Science.gov

Sample records for active site reveals

  1. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site.

    PubMed

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel

    2015-01-01

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called 'catalytic residues' are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes. PMID:25902402

  2. Crystal structure of an avian influenza polymerase PA[subscript N] reveals an endonuclease active site

    SciTech Connect

    Yuan, Puwei; Bartlam, Mark; Lou, Zhiyong; Chen, Shoudeng; Zhou, Jie; He, Xiaojing; Lv, Zongyang; Ge, Ruowen; Li, Xuemei; Deng, Tao; Fodor, Ervin; Rao, Zihe; Liu, Yingfang

    2009-11-10

    The heterotrimeric influenza virus polymerase, containing the PA, PB1 and PB2 proteins, catalyses viral RNA replication and transcription in the nucleus of infected cells. PB1 holds the polymerase active site and reportedly harbours endonuclease activity, whereas PB2 is responsible for cap binding. The PA amino terminus is understood to be the major functional part of the PA protein and has been implicated in several roles, including endonuclease and protease activities as well as viral RNA/complementary RNA promoter binding. Here we report the 2.2 angstrom (A) crystal structure of the N-terminal 197 residues of PA, termed PA(N), from an avian influenza H5N1 virus. The PA(N) structure has an alpha/beta architecture and reveals a bound magnesium ion coordinated by a motif similar to the (P)DX(N)(D/E)XK motif characteristic of many endonucleases. Structural comparisons and mutagenesis analysis of the motif identified in PA(N) provide further evidence that PA(N) holds an endonuclease active site. Furthermore, functional analysis with in vivo ribonucleoprotein reconstitution and direct in vitro endonuclease assays strongly suggest that PA(N) holds the endonuclease active site and has critical roles in endonuclease activity of the influenza virus polymerase, rather than PB1. The high conservation of this endonuclease active site among influenza strains indicates that PA(N) is an important target for the design of new anti-influenza therapeutics.

  3. Active-Site Monovalent Cations Revealed in a 1.55 Å Resolution Hammerhead Ribozyme Structure

    PubMed Central

    Anderson, Michael; Schultz, Eric P.; Martick, Monika; Scott, William G.

    2013-01-01

    We have obtained a 1.55 Å crystal structure of a hammerhead ribozyme derived from Schistosoma mansoni in conditions that permit detailed observations of Na+ ion binding in the ribozyme's active site. At least two such Na+ ions are observed. The first Na+ ion binds to the N7 of G10.1 and the adjacent A9 phosphate in a manner identical to that previously observed for divalent cations. A second Na+ ion binds to the Hoogsteen face of G12, the general base in the hammerhead cleavage reaction, thereby potentially dissipating the negative charge of the catalytically active enolate form of the nucleotide base. A potential but more ambiguous third site bridges the A9 and scissile phosphates in a manner consistent with previous predictions. Hammerhead ribozymes have been observed to be active in the presence of high concentrations of monovalent cations, including Na+, but the mechanism by which monovalent cations substitute for divalent cations in hammerhead catalysis remains unclear. Our results enable us to suggest that Na+ directly and specifically substitutes for divalent cations in the hammerhead active site. The detailed geometry of the pre-catalytic active site complex is also revealed with a new level of precision, thanks to the quality of the electron density maps obtained from what is currently the highest resolution ribozyme structure in the protein data bank. PMID:23711504

  4. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination

    PubMed Central

    Rowley, Paul A.; Kachroo, Aashiq H.; Ma, Chien-Hui; Maciaszek, Anna D.; Guga, Piotr; Jayaram, Makkuni

    2015-01-01

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5′ to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions. PMID:25999343

  5. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination.

    PubMed

    Rowley, Paul A; Kachroo, Aashiq H; Ma, Chien-Hui; Maciaszek, Anna D; Guga, Piotr; Jayaram, Makkuni

    2015-07-13

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5' to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions. PMID:25999343

  6. Revealing divergent evolution, identifying circular permutations and detecting active-sites by protein structure comparison

    PubMed Central

    Chen, Luonan; Wu, Ling-Yun; Wang, Yong; Zhang, Shihua; Zhang, Xiang-Sun

    2006-01-01

    Background Protein structure comparison is one of the most important problems in computational biology and plays a key role in protein structure prediction, fold family classification, motif finding, phylogenetic tree reconstruction and protein docking. Results We propose a novel method to compare the protein structures in an accurate and efficient manner. Such a method can be used to not only reveal divergent evolution, but also identify circular permutations and further detect active-sites. Specifically, we define the structure alignment as a multi-objective optimization problem, i.e., maximizing the number of aligned atoms and minimizing their root mean square distance. By controlling a single distance-related parameter, theoretically we can obtain a variety of optimal alignments corresponding to different optimal matching patterns, i.e., from a large matching portion to a small matching portion. The number of variables in our algorithm increases with the number of atoms of protein pairs in almost a linear manner. In addition to solid theoretical background, numerical experiments demonstrated significant improvement of our approach over the existing methods in terms of quality and efficiency. In particular, we show that divergent evolution, circular permutations and active-sites (or structural motifs) can be identified by our method. The software SAMO is available upon request from the authors, or from and . Conclusion A novel formulation is proposed to accurately align protein structures in the framework of multi-objective optimization, based on a sequence order-independent strategy. A fast and accurate algorithm based on the bipartite matching algorithm is developed by exploiting the special features. Convergence of computation is shown in experiments and is also theoretically proven. PMID:16948858

  7. Structure analysis reveals the flexibility of the ADAMTS-5 active site.

    PubMed

    Shieh, Huey-Sheng; Tomasselli, Alfredo G; Mathis, Karl J; Schnute, Mark E; Woodard, Scott S; Caspers, Nicole; Williams, Jennifer M; Kiefer, James R; Munie, Grace; Wittwer, Arthur; Malfait, Anne-Marie; Tortorella, Micky D

    2011-04-01

    A ((1S,2R)-2-hydroxy-2,3-dihydro-1H-inden-1-yl) succinamide derivative (here referred to as Compound 12) shows significant activity toward many matrix metalloproteinases (MMPs), including MMP-2, MMP-8, MMP-9, and MMP-13. Modeling studies had predicted that this compound would not bind to ADAMTS-5 (a disintegrin and metalloproteinase with thrombospondin motifs-5) due to its shallow S1' pocket. However, inhibition analysis revealed it to be a nanomolar inhibitor of both ADAMTS-4 and -5. The observed inconsistency was explained by analysis of crystallographic structures, which showed that Compound 12 in complex with the catalytic domain of ADAMTS-5 (cataTS5) exhibits an unusual conformation in the S1' pocket of the protein. This first demonstration that cataTS5 can undergo an induced conformational change in its active site pocket by a molecule like Compound 12 should enable the design of new aggrecanase inhibitors with better potency and selectivity profiles. PMID:21370305

  8. A caspase active site probe reveals high fractional inhibition needed to block DNA fragmentation.

    PubMed

    Méthot, Nathalie; Vaillancourt, John P; Huang, JingQi; Colucci, John; Han, Yongxin; Ménard, Stéphane; Zamboni, Robert; Toulmond, Sylvie; Nicholson, Donald W; Roy, Sophie

    2004-07-01

    Apoptotic markers consist of either caspase substrate cleavage products or phenotypic changes that manifest themselves as a consequence of caspase-mediated substrate cleavage. We have shown recently that pharmacological inhibitors of caspase activity prevent the appearance of two such apoptotic manifestations, alphaII-spectrin cleavage and DNA fragmentation, but that blockade of the latter required a significantly higher concentration of inhibitor. We investigated this phenomenon through the use of a novel radiolabeled caspase inhibitor, [(125)I]M808, which acts as a caspase active site probe. [(125)I]M808 bound to active caspases irreversibly and with high sensitivity in apoptotic cell extracts, in tissue extracts from several commonly used animal models of cellular injury, and in living cells. Moreover, [(125)I]M808 detected active caspases in septic mice when injected intravenously. Using this caspase probe, an active site occupancy assay was developed and used to measure the fractional inhibition required to block apoptosis-induced DNA fragmentation. In thymocytes, occupancy of up to 40% of caspase active sites had no effect on DNA fragmentation, whereas inhibition of half of the DNA cleaving activity required between 65 and 75% of active site occupancy. These results suggest that a high and persistent fractional inhibition will be required for successful caspase inhibition-based therapies. PMID:15067000

  9. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes.

    PubMed

    Cockburn, Darrell; Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data. PMID:27504624

  10. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes

    PubMed Central

    Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data. PMID:27504624

  11. Active-site mobility revealed by the crystal structure of arylmalonate decarboxylase from Bordetella bronchiseptica.

    PubMed

    Kuettner, E Bartholomeus; Keim, Antje; Kircher, Markus; Rosmus, Susann; Sträter, Norbert

    2008-03-21

    Arylmalonate decarboxylase (AMDase) from Bordetella bronchiseptica catalyzes the enantioselective decarboxylation of arylmethylmalonates without the need for an organic cofactor or metal ion. The decarboxylation reaction is of interest for the synthesis of fine chemicals. As basis for an analysis of the catalytic mechanism of AMDase and for a rational enzyme design, we determined the X-ray structure of the enzyme up to 1.9 A resolution. Like the distantly related aspartate or glutamate racemases, AMDase has an aspartate transcarbamoylase fold consisting of two alpha/beta domains related by a pseudo dyad. However, the domain orientation of AMDase differs by about 30 degrees from that of the glutamate racemases, and also significant differences in active-site structures are observed. In the crystals, four independent subunits showing different conformations of active-site loops are present. This finding is likely to reflect the active-site mobility necessary for catalytic activity. PMID:18258259

  12. Structure of inorganic pyrophosphatase from Staphylococcus aureus reveals conformational flexibility of the active site.

    PubMed

    Gajadeera, Chathurada S; Zhang, Xinyi; Wei, Yinan; Tsodikov, Oleg V

    2015-02-01

    Cytoplasmic inorganic pyrophosphatase (PPiase) is an enzyme essential for survival of organisms, from bacteria to human. PPiases are divided into two structurally distinct families: family I PPiases are Mg(2+)-dependent and present in most archaea, eukaryotes and prokaryotes, whereas the relatively less understood family II PPiases are Mn(2+)-dependent and present only in some archaea, bacteria and primitive eukaryotes. Staphylococcus aureus (SA), a dangerous pathogen and a frequent cause of hospital infections, contains a family II PPiase (PpaC), which is an attractive potential target for development of novel antibacterial agents. We determined a crystal structure of SA PpaC in complex with catalytic Mn(2+) at 2.1Å resolution. The active site contains two catalytic Mn(2+) binding sites, each half-occupied, reconciling the previously observed 1:1 Mn(2+):enzyme stoichiometry with the presence of two divalent metal ion sites in the apo-enzyme. Unexpectedly, despite the absence of the substrate or products in the active site, the two domains of SA PpaC form a closed active site, a conformation observed in structures of other family II PPiases only in complex with substrate or product mimics. A region spanning residues 295-298, which contains a conserved substrate binding RKK motif, is flipped out of the active site, an unprecedented conformation for a PPiase. Because the mutant of Arg295 to an alanine is devoid of activity, this loop likely undergoes an induced-fit conformational change upon substrate binding and product dissociation. This closed conformation of SA PPiase may serve as an attractive target for rational design of inhibitors of this enzyme. PMID:25576794

  13. Asymmetric mutations in the tetrameric R67 dihydrofolate reductase reveal high tolerance to active-site substitutions

    PubMed Central

    Ebert, Maximilian C C J C; Morley, Krista L; Volpato, Jordan P; Schmitzer, Andreea R; Pelletier, Joelle N

    2015-01-01

    Type II R67 dihydrofolate reductase (DHFR) is a bacterial plasmid-encoded enzyme that is intrinsically resistant to the widely-administered antibiotic trimethoprim. R67 DHFR is genetically and structurally unrelated to E. coli chromosomal DHFR and has an unusual architecture, in that four identical protomers form a single symmetrical active site tunnel that allows only one substrate binding/catalytic event at any given time. As a result, substitution of an active-site residue has as many as four distinct consequences on catalysis, constituting an atypical model of enzyme evolution. Although we previously demonstrated that no single residue of the native active site is indispensable for function, library selection here revealed a strong bias toward maintenance of two native protomers per mutated tetramer. A variety of such “half-native” tetramers were shown to procure native-like catalytic activity, with similar KM values but kcat values 5- to 33-fold lower, illustrating a high tolerance for active-site substitutions. The selected variants showed a reduced thermal stability (Tm ∼12°C lower), which appears to result from looser association of the protomers, but generally showed a marked increase in resilience to heat denaturation, recovering activity to a significantly greater extent than the variant with no active-site substitutions. Our results suggest that the presence of two native protomers in the R67 DHFR tetramer is sufficient to provide native-like catalytic rate and thus ensure cellular proliferation. PMID:25401264

  14. Covalent Inhibition of Ubc13 Affects Ubiquitin Signaling and Reveals Active Site Elements Important for Targeting

    PubMed Central

    Hodge, Curtis D.; Edwards, Ross A.; Markin, Craig J.; McDonald, Darin; Pulvino, Mary; Huen, Michael S. Y.; Zhao, Jiyong; Spyracopoulos, Leo; Hendzel, Michael J.; Glover, J.N. Mark

    2015-01-01

    Ubc13 is an E2 ubiquitin conjugating enzyme that functions in nuclear DNA damage signaling and cytoplasmic NF-κB signaling. Here we present the structures of complexes of Ubc13 with two inhibitors, NSC697923 and BAY 11-7082, which inhibit DNA damage and NF-κB signaling in human cells. NSC697923 and BAY 11-7082 both inhibit Ubc13 by covalent adduct formation through a Michael addition at the Ubc13 active site cysteine. The resulting adducts of both compounds exploit a binding groove unique to Ubc13. We developed a Ubc13 mutant which resists NSC697923 inhibition and, using this mutant, we show that the inhibition of cellular DNA damage and NF-κB signaling by NSC697923 is largely due to specific Ubc13 inhibition. We propose that unique structural features near the Ubc13 active site could provide a basis for the rational development and design of specific Ubc13 inhibitors. PMID:25909880

