin; Ha, Sung-Chul; Rojviriya, Catleya; Kim, Yeon-Gil

    2014-10-03

    EgtD is an S-adenosyl-l-methionine (SAM)-dependent histidine N,N,N-methyltransferase that catalyzes the formation of hercynine from histidine in the ergothioneine biosynthetic process of Mycobacterium smegmatis. Ergothioneine is a secreted antioxidant that protects mycobacterium from oxidative stress. Here, we present three crystal structures of EgtD in the apo form, the histidine-bound form, and the S-adenosyl-l-homocysteine (SAH)/histidine-bound form. The study revealed that EgtD consists of two distinct domains: a typical methyltransferase domain and a unique substrate binding domain. The histidine binding pocket of the substrate binding domain primarily recognizes the imidazole ring and carboxylate group of histidine rather than the amino group, explaining the high selectivity for histidine and/or (mono-, di-) methylated histidine as substrates. In addition, SAM binding to the MTase domain induced a conformational change in EgtD to facilitate the methyl transfer reaction. The structural analysis provides insights into the putative catalytic mechanism of EgtD in a processive trimethylation reaction.

  7. Comparison between activation of ornithine decarboxylase and histidine decarboxylase in rat stomach.

    PubMed

    Ding, X Q; Chen, D; Rosengren, E; Persson, L; Hakanson, R

    1996-03-01

    We compared the responses of rat stomach ornithine decarboxylase (ODC) and histidine decarboxylase (HDC) to food intake, oral treatment with antisecretagogues, NaHCO3, and hypertonic NaCl, antrectomy, intravenous infusion of gastrin-17, the selective cholecystokinin (CCK)-B/gastrin receptor antagonist L-365,260, and the somatostatin analogue RC-160. The serum gastrin concentration and oxyntic mucosal ODC and HDC activities were higher in freely fed rats than in fasted rats. Food intake in fasted rats raised the serum gastrin concentration and the ODC and HDC activities. Ranitidine, omeprazole, and NaHCO3 raised the serum gastrin concentration and activated ODC and HDC. Hypertonic NaCl raised the ODC activity 200-fold, whereas circulating gastrin and HDC activity were increased only moderately. Infusion of gastrin-17 activated HDC but not ODC. L-365,260 prevented the activation of HDC but not of ODC in response to food intake and treatment with omeprazole, NaHCO3, or hypertonic NaCl. Antrectomy prevented the food- and omeprazole-evoked rise in oxyntic mucosal HDC activity but not the rise in ODC activity. RC-160 suppressed HDC activity after food intake and treatment with omeprazole, NaHCO3, or NaCl. In contrast, RC-160 suppressed omeprazole- and NaHCO3-evoked ODC activation but not that evoked by food intake or NaCl. The results support the view that HDC in the oxyntic mucosa is activated by gastrin and suppressed by somatostatin. The induction of ODC is not mediated by gastrin; ODC activation appears to be related to acid inhibition per se or to mucosal maintenance and repair; somatostatin, or rather the lack of it, might contribute to the induction of ODC after acid blockade. The mechanism behind the activation of rat stomach ODC seems to differ depending on the type of stimulus.

  8. Identification and measurement of acid (specific) histidine decarboxylase activity in rabbit gastric mucosa: ending an old controversy?

    PubMed

    Neugebauer, E; Lorenz, W

    1985-04-01

    One of the main obstacles in assigning any distinct function to histamine in health and disease was the longlasting controversy on the existence of any physiological, endogenous histamine formation in man and most of the other mammals except the rat. Using a modification of Schayer's isotope dilution method, a renewed attempt was made to identify the very low activities of an acid (specific) histidine decarboxylase in rabbit gastric mucosa capable of producing endogenous histamine in physiological conditions, to develop tests for its identification in crude enzyme extracts and to demonstrate the specificity of the enzymatic assay by excluding any relevant Dopa decarboxylase activity and also nonenzymatic decarboxylation interfering with the determination of acid (specific) histidine decarboxylase. To achieve this aim five tests were developed: In the pH profile (test 1), a pH optimum was found at 7.0 in the presence of a low substrate concentration (1.6 X 10(-6)M L-[ring-2-14C]-histidine). The apparent Michaelis concentration at the pH optimum (test 2) was 1.8 X 10(-4)M, the maximum rate 12.5pmol [14C]histamine formed X min-1. To increase the specificity of inhibition experiments with alpha-methylhistidine and alpha-methyl-L-Dopa a pH profile was determined in the presence of these two enzymatic inhibitors (test 3 and 4). alpha-Methylhistidine was used for a reliable diagnostic confirmation test, alpha-methyl-L-Dopa for a reliable exclusion test. Benzene showed no influence on either blanks or recovery rates, but inhibited the enzymic activity at pH 7.0, not however that of unspecific histidine decarboxylase and hence was very valuable as an additional diagnostic exclusion test (test 5). Although these new tests identifying acid (specific) histidine decarboxylase and demonstrating the specificity of its determination were tedious, despite the use of the modified isotope dilution method, they excluded the presence of any Dopa decarboxylase activity in mixtures with

  9. Mechanisms of mitochondrial holocytochrome c synthase and the key roles played by cysteines and histidine of the heme attachment site, Cys-XX-Cys-His.

    PubMed

    Babbitt, Shalon E; San Francisco, Brian; Mendez, Deanna L; Lukat-Rodgers, Gudrun S; Rodgers, Kenton R; Bretsnyder, Eric C; Kranz, Robert G

    2014-10-17

    Mitochondrial cytochrome c assembly requires the covalent attachment of heme by thioether bonds between heme vinyl groups and a conserved CXXCH motif of cytochrome c/c1. The enzyme holocytochrome c synthase (HCCS) binds heme and apocytochrome c substrate to catalyze this attachment, subsequently releasing holocytochrome c for proper folding to its native structure. We address mechanisms of assembly using a functional Escherichia coli recombinant system expressing human HCCS. Human cytochrome c variants with individual cysteine, histidine, double cysteine, and triple cysteine/histidine substitutions (of CXXCH) were co-purified with HCCS. Single and double mutants form a complex with HCCS but not the triple mutant. Resonance Raman and UV-visible spectroscopy support the proposal that heme puckering induced by both thioether bonds facilitate release of holocytochrome c from the complex. His-19 (of CXXCH) supplies the second axial ligand to heme in the complex, the first axial ligand was previously shown to be from HCCS residue His-154. Substitutions of His-19 in cytochrome c to seven other residues (Gly, Ala, Met, Arg, Lys, Cys, and Tyr) were used with various approaches to establish other roles played by His-19. Three roles for His-19 in HCCS-mediated assembly are suggested: (i) to provide the second axial ligand to the heme iron in preparation for covalent attachment; (ii) to spatially position the two cysteinyl sulfurs adjacent to the two heme vinyl groups for thioether formation; and (iii) to aid in release of the holocytochrome c from the HCCS active site. Only H19M is able to carry out these three roles, albeit at lower efficiencies than the natural His-19.

  10. Mechanisms of Mitochondrial Holocytochrome c Synthase and the Key Roles Played by Cysteines and Histidine of the Heme Attachment Site, Cys-XX-Cys-His*

    PubMed Central

    Babbitt, Shalon E.; San Francisco, Brian; Mendez, Deanna L.; Lukat-Rodgers, Gudrun S.; Rodgers, Kenton R.; Bretsnyder, Eric C.; Kranz, Robert G.

    2014-01-01

    Mitochondrial cytochrome c assembly requires the covalent attachment of heme by thioether bonds between heme vinyl groups and a conserved CXXCH motif of cytochrome c/c1. The enzyme holocytochrome c synthase (HCCS) binds heme and apocytochrome c substrate to catalyze this attachment, subsequently releasing holocytochrome c for proper folding to its native structure. We address mechanisms of assembly using a functional Escherichia coli recombinant system expressing human HCCS. Human cytochrome c variants with individual cysteine, histidine, double cysteine, and triple cysteine/histidine substitutions (of CXXCH) were co-purified with HCCS. Single and double mutants form a complex with HCCS but not the triple mutant. Resonance Raman and UV-visible spectroscopy support the proposal that heme puckering induced by both thioether bonds facilitate release of holocytochrome c from the complex. His-19 (of CXXCH) supplies the second axial ligand to heme in the complex, the first axial ligand was previously shown to be from HCCS residue His-154. Substitutions of His-19 in cytochrome c to seven other residues (Gly, Ala, Met, Arg, Lys, Cys, and Tyr) were used with various approaches to establish other roles played by His-19. Three roles for His-19 in HCCS-mediated assembly are suggested: (i) to provide the second axial ligand to the heme iron in preparation for covalent attachment; (ii) to spatially position the two cysteinyl sulfurs adjacent to the two heme vinyl groups for thioether formation; and (iii) to aid in release of the holocytochrome c from the HCCS active site. Only H19M is able to carry out these three roles, albeit at lower efficiencies than the natural His-19. PMID:25170082

  11. Alternative binding modes of l-histidine guided by metal ions for the activation of the antiterminator protein HutP of Bacillus subtilis.

    PubMed

    Dhakshnamoorthy, Balasundaresan; Mizuno, Hiroshi; Kumar, Penmetcha K R

    2013-09-01

    Anti-terminator proteins control gene expression by recognizing control signals within cognate transcripts and then preventing transcription termination. HutP is such a regulatory protein that regulates the expression of the histidine utilization (hut) operon in Bacillus subtilis by binding to cis-acting regulatory sequences in hut mRNAs. During the anti-termination process, l-histidine and a divalent ion are required for hutP to bind to the specific sequence within the hut mRNA. Our previous crystal structure of the HutP-l-histidine-Mg(2+)-RNA ternary complex demonstrated that the l-histidine ligand and Mg(2+) bind together such that the backbone nitrogen and carboxyl oxygen of l-histidine coordinate with Mg(2+). In addition to the Mg(2+), other divalent ions are also known to efficiently support the l-histidine-dependent anti-termination of the hut operon, and the best divalent ion is Zn(2+). In this study, we determined the crystal structure of the HutP-l-histidine-Zn(2+) complex and found that the orientation of l-histidine coordinated to Zn(2+) is reversed relative to that of l-histidine coordinated to Mg(2+), i.e., the imidazole side chain nitrogen of l-histidine coordinates to Zn(2+). This alternative binding mode of the l-histidine ligand to a divalent ion provides further insight into the mechanisms responsible for the activation of RNA binding during the hut anti-termination process.

  12. Probing the Catalytic Charge-Relay System in Alanine Racemase with Genetically Encoded Histidine Mimetics.

    PubMed

    Sharma, Vangmayee; Wang, Yane-Shih; Liu, Wenshe R

    2016-12-16

    Histidine is a unique amino acid with an imidazole side chain in which both of the nitrogen atoms are capable of serving as a proton donor and proton acceptor in hydrogen bonding interactions. In order to probe the functional role of histidine involved in hydrogen bonding networks, fine-tuning the hydrogen bonding potential of the imidazole side chain is required but not feasible through traditional mutagenesis methods. Here, we show that two close mimetics of histidine, 3-methyl-histidine and thiazole alanine, can be genetically encoded using engineered pyrrolysine incorporation machinery. Replacement of the three histidine residues predicted to be involved in an extended charge-relay system in alanine racemase with 3-methyl-histidine or thiazole alanine shows a dramatic loss in the enzyme's catalytic efficiency, implying the role of this extended charge-relay system in activating the active site residue Y265, a general acid/base catalyst in the enzyme.

  13. Histidine pairing at the metal transport site of mammalian ZnT transporters controls Zn2+ over Cd2+ selectivity.

    PubMed

    Hoch, Eitan; Lin, Wei; Chai, Jin; Hershfinkel, Michal; Fu, Dax; Sekler, Israel

    2012-05-08

    Zinc and cadmium are similar metal ions, but though Zn(2+) is an essential nutrient, Cd(2+) is a toxic and common pollutant linked to multiple disorders. Faster body turnover and ubiquitous distribution of Zn(2+) vs. Cd(2+) suggest that a mammalian metal transporter distinguishes between these metal ions. We show that the mammalian metal transporters, ZnTs, mediate cytosolic and vesicular Zn(2+) transport, but reject Cd(2+), thus constituting the first mammalian metal transporter with a refined selectivity against Cd(2+). Remarkably, the bacterial ZnT ortholog, YiiP, does not discriminate between Zn(2+) and Cd(2+). A phylogenetic comparison between the tetrahedral metal transport motif of YiiP and ZnTs identifies a histidine at the mammalian site that is critical for metal selectivity. Residue swapping at this position abolished metal selectivity of ZnTs, and fully reconstituted selective Zn(2+) transport of YiiP. Finally, we show that metal selectivity evolves through a reduction in binding but not the translocation of Cd(2+) by the transporter. Thus, our results identify a unique class of mammalian transporters and the structural motif required to discriminate between Zn(2+) and Cd(2+), and show that metal selectivity is tuned by a coordination-based mechanism that raises the thermodynamic barrier to Cd(2+) binding.

  14. Tautomerism in neutral histidine.

    PubMed

    Bermúdez, Celina; Mata, Santiago; Cabezas, Carlos; Alonso, José L

    2014-10-06

    Histidine is an important natural amino acid, involved in many relevant biological processes, which, because of its physical properties, proved difficult to characterize experimentally in its neutral form. In this work, neutral histidine has been generated in the gas phase by laser ablation of solid samples and its N(ε)H tautomeric form unraveled through its rotational spectrum. The quadrupole hyperfine structure, arising from the existing three (14)N nuclei, constituted a site-specifically probe for revealing the tautomeric form as well as the side chain configuration of this proteogenic amino acid.

  15. Alkali metals in addition to acidic pH activate the EvgS histidine kinase sensor in Escherichia coli.

    PubMed

    Eguchi, Yoko; Utsumi, Ryutaro

    2014-09-01

    Two-component signal transduction systems (TCSs) in bacteria perceive environmental stress and transmit the information via phosphorelay to adjust multiple cellular functions for adaptation. The EvgS/EvgA system is a TCS that confers acid resistance to Escherichia coli cells. Activation of the EvgS sensor initiates a cascade of transcription factors, EvgA, YdeO, and GadE, which induce the expression of a large group of acid resistance genes. We searched for signals activating EvgS and found that a high concentration of alkali metals (Na(+), K(+)) in addition to low pH was essential for the activation. EvgS is a histidine kinase, with a large periplasmic sensor region consisting of two tandem PBPb (bacterial periplasmic solute-binding protein) domains at its N terminus. The periplasmic sensor region of EvgS was necessary for EvgS activation, and Leu152, located within the first PBPb domain, was involved in the activation. Furthermore, chimeras of EvgS and PhoQ histidine kinases suggested that alkali metals were perceived at the periplasmic sensor region, whereas the cytoplasmic linker domain, connecting the transmembrane region and the histidine kinase domain, was required for low-pH perception.

  16. Structural insights into the role of iron–histidine bond cleavage in nitric oxide-induced activation of H-NOX gas sensor proteins

    PubMed Central

    Herzik, Mark A.; Jonnalagadda, Rohan; Kuriyan, John; Marletta, Michael A.

    2014-01-01

    Heme-nitric oxide/oxygen (H-NOX) binding domains are a recently discovered family of heme-based gas sensor proteins that are conserved across eukaryotes and bacteria. Nitric oxide (NO) binding to the heme cofactor of H-NOX proteins has been implicated as a regulatory mechanism for processes ranging from vasodilation in mammals to communal behavior in bacteria. A key molecular event during NO-dependent activation of H-NOX proteins is rupture of the heme–histidine bond and formation of a five-coordinate nitrosyl complex. Although extensive biochemical studies have provided insight into the NO activation mechanism, precise molecular-level details have remained elusive. In the present study, high-resolution crystal structures of the H-NOX protein from Shewanella oneidensis in the unligated, intermediate six-coordinate and activated five-coordinate, NO-bound states are reported. From these structures, it is evident that several structural features in the heme pocket of the unligated protein function to maintain the heme distorted from planarity. NO-induced scission of the iron–histidine bond triggers structural rearrangements in the heme pocket that permit the heme to relax toward planarity, yielding the signaling-competent NO-bound conformation. Here, we also provide characterization of a nonheme metal coordination site occupied by zinc in an H-NOX protein. PMID:25253889

  17. A Histidine Cluster in the Cytoplasmic Domain of the Na-H Exchanger NHE1 Confers pH-sensitive Phospholipid Binding and Regulates Transporter Activity.

    PubMed

    Webb, Bradley A; White, Katharine A; Grillo-Hill, Bree K; Schönichen, André; Choi, Changhoon; Barber, Diane L

    2016-11-11

    The Na-H exchanger NHE1 contributes to intracellular pH (pHi) homeostasis in normal cells and the constitutively increased pHi in cancer. NHE1 activity is allosterically regulated by intracellular protons, with greater activity at lower pHi However, the molecular mechanism for pH-dependent NHE1 activity remains incompletely resolved. We report that an evolutionarily conserved cluster of histidine residues located in the C-terminal cytoplasmic domain between two phosphatidylinositol 4,5-bisphosphate binding sites (PI(4,5)P2) of NHE1 confers pH-dependent PI(4,5)P2 binding and regulates NHE1 activity. A GST fusion of the wild type C-terminal cytoplasmic domain of NHE1 showed increased maximum PI(4,5)P2 binding at pH 7.0 compared with pH 7.5. However, pH-sensitive binding is abolished by substitutions of the His-rich cluster to arginine (RXXR3) or alanine (AXXA3), mimicking protonated and neutral histidine residues, respectively, and the RXXR3 mutant had significantly greater PI(4,5)P2 binding than AXXA3. When expressed in cells, NHE1 activity and pHi were significantly increased with NHE1-RXXR3 and decreased with NHE1-AXXA3 compared with wild type NHE1. Additionally, fibroblasts expressing NHE1-RXXR3 had significantly more contractile actin filaments and focal adhesions compared with fibroblasts expressing wild type NHE1, consistent with increased pHi enabling cytoskeletal remodeling. These data identify a molecular mechanism for pH-sensitive PI(4,5)P2 binding regulating NHE1 activity and suggest that the evolutionarily conserved cluster of four histidines in the proximal cytoplasmic domain of NHE1 may constitute a proton modifier site. Moreover, a constitutively activated NHE1-RXXR3 mutant is a new tool that will be useful for studying how increased pHi contributes to cell behaviors, most notably the biology of cancer cells.

  18. List 9 - Active CERCLIS Sites:

    EPA Pesticide Factsheets

    The List 9 displays the sequence of activities undertaken at active CERCLIS sites. An active site is one at which site assessment, removal, remedial, enforcement, cost recovery, or oversight activities are being planned or conducted.

  19. E. coli histidine triad nucleotide binding protein 1 (ecHinT) is a catalytic regulator of D-alanine dehydrogenase (DadA) activity in vivo.

    PubMed

    Bardaweel, Sanaa; Ghosh, Brahma; Chou, Tsui-Fen; Sadowsky, Michael J; Wagner, Carston R

    2011-01-01

    Histidine triad nucleotide binding proteins (Hints) are highly conserved members of the histidine triad (HIT) protein superfamily. Hints comprise the most ancient branch of this superfamily and can be found in Archaea, Bacteria, and Eukaryota. Prokaryotic genomes, including a wide diversity of both gram-negative and gram-positive bacteria, typically have one Hint gene encoded by hinT (ycfF in E. coli). Despite their ubiquity, the foundational reason for the wide-spread conservation of Hints across all kingdoms of life remains a mystery. In this study, we used a combination of phenotypic screening and complementation analyses with wild-type and hinT knock-out Escherichia coli strains to show that catalytically active ecHinT is required in E. coli for growth on D-alanine as a sole carbon source. We demonstrate that the expression of catalytically active ecHinT is essential for the activity of the enzyme D-alanine dehydrogenase (DadA) (equivalent to D-amino acid oxidase in eukaryotes), a necessary component of the D-alanine catabolic pathway. Site-directed mutagenesis studies revealed that catalytically active C-terminal mutants of ecHinT are unable to activate DadA activity. In addition, we have designed and synthesized the first cell-permeable inhibitor of ecHinT and demonstrated that the wild-type E. coli treated with the inhibitor exhibited the same phenotype observed for the hinT knock-out strain. These results reveal that the catalytic activity and structure of ecHinT is essential for DadA function and therefore alanine metabolism in E. coli. Moreover, they provide the first biochemical evidence linking the catalytic activity of this ubiquitous protein to the biological function of Hints in Escherichia coli.

  20. Substitution of a single amino acid (aspartic acid for histidine) converts the functional activity of human complement C4B to C4A.

    PubMed Central

    Carroll, M C; Fathallah, D M; Bergamaschini, L; Alicot, E M; Isenman, D E

    1990-01-01

    The C4B isotype of the fourth component of human complement (C4) displays 3- to 4-fold greater hemolytic activity than does its other isotype C4A. This correlates with differences in their covalent binding efficiencies to erythrocytes coated with antibody and complement C1. C4A binds to a greater extent when C1 is on IgG immune aggregates. The differences in covalent binding properties correlate only with amino acid changes between residues 1101 and 1106 (pro-C4 numbering)--namely, Pro-1101, Cys-1102, Leu-1105, and Asp-1106 in C4A and Leu-1101, Ser-1102, Ile-1105, and His-1106 in C4B, which are located in the C4d region of the alpha chain. To more precisely identify the residues that are important for the functional differences, C4A-C4B hybrid proteins were constructed by using recombinant DNA techniques. Comparison of these by hemolytic assay and binding to IgG aggregates showed that the single substitution of aspartic acid for histidine at position 1106 largely accounted for the change in functional activity and nature of the chemical bond formed (ester vs. amide). Surprisingly, substitution of a neutral residue, alanine, for histidine at position 1106 resulted in an increase in binding to immune aggregates without subsequent reduction in the hemolytic activity. This result strongly suggests that position 1106 is not "catalytic" as previously proposed but interacts sterically/electrostatically with potential acceptor sites and serves to "select" binding sites on potential acceptor molecules. Images PMID:2395880

  1. Histidine and Aspartic Acid Residues Important for Immunoglobulin G Endopeptidase Activity of the Group A Streptococcus Opsonophagocytosis-Inhibiting Mac Protein

    PubMed Central

    Lei, Benfang; Liu, Mengyao; Meyers, Elishia G.; Manning, Heather M.; Nagiec, Michael J.; Musser, James M.

    2003-01-01

    The secreted Mac protein made by serotype M1 group A Streptococcus (GAS) (designated Mac5005) inhibits opsonophagocytosis and killing of GAS by human polymorphonuclear neutrophils. This protein also has cysteine endopeptidase activity against human immunoglobulin G (IgG). Site-directed mutagenesis was used to identify histidine and aspartic acid residues important for Mac IgG endopeptidase activity. Replacement of His262 with Ala abolished Mac5005 IgG endopeptidase activity. Asp284Ala and Asp286Ala mutant proteins had compromised enzymatic activity, whereas 21 other Asp-to-Ala mutant proteins cleaved human IgG at the apparent wild-type level. The results suggest that His262 is an active-site residue and that Asp284 and Asp286 are important for the enzymatic activity or structure of Mac protein. These Mac mutants provide new information about structure-activity relationships in this protein and will assist study of the mechanism of inhibition of opsonophagocytosis and killing of GAS by Mac. PMID:12704162

  2. Histidine 407, a phantom residue in the E1 subunit of the Escherichia coli pyruvate dehydrogenase complex, activates reductive acetylation of lipoamide on the E2 subunit. An explanation for conservation of active sites between the E1 subunit and transketolase.

    PubMed

    Nemeria, Natalia; Arjunan, Palaniappa; Brunskill, Andrew; Sheibani, Farzad; Wei, Wen; Yan, Yan; Zhang, Sheng; Jordan, Frank; Furey, William

    2002-12-31

    Least squares alignment of the E. coli pyruvate dehydrogenase multienzyme complex E1 subunit and yeast transketolase crystal structures indicates a general structural similarity between the two enzymes and provides a plausible location for a short-loop region in the E1 structure that was unobserved due to disorder. The residue H407, located in this region, is shown to be able to penetrate the active site. Suggested by this comparison, the H407A E1 variant was created, and H407 was shown to participate in the reductive acetylation of both an independently expressed lipoyl domain and the intact 1-lipoyl E2 subunit. While the H407A substitution only modestly affected the reaction through pyruvate decarboxylation (ca. 14% activity compared to parental E1), the overall complex has a much impaired activity, at most 0.15% compared to parental E1. Isothermal titration calorimetry measurements show that the binding of the lipoyl domain to the H407A E1 variant is much weaker than that to parental E1. At the same time, mass spectrometric measurements clearly demonstrate much impaired reductive acetylation of the independently expressed lipoyl domain and of the intact 1-lipoyl E2 by the H407A variant compared to the parental E1. A proposal is presented to explain the remarkable conservation of the three-dimensional structure at the active centers of the E. coli E1 subunit and transketolase on the basis of the parallels in the ligation-type reactions carried out and the need to protonate a very weak acid, a dithiolane sulfur atom in the former, and a carbonyl oxygen atom in the latter.

  3. Roles of histidine residues in plant vacuolar H(+)-pyrophosphatase.

    PubMed

    Hsiao, Yi Y; Van, Ru C; Hung, Shu H; Lin, Hsin H; Pan, Rong L

    2004-02-15

    Vacuolar proton pumping pyrophosphatase (H(+)-PPase; EC 3.6.1.1) plays a pivotal role in electrogenic translocation of protons from cytosol to the vacuolar lumen at the expense of PP(i) hydrolysis. Alignment analysis on amino acid sequence demonstrates that vacuolar H(+)-PPase of mung bean contains six highly conserved histidine residues. Previous evidence indicated possible involvement of histidine residue(s) in enzymatic activity and H(+)-translocation of vacuolar H(+)-PPase as determined by using histidine specific modifier, diethylpyrocarbonate [J. Protein Chem. 21 (2002) 51]. In this study, we further attempted to identify the roles of histidine residues in mung bean vacuolar H(+)-PPase by site-directed mutagenesis. A line of mutants with histidine residues singly replaced by alanine was constructed, over-expressed in Saccharomyces cerevisiae, and then used to determine their enzymatic activities and proton translocations. Among the mutants scrutinized, only the mutation of H716 significantly decreased the enzymatic activity, the proton transport, and the coupling ratio of vacuolar H(+)-PPase. The enzymatic activity of H716A is relatively resistant to inhibition by diethylpyrocarbonate as compared to wild-type and other mutants, indicating that H716 is probably the target residue for the attack by this modifier. The mutation at H716 of V-PPase shifted the optimum pH value but not the T(1/2) (pretreatment temperature at which half enzymatic activity is observed) for PP(i) hydrolytic activity. Mutation of histidine residues obviously induced conformational changes of vacuolar H(+)-PPase as determined by immunoblotting analysis after limited trypsin digestion. Furthermore, mutation of these histidine residues modified the inhibitory effects of F(-) and Na(+), but not that of Ca(2+). Single substitution of H704, H716 and H758 by alanine partially released the effect of K(+) stimulation, indicating possible location of K(+) binding in the vicinity of domains

  4. Mechanism of activation of elongation factor Tu by ribosome: catalytic histidine activates GTP by protonation.

    PubMed

    Aleksandrov, Alexey; Field, Martin

    2013-09-01

    Elongation factor Tu (EF-Tu) is central to prokaryotic protein synthesis as it has the role of delivering amino-acylated tRNAs to the ribosome. Release of EF-Tu, after correct binding of the EF-Tu:aa-tRNA complex to the ribosome, is initiated by GTP hydrolysis. This reaction, whose mechanism is uncertain, is catalyzed by EF-Tu, but requires activation by the ribosome. There have been a number of mechanistic proposals, including those spurred by a recent X-ray crystallographic analysis of a ribosome:EF-Tu:aa-tRNA:GTP-analog complex. In this work, we have investigated these and alternative hypotheses, using high-level quantum chemical/molecular mechanical simulations for the wild-type protein and its His85Gln mutant. For both proteins, we find previously unsuggested mechanisms as being preferred, in which residue 85, either His or Gln, directly assists in the reaction. Analysis shows that the RNA has a minor catalytic effect in the wild-type reaction, but plays a significant role in the mutant by greatly stabilizing the reaction's transition state. Given the similarity between EF-Tu and other members of the translational G-protein family, it is likely that these mechanisms of ribosome-activated GTP hydrolysis are pertinent to all of these proteins.

  5. The active site structure and mechanism of phosphoenolpyruvate utilizing enzymes

    SciTech Connect

    Cheng, K.C.

    1989-01-01

    Arginine specific reagents showed irreversible inhibition of avian liver mitochondrial phosphoenolpyruvate carboxykinase. Potent protection against modification was elicited by CO{sub 2} or CO{sub 2} in the presence of other substrates. Labeling of enzyme with (7-{sup 14}C) phenylglyoxal showed that 1 or 2 arginines are involved in CO{sub 2} binding and activation. Peptide map studies showed this active site arginine residues is located at position 289. Histidine specific reagents showed pseudo first order inhibition of avian mitochondrial phosphoenolpyruvate carboxykinase activity. The best protection against modification was elicited by IDP or IDP and Mn{sup +2}. One histidine residue is at or near the phosphoenolpyruvate binding site as demonstrated in the increased absorbance at 240 nm and proton relaxation rate studies. Circular dichroism studies reveal that enzyme structure was perturbed by diethylpyrocarbonate modification. Metal binding studies suggest that this enzyme has only one metal binding site. The putative binding sites from several GTP and phosphoenolpyruvate utilizing enzymes are observed in P-enolpyruvate carboxykinase from different species.

  6. L-histidine utilization in Aspergillus nidulans.

    PubMed Central

    Polkinghorne, M A; Hynes, M J

    1982-01-01

    Histidase activity rather than uptake of L-histidine is the limiting factor for the utilization of histidine as the sole nitrogen source for Aspergillus nidulans. Histidine cannot act as the sole carbon source, and evidence is presented indicating that this is attributable to an inability to convert histidine to L-glutamate in vivo. It has been shown that this fungus lacks an active urocanase enzyme and that histidine is quantitatively converted to urocanate, which accumulates in the extracellular medium. The use of histidine as a nitrogen source is regulated by nitrogen metabolite repression control of histidase synthesis. In addition, evidence for a requirement for a carbon source for histidase synthesis and for a minor form of control by nitrate is presented. The activity of the histidase enzyme is inhibited by micromolar concentrations of the product urocanate and by physiological levels of L-glutamate and L-glutamine. PMID:6120926

  7. Inhibition of Morganella morganii Histidine Decarboxylase Activity and Histamine Accumulation in Mackerel Muscle Derived from Filipendula ulumaria Extracts.

    PubMed

    Nitta, Yoko; Yasukata, Fumiko; Kitamoto, Noritoshi; Ito, Mikiko; Sakaue, Motoyoshi; Kikuzaki, Hiroe; Ueno, Hiroshi

    2016-03-01

    Filipendula ulmaria, also known as meadowsweet, is an herb; its extract was examined for the prevention of histamine production, primarily that caused by contaminated fish. The efficacy of meadowsweet was assessed using two parameters: inhibition of Morganella morganii histidine decarboxylase (HDC) and inhibition of histamine accumulation in mackerel. Ellagitannins from F. ulmaria (rugosin D, rugosin A methyl ester, tellimagrandin II, and rugosin A) were previously shown to be potent inhibitors of human HDC; and in the present work, these compounds inhibited M. morganii HDC, with half maximal inhibitory concentration values of 1.5, 4.4, 6.1, and 6.8 μM, respectively. Application of the extracts (at 2 wt%) to mackerel meat yielded significantly decreased histamine accumulation compared with treatment with phosphate-buffered saline as a control. Hence, F. ulmaria exhibits inhibitory activity against bacterial HDC and might be effective for preventing food poisoning caused by histamine.

  8. Neither arginine nor histidine can carry out the function of lysine-295 in the ATP-binding site of p60src.

    PubMed Central

    Kamps, M P; Sefton, B M

    1986-01-01

    All 15 protein kinases whose amino acid sequence is known contain a lysine residue at a position homologous to that of lysine-295 in p60src, the transforming protein of Rous sarcoma virus. The ATP analog p-fluorosulfonyl 5'-benzoyl adenosine inactivates both p60src and the catalytic subunit of the cyclic AMP-dependent protein kinase by modification of this lysine. We used oligonucleotide-directed mutagenesis to examine the possible functions of this residue. Lysine-295 in p60src was replaced with a glutamic acid, an arginine, or a histidine residue, and mutant p60src proteins were characterized in chicken cells infected by mutant viruses. None of these three mutant p60src proteins had tyrosine protein kinase activity in vitro, and none induced morphological transformation of infected cells. Since neither a histidine nor an arginine residue can replace the function of lysine-295, we suggest that it carries out the specialized function of proton transfer in the phosphotransferase reaction. All three mutant viruses underwent reversion to wild type during passage in tissue culture. Because the rate with which this occurred differed significantly among the mutants, reversion appears to have resulted from errors in transcription, rather than from recombination with the cellular src gene. Images PMID:2430174

  9. Histidine phosphocarrier protein regulates pyruvate kinase A activity in response to glucose in Vibrio vulnificus.

    PubMed

    Kim, Hey-Min; Park, Young-Ha; Yoon, Chang-Kyu; Seok, Yeong-Jae

    2015-04-01

    The bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) consists of two general energy-coupling proteins [enzyme I and histidine phosphocarrier protein (HPr)] and several sugar-specific enzyme IIs. Although, in addition to the phosphorylation-coupled transport of sugars, various regulatory roles of PTS components have been identified in Escherichia coli, much less is known about the PTS in the opportunistic human pathogen Vibrio vulnificus. In this study, we have identified pyruvate kinase A (PykA) as a binding partner of HPr in V. vulnificus. The interaction between HPr and PykA was strictly dependent on the presence of inorganic phosphate, and only dephosphorylated HPr interacted with PykA. Experiments involving domain swapping between the PykAs of V. vulnificus and E. coli revealed the requirement for the C-terminal domain of V. vulnificus PykA for a specific interaction with V. vulnificus HPr. Dephosphorylated HPr decreased the Km of PykA for phosphoenolpyruvate by approximately fourfold without affecting Vmax . Taken together, these findings indicate that the V. vulnificus PTS catalyzing the first step of glycolysis stimulates the final step of glycolysis in the presence of glucose through the direct interaction of dephospho-HPr with the C-terminal domain of PykA.

  10. Two-dimensional ESEEM study of VO{sup 2+} complexes with imidazole and histidine: Histidine is a polydentate ligand

    SciTech Connect

    Dikanov, S.A.; Samoilova, R.L. |; Smieja, J.A.; Bowman, M.K.

    1995-10-25

    The oxovanadium cation, VO{sup 2+}, has been successfully employed as a spin probe in electron-nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM) studies of metalloprotein active sites. Here we demonstrate that the complex of VO{sup 2+} with histidine has been misinterpreted and that the dominant ESEEM pattern is produced by the {alpha}-amino group. Nevertheless, we show that histidine side chain ligands can be identified from either nitrogen hyperfine or quadrupole couplings. The application of 2D ESEEM to the [{sup 15}N]imidazole complex shows, in the same spectrum, both the coordinated and the remote ring nitrogens with very different isotropic hyperfine couplings. In the case of histidine ligation, equatorial coordination by both imine and amine nitrogen is demonstrated. The reproducible differences between both the hyperfine and the quadrupole constants of the amine and imine nitrogens are reflected in the shape and position of the lines in the 2D spectra and allow them to be distinguished in proteins. With both imine and amine coordination, the VO{sup 2+}/histidine complex cannot be considered an adequate model for coordination by the histidine side chain in proteins. The imidazole, as a monodentante ligand, is better for this role. 16 refs., 3 figs.

  11. Mono- and di-halogenated histamine, histidine and carnosine derivatives are potent carbonic anhydrase I, II, VII, XII and XIV activators.

    PubMed

    Saada, Mohamed-Chiheb; Vullo, Daniela; Montero, Jean-Louis; Scozzafava, Andrea; Supuran, Claudiu T; Winum, Jean-Yves

    2014-09-01

    Mono- and di-halogenated histamines, l-histidine methyl ester derivatives and carnosine derivatives incorporating chlorine, bromine and iodine were prepared and investigated as activators of five carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic hCA I, II and VII, and the transmembrane hCA XII and XIV. All of them were activated in a diverse manner by the investigated compounds, with a distinct activation profile.

  12. Histidine biosynthesis in plants.

    PubMed

    Stepansky, A; Leustek, T

    2006-03-01

    The study of histidine metabolism has never been at the forefront of interest in plant systems despite the significant role that the analysis of this pathway has played in development of the field of molecular genetics in microbes. With the advent of methods to analyze plant gene function by complementation of microbial auxotrophic mutants and the complete analysis of plant genome sequences, strides have been made in deciphering the histidine pathway in plants. The studies point to a complex evolutionary origin of genes for histidine biosynthesis. Gene regulation studies have indicated novel regulatory networks involving histidine. In addition, physiological studies have indicated novel functions for histidine in plants as chelators and transporters of metal ions. Recent investigations have revealed intriguing connections of histidine in plant reproduction. The exciting new information suggests that the study of plant histidine biosynthesis has finally begun to flower.

  13. Impact of histidine residues on the transmembrane helices of viroporins.

    PubMed

    Wang, Yan; Park, Sang Ho; Tian, Ye; Opella, Stanley J

    2013-11-01

    Abstract The role of histidine in channel-forming transmembrane (TM) helices was investigated by comparing the TM helices from Virus protein 'u' (Vpu) and the M2 proton channel. Both proteins are members of the viroporin family of small membrane proteins that exhibit ion channel activity, and have a single TM helix that is capable of forming oligomers. The TM helices from both proteins have a conserved tryptophan towards the C-terminus. Previously, alanine 18 of Vpu was mutated to histidine in order to artificially introduce the same HXXXW motif that is central to the proton channel activity of M2. Interestingly, the mutated Vpu TM resulted in an increase in helix tilt angle of 11° in lipid bilayers compared to the wild-type Vpu TM. Here, we find the reverse, when histidine 37 of the HXXXW motif in M2 was mutated to alanine, it decreased the helix tilt by 10° from that of wild-type M2. The tilt change is independent of both the helix length and the presence of tryptophan. In addition, compared to wild-type M2, the H37A mutant displayed lowered sensitivity to proton concentration. We also found that the solvent accessibility of histidine-containing M2 is greater than without histidine. This suggests that the TM helix may increase the solvent exposure by changing its tilt angle in order to accommodate a polar/charged residue within the hydrophobic membrane region. The comparative results of M2, Vpu and their mutants demonstrated the significance of histidine in a transmembrane helix and the remarkable plasticity of the function and structure of ion channels stemming from changes at a single amino acid site.

  14. Two Independent Histidines One in Human Prolactin and One in Its Receptor Are Critical for pH-dependent Receptor Recognition and Activation

    SciTech Connect

    M Kulkarni; M Tettamanzi; J Murphy; C Keeler; D Myszka; N Chayen; E Lolis; M Hodsdon

    2011-12-31

    Human prolactin (hPRL), a member of the family of hematopoietic cytokines, functions as both an endocrine hormone and autocrine/paracrine growth factor. We have previously demonstrated that recognition of the hPRL-receptor depends strongly on solution acidity over the physiologic range from pH 6 to pH 8. The hPRL-receptor binding interface contains four histidines whose protonation is hypothesized to regulate pH-dependent receptor recognition. Here, we systematically dissect its molecular origin by characterizing the consequences of His to Ala mutations on pH-dependent receptor binding kinetics, site-specific histidine protonation, and high resolution structures of the intermolecular interface. Thermodynamic modeling of the pH dependence to receptor binding affinity reveals large changes in site-specific protonation constants for a majority of interface histidines upon complexation. Removal of individual His imidazoles reduces these perturbations in protonation constants, which is most likely explained by the introduction of solvent-filled, buried cavities in the crystallographic structures without inducing significant conformational rearrangements.

  15. Cytoplasmic expression of mature glycylglycine endopeptidase lysostaphin with an amino terminal hexa-histidine in a soluble and catalytically active form in Escherichia coli.

    PubMed

    Sharma, Rahul; Sharma, Poonam R; Choudhary, Manohar L; Pande, Amit; Khatri, Ghan Shyam

    2006-01-01

    Methicillin-resistant Staphylococcus aureus is a major problem in the world, causing hospital acquired infections and the infections/pathogenesis in community. Lysostaphin is a novel therapeutic molecule to kill the multidrug-resistant S. aureus. Mature lysostaphin is a single polypeptide (approximately 27 kDa) chain metalloprotease glycylglycine endopeptidase, capable of specifically hydrolyzing penta-glycine crosslinks present in the peptidoglycan of the S. aureus cell wall. The mature lysostaphin gene of Staphylococcus simulans has been cloned and overexpressed in the cytoplasm of E. coli with amino terminal hexa-histidine as a fusion partner under the transcriptional control of bacteriophage T7 phi 10 promoter/lac operator and ribosome binding site. The transformed E. coli BL21 (lambdaDE3) cells produced catalytically active soluble (His)6-lysostaphin fusion protein in the cytoplasm representing approximately 20% of the total cellular proteins. The fusion protein was purified to homogeneity using a single chromatographic step of IMAC on Ni-NTA agarose. The present cloning, expression, and purification procedure of recombinant lysostaphin from a non-pathogenic organism E. coli enables preparation of large quantity of r-lysostaphin for structure function studies and evaluation of its clinical potential in therapy and prophylaxis of staphylococcal infections.

  16. Histidine-41 of the cytochrome b5 domain of the borage delta6 fatty acid desaturase is essential for enzyme activity.

    PubMed

    Sayanova, O; Shewry, P R; Napier, J A

    1999-10-01

    Unlike most other plant microsomal desaturases, the Delta6-fatty acid desaturase from borage (Borago officinalis) contains an N-terminal extension that shows homology to the small hemoprotein cytochrome (Cyt) b5. To determine if this domain serves as a functional electron donor for the Delta6-fatty acid desaturase, mutagenesis and functional analysis by expression in transgenic Arabidopsis was carried out. Although expression of the wild-type borage Delta6-fatty acid desaturase resulted in the synthesis and accumulation of Delta6-unsaturated fatty acids, this was not observed in plants transformed with N-terminally deleted forms of the desaturase. Site-directed mutagenesis was used to disrupt one of the axial heme-binding residues (histidine-41) of the Cyt b5 domain; expression of this mutant form of the Delta6-desaturase in transgenic plants failed to produce Delta6-unsaturated fatty acids. These data indicate that the Cyt b5 domain of the borage Delta6-fatty acid desaturase is essential for enzymatic activity.

  17. Crystal structure of Bacillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity

    DOE PAGES

    Hammerstrom, Troy G.; Horton, Lori B.; Swick, Michelle C.; ...

    2014-12-30

    The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthesis operon. AtxA activity is elevated during growth in media containing glucose and CO2/bicarbonate, and there is a positive correlation between the CO2/bicarbonate signal, AtxA activity, and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (His → Asp) and phosphoablative (His → Ala) aminomore » acid changes for activity in B. anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (1) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (2) phosphorylation of H379 in PRD2 disrupts dimer formation. In conclusion, the AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism.« less

  18. Crystal structure of Bacillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity

    SciTech Connect

    Hammerstrom, Troy G.; Horton, Lori B.; Swick, Michelle C.; Joachimiak, Andrzej; Osipiuk, Jerzy; Koehler, Theresa M.

    2014-12-30

    The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthesis operon. AtxA activity is elevated during growth in media containing glucose and CO2/bicarbonate, and there is a positive correlation between the CO2/bicarbonate signal, AtxA activity, and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (His → Asp) and phosphoablative (His → Ala) amino acid changes for activity in B. anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (1) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (2) phosphorylation of H379 in PRD2 disrupts dimer formation. In conclusion, the AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism.

  19. Crystal structure of Bacillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity.

    PubMed

    Hammerstrom, Troy G; Horton, Lori B; Swick, Michelle C; Joachimiak, Andrzej; Osipiuk, Jerzy; Koehler, Theresa M

    2015-02-01

    The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthetic operon. AtxA activity is elevated during growth in media containing glucose and CO(2)/bicarbonate, and there is a positive correlation between the CO(2)/bicarbonate signal, AtxA activity and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (His→Asp) and phosphoablative (His→Ala) amino acid changes for activity in B. anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (i) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (ii) phosphorylation of H379 in PRD2 disrupts dimer formation. The AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator, and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism.

  20. Histidine-rich protein 2 (pfhrp2) and pfhrp3 gene deletions in Plasmodium falciparum isolates from select sites in Brazil and Bolivia.

    PubMed

    Rachid Viana, Giselle Maria; Akinyi Okoth, Sheila; Silva-Flannery, Luciana; Lima Barbosa, Danielle Regina; Macedo de Oliveira, Alexandre; Goldman, Ira F; Morton, Lindsay C; Huber, Curtis; Anez, Arletta; Dantas Machado, Ricardo Luiz; Aranha Camargo, Luís Marcelo; Costa Negreiros do Valle, Suiane; Marins Póvoa, Marinete; Udhayakumar, Venkatachalam; Barnwell, John W

    2017-01-01

    More than 80% of available malaria rapid diagnostic tests (RDTs) are based on the detection of histidine-rich protein-2 (PfHRP2) for diagnosis of Plasmodium falciparum malaria. Recent studies have shown the genes that code for this protein and its paralog, histidine-rich protein-3 (PfHRP3), are absent in parasites from the Peruvian Amazon Basin. Lack of PfHRP2 protein through deletion of the pfhrp2 gene leads to false-negative RDT results for P. falciparum. We have evaluated the extent of pfhrp2 and pfhrp3 gene deletions in a convenience sample of 198 isolates from six sites in three states across the Brazilian Amazon Basin (Acre, Rondonia and Para) and 25 isolates from two sites in Bolivia collected at different times between 2010 and 2012. Pfhrp2 and pfhrp3 gene and their flanking genes on chromosomes 7 and 13, respectively, were amplified from 198 blood specimens collected in Brazil. In Brazil, the isolates collected in Acre state, located in the western part of the Brazilian Amazon, had the highest percentage of deletions for pfhrp2 25 (31.2%) of 79, while among those collected in Rondonia, the prevalence of pfhrp2 gene deletion was only 3.3% (2 out of 60 patients). In isolates from Para state, all parasites were pfhrp2-positive. In contrast, we detected high proportions of isolates from all 3 states that were pfhrp3-negative ranging from 18.3% (11 out of 60 samples) to 50.9% (30 out of 59 samples). In Bolivia, only one of 25 samples (4%) tested had deleted pfhrp2 gene, while 68% (17 out of 25 samples) were pfhrp3-negative. Among the isolates tested, P. falciparum pfhrp2 gene deletions were present mainly in those from Acre State in the Brazilian Amazon. These results indicate it is important to reconsider the use of PfHRP2-based RDTs in the western region of the Brazilian Amazon and to implement appropriate surveillance systems to monitor pfhrp2 gene deletions in this and other parts of the Amazon region.

  1. Histidine-rich protein 2 (pfhrp2) and pfhrp3 gene deletions in Plasmodium falciparum isolates from select sites in Brazil and Bolivia

    PubMed Central

    Rachid Viana, Giselle Maria; Akinyi Okoth, Sheila; Silva-Flannery, Luciana; Lima Barbosa, Danielle Regina; Macedo de Oliveira, Alexandre; Goldman, Ira F.; Morton, Lindsay C.; Huber, Curtis; Anez, Arletta; Dantas Machado, Ricardo Luiz; Aranha Camargo, Luís Marcelo; Costa Negreiros do Valle, Suiane; Marins Póvoa, Marinete; Barnwell, John W.

    2017-01-01

    More than 80% of available malaria rapid diagnostic tests (RDTs) are based on the detection of histidine-rich protein-2 (PfHRP2) for diagnosis of Plasmodium falciparum malaria. Recent studies have shown the genes that code for this protein and its paralog, histidine-rich protein-3 (PfHRP3), are absent in parasites from the Peruvian Amazon Basin. Lack of PfHRP2 protein through deletion of the pfhrp2 gene leads to false-negative RDT results for P. falciparum. We have evaluated the extent of pfhrp2 and pfhrp3 gene deletions in a convenience sample of 198 isolates from six sites in three states across the Brazilian Amazon Basin (Acre, Rondonia and Para) and 25 isolates from two sites in Bolivia collected at different times between 2010 and 2012. Pfhrp2 and pfhrp3 gene and their flanking genes on chromosomes 7 and 13, respectively, were amplified from 198 blood specimens collected in Brazil. In Brazil, the isolates collected in Acre state, located in the western part of the Brazilian Amazon, had the highest percentage of deletions for pfhrp2 25 (31.2%) of 79, while among those collected in Rondonia, the prevalence of pfhrp2 gene deletion was only 3.3% (2 out of 60 patients). In isolates from Para state, all parasites were pfhrp2-positive. In contrast, we detected high proportions of isolates from all 3 states that were pfhrp3-negative ranging from 18.3% (11 out of 60 samples) to 50.9% (30 out of 59 samples). In Bolivia, only one of 25 samples (4%) tested had deleted pfhrp2 gene, while 68% (17 out of 25 samples) were pfhrp3-negative. Among the isolates tested, P. falciparum pfhrp2 gene deletions were present mainly in those from Acre State in the Brazilian Amazon. These results indicate it is important to reconsider the use of PfHRP2-based RDTs in the western region of the Brazilian Amazon and to implement appropriate surveillance systems to monitor pfhrp2 gene deletions in this and other parts of the Amazon region. PMID:28301474

  2. A conserved histidine modulates HSPB5 structure to trigger chaperone activity in response to stress-related acidosis

    PubMed Central

    Rajagopal, Ponni; Tse, Eric; Borst, Andrew J; Delbecq, Scott P; Shi, Lei; Southworth, Daniel R; Klevit, Rachel E

    2015-01-01

    Small heat shock proteins (sHSPs) are essential ‘holdase’ chaperones that form large assemblies and respond dynamically to pH and temperature stresses to protect client proteins from aggregation. While the alpha-crystallin domain (ACD) dimer of sHSPs is the universal building block, how the ACD transmits structural changes in response to stress to promote holdase activity is unknown. We found that the dimer interface of HSPB5 is destabilized over physiological pHs and a conserved histidine (His-104) controls interface stability and oligomer structure in response to acidosis. Destabilization by pH or His-104 mutation shifts the ACD from dimer to monomer but also results in a large expansion of HSPB5 oligomer states. Remarkably, His-104 mutant-destabilized oligomers are efficient holdases that reorganize into structurally distinct client–bound complexes. Our data support a model for sHSP function wherein cell stress triggers small perturbations that alter the ACD building blocks to unleash a cryptic mode of chaperone action. DOI: http://dx.doi.org/10.7554/eLife.07304.001 PMID:25962097

  3. N-Glycosylation Improves the Pepsin Resistance of Histidine Acid Phosphatase Phytases by Enhancing Their Stability at Acidic pHs and Reducing Pepsin's Accessibility to Its Cleavage Sites.

    PubMed

    Niu, Canfang; Luo, Huiying; Shi, Pengjun; Huang, Huoqing; Wang, Yaru; Yang, Peilong; Yao, Bin

    2015-12-04

    N-Glycosylation can modulate enzyme structure and function. In this study, we identified two pepsin-resistant histidine acid phosphatase (HAP) phytases from Yersinia kristensenii (YkAPPA) and Yersinia rohdei (YrAPPA), each having an N-glycosylation motif, and one pepsin-sensitive HAP phytase from Yersinia enterocolitica (YeAPPA) that lacked an N-glycosylation site. Site-directed mutagenesis was employed to construct mutants by altering the N-glycosylation status of each enzyme, and the mutant and wild-type enzymes were expressed in Pichia pastoris for biochemical characterization. Compared with those of the N-glycosylation site deletion mutants and N-deglycosylated enzymes, all N-glycosylated counterparts exhibited enhanced pepsin resistance. Introduction of the N-glycosylation site into YeAPPA as YkAPPA and YrAPPA conferred pepsin resistance, shifted the pH optimum (0.5 and 1.5 pH units downward, respectively) and improved stability at acidic pH (83.2 and 98.8% residual activities at pH 2.0 for 1 h). Replacing the pepsin cleavage sites L197 and L396 in the immediate vicinity of the N-glycosylation motifs of YkAPPA and YrAPPA with V promoted their resistance to pepsin digestion when produced in Escherichia coli but had no effect on the pepsin resistance of N-glycosylated enzymes produced in P. pastoris. Thus, N-glycosylation may improve pepsin resistance by enhancing the stability at acidic pH and reducing pepsin's accessibility to peptic cleavage sites. This study provides a strategy, namely, the manipulation of N-glycosylation, for improvement of phytase properties for use in animal feed.

  4. N-Glycosylation Improves the Pepsin Resistance of Histidine Acid Phosphatase Phytases by Enhancing Their Stability at Acidic pHs and Reducing Pepsin's Accessibility to Its Cleavage Sites

    PubMed Central

    Niu, Canfang; Luo, Huiying; Shi, Pengjun; Huang, Huoqing; Wang, Yaru; Yang, Peilong

    2015-01-01

    N-Glycosylation can modulate enzyme structure and function. In this study, we identified two pepsin-resistant histidine acid phosphatase (HAP) phytases from Yersinia kristensenii (YkAPPA) and Yersinia rohdei (YrAPPA), each having an N-glycosylation motif, and one pepsin-sensitive HAP phytase from Yersinia enterocolitica (YeAPPA) that lacked an N-glycosylation site. Site-directed mutagenesis was employed to construct mutants by altering the N-glycosylation status of each enzyme, and the mutant and wild-type enzymes were expressed in Pichia pastoris for biochemical characterization. Compared with those of the N-glycosylation site deletion mutants and N-deglycosylated enzymes, all N-glycosylated counterparts exhibited enhanced pepsin resistance. Introduction of the N-glycosylation site into YeAPPA as YkAPPA and YrAPPA conferred pepsin resistance, shifted the pH optimum (0.5 and 1.5 pH units downward, respectively) and improved stability at acidic pH (83.2 and 98.8% residual activities at pH 2.0 for 1 h). Replacing the pepsin cleavage sites L197 and L396 in the immediate vicinity of the N-glycosylation motifs of YkAPPA and YrAPPA with V promoted their resistance to pepsin digestion when produced in Escherichia coli but had no effect on the pepsin resistance of N-glycosylated enzymes produced in P. pastoris. Thus, N-glycosylation may improve pepsin resistance by enhancing the stability at acidic pH and reducing pepsin's accessibility to peptic cleavage sites. This study provides a strategy, namely, the manipulation of N-glycosylation, for improvement of phytase properties for use in animal feed. PMID:26637601

  5. Hyperfine and Nuclear Quadrupole Tensors of Nitrogen Donors in the QA Site of Bacterial Reaction Centers: Correlation of the Histidine Nδ Tensors with Hydrogen Bond Strength

    PubMed Central

    2015-01-01

    X- and Q-band pulsed EPR spectroscopy was applied to study the interaction of the QA site semiquinone (SQA) with nitrogens from the local protein environment in natural abundance 14N and in 15N uniformly labeled photosynthetic reaction centers of Rhodobacter sphaeroides. The hyperfine and nuclear quadrupole tensors for His-M219 Nδ and Ala-M260 peptide nitrogen (Np) were estimated through simultaneous simulation of the Q-band 15N Davies ENDOR, X- and Q-band 14,15N HYSCORE, and X-band 14N three-pulse ESEEM spectra, with support from DFT calculations. The hyperfine coupling constants were found to be a(14N) = 2.3 MHz, T = 0.3 MHz for His-M219 Nδ and a(14N) = 2.6 MHz, T = 0.3 MHz for Ala-M260 Np. Despite that His-M219 Nδ is established as the stronger of the two H-bond donors, Ala-M260 Np is found to have the larger value of a(14N). The nuclear quadrupole coupling constants were estimated as e2Qq/4h = 0.38 MHz, η = 0.97 and e2Qq/4h = 0.74 MHz, η = 0.59 for His-M219 Nδ and Ala-M260 Np, respectively. An analysis of the available data on nuclear quadrupole tensors for imidazole nitrogens found in semiquinone-binding proteins and copper complexes reveals these systems share similar electron occupancies of the protonated nitrogen orbitals. By applying the Townes–Dailey model, developed previously for copper complexes, to the semiquinones, we find the asymmetry parameter η to be a sensitive probe of the histidine Nδ–semiquinone hydrogen bond strength. This is supported by a strong correlation observed between η and the isotropic coupling constant a(14N) and is consistent with previous computational works and our own semiquinone-histidine model calculations. The empirical relationship presented here for a(14N) and η will provide an important structural characterization tool in future studies of semiquinone-binding proteins. PMID:25026433

  6. A Genetic and Biochemical Study of Histidine Biosynthesis in MICROCOCCUS LUTEUS

    PubMed Central

    Kane-Falce, Caroline; Kloos, Wesley E.

    1975-01-01

    Histidine auxotrophs of Micrococcus luteus strain ATCC 27141 were induced by treatment of the parent strain with N-methyl-N'-nitro-N-nitro-soguanidine. Auxotrophs were biochemically characterized by examining culture accumulations of histidine intermediates, using paper chromatography and the Bratton-Marshall test, and growth responses to L-histidinol. his(IG) mutants failed to accumulate Pauly-positive imidazoles; his(EAHF) mutants accumulated 5-amino-1-ribosyl-4-imidazole carboxamide; hisB mutants accumulated imidazoleglycerol; hisC mutants accumulated imidazoleacetol; hisD mutants accumulated histidinol. L-histidinol failed to stimulate the growth of hisD mutants, but did stimulate all other histidine mutants, blocked at earlier steps in the biosynthetic pathway. In addition, imidazoleglycerol phosphate dehydrase activity was assayed in representative mutants of each class. hisB mutants lacked activity for this enzyme.—Two-point, three-point, and cotransformation analyses resolved linkage relationships of histidine genes and in two gene clusters aided in determining their sequences. Histidine biosynthetic genes exist in at least four separate, unlinked regions of the chromosome. One histidine gene cluster is closely linked to a tryptophan gene cluster and appears to be contiguous in the sequence his(IG)–his(EAHF)–trpE–trpC–trpB–trpA. A second and unlinked histidine cluster has the tentative gene sequence his(EAHF)–hisB–hisC–his(EAHF). The hisD gene and an unclassified mutant site his-94 are not linked to any of the other histidine genes examined in this study or to each other. PMID:1126626

  7. Engineered bi-histidine metal chelation sites map the structure of the mechanical unfolding transition state of an elastomeric protein domain GB1.

    PubMed

    Shen, Tao; Cao, Yi; Zhuang, Shulin; Li, Hongbin

    2012-08-22

    Determining the structure of the transition state is critical for elucidating the mechanism behind how proteins fold and unfold. Due to its high free energy, however, the transition state generally cannot be trapped and studied directly using traditional structural biology methods. Thus, characterizing the structure of the transition state that occurs as proteins fold and unfold remains a major challenge. Here, we report a novel (to our knowledge) method that uses engineered bi-histidine (bi-His) metal-binding sites to directly map the structure of the mechanical unfolding transition state of proteins. This method is adapted from the traditional ψ-value analysis, which uses engineered bi-His metal chelation sites to probe chemical (un)folding transition-state structure. The φ(M2+)(U)-value is defined as ΔΔG(‡-N)/ΔΔG(U-N), which is the energetic effects of metal chelation by the bi-His site on the unfolding energy barrier (ΔG(‡-N)) relative to its thermodynamic stability (ΔG(U-N)) and can be used to obtain information about the transition state in the mutational site. As a proof of principle, we used the small protein GB1 as a model system and set out to map its mechanical unfolding transition-state structure. Using single-molecule atomic force microscopy and spectrofluorimetry, we directly quantified the effect of divalent metal ion binding on the mechanical unfolding free energy and thermodynamic stability of GB1, which allowed us to quantify φ(M2+)(U)-values for different sites in GB1. Our results enabled us to map the structure of the mechanical unfolding transition state of GB1. Within GB1's mechanical unfolding transition state, the interface between force-bearing β-strands 1 and 4 is largely disrupted, and the first β-hairpin is partially disordered while the second β-hairpin and the α-helix remain structured. Our results demonstrate the unique application of ψ-value analysis in elucidating the structure of the transition state that occurs

  8. Histidine phosphorylation relieves copper inhibition in the mammalian potassium channel KCa3.1

    PubMed Central

    Srivastava, Shekhar; Panda, Saswati; Li, Zhai; Fuhs, Stephen R; Hunter, Tony; Thiele, Dennis J; Hubbard, Stevan R; Skolnik, Edward Y

    2016-01-01

    KCa2.1, KCa2.2, KCa2.3 and KCa3.1 constitute a family of mammalian small- to intermediate-conductance potassium channels that are activated by calcium-calmodulin. KCa3.1 is unique among these four channels in that activation requires, in addition to calcium, phosphorylation of a single histidine residue (His358) in the cytoplasmic region, by nucleoside diphosphate kinase-B (NDPK-B). The mechanism by which KCa3.1 is activated by histidine phosphorylation is unknown. Histidine phosphorylation is well characterized in prokaryotes but poorly understood in eukaryotes. Here, we demonstrate that phosphorylation of His358 activates KCa3.1 by antagonizing copper-mediated inhibition of the channel. Furthermore, we show that activated CD4+ T cells deficient in intracellular copper exhibit increased KCa3.1 histidine phosphorylation and channel activity, leading to increased calcium flux and cytokine production. These findings reveal a novel regulatory mechanism for a mammalian potassium channel and for T-cell activation, and highlight a unique feature of histidine versus serine/threonine and tyrosine as a regulatory phosphorylation site. DOI: http://dx.doi.org/10.7554/eLife.16093.001 PMID:27542194

  9. Effects of histidine protonation and rotameric states on virtual screening of M. tuberculosis RmlC

    NASA Astrophysics Data System (ADS)

    Kim, Meekyum Olivia; Nichols, Sara E.; Wang, Yi; McCammon, J. Andrew

    2013-03-01

    While it is well established that protonation and tautomeric states of ligands can significantly affect the results of virtual screening, such effects of ionizable residues of protein receptors are less well understood. In this study, we focus on histidine protonation and rotameric states and their impact on virtual screening of Mycobacterium tuberculosis enzyme RmlC. Depending on the net charge and the location of proton(s), a histidine can adopt three states: HIP (+1 charged, both δ- and ɛ-nitrogens protonated), HID (neutral, δ-nitrogen protonated), and HIE (neutral, ɛ-nitrogen protonated). Due to common ambiguities in X-ray crystal structures, a histidine may also be resolved as three additional states with its imidazole ring flipped. Here, we systematically investigate the predictive power of 36 receptor models with different protonation and rotameric states of two histidines in the RmlC active site by using results from a previous high-throughput screening. By measuring enrichment factors and area under the receiver operating characteristic curves, we show that virtual screening results vary depending on hydrogen bonding networks provided by the histidines, even in the cases where the ligand does not obviously interact with the side chain. Our results also suggest that, even with the help of widely used pKa prediction software, assigning histidine protonation and rotameric states for virtual screening can still be challenging and requires further examination and systematic characterization of the receptor-ligand complex.

  10. Investigations on the activation of recombinant microbial pro-transglutaminase: in contrast to proteinase K, dispase removes the histidine-tag.

    PubMed

    Sommer, Christian; Hertel, Thomas C; Schmelzer, Christian E H; Pietzsch, Markus

    2012-02-01

    In order to produce recombinant microbial transglutaminase (rMTG) which is free of the activating protease, dispase was used to activate the pro-rMTG followed by immobilized metal affinity chromatography (IMAC). As shown by MALDI-MS, the dispase does not only cleave the pro-sequence, but unfortunately also cleaves within the C-terminal histidine-tag. Hence, the active rMTG cannot properly bind to the IMAC material. As an alternative, proteinase K was investigated. This protease was successfully applied for the activation of purified pro-rMTG either as free or immobilized enzyme and the free enzyme was also applicable directly in the crude cell extract of E. coli. Thus, it enables a simple two-step activation/purification procedure resulting in protease-free and almost pure transglutaminase preparations. The protocol has been successfully applied to both, wild-type transglutaminase of Streptomyces mobaraensis as well as to the highly active variant S2P. Proteinase K activates the pro-rMTG without unwanted degradation of the histidine-tag. It turned out to be very important to inhibit proteinase K activity, e.g., by PMSF, prior to protein separation by SDS-PAGE.

  11. C-terminal truncation and histidine-tagging of cytochrome c oxidase subunit II reveals the native processing site, shows involvement of the C-terminus in cytochrome c binding, and improves the assay for proton pumping.

    PubMed

    Hiser, C; Mills, D A; Schall, M; Ferguson-Miller, S

    2001-02-13

    To enable metal affinity purification of cytochrome c oxidase reconstituted into phospholipid vesicles, a histidine-tag was engineered onto the C-terminal end of the Rhodobacter sphaeroides cytochrome c oxidase subunit II. Characterization of the natively processed wildtype oxidase and artificially processed forms (truncated with and without a his-tag) reveals Km values for cytochrome c that are 6-14-fold higher for the truncated and his-tagged forms than for the wildtype. This lowered ability to bind cytochrome c indicates a previously undetected role for the C-terminus in cytochrome c binding and is mimicked by reduced affinity for an FPLC anion exchange column. The elution profiles and kinetics indicate that the removal of 16 amino acids from the C-terminus, predicted from the known processing site of the Paracoccus denitrificans oxidase, does not produce the same enzyme as the native processing reaction. MALDI-TOF MS data show the true C-terminus of subunit II is at serine 290, three amino acids longer than expected. When the his-tagged form is reconstituted into lipid vesicles and further purified by metal affinity chromatography, significant improvement is observed in proton pumping analysis by the stopped-flow method. The improved kinetic results are attributed to a homogeneous, correctly oriented vesicle population with higher activity and less buffering from extraneous lipids.