  15. Covalent Inhibition of Ubc13 Affects Ubiquitin Signaling and Reveals Active Site Elements Important for Targeting.

    PubMed

    Hodge, Curtis D; Edwards, Ross A; Markin, Craig J; McDonald, Darin; Pulvino, Mary; Huen, Michael S Y; Zhao, Jiyong; Spyracopoulos, Leo; Hendzel, Michael J; Glover, J N Mark

    2015-07-17

    Ubc13 is an E2 ubiquitin conjugating enzyme that functions in nuclear DNA damage signaling and cytoplasmic NF-κB signaling. Here, we present the structures of complexes of Ubc13 with two inhibitors, NSC697923 and BAY 11-7082, which inhibit DNA damage and NF-κB signaling in human cells. NSC697923 and BAY 11-7082 both inhibit Ubc13 by covalent adduct formation through a Michael addition at the Ubc13 active site cysteine. The resulting adducts of both compounds exploit a binding groove unique to Ubc13. We developed a Ubc13 mutant which resists NSC697923 inhibition and, using this mutant, we show that the inhibition of cellular DNA damage and NF-κB signaling by NSC697923 is largely due to specific Ubc13 inhibition. We propose that unique structural features near the Ubc13 active site could provide a basis for the rational development and design of specific Ubc13 inhibitors. PMID:25909880

  16. Active sites of two orthologous cytochromes P450 2E1: Differences revealed by spectroscopic methods

    SciTech Connect

    Anzenbacherova, Eva; Hudecek, Jiri; Murgida, Daniel; Hildebrandt, Peter; Marchal, Stephane; Lange, Reinhard; Anzenbacher, Pavel . E-mail: anzen@tunw.upol.cz

    2005-12-09

    Cytochromes P450 2E1 of human and minipig origin were examined by absorption spectroscopy under high hydrostatic pressure and by resonance Raman spectroscopy. Human enzyme tends to denature to the P420 form more easily than the minipig form; moreover, the apparent compressibility of the heme active site (as judged from a redshift of the absorption maximum with pressure) is greater than that of the minipig counterpart. Relative compactness of the minipig enzyme is also seen in the Raman spectra, where the presence of planar heme conformation was inferred from band positions characteristic of the low-spin heme with high degree of symmetry. In this respect, the CYP2E1 seems to be another example of P450 conformational heterogeneity as shown, e.g., by Davydov et al. for CYP3A4 [Biochem. Biophys. Res. Commun. 312 (2003) 121-130]. The results indicate that the flexibility of the CYP active site is likely one of its basic structural characteristics.

  17. Structure of recombinant Leishmania donovani pteridine reductase reveals a disordered active site

    PubMed Central

    Barrack, Keri L.; Tulloch, Lindsay B.; Burke, Lynsey-Ann; Fyfe, Paul K.; Hunter, William N.

    2011-01-01

    Pteridine reductase (PTR1) is a potential target for drug development against parasitic Trypanosoma and Leishmania species, protozoa that are responsible for a range of serious diseases found in tropical and subtropical parts of the world. As part of a structure-based approach to inhibitor development, specifically targeting Leishmania species, well ordered crystals of L. donovani PTR1 were sought to support the characterization of complexes formed with inhibitors. An efficient system for recombinant protein production was prepared and the enzyme was purified and crystallized in an orthorhombic form with ammonium sulfate as the precipitant. Diffraction data were measured to 2.5 Å resolution and the structure was solved by molecular replacement. However, a sulfate occupies a phosphate-binding site used by NADPH and occludes cofactor binding. The nicotinamide moiety is a critical component of the active site and without it this part of the structure is disordered. The crystal form obtained under these conditions is therefore unsuitable for the characterization of inhibitor complexes. PMID:21206018

  18. Revealing the Functional States in the Active Site of BLUF Photoreceptors from Electrochromic Shift Calculations

    PubMed Central

    2014-01-01

    Photoexcitation with blue light of the flavin chromophore in BLUF photoreceptors induces a switch into a metastable signaling state that is characterized by a red-shifted absorption maximum. The red shift is due to a rearrangement in the hydrogen bond pattern around Gln63 located in the immediate proximity of the isoalloxazine ring system of the chromophore. There is a long-lasting controversy between two structural models, named Q63A and Q63J in the literature, on the local conformation of the residues Gln63 and Tyr21 in the dark state of the photoreceptor. As regards the mechanistic details of the light-activation mechanism, rotation of Gln63 is opposed by tautomerism in the Q63A and Q63J models, respectively. We provide a structure-based simulation of electrochromic shifts of the flavin chromophore in the wild type and in various site-directed mutants. The excellent overall agreement between experimental and computed data allows us to evaluate the two structural models. Compelling evidence is obtained that the Q63A model is incorrect, whereas the Q63J is fully consistent with the present computations. Finally, we confirm independently that a keto–enol tautomerization of the glutamine at position 63, which was proposed as molecular mechanism for the transition between the dark and the light-adapted state, explains the measured 10 to 15 nm red shift in flavin absorption between these two states of the protein. We believe that the accurateness of our results provides evidence that the BLUF photoreceptors absorption is fine-tuned through electrostatic interactions between the chromophore and the protein matrix, and finally that the simplicity of our theoretical model is advantageous as regards easy reproducibility and further extensions. PMID:25153778

  19. Structural investigation of heteroyohimbine alkaloid synthesis reveals active site elements that control stereoselectivity.

    PubMed

    Stavrinides, Anna; Tatsis, Evangelos C; Caputi, Lorenzo; Foureau, Emilien; Stevenson, Clare E M; Lawson, David M; Courdavault, Vincent; O'Connor, Sarah E

    2016-01-01

    Plants produce an enormous array of biologically active metabolites, often with stereochemical variations on the same molecular scaffold. These changes in stereochemistry dramatically impact biological activity. Notably, the stereoisomers of the heteroyohimbine alkaloids show diverse pharmacological activities. We reported a medium chain dehydrogenase/reductase (MDR) from Catharanthus roseus that catalyses formation of a heteroyohimbine isomer. Here we report the discovery of additional heteroyohimbine synthases (HYSs), one of which produces a mixture of diastereomers. The crystal structures for three HYSs have been solved, providing insight into the mechanism of reactivity and stereoselectivity, with mutation of one loop transforming product specificity. Localization and gene silencing experiments provide a basis for understanding the function of these enzymes in vivo. This work sets the stage to explore how MDRs evolved to generate structural and biological diversity in specialized plant metabolism and opens the possibility for metabolic engineering of new compounds based on this scaffold. PMID:27418042

  20. Structural investigation of heteroyohimbine alkaloid synthesis reveals active site elements that control stereoselectivity

    PubMed Central

    Stavrinides, Anna; Tatsis, Evangelos C.; Caputi, Lorenzo; Foureau, Emilien; Stevenson, Clare E. M.; Lawson, David M.; Courdavault, Vincent; O'Connor, Sarah E.

    2016-01-01

    Plants produce an enormous array of biologically active metabolites, often with stereochemical variations on the same molecular scaffold. These changes in stereochemistry dramatically impact biological activity. Notably, the stereoisomers of the heteroyohimbine alkaloids show diverse pharmacological activities. We reported a medium chain dehydrogenase/reductase (MDR) from Catharanthus roseus that catalyses formation of a heteroyohimbine isomer. Here we report the discovery of additional heteroyohimbine synthases (HYSs), one of which produces a mixture of diastereomers. The crystal structures for three HYSs have been solved, providing insight into the mechanism of reactivity and stereoselectivity, with mutation of one loop transforming product specificity. Localization and gene silencing experiments provide a basis for understanding the function of these enzymes in vivo. This work sets the stage to explore how MDRs evolved to generate structural and biological diversity in specialized plant metabolism and opens the possibility for metabolic engineering of new compounds based on this scaffold. PMID:27418042

  1. The crystal structure of Escherichia coli heat shock protein YedU reveals three potential catalytic active sites

    PubMed Central

    Zhao, Yonghong; Liu, Deqian; Kaluarachchi, Warna D.; Bellamy, Henry D.; White, Mark A.; Fox, Robert O.

    2003-01-01

    The mRNA of Escherichia coli yedU gene is induced 31-fold upon heat shock. The 31-kD YedU protein, also calls Hsp31, is highly conserved in several human pathogens and has chaperone activity. We solved the crystal structure of YedU at 2.2 Å resolution. YedU monomer has an α/β/α sandwich domain and a small α/β domain. YedU is a dimer in solution, and its crystal structure indicates that a significant amount of surface area is buried upon dimerization. There is an extended hydrophobic patch that crosses the dimer interface on the surface of the protein. This hydrophobic patch is likely the substrate-binding site responsible for the chaperone activity. The structure also reveals a potential protease-like catalytic triad composed of Cys184, His185, and Asp213, although no enzymatic activity could be identified. YedU coordinates a metal ion using His85, His122, and Glu90. This 2-His-1-carboxylate motif is present in carboxypeptidase A (a zinc enzyme), and a number of dioxygenases and hydroxylases that utilize iron as a cofactor, suggesting another potential function for YedU. PMID:14500888

  2. Crystal Structures of a Multidrug-Resistant Human Immunodeficiency Virus Type 1 Protease Reveal an Expanded Active-Site Cavity

    SciTech Connect

    Logsdon, Bradley C.; Vickrey, John F.; Martin, Philip; Proteasa, Gheorghe; Koepke, Jay I.; Terlecky, Stanley R.; Wawrzak, Zdzislaw; Winters, Mark A.; Merigan, Thomas C.; Kovari, Ladislau C.

    2010-03-08

    The goal of this study was to use X-ray crystallography to investigate the structural basis of resistance to human immunodeficiency virus type 1 (HIV-1) protease inhibitors. We overexpressed, purified, and crystallized a multidrug-resistant (MDR) HIV-1 protease enzyme derived from a patient failing on several protease inhibitor-containing regimens. This HIV-1 variant contained codon mutations at positions 10, 36, 46, 54, 63, 71, 82, 84, and 90 that confer drug resistance to protease inhibitors. The 1.8-{angstrom} crystal structure of this MDR patient isolate reveals an expanded active-site cavity. The active-site expansion includes position 82 and 84 mutations due to the alterations in the amino acid side chains from longer to shorter (e.g., V82A and I84V). The MDR isolate 769 protease 'flaps' stay open wider, and the difference in the flap tip distances in the MDR 769 variant is 12 {angstrom}. The MDR 769 protease crystal complexes with lopinavir and DMP450 reveal completely different binding modes. The network of interactions between the ligands and the MDR 769 protease is completely different from that seen with the wild-type protease-ligand complexes. The water molecule-forming hydrogen bonds bridging between the two flaps and either the substrate or the peptide-based inhibitor are lacking in the MDR 769 clinical isolate. The S1, S1', S3, and S3' pockets show expansion and conformational change. Surface plasmon resonance measurements with the MDR 769 protease indicate higher k{sub off} rates, resulting in a change of binding affinity. Surface plasmon resonance measurements provide k{sub on} and k{sub off} data (K{sub d} = k{sub off}/k{sub on}) to measure binding of the multidrug-resistant protease to various ligands. This MDR 769 protease represents a new antiviral target, presenting the possibility of designing novel inhibitors with activity against the open and expanded protease forms.

  3. The Crystal Structure of Dehi Reveals a New A-Haloacid Dehalogenase Fold And Active Site Mechanism

    SciTech Connect

    Schmidberger, J.W.; Wilce, J.A.; Weightman, A.J.; Whisstock, J.C.; Wilce, M.C.J.

    2009-05-27

    Haloacid dehalogenases catalyse the removal of halides from organic haloacids and are of interest for bioremediation and for their potential use in the synthesis of industrial chemicals. We present the crystal structure of the homodimer DehI from Pseudomonas putida strain PP3, the first structure of a group I {alpha}-haloacid dehalogenase that can process both L- and D-substrates. The structure shows that the DehI monomer consists of two domains of {approx}130 amino acids that have {approx}16% sequence identity yet adopt virtually identical and unique folds that form a pseudo-dimer. Analysis of the active site reveals the likely binding mode of both L- and D-substrates with respect to key catalytic residues. Asp189 is predicted to activate a water molecule for nucleophilic attack of the substrate chiral centre resulting in an inversion of configuration of either L- or D-substrates in contrast to D-only enzymes. These details will assist with future bioengineering of dehalogenases.

  4. Interrogation of Global Active Site Occupancy of a Fungal Iterative Polyketide Synthase Reveals Strategies for Maintaining Biosynthetic Fidelity

    PubMed Central

    Vagstad, Anna L.; Bumpus, Stefanie B.; Belecki, Katherine; Kelleher, Neil L.; Townsend, Craig A.

    2012-01-01

    Nonreducing iterative polyketide synthases (NR-PKSs) are responsible for assembling the core of fungal aromatic natural products with diverse biological properties. Despite recent advances in the field, many mechanistic details of polyketide assembly by these megasynthases remain unknown. To expand our understanding of substrate loading, polyketide elongation, cyclization, and product release, active site occupancy and product output were explored by Fourier transform mass spectrometry using the norsolorinic acid anthrone-producing polyketide synthase, PksA, from the aflatoxin biosynthetic pathway in Aspergillus parasiticus. Here we report the simultaneous observation of covalent intermediates from all catalytic domains of PksA from in vitro reconstitution reactions. The data provide snapshots of iterative catalysis and reveal an underappreciated editing function for the C-terminal thioesterase domain beyond its recently established synthetic role in Claisen/Dieckmann cyclization and product release. The specificity of thioesterase catalyzed hydrolysis was explored using biosynthetically relevant protein-bound and small molecule acyl substrates, and demonstrated activity against hexanoyl and acetyl, but not malonyl. Processivity of polyketide extension was supported by the inability of a nonhydrolyzable malonyl analog to trap products of intermediate chain lengths and by the detection of only fully extended species observed covalently bound to, and as the predominant products released by, PksA. High occupancy of the malonyl transacylase domain and fast relative rate of malonyl transfer compared to starter unit transfer indicate that rapid loading of extension units onto the carrier domain facilitates efficient chain extension in a manner kinetically favorable to ultimate product formation. PMID:22452347

  5. Differences between MyoD DNA binding and activation site requirements revealed by functional random sequence selection.

    PubMed Central

    Huang, J; Blackwell, T K; Kedes, L; Weintraub, H

    1996-01-01

    A method has been developed for selecting functional enhancer/promoter sites from random DNA sequences in higher eukaryotic cells. Of sequences that were thus selected for transcriptional activation by the muscle-specific basic helix-loop-helix protein MyoD, only a subset are similar to the preferred in vitro binding consensus, and in the same promoter context an optimal in vitro binding site was inactive. Other sequences with full transcriptional activity instead exhibit sequence preferences that, remarkably, are generally either identical or very similar to those found in naturally occurring muscle-specific promoters. This first systematic examination of the relation between DNA binding and transcriptional activation by basic helix-loop-helix proteins indicates that binding per se is necessary but not sufficient for transcriptional activation by MyoD and implies a requirement for other DNA sequence-dependent interactions or conformations at its binding site. PMID:8668207

  6. FRET analysis using sperm-activating peptides tagged with fluorescent proteins reveals that ligand-binding sites exist as clusters.

    PubMed

    Arcos-Hernández, César; Romero, Francisco; Sánchez-Guevara, Yoloxochitl; Beltrán, Carmen; Nishigaki, Takuya

    2016-02-01

    Long-range cellular communication between the sperm and egg is critical for external fertilization. Sperm-activating peptides (SAPs) are diffusible components of the outer layer of eggs in echinoderms, and function as chemoattractants for spermatozoa. The decapeptide named speract is the best-characterized sea urchin SAP. Biochemical and physiological actions of speract have been studied with purified or chemically synthesized peptides. In this work, we prepared recombinant speract fused to a fluorescent protein (FP; FP-speract) using three color variants: a cyan (eCFP), a yellow (mVenus) and a large Stokes shift yellow (mAmetrine) FP. Although these fluorescence tags are 20 times larger than speract, competitive binding experiments using mAmetrine-speract revealed that this FP-speract has binding affinity to the receptor that is comparable (7.6-fold less) to that of non-labeled speract. Indeed, 10 nmol l(-1) eCFP-speract induces physiological sperm responses such as membrane potential changes and increases in intracellular pH and Ca(2+) concentrations similar to those triggered by 10 nmol l(-1) speract. Furthermore, FP-speract maintains its fluorescence upon binding to its receptor. Using this property, we performed fluorescence resonance energy transfer (FRET) measurements with eCFP-speract and mVenus-speract as probes and obtained a positive FRET signal upon binding to the receptor, which suggests that the speract receptor exists as an oligomer, at least as a dimer, or alternatively that a single speract receptor protein possesses multiple binding sites. This property could partially account for the positive and/or negative cooperative binding of speract to the receptor. PMID:26889001

  7. Ligand-binding specificity and promiscuity of the main lignocellulolytic enzyme families as revealed by active-site architecture analysis.

    PubMed

    Tian, Li; Liu, Shijia; Wang, Shuai; Wang, Lushan

    2016-01-01

    Biomass can be converted into sugars by a series of lignocellulolytic enzymes, which belong to the glycoside hydrolase (GH) families summarized in CAZy databases. Here, using a structural bioinformatics method, we analyzed the active site architecture of the main lignocellulolytic enzyme families. The aromatic amino acids Trp/Tyr and polar amino acids Glu/Asp/Asn/Gln/Arg occurred at higher frequencies in the active site architecture than in the whole enzyme structure. And the number of potential subsites was significantly different among different families. In the cellulase and xylanase families, the conserved amino acids in the active site architecture were mostly found at the -2 to +1 subsites, while in β-glucosidase they were mainly concentrated at the -1 subsite. Families with more conserved binding amino acid residues displayed strong selectivity for their ligands, while those with fewer conserved binding amino acid residues often exhibited promiscuity when recognizing ligands. Enzymes with different activities also tended to bind different hydroxyl oxygen atoms on the ligand. These results may help us to better understand the common and unique structural bases of enzyme-ligand recognition from different families and provide a theoretical basis for the functional evolution and rational design of major lignocellulolytic enzymes. PMID:27009476

  8. Ligand-binding specificity and promiscuity of the main lignocellulolytic enzyme families as revealed by active-site architecture analysis

    PubMed Central

    Tian, Li; Liu, Shijia; Wang, Shuai; Wang, Lushan

    2016-01-01

    Biomass can be converted into sugars by a series of lignocellulolytic enzymes, which belong to the glycoside hydrolase (GH) families summarized in CAZy databases. Here, using a structural bioinformatics method, we analyzed the active site architecture of the main lignocellulolytic enzyme families. The aromatic amino acids Trp/Tyr and polar amino acids Glu/Asp/Asn/Gln/Arg occurred at higher frequencies in the active site architecture than in the whole enzyme structure. And the number of potential subsites was significantly different among different families. In the cellulase and xylanase families, the conserved amino acids in the active site architecture were mostly found at the −2 to +1 subsites, while in β-glucosidase they were mainly concentrated at the −1 subsite. Families with more conserved binding amino acid residues displayed strong selectivity for their ligands, while those with fewer conserved binding amino acid residues often exhibited promiscuity when recognizing ligands. Enzymes with different activities also tended to bind different hydroxyl oxygen atoms on the ligand. These results may help us to better understand the common and unique structural bases of enzyme-ligand recognition from different families and provide a theoretical basis for the functional evolution and rational design of major lignocellulolytic enzymes. PMID:27009476

  9. Structure of Arabidopsis thaliana 5-methylthioribose Kinase Reveals a More Occluded Active Site Than its Bacterial Homolog

    SciTech Connect

    Ku,S.; Cornell, K.; Howell, P.

    2007-01-01

    Metabolic variations exist between the methionine salvage pathway of humans and a number of plants and microbial pathogens. 5-Methylthioribose (MTR) kinase is a key enzyme required for methionine salvage in plants and many bacteria. The absence of a mammalian homolog suggests that MTR kinase is a good target for the design of specific herbicides or antibiotics. The structure of Arabidopsis thaliana MTR kinase co-crystallized with ATP?S and MTR has been determined at 1.9 Angstroms resolution. The structure is similar to B. subtilis MTR kinase and has the same protein kinase fold observed in other evolutionarily related protein kinase-like phosphotransferases. The active site is comparable between the two enzymes with the DXE-motif coordinating the nucleotide-Mg, the D238 of the HGD catalytic loop polarizing the MTR O1 oxygen, and the RR-motif interacting with the substrate MTR. Unlike its bacterial homolog, however, the Gly-rich loop (G-loop) of A. thaliana MTR kinase has an extended conformation, which shields most of the active site from solvent, a feature that resembles eukaryotic protein kinases more than the bacterial enzyme. The G- and W-loops of A. thaliana and B. subtilis MTR kinase adopt different conformations despite high sequence similarity. The ATP?S analog was hydrolyzed during the co-crystallization procedure, resulting in ADP in the active site. This suggests that the A. thaliana enzyme, like its bacterial homolog, may have significant ATPase activity in the absence of MTR. The structure of A. thaliana MTR kinase provides a template for structure-based design of agrochemicals, particularly herbicides whose effectiveness could be regulated by nutrient levels. Features of the MTR binding site offer an opportunity for a simple organic salt of an MTR analog to specifically inhibit MTR kinase.

  10. SET7/9 Catalytic Mutants Reveal the Role of Active Site Water Molecules in Lysine Multiple Methylation

    SciTech Connect

    Del Rizzo, Paul A.; Couture, Jean-François; Dirk, Lynnette M.A.; Strunk, Bethany S.; Roiko, Marijo S.; Brunzelle, Joseph S.; Houtz, Robert L.; Trievel, Raymond C.

    2010-11-15

    SET domain lysine methyltransferases (KMTs) methylate specific lysine residues in histone and non-histone substrates. These enzymes also display product specificity by catalyzing distinct degrees of methylation of the lysine {epsilon}-amino group. To elucidate the molecular mechanism underlying this specificity, we have characterized the Y245A and Y305F mutants of the human KMT SET7/9 (also known as KMT7) that alter its product specificity from a monomethyltransferase to a di- and a trimethyltransferase, respectively. Crystal structures of these mutants in complex with peptides bearing unmodified, mono-, di-, and trimethylated lysines illustrate the roles of active site water molecules in aligning the lysine {epsilon}-amino group for methyl transfer with S-adenosylmethionine. Displacement or dissociation of these solvent molecules enlarges the diameter of the active site, accommodating the increasing size of the methylated {epsilon}-amino group during successive methyl transfer reactions. Together, these results furnish new insights into the roles of active site water molecules in modulating lysine multiple methylation by SET domain KMTs and provide the first molecular snapshots of the mono-, di-, and trimethyl transfer reactions catalyzed by these enzymes.

  11. Structural and biochemical characterisation of Archaeoglobus fulgidus esterase reveals a bound CoA molecule in the vicinity of the active site

    PubMed Central

    Sayer, Christopher; Finnigan, William; Isupov, Michail N.; Levisson, Mark; Kengen, Servé W. M.; van der Oost, John; Harmer, Nicholas J.; Littlechild, Jennifer A.

    2016-01-01

    A new carboxyl esterase, AF-Est2, from the hyperthermophilic archaeon Archaeoglobus fulgidus has been cloned, over-expressed in Escherichia coli and biochemically and structurally characterized. The enzyme has high activity towards short- to medium-chain p-nitrophenyl carboxylic esters with optimal activity towards the valerate ester. The AF-Est2 has good solvent and pH stability and is very thermostable, showing no loss of activity after incubation for 30 min at 80 °C. The 1.4 Å resolution crystal structure of AF-Est2 reveals Coenzyme A (CoA) bound in the vicinity of the active site. Despite the presence of CoA bound to the AF-Est2 this enzyme has no CoA thioesterase activity. The pantetheine group of CoA partially obstructs the active site alcohol pocket suggesting that this ligand has a role in regulation of the enzyme activity. A comparison with closely related α/β hydrolase fold enzyme structures shows that the AF-Est2 has unique structural features that allow CoA binding. A comparison of the structure of AF-Est2 with the human carboxyl esterase 1, which has CoA thioesterase activity, reveals that CoA is bound to different parts of the core domain in these two enzymes and approaches the active site from opposite directions. PMID:27160974

  12. Crystal Structure of a Bacterial Type IB DNA Topoisomerase Reveals a Preassembled Active Site in the Absence of DNA

    SciTech Connect

    Patel, Asmita; Shuman, Stewart; Mondragon, Alfonso

    2010-03-08

    Type IB DNA topoisomerases are found in all eukarya, two families of eukaryotic viruses (poxviruses and mimivirus), and many genera of bacteria. They alter DNA topology by cleaving and resealing one strand of duplex DNA via a covalent DNA-(3-phosphotyrosyl)-enzyme intermediate. Bacterial type IB enzymes were discovered recently and are described as poxvirus-like with respect to their small size, primary structures, and bipartite domain organization. Here we report the 1.75-{angstrom} crystal structure of Deinococcus radiodurans topoisomerase IB (DraTopIB), a prototype of the bacterial clade. DraTopIB consists of an amino-terminal (N) {beta}-sheet domain (amino acids 1-90) and a predominantly {alpha}-helical carboxyl-terminal (C) domain (amino acids 91-346) that closely resemble the corresponding domains of vaccinia virus topoisomerase IB. The five amino acids of DraTopIB that comprise the catalytic pentad (Arg-137, Lys-174, Arg-239, Asn-280, and Tyr-289) are preassembled into the active site in the absence of DNA in a manner nearly identical to the pentad configuration in human topoisomerase I bound to DNA. This contrasts with the apoenzyme of vaccinia topoisomerase, in which three of the active site constituents are either displaced or disordered. The N and C domains of DraTopIB are splayed apart in an 'open' conformation, in which the surface of the catalytic domain containing the active site is exposed for DNA binding. A comparison with the human topoisomerase I-DNA cocrystal structure suggests how viral and bacterial topoisomerase IB enzymes might bind DNA circumferentially via movement of the N domain into the major groove and clamping of a disordered loop of the C domain around the helix.

  13. The Crystal Structure of a Cardiovirus RNA-Dependent RNA Polymerase Reveals an Unusual Conformation of the Polymerase Active Site

    PubMed Central

    Vives-Adrian, Laia; Lujan, Celia; Oliva, Baldo; van der Linden, Lonneke; Selisko, Barbara; Coutard, Bruno; Canard, Bruno; van Kuppeveld, Frank J. M.