  12. Cell fate regulation governed by a repurposed bacterial histidine kinase

    DOE PAGES

    Childers, W. Seth; Xu, Qingping; Mann, Thomas H.; ...

    2014-10-28

    One of the simplest organisms to divide asymmetrically is the bacterium Caulobacter crescentus. The DivL pseudo-histidine kinase, positioned at one cell pole, regulates cell-fate by controlling the activation of the global transcription factor CtrA via an interaction with the response regulator (RR) DivK. DivL uniquely contains a tyrosine at the histidine phosphorylation site, and can achieve these regulatory functions in vivo without kinase activity. Determination of the DivL crystal structure and biochemical analysis of wild-type and site-specific DivL mutants revealed that the DivL PAS domains regulate binding specificity for DivK~P over DivK, which is modulated by an allosteric intramolecular interactionmore » between adjacent domains. We discovered that DivL's catalytic domains have been repurposed as a phosphospecific RR input sensor, thereby reversing the flow of information observed in conventional histidine kinase (HK)-RR systems and coupling a complex network of signaling proteins for cell-fate regulation.« less

  13. Cell fate regulation governed by a repurposed bacterial histidine kinase

    SciTech Connect

    Childers, W. Seth; Xu, Qingping; Mann, Thomas H.; Mathews, Irimpan I.; Blair, Jimmy A.; Deacon, Ashley M.; Shapiro, Lucy; Stock, Ann M.

    2014-10-28

    One of the simplest organisms to divide asymmetrically is the bacterium Caulobacter crescentus. The DivL pseudo-histidine kinase, positioned at one cell pole, regulates cell-fate by controlling the activation of the global transcription factor CtrA via an interaction with the response regulator (RR) DivK. DivL uniquely contains a tyrosine at the histidine phosphorylation site, and can achieve these regulatory functions in vivo without kinase activity. Determination of the DivL crystal structure and biochemical analysis of wild-type and site-specific DivL mutants revealed that the DivL PAS domains regulate binding specificity for DivK~P over DivK, which is modulated by an allosteric intramolecular interaction between adjacent domains. We discovered that DivL's catalytic domains have been repurposed as a phosphospecific RR input sensor, thereby reversing the flow of information observed in conventional histidine kinase (HK)-RR systems and coupling a complex network of signaling proteins for cell-fate regulation.

  14. Histidine, an essential amino acid for adult dogs.

    PubMed

    Cianciaruso, B; Jones, M R; Kopple, J D

    1981-06-01

    Twenty-seven adult female mongrel dogs were studied to evaluate whether histidine is an essential amino acid. Dogs were tube-fed isocaloric, isonitrogenous amino acid diets which provided either no histidine or 67 mg histidine/kg body weight/day. The histidine-free diet was fed to 10 dogs for 5.6 +/- 3.6 (SD) days and to six dogs for 59.2 +/- 6.0 days. In the short-term studies, there were no differences between the responses of the dogs fed the histidine-free and histidine-replete diets. In the long-term studies, dogs fed the histidine-free diet developed a significant decrease in plasma and muscle histidine, muscle carnosine, body weight, hematocrit and serum albumin. The dogs fed the histidine-free diet tried to avoid the feedings, and after several weeks, they often manifested reduced activity and listlessness. One dog died on the 72nd day. None of these manifestations occurred in the dogs fed the histidine-replete diet in the long-term studies. Plasma zinc and copper were not different in the two groups of dogs. However, at the end of the long-term studies, the dogs fed the histidine-free diet had significantly lower final whole blood zinc and copper concentrations as compared to the histidine-replete dogs. These findings indicate that histidine is an essential amino acid in adult female dogs. The syndrome associated with histidine-deficiency tends to develop slowly over many days to several weeks.

  15. Salt site performance assessment activities

    SciTech Connect

    Kircher, J.F.; Gupta, S.K.

    1983-01-01

    During this year the first selection of the tools (codes) for performance assessments of potential salt sites have been tentatively selected and documented; the emphasis has shifted from code development to applications. During this period prior to detailed characterization of a salt site, the focus is on bounding calculations, sensitivity and with the data available. The development and application of improved methods for sensitivity and uncertainty analysis is a focus for the coming years activities and the subject of a following paper in these proceedings. Although the assessments to date are preliminary and based on admittedly scant data, the results indicate that suitable salt sites can be identified and repository subsystems designed which will meet the established criteria for protecting the health and safety of the public. 36 references, 5 figures, 2 tables.

  16. Structure of SixA, a histidine protein phosphatase of the ArcB histidine-containing phosphotransfer domain in Escherichia coli.

    PubMed

    Hakoshima, Toshio; Ichihara, Hisako

    2007-01-01

    Escherichia coli protein SixA was the first identified histidine protein phosphatase that dephosphorylates the histidine-containing phosphotransfer (HPt) domain of histidine kinase ArcB. The crystal structures of the free and tungstate-bound forms of SixA revealed an alpha/beta architecture with a fold unlike those previously described in eukaryotic protein phosphatases, but related to a family of phosphatases containing the arginine-histidine-glycine (RHG) motif at their active sites. Compared with these RHG phosphatases, SixA lacks an extra alpha-helical subdomain that forms a lid over the active site, thereby forming a relatively shallow groove important for accommodating the kidney-shaped four-helix bundle of the HPt domain. Sequence database searches revealed that a single SixA homolog was found in a variety of bacteria, where two homologs were found in some bacteria while no homolog was found in others. No SixA homologs were found in the majority of firmicutes and euryarchaea. Structure-based examination and multiple alignment of sequences revealed SixA active residues from loop beta1-H2, which might assist in the identification of SixA homologs among RHG phosphatases even with poor amino acid identity.

  17. Probing the promiscuous active site of myo-inositol dehydrogenase using synthetic substrates, homology modeling, and active site modification.

    PubMed

    Daniellou, Richard; Zheng, Hongyan; Langill, David M; Sanders, David A R; Palmer, David R J

    2007-06-26

    The active site of myo-inositol dehydrogenase (IDH, EC 1.1.1.18) from Bacillus subtilis recognizes a variety of mono- and disaccharides, as well as 1l-4-O-substituted inositol derivatives. It catalyzes the NAD+-dependent oxidation of the axial alcohol of these substrates with comparable kinetic constants. We have found that 4-O-p-toluenesulfonyl-myo-inositol does not act as a substrate for IDH, in contrast to structurally similar compounds such as those bearing substituted benzyl substituents in the same position. X-ray crystallographic analysis of 4-O-p-toluenesulfonyl-myo-inositol and 4-O-(2-naphthyl)methyl-myo-inositol, which is a substrate for IDH, shows a distinct difference in the preferred conformation of the aryl substituent. Conformational analysis of known substrates of IDH suggests that this conformational difference may account for the difference in reactivity of 4-O-p-toluenesulfonyl-myo-inositol in the presence of IDH. A sequence alignment of IDH with the homologous glucose-fructose oxidoreductase allowed the construction of an homology model of inositol dehydrogenase, to which NADH and 4-O-benzyl-scyllo-inosose were docked and the active site energy minimized. The active site model is consistent with all experimental results and suggests that a conserved tyrosine-glycine-tyrosine motif forms the hydrophobic pocket adjoining the site of inositol recognition. Y233F and Y235F retain activity, while Y233R and Y235R do not. A histidine-aspartate pair, H176 and D172, are proposed to act as a dyad in which H176 is the active site acid/base. The enzyme is inactivated by diethyl pyrocarbonate, and the mutants H176A and D172N show a marked loss of activity. Kinetic isotope effect experiments with D172N indicate that chemistry is rate-determining for this mutant.

  18. Regulation of the histidine utilization (hut) system in bacteria.

    PubMed

    Bender, Robert A

    2012-09-01

    The ability to degrade the amino acid histidine to ammonia, glutamate, and a one-carbon compound (formate or formamide) is a property that is widely distributed among bacteria. The four or five enzymatic steps of the pathway are highly conserved, and the chemistry of the reactions displays several unusual features, including the rearrangement of a portion of the histidase polypeptide chain to yield an unusual imidazole structure at the active site and the use of a tightly bound NAD molecule as an electrophile rather than a redox-active element in urocanase. Given the importance of this amino acid, it is not surprising that the degradation of histidine is tightly regulated. The study of that regulation led to three central paradigms in bacterial regulation: catabolite repression by glucose and other carbon sources, nitrogen regulation and two-component regulators in general, and autoregulation of bacterial regulators. This review focuses on three groups of organisms for which studies are most complete: the enteric bacteria, for which the regulation is best understood; the pseudomonads, for which the chemistry is best characterized; and Bacillus subtilis, for which the regulatory mechanisms are very different from those of the Gram-negative bacteria. The Hut pathway is fundamentally a catabolic pathway that allows cells to use histidine as a source of carbon, energy, and nitrogen, but other roles for the pathway are also considered briefly here.

  19. Mutagenesis and crystallographic studies of the catalytic residues of the papain family protease bleomycin hydrolase: new insights into active-site structure

    PubMed Central

    O'Farrell, Paul A.; Joshua-Tor, Leemor

    2006-01-01

    Bleomycin hydrolase (BH) is a hexameric papain family cysteine protease which is involved in preparing peptides for antigen presentation and has been implicated in tumour cell resistance to bleomycin chemotherapy. Structures of active-site mutants of yeast BH yielded unexpected results. Replacement of the active-site asparagine with alanine, valine or leucine results in the destabilization of the histidine side chain, demonstrating unambiguously the role of the asparagine residue in correctly positioning the histidine for catalysis. Replacement of the histidine with alanine or leucine destabilizes the asparagine position, indicating a delicate arrangement of the active-site residues. In all of the mutants, the C-terminus of the protein, which lies in the active site, protrudes further into the active site. All mutants were compromised in their catalytic activity. The structures also revealed the importance of a tightly bound water molecule which stabilizes a loop near the active site and which is conserved throughout the papain family. It is displaced in a number of the mutants, causing destabilization of this loop and a nearby loop, resulting in a large movement of the active-site cysteine. The results imply that this water molecule plays a key structural role in this family of enzymes. PMID:17007609

  20. A single mutation in the hepta-peptide active site of Aspergillus niger PhyA phytase leads to myriad of biochemical changes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The active site motif of proteins belonging to ‘Histidine Acid Phosphatase’ (HAP) contains a hepta-peptide region, RHGXRXP. A close comparison among fungal and yeast HAPs has revealed the fourth residue of the hepta-peptide to be E instead of A, which is the case with A. niger phyA phytase. However,...

  1. L-carnosine (beta-alanyl-L-histidine) and carcinine (beta-alanylhistamine) act as natural antioxidants with hydroxyl-radical-scavenging and lipid-peroxidase activities.

    PubMed Central

    Babizhayev, M A; Seguin, M C; Gueyne, J; Evstigneeva, R P; Ageyeva, E A; Zheltukhina, G A

    1994-01-01

    Carnosine (beta-alanyl-L-histidine) and carcinine (beta-alanylhistamine) are natural imidazole-containing compounds found in the non-protein fraction of mammalian tissues. Carcinine was synthesized by an original procedure and characterized. Both carnosine and carcinine (10-25 mM) are capable of inhibiting the catalysis of linoleic acid and phosphatidylcholine liposomal peroxidation (LPO) by the O2(-.)-dependent iron-ascorbate and lipid-peroxyl-radical-generating linoleic acid 13-monohydroperoxide (LOOH)-activated haemoglobin systems, as measured by thiobarbituric-acid-reactive substance. Carcinine and carnosine are good scavengers of OH. radicals, as detected by iron-dependent radical damage to the sugar deoxyribose. This suggests that carnosine and carcinine are able to scavenge free radicals or donate hydrogen ions. The iodometric, conjugated diene and t.l.c. assessments of lipid hydroperoxides (13-monohydroperoxide linoleic acid and phosphatidylcholine hydroperoxide) showed their efficient reduction and deactivation by carnosine and carcinine (10-25 mM) in the liberated and bound-to-artificial-bilayer states. This suggests that the peroxidase activity exceeded that susceptible to direct reduction with glutathione peroxidase. Imidazole, solutions of beta-alanine, or their mixtures with peptide moieties did not show antioxidant potential. Free L-histidine and especially histamine stimulated iron (II) salt-dependent LPO. Due to the combination of weak metal chelating (abolished by EDTA), OH. and lipid peroxyl radicals scavenging, reducing activities to liberated fatty acid and phospholipid hydroperoxides, carnosine and carcinine appear to be physiological antioxidants able to efficiently protect the lipid phase of biological membranes and aqueous environments. PMID:7998987

  2. Histidine suppresses food intake through its conversion into neuronal histamine.

    PubMed

    Yoshimatsu, Hironobu; Chiba, Seiichi; Tajima, Daisuke; Akehi, Yuko; Sakata, Toshiie

    2002-01-01

    Hypothalamic neuronal histamine has been shown to regulate feeding behavior and energy metabolism as a target of leptin action in the brain. The present study aimed to examine the involvement of L-histidine, a precursor of neuronal histamine, in the regulation of feeding behavior in rats. Intraperitoneal (ip) injection of L-histidine at doses of 0.35 and 0.70 mmol/kg body weight significantly decreased the 24-hr cumulative food and water intakes compared to phosphate buffered saline injected controls (P < 0.05 for each). This suppression of feeding was mimicked dose-dependently by intracerebroventricular infusion of histidine at doses of 0.5, 1.0, and 2.0 micromol/rat (P < 0.05 for each). Pretreatment of the rats with an ip bolus injection of alpha-fluoromethylhistidine, a suicide inhibitor of a histidine decarboxylase (HDC), at a dosage of 224 micromol/kg blocked the conversion of histidine into histamine and attenuated the suppressive effect of histidine on food intake from 64.2% to 88.1% of the controls (P < 0.05). Administration of 0.35 mmol/kg histidine ip increased the concentration of hypothalamic neuronal histamine compared with the controls (P < 0.05). HDC activity was increased simultaneously by histidine administration compared with the controls (P < 0.05). The present findings indicate that L-histidine suppresses food intake through its conversion into histamine in the hypothalamus.

  3. Visualizing autophosphorylation in histidine kinases.

    PubMed

    Casino, Patricia; Miguel-Romero, Laura; Marina, Alberto

    2014-01-01

    Reversible protein phosphorylation is the most widespread regulatory mechanism in signal transduction. Autophosphorylation in a dimeric sensor histidine kinase is the first step in two-component signalling, the predominant signal-transduction device in bacteria. Despite being the most abundant sensor kinases in nature, the molecular bases of the histidine kinase autophosphorylation mechanism are still unknown. Furthermore, it has been demonstrated that autophosphorylation can occur in two directions, cis (intrasubunit) or trans (intersubunit) within the dimeric histidine kinase. Here, we present the crystal structure of the complete catalytic machinery of a chimeric histidine kinase. The structure shows an asymmetric histidine kinase dimer where one subunit is caught performing the autophosphorylation reaction. A structure-guided functional analysis on HK853 and EnvZ, two prototypical cis- and trans-phosphorylating histidine kinases, has allowed us to decipher the catalytic mechanism of histidine kinase autophosphorylation, which seems to be common independently of the reaction directionality.

  4. Fabrication of Nanometer- and Micrometer-Scale Protein Structures by Site-Specific Immobilization of Histidine-Tagged Proteins to Aminosiloxane Films with Photoremovable Protein-Resistant Protecting Groups

    PubMed Central

    2016-01-01

    The site-specific immobilization of histidine-tagged proteins to patterns formed by far-field and near-field exposure of films of aminosilanes with protein-resistant photolabile protecting groups is demonstrated. After deprotection of the aminosilane, either through a mask or using a scanning near-field optical microscope, the amine terminal groups are derivatized first with glutaraldehyde and then with N-(5-amino-1-carboxypentyl)iminodiacetic acid to yield a nitrilo-triacetic-acid-terminated surface. After complexation with Ni2+, this surface binds histidine-tagged GFP and CpcA-PEB in a site-specific fashion. The chemistry is simple and reliable and leads to extensive surface functionalization. Bright fluorescence is observed in fluorescence microscopy images of micrometer- and nanometer-scale patterns. X-ray photoelectron spectroscopy is used to study quantitatively the efficiency of photodeprotection and the reactivity of the modified surfaces. The efficiency of the protein binding process is investigated quantitatively by ellipsometry and by fluorescence microscopy. We find that regions of the surface not exposed to UV light bind negligible amounts of His-tagged proteins, indicating that the oligo(ethylene glycol) adduct on the nitrophenyl protecting group confers excellent protein resistance; in contrast, exposed regions bind His-GFP very effectively, yielding strong fluorescence that is almost completely removed on treatment of the surface with imidazole, confirming a degree of site-specific binding in excess of 90%. This simple strategy offers a versatile generic route to the spatially selective site-specific immobilization of proteins at surfaces. PMID:26820378

  5. A cis/trans Test of the Effect of the First Enzyme for Histidine Biosynthesis on Regulation of the Histidine Operon

    PubMed Central

    Kovach, John S.; Ballesteros, Antonio O.; Meyers, Marilyn; Soria, Marco; Goldberger, Robert F.

    1973-01-01

    Previous studies showed that when triazolalanine was added to a derepressed culture of a histidine auxotroph, repression of the histidine operon occurred as though histidine had been added (6). However, when triazolalanine was added to a derepressed culture of a strain with a mutation in the first gene of the histidine operon which rendered the first enzyme for histidine biosynthesis resistant to inhibition by histidine, repression did not occur. The studies reported here represent a cis/trans test of this effect of mutations to feedback resistance. Using specially constructed merodiploid strains, we were able to show that the wild-type allele is dominant to the mutant (feedback resistant) allele and that the effect operates in trans. We conclude that the enzyme encoded by the first gene of the histidine operon exerts its regulatory effect on the operon not by acting locally at its site of synthesis, but by acting as a freely diffusible protein. PMID:4572718

  6. Substitution of histidine-137 by glutamine abolishes the catalytic activity of the ribosome-inactivating protein alpha-sarcin.

    PubMed Central

    Lacadena, J; Mancheño, J M; Martinez-Ruiz, A; Martínez del Pozo, A; Gasset, M; Oñaderra, M; Gavilanes, J G

    1995-01-01

    The alpha-sarcin cytotoxin is an extracellular fungal protein that inhibits protein biosynthesis by specifically cleaving one phosphodiester bond of the 28 S rRNA. The His137 residue of alpha-sarcin is suggested to be involved in the catalytic activity of this protein, based on the observed sequence similarity with some fungal ribonucleases. Replacement of this residue by Gln (H137Q mutant variant of alpha-sarcin) abolishes the ribonuclease activity of the protein. This has been demonstrated for an homogeneous preparation of the H137Q alpha-sarcin by measuring its effect against both intact rabbit ribosomes and the homopolymer poly(A). The conformation of H137Q alpha-sarcin is highly similar to that of the wild-type protein, which has been analysed by CD and fluorescence spectroscopy. Both H137Q and wild-type alpha-sarcin exhibit identical CD spectra in the peptide-bond region, indicating that no changes at the level of the secondary structure are produced upon mutation. Only minor differences are observed in both near-UV CD and fluorescence emission spectra in comparison to those of the wild-type protein. Moreover, H137Q alpha-sarcin interacts with phospholipid vesicles, promoting the same effects as the native cytotoxin. Therefore, we propose that His137 is part of the ribonucleolytic active site of the cytotoxin alpha-sarcin. Images Figure 4 PMID:7626023

  7. Characterization of the membrane quinoprotein glucose dehydrogenase from Escherichia coli and characterization of a site-directed mutant in which histidine-262 has been changed to tyrosine.

    PubMed Central

    Cozier, G E; Salleh, R A; Anthony, C

    1999-01-01

    The requirements for substrate binding in the quinoprotein glucose dehydrogenase (GDH) in the membranes of Escherichia coli are described, together with the changes in activity in a site-directed mutant in which His262 has been altered to a tyrosine residue (H262Y-GDH). The differences in catalytic efficiency between substrates are mainly related to differences in their affinity for the enzyme. Remarkably, it appears that, if a hexose is able to bind in the active site, then it is also oxidized, whereas some pentoses are able to bind (and act as competitive inhibitors), but are not substrates. The activation energies for the oxidation of hexoses and pentoses are almost identical. In a previously published model of the enzyme, His262 is at the entrance to the active site and appears to be important in holding the prosthetic group pyrroloquinoline quinone (PQQ) in place, and it has been suggested that it might play a role in electron transfer from the reduced PQQ to the ubiquinone in the membrane. The H262Y-GDH has a greatly diminished catalytic efficiency for all substrates, which is mainly due to a marked decrease in their affinities for the enzyme, but the rate of electron transfer to oxygen is unaffected. During the processing of the PQQ into the apoenzyme to give active enzyme, its affinity is markedly dependent on the pH, four groups with pK values between pH7 and pH8 being involved. Identical results were obtained with H262Y-GDH, showing that His262 it is not directly involved in this process. PMID:10359647

  8. Prebiotic synthesis of histidyl-histidine

    NASA Technical Reports Server (NTRS)

    Shen, C.; Mills, T.; Oro, J.

    1990-01-01

    Histidyl-histidine (His-His) has been synthesized in a yield of up to 14.4% under plausible prebiotic conditions using histidine (His), cyanamide, and 4-amino-5-imidazole carboxamide. A trace amount of His trimer was also detected. Because the imidazole group of His is involved in a number of important enzymatic reactions, and His-His has been shown to catalyze the prebiotic synthesis of glycyl-glycine, we expect this work will stimulate further studies on the catalytic activities of simple His-containing peptides in prebiotic reactions.

  9. Human placental estradiol 17. beta. -dehydrogenase: evidence for inverted substrate orientation (wrong-way binding) at the active site

    SciTech Connect

    Murdock, G.L.; Warren, J.C.; Sweet, F.

    1988-06-14

    Human placental estradiol 17..beta..-dehydrogenase was affinity labeled with 17lambda-estradiol 17-(bromo(2-/sup 14/C)acetate) (10 ..mu..M) or 17..beta..-estradiol 17-(bromo(2-/sup 14/C)acetate) (10 ..mu..M). The steroid bromoacetates competitively inhibit the enzyme (against 17..beta..-estradiol) with K/sub i/ values of 90 ..mu..M (17..cap alpha.. bromoacetate) and 134 ..mu..M(17..beta.. bromoacetate). Inactivation of the enzyme followed pseudo-first-order kinetics with t/sub 1/2/ = 110 min (17..cap alpha.. bromoacetate) and t/sub 1/2/ = 220 min (17..beta.. bromoacetate). Amino acid analysis of the affinity radioalkylated enzyme samples from the two bromoacetates revealed that N/sup ..pi../-(carboxy(/sup 14/C)methyl histidine was the modified amino acid labeled in each case. Digestion with trypsin produced peptides that were isolated by reverse-phase high-performance liquid chromatography and found to contain N/sup ..pi../-(carboxy(/sup 14/C)methyl)histidine. Both the 17..cap alpha.. bromoacetate and also the 17..beta.. bromoacetate modified the same histidine in the peptide Phe-Tyr-Gln-Tyr-Leu-Ala-His(..pi..CM)-Ser-Lys. Previously, the same histidine had been exclusively labeled by estrone 3-(bromoacetate) and shown not to be directly involve in catalytic hydrogen transfer at the D-ring of estradiol. Therefore, this histidine was presumed to proximate the A-ring of the bound steroid substrate. The present results suggest that the 17..cap alpha.. bromoacetate and 17..beta.. bromoacetate D-ring analogue of estradiol react with the same active site histidine residue as estrone 3-(bromoacetate), the A-ring analogue of estrone. Moreover, as each of the estradiol 17-(bromoacetates) undergoes the reversible binding step at the enzyme active site, its D-ring is in a reversed binding position relative to that of the natural substrate 17..beta..-estradiol as it undergoes catalytic hydrogen transfer at the same active site.

  10. The Active Site of Oligogalacturonate Lyase Provides Unique Insights into Cytoplasmic Oligogalacturonate β-Elimination*

    PubMed Central

    Abbott, D. Wade; Gilbert, Harry J.; Boraston, Alisdair B.

    2010-01-01

    Oligogalacturonate lyases (OGLs; now also classified as pectate lyase family 22) are cytoplasmic enzymes found in pectinolytic members of Enterobacteriaceae, such as the enteropathogen Yersinia enterocolitica. OGLs utilize a β-elimination mechanism to preferentially catalyze the conversion of saturated and unsaturated digalacturonate into monogalacturonate and the 4,5-unsaturated monogalacturonate-like molecule, 5-keto-4-deoxyuronate. To provide mechanistic insights into the specificity of this enzyme activity, we have characterized the OGL from Y. enterocolitica, YeOGL, on oligogalacturonides and determined its three-dimensional x-ray structure to 1.65 Å. The model contains a Mn2+ atom in the active site, which is coordinated by three histidines, one glutamine, and an acetate ion. The acetate mimics the binding of the uronate group of galactourono-configured substrates. These findings, in combination with enzyme kinetics and metal supplementation assays, provide a framework for modeling the active site architecture of OGL. This enzyme appears to contain a histidine for the abstraction of the α-proton in the −1 subsite, a residue that is highly conserved throughout the OGL family and represents a unique catalytic base among pectic active lyases. In addition, we present a hypothesis for an emerging relationship observed between the cellular distribution of pectate lyase folding and the distinct metal coordination chemistries of pectate lyases. PMID:20851883

  11. Normal Modes Expose Active Sites in Enzymes

    PubMed Central

    Glantz-Gashai, Yitav; Samson, Abraham O.

    2016-01-01

    Accurate prediction of active sites is an important tool in bioinformatics. Here we present an improved structure based technique to expose active sites that is based on large changes of solvent accessibility accompanying normal mode dynamics. The technique which detects EXPOsure of active SITes through normal modEs is named EXPOSITE. The technique is trained using a small 133 enzyme dataset and tested using a large 845 enzyme dataset, both with known active site residues. EXPOSITE is also tested in a benchmark protein ligand dataset (PLD) comprising 48 proteins with and without bound ligands. EXPOSITE is shown to successfully locate the active site in most instances, and is found to be more accurate than other structure-based techniques. Interestingly, in several instances, the active site does not correspond to the largest pocket. EXPOSITE is advantageous due to its high precision and paves the way for structure based prediction of active site in enzymes. PMID:28002427

  12. Inhibitory activity of the flower buds of Lonicera japonica Thunb. against histamine production and L-histidine decarboxylase in human keratinocytes.

    PubMed

    Inami, Yoshihiro; Matsui, Yuko; Hoshino, Tomoko; Murayama, Chiaki; Norimoto, Hisayoshi

    2014-06-17

    In previous studies we found that anionic surfactants such as sodium laurate (SL) and/or sodium dodecylsulfate (SDS) exert actions on epidermal keratinocytes rather than mast cells to give rise of histamine production and skin itching through increasing the expression of the 53-kDa active form of L-histidine decarboxylase (HDC). In addition, with treatment of SL in a three-dimensional human keratinocyte culture, increases in both the 53-kDa HDC and histamine production are detected and thus this culture assay is applied to screen anti-itching materials from natural resources. In this study, the inhibitory activity of "Kin-gin-ka" (flower buds of Lonicera japonica Thunb., FLJ) against histamine production and expression of the active form of HDC were examined in this culture assay. FLJ is a well-known traditional Chinese medicine, being used to treat fevers, coughs and some infectious diseases. The result showed both FLJ and chlorogenic acid had inhibitory activities against the expression of 53-kDa HDC and histamine production. However, chlorogenic acid showed a weaker effect on histamine production than that of FLJ, suggesting that other chemical constituents besides chlorogenic acid could contribute to the inhibitory activities. Thus, a further chemical study of FLJ is now under investigation.

  13. Changes of the thioredoxin system, glutathione peroxidase activity and total antioxidant capacity in rat brain cortex during acute liver failure: modulation by L-histidine.

    PubMed

    Ruszkiewicz, Joanna; Albrecht, Jan

    2015-02-01

    Glutathione and thioredoxin are complementary antioxidants in the protection of mammalian tissues against oxidative-nitrosative stress (ONS), and ONS is a principal cause of symptoms of hepatic encephalopathy (HE) associated with acute liver failure (ALF). We compared the activities of the thioredoxin system components: thioredoxin (Trx), thioredoxin reductase (TrxR) and the expression of the thioredoxin-interacting protein, and of the key glutathione metabolizing enzyme, glutathione peroxidase (GPx) in the cerebral cortex of rats with ALF induced by thioacetamide (TAA). ALF increased the Trx and TrxR activity without affecting Trip protein expression, but decreased GPx activity in the brains of TAA-treated rats. The total antioxidant capacity (TAC) of the brain was increased by ALF suggesting that upregulation of the thioredoxin may act towards compensating impaired protection by the glutathione system. Intraperitoneal administration of L-histidine (His), an amino acid that was earlier reported to prevent acute liver failure-induced mitochondrial impairment and brain edema, abrogated most of the acute liver failure-induced changes of both antioxidant systems, and significantly increased TAC of both the control and ALF-affected brain. These observations provide further support for the concept of that His has a potential to serve as a therapeutic antioxidant in HE. Most of the enzyme activity changes evoked by His or ALF were not well correlated with alterations in their expression at the mRNA level, suggesting complex translational or posttranslational mechanisms of their modulation, which deserve further investigations.

  14. Molecular insight in the purification of immunoglobulin by pseudobiospecific ligand l-histidine and histidyl moieties in histidine ligand affinity chromatography (HLAC) by molecular docking.

    PubMed

    Savane, Tushar S; Kumar, Sanjit; Janakiraman, Vignesh Narasimhan; Kamalanathan, Agamudi S; Vijayalakshmi, Mookambeswaran A

    2016-05-15

    Pseudobiospecific ligand l-histidine is an inexpensive, highly stable, non-toxic ligand explored successfully over the last twenty years for the purification of immunoglobulins in immobilised histidine ligand affinity chromatography. It is of great interest to know the molecular recognition sites of IgG to immobilized l-histidine. Here, we have used an in silico approach to explore the molecular recognition of l-histidine by IgG. We have assessed the feasible binding modes of histidine and its moieties at different sites of IgG and considered only those binding conformations which are exhibited via the imidazole ring NH group or any other OH donating group apart from the ones which are terminally conjugated with the support matrix. We categorised binding site into two categories; category I: inner binding groove and category II: surface binding groove and observed that the hinge region of IgG has most favourable binding pocket for l-histidine and histidyl moieties. Ser and Tyr residues on the hinge region make several significant interactions with l-histidine and histidyl moieties. In case of Fc region of IgG, l-histidine and histidyl moieties closely resemble the binding modes of Protein A, biomimetic ligand 22/8 and B domain of SpA to IgG. In addition to these we have also observed a significant binding site for l-histidine and histidyl moieties at Fab region of IgG.

  15. Identification of essential histidine residues involved in heme binding and Hemozoin formation in heme detoxification protein from Plasmodium falciparum.

    PubMed

    Nakatani, Keisuke; Ishikawa, Haruto; Aono, Shigetoshi; Mizutani, Yasuhisa

    2014-08-20

    Malaria parasites digest hemoglobin within a food vacuole to supply amino acids, releasing the toxic product heme. During the detoxification, toxic free heme is converted into an insoluble crystalline form called hemozoin (Hz). Heme detoxification protein (HDP) in Plasmodium falciparum is one of the most potent of the hemozoin-producing enzymes. However, the reaction mechanisms of HDP are poorly understood. We identified the active site residues in HDP using a combination of Hz formation assay and spectroscopic characterization of mutant proteins. Replacement of the critical histidine residues His122, His172, His175, and His197 resulted in a reduction in the Hz formation activity to approximately 50% of the wild-type protein. Spectroscopic characterization of histidine-substituted mutants revealed that His122 binds heme and that His172 and His175 form a part of another heme-binding site. Our results show that the histidine residues could be present in the individual active sites and could be ligated to each heme. The interaction between heme and the histidine residues would serve as a molecular tether, allowing the proper positioning of two hemes to enable heme dimer formation. The heme dimer would act as a seed for the crystal growth of Hz in P. falciparum.

  16. Carboplatin binding to histidine

    SciTech Connect

    Tanley, Simon W. M.; Diederichs, Kay; Kroon-Batenburg, Loes M. J.; Levy, Colin; Schreurs, Antoine M. M.; Helliwell, John R.

    2014-08-29

    An X-ray crystal structure showing the binding of purely carboplatin to histidine in a model protein has finally been obtained. This required extensive crystallization trials and various novel crystal structure analyses. Carboplatin is a second-generation platinum anticancer agent used for the treatment of a variety of cancers. Previous X-ray crystallographic studies of carboplatin binding to histidine (in hen egg-white lysozyme; HEWL) showed the partial conversion of carboplatin to cisplatin owing to the high NaCl concentration used in the crystallization conditions. HEWL co-crystallizations with carboplatin in NaBr conditions have now been carried out to confirm whether carboplatin converts to the bromine form and whether this takes place in a similar way to the partial conversion of carboplatin to cisplatin observed previously in NaCl conditions. Here, it is reported that a partial chemical transformation takes place but to a transplatin form. Thus, to attempt to resolve purely carboplatin binding at histidine, this study utilized co-crystallization of HEWL with carboplatin without NaCl to eliminate the partial chemical conversion of carboplatin. Tetragonal HEWL crystals co-crystallized with carboplatin were successfully obtained in four different conditions, each at a different pH value. The structural results obtained show carboplatin bound to either one or both of the N atoms of His15 of HEWL, and this particular variation was dependent on the concentration of anions in the crystallization mixture and the elapsed time, as well as the pH used. The structural details of the bound carboplatin molecule also differed between them. Overall, the most detailed crystal structure showed the majority of the carboplatin atoms bound to the platinum centre; however, the four-carbon ring structure of the cyclobutanedicarboxylate moiety (CBDC) remained elusive. The potential impact of the results for the administration of carboplatin as an anticancer agent are described.

  17. Proteome-wide analysis of nonsynonymous single-nucleotide variations in active sites of human proteins.

    PubMed

    Dingerdissen, Hayley; Motwani, Mona; Karagiannis, Konstantinos; Simonyan, Vahan; Mazumder, Raja

    2013-03-01

    An enzyme's active site is essential to normal protein activity such that any disruptions at this site may lead to dysfunction and disease. Nonsynonymous single-nucleotide variations (nsSNVs), which alter the amino acid sequence, are one type of disruption that can alter the active site. When this occurs, it is assumed that enzyme activity will vary because of the criticality of the site to normal protein function. We integrate nsSNV data and active site annotations from curated resources to identify all active-site-impacting nsSNVs in the human genome and search for all pathways observed to be associated with this data set to assess the likely consequences. We find that there are 934 unique nsSNVs that occur at the active sites of 559 proteins. Analysis of the nsSNV data shows an over-representation of arginine and an under-representation of cysteine, phenylalanine and tyrosine when comparing the list of nsSNV-impacted active site residues with the list of all possible proteomic active site residues, implying a potential bias for or against variation of these residues at the active site. Clustering analysis shows an abundance of hydrolases and transferases. Pathway and functional analysis shows several pathways over- or under-represented in the data set, with the most significantly affected pathways involved in carbohydrate metabolism. We provide a table of 32 variation-substrate/product pairs that can be used in targeted metabolomics experiments to assay the effects of specific variations. In addition, we report the significant prevalence of aspartic acid to histidine variation in eight proteins associated with nine diseases including glycogen storage diseases, lacrimo-auriculo-dento-digital syndrome, Parkinson's disease and several cancers.

  18. Comparison of histidine recognition in human and trypanosomatid histidyl-tRNA synthetases.

    PubMed

    Koh, Cho Yeow; Wetzel, Allan B; de van der Schueren, Will J; Hol, Wim G J

    2014-11-01

    As part of a project aimed at obtaining selective inhibitors and drug-like compounds targeting tRNA synthetases from trypanosomatids, we have elucidated the crystal structure of human cytosolic histidyl-tRNA synthetase (Hs-cHisRS) in complex with histidine in order to be able to compare human and parasite enzymes. The resultant structure of Hs-cHisRS•His represents the substrate-bound state (H-state) of the enzyme. It provides an interesting opportunity to compare with ligand-free and imidazole-bound structures Hs-cHisRS published recently, both of which represent the ligand-free state (F-state) of the enzyme. The H-state Hs-cHisRS undergoes conformational changes in active site residues and several conserved motif of HisRS, compared to F-state structures. The histidine forms eight hydrogen bonds with HisRS of which six engage the amino and carboxylate groups of this amino acid. The availability of published imidazole-bound structure provides a unique opportunity to dissect the structural roles of individual chemical groups of histidine. The analysis revealed the importance of the amino and carboxylate groups, of the histidine in leading to these dramatic conformational changes of the H-state. Further, comparison with previously published trypanosomatid HisRS structures reveals a pocket in the F-state of the parasite enzyme that may provide opportunities for developing specific inhibitors of Trypanosoma brucei HisRS.

  19. [Inhibitory effect of essential oils, food additives, peracetic acid and detergents on bacterial histidine decarboxylase].

    PubMed

    Kamii, Eri; Terada, Gaku; Akiyama, Jyunki; Isshiki, Kenji

    2011-01-01

    The aim of this study is to examine whether various essential oils, food additives, peracetic acid and detergents inhibit bacterial histidine decarboxylase. Crude extract of Morganella morganii NBRC3848 was prepared and incubated with various agents. Histidine decarboxylase activity was significantly inhibited (p<0.05) by 26 of 45 compounds tested. Among the 26 agents, sodium hypochlorite completely decomposed both histidine and histamine, while peracetic acid caused slight decomposition. Histidine and histamine were stable in the presence of the other 24 agents. These results indicated that 25 of the agents examined were inhibitors of histidine decarboxylase.

  20. Inhibitory effects of brown algae extracts on histamine production in mackerel muscle via inhibition of growth and histidine decarboxylase activity of Morganella morganii.

    PubMed

    Kim, Dong Hyun; Kim, Koth Bong Woo Ri; Cho, Ji Young; Ahn, Dong Hyun

    2014-04-01

    This study was performed to investigate the inhibitory effects of brown algae extracts on histamine production in mackerel muscle. First, antimicrobial activities of brown algae extracts against Morganella morganii were investigated using a disk diffusion method. An ethanol extract of Ecklonia cava (ECEE) exhibited strong antimicrobial activity. The minimum inhibitory concentration (MIC) of ECEE was 2 mg/ml. Furthermore, the brown algae extracts were examined for their ability to inhibit crude histidine decarboxylase (HDC) of M. morganii. The ethanol extract of Eisenia bicyclis (EBEE) and ECEE exhibited significant inhibitory activities (19.82% and 33.79%, respectively) at a concentration of 1 mg/ml. To obtain the phlorotannin dieckol, ECEE and EBEE were subjected to liquid-liquid extraction, silica gel column chromatography, and HPLC. Dieckol exhibited substantial inhibitory activity with an IC50 value of 0.61 mg/ml, and exhibited competitive inhibition. These extracts were also tested on mackerel muscle. The viable cell counts and histamine production in mackerel muscle inoculated with M. morganii treated with ≥2.5 MIC of ECEE (weight basis) were highly inhibited compared with the untreated sample. Furthermore, treatment of crude HDC-inoculated mackerel muscle with 0.5% ECEE and 0.5% EBEE (weight basis), which exhibited excellent inhibitory activities against crude HDC, reduced the overall histamine production by 46.29% and 56.89%, respectively, compared with the untreated sample. Thus, these inhibitory effects of ECEE and EBEE should be helpful in enhancing the safety of mackerel by suppressing histamine production in this fish species.

  1. Kinetic and mutagenic evidence for the role of histidine residues in the Lycopersicon esculentum 1-aminocyclopropane-1-carboxylic acid oxidase.

    PubMed

    Tayeh, M A; Howe, D L; Salleh, H M; Sheflyan, G Y; Son, J K; Woodard, R W

    1999-01-01

    The ACCO gene from Lycopersicon esculentum (tomato) has been cloned into the expression vector PT7-7. The highly expressed protein was recovered in the form of inclusion bodies. ACCO is inactivated by diethyl pyrocarbonate (DEPC) with a second-order rate constant of 170 M(-1) min(-1). The pH-inactivation rate data imply the involvement of an amino acid residue with a pK value of 6.05. The difference UV spectrum of the the DEPC-inactivated versus native ACCO showed a single peak at 242 nm indicating the modification of histidine residues. The inactivation was reversed by the addition of hydroxylamine to the DEPC-inactivated ACCO. Substrate/cofactor protection studies indicate that both iron and ACC bind near the active site, which contains histidine residues. Four histidines of ACCO were individually mutated to alanine and glycine. H39A is catalytically active, while H177A, H177G, H211A, H211G, H234A, and H234G are basically inactive. The results indicate that histidine residues 177, 211, and 234 may serve as ligands for the active-site iron of ACCO and/or may play some important structural or catalytic role.

  2. Copper(II) Complexes of Phenanthroline and Histidine Containing Ligands: Synthesis, Characterization and Evaluation of their DNA Cleavage and Cytotoxic Activity.

    PubMed

    Leite, Sílvia M G; Lima, Luís M P; Gama, Sofia; Mendes, Filipa; Orio, Maylis; Bento, Isabel; Paulo, António; Delgado, Rita; Iranzo, Olga

    2016-11-21

    Copper(II) complexes have been intensely investigated in a variety of diseases and pathological conditions due to their therapeutic potential. The development of these complexes requires a good knowledge of metal coordination chemistry and ligand design to control species distribution in solution and tailor the copper(II) centers in the right environment for the desired biological activity. Herein we present the synthesis and characterization of two ligands HL1 and H2L2 containing a phenanthroline unit (phen) attached to the amino group of histidine (His). Their copper(II) coordination properties were studied using potentiometry, spectroscopy techniques (UV-vis and EPR), mass spectrometry (ESI-MS) and DFT calculations. The data showed the formation of single copper complexes, [CuL1](+) and [CuL2], with high stability within a large pH range (from 3.0 to 9.0 for [CuL1](+) and from 4.5 to 10.0 for [CuL2]). In both complexes the Cu(2+) ion is bound to the phen unit, the imidazole ring and the deprotonated amide group, and displays a distorted square pyramidal geometry as confirmed by single crystal X-ray crystallography. Interestingly, despite having similar structures, these copper complexes show different redox potentials, DNA cleavage properties and cytotoxic activity against different cancer cell lines (human ovarian (A2780), its cisplatin-resistant variant (A2780cisR) and human breast (MCF7) cancer cell lines). The [CuL2] complex has lower reduction potential (Epc= -0.722 V vs -0.452 V for [CuL1](+)) but higher biological activity. These results highlight the effect of different pendant functional groups (carboxylate vs amide), placed out of the coordination sphere, in the properties of these copper complexes.

  3. Histidine oxidation photosensitized by pterin: pH dependent mechanism.

    PubMed

    Castaño, Carolina; Oliveros, Esther; Thomas, Andrés H; Lorente, Carolina

    2015-12-01

    Aromatic pterins accumulate in the skin of patients suffering from vitiligo, a chronic depigmentation disorder, due to the oxidation of tetrahydrobiopterin, the biologically active form of pterins. In this work, we have investigated the ability of pterin, the parent compound of aromatic pterins, to photosensitize the oxidation of histidine in aqueous solutions under UV-A irradiation. Histidine is an α-amino acid with an imidazole functional group, and is frequently present at the active sites of enzymes. The results highlight the role of the pH in controlling the competition between energy and electron transfer mechanisms. It has been previously demonstrated that pterins participate as sensitizers in photosensitized oxidations, both by type I (electron-transfer) and type II mechanisms (singlet oxygen ((1)O2)). By combining different analytical techniques, we could establish that a type I photooxidation was the prevailing mechanism at acidic pH, although a type II mechanism is also present, but it is more important in alkaline solutions.

  4. Prebiotic synthesis of histidine

    NASA Technical Reports Server (NTRS)

    Shen, C.; Yang, L.; Miller, S. L.; Oro, J.

    1990-01-01

    The prebiotic formation of histidine (His) has been accomplished experimentally by the reaction of erythrose with formamidine followed by a Strecker synthesis. In the first step of this reaction sequence, the formation of imidazole-4-acetaldehyde took place by the condensation of erythrose and formamidine, two compounds that are known to be formed under prebiotic conditions. In a second step, the imidazole-4-acetaldehyde was converted to His, without isolation of the reaction products by adding HCN and ammonia to the reaction mixture. LC, HPLC, thermospray liquid chromatography-mass spectrometry, and tandem mass spectrometry were used to identify the product, which was obtained in a yield of 3.5% based on the ratio of His/erythrose. This is a new chemical synthesis of one of the basic amino acids which had not been synthesized prebiotically until now.

  5. Determination of Histidine pKa Values in the Propeptides of Furin and Proprotein Convertase 1/3 Using Histidine Hydrogen-Deuterium Exchange Mass Spectrometry.

    PubMed

    Elferich, Johannes; Williamson, Danielle M; David, Larry L; Shinde, Ujwal

    2015-08-04

    Propeptides of proprotein convertases regulate activation of their protease domains by sensing the organellar pH within the secretory pathway. Earlier experimental work highlighted the importance of a conserved histidine residue within the propeptide of a widely studied member, furin. A subsequent evolutionary analysis found an increase in histidine content within propeptides of secreted eukaryotic proteases compared with their prokaryotic orthologs. However, furin activates in the trans-golgi network at a pH of 6.5 while a paralog, proprotein convertase 1/3, activates in secretory vesicles at a pH of 5.5. It is unclear how a conserved histidine can mediate activation at two different pH values. In this manuscript, we measured the pKa values of histidines within the propeptides of furin and proprotein convertase 1/3 using a histidine hydrogen-deuterium exchange mass spectrometry approach. The high density of histidine residues combined with an abundance of basic residues provided challenges for generation of peptide ions with unique histidine residues, which were overcome by employing ETD fragmentation. During this analysis, we found slow hydrogen-deuterium exchange in residues other than histidine at basic pH. Finally, we demonstrate that the pKa of the conserved histidine in proprotein convertase 1/3 is acid-shifted compared with furin and is consistent with its lower pH of activation.

  6. Thiamin Pyrimidine Biosynthesis in Candida albicans: A Remarkable Reaction between Histidine and Pyridoxal Phosphate

    SciTech Connect

    Lai, Rung-Yi; Huang, Siyu; Fenwick, Michael K.; Hazra, Amrita; Zhang, Yang; Rajashankar, Kanagalaghatta; Philmus, Benjamin; Kinsland, Cynthia; Sanders, Jennie Mansell; Ealick, Steven E.; Begley, Tadhg P.

    2012-06-26

    In Saccharomyces cerevisiae, thiamin pyrimidine is formed from histidine and pyridoxal phosphate (PLP). The origin of all of the pyrimidine atoms has been previously determined using labeling studies and suggests that the pyrimidine is formed using remarkable chemistry that is without chemical or biochemical precedent. Here we report the overexpression of the closely related Candida albicans pyrimidine synthase (THI5p) and the reconstitution and preliminary characterization of the enzymatic activity. A structure of the C. albicans THI5p shows PLP bound at the active site via an imine with Lys62 and His66 in close proximity to the PLP. Our data suggest that His66 of the THI5 protein is the histidine source for pyrimidine formation and that the pyrimidine synthase is a single-turnover enzyme.

  7. Efficient heterologous expression and one-step purification of fully active c-terminal histidine-tagged uridine monophosphate kinase from Mycobacterium tuberculosis.

    PubMed

    Penpassakarn, Praweenuch; Chaiyen, Pimchai; Palittapongarnpim, Prasit

    2011-11-01

    Tuberculosis has long been recognized as one of the most significant public health problems. Finding novel antituberculous drugs is always a necessary approach for controlling the disease. Mycobacterium tuberculosis pyrH gene (Rv2883c) encodes for uridine monophosphate kinase (UMK), which is a key enzyme in the uridine nucleotide interconversion pathway. The enzyme is essential for M. tuberculosis to sustain growth and hence is a potential drug target. In this study, we have developed a rapid protocol for production and purification of M. tuberculosis UMK by cloning pyrH (Rv2883c) of M. tuberculosis H37Rv with the addition of 6-histidine residues to the C-terminus of the protein, and expressing in E. coli BL21-CodonPlus (DE3)-RIPL using an auto-induction medium. The enzyme was efficiently purified by a single-step TALON cobalt affinity chromatography with about 8 fold increase in specific activity, which was determined by a coupled assay with the pyruvate kinase and lactate dehydrogenase. The molecular mass of monomeric UMK was 28.2 kDa and that of the native enzyme was 217 kDa. The enzyme uses UMP as a substrate but not CMP and TMP and activity was enhanced by GTP. Measurements of enzyme kinetics revealed the kcat value of 7.6 +/- 0.4 U mg(-1) or 0.127 +/- 0.006 sec(-1).The protocol reported here can be used for expression of M. tuberculosis UMK in large quantity for formulating a high throughput target-based assay for screening anti-tuberculosis UMK compounds.

  8. Model Peptide Studies Reveal a Mixed Histidine-Methionine Cu(I) Binding Site at the N-Terminus of Human Copper Transporter 1.

    PubMed

    Pushie, M Jake; Shaw, Katharine; Franz, Katherine J; Shearer, Jason; Haas, Kathryn L

    2015-09-08

    Copper is a vital metal cofactor in enzymes that are essential to myriad biological processes. Cellular acquisition of copper is primarily accomplished through the Ctr family of plasma membrane copper transport proteins. Model peptide studies indicate that the human Ctr1 N-terminus binds to Cu(II) with high affinity through an amino terminal Cu(II), Ni(II) (ATCUN) binding site. Unlike typical ATCUN-type peptides, the Ctr1 peptide facilitates the ascorbate-dependent reduction of Cu(II) bound in its ATCUN site by virtue of an adjacent HH (bis-His) sequence in the peptide. It is likely that the Cu(I) coordination environment influences the redox behavior of Cu bound to this peptide; however, the identity and coordination geometry of the Cu(I) site has not been elucidated from previous work. Here, we show data from NMR, XAS, and structural modeling that sheds light on the identity of the Cu(I) binding site of a Ctr1 model peptide. The Cu(I) site includes the same bis-His site identified in previous work to facilitate ascorbate-dependent Cu(II) reduction. The data presented here are consistent with a rational mechanism by which Ctr1 provides coordination environments that facilitate Cu(II) reduction prior to Cu(I) transport.

  9. Validated ligand mapping of ACE active site

    NASA Astrophysics Data System (ADS)

    Kuster, Daniel J.; Marshall, Garland R.

    2005-08-01

    Crystal structures of angiotensin-converting enzyme (ACE) complexed with three inhibitors (lisinopril, captopril, enalapril) provided experimental data for testing the validity of a prior active site model predicting the bound conformation of the inhibitors. The ACE active site model - predicted over 18 years ago using a series of potent ACE inhibitors of diverse chemical structure - was recreated using published data and commercial software. Comparison between the predicted structures of the three inhibitors bound to the active site of ACE and those determined experimentally yielded root mean square deviation (RMSD) values of 0.43-0.81 Å, among the distances defining the active site map. The bound conformations of the chemically relevant atoms were accurately deduced from the geometry of ligands, applying the assumption that the geometry of the active site groups responsible for binding and catalysis of amide hydrolysis was constrained. The mapping of bound inhibitors at the ACE active site was validated for known experimental compounds, so that the constrained conformational search methodology may be applied with confidence when no experimentally determined structure of the enzyme yet exists, but potent, diverse inhibitors are available.

  10. Bidentate ligation of heme analogues; novel biomimetics of peroxidase active site.

    PubMed

    Ashkenasy, Gonen; Margulies, David; Felder, Clifford E; Shanzer, Abraham; Powers, Linda S

    2002-09-02

    The multifunctional nature of proteins that have iron-heme cofactors with noncovalent histidine linkage to the protein is controlled by the heme environment. Previous studies of these active-site structures show that the primary difference is the length of the iron-proximal histidine bond, which can be controlled by the degree of H-bonding to this histidine. Great efforts to mimic these functions with synthetic analogues have been made for more than two decades. The peroxidase models resulted in several catalytic systems capable of a large range of oxidative transformations. Most of these model systems modified the porphyrin ring covalently by directly binding auxiliary elements that control and facilitate reactivity; for example, electron-donating or -withdrawing substituents. A biomimetic approach to enzyme mimicking would have taken a different route, by attempting to keep the porphyrin ring system unaltered, as close as possible to its native form, and introducing all modifications at or close to the axial coordination sites. Such a model system would be less demanding synthetically, would make it easy to study the effect of a single structural modification, and might even provide a way to probe effects resulting from porphyrin exchange. We introduce here an alternative model system based on these principles. It consists of a two component system: a bis-imidazolyl ligand and an iron-porphyrin (readily substituted by a hemin). All modifications were introduced only to the ligand that engulfs the porphyrin and binds to the iron's fifth and sixth coordination sites. We describe the design, synthesis, and characterization of nine different model compounds with increased complexity. The primary tool for characterizing the environment of each complex Fe(III) center was the Extended X-ray Absorption Fine Structure (EXAFS) measurements, supported by UV/Vis, IR, and NMR spectroscopy and by molecular modeling. Introduction of asymmetry, by attaching different imidazoles

  11. A Dynamic Zn Site in Helicobacter pylori HypA: A Potential Mechanism for Metal-Specific Protein Activity

    SciTech Connect

    Kennedy,D.; Herbst, R.; Iwig, J.; Chivers, P.; Maroney, M.

    2007-01-01

    HypA is an accessory protein and putative metallochaperone that is critical for supplying nickel to the active site of NiFe hydrogenases. In addition to binding Ni(II), HypA is known to contain a Zn site that has been suggested to play a structural role. X-ray absorption spectroscopy has been used to show that the Zn site changes structure upon binding nickel, from a S{sub 3}(O/N)-donor ligand environment to an S{sub 4}-donor ligand environment. This provides a potential mechanism for discriminating Ni(II) from other divalent metal ions. The Ni(II) site is shown to be a six-coordinate complex composed of O/N-donors including two histidines. As such, it resembles the nickel site in UreE, a nickel metallochaperone involved in nickel incorporation into urease.

  12. EPR spectroscopy of a clinically active (1:2) copper(II)-histidine complex used in the treatment of Menkes disease: a Fourier transform analysis of a fluid CW-EPR spectrum.

    PubMed

    Gala, Lukas; Lawson, Michael; Jomova, Klaudia; Zelenicky, Lubomir; Congradyova, Andrea; Mazur, Milan; Valko, Marian

    2014-01-15

    Redox active transition metal ions (e.g., iron and copper) have been implicated in the etiology of many oxidative stress-related diseases including also neurodegenerative disorders. Unbound copper can catalyze formation of reactive oxygen species (hydroxyl radicals) via Fenton reaction/Haber-Weiss chemistry and therefore, under physiological conditions, free copper is potentially toxic and very rarely exists inside cells. Copper(II) bound to the aminoacid L-histidine represents a species discovered in blood in the mid 60s and since then extensive research on this complex was carried out. Copper bound to L-histidine represents an exchangeable pool of copper(II) in equilibrium with the most abundant blood plasma protein, human serum albumin. The structure of this complex, in aqueous solution, has been a subject of many studies and reviews, however without convincing success. The significance of the (1:2) copper(II)-L-histidine complex at physiological pH documents its therapeutic applications in the treatment of Menkes disease and more recently in the treatment of infantile hypertrophic cardioencephalomyopathy. While recently the (1:2) Cu(II)-L-His complex has been successfully crystallized and the crystal structure was solved by X-ray diffraction, the structure of the complex in fluid solution at physiological pH is not satisfactorily known. The aim of this paper is to study the (1:2) Cu(II)-L-histidine complex at low temperatures by X-band and S-band EPR spectroscopy and at physiological pH at room temperature by Fourier transform CW-EPR spectroscopy.

  13. Poly-L-histidine downregulates fibrinolysis.

    PubMed

    Chu, Arthur J; Mathews, Suresh T

    2003-10-01

    The elevated level of histidine-rich glycoprotein was considered a risk factor of inherited thrombophilia. However, the mode of action remains largely unclear. In the current study, we employ poly-l-histidine (PLH) mimicking the histidine-rich region and determine whether PLH modulates urokinase (uPA)-dependent fibrinolysis. In an in vitro model, turbidity appearance and clearance monitored fibrin polymer formation and lysis, respectively. Fibrin polymer formed upon fibrinogen incubation with thrombin. In the presence of uPA or plasmin, fibrin polymer lysis took place in a dose-dependent manner as a function of time. We demonstrated that PLH significantly downregulated uPA-dependent fibrinolysis. PLH had no effect on plasminogen activation, as evidenced by no inhibitions on either uPA amidolytic activity or plasmin formation derived from its zymogen. Nor did PLH show any inhibition on plasmin amidolytic activity. PLH caused a profound delay of plasmin-dependent fibrinolysis upon pre-incubation of either plasmin or fibrinogen with PLH. The observations taken together suggest that the complex [plasmin-PLH-fibrin] formation significantly delayed plasmin-dependent fibrinolysis.

  14. Structural Requirements in the Transmembrane Domain of GLIC Revealed by Incorporation of Noncanonical Histidine Analogs

    PubMed Central

    Rienzo, Matthew; Lummis, Sarah C.R.; Dougherty, Dennis A.

    2014-01-01

    SUMMARY The cyanobacterial pentameric ligand-gated ion channel GLIC, a homolog of the Cys-loop receptor superfamily, has provided useful structural and functional information about its eukaryotic counterparts. X-ray diffraction data and site-directed mutagenesis have previously implicated a transmembrane histi-dine residue (His234) as essential for channel function. Here, we investigated the role of His234 via synthesis and incorporation of histidine analogs and α-hydroxy acids using in vivo nonsense suppression. Receptors were expressed heterologously in Xenopus laevis oocytes, and whole-cell voltage-clamp electrophysiology was used to monitor channel activity. We show that an interhelix hydrogen bond involving His234 is important for stabilization of the open state, and that the shape and basicity of its side chain are highly sensitive to perturbations. In contrast, our data show that two other His residues are not involved in the acid-sensing mechanism. PMID:25525989

  15. Molecular mechanism: the human dopamine transporter histidine 547 regulates basal and HIV-1 Tat protein-inhibited dopamine transport

    PubMed Central

    Quizon, Pamela M.; Sun, Wei-Lun; Yuan, Yaxia; Midde, Narasimha M.; Zhan, Chang-Guo; Zhu, Jun

    2016-01-01

    Abnormal dopaminergic transmission has been implicated as a risk determinant of HIV-1-associated neurocognitive disorders. HIV-1 Tat protein increases synaptic dopamine (DA) levels by directly inhibiting DA transporter (DAT) activity, ultimately leading to dopaminergic neuron damage. Through integrated computational modeling prediction and experimental validation, we identified that histidine547 on human DAT (hDAT) is critical for regulation of basal DA uptake and Tat-induced inhibition of DA transport. Compared to wild type hDAT (WT hDAT), mutation of histidine547 (H547A) displayed a 196% increase in DA uptake. Other substitutions of histidine547 showed that DA uptake was not altered in H547R but decreased by 99% in H547P and 60% in H547D, respectively. These mutants did not alter DAT surface expression or surface DAT binding sites. H547 mutants attenuated Tat-induced inhibition of DA transport observed in WT hDAT. H547A displays a differential sensitivity to PMA- or BIM-induced activation or inhibition of DAT function relative to WT hDAT, indicating a change in basal PKC activity in H547A. These findings demonstrate that histidine547 on hDAT plays a crucial role in stabilizing basal DA transport and Tat-DAT interaction. This study provides mechanistic insights into identifying targets on DAT for Tat binding and improving DAT-mediated dysfunction of DA transmission. PMID:27966610

  16. Insight into the role of histidine in RNR motif of protein component of RNase P of M. tuberculosis in catalysis.

    PubMed

    Singh, Alla; Ramteke, Anup K; Afroz, Tariq; Batra, Janendra K

    2016-03-01

    RNase P, a ribonucleoprotein endoribonuclease, is involved in the 5' end processing of pre-tRNAs, with its RNA component being the catalytic subunit. It is an essential enzyme. All bacterial RNase Ps have one RNA and one protein component. A conserved RNR motif in bacterial RNase P protein components is involved in their interaction with the RNA component. In this work, we have reconstituted the RNase P of M. tuberculosis in vitro and investigated the role of a histidine in the RNR motif in its catalysis. We expressed the protein and RNA components of mycobacterial RNase P in E. coli, purified them, and reconstituted the holoenzyme in vitro. The histidine in RNR motif was mutated to alanine and asparagine by site-directed mutagenesis. The RNA component alone showed activity on pre-tRNA(ala) substrate at high magnesium concentrations. The RNA and protein components associated together to manifest catalytic activity at low magnesium concentrations. The histidine 67 in the RNR motif of M. tuberculosis RNase P protein component was found to be important for the catalytic activity and stability of the enzyme. Generally, the RNase P of M. tuberculosis functions like other bacterial enzymes. The histidine in the RNR motif of M. tuberculosis appears to be able to substitute optimally for asparagine found in the majority of the protein components of other bacterial RNase P enzymes.

  17. The Biocide Chlorine Dioxide Stimulates Biofilm Formation in Bacillus subtilis by Activation of the Histidine Kinase KinC▿ †

    PubMed Central

    Shemesh, Moshe; Kolter, Roberto; Losick, Richard

    2010-01-01

    Bacillus subtilis forms biofilms in response to signals that remain poorly defined. We report that biofilm formation is stimulated by sublethal doses of chlorine dioxide (ClO2), an extremely effective and fast-acting biocide. ClO2 accelerated biofilm formation in B. subtilis as well as in other bacteria, suggesting that biofilm formation is a widely conserved response to sublethal doses of the agent. Biofilm formation depends on the synthesis of an extracellular matrix that holds the constituent cells together. We show that the transcription of the major operons responsible for the matrix production in B. subtilis, epsA-epsO and yqxM-sipW-tasA, was enhanced by ClO2, in a manner that depended on the membrane-bound kinase KinC. Activation of KinC appeared to be due to the ability of ClO2 to collapse the membrane potential. Importantly, strains unable to make a matrix were hypersensitive to ClO2, indicating that biofilm formation is a defensive response that helps protect cells from the toxic effects of the biocide. PMID:20971918

  18. Antimicrobial and anti-inflammatory activities of three chensinin-1 peptides containing mutation of glycine and histidine residues

    PubMed Central

    Dong, Weibing; Mao, Xiaoman; Guan, Yue; Kang, Yao; Shang, Dejing

    2017-01-01

    The natural peptide chensinin-1 doesnot exhibit its desired biological properties. In this study, the mutant MC1-1 was designed by replacing Gly in the chensinin-1 sequence with Trp. Mutants MC1-2 and MC1-3 were designed based on the MC1-1 sequence to investigate the specific role of His residues. The mutated peptides presented α-helicity in a membrane-mimetic environment and exhibited broad-spectrum antimicrobial activities; in contrast to Trp residues, His residues were dispensable for interacting with the cell membrane. The interactions between the mutant peptides and lipopolysaccharide (LPS) facilitated the ingestion of peptides by Gram-negative bacteria. The binding affinities of the peptides were similar, at approximately 10 μM, but ΔH for MC1-2 was −7.3 kcal.mol−1, which was 6-9 folds higher than those of MC1-1 and MC1-3, probably due to the conformational changes. All mutant peptides demonstrated the ability to inhibit LPS-induced tumour-necrosis factor-α (TNF-α) and interleukin-6 (IL-6) release from murine RAW264.7 cells. In addition, the representative peptide MC1-1showed better inhibition of serum TNF-α and IL-6 levels compared to polymyxin B (PMB), a potent binder and neutralizer of LPS as positive control in LPS-challenged mice model. These data suggest that the mutant peptides could be promising molecules for development as chensinin-based therapeutic agents against sepsis. PMID:28054660

  19. Amino acid utilization by Chlamydomonas reinhardtii: specific study of histidine.

    PubMed

    Hellio, Claire; Veron, Benoit; Le Gal, Yves

    2004-03-01

    Phytoplankton live in fluctuating environments where many factors such as grazing pressure, sinking, light availability, nutrient uptake and turnover influence the distribution of phytoplankton in time and space. The purpose of this study was to investigate if under conditions of depletion of inorganic nitrogen, as recorded in summer in naturals waters, phytoplanktonic species have the capability of using organic nitrogen sources, including free or combined amino acids, in addition to inorganic nitrogen. The study has focussed on histidine, the degradation of which yielding potentially three nitrogen atoms for each molecule of histidine. Chlamydomonas reinhardtii (CCAP 11/32A) was cultivated axenically with two different sources of nitrogen (histidine and/or ammonium). In the presence of histidine as sole source of nitrogen, cell growth was comparable to that observed with the same concentration of nitrogen in ammonium form. In the presence of both histidine and ammonium, histidine degradation was observed only when the concentration of ammonium was depleted. Under these conditions, the first two enzymes of histidine degradation pathway, histidase (EC 4.3.1.3) and urocanase (EC 4.2.1.49) were produced and were co-ordinately regulated. Histidase activity was also controlled by succinate and glutamate as carbon sources. Histidase was purified 1018-fold and partially characterized. The molecular weight of the native enzyme was estimated to 152.4 kDa corresponding to four subunits of 38.1 kDa. The enzyme did not exhibit classical Michaelis-Menten kinetics but showed a relationship between the rate of catalysis (V) and the concentration of substrate (S), characteristic of negative allosteric behavior. A Hill coefficient of 4 was measured for histidine concentrations higher than 20.5 mM.

  20. The histidine phosphatase superfamily: structure and function.

    PubMed

    Rigden, Daniel J

    2008-01-15

    The histidine phosphatase superfamily is a large functionally diverse group of proteins. They share a conserved catalytic core centred on a histidine which becomes phosphorylated during the course of the reaction. Although the superfamily is overwhelmingly composed of phosphatases, the earliest known and arguably best-studied member is dPGM (cofactor-dependent phosphoglycerate mutase). The superfamily contains two branches sharing very limited sequence similarity: the first containing dPGM, fructose-2,6-bisphosphatase, PhoE, SixA, TIGAR [TP53 (tumour protein 53)-induced glycolysis and apoptosis regulator], Sts-1 and many other activities, and the second, smaller, branch composed mainly of acid phosphatases and phytases. Human representatives of both branches are of considerable medical interest, and various parasites contain superfamily members whose inhibition might have therapeutic value. Additionally, several phosphatases, notably the phytases, have current or potential applications in agriculture. The present review aims to draw together what is known about structure and function in the superfamily. With the benefit of an expanding set of histidine phosphatase superfamily structures, a clearer picture of the conserved elements is obtained, along with, conversely, a view of the sometimes surprising variation in substrate-binding and proton donor residues across the superfamily. This analysis should contribute to correcting a history of over- and mis-annotation in the superfamily, but also suggests that structural knowledge, from models or experimental structures, in conjunction with experimental assays, will prove vital for the future description of function in the superfamily.

  1. Essential histidine pairs indicate conserved haem binding in epsilonproteobacterial cytochrome c haem lyases.

    PubMed

    Kern, Melanie; Scheithauer, Juliane; Kranz, Robert G; Simon, Jörg

    2010-12-01

    Bacterial cytochrome c maturation occurs at the outside of the cytoplasmic membrane, requires transport of haem b across the membrane, and depends on membrane-bound cytochrome c haem lyase (CCHL), an enzyme that catalyses covalent attachment of haem b to apocytochrome c. Epsilonproteobacteria such as Wolinella succinogenes use the cytochrome c biogenesis system II and contain unusually large CCHL proteins of about 900 amino acid residues that appear to be fusions of the CcsB and CcsA proteins found in other bacteria. CcsBA-type CCHLs have been proposed to act as haem transporters that contain two haem b coordination sites located at different sides of the membrane and formed by histidine pairs. W. succinogenes cells contain three CcsBA-type CCHL isoenzymes (NrfI, CcsA1 and CcsA2) that are known to differ in their specificity for apocytochromes and apparently recognize different haem c binding motifs such as CX(2)CH (by CcsA2), CX(2)CK (by NrfI) and CX(15)CH (by CcsA1). In this study, conserved histidine residues were individually replaced by alanine in each of the W. succinogenes CCHLs. Characterization of NrfI and CcsA1 variants in W. succinogenes demonstrated that a set of four histidines is essential for maturing the dedicated multihaem cytochromes c NrfA and MccA, respectively. The function of W. succinogenes CcsA2 variants produced in Escherichia coli was also found to depend on each of these four conserved histidine residues. The presence of imidazole in the growth medium of both W. succinogenes and E. coli rescued the cytochrome c biogenesis activity of most histidine variants, albeit to different extents, thereby implying the presence of two functionally distinct histidine pairs in each CCHL. The data support a model in which two conserved haem b binding sites are involved in haem transport catalysed by CcsBA-type CCHLs.

  2. Site-specific mutagenesis and functional analysis of active sites of sulfur oxygenase reductase from Gram-positive moderate thermophile Sulfobacillus acidophilus TPY.

    PubMed

    Zhang, Huijun; Guo, Wenbin; Xu, Changan; Zhou, Hongbo; Chen, Xinhua

    2013-12-14

    Sequence alignments revealed that the conserved motifs of SORSa which formed an independent branch between archaea and Gram-negative bacteria SORs according to the phylogenetic relationship were similar with the archaea and Gram-negative bacteria SORs. In order to investigate the active sites of SORSa, cysteines 31, 101 and 104 (C31, C101, C104), histidines 86 and 90 (H86 and H90) and glutamate 114 (E114) of SORSa were chosen as the target amino acid residues for site-specific mutagenesis. The wild type and six mutant SORs were expressed in E. coli BL21, purified and confirmed by SDS-PAGE and Western blotting analysis. Enzyme activity determination revealed that the active sites of SORSa were identical with the archaea and Gram-negative bacteria SORs reported. Replacement of any cysteine residues reduced SOR activity by 53-100%, while the mutants of H86A, H90A and E114A lost their enzyme activities largely, only remaining 20%, 19% and 32% activity of the wild type SOR respectively. This study will enrich our awareness for active sites of SOR in a Gram-positive bacterium.

  3. Homology-based molecular modelling of PLP-dependent histidine decarboxylase from Mmorganella morganii.

    PubMed

    Tahanejad, F S; Naderi-Manesh, H; Habibinejad, B; Mahmoudian, M

    2000-06-01

    The 3-D structural information is a prerequisite for a rational ligand design. In the absence of experimental data, model building on the basis of a known 3-D structure of a homologous protein is at present the only reliable method to obtain structural information. A homology model building study of the pyridoxal 5'-phosphate (PLP)-dependent histidine decarboxylase from Morganella morganii (HDC-MM) has been carried out based on the crystal structure of the aspartate aminotransferase from Escherichia coli (AAT-EC). The primary sequences of AAT-EC and HDC-MM were aligned by automated alignment procedure. A 3-D model of HDC-MM was constructed by copying the coordinates of the residues from the crystal structure of AAT-EC into the corresponding residues in HDC-MM. After energy-minimization of the resulting 3-D model of HDC-MM, possible active site residues were identified by fitting the substrate (l-histidine) into the proposed active-site. In our model, several residues, which have an important role in the AAT-EC active-site, are located in positions spatially identical to those in AAT-EC structure. The back-bone of the modelled active site pocket is constructed by residues; Gly-92, Gly-93, Thr-93, Ser-115, Asp-200, Ala-202, Ser-229 and Lys-232 together with residues Asn-8, His-119, Thr-171, His-198, Leu-203, His-231, Ser-236 and Ile-238. In the ligand binding site, it appears that the HDC-MM model will position l-histidine (substrate) in the area consisting of the residues; Glu-29, Ser-30, Leu-38, His-231 and Lys-232. The nitrogen atom of the imidazole ring (N2) of the substrate is predicted to interact with the carboxylate group of Ser-30. The alpha-carboxylate of histidine points toward the Lys-232 to have electrostatic interaction with its side chain nitrogen atom (N(Z)). In conclusion, this combination of sequence and 3-D structural homology between AAT-EC and HDC-MM model could provide insight in assigning the probable active site residues.

  4. Contribution of active-site glutamine to rate enhancement in ubiquitin carboxy terminal hydrolases

    PubMed Central

    Boudreaux, David; Chaney, Joseph; Maiti, Tushar K.; Das, Chittaranjan

    2012-01-01

    Ubiquitin carboxy terminal hydrolases (UCHs) are cysteine proteases featuring a classical cysteine-histidine-aspartate catalytic triad, also a highly conserved glutamine thought to be a part of the oxyanion hole. However, the contribution of this side chain to the catalysis by UCH enzymes is not known. Herein, we demonstrate that the glutamine side chain contributes to rate enhancement in UCHL1, UCHL3 and UCHL5. Mutation of the glutamine to alanine in these enzymes impairs the catalytic efficiency mainly due to a 16 to 30-fold reduction in kcat, which is consistent with a loss of approximately 2 kcal/mol in transition-state stabilization. However, the contribution to transition-state stabilization observed here is rather modest for the side chain’s role in oxyanion stabilization. Interestingly, we discovered that the carbonyl oxygen of this side chain is engaged in a C—H•••O hydrogen-bonding contact with the CεH group of the catalytic histidine. Upon further analysis, we found that this interaction is a common active-site structural feature in most cysteine proteases, including papain, belonging to families with the QCH(N/D) type of active-site configuration. It is possible that removal of the glutamine side chain might have abolished the C—H•••O interaction, which typically accounts for 2 kcal/mol of stabilization, leading to the effect on catalysis observed here. Additional studies performed on UCHL3 by mutating the glutamine to glutamate (strong C—H•••O acceptor but oxyanion destabilizer) and to lysine (strong oxyanion stabilizer but lacking C—H•••O hydrogen-bonding property) suggest that the C—H•••O hydrogen bond could contribute to catalysis. PMID:22284438

  5. Structure of a Berberine Bridge Enzyme-Like Enzyme with an Active Site Specific to the Plant Family Brassicaceae

    PubMed Central

    Daniel, Bastian; Wallner, Silvia; Steiner, Barbara; Oberdorfer, Gustav; Kumar, Prashant; van der Graaff, Eric; Roitsch, Thomas; Sensen, Christoph W.; Gruber, Karl; Macheroux, Peter

    2016-01-01

    Berberine bridge enzyme-like (BBE-like) proteins form a multigene family (pfam 08031), which is present in plants, fungi and bacteria. They adopt the vanillyl alcohol-oxidase fold and predominantly show bi-covalent tethering of the FAD cofactor to a cysteine and histidine residue, respectively. The Arabidopsis thaliana genome was recently shown to contain genes coding for 28 BBE-like proteins, while featuring four distinct active site compositions. We determined the structure of a member of the AtBBE-like protein family (termed AtBBE-like 28), which has an active site composition that has not been structurally and biochemically characterized thus far. The most salient and distinguishing features of the active site found in AtBBE-like 28 are a mono-covalent linkage of a histidine to the 8α-position of the flavin-isoalloxazine ring and the lack of a second covalent linkage to the 6-position, owing to the replacement of a cysteine with a histidine. In addition, the structure reveals the interaction of a glutamic acid (Glu426) with an aspartic acid (Asp369) at the active site, which appear to share a proton. This arrangement leads to the delocalization of a negative charge at the active site that may be exploited for catalysis. The structure also indicates a shift of the position of the isoalloxazine ring in comparison to other members of the BBE-like family. The dioxygen surrogate chloride was found near the C(4a) position of the isoalloxazine ring in the oxygen pocket, pointing to a rapid reoxidation of reduced enzyme by dioxygen. A T-DNA insertional mutant line for AtBBE-like 28 results in a phenotype, that is characterized by reduced biomass and lower salt stress tolerance. Multiple sequence analysis showed that the active site composition found in AtBBE-like 28 is only present in the Brassicaceae, suggesting that it plays a specific role in the metabolism of this plant family. PMID:27276217

  6. Kβ Valence to Core X-ray Emission Studies of Cu(I) Binding Proteins with Mixed Methionine - Histidine Coordination. Relevance to the Reactivity of the M- and H-sites of Peptidylglycine Monooxygenase.

    PubMed

    Martin-Diaconescu, Vlad; Chacón, Kelly N; Delgado-Jaime, Mario Ulises; Sokaras, Dimosthenis; Weng, Tsu-Chien; DeBeer, Serena; Blackburn, Ninian J

    2016-04-04

    Biological systems use copper as a redox center in many metalloproteins, where the role of the metal is to cycle between its +1 and +2 oxidation states. This chemistry requires the redox potential to be in a range that can stabilize both Cu(I) and Cu(II) states and often involves protein-derived ligand sets involving mixed histidine-methionine coordination that balance the preferences of both oxidation states. Transport proteins, on the other hand, utilize copper in the Cu(I) state and often contain sites comprised predominately of the cuprophilic residue methionine. The electronic factors that allow enzymes and transporters to balance their redox requirements are complex and are often elusive due to the dearth of spectroscopic probes of the Cu(I) state. Here we present the novel application of X-ray emission spectroscopy to copper proteins via a study of a series of mixed His-Met copper sites where the ligand set varies in a systematic way between the His3 and Met3 limits. The sites are derived from the wild-type peptidylglycine monooxygenase (PHM), two single-site variants which replicate each of its two copper sites (CuM-site and CuH-site), and the transporters CusF and CusB. Clear differences are observed in the Kβ2,5 region at the Met3 and His3 limits. CusB (Met3) has a distinct peak at 8978.4 eV with a broad shoulder at 8975.6 eV, whereas CuH (His3) has two well-resolved features: a more intense feature at 8974.8 eV and a second at 8977.2 eV. The mixed coordination sphere CusF (Met2His) and the PHM CuM variant (Met1His2) have very similar spectra consisting of two features at 8975.2 and 8977.8 eV. An analysis of DFT calculated spectra indicate that the intensity of the higher energy peak near 8978 eV is mediated by mixing of ligand-based orbitals into the Cu d(10) manifold, with S from Met providing more intensity by facilitating increased Cu p-d mixing. Furthermore, reaction of WT PHM with CO (an oxygen analogue) produced the M site CO complex, which showed

  7. Corrosion Research And Web Site Activities

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2001-01-01

    This report covers corrosion-related activities at the NASA Kennedy Space Center during the summer of 2000. The NASA Kennedy Space Center's corrosion web site, corrosion.ksc.nasa.gov, was updated with new information based on feedback over the past two years. The methodology for a two-year atmospheric exposure testing program to study the effectiveness of commercial chemicals sold for rinsing aircraft and other equipment was developed and some preliminary laboratory chemical analyses are presented.

  8. Corrosion Research and Web Site Activities

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2002-01-01

    This report covers corrosion-related activities at the NASA Kennedy Space Center during the summer of 2000. The NASA Kennedy Space Center's corrosion web site, corrosion.ksc.nasa.gov, was updated with new information based on feedback over the past two years. The methodology for a two-year atmospheric exposure testing program to study the effectiveness of commercial chemicals sold for rinsing aircraft and other equipment was developed and some preliminary laboratory chemical analyses are presented.

  9. Mercury(II) binds to both of chymotrypsin's histidines, causing inhibition followed by irreversible denaturation/aggregation.

    PubMed

    Stratton, Amanda; Ericksen, Matthew; Harris, Travis V; Symmonds, Nick; Silverstein, Todd P

    2017-02-01

    The toxicity of mercury is often attributed to its tight binding to cysteine thiolate anions in vital enzymes. To test our hypothesis that Hg(II) binding to histidine could be a significant factor in mercury's toxic effects, we studied the enzyme chymotrypsin, which lacks free cysteine thiols; we found that chymotrypsin is not only inhibited, but also denatured by Hg(II). We followed the aggregation of denatured enzyme by the increase in visible absorbance due to light scattering. Hg(II)-induced chymotrypsin precipitation increased dramatically above pH 6.5, and free imidazole inhibited this precipitation, implicating histidine-Hg(II) binding in the process of chymotrypsin denaturation/aggregation. Diethylpyrocarbonate (DEPC) blocked chymotrypsin's two histidines (his40 and his57 ) quickly and completely, with an IC50 of 35 ± 6 µM. DEPC at 350 µM reduced the hydrolytic activity of chymotrypsin by 90%, suggesting that low concentrations of DEPC react with his57 at the active site catalytic triad; furthermore, DEPC below 400 µM enhanced the Hg(II)-induced precipitation of chymotrypsin. We conclude that his57 reacts readily with DEPC, causing enzyme inhibition and enhancement of Hg(II)-induced aggregation. Above 500 µM, DEPC inhibited Hg(II)-induced precipitation, and [DEPC] >2.5 mM completely protected chymotrypsin against precipitation. This suggests that his40 reacts less readily with DEPC, and that chymotrypsin denaturation is caused by Hg(II) binding specifically to the his40 residue. Finally, we show that Hg(II)-histidine binding may trigger hemoglobin aggregation as well. Because of results with these two enzymes, we suggest that metal-histidine binding may be key to understanding all heavy metal-induced protein aggregation.

  10. Structures of a histidine triad family protein from Entamoeba histolytica bound to sulfate, AMP and GMP.

    PubMed

    Lorimer, Donald D; Choi, Ryan; Abramov, Ariel; Nakazawa Hewitt, Stephen; Gardberg, Anna S; Van Voorhis, Wesley C; Staker, Bart L; Myler, Peter J; Edwards, Thomas E

    2015-05-01

    Three structures of the histidine triad family protein from Entamoeba histolytica, the causative agent of amoebic dysentery, were solved at high resolution within the Seattle Structural Genomics Center for Infectious Disease (SSGCID). The structures have sulfate (PDB entry 3oj7), AMP (PDB entry 3omf) or GMP (PDB entry 3oxk) bound in the active site, with sulfate occupying the same space as the α-phosphate of the two nucleotides. The C(α) backbones of the three structures are nearly superimposable, with pairwise r.m.s.d.s ranging from 0.06 to 0.13 Å.

  11. Histidine augments the suppression of hepatic glucose production by central insulin action.

    PubMed

    Kimura, Kumi; Nakamura, Yusuke; Inaba, Yuka; Matsumoto, Michihiro; Kido, Yoshiaki; Asahara, Shun-Ichiro; Matsuda, Tomokazu; Watanabe, Hiroshi; Maeda, Akifumi; Inagaki, Fuyuhiko; Mukai, Chisato; Takeda, Kiyoshi; Akira, Shizuo; Ota, Tsuguhito; Nakabayashi, Hajime; Kaneko, Shuichi; Kasuga, Masato; Inoue, Hiroshi

    2013-07-01

    Glucose intolerance in type 2 diabetes is related to enhanced hepatic glucose production (HGP) due to the increased expression of hepatic gluconeogenic enzymes. Previously, we revealed that hepatic STAT3 decreases the expression of hepatic gluconeogenic enzymes and suppresses HGP. Here, we show that increased plasma histidine results in hepatic STAT3 activation. Intravenous and intracerebroventricular (ICV) administration of histidine-activated hepatic STAT3 reduced G6Pase protein and mRNA levels and augmented HGP suppression by insulin. This suppression of hepatic gluconeogenesis by histidine was abolished by hepatic STAT3 deficiency or hepatic Kupffer cell depletion. Inhibition of HGP by histidine was also blocked by ICV administration of a histamine H1 receptor antagonist. Therefore, histidine activates hepatic STAT3 and suppresses HGP via central histamine action. Hepatic STAT3 phosphorylation after histidine ICV administration was attenuated in histamine H1 receptor knockout (Hrh1KO) mice but not in neuron-specific insulin receptor knockout (NIRKO) mice. Conversely, hepatic STAT3 phosphorylation after insulin ICV administration was attenuated in NIRKO but not in Hrh1KO mice. These findings suggest that central histidine action is independent of central insulin action, while both have additive effects on HGP suppression. Our results indicate that central histidine/histamine-mediated suppression of HGP is a potential target for the treatment of type 2 diabetes.

  12. Crystal structure of B acillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity: AtxA multimerization, phosphorylation and activity

    SciTech Connect

    Hammerstrom, Troy G.; Horton, Lori B.; Swick, Michelle C.; Joachimiak, Andrzej; Osipiuk, Jerzy; Koehler, Theresa M.

    2014-12-30

    The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthetic operon. AtxA activity is elevated during growth in media containing glucose and CO2/bicarbonate, and there is a positive correlation between the CO2/bicarbonate signal, AtxA activity and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (HisAsp) and phosphoablative (HisAla) amino acid changes for activity in B.anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (i) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (ii) phosphorylation of H379 in PRD2 disrupts dimer formation. The AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator, and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism.

  13. Dissection of the EntF condensation domain boundary and active site residues in nonribosomal peptide synthesis.

    PubMed

    Roche, Eric D; Walsh, Christopher T

    2003-02-11

    Nonribosomal peptide synthetases (NRPSs) make many natural products of clinical importance, but a deeper understanding of the protein domains that compose NRPS assembly lines is required before these megasynthetases can be effectively engineered to produce novel drugs. The N-terminal amide bond-forming condensation (C) domain of the enterobactin NRPS EntF was excised from the multidomain synthetase using endpoints determined from sequence alignments and secondary structure predictions. The isolated domain was well-folded when compared by circular dichroism to the vibriobactin NRPS VibH, a naturally free-standing C domain. The EntF domain was also fully functional in an assay based on a synthetic small-molecule substrate, seryl N-acetylcysteamine. Active site mutants of the EntF C domain were surprisingly inactive in vitro as compared to their VibH counterparts, yet maintained the overall domain structure. An in vivo assay was developed in the context of the full-length EntF protein to more sensitively probe the activity level of the C domain mutants, and this supported strong effects for the active site mutations. The crucial role of histidine-138 was confirmed by assay of the full-length protein in vitro. These results suggest a strong resemblance of catalysis by the EntF C domain to chloramphenicol acetyltransferase, including an active site organized by an arginine-aspartate salt bridge, a key histidine acting as a general base, and an asparagine instead of a serine stabilizing the proposed tetrahedral intermediate by hydrogen bonding. The precise definition of a functional C domain excised from a NRPS should aid efforts at swapping NRPS domains between assembly lines.

  14. Histidine 352 (His352) and Tryptophan 355 (Trp355) Are Essential for Flax UGT74S1 Glucosylation Activity toward Secoisolariciresinol

    PubMed Central

    Ghose, Kaushik; McCallum, Jason; Sweeney-Nixon, Marva; Fofana, Bourlaye

    2015-01-01

    Flax secoisolariciresinol diglucoside (SDG) lignan is a natural phytoestrogen for which a positive role in metabolic diseases is emerging. Until recently however, much less was known about SDG and its monoglucoside (SMG) biosynthesis. Lately, flax UGT74S1 was identified and characterized as an enzyme sequentially glucosylating secoisolariciresinol (SECO) into SMG and SDG when expressed in yeast. However, the amino acids critical for UGT74S1 glucosyltransferase activity were unknown. A 3D structural modeling and docking, site-directed mutagenesis of five amino acids in the plant secondary product glycosyltransferase (PSPG) motif, and enzyme assays were conducted. UGT74S1 appeared to be structurally similar to the Arabidopsis thaliana UGT72B1 model. The ligand docking predicted Ser357 and Trp355 as binding to the phosphate and hydroxyl groups of UDP-glucose, whereas Cys335, Gln337 and Trp355 were predicted to bind the 7-OH, 2-OCH3 and 17-OCH3 of SECO. Site-directed mutagenesis of Cys335, Gln337, His352, Trp355 and Ser357, and enzyme assays revealed an alteration of these binding sites and a significant reduction of UGT74S1 glucosyltransferase catalytic activity towards SECO and UDP-glucose in all mutants. A complete abolition of UGT74S1 activity was observed when Trp355 was substituted to Ala355 and Gly355 or when changing His352 to Asp352, and an altered metabolite profile was observed in Cys335Ala, Gln337Ala, and Ser357Ala mutants. This study provided for the first time evidence that Trp355 and His352 are critical for UGT74S1’s glucosylation activity toward SECO and suggested the possibility for SMG production in vitro. PMID:25714779

  15. Probing the Tautomerism of Histidine

    NASA Astrophysics Data System (ADS)

    Bermudez, C.; Cabezas, C.; Mata, S.; Alonso, J. L.

    2013-06-01

    The rotational spectrum of histidine, showing a complex nuclear quadrupole interactions arising from three ^{14}N nuclei in non-equivalent positions have been resolved and completely analyzed. Solid samples (m.p. 290°C) were vaporized by laser ablation and probed by Fourier transform microwave spectroscopy in a supersonic expansion. The experimental constants clearly lead to the unambiguous identification of the \\varepsilon tautomer in the gas phase.

  16. Synthesis of selectively labeled histidine and its methylderivatives with deuterium, tritium, and carbon-14.

    PubMed

    Šamonina-Kosicka, J; Kańska, M

    2013-05-30

    Isotopologues of l-histidine and its N-methylderivatives labeled with deuterium and tritium at the 5-position in the imidazole ring were obtained using the isotope exchange method. The deuterium-labeled isotopologues [5-(2)H]-l-histidine, [5-(2)H]-N(τ) -methyl-l-histidine, [5-(2)H]-N(π) -methyl-l-histidine, and [2,5-(2)H(2)]-l-histidine were synthesized by isotope exchange method carried out in a fully deuterated medium with. The same reaction conditions were applied to synthesize [5-(3)H]-N(τ) -methyl-l-histidine, [5-(3)H]-N(π) -methyl-l-histidine, and [5-(3)H]-l-histidine with specific activity of 2.0, 5.0, and 2.6 MBq/mmol, respectively. The N(π) -[methyl-(14)C]-histamine was obtained with specific activity of 0.23 MBq/mmol in a one-step reaction by the direct methylation of histamine by [(14)C]iodomethane.

  17. Active Sites Environmental Monitoring Program: Program plan

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  18. [Structural regularities in activated cleavage sites of thrombin receptors].

    PubMed

    Mikhaĭlik, I V; Verevka, S V

    1999-01-01

    Comparison of thrombin receptors activation splitting sites sequences testifies to their similarity both in activation splitting sites of protein precursors and protein proteinase inhibitors reactive sites. In all these sites corresponded to effectory sites P2'-positions are placed by hydrophobic amino-acids only. The regularity defined conforms with previous thesis about the role of effectory S2'-site in regulation of the processes mediated by serine proteinases.

  19. Differences and similarities in binding of pyruvate and L-lactate in the active site of M4 and H4 isoforms of human lactate dehydrogenase.

    PubMed

    Swiderek, Katarzyna; Paneth, Piotr

    2011-01-01

    We present QM/MM calculations that show differences in geometries of active sites of M(4) and H(4) isoforms of human LDH ligated with oxamate, pyruvate or L-lactate. As the consequence of these differences, binding isotope effects of the methyl hydrogen atoms of pyruvate and l-lactate may be used to experimentally distinguish these isoforms. Based on the FEP calculations we argue that L-lactate is a better candidate for the experimental studies. Our calculations of energies of interactions of ligands with the active site residues provide explanation for the observed experimentally sensitivity to inhibition of the M(4) isoenzyme isoform and pinpoint the differences to interactions of the ligand with the histidine residue. We conclude that pyruvate interacts much stronger in the active site of H(4) than M(4) isoform and that the latter interactions are weaker than with water molecules in the aqueous solution.

  20. The cooperative effect between active site ionized groups and water desolvation controls the alteration of acid/base catalysis in serine proteases.

    PubMed

    Shokhen, Michael; Khazanov, Netaly; Albeck, Amnon

    2007-08-13

    What is the driving force that alters the catalytic function of His57 in serine proteases between general base and general acid in each step along the enzymatic reaction? The stable tetrahedral complexes (TC) of chymotrypsin with trifluoromethyl ketone transition state analogue inhibitors are topologically similar to the catalytic transition state. Therefore, they can serve as a good model to study the enzyme catalytic reaction. We used DFT quantum mechanical calculations to analyze the effect of solvation and of polar factors in the active site of chymotrypsin on the pKa of the catalytic histidine in FE (the free enzyme), EI (the noncovalent enzyme inhibitor complex), and TC. We demonstrated that the acid/base alteration is controlled by the charged groups in the active site--the catalytic Asp102 carboxylate and the oxyanion. The effect of these groups on the catalytic His is modulated by water solvation of the active site.

  1. The Molybdenum Active Site of Formate Dehydrogenase Is Capable of Catalyzing C-H Bond Cleavage and Oxygen Atom Transfer Reactions.

    PubMed

    Hartmann, Tobias; Schrapers, Peer; Utesch, Tillmann; Nimtz, Manfred; Rippers, Yvonne; Dau, Holger; Mroginski, Maria Andrea; Haumann, Michael; Leimkühler, Silke

    2016-04-26

    Formate dehydrogenases (FDHs) are capable of performing the reversible oxidation of formate and are enzymes of great interest for fuel cell applications and for the production of reduced carbon compounds as energy sources from CO2. Metal-containing FDHs in general contain a highly conserved active site, comprising a molybdenum (or tungsten) center coordinated by two molybdopterin guanine dinucleotide molecules, a sulfido and a (seleno-)cysteine ligand, in addition to a histidine and arginine residue in the second coordination sphere. So far, the role of these amino acids in catalysis has not been studied in detail, because of the lack of suitable expression systems and the lability or oxygen sensitivity of the enzymes. Here, the roles of these active site residues is revealed using the Mo-containing FDH from Rhodobacter capsulatus. Our results show that the cysteine ligand at the Mo ion is displaced by the formate substrate during the reaction, the arginine has a direct role in substrate binding and stabilization, and the histidine elevates the pKa of the active site cysteine. We further found that in addition to reversible formate oxidation, the enzyme is further capable of reducing nitrate to nitrite. We propose a mechanistic scheme that combines both functionalities and provides important insights into the distinct mechanisms of C-H bond cleavage and oxygen atom transfer catalyzed by formate dehydrogenase.

  2. Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation

    SciTech Connect

    Boudreaux, David A.; Maiti, Tushar K.; Davies, Christopher W.; Das, Chittaranjan

    2010-07-06

    Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a Parkinson disease-associated, putative cysteine protease found abundantly and selectively expressed in neurons. The crystal structure of apo UCHL1 showed that the active-site residues are not aligned in a canonical form, with the nucleophilic cysteine being 7.7 {angstrom} from the general base histidine, an arrangement consistent with an inactive form of the enzyme. Here we report the crystal structures of the wild type and two Parkinson disease-associated variants of the enzyme, S18Y and I93M, bound to a ubiquitin-based suicide substrate, ubiquitin vinyl methyl ester. These structures reveal that ubiquitin vinyl methyl ester binds primarily at two sites on the enzyme, with its carboxy terminus at the active site and with its amino-terminal {beta}-hairpin at the distal site - a surface-exposed hydrophobic crevice 17 {angstrom} away from the active site. Binding at the distal site initiates a cascade of side-chain movements in the enzyme that starts at a highly conserved, surface-exposed phenylalanine and is relayed to the active site resulting in the reorientation and proximal placement of the general base within 4 {angstrom} of the catalytic cysteine, an arrangement found in productive cysteine proteases. Mutation of the distal-site, surface-exposed phenylalanine to alanine reduces ubiquitin binding and severely impairs the catalytic activity of the enzyme. These results suggest that the activity of UCHL1 may be regulated by its own substrate.

  3. Epsilon glutathione transferases possess a unique class-conserved subunit interface motif that directly interacts with glutathione in the active site

    PubMed Central

    Wongsantichon, Jantana; Robinson, Robert C.; Ketterman, Albert J.

    2015-01-01

    Epsilon class glutathione transferases (GSTs) have been shown to contribute significantly to insecticide resistance. We report a new Epsilon class protein crystal structure from Drosophila melanogaster for the glutathione transferase DmGSTE6. The structure reveals a novel Epsilon clasp motif that is conserved across hundreds of millions of years of evolution of the insect Diptera order. This histidine-serine motif lies in the subunit interface and appears to contribute to quaternary stability as well as directly connecting the two glutathiones in the active sites of this dimeric enzyme. PMID:26487708

  4. Identification of a target gene and activating stimulus for the YpdA/YpdB histidine kinase/response regulator system in Escherichia coli.

    PubMed

    Fried, Luitpold; Behr, Stefan; Jung, Kirsten

    2013-02-01

    Escherichia coli contains 30 two-component systems (TCSs), each consisting of a histidine kinase and a response regulator. Whereas most TCSs are well characterized in this model organism, little is known about the YpdA/YpdB system. To identify YpdB-regulated genes, we compared the transcriptomes of E. coli cells overproducing either YpdB or a control protein. Expression levels of 15 genes differed by more than 1.9-fold between the two strains. A comprehensive evaluation of these genes identified yhjX as the sole target of YpdB. Electrophoretic mobility shift assays with purified YpdB confirmed its interaction with the yhjX promoter. Specifically, YpdB binds to two direct repeats of the motif GGCATTTCAT separated by an 11-bp spacer in the yhjX promoter. yhjX encodes a cytoplasmic membrane protein of unknown function that belongs to the major facilitator superfamily of transporters. Finally, we characterized the pattern of yhjX expression and identified extracellular pyruvate as a stimulus for the YpdA/YpdB system. It is suggested that YpdA/YpdB contributes to nutrient scavenging before entry into stationary phase.

  5. Hydrophobic Effect Drives Oxygen Uptake in Myoglobin via Histidine E7*

    PubMed Central

    Boechi, Leonardo; Arrar, Mehrnoosh; Martí, Marcelo A.; Olson, John S.; Roitberg, Adrián E.; Estrin, Darío A.

    2013-01-01

    Since the elucidation of the myoglobin (Mb) structure, a histidine residue on the E helix (His-E7) has been proposed to act as a gate with an open or closed conformation controlling access to the active site. Although it is believed that at low pH, the His-E7 gate is in its open conformation, the full relationship between the His-E7 protonation state, its conformation, and ligand migration in Mb is hotly debated. We used molecular dynamics simulations to first address the effect of His-E7 protonation on its conformation. We observed the expected shift from the closed to the open conformation upon protonation, but more importantly, noted a significant difference between the conformations of the two neutral histidine tautomers. We further computed free energy profiles for oxygen migration in each of the possible His-E7 states as well as in two instructive Mb mutants: Ala-E7 and Trp-E7. Our results show that even in the closed conformation, the His-E7 gate does not create a large barrier to oxygen migration and permits oxygen entry with only a small rotation of the imidazole side chain and movement of the E helix. We identify, instead, a hydrophobic site in the E7 channel that can accommodate an apolar diatomic ligand and enhances ligand uptake particularly in the open His-E7 conformation. This rate enhancement is diminished in the closed conformation. Taken together, our results provide a new conceptual framework for the histidine gate hypothesis. PMID:23297402

  6. Mutational and structural analyses of Caldanaerobius polysaccharolyticus Man5B reveal novel active site residues for family 5 glycoside hydrolases.

    PubMed

    Oyama, Takuji; Schmitz, George E; Dodd, Dylan; Han, Yejun; Burnett, Alanna; Nagasawa, Naoko; Mackie, Roderick I; Nakamura, Haruki; Morikawa, Kosuke; Cann, Isaac

    2013-01-01

    CpMan5B is a glycoside hydrolase (GH) family 5 enzyme exhibiting both β-1,4-mannosidic and β-1,4-glucosidic cleavage activities. To provide insight into the amino acid residues that contribute to catalysis and substrate specificity, we solved the structure of CpMan5B at 1.6 Å resolution. The structure revealed several active site residues (Y12, N92 and R196) in CpMan5B that are not present in the active sites of other structurally resolved GH5 enzymes. Residue R196 in GH5 enzymes is thought to be strictly conserved as a histidine that participates in an electron relay network with the catalytic glutamates, but we show that an arginine fulfills a functionally equivalent role and is found at this position in every enzyme in subfamily GH5_36, which includes CpMan5B. Residue N92 is required for full enzymatic activity and forms a novel bridge over the active site that is absent in other family 5 structures. Our data also reveal a role of Y12 in establishing the substrate preference for CpMan5B. Using these molecular determinants as a probe allowed us to identify Man5D from Caldicellulosiruptor bescii as a mannanase with minor endo-glucanase activity.

  7. Mutational and Structural Analyses of Caldanaerobius polysaccharolyticus Man5B Reveal Novel Active Site Residues for Family 5 Glycoside Hydrolases

    PubMed Central

    Han, Yejun; Burnett, Alanna; Nagasawa, Naoko; Mackie, Roderick I.; Nakamura, Haruki; Morikawa, Kosuke; Cann, Isaac

    2013-01-01

    CpMan5B is a glycoside hydrolase (GH) family 5 enzyme exhibiting both β-1,4-mannosidic and β-1,4-glucosidic cleavage activities. To provide insight into the amino acid residues that contribute to catalysis and substrate specificity, we solved the structure of CpMan5B at 1.6 Å resolution. The structure revealed several active site residues (Y12, N92 and R196) in CpMan5B that are not present in the active sites of other structurally resolved GH5 enzymes. Residue R196 in GH5 enzymes is thought to be strictly conserved as a histidine that participates in an electron relay network with the catalytic glutamates, but we show that an arginine fulfills a functionally equivalent role and is found at this position in every enzyme in subfamily GH5_36, which includes CpMan5B. Residue N92 is required for full enzymatic activity and forms a novel bridge over the active site that is absent in other family 5 structures. Our data also reveal a role of Y12 in establishing the substrate preference for CpMan5B. Using these molecular determinants as a probe allowed us to identify Man5D from Caldicellulosiruptor bescii as a mannanase with minor endo-glucanase activity. PMID:24278284

  8. Substituent Effects in π-Stacking of Histidine on Functionalized-SWNT and Graphene.

    PubMed

    Tian, Ge; Li, Huifang; Ma, Wanyong; Wang, Yixuan

    2015-06-15

    Adsorptions of histidine on the functionalized (10,0) single-walled carbon nanotube (SWNT) and graphene were investigated using density function theory methods, M05-2x and DFT-D. The results show that the binding of the histidine ring to the functionalized SWNT is weaker than that to the pristine SWNT for both singlet and triplet complexes, regardless of the electron-donating (-OH, -NH2) or electron-withdrawing (-COOH) character and their attached sites. The present decreased binding is opposite to the well-known enhanced binding in the substituted benzene dimers. Since the atoms of the histidine are distant from the substituent atoms by over 6Å, there would be no direct interaction between histidine and the substituent as in the case of the substituted benzene systems. The decreased binding can be mainly driven by the aromaticity of the functionalized SWNT. The nucleus-independent chemical shift (NICS) index analysis for the functionalized SWNTs in deed shows that local aromaticity of SWNT is decreased because of the electron redistribution induced by functional groups, and the π-π stacking between the histidine ring and functionalized-SWNT is therefore decreased as compared to the pristine SWNT. However, the above trend does not remain for the binding between the histidine and graphene. The binding of the histidine to the functionalized graphene with -OH and -NH2 is just slightly weaker than that to the pristine graphene, while its binding to COOH-SWNT becomes a little bit stronger.

  9. The Phylogeny and Active Site Design of Eukaryotic Copper-only Superoxide Dismutases

    DOE PAGES

    Peterson, Ryan L.; Galaleldeen, Ahmad; Villarreal, Johanna; ...

    2016-08-17

    In eukaryotes the bimetallic Cu/Zn superoxide dismutase (SOD) enzymes play important roles in the biology of reactive oxygen species by disproportionating superoxide anion. We reported that the fungal pathogen Candida albicans expresses a novel copper-only SOD, known as SOD5, that lacks the zinc cofactor and electrostatic loop (ESL) domain of Cu/Zn-SODs for substrate guidance. In spite of these abnormalities, C. albicans SOD5 can disproportionate superoxide at rates limited only by diffusion. Here we demonstrate that this curious copper-only SOD occurs throughout the fungal kingdom as well as in phylogenetically distant oomycetes or “pseudofungi” species. It is the only form ofmore » extracellular SOD in fungi and oomycetes, in stark contrast to the extracellular Cu/Zn-SODs of plants and animals. Through structural biology and biochemical approaches we demonstrate that these copper-only SODs have evolved with a specialized active site consisting of two highly conserved residues equivalent to SOD5 Glu-110 and Asp-113. The equivalent positions are zinc binding ligands in Cu/Zn-SODs and have evolved in copper-only SODs to control catalysis and copper binding in lieu of zinc and the ESL. Similar to the zinc ion in Cu/Zn-SODs, SOD5 Glu-110 helps orient a key copper-coordinating histidine and extends the pH range of enzyme catalysis. Furthermore, SOD5 Asp-113 connects to the active site in a manner similar to that of the ESL in Cu/Zn-SODs and assists in copper cofactor binding. Copper-only SODs are virulence factors for certain fungal pathogens; thus this unique active site may be a target for future anti-fungal strategies.« less

  10. The Phylogeny and Active Site Design of Eukaryotic Copper-only Superoxide Dismutases

    SciTech Connect

    Peterson, Ryan L.; Galaleldeen, Ahmad; Villarreal, Johanna; Taylor, Alexander B.; Cabelli, Diane E.; Hart, P. John; Culotta, Valeria C.

    2016-08-17

    In eukaryotes the bimetallic Cu/Zn superoxide dismutase (SOD) enzymes play important roles in the biology of reactive oxygen species by disproportionating superoxide anion. We reported that the fungal pathogen Candida albicans expresses a novel copper-only SOD, known as SOD5, that lacks the zinc cofactor and electrostatic loop (ESL) domain of Cu/Zn-SODs for substrate guidance. In spite of these abnormalities, C. albicans SOD5 can disproportionate superoxide at rates limited only by diffusion. Here we demonstrate that this curious copper-only SOD occurs throughout the fungal kingdom as well as in phylogenetically distant oomycetes or “pseudofungi” species. It is the only form of extracellular SOD in fungi and oomycetes, in stark contrast to the extracellular Cu/Zn-SODs of plants and animals. Through structural biology and biochemical approaches we demonstrate that these copper-only SODs have evolved with a specialized active site consisting of two highly conserved residues equivalent to SOD5 Glu-110 and Asp-113. The equivalent positions are zinc binding ligands in Cu/Zn-SODs and have evolved in copper-only SODs to control catalysis and copper binding in lieu of zinc and the ESL. Similar to the zinc ion in Cu/Zn-SODs, SOD5 Glu-110 helps orient a key copper-coordinating histidine and extends the pH range of enzyme catalysis. Furthermore, SOD5 Asp-113 connects to the active site in a manner similar to that of the ESL in Cu/Zn-SODs and assists in copper cofactor binding. Copper-only SODs are virulence factors for certain fungal pathogens; thus this unique active site may be a target for future anti-fungal strategies.

  11. ACTION OF A HISTIDINE ANALOGUE, 1,2,4-TRIAZOLE-3-ALANINE, IN SALMONELLA TYPHIMURIUM

    PubMed Central

    Levin, Alfred P.; Hartman, Philip E.

    1963-01-01

    Levin, Alfred P. (The Johns Hopkins University, Baltimore, Md.), and Philip E. Hartman. Action of a histidine analogue, 1,2,4-triazole-3-alanine, in Salmonella typhimurium. J. Bacteriol. 86:820–828. 1963.—The effect of the histidine analogue, 1,2,4-triazole-3-alanine (TRA), on growth and enzyme synthesis in histidine auxotrophs of Salmonella typhimurium has been studied. TRA allows an increase of approximately 50% in the amount of protein in a culture but does not allow concomitant synthesis of ribonucleic acid and deoxyribonucleic acid. Although the analogue prevents the formation of active bacteriophage and of enzymatically active inosine 5′-phosphate dehydrogenase, it does not prevent the formation of enzymatically active l-histidinol phosphate phosphatase or of imidazoleacetol phosphate transaminase, two enzymes involved in the biosynthesis of histidine. Of the three known functions of histidine in the cell, TRA mimics two: it is incorporated into protein, and it acts as a repressor material for synthesis of enzymes involved in the formation of histidine. TRA fails to act as a feedback inhibitor of the first step in the formation of histidine. Images PMID:14066480

  12. Modulation of Escherichia coli Adenylyl Cyclase Activity by Catalytic-Site Mutants of Protein IIAGlc of the Phosphoenolpyruvate:Sugar Phosphotransferase System

    PubMed Central

    Reddy, Prasad; Kamireddi, Madhavi

    1998-01-01

    It is demonstrated here that in Escherichia coli, the phosphorylated form of the glucose-specific phosphocarrier protein IIAGlc of the phosphoenolpyruvate:sugar phosphotransferase system is an activator of adenylyl cyclase and that unphosphorylated IIAGlc has no effect on the basal activity of adenylyl cyclase. To elucidate the specific role of IIAGlc phosphorylation in the regulation of adenylyl cyclase activity, both the phosphorylatable histidine (H90) and the interactive histidine (H75) of IIAGlc were mutated by site-directed mutagenesis to glutamine and glutamate. Wild-type IIAGlc and the H75Q mutant, in which the histidine in position 75 has been replaced by glutamine, were phosphorylated by the phosphohistidine-containing phosphocarrier protein (HPr∼P) and were equally potent activators of adenylyl cyclase. Neither the H90Q nor the H90E mutant of IIAGlc was phosphorylated by HPr∼P, and both failed to activate adenylyl cyclase. Furthermore, replacement of H75 by glutamate inhibited the appearance of a steady-state level of phosphorylation of H90 of this mutant protein by HPr∼P, yet the H75E mutant of IIAGlc was a partial activator of adenylyl cyclase. The H75E H90A double mutant, which cannot be phosphorylated, did not activate adenylyl cyclase. This suggests that the H75E mutant was transiently phosphorylated by HPr∼P but the steady-state level of the phosphorylated form of the mutant protein was decreased due to the repulsive forces of the negatively charged glutamate at position 75 in the catalytic pocket. These results are discussed in the context of the proximity of H75 and H90 in the IIAGlc structure and the disposition of the negative charge in the modeled glutamate mutants. PMID:9457881

  13. Gene inactivation in Lactococcus lactis: histidine biosynthesis.

    PubMed Central

    Delorme, C; Godon, J J; Ehrlich, S D; Renault, P

    1993-01-01

    Lactococcus lactis strains from dairy and nondairy sources were tested for the ability to grow in the absence of histidine. Among 60 dairy strains tested, 56 required histidine, whereas only 1 of 11 nondairy strains had this requirement. Moreover, 10 of the 56 auxotrophic strains were able to grow in the presence of histidinol (Hol+), the immediate histidine precursor. This indicates that adaptation to milk often results in histidine auxotrophy. The histidine operon was detected by Southern hybridization in eight dairy auxotrophic strains tested. A large part of the histidine operon (8 kb, containing seven histidine biosynthetic genes and three unrelated open reading frames [ORFs]) was cloned from an auxotroph, which had an inactive hisD gene, as judged by its inability to grow on histidinol. Complementation analysis of three genes, hisA, hisB, and hisG, in Escherichia coli showed that they also were inactive. Sequence analysis of the cloned histidine region, which revealed 98.6% overall homology with that of the previously analyzed prototrophic strain, showed the presence of frameshift mutations in three his genes, hisC, hisG, and hisH, and two genes unrelated to histidine biosynthesis, ORF3 and ORF6. In addition, several mutations were detected in the promoter region of the operon. Northern (RNA) hybridization analysis showed a much lower amount of the his transcript in the auxotrophic strain than in the prototrophic strain. The mutations detected account for the histidine auxotrophy of the analyzed strain. Certain other dairy auxotrophic strains carry a lower number of mutations, since they were able to revert either to a Hol+ phenotype or to histidine prototrophy. Images PMID:7687248

  14. Crystal Structures of the Histidine Acid Phosphatase from Francisella tularensis Provide Insight into Substrate Recognition

    SciTech Connect

    Singh, Harkewal; Felts, Richard L.; Schuermann, Jonathan P.; Reilly, Thomas J.; Tanner, John J.

    2009-12-01

    Histidine acid phosphatases catalyze the transfer of a phosphoryl group from phosphomonoesters to water at acidic pH using an active-site histidine. The histidine acid phosphatase from the category A pathogen Francisella tularensis (FtHAP) has been implicated in intramacrophage survival and virulence, motivating interest in understanding the structure and mechanism of this enzyme. Here, we report a structure-based study of ligand recognition by FtHAP. The 1.70-{angstrom}-resolution structure of FtHAP complexed with the competitive inhibitor L(+)-tartrate was solved using single-wavelength anomalous diffraction phasing. Structures of the ligand-free enzyme and the complex with inorganic phosphate were determined at resolutions of 1.85 and 1.70 {angstrom}, respectively. The structure of the Asp261Ala mutant enzyme complexed with the substrate 3'-AMP was determined at 1.50 {angstrom} resolution to gain insight into substrate recognition. FtHAP exhibits a two-domain fold similar to that of human prostatic acid phosphatase, consisting of an {alpha}/{beta} core domain and a smaller domain that caps the core domain. The structures show that the core domain supplies the phosphoryl binding site, catalytic histidine (His17), and an aspartic acid residue (Asp261) that protonates the leaving group, while the cap domain contributes residues that enforce substrate preference. FtHAP and human prostatic acid phosphatase differ in the orientation of the crucial first helix of the cap domain, implying differences in the substrate preferences of the two enzymes. 3'-AMP binds in one end of a 15-{angstrom}-long tunnel, with the adenine clamped between Phe23 and Tyr135, and the ribose 2'-hydroxyl interacting with Gln132. The importance of the clamp is confirmed with site-directed mutagenesis; mutation of Phe23 and Tyr135 individually to Ala increases K{sub m} by factors of 7 and 10, respectively. The structural data are consistent with a role for FtHAP in scavenging phosphate from small

  15. Discovery of novel histidine-derived lipo-amino acids: applied in the synthesis of ultra-short antimicrobial peptidomimetics having potent antimicrobial activity, salt resistance and protease stability.

    PubMed

    Ahn, Mija; Murugan, Ravichandran N; Jacob, Binu; Hyun, Jae-Kyung; Cheong, Chaejoon; Hwang, Eunha; Park, Hyo-Nam; Seo, Ji-Hyung; Srinivasrao, G; Lee, Kyung S; Shin, Song Yub; Bang, Jeong Kyu

    2013-10-01

    Here we report for the first time the synthesis of Histidine (His) derived lipo-amino acids having pendant lipid tails at N(τ)- and N(π)-positions on imidazole group of His and applied it into synthesis of lipo-peptides. The attachment of His-derived lipo-amino acid into the very short inactive cationic peptides endows potent antimicrobial activity against Gram-positive and Gram-negative bacteria without hemolytic activity. Furthermore, our designed His-derived lipo-peptidomimetics (HDLPs) consisting of two or three residues displayed strong anti-MRSA activity and protease stability as well as retained potent antimicrobial activity under high salt concentration. Our results demonstrate that the novel lipo-amino acid is highly flexible to synthesize and carry out the extensive structure-activity relationship (SAR) on lipo-antimicrobial peptidomimetics and represents a unique amenable platform for modifying parameters important for antimicrobial activity. Through this study, we proved that the discovery of His-derived lipo-amino acid and the corresponding HDLPs are an excellent candidate as a lead compound for the development of novel antimicrobial agents.

  16. MYST protein acetyltransferase activity requires active site lysine autoacetylation.

    PubMed

    Yuan, Hua; Rossetto, Dorine; Mellert, Hestia; Dang, Weiwei; Srinivasan, Madhusudan; Johnson, Jamel; Hodawadekar, Santosh; Ding, Emily C; Speicher, Kaye; Abshiru, Nebiyu; Perry, Rocco; Wu, Jiang; Yang, Chao; Zheng, Y George; Speicher, David W; Thibault, Pierre; Verreault, Alain; Johnson, F Bradley; Berger, Shelley L; Sternglanz, Rolf; McMahon, Steven B; Côté, Jacques; Marmorstein, Ronen

    2012-01-04

    The MYST protein lysine acetyltransferases are evolutionarily conserved throughout eukaryotes and acetylate proteins to regulate diverse biological processes including gene regulation, DNA repair, cell-cycle regulation, stem cell homeostasis and development. Here, we demonstrate that MYST protein acetyltransferase activity requires active site lysine autoacetylation. The X-ray crystal structures of yeast Esa1 (yEsa1/KAT5) bound to a bisubstrate H4K16CoA inhibitor and human MOF (hMOF/KAT8/MYST1) reveal that they are autoacetylated at a strictly conserved lysine residue in MYST proteins (yEsa1-K262 and hMOF-K274) in the enzyme active site. The structure of hMOF also shows partial occupancy of K274 in the unacetylated form, revealing that the side chain reorients to a position that engages the catalytic glutamate residue and would block cognate protein substrate binding. Consistent with the structural findings, we present mass spectrometry data and biochemical experiments to demonstrate that this lysine autoacetylation on yEsa1, hMOF and its yeast orthologue, ySas2 (KAT8) occurs in solution and is required for acetylation and protein substrate binding in vitro. We also show that this autoacetylation occurs in vivo and is required for the cellular functions of these MYST proteins. These findings provide an avenue for the autoposttranslational regulation of MYST proteins that is distinct from other acetyltransferases but draws similarities to the phosphoregulation of protein kinases.

  17. MYST protein acetyltransferase activity requires active site lysine autoacetylation

    PubMed Central

    Yuan, Hua; Rossetto, Dorine; Mellert, Hestia; Dang, Weiwei; Srinivasan, Madhusudan; Johnson, Jamel; Hodawadekar, Santosh; Ding, Emily C; Speicher, Kaye; Abshiru, Nebiyu; Perry, Rocco; Wu, Jiang; Yang, Chao; Zheng, Y George; Speicher, David W; Thibault, Pierre; Verreault, Alain; Johnson, F Bradley; Berger, Shelley L; Sternglanz, Rolf; McMahon, Steven B; Côté, Jacques; Marmorstein, Ronen

    2012-01-01

    The MYST protein lysine acetyltransferases are evolutionarily conserved throughout eukaryotes and acetylate proteins to regulate diverse biological processes including gene regulation, DNA repair, cell-cycle regulation, stem cell homeostasis and development. Here, we demonstrate that MYST protein acetyltransferase activity requires active site lysine autoacetylation. The X-ray crystal structures of yeast Esa1 (yEsa1/KAT5) bound to a bisubstrate H4K16CoA inhibitor and human MOF (hMOF/KAT8/MYST1) reveal that they are autoacetylated at a strictly conserved lysine residue in MYST proteins (yEsa1-K262 and hMOF-K274) in the enzyme active site. The structure of hMOF also shows partial occupancy of K274 in the unacetylated form, revealing that the side chain reorients to a position that engages the catalytic glutamate residue and would block cognate protein substrate binding. Consistent with the structural findings, we present mass spectrometry data and biochemical experiments to demonstrate that this lysine autoacetylation on yEsa1, hMOF and its yeast orthologue, ySas2 (KAT8) occurs in solution and is required for acetylation and protein substrate binding in vitro. We also show that this autoacetylation occurs in vivo and is required for the cellular functions of these MYST proteins. These findings provide an avenue for the autoposttranslational regulation of MYST proteins that is distinct from other acetyltransferases but draws similarities to the phosphoregulation of protein kinases. PMID:22020126

  18. His-65 in the proton–sucrose symporter is an essential amino acid whose modification with site-directed mutagenesis increases transport activity

    PubMed Central

    Lu, Jade M.-Y.; Bush, Daniel R.

    1998-01-01

    The proton–sucrose symporter that mediates phloem loading is a key component of assimilate partitioning in many higher plants. Previous biochemical investigations showed that a diethyl pyrocarbonate-sensitive histidine residue is at or near the substrate-binding site of the symporter. Among the proton–sucrose symporters cloned to date, only the histidine residue at position 65 of AtSUC1 from Arabidopsis thaliana is conserved across species. To test whether His-65 is involved in the transport reaction, we have used site-directed mutagenesis and functional expression in yeast to determine the significance of this residue in the reaction mechanism. Symporters with mutations at His-65 exhibited a range of activities; for example, the H65C mutant resulted in the complete loss of transport capacity, whereas H65Q was almost as active as wild type. Surprisingly, the H65K and H65R symporters transport sucrose at significantly higher rates (increased Vmax) than the wild-type symporter, suggesting His-65 may be associated with a rate-limiting step in the transport reaction. RNA gel blot and protein blot analyses showed that, with the exception of H65C, the variation in transport activity was not because of alterations in steady-state levels of mRNA or symporter protein. Significantly, those symporters with substitutions of His-65 that remained transport competent were no longer sensitive to inactivation by diethyl pyrocarbonate, demonstrating that this is the inhibitor-sensitive histidine residue. Taken together with our previous results, these data show that His-65 is involved in sucrose binding, and increased rates of transport implicate this region of the protein in the transport reaction. PMID:9671798

  19. Investigation of the Role of the Histidine-Aspartate Pair in the Human Exonuclease III-like Abasic Endonuclease, Ape1

    SciTech Connect

    Lowry, David F. ); Hoyt, David W. ); Khazi, Fayaz A.; Bagu, John R. ); Lindsey, Andrea G.; Wilson, David M.

    2003-05-30

    Hydrogen bonded histidine-aspartate (His-Asp) pairs are critical constituents in several key enzymatic reactions. To date, the role that these pairs play in catalysis is best understood in serine and trypsin-like proteases, where structural and biochemical NMR studies have revealed important pKa values and hydrogen-bonding patterns within the catalytic pocket. However, the role of the His-Asp pair in metal-assisted catalysis is less clear. Here, we apply liquid state NMR to investigate the role of a critical histidine of apurinic endonuclease 1 (Ape1), a human DNA repair enzyme that cleaves adjacent to abasic sites in DNA using one or more divalent cations and an active site His-Asp pair. The studies within suggest that the Ape1 His- Asp pair functions as neither a general base catalyst nor a metal ligand. Rather, the pair likely stabilizes the pentavalent transition state necessary for phospho-transfer.

  20. Effects of the location of distal histidine in the reaction of myoglobin with hydrogen peroxide.

    PubMed

    Matsui, T; Ozaki, S i; Liong, E; Phillips, G N; Watanabe, Y

    1999-01-29

    To clarify how the location of distal histidine affects the activation process of H2O2 by heme proteins, we have characterized reactions with H2O2 for the L29H/H64L and F43H/H64L mutants of sperm whale myoglobin (Mb), designed to locate the histidine farther from the heme iron. Whereas the L29H/H64L double substitution retarded the reaction with H2O2, an 11-fold rate increase versus wild-type Mb was observed for the F43H/H64L mutant. The Vmax values for 1-electron oxidations by the myoglobins correlate well with the varied reactivities with H2O2. The functions of the distal histidine as a general acid-base catalyst were examined based on the reactions with cumene hydroperoxide and cyanide, and only the histidine in F43H/H64L Mb was suggested to facilitate heterolysis of the peroxide bond. The x-ray crystal structures of the mutants confirmed that the distal histidines in F43H/H64L Mb and peroxidase are similar in distance from the heme iron, whereas the distal histidine in L29H/H64L Mb is located too far to enhance heterolysis. Our results indicate that the proper positioning of the distal histidine is essential for the activation of H2O2 by heme enzymes.

  1. Role of histidine/histamine in carnosine-induced neuroprotection during ischemic brain damage.

    PubMed

    Bae, Ok-Nam; Majid, Arshad

    2013-08-21

    Urgent need exists for new therapeutic options in ischemic stroke. We recently demonstrated that carnosine, an endogenous dipeptide consisting of alanine and histidine, is robustly neuroprotective in ischemic brain injury and has a wide clinically relevant therapeutic time window. The precise mechanistic pathways that mediate this neuroprotective effect are not known. Following in vivo administration, carnosine is hydrolyzed into histidine, a precursor of histamine. It has been hypothesized that carnosine may exert its neuroprotective activities through the histidine/histamine pathway. Herein, we investigated whether the neuroprotective effect of carnosine is mediated by the histidine/histamine pathway using in vitro primary astrocytes and cortical neurons, and an in vivo rat model of ischemic stroke. In primary astrocytes, carnosine significantly reduced ischemic cell death after oxygen-glucose deprivation, and this effect was abolished by histamine receptor type I antagonist. However, histidine or histamine did not exhibit a protective effect on ischemic astrocytic cell death. In primary neuronal cultures, carnosine was found to be neuroprotective but histamine receptor antagonists had no effect on the extent of neuroprotection. The in vivo effect of histidine and carnosine was compared using a rat model of ischemic stroke; only carnosine exhibited neuroprotection. Taken together, our data demonstrate that although the protective effects of carnosine may be partially mediated by activity at the histamine type 1 receptor on astrocytes, the histidine/histamine pathway does not appear to play a critical role in carnosine induced neuroprotection.

  2. Catalase evolved to concentrate H2O2 at its active site.

    PubMed

    Domínguez, Laura; Sosa-Peinado, Alejandro; Hansberg, Wilhelm

    2010-08-01

    Catalase is a homo-tetrameric enzyme that has its heme active site deeply buried inside the protein. Its only substrate, hydrogen peroxide (H2O2), reaches the heme through a 45 A-long channel. Large-subunit catalases, but not small-subunit catalases, have a loop (gate loop) that interrupts the major channel. Two accesses lead to a gate that opens the final section of the channel to the heme; gates from the R-related subunits are interconnected. Using molecular dynamic simulations of the Neurospora crassa catalase-1 tetramer in a box of water (48,600 molecules) or 6M H2O2, it is shown that the number of H2O2 molecules augments at the surface of the protein and in the accesses to the gate and the final section of the channel. Increase in H2O2 is due to the prevalence and distribution of amino acids that have an increased residency for H2O2 (mainly histidine, proline and charged residues), which are localized at the protein surface and the accesses to the gate. In the section of the channel from the heme to the gate, turnover rate of water molecules was faster than for H2O2 and increased residence sites for water and H2O2 were determined. In the presence of H2O2, the exclusion of water molecules from a specific site suggests a mechanism that could contend with the competing activity of water, allowing for catalase high kinetic efficiency.

  3. Effects of intraperitoneally administered L-histidine on food intake, taste, and visceral sensation in rats.

    PubMed

    Okusha, Yuka; Hirai, Yoshiyuki; Maezawa, Hitoshi; Hisadome, Kazunari; Inoue, Nobuo; Yamazaki, Yutaka; Funahashi, Makoto

    2016-08-17

    To evaluate relative factors for anorectic effects of L-histidine, we performed behavioral experiments for measuring food and fluid intake, conditioned taste aversion (CTA), taste disturbance, and c-Fos immunoreactive (Fos-ir) cells before and after i.p. injection with L-histidine in rats. Animals were injected with saline (9 ml/kg, i.p.) for a control group, and saline (9 ml/kg, i.p.) containing L-histidine (0.75, 1.5, 2.0 g/kg) for a L-histidine group. Injection of L-histidine decreased the average value of food intake, and statistically significant anorectic effects were found in animals injected with 1.5 or 2.0 g/kg L-histidine but not with 0.75 g/kg L-histidine. Taste abnormalities were not detected in any of the groups. Animals injected with 2.0 g/kg L-histidine were revealed to present with nausea by the measurement of CTA. In this group, a significant increase in the number of Fos-ir cells was detected both in the area postrema and the nucleus tractus solitarius (NTS). In the 0.75 g/kg L-histidine group, a significant increase in the number of Fos-ir cells was detected only in the NTS. When the ventral gastric branch vagotomy was performed, recovery from anorexia became faster than the sham-operated group, however, vagotomized rats injected with 2.0 g/kg L-histidine still acquired CTA. These data indicate that acute anorectic effects induced by highly concentrated L-histidine are partly caused by induction of nausea and/or visceral discomfort accompanied by neuronal activities in the NTS and the area postrema. We suggest that acute and potent effects of L-histidine on food intake require substantial amount of L-histidine in the diet.

  4. Human serum histidine-rich glycoprotein. I. Interactions with heme, metal ions and organic ligands.

    PubMed

    Morgan, W T

    1978-08-21

    The 3.8 S alpha2-histidine-rich glycoprotein of human serum is composed of two non-identical subunits, each of which contains carbohydrate. The far ultraviolet circular dichroism spectrum of alpha2-histidine glycoprotein indicates that the protein has little alpha-helix but apparently appreciable amounts of beta-sheet and non-regular structures. alpha2-Histidine-rich glycoprotein binds heme with concomitant changes in the electrophoretic mobility of the protein, in the fluorescence of tryptophan residues, and in the absorption and optical activity of the heme chromophore. By fluorescence quenching, the stoichiometry of binding is 1 heme per alpha2-histidine-rich glycoprotein molecule with an apparent Kd near 1.5 muM; however, by changes in absorbance, the interaction of 9 to 10 additional heme molecules with the alpha protein can be detected. The absorption spectra of heme . alpha2-histidine-rich glycoprotein complexes resemble those of low-spin hemoproteins. The ellipticity induced in the heme chromophore on binding by alpha2-histidine-rich glycoprotein increases linearly up to about 10 hemes bound per mol protein. No change in the conformation of alpha2-histidine-rich glycoprotein was indicated by circular dichroism when one or two heme molecules are bound by the protein. alpha2-Histidine-rich glycoprotein does not effectively compete with human serum albumin for heme, suggesting that alpha2-histidine-rich glycoprotein has no major function in serum heme transport. Nonetheless, the binding of heme by alpha2-histidine-rich glycoprotein provides a means of studying the structure of this protein using the heme chromophore as a probe. alpha2-Histidine-rich glycoprotein also binds other organic molecules including bilirubin, diaquocobinamide, Cibacron blue F3GA and rose bengal, and certain divalent metals. It is of interest that copper, zinc, nickel, cadmium and cobalt effectively inhibit the binding of heme by alpha2-histidine-rich glycoprotein, whereas other

  5. Functional and structural characterization of EnvZ, an osmosensing histidine kinase of E. coli.

    PubMed

    Yoshida, Takeshi; Phadtare, Sangita; Inouye, Masayori

    2007-01-01

    EnvZ is an osmosensing histidine kinase located in the inner membrane, and one of the most extensively studied Escherichia coli histidine kinases. Because of its structural complexity, functional and structural studies have been quite challenging. It is a multidomain transmembrane protein consisting of 450 amino acid residues. In addition, it must form a dimer to function as a histidine kinase like all the other histidine kinases. EnvZ consists of the 115-residue periplasmic domain, two transmembrane domains (TM1 and TM2), and the cytoplasmic domain consisting of the 43-residue linker (HAMP) domain and the 228-residue kinase domain. It has been shown that the kinase domain of EnvZ, responsible for its enzymatic activities, contains all of the conserved regions of histidine kinases such as H, F, N, G1, G2, and G3 boxes. Therefore, the 271-residue cytoplasmic domain of EnvZ (termed EnvZc) has been used as a model system to establish fundamental characteristics of histidine kinases. The DNA fragment encoding EnvZc was cloned in pET vector and EnvZc was expressed and purified. It is highly soluble and retains all the enzymatic activities of EnvZ. We demonstrated that it consists of two functional domains, domain A and domain B. NMR spectroscopic studies of these two domains revealed, for the first time, the structure of a histidine kinase. Domain A is responsible for dimerization of EnvZc forming a four-helical bundle containing two alpha-helical hairpin structures, while domain B is a monomer and has an ATP-binding pocket formed by regions conserved among the histidine kinases. In this chapter, we describe functional and structural studies of EnvZc, which can be applied to characterize other histidine kinases.