    2014-01-01

    ABSTRACT Encephalomyocarditis virus (EMCV) is a member of the Cardiovirus genus within the large Picornaviridae family, which includes a number of important human and animal pathogens. The RNA-dependent RNA polymerase (RdRp) 3Dpol is a key enzyme for viral genome replication. In this study, we report the X-ray structures of two different crystal forms of the EMCV RdRp determined at 2.8- and 2.15-Å resolution. The in vitro elongation and VPg uridylylation activities of the purified enzyme have also been demonstrated. Although the overall structure of EMCV 3Dpol is shown to be similar to that of the known RdRps of other members of the Picornaviridae family, structural comparisons show a large reorganization of the active-site cavity in one of the crystal forms. The rearrangement affects mainly motif A, where the conserved residue Asp240, involved in ribonucleoside triphosphate (rNTP) selection, and its neighbor residue, Phe239, move about 10 Å from their expected positions within the ribose binding pocket toward the entrance of the rNTP tunnel. This altered conformation of motif A is stabilized by a cation-π interaction established between the aromatic ring of Phe239 and the side chain of Lys56 within the finger domain. Other contacts, involving Phe239 and different residues of motif F, are also observed. The movement of motif A is connected with important conformational changes in the finger region flanked by residues 54 to 63, harboring Lys56, and in the polymerase N terminus. The structures determined in this work provide essential information for studies on the cardiovirus RNA replication process and may have important implications for the development of new antivirals targeting the altered conformation of motif A. IMPORTANCE The Picornaviridae family is one of the largest virus families known, including many important human and animal pathogens. The RNA-dependent RNA polymerase (RdRp) 3Dpol is a key enzyme for picornavirus genome replication and a validated

  14. Crystal structure of the plexin A3 intracellular region reveals an autoinhibited conformation through active site sequestration

    SciTech Connect

    He, Huawei; Yang, Taehong; Terman, Jonathan R.; Zhang, Xuewu

    2010-01-20

    Plexin cell surface receptors bind to semaphorin ligands and transduce signals for regulating neuronal axon guidance. The intracellular region of plexins is essential for signaling and contains a R-Ras/M-Ras GTPase activating protein (GAP) domain that is divided into two segments by a Rho GTPase-binding domain (RBD). The regulation mechanisms for plexin remain elusive, although it is known that activation requires both binding of semaphorin to the extracellular region and a Rho-family GTPase (Rac1 or Rnd1) to the RBD. Here we report the crystal structure of the plexin A3 intracellular region. The structure shows that the N- and C-terminal portions of the GAP homologous regions together form a GAP domain with an overall fold similar to other Ras GAPs. However, the plexin GAP domain adopts a closed conformation and cannot accommodate R-Ras/M-Ras in its substrate-binding site, providing a structural basis for the autoinhibited state of plexins. A comparison with the plexin B1 RBD/Rnd1 complex structure suggests that Rnd1 binding alone does not induce a conformational change in plexin, explaining the requirement of both semaphorin and a Rho GTPase for activation. The structure also identifies an N-terminal segment that is important for regulation. Both the N-terminal segment and the RBD make extensive interactions with the GAP domain, suggesting the presence of an allosteric network connecting these three domains that integrates semaphorin and Rho GTPase signals to activate the GAP. The importance of these interactions in plexin signaling is shown by both cell-based and in vivo axon guidance assays.

  15. Mutant Analysis of the Escherichia coli FhuA Protein Reveals Sites of FhuA Activity

    PubMed Central

    Endriß, Franziska; Braun, Michael; Killmann, Helmut; Braun, Volkmar

    2003-01-01

    The FhuA outer membrane protein of Escherichia coli actively transports ferrichrome, albomycin, and rifamycin CGP 4832, and confers sensitivity to microcin J25, colicin M, and the phages T1, T5, and φ80. Guided by the FhuA crystal structure and derived predictions on how FhuA might function, mutants were isolated in the cork domain (residues 1 to 160) and in the β-barrel domain (residues 161 to 714). Deletion of the TonB box (residues 7 to 11) completely inactivated all TonB-dependent functions of FhuA. Fixation of the cork to turn 7 of the barrel through a disulfide bridge between introduced C27 and C533 residues abolished ferrichrome transport, which was restored by reduction of the disulfide bond. Deletion of residues 24 to 31, including the switch helix (residues 24 to 29), which upon binding of ferrichrome to FhuA undergoes a large structural transition (17 Å) and exposes the N terminus of FhuA (TonB box) to the periplasm, reduced FhuA transport activity (79% of the wild-type activity) but conferred full sensitivity to colicin M and the phages. Duplication of residues 23 to 30 or deletion of residues 13 to 20 resulted in FhuA derivatives with properties similar to those of FhuA with a deletion of residues 24 to 31. However, a frameshift mutation that changed QSEA at positions 18 to 21 to KKAP abolished almost completely most of FhuA's activities. The conserved residues R93 and R133 among energy-coupled outer membrane transporters are thought to fix the cork to the β-barrel by forming salt bridges to the conserved residues E522 and E571 of the β-barrel. Proteins with the E522R and E571R mutations were inactive, but inactivity was not caused by repulsion of R93 by R522 and R571 and of R133 by R571. Point mutations in the cork at sites that move or do not move upon the binding of ferrichrome had no effect or conferred only slightly reduced activities. It is concluded that the TonB box is essential for FhuA activity. The TonB box region has to be flexible

  16. In silico Investigation of the PglB Active Site Reveals Transient Catalytic States and Octahedral Metal Ion Coordination.

    PubMed

    Pedebos, Conrado; Arantes, Pablo Ricardo; Giesel, Guilherme Menegon; Verli, Hugo

    2015-11-01

    The last step of the bacterial N-glycosylation pathway involves PglB, an oligosaccharyltransferase, which is responsible for the en bloc transfer of a fully assembled oligosaccharide chain to a protein possessing the extended motif D/E-X-N-X-S/T. Recently, this molecule had its full structure elucidated, enabling the description of its domains and the proposition of a catalytic mechanism. By employing molecular dynamics simulations, we were able to evaluate structural aspects of PglB, suggesting prevalent motions that may bring insights into the mechanism of the glycosylated peptide detachment. Additionally, we identified transient states at the catalytic site, in which the previously described carboxamide twisting mechanism was observed. Aided by quantum mechanics calculations for each different conformational states of the catalytic site, we determined the presence of an octahedral metal coordination, along with the presence of one water molecule at the catalytic site. PMID:26220543

  17. Structures of Mycobacterium tuberculosis Anthranilate Phosphoribosyltransferase Variants Reveal the Conformational Changes That Facilitate Delivery of the Substrate to the Active Site.

    PubMed

    Cookson, Tammie V M; Evans, Genevieve L; Castell, Alina; Baker, Edward N; Lott, J Shaun; Parker, Emily J

    2015-10-01

    Anthranilate phosphoribosyltransferase (AnPRT) is essential for the biosynthesis of tryptophan in Mycobacterium tuberculosis (Mtb). This enzyme catalyzes the second committed step in tryptophan biosynthesis, the Mg²⁺-dependent reaction between 5'-phosphoribosyl-1'-pyrophosphate (PRPP) and anthranilate. The roles of residues predicted to be involved in anthranilate binding have been tested by the analysis of six Mtb-AnPRT variant proteins. Kinetic analysis showed that five of six variants were active and identified the conserved residue R193 as being crucial for both anthranilate binding and catalytic function. Crystal structures of these Mtb-AnPRT variants reveal the ability of anthranilate to bind in three sites along an extended anthranilate tunnel and expose the role of the mobile β2-α6 loop in facilitating the enzyme's sequential reaction mechanism. The β2-α6 loop moves sequentially between a "folded" conformation, partially occluding the anthranilate tunnel, via an "open" position to a "closed" conformation, which supports PRPP binding and allows anthranilate access via the tunnel to the active site. The return of the β2-α6 loop to the "folded" conformation completes the catalytic cycle, concordantly allowing the active site to eject the product PRA and rebind anthranilate at the opening of the anthranilate tunnel for subsequent reactions. Multiple anthranilate molecules blocking the anthranilate tunnel prevent the β2-α6 loop from undergoing the conformational changes required for catalysis, thus accounting for the unusual substrate inhibition of this enzyme. PMID:26356348

  18. Newly identified essential amino acid residues affecting ^8-sphingolipid desaturase activity revealed by site-directed mutagenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to identify amino acid residues crucial for the enzymatic activity of ^8-sphingolipid desaturases, a sequence comparison was performed among ^8-sphingolipid desaturases and ^6-fatty acid desaturase from various plants. In addition to the known conserved cytb5 (cytochrome b5) HPGG motif and...

  19. Fibroblast Growth Factor 2 Internal Ribosome Entry Site (Ires) Activity Ex Vivo and in Transgenic Mice Reveals a Stringent Tissue-Specific Regulation

    PubMed Central

    Créancier, Laurent; Morello, Dominique; Mercier, Pascale; Prats, Anne-Catherine

    2000-01-01

    Fibroblast growth factor 2 (FGF-2) is a powerful mitogen involved in proliferation, differentiation, and survival of various cells including neurons. FGF-2 expression is translationally regulated; in particular, the FGF-2 mRNA contains an internal ribosome entry site (IRES) allowing cap-independent translation. Here, we have analyzed FGF-2 IRES tissue specificity ex vivo and in vivo by using a dual luciferase bicistronic vector. This IRES was active in most transiently transfected human and nonhuman cell types, with a higher activity in p53 −/− osteosarcoma and neuroblastoma cell lines. Transgenic mice were generated using bicistronic transgenes with FGF-2 IRES or encephalomyocarditis virus (EMCV) IRES. Measurements of luciferase activity revealed high FGF-2 IRES activity in 11-d-old embryos (E11) but not in the placenta; activity was high in the heart and brain of E16. FGF-2 IRES activity was low in most organs of the adult, but exceptionally high in the brain. Such spatiotemporal variations were not observed with the EMCV IRES. These data, demonstrating the strong tissue specificity of a mammalian IRES in vivo, suggest a pivotal role of translational IRES- dependent activation of FGF-2 expression during embryogenesis and in adult brain. FGF-2 IRES could constitute, thus, a powerful tool for gene transfer in the central nervous system. PMID:10893274

  20. The Crystal Structure of the Ivy delta4-16:0-ACP Desaturase Reveals Structural Details of the Oxidized Active Site and Potential Determinants of Regioselectivity

    SciTech Connect

    Guy,J.; Whittle, E.; Kumaran, D.; Lindqvist, Y.; Shanklin, J.

    2007-01-01

    The multifunctional acyl-acyl carrier protein (ACP) desaturase from Hedera helix (English ivy) catalyzes the {Delta}{sup 4} desaturation of 16:0-ACP and the{Delta}{sup 9} desaturation of 18:0-ACP and further desaturates{Delta}{sup 9}-16:1 or {Delta}{sup 9}-18:1 to the corresponding {Delta}{sup 4,9} dienes. The crystal structure of the enzyme has been solved to 1.95{angstrom} resolution, and both the iron-iron distance of 3.2{angstrom} and the presence of a {mu}-oxo bridge reveal this to be the only reported structure of a desaturase in the oxidized FeIII-FeIII form. Significant differences are seen between the oxidized active site and the reduced active site of the Ricinus communis (castor) desaturase; His{sup 227} coordination to Fe2 is lost, and the side chain of Glu{sup 224}, which bridges the two iron ions in the reduced structure, does not interact with either iron. Although carboxylate shifts have been observed on oxidation of other diiron proteins, this is the first example of the residue moving beyond the coordination range of both iron ions. Comparison of the ivy and castor structures reveal surface amino acids close to the annulus of the substrate-binding cavity and others lining the lower portion of the cavity that are potential determinants of their distinct substrate specificities. We propose a hypothesis that differences in side chain packing explains the apparent paradox that several residues lining the lower portion of the cavity in the ivy desaturase are bulkier than their equivalents in the castor enzyme despite the necessity for the ivy enzyme to accommodate three more carbons beyond the diiron site.

  1. The Structures of the C185S and C185A Mutants of Sulfite Oxidase Reveal Rearrangement of the Active Site

    SciTech Connect

    Qiu, James A.; Wilson, Heather L.; Pushie, M. Jake; Kisker, Caroline; George, Graham N.; Rajagopalan, K.V.

    2010-11-03

    Sulfite oxidase (SO) catalyzes the physiologically critical conversion of sulfite to sulfate. Enzymatic activity is dependent on the presence of the metal molybdenum complexed with a pyranopterin-dithiolene cofactor termed molybdopterin. Comparison of the amino acid sequences of SOs from a variety of sources has identified a single conserved Cys residue essential for catalytic activity. The crystal structure of chicken liver sulfite oxidase indicated that this residue, Cys185 in chicken SO, coordinates the Mo atom in the active site. To improve our understanding of the role of this residue in the catalytic mechanism of sulfite oxidase, serine and alanine variants at position 185 of recombinant chicken SO were generated. Spectroscopic and kinetic studies indicate that neither variant is capable of sulfite oxidation. The crystal structure of the C185S variant was determined to 1.9 {angstrom} resolution and to 2.4 {angstrom} resolution in the presence of sulfite, and the C185A variant to 2.8 {angstrom} resolution. The structures of the C185S and C185A variants revealed that neither the Ser or Ala side chains appeared to closely interact with the Mo atom and that a third oxo group replaced the usual cysteine sulfur ligand at the Mo center, confirming earlier extended X-ray absorption fine structure spectroscopy (EXAFS) work on the human C207S mutant. An unexpected result was that in the C185S variant, in the absence of sulfite, the active site residue Tyr322 became disordered as did the loop region flanking it. In the C185S variant crystallized in the presence of sulfite, the Tyr322 residue relocalized to the active site. The C185A variant structure also indicated the presence of a third oxygen ligand; however, Tyr322 remained in the active site. EXAFS studies of the Mo coordination environment indicate the Mo atom is in the oxidized Mo{sup VI} state in both the C185S and C185A variants of chicken SO and show the expected trioxodithiolene active site. Density

  2. The structure of putative N-acetyl glutamate kinase from Thermus thermophilus reveals an intermediate active site conformation of the enzyme.