  6. L-histidine inhibits biofilm formation and FLO11-associated phenotypes in Saccharomyces cerevisiae flor yeasts.

    PubMed

    Bou Zeidan, Marc; Zara, Giacomo; Viti, Carlo; Decorosi, Francesca; Mannazzu, Ilaria; Budroni, Marilena; Giovannetti, Luciana; Zara, Severino

    2014-01-01

    Flor yeasts of Saccharomyces cerevisiae have an innate diversity of Flo11p which codes for a highly hydrophobic and anionic cell-wall glycoprotein with a fundamental role in biofilm formation. In this study, 380 nitrogen compounds were administered to three S. cerevisiae flor strains handling Flo11p alleles with different expression levels. S. cerevisiae strain S288c was used as the reference strain as it cannot produce Flo11p. The flor strains generally metabolized amino acids and dipeptides as the sole nitrogen source, although with some exceptions regarding L-histidine and histidine containing dipeptides. L-histidine completely inhibited growth and its effect on viability was inversely related to Flo11p expression. Accordingly, L-histidine did not affect the viability of the Δflo11 and S288c strains. Also, L-histidine dramatically decreased air-liquid biofilm formation and adhesion to polystyrene of the flor yeasts with no effect on the transcription level of the Flo11p gene. Moreover, L-histidine modified the chitin and glycans content on the cell-wall of flor yeasts. These findings reveal a novel biological activity of L-histidine in controlling the multicellular behavior of yeasts [corrected].

  7. Effects of histidine and N-acetylcysteine on doxorubicin-induced cardiomyopathy in rats.

    PubMed

    Farshid, Amir Abbas; Tamaddonfard, Esmaeal; Simaee, Naeime; Mansouri, Sanam; Najafi, Sima; Asri-Rezaee, Siamak; Alavi, Hossein

    2014-06-01

    The amino acids histidine and n-acetylcysteine have many biological activities such as antioxidant effect. The present study investigated the effects of histidine and n-acetylcysteine on the heart lesions induced by doxorubicin (DOX) in rats. Forty-eight male Wistar rats were divided into two major groups treated intraperitoneally (i.p.) with normal saline and 4 mg/kg of DOX, respectively. Each group was further divided into four subgroups that were treated with separate and combined i.p. injections of histidine and n-acetylcysteine (NAC) at a same dose of 40 mg/kg. Electrocardiography (ECG) was recorded using lead II. The heart lesions were evaluated by light microscopy. Serum levels of creatine phosphokinase and lactate dehydrogenase and heart tissue malondialdehyde levels were measured. Histidine and especially NAC at a same dose of 40 mg/kg recovered ECG changes, improved heart lesions and prevented biochemical changes induced by DOX. Co-administration of histidine and NAC showed better responses when compared with them used alone. The results of the present study showed protective effects for histidine and NAC on the heart. Reduction in free radical-induced toxic effects may be involved in cardioprotective properties of histidine and NAC.

  8. Mechanism of activation of PhoQ/PhoP two-component signal transduction by SafA, an auxiliary protein of PhoQ histidine kinase in Escherichia coli.

    PubMed

    Ishii, Eiji; Eguchi, Yoko; Utsumi, Ryutaro

    2013-01-01

    The PhoQ/PhoP two-component signal transduction system in Escherichia coli is activated by SafA, a small membrane protein that modifies the PhoQ histidine kinase. The SafA C-terminal domain (41-65 aa) interacts directly with the sensory domain of PhoQ at the periplasm. We used in vitro and in vivo strategies to elucidate the way SafA modifies the PhoQ/PhoP phosphorelay system. First, the enzymatic activities of membranes from cells overexpressing PhoQ and cells expressing both PhoQ and SafA were compared in vitro. Increased autophosphorylation of PhoQ was observed in the presence of SafA, but it did not increase the dephosphorylation of phospho-PhoP by PhoQ. In addition, SafA increased the phospho-PhoP level on the phosphotransfer assay. We confirmed that induction of SafA results in an accumulation of phospho-PhoP in vivo by the Phos-tag system. Our results suggest that the accumulation of phospho-PhoP is linked to activation of PhoQ autophosphorylation by SafA.

  9. L-histidine but not D-histidine attenuates brain edema following cryogenic injury in rats.

    PubMed

    Ikeda, Y; Mochizuki, Y; Matsumoto, H; Nakamura, Y; Dohi, K; Jimbo, H; Shimazu, M; Hayashi, M; Matsumoto, K

    2000-01-01

    Oxygen free radicals have been implicated in the genesis of traumatic brain injury and brain edema (BE). Recent studies have suggested that hydroxyl radical can initiate lipid peroxidation, thus producing lipid-free radicals that may become important sources of singlet oxygen. L-histidine, a singlet oxygen scavenger, potentially can be used to treat BE. In this study we investigated the effects of L-histidine and D-histidine on BE following cryogenic injury in rats. Male Wistar rats were anaesthetized with chloral hydrate. Vasogenic BE was produced by a cortical freezing lesion. Generation of singlet oxygen from photoactivation of rose bengal was studied by electron spin resonance (ESR). Animals were separated into four groups: sham rats (n = 5), saline-treated rats (n = 10), L-histidine treated rats (n = 6) and D-histidine treated rats (n = 7). Each agent (100 mg/kg) was administered intravenously at 30 minutes before lesion production. Animals were sacrificed at 24 hours after lesion production and the brain water content was determined by the dry-wet weight method. L-histidine had no effect on rectal and brain temperature. Election Spin Resonance studies demonstrated that L-histidine is a singlet oxygen scavenger. L-histidine but not D-histidine significantly attenuated BE following cryogenic injury (p < 0.05). In conclusion, L-histidine is useful in the treatment of traumatic BE.

  10. Analysis of the Active-Site Mechanism of Tyrosyl-DNA Phosphodiesterase I: A Member of the Phospholipase D Superfamily

    SciTech Connect

    Gajewski, Stefan; Comeaux, Evan Q.; Jafari, Nauzanene; Bharatham, Nagakumar; Bashford, Donald; White, Stephen W.; van Waardenburg, Robert C.A.M.

    2012-03-15

    Tyrosyl-DNA phosphodiesterase I (Tdp1) is a member of the phospholipase D superfamily that hydrolyzes 3'-phospho-DNA adducts via two conserved catalytic histidines - one acting as the lead nucleophile and the second acting as a general acid/base. Substitution of the second histidine specifically to arginine contributes to the neurodegenerative disease spinocerebellar ataxia with axonal neuropathy (SCAN1). We investigated the catalytic role of this histidine in the yeast protein (His432) using a combination of X-ray crystallography, biochemistry, yeast genetics, and theoretical chemistry. The structures of wild-type Tdp1 and His432Arg both show a phosphorylated form of the nucleophilic histidine that is not observed in the structure of His432Asn. The phosphohistidine is stabilized in the His432Arg structure by the guanidinium group that also restricts the access of nucleophilic water molecule to the Tdp1-DNA intermediate. Biochemical analyses confirm that His432Arg forms an observable and unique Tdp1-DNA adduct during catalysis. Substitution of His432 by Lys does not affect catalytic activity or yeast phenotype, but substitutions with Asn, Gln, Leu, Ala, Ser, and Thr all result in severely compromised enzymes and DNA topoisomerase I-camptothecin dependent lethality. Surprisingly, His432Asn did not show a stable covalent Tdp1-DNA intermediate that suggests another catalytic defect. Theoretical calculations revealed that the defect resides in the nucleophilic histidine and that the pK{sub a} of this histidine is crucially dependent on the second histidine and on the incoming phosphate of the substrate. This represents a unique example of substrate-activated catalysis that applies to the entire phospholipase D superfamily.

  11. Replacement of the proximal heme thiolate ligand in chloroperoxidase with a histidine residue

    PubMed Central

    Yi, Xianwen; Mroczko, Mark; Manoj, Kelath M.; Wang, Xiaotang; Hager, Lowell P.

    1999-01-01

    Chloroperoxidase is a versatile heme enzyme which can cross over the catalytic boundaries of other oxidative hemoproteins and perform multiple functions. Chloroperoxidase, in addition to catalyzing classical peroxidative reactions, also acts as a P450 cytochrome and a potent catalase. The multiple functions of chloroperoxidase must be derived from its unique active site structure. Chloroperoxidase possesses a proximal cysteine thiolate heme iron ligand analogous to the P450 cytochromes; however, unlike the P450 enzymes, chloroperoxidase possesses a very polar environment distal to its heme prosthetic group and contains a glutamic acid residue in close proximity to the heme iron. The presence of a thiolate ligand in chloroperoxidase has long been thought to play an essential role in its chlorination and epoxidation activities; however, the research reported in this paper proves that hypothesis to be invalid. To explore the role of Cys-29, the amino acid residue supplying the thiolate ligand in chloroperoxidase, Cys-29 has been replaced with a histidine residue. Mutant clones of the chloroperoxidase genome have been expressed in a Caldariomyces fumago expression system by using gene replacement rather than gene insertion technology. C. fumago produces wild-type chloroperoxidase, thus requiring gene replacement of the wild type by the mutant gene. To the best of our knowledge, this is the first time that gene replacement has been reported for this type of fungus. The recombinant histidine mutants retain most of their chlorination, peroxidation, epoxidation, and catalase activities. These results downplay the importance of a thiolate ligand in chloroperoxidase and suggest that the distal environment of the heme active site plays the major role in maintaining the diverse activities of this enzyme. PMID:10535936

  12. Structural basis for cytokinin recognition by Arabidopsis thaliana histidine kinase 4

    PubMed Central

    Hothorn, Michael; Dabi, Tsegaye; Chory, Joanne

    2011-01-01

    Cytokinins are classic plant hormones that orchestrate growth, development and the integrity of stem cell populations. Cytokinin receptors are eukaryotic sensor histidine kinases that are activated both by naturally occurring adenine-type cytokinins and by urea-based synthetic compounds. Crystal structures of the Arabidopsis histidine kinase 4 sensor domain in complex with different cytokinin ligands now rationalize the hormone-binding specificity of the receptor and may spur the design of novel cytokinin ligands. PMID:21964459

  13. Crystal structure and tartrate inhibition of Legionella pneumophila histidine acid phosphatase.

    PubMed

    Dhatwalia, Richa; Singh, Harkewal; Reilly, Thomas J; Tanner, John J

    2015-11-01

    Histidine acid phosphatases (HAPs) utilize a nucleophilic histidine residue to catalyze the transfer of a phosphoryl group from phosphomonoesters to water. HAPs function as protein phosphatases and pain suppressors in mammals, are essential for Giardia lamblia excystation, and contribute to virulence of the category A pathogen Francisella tularensis. Herein we report the first crystal structure and steady-state kinetics measurements of the HAP from Legionella pneumophila (LpHAP), also known as Legionella major acid phosphatase. The structure of LpHAP complexed with the inhibitor l(+)-tartrate was determined at 2.0 Å resolution. Kinetics assays show that l(+)-tartrate is a 50-fold more potent inhibitor of LpHAP than of other HAPs. Electrostatic potential calculations provide insight into the basis for the enhanced tartrate potency: the tartrate pocket of LpHAP is more positive than other HAPs because of the absence of an ion pair partner for the second Arg of the conserved RHGXRXP HAP signature sequence. The structure also reveals that LpHAP has an atypically expansive active site entrance and lacks the nucleotide substrate base clamp found in other HAPs. These features imply that nucleoside monophosphates may not be preferred substrates. Kinetics measurements confirm that AMP is a relatively inefficient in vitro substrate of LpHAP.

  14. The active site of ribulose-bisphosphate carboxylase/oxygenase

    SciTech Connect

    Hartman, F.C.

    1991-01-01

    The active site of ribulose-bisphosphate carboxylase/oxygenase requires interacting domains of adjacent, identical subunits. Most active-site residues are located within the loop regions of an eight-stranded {beta}/{alpha}-barrel which constitutes the larger C-terminal domain; additional key residues are located within a segment of the smaller N-terminal domain which partially covers the mouth of the barrel. Site-directed mutagenesis of the gene encoding the enzyme from Rhodospirillum rubrum has been used to delineate functions of active-site residues. 6 refs., 2 figs.

  15. DOE site performance assessment activities. Radioactive Waste Technical Support Program

    SciTech Connect

    Not Available

    1990-07-01

    Information on performance assessment capabilities and activities was collected from eight DOE sites. All eight sites either currently dispose of low-level radioactive waste (LLW) or plan to dispose of LLW in the near future. A survey questionnaire was developed and sent to key individuals involved in DOE Order 5820.2A performance assessment activities at each site. The sites surveyed included: Hanford Site (Hanford), Idaho National Engineering Laboratory (INEL), Los Alamos National Laboratory (LANL), Nevada Test Site (NTS), Oak Ridge National Laboratory (ORNL), Paducah Gaseous Diffusion Plant (Paducah), Portsmouth Gaseous Diffusion Plant (Portsmouth), and Savannah River Site (SRS). The questionnaire addressed all aspects of the performance assessment process; from waste source term to dose conversion factors. This report presents the information developed from the site questionnaire and provides a comparison of site-specific performance assessment approaches, data needs, and ongoing and planned activities. All sites are engaged in completing the radioactive waste disposal facility performance assessment required by DOE Order 5820.2A. Each site has achieved various degrees of progress and have identified a set of critical needs. Within several areas, however, the sites identified common needs and questions.

  16. Savannah River Site prioritization of transition activities

    SciTech Connect

    Finley, R.H.

    1993-11-01

    Effective management of SRS conversion from primarily a production facility to other missions (or Decontamination and Decommissioning (D&D)) requires a systematic and consistent method of prioritizing the transition activities. This report discusses the design of a prioritizing method developed to achieve systematic and consistent methods of prioritizing these activities.

  17. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    SciTech Connect

    Zull, Lawrence M.; Yeniscavich, William

    2008-01-15

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

  18. The receiver domain of FrzE, a CheA-CheY fusion protein, regulates the CheA histidine kinase activity and downstream signaling to the A- and S-motility systems of Myxococcus xanthus

    PubMed Central

    Inclán, Yuki F.; Laurent, Sophie; Zusman, David R.

    2010-01-01

    The Frz chemosensory system is a two-component signal transduction pathway that controls cell reversals and directional movements for the two motility systems in Myxococcus xanthus. To trigger cell reversals, FrzE, a hybrid CheA-CheY fusion protein, autophosphorylates the kinase domain at His-49 and phosphoryl groups are transferred to aspartate residues (Asp-52 and Asp-220) in the two receiver domains of FrzZ, a dual CheY-like protein that serves as the pathway output. The role of the receiver domain of FrzE was unknown. In this paper, we characterize the FrzE protein in vitro and show that the receiver domain of FrzE negatively regulates the autophosphorylation activity of the kinase domain of FrzE. Unexpectedly, it does not appear to play a direct role in phospho-relay as in most other histidine kinase-receiver domain hybrid systems. The regulatory role of the FrzE receiver domain suggests that it may interact with or be phosphorylated by an unknown protein. We also show the dynamics of motility system specific marker proteins in FrzE mutants as cells move forward and reverse. Our studies indicate that the two motility systems are functionally coordinated and that any system specific branching to the pathway most likely occurs downstream of FrzE. PMID:18430134

  19. Conservative Tryptophan Mutants of the Protein Tyrosine Phosphatase YopH Exhibit Impaired WPD-Loop Function and Crystallize with Divanadate Esters in Their Active Sites

    PubMed Central

    Moise, Gwendolyn; Gallup, Nathan M.; Alexandrova, Anastassia N.; Hengge, Alvan C.; Johnson, Sean J.

    2016-01-01

    Catalysis in protein tyrosine phosphatases (PTPs) involves movement of a protein loop called the WPD loop that brings a conserved aspartic acid into the active site to function as a general acid. Mutation of the tryptophan in the WPD loop of the PTP YopH to any other residue with a planar, aromatic side chain (phenylalanine, tyrosine, or histidine) disables general acid catalysis. Crystal structures reveal these conservative mutations leave this critical loop in a catalytically unproductive, quasi-open position. Although the loop positions in crystal structures are similar for all three conservative mutants, the reasons inhibiting normal loop closure differ for each mutant. In the W354F and W354Y mutants, steric clashes result from six-membered rings occupying the position of the five-membered ring of the native indole side chain. The histidine mutant dysfunction results from new hydrogen bonds stabilizing the unproductive position. The results demonstrate how even modest modifications can disrupt catalytically important protein dynamics. Crystallization of all the catalytically compromised mutants in the presence of vanadate gave rise to vanadate dimers at the active site. In W354Y and W354H, a divanadate ester with glycerol is observed. Such species have precedence in solution and are known from the small molecule crystal database. Such species have not been observed in the active site of a phosphatase, as a functional phosphatase would rapidly catalyze their decomposition. The compromised functionality of the mutants allows the trapping of species that undoubtedly form in solution and are capable of binding at the active sites of PTPs, and, presumably, other phosphatases. In addition to monomeric vanadate, such higher-order vanadium-based molecules are likely involved in the interaction of vanadate with PTPs in solution. PMID:26445170

  20. Histidine-Based Lipopeptides Enhance Cleavage of Nucleic Acids: Interactions with DNA and Hydrolytic Properties.

    PubMed

    Bélières, M; Déjugnat, C; Chouini-Lalanne, N

    2015-12-16

    Interaction studies and cleavage activity experiments were carried out between plasmid DNA and a series of histidine-based lipopeptides. Specific fluorescent probes (ethidium bromide, Hoechst 33342, and pyrene) were used to monitor intercalation, minor groove binding, and self-assembly of lipopeptides, respectively. Association between DNA and lipopeptides was thus evidenced, highlighting the importance of both histidine and hydrophobic tail in the interaction process. DNA cleavage in the presence of lipopeptides was then detected by gel electrophoresis and quantified, showing the importance of histidine and the involvement of its side-chain imidazole in the hydrolysis mechanism. These systems could then be developed as synthetic nucleases while raising concern of introducing histidine in the design of lipopeptide-based transfection vectors.

  1. Controlled Orientation of Active Sites in a Nanostructured Multienzyme Complex

    PubMed Central

    Lim, Sung In; Yang, Byungseop; Jung, Younghan; Cha, Jaehyun; Cho, Jinhwan; Choi, Eun-Sil; Kim, Yong Hwan; Kwon, Inchan

    2016-01-01

    Multistep cascade reactions in nature maximize reaction efficiency by co-assembling related enzymes. Such organization facilitates the processing of intermediates by downstream enzymes. Previously, the studies on multienzyme nanocomplexes assembled on DNA scaffolds demonstrated that closer interenzyme distance enhances the overall reaction efficiency. However, it remains unknown how the active site orientation controlled at nanoscale can have an effect on multienzyme reaction. Here, we show that controlled alignment of active sites promotes the multienzyme reaction efficiency. By genetic incorporation of a non-natural amino acid and two compatible bioorthogonal chemistries, we conjugated mannitol dehydrogenase to formate dehydrogenase with the defined active site arrangement with the residue-level accuracy. The study revealed that the multienzyme complex with the active sites directed towards each other exhibits four-fold higher relative efficiency enhancement in the cascade reaction and produces 60% more D-mannitol than the other complex with active sites directed away from each other. PMID:28004799

  2. Analyzing the catalytic role of active site residues in the Fe-type nitrile hydratase from Comamonas testosteroni Ni1.

    PubMed

    Martinez, Salette; Wu, Rui; Krzywda, Karoline; Opalka, Veronika; Chan, Hei; Liu, Dali; Holz, Richard C

    2015-07-01

    A strictly conserved active site arginine residue (αR157) and two histidine residues (αH80 and αH81) located near the active site of the Fe-type nitrile hydratase from Comamonas testosteroni Ni1 (CtNHase), were mutated. These mutant enzymes were examined for their ability to bind iron and hydrate acrylonitrile. For the αR157A mutant, the residual activity (k cat = 10 ± 2 s(-1)) accounts for less than 1% of the wild-type activity (k cat = 1100 ± 30 s(-1)) while the K m value is nearly unchanged at 205 ± 10 mM. On the other hand, mutation of the active site pocket αH80 and αH81 residues to alanine resulted in enzymes with k cat values of 220 ± 40 and 77 ± 13 s(-1), respectively, and K m values of 187 ± 11 and 179 ± 18 mM. The double mutant (αH80A/αH81A) was also prepared and provided an enzyme with a k cat value of 132 ± 3 s(-1) and a K m value of 213 ± 61 mM. These data indicate that all three residues are catalytically important, but not essential. X-ray crystal structures of the αH80A/αH81A, αH80W/αH81W, and αR157A mutant CtNHase enzymes were solved to 2.0, 2.8, and 2.5 Å resolutions, respectively. In each mutant enzyme, hydrogen-bonding interactions crucial for the catalytic function of the αCys(104)-SOH ligand are disrupted. Disruption of these hydrogen bonding interactions likely alters the nucleophilicity of the sulfenic acid oxygen and the Lewis acidity of the active site Fe(III) ion.

  3. The histidine-loop is essential for transport activity of human MDR3. A novel mutation of MDR3 in a patient with progressive familial intrahepatic cholestasis type 3.

    PubMed

    Dzagania, Tamar; Engelmann, Guido; Häussinger, Dieter; Schmitt, Lutz; Flechtenmacher, Christa; Rtskhiladze, Irakli; Kubitz, Ralf

    2012-09-10

    Experimental evidence has been provided that a histidine-loop within the nucleotide binding domain of ABC transporter is essential for efficient function of this class of transporter proteins. Here we report the first patient with a mutation of the putative histidine-loop of a human ABC transporter, the multi drug resistance protein 3 (MDR3). The patient presented at the age of 4 years with a history of severe pruritus, elevated serum gamma-glutamyltransferase and bile acid levels since several years suggesting the diagnosis of progressive familial intrahepatic cholestasis type 3 (PFIC-3) due to defects in MDR3. Liver biopsy demonstrated an apparently normal MDR3 expression, however, genetic analysis revealed a novel homozygous mutation in the ABCB4 gene (c.3691C>T) in the patient. This mutation was associated with a change of histidine to tyrosine at amino acid position 1231 of MDR3 (p.H1231Y). As shown by sequence alignment, this amino acid corresponds to the highly conserved histidine of the "H-loop", which is critical for ATP-hydrolysis, suggesting an essential role of histidine 1231 of human MDR3.

  4. Composite active site of chondroitin lyase ABC accepting both epimers of uronic acid

    SciTech Connect

    Shaya, D.; Hahn, Bum-Soo; Bjerkan, Tonje Marita; Kim, Wan Seok; Park, Nam Young; Sim, Joon-Soo; Kim, Yeong-Shik; Cygler, M.

    2008-03-19

    Enzymes have evolved as catalysts with high degrees of stereospecificity. When both enantiomers are biologically important, enzymes with two different folds usually catalyze reactions with the individual enantiomers. In rare cases a single enzyme can process both enantiomers efficiently, but no molecular basis for such catalysis has been established. The family of bacterial chondroitin lyases ABC comprises such enzymes. They can degrade both chondroitin sulfate (CS) and dermatan sulfate (DS) glycosaminoglycans at the nonreducing end of either glucuronic acid (CS) or its epimer iduronic acid (DS) by a {beta}-elimination mechanism, which commences with the removal of the C-5 proton from the uronic acid. Two other structural folds evolved to perform these reactions in an epimer-specific fashion: ({alpha}/{alpha}){sub 5} for CS (chondroitin lyases AC) and {beta}-helix for DS (chondroitin lyases B); their catalytic mechanisms have been established at the molecular level. The structure of chondroitinase ABC from Proteus vulgaris showed surprising similarity to chondroitinase AC, including the presence of a Tyr-His-Glu-Arg catalytic tetrad, which provided a possible mechanism for CS degradation but not for DS degradation. We determined the structure of a distantly related Bacteroides thetaiotaomicron chondroitinase ABC to identify additional structurally conserved residues potentially involved in catalysis. We found a conserved cluster located {approx}12 {angstrom} from the catalytic tetrad. We demonstrate that a histidine in this cluster is essential for catalysis of DS but not CS. The enzyme utilizes a single substrate-binding site while having two partially overlapping active sites catalyzing the respective reactions. The spatial separation of the two sets of residues suggests a substrate-induced conformational change that brings all catalytically essential residues close together.

  5. Perspective: On the active site model in computational catalyst screening

    NASA Astrophysics Data System (ADS)

    Reuter, Karsten; Plaisance, Craig P.; Oberhofer, Harald; Andersen, Mie

    2017-01-01

    First-principles screening approaches exploiting energy trends in surface adsorption represent an unparalleled success story in recent computational catalysis research. Here we argue that our still limited understanding of the structure of active sites is one of the major bottlenecks towards an ever extended and reliable use of such computational screening for catalyst discovery. For low-index transition metal surfaces, the prevalently chosen high-symmetry (terrace and step) sites offered by the nominal bulk-truncated crystal lattice might be justified. For more complex surfaces and composite catalyst materials, computational screening studies will need to actively embrace a considerable uncertainty with respect to what truly are the active sites. By systematically exploring the space of possible active site motifs, such studies might eventually contribute towards a targeted design of optimized sites in future catalysts.

  6. Diffusional correlations among multiple active sites in a single enzyme.

    PubMed

    Echeverria, Carlos; Kapral, Raymond

    2014-04-07

    Simulations of the enzymatic dynamics of a model enzyme containing multiple substrate binding sites indicate the existence of diffusional correlations in the chemical reactivity of the active sites. A coarse-grain, particle-based, mesoscopic description of the system, comprising the enzyme, the substrate, the product and solvent, is constructed to study these effects. The reactive and non-reactive dynamics is followed using a hybrid scheme that combines molecular dynamics for the enzyme, substrate and product molecules with multiparticle collision dynamics for the solvent. It is found that the reactivity of an individual active site in the multiple-active-site enzyme is reduced substantially, and this effect is analyzed and attributed to diffusive competition for the substrate among the different active sites in the enzyme.

  7. The intrinsic cysteine and histidine residues of the anti-Salmonella antibody Se155-4: a model for the introduction of new functions into antibody-binding sites.

    PubMed

    Young, N Martin; Watson, David C; Cunningham, Anna M; MacKenzie, C Roger

    2014-10-01

    New functions can be incorporated into anti-hapten or anti-protein antibodies by mutating selected residues in the binding-site region either to Cys, to allow alkylation with reagents bearing the desired functional groups, or to His, to create metal-binding sites or to make antigen binding pH-sensitive. However, choosing suitable sites for these mutations has been hampered by the lack of antibodies with these features, to serve as models. Remarkably, the anti-carbohydrate antibody Se155-4, specific for the Salmonella group B lipopolysaccharide, already has a Cys and two pairs of His residues close to the antigen-binding pocket in its structure, and shows pH-dependent antigen binding. We therefore investigated modification of its Cys94L in an scFv version of the antibody with the aims of creating a 'reagentless' fluorescent sensor and attaching a metal-binding group that might confer lyase activity. These groups were successfully introduced, as judged by mass spectrometry, and had only slightly reduced antigen binding in enzyme-linked immunosorbent assay. The fluorescent product was sensitive to addition of antigen in a solution format, unlike a modification of a more distant Cys introduced into the VH CDR4 loop. Two other routes to modulate antigen binding were also explored, metal binding by the His pair alongside the antigen-binding pocket and insertions into CDR4 to extend the antigen-contact area. His residues adjacent to the antigen-binding pocket bound copper, causing a 5-fold decrease in antigen binding. In CDR4 of the VH domain, the preferred insert length was four residues, which gave stable antigen-binding products but did not improve overall antigen affinity.

  8. Robotics at Savannah River site: activity report

    SciTech Connect

    Byrd, J.S.

    1984-09-01

    The objectives of the Robotics Technology Group at the Savannah River Laboratory are to employ modern industrial robots and to develop unique automation and robotic systems to enhance process operations at the Savannah River site (SRP and SRL). The incentives are to improve safety, reduce personnel radiation exposure, improve product quality and productivity, and to reduce operating costs. During the past year robotic systems have been installed to fill chemical dilution vials in a SRP laboratory at 772-F and remove radioactive waste materials in the SRL Californium Production Facility at 773-A. A robotic system to lubricate an extrusion press has been developed and demonstrated in the SRL robotics laboratory and is scheduled for installation at the 321-M fuel fabrication area. A mobile robot was employed by SRP for a radiation monitoring task at a waste tank top in H-Area. Several other robots are installed in the SRL robotics laboratories and application development programs are underway. The status of these applications is presented in this report.

  9. Ascertaining free histidine from mixtures with histidine-containing proteins using time-resolved photoluminescence spectroscopy.

    PubMed

    Huang, Kewei; Jiang, Chengmin; Martí, Angel A

    2014-11-13

    The use of photoluminescent probes for differentiating free amino acids from biomolecules containing the same amino acids is challenging. Photoluminescent probes generally present similar emission spectra when in the presence of either free-amino acids or protein containing those same amino acids. Probes based on cyclometalated iridium(III) complexes Ir(L)2(sol)2 (where L is 2-phenylpyridine, 2-(2,4-difluorophenyl)pyridine, or benzo[h]quinolone, and sol is a solvent molecule) present long-lived emission when bound to histidine. This emission is tuned by the microenvironment around the complex and therefore its lifetime is different for free histidine (487 ns) than from histidine-containing proteins such as bovine serum albumin (average lifetime > 700 ns). As a proof-of-concept we demonstrate that free histidine can be discerned from a mixture with histidine-containing proteins by using time-resolved photoluminescence decays. In the presence of multiple sources of histidine, iridium(III) probes display a multiexponential decay, which can be fitted by nonlinear least-squares methods to separate the different components. Because the pre-exponential factor of the 487 ns lifetime is proportional to the concentration of free histidine, we can use it to assess the amount of free histidine in solution even in the presence of proteins such as bovine serum albumin. We also show that iridium(III) probes displaying different photoluminescence maxima can be produced by modifying the ancillary ligands of the metal complex.

  10. Effect of dietary histidine on contents of carnosine and anserine in muscles of broilers.

    PubMed

    Kai, Shinichi; Watanabe, Genya; Kubota, Masatoshi; Kadowaki, Motoni; Fujimura, Shinobu

    2015-05-01

    Carnosine (β-alanyl-L-histidine) and anserine (β-alanyl-1-methyl-L-histidine) are dipeptides mainly found in skeletal muscle and brain of many vertebrates, and particularly high concentrations are observed in chicken pectoral muscles. It was reported that these peptides have many functions, such as antioxidant activity. In this study, we examined the effect of different levels of dietary histidine on carnosine and anserine contents in broiler muscles. The 14-days-old female Chunky strain broilers were given feeds containing three different levels of histidine; 67% (Low-His), 100% (Control) and 200% (High-His) of histidine requirement according to the NRC (1994). Chicks were fed experimental diets for 10 days. Both dipeptides in muscle were significantly decreased. In particular, carnosine was not detected at all in the Low-His group and was significantly increased in the High-His group. Both dipeptides were not detected in plasma. These results indicated the possibility to produce chicken meat with enhanced amount of these dipeptides by high histidine feeding.

  11. Staphylococcus haemolyticus prophage ΦSH2 endolysin relies on cysteine, histidine-dependent amidohydrolases/peptidases activity for lysis 'from without'.

    PubMed

    Schmelcher, Mathias; Korobova, Olga; Schischkova, Nina; Kiseleva, Natalia; Kopylov, Paul; Pryamchuk, Sergey; Donovan, David M; Abaev, Igor

    2012-12-31

    Staphylococcus aureus is an important pathogen, with methicillin-resistant (MRSA) and multi-drug resistant strains becoming increasingly prevalent in both human and veterinary clinics. S. aureus causing bovine mastitis yields high annual losses to the dairy industry. Conventional treatment of mastitis by broad range antibiotics is often not successful and may contribute to development of antibiotic resistance. Bacteriophage endolysins present a promising new source of antimicrobials. The endolysin of prophage ΦSH2 of Staphylococcus haemolyticus strain JCSC1435 (ΦSH2 lysin) is a peptidoglycan hydrolase consisting of two catalytic domains (CHAP and amidase) and an SH3b cell wall binding domain. In this work, we demonstrated its lytic activity against live staphylococcal cells and investigated the contribution of each functional module to bacterial lysis by testing a series of deletion constructs in zymograms and turbidity reduction assays. The CHAP domain exhibited three-fold higher activity than the full length protein and optimum activity in physiological saline. This activity was further enhanced by the presence of bivalent calcium ions. The SH3b domain was shown to be required for full activity of the complete ΦSH2 lysin. The full length enzyme and the CHAP domain showed activity against multiple staphylococcal strains, including MRSA strains, mastitis isolates, and CoNS.

  12. Active sites of thioredoxin reductases: why selenoproteins?

    PubMed

    Gromer, Stephan; Johansson, Linda; Bauer, Holger; Arscott, L David; Rauch, Susanne; Ballou, David P; Williams, Charles H; Schirmer, R Heiner; Arnér, Elias S J

    2003-10-28

    Selenium, an essential trace element for mammals, is incorporated into a selected class of selenoproteins as selenocysteine. All known isoenzymes of mammalian thioredoxin (Trx) reductases (TrxRs) employ selenium in the C-terminal redox center -Gly-Cys-Sec-Gly-COOH for reduction of Trx and other substrates, whereas the corresponding sequence in Drosophila melanogaster TrxR is -Ser-Cys-Cys-Ser-COOH. Surprisingly, the catalytic competence of these orthologous enzymes is similar, whereas direct Sec-to-Cys substitution of mammalian TrxR, or other selenoenzymes, yields almost inactive enzyme. TrxRs are therefore ideal for studying the biology of selenocysteine by comparative enzymology. Here we show that the serine residues flanking the C-terminal Cys residues of Drosophila TrxRs are responsible for activating the cysteines to match the catalytic efficiency of a selenocysteine-cysteine pair as in mammalian TrxR, obviating the need for selenium. This finding suggests that the occurrence of selenoenzymes, which implies that the organism is selenium-dependent, is not necessarily associated with improved enzyme efficiency. Our data suggest that the selective advantage of selenoenzymes is a broader range of substrates and a broader range of microenvironmental conditions in which enzyme activity is possible.

  13. The Sortase A enzyme that attaches proteins to the cell wall of Bacillus anthracis contains an unusual active site architecture.

    PubMed

    Weiner, Ethan M; Robson, Scott; Marohn, Melanie; Clubb, Robert T

    2010-07-23

    The pathogen Bacillus anthracis uses the Sortase A (SrtA) enzyme to anchor proteins to its cell wall envelope during vegetative growth. To gain insight into the mechanism of protein attachment to the cell wall in B. anthracis we investigated the structure, backbone dynamics, and function of SrtA. The NMR structure of SrtA has been determined with a backbone coordinate precision of 0.40 +/- 0.07 A. SrtA possesses several novel features not previously observed in sortase enzymes including the presence of a structurally ordered amino terminus positioned within the active site and in contact with catalytically essential histidine residue (His(126)). We propose that this appendage, in combination with a unique flexible active site loop, mediates the recognition of lipid II, the second substrate to which proteins are attached during the anchoring reaction. pK(a) measurements indicate that His(126) is uncharged at physiological pH compatible with the enzyme operating through a "reverse protonation" mechanism. Interestingly, NMR relaxation measurements and the results of a model building study suggest that SrtA recognizes the LPXTG sorting signal through a lock-in-key mechanism in contrast to the prototypical SrtA enzyme from Staphylococcus aureus.

  14. The Sortase A Enzyme That Attaches Proteins to the Cell Wall of Bacillus anthracis Contains an Unusual Active Site Architecture*

    PubMed Central

    Weiner, Ethan M.; Robson, Scott; Marohn, Melanie; Clubb, Robert T.

    2010-01-01

    The pathogen Bacillus anthracis uses the Sortase A (SrtA) enzyme to anchor proteins to its cell wall envelope during vegetative growth. To gain insight into the mechanism of protein attachment to the cell wall in B. anthracis we investigated the structure, backbone dynamics, and function of SrtA. The NMR structure of SrtA has been determined with a backbone coordinate precision of 0.40 ± 0.07 Å. SrtA possesses several novel features not previously observed in sortase enzymes including the presence of a structurally ordered amino terminus positioned within the active site and in contact with catalytically essential histidine residue (His126). We propose that this appendage, in combination with a unique flexible active site loop, mediates the recognition of lipid II, the second substrate to which proteins are attached during the anchoring reaction. pKa measurements indicate that His126 is uncharged at physiological pH compatible with the enzyme operating through a “reverse protonation” mechanism. Interestingly, NMR relaxation measurements and the results of a model building study suggest that SrtA recognizes the LPXTG sorting signal through a lock-in-key mechanism in contrast to the prototypical SrtA enzyme from Staphylococcus aureus. PMID:20489200

  15. Functional Role of Histidine in the Conserved His-x-Asp Motif in the Catalytic Core of Protein Kinases.

    PubMed

    Zhang, Lun; Wang, Jian-Chuan; Hou, Li; Cao, Peng-Rong; Wu, Li; Zhang, Qian-Sen; Yang, Huai-Yu; Zang, Yi; Ding, Jian-Ping; Li, Jia

    2015-05-11

    The His-x-Asp (HxD) motif is one of the most conserved structural components of the catalytic core of protein kinases; however, the functional role of the conserved histidine is unclear. Here we report that replacement of the HxD-histidine with Arginine or Phenylalanine in Aurora A abolishes both the catalytic activity and auto-phosphorylation, whereas the Histidine-to-tyrosine impairs the catalytic activity without affecting its auto-phosphorylation. Comparisons of the crystal structures of wild-type (WT) and mutant Aurora A demonstrate that the impairment of the kinase activity is accounted for by (1) disruption of the regulatory spine in the His-to-Arg mutant, and (2) change in the geometry of backbones of the Asp-Phe-Gly (DFG) motif and the DFG-1 residue in the His-to-Tyr mutant. In addition, bioinformatics analyses show that the HxD-histidine is a mutational hotspot in tumor tissues. Moreover, the H174R mutation of the HxD-histidine, in the tumor suppressor LKB1 abrogates the inhibition of anchorage-independent growth of A549 cells by WT LKB1. Based on these data, we propose that the HxD-histidine is involved in a conserved inflexible organization of the catalytic core that is required for the kinase activity. Mutation of the HxD-histidine may also be involved in the pathogenesis of some diseases including cancer.

  16. Community Update on Site Activities, July 19, 2013

    EPA Pesticide Factsheets

    In an effort to engage and inform community members interested in the New Bedford Harbor Superfund Site cleanup, EPA will be issuing periodic topic-based fact sheets that will provide background information and updates about ongoing activities.

  17. Phosphatase activity of the histidine kinases ensures pathway specificity of the ChrSA and HrrSA two-component systems in Corynebacterium glutamicum.

    PubMed

    Hentschel, Eva; Mack, Christina; Gätgens, Cornelia; Bott, Michael; Brocker, Melanie; Frunzke, Julia

    2014-06-01

    The majority of bacterial genomes encode a high number of two-component systems controlling gene expression in response to a variety of different stimuli. The Gram-positive soil bacterium Corynebacterium glutamicum contains two homologous two-component systems (TCS) involved in the haem-dependent regulation of gene expression. Whereas the HrrSA system is crucial for utilization of haem as an alternative iron source, ChrSA is required to cope with high toxic haem levels. In this study, we analysed the interaction of HrrSA and ChrSA in C. glutamicum. Growth of TCS mutant strains, in vitro phosphorylation assays and promoter assays of P(hrtBA) and P(hmuO) fused to eyfp revealed cross-talk between both systems. Our studies further indicated that both kinases exhibit a dual function as kinase and phosphatase. Mutation of the conserved glutamine residue in the putative phosphatase motif DxxxQ of HrrS and ChrS resulted in a significantly increased activity of their respective target promoters (P(hmuO) and P(hrtBA) respectively). Remarkably, phosphatase activity of both kinases was shown to be specific only for their cognate response regulators. Altogether our data suggest the phosphatase activity of HrrS and ChrS as key mechanism to ensure pathway specificity and insulation of these two homologous systems.

  18. The Structure of the Periplasmic Sensor Domain of the Histidine Kinase CusS Shows Unusual Metal Ion Coordination at the Dimeric Interface

    PubMed Central

    Affandi, Trisiani; Issaian, Aaron V.; McEvoy, Megan M.

    2016-01-01

    In bacteria, two-component systems act as signaling systems to respond to environmental stimuli. Two-component systems generally consist of a sensor histidine kinase and a response regulator, which work together through histidyl-aspartyl phospho-relay to result in gene regulation. One of the two-component systems in Escherichia coli, CusS-CusR, is known to induce expression of cusCFBA genes under increased periplasmic Cu(I) and Ag(I) concentrations to help maintain metal ion homeostasis. CusS is a membrane-associated histidine kinase with a periplasmic sensor domain connected to the cytoplasmic ATP-binding and catalytic domains through two transmembrane helices. The mechanism of how CusS senses increasing metal ion concentrations and activates CusR is not yet known. Here, we present the crystal structure of the Ag(I)-bound periplasmic sensor domain of CusS at a resolution of 2.15 Å. The structure reveals that CusS forms a homodimer with four Ag(I) binding sites per dimeric complex. Two symmetric metal binding sites are found at the dimeric interface, which are each formed by two histidines and one phenylalanine with an unusual cation-π interaction. The other metal ion binding sites are in a non-conserved region within each monomer. Functional analyses of CusS variants with mutations in the metal sites suggest that the metal ion binding site at the dimer interface is more important for function. The structural and functional data provide support for a model in which metal-induced dimerization results in increases in kinase activity in the cytoplasmic domains of CusS. PMID:27583660

  19. An "enigmatic" L-carnosine (β-alanyl-L-histidine)? Cell proliferative activity as a fundamental property of a natural dipeptide inherent to traditional antioxidant, anti-aging biological activities: balancing and a hormonally correct agent, novel patented oral therapy dosage formulation for mobility, skeletal muscle power and functional performance, hypothalamic-pituitary- brain relationship in health, aging and stress studies.

    PubMed

    Babizhayev, Mark A; Yegorov, Yegor E

    2015-01-01

    Hypothalamic releasing and inhibiting hormones are major neuroendocrine regulators of human body metabolism being driven directly to the anterior pituitary gland via hypothalamic-hypophyseal portal veins. The alternative physiological or therapeutic interventions utilizing the pharmaco-nutritional boost of imidazole-containing dipeptides (non-hydrolized oral form of carnosine, carcinine, N-acetylcarnosine lubricant eye drops) can maintain health, enhance physical exercise performance and prevent ageing. Carnosine (β-alanyl-L-histidine) is synthesized in mammalian skeletal muscle. There is an evidence that the release of carnosine from the skeletal muscle sarcomeres moieties during physical exercise affects autonomic neurotransmission and physiological functions. Carnosine released from skeletal muscle during exercise acts as a powerful afferent physiological signaling stimulus for hypothalamus, may be transported into the hypothalamic tuberomammillary nucleus (TMN), specifically to TMN-histamine neurons and hydrolyzed herewith via activities of carnosine-degrading enzyme (carnosinase 2) localized in situ. Through the colocalized enzymatic activity of Histidine decarboxylase in the histaminergic neurons, the resulting L-histidine may subsequently be converted into histamine, which could be responsible for the effects of carnosine on neurotransmission and physiological function. Carnosine and its imidazole-containing dipeptide derivatives are renowned for their anti-aging, antioxidant, membrane protective, metal ion chelating, buffering, anti-glycation/ transglycating activities used to prevent and treat a spectrum of age-related and metabolic diseases, such as neurodegenerative disease, sight threatening eye diseases, Diabetes mellitus and its complications, cancers and other disorders due to their wide spectrum biological activities. The precursor of carnosine (and related imidazole containing compounds) synthesis in skeletal muscles beta-alanine is used as the

  20. Catalytic efficiency of HAP phytases is determined by a key residue in close proximity to the active site.

    PubMed

    Fu, Dawei; Li, Zhongyuan; Huang, Huoqing; Yuan, Tiezheng; Shi, Pengjun; Luo, Huiying; Meng, Kun; Yang, Peilong; Yao, Bin

    2011-05-01

    The maximum activity of Yersinia enterocolitica phytase (YeAPPA) occurs at pH 5.0 and 45 °C, and notably, its specific activity (3.28 ± 0.24 U mg(-1)) is 800-fold less than that of its Yersinia kristeensenii homolog (YkAPPA; 88% amino acid sequence identity). Sequence alignment and molecular modeling show that the arginine at position 79 (Arg79) in YeAPPA corresponding to Gly in YkAPPA as well as other histidine acid phosphatase (HAP) phytases is the only non-conserved residue near the catalytic site. To characterize the effects of the corresponding residue on the specific activities of HAP phytases, Escherichia coli EcAPPA, a well-characterized phytase with a known crystal structure, was selected for mutagenesis-its Gly73 was replaced with Arg, Asp, Glu, Ser, Thr, Leu, or Tyr. The results show that the specific activities of all of the corresponding EcAPPA mutants (17-2,400 U mg(-1)) were less than that of the wild-type phytase (3,524 U mg(-1)), and the activity levels were approximately proportional to the molecular volumes of the substituted residues' side chains. Site-directed replacement of Arg79 in YeAPPA (corresponding to Gly73 of EcAPPA) with Ser, Leu, and Gly largely increased the specific activity, which further verified the key role of the residue at position 79 for determining phytase activity. Thus, a new determinant that influences the catalytic efficiency of HAP phytases has been identified.

  1. Changes at the KinA PAS-A Dimerization Interface Influence Histidine Kinase Function

    SciTech Connect

    Lee, James; Tomchick, Diana R.; Brautigam, Chad A.; Machius, Mischa; Kort, Remco; Hellingwerf, Klaas J.; Gardner, Kevin H.

    2008-11-12

    The Bacillus subtilis KinA protein is a histidine protein kinase that controls the commitment of this organism to sporulate in response to nutrient deprivation and several other conditions. Prior studies indicated that the N-terminal Per-ARNT-Sim domain (PAS-A) plays a critical role in the catalytic activity of this enzyme, as demonstrated by the significant decrease of the autophosphorylation rate of a KinA protein lacking this domain. On the basis of the environmental sensing role played by PAS domains in a wide range of proteins, including other bacterial sensor kinases, it has been suggested that the PAS-A domain plays an important regulatory role in KinA function. We have investigated this potential by using a combination of biophysical and biochemical methods to examine PAS-A structure and function, both in isolation and within the intact protein. Here, we present the X-ray crystal structure of the KinA PAS-A domain, showing that it crystallizes as a homodimer using {beta}-sheet/{beta}-sheet packing interactions as observed for several other PAS domain complexes. Notably, we observed two dimers with tertiary and quaternary structure differences in the crystalline lattice, indicating significant structural flexibility in these domains. To confirm that KinA PAS-A also forms dimers in solution, we used a combination of NMR spectroscopy, gel filtration chromatography, and analytical ultracentrifugation, the results of which are all consistent with the crystallographic results. We experimentally tested the importance of several residues at the dimer interface using site-directed mutagenesis, finding changes in the PAS-A domain that significantly alter KinA enzymatic activity in vitro and in vivo. These results support the importance of PAS domains within KinA and other histidine kinases and suggest possible routes for natural or artificial regulation of kinase activity.

  2. The pivotal twin histidines and aromatic triad of the Escherichia coli ammonium channel AmtB can be replaced.

    PubMed

    Hall, Jason A; Kustu, Sydney

    2011-08-09

    In Escherichia coli, each subunit of the trimeric channel protein AmtB carries a hydrophobic pore for transport of NH(4)(+) across the cytoplasmic membrane. Positioned along this substrate conduction pathway are two conserved elements--a pair of hydrogen-bonded histidines (H168/H318) located within the pore itself and a set of aromatic residues (F107/W148/F215) at its periplasmic entrance--thought to be critical to AmtB function. Using site-directed mutagenesis and suppressor genetics, we examined the requirement for these elements in NH(4)(+) transport. This analysis shows that AmtB can accommodate, by either direct substitution or suppressor generation, acidic residues at one or both positions of the H168/H318 twin-histidine site while retaining near wild-type activity. Similarly, study of the F107/W148/F215 triad indicates that good-to-excellent AmtB function is preserved upon individual and simultaneous replacement of these aromatic amino acids with aliphatic residues. Our findings lead us to conclude that these elements and their component parts are not required for AmtB function, but instead serve to optimize its performance.

  3. Investigation on the effects of three X-->histidine replacements on thermostability of alpha-amylase from Bacillus amyloliquefaciens.

    PubMed

    Haghani, Karimeh; Khajeh, Khosro; Naderi-Manesh, Hossein; Ranjbar, Bijan

    2012-05-01

    Bacillus licheniformis alpha-amylase (BLA), a thermophilic counterpart of Bacillus amyloliquefaciens alpha-amylase (BAA), is an appropriate model for the design of stabilizing mutations in BAA. BLA has 10 more histidines than BAA. Considering this prominent difference, in the present study, three out of these positions (I34, Q67, and P407; located in the thermostability determinant 1 region and Ca-III binding site of BAA) were replaced with histidine in BAA, using the site-directed mutagenesis technique. The results showed that the thermostability of P407H and Q67H mutants had increased, but no significant changes were observed in their kinetic parameters compared to that of the wild type. I34H replacement resulted in complete loss of enzyme activity. Moreover, fluorescence and circular dichroism data indicated a more rigid structure for the P407H variant compared with that of the wild-type BAA. However, the flexibility of Q67H and I34H mutants increased in comparison with that of wild-type enzyme.

  4. Identification of putative active site residues of ACAT enzymes.

    PubMed

    Das, Akash; Davis, Matthew A; Rudel, Lawrence L

    2008-08-01

    In this report, we sought to determine the putative active site residues of ACAT enzymes. For experimental purposes, a particular region of the C-terminal end of the ACAT protein was selected as the putative active site domain due to its high degree of sequence conservation from yeast to humans. Because ACAT enzymes have an intrinsic thioesterase activity, we hypothesized that by analogy with the thioesterase domain of fatty acid synthase, the active site of ACAT enzymes may comprise a catalytic triad of ser-his-asp (S-H-D) amino acid residues. Mutagenesis studies revealed that in ACAT1, S456, H460, and D400 were essential for activity. In ACAT2, H438 was required for enzymatic activity. However, mutation of D378 destabilized the enzyme. Surprisingly, we were unable to identify any S mutations of ACAT2 that abolished catalytic activity. Moreover, ACAT2 was insensitive to serine-modifying reagents, whereas ACAT1 was not. Further studies indicated that tyrosine residues may be important for ACAT activity. Mutational analysis showed that the tyrosine residue of the highly conserved FYXDWWN motif was important for ACAT activity. Furthermore, Y518 was necessary for ACAT1 activity, whereas the analogous residue in ACAT2, Y496, was not. The available data suggest that the amino acid requirement for ACAT activity may be different for the two ACAT isozymes.

  5. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site

    PubMed Central

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-01-01

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2 domains reveal that the (HhH)2 domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2 domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2 domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2 domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide. PMID:26908655

  6. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site.

    PubMed

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-04-20

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2 domains reveal that the (HhH)2 domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2 domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2 domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2 domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide.

  7. Genetic incorporation of histidine derivatives using an engineered pyrrolysyl-tRNA synthetase.

    PubMed

    Xiao, Han; Peters, Francis B; Yang, Peng-Yu; Reed, Sean; Chittuluru, Johnathan R; Schultz, Peter G

    2014-05-16

    A polyspecific amber suppressor aminoacyl-tRNA synthetase/tRNA pair was evolved that genetically encodes a series of histidine analogues in both Escherichia coli and mammalian cells. In combination with tRNACUA(Pyl), a pyrrolysyl-tRNA synthetase mutant was able to site-specifically incorporate 3-methyl-histidine, 3-pyridyl-alanine, 2-furyl-alanine, and 3-(2-thienyl)-alanine into proteins in response to an amber codon. Substitution of His66 in the blue fluorescent protein (BFP) with these histidine analogues created mutant proteins with distinct spectral properties. This work further expands the structural and chemical diversity of unnatural amino acids (UAAs) that can be genetically encoded in prokaryotic and eukaryotic organisms and affords new probes of protein structure and function.

  8. Comparative analysis of amino acid composition in the active site of nirk gene encoding copper-containing nitrite reductase (CuNiR) in bacterial spp.

    PubMed

    Adhikari, Utpal Kumar; Rahman, M Mizanur

    2017-04-01

    The nirk gene encoding the copper-containing nitrite reductase (CuNiR), a key catalytic enzyme in the environmental denitrification process that helps to produce nitric oxide from nitrite. The molecular mechanism of denitrification process is definitely complex and in this case a theoretical investigation has been conducted to know the sequence information and amino acid composition of the active site of CuNiR enzyme using various Bioinformatics tools. 10 Fasta formatted sequences were retrieved from the NCBI database and the domain and disordered regions identification and phylogenetic analyses were done on these sequences. The comparative modeling of protein was performed through Modeller 9v14 program and visualized by PyMOL tools. Validated protein models were deposited in the Protein Model Database (PMDB) (PMDB id: PM0080150 to PM0080159). Active sites of nirk encoding CuNiR enzyme were identified by Castp server. The PROCHECK showed significant scores for four protein models in the most favored regions of the Ramachandran plot. Active sites and cavities prediction exhibited that the amino acid, namely Glycine, Alanine, Histidine, Aspartic acid, Glutamic acid, Threonine, and Glutamine were common in four predicted protein models. The present in silico study anticipates that active site analyses result will pave the way for further research on the complex denitrification mechanism of the selected species in the experimental laboratory.

  9. Structural plasticity and catalysis regulation of a thermosensor histidine kinase

    PubMed Central

    Albanesi, Daniela; Martín, Mariana; Trajtenberg, Felipe; Mansilla, María C.; Haouz, Ahmed; Alzari, Pedro M.; de Mendoza, Diego; Buschiazzo, Alejandro

    2009-01-01

    Temperature sensing is essential for the survival of living cells. A major challenge is to understand how a biological thermometer processes thermal information to optimize cellular functions. Using structural and biochemical approaches, we show that the thermosensitive histidine kinase, DesK, from Bacillus subtilis is cold-activated through specific interhelical rearrangements in its central four-helix bundle domain. As revealed by the crystal structures of DesK in different functional states, the plasticity of this helical domain influences the catalytic activities of the protein, either by modifying the mobility of the ATP-binding domains for autokinase activity or by modulating binding of the cognate response regulator to sustain the phosphotransferase and phosphatase activities. The structural and biochemical data suggest a model in which the transmembrane sensor domain of DesK promotes these structural changes through conformational signals transmitted by the membrane-connecting two-helical coiled-coil, ultimately controlling the alternation between output autokinase and phosphatase activities. The structural comparison of the different DesK variants indicates that incoming signals can take the form of helix rotations and asymmetric helical bends similar to those reported for other sensing systems, suggesting that a similar switching mechanism could be operational in a wide range of sensor histidine kinases. PMID:19805278

  10. Histidine degradation via an aminotransferase increases the nutritional flexibility of Candida glabrata.

    PubMed

    Brunke, Sascha; Seider, Katja; Richter, Martin Ernst; Bremer-Streck, Sibylle; Ramachandra, Shruthi; Kiehntopf, Michael; Brock, Matthias; Hube, Bernhard

    2014-06-01

    The ability to acquire nutrients during infections is an important attribute in microbial pathogenesis. Amino acids are a valuable source of nitrogen if they can be degraded by the infecting organism. In this work, we analyzed histidine utilization in the fungal pathogen of humans Candida glabrata. Hemiascomycete fungi, like C. glabrata or Saccharomyces cerevisiae, possess no gene coding for a histidine ammonia-lyase, which catalyzes the first step of a major histidine degradation pathway in most other organisms. We show that C. glabrata instead initializes histidine degradation via the aromatic amino acid aminotransferase Aro8. Although ARO8 is also present in S. cerevisiae and is induced by extracellular histidine, the yeast cannot use histidine as its sole nitrogen source, possibly due to growth inhibition by a downstream degradation product. Furthermore, C. glabrata relies only on Aro8 for phenylalanine and tryptophan utilization, since ARO8, but not its homologue ARO9, was transcriptionally activated in the presence of these amino acids. Accordingly, an ARO9 deletion had no effect on growth with aromatic amino acids. In contrast, in S. cerevisiae, ARO9 is strongly induced by tryptophan and is known to support growth on aromatic amino acids. Differences in the genomic structure of the ARO9 gene between C. glabrata and S. cerevisiae indicate a possible disruption in the regulatory upstream region. Thus, we show that, in contrast to S. cerevisiae, C. glabrata has adapted to use histidine as a sole source of nitrogen and that the aromatic amino acid aminotransferase Aro8, but not Aro9, is the enzyme required for this process.

  11. 21 CFR 582.5361 - Histidine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Histidine. 582.5361 Section 582.5361 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary...

  12. 21 CFR 582.5361 - Histidine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Histidine. 582.5361 Section 582.5361 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary...

  13. 21 CFR 582.5361 - Histidine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Histidine. 582.5361 Section 582.5361 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary...

  14. 21 CFR 582.5361 - Histidine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Histidine. 582.5361 Section 582.5361 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary...

  15. 21 CFR 582.5361 - Histidine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Histidine. 582.5361 Section 582.5361 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary...

  16. Protonation and geometry of histidine rings.

    PubMed

    Malinska, Maura; Dauter, Miroslawa; Kowiel, Marcin; Jaskolski, Mariusz; Dauter, Zbigniew

    2015-07-01

    The presence of H atoms connected to either or both of the two N atoms of the imidazole moiety in a histidine residue affects the geometry of the five-membered ring. Analysis of the imidazole moieties found in histidine residues of atomic resolution protein crystal structures in the Protein Data Bank (PDB), and in small-molecule structures retrieved from the Cambridge Structural Database (CSD), identified characteristic patterns of bond lengths and angles related to the protonation state of the imidazole moiety. Using discriminant analysis, two functions could be defined, corresponding to linear combinations of the four most sensitive stereochemical parameters, two bond lengths (ND1-CE1 and CE1-NE2) and two endocyclic angles (-ND1- and -NE2-), that uniquely identify the protonation states of all imidazole moieties in the CSD and can be used to predict which N atom(s) of the histidine side chains in protein structures are protonated. Updated geometrical restraint target values are proposed for differently protonated histidine side chains for use in macromolecular refinement.

  17. Cleaved DNAzyme substrate induced enzymatic cascade for the exponential amplified analysis of L-histidine.

    PubMed

    He, Jing-Lin; Wu, Ping; Zhu, Shuang-Li; Li, Ting; Li, Pan-Pan; Xiang, Jian-Nan; Cao, Zhong

    2015-01-01

    A novel strategy of cleaved DNAzyme substrate induced enzymatic cascade has been devised for the exponential amplified detection of L-histidine. The enzyme strand carries out hydrolytic cleavage of the substrate strand in the presence of L-histidine. The cleaved DNAzyme substrates introduce the polymerase/endonuclease reaction cycles as primers. The L-histidine acts as the activator for enzymatic cascade amplification generating a distinguishable fluorescence enhancement. A good nonlinear correlation (R=0.9994) between fluorescence intensity and the logarithm of the L-histidine concentration is obtained over the range from 50 nM to 1.0 mM. The detection limit was estimated as 30 nM. This efficient amplification of the fluorescence signal is attributed to the L-histidine induced cooperation of Klenow Fragment polymerase (exo(-)) and Nb.BbvCI endonuclease reaction. The activation of such enzymatic cascades through analyte-DNAzyme interactions has a substantial impact on the development of exponential amplified DNAzyme sensors.

  18. Ypq3p-dependent histidine uptake by the vacuolar membrane vesicles of Saccharomyces cerevisiae.

    PubMed

    Manabe, Kunio; Kawano-Kawada, Miyuki; Ikeda, Koichi; Sekito, Takayuki; Kakinuma, Yoshimi

    2016-06-01

    The vacuolar membrane proteins Ypq1p, Ypq2p, and Ypq3p of Saccharomyces cerevisiae are known as the members of the PQ-loop protein family. We found that the ATP-dependent uptake activities of arginine and histidine by the vacuolar membrane vesicles were decreased by ypq2Δ and ypq3Δ mutations, respectively. YPQ1 and AVT1, which are involved in the vacuolar uptake of lysine/arginine and histidine, respectively, were deleted in addition to ypq2Δ and ypq3Δ. The vacuolar membrane vesicles isolated from the resulting quadruple deletion mutant ypq1Δypq2Δypq3Δavt1Δ completely lost the uptake activity of basic amino acids, and that of histidine, but not lysine and arginine, was evidently enhanced by overexpressing YPQ3 in the mutant. These results suggest that Ypq3p is specifically involved in the vacuolar uptake of histidine in S. cerevisiae. The cellular level of Ypq3p-HA(3) was enhanced by depletion of histidine from culture medium, suggesting that it is regulated by the substrate.

  19. Promoter-proximal polyadenylation sites reduce transcription activity

    PubMed Central

    Andersen, Pia K.; Lykke-Andersen, Søren; Jensen, Torben Heick

    2012-01-01

    Gene expression relies on the functional communication between mRNA processing and transcription. We previously described the negative impact of a point-mutated splice donor (SD) site on transcription. Here we demonstrate that this mutation activates an upstream cryptic polyadenylation (CpA) site, which in turn causes reduced transcription. Functional depletion of U1 snRNP in the context of the wild-type SD triggers the same CpA event accompanied by decreased RNA levels. Thus, in accordance with recent findings, U1 snRNP can shield premature pA sites. The negative impact of unshielded pA sites on transcription requires promoter proximity, as demonstrated using artificial constructs and supported by a genome-wide data set. Importantly, transcription down-regulation can be recapitulated in a gene context devoid of splice sites by placing a functional bona fide pA site/transcription terminator within ∼500 base pairs of the promoter. In contrast, promoter-proximal positioning of a pA site-independent histone gene terminator supports high transcription levels. We propose that optimal communication between a pA site-dependent gene terminator and its promoter critically depends on gene length and that short RNA polymerase II-transcribed genes use specialized termination mechanisms to maintain high transcription levels. PMID:23028143

  20. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    PubMed

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined.

  1. Active Sites Environmental Monitoring Program: Mid-FY 1991 report

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1991-10-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1990 through March 1991. The ASEMP was established in 1989 by Solid Waste Operations and the Environmental Sciences Division to provide early detection and performance monitoring at active low-level radioactive waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. Monitoring results continue to demonstrate the no LLW is being leached from the storage vaults on the tumulus pads. Loading of vaults on Tumulus II began during this reporting period and 115 vaults had been loaded by the end of March 1991.

  2. Active and regulatory sites of cytosolic 5'-nucleotidase.

    PubMed

    Pesi, Rossana; Allegrini, Simone; Careddu, Maria Giovanna; Filoni, Daniela Nicole; Camici, Marcella; Tozzi, Maria Grazia

    2010-12-01

    Cytosolic 5'-nucleotidase (cN-II), which acts preferentially on 6-hydroxypurine nucleotides, is essential for the survival of several cell types. cN-II catalyses both the hydrolysis of nucleotides and transfer of their phosphate moiety to a nucleoside acceptor through formation of a covalent phospho-intermediate. Both activities are regulated by a number of phosphorylated compounds, such as diadenosine tetraphosphate (Ap₄A), ADP, ATP, 2,3-bisphosphoglycerate (BPG) and phosphate. On the basis of a partial crystal structure of cN-II, we mutated two residues located in the active site, Y55 and T56. We ascertained that the ability to catalyse the transfer of phosphate depends on the presence of a bulky residue in the active site very close to the aspartate residue that forms the covalent phospho-intermediate. The molecular model indicates two possible sites at which adenylic compounds may interact. We mutated three residues that mediate interaction in the first activation site (R144, N154, I152) and three in the second (F127, M436 and H428), and found that Ap₄A and ADP interact with the same site, but the sites for ATP and BPG remain uncertain. The structural model indicates that cN-II is a homotetrameric protein that results from interaction through a specific interface B of two identical dimers that have arisen from interaction of two identical subunits through interface A. Point mutations in the two interfaces and gel-filtration experiments indicated that the dimer is the smallest active oligomerization state. Finally, gel-filtration and light-scattering experiments demonstrated that the native enzyme exists as a tetramer, and no further oligomerization is required for enzyme activation.

  3. The cytochrome ba3 oxygen reductase from Thermus thermophilus uses a single input channel for proton delivery to the active site and for proton pumping.

    PubMed

    Chang, Hsin-Yang; Hemp, James; Chen, Ying; Fee, James A; Gennis, Robert B

    2009-09-22

    The heme-copper oxygen reductases are redox-driven proton pumps that generate a proton motive force in both prokaryotes and mitochondria. These enzymes have been divided into 3 evolutionarily related groups: the A-, B- and C-families. Most experimental work on proton-pumping mechanisms has been performed with members of the A-family. These enzymes require 2 proton input pathways (D- and K-channels) to transfer protons used for oxygen reduction chemistry and for proton pumping, with the D-channel transporting all pumped protons. In this work we use site-directed mutagenesis to demonstrate that the ba(3) oxygen reductase from Thermus thermophilus, a representative of the B-family, does not contain a D-channel. Rather, it utilizes only 1 proton input channel, analogous to that of the A-family K-channel, and it delivers protons to the active site for both O2 chemistry and proton pumping. Comparison of available subunit I sequences reveals that the only structural elements conserved within the oxygen reductase families that could perform these functions are active-site components, namely the covalently linked histidine-tyrosine, the Cu(B) and its ligands, and the active-site heme and its ligands. Therefore, our data suggest that all oxygen reductases perform the same chemical reactions for oxygen reduction and comprise the essential elements of the proton-pumping mechanism (e.g., the proton-loading and kinetic-gating sites). These sites, however, cannot be located within the D-channel. These results along with structural considerations point to the A-propionate region of the active-site heme and surrounding water molecules as the proton-loading site.

  4. BAX Activation is Initiated at a Novel Interaction Site

    PubMed Central

    Gavathiotis, Evripidis; Suzuki, Motoshi; Davis, Marguerite L.; Pitter, Kenneth; Bird, Gregory H.; Katz, Samuel G.; Tu, Ho-Chou; Kim, Hyungjin; Cheng, Emily H.-Y.; Tjandra, Nico; Walensky, Loren D.