    PubMed

    Sundaresan, Ramya; Ragunathan, Preethi; Kuramitsu, Seiki; Yokoyama, Shigeyuki; Kumarevel, Thirumananseri; Ponnuraj, Karthe

    2012-04-13

    The de novo biosynthesis of arginine in microorganisms and plants is accomplished via several enzymatic steps. The enzyme N-acetyl glutamate kinase (NAGK) catalyzes the phosphorylation of the γ-COO(-) group of N-acetyl-L-glutamate (NAG) by adenosine triphosphate (ATP) which is the second rate limiting step in arginine biosynthesis pathway. Here we report the crystal structure of putative N-acetyl glutamate kinase (NAGK) from Thermus thermophilus HB8 (TtNAGK) determined at 1.92Å resolution. The structural analysis of TtNAGK suggests that the dimeric quaternary state of the enzyme and arginine insensitive nature are similar to mesophilic Escherichia coli NAGK. These features are significantly different from its thermophilic homolog Thermatoga maritima NAGK which is hexameric and arginine-sensitive. TtNAGK is devoid of its substrates but contains two sulfates at the active site. Very interestingly the active site of the enzyme adopts a conformation which is not completely open or closed and likely represents an intermediate stage in the catalytic cycle unlike its structural homologs, which all exist either in the open or closed conformation. Engineering arginine biosynthesis pathway enzymes for the production of l-arginine is an important industrial application. The structural comparison of TtNAGK with EcNAGK revealed the structural basis of thermostability of TtNAGK and this information could be very useful to generate mutants of NAGK with increased overall stability. PMID:22452987

  3. Beta-D-xylosidase from Selenomonas ruminantium: Role of Glutamate 186 in Catalysis Revealed by Site-Directed Mutagenesis, Alternate Substrates, and Active-site Inhibitor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beta-D-xylosidase/alpha-L-arabinofuranosidase from Selenomonas ruminantium (SXA) is the most active enzyme known for catalyzing hydrolysis of 1,4-beta-D-xylooligosaccharides to D xylose. Catalysis and inhibitor binding by the GH43 beta-xylosidase are governed by the protonation states of catalytic ...

  4. Nuclear resonance vibrational spectroscopy reveals the FeS cluster composition and active site vibrational properties of an O2-tolerant NAD+-reducing [NiFe] hydrogenase

    DOE PAGESBeta

    Lauterbach, Lars; Wang, Hongxin; Horch, Marius; Gee, Leland B.; Yoda, Yoshitaka; Tanaka, Yoshihito; Zebger, Ingo; Lenz, Oliver; Cramer, Stephen P.

    2014-10-30

    Hydrogenases are complex metalloenzymes that catalyze the reversible splitting of molecular hydrogen into protons and electrons essentially without overpotential. The NAD+-reducing soluble hydrogenase (SH) from Ralstonia eutropha is capable of H2 conversion even in the presence of usually toxic dioxygen. The molecular details of the underlying reactions are largely unknown, mainly because of limited knowledge of the structure and function of the various metal cofactors present in the enzyme. Here, all iron-containing cofactors of the SH were investigated by 57Fe specific nuclear resonance vibrational spectroscopy (NRVS). Our data provide experimental evidence for one [2Fe2S] center and four [4Fe4S] clusters, whichmore » is consistent with the amino acid sequence composition. Only the [2Fe2S] cluster and one of the four [4Fe4S] clusters were reduced upon incubation of the SH with NADH. This finding explains the discrepancy between the large number of FeS clusters and the small amount of FeS cluster-related signals as detected by electron paramagnetic resonance spectroscopic analysis of several NAD+-reducing hydrogenases. For the first time, Fe–CO and Fe–CN modes derived from the [NiFe] active site could be distinguished by NRVS through selective 13C labeling of the CO ligand. This strategy also revealed the molecular coordinates that dominate the individual Fe–CO modes. The present approach explores the complex vibrational signature of the Fe–S clusters and the hydrogenase active site, thereby showing that NRVS represents a powerful tool for the elucidation of complex biocatalysts containing multiple cofactors.« less

  5. New Insights into Active Site Conformation Dynamics of E. coli PNP Revealed by Combined H/D Exchange Approach and Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Kazazić, Saša; Bertoša, Branimir; Luić, Marija; Mikleušević, Goran; Tarnowski, Krzysztof; Dadlez, Michal; Narczyk, Marta; Bzowska, Agnieszka

    2016-01-01

    The biologically active form of purine nucleoside phosphorylase (PNP) from Escherichia coli (EC 2.4.2.1) is a homohexamer unit, assembled as a trimer of dimers. Upon binding of phosphate, neighboring monomers adopt different active site conformations, described as open and closed. To get insight into the functions of the two distinctive active site conformations, virtually inactive Arg24Ala mutant is complexed with phosphate; all active sites are found to be in the open conformation. To understand how the sites of neighboring monomers communicate with each other, we have combined H/D exchange (H/DX) experiments with molecular dynamics (MD) simulations. Both methods point to the mobility of the enzyme, associated with a few flexible regions situated at the surface and within the dimer interface. Although H/DX provides an average extent of deuterium uptake for all six hexamer active sites, it was able to indicate the dynamic mechanism of cross-talk between monomers, allostery. Using this technique, it was found that phosphate binding to the wild type (WT) causes arrest of the molecular motion in backbone fragments that are flexible in a ligand-free state. This was not the case for the Arg24Ala mutant. Upon nucleoside substrate/inhibitor binding, some release of the phosphate-induced arrest is observed for the WT, whereas the opposite effects occur for the Arg24Ala mutant. MD simulations confirmed that phosphate is bound tightly in the closed active sites of the WT; conversely, in the open conformation of the active site of the WT phosphate is bound loosely moving towards the exit of the active site. In Arg24Ala mutant binary complex Pi is bound loosely, too.

  6. Molecular dynamics simulations of apo, holo, and inactivator bound GABA-at reveal the role of active site residues in PLP dependent enzymes.

    PubMed

    Gökcan, Hatice; Monard, Gerald; Sungur Konuklar, F Aylin

    2016-07-01

    The pyridoxal 5-phosphate (PLP) cofactor is a significant organic molecule in medicinal chemistry. It is often found covalently bound to lysine residues in proteins to form PLP dependent enzymes. An example of this family of PLP dependent enzymes is γ-aminobutyric acid aminotransferase (GABA-AT) which is responsible for the degradation of the neurotransmitter GABA. Its inhibition or inactivation can be used to prevent the reduction of GABA concentration in brain which is the source of several neurological disorders. As a test case for PLP dependent enzymes, we have performed molecular dynamics simulations of GABA-AT to reveal the roles of the protein residues and its cofactor. Three different states have been considered: the apoenzyme, the holoenzyme, and the inactive state obtained after the suicide inhibition by vigabatrin. Different protonation states have also been considered for PLP and two key active site residues: Asp298 and His190. Together, 24 independent molecular dynamics trajectories have been simulated for a cumulative total of 2.88 µs. Our results indicate that, unlike in aqueous solution, the PLP pyridine moiety is protonated in GABA-AT. This is a consequence of a pKa shift triggered by a strong charge-charge interaction with an ionic "diad" formed by Asp298 and His190 that would help the activation of the first half-reaction of the catalytic mechanism in GABA-AT: the conversion of PLP to free pyridoxamine phosphate (PMP). In addition, our MD simulations exhibit additional strong hydrogen bond networks between the protein and PLP: the phosphate group is held in place by the donation of at least three hydrogen bonds while the carbonyl oxygen of the pyridine ring interacts with Gln301; Phe181 forms a π-π stacking interaction with the pyridine ring and works as a gate keeper with the assistance of Val300. All these interactions are hypothesized to help maintain free PMP in place inside the protein active site to facilitate the second half

  7. Deep Sequencing of Random Mutant Libraries Reveals the Active Site of the Narrow Specificity CphA Metallo-β-Lactamase is Fragile to Mutations.

    PubMed

    Sun, Zhizeng; Mehta, Shrenik C; Adamski, Carolyn J; Gibbs, Richard A; Palzkill, Timothy

    2016-01-01

    CphA is a Zn(2+)-dependent metallo-β-lactamase that efficiently hydrolyzes only carbapenem antibiotics. To understand the sequence requirements for CphA function, single codon random mutant libraries were constructed for residues in and near the active site and mutants were selected for E. coli growth on increasing concentrations of imipenem, a carbapenem antibiotic. At high concentrations of imipenem that select for phenotypically wild-type mutants, the active-site residues exhibit stringent sequence requirements in that nearly all residues in positions that contact zinc, the substrate, or the catalytic water do not tolerate amino acid substitutions. In addition, at high imipenem concentrations a number of residues that do not directly contact zinc or substrate are also essential and do not tolerate substitutions. Biochemical analysis confirmed that amino acid substitutions at essential positions decreased the stability or catalytic activity of the CphA enzyme. Therefore, the CphA active - site is fragile to substitutions, suggesting active-site residues are optimized for imipenem hydrolysis. These results also suggest that resistance to inhibitors targeted to the CphA active site would be slow to develop because of the strong sequence constraints on function. PMID:27616327

  8. The Structure of a Novel Thermophilic Esterase from the Planctomycetes Species, Thermogutta terrifontis Reveals an Open Active Site Due to a Minimal ‘Cap’ Domain

    PubMed Central

    Sayer, Christopher; Szabo, Zalan; Isupov, Michail N.; Ingham, Colin; Littlechild, Jennifer A.

    2015-01-01

    A carboxyl esterase (TtEst2) has been identified in a novel thermophilic bacterium, Thermogutta terrifontis from the phylum Planctomycetes and has been cloned and over-expressed in Escherichia coli. The enzyme has been characterized biochemically and shown to have activity toward small p-nitrophenyl (pNP) carboxylic esters with optimal activity for pNP-acetate. The enzyme shows moderate thermostability retaining 75% activity after incubation for 30 min at 70°C. The crystal structures have been determined for the native TtEst2 and its complexes with the carboxylic acid products propionate, butyrate, and valerate. TtEst2 differs from most enzymes of the α/β-hydrolase family 3 as it lacks the majority of the ‘cap’ domain and its active site cavity is exposed to the solvent. The bound ligands have allowed the identification of the carboxyl pocket in the enzyme active site. Comparison of TtEst2 with structurally related enzymes has given insight into how differences in their substrate preference can be rationalized based upon the properties of their active site pockets. PMID:26635762

  9. Release of halide ions from the buried active site of the haloalkane dehalogenase LinB revealed by stopped-flow fluorescence analysis and free energy calculations.

    PubMed

    Hladilkova, Jana; Prokop, Zbynek; Chaloupkova, Radka; Damborsky, Jiri; Jungwirth, Pavel

    2013-11-21

    Release of halide ions is an essential step of the catalytic cycle of haloalkane dehalogenases. Here we describe experimentally and computationally the process of release of a halide anion from the buried active site of the haloalkane dehalogenase LinB. Using stopped-flow fluorescence analysis and umbrella sampling free energy calculations, we show that the anion binding is ion-specific and follows the ordering I(-) > Br(-) > Cl(-). We also address the issue of the protonation state of the catalytic His272 residue and its effect on the process of halide release. While deprotonation of His272 increases binding of anions in the access tunnel, we show that the anionic ordering does not change with the switch of the protonation state. We also demonstrate that a sodium cation could relatively easily enter the active site, provided the His272 residue is singly protonated, and replace thus the missing proton. In contrast, Na(+) is strongly repelled from the active site containing the doubly protonated His272 residue. Our study contributes toward understanding of the reaction mechanism of haloalkane dehalogenase enzyme family. Determination of the protonation state of the catalytic histidine throughout the catalytic cycle remains a challenge for future studies. PMID:24151979

  10. Coupled motions during dynamics reveal a tunnel toward the active site regulated by the N-terminal α-helix in an acylaminoacyl peptidase.

    PubMed

    Papaleo, Elena; Renzetti, Giulia

    2012-09-01

    Acylaminoacyl peptidase (AAP) subfamily belongs to the prolyl oligopeptidase (POP) family of serine-proteases. There is a great interest in the definition of molecular mechanisms related to the activity and substrate recognition of these complex multi-domain enzymes. The active site relies at the interface between the C-terminal catalytic domain and the β-propeller domain, whose N-terminal region acts as a bridge to the hydrolase domain. In AAP, the N-terminal extension is characterized by a structurally conserved α1-helix, which is known to affect thermal stability and thermal dependence of the catalytic activity. In the present contribution, results from hundreds nanosecond all-atom molecular dynamics simulations, along with analyses of the networks of cross-correlated motions of a member of the AAP subfamily are discussed. The MD investigation identifies a tunnel that from the surrounding of the N-terminal α1-helix bring to the catalytic site. This cavity seems to be regulated by conformational changes of the α1-helix itself during the dynamics. The evidence here provided can be a useful guide for a better understanding of the mechanistic aspects related to AAP activity, but also for drug design purposes. PMID:23085164

  11. Crystal Structure of the Cystic Fibrosis Transmembrane Conductance Regulator Inhibitory Factor Cif Reveals Novel Active-Site Features of an Epoxide Hydrolase Virulence Factor

    SciTech Connect

    Bahl, C.; Morisseau, C; Bomberger, J; Stanton, B; Hammock, B; O' Toole, G; Madden, D

    2010-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif) is a virulence factor secreted by Pseudomonas aeruginosa that reduces the quantity of CFTR in the apical membrane of human airway epithelial cells. Initial sequence analysis suggested that Cif is an epoxide hydrolase (EH), but its sequence violates two strictly conserved EH motifs and also is compatible with other {alpha}/{beta} hydrolase family members with diverse substrate specificities. To investigate the mechanistic basis of Cif activity, we have determined its structure at 1.8-{angstrom} resolution by X-ray crystallography. The catalytic triad consists of residues Asp129, His297, and Glu153, which are conserved across the family of EHs. At other positions, sequence deviations from canonical EH active-site motifs are stereochemically conservative. Furthermore, detailed enzymatic analysis confirms that Cif catalyzes the hydrolysis of epoxide compounds, with specific activity against both epibromohydrin and cis-stilbene oxide, but with a relatively narrow range of substrate selectivity. Although closely related to two other classes of {alpha}/{beta} hydrolase in both sequence and structure, Cif does not exhibit activity as either a haloacetate dehalogenase or a haloalkane dehalogenase. A reassessment of the structural and functional consequences of the H269A mutation suggests that Cif's effect on host-cell CFTR expression requires the hydrolysis of an extended endogenous epoxide substrate.