    2008-01-01

    BAX is a pro-apoptotic protein of the BCL-2 family stationed in the cytosol until activated by a diversity of stress stimuli to induce cell death. Anti-apoptotic proteins such as BCL-2 counteract BAX-mediated cell death. Although an interaction site that confers survival functionality has been defined for anti-apoptotic proteins, an activation site has not been identified for BAX, rendering its explicit trigger mechanism unknown. We previously developed Stabilized Alpha-Helix of BCL-2 domains (SAHBs) that directly initiate BAX-mediated mitochondrial apoptosis. Here we demonstrate by NMR analysis that BIM SAHB binds BAX at an interaction site that is distinct from the canonical binding groove characterized for anti-apoptotic proteins. The specificity of the BIM SAHB-BAX interaction is highlighted by point mutagenesis that abrogates functional activity, confirming that BAX activation is initiated at this novel structural location. Thus, we have now defined a BAX interaction site for direct activation, establishing a new target for therapeutic modulation of apoptosis. PMID:18948948

  5. Cleavage of the peptide bond of beta-alanyl-L-histidine (carnosine) induced by a Co(III)-amine complexes: reaction, structure and mechanism.

    PubMed

    Saha, Manas K; Mukhopadhyay, Uday; Bernal, Ivan

    2004-05-07

    Cleavage of the peptide bond occurs when beta]-alanyl-L-histidine (carnosine) reacts with [Co(tren)Cl2]+ (tren = tris(2-aminoethyl)amine) to give [Co(tren)(histidine)](2+) 1 and [Co(tren)(beta-alanine)](2+) 2. [Co(tren)(histidine)](2+) 1 crystallizes in the enantiomorphic space group P2(1)2(1)2(1) and 2 crystallizes in the P2(1)/c space group. The mechanism of the cleavage reactions were studied in detail for the precursor [Co(tren)Cl2]+ and [Co(trien)Cl2]+, which convert into [Co(tren)(OH)2]+/[Co(tren)(OH)(OH2)]2+ and [Co(trien)(OH)2]+/[Co(trien)(OH)(OH2)]2+ in water at basic pH (trien = 1,4,7,10-tetraazadecane). At a slightly basic pH, the initial coordination of the substrate (beta-alanyl-L-histidine) is by the carboxylate group for the reaction with [Co(tren)Cl2]+. This is followed by a rate-limiting nucleophilic attack of the hydroxide group at the beta-alanyl-L-histidine carbonyl group. In a strongly basic reaction medium substrate, binding of the metal was through carboxylate and amine terminals. On the other hand, for the reaction between [cis-beta-Co(trien)Cl2]+ and beta-alanyl-L-histidine, the initial coordination of the substrate takes place via an imidazole ring nitrogen, independently, and followed by a nucleophilic attack of the hydroxide group at the beta-alanyl-L-histidine carbonyl group. The circular dichroism spectrum for 1 suggests that a very small extent of racemization of the amino acid (L-histidine) takes place during the cleavage reaction between [Co(tren)Cl2]+ and beta-alanyl-L-histidine. Reaction between [cis-beta-Co(trien)Cl2]+ and beta-alanyl-L-histidine also causes cleavage of the peptide bond, producing a free beta-alanyl molecule and a cationic fragment [cis-alpha-Co(trien)(histidine)](2+) 3 that crystallizes in the optically active space group P2(1)2(1)2(1). Unlike the previous case an appreciable degree of racemization of the L-histidine takes place during the reaction between [cis-beta-Co(trien)Cl2]+ and beta-alanyl-L-histidine

  6. Involvement of novel autophosphorylation sites in ATM activation.

    PubMed

    Kozlov, Sergei V; Graham, Mark E; Peng, Cheng; Chen, Philip; Robinson, Phillip J; Lavin, Martin F

    2006-08-09

    ATM kinase plays a central role in signaling DNA double-strand breaks to cell cycle checkpoints and to the DNA repair machinery. Although the exact mechanism of ATM activation remains unknown, efficient activation requires the Mre11 complex, autophosphorylation on S1981 and the involvement of protein phosphatases and acetylases. We report here the identification of several additional phosphorylation sites on ATM in response to DNA damage, including autophosphorylation on pS367 and pS1893. ATM autophosphorylates all these sites in vitro in response to DNA damage. Antibodies against phosphoserine 1893 revealed rapid and persistent phosphorylation at this site after in vivo activation of ATM kinase by ionizing radiation, paralleling that observed for S1981 phosphorylation. Phosphorylation was dependent on functional ATM and on the Mre11 complex. All three autophosphorylation sites are physiologically important parts of the DNA damage response, as phosphorylation site mutants (S367A, S1893A and S1981A) were each defective in ATM signaling in vivo and each failed to correct radiosensitivity, genome instability and cell cycle checkpoint defects in ataxia-telangiectasia cells. We conclude that there are at least three functionally important radiation-induced autophosphorylation events in ATM.

  7. Resonant active sites in catalytic ammonia synthesis: A structural model

    NASA Astrophysics Data System (ADS)

    Cholach, Alexander R.; Bryliakova, Anna A.; Matveev, Andrey V.; Bulgakov, Nikolai N.

    2016-03-01

    Adsorption sites Mn consisted of n adjacent atoms M, each bound to the adsorbed species, are considered within a realistic model. The sum of bonds Σ lost by atoms in a site in comparison with the bulk atoms was used for evaluation of the local surface imperfection, while the reaction enthalpy at that site was used as a measure of activity. The comparative study of Mn sites (n = 1-5) at basal planes of Pt, Rh, Ir, Fe, Re and Ru with respect to heat of N2 dissociative adsorption QN and heat of Nad + Had → NHad reaction QNH was performed using semi-empirical calculations. Linear QN(Σ) increase and QNH(Σ) decrease allowed to specify the resonant Σ for each surface in catalytic ammonia synthesis at equilibrium Nad coverage. Optimal Σ are realizable for Ru2, Re2 and Ir4 only, whereas other centers meet steric inhibition or unreal crystal structure. Relative activity of the most active sites in proportion 5.0 × 10- 5: 4.5 × 10- 3: 1: 2.5: 3.0: 1080: 2270 for a sequence of Pt4, Rh4, Fe4(fcc), Ir4, Fe2-5(bcc), Ru2, Re2, respectively, is in agreement with relevant experimental data. Similar approach can be applied to other adsorption or catalytic processes exhibiting structure sensitivity.

  8. Connection between the taxonomic substates and protonation of histidines 64 and 97 in carbonmonoxy myoglobin.

    PubMed Central

    Müller, J D; McMahon, B H; Chien, E Y; Sligar, S G; Nienhaus, G U

    1999-01-01

    Infrared spectra of heme-bound CO in sperm whale carbonmonoxy myoglobin and two mutants (H64L and H97F) were studied in the pH range from 4.2 to 9.5. Comparison of the native protein with the mutants shows that the observed pH effects can be traced to protonations of two histidine residues, H64 and H97, near the active site. Their imidazole sidechains experience simple, uncoupled Henderson-Hasselbalch type protonations, giving rise to four different protonation states. Because two of the protonation states are linked by a pH-independent equilibrium, the overall pH dependence of the spectra is described by a linear combination of three independent components. Global analysis, based on singular value decomposition and matrix least-squares algorithms enabled us to extract the pK values of the two histidines and the three basis spectra of the protonating species. The basis spectra were decomposed into the taxonomic substates A(0), A(1), and A(3), previously introduced in a heuristic way to analyze CO stretch spectra in heme proteins at fixed pH (see for instance, Biophys. J. 71:1563-1573). Moreover, an additional, weakly populated substate, called A(x), was identified. Protonation of H97 gives rise to a blue shift of the individual infrared lines by about 2 cm(-1), so that the A substates actually appear in pairs, such as A(0) and A(0)(+). The blue shift can be explained by reduced backbonding from the heme iron to the CO. Protonation of the distal histidine, H64, leads to a change of the infrared absorption from the A(1) or A(3) substate lines to A(0). This behavior can be explained by a conformational change upon protonation that moves the imidazole sidechain of H64 away from the CO into the high-dielectric solvent environment, which avoids the energetically unfavorable situation of an uncompensated electric charge in the apolar, low-dielectric protein interior. Our results suggest that protonation reactions serve as an important mechanism to create taxonomic

  9. Possible role of a histidine residue in the substrate specificity of yeast d-aspartate oxidase.

    PubMed

    Takahashi, Shouji; Shimada, Kozue; Nozawa, Shunsuke; Goto, Masaru; Abe, Katsumasa; Kera, Yoshio

    2016-03-01

    D-Aspartate oxidase (DDO) catalyzes the oxidative deamination of acidic D-amino acids, whereas neutral and basic D-amino acids are substrates of D-amino acid oxidase (DAO). DDO of the yeast Cryptococcus humicola (ChDDO) has much higher substrate specificity to D-aspartate, but the structural features that confer this specificity have not been elucidated. A three-dimensional model of ChDDO suggested that a histidine residue (His56) in the active site might be involved in the unique substrate specificity, possibly through the interaction with the substrate side chain in the active site. His56 mutants with several different amino acid residues (H56A, H56D, H56F, H56K and H56N) exhibited no significant activity toward acidic D-amino acids, but H56A and H56N mutants gained the ability to utilize neutral D-amino acids as substrates, such as D-methionine, D-phenylalanine and D-glutamine, showing the conversion of ChDDO to DAO by these mutations. This conversion was also demonstrated by the sensitivity of these mutants to competitive inhibitors of DAO. These results and kinetic properties of the mutants show that His56 is involved in the substrate specificity of ChDDO and possibly plays a role in the higher substrate specificity toward D-aspartate.

  10. Conformationally Constrained Histidines in the Design of Peptidomimetics: Strategies for the χ-Space Control

    PubMed Central

    Stefanucci, Azzurra; Pinnen, Francesco; Feliciani, Federica; Cacciatore, Ivana; Lucente, Gino; Mollica, Adriano

    2011-01-01

    A successful design of peptidomimetics must come to terms with χ-space control. The incorporation of χ-space constrained amino acids into bioactive peptides renders the χ1 and χ2 torsional angles of pharmacophore amino acids critical for activity and selectivity as with other relevant structural features of the template. This review describes histidine analogues characterized by replacement of native α and/or β-hydrogen atoms with alkyl substituents as well as analogues with α, β-didehydro unsaturation or Cα-Cβ cyclopropane insertion (ACC derivatives). Attention is also dedicated to the relevant field of β-aminoacid chemistry by describing the synthesis of β2- and β3-models (β-hHis). Structural modifications leading to cyclic imino derivatives such as spinacine, aza-histidine and analogues with shortening or elongation of the native side chain (nor-histidine and homo-histidine, respectively) are also described. Examples of the use of the described analogues to replace native histidine in bioactive peptides are also given. PMID:21686155

  11. Use of specifically {sup 15}N-labeled histidine to study structures and mechanisms within the active sites of serine proteinases

    SciTech Connect

    Bachovchin, W.W.

    1994-12-01

    The current emphasis in biological NMR work is on determining structures of biological macromolecules in solution. This emphasis is appropriate because NMR is the only technique capable of providing high-resolution structures that are comparable to those of x-ray crystallography for molecules in solution. This structural knowledge is immensely valuable and is needed in many areas of investigation. However, as valuable as such structural knowledge is, it never provides all the answers; a structure often reveals more questions than answers.

  12. Chemical Modification of Papain and Subtilisin: An Active Site Comparison

    ERIC Educational Resources Information Center

    St-Vincent, Mireille; Dickman, Michael

    2004-01-01

    An experiment using methyle methanethiosulfonate (MMTS) and phenylmethylsulfonyl flouride (PMSF) to specifically modify the cysteine and serine residues in the active sites of papain and subtilism respectively is demonstrated. The covalent modification of these enzymes and subsequent rescue of papain shows the beginning biochemist that proteins…

  13. Spectroscopic studies of the active site of galactose oxidase

    SciTech Connect

    Knowles, P.F.; Brown, R.D. III; Koenig, S.H.

    1995-07-19

    X-ray absorption and EPR spectroscopy have been used to probe the copper site structure in galactose oxidase at pH 4.5 and 7.0. the results suggest that there are no major differences in the structure of the tetragonal Cu(II) site at these pH values. Analysis of the extended X-ray absorption fine structure (EXAFS) indicates that four N,O scatterers are present at approximately 2 {Angstrom}; these are presumably the equatorial ligands. In addition, the EXAFS data establish that oxidative activation to produce the active-site tyrosine radical does not cause major changes in the copper coordination environment. Therefore results obtained on the one-electron reduced enzyme, containing Cu(II) but not the tyrosine radical, probably also apply to the catalytically active Cu(II)/tyrosine radical state. Solvent water exchange, inhibitor binding, and substrate binding have been probed via nuclear magnetic relaxation dispersion (NMRD) measurements. The NMRD profile of galactose oxidase is quantitatively consistent with the rapid exchange of a single, equatorial water ligand with a Cu(II)-O separation of about 2.4 {Angstrom}. Azide and cyanide displace this coordinated water. The binding of azide and the substrate dihydroxyacetone produce very similar effects on the NMRD profile of galactose oxidase, indicating that substrates also bind to the active site Cu(II) in an equatorial position.

  14. Energy transfer at the active sites of heme proteins

    SciTech Connect

    Dlott, D.D.; Hill, J.R.

    1995-12-31

    Experiments using a picosecond pump-probe apparatus at the Picosecond Free-electron Laser Center at Stanford University, were performed to investigate the relaxation of carbon monoxide bound to the active sites of heme proteins. The significance of these experiments is two-fold: (1) they provide detailed information about molecular dynamics occurring at the active sites of proteins; and (2) they provide insight into the nature of vibrational relaxation processes in condensed matter. Molecular engineering is used to construct various molecular systems which are studied with the FEL. We have studied native proteins, mainly myoglobin obtained from different species, mutant proteins produced by genetic engineering using recombinant DNA techniques, and a variety of model systems which mimic the structures of the active sites of native proteins, which are produced using molecular synthesis. Use of these different systems permits us to investigate how specific molecular structural changes affect dynamical processes occurring at the active sites. This research provides insight into the problems of how different species needs are fulfilled by heme proteins which have greatly different functionality, which is induced by rather small structural changes.

  15. Activation of phenylalanine hydroxylase by phenylalanine does not require binding in the active site.

    PubMed

    Roberts, Kenneth M; Khan, Crystal A; Hinck, Cynthia S; Fitzpatrick, Paul F

    2014-12-16

    Phenylalanine hydroxylase (PheH), a liver enzyme that catalyzes the hydroxylation of excess phenylalanine in the diet to tyrosine, is activated by phenylalanine. The lack of activity at low levels of phenylalanine has been attributed to the N-terminus of the protein's regulatory domain acting as an inhibitory peptide by blocking substrate access to the active site. The location of the site at which phenylalanine binds to activate the enzyme is unknown, and both the active site in the catalytic domain and a separate site in the N-terminal regulatory domain have been proposed. Binding of catecholamines to the active-site iron was used to probe the accessibility of the active site. Removal of the regulatory domain increases the rate constants for association of several catecholamines with the wild-type enzyme by ∼2-fold. Binding of phenylalanine in the active site is effectively abolished by mutating the active-site residue Arg270 to lysine. The k(cat)/K(phe) value is down 10⁴ for the mutant enzyme, and the K(m) value for phenylalanine for the mutant enzyme is >0.5 M. Incubation of the R270K enzyme with phenylalanine also results in a 2-fold increase in the rate constants for catecholamine binding. The change in the tryptophan fluorescence emission spectrum seen in the wild-type enzyme upon activation by phenylalanine is also seen with the R270K mutant enzyme in the presence of phenylalanine. Both results establish that activation of PheH by phenylalanine does not require binding of the amino acid in the active site. This is consistent with a separate allosteric site, likely in the regulatory domain.

  16. Conformational changes associated with the binding of zinc acetate at the putative active site of XcTcmJ, a cupin from Xanthomonas campestris pv. campestris

    PubMed Central

    Axelrod, Herbert L.; Kozbial, Piotr; McMullan, Daniel; Krishna, S. Sri; Miller, Mitchell D.; Abdubek, Polat; Acosta, Claire; Astakhova, Tamara; Carlton, Dennis; Caruthers, Jonathan; Chiu, Hsiu-Ju; Clayton, Thomas; Deller, Marc C.; Duan, Lian; Elias, Ylva; Feuerhelm, Julie; Grzechnik, Slawomir K.; Grant, Joanna C.; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kumar, Abhinav; Marciano, David; Morse, Andrew T.; Murphy, Kevin D.; Nigoghossian, Edward; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Reyes, Ron; Rife, Christopher L.; Tien, Henry J.; Trout, Christina V.; van den Bedem, Henry; Weekes, Dana; White, Aprilfawn; Xu, Qingping; Zubieta, Chloe; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    In the plant pathogen Xanthomonas campestris pv. campestris, the product of the tcmJ gene, XcTcmJ, encodes a protein belonging to the RmlC family of cupins. XcTcmJ was crystallized in a monoclinic space group (C2) in the presence of zinc acetate and the structure was determined to 1.6 Å resolution. Previously, the apo structure has been reported in the absence of any bound metal ion [Chin et al. (2006 ▶), Proteins, 65, 1046–1050]. The most significant difference between the apo structure and the structure of XcTcmJ described here is a reorganization of the binding site for zinc acetate, which was most likely acquired from the crystallization solution. This site is located in the conserved metal ion-binding domain at the putative active site of XcTcmJ. In addition, an acetate was also bound within coordination distance of the zinc. In order to accommodate this binding, rearrangement of a conserved histidine ligand is required as well as several nearby residues within and around the putative active site. These observations indicate that binding of zinc serves a functional role in this cupin protein. PMID:20944231

  17. Conformational changes associated with the binding of zinc acetate at the putative active site of XcTcmJ, a cupin from Xanthomonas campestris pv. campestris.

    PubMed

    Axelrod, Herbert L; Kozbial, Piotr; McMullan, Daniel; Krishna, S Sri; Miller, Mitchell D; Abdubek, Polat; Acosta, Claire; Astakhova, Tamara; Carlton, Dennis; Caruthers, Jonathan; Chiu, Hsiu Ju; Clayton, Thomas; Deller, Marc C; Duan, Lian; Elias, Ylva; Feuerhelm, Julie; Grzechnik, Slawomir K; Grant, Joanna C; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K; Klock, Heath E; Knuth, Mark W; Kumar, Abhinav; Marciano, David; Morse, Andrew T; Murphy, Kevin D; Nigoghossian, Edward; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Reyes, Ron; Rife, Christopher L; Tien, Henry J; Trout, Christina V; van den Bedem, Henry; Weekes, Dana; White, Aprilfawn; Xu, Qingping; Zubieta, Chloe; Hodgson, Keith O; Wooley, John; Elsliger, Marc André; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A

    2010-10-01

    In the plant pathogen Xanthomonas campestris pv. campestris, the product of the tcmJ gene, XcTcmJ, encodes a protein belonging to the RmlC family of cupins. XcTcmJ was crystallized in a monoclinic space group (C2) in the presence of zinc acetate and the structure was determined to 1.6 Å resolution. Previously, the apo structure has been reported in the absence of any bound metal ion [Chin et al. (2006), Proteins, 65, 1046-1050]. The most significant difference between the apo structure and the structure of XcTcmJ described here is a reorganization of the binding site for zinc acetate, which was most likely acquired from the crystallization solution. This site is located in the conserved metal ion-binding domain at the putative active site of XcTcmJ. In addition, an acetate was also bound within coordination distance of the zinc. In order to accommodate this binding, rearrangement of a conserved histidine ligand is required as well as several nearby residues within and around the putative active site. These observations indicate that binding of zinc serves a functional role in this cupin protein.

  18. The histidine kinase CusS senses silver ions through direct binding by its sensor domain

    PubMed Central

    Gudipaty, Swapna A.; McEvoy, Megan M.

    2014-01-01

    The Cus system of Escherichia coli aids in protection of cells from high concentrations of Ag(I) and Cu(I). The histidine kinase CusS of the CusRS two-component system functions as a Ag(I)/Cu(I)-responsive sensor kinase and is essential for induction of the genes encoding the CusCFBA efflux pump. In this study, we have examined the molecular features of the sensor domain of CusS in order to understand how a metal-responsive histidine kinase senses specific metal ions. We find that the predicted periplasmic sensor domain of CusS directly interacts with Ag(I) ions and undergoes a conformational change upon metal binding. Metal binding also enhances the tendency of the domain to dimerize. These findings suggest a model for activation of the histidine kinase through metal binding events in the periplasmic sensor domain. PMID:24948475

  19. Structural-dynamical investigation of the ZnuA histidine-rich loop: involvement in zinc management and transport.

    PubMed

    Falconi, Mattia; Oteri, Francesco; Di Palma, Francesco; Pandey, Saurabh; Battistoni, Andrea; Desideri, Alessandro

    2011-02-01

    Comparative homology modelling techniques have been used to model the protein ZnuA from Salmonella enterica serovar Typhimurium using the 3D structure of the homologous protein from Escherichia coli. These two-domain proteins bind one Zn(2+) atom, with high affinity, in the inter-domain cleft and possess a histidine-rich loop in the N-terminal domain. Alternative structures of the ZnuA histidine-rich loop, never resolved by the X-ray diffraction method, have been modelled. A model of the apo form, one with the histidine-rich loop deleted and two alternative structures with a second zinc ion bound to the histidine-rich loop, have been generated. In all the modelled proteins, investigated through molecular dynamics simulation, the histidine-rich loop is highly mobile and its fluctuations are correlated to the ligand stability observed in the zinc sites. Based on the plasticity of the histidine-rich loop and its significant effects on protein mobility a possible role in the capture and/or transfer of the zinc ions has been suggested.

  20. Ammonium Transport Proteins with Changes in One of the Conserved Pore Histidines Have Different Performance in Ammonia and Methylamine Conduction

    PubMed Central

    Shao, Qiang; Javelle, Arnaud; Yang, Huaiyu; Zhu, Weiliang; Merrick, Mike

    2013-01-01

    Two conserved histidine residues are located near the mid-point of the conduction channel of ammonium transport proteins. The role of these histidines in ammonia and methylamine transport was evaluated by using a combination of in vivo studies, molecular dynamics (MD) simulation, and potential of mean force (PMF) calculations. Our in vivo results showed that a single change of either of the conserved histidines to alanine leads to the failure to transport methylamine but still facilitates good growth on ammonia, whereas double histidine variants completely lose their ability to transport both methylamine and ammonia. Molecular dynamics simulations indicated the molecular basis of the in vivo observations. They clearly showed that a single histidine variant (H168A or H318A) of AmtB confines the rather hydrophobic methylamine more strongly than ammonia around the mutated sites, resulting in dysfunction in conducting the former but not the latter molecule. PMF calculations further revealed that the single histidine variants form a potential energy well of up to 6 kcal/mol for methylamine, impairing conduction of this substrate. Unlike the single histidine variants, the double histidine variant, H168A/H318A, of AmtB was found to lose its unidirectional property of transporting both ammonia and methylamine. This could be attributed to a greatly increased frequency of opening of the entrance gate formed by F215 and F107, in this variant compared to wild-type, with a resultant lowering of the energy barrier for substrate to return to the periplasm. PMID:23667517

  1. Ammonium transport proteins with changes in one of the conserved pore histidines have different performance in ammonia and methylamine conduction.

    PubMed

    Wang, Jinan; Fulford, Tim; Shao, Qiang; Javelle, Arnaud; Yang, Huaiyu; Zhu, Weiliang; Merrick, Mike

    2013-01-01

    Two conserved histidine residues are located near the mid-point of the conduction channel of ammonium transport proteins. The role of these histidines in ammonia and methylamine transport was evaluated by using a combination of in vivo studies, molecular dynamics (MD) simulation, and potential of mean force (PMF) calculations. Our in vivo results showed that a single change of either of the conserved histidines to alanine leads to the failure to transport methylamine but still facilitates good growth on ammonia, whereas double histidine variants completely lose their ability to transport both methylamine and ammonia. Molecular dynamics simulations indicated the molecular basis of the in vivo observations. They clearly showed that a single histidine variant (H168A or H318A) of AmtB confines the rather hydrophobic methylamine more strongly than ammonia around the mutated sites, resulting in dysfunction in conducting the former but not the latter molecule. PMF calculations further revealed that the single histidine variants form a potential energy well of up to 6 kcal/mol for methylamine, impairing conduction of this substrate. Unlike the single histidine variants, the double histidine variant, H168A/H318A, of AmtB was found to lose its unidirectional property of transporting both ammonia and methylamine. This could be attributed to a greatly increased frequency of opening of the entrance gate formed by F215 and F107, in this variant compared to wild-type, with a resultant lowering of the energy barrier for substrate to return to the periplasm.

  2. Induction of histidine decarboxylase in macrophages inhibited by the novel NF-{kappa}B inhibitor (-)-DHMEQ

    SciTech Connect

    Suzuki, Eriko Ninomiya, Yoko; Umezawa, Kazuo

    2009-02-06

    Histamine often causes inflammation, and this amine is produced by histidine decarboxylase (HDC). We found that (-)-DHMEQ, an NF-{kappa}B inhibitor, inhibited lipopolysaccharide (LPS)-induced histamine production and HDC induction in mouse macrophage cell line RAW264.7. However, as there is no {kappa}B site in the HDC promoter, we studied the mechanism of inhibition. Knockdown of the transcription factor C/EBP{beta} reduced the HDC expression in LPS-treated cells. (-)-DHMEQ inhibited the C/EBP{beta} transcriptional activity in a reporter assay and in an electrophoresis mobility shift assay. But it did not inhibit the in vitro binding of C/EBP{beta} to DNA. It also did not lower the nuclear amount of C/EBP{beta}. On the other hand, the addition of recombinant p65, a component of NF-{kappa}B, enhanced the activity of C/EBP{beta} acting as a cofactor in vitro. Then, we found that (-)-DHMEQ lowered the nuclear amount of p65. Thus, inhibition of the C/EBP{beta} activity by (-)-DHMEQ would be due to a reduction in the amount of nuclear p65, which has a co-activator activity for C/EBP{beta} that is essential for the HDC induction. (-)-DHMEQ may be useful as an anti-inflammatory agent by lowering the histamine production in the body.

  3. Segmental helical motions and dynamical asymmetry modulate histidine kinase autophosphorylation.

    PubMed

    Mechaly, Ariel E; Sassoon, Nathalie; Betton, Jean-Michel; Alzari, Pedro M

    2014-01-01

    Histidine kinases (HKs) are dimeric receptors that participate in most adaptive responses to environmental changes in prokaryotes. Although it is well established that stimulus perception triggers autophosphorylation in many HKs, little is known on how the input signal propagates through the HAMP domain to control the transient interaction between the histidine-containing and ATP-binding domains during the catalytic reaction. Here we report crystal structures of the full cytoplasmic region of CpxA, a prototypical HK involved in Escherichia coli response to envelope stress. The structural ensemble, which includes the Michaelis complex, unveils HK activation as a highly dynamic process, in which HAMP modulates the segmental mobility of the central HK α-helices to promote a strong conformational and dynamical asymmetry that characterizes the kinase-active state. A mechanical model based on our structural and biochemical data provides insights into HAMP-mediated signal transduction, the autophosphorylation reaction mechanism, and the symmetry-dependent control of HK kinase/phosphatase functional states.

  4. Kinetics and crystal structure of a mutant Escherichia coli alkaline phosphatase (Asp-369-->Asn): a mechanism involving one zinc per active site.

    PubMed

    Tibbitts, T T; Xu, X; Kantrowitz, E R

    1994-11-01

    Using site-directed mutagenesis, an aspartate side chain involved in binding metal ions in the active site of Escherichia coli alkaline phosphatase (Asp-369) was replaced, alternately, by asparagine (D369N) and by alanine (D369A). The purified mutant enzymes showed reduced turnover rates (kcat) and increased Michaelis constants (Km). The kcat for the D369A enzyme was 5,000-fold lower than the value for the wild-type enzyme. The D369N enzyme required Zn2+ in millimolar concentrations to become fully active; even under these conditions the kcat measured for hydrolysis of p-nitrophenol phosphate was 2 orders of magnitude lower than for the wild-type enzyme. Thus the kcat/Km ratios showed that catalysis is 50 times less efficient when the carboxylate side chain of Asp-369 is replaced by the corresponding amide; and activity is reduced to near nonenzymic levels when the carboxylate is replaced by a methyl group. The crystal structure of D369N, solved to 2.5 A resolution with an R-factor of 0.189, showed vacancies at 2 of the 3 metal binding sites. On the basis of the kinetic results and the refined X-ray coordinates, a reaction mechanism is proposed for phosphate ester hydrolysis by the D369N enzyme involving only 1 metal with the possible assistance of a histidine side chain.

  5. Role of polymeric endosomolytic agents in gene transfection: a comparative study of poly(L-lysine) grafted with monomeric L-histidine analogue and poly(L-histidine).

    PubMed

    Hwang, Hee Sook; Hu, Jun; Na, Kun; Bae, You Han

    2014-10-13

    Endosomal entrapment is one of the main barriers that must be overcome for efficient gene expression along with cell internalization, DNA release, and nuclear import. Introducing pH-sensitive ionizable groups into the polycationic polymers to increase gene transfer efficiency has proven to be a useful method; however, a comparative study of introducing equal numbers of ionizable groups in both polymer and monomer forms, has not been reported. In this study, we prepared two types of histidine-grafted poly(L-lysine) (PLL), a stacking form of poly(L-histidine) (PLL-g-PHis) and a mono-L-histidine (PLL-g-mHis) with the same number of imidazole groups. These two types of histidine-grafted PLL, PLL-g-PHis and PLL-g-mHis, showed profound differences in hemolytic activity, cellular uptake, internalization, and transfection efficiency. Cy3-labeled PLL-g-PHis showed strong fluorescence in the nucleus after internalization, and high hemolytic activity upon pH changes was also observed from PLL-g-PHis. The arrangement of imidazole groups from PHis also provided higher gene expression than mHis due to its ability to escape the endosome. mHis or PHis grafting reduced the cytotoxicity of PLL and changed the rate of cellular uptake by changing the quantity of free ε-amines available for gene condensation. The subcellular localization of PLL-g-PHis/pDNA measured by YOYO1-pDNA intensity was highest inside the nucleus, while the lysotracker, which stains the acidic compartments was lowest among these polymers. Thus, the polymeric histidine arrangement demonstrate the ability to escape the endosome and trigger rapid release of polyplexes into the cytosol, resulting in a greater amount of pDNA available for translocation to the nucleus and enhanced gene expression.

  6. Probing cathepsin K activity with a selective substrate spanning its active site.

    PubMed Central

    Lecaille, Fabien; Weidauer, Enrico; Juliano, Maria A; Brömme, Dieter; Lalmanach, Gilles

    2003-01-01

    The limited availability of highly selective cathepsin substrates seriously impairs studies designed to monitor individual cathepsin activities in biological samples. Among mammalian cysteine proteases, cathepsin K has a unique preference for a proline residue at P2, the primary determinant of its substrate specificity. Interestingly, congopain from Trypanosoma congolense also accommodates a proline residue in its S2 subsite. Analysis of a congopain model showed that amino acids forming its S2 subsite are identical with those of cathepsin K, except Leu67 which is replaced by a tyrosine residue in cathepsin K. Furthermore, amino acid residues of the congopain S2' binding pocket, which accepts a proline residue, are strictly identical with those of cathepsin K. Abz-HPGGPQ-EDN2ph [where Abz represents o-aminobenzoic acid and EDN2ph (=EDDnp) represents N -(2,4-dinitrophenyl)-ethylenediamine], a substrate initially developed for trypanosomal enzymes, was efficiently cleaved at the Gly-Gly bond by cathepsin K (kcat/ K(m)=426000 M(-1) x s(-1)). On the other hand, Abz-HPGGPQ-EDN2ph was resistant to hydrolysis by cathepsins B, F, H, L, S and V (20 nM enzyme concentration) and the Y67L (Tyr67-->Leu)/L205A cathepsin K mutant (20 nM), but still acted as a competitive inhibitor. Taken together, the selectivity of Abz-HPGGPQ-EDN2ph to cathepsin K primarily depends on the S2 and S2' subsite specificities of cathepsin K and the ionization state of histidine at P3. Whereas Abz-HPGGPQ-EDN2ph was hydrolysed by wild-type mouse fibroblast lysates, its hydrolysis was completely abolished in the cathepsin K-deficient samples, indicating that Abz-HPGGPQ-EDN2ph can be used to monitor selectively cathepsin K activity in physiological fluids and cell lysates. PMID:12837132

  7. Identification of Ice Nucleation Active Sites on Silicate Dust Particles

    NASA Astrophysics Data System (ADS)

    Zolles, Tobias; Burkart, Julia; Häusler, Thomas; Pummer, Bernhard; Hitzenberger, Regina; Grothe, Hinrich

    2015-04-01

    Mineral dusts originating from Earth's crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts [1-3]. Nevertheless, among those structures K-feldspar showed by far the highest ice nucleation activity. In this study, the reasons for its activity and the difference in the activity of the different feldspars were investigated in closer details. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. We give a potential explanation of the increased ice nucleation activity of K-feldspar. The ice nucleating sites are very much dependent on the alkali ion present by altering the water structure and the feldspar surface. The higher activity of K-feldspar can be attributed to the presence of potassium ions on the surface and surface bilayer. The alkali-ions have different hydration shells and thus an influence on the ice nucleation activity of feldspar. Chaotropic behavior of Calcium and Sodium ions are lowering the ice nucleation potential of the other feldspars, while kosmotropic Potassium has a neutral or even positive effect. Furthermore we investigated the influence of milling onto the ice nucleation of quartz particles. The ice nucleation activity can be increased by mechanical milling, by introducing more molecular, nucleation active defects to the particle surface. This effect is larger than expected by plane surface increase. [1] Atkinson et al. The Importance of Feldspar for Ice Nucleation by Mineral Dust in Mixed-Phase Clouds. Nature 2013, 498, 355-358. [2] Yakobi-Hancock et al.. Feldspar Minerals as Efficient Deposition Ice Nuclei. Atmos. Chem. Phys. 2013, 13, 11175-11185. [3] Zolles et al. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles. J. Phys. Chem. A 2015 accepted.

  8. Face the Edges: Catalytic Active Sites of Nanomaterials

    PubMed Central

    Ni, Bing

    2015-01-01

    Edges are special sites in nanomaterials. The atoms residing on the edges have different environments compared to those in other parts of a nanomaterial and, therefore, they may have different properties. Here, recent progress in nanomaterial fields is summarized from the viewpoint of the edges. Typically, edge sites in MoS2 or metals, other than surface atoms, can perform as active centers for catalytic reactions, so the method to enhance performance lies in the optimization of the edge structures. The edges of multicomponent interfaces present even more possibilities to enhance the activities of nanomaterials. Nanoframes and ultrathin nanowires have similarities to conventional edges of nanoparticles, the application of which as catalysts can help to reduce the use of costly materials. Looking beyond this, the edge structures of graphene are also essential for their properties. In short, the edge structure can influence many properties of materials. PMID:27980960

  9. Histidine biosynthesis genes in Lactococcus lactis subsp. lactis.

    PubMed Central

    Delorme, C; Ehrlich, S D; Renault, P

    1992-01-01

    The genes of Lactococcus lactis subsp. lactis involved in histidine biosynthesis were cloned and characterized by complementation of Escherichia coli and Bacillus subtilis mutants and DNA sequencing. Complementation of E. coli hisA, hisB, hisC, hisD, hisF, hisG, and hisIE genes and the B. subtilis hisH gene (the E. coli hisC equivalent) allowed localization of the corresponding lactococcal genes. Nucleotide sequence analysis of the 11.5-kb lactococcal region revealed 14 open reading frames (ORFs), 12 of which might form an operon. The putative operon includes eight ORFs which encode proteins homologous to enzymes involved in histidine biosynthesis. The operon also contains (i) an ORF encoding a protein homologous to the histidyl-tRNA synthetases but lacking a motif implicated in synthetase activity, which suggests that it has a role different from tRNA aminoacylation, and (ii) an ORF encoding a protein that is homologous to the 3'-aminoglycoside phosphotransferases but does not confer antibiotic resistance. The remaining ORFs specify products which have no homology with proteins in the EMBL and GenBank data bases. PMID:1400209

  10. Active sites in char gasification: Final technical report

    SciTech Connect

    Wojtowicz, M.; Lilly, W.D.; Perkins, M.T.; Hradil, G.; Calo, J.M.; Suuberg, E.M.

    1987-09-01

    Among the key variables in the design of gasifiers and combustors is the reactivity of the chars which must be gasified or combusted. Significant loss of unburned char is unacceptable in virtually any process; the provision of sufficient residence time for complete conversion is essential. A very wide range of reactivities are observed, depending upon the nature of the char in a process. The current work focuses on furthering the understanding of gasification reactivities of chars. It has been well established that the reactivity of char to gasification generally depends upon three principal factors: (1) the concentration of ''active sites'' in the char; (2) mass transfer within the char; and (3) the type and concentration of catalytic impurities in the char. The present study primarily addresses the first factor. The subject of this research is the origin, nature, and fate of active sites in chars derived from parent hydrocarbons with coal-like structure. The nature and number of the active sites and their reactivity towards oxygen are examined in ''model'' chars derived from phenol-formaldehyde type resins. How the active sites are lost by the process of thermal annealing during heat treatment of chars are studied, and actual rate for the annealing process is derived. Since intrinsic char reactivities are of primary interest in the present study, a fair amount of attention was given to the model char synthesis and handling so that the effect of catalytic impurities and oxygen-containing functional groups in the chemical structure of the material were minimized, if not completely eliminated. The project would not be considered complete without comparing characteristic features of synthetic chars with kinetic behavior exhibited by natural chars, including coal chars.

  11. Nest predation increases with parental activity: Separating nest site and parental activity effects

    USGS Publications Warehouse

    Martin, T.E.; Scott, J.; Menge, C.

    2000-01-01

    Alexander Skutch hypothesized that increased parental activity can increase the risk of nest predation. We tested this hypothesis using ten open-nesting bird species in Arizona, USA. Parental activity was greater during the nestling than incubation stage because parents visited the nest frequently to feed their young during the nestling stage. However, nest predation did not generally increase with parental activity between nesting stages across the ten study species. Previous investigators have found similar results. We tested whether nest site effects might yield higher predation during incubation because the most obvious sites are depredated most rapidly. We conducted experiments using nest sites from the previous year to remove parental activity. Our results showed that nest sites have highly repeatable effects on nest predation risk; poor nest sites incurred rapid predation and caused predation rates to be greater during the incubation than nestling stage. This pattern also was exhibited in a bird species with similar (i.e. controlled) parental activity between nesting stages. Once nest site effects are taken into account, nest predation shows a strong proximate increase with parental activity during the nestling stage within and across species. Parental activity and nest sites exert antagonistic influences on current estimates of nest predation between nesting stages and both must be considered in order to understand current patterns of nest predation, which is an important source of natural selection.

  12. Nest predation increases with parental activity: separating nest site and parental activity effects.

    PubMed Central

    Martin, T E; Scott, J; Menge, C

    2000-01-01

    Alexander Skutch hypothesized that increased parental activity can increase the risk of nest predation. We tested this hypothesis using ten open-nesting bird species in Arizona, USA. Parental activity was greater during the nestling than incubation stage because parents visited the nest frequently to feed their young during the nestling stage. However, nest predation did not generally increase with parental activity between nesting stages across the ten study species. Previous investigators have found similar results. We tested whether nest site effects might yield higher predation during incubation because the most obvious sites are depredated most rapidly. We conducted experiments using nest sites from the previous year to remove parental activity. Our results showed that nest sites have highly repeatable effects on nest predation risk; poor nest sites incurred rapid predation and caused predation rates to be greater during the incubation than nestling stage. This pattern also was exhibited in a bird species with similar (i.e. controlled) parental activity between nesting stages. Once nest site effects are taken into account, nest predation shows a strong proximate increase with parental activity during the nestling stage within and across species. Parental activity and nest sites exert antagonistic influences on current estimates of nest predation between nesting stages and both must be considered in order to understand current patterns of nest predation, which is an important source of natural selection. PMID:11413645

  13. Active-site iron dynamics in heme proteins and model compounds

    NASA Astrophysics Data System (ADS)

    Adams, Kristl L.

    Active-site iron dynamics in heme proteins and model compounds are studied via nuclear resonance vibrational spectroscopy (NRVS) and compared with other experimental vibrational probes and theoretical calculations, yielding new insight into the vibrational dynamics of biologically significant proteins. NRVS is a novel technique that selectively probes only 57Fe; experiments provide quantitative information on the amplitude and frequency of all normal modes having significant iron vibrational motion. Data from other vibrational probes including traditional Mossbauer, resonance Raman spectroscopy, and inelastic neutron scattering provide complementary information on the vibrational dynamics of the heme-protein system as a whole. Specific iron participation is identified in resonance Raman and inelastic neutron modes when these spectroscopic modes are seen at the same frequency as NRVS vibrations. NRVS data is examined for 57Fe-containing myoglobin, cytochrome f, hemoglobin, and several heme model compounds. A template of heme normal modes is obtained from analyses of several model compound systems: phenyl-like modes or modes associated with the protein peak at very low-energies ˜30--60 cm-1, out-of-plane modes in the ˜70--130 cm-1 region, imidazole or histidine modes near 220 cm-1, in-plane modes from ˜200--500 cm-1, and ligand modes at the highest frequencies ˜460--600 cm-1. A qualitative understanding of the more complicated heme-protein dynamics is obtained by applying this template to the protein vibrational density of states (VDOS). Differences in heme-to-protein binding configurations in myoglobin and cytochrome f are reflected in the iron VDOS, suggesting a structural and dynamical correlation with their different biological functions (i.e. ligand binding versus electron transport). Hemoglobin hybrids containing 57Fe and 56Fe have been prepared for the first time and NRVS measurements show data for the selected alpha or beta subunits within a relatively

  14. Active site amino acid sequence of human factor D.

    PubMed

    Davis, A E

    1980-08-01

    Factor D was isolated from human plasma by chromatography on CM-Sephadex C50, Sephadex G-75, and hydroxylapatite. Digestion of reduced, S-carboxymethylated factor D with cyanogen bromide resulted in three peptides which were isolated by chromatography on Sephadex G-75 (superfine) equilibrated in 20% formic acid. NH2-Terminal sequences were determined by automated Edman degradation with a Beckman 890C sequencer using a 0.1 M Quadrol program. The smallest peptide (CNBr III) consisted of the NH2-terminal 14 amino acids. The other two peptides had molecular weights of 17,000 (CNBr I) and 7000 (CNBr II). Overlap of the NH2-terminal sequence of factor D with the NH2-terminal sequence of CNBr I established the order of the peptides. The NH2-terminal 53 residues of factor D are somewhat more homologous with the group-specific protease of rat intestine than with other serine proteases. The NH2-terminal sequence of CNBr II revealed the active site serine of factor D. The typical serine protease active site sequence (Gly-Asp-Ser-Gly-Gly-Pro was found at residues 12-17. The region surrounding the active site serine does not appear to be more highly homologous with any one of the other serine proteases. The structural data obtained point out the similarities between factor D and the other proteases. However, complete definition of the degree of relationship between factor D and other proteases will require determination of the remainder of the primary structure.

  15. Brownian aggregation rate of colloid particles with several active sites

    SciTech Connect

    Nekrasov, Vyacheslav M.; Yurkin, Maxim A.; Chernyshev, Andrei V.; Polshchitsin, Alexey A.; Yakovleva, Galina E.; Maltsev, Valeri P.

    2014-08-14

    We theoretically analyze the aggregation kinetics of colloid particles with several active sites. Such particles (so-called “patchy particles”) are well known as chemically anisotropic reactants, but the corresponding rate constant of their aggregation has not yet been established in a convenient analytical form. Using kinematic approximation for the diffusion problem, we derived an analytical formula for the diffusion-controlled reaction rate constant between two colloid particles (or clusters) with several small active sites under the following assumptions: the relative translational motion is Brownian diffusion, and the isotropic stochastic reorientation of each particle is Markovian and arbitrarily correlated. This formula was shown to produce accurate results in comparison with more sophisticated approaches. Also, to account for the case of a low number of active sites per particle we used Monte Carlo stochastic algorithm based on Gillespie method. Simulations showed that such discrete model is required when this number is less than 10. Finally, we applied the developed approach to the simulation of immunoagglutination, assuming that the formed clusters have fractal structure.

  16. [Mechanism of arginine deiminase activity by site-directed mutagenesis].

    PubMed

    Li, Lifeng; Ni, Ye; Sun, Zhihao

    2012-04-01

    Arginine deiminase (ADI) has been studied as a potential anti-cancer agent for inhibiting arginine-auxotrophic tumors (such as melanomas and hepatocellular carcinomas) in phase III clinical trials. In this work, we studied the molecular mechanism of arginine deiminase activity by site-directed mutagenesis. Three mutation sites, A128, H404 and 1410, were introduced into wild-type ADI gene by QuikChange site-directed mutagenesis method, and four ADI mutants M1 (A128T), M2 (H404R), M3 (I410L), and M4 (A128T, H404R) were obtained. The ADI mutants were individually expressed in Escherichia coli BL21 (DE3), and the enzymatic properties of the purified mutant proteins were determined. The results show that both A128T and H404R had enhanced optimum pH, higher activity and stability of ADI under physiological condition (pH 7.4), as well as reduced K(m) value. This study provides an insight into the molecular mechanism of the ADI activity, and also the experimental evidence for the rational protein evolution in the future.

  17. Potential sites of CFTR activation by tyrosine kinases

    PubMed Central

    Billet, Arnaud; Jia, Yanlin; Jensen, Timothy J.; Hou, Yue-Xian; Chang, Xiu-Bao; Riordan, John R.; Hanrahan, John W.

    2016-01-01

    ABSTRACT The CFTR chloride channel is tightly regulated by phosphorylation at multiple serine residues. Recently it has been proposed that its activity is also regulated by tyrosine kinases, however the tyrosine phosphorylation sites remain to be identified. In this study we examined 2 candidate tyrosine residues near the boundary between the first nucleotide binding domain and the R domain, a region which is important for channel function but devoid of PKA consensus sequences. Mutating tyrosines at positions 625 and 627 dramatically reduced responses to Src or Pyk2 without altering the activation by PKA, suggesting they may contribute to CFTR regulation. PMID:26645934

  18. Characterization of histidine coordination in VO{sup 2+}-substituted D-xylose isomerase by orientationally-selected electron spin-echo envelope modulation spectroscopy

    SciTech Connect

    Dikanov, S.A. ||; Tyryshkin, A.M.; Huettermann, J.; Bogumil, R.; Witzel, H.

    1995-05-03

    An orientationally-selected electron spin-echo envelope modulation (ESEEM) spectroscopy investigation was performed on VO{sup 2+} introduced into the high-affinity metal-binding site of D-xylose isomerase. The ESEEM spectra clearly reveal the presence of nitrogen ligands with hyperfine coupling A{sup N} {approx} 6 MHz. Detailed analysis includes first- and second-order treatment of the nitrogen basic and combination harmonics in two-pulse ESEEM spectra of the g{sub {parallel}} and g{sub {perpendicular}} components. Complete determination of the hyperfine and quadrupole tensor indicates equatorial coordination of the imine nitrogen of the histidine residue. The presence of Cd{sup 2+} ion in the second, low-affinity metal-binding site does not affect the nitrogen couplings. The protons surrounding the VO{sup 2+} ion have been examined via the proton sum combinations in four-pulse ESEEM. They demonstrate the contribution of two protons probably belonging to the histidine ligand. These investigations strongly support the further application of VO{sup 2+} as a spin probe in conjunction with ESEEM spectroscopy for detailed investigation of nitrogen ligands in the active metal sites of proteins. 41 refs., 8 figs., 2 tabs.

  19. MSK1 activity is controlled by multiple phosphorylation sites

    PubMed Central

    McCOY, Claire E.; Campbell, David G.; Deak, Maria; Bloomberg, Graham B.; Arthur, J. Simon C.

    2004-01-01

    MSK1 (mitogen- and stress-activated protein kinase) is a kinase activated in cells downstream of both the ERK1/2 (extracellular-signal-regulated kinase) and p38 MAPK (mitogen-activated protein kinase) cascades. In the present study, we show that, in addition to being phosphorylated on Thr-581 and Ser-360 by ERK1/2 or p38, MSK1 can autophosphorylate on at least six sites: Ser-212, Ser-376, Ser-381, Ser-750, Ser-752 and Ser-758. Of these sites, the N-terminal T-loop residue Ser-212 and the ‘hydrophobic motif’ Ser-376 are phosphorylated by the C-terminal kinase domain of MSK1, and their phosphorylation is essential for the catalytic activity of the N-terminal kinase domain of MSK1 and therefore for the phosphorylation of MSK1 substrates in vitro. Ser-381 is also phosphorylated by the C-terminal kinase domain, and mutation of Ser-381 decreases MSK1 activity, probably through the inhibition of Ser-376 phosphorylation. Ser-750, Ser-752 and Ser-758 are phosphorylated by the N-terminal kinase domain; however, their function is not known. The activation of MSK1 in cells therefore requires the activation of the ERK1/2 or p38 MAPK cascades and does not appear to require additional signalling inputs. This is in contrast with the closely related RSK (p90 ribosomal S6 kinase) proteins, whose activity requires phosphorylation by PDK1 (3-phosphoinositide-dependent protein kinase 1) in addition to phosphorylation by ERK1/2. PMID:15568999

  20. 13C and 15N spectral editing inside histidine imidazole ring through solid-state NMR spectroscopy.

    PubMed

    Li, Shenhui; Zhou, Lei; Su, Yongchao; Han, Bin; Deng, Feng

    2013-01-01

    Histidine usually exists in three different forms (including biprotonated species, neutral τ and π tautomers) at physiological pH in biological systems. The different protonation and tautomerization states of histidine can be characteristically determined by (13)C and (15)N chemical shifts of imidazole ring. In this work, solid-state NMR techniques were developed for spectral editing of (13)C and (15)N sites in histidine imidazole ring, which provides a benchmark to distinguish the existing forms of histidine. The selections of (13)Cγ, (13)Cδ2, (15)Nδ1, and (15)Nε2 sites were successfully achieved based on one-bond homo- and hetero-nuclear dipole interactions. Moreover, it was demonstrated that (1)H, (13)C, and (15) chemical shifts were roughly linearly correlated with the corresponding atomic charge in histidine imidazole ring by theoretical calculations. Accordingly, the (1)H, (13)C and (15)N chemical shifts variation in different protonation and tautomerization states could be ascribed to the atomic charge change due to proton transfer in biological process.

  1. Histidine Protects Against Zinc and Nickel Toxicity in Caenorhabditis elegans

    PubMed Central

    Murphy, John T.; Bruinsma, Janelle J.; Schneider, Daniel L.; Collier, Sara; Guthrie, James; Chinwalla, Asif; Robertson, J. David; Mardis, Elaine R.; Kornfeld, Kerry

    2011-01-01

    Zinc is an essential trace element involved in a wide range of biological processes and human diseases. Zinc excess is deleterious, and animals require mechanisms to protect against zinc toxicity. To identify genes that modulate zinc tolerance, we performed a forward genetic screen for Caenorhabditis elegans mutants that were resistant to zinc toxicity. Here we demonstrate that mutations of the C. elegans histidine ammonia lyase (haly-1) gene promote zinc tolerance. C. elegans haly-1 encodes a protein that is homologous to vertebrate HAL, an enzyme that converts histidine to urocanic acid. haly-1 mutant animals displayed elevated levels of histidine, indicating that C. elegans HALY-1 protein is an enzyme involved in histidine catabolism. These results suggest the model that elevated histidine chelates zinc and thereby reduces zinc toxicity. Supporting this hypothesis, we demonstrated that dietary histidine promotes zinc tolerance. Nickel is another metal that binds histidine with high affinity. We demonstrated that haly-1 mutant animals are resistant to nickel toxicity and dietary histidine promotes nickel tolerance in wild-type animals. These studies identify a novel role for haly-1 and histidine in zinc metabolism and may be relevant for other animals. PMID:21455490

  2. Current activities handbook: formerly utilized sites remedial action program

    SciTech Connect

    1981-02-27

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the activities each of the thirteen state legislatures potentially affected by the Formerly Utilized Sites Remedial Action Program. It contains a description of the state legislative procedural rules and a schedule of each legislative session; a summary of pending relevant legislation; the name and telephone number of legislative and state agency contacts; and the full text of all bills identified.

  3. Vitamin K epoxide reductase: homology, active site and catalytic mechanism.

    PubMed

    Goodstadt, Leo; Ponting, Chris P

    2004-06-01

    Vitamin K epoxide reductase (VKOR) recycles reduced vitamin K, which is used subsequently as a co-factor in the gamma-carboxylation of glutamic acid residues in blood coagulation enzymes. VKORC1, a subunit of the VKOR complex, has recently been shown to possess this activity. Here, we show that VKORC1 is a member of a large family of predicted enzymes that are present in vertebrates, Drosophila, plants, bacteria and archaea. Four cysteine residues and one residue, which is either serine or threonine, are identified as likely active-site residues. In some plant and bacterial homologues the VKORC1 homologous domain is fused with domains of the thioredoxin family of oxidoreductases. These might reduce disulfide bonds of VKORC1-like enzymes as a prerequisite for their catalytic activities.

  4. Propeptides of eukaryotic proteases encode histidines to exploit organelle pH for regulation.

    PubMed

    Elferich, Johannes; Williamson, Danielle M; Krishnamoorthy, Bala; Shinde, Ujwal

    2013-08-01

    Eukaryotic cells maintain strict control over protein secretion, in part by using the pH gradient maintained within their secretory pathway. How eukaryotic proteins evolved from prokaryotic orthologs to exploit the pH gradient for biological functions remains a fundamental question in cell biology. Our laboratory previously demonstrated that protein domains located within precursor proteins, propeptides, encode histidine-driven pH sensors to regulate organelle-specific activation of the eukaryotic proteases furin and proprotein convertase-1/3. Similar findings have been reported in other unrelated protease families. By analyzing >10,000 unique proteases within evolutionarily unrelated families, we show that eukaryotic propeptides are enriched in histidines compared with prokaryotic orthologs. On this basis, we hypothesize that eukaryotic proteins evolved to enrich histidines within their propeptides to exploit the tightly controlled pH gradient of the secretory pathway, thereby regulating activation within specific organelles. Enrichment of histidines in propeptides may therefore be used to predict the presence of pH sensors in other proteases or even protease substrates.

  5. Shewanella oneidensis MR-1 H-NOX Regulation of a Histidine Kinase by Nitric Oxide

    PubMed Central

    Price, Mark S.; Chao, Lily; Marletta, Michael A.

    2008-01-01

    Nitric oxide (NO) signaling in animals controls processes such as smooth muscle relaxation and neurotransmission by activation of soluble guanylate cyclase (sGC). Prokaryotic homologs of the sGC heme domain, called H-NOX domains, have been identified and are generally found in a predicted operon in conjunction with a histidine kinase. Here, we show that an H-NOX protein (SO2144) from Shewanella oneidensis, directly interacts with the sensor histidine kinase (SO2145), binds NO in a 5-coordinate complex similar to mammalian sGC, and in that form inhibits the activity of a histidine kinase (SO2145). We also describe the first account of NO formation by S. oneidensis under anaerobic growth conditions derived from nitrate and nitrite. These observations suggest that the S. oneidensis H-NOX and histidine kinase pair function as part of a novel two-component signaling pathway that is responsive to NO formation from higher nitrogen oxides used as electron acceptors when oxygen is low and thereby functioning as an environmental sensor. PMID:17988156

  6. Effects of histidine and vitamin C on isoproterenol-induced acute myocardial infarction in rats

    PubMed Central

    Moradi-Arzeloo, Masoumeh; Farshid, Amir Abbas; Tamaddonfard, Esmaeal; Asri-Rezaei, Siamak

    2016-01-01

    In the present study, we investigated the effects of histidine and vitamin C (alone or in combination) treatments against isoproterenol (a β-adrenergic receptor agonist)-induced acute myocardial infarction in rats. We used propranolol (a β-adrenergic receptor blocker) to compare the results. Rats were given intraperitoneal injections of histidine (40 mg kg-1) and vitamin C (40 mg kg-1) alone and combined daily for 21 days. Propranolol (10 mg kg-1) was orally administered daily for 10 days (from day 11 to day 21). Myocardial infarction was induced by subcutaneous injections of 150 mg kg-1 of isoproterenol at an interval of 24 hr on days 20 and 21. Blood and tissue samples were taken for histopathological and biochemical evaluations following electrocardiography recording on day 21. Isoproterenol elevated ST segment, increased heart weight, heart rate, serum activities of aspartate transaminase, lactate dehydrogenase, creatine kinase-MB and heart tissue content of malondialdehyde, and decreased R wave amplitude and superoxide dismutase and catalase activities of heart tissue. Necrosis, edema and inflammatory cells infiltration were observed in myocardial tissue sections. Our results indicated that histidine and vitamin C alone, and especially in combination prevent isoproterenol-induced cardiotoxicity and have similar protective effects with propranolol. Cardioprotective effects of histidine and vitamin C may be associated with their ability to reduce free radical-induced toxic effects. PMID:27226887

  7. Inhibitory effect of extracellular histidine on cobalt-induced HIF-1alpha expression.

    PubMed

    Torii, Satoru; Kurihara, Atsushi; Li, Xian Yu; Yasumoto, Ken-ichi; Sogawa, Kazuhiro

    2011-02-01

    Cobalt chloride (CoCl(2)) can mimic hypoxia in inducing hypoxia-inducible factor 1 (HIF-1). Several cultured cells were examined for susceptibility to CoCl(2) in DMEM, MEM and RPMI 1640 medium. Here we report that HIF-1α expression of mammalian cells by CoCl(2) was largely dependent on the culture medium. HIF-1α protein and hypoxia response element (HRE)-dependent reporter activity were strongly induced in RPMI 1640 but not in DMEM in several cultured cells including MCF-7, a human breast cancer cell line. Analysis of causal nutrients has revealed that histidine, which is contained richer in DMEM, acts as the inhibitory nutrient for cobalt-induced HIF-1α expression of MCF-7 cells in DMEM. D-Histidine also inhibited the HIF-1α activity at the same level as L-histidine, suggesting that sequestration of free cobaltous ion by chelation with histidine was the cause of the inhibition. These results demonstrate that selection of the culture medium must be considered with caution in cell culture experiments using CoCl(2) as a hypoxia-mimetic reagent.

  8. Model peptides provide new insights into the role of histidine residues as potential ligands in human cellular copper acquisition via Ctr1.

    PubMed

    Haas, Kathryn L; Putterman, Allison B; White, Daniel R; Thiele, Dennis J; Franz, Katherine J

    2011-03-30

    Cellular acquisition of copper in eukaryotes is primarily accomplished through the Ctr family of copper transport proteins. In both humans and yeast, methionine-rich "Mets" motifs in the amino-terminal extracellular domain of Ctr1 are thought to be responsible for recruitment of copper at the cell surface. Unlike yeast, mammalian Ctr1 also contains extracellular histidine-rich motifs, although a role for these regions in copper uptake has not been explored in detail. Herein, synthetic model peptides containing the first 14 residues of the extracellular domain of human Ctr1 (MDHSHHMGMSYMDS) have been prepared and evaluated for their apparent binding affinity to both Cu(I) and Cu(II). These studies reveal a high affinity Cu(II) binding site (log K = 11.0 ± 0.3 at pH 7.4) at the amino-terminus of the peptide as well as a high affinity Cu(I) site (log K = 10.2 ± 0.2 at pH 7.4) that utilizes adjacent HH residues along with an additional His or Met ligand. These model studies suggest that the histidine domains may play a direct role in copper acquisition from serum copper-binding proteins and in facilitating the reduction of Cu(II) to the active Ctr1 substrate, Cu(I). We tested this hypothesis by expressing a Ctr1 mutant lacking only extracellular histidine residues in Ctr1-knockout mouse embryonic fibroblasts. Results from live cell studies support the hypothesis that extracellular amino-terminal His residues directly participate in the copper transport function of Ctr1.

  9. Model Peptides Provide New Insights into the Role of Histidine Residues as Potential Ligands in Human Cellular Copper Acquisition via Ctr1

    PubMed Central

    Haas, Kathryn L.; Putterman, Allison B.; White, Daniel R.; Thiele, Dennis J.; Franz, Katherine J.

    2011-01-01

    Cellular acquisition of copper in eukaryotes is primarily accomplished through the Ctr family of copper transport proteins. In both humans and yeast, methionine-rich “Mets” motifs in the amino-terminal extracellular domain of Ctr1 are thought to be responsible for recruitment of copper at the cell surface. Unlike yeast, mammalian Ctr1 also contains extracellular histidine-rich motifs, although a role for these regions in copper uptake has not been explored in detail. Herein, synthetic model peptides containing the first 14 residues of the extracellular domain of human Ctr1 (MDHSHHMGMSYMDS) have been prepared and evaluated for their apparent binding affinity to both Cu(I) and Cu(II). These studies reveal a high affinity Cu(II) binding site (logK = 11.0 ± 0.3 at pH 7.4) at the amino-terminus of the peptide as well as a high affinity Cu(I) site (logK = 10.2 ± 0.2 at pH 7.4) that utilizes adjacent HH residues along with an additional His or Met ligand. These model studies suggest that the histidine domains may play a direct role in copper acquisition from serum copper-binding proteins and in facilitating the reduction of Cu(II) to the active Ctr1 substrate, Cu(I). We tested this hypothesis by expressing a Ctr1 mutant lacking only extracellular histidine residues in Ctr1-knockout mouse embryonic fibroblasts. Results from live cell studies support the hypothesis that extracellular amino-terminal His residues directly participate in the copper transport function of Ctr1. PMID:21375246

  10. Selective inhibition of histidine-modified pancreatic alpha-amylase by proteinaceous inhibitor from Phaseolus vulgaris.

    PubMed

    Nakatani, H

    1988-06-01

    Chemical modification of two histidine residues of porcine pancreatic alpha-amylase (EC 3.2.1.1) by diethyl pyrocarbonate in the presence of a high concentration of maltotriose caused a decrease of amylase activity and an increase of maltosidase activity (hydrolysis of p-nitrophenyl-alpha-maltoside). By binding a proteinaceous inhibitor from Phaseolus vulgaris (white kidney bean) with the modified enzyme, the amylase activity was further decreased but the maltosidase activity was retained to about 100% that of the native enzyme. Both amylase and maltosidase activities of the native enzyme were almost completely inhibited by the proteinaceous inhibitor. The increase of maltosidase activity by histidine modification was due to an increase of kcat, whereas the Km value was not changed; but binding of the proteinous inhibitor affected mainly the Km value of the modified enzyme.

  11. Mechanism of Dephosphorylation of Glucosyl-3-phosphoglycerate by a Histidine Phosphatase*

    PubMed Central

    Zheng, Qianqian; Jiang, Dunquan; Zhang, Wei; Zhang, Qingqing; Zhao, Qi; Jin, Jin; Li, Xin; Yang, Haitao; Bartlam, Mark; Shaw, Neil; Zhou, Weihong; Rao, Zihe

    2014-01-01

    Mycobacterium tuberculosis (Mtb) synthesizes polymethylated polysaccharides that form complexes with long chain fatty acids. These complexes, referred to as methylglucose lipopolysaccharides (MGLPs), regulate fatty acid biosynthesis in vivo, including biosynthesis of mycolic acids that are essential for building the cell wall. Glucosyl-3-phosphoglycerate phosphatase (GpgP, EC 5.4.2.1), encoded by Rv2419c gene, catalyzes the second step of the pathway for the biosynthesis of MGLPs. The molecular basis for this dephosphorylation is currently not understood. Here, we describe the crystal structures of apo-, vanadate-bound, and phosphate-bound MtbGpgP, depicting unliganded, reaction intermediate mimic, and product-bound views of MtbGpgP, respectively. The enzyme consists of a single domain made up of a central β-sheet flanked by α-helices on either side. The active site is located in a positively charged cleft situated above the central β-sheet. Unambiguous electron density for vanadate covalently bound to His11, mimicking the phosphohistidine intermediate, was observed. The role of residues interacting with the ligands in catalysis was probed by site-directed mutagenesis. Arg10, His11, Asn17, Gln23, Arg60, Glu84, His159, and Leu209 are important for enzymatic activity. Comparison of the structures of MtbGpgP revealed conformational changes in a key loop region connecting β1 with α1. This loop regulates access to the active site. MtbGpgP functions as dimer. L209E mutation resulted in monomeric GpgP, rendering the enzyme incapable of dephosphorylation. The structures of GpgP reported here are the first crystal structures for histidine-phosphatase-type GpgPs. These structures shed light on a key step in biosynthesis of MGLPs that could be targeted for development of anti-tuberculosis therapeutics. PMID:24914210

  12. Mechanism of dephosphorylation of glucosyl-3-phosphoglycerate by a histidine phosphatase.

    PubMed

    Zheng, Qianqian; Jiang, Dunquan; Zhang, Wei; Zhang, Qingqing; Zhao, Qi; Jin, Jin; Li, Xin; Yang, Haitao; Bartlam, Mark; Shaw, Neil; Zhou, Weihong; Rao, Zihe

    2014-08-01

    Mycobacterium tuberculosis (Mtb) synthesizes polymethylated polysaccharides that form complexes with long chain fatty acids. These complexes, referred to as methylglucose lipopolysaccharides (MGLPs), regulate fatty acid biosynthesis in vivo, including biosynthesis of mycolic acids that are essential for building the cell wall. Glucosyl-3-phosphoglycerate phosphatase (GpgP, EC 5.4.2.1), encoded by Rv2419c gene, catalyzes the second step of the pathway for the biosynthesis of MGLPs. The molecular basis for this dephosphorylation is currently not understood. Here, we describe the crystal structures of apo-, vanadate-bound, and phosphate-bound MtbGpgP, depicting unliganded, reaction intermediate mimic, and product-bound views of MtbGpgP, respectively. The enzyme consists of a single domain made up of a central β-sheet flanked by α-helices on either side. The active site is located in a positively charged cleft situated above the central β-sheet. Unambiguous electron density for vanadate covalently bound to His(11), mimicking the phosphohistidine intermediate, was observed. The role of residues interacting with the ligands in catalysis was probed by site-directed mutagenesis. Arg(10), His(11), Asn(17), Gln(23), Arg(60), Glu(84), His(159), and Leu(209) are important for enzymatic activity. Comparison of the structures of MtbGpgP revealed conformational changes in a key loop region connecting β1 with α1. This loop regulates access to the active site. MtbGpgP functions as dimer. L209E mutation resulted in monomeric GpgP, rendering the enzyme incapable of dephosphorylation. The structures of GpgP reported here are the first crystal structures for histidine-phosphatase-type GpgPs. These structures shed light on a key step in biosynthesis of MGLPs that could be targeted for development of anti-tuberculosis therapeutics.

  13. Histidine supplementation alleviates inflammation in the adipose tissue of high-fat diet-induced obese rats via the NF-κB- and PPARγ-involved pathways.

    PubMed

    Sun, Xiaowei; Feng, Rennan; Li, Yanchuan; Lin, Song; Zhang, Wei; Li, Ying; Sun, Changhao; Li, Songtao

    2014-08-28

    Obesity is considered to be accompanied by a chronic low-grade inflammatory state that contributes to the occurrence of many chronic diseases. Our previous study has demonstrated that histidine supplementation significantly ameliorates inflammation and oxidative stress in obese women. However, the in vivo potential mechanisms are not known. The present study was conducted to investigate the mechanisms underlying the effects of histidine on inflammation in a high-fat diet (HFD)-induced female obese rat model. An obese model was established in female Sprague-Dawley rats by HFD feeding for 8 weeks and followed by histidine supplementation for another 4 weeks. The results revealed that HFD-increased body weight and HFD-lowered serum histidine concentrations were significantly reversed by histidine supplementation (P< 0·05). In addition, the serum concentrations of TNF-α, IL-6, C-reactive protein (CRP) and malondialdehyde were significantly reduced and those of superoxide dismutase (SOD) were significantly increased by histidine supplementation when compared with those in obese rats (P< 0·05). Correspondingly, the mRNA expressions of TNF-α, IL-6 and CRP in the adipose tissue were significantly down-regulated and that of CuZnSOD was significantly up-regulated by histidine supplementation (P< 0·05). Histidine supplementation significantly reduced the HFD-induced translocation of NF-κB p65 into the nucleus (P= 0·032) by reducing the phosphorylation of the inhibitor of κBα in the adipose tissue. The results also revealed that the expression of adiponectin was markedly increased both in the serum and in the adipose tissue after histidine supplementation, accompanied by the activation of PPARγ (P= 0·021). These findings indicate that histidine is an effective candidate for ameliorating inflammation and oxidative stress in obese individuals via the NF-κB- and PPARγ-involved pathways.

  14. Identification of covalent active site inhibitors of dengue virus protease

    PubMed Central

    Koh-Stenta, Xiaoying; Joy, Joma; Wang, Si Fang; Kwek, Perlyn Zekui; Wee, John Liang Kuan; Wan, Kah Fei; Gayen, Shovanlal; Chen, Angela Shuyi; Kang, CongBao; Lee, May Ann; Poulsen, Anders; Vasudevan, Subhash G; Hill, Jeffrey; Nacro, Kassoum

    2015-01-01

    Dengue virus (DENV) protease is an attractive target for drug development; however, no compounds have reached clinical development to date. In this study, we utilized a potent West Nile virus protease inhibitor of the pyrazole ester derivative class as a chemical starting point for DENV protease drug development. Compound potency and selectivity for DENV protease were improved through structure-guided small molecule optimization, and protease-inhibitor binding interactions were validated biophysically using nuclear magnetic resonance. Our work strongly suggests that this class of compounds inhibits flavivirus protease through targeted covalent modification of active site serine, contrary to an allosteric binding mechanism as previously described. PMID:26677315

  15. Antioxidant status of turkey breast meat and blood after feeding a diet enriched with histidine.

    PubMed

    Kopec, W; Wiliczkiewicz, A; Jamroz, D; Biazik, E; Pudlo, A; Hikawczuk, T; Skiba, T; Korzeniowska, M

    2016-01-01

    The objective of this study was to investigate the effects of 1) spray dried blood cells rich in histidine and 2) pure histidine added to feed on the antioxidant status and concentration of carnosine related components in the blood and breast meat of female turkeys. The experiment was performed on 168 Big7 turkey females randomly assigned to 3 dietary treatments: control; control with the addition of 0.18% L-histidine (His); and control with the addition of spray dried blood cells (SDBC). Birds were raised for 103 d on a floor with sawdust litter, with drinking water and feed ad libitum. The antioxidant status of blood plasma and breast muscle was analyzed by ferric reducing ability (FRAP) and by 2,2-Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radicals scavenging ability. The activity of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) was analyzed in the blood and breast meat, with the content of carnosine and anserine quantified by HPLC. Proximate analysis as well as amino acid profiling were carried out for the feed and breast muscles. Growth performance parameters also were calculated. Histidine supplementation of the turkey diet resulted in increased DPPH radical scavenging capacity in the breast muscles and blood, but did not result in higher histidine dipeptide concentrations. The enzymatic antioxidant system of turkey blood was affected by the diet with SDBC. In the plasma, the SDBC addition increased both SOD and GPx activity, and decreased GPx activity in the erythrocytes. Feeding turkeys with an SDBC containing diet increased BW and the content of isoleucine and valine in breast muscles.

  16. A semisynthetic strategy leads to alteration of the backbone amidate ligand in the NiSOD active site

    SciTech Connect

    Campeciño, Julius O.; Dudycz, Lech W.; Tumelty, David; Berg, Volker; Cabelli, Diane E.; Maroney, Michael J.

    2015-07-01

    Computational investigations have implicated the amidate ligand in nickel superoxide dismutase (NiSOD) in stabilizing Ni-centered redox catalysis and in preventing cysteine thiolate ligand oxidation. To test these predictions, we have used an experimental approach utilizing a semisynthetic scheme that employs native chemical ligation of a pentapeptide (HCDLP) to recombinant S. coelicolor NiSOD lacking these N-terminal residues, NΔ5-NiSOD. Wild-type enzyme produced in this manner exhibits the characteristic spectral properties of recombinant WT-NiSOD and is as catalytically active. The semisynthetic scheme was also employed to construct a variant where the amidate ligand was converted to a secondary amine, H1*-NiSOD, a novel strategy that retains a backbone N-donor atom. The H1*-NiSOD variant was found to have only ~1% of the catalytic activity of the recombinant wild-type enzyme, and had altered spectroscopic properties. X-ray absorption spectroscopy reveals a four-coordinate planar site with N2S2-donor ligands, consistent with electronic absorption spectroscopic results indicating that the Ni center in H1*-NiSOD is mostly reduced in the as-isolated sample, as opposed to 50:50 Ni(II)/Ni(III) mixture that is typical for the recombinant wild-type enzyme. The EPR spectrum of as-isolated H1*-NiSOD accounts for ~11% of the Ni in the sample and is similar to WT-NiSOD, but more axial, with gz < gx,y. 14N-hyperfine is observed on gzhistidine ligand in the Ni(III) complex. As a result, the altered electronic properties and implications for redox catalysis are discussed in light of predictions based on synthetic and computational models.

  17. Phosphorylation of nucleoside diphosphate kinase at the active site studied by steady-state and time-resolved fluorescence.

    PubMed

    Deville-Bonne, D; Sellam, O; Merola, F; Lascu, I; Desmadril, M; Véron, M

    1996-11-19

    Nucleoside diphosphate (NDP) kinase is the enzyme responsible in the cell for the phosphorylation of nucleoside or deoxynucleoside diphosphates into the corresponding triphosphates at the expense of ATP. Transfer of the gamma-phosphate is very fast (turnover number above 1000 s-1) and involves the phosphorylation of a histidine residue at the active site of the enzyme. We have used intrinsic protein fluorescence of the single tryptophan of Dictyostelium discoideum NDP kinase as a sensitive probe for monitoring the interaction of the enzyme with its substrates. We demonstrate that the 20% quenching of steady-state fluorescence observed upon addition of ATP is due to formation of the phosphorylated intermediate. Time-resolved fluorescence indicates that the Trp-137 side chain is rigidly bound to the protein core with a unique lifetime of 4.5 ns for the free enzyme at 20 degrees C and that it remains tightly immobilized during the time course of the reaction. Phosphorylation of this catalytic residue (His-122) in the presence of ATP induces a similar decrease in mean lifetime, due to the splitting of the signal and the appearance of a shorter decay. This splitting is discussed in terms of a slow conformational equilibrium. We demonstrate that, in the wild-type enzyme, the conserved His-55 quenches the fluorescence of Trp-137 as the H55A mutant protein fluorescence displays an increase in quantum yield. Even though H55A mutant enzyme is active, the absence of the imidazole ring prevents the detection of the phosphorylated state of His-122 by Trp-137. We conclude that His-55 serves as a relay between His-122 and Trp-137.

  18. Target-classification approach applied to active UXO sites

    NASA Astrophysics Data System (ADS)

    Shubitidze, F.; Fernández, J. P.; Shamatava, Irma; Barrowes, B. E.; O'Neill, K.

    2013-06-01

    This study is designed to illustrate the discrimination performance at two UXO active sites (Oklahoma's Fort Sill and the Massachusetts Military Reservation) of a set of advanced electromagnetic induction (EMI) inversion/discrimination models which include the orthonormalized volume magnetic source (ONVMS), joint diagonalization (JD), and differential evolution (DE) approaches and whose power and flexibility greatly exceed those of the simple dipole model. The Fort Sill site is highly contaminated by a mix of the following types of munitions: 37-mm target practice tracers, 60-mm illumination mortars, 75-mm and 4.5'' projectiles, 3.5'', 2.36'', and LAAW rockets, antitank mine fuzes with and without hex nuts, practice MK2 and M67 grenades, 2.5'' ballistic windshields, M2A1-mines with/without bases, M19-14 time fuzes, and 40-mm practice grenades with/without cartridges. The site at the MMR site contains targets of yet different sizes. In this work we apply our models to EMI data collected using the MetalMapper (MM) and 2 × 2 TEMTADS sensors. The data for each anomaly are inverted to extract estimates of the extrinsic and intrinsic parameters associated with each buried target. (The latter include the total volume magnetic source or NVMS, which relates to size, shape, and material properties; the former includes location, depth, and orientation). The estimated intrinsic parameters are then used for classification performed via library matching and the use of statistical classification algorithms; this process yielded prioritized dig-lists that were submitted to the Institute for Defense Analyses (IDA) for independent scoring. The models' classification performance is illustrated and assessed based on these independent evaluations.

  19. Conservation of cysteine residues in fungal histidine acid phytases.

    PubMed

    Mullaney, Edward J; Ullah, Abul H J

    2005-03-11

    Amino acid sequence analysis of fungal histidine acid phosphatases displaying phytase activity has revealed a conserved eight-cysteine motif. These conserved amino acids are not directly associated with catalytic function; rather they appear to be essential in the formation of disulfide bridges. Their role is seen as being similar to another eight-cysteine motif recently reported in the amino acid sequence of nearly 500 plant polypeptides. An additional disulfide bridge formed by two cysteines at the N-terminus of all the filamentous ascomycete phytases was also observed. Disulfide bridges are known to increase both stability and heat tolerance in proteins. It is therefore plausible that this extra disulfide bridge contributes to the higher stability found in phytase from some Aspergillus species. To engineer an enhanced phytase for the feed industry, it is imperative that the role of disulfide bridges be taken into cognizance and possibly be increased in number to further elevate stability in this enzyme.

  20. Highly Efficient Photocatalytic Hydrogen Production of Flower-like Cadmium Sulfide Decorated by Histidine.

    PubMed

    Wang, Qizhao; Lian, Juhong; Li, Jiajia; Wang, Rongfang; Huang, Haohao; Su, Bitao; Lei, Ziqiang

    2015-09-04

    Morphology-controlled synthesis of CdS can significantly enhance the efficiency of its photocatalytic hydrogen production. In this study, a novel three-dimensional (3D) flower-like CdS is synthesized via a facile template-free hydrothermal process using Cd(NO3)2•4H2O and thiourea as precursors and L-Histidine as a chelating agent. The morphology, crystal phase, and photoelectrochemical performance of the flower-like CdS and pure CdS nanocrystals are carefully investigated via various characterizations. Superior photocatalytic activity relative to that of pure CdS is observed on the flower-like CdS photocatalyst under visible light irradiation, which is nearly 13 times of pure CdS. On the basis of the results from SEM studies and our analysis, a growth mechanism of flower-like CdS is proposed by capturing the shape evolution. The imidazole ring of L-Histidine captures the Cd ions from the solution, and prevents the growth of the CdS nanoparticles. Furthermore, the photocatalytic contrast experiments illustrate that the as-synthesized flower-like CdS with L-Histidine is more stable than CdS without L-Histidine in the hydrogen generation.

  1. Removal of toxic elements from aqueous solution using bentonite modified with L-histidine.

    PubMed

    Bakatula, E N; Cukrowska, E M; Weiersbye, I M; Mihaly-Cozmuta, L; Tutu, H

    2014-01-01

    This study proposes the use of bentonite modified with L-histidine for the removal of Cu, Co, Cr, Fe, Hg, Ni, U and Zn from aqueous solutions such as those impacted by acidic drainage. The surface areas of natural bentonite and bentonite-histidine were 73.8 and 61.2 m(2) g(-1), respectively. Elemental analysis showed an increase in the amount of carbon (0.258%) and nitrogen (0.066%) for the bentonite-histidine. At a fixed solid/solution ratio, the operating variables affecting the adsorption of metal ions from aqueous solution such as pH, initial concentration, contact time and temperature were studied in batch mode. The Freundlich isotherm model yielded a better fit than the Langmuir for the adsorption of Cu, Co, Ni and Zn, implying adsorption on a heterogeneous surface. Adsorption kinetics followed a pseudo-second-order model, suggesting chemisorption as the rate-limiting step. The apparent activation energy was greater than 40 kJ mol(-1) for Cu, Zn, Ni, Co and U, which is characteristic of a chemically controlled reaction. Thermodynamic constants ΔG and ΔH showed that the adsorption of metals was endothermic and spontaneous. Adsorption of heavy metals onto bentonite-histidine was efficient at low pH values, meaning that the adsorbent could be useful for remediating acid mine water.

  2. Highly Efficient Photocatalytic Hydrogen Production of Flower-like Cadmium Sulfide Decorated by Histidine

    NASA Astrophysics Data System (ADS)

    Wang, Qizhao; Lian, Juhong; Li, Jiajia; Wang, Rongfang; Huang, Haohao; Su, Bitao; Lei, Ziqiang

    2015-09-01

    Morphology-controlled synthesis of CdS can significantly enhance the efficiency of its photocatalytic hydrogen production. In this study, a novel three-dimensional (3D) flower-like CdS is synthesized via a facile template-free hydrothermal process using Cd(NO3)2•4H2O and thiourea as precursors and L-Histidine as a chelating agent. The morphology, crystal phase, and photoelectrochemical performance of the flower-like CdS and pure CdS nanocrystals are carefully investigated via various characterizations. Superior photocatalytic activity relative to that of pure CdS is observed on the flower-like CdS photocatalyst under visible light irradiation, which is nearly 13 times of pure CdS. On the basis of the results from SEM studies and our analysis, a growth mechanism of flower-like CdS is proposed by capturing the shape evolution. The imidazole ring of L-Histidine captures the Cd ions from the solution, and prevents the growth of the CdS nanoparticles. Furthermore, the photocatalytic contrast experiments illustrate that the as-synthesized flower-like CdS with L-Histidine is more stable than CdS without L-Histidine in the hydrogen generation.

  3. Highly Efficient Photocatalytic Hydrogen Production of Flower-like Cadmium Sulfide Decorated by Histidine

    PubMed Central

    Wang, Qizhao; Lian, Juhong; Li, Jiajia; Wang, Rongfang; Huang, Haohao; Su, Bitao; Lei, Ziqiang

    2015-01-01

    Morphology-controlled synthesis of CdS can significantly enhance the efficiency of its photocatalytic hydrogen production. In this study, a novel three-dimensional (3D) flower-like CdS is synthesized via a facile template-free hydrothermal process using Cd(NO3)2•4H2O and thiourea as precursors and L-Histidine as a chelating agent. The morphology, crystal phase, and photoelectrochemical performance of the flower-like CdS and pure CdS nanocrystals are carefully investigated via various characterizations. Superior photocatalytic activity relative to that of pure CdS is observed on the flower-like CdS photocatalyst under visible light irradiation, which is nearly 13 times of pure CdS. On the basis of the results from SEM studies and our analysis, a growth mechanism of flower-like CdS is proposed by capturing the shape evolution. The imidazole ring of L-Histidine captures the Cd ions from the solution, and prevents the growth of the CdS nanoparticles. Furthermore, the photocatalytic contrast experiments illustrate that the as-synthesized flower-like CdS with L-Histidine is more stable than CdS without L-Histidine in the hydrogen generation. PMID:26337119

  4. Identification of Phosphorylation Sites Altering Pollen Soluble Inorganic Pyrophosphatase Activity.

    PubMed

    Eaves, Deborah J; Haque, Tamanna; Tudor, Richard L; Barron, Yoshimi; Zampronio, Cleidiane G; Cotton, Nicholas P J; de Graaf, Barend H J; White, Scott A; Cooper, Helen J; Franklin, F Christopher H; Harper, Jeffery F; Franklin-Tong, Vernonica E

    2017-03-01

    Protein phosphorylation regulates numerous cellular processes. Identifying the substrates and protein kinases involved is vital to understand how these important posttranslational modifications modulate biological function in eukaryotic cells. Pyrophosphatases catalyze the hydrolysis of inorganic phosphate (PPi) to inorganic phosphate Pi, driving biosynthetic reactions; they are essential for low cytosolic inorganic phosphate. It was suggested recently that posttranslational regulation of Family I soluble inorganic pyrophosphatases (sPPases) may affect their activity. We previously demonstrated that two pollen-expressed sPPases, Pr-p26.1a and Pr-p26.1b, from the flowering plant Papaver rhoeas were inhibited by phosphorylation. Despite the potential significance, there is a paucity of data on sPPase phosphorylation and regulation. Here, we used liquid chromatographic tandem mass spectrometry to map phosphorylation sites to the otherwise divergent amino-terminal extensions on these pollen sPPases. Despite the absence of reports in the literature on mapping phosphorylation sites on sPPases, a database survey of various proteomes identified a number of examples, suggesting that phosphorylation may be a more widely used mechanism to regulate these enzymes. Phosphomimetic mutants of Pr-p26.1a/b significantly and differentially reduced PPase activities by up to 2.5-fold at pH 6.8 and 52% in the presence of Ca(2+) and hydrogen peroxide over unmodified proteins. This indicates that phosphoregulation of key sites can inhibit the catalytic responsiveness of these proteins in concert with key intracellular events. As sPPases are essential for many metabolic pathways in eukaryotic cells, our findings identify the phosphorylation of sPPases as a potential master regulatory mechanism that could be used to attenuate metabolism.

  5. Evidence for segmental mobility in the active site of pepsin

    SciTech Connect

    Pohl, J.; Strop, P.; Senn, H.; Foundling, S.; Kostka, V.

    1986-05-01

    The low hydrolytic activity (k/sub cat/ < 0.001 s/sup -1/) of chicken pepsin (CP) towards tri- and tetrapeptides is enhanced at least 100 times by modification of its single sulfhydryl group of Cys-115, with little effect on K/sub m/-values. Modification thus simulates the effect of secondary substrate binding on pepsin catalysis. The rate of Cys-115 modification is substantially decreased in the presence of some competitive inhibitors, suggesting its active site location. Experiments with CP alkylated at Cys-115 with Acrylodan as a fluorescent probe or with N-iodoacetyl-(4-fluoro)-aniline as a /sup 19/F-nmr probe suggest conformation change around Cys-115 to occur on substrate or substrate analog binding. The difference /sup 1/H-nmr spectra (500 MHz) of unmodified free and inhibitor-complexed CP reveal chemical shifts almost exclusively in the aromatic region. The effects of Cu/sup + +/ on /sup 19/F- and /sup 1/H-nmr spectra have been studied. Examination of a computer graphics model of CP based on E. parasitica pepsin-inhibitor complex X-ray coordinates suggests that Cys-115 is located near the S/sub 3//S/sub 5/ binding site. The results are interpreted in favor of segmental mobility of this region important for pepsin substrate binding and catalysis.

  6. First Principles Computational Study of the Active Site of Arginase

    SciTech Connect

    Ivanov, Ivaylo; Klien, Micheal

    2004-01-14

    Ab initio density functional theory (DFT) methods were used to investigate the structural features of the active site of the binuclear enzyme rat liver arginase. Special emphasis was placed on the crucial role of the second shell ligand interactions. These interactions were systematically studied by performing calculations on models of varying size. It was determined that a water molecule, and not hydroxide, is the bridging exogenous ligand. The carboxylate ligands facilitate the close approach of the Mn (II) ions by attenuating the metal-metal electrostatic repulsion. Of the two metals, MnA was shown to carry a larger positive charge. Analysis of the electronic properties of the active site revealed that orbitals involving the terminal Asp234 residue, as well as the flexible -1,1 bridging Asp232, lie at high energies, suggesting weaker coordination. This is reflected in certain structural variability present in our models and is also consistent with recent experimental findings. Finally, implications of our findings for the biological function of the enzyme are delineated.

  7. Extracellular acidification exerts opposite actions on TREK1 and TREK2 potassium channels via a single conserved histidine residue.

    PubMed

    Sandoz, Guillaume; Douguet, Dominique; Chatelain, Franck; Lazdunski, Michel; Lesage, Florian

    2009-08-25

    Mechanosensitive K(+) channels TREK1 and TREK2 form a subclass of two P-domain K(+) channels. They are potently activated by polyunsaturated fatty acids and are involved in neuroprotection, anesthesia, and pain perception. Here, we show that acidification of the extracellular medium strongly inhibits TREK1 with an apparent pK near to 7.4 corresponding to the physiological pH. The all-or-none effect of pH variation is steep and is observed within one pH unit. TREK2 is not inhibited but activated by acidification within the same range of pH, despite its close homology with TREK1. A single conserved residue, H126 in TREK1 and H151 in TREK2, is involved in proton sensing. This histidine is located in the M1P1 extracellular loop preceding the first P domain. The differential effect of acidification, that is, activation for TREK2 and inhibition for TREK1, involves other residues located in the P2M4 loop, linking the second P domain and the fourth membrane-spanning segment. Structural modeling of TREK1 and TREK2 and site-directed mutagenesis strongly suggest that attraction or repulsion between the protonated side chain of histidine and closely located negatively or positively charged residues in P2M4 control outer gating of these channels. The differential sensitivity of TREK1 and TREK2 to external pH variations discriminates between these two K(+) channels that otherwise share the same regulations by physical and chemical stimuli, and by hormones and neurotransmitters.

  8. Low temperature syntheses and reactivity of Cu2O2 active-site models.

    PubMed

    Citek, Cooper; Herres-Pawlis, Sonja; Stack, T Daniel P

    2015-08-18

    Nature's facility with dioxygen outmatches modern chemistry in the oxidation and oxygenation of materials and substrates for biosynthesis and cellular metabolism. The Earth's most abundant naturally occurring oxidant is-frankly-poorly understood and controlled, and thus underused. Copper-based enzyme metallocofactors are ubiquitous to the efficient consumption of dioxygen by all domains of life. Over the last several decades, we have joined many research groups in the study of copper- and dioxygen-dependent enzymes through close investigation of synthetically derived, small-molecule active-site analogs. Simple copper-dioxygen clusters bearing structural and spectroscopic similarity to dioxygen-activating enzymes can be probed for their fundamental geometrical, electronic, and reactive properties using the tools available to inorganic and synthetic chemistry. Our exploration of the copper-dioxygen arena has sustained product evaluation of the key dynamics and reactivity of binuclear Cu2O2 compounds. Almost exclusively operating at low temperatures, from -78 °C to solution characterization even at -125 °C, we have identified numerous compounds supported by simple and easily accessed, low molecular weight ligands-chiefly families of bidentate diamine chelates. We have found that by stripping away complexity in comparison to extended protein tertiary structures or sophisticated, multinucleating architectures, we can experimentally manipulate activated compounds and open pathways of reactivity toward exogenous substrates that both inform on and extend fundamental mechanisms of oxygenase enzymes. Our recent successes have advanced understanding of the tyrosinase enzyme, and related hemocyanin and NspF, and the copper membrane monooxygenases, specifically particulate methane monooxygenase (pMMO) and ammonia monooxygenase (AMO). Tyrosinase, ubiquitously distributed throughout life, is fundamental to the copper-based oxidation of phenols and the production of chromophores

  9. Crystal Structure of Histidine Phosphotransfer Protein ShpA, an Essential Regulator of Stalk Biogenesis in Caulobacter crescentus

    PubMed Central

    Xu, Qingping; Carlton, Dennis; Miller, Mitchell D.; Elsliger, Marc-André; Sri Krishna, S.; Abdubek, Polat; Astakhova, Tamara; Burra, Prasad; Chiu, Hsiu-Ju; Clayton, Thomas; Deller, Marc C.; Duan, Lian; Elias, Ylva; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Grzechnik, Slawomir K.; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Kumar, Abhinav; Marciano, David; McMullan, Daniel; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Reyes, Ron; Rife, Christopher L.; Sefcovic, Natasha; Trame, Christine; Trout, Christina V.; van den Bedem, Henry; Weekes, Dana; Hodgson, Keith O.; Wooley, John; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2009-01-01

    Cell cycle regulated stalk biogenesis in Caulobacter crescentus is controlled by a multi-step phosphorelay system consisting of the hybrid histidine kinase ShkA, the histidine-phosphotransfer protein ShpA and the response regulator TacA. ShpA shuttles phosphoryl groups between ShkA and TacA. When phosphorylated, TacA triggers a downstream transcription cascade for stalk synthesis in an RpoN-dependent manner. The crystal structure of ShpA was determined to 1.52 Å resolution. ShpA belongs to a family of monomeric histidine phosphotransfer (HPt) proteins, which feature a highly conserved four-helix bundle. The phosphorylatable histidine, His56, is located on the surface of the helix bundle and is fully solvent exposed. One end of the four-helix bundle in ShpA is shorter compared to other characterized histidine phosphotransfer proteins, whereas the face that potentially interacts with the response regulators is structurally conserved. Similarities of the interaction surface around the phosphorylation site suggest that ShpA is likely to share a common mechanism for molecular recognition and phosphotransfer with yeast phosphotransfer protein YPD1 despite low overall sequence similarity. PMID:19450606

  10. C-H Activation on Co,O Sites: Isolated Surface Sites versus Molecular Analogs.

    PubMed

    Estes, Deven P; Siddiqi, Georges; Allouche, Florian; Kovtunov, Kirill V; Safonova, Olga V; Trigub, Alexander L; Koptyug, Igor V; Copéret, Christophe

    2016-11-16

    The activation and conversion of hydrocarbons is one of the most important challenges in chemistry. Transition-metal ions (V, Cr, Fe, Co, etc.) isolated on silica surfaces are known to catalyze such processes. The mechanisms of these processes are currently unknown but are thought to involve C-H activation as the rate-determining step. Here, we synthesize well-defined Co(II) ions on a silica surface using a metal siloxide precursor followed by thermal treatment under vacuum at 500 °C. We show that these isolated Co(II) sites are catalysts for a number of hydrocarbon conversion reactions, such as the dehydrogenation of propane, the hydrogenation of propene, and the trimerization of terminal alkynes. We then investigate the mechanisms of these processes using kinetics, kinetic isotope effects, isotopic labeling experiments, parahydrogen induced polarization (PHIP) NMR, and comparison with a molecular analog. The data are consistent with all of these reactions occurring by a common mechanism, involving heterolytic C-H or H-H activation via a 1,2 addition across a Co-O bond.

  11. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer

    PubMed Central

    Dinpajooh, Mohammadhasan; Martin, Daniel R.; Matyushov, Dmitry V.

    2016-01-01

    Enzymes in biology’s energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work. PMID:27306204

  12. Active Sites Environmental Monitoring Program: Program plan. Revision 1

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  13. Active Site and Laminarin Binding in Glycoside Hydrolase Family 55*

    PubMed Central

    Bianchetti, Christopher M.; Takasuka, Taichi E.; Deutsch, Sam; Udell, Hannah S.; Yik, Eric J.; Bergeman, Lai F.; Fox, Brian G.

    2015-01-01

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100–10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. PMID:25752603

  14. On the active site of mononuclear B1 metallo β-lactamases: a computational study

    NASA Astrophysics Data System (ADS)

    Sgrignani, Jacopo; Magistrato, Alessandra; Dal Peraro, Matteo; Vila, Alejandro J.; Carloni, Paolo; Pierattelli, Roberta

    2012-04-01

    Metallo-β-lactamases (MβLs) are Zn(II)-based bacterial enzymes that hydrolyze β-lactam antibiotics, hampering their beneficial effects. In the most relevant subclass (B1), X-ray crystallography studies on the enzyme from Bacillus Cereus point to either two zinc ions in two metal sites (the so-called `3H' and `DCH' sites) or a single Zn(II) ion in the 3H site, where the ion is coordinated by Asp120, Cys221 and His263 residues. However, spectroscopic studies on the B1 enzyme from B. Cereus in the mono-zinc form suggested the presence of the Zn(II) ion also in the DCH site, where it is bound to an aspartate, a cysteine, a histidine and a water molecule. A structural model of this enzyme in its DCH mononuclear form, so far lacking, is therefore required for inhibitor design and mechanistic studies. By using force field based and mixed quantum-classical (QM/MM) molecular dynamics (MD) simulations of the protein in aqueous solution we constructed such structural model. The geometry and the H-bond network at the catalytic site of this model, in the free form and in complex with two common β-lactam drugs, is compared with experimental and theoretical findings of CphA and the recently solved crystal structure of new B2 MβL from Serratia fonticola (Sfh-I). These are MβLs from the B2 subclass, which features an experimentally well established mono-zinc form, in which the Zn(II) is located in the DCH site. From our simulations the ɛɛδ and δɛδ protomers emerge as possible DCH mono-zinc reactive species, giving a novel contribution to the discussion on the MβL reactivity and to the drug design process.

  15. Metal active site elasticity linked to activation of homocysteine in methionine synthases

    SciTech Connect

    Koutmos, Markos; Pejchal, Robert; Bomer, Theresa M.; Matthews, Rowena G.; Smith, Janet L.; Ludwig, Martha L.

    2008-04-02

    Enzymes possessing catalytic zinc centers perform a variety of fundamental processes in nature, including methyl transfer to thiols. Cobalamin-independent (MetE) and cobalamin-dependent (MetH) methionine synthases are two such enzyme families. Although they perform the same net reaction, transfer of a methyl group from methyltetrahydrofolate to homocysteine (Hcy) to form methionine, they display markedly different catalytic strategies, modular organization, and active site zinc centers. Here we report crystal structures of zinc-replete MetE and MetH, both in the presence and absence of Hcy. Structural investigation of the catalytic zinc sites of these two methyltransferases reveals an unexpected inversion of zinc geometry upon binding of Hcy and displacement of an endogenous ligand in both enzymes. In both cases a significant movement of the zinc relative to the protein scaffold accompanies inversion. These structures provide new information on the activation of thiols by zinc-containing enzymes and have led us to propose a paradigm for the mechanism of action of the catalytic zinc sites in these and related methyltransferases. Specifically, zinc is mobile in the active sites of MetE and MetH, and its dynamic nature helps facilitate the active site conformational changes necessary for thiol activation and methyl transfer.

  16. An Active Site Water Network in the Plasminogen Activator Pla from Yersinia pestis

    SciTech Connect

    Eren, Elif; Murphy, Megan; Goguen, Jon; van den Berg, Bert

    2010-08-13

    The plasminogen activator Pla from Yersinia pestis is an outer membrane protease (omptin) that is important for the virulence of plague. Here, we present the high-resolution crystal structure of wild-type, enzymatically active Pla at 1.9 {angstrom}. The structure shows a water molecule located between active site residues D84 and H208, which likely corresponds to the nucleophilic water. A number of other water molecules are present in the active site, linking residues important for enzymatic activity. The R211 sidechain in loop L4 is close to the nucleophilic water and possibly involved in the stabilization of the oxyanion intermediate. Subtle conformational changes of H208 result from the binding of lipopolysaccharide to the outside of the barrel, explaining the unusual dependence of omptins on lipopolysaccharide for activity. The Pla structure suggests a model for the interaction with plasminogen substrate and provides a more detailed understanding of the catalytic mechanism of omptin proteases.

  17. An active site water network in the plasminogen activator pla from Yersinia pestis.

    PubMed

    Eren, Elif; Murphy, Megan; Goguen, Jon; van den Berg, Bert

    2010-07-14

    The plasminogen activator Pla from Yersinia pestis is an outer membrane protease (omptin) that is important for the virulence of plague. Here, we present the high-resolution crystal structure of wild-type, enzymatically active Pla at 1.9 A. The structure shows a water molecule located between active site residues D84 and H208, which likely corresponds to the nucleophilic water. A number of other water molecules are present in the active site, linking residues important for enzymatic activity. The R211 sidechain in loop L4 is close to the nucleophilic water and possibly involved in the stabilization of the oxyanion intermediate. Subtle conformational changes of H208 result from the binding of lipopolysaccharide to the outside of the barrel, explaining the unusual dependence of omptins on lipopolysaccharide for activity. The Pla structure suggests a model for the interaction with plasminogen substrate and provides a more detailed understanding of the catalytic mechanism of omptin proteases.

  18. Partial purification and characterization of a novel histidine decarboxylase from Enterobacter aerogenes DL-1.

    PubMed

    Zou, Yu; Hu, Wenzhong; Jiang, Aili; Tian, Mixia

    2015-08-18

    Histidine decarboxylase (HDC) from Enterobacter aerogenes DL-1 was purified in a three-step procedure involving ammonium sulfate precipitation, Sephadex G-100, and DEAE-Sepharose column chromatography. The partially purified enzyme showed a single protein band of 52.4 kD on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH for HDC activity was 6.5, and the enzyme was stable between pH 4 and 8. Enterobacter aerogenes HDC had optimal activity at 40°C and retained most of its activity between 4 and 50°C. HDC activity was reduced in the presence of numerous tested compounds. Particularly with SDS, it significantly (p < 0.01) inhibited enzyme activity. Conversely, Ca(2+) and Mn(2+) showed prominent activation effects (p < 0.01) with activity increasing to 117.20% and 123.42%, respectively. The Lineweaver-Burk plot showed that K m and V max values of the enzyme for L-histidine were 0.21 mM and 71.39 µmol/min, respectively. In comparison with most HDCs from other microorganisms and animals, HDC from E. aerogenes DL-1 displayed higher affinity and greater reaction velocity toward L-histidine.

  19. Corynebacterium glutamicum ATP-phosphoribosyl transferases suitable for L-histidine production--Strategies for the elimination of feedback inhibition.

    PubMed

    Kulis-Horn, Robert K; Persicke, Marcus; Kalinowski, Jörn

    2015-07-20

    L-Histidine biosynthesis in Corynebacterium glutamicum is mainly regulated by L-histidine feedback inhibition of the ATP-phosphoribosyltransferase HisG that catalyzes the first step of the pathway. The elimination of this feedback inhibition is the first and most important step in the development of an L-histidine production strain. For this purpose, a combined approach of random mutagenesis and rational enzyme redesign was performed. Mutants spontaneously resistant to the toxic L-histidine analog β-(2-thiazolyl)-DL-alanine (2-TA) revealed novel and unpredicted mutations in the C-terminal regulatory domain of HisG resulting in increased feedback resistance. Moreover, deletion of the entire C-terminal regulatory domain in combination with the gain of function mutation S143F in the catalytic domain resulted in a HisG variant that is still highly active even at L-histidine concentrations close to the solubility limit. Notably, the S143F mutation on its own provokes feedback deregulation, revealing for the first time an amino acid residue in the catalytic domain of HisG that is involved in the feedback regulatory mechanism. In addition, we investigated the effect of hisG mutations for L-histidine production on different levels. This comprised the analysis of different expression systems, including plasmid- and chromosome-based overexpression, as well as the importance of codon choice for HisG mutations. The combination of domain deletions, single amino acid exchanges, codon choice, and chromosome-based overexpression resulted in production strains accumulating around 0.5 g l(-1) L-histidine, demonstrating the added value of the different approaches.

  20. Control of Ligand Binding to Heme Proteins: the Role of the Distal Histidine.

    NASA Astrophysics Data System (ADS)

    Reinisch, Lou

    We have investigated the effect of the distal histidine on the recombination rates of CO and O(,2) to sperm whale myoglobin, separated beta chains of normal human hemoglobin and to the beta chains of hemoglobin Zurich. The recombination was measured using flash photolysis from 300 to 40 K, on a time scale of 100 ns to 300 s. Lowering the pH of the solution from 7.0 to 5.0, we find a 3 kJ/mol and 1.5 kJ/mol decrease in the final barrier for CO binding to myoglobin and the separated chains of human hemoglobin, respectively. The distal histidine, His E 7, is identified as the titratable group by observing no pH dependence in the rates when CO binds to the beta chains of hemoglobin Zurich, a mutant of hemoglobin lacking a distal histidine in the beta chains. We postulate a charge-dipole interaction between the CO and the protonated histidine, since the recombination of the symmetric ligand, O(,2), is pH independent. The temperature independent energy shift is then used to demonstrate the importance of the final barrier even at 300 K, support the sequential model used and finally to speculate on the structural contributions to the final barrier for binding. The protein structure is shown to be the major contribution to the final barrier for myoglobin. We then show how the distribution of atomic positions from the X-ray scattering data at 80 K can result in the distribution of activation enthalpies observed between 60 and 160 K. Preliminary studies on the effect of pH on the CO recombination to chloroperoxidase show a reversed effect. The rates increase with increasing pH, unlike myoglobin and beta hemoglobin. However, the pK and energy difference between the protonated and unprotonated states suggest a distal histidine is also being protonated in chloroperoxidase.

  1. Characterization of an avian histidine decarboxylase and localization of histaminergic neurons in the chicken brain.

    PubMed

    Bessho, Yuki; Iwakoshi-Ukena, Eiko; Tachibana, Tetsuya; Maejima, Sho; Taniuchi, Shusuke; Masuda, Keiko; Shikano, Kenshiro; Kondo, Kunihiro; Furumitsu, Megumi; Ukena, Kazuyoshi

    2014-08-22

    In mammals, it is established that histamine is a neurotransmitter and/or neuromodulator in the central nervous system. It is produced by the enzyme histidine decarboxylase (HDC) in the tuberomammillary nucleus of the posterior hypothalamus. However, HDC as well as histaminergic neurons have not yet been characterized in the avian brain. We have cloned the cDNA for HDC from the chicken hypothalamus and demonstrated that the chicken HDC sequence is highly homologous to the mammalian counterpart, and that the expressed protein shows high enzymatic activity. The expression of HDC mRNA at various sites in the brain was investigated using quantitative RT-PCR. The results showed that the HDC mRNA was highly expressed in the hypothalamic infundibulum. In situ hybridization analyses revealed that the cells containing HDC mRNA were localized in the medial mammillary nucleus of the hypothalamic infundibulum. Intracerebroventricular injection of histamine in chicks resulted in inhibition of feeding behavior. This is the first report of the characterization of histaminergic neurons in the avian brain, and our findings indicate that neuronal histamine exerts anorexigenic effects in chicks.

  2. Active Site Loop Conformation Regulates Promiscuous Activity in a Lactonase from Geobacillus kaustophilus HTA426

    PubMed Central

    Zhang, Yu; An, Jiao; Yang, Guang-Yu; Bai, Aixi; Zheng, Baisong; Lou, Zhiyong; Wu, Geng; Ye, Wei; Chen, Hai-Feng; Feng, Yan; Manco, Giuseppe

    2015-01-01

    Enzyme promiscuity is a prerequisite for fast divergent evolution of biocatalysts. A phosphotriesterase-like lactonase (PLL) from Geobacillus kaustophilus HTA426 (GkaP) exhibits main lactonase and promiscuous phosphotriesterase activities. To understand its catalytic and evolutionary mechanisms, we investigated a “hot spot” in the active site by saturation mutagenesis as well as X-ray crystallographic analyses. We found that position 99 in the active site was involved in substrate discrimination. One mutant, Y99L, exhibited 11-fold improvement over wild-type in reactivity (kcat/Km) toward the phosphotriesterase substrate ethyl-paraoxon, but showed 15-fold decrease toward the lactonase substrate δ-decanolactone, resulting in a 157-fold inversion of the substrate specificity. Structural analysis of Y99L revealed that the mutation causes a ∼6.6 Å outward shift of adjacent loop 7, which may cause increased flexibility of the active site and facilitate accommodation and/or catalysis of organophosphate substrate. This study provides for the PLL family an example of how the evolutionary route from promiscuity to specificity can derive from very few mutations, which promotes alteration in the conformational adjustment of the active site loops, in turn draws the capacity of substrate binding and activity. PMID:25706379

  3. Characterization of the active site of ADP-ribosyl cyclase.

    PubMed

    Munshi, C; Thiel, D J; Mathews, I I; Aarhus, R; Walseth, T F; Lee, H C

    1999-10-22

    ADP-ribosyl cyclase synthesizes two Ca(2+) messengers by cyclizing NAD to produce cyclic ADP-ribose and exchanging nicotinic acid with the nicotinamide group of NADP to produce nicotinic acid adenine dinucleotide phosphate. Recombinant Aplysia cyclase was expressed in yeast and co-crystallized with a substrate, nicotinamide. x-ray crystallography showed that the nicotinamide was bound in a pocket formed in part by a conserved segment and was near the central cleft of the cyclase. Glu(98), Asn(107) and Trp(140) were within 3.5 A of the bound nicotinamide and appeared to coordinate it. Substituting Glu(98) with either Gln, Gly, Leu, or Asn reduced the cyclase activity by 16-222-fold, depending on the substitution. The mutant N107G exhibited only a 2-fold decrease in activity, while the activity of W140G was essentially eliminated. The base exchange activity of all mutants followed a similar pattern of reduction, suggesting that both reactions occur at the same active site. In addition to NAD, the wild-type cyclase also cyclizes nicotinamide guanine dinucleotide to cyclic GDP-ribose. All mutant enzymes had at least half of the GDP-ribosyl cyclase activity of the wild type, some even 2-3-fold higher, indicating that the three coordinating amino acids are responsible for positioning of the substrate but not absolutely critical for catalysis. To search for the catalytic residues, other amino acids in the binding pocket were mutagenized. E179G was totally devoid of GDP-ribosyl cyclase activity, and both its ADP-ribosyl cyclase and the base exchange activities were reduced by 10,000- and 18,000-fold, respectively. Substituting Glu(179) with either Asn, Leu, Asp, or Gln produced similar inactive enzymes, and so was the conversion of Trp(77) to Gly. However, both E179G and the double mutant E179G/W77G retained NAD-binding ability as shown by photoaffinity labeling with [(32)P]8-azido-NAD. These results indicate that both Glu(179) and Trp(77) are crucial for catalysis and

  4. Mutations inducing an active-site aperture in Rhizobium sp. sucrose isomerase confer hydrolytic activity.

    PubMed

    Lipski, Alexandra; Watzlawick, Hildegard; Ravaud, Stéphanie; Robert, Xavier; Rhimi, Moez; Haser, Richard; Mattes, Ralf; Aghajari, Nushin

    2013-02-01

    Sucrose isomerase is an enzyme that catalyzes the production of sucrose isomers of high biotechnological and pharmaceutical interest. Owing to the complexity of the chemical synthesis of these isomers, isomaltulose and trehalulose, enzymatic conversion remains the preferred method for obtaining these products. Depending on the microbial source, the ratio of the sucrose-isomer products varies significantly. In studies aimed at understanding and explaining the underlying molecular mechanisms of these reactions, mutations obtained using a random-mutagenesis approach displayed a major hydrolytic activity. Two of these variants, R284C and F164L, of sucrose isomerase from Rhizobium sp. were therefore crystallized and their crystal structures were determined. The three-dimensional structures of these mutants allowed the identification of the molecular determinants that favour hydrolytic activity compared with transferase activity. Substantial conformational changes resulting in an active-site opening were observed, as were changes in the pattern of water molecules bordering the active-site region.

  5. A highly selective phosphorescence probe for histidine in living bodies.

    PubMed

    Gao, Quankun; Song, Bo; Ye, Zhiqiang; Yang, Liu; Liu, Ruoyang; Yuan, Jingli

    2015-11-14

    In this work, we designed and synthesized a heterobimetallic ruthenium(ii)-nickel(ii) complex, [Ru(bpy)2(phen-DPA)Ni](PF6)4 (Ru-Ni), as a highly selective phosphorescence probe for histidine. The probe exhibited weak emission at 603 nm because the phosphorescence of the Ru(ii) complex can be strongly quenched by the paramagnetic Ni(2+) ion. In the presence of histidine, reaction of Ru-Ni with histidine resulted in the release of nickel(ii) and an enhancement in the phosphorescence intensity at 603 nm. Ru-Ni showed high selectivity for histidine even in the presence of other amino acids and cellular abundant species. Cell imaging experimental results demonstrated that Ru-Ni is membrane permeable, and can be applied for visualizing histidine in live cells. More interestingly, Ru-Ni also can act as a novel reaction-based nuclear staining agent for visualizing exclusively the nuclei of living cells with a significant phosphorescence enhancement. In addition, the potential of the probe for biological applications was confirmed by employing it for phosphorescence imaging of histidine in larval zebrafish and Daphnia magna. These results demonstrated that Ru-Ni would be a useful tool for physiological and pathological studies involving histidine.

  6. Histidine biosynthesis, its regulation and biotechnological application in Corynebacterium glutamicum.

    PubMed

    Kulis-Horn, Robert K; Persicke, Marcus; Kalinowski, Jörn

    2014-01-01

    l-Histidine biosynthesis is an ancient metabolic pathway present in bacteria, archaea, lower eukaryotes, and plants. For decades l-histidine biosynthesis has been studied mainly in Escherichia coli and Salmonella typhimurium, revealing fundamental regulatory processes in bacteria. Furthermore, in the last 15 years this pathway has been also investigated intensively in the industrial amino acid-producing bacterium Corynebacterium glutamicum, revealing similarities to E. coli and S. typhimurium, as well as differences. This review summarizes the current knowledge of l-histidine biosynthesis in C. glutamicum. The genes involved and corresponding enzymes are described, in particular focusing on the imidazoleglycerol-phosphate synthase (HisFH) and the histidinol-phosphate phosphatase (HisN). The transcriptional organization of his genes in C. glutamicum is also reported, including the four histidine operons and their promoters. Knowledge of transcriptional regulation during stringent response and by histidine itself is summarized and a translational regulation mechanism is discussed, as well as clues about a histidine transport system. Finally, we discuss the potential of using this knowledge to create or improve C. glutamicum strains for the industrial l-histidine production.

  7. Spectroscopic and electronic structure studies of the trinuclear Cu cluster active site of the multicopper oxidase laccase: nature of its coordination unsaturation.

    PubMed

    Quintanar, Liliana; Yoon, Jungjoo; Aznar, Constantino P; Palmer, Amy E; Andersson, K Kristoffer; Britt, R David; Solomon, Edward I

    2005-10-12

    Laccase is a multicopper oxidase that contains four Cu ions, one type 1 (T1), one type 2 (T2), and a coupled binuclear type 3 Cu pair (T3). The T2 and T3 centers form a trinuclear Cu cluster that is the active site for O2 reduction to H2O. A combination of spectroscopic and DFT studies on a derivative where the T1 Cu has been replaced by a spectroscopically innocent Hg2+ ion has led to a detailed geometric and electronic structure description of the resting trinuclear Cu cluster, complementing crystallographic results. The nature of the T2 Cu ligation has been elucidated; this site is three-coordinate with two histidines and a hydroxide over its functional pH range (stabilized by a large inductive effect, cluster charge, and a hydrogen-bonding network). Both the T2 and T3 Cu centers have open coordination positions oriented toward the center of the cluster. DFT calculations show that the negative protein pocket (four conserved Asp/Glu residues within 12 A) and the dielectric of the protein play important roles in the electrostatic stability and integrity of the highly charged, coordinatively unsaturated trinuclear cupric cluster. These tune the ligand binding properties of the cluster, leading to its high affinity for fluoride and its coordination unsaturation in aqueous media, which play a key role in its O2 reactivity.

  8. Site-specific PEGylation of lidamycin and its antitumor activity

    PubMed Central

    Li, Liang; Shang, Boyang; Hu, Lei; Shao, Rongguang; Zhen, Yongsu

    2015-01-01

    In this study, N-terminal site-specific mono-PEGylation of the recombinant lidamycin apoprotein (rLDP) of lidamycin (LDM) was prepared using a polyethyleneglycol (PEG) derivative (Mw 20 kDa) through a reactive terminal aldehyde group under weak acidic conditions (pH 5.5). The biochemical properties of mPEG-rLDP-AE, an enediyne-integrated conjugate, were analyzed by SDS-PAGE, RP-HPLC, SEC-HPLC and MALDI-TOF. Meanwhile, in vitro and in vivo antitumor activity of mPEG-rLDP-AE was evaluated by MTT assays and in xenograft model. The results indicated that mPEG-rLDP-AE showed significant antitumor activity both in vitro and in vivo. After PEGylation, mPEG-rLDP still retained the binding capability to the enediyne AE and presented the physicochemical characteristics similar to that of native LDP. It is of interest that the PEGylation did not diminish the antitumor efficacy of LDM, implying the possibility that this derivative may function as a payload to deliver novel tumor-targeted drugs. PMID:26579455

  9. Allosteric site-mediated active site inhibition of PBP2a using Quercetin 3-O-rutinoside and its combination.

    PubMed

    Rani, Nidhi; Vijayakumar, Saravanan; P T V, Lakshmi; Arunachalam, Annamalai

    2016-08-01

    Recent crystallographic study revealed the involvement of allosteric site in active site inhibition of penicillin binding protein (PBP2a), where one molecule of Ceftaroline (Cef) binds to the allosteric site of PBP2a and paved way for the other molecule (Cef) to bind at the active site. Though Cef has the potency to inhibit the PBP2a, its adverse side effects are of major concern. Previous studies have reported the antibacterial property of Quercetin derivatives, a group of natural compounds. Hence, the present study aims to evaluate the effect of Quercetin 3-o-rutinoside (Rut) in allosteric site-mediated active site inhibition of PBP2a. The molecular docking studies between allosteric site and ligands (Rut, Que, and Cef) revealed a better binding efficiency (G-score) of Rut (-7.790318) and Cef (-6.194946) with respect to Que (-5.079284). Molecular dynamic (MD) simulation studies showed significant changes at the active site in the presence of ligands (Rut and Cef) at allosteric site. Four different combinations of Rut and Cef were docked and their G-scores ranged between -6.320 and -8.623. MD studies revealed the stability of the key residue (Ser403) with Rut being at both sites, compared to other complexes. Morphological analysis through electron microscopy confirmed that combination of Rut and Cefixime was able to disturb the bacterial cell membrane in a similar fashion to that of Rut and Cefixime alone. The results of this study indicate that the affinity of Rut at both sites were equally good, with further validations Rut could be considered as an alternative for inhibiting MRSA growth.

  10. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site

    PubMed Central

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel

    2015-01-01

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called ‘catalytic residues’ are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes. DOI: http://dx.doi.org/10.7554/eLife.06181.001 PMID:25902402

  11. A split active site couples cap recognition by Dcp2 to activation

    PubMed Central

    Floor, Stephen N.; Jones, Brittnee N.; Hernandez, Gail A.; Gross, John D.

    2010-01-01

    Decapping by Dcp2 is an essential step in 5′-3′ mRNA decay. In yeast, decapping requires an open-to-closed transition in Dcp2, though the link between closure and catalysis remains elusive. Here we show using NMR that cap binds conserved residues on both the catalytic and regulatory domains of Dcp2. Lesions in the cap-binding site on the regulatory domain reduce the catalytic step two orders of magnitude and block formation of the closed state whereas Dcp1 enhances the catalytic step by a factor of ten and promotes closure. We conclude that closure occurs during the rate-limiting catalytic step of decapping, juxtaposing the cap-binding region of each domain to form a composite active site. This work suggests a model for regulation of decapping, where coactivators trigger decapping by stabilizing a labile composite active site. PMID:20711189

  12. Ligand-Induced Asymmetry in Histidine Sensor Kinase Complex Regulates Quorum Sensing

    SciTech Connect

    Neiditch,M.; Federle, M.; Pompeani, A.; Kelly, R.; Swem, D.; Jeffrey, P.; Bassler, B.; Hughson, F.

    2006-01-01

    Bacteria sense their environment using receptors of the histidine sensor kinase family, but how kinase activity is regulated by ligand binding is not well understood. Autoinducer-2 (AI-2), a secreted signaling molecule originally identified in studies of the marine bacterium Vibrio harveyi, regulates quorum-sensing responses and allows communication between different bacterial species. AI-2 signal transduction in V. harveyi requires the integral membrane receptor LuxPQ, comprised of periplasmic binding protein (LuxP) and histidine sensor kinase (LuxQ) subunits. Combined X-ray crystallographic and functional studies show that AI-2 binding causes a major conformational change within LuxP, which in turn stabilizes a quaternary arrangement in which two LuxPQ monomers are asymmetrically associated. We propose that formation of this asymmetric quaternary structure is responsible for repressing the kinase activity of both LuxQ subunits and triggering the transition of V. harveyi into quorum-sensing mode.

  13. A ligand-induced switch in the periplasmic domain of sensor histidine kinase CitA.

    PubMed

    Sevvana, Madhumati; Vijayan, Vinesh; Zweckstetter, Markus; Reinelt, Stefan; Madden, Dean R; Herbst-Irmer, Regine; Sheldrick, George M; Bott, Michael; Griesinger, Christian; Becker, Stefan

    2008-03-21

    Sensor histidine kinases of two-component signal-transduction systems are essential for bacteria to adapt to variable environmental conditions. However, despite their prevalence, it is not well understood how extracellular signals such as ligand binding regulate the activity of these sensor kinases. CitA is the sensor histidine kinase in Klebsiella pneumoniae that regulates the transport and anaerobic metabolism of citrate in response to its extracellular concentration. We report here the X-ray structures of the periplasmic sensor domain of CitA in the citrate-free and citrate-bound states. A comparison of the two structures shows that ligand binding causes a considerable contraction of the sensor domain. This contraction may represent the molecular switch that activates transmembrane signaling in the receptor.

  14. Insufficient intake of L-histidine reduces brain histamine and causes anxiety-like behaviors in male mice.

    PubMed

    Yoshikawa, Takeo; Nakamura, Tadaho; Shibakusa, Tetsuro; Sugita, Mayu; Naganuma, Fumito; Iida, Tomomitsu; Miura, Yamato; Mohsen, Attayeb; Harada, Ryuichi; Yanai, Kazuhiko

    2014-10-01

    L-histidine is one of the essential amino acids for humans, and it plays a critical role as a component of proteins. L-histidine is also important as a precursor of histamine. Brain histamine is synthesized from L-histidine in the presence of histidine decarboxylase, which is expressed in histamine neurons. In the present study, we aimed to elucidate the importance of dietary L-histidine as a precursor of brain histamine and the histaminergic nervous system. C57BL/6J male mice at 8 wk of age were assigned to 2 different diets for at least 2 wk: the control (Con) diet (5.08 g L-histidine/kg diet) or the low L-histidine diet (LHD) (1.28 g L-histidine/kg diet). We measured the histamine concentration in the brain areas of Con diet-fed mice (Con group) and LHD-fed mice (LHD group). The histamine concentration was significantly lower in the LHD group [Con group vs. LHD group: histamine in cortex (means ± SEs): 13.9 ± 1.25 vs. 9.36 ± 0.549 ng/g tissue; P = 0.002]. Our in vivo microdialysis assays revealed that histamine release stimulated by high K(+) from the hypothalamus in the LHD group was 60% of that in the Con group (P = 0.012). However, the concentrations of other monoamines and their metabolites were not changed by the LHD. The open-field tests showed that the LHD group spent a shorter amount of time in the central zone (87.6 ± 14.1 vs. 50.0 ± 6.03 s/10 min; P = 0.019), and the light/dark box tests demonstrated that the LHD group spent a shorter amount of time in the light box (198 ± 8.19 vs. 162 ± 14.1 s/10 min; P = 0.048), suggesting that the LHD induced anxiety-like behaviors. However, locomotor activity, memory functions, and social interaction did not differ between the 2 groups. The results of the present study demonstrated that insufficient intake of histidine reduced the brain histamine content, leading to anxiety-like behaviors in the mice.

  15. Characterization of Active Site Residues of Nitroalkane Oxidase†

    PubMed Central

    Valley, Michael P.; Fenny, Nana S.; Ali, Shah R.; Fitzpatrick, Paul F.

    2010-01-01

    The flavoenzyme nitroalkane oxidase catalyzes the oxidation of primary and secondary nitrolkanes to the corresponding aldehydes and ketones plus nitrite. The structure of the enzyme shows that Serl71 forms a hydrogen bond to the flavin N5, suggesting that it plays a role in catalysis. Cys397 and Tyr398 were previously identified by chemical modification as potential active site residues. To more directly probe the roles of these residues, the S171A, S171V, S171T, C397S, and Y398F enzymes have been characterized with nitroethane as substrate. The C397S and Y398 enzymes were less stable than the wild-type enzyme, and the C397S enzyme routinely contained a substoichiometric amount of FAD. Analysis of the steady-state kinetic parameters for the mutant enzymes, including deuterium isotope effects, establishes that all of the mutations result in decreases in the rate constants for removal of the substrate proton by ~5-fold and decreases in the rate constant for product release of ~2-fold. Only the S171V and S171T mutations alter the rate constant for flavin oxidation. These results establish that these residues are not involved in catalysis, but rather are required for maintaining the protein structure. PMID:20056514

  16. Detection limit for activation measurements in ultralow background sites

    NASA Astrophysics Data System (ADS)

    Trache, Livius; Chesneanu, D.; Margineanu, R.; Pantelica, A.; Ghita, D. G.; Burducea, I.; Straticiuc, M.; Tang, X. D.

    2014-09-01

    We used 12C +13C fusion at the beam energies E = 6, 7 and 8 MeV to determine the sensitivity and the limits of activation method measurements in ultralow background sites. A 13C beam of 0.5 μA from the 3 MV Tandem accelerator of the Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH impinged on thick graphite targets. After about 24 hrs of irradiation targets were measured in two different laboratories: one with a heavy shielded Ge detector in the institute (at the surface) and one located underground in the microBequerel laboratory, in the salt mine of Slanic-Prahova, Romania. The 1369- and 2754 keV peaks from 24Na deactivation were clearly observed in the γ-ray spectra obtained for acquisitions lasting a few hours, or a few days. Determination of the detection limit in evaluating the cross sections for the target irradiated at Ec . m = 3 MeV indicates the fact that it is possible to measure gamma spectrum in underground laboratory down to Ec . m = 2 . 6 MeV. Cleaning the spectra with beta-gamma coincidences and increasing beam intensity 20 times will take as further down. The measurements are motivated by the study of the 12 C +12 C reaction at astrophysical energies.

  17. Disturbance opens recruitment sites for bacterial colonization in activated sludge.

    PubMed

    Vuono, David C; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E

    2016-01-01

    Little is known about the role of immigration in shaping bacterial communities or the factors that may dictate success or failure of colonization by bacteria from regional species pools. To address these knowledge gaps, the influence of bacterial colonization into an ecosystem (activated sludge bioreactor) was measured through a disturbance gradient (successive decreases in the parameter solids retention time) relative to stable operational conditions. Through a DNA sequencing approach, we show that the most abundant bacteria within the immigrant community have a greater probability of colonizing the receiving ecosystem, but mostly as low abundance community members. Only during the disturbance do some of these bacterial populations significantly increase in abundance beyond background levels and in few cases become dominant community members post-disturbance. Two mechanisms facilitate the enhanced enrichment of immigrant populations during disturbance: (i) the availability of resources left unconsumed by established species and (ii) the increased availability of niche space for colonizers to establish and displace resident populations. Thus, as a disturbance decreases local diversity, recruitment sites become available to promote colonization. This work advances our understanding of microbial resource management and diversity maintenance in complex ecosystems.

  18. IgG purification by bentonite-acrylamide-histidine microcomposite.

    PubMed

    Akkaya, Birnur

    2012-04-01

    In this work, a new microcomposite composed of bentonite, acrylamide and histidine, as a pseudospecific ligand, was synthesized by bulk polymerization. The aim of this study was to improve IgG adsorption capacity of bentonite by incorporating histidine. The surface areas of the bentonite and bentonite-acrylamide-histidine microcomposites were 33.4 and 1.42 m(2)/g, respectively. The amount of histidine was found to be 50 μmol/g bentonite via elemental analysis. Adsorption capacity was at the value of 100mg/g from aqueous solution while adsorption capacity was 108 mg/g from human plasma with a purity of 90%. IgG biomolecules were able to be adsorbed and desorbed five times by using the same microcomposites without significant loss in their adsorption capacity.

  19. 21 CFR 862.1375 - Histidine test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... and treatment of hereditary histidinemia characterized by excess histidine in the blood and urine often resulting in mental retardation and disordered speech development. (b) Classification. Class...

  20. Distal Histidine Modulates the Unusual O-Binding of Nitrite to Myoglobin: Evidence from the Quantum Chemical Analysis of EPR Parameters.

    PubMed

    Sundararajan, Mahesh; Neese, Frank

    2015-08-03

    Nitrite ligand can coordinate with the transition metal through either N- or O-, which is known as linkage isomerism and is believed to occur in metalloproteins. In contrast to the commonly found N-binding motif of nitrite to iron in synthetic models, the less commonly observed O-binding of nitrite to myoglobin ( Copeland , D. M. ; Soares , A. S. ; West , A. H. ; Richter-Addo , G. B. J. Inorg. Biol. Chem. 2006, 100 , 1413 - 1425 ) and hemoglobin ( Yi , J. ; Safo , M. K. ; Richter-Addo , G. Biochemistry , 2008 , 47 , 8247 - 8249 ) reported by Richter-Addo and co-workers is intriguing. On the basis of site-directed mutagenesis studies, it was argued that the distal histidine modulates this unique binding. However, EPR measurements on nitrite binding to methemoglobin could not rule out the possibility of N-bound species to low spin ferric iron. Given to the very similar active sites, there exists a controversy within the two powerful experimental techniques in identifying the coordination motif of nitrite to myoglobin, which is central to understanding the denitrification mechanism. Herein, we report the computation of spin Hamiltonian EPR parameters of different linkage isomers of nitrite bound myoglobin using wave function based "ab initio" and density functional theories to shed light on the binding motif of nitrite to ferric iron. Our predicted spin Hamiltonian parameters agree closely with the experimental EPR data, which provides strong support for the crystallographically implied O-binding to the low-spin ferric heme. This unique O-binding of nitrite to iron is modulated by the distal histidine whose contributions to the active site electronic structure have been successfully quantified. Our quantum chemical insights on the electronic structure of this intermediate are crucial for understanding the structure-function relationship of other metal-nitrite species found in various metalloenzymes.

  1. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing...

  2. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing...

  3. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  4. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  5. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  6. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  7. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  8. Robotics and Automation Activities at the Savannah River Site: A Site Report for SUBWOG 39F

    SciTech Connect

    Teese, G.D.

    1995-09-28

    The Savannah River Site has successfully used robots, teleoperators, and remote video to reduce exposure to ionizing radiation, improve worker safety, and improve the quality of operations. Previous reports have described the use of mobile teleoperators in coping with a high level liquid waste spill, the removal of highly contaminated equipment, and the inspection of nuclear reactor vessels. This report will cover recent applications at the Savannah River, as well as systems which SRS has delivered to other DOE site customers.

  9. Cloning and nucleotide sequence of wild type and a mutant histidine decarboxylase from Lactobacillus 30a.

    PubMed

    Vanderslice, P; Copeland, W C; Robertus, J D

    1986-11-15

    Prohistidine decarboxylase from Lactobacillus 30a is a protein that autoactivates to histidine decarboxylase by cleaving its peptide chain between serines 81 and 82 and converting Ser-82 to a pyruvoyl moiety. The pyruvoyl group serves as the prosthetic group for the decarboxylation reaction. We have cloned and determined the nucleotide sequence of the gene for this enzyme from a wild type strain and from a mutant with altered autoactivation properties. The nucleotide sequence modifies the previously determined amino acid sequence of the protein. A tripeptide missed in the chemical sequence is inserted, and three other amino acids show conservative changes. The activation mutant shows a single change of Gly-58 to an Asp. Sequence analysis up- and downstream from the gene suggests that histidine decarboxylase is part of a polycistronic message, and that the transcriptional promotor region is strongly homologous to those of other Gram-positive organisms.