  12. Salt bridges overlapping the gonadotropin-releasing hormone receptor agonist binding site reveal a coincidence detector for G protein-coupled receptor activation.

    PubMed

    Janovick, Jo Ann; Pogozheva, Irina D; Mosberg, Henry I; Conn, P Michael

    2011-08-01

    G protein-coupled receptors (GPCRs) play central roles in most physiological functions, and mutations in them cause heritable diseases. Whereas crystal structures provide details about the structure of GPCRs, there is little information that identifies structural features that permit receptors to pass the cellular quality control system or are involved in transition from the ground state to the ligand-activated state. The gonadotropin-releasing hormone receptor (GnRHR), because of its small size among GPCRs, is amenable to molecular biological approaches and to computer modeling. These techniques and interspecies comparisons are used to identify structural features that are important for both intracellular trafficking and GnRHR activation yet distinguish between these processes. Our model features two salt (Arg(38)-Asp(98) and Glu(90)-Lys(121)) and two disulfide (Cys(14)-Cys(200) and Cys(114)-Cys(196)) bridges, all of which are required for the human GnRHR to traffic to the plasma membrane. This study reveals that both constitutive and ligand-induced activation are associated with a "coincidence detector" that occurs when an agonist binds. The observed constitutive activation of receptors lacking Glu(90)-Lys(121), but not Arg(38)-Asp(98) ionic bridge, suggests that the role of the former connection is holding the receptor in the inactive conformation. Both the aromatic ring and hydroxyl group of Tyr(284) and the hydrogen bonding of Ser(217) are important for efficient receptor activation. Our modeling results, supported by the observed influence of Lys(191) from extracellular loop 2 (EL2) and a four-residue motif surrounding this loop on ligand binding and receptor activation, suggest that the positioning of EL2 within the seven-α-helical bundle regulates receptor stability, proper trafficking, and function. PMID:21527534

  13. Salt Bridges Overlapping the Gonadotropin-Releasing Hormone Receptor Agonist Binding Site Reveal a Coincidence Detector for G Protein-Coupled Receptor Activation

    PubMed Central

    Janovick, Jo Ann; Pogozheva, Irina D.; Mosberg, Henry I.

    2011-01-01

    G protein-coupled receptors (GPCRs) play central roles in most physiological functions, and mutations in them cause heritable diseases. Whereas crystal structures provide details about the structure of GPCRs, there is little information that identifies structural features that permit receptors to pass the cellular quality control system or are involved in transition from the ground state to the ligand-activated state. The gonadotropin-releasing hormone receptor (GnRHR), because of its small size among GPCRs, is amenable to molecular biological approaches and to computer modeling. These techniques and interspecies comparisons are used to identify structural features that are important for both intracellular trafficking and GnRHR activation yet distinguish between these processes. Our model features two salt (Arg38-Asp98 and Glu90-Lys121) and two disulfide (Cys14-Cys200 and Cys114-Cys196) bridges, all of which are required for the human GnRHR to traffic to the plasma membrane. This study reveals that both constitutive and ligand-induced activation are associated with a “coincidence detector” that occurs when an agonist binds. The observed constitutive activation of receptors lacking Glu90-Lys121, but not Arg38-Asp98 ionic bridge, suggests that the role of the former connection is holding the receptor in the inactive conformation. Both the aromatic ring and hydroxyl group of Tyr284 and the hydrogen bonding of Ser217 are important for efficient receptor activation. Our modeling results, supported by the observed influence of Lys191 from extracellular loop 2 (EL2) and a four-residue motif surrounding this loop on ligand binding and receptor activation, suggest that the positioning of EL2 within the seven-α-helical bundle regulates receptor stability, proper trafficking, and function. PMID:21527534

  14. The Structure of RalF, an ADP-Ribosylation Factor Guanine Nucleotide Exchange Factor from Legionella pneumophila, Reveals the Presence of a Cap over the Active Site

    SciTech Connect

    Amor,J.; Swails, J.; Zhu, X.; Roy, C.; Nagai, H.; Ingmundson, A.; Cheng, X.; Kahn, R.

    2005-01-01

    The Legionella pneumophila protein RalF is secreted into host cytosol via the Dot/Icm type IV transporter where it acts to recruit ADP-ribosylation factor (Arf) to pathogen-containing phagosomes in the establishment of a replicative organelle. The presence in RalF of the Sec7 domain, present in all Arf guanine nucleotide exchange factors, has suggested that recruitment of Arf is an early step in pathogenesis. We have determined the crystal structure of RalF and of the isolated Sec7 domain and found that RalF is made up of two domains. The Sec7 domain is homologous to mammalian Sec7 domains. The C-terminal domain forms a cap over the active site in the Sec7 domain and contains a conserved folding motif, previously observed in adaptor subunits of vesicle coat complexes. The importance of the capping domain and of the glutamate in the 'glutamic finger,' conserved in all Sec7 domains, to RalF functions was examined using three different assays. These data highlight the functional importance of domains other than Sec7 in Arf guanine nucleotide exchange factors to biological activities and suggest novel mechanisms of regulation of those activities.

  15. Structure of Mycobacterium tuberculosis phosphopantetheine adenylyltransferase in complex with the feedback inhibitor CoA reveals only one active-site conformation

    SciTech Connect

    Wubben, T.; Mesecar, A.D.

    2014-10-02

    Phosphopantetheine adenylyltransferase (PPAT) catalyzes the penultimate step in the coenzyme A (CoA) biosynthetic pathway, reversibly transferring an adenylyl group from ATP to 4'-phosphopantetheine to form dephosphocoenzyme A (dPCoA). To complement recent biochemical and structural studies on Mycobacterium tuberculosis PPAT (MtPPAT) and to provide further insight into the feedback regulation of MtPPAT by CoA, the X-ray crystal structure of the MtPPAT enzyme in complex with CoA was determined to 2.11 {angstrom} resolution. Unlike previous X-ray crystal structures of PPAT-CoA complexes from other bacteria, which showed two distinct CoA conformations bound to the active site, only one conformation of CoA is observed in the MtPPAT-CoA complex.

  16. Human γ-Glutamyl Transpeptidase 1: STRUCTURES OF THE FREE ENZYME, INHIBITOR-BOUND TETRAHEDRAL TRANSITION STATES, AND GLUTAMATE-BOUND ENZYME REVEAL NOVEL MOVEMENT WITHIN THE ACTIVE SITE DURING CATALYSIS.

    PubMed

    Terzyan, Simon S; Burgett, Anthony W G; Heroux, Annie; Smith, Clyde A; Mooers, Blaine H M; Hanigan, Marie H

    2015-07-10

    γ-Glutamyl transpeptidase 1 (GGT1) is a cell surface, N-terminal nucleophile hydrolase that cleaves glutathione and other γ-glutamyl compounds. GGT1 expression is essential in cysteine homeostasis, and its induction has been implicated in the pathology of asthma, reperfusion injury, and cancer. In this study, we report four new crystal structures of human GGT1 (hGGT1) that show conformational changes within the active site as the enzyme progresses from the free enzyme to inhibitor-bound tetrahedral transition states and finally to the glutamate-bound structure prior to the release of this final product of the reaction. The structure of the apoenzyme shows flexibility within the active site. The serine-borate-bound hGGT1 crystal structure demonstrates that serine-borate occupies the active site of the enzyme, resulting in an enzyme-inhibitor complex that replicates the enzyme's tetrahedral intermediate/transition state. The structure of GGsTop-bound hGGT1 reveals its interactions with the enzyme and why neutral phosphonate diesters are more potent inhibitors than monoanionic phosphonates. These structures are the first structures for any eukaryotic GGT that include a molecule in the active site covalently bound to the catalytic Thr-381. The glutamate-bound structure shows the conformation of the enzyme prior to release of the final product and reveals novel information regarding the displacement of the main chain atoms that form the oxyanion hole and movement of the lid loop region when the active site is occupied. These data provide new insights into the mechanism of hGGT1-catalyzed reactions and will be invaluable in the development of new classes of hGGT1 inhibitors for therapeutic use. PMID:26013825

  17. Crystal structure of Streptococcus pneumoniae N-acetylglucosamine-1-phosphate uridyltransferase bound to acetyl-coenzyme A reveals a novel active site architecture.

    PubMed

    Sulzenbacher, G; Gal, L; Peneff, C; Fassy, F; Bourne, Y

    2001-04-13

    The bifunctional bacterial enzyme N-acetyl-glucosamine-1-phosphate uridyltransferase (GlmU) catalyzes the two-step formation of UDP-GlcNAc, a fundamental precursor in bacterial cell wall biosynthesis. With the emergence of new resistance mechanisms against beta-lactam and glycopeptide antibiotics, the biosynthetic pathway of UDP-GlcNAc represents an attractive target for drug design of new antibacterial agents. The crystal structures of Streptococcus pneumoniae GlmU in unbound form, in complex with acetyl-coenzyme A (AcCoA) and in complex with both AcCoA and the end product UDP-GlcNAc, have been determined and refined to 2.3, 2.5, and 1.75 A, respectively. The S. pneumoniae GlmU molecule is organized in two separate domains connected via a long alpha-helical linker and associates as a trimer, with the 50-A-long left-handed beta-helix (LbetaH) C-terminal domains packed against each other in a parallel fashion and the C-terminal region extended far away from the LbetaH core and exchanged with the beta-helix from a neighboring subunit in the trimer. AcCoA binding induces the formation of a long and narrow tunnel, enclosed between two adjacent LbetaH domains and the interchanged C-terminal region of the third subunit, giving rise to an original active site architecture at the junction of three subunits. PMID:11118459

  18. General view of the archaeological site showing excavation and revealing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the archaeological site showing excavation and revealing the steps leading down into the eighteenth-century burial vault - Harry Buck House, North of Main Street (14800 Governor Oden Bowie Drive), Upper Marlboro, Prince George's County, MD

  19. The crystal structure of the Rv0301-Rv0300 VapBC-3 toxin-antitoxin complex from M. tuberculosis reveals a Mg2+ ion in the active site and a putative RNA-binding site

    SciTech Connect

    Min, Andrew B; Miallau, Linda; Sawaya, Michael R; Habel, Jeff; Cascio, Duilio; Eisenberg, David

    2013-01-10

    VapBC pairs account for 45 out of 88 identified toxin-antitoxin (TA) pairs in the Mycobacterium tuberculosis (Mtb) H37Rv genome. A working model suggests that under times of stress, antitoxin molecules are degraded, releasing the toxins to slow the metabolism of the cell, which in the case of VapC toxins is via their RNase activity. Otherwise the TA pairs remain bound to their promoters, autoinhibiting transcription. The crystal structure of Rv0301-Rv0300, an Mtb VapBC TA complex determined at 1.49 Å resolution, suggests a mechanism for these three functions: RNase activity, its inhibition by antitoxin, and its ability to bind promoter DNA. The Rv0301 toxin consists of a core of five parallel beta strands flanked by alpha helices. Three proximal aspartates coordinate a Mg2+ ion forming the putative RNase active site. The Rv0300 antitoxin monomer is extended in structure, consisting of an N-terminal beta strand followed by four helices. The last two helices wrap around the toxin and terminate near the putative RNase active site, but with different conformations. In one conformation, the C-terminal arginine interferes with Mg2+ ion coordination, suggesting a mechanism by which the antitoxin can inhibit toxin activity. At the N-terminus of the antitoxin, two pairs of Ribbon-Helix-Helix (RHH) motifs are related by crystallographic twofold symmetry. The resulting hetero-octameric complex is similar to the FitAB system, but the two RHH motifs are about 30 Å closer together in the Rv0301-Rv0300 complex, suggesting either a different span of the DNA recognition sequence or a conformational change.

  20. Shared active site architecture between archaeal PolD and multi-subunit RNA polymerases revealed by X-ray crystallography

    PubMed Central

    Sauguet, Ludovic; Raia, Pierre; Henneke, Ghislaine; Delarue, Marc

    2016-01-01

    Archaeal replicative DNA polymerase D (PolD) constitute an atypical class of DNA polymerases made of a proofreading exonuclease subunit (DP1) and a larger polymerase catalytic subunit (DP2), both with unknown structures. We have determined the crystal structures of Pyrococcus abyssi DP1 and DP2 at 2.5 and 2.2 Å resolution, respectively, revealing a catalytic core strikingly different from all other known DNA polymerases (DNAPs). Rather, the PolD DP2 catalytic core has the same ‘double-psi β-barrel' architecture seen in the RNA polymerase (RNAP) superfamily, which includes multi-subunit transcriptases of all domains of life, homodimeric RNA-silencing pathway RNAPs and atypical viral RNAPs. This finding bridges together, in non-viral world, DNA transcription and DNA replication within the same protein superfamily. This study documents further the complex evolutionary history of the DNA replication apparatus in different domains of life and proposes a classification of all extant DNAPs. PMID:27548043

  1. Role of Active Site Residues in Promoting Cobalt-Carbon Bond Homolysis in Adenosylcobalamin-Dependent Mutases Revealed Through Experiment and Computation

    PubMed Central

    Román-Meléndez, Gabriel D.; von Glehn, Patrick; Harvey, Jeremy N.; Mulholland, Adrian J.; Marsh, E. Neil G.

    2014-01-01

    Adenosylcobalamin serves as a source of reactive free radicals that are generated by homolytic scission of the coenzyme’s cobalt-carbon bond. AdoCbl-dependent enzymes accelerate AdoCbl homolysis by ~1012-fold, but the mechanism by which this is accomplished remains unclear. We have combined experimental and computational approaches to gain molecular-level insight into this process for glutamate mutase. Two residues, glutamate-330 and lysine-326, form hydrogen bonds with the adenosyl group of the coenzyme. A series of mutations were introduced at these positions that impair the enzyme’s ability to catalyze coenzyme homolysis and tritium exchange with the substrate by 2 – 4 orders of magnitude. These mutations, together with the wild-type enzyme, were also characterized in silico by molecular dynamics simulations of the enzyme:AdoCbl:substrate with AdoCbl modeled in either the associated (Co-C bond formed) or the dissociated (adenosyl radical + CblII) state. The simulations reveal that the number of hydrogen bonds between the adenosyl group and the protein side-chains increases in the homolytically-dissociated state, with respect to the associated state, for both the wild-type and mutant enzymes. The mutations also cause a progressive increase in the mean distance between the 5′-carbon of the adenosyl radical and the abstractable hydrogen of the substrate. Interestingly, the distance between the 5′-carbon and substrate hydrogen, determined computationally, was found to inversely correlate with the logk for tritium exchange (r = 0.93) determined experimentally. Taken together, these results point to a dual role for these residues: they both stabilize the homolytic state through electrostatic interactions between the protein and the dissociated coenzyme, and correctly position the adenosyl radical to facilitate hydrogen abstraction from the substrate. PMID:24341954

  2. Ligand-bound structures of 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase from Moraxella catarrhalis reveal a water channel connecting to the active site for the second step of catalysis.

    PubMed

    Dhindwal, Sonali; Priyadarshini, Priyanka; Patil, Dipak N; Tapas, Satya; Kumar, Pramod; Tomar, Shailly; Kumar, Pravindra

    2015-02-01

    KdsC, the third enzyme of the 3-deoxy-D-manno-octulosonic acid (KDO) biosynthetic pathway, catalyzes a substrate-specific reaction to hydrolyze 3-deoxy-D-manno-octulosonate 8-phosphate to generate a molecule of KDO and phosphate. KdsC is a phosphatase that belongs to the C0 subfamily of the HAD superfamily. To understand the molecular basis for the substrate specificity of this tetrameric enzyme, the crystal structures of KdsC from Moraxella catarrhalis (Mc-KdsC) with several combinations of ligands, namely metal ion, citrate and products, were determined. Various transition states of the enzyme have been captured in these crystal forms. The ligand-free and ligand-bound crystal forms reveal that the binding of ligands does not cause any specific conformational changes in the active site. However, the electron-density maps clearly showed that the conformation of KDO as a substrate is different from the conformation adopted by KDO when it binds as a cleaved product. Furthermore, structural evidence for the existence of an intersubunit tunnel has been reported for the first time in the C0 subfamily of enzymes. A role for this tunnel in transferring water molecules from the interior of the tetrameric structure to the active-site cleft has been proposed. At the active site, water molecules are required for the formation of a water bridge that participates as a proton shuttle during the second step of the two-step phosphoryl-transfer reaction. In addition, as the KDO biosynthesis pathway is a potential antibacterial target, pharmacophore-based virtual screening was employed to identify inhibitor molecules for the Mc-KdsC enzyme. PMID:25664734

  3. Nuclear resonance vibrational spectroscopy reveals the FeS cluster composition and active site vibrational properties of an O2-tolerant NAD+-reducing [NiFe] hydrogenase

    SciTech Connect

    Lauterbach, Lars; Wang, Hongxin; Horch, Marius; Gee, Leland B.; Yoda, Yoshitaka; Tanaka, Yoshihito; Zebger, Ingo; Lenz, Oliver; Cramer, Stephen P.

    2014-10-30

    Hydrogenases are complex metalloenzymes that catalyze the reversible splitting of molecular hydrogen into protons and electrons essentially without overpotential. The NAD+-reducing soluble hydrogenase (SH) from Ralstonia eutropha is capable of H2 conversion even in the presence of usually toxic dioxygen. The molecular details of the underlying reactions are largely unknown, mainly because of limited knowledge of the structure and function of the various metal cofactors present in the enzyme. Here, all iron-containing cofactors of the SH were investigated by 57Fe specific nuclear resonance vibrational spectroscopy (NRVS). Our data provide experimental evidence for one [2Fe2S] center and four [4Fe4S] clusters, which is consistent with the amino acid sequence composition. Only the [2Fe2S] cluster and one of the four [4Fe4S] clusters were reduced upon incubation of the SH with NADH. This finding explains the discrepancy between the large number of FeS clusters and the small amount of FeS cluster-related signals as detected by electron paramagnetic resonance spectroscopic analysis of several NAD+-reducing hydrogenases. For the first time, Fe–CO and Fe–CN modes derived from the [NiFe] active site could be distinguished by NRVS through selective 13C labeling of the CO ligand. This strategy also revealed the molecular coordinates that dominate the individual Fe–CO modes. The present approach explores the complex vibrational signature of the Fe–S clusters and the hydrogenase active site, thereby showing that NRVS represents a powerful tool for the elucidation of complex biocatalysts containing multiple cofactors.

  4. Salt site performance assessment activities

    SciTech Connect

    Kircher, J.F.; Gupta, S.K.

    1983-01-01

    During this year the first selection of the tools (codes) for performance assessments of potential salt sites have been tentatively selected and documented; the emphasis has shifted from code development to applications. During this period prior to detailed characterization of a salt site, the focus is on bounding calculations, sensitivity and with the data available. The development and application of improved methods for sensitivity and uncertainty analysis is a focus for the coming years activities and the subject of a following paper in these proceedings. Although the assessments to date are preliminary and based on admittedly scant data, the results indicate that suitable salt sites can be identified and repository subsystems designed which will meet the established criteria for protecting the health and safety of the public. 36 references, 5 figures, 2 tables.

  5. Automethylation activities within the mixed lineage leukemia-1 (MLL1) core complex reveal evidence supporting a "two-active site" model for multiple histone H3 lysine 4 methylation.

    PubMed

    Patel, Anamika; Vought, Valarie E; Swatkoski, Stephen; Viggiano, Susan; Howard, Benny; Dharmarajan, Venkatasubramanian; Monteith, Kelsey E; Kupakuwana, Gillian; Namitz, Kevin E; Shinsky, Stephen A; Cotter, Robert J; Cosgrove, Michael S

    2014-01-10

    The mixed lineage leukemia-1 (MLL1) core complex predominantly catalyzes mono- and dimethylation of histone H3 at lysine 4 (H3K4) and is frequently altered in aggressive acute leukemias. The molecular mechanisms that account for conversion of mono- to dimethyl H3K4 (H3K4me1,2) are not well understood. In this investigation, we report that the suppressor of variegation, enhancer of zeste, trithorax (SET) domains from human MLL1 and Drosophila Trithorax undergo robust intramolecular automethylation reactions at an evolutionarily conserved cysteine residue in the active site, which is inhibited by unmodified histone H3. The location of the automethylation in the SET-I subdomain indicates that the MLL1 SET domain possesses significantly more conformational plasticity in solution than suggested by its crystal structure. We also report that MLL1 methylates Ash2L in the absence of histone H3, but only when assembled within a complex with WDR5 and RbBP5, suggesting a restraint for the architectural arrangement of subunits within the complex. Using MLL1 and Ash2L automethylation reactions as probes for histone binding, we observed that both automethylation reactions are significantly inhibited by stoichiometric amounts of unmethylated histone H3, but not by histones previously mono-, di-, or trimethylated at H3K4. These results suggest that the H3K4me1 intermediate does not significantly bind to the MLL1 SET domain during the dimethylation reaction. Consistent with this hypothesis, we demonstrate that the MLL1 core complex assembled with a catalytically inactive SET domain variant preferentially catalyzes H3K4 dimethylation using the H3K4me1 substrate. Taken together, these results are consistent with a "two-active site" model for multiple H3K4 methylation by the MLL1 core complex. PMID:24235145

  6. Frantic activity revealed in dusty stellar factories

    NASA Astrophysics Data System (ADS)

    2009-01-01

    Thanks to the Very Large Telescope's acute and powerful near-infrared eye, astronomers have uncovered a host of new young, massive and dusty stellar nurseries in nearby galaxy NGC 253. The centre of this galaxy appears to harbour a twin of our own Milky Way's supermassive black hole. ESO PR Photo 02a/09 The Spiral Galaxy NGC 253 Astronomers from the Instituto de Astrofísica de Canarias (Spain) used NACO, a sharp-eyed adaptive optics instrument on ESO's Very Large Telescope (VLT), to study the fine detail in NGC 253, one of the brightest and dustiest spiral galaxies in the sky. Adaptive Optics (AO) corrects for the blurring effect introduced by the Earth's atmosphere. This turbulence causes the stars to twinkle in a way that delights poets, but frustrates astronomers, since it smears out the images. With AO in action the telescope can produce images that are as sharp as is theoretically possible, as if the telescope were in space. NACO revealed features in the galaxy that were only 11 light-years across. "Our observations provide us with so much spatially resolved detail that we can, for the first time, compare them with the finest radio maps for this galaxy -- maps that have existed for more than a decade," says Juan Antonio Fernández-Ontiveros, the lead author of the paper reporting the results [1]. Astronomers identified 37 distinct bright regions, a threefold increase on previous results, packed into a tiny region at the core of the galaxy, comprising just one percent of the galaxy's total size. The astronomers combined their NACO images with data from another VLT instrument, VISIR, as well as with images from the NASA/ESA Hubble Space Telescope and radio observations made by the Very Large Array and the Very Large Baseline Interferometer. Combining these observations, taken in different wavelength regimes, provided a clue to the nature of these regions. "We now think that these are probably very active nurseries that contain many stars bursting from their

  7. Shocking Detail of Superstar's Activity Revealed

    NASA Astrophysics Data System (ADS)

    1999-10-01

    NASA's Chandra X-ray Observatory has imaged Eta Carinae and revealed a hot inner core around this mysterious superstar. The new X-ray observation shows three distinct structures: an outer, horseshoe shaped ring about two light years in diameter, a hot inner core about 3 light months in diameter, and a hot central source less than a light month in diameter which may contain the superstar. All three structures are thought to represent shock waves produced by matter rushing away from the superstar at supersonic speeds. The temperature of the shock-heated gas ranges from 60 million degrees Celsius in the central regions to 3 million degrees Celsius on the outer structure. An earlier image of Eta Carinae by the Hubble Space Telescope revealed two spectacular bubbles of gas expanding in opposite directions away from a central bright region at speeds in excess of a million miles per hour. The inner region visible in the Chandra image has never been resolved before, and appears to be associated with a central disk of high velocity gas rushing out at much higher speeds perpendicular to the bipolar optical nebula. "It is not what I expected," said Dr. Fred Seward of the Harvard-Smithsonian Center for Astrophysics. "I expected to see a strong point source with a little diffuse emission cloud around it. Instead, we see just the opposite- a bright cloud of diffuse emission, and much less radiation from the center." "The Chandra image contains some puzzles for existing ideas of how a star can produce such hot and intense X-rays," agreed Prof. Kris Davidson of the University of Minnesota. "In the most popular theory, X-rays are made by colliding gas streams from two stars so close together that they'd look like a point source to us. But what happens to gas streams that escape to farther distances? The extended hot stuff in the middle of the new image gives demanding new conditions for any theory to meet." Eta Carinae is one of the most enigmatic and intriguing objects in our

  8. Active Sites Environmental Monitoring Program: Program plan

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1990-10-01

    DOE Order 5820.2A requires that low-level waste (LLW) disposal sites active on or after September 1988 and all transuranic (TRU) waste storage sites be monitored periodically to assure that radioactive contamination does not escape from the waste sites and pose a threat to the public or to the environment. This plan describes such a monitoring program for the active LLW disposal sites in SWSA 6 and the TRU waste storage sites in SWSA 5 North. 14 refs., 8 figs.

  9. The X-ray Structure of a BAK Homodimer Reveals an Inhibitory Zinc Binding Site

    SciTech Connect

    Modoveanu,T.; Liu, Q.; Tocilj, A.; Watson, M.; Shore, G.; Gehring, K.

    2006-01-01

    BAK/BAX-mediated mitochondrial outer-membrane permeabilization (MOMP) drives cell death during development and tissue homeostasis from zebrafish to humans. In most cancers, this pathway is inhibited by BCL-2 family antiapoptotic members, which bind and block the action of proapoptotic BCL proteins. We report the 1.5 {angstrom} crystal structure of calpain-proteolysed BAK, cBAK, to reveal a zinc binding site that regulates its activity via homodimerization. cBAK contains an occluded BH3 peptide binding pocket that binds a BID BH3 peptide only weakly . Nonetheless, cBAK requires activation by truncated BID to induce cytochrome c release in mitochondria isolated from bak/bax double-knockout mouse embryonic fibroblasts. The BAK-mediated MOMP is inhibited by low micromolar zinc levels. This inhibition is alleviated by mutation of the zinc-coordination site in BAK. Our results link directly the antiapoptotic effects of zinc to BAK.