  10. Purification of histidine-tagged T4 RNA ligase from E. coli.

    PubMed

    Wang, Qing S; Unrau, Peter J

    2002-12-01

    Here we report the construction of a histidine-tagged T4 RNA ligase expression plasmid (pRHT4). The construct, when overexpressed in BL21 (DE3) cells, allows the preparation of large quantities of T4 RNA ligase in high purity using only a single purification column. The histidine affinity tag does not inhibit enzyme function, and we were able to purify 1-3 mg pure protein/g cell pellet. A simple purification procedure ensures that the enzyme is de-adenylated to levels comparable to those found for many commercial preparations. The purified protein has very low levels of RNase contamination and functioned normally in a variety of activity assays.

  11. GAS HYDRATES AT TWO SITES OF AN ACTIVE CONTINENTAL MARGIN.

    USGS Publications Warehouse

    Kvenvolden, K.A.

    1985-01-01

    Sediment containing gas hydrates from two distant Deep Sea Drilling Project sites (565 and 568), located about 670 km apart on the landward flank of the Middle America Trench, was studied to determine the geochemical conditions that characterize the occurrence of gas hydrates. Site 565 was located in the Pacific Ocean offshore the Nicoya Peninsula of Costa Rica in 3,111 m of water. The depth of the hole at this site was 328 m, and gas hydrates were recovered from 285 and 319 m. Site 568 was located about 670 km to the northwest offshore Guatemala in 2,031 m of water. At this site the hole penetrated to 418 m, and gas hydrates were encountered at 404 m.

  12. Lidar research activities and observations at NARL site, Gadanki, India

    NASA Astrophysics Data System (ADS)

    Yellapragada, Bhavani Kumar

    2016-05-01

    The National Atmospheric Research Laboratory (NARL), a unit of Department of Space (DOS), located at Gadanki village (13.5°N, 79.2°E, 370 m AMSL) in India, is involved in the development of lidar remote sensing technologies for atmospheric research. Several advanced lidar technologies employing micropulse, polarization, Raman and scanning have been developed at this site and demonstrated for atmospheric studies during the period between 2008 and 2015. The technology of micropulse lidar, operates at 532 nm wavelength, was successfully transferred to an industry and the commercial version has been identified for Indian Lidar network (I-LINK) programme. Under this lidar network activity, several lidar units were installed at different locations in India to study tropospheric aerosols and clouds. The polarization sensitive lidar technology was realized using a set of mini photomultiplier tube (PMT) units and has the capability to operate during day and night without a pause. The lidar technology uses a compact flashlamp pumped Qswitched laser and employs biaxial configuration between the transmitter and receiver units. The lidar technology has been utilized for understanding the polarization characteristics of boundary layer aerosols during the mixed layer development. The demonstrated Raman lidar technology, uses the third harmonic wavelength of Nd:YAG laser, provides the altitude profiles of aerosol backscattering, extinction and water vapor covering the boundary layer range and allows operation during nocturnal periods. The Raman lidar derived height profiles of aerosol backscattering and extinction coefficient, lidar ratio, and watervapor mixing ratio inform the tropical boundary layer aerosol characteristics. The scanning lidar technology uses a near infrared laser wavelength for probing the lower atmosphere and has been utilized for high resolution cloud profiling during convective periods. The lidar technology is also used for rain rate measurement during

  13. Dynamically achieved active site precision in enzyme catalysis.

    PubMed

    Klinman, Judith P

    2015-02-17

    CONSPECTUS: The grand challenge in enzymology is to define and understand all of the parameters that contribute to enzymes' enormous rate accelerations. The property of hydrogen tunneling in enzyme reactions has moved the focus of research away from an exclusive focus on transition state stabilization toward the importance of the motions of the heavy atoms of the protein, a role for reduced barrier width in catalysis, and the sampling of a protein conformational landscape to achieve a family of protein substates that optimize enzyme-substrate interactions and beyond. This Account focuses on a thermophilic alcohol dehydrogenase for which the chemical step of hydride transfer is rate determining across a wide range of experimental conditions. The properties of the chemical coordinate have been probed using kinetic isotope effects, indicating a transition in behavior below 30 °C that distinguishes nonoptimal from optimal C-H activation. Further, the introduction of single site mutants has the impact of either enhancing or eliminating the temperature dependent transition in catalysis. Biophysical probes, which include time dependent hydrogen/deuterium exchange and fluorescent lifetimes and Stokes shifts, have also been pursued. These studies allow the correlation of spatially resolved transitions in protein motions with catalysis. It is now possible to define a long-range network of protein motions in ht-ADH that extends from a dimer interface to the substrate binding domain across to the cofactor binding domain, over a distance of ca. 30 Å. The ongoing challenge to obtaining spatial and temporal resolution of catalysis-linked protein motions is discussed.

  14. Active-site zinc ligands and activated H2O of zinc enzymes.

    PubMed Central

    Vallee, B L; Auld, D S

    1990-01-01

    The x-ray crystallographic structures of 12 zinc enzymes have been chosen as standards of reference to identify the ligands to the catalytic and structural zinc atoms of other members of their respective enzyme families. Universally, H2O is a ligand and critical component of the catalytically active zinc sites. In addition, three protein side chains bind to the catalytic zinc atom, whereas four protein ligands bind to the structural zinc atom. The geometry and coordination number of zinc can vary greatly to accommodate particular ligands. Zinc forms complexes with nitrogen and oxygen just as readily as with sulfur, and this is reflected in catalytic zinc sites having a binding frequency of His much greater than Glu greater than Asp = Cys, three of which bind to the metal atom. The systematic spacing between the ligands is striking. For all catalytic zinc sites except the coenzyme-dependent alcohol dehydrogenase, the first two ligands are separated by a "short-spacer" consisting of 1 to 3 amino acids. These ligands are separated from the third ligand by a "long spacer" of approximately 20 to approximately 120 amino acids. The spacer enables formation of a primary bidentate zinc complex, whereas the long spacer contributes flexibility to the coordination sphere, which can poise the zinc for catalysis as well as bring other catalytic and substrate binding groups into apposition with the active site. The H2O is activated by ionization, polarization, or poised for displacement. Collectively, the data imply that the preferred mechanistic pathway for activating the water--e.g., zinc hydroxide or Lewis acid catalysis--will be determined by the identity of the other three ligands and their spacing. Images PMID:2104979

  15. Glassin, a histidine-rich protein from the siliceous skeletal system of the marine sponge Euplectella, directs silica polycondensation

    PubMed Central

    Shimizu, Katsuhiko; Amano, Taro; Bari, Md. Rezaul; Weaver, James C.; Arima, Jiro; Mori, Nobuhiro

    2015-01-01

    The hexactinellids are a diverse group of predominantly deep sea sponges that synthesize elaborate fibrous skeletal systems of amorphous hydrated silica. As a representative example, members of the genus Euplectella have proved to be useful model systems for investigating structure–function relationships in these hierarchically ordered siliceous network-like composites. Despite recent advances in understanding the mechanistic origins of damage tolerance in these complex skeletal systems, the details of their synthesis have remained largely unexplored. Here, we describe a previously unidentified protein, named “glassin,” the main constituent in the water-soluble fraction of the demineralized skeletal elements of Euplectella. When combined with silicic acid solutions, glassin rapidly accelerates silica polycondensation over a pH range of 6–8. Glassin is characterized by high histidine content, and cDNA sequence analysis reveals that glassin shares no significant similarity with any other known proteins. The deduced amino acid sequence reveals that glassin consists of two similar histidine-rich domains and a connecting domain. Each of the histidine-rich domains is composed of three segments: an amino-terminal histidine and aspartic acid-rich sequence, a proline-rich sequence in the middle, and a histidine and threonine-rich sequence at the carboxyl terminus. Histidine always forms HX or HHX repeats, in which most of X positions are occupied by glycine, aspartic acid, or threonine. Recombinant glassin reproduces the silica precipitation activity observed in the native proteins. The highly modular composition of glassin, composed of imidazole, acidic, and hydroxyl residues, favors silica polycondensation and provides insights into the molecular mechanisms of skeletal formation in hexactinellid sponges. PMID:26261346

  16. Glassin, a histidine-rich protein from the siliceous skeletal system of the marine sponge Euplectella, directs silica polycondensation.

    PubMed

    Shimizu, Katsuhiko; Amano, Taro; Bari, Md Rezaul; Weaver, James C; Arima, Jiro; Mori, Nobuhiro

    2015-09-15

    The hexactinellids are a diverse group of predominantly deep sea sponges that synthesize elaborate fibrous skeletal systems of amorphous hydrated silica. As a representative example, members of the genus Euplectella have proved to be useful model systems for investigating structure-function relationships in these hierarchically ordered siliceous network-like composites. Despite recent advances in understanding the mechanistic origins of damage tolerance in these complex skeletal systems, the details of their synthesis have remained largely unexplored. Here, we describe a previously unidentified protein, named "glassin," the main constituent in the water-soluble fraction of the demineralized skeletal elements of Euplectella. When combined with silicic acid solutions, glassin rapidly accelerates silica polycondensation over a pH range of 6-8. Glassin is characterized by high histidine content, and cDNA sequence analysis reveals that glassin shares no significant similarity with any other known proteins. The deduced amino acid sequence reveals that glassin consists of two similar histidine-rich domains and a connecting domain. Each of the histidine-rich domains is composed of three segments: an amino-terminal histidine and aspartic acid-rich sequence, a proline-rich sequence in the middle, and a histidine and threonine-rich sequence at the carboxyl terminus. Histidine always forms HX or HHX repeats, in which most of X positions are occupied by glycine, aspartic acid, or threonine. Recombinant glassin reproduces the silica precipitation activity observed in the native proteins. The highly modular composition of glassin, composed of imidazole, acidic, and hydroxyl residues, favors silica polycondensation and provides insights into the molecular mechanisms of skeletal formation in hexactinellid sponges.

  17. Lethal Factor Active-Site Mutations Affect Catalytic Activity In Vitro

    PubMed Central

    Hammond, S. E.; Hanna, P. C.

    1998-01-01

    The lethal factor (LF) protein of Bacillus anthracis lethal toxin contains the thermolysin-like active-site and zinc-binding consensus motif HEXXH (K. R. Klimpel, N. Arora, and S. H. Leppla, Mol. Microbiol. 13:1093–1100, 1994). LF is hypothesized to act as a Zn2+ metalloprotease in the cytoplasm of macrophages, but no proteolytic activities have been previously shown on any target substrate. Here, synthetic peptides are hydrolyzed by LF in vitro. Mass spectroscopy and peptide sequencing of isolated cleavage products separated by reverse-phase high-pressure liquid chromatography indicate that LF seems to prefer proline-containing substrates. Substitution mutations within the consensus active-site residues completely abolish all in vitro catalytic functions, as does addition of 1,10-phenanthroline, EDTA, and certain amino acid hydroxamates, including the novel zinc metalloprotease inhibitor ZINCOV. In contrast, the protease inhibitors bestatin and lysine CMK, previously shown to block LF activity on macrophages, did not block LF activity in vitro. These data provide the first direct evidence that LF may act as an endopeptidase. PMID:9573135

  18. The yeast regulator of transcription protein Rtr1 lacks an active site and phosphatase activity.

    PubMed

    Xiang, Kehui; Manley, James L; Tong, Liang

    2012-07-10

    The activity of RNA polymerase II (Pol II) is controlled in part by the phosphorylation state of the C-terminal domain (CTD) of its largest subunit. Recent reports have suggested that yeast regulator of transcription protein, Rtr1, and its human homologue RPAP2, possess Pol II CTD Ser5 phosphatase activity. Here we report the crystal structure of Kluyveromyces lactis Rtr1, which reveals a new type of zinc finger protein and does not have any close structural homologues. Importantly, the structure does not show evidence of an active site, and extensive experiments to demonstrate its CTD phosphatase activity have been unsuccessful, suggesting that Rtr1 has a non-catalytic role in CTD dephosphorylation.

  19. Β-alanine and l-histidine transport across the inner blood-retinal barrier: potential involvement in L-carnosine supply.

    PubMed

    Usui, Takuya; Kubo, Yoshiyuki; Akanuma, Shin-Ichi; Hosoya, Ken-Ichi

    2013-08-01

    The supply of L-carnosine, a bioactive dipeptide of β-alanine and l-histidine, to the retina across the blood-retinal barrier (BRB) was studied. The in vivo and in vitro studies revealed low uptake activities for [(3)H]Gly-Sar, a representative dipeptide, suggesting that l-carnosine transport plays only a minor role at the BRB. The in vivo study using rats showed approximately 18- and 23-fold greater retinal uptake indexes (RUI) for [(3)H]β-alanine and [(3)H]l-histidine compared with that of a paracellular marker, respectively. The RUI of [(3)H]β-alanine was taurine- and γ-aminobutyric acid-sensitive, and the in vitro uptake by TR-iBRB2 cells showed time- concentration- and temperature-dependent [(3)H]β-alanine uptake, suggesting that a carrier-mediated process was involved in β-alanine transport across the inner BRB. [(3)H]β-Alanine uptake was inhibited by taurine and β-guanidinopropionic acid, suggesting that taurine transporter (TAUT/SLC6A6) is responsible for the influx transport of β-alanine across the inner BRB. Regarding l-histidine, the l-leucine-sensitive RUI of [(3)H]l-histidine was identified, and the in vitro [(3)H]l-histidine uptake by TR-iBRB2 cells suggested that a carrier-mediated process was involved in l-histidine transport across the inner BRB. The inhibition profile suggested that L-type amino acid transporter (LAT1/SLC7A5) is responsible for the influx transport of l-histidine across the inner BRB. These results show that the influx transports of β-alanine and l-histidine across the inner BRB is carried out by TAUT and LAT1, respectively, suggesting that the retinal l-carnosine is supplied by enzymatic synthesis from two kinds of amino acids transported across the inner BRB.

  20. A genetically encoded toolkit for tracking live-cell histidine dynamics in space and time

    PubMed Central

    Hu, Hanyang; Gu, Yanfang; Xu, Lei; Zou, Yejun; Wang, Aoxue; Tao, Rongkun; Chen, Xianjun; Zhao, Yuzheng; Yang, Yi

    2017-01-01

    High-resolution spatiotemporal imaging of histidine in single living mammalian cells faces technical challenges. Here, we developed a series of ratiometric, highly responsive, and single fluorescent protein-based histidine sensors of wide dynamic range. We used these sensors to quantify subcellular free-histidine concentrations in glucose-deprived cells and glucose-fed cells. Results showed that cytosolic free-histidine concentration was higher and more sensitive to the environment than free histidine in the mitochondria. Moreover, histidine was readily transported across the plasma membrane and mitochondrial inner membrane, which had almost similar transport rates and transport constants, and histidine transport was not influenced by cellular metabolic state. These sensors are potential tools for tracking histidine dynamics inside subcellular organelles, and they will open an avenue to explore complex histidine signaling. PMID:28252043

  1. Net release or uptake of histidine and carnosine in kidney of dogs.

    PubMed

    Cianciaruso, B; Fukuda, S; Jones, M R; Kopple, J D

    1985-01-01

    Previous studies are equivocal as to whether the dog kidney produces histidine. Because one possible source of renal histidine is carnosine (beta-alanyl-L-histidine), we investigated net renal production (release) or utilization (uptake) (Qmet) of histidine and carnosine in 19 female dogs after they were fed histidine-free (9 dogs) or histidine-containing diets (10 dogs). Diets were fed in short-(2-11 days) or long-term (52-57 days) studies. Dogs were infused with half-normal saline for 120 min followed by an infusion of half-normal saline containing carnosine, 50 mumol/min. Renal Qmet histidine, calculated from either plasma or whole blood values, was positive during infusion of half-normal saline. During carnosine infusion, Qmet histidine increased markedly, and there was net renal uptake of carnosine. The Qmet histidine and carnosine were not different in the dogs fed histidine-free vs. histidine-containing diets. Thus there is net renal release of histidine in female dogs that increases when carnosine is administered. Qmet histidine or carnosine do not change adaptively when dogs are fed histidine-free diets.

  2. Development of L-histidine immobilized CIM(®) monolithic disks for purification of immunoglobulin G.

    PubMed

    Prasanna, Rajasekar R; Kamalanathan, Agamudi S; Vijayalakshmi, Mookambeswaran A

    2015-03-01

    The pseudobiospecific affinity ligand l-histidine was immobilized on epoxy, carbonyldiimidazole (CDI), and ethylenediamine (EDA) convective interaction media (BIA Separations, Slovenia) monolithic disks to obtain the histidyl affinity column for purification of immunoglobulin G (IgG). The kinetics and the mass transfer properties of the affinity columns were studied to determine the optimum buffer condition, flow rate, and concentration of IgG for maximum IgG adsorption. The binding capacities of all the three affinity columns were higher with zwitterionic buffer morpholinopropanesulfonic acid than with charged buffers such as tris-HCl and phosphate buffers, and the optimum pH was 6.5. The interaction of IgG with histidine immobilized CDI and epoxy disks was found to be predominantly driven by ionic interaction, while the interaction with EDA-histidine disk could be partially governed by multiple non-covalent forces of interaction. The maximum binding capacity (Qm ) of l-histidine immobilized on EDA-, CDI-, and epoxy-activated convective interaction media disks were 19.83 ± 0.25, 15.85 ± 0.18 and 12.11 ± 0.17 mg/ml of support, respectively, and the dissociation constant (Kd ) were calculated to be in the micromolar range for all the three histidyl monolithic columns. Purification of IgG from untreated human serum was also attempted, and the results indicate the high potential of this method for purification of total IgG from complex biological sources and also for separation of IgG1 from other subclasses.

  3. Functional Divergence of Poplar Histidine-Aspartate Kinase HK1 Paralogs in Response to Osmotic Stress

    PubMed Central

    Héricourt, François; Chefdor, Françoise; Djeghdir, Inès; Larcher, Mélanie; Lafontaine, Florent; Courdavault, Vincent; Auguin, Daniel; Coste, Franck; Depierreux, Christiane; Tanigawa, Mirai; Maeda, Tatsuya; Glévarec, Gaëlle; Carpin, Sabine

    2016-01-01

    Previous works have shown the existence of protein partnerships belonging to a MultiStep Phosphorelay (MSP) in Populus putatively involved in osmosensing. This study is focused on the identification of a histidine-aspartate kinase, HK1b, paralog of HK1a. The characterization of HK1b showed its ability to homo- and hetero-dimerize and to interact with a few Histidine-containing Phosphotransfer (HPt) proteins, suggesting a preferential partnership in poplar MSP linked to drought perception. Furthermore, determinants for interaction specificity between HK1a/1b and HPts were studied by mutagenesis analysis, identifying amino acids involved in this specificity. The HK1b expression analysis in different poplar organs revealed its co-expression with three HPts, reinforcing the hypothesis of partnership participation in the MSP in planta. Moreover, HK1b was shown to act as an osmosensor with kinase activity in a functional complementation assay of an osmosensor deficient yeast strain. These results revealed that HK1b showed a different behaviour for canonical phosphorylation of histidine and aspartate residues. These phosphorylation modularities of canonical amino acids could explain the improved osmosensor performances observed in yeast. As conserved duplicates reflect the selective pressures imposed by the environmental requirements on the species, our results emphasize the importance of HK1 gene duplication in poplar adaptation to drought stress. PMID:27941652

  4. Functional Divergence of Poplar Histidine-Aspartate Kinase HK1 Paralogs in Response to Osmotic Stress.

    PubMed

    Héricourt, François; Chefdor, Françoise; Djeghdir, Inès; Larcher, Mélanie; Lafontaine, Florent; Courdavault, Vincent; Auguin, Daniel; Coste, Franck; Depierreux, Christiane; Tanigawa, Mirai; Maeda, Tatsuya; Glévarec, Gaëlle; Carpin, Sabine

    2016-12-08

    Previous works have shown the existence of protein partnerships belonging to a MultiStep Phosphorelay (MSP) in Populus putatively involved in osmosensing. This study is focused on the identification of a histidine-aspartate kinase, HK1b, paralog of HK1a. The characterization of HK1b showed its ability to homo- and hetero-dimerize and to interact with a few Histidine-containing Phosphotransfer (HPt) proteins, suggesting a preferential partnership in poplar MSP linked to drought perception. Furthermore, determinants for interaction specificity between HK1a/1b and HPts were studied by mutagenesis analysis, identifying amino acids involved in this specificity. The HK1b expression analysis in different poplar organs revealed its co-expression with three HPts, reinforcing the hypothesis of partnership participation in the MSP in planta. Moreover, HK1b was shown to act as an osmosensor with kinase activity in a functional complementation assay of an osmosensor deficient yeast strain. These results revealed that HK1b showed a different behaviour for canonical phosphorylation of histidine and aspartate residues. These phosphorylation modularities of canonical amino acids could explain the improved osmosensor performances observed in yeast. As conserved duplicates reflect the selective pressures imposed by the environmental requirements on the species, our results emphasize the importance of HK1 gene duplication in poplar adaptation to drought stress.

  5. Effects of Protonation State on a Tyrosine-Histidine Bioinspired Redox Mediator

    SciTech Connect

    Moore, Gary F.; Hambourger, Michael; Kodis, Gerdenis; Michl, Weston; Gust, Devens; Moore, Thomas A.; Moore, Ana L.

    2010-11-18

    The conversion of tyrosine to the corresponding tyrosyl radical in photosytem II (PSII) is an example of proton-coupled electron transfer. Although the tyrosine moiety (TyrZ) is known to function as a redox mediator between the photo-oxidized primary donor (P680 •+) and the Mn-containing oxygen-evolving complex, the protonation states involved in the course of the reaction remain an active area of investigation. Herein, we report on the optical, structural, and electrochemical properties of tyrosine-histidine constructs, which model the function of their naturally occurring counterparts in PSII. Electrochemical studies show that the phenoxyl/phenol couple of the model is chemically reversible and thermodynamically capable of water oxidation. Studies under acidic and basic conditions provide clear evidence that an ionizable proton controls the electrochemical potential of the tyrosine-histidine mimic and that an exogenous base or acid can be used to generate a low-potential or high-potential mediator, respectively. The phenoxyl/phenoxide couple associated with the low-potential mediator is thermodynamically incapable of water oxidation, whereas the relay associated with the high-potential mediator is thermodynamically incapable of reducing an attached photoexcited porphyrin. These studies provide insight regarding the mechanistic role of the tyrosine-histidine complex in water oxidation and strategies for making use of hydrogen bonds to affect the coupling between proton and electron transfer in artificial photosynthetic systems.

  6. The Structure of KinA-Sda Complex Suggests An Allosteric Mechanism of Histidine Kinase Inhibition

    SciTech Connect

    Whitten, A.E.; Jacques, D.A.; Hammouda, B.; Hanley, T.; King, G.F.; Guss, J.Mitchell.; Trewhella, J.; Langley, D.B.; /Sydney U. /NIST, Wash., D.C. /Utah U.

    2007-07-13

    The Bacillus subtilis histidine kinase KinA controls activation of the transcription factor governing sporulation, Spo0A. The decision to sporulate involves KinA phosphorylating itself on a conserved histidine residue, after which the phosphate moiety is relayed via two other proteins to Spo0A. The DNA-damage checkpoint inhibitor Sda halts this pathway by binding KinA and blocking the autokinase reaction. We have performed small-angle X-ray scattering and neutron contrast variation studies on the complex formed by KinA and Sda. The data show that two Sda molecules bind to the base of the DHp dimerization domain of the KinA dimer. In this position Sda does not appear to be able to sterically block the catalytic domain from accessing its target histidine, as previously proposed, but rather may effect an allosteric mode of inhibition involving transmission of the inhibitory signal via the four-helix bundle that forms the DHp domain.

  7. Poly(L-histidine) based copolymers: Effect of the chemically substituted L-histidine on the physio-chemical properties of the micelles and in vivo biodistribution.

    PubMed

    Zhang, Xiaojun; Chen, Dawei; Ba, Shuang; Chang, Jing; Zhou, Jiaying; Zhao, Haixia; Zhu, Jia; Zhao, Xiuli; Hu, Haiyang; Qiao, Mingxi

    2016-04-01

    Even though the Poly(l-histidine) (PHis) based copolymers have been well studied, the effect of the chemically substituted l-histidine on the physio-chemical and biological properties of the micelles has never been elucidated to date. To address this issue, triblock copolymer of poly(ethylene glycol)-poly(D,L-lactide)-poly(2,4-dinitrophenol-L-histidine)(mPEG-b-PLA-b-DNP-PHis) with DNP group substituted to the saturated nitrogen of l-histidine were synthesized. The pH sensitive properties of the copolymer micelles were characterized using an acid-base titration method, fluorescene probe technique, DLS observation, in vitro drug release and cytotoxicity against MCF-7 cells under different pH conditions, respectively. The results suggest that mPEG-b-PLA-b-DNP-PHis copolymers showed similar micellar stability for DOX loaded micelles, increased particle size, and similar pH responsive properties with mPEG-b-PLA-b-PHis copolymers. The subcellular distribution observation demonstrated that mPEG-b-PLA-b-DNP-PHis micelles showed a slightly compromised endo-lysosmal escape of doxorubicin as compared to mPEG-b-PLA-b-PHis micelles. The mPEG-b-PLA-b-DNP-PHis micelles showed higher cellular uptake by MCF-7 cells than mPEG-b-PLA-b-PHis micelles due to the different uptake pathways. Effect of DNP substitution on the in vivo distribution of the copolymer micelles was studied using non-invasive near-infrared fluorescence (NIRF) imaging with mPEG-b-PLA-b-PHis micelles as control. The results indicate that the mPEG-b-PLA-b-DNP-PHis micelles showed a reduced passive targeting to the tumor due to the larger particle size. These results suggest that saturated nitrogen of PHis may serve as a valuable site for chemical modification of the PHis based copolymers because of the little effect on the pH responsive properties. However, selection of the substitution group needs to be considered due to the possible increase of micellar particle size of the micelles, leading to compromised passive

  8. Site-directed mutagenesis around the CuA site of a polyphenol oxidase from Coreopsis grandiflora (cgAUS1).

    PubMed

    Kaintz, Cornelia; Mayer, Rupert L; Jirsa, Franz; Halbwirth, Heidi; Rompel, Annette

    2015-03-24

    Aurone synthase from Coreopsis grandiflora (cgAUS1), catalyzing conversion of butein to sulfuretin in a type-3 copper center, is a rare example of a polyphenol oxidase involved in anabolism. Site-directed mutagenesis around the CuA site of AUS1 was performed, and recombinant enzymes were analyzed by mass spectrometry. Replacement of the coordinating CuA histidines with alanine resulted in the presence of a single copper and loss of diphenolase activity. The thioether bridge-building cysteine and a phenylalanine over the CuA site, exchanged to alanine, have no influence on copper content but appear to play an important role in substrate binding.

  9. Fluorescence of a histidine-modified enhanced green fluorescent protein (EGFP) effectively quenched by copper(II) ions.

    PubMed

    Bálint, Emese-Éva; Petres, Judit; Szabó, Mária; Orbán, Csongor-Kálmán; Szilágyi, László; Ábrahám, Beáta

    2013-03-01

    Two histidines were introduced by site-directed mutagenesis into the structure of Enhanced Green Fluorescent Protein, replacing the serine at position 202 and the glutamine at position 204 for increasing the sensitivity of the protein towards different metal ions by creating possible metal binding sites near the chromophore group. There is no appreciable difference between the absorbance and fluorescence spectra of the two proteins (wild type and the double-histidine mutant) indicating that the mutation does not change the environment of the fluorophore. Fluorescence quenching was measured at different pH (6.5-8) and temperatures (20-45 °C) varying the concentration of metal ions. Under optimal conditions (pH = 7.5, 20 °C) the mutant's Kd is 16 nM, it binds copper more than 200fold stronger than the wild type EGFP.

  10. Nuclear Site Security in the Event of Terrorist Activity

    SciTech Connect

    Thomson, M.L.; Sims, J.

    2008-07-01

    This paper, presented as a poster, identifies why ballistic protection should now be considered at nuclear sites to counter terrorist threats. A proven and flexible form of multi purpose protection is described in detail with identification of trial results that show its suitability for this role. (authors)

  11. Structure and synthesis of histopine, a histidine derivative produced by crown gall tumors

    SciTech Connect

    Bates, H.A.; Kaushal, A.; Deng, P.N.; Sciaky, D.

    1984-07-03

    Histopine, an unusual amino acid derivative of histidine isolated from crown gall tumors of sunflowers (Helianthus annus) inoculated with Agrobacterium tumefaciens strain B/sub 6/, was previously assigned the gross structure N-(1-carboxyethyl)histidine. A diastereomeric mixture containing histopine was readily prepared by reductive alkylation of (S)-histidine with pyruvic acid and sodium cyanoborohydride. The individual diastereomers were prepared by reaction of (S)-histidine with (R)- and (S)-2-bromopropionic acid. (R)-N-(1-Carboxyethyl)-(S)-histidine supports the growth of A. tumefaciens whereas (S)-N-(1-carboxyethyl)-(S)-histidine is inactive.

  12. Multiple orphan histidine kinases interact directly with Spo0A to control the initiation of endospore formation in Clostridium acetobutylicum

    PubMed Central

    Steiner, Elisabeth; Dago, Angel E.; Young, Danielle I.; Heap, John T.; Minton, Nigel P.; Hoch, James A.

    2011-01-01

    The phosphorylated Spo0A transcription factor controls the initiation of endospore formation in Clostridium acetobutylicum, but genes encoding key phosphorelay components, Spo0F and Spo0B, are missing in the genome. We hypothesized that the five orphan histidine kinases of C. acetobutylicum interact directly with Spo0A to control its phosphorylation state. Sequential targeted gene disruption and gene expression profiling provided evidence for two pathways for Spo0A activation, one dependent on a histidine kinase encoded by cac0323, the other on both histidine kinases encoded by cac0903 and cac3319. Purified Cac0903 and Cac3319 kinases autophosphorylated and transferred phosphoryl groups to Spo0A in vitro, confirming their role in Spo0A activation in vivo. A cac0437 mutant hyper-sporulated, suggesting that Cac0437 is a modulator that prevents sporulation and maintains cellular Spo0A~P homeostasis during growth. Accordingly, Cac0437 has apparently lost the ability to autophosphorylate in vitro; instead it catalyses the ATP-dependent dephosphorylation of Spo0A~P releasing inorganic phosphate. Direct phosphorylation of Spo0A by histidine kinases and dephosphorylation by kinase-like proteins may be a common feature of the clostridia that may represent the ancestral state before the great oxygen event some 2.4 billion years ago, after which additional phosphorelay proteins were recruited in the evolutionary lineage that led to the bacilli. PMID:21401736

  13. Functionalization of nanostructured cerium oxide films with histidine.

    PubMed

    Tsud, Nataliya; Bercha, Sofiia; Acres, Robert G; Vorokhta, Mykhailo; Khalakhan, Ivan; Prince, Kevin C; Matolín, Vladimír

    2015-01-28

    The surfaces of polycrystalline cerium oxide films were modified by histidine adsorption under vacuum and characterized by the synchrotron based techniques of core and valence level photoemission, resonant photoemission and near edge X-ray absorption spectroscopy, as well as atomic force microscopy. Histidine is strongly bound to the oxide surface in the anionic form through the deprotonated carboxylate group, and forms a disordered molecular adlayer. The imidazole ring and the amino side group do not form bonds with the substrate but are involved in the intermolecular hydrogen bonding which stabilizes the molecular adlayer. The surface reaction with histidine results in water desorption accompanied by oxide reduction, which is propagated into the bulk of the film. Previously studied, well-characterized surfaces are a guide to the chemistry of the present polycrystalline surface and histidine bonds via the carboxylate group in both cases. In contrast, bonding via the imidazole group occurs on the well-ordered surface but not in the present case. The morphology and structure of the cerium oxide are decisive factors which define the adsorption geometry of the histidine adlayer.

  14. Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory

    SciTech Connect

    Taylor, D.D.; Hoskinson, R.L.; Kingsford, C.O.; Ball, L.W.

    1994-09-01

    The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria.

  15. Excitatory actions of peptide histidine isoleucine on thalamic relay neurons.

    PubMed

    Lee, Sang-Hun; Cox, Charles L

    2008-12-01

    Peptide histidine isoleucine (PHI) and vasoactive intestinal peptide (VIP) are neuropeptides synthesized from a common precursor, prepro-VIP, and share structural similarity and biological functions in many systems. Within the central nervous system and peripheral tissues, PHI and VIP have overlapping distribution. PHI-mediated functions are generally via activation of VIP receptors; however, the potency and affinity of PHI for VIP receptors are significantly lower than VIP. In addition, several studies suggest distinct PHI receptors that are independent of VIP receptors. PHI receptors have been cloned and characterized in fish, but their existence in mammals is still unknown. This study focuses on the functional role of PHI in the thalamus because of the localization of both PHI and VIP receptors in this brain region. Using extracellular multiple-unit recording techniques, we found that PHI strongly attenuated the slow intrathalamic rhythmic activity. Using intracellular recording techniques, we found that PHI selectively depolarized thalamic relay neurons via an enhancement of the hyperpolarization-activated mixed cation current, Ih. Further, the actions of PHI were occluded by VIP and dopamine, indicating these modulators converge onto a common mechanism. In contrast to previous work, we found that PHI was more potent than VIP in producing excitatory actions on thalamic neurons. We next used the transgenic mice lacking a specific VIP receptor, VPAC2, to identify its possible role in PHI-mediated actions in the thalamus. PHI depolarized all relay neurons tested from wild-type mice (VPAC2(+/+)); however, in knockout mice (VPAC2(-/-)), PHI produced no change in membrane potential in all neurons tested. Our findings indicate that excitatory actions of PHI are mediated by VPAC2 receptors, not by its own PHI receptors and the excitatory actions of PHI clearly attenuate intrathalamic rhythmic activities, and likely influence information transfer through thalamocortical

  16. Comparison of fractal dimension and Shannon entropy in myocytes from rats treated with histidine-tryptophan-glutamate and histidine-tryptophan cetoglutarate

    PubMed Central

    de Oliveira, Marcos Aurélio Barboza; Brandi, Antônio Carlos; dos Santos, Carlos Alberto; Botelho, Paulo Henrique Husseni; Cortez, José Luís Lasso; de Godoy, Moacir Fernandes; Braile, Domingo Marcolino

    2014-01-01

    Introduction Solutions that cause elective cardiac arrest are constantly evolving, but the ideal compound has not yet been found. The authors compare a new cardioplegic solution with histidine-tryptophan-glutamate (Group 2) and other one with histidine-tryptophan-cetoglutarate (Group 1) in a model of isolated rat heart. Objective To quantify the fractal dimension and Shannon entropy in rat myocytes subjected to cardioplegia solution using histidine-tryptophan with glutamate in an experimental model, considering the caspase markers, IL-8 and KI-67. Methods Twenty male Wistar rats were anesthetized and heparinized. The chest was opened, the heart was withdrawn and 40 ml/kg of cardioplegia (with histidine-tryptophan-cetoglutarate or histidine-tryptophan-glutamate solution) was infused. The hearts were kept for 2 hours at 4ºC in the same solution, and thereafter placed in the Langendorff apparatus for 30 min with Ringer-Locke solution. Analyzes were performed for immunohistochemical caspase, IL-8 and KI-67. Results The fractal dimension and Shannon entropy were not different between groups histidine-tryptophan-glutamate and histidine-tryptophan-acetoglutarate. Conclusion The amount of information measured by Shannon entropy and the distribution thereof (given by fractal dimension) of the slices treated with histidine-tryptophan-cetoglutarate and histidine-tryptophan-glutamate were not different, showing that the histidine-tryptophan-glutamate solution is as good as histidine-tryptophan-acetoglutarate to preserve myocytes in isolated rat heart. PMID:25140464

  17. Revealing the nature of the active site on the carbon catalyst for C-H bond activation.

    PubMed

    Sun, XiaoYing; Li, Bo; Su, Dangsheng

    2014-09-28

    A reactivity descriptor for the C-H bond activation on the nanostructured carbon catalyst is proposed. Furthermore the calculations reveal that the single ketone group can be an active site in ODH reaction.

  18. Cellular Active N-Hydroxyurea FEN1 Inhibitors Block Substrate Entry to the Active Site

    PubMed Central

    Exell, Jack C.; Thompson, Mark J.; Finger, L. David; Shaw, Steven J.; Debreczeni, Judit; Ward, Thomas A.; McWhirter, Claire; Siöberg, Catrine L. B.; Martinez Molina, Daniel; Mark Abbott, W.; Jones, Clifford D.; Nissink, J. Willem M.; Durant, Stephen T.; Grasby, Jane A.

    2016-01-01

    The structure-specific nuclease human flap endonuclease-1 (hFEN1) plays a key role in DNA replication and repair and may be of interest as an oncology target. We present the first crystal structure of inhibitor-bound hFEN1 and show a cyclic N-hydroxyurea bound in the active site coordinated to two magnesium ions. Three such compounds had similar IC50 values but differed subtly in mode of action. One had comparable affinity for protein and protein–substrate complex and prevented reaction by binding to active site catalytic metal ions, blocking the unpairing of substrate DNA necessary for reaction. Other compounds were more competitive with substrate. Cellular thermal shift data showed engagement of both inhibitor types with hFEN1 in cells with activation of the DNA damage response evident upon treatment. However, cellular EC50s were significantly higher than in vitro inhibition constants and the implications of this for exploitation of hFEN1 as a drug target are discussed. PMID:27526030

  19. Active Layer and Moisture Measurements for Intensive Site 0 and 1, Barrow, Alaska

    DOE Data Explorer

    John Peterson

    2015-04-17

    These are measurements of Active Layer Thickness collected along several lines beginning in September, 2011 to the present. The data were collected at several time periods along the Site0 L2 Line, the Site1 AB Line, and an ERT Monitoring Line near Area A in Site1.

  20. Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations

    PubMed Central

    Steinkellner, Georg; Gruber, Christian C.; Pavkov-Keller, Tea; Binter, Alexandra; Steiner, Kerstin; Winkler, Christoph; Łyskowski, Andrzej; Schwamberger, Orsolya; Oberer, Monika; Schwab, Helmut; Faber, Kurt; Macheroux, Peter; Gruber, Karl

    2014-01-01

    The exploitation of catalytic promiscuity and the application of de novo design have recently opened the access to novel, non-natural enzymatic activities. Here we describe a structural bioinformatic method for predicting catalytic activities of enzymes based on three-dimensional constellations of functional groups in active sites (‘catalophores’). As a proof-of-concept we identify two enzymes with predicted promiscuous ene-reductase activity (reduction of activated C–C double bonds) and compare them with known ene-reductases, that is, members of the Old Yellow Enzyme family. Despite completely different amino acid sequences, overall structures and protein folds, high-resolution crystal structures reveal equivalent binding modes of typical Old Yellow Enzyme substrates and ligands. Biochemical and biocatalytic data show that the two enzymes indeed possess ene-reductase activity and reveal an inverted stereopreference compared with Old Yellow Enzymes for some substrates. This method could thus be a tool for the identification of viable starting points for the development and engineering of novel biocatalysts. PMID:24954722

  1. Are nest sites actively chosen? Testing a common assumption for three non-resource limited birds

    NASA Astrophysics Data System (ADS)

    Goodenough, A. E.; Elliot, S. L.; Hart, A. G.

    2009-09-01

    Many widely-accepted ecological concepts are simplified assumptions about complex situations that remain largely untested. One example is the assumption that nest-building species choose nest sites actively when they are not resource limited. This assumption has seen little direct empirical testing: most studies on nest-site selection simply assume that sites are chosen actively (and seek explanations for such behaviour) without considering that sites may be selected randomly. We used 15 years of data from a nestbox scheme in the UK to test the assumption of active nest-site choice in three cavity-nesting bird species that differ in breeding and migratory strategy: blue tit ( Cyanistes caeruleus), great tit ( Parus major) and pied flycatcher ( Ficedula hypoleuca). Nest-site selection was non-random (implying active nest-site choice) for blue and great tits, but not for pied flycatchers. We also considered the relative importance of year-specific and site-specific factors in determining occupation of nest sites. Site-specific factors were more important than year-specific factors for the tit species, while the reverse was true for pied flycatchers. Our results show that nest-site selection, in birds at least, is not always the result of active choice, such that choice should not be assumed automatically in studies of nesting behaviour. We use this example to highlight the need to test key ecological assumptions empirically, and the importance of doing so across taxa rather than for single "model" species.

  2. Virulence Effects and Signaling Partners Modulated by Brucella melitensis Light-sensing Histidine Kinase

    NASA Astrophysics Data System (ADS)

    Gourley, Christopher R.

    The facultative intracellular pathogen Brucella melitensis utilizes diverse virulence factors. A Brucella light sensing histidine kinase can influence in vitro virulence of the bacteria during intracellular infection. First, we demonstrated that the B. melitensis light sensing kinase (BM-LOV-HK) affects virulence in an IRF-1-/- mouse model of infection. Infection with a Δ BM-LOV-HK strain resulted in less bacterial colonization of IRF-1-/- spleens and extended survivorship compared to mice infected with wild type B. melitensis 16M. Second, using PCR arrays, we observed less expression of innate and adaptive immune system activation markers in ΔBM-LOV-HK infected mouse spleens than wild type B. melitensis 16M infected mouse spleens 6 days after infection. Third, we demonstrated by microarray analysis of B. melitensis that deletion of BM-LOV-HK alters bacterial gene expression. Downregulation of genes involved in control of the general stress response system included the alternative sigma factor RpoE1 and its anti-anti sigma factor PhyR. Conversely, genes involved in flagella production, quorum sensing, and the type IV secretion system (VirB operon) were upregulated in the Δ BM-LOV-HK strain compared to the wild type B. melitensis 16M. Analysis of genes differentially regulated in Δ BM-LOV-HK versus the wild type strain indicated an overlap of 110 genes with data from previous quorum sensing regulator studies of Δ vjbR and/ΔblxR(babR) strains. Also, several predicted RpoE1 binding sites located upstream of genes were differentially regulated in the ΔBM-LOV-HK strain. Our results suggest BM-LOV-HK is important for in vivo Brucella virulence, and reveals that BM-LOV-HK directly or indirect regulates members of the Brucella quorum sensing, type IV secretion, and general stress systems.

  3. Early Site Permit Demonstration Program: Recommendations for communication activities and public participation in the Early Site Permit Demonstration Program

    SciTech Connect

    Not Available

    1993-01-27

    On October 24, 1992, President Bush signed into law the National Energy Policy Act of 1992. The bill is a sweeping, comprehensive overhaul of the Nation`s energy laws, the first in more than a decade. Among other provisions, the National Energy Policy Act reforms the licensing process for new nuclear power plants by adopting a new approach developed by the US Nuclear Regulatory Commission (NRC) in 1989, and upheld in court in 1992. The NRC 10 CFR Part 52 rule is a three-step process that guarantees public participation at each step. The steps are: early site permit approval; standard design certifications; and, combined construction/operating licenses for nuclear power reactors. Licensing reform increases an organization`s ability to respond to future baseload electricity generation needs with less financial risk for ratepayers and the organization. Costly delays can be avoided because design, safety and siting issues will be resolved before a company starts to build a plant. Specifically, early site permit approval allows for site suitability and acceptability issues to be addressed prior to an organization`s commitment to build a plant. Responsibility for site-specific activities, including communications and public participation, rests with those organizations selected to try out early site approval. This plan has been prepared to assist those companies (referred to as sponsoring organizations) in planning their communications and public involvement programs. It provides research findings, information and recommendations to be used by organizations as a resource and starting point in developing their own plans.

  4. Structural characterization of single nucleotide variants at ligand binding sites and enzyme active sites of human proteins

    PubMed Central

    Yamada, Kazunori D.; Nishi, Hafumi; Nakata, Junichi; Kinoshita, Kengo

    2016-01-01

    Functional sites on proteins play an important role in various molecular interactions and reactions between proteins and other molecules. Thus, mutations in functional sites can severely affect the overall phenotype. Progress of genome sequencing projects has yielded a wealth of information on single nucleotide variants (SNVs), especially those with less than 1% minor allele frequency (rare variants). To understand the functional influence of genetic variants at a protein level, we investigated the relationship between SNVs and protein functional sites in terms of minor allele frequency and the structural position of variants. As a result, we observed that SNVs were less abundant at ligand binding sites, which is consistent with a previous study on SNVs and protein interaction sites. Additionally, we found that non-rare variants tended to be located slightly apart from enzyme active sites. Examination of non-rare variants revealed that most of the mutations resulted in moderate changes of the physico-chemical properties of amino acids, suggesting the existence of functional constraints. In conclusion, this study shows that the mapping of genetic variants on protein structures could be a powerful approach to evaluate the functional impact of rare genetic variations. PMID:27924270

  5. Histidine uptake in the epidermis of lizards and snakes in relation to the formation of the shedding complex.

    PubMed

    Alibardi, Lorenzo

    2002-03-01

    Mammalian epidermis utilizes histidine-rich proteins (filaggrins) to aggregate keratin filaments and form the stratum corneum. Little is known about the involvement of histidine-rich proteins during reptilian keratinization. The formation of the shedding complex in the epidermis of snakes and lizards, made of the clear and the oberhautchen layers, determines the cyclical epidermal sloughing. Differently from snakes, keratohyalin-like granules are present in the clear layer of lizards. The uptake of tritiated histidine into the epidermis of two lizards and one snake has been studied by autoradiography in sections at progressive post-injection periods. At 40 min and 1 hr post-injection keratohyalin-like granules were not or poorly labeled. At 3-22 hr post-injection most of the labeling was present over suprabasal cells destined to form the shedding complex, in keratohyalin-like granules of the clear layer, and in the forming a-layer but was low in the forming b-layer, and in superficial keratinized layers. The analysis of the shedding complex in the pad lamellae (a specialized scale used for climbing) of a gecko showed that the setae and the cytoplasm of clear cells among them are main sites of histidine uptake at 4 hr post-injection. In the snake most of the labeling at 4 hr post-injection was localized in the shedding complex along the boundary between the clear and oberhautchen layers. The present study suggests that, in the epidermis of lepidosaurian reptiles, the synthesis of a histidine-rich protein is involved in the formation of the shedding layer and, as in mammals, in a-keratinization.

  6. Electrostatic Energetics of Bacillus subtilis Ribonuclease P Protein Determined by Nuclear Magnetic Resonance-Based Histidine pKa Measurements.

    PubMed

    Mosley, Pamela L; Daniels, Kyle G; Oas, Terrence G

    2015-09-08

    The pKa values of ionizable groups in proteins report the free energy of site-specific proton binding and provide a direct means of studying pH-dependent stability. We measured histidine pKa values (H3, H22, and H105) in the unfolded (U), intermediate (I), and sulfate-bound folded (F) states of RNase P protein, using an efficient and accurate nuclear magnetic resonance-monitored titration approach that utilizes internal reference compounds and a parametric fitting method. The three histidines in the sulfate-bound folded protein have pKa values depressed by 0.21 ± 0.01, 0.49 ± 0.01, and 1.00 ± 0.01 units, respectively, relative to that of the model compound N-acetyl-l-histidine methylamide. In the unliganded and unfolded protein, the pKa values are depressed relative to that of the model compound by 0.73 ± 0.02, 0.45 ± 0.02, and 0.68 ± 0.02 units, respectively. Above pH 5.5, H22 displays a separate resonance, which we have assigned to I, whose apparent pKa value is depressed by 1.03 ± 0.25 units, which is ∼0.5 units more than in either U or F. The depressed pKa values we observe are consistent with repulsive interactions between protonated histidine side chains and the net positive charge of the protein. However, the pKa differences between F and U are small for all three histidines, and they have little ionic strength dependence in F. Taken together, these observations suggest that unfavorable electrostatics alone do not account for the fact that RNase P protein is intrinsically unfolded in the absence of ligand. Multiple factors encoded in the P protein sequence account for its IUP property, which may play an important role in its function.

  7. The metalloregulatory zinc site in Streptococcus pneumoniae AdcR, a zinc-activated MarR-family repressor

    PubMed Central

    Reyes-Caballero, Hermes; Guerra, Alfredo J.; Jacobsen, Faith E.; Kazmierczak, Krystyna M.; Cowart, Darin; Koppolu, Uma Mahendra Kumar; Scott, Robert A.; Winkler, Malcolm E.; Giedroc, David P.

    2010-01-01

    Streptococcus pneumoniae D39 AdcR (adhesin competence repressor) is the first metal-sensing member of the MarR (multiple antibiotic resistance repressor) family to be characterized. Expression profiling with a ΔadcR strain grown in liquid culture (brain heart infusion; BHI) under microaerobic conditions reveals upregulation of 13 genes including adcR and adcCBA, encoding a high affinity ABC uptake system for zinc, and genes encoding cell-surface zinc-binding pneumococcal histidine triad (Pht) proteins and AdcAII (Lmb, laminin binding). The ΔadcR, H108Q and H112Q adcR mutant allelic strains grown in 0.2 mM Zn(II) exhibit a slow-growth phenotype and a ≈2-fold increase in cell-associated Zn(II). Apo- and Zn(II)-bound AdcR are homodimers in solution and binding to a 28-mer DNA containing an adc operator is strongly stimulated by Zn(II) with KDNA-Zn = 2.4 ×108 M−1 (pH 6.0, 0.2 M NaCl, 25 °C). AdcR binds two Zn(II) per dimer, with step-wise Zn(II) affinities KZn1 and KZn2 of ≥109 M−1 at pH 6.0 and ≥1012 M−1 at pH 8.0. X-ray absorption spectroscopy (XAS) of the high affinity site reveals a pentacoordinate N/O complex and no cysteine coordination, the latter finding corroborated by wild-type-like functional properties of C30A AdcR. Alanine substitution of conserved residues His42 in the DNA binding domain, and His108 and His112 in the C-terminal regulatory domain, abolish high affinity Zn(II) binding and greatly reduce Zn(II)-activated binding to DNA. NMR studies reveal that these mutants adopt the same folded conformation as dimeric wild-type apo AdcR, but fail to conformationally switch upon Zn(II) binding. These studies clearly identify His42, His108 and H112 as metalloregulatory zinc ligands in S. pneumoniae AdcR. PMID:20804771

  8. Lamellipodial actin mechanically links myosin activity with adhesion site formation

    PubMed Central

    Giannone, Gregory; Dubin-Thaler, Benjamin; Rossier, Olivier; Cai, Yunfei; Chaga, Oleg; Jiang, Guoying; Beaver, William; Döbereiner, Hans-Günther; Freund, Yoav; Borisy, Gary; Sheetz, Michael P.

    2013-01-01

    Summary Cell motility proceeds by cycles of edge protrusion, adhesion and retraction. Whether these functions are coordinated by biochemical or biomechanical processes is unknown. We find that myosin II pulls the rear of the lamellipodial actin network, causing upward bending, edge retraction and initiation of new adhesion sites. The network then separates from the edge and condenses over the myosin. Protrusion resumes as lamellipodial actin regenerates from the front and extends rearward until it reaches newly assembled myosin, initiating the next cycle. Upward bending, observed by evanescence and electron microscopy, results in ruffle formation when adhesion strength is low. Correlative fluorescence and electron microscopy shows that the regenerating lamellipodium forms a cohesive, separable layer of actin above the lamellum. Thus, actin polymerization periodically builds a mechanical link, the lamellipodium, connecting myosin motors with the initiation of adhesion sites, suggesting that the major functions driving motility are coordinated by a biomechanical process. PMID:17289574

  9. Endogenous central histamine-induced reversal of critical hemorrhagic hypotension in rats: studies with L-histidine.

    PubMed

    Jochem, Jerzy

    2003-10-01

    Activation of the histaminergic system is characteristic of response to the action of adverse or potentially dangerous stimuli that disturb circulatory homeostasis, such as dehydration and changes in blood pressure. Previous study demonstrates that inhibition of histamine N-methyltransferase, which catabolizes histamine released from neurons, leads to the increase in endogenous central histamine concentrations and to the reversal of critical hemorrhagic hypotension. In the present study, the influence of intraperitoneal loading with histamine precursor L-histidine on central cardiovascular regulation was studied in a model of irreversible pressure-controlled hemorrhagic shock. Experiments were carried out in male Wistar rats anesthetized with ketamine/xylazine subjected to critical hemorrhagic hypotension of 20 to 25 mmHg, which resulted in the death of all control saline-treated animals within 30 min. L-histidine administered in 5 min of critical hypotension produced dose-dependent increases in mean arterial pressure and heart rate (100-500 mg/kg), and a 100% survival rate of 2 h (500 mg/kg), whereas in normotensive animals, it did not influence cardiovascular parameters. The resuscitating effect of L-histidine (500 mg/kg) was associated with increases in histamine concentrations in the cerebral cortex (0.97 +/- 0.11 nmol/g of wet tissue vs. 0.67 +/- 0.22 nmol/g of wet tissue; P<0.05), hypothalamus (4.78 +/- 0.58 nmol/g of wet tissue vs. 4.08 +/- 0.43 nmol/g of wet tissue; P<0.01), and medulla oblongata (0.55 +/- 0.18 nmol/g of wet tissue vs. 0.34 +/- 0.09 nmol/g of wet tissue; P<0.05), as well as with no changes in plasma histamine concentrations in comparison with the saline-treated group 20 min after injection. Pretreatment with (S)-alpha-fluoromethylhistidine (alpha-FMH, 0.5 mg intracerebroventricularly), an irreversible inhibitor of L-histidine decarboxylase, produced a decrease in central histamine concentrations and diminished volumes of blood required to

  10. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination.

    PubMed

    Rowley, Paul A; Kachroo, Aashiq H; Ma, Chien-Hui; Maciaszek, Anna D; Guga, Piotr; Jayaram, Makkuni

    2015-07-13

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5' to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions.

  11. Active-Site Hydration and Water Diffusion in Cytochrome P450cam: A Highly Dynamic Process

    SciTech Connect

    Miao, Yinglong; Baudry, Jerome Y

    2011-01-01

    Long-timescale molecular dynamics simulations (300 ns) are performed on both the apo- (i.e., camphor-free) and camphor-bound cytochrome P450cam (CYP101). Water diffusion into and out of the protein active site is observed without biased sampling methods. During the course of the molecular dynamics simulation, an average of 6.4 water molecules is observed in the camphor-binding site of the apo form, compared to zero water molecules in the binding site of the substrate-bound form, in agreement with the number of water molecules observed in crystal structures of the same species. However, as many as 12 water molecules can be present at a given time in the camphor-binding region of the active site in the case of apo-P450cam, revealing a highly dynamic process for hydration of the protein active site, with water molecules exchanging rapidly with the bulk solvent. Water molecules are also found to exchange locations frequently inside the active site, preferentially clustering in regions surrounding the water molecules observed in the crystal structure. Potential-of-mean-force calculations identify thermodynamically favored trans-protein pathways for the diffusion of water molecules between the protein active site and the bulk solvent. Binding of camphor in the active site modifies the free-energy landscape of P450cam channels toward favoring the diffusion of water molecules out of the protein active site.

  12. Structural mechanism of RuBisCO activation by carbamylation of the active site lysine.

    PubMed

    Stec, Boguslaw

    2012-11-13

    Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is a crucial enzyme in carbon fixation and the most abundant protein on earth. It has been studied extensively by biochemical and structural methods; however, the most essential activation step has not yet been described. Here, we describe the mechanistic details of Lys carbamylation that leads to RuBisCO activation by atmospheric CO(2). We report two crystal structures of nitrosylated RuBisCO from the red algae Galdieria sulphuraria with O(2) and CO(2) bound at the active site. G. sulphuraria RuBisCO is inhibited by cysteine nitrosylation that results in trapping of these gaseous ligands. The structure with CO(2) defines an elusive, preactivation complex that contains a metal cation Mg(2+) surrounded by three H(2)O/OH molecules. Both structures suggest the mechanism for discriminating gaseous ligands by their quadrupole electric moments. We describe conformational changes that allow for intermittent binding of the metal ion required for activation. On the basis of these structures we propose the individual steps of the activation mechanism. Knowledge of all these elements is indispensable for engineering RuBisCO into a more efficient enzyme for crop enhancement or as a remedy to global warming.

  13. Silver-Coated Nylon Dressing Plus Active DC Microcurrent for Healing of Autogenous Skin Donor Sites

    DTIC Science & Technology

    2013-08-01

    Silver-Coated Nylon Dressing Plus Active DC Microcurrent for Healing of Autogenous Skin Donor Sites Edward W. Malin, MD, Chaya M. Galin, BSN, RN... microcurrent in comparison to silver-coated dressing with sham microcurrent on wound-closure time for autogenous skin donor sites. Methods: Four...hundred five patients were screened for treatment of their donor sites using a silver-coated nylon dressing with either sham or active microcurrent

  14. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles

    PubMed Central

    2015-01-01

    Mineral dusts originating from Earth’s crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts. Here we investigated in closer detail the reasons for its activity and the difference in the activity of the different feldspars. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. K-feldspar showed by far the highest ice nucleation activity. Finally, we give a potential explanation of this effect, finding alkali-metal ions having different hydration shells and thus an influence on the ice nucleation activity of feldspar surfaces. PMID:25584435

  15. 76 FR 30696 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites AGENCY: Department of... eligible active uranium and thorium processing site licensees for reimbursement under Title X of the Energy... requires DOE to reimburse eligible uranium and thorium licensees for certain costs of...

  16. 76 FR 24871 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites AGENCY: Department of... from eligible active uranium and thorium processing site licensees for reimbursement under Title X of...). Title X requires DOE to reimburse eligible uranium and thorium licensees for certain costs...

  17. Full-length structure of a monomeric histidine kinase reveals basis for sensory regulation.

    PubMed

    Rivera-Cancel, Giomar; Ko, Wen-huang; Tomchick, Diana R; Correa, Fernando; Gardner, Kevin H

    2014-12-16

    Although histidine kinases (HKs) are critical sensors of external stimuli in prokaryotes, the mechanisms by which their sensor domains control enzymatic activity remain unclear. Here, we report the full-length structure of a blue light-activated HK from Erythrobacter litoralis HTCC2594 (EL346) and the results of biochemical and biophysical studies that explain how it is activated by light. Contrary to the standard view that signaling occurs within HK dimers, EL346 functions as a monomer. Its structure reveals that the light-oxygen-voltage (LOV) sensor domain both controls kinase activity and prevents dimerization by binding one side of a dimerization/histidine phosphotransfer-like (DHpL) domain. The DHpL domain also contacts the catalytic/ATP-binding (CA) domain, keeping EL346 in an inhibited conformation in the dark. Upon light stimulation, interdomain interactions weaken to facilitate activation. Our data suggest that the LOV domain controls kinase activity by affecting the stability of the DHpL/CA interface, releasing the CA domain from an inhibited conformation upon photoactivation. We suggest parallels between EL346 and dimeric HKs, with sensor-induced movements in the DHp similarly remodeling the DHp/CA interface as part of activation.

  18. Full-length structure of a monomeric histidine kinase reveals basis for sensory regulation

    DOE PAGES

    Rivera-Cancel, Giomar; Ko, Wen-huang; Tomchick, Diana R.; ...

    2014-12-02

    Although histidine kinases (HKs) are critical sensors of external stimuli in prokaryotes, the mechanisms by which their sensor domains control enzymatic activity remain unclear. In this paper, we report the full-length structure of a blue light-activated HK from Erythrobacter litoralis HTCC2594 (EL346) and the results of biochemical and biophysical studies that explain how it is activated by light. Contrary to the standard view that signaling occurs within HK dimers, EL346 functions as a monomer. Its structure reveals that the light–oxygen–voltage (LOV) sensor domain both controls kinase activity and prevents dimerization by binding one side of a dimerization/histidine phosphotransfer-like (DHpL) domain.more » The DHpL domain also contacts the catalytic/ATP-binding (CA) domain, keeping EL346 in an inhibited conformation in the dark. Upon light stimulation, interdomain interactions weaken to facilitate activation. Our data suggest that the LOV domain controls kinase activity by affecting the stability of the DHpL/CA interface, releasing the CA domain from an inhibited conformation upon photoactivation. Finally, we suggest parallels between EL346 and dimeric HKs, with sensor-induced movements in the DHp similarly remodeling the DHp/CA interface as part of activation.« less

  19. A model of the rabies virus glycoprotein active site.

    PubMed

    Rustici, M; Bracci, L; Lozzi, L; Neri, P; Santucci, A; Soldani, P; Spreafico, A; Niccolai, N

    1993-06-01

    The glycoprotein from the neurotropic rabies virus shows a significant homology with the alpha neurotoxin that binds to the nicotinic acetylcholine receptor. The crystal structure of the alpha neurotoxins suggests that the Arg 37 guanidinium group and the Asp 31 side-chain carboxylate of the erabutoxin have stereochemical features resembling those of acetylcholine. Conformational studies on the Asn194-Ser195-Arg196-Gly197 tetrapeptide, an essential part of the binding site of the rabies virus glycoprotein, indicate that the side chains of Asn and Arg could also mimic the acetylcholine structure. This observation is consistent with the recently proposed mechanism of the viral infection.

  20. Detoxications in peripatus. Sulphate, phosphate and histidine conjugations

    PubMed Central

    Jordan, T. W.; McNaught, R. W.; Smith, J. N.

    1970-01-01

    Phenols were detoxified in the Onycophoran Peripatoides novaezealandiae by conjugation with sulphuric acid and phosphoric acid, but no evidence for a glycoside detoxication could be found. [14C]Benzoic acid was metabolized in 24h to N2-benzoyl-l-histidine, which was identified by electrophoresis, chromatography and dilution analysis. Similar conjugates were formed with p-aminobenzoic acid and p-nitrobenzoic acid. In longer-duration experiments further unidentified metabolites were formed, two of which appeared to result from the further metabolism of the histidine conjugate. PMID:5472152

  1. Active Site Hydrophobicity and the Convergent Evolution of Paraoxonase Activity in Structurally Divergent Enzymes: The Case of Serum Paraoxonase 1

    PubMed Central

    2016-01-01

    Serum paraoxonase 1 (PON1) is a native lactonase capable of promiscuously hydrolyzing a broad range of substrates, including organophosphates, esters, and carbonates. Structurally, PON1 is a six-bladed β-propeller with a flexible loop (residues 70–81) covering the active site. This loop contains a functionally critical Tyr at position 71. We have performed detailed experimental and computational analyses of the role of selected Y71 variants in the active site stability and catalytic activity in order to probe the role of Y71 in PON1’s lactonase and organophosphatase activities. We demonstrate that the impact of Y71 substitutions on PON1’s lactonase activity is minimal, whereas the kcat for the paraoxonase activity is negatively perturbed by up to 100-fold, suggesting greater mutational robustness of the native activity. Additionally, while these substitutions modulate PON1’s active site shape, volume, and loop flexibility, their largest effect is in altering the solvent accessibility of the active site by expanding the active site volume, allowing additional water molecules to enter. This effect is markedly more pronounced in the organophosphatase activity than the lactonase activity. Finally, a detailed comparison of PON1 to other organophosphatases demonstrates that either a similar “gating loop” or a highly buried solvent-excluding active site is a common feature of these enzymes. We therefore posit that modulating the active site hydrophobicity is a key element in facilitating the evolution of organophosphatase activity. This provides a concrete feature that can be utilized in the rational design of next-generation organophosphate hydrolases that are capable of selecting a specific reaction from a pool of viable substrates. PMID:28026940

  2. Exploring the space of histidine containing dipeptides in search of novel efficient RCS sequestering agents.

    PubMed

    Vistoli, Giulio; De Maddis, Danilo; Straniero, Valentina; Pedretti, Alessandro; Pallavicini, Marco; Valoti, Ermanno; Carini, Marina; Testa, Bernard; Aldini, Giancarlo

    2013-08-01

    The study reports a set of forty proteinogenic histidine-containing dipeptides as potential carbonyl quenchers. The peptides were chosen to cover as exhaustively as possible the accessible chemical space, and their quenching activities toward 4-hydroxy-2-nonenal (HNE) and pyridoxal were evaluated by HPLC analyses. The peptides were capped at the C-terminus as methyl esters or amides to favor their resistance to proteolysis and diastereoisomeric pairs were considered to reveal the influence of configuration on quenching. On average, the examined dipeptides are less active than the parent compound carnosine (βAla + His) thus emphasizing the unfavorable effect of the shortening of the βAla residue as confirmed by the control dipeptide Gly-His. Nevertheless, some peptides show promising activities toward HNE combined with a remarkable selectivity. The results emphasize the beneficial role of aromatic and positively charged residues, while negatively charged and H-bonding side chains show a detrimental effect on quenching. As a trend, ester derivatives are slightly more active than amides while heterochiral peptides are more active than their homochiral diastereoisomer. Overall, the results reveal that quenching activity strongly depends on conformational effects and vicinal residues (as evidenced by the reported QSAR analysis), offering insightful clues for the design of improved carbonyl quenchers and to rationalize the specific reactivity of histidine residues within proteins.

  3. Assessment of activation products in the Savannah River Site environment

    SciTech Connect

    Carlton, W.H.; Denham, M.

    1996-07-01

    This document assesses the impact of radioactive activation products released from SRS facilities since the first reactor became operational late in 1953. The isotopes reported here are those whose release resulted in the highest dose to people living near SRS: {sup 32}P, {sup 51}Cr, {sup 60}C, and {sup 65}Zn. Release pathways, emission control features, and annual releases to the aqueous and atmospheric environments are discussed. No single incident has resulted in a major acute release of activation products to the environment. The releases were the result of normal operations of the reactors and separations facilities. Releases declined over the years as better controls were established and production was reduced. The overall radiological impact of SRS activation product atmospheric releases from 1954 through 1994 on the offsite maximally exposed individual can be characterized by a total dose of 0.76 mrem. During the same period, such an individual received a total dose of 14,400 mrem from non-SRS sources of ionizing radiation present in the environment. SRS activation product aqueous releases between 1954 and 1994 resulted in a total dose of 54 mrem to the offsite maximally exposed individual. The impact of SRS activation product releases on offsite populations also has been evaluated.