  10. Educational Activity Sites for High School Students

    ERIC Educational Resources Information Center

    Troutner, Joanne

    2005-01-01

    Finding quality Internet resources for high school students is a continuing challenge. Several high-quality web sites are presented for educators and students. These sites offer activities to learn how an art conservator looks at paintings, create a newspaper, research and develop an end product, build geometry and physics skills, explore science…

  11. Nicotinamide Cofactors Suppress Active-Site Labeling of Aldehyde Dehydrogenases.

    PubMed

    Stiti, Naim; Chandrasekar, Balakumaran; Strubl, Laura; Mohammed, Shabaz; Bartels, Dorothea; van der Hoorn, Renier A L

    2016-06-17

    Active site labeling by (re)activity-based probes is a powerful chemical proteomic tool to globally map active sites in native proteomes without using substrates. Active site labeling is usually taken as a readout for the active state of the enzyme because labeling reflects the availability and reactivity of active sites, which are hallmarks for enzyme activities. Here, we show that this relationship holds tightly, but we also reveal an important exception to this rule. Labeling of Arabidopsis ALDH3H1 with a chloroacetamide probe occurs at the catalytic Cys, and labeling is suppressed upon nitrosylation and oxidation, and upon treatment with other Cys modifiers. These experiments display a consistent and strong correlation between active site labeling and enzymatic activity. Surprisingly, however, labeling is suppressed by the cofactor NAD(+), and this property is shared with other members of the ALDH superfamily and also detected for unrelated GAPDH enzymes with an unrelated hydantoin-based probe in crude extracts of plant cell cultures. Suppression requires cofactor binding to its binding pocket. Labeling is also suppressed by ALDH modulators that bind at the substrate entrance tunnel, confirming that labeling occurs through the substrate-binding cavity. Our data indicate that cofactor binding adjusts the catalytic Cys into a conformation that reduces the reactivity toward chloroacetamide probes. PMID:26990764

  12. Low dielectric response in enzyme active site

    PubMed Central

    Mertz, Edward L.; Krishtalik, Lev I.

    2000-01-01

    The kinetics of charge transfer depend crucially on the dielectric reorganization of the medium. In enzymatic reactions that involve charge transfer, atomic dielectric response of the active site and of its surroundings determines the efficiency of the protein as a catalyst. We report direct spectroscopic measurements of the reorganization energy associated with the dielectric response in the active site of α-chymotrypsin. A chromophoric inhibitor of the enzyme is used as a spectroscopic probe. We find that water strongly affects the dielectric reorganization in the active site of the enzyme in solution. The reorganization energy of the protein matrix in the vicinity of the active site is similar to that of low-polarity solvents. Surprisingly, water exhibits an anomalously high dielectric response that cannot be described in terms of the dielectric continuum theory. As a result, sequestering the active site from the aqueous environment inside low-dielectric enzyme body dramatically reduces the dielectric reorganization. This reduction is particularly important for controlling the rate of enzymatic reactions. PMID:10681440

  13. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site.

    PubMed

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-04-20

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2domains reveal that the (HhH)2domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide. PMID:26908655

  14. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site

    PubMed Central

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-01-01

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2 domains reveal that the (HhH)2 domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2 domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2 domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2 domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide. PMID:26908655

  15. Architecture and active site of particulate methane monooxygenase

    PubMed Central

    Culpepper, Megen A.; Rosenzweig, Amy C.

    2012-01-01

    Particulate methane monooxygenase (pMMO) is an integral membrane metalloenzyme that oxidizes methane to methanol in methanotrophic bacteria, organisms that live on methane gas as their sole carbon source. Understanding pMMO function has important implications for bioremediation applications and for the development of new, environmentally friendly catalysts for the direct conversion of methane to methanol. Crystal structures of pMMOs from three different methanotrophs reveal a trimeric architecture, consisting of three copies each of the pmoB, pmoA, and pmoC subunits. There are three distinct metal centers in each protomer of the trimer, mononuclear and dinuclear copper sites in the periplasmic regions of pmoB and a mononuclear site within the membrane that can be occupied by copper or zinc. Various models for the pMMO active site have been proposed within these structural constraints, including dicopper, tricopper, and diiron centers. Biochemical and spectroscopic data on pMMO and recombinant soluble fragments, denoted spmoB proteins, indicate that the active site involves copper and is located at the site of the dicopper center in the pmoB subunit. Initial spectroscopic evidence for O2 binding at this site has been obtained. Despite these findings, questions remain about the active site identity and nuclearity and will be the focus of future studies. PMID:22725967

  16. Radiation inactivation reveals discrete cation binding sites that modulate dihydropyridine binding sites

    SciTech Connect

    Bolger, G.T.; Skolnick, P.; Kempner, E.S. )

    1989-08-01

    In low ionic strength buffer (5 mM Tris.HCl), the binding of (3H) nitrendipine to dihydropyridine calcium antagonist binding sites of mouse forebrain membranes is increased by both Na{sup +} and Ca{sup 2+}. Radiation inactivation was used to determine the target size of ({sup 3}H)nitrendipine binding sites in 5 mM Tris.HCl buffer, in the presence and absence of these cations. After irradiation, ({sup 3}H) nitrendipine binding in buffer with or without Na+ was diminished, due to a loss of binding sites and also to an increase in Kd. After accounting for radiation effects on the dissociation constant, the target size for the nitrendipine binding site in buffer was 160-170 kDa and was 170-180 kDa in the presence of sodium. In the presence of calcium ions, ({sup 3}H)nitrendipine binding showed no radiation effects on Kd and yielded a target size of 150-170 kDa. These findings suggest, as in the case of opioid receptors, the presence of high molecular weight membrane components that modulate cation-induced alterations in radioligand binding to dihydropyridine binding sites.

  17. Active site specificity of plasmepsin II.

    PubMed Central

    Westling, J.; Cipullo, P.; Hung, S. H.; Saft, H.; Dame, J. B.; Dunn, B. M.

    1999-01-01

    Members of the aspartic proteinase family of enzymes have very similar three-dimensional structures and catalytic mechanisms. Each, however, has unique substrate specificity. These distinctions arise from variations in amino acid residues that line the active site subsites and interact with the side chains of the amino acids of the peptides that bind to the active site. To understand the unique binding preferences of plasmepsin II, an enzyme of the aspartic proteinase class from the malaria parasite, Plasmodium falciparum, chromogenic octapeptides having systematic substitutions at various positions in the sequence were analyzed. This enabled the design of new, improved substrates for this enzyme (Lys-Pro-Ile-Leu-Phe*Nph-Ala/Glu-Leu-Lys, where * indicates the cleavage point). Additionally, the crystal structure of plasmepsin II was analyzed to explain the binding characteristics. Specific amino acids (Met13, Ser77, and Ile287) that were suspected of contributing to active site binding and specificity were chosen for site-directed mutagenesis experiments. The Met13Glu and Ile287Glu single mutants and the Met13Glu/Ile287Glu double mutant gain the ability to cleave substrates containing Lys residues. PMID:10548045

  18. Corrosion Research And Web Site Activities

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2001-01-01

    This report covers corrosion-related activities at the NASA Kennedy Space Center during the summer of 2000. The NASA Kennedy Space Center's corrosion web site, corrosion.ksc.nasa.gov, was updated with new information based on feedback over the past two years. The methodology for a two-year atmospheric exposure testing program to study the effectiveness of commercial chemicals sold for rinsing aircraft and other equipment was developed and some preliminary laboratory chemical analyses are presented.

  19. Corrosion Research and Web Site Activities

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2002-01-01

    This report covers corrosion-related activities at the NASA Kennedy Space Center during the summer of 2000. The NASA Kennedy Space Center's corrosion web site, corrosion.ksc.nasa.gov, was updated with new information based on feedback over the past two years. The methodology for a two-year atmospheric exposure testing program to study the effectiveness of commercial chemicals sold for rinsing aircraft and other equipment was developed and some preliminary laboratory chemical analyses are presented.

  20. Carbohydrate active enzymes revealed in Coptotermes formosanus transcriptome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A normalized cDNA library of Coptotermes formosanus was constructed using mixed RNA isolated from workers, soldiers, nymphs and alates of both sexes. Sequencing of this library generated 131,637 EST and 25,939 unigenes were assembled. Carbohydrate active enzymes (CAZymes) revealed in this library we...

  1. The structure of ribosome-lankacidin complex reveals ribosomal sites for synergistic antibiotics

    SciTech Connect

    Auerbach, Tamar; Mermershtain, Inbal; Davidovich, Chen; Bashan, Anat; Belousoff, Matthew; Wekselman, Itai; Zimmerman, Ella; Xiong, Liqun; Klepacki, Dorota; Arakawa, Kenji; Kinashi, Haruyasu; Mankin, Alexander S.; Yonath, Ada

    2010-04-26

    Crystallographic analysis revealed that the 17-member polyketide antibiotic lankacidin produced by Streptomyces rochei binds at the peptidyl transferase center of the eubacterial large ribosomal subunit. Biochemical and functional studies verified this finding and showed interference with peptide bond formation. Chemical probing indicated that the macrolide lankamycin, a second antibiotic produced by the same species, binds at a neighboring site, at the ribosome exit tunnel. These two antibiotics can bind to the ribosome simultaneously and display synergy in inhibiting bacterial growth. The binding site of lankacidin and lankamycin partially overlap with the binding site of another pair of synergistic antibiotics, the streptogramins. Thus, at least two pairs of structurally dissimilar compounds have been selected in the course of evolution to act synergistically by targeting neighboring sites in the ribosome. These results underscore the importance of the corresponding ribosomal sites for development of clinically relevant synergistic antibiotics and demonstrate the utility of structural analysis for providing new directions for drug discovery.

  2. Topological structure dynamics revealing collective evolution in active nematics

    PubMed Central

    Shi, Xia-qing; Ma, Yu-qiang

    2013-01-01

    Topological defects frequently emerge in active matter like bacterial colonies, cytoskeleton extracts on substrates, self-propelled granular or colloidal layers and so on, but their dynamical properties and the relations to large-scale organization and fluctuations in these active systems are seldom touched. Here we reveal, through a simple model for active nematics using self-driven hard elliptic rods, that the excitation, annihilation and transportation of topological defects differ markedly from those in non-active media. These dynamical processes exhibit strong irreversibility in active nematics in the absence of detailed balance. Moreover, topological defects are the key factors in organizing large-scale dynamic structures and collective flows, resulting in multi-spatial temporal effects. These findings allow us to control the self-organization of active matter through topological structures. PMID:24346733

  3. Active site of ribulosebisphosphate carboxylase/oxygenase

    SciTech Connect

    Hartman, F.C.; Stringer, C.D.; Milanez, S.; Lee, E.H.

    1985-01-01

    Previous affinity labeling studies and comparative sequence analyses have identified two different lysines at the active site of ribulosebisphosphate carboxylase/oxygenase and have suggested their essentiality to function. The essential lysines occupy positions 166 and 329 in the Rhodospirillum rubrum enzyme and positions 175 and 334 in the spinach enzyme. Based on the pH-dependencies of inactivations of the two enzymes by trinitrobenzene sulfonate, Lys-166 (R. rubrum enzyme) exhibits a pK/sub a/ of 7.9 and Lys-334 (spinach enzyme) exhibits a pK/sub a/ of 9.0. These low pK/sub a/ values as well as the enhanced nucleophilicities of the lysyl residues argue that both are important to catalysis rather than to substrate binding. Lys-166 may correspond to the essential base that initiates catalysis and that displays a pK/sub a/ of 7.5 in the pH-curve for V/sub max//K/sub m/. Cross-linking experiments with 4,4'-diisothiocyano-2,2'-disulfonate stilbene demonstrate that the two active-site lysines are within 12 A. 50 refs., 7 figs., 1 tab.

  4. Allosteric site-mediated active site inhibition of PBP2a using Quercetin 3-O-rutinoside and its combination.

    PubMed

    Rani, Nidhi; Vijayakumar, Saravanan; P T V, Lakshmi; Arunachalam, Annamalai

    2016-08-01

    Recent crystallographic study revealed the involvement of allosteric site in active site inhibition of penicillin binding protein (PBP2a), where one molecule of Ceftaroline (Cef) binds to the allosteric site of PBP2a and paved way for the other molecule (Cef) to bind at the active site. Though Cef has the potency to inhibit the PBP2a, its adverse side effects are of major concern. Previous studies have reported the antibacterial property of Quercetin derivatives, a group of natural compounds. Hence, the present study aims to evaluate the effect of Quercetin 3-o-rutinoside (Rut) in allosteric site-mediated active site inhibition of PBP2a. The molecular docking studies between allosteric site and ligands (Rut, Que, and Cef) revealed a better binding efficiency (G-score) of Rut (-7.790318) and Cef (-6.194946) with respect to Que (-5.079284). Molecular dynamic (MD) simulation studies showed significant changes at the active site in the presence of ligands (Rut and Cef) at allosteric site. Four different combinations of Rut and Cef were docked and their G-scores ranged between -6.320 and -8.623. MD studies revealed the stability of the key residue (Ser403) with Rut being at both sites, compared to other complexes. Morphological analysis through electron microscopy confirmed that combination of Rut and Cefixime was able to disturb the bacterial cell membrane in a similar fashion to that of Rut and Cefixime alone. The results of this study indicate that the affinity of Rut at both sites were equally good, with further validations Rut could be considered as an alternative for inhibiting MRSA growth. PMID:26360629

  5. Active Sites Environmental Monitoring Program: Program plan

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  6. Assigning Quantitative Function to Post-Translational Modifications Reveals Multiple Sites of Phosphorylation That Tune Yeast Pheromone Signaling Output

    SciTech Connect

    Pincus, David; Ryan, Christopher J.; Smith, Richard D.; Brent, Roger; Resnekov, Orna; Hakimi, Mohamed Ali

    2013-03-12

    Cell signaling