  4. All the catalytic active sites of MoS2 for hydrogen evolution

    DOE PAGES

    Li, Guoqing; Zhang, Du; Qiao, Qiao; ...

    2016-11-29

    MoS2 presents a promising low-cost catalyst for the hydrogen evolution reaction (HER), but the understanding about its active sites has remained limited. Here we present an unambiguous study of the catalytic activities of all possible reaction sites of MoS2, including edge sites, sulfur vacancies, and grain boundaries. We demonstrate that, in addition to the well-known catalytically active edge sites, sulfur vacancies provide another major active site for the HER, while the catalytic activity of grain boundaries is much weaker. Here, the intrinsic turnover frequencies (Tafel slopes) of the edge sites, sulfur vacancies, and grain boundaries are estimated to be 7.5more » s–1 (65–75 mV/dec), 3.2 s–1 (65–85 mV/dec), and 0.1 s–1 (120–160 mV/dec), respectively. We also demonstrate that the catalytic activity of sulfur vacancies strongly depends on the density of the vacancies and the local crystalline structure in proximity to the vacancies. Unlike edge sites, whose catalytic activity linearly depends on the length, sulfur vacancies show optimal catalytic activities when the vacancy density is in the range of 7–10%, and the number of sulfur vacancies in high crystalline quality MoS2 is higher than that in low crystalline quality MoS2, which may be related with the proximity of different local crystalline structures to the vacancies.« less

  5. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts

    PubMed Central

    Sahraie, Nastaran Ranjbar; Kramm, Ulrike I.; Steinberg, Julian; Zhang, Yuanjian; Thomas, Arne; Reier, Tobias; Paraknowitsch, Jens-Peter; Strasser, Peter

    2015-01-01

    Carbon materials doped with transition metal and nitrogen are highly active, non-precious metal catalysts for the electrochemical conversion of molecular oxygen in fuel cells, metal air batteries, and electrolytic processes. However, accurate measurement of their intrinsic turn-over frequency and active-site density based on metal centres in bulk and surface has remained difficult to date, which has hampered a more rational catalyst design. Here we report a successful quantification of bulk and surface-based active-site density and associated turn-over frequency values of mono- and bimetallic Fe/N-doped carbons using a combination of chemisorption, desorption and 57Fe Mössbauer spectroscopy techniques. Our general approach yields an experimental descriptor for the intrinsic activity and the active-site utilization, aiding in the catalyst development process and enabling a previously unachieved level of understanding of reactivity trends owing to a deconvolution of site density and intrinsic activity. PMID:26486465

  6. Marine Biology Field Trip Sites. Ocean Related Curriculum Activities.

    ERIC Educational Resources Information Center

    Pauls, John

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  7. An active site mutation increases the polymerase activity of the guinea pig-lethal Marburg virus.

    PubMed

    Koehler, Alexander; Kolesnikova, Larissa; Becker, Stephan

    2016-10-01

    Marburg virus (MARV) causes severe, often fatal, disease in humans and transient illness in rodents. Sequential passaging of MARV in guinea pigs resulted in selection of a lethal virus containing 4 aa changes. A D184N mutation in VP40 (VP40D184N), which leads to a species-specific gain of viral fitness, and three mutations in the active site of viral RNA-dependent RNA polymerase L, which were investigated in the present study for functional significance in human and guinea pig cells. The transcription/replication activity of L mutants was strongly enhanced by a substitution at position 741 (S741C), and inhibited by other substitutions (D758A and A759D) in both species. The polymerase activity of L carrying the S741C substitution was eightfold higher in guinea pig cells than in human cells upon co-expression with VP40D184N, suggesting that the additive effect of the two mutations provides MARV a replicative advantage in the new host.

  8. Encroachment of Human Activity on Sea Turtle Nesting Sites

    NASA Astrophysics Data System (ADS)

    Ziskin, D.; Aubrecht, C.; Elvidge, C.; Tuttle, B.; Baugh, K.; Ghosh, T.

    2008-12-01

    The encroachment of anthropogenic lighting on sea turtle nesting sites poses a serious threat to the survival of these animals [Nicholas, 2001]. This danger is quantified by combining two established data sets. The first is the Nighttime Lights data produced by the NOAA National Geophysical Data Center [Elvidge et al., 1997]. The second is the Marine Turtle Database produced by the World Conservation Monitoring Centre (WCMC). The technique used to quantify the threat of encroachment is an adaptation of the method described in Aubrecht et al. [2008], which analyzes the stress on coral reef systems by proximity to nighttime lights near the shore. Nighttime lights near beaches have both a direct impact on turtle reproductive success since they disorient hatchlings when they mistake land-based lights for the sky-lit surf [Lorne and Salmon, 2007] and the lights are also a proxy for other anthropogenic threats. The identification of turtle nesting sites with high rates of encroachment will hopefully steer conservation efforts to mitigate their effects [Witherington, 1999]. Aubrecht, C, CD Elvidge, T Longcore, C Rich, J Safran, A Strong, M Eakin, KE Baugh, BT Tuttle, AT Howard, EH Erwin, 2008, A global inventory of coral reef stressors based on satellite observed nighttime lights, Geocarto International, London, England: Taylor and Francis. In press. Elvidge, CD, KE Baugh, EA Kihn, HW Kroehl, ER Davis, 1997, Mapping City Lights with Nighttime Data from the DMSP Operational Linescan System, Photogrammatic Engineering and Remote Sensing, 63:6, pp. 727-734. Lorne, JK, M Salmon, 2007, Effects of exposure to artificial lighting on orientation of hatchling sea turtles on the beach and in the ocean, Endangered Species Research, Vol. 3: 23-30. Nicholas, M, 2001, Light Pollution and Marine Turtle Hatchlings: The Straw that Breaks the Camel's Back?, George Wright Forum, 18:4, p77-82. Witherington, BE, 1999, Reducing Threats To Nesting Habitat, Research and Management Techniques for

  9. Molecular Basis for Enzymatic Sulfite Oxidation -- HOW THREE CONSERVED ACTIVE SITE RESIDUES SHAPE ENZYME ACTIVITY

    SciTech Connect

    Bailey, Susan; Rapson, Trevor; Johnson-Winters, Kayunta; Astashkin, Andrei; Enemark, John; Kappler, Ulrike

    2008-11-10

    Sulfite dehydrogenases (SDHs) catalyze the oxidation and detoxification of sulfite to sulfate, a reaction critical to all forms of life. Sulfite-oxidizing enzymes contain three conserved active site amino acids (Arg-55, His-57, and Tyr-236) that are crucial for catalytic competency. Here we have studied the kinetic and structural effects of two novel and one previously reported substitution (R55M, H57A, Y236F) in these residues on SDH catalysis. Both Arg-55 and His-57 were found to have key roles in substrate binding. An R55M substitution increased Km(sulfite)(app) by 2-3 orders of magnitude, whereas His-57 was required for maintaining a high substrate affinity at low pH when the imidazole ring is fully protonated. This effect may be mediated by interactions of His-57 with Arg-55 that stabilize the position of the Arg-55 side chain or, alternatively, may reflect changes in the protonation state of sulfite. Unlike what is seen for SDHWT and SDHY236F, the catalytic turnover rates of SDHR55M and SDHH57A are relatively insensitive to pH (~;;60 and 200 s-1, respectively). On the structural level, striking kinetic effects appeared to correlate with disorder (in SDHH57A and SDHY236F) or absence of Arg-55 (SDHR55M), suggesting that Arg-55 and the hydrogen bonding interactions it engages in are crucial for substrate binding and catalysis. The structure of SDHR55M has sulfate bound at the active site, a fact that coincides with a significant increase in the inhibitory effect of sulfate in SDHR55M. Thus, Arg-55 also appears to be involved in enabling discrimination between the substrate and product in SDH.

  10. Histidine Triad Nucleotide-binding Protein 1 (HINT-1) Phosphoramidase Transforms Nucleoside 5′-O-Phosphorothioates to Nucleoside 5′-O-Phosphates*

    PubMed Central

    Ozga, Magdalena; Dolot, Rafal; Janicka, Magdalena; Kaczmarek, Renata; Krakowiak, Agnieszka

    2010-01-01

    Nucleoside 5′-O-phosphorothioates are formed in vivo as primary products of hydrolysis of oligo(nucleoside phosphorothioate)s (PS-oligos) that are applied as antisense therapeutic molecules. The biodistribution of PS-oligos and their pharmacokinetics have been widely reported, but little is known about their subsequent decay inside the organism. We suggest that the enzyme responsible for nucleoside 5′-O-monophosphorothioate ((d)NMPS) metabolism could be histidine triad nucleotide-binding protein 1 (Hint-1), a phosphoramidase belonging to the histidine triad (HIT) superfamily that is present in all forms of life. An additional, but usually ignored, activity of Hint-1 is its ability to catalyze the conversion of adenosine 5′-O-monophosphorothioate (AMPS) to 5′-O-monophosphate (AMP). By mutagenetic and biochemical studies, we defined the active site of Hint-1 and the kinetic parameters of the desulfuration reaction (P-S bond cleavage). Additionally, crystallographic analysis (resolution from 1.08 to 1.37 Å) of three engineered cysteine mutants showed the high similarity of their structures, which were not very different from the structure of WT Hint-1. Moreover, we found that not only AMPS but also other ribonucleoside and 2′-deoxyribonucleoside phosphorothioates are desulfurated by Hint-1 at the following relative rates: GMPS > AMPS > dGMPS ≥ CMPS > UMPS > dAMPS ≫ dCMPS > TMPS, and during the reaction, hydrogen sulfide, which is thought to be the third gaseous mediator, was released. PMID:20940308

  11. Safety, absorption, and antioxidant effects of chromium histidine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Supplemental chromium has been shown to be involved in the alleviation of the metabolic syndrome, glucose intolerance, polycystic ovary syndrome, depression, excess body fat, and gestational, steroid-induced, and type 2 diabetes. Chromium amino acid complexes that contained histidine displayed cons...

  12. 21 CFR 862.1375 - Histidine test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Histidine test system. 862.1375 Section 862.1375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  13. 21 CFR 862.1375 - Histidine test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Histidine test system. 862.1375 Section 862.1375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  14. 21 CFR 862.1375 - Histidine test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Histidine test system. 862.1375 Section 862.1375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  15. Identification of inhibitors against the potential ligandable sites in the active cholera toxin.

    PubMed

    Gangopadhyay, Aditi; Datta, Abhijit

    2015-04-01

    The active cholera toxin responsible for the massive loss of water and ions in cholera patients via its ADP ribosylation activity is a heterodimer of the A1 subunit of the bacterial holotoxin and the human cytosolic ARF6 (ADP Ribosylation Factor 6). The active toxin is a potential target for the design of inhibitors against cholera. In this study we identified the potential ligandable sites of the active cholera toxin which can serve as binding sites for drug-like molecules. By employing an energy-based approach to identify ligand binding sites, and comparison with the results of computational solvent mapping, we identified two potential ligandable sites in the active toxin which can be targeted during structure-based drug design against cholera. Based on the probe affinities of the identified ligandable regions, docking-based virtual screening was employed to identify probable inhibitors against these sites. Several indole-based alkaloids and phosphates showed strong interactions to the important residues of the ligandable region at the A1 active site. On the other hand, 26 top scoring hits were identified against the ligandable region at the A1 ARF6 interface which showed strong hydrogen bonding interactions, including guanidines, phosphates, Leucopterin and Aristolochic acid VIa. This study has important implications in the application of hybrid structure-based and ligand-based methods against the identified ligandable sites using the identified inhibitors as reference ligands, for drug design against the active cholera toxin.

  16. Barium ions selectively activate BK channels via the Ca2+-bowl site.

    PubMed

    Zhou, Yu; Zeng, Xu-Hui; Lingle, Christopher J

    2012-07-10

    Activation of Ca(2+)-dependent BK channels is increased via binding of micromolar Ca(2+) to two distinct high-affinity sites per BK α-subunit. One site, termed the Ca(2+) bowl, is embedded within the second RCK domain (RCK2; regulator of conductance for potassium) of each α-subunit, while oxygen-containing residues in the first RCK domain (RCK1) have been linked to a separate Ca(2+) ligation site. Although both sites are activated by Ca(2+) and Sr(2+), Cd(2+) selectively favors activation via the RCK1 site. Divalent cations of larger ionic radius than Sr(2+) are thought to be ineffective at activating BK channels. Here we show that Ba(2+), better known as a blocker of K(+) channels, activates BK channels and that this effect arises exclusively from binding at the Ca(2+)-bowl site. Compared with previous estimates for Ca(2+) bowl-mediated activation by Ca(2+), the affinity of Ba(2+) to the Ca(2+) bowl is reduced about fivefold, and coupling of binding to activation is reduced from ∼3.6 for Ca(2+) to about ∼2.8 for Ba(2+). These results support the idea that ionic radius is an important determinant of selectivity differences among different divalent cations observed for each Ca(2+)-binding site.

  17. Activation of brown adipose tissue mitochondrial GDP binding sites

    SciTech Connect

    Swick, A.G.

    1987-01-01

    The primary function of brown adipose tissue (BAT) is heat production. This ability is attributed to the existence of a unique inner mitochondrial membrane protein termed the uncoupling protein or thermogenin. This protein is permeable to H+ and thus allows respiration (and therefore thermogenesis) to proceed at a rapid rate, independent of ADP phosphorylation. Proton conductance can be inhibited by the binding of purine nucleotides to the uncoupling protein. The binding of (/sup 3/H)-GDP to BAT mitochondria is frequently used as a measure of BAT thermogenic activity. Rats fed a diet that was low but adequate in protein exhibited a decrease in feed efficiency. In addition, BAT thermogenesis was activated as indicated by an elevation in the level of GDP binding to BAT mitochondria. This phenomena occurred in older rats and persisted over time.

  18. Structure and Reactivity of the Phosphotriesterase Active Site

    DTIC Science & Technology

    2002-01-01

    characterize different catalytic conformations for chorismate mutase . Preliminary evidence for water binding in phosphotriesterase suggests that activity in...MD/QM study of the chorismate mutase catalyzed Claisen rearrangement reaction. 2001.subm. J.Phys.Chem.B 22.Day, P.N.J., J.H.; Gordon,M.S.; Webb,S.P...Claisen rearrangement of an unusual substrate in chorismate mutase . 2001.subm. J.Phys.Chem.B 38.Stevens, W.J., Basch,H., Krauss,M., Compact effective

  19. Safety of Intracerebroventricular Copper Histidine in Adult Rats

    PubMed Central

    Lem, Kristen E.; Brinster, Lauren R.; Tjurmina, Olga; Lizak, Martin; Lal, Simina; Centeno, Jose A.; Liu, Po-Ching; Godwin, Sarah C.; Kaler, Stephen G.

    2007-01-01

    Classical Menkes disease is an X-linked recessive neurodegenerative disorder caused by mutations in a P-type ATPase (ATP7A) that normally delivers copper to the developing central nervous system. Infants with large deletions, or other mutations in ATP7A that incapacitate copper transport to the brain, show poor clinical outcomes and subnormal brain copper despite early subcutaneous copper histidine (CuHis) injections. These findings suggest a need for direct central nervous system approaches in such patients. To begin to evaluate an aggressive but potentially useful new strategy for metabolic improvement of this disorder, we studied the acute and chronic effects of CuHis administered by intracerebroventricular (ICV) injection in healthy adult rats. Magnetic resonance imaging (MRI) after ICV CuHis showed diffuse T1-signal enhancement, indicating wide brain distribution of copper after ICV administration, and implying the utility of this paramagnetic metal as a MRI contrast agent. The maximum tolerated dose (MTD) of CuHis, defined as the highest dose that did not induce overt toxicity, growth retardation, or reduce lifespan, was 0.5 mcg. Animals receiving multiple infusions of this MTD showed increased brain copper concentrations, but no significant differences in activity, behavior, and somatic growth, or brain histology compared to saline-injected controls. Based on estimates of the brain copper deficit in Menkes disease patients, CuHis doses 10-fold lower than the MTD found in this study may restore proper brain copper concentration. Our results suggest that ICV CuHis administration have potential as a novel treatment approach in Menkes disease infants with severe mutations. Future trials of direct CNS copper administration in mouse models of Menkes disease will be informative. PMID:17336116

  20. Central effect of histamine and peripheral effect of histidine on the formalin-induced pain response in mice.

    PubMed

    Tamaddonfard, Esmaeal; Rahimi, Saead

    2004-08-01

    /mouse, i.c.v., histamine strongly suppressed both phases of the formalin-induced pain response, particularly the second phase. 8. The results of the present study indicate that: (i) activation of brain histamine produces antinociception in the mouse formalin test; (ii) peripheral loading with a high dose of histidine (1000 mg/kg, i.p.) alone exerts the same effect as that seen following 40 microg/mouse, i.c.v., histamine; and (iii) pretreatment with a high dose of histidine potentiates central histamine-induced antinociception.

  1. Active site proton delivery and the lyase activity of human CYP17A1

    SciTech Connect

    Khatri, Yogan; Gregory, Michael C.; Grinkova, Yelena V.; Denisov, Ilia G.; Sligar, Stephen G.

    2014-01-03

    equivalents and protons are funneled into non-productive pathways. This is similar to previous work with other P450 catalyzed hydroxylation. However, catalysis of carbon–carbon bond scission by the T306A mutant was largely unimpeded by disruption of the CYP17A1 acid-alcohol pair. The unique response of CYP17A1 lyase activity to mutation of Thr306 is consistent with a reactive intermediate formed independently of proton delivery in the active site, and supports involvement of a nucleophilic peroxo-anion rather than the traditional Compound I in catalysis.

  2. Pathways of H2 toward the Active Site of [NiFe]-Hydrogenase

    PubMed Central

    Teixeira, Vitor H.; Baptista, António M.; Soares, Cláudio M.

    2006-01-01

    Hydrogenases catalyze the reversible oxidation of molecular hydrogen (H2), but little is known about the diffusion of H2 toward the active site. Here we analyze pathways for H2 permeation using molecular dynamics (MD) simulations in explicit solvent. Various MD simulation replicates were done, to improve the sampling of the system states. H2 easily permeates hydrogenase in every simulation and it moves preferentially in channels. All H2 molecules that reach the active site made their approach from the side of the Ni ion. H2 is able to reach distances of <4 Å from the active site, although after 6 Å permeation is difficult. In this region we mutated Val-67 into alanine and perform new MD simulations. These simulations show an increase of H2 inside the protein and at lower distances from the active site. This valine can be a control point in the H2 access to the active center. PMID:16731562

  3. Maintenance of plastid RNA editing activities independently of their target sites.

    PubMed

    Tillich, Michael; Poltnigg, Peter; Kushnir, Sergei; Schmitz-Linneweber, Christian

    2006-03-01

    RNA editing in plant organelles is mediated by site-specific, nuclear-encoded factors. Previous data suggested that the maintenance of these factors depends on the presence of their rapidly evolving cognate sites. The surprising ability of allotetraploid Nicotiana tabacum (tobacco) to edit a foreign site in the chloroplast ndhA messenger RNA was thought to be inherited from its diploid male ancestor, Nicotiana tomentosiformis. Here, we show that the same ndhA editing activity is also present in Nicotiana sylvestris, which is the female diploid progenitor of tobacco and which lacks the ndhA site. Hence, heterologous editing is not simply a result of tobacco's allopolyploid genome organization. Analyses of other editing sites after sexual or somatic transfer between land plants showed that heterologous editing occurs at a surprisingly high frequency. This suggests that the corresponding editing activities are conserved despite the absence of their target sites, potentially because they serve other functions in the plant cell.

  4. A Processive Carbohydrate Polymerase That Mediates Bifunctional Catalysis Using a Single Active Site

    PubMed Central

    May, John F.; Levengood, Matthew R.; Splain, Rebecca A.; Brown, Christopher D.; Kiessling, Laura L.

    2012-01-01

    Even in the absence of a template, glycosyltransferases can catalyze the synthesis of carbohydrate polymers of specific sequence. The paradigm has been that one enzyme catalyzes the formation of one type of glycosidic linkage, yet certain glycosyltransferases generate polysaccharide sequences composed of two distinct linkage types. In principle, bifunctional glycosyltransferases can possess separate active sites for each catalytic activity or one active site with dual activities. We encountered the fundamental question of one or two distinct active sites in our investigation of the galactosyltransferase GlfT2. GlfT2 catalyzes the formation of mycobacterial galactan, a critical cell-wall polymer composed of galactofuranose residues connected with alternating, regioisomeric linkages. We found that GlfT2 mediates galactan polymerization using only one active site that manifests dual regioselectivity. Structural modeling of the bifunctional glycosyltransferases hyaluronan synthase and cellulose synthase suggests that these enzymes also generate multiple glycosidic linkages using a single active site. These results highlight the versatility of glycosyltransferases for generating polysaccharides of specific sequence. We postulate that a hallmark of processive elongation of a carbohydrate polymer by a bifunctional enzyme is that one active site can give rise to two separate types of glycosidic bonds. PMID:22217153

  5. An Accessory Agonist Binding Site Promotes Activation of α4β2* Nicotinic Acetylcholine Receptors*

    PubMed Central

    Wang, Jingyi; Kuryatov, Alexander; Sriram, Aarati; Jin, Zhuang; Kamenecka, Theodore M.; Kenny, Paul J.; Lindstrom, Jon

    2015-01-01

    Neuronal nicotinic acetylcholine receptors containing α4, β2, and sometimes other subunits (α4β2* nAChRs) regulate addictive and other behavioral effects of nicotine. These nAChRs exist in several stoichiometries, typically with two high affinity acetylcholine (ACh) binding sites at the interface of α4 and β2 subunits and a fifth accessory subunit. A third low affinity ACh binding site is formed when this accessory subunit is α4 but not if it is β2. Agonists selective for the accessory ACh site, such as 3-[3-(3-pyridyl)-1,2,4-oxadiazol-5-yl]benzonitrile (NS9283), cannot alone activate a nAChR but can facilitate more efficient activation in combination with agonists at the canonical α4β2 sites. We therefore suggest categorizing agonists according to their site selectivity. NS9283 binds to the accessory ACh binding site; thus it is termed an accessory site-selective agonist. We expressed (α4β2)2 concatamers in Xenopus oocytes with free accessory subunits to obtain defined nAChR stoichiometries and α4/accessory subunit interfaces. We show that α2, α3, α4, and α6 accessory subunits can form binding sites for ACh and NS9283 at interfaces with α4 subunits, but β2 and β4 accessory subunits cannot. To permit selective blockage of the accessory site, α4 threonine 126 located on the minus side of α4 that contributes to the accessory site, but not the α4β2 sites, was mutated to cysteine. Alkylation of this cysteine with a thioreactive reagent blocked activity of ACh and NS9283 at the accessory site. Accessory agonist binding sites are promising drug targets. PMID:25869137

  6. Structures of Cytochrome P450 2B6 Bound to 4-Benzylpyridine and 4-(4-Nitrobenzyl)pyridine: Insight into Inhibitor Binding and Rearrangement of Active Site Side Chains

    PubMed Central

    Pascual, Jaime; Zhang, Qinghai; Stout, C. David; Halpert, James R.

    2011-01-01

    The biochemical, biophysical, and structural analysis of the cytochrome P450 2B subfamily of enzymes has provided a wealth of information regarding conformational plasticity and substrate recognition. The recent X-ray crystal structure of the drug-metabolizing P450 2B6 in complex with 4-(4-chlorophenyl)imidazole (4-CPI) yielded the first atomic view of this human enzyme. However, knowledge of the structural basis of P450 2B6 specificity and inhibition has remained limited. In this study, structures of P450 2B6 were determined in complex with the potent inhibitors 4-benzylpyridine (4-BP) and 4-(4-nitrobenzyl)pyridine (4-NBP). Comparison of the present structures with the previous P450 2B6-4-CPI complex showed that reorientation of side chains of the active site residue Phe206 on the F-helix and Phe297 on the I-helix was necessary to accommodate the inhibitors. However, P450 2B6 does not require any major side chain rearrangement to bind 4-NBP compared with 4-BP, and the enzyme provides no hydrogen-bonding partners for the polar nitro group of 4-NBP within the hydrophobic active site. In addition, on the basis of these new structures, substitution of residue 172 with histidine as observed in the single nucleotide polymorphism Q172H and in P450 2B4 may contribute to a hydrogen bonding network connecting the E- and I-helices, thereby stabilizing active site residues on the I-helix. These results provide insight into the role of active site side chains upon inhibitor binding and indicate that the recognition of the benzylpyridines in the closed conformation structure of P450 2B6 is based solely on hydrophobicity, size, and shape. PMID:21875942

  7. Exogenous addition of histidine reduces copper availability in the yeast Saccharomyces cerevisiae

    PubMed Central

    Watanabe, Daisuke; Kikushima, Rie; Aitoku, Miho; Nishimura, Akira; Ohtsu, Iwao; Nasuno, Ryo; Takagi, Hiroshi

    2014-01-01

    The basic amino acid histidine inhibited yeast cell growth more severely than lysine and arginine. Overexpression of CTR1, which encodes a high-affinity copper transporter on the plasma membrane, or addition of copper to the medium alleviated this cytotoxicity. However, the intracellular level of copper ions was not decreased in the presence of excess histidine. These results indicate that histidine cytotoxicity is associated with low copper availability inside cells, not with impaired copper uptake. Furthermore, histidine did not affect cell growth under limited respiration conditions, suggesting that histidine cytotoxicity is involved in deficiency of mitochondrial copper. PMID:28357248

  8. Extending the Diffuse Layer Model of Surface Acidity Behavior: III. Estimating Bound Site Activity Coefficients

    EPA Science Inventory

    Although detailed thermodynamic analyses of the 2-pK diffuse layer surface complexation model generally specify bound site activity coefficients for the purpose of accounting for those non-ideal excess free energies contributing to bound site electrochemical potentials, in applic...

  9. 75 FR 71677 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites AGENCY: Department of... uranium and thorium processing site licensees for reimbursement under Title X of the Energy Policy Act of... requires DOE to reimburse eligible uranium and thorium licensees for certain costs of...

  10. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...). (e) For all asbestos-containing waste material received, the owner or operator of the active waste... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an...

  11. The haem b558 component of the cytochrome bd quinol oxidase complex from Escherichia coli has histidine-methionine axial ligation.

    PubMed Central

    Spinner, F; Cheesman, M R; Thomson, A J; Kaysser, T; Gennis, R B; Peng, Q; Peterson, J

    1995-01-01

    The cytochrome bd ubiquinol oxidase from Escherichia coli is induced when the bacteria are cultured under microaerophilic or low-aeration conditions. This membrane-bound respiratory oxidase catalyses the two-electron oxidation of ubiquinol and the four-electron reduction of dioxygen to water. The oxidase contains three haem prosthetic groups: haem b558, haem b595 and haem d. Haem d is the oxygen binding site, and it is likely that haem d and b595 form a bimetallic site in the enzyme. Haem b558 has been previously characterized spectroscopically as being low spin and has been shown to be located within subunit I (CydA) of this two-subunit enzyme. It is likely that haem b558 is associated with the quinol oxidation site, which has also been shown to be within subunit I. In a previous effort to locate the specific amino acids axially ligated to haem b558, all six histidines within subunit I were altered by site-directed mutagenesis. Only one, histidine-186, was identified as a likely ligand to haem b558. Hence it was suggested that haem b558 could not have bis(histidine) ligation. In the current work, a combination of low-temperature near-infrared magnetic circular dichroism (NIR-MCD) and EPR spectroscopies have been employed to identify the nature of the haem b558 axial ligands. The NIR-MCD spectrum at cryogenic temperatures is dominated by the low-spin haem b558 component of the complex, and the low-energy band near 1800 nm is strong evidence for histidine-methionine ligation. It is concluded that haem b558 is ligated to histidine-186 plus one of the methionines located within subunit I of the oxidase. PMID:7772053

  12. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate.

    PubMed

    Johnson, Joseph L; Cusack, Bernadette; Davies, Matthew P; Fauq, Abdul; Rosenberry, Terrone L

    2003-05-13

    Acetylcholinesterase (AChE) contains a narrow and deep active site gorge with two sites of ligand binding, an acylation site (or A-site) at the base of the gorge, and a peripheral site (or P-site) near the gorge entrance. The P-site contributes to catalytic efficiency by transiently binding substrates on their way to the acylation site, where a short-lived acyl enzyme intermediate is produced. A conformational interaction between the A- and P-sites has recently been found to modulate ligand affinities. We now demonstrate that this interaction is of functional importance by showing that the acetylation rate constant of a substrate bound to the A-site is increased by a factor a when a second molecule of substrate binds to the P-site. This demonstration became feasible through the introduction of a new acetanilide substrate analogue of acetylcholine, 3-(acetamido)-N,N,N-trimethylanilinium (ATMA), for which a = 4. This substrate has a low acetylation rate constant and equilibrates with the catalytic site, allowing a tractable algebraic solution to the rate equation for substrate hydrolysis. ATMA affinities for the A- and P-sites deduced from the kinetic analysis were confirmed by fluorescence titration with thioflavin T as a reporter ligand. Values of a >1 give rise to a hydrolysis profile called substrate activation, and the AChE site-specific mutant W86F, and to a lesser extent wild-type human AChE itself, showed substrate activation with acetylthiocholine as the substrate. Substrate activation was incorporated into a previous catalytic scheme for AChE in which a bound P-site ligand can also block product dissociation from the A-site, and two additional features of the AChE catalytic pathway were revealed. First, the ability of a bound P-site ligand to increase the substrate acetylation rate constant varied with the structure of the ligand: thioflavin T accelerated ATMA acetylation by a factor a(2) of 1.3, while propidium failed to accelerate. Second, catalytic rate

  13. Structure and nuclearity of active sites in Fe-zeolites: comparison with iron sites in enzymes and homogeneous catalysts.

    PubMed

    Zecchina, Adriano; Rivallan, Mickaël; Berlier, Gloria; Lamberti, Carlo; Ricchiardi, Gabriele

    2007-07-21

    Fe-ZSM-5 and Fe-silicalite zeolites efficiently catalyse several oxidation reactions which find close analogues in the oxidation reactions catalyzed by homogeneous and enzymatic compounds. The iron centres are highly dispersed in the crystalline matrix and on highly diluted samples, mononuclear and dinuclear structures are expected to become predominant. The crystalline and robust character of the MFI framework has allowed to hypothesize that the catalytic sites are located in well defined crystallographic positions. For this reason these catalysts have been considered as the closest and best defined heterogeneous counterparts of heme and non heme iron complexes and of Fenton type Fe(2+) homogeneous counterparts. On this basis, an analogy with the methane monooxygenase has been advanced several times. In this review we have examined the abundant literature on the subject and summarized the most widely accepted views on the structure, nuclearity and catalytic activity of the iron species. By comparing the results obtained with the various characterization techniques, we conclude that Fe-ZSM-5 and Fe-silicalite are not the ideal samples conceived before and that many types of species are present, some active and some other silent from adsorptive and catalytic point of view. The relative concentration of these species changes with thermal treatments, preparation procedures and loading. Only at lowest loadings the catalytically active species become the dominant fraction of the iron species. On the basis of the spectroscopic titration of the active sites by using NO as a probe, we conclude that the active species on very diluted samples are isolated and highly coordinatively unsaturated Fe(2+) grafted to the crystalline matrix. Indication of the constant presence of a smaller fraction of Fe(2+) presumably located on small clusters is also obtained. The nitrosyl species formed upon dosing NO from the gas phase on activated Fe-ZSM-5 and Fe-silicalite, have been analyzed

  14. Monocopper active site for partial methane oxidation in Cu-exchanged 8MR zeolites

    SciTech Connect

    Kulkarni, Ambarish R.; Zhao, Zhi -Jian; Siahrostami, Samira; Nørskov, Jens K.; Studt, Felix

    2016-08-17

    Direct conversion of methane to methanol using oxygen is experiencing renewed interest owing to the availability of new natural gas resources. Copper-exchanged zeolites such as mordenite and ZSM-5 have shown encouraging results, and di- and tri-copper species have been suggested as active sites. Recently, small eight-membered ring (8MR) zeolites including SSZ-13, -16, and -39 have been shown to be active for methane oxidation, but the active sites and reaction mechanisms in these 8MR zeolites are not known. In this work, we use density functional theory (DFT) calculations to systematically evaluate monocopper species as active sites for the partial methane oxidation reaction in Cu-exchanged SSZ-13. On the basis of kinetic and thermodynamic arguments, we suggest that [CuIIOH]+ species in the 8MR are responsible for the experimentally observed activity. Furthermore, our results successfully explain the available spectroscopic data and experimental observations including (i) the necessity of water for methanol extraction and (ii) the effect of Si/Al ratio on the catalyst activity. Monocopper species have not yet been suggested as an active site for the partial methane oxidation reaction, and our results suggest that [CuIIOH]+ active site may provide complementary routes for methane activation in zeolites in addition to the known [Cu–O–Cu]2+ and Cu3O3 motifs.

  15. Monocopper active site for partial methane oxidation in Cu-exchanged 8MR zeolites

    DOE PAGES

    Kulkarni, Ambarish R.; Zhao, Zhi -Jian; Siahrostami, Samira; ...

    2016-08-17

    Direct conversion of methane to methanol using oxygen is experiencing renewed interest owing to the availability of new natural gas resources. Copper-exchanged zeolites such as mordenite and ZSM-5 have shown encouraging results, and di- and tri-copper species have been suggested as active sites. Recently, small eight-membered ring (8MR) zeolites including SSZ-13, -16, and -39 have been shown to be active for methane oxidation, but the active sites and reaction mechanisms in these 8MR zeolites are not known. In this work, we use density functional theory (DFT) calculations to systematically evaluate monocopper species as active sites for the partial methane oxidationmore » reaction in Cu-exchanged SSZ-13. On the basis of kinetic and thermodynamic arguments, we suggest that [CuIIOH]+ species in the 8MR are responsible for the experimentally observed activity. Furthermore, our results successfully explain the available spectroscopic data and experimental observations including (i) the necessity of water for methanol extraction and (ii) the effect of Si/Al ratio on the catalyst activity. Monocopper species have not yet been suggested as an active site for the partial methane oxidation reaction, and our results suggest that [CuIIOH]+ active site may provide complementary routes for methane activation in zeolites in addition to the known [Cu–O–Cu]2+ and Cu3O3 motifs.« less

  16. HCN, A Triple-Resonance NMR Technique for Selective Observation of Histidine and Tryptophan Side Chains in 13C/ 15N-Labeled Proteins

    NASA Astrophysics Data System (ADS)

    Sudmeier, James L.; Ash, Elissa L.; Günther, Ulrich L.; Luo, Xuelian; Bullock, Peter A.; Bachovchin, William W.

    1996-12-01

    HCN, a new 3D NMR technique for stepwise coherence transfer from1H to13C to15N and reverse through direct spin couplings1JCHand1JCN, is presented as a method for detection and assignment of histidine and tryptophan side-chain1H,13C, and15N resonances in uniformly13C/15N-labeled proteins. Product-operator calculations of cross-peak volumes vs adjustable delay τ3were employed for determination of optimal τ3. For the phosphatidylinositol 3-kinase (PI3K SH3 domain, MW = 9.6 kD) at pH 6, H(C)N, the1H/15N projection, produced observable cross peaks within 20 min. and was completely selective for the single tryptophan and single histidine. The 3D HCN experiment yielded well-defined cross peaks in 20 h for the13C/15N-labeled origin-specific DNA binding domain from simian virus 40 T-antigen (T-ag-OBD131-259, MW = 15.4 kD) at pH 5.5. Resonances from all six histidines in T-ag-OBD were observed, and 11 of the 121H and13C chemical shifts and 10 of the 1215N chemical shifts were determined. The13C dimension proved essential in assignment of the multiply overlapping1H and15N resonances. From the spectra recorded at a single pH, three of the imidazoles were essentially neutral and the other three were partially protonated (22-37%). HCN yielded strong cross peaks after 18 h on a 2.0 mMsample of phenylmethanesulfonyl fluoride (PMSF)-inhibited α-lytic protease (MW = 19.8 kD) at pH 4.4. No spectra have been obtained, however, of native or boronic acid-inhibited α-lytic protease after 18 h at various temperatures ranging from 5 to 55°C, probably due to efficient relaxation of active-site imidazole1H and/or15N nuclei.

  17. HCN, a triple-resonance NMR technique for selective observation of histidine and tryptophan side chains in 13C/15N-labeled proteins.

    PubMed

    Sudmeier, J L; Ash, E L; Günther, U L; Luo, X; Bullock, P A; Bachovchin, W W

    1996-12-01

    HCN, a new 3D NMR technique for stepwise coherence transfer from 1H to 13C to 15N and reverse through direct spin couplings 1JCH and 1JCN, is presented as a method for detection and assignment of histidine and tryptophan side-chain 1H, 13C, and 15N resonances in uniformly 13C/15N-labeled proteins. Product-operator calculations of cross-peak volumes vs adjustable delay tau 3 were employed for determination of optimal tau 3. For the phosphatidylinositol 3-kinase (PI3K SH3 domain, MW = 9.6 kD) at pH 6, H(C)N, the 1H/15N projection, produced observable cross peaks within 20 min. and was completely selective for the single tryptophan and single histidine. The 3D HCN experiment yielded well-defined cross peaks in 20 h for the 13C/15N-labeled origin-specific DNA binding domain from simian virus 40 T-antigen (T-ag-OBD131-259, MW = 15.4 kD) at pH 5.5. Resonances from all six histidines in T-ag-OBD were observed, and 11 of the 12 1H and 13C chemical shifts and 10 of the 12 15N chemical shifts were determined. The 13C dimension proved essential in assignment of the multiply overlapping 1H and 15N resonances. From the spectra recorded at a single pH, three of the imidazoles were essentially neutral and the other three were partially protonated (22-37%). HCN yielded strong cross peaks after 18 h on a 2.0 mM sample of phenylmethanesulfonyl fluoride (PMSF)-inhibited alpha-lytic protease (MW = 19.8 kD) at pH 4.4. No spectra have been obtained, however, of native or boronic acid-inhibited alpha-lytic protease after 18 h at various temperatures ranging from 5 to 55 degrees C, probably due to efficient relaxation of active-site imidazole 1H and/or 15N nuclei.

  18. 1993 annual report of hazardous waste activities for the Oak Ridge K-25 site

    SciTech Connect

    Not Available

    1994-02-01

    This report is a detailed listing of all of the Hazardous Waste activities occurring at Martin Marietta`s K-25 site. Contained herein are hazardous waste notification forms, waste stream reports, generator fee forms and various TSDR reports.

  19. Structural Characterization of the Predominant Family of Histidine Kinase Sensor Domains

    SciTech Connect

    Zhang, Z.; Hendrickson, W

    2010-01-01

    Histidine kinase (HK) receptors are used ubiquitously by bacteria to monitor environmental changes, and they are also prevalent in plants, fungi, and other protists. Typical HK receptors have an extracellular sensor portion that detects a signal, usually a chemical ligand, and an intracellular transmitter portion that includes both the kinase domain itself and the site for histidine phosphorylation. While kinase domains are highly conserved, sensor domains are diverse. HK receptors function as dimers, but the molecular mechanism for signal transduction across cell membranes remains obscure. In this study, eight crystal structures were determined from five sensor domains representative of the most populated family, family HK1, found in a bioinformatic analysis of predicted sensor domains from transmembrane HKs. Each structure contains an inserted repeat of PhoQ/DcuS/CitA (PDC) domains, and similarity between sequence and structure is correlated across these and other double-PDC sensor proteins. Three of the five sensors crystallize as dimers that appear to be physiologically relevant, and comparisons between ligated structures and apo-state structures provide insights into signal transmission. Some HK1 family proteins prove to be sensors for chemotaxis proteins or diguanylate cyclase receptors, implying a combinatorial molecular evolution.

  20. Structural characterization of the predominant family of histidine kinase sensor domains.

    PubMed

    Zhang, Zhen; Hendrickson, Wayne A

    2010-07-16

    Histidine kinase (HK) receptors are used ubiquitously by bacteria to monitor environmental changes, and they are also prevalent in plants, fungi, and other protists. Typical HK receptors have an extracellular sensor portion that detects a signal, usually a chemical ligand, and an intracellular transmitter portion that includes both the kinase domain itself and the site for histidine phosphorylation. While kinase domains are highly conserved, sensor domains are diverse. HK receptors function as dimers, but the molecular mechanism for signal transduction across cell membranes remains obscure. In this study, eight crystal structures were determined from five sensor domains representative of the most populated family, family HK1, found in a bioinformatic analysis of predicted sensor domains from transmembrane HKs. Each structure contains an inserted repeat of PhoQ/DcuS/CitA (PDC) domains, and similarity between sequence and structure is correlated across these and other double-PDC sensor proteins. Three of the five sensors crystallize as dimers that appear to be physiologically relevant, and comparisons between ligated structures and apo-state structures provide insights into signal transmission. Some HK1 family proteins prove to be sensors for chemotaxis proteins or diguanylate cyclase receptors, implying a combinatorial molecular evolution.

  1. A Photochromic Histidine Kinase Rhodopsin (HKR1) That Is Bimodally Switched by Ultraviolet and Blue Light*

    PubMed Central

    Luck, Meike; Mathes, Tilo; Bruun, Sara; Fudim, Roman; Hagedorn, Rolf; Tran Nguyen, Tra My; Kateriya, Suneel; Kennis, John T. M.; Hildebrandt, Peter; Hegemann, Peter

    2012-01-01

    Rhodopsins are light-activated chromoproteins that mediate signaling processes via transducer proteins or promote active or passive ion transport as ion pumps or directly light-activated channels. Here, we provide spectroscopic characterization of a rhodopsin from the Chlamydomonas eyespot. It belongs to a recently discovered but so far uncharacterized family of histidine kinase rhodopsins (HKRs). These are modular proteins consisting of rhodopsin, a histidine kinase, a response regulator, and in some cases an effector domain such as an adenylyl or guanylyl cyclase, all encoded in a single protein as a two-component system. The recombinant rhodopsin fragment, Rh, of HKR1 is a UVA receptor (λmax = 380 nm) that is photoconverted by UV light into a stable blue light-absorbing meta state Rh-Bl (λmax = 490 nm). Rh-Bl is converted back to Rh-UV by blue light. Raman spectroscopy revealed that the Rh-UV chromophore is in an unusual 13-cis,15-anti configuration, which explains why the chromophore is deprotonated. The excited state lifetime of Rh-UV is exceptionally stable, probably caused by a relatively unpolar retinal binding pocket, converting into the photoproduct within about 100 ps, whereas the blue form reacts 100 times faster. We propose that the photochromic HKR1 plays a role in the adaptation of behavioral responses in the presence of UVA light. PMID:23027869

  2. The surface chemistry of heterogeneous catalysis: mechanisms, selectivity, and active sites.

    PubMed

    Zaera, Francisco

    2005-01-01

    The role of chemical kinetics in defining the requirements for the active sites of heterogeneous catalysts is discussed. A personal view is presented, with specific examples from our laboratory to illustrate the role of the chemical composition, structure, and electronic properties of specific surface sites in determining reaction activity and selectivity. Manipulation of catalytic behavior via the addition of chemical modifiers and by tuning of the reaction conditions is also introduced.

  3. Nuclear waste: Status of DOE`s nuclear waste site characterization activities

    SciTech Connect

    1987-12-31

    Three potential nuclear waste repository sites have been selected to carry out characterization activities-the detailed geological testing to determine the suitability of each site as a repository. The sites are Hanford in south-central Washington State, Yucca Mountain in southern Nevada, and Deaf Smith in the Texas Panhandle. Two key issues affecting the total program are the estimations of the site characterization completion data and costs and DOE`s relationship with the Nuclear Regulatory Commission which has been limited and its relations with affected states and Indian tribes which continue to be difficult.

  4. Lily pollen alkaline phytase is a histidine phosphatase similar to mammalian multiple inositol polyphosphate phosphatase (MINPP).

    PubMed

    Mehta, Bakul Dhagat; Jog, Sonali P; Johnson, Steven C; Murthy, Pushpalatha P N

    2006-09-01

    Phytic acid is the most abundant inositol phosphate in cells; it constitutes 1-5% of the dry weight of cereal grains and legumes. Phytases are the primary enzymes responsible for the hydrolysis of phytic acid and thus play important roles in inositol phosphate metabolism. A novel alkaline phytase in lily pollen (LlALP) was recently purified in our laboratory. In this paper, we describe the cloning and characterization of LlALP cDNA from lily pollen. Two isoforms of alkaline phytase cDNAs, LlAlp1 and LlAlp2, which are 1467 and 1533 bp long and encode proteins of 487 and 511 amino acids, respectively, were identified. The deduced amino acid sequences contains the signature heptapeptide of histidine phosphatases, -RHGXRXP-, but shares < 25% identity to fungal histidine acid phytases. Phylogenetic analysis reveals that LlALP is most closely related to multiple inositol polyphosphate phosphatase (MINPP) from humans (25%) and rats (23%). mRNA corresponding to LlAlp1 and LlAlp2 were expressed in leaves, stem, petals and pollen grains. The expression profiles of LlAlp isoforms in anthers indicated that mRNA corresponding to both isoforms were present at all stages of flower development. The expression of LlAlp2 cDNA in Escherichia coli revealed the accumulation of the active enzyme in inclusion bodies and confirmed that the cDNA encodes an alkaline phytase. In summary, plant alkaline phytase is a member of the histidine phosphatase family that includes MINPP and exhibits properties distinct from bacterial and fungal phytases.

  5. Menkes disease and response to copper histidine: An Indian case series

    PubMed Central

    Yoganathan, Sangeetha; Sudhakar, Sniya Valsa; Arunachal, Gautham; Thomas, Maya; Subramanian, Annadurai; George, Renu; Danda, Sumita

    2017-01-01

    Background: Menkes disease (MD) is an X-linked recessive neurodegenerative disorder caused by mutations in ATP7A gene. Depending on the residual ATP7A activity, manifestation may be classical MD, occipital horn syndrome, or distal motor neuropathy. Neurological sparing is expected in female carriers. However, on rare occasions, females may manifest with classical clinical phenotype due to skewed X-chromosome inactivation, X-autosome translocation, and XO genotype. Here, we describe a small series of probands with MD and their response to copper histidine therapy. This series also includes a female with X-13 translocation manifesting neurological symptoms. Methods: The clinical profile, laboratory and radiological data, and follow-up of four children with MD were collected from the hospital database and are being presented. Results: All the four children in our series had developmental delay, recurrent respiratory tract infections, hair and skeletal changes, axial hypotonia, tortuous vessels on imaging, low serum copper, ceruloplasmin, and elevated lactate. Fetal hypokinesia and fetal growth retardation were present in two cases. Failure to thrive was present in three children and only one child had epilepsy. Subcutaneous copper histidine was administered to all children. The average time lapse in the initiation of treatment was 20.3 months, and average duration of follow-up was 14.3 months. Conclusion: We conclude that copper histidine therapy is beneficial in reversing the skin and hair changes, improving appendicular tone, socio-cognitive milestones, and improving weight gain, and immunity. Early diagnosis and management of MD are essential to have a better clinical outcome. More research is needed to explore and devise new strategies in the management of patients with MD. PMID:28298846

  6. Number and locations of agonist binding sites required to activate homomeric Cys-loop receptors.

    PubMed

    Rayes, Diego; De Rosa, María José; Sine, Steven M; Bouzat, Cecilia

    2009-05-06

    Homo-pentameric Cys-loop receptors contain five identical agonist binding sites, each formed at a subunit interface. To determine the number and locations of binding sites required to generate a stable active state, we constructed a receptor subunit with a mutation that disables the agonist binding site and a reporter mutation that alters unitary conductance and coexpressed mutant and nonmutant subunits. Although receptors with a range of different subunit compositions are produced, patch-clamp recordings reveal that the amplitude of each single-channel opening event reports the number and, for certain subunit combinations, the locations of subunits with intact binding sites. We find that receptors with three binding sites at nonconsecutive subunit interfaces exhibit maximal mean channel open time, receptors with binding sites at three consecutive or two nonconsecutive interfaces exhibit intermediate open time, and receptors with binding sites at two consecutive or one interface exhibit brief open time. Macroscopic recordings after rapid application of agonist reveal that channel activation slows and the extent of desensitization decreases as the number of binding sites per receptor decreases. The overall results provide a framework for defining mechanisms of activation and drug modulation for homo-pentameric Cys-loop receptors.

  7. Correlations between the Electronic Properties of Shewanella oneidensis Cytochrome c Nitrite Reductase (ccNiR) and Its Structure: Effects of Heme Oxidation State and Active Site Ligation.

    PubMed

    Stein, Natalia; Love, Daniel; Judd, Evan T; Elliott, Sean J; Bennett, Brian; Pacheco, A Andrew

    2015-06-23

    The electrochemical properties of Shewanella oneidensis cytochrome c nitrite reductase (ccNiR), a homodimer that contains five hemes per protomer, were investigated by UV-visible and electron paramagnetic resonance (EPR) spectropotentiometries. Global analysis of the UV-vis spectropotentiometric results yielded highly reproducible values for the heme midpoint potentials. These midpoint potential values were then assigned to specific hemes in each protomer (as defined in previous X-ray diffraction studies) by comparing the EPR and UV-vis spectropotentiometric results, taking advantage of the high sensitivity of EPR spectra to the structural microenvironment of paramagnetic centers. Addition of the strong-field ligand cyanide led to a 70 mV positive shift of the active site's midpoint potential, as the cyanide bound to the initially five-coordinate high-spin heme and triggered a high-spin to low-spin transition. With cyanide present, three of the remaining hemes gave rise to distinctive and readily assignable EPR spectral changes upon reduction, while a fourth was EPR-silent. At high applied potentials, interpretation of the EPR spectra in the absence of cyanide was complicated by a magnetic interaction that appears to involve three of five hemes in each protomer. At lower applied potentials, the spectra recorded in the presence and absence of cyanide were similar, which aided global assignment of the signals. The midpoint potential of the EPR-silent heme could be assigned by default, but the assignment was also confirmed by UV-vis spectropotentiometric analysis of the H268M mutant of ccNiR, in which one of the EPR-silent heme's histidine axial ligands was replaced with a methionine.

  8. Synthesis and characterization of Fe(II) β-diketonato complexes with relevance to acetylacetone dioxygenase: insights into the electronic properties of the 3-histidine facial triad.

    PubMed

    Park, Heaweon; Baus, Jacob S; Lindeman, Sergey V; Fiedler, Adam T

    2011-12-05

    A series of high-spin iron(II) β-diketonato complexes have been prepared and characterized with the intent of modeling the substrate-bound form of the enzyme acetylacetone dioxygenase (Dke1). The Dke1 active site features an Fe(II) center coordinated by three histidine residues in a facial geometry--a departure from the standard 2-histidine-1-carboxylate (2H1C) facial triad dominant among nonheme monoiron enzymes. The deprotonated β-diketone substrate binds to the Fe center in a bidentate fashion. To better understand the implications of subtle changes in coordination environment for the electronic structures of nonheme Fe active sites, synthetic models were prepared with three different supporting ligands (L(N3)): the anionic (Me2)Tp and (Ph2)Tp ligands ((R2)Tp = hydrotris(pyrazol-1-yl)borate substituted with R-groups at the 3- and 5-pyrazole positions) and the neutral (Ph)TIP ligand ((Ph)TIP = tris(2-phenylimidazol-4-yl)phosphine). The resulting [(L(N3))Fe(acac(X))](0/+) complexes (acac(X) = substituted β-diketonates) were analyzed with a combination of experimental and computational methods, namely, X-ray crystallography, cyclic voltammetry, spectroscopic techniques (UV-vis absorption and (1)H NMR), and density functional theory (DFT). X-ray diffraction results for complexes with the (Me2)Tp ligand revealed six-coordinate Fe(II) centers with a bound MeCN molecule, while structures of the (Ph2)Tp and (Ph)TIP complexes generally exhibited five-coordinate geometries. Each [(L(N3))Fe(acac(X))](0/+) complex displays two broad absorption features in the visible region that arise from Fe(II)→acac(X) charge transfer and acac(X)-based transitions, consistent with UV-vis data reported for Dke1. These absorption bands, along with the Fe redox potentials, are highly sensitive to the identity of L(N3) and substitution of the β-diketonates. By interpreting the experimental results in conjunction with DFT calculations, detailed electronic-structure descriptions of the

  9. Molecular dynamics explorations of active site structure in designed and evolved enzymes.

    PubMed

    Osuna, Sílvia; Jiménez-Osés, Gonzalo; Noey, Elizabeth L; Houk, K N

    2015-04-21

    This Account describes the use of molecular dynamics (MD) simulations to reveal how mutations alter the structure and organization of enzyme active sites. As proposed by Pauling about 70 years ago and elaborated by many others since then, biocatalysis is efficient when functional groups in the active site of an enzyme are in optimal positions for transition state stabilization. Changes in mechanism and covalent interactions are often critical parts of enzyme catalysis. We describe our explorations of the dynamical preorganization of active sites using MD, studying the fluctuations between active and inactive conformations normally concealed to static crystallography. MD shows how the various arrangements of active site residues influence the free energy of the transition state and relates the populations of the catalytic conformational ensemble to the enzyme activity. This Account is organized around three case studies from our laboratory. We first describe the importance of dynamics in evaluating a series of computationally designed and experimentally evolved enzymes for the Kemp elimination, a popular subject in the enzyme design field. We find that the dynamics of the active site is influenced not only by the original sequence design and subsequent mutations but also by the nature of the ligand present in the active site. In the second example, we show how microsecond MD has been used to uncover the role of remote mutations in the active site dynamics and catalysis of a transesterase, LovD. This enzyme was evolved by Tang at UCLA and Codexis, Inc., and is a useful commercial catalyst for the production of the drug simvastatin. X-ray analysis of inactive and active mutants did not reveal differences in the active sites, but relatively long time scale MD in solution showed that the active site of the wild-type enzyme preorganizes only upon binding of the acyl carrier protein (ACP) that delivers the natural acyl group to the active site. In the absence of bound ACP

  10. Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site

    SciTech Connect

    Grossman, Moran; Born, Benjamin; Heyden, Matthias; Tworowski, Dmitry; Fields, Gregg B.; Sagi, Irit; Havenith, Martina

    2011-09-18

    Solvent dynamics can play a major role in enzyme activity, but obtaining an accurate, quantitative picture of solvent activity during catalysis is quite challenging. Here, we combine terahertz spectroscopy and X-ray absorption analyses to measure changes in the coupled water-protein motions during peptide hydrolysis by a zinc-dependent human metalloprotease. These changes were tightly correlated with rearrangements at the active site during the formation of productive enzyme-substrate intermediates and were different from those in an enzyme–inhibitor complex. Molecular dynamics simulations showed a steep gradient of fast-to-slow coupled protein-water motions around the protein, active site and substrate. Our results show that water retardation occurs before formation of the functional Michaelis complex. We propose that the observed gradient of coupled protein-water motions may assist enzyme-substrate interactions through water-polarizing mechanisms that are remotely mediated by the catalytic metal ion and the enzyme active site.

  11. Two interacting binding sites for quinacrine derivatives in the active site of trypanothione reductase – a template for drug design

    PubMed Central

    Saravanamuthu, Ahilan; Vickers, Tim J.; Bond, Charles S.; Peterson, Mark R.; Hunter, William N.; Fairlamb, Alan H.

    2012-01-01

    SUMMARY Trypanothione reductase is a key enzyme in the trypanothione-based redox metabolism of pathogenic trypanosomes. Since this system is absent in humans, being replaced with glutathione and glutathione reductase, it offers a target for selective inhibition. The rational design of potent inhibitors requires accurate structures of enzyme-inhibitor complexes, but this is lacking for trypanothione reductase. We therefore used quinacrine mustard, an alkylating derivative of the competitive inhibitor quinacrine, to probe the active site of this dimeric flavoprotein. Quinacrine mustard irreversibly inactivates Trypanosoma cruzi trypanothione reductase, but not human glutathione reductase, in a time-dependent manner with a stoichiometry of two inhibitors bound per monomer. The rate of inactivation is dependent upon the oxidation state of trypanothione reductase, with the NADPH-reduced form being inactivated significantly faster than the oxidised form. Inactivation is slowed by clomipramine and a melarsen oxide-trypanothione adduct (both are competitive inhibitors) but accelerated by quinacrine. The structure of the trypanothione reductase-quinacrine mustard adduct was determined to 2.7 Å, revealing two molecules of inhibitor bound in the trypanothione-binding site. The acridine moieties interact with each other through π-stacking effects, and one acridine interacts in a similar fashion with a tryptophan residue. These interactions provide a molecular explanation for the differing effects of clomipramine and quinacrine on inactivation by quinacrine mustard. Synergism with quinacrine occurs as a result of these planar acridines being able to stack together in the active site cleft, thereby gaining an increased number of binding interactions, whereas antagonism occurs with non-planar molecules, such as clomipramine, where stacking is not possible. PMID:15102853

  12. The three Mycobacterium tuberculosis antigen 85 isoforms have unique substrates and activities determined by non-active site regions.

    PubMed

    Backus, Keriann M; Dolan, Michael A; Barry, Conor S; Joe, Maju; McPhie, Peter; Boshoff, Helena I M; Lowary, Todd L; Davis, Benjamin G; Barry, Clifton E

    2014-09-05

    The three isoforms of antigen 85 (A, B, and C) are the most abundant secreted mycobacterial proteins and catalyze transesterification reactions that synthesize mycolated arabinogalactan, trehalose monomycolate (TMM), and trehalose dimycolate (TDM), important constituents of the outermost layer of the cellular envelope of Mycobacterium tuberculosis. These three enzymes are nearly identical at the active site and have therefore been postulated to exist to evade host immunity. Distal to the active site is a second putative carbohydrate-binding site of lower homology. Mutagenesis of the three isoforms at this second site affected both substrate selectivity and overall catalytic activity in vitro. Using synthetic and natural substrates, we show that these three enzymes exhibit unique selectivity; antigen 85A more efficiently mycolates TMM to form TDM, whereas C (and to a lesser extent B) has a higher rate of activity using free trehalose to form TMM. This difference in substrate selectivity extends to the hexasaccharide fragment of cell wall arabinan. Mutation of secondary site residues from the most active isoform (C) into those present in A or B partially interconverts this substrate selectivity. These experiments in combination with molecular dynamics simulations reveal that differences in the N-terminal helix α9, the adjacent Pro(216)-Phe(228) loop, and helix α5 are the likely cause of changes in activity and substrate selectivity. These differences explain the existence of three isoforms and will allow for future work in developing inhibitors.

  13. A Phosphoenzyme Mimic, Overlapping Catalytic Sites and Reaction Coordinate Motion for Human NAMPT

    SciTech Connect

    Burgos, E.; Ho, M; Almo, S; Schramm, V

    2009-01-01

    Nicotinamide phosphoribosyltransferase (NAMPT) is highly evolved to capture nicotinamide (NAM) and replenish the nicotinamide adenine dinucleotide (NAD+) pool during ADP-ribosylation and transferase reactions. ATP-phosphorylation of an active-site histidine causes catalytic activation, increasing NAM affinity by 160,000. Crystal structures of NAMPT with catalytic site ligands identify the phosphorylation site, establish its role in catalysis, demonstrate unique overlapping ATP and phosphoribosyltransferase sites, and establish reaction coordinate motion. NAMPT structures with beryllium fluoride indicate a covalent H247-BeF3- as the phosphohistidine mimic. Activation of NAMPT by H247-phosphorylation causes stabilization of the enzyme-phosphoribosylpyrophosphate complex, permitting efficient capture of NAM. Reactant and product structures establish reaction coordinate motion for NAMPT to be migration of the ribosyl anomeric carbon from the pyrophosphate leaving group to the nicotinamide-N1 while the 5-phosphoryl group, the pyrophosphate moiety, and the nicotinamide ring remain fixed in the catalytic site.

  14. A phosphoenzyme mimic, overlapping catalytic sites and reaction coordinate motion for human NAMPT

    PubMed Central

    Burgos, Emmanuel S.; Ho, Meng-Chiao; Almo, Steven C.; Schramm, Vern L.

    2009-01-01

    Nicotinamide phosphoribosyltransferase (NAMPT) is highly evolved to capture nicotinamide (NAM) and replenish the nicotinamide adenine dinucleotide (NAD+) pool during ADP-ribosylation and transferase reactions. ATP-phosphorylation of an active-site histidine causes catalytic activation, increasing NAM affinity by 160,000. Crystal structures of NAMPT with catalytic site ligands identify the phosphorylation site, establish its role in catalysis, demonstrate unique overlapping ATP and phosphoribosyltransferase sites, and establish reaction coordinate motion. NAMPT structures with beryllium fluoride indicate a covalent H247-BeF3− as the phosphohistidine mimic. Activation of NAMPT by H247-phosphorylation causes stabilization of the enzyme-phosphoribosylpyrophosphate complex, permitting efficient capture of NAM. Reactant and product structures establish reaction coordinate motion for NAMPT to be migration of the ribosyl anomeric carbon from the pyrophosphate leaving group to the nicotinamide-N1 while the 5-phosphoryl group, the pyrophosphate moiety, and the nicotinamide ring remain fixed in the catalytic site. PMID:19666527

  15. Fragment-based identification of determinants of conformational and spectroscopic change at the ricin active site

    SciTech Connect

    Carra,J.; McHugh, C.; Mulligan, S.; Machiesky, L.; Soares, A.; Millard, C.

    2007-01-01

    We found that amide ligands can bind weakly but specifically to the ricin active site, producing significant shifts in positions of the critical active site residues Arg180 and Tyr80. These results indicate that fragment-based drug discovery methods are capable of identifying minimal bonding determinants of active-site side-chain rearrangements and the mechanistic origins of spectroscopic shifts. Our results suggest that tryptophan fluorescence provides a sensitive probe for the geometric relationship of arginine-tryptophan pairs, which often have significant roles in protein function. Using the unusual characteristics of the RTA system, we measured the still controversial thermodynamic changes of site-specific urea binding to a protein, results that are relevant to understanding the physical mechanisms of protein denaturation.

  16. Structural and Kinetic Analyses of Macrophage Migration Inhibitory Factor Active Site Interactions

    SciTech Connect

    Crichlow, G.; Lubetsky, J; Leng, L; Bucala, R; Lolis, E

    2009-01-01

    Macrophage migration inhibitory factor (MIF) is a secreted protein expressed in numerous cell types that counters the antiinflammatory effects of glucocorticoids and has been implicated in sepsis, cancer, and certain autoimmune diseases. Interestingly, the structure of MIF contains a catalytic site resembling the tautomerase/isomerase sites of microbial enzymes. While bona fide physiological substrates remain unknown, model substrates have been identified. Selected compounds that bind in the tautomerase active site also inhibit biological functions of MIF. It had previously been shown that the acetaminophen metabolite, N-acetyl-p-benzoquinone imine (NAPQI), covalently binds to the active site of MIF. In this study, kinetic data indicate that NAPQI inhibits MIF both covalently and noncovalently. The structure of MIF cocrystallized with NAPQI reveals that the NAPQI has undergone a chemical alteration forming an acetaminophen dimer (bi-APAP) and binds noncovalently to MIF at the mouth of the active site. We also find that the commonly used protease inhibitor, phenylmethylsulfonyl fluoride (PMSF), forms a covalent complex with MIF and inhibits the tautomerase activity. Crystallographic analysis reveals the formation of a stable, novel covalent bond for PMSF between the catalytic nitrogen of the N-terminal proline and the sulfur of PMSF with complete, well-defined electron density in all three active sites of the MIF homotrimer. Conclusions are drawn from the structures of these two MIF-inhibitor complexes regarding the design of novel compounds that may provide more potent reversible and irreversible inhibition of MIF.

  17. All the catalytic active sites of MoS2 for hydrogen evolution

    SciTech Connect

    Li, Guoqing; Zhang, Du; Qiao, Qiao; Yu, Yifei; Peterson, David; Zafar, Abdullah; Kumar, Raj; Curtarolo, Stefano; Hunte, Frank; Shannon, Steve; Zhu, Yimei; Yang, Weitao; Cao, Linyou

    2016-11-29

    MoS2 presents a promising low-cost catalyst for the hydrogen evolution reaction (HER), but the understanding about its active sites has remained limited. Here we present an unambiguous study of the catalytic activities of all possible reaction sites of MoS2, including edge sites, sulfur vacancies, and grain boundaries. We demonstrate that, in addition to the well-known catalytically active edge sites, sulfur vacancies provide another major active site for the HER, while the catalytic activity of grain boundaries is much weaker. Here, the intrinsic turnover frequencies (Tafel slopes) of the edge sites, sulfur vacancies, and grain boundaries are estimated to be 7.5 s–1 (65–75 mV/dec), 3.2 s–1 (65–85 mV/dec), and 0.1 s–1 (120–160 mV/dec), respectively. We also demonstrate that the catalytic activity of sulfur vacancies strongly depends on the density of the vacancies and the local crystalline structure in proximity to the vacancies. Unlike edge sites, whose catalytic activity linearly depends on the length, sulfur vacancies show optimal catalytic activities when the vacancy density is in the range of 7–10%, and the number of sulfur vacancies in high crystalline quality MoS2 is higher than that in low crystalline quality MoS2, which may be related with the proximity of different local crystalline structures to the vacancies.

  18. Effects of grain, fructose, and histidine feeding on endotoxin and oxidative stress measures in dairy heifers.

    PubMed

    Golder, H M; Lean, I J; Rabiee, A R; King, R; Celi, P

    2013-01-01

    Ruminal endotoxin and plasma oxidative stress biomarker concentrations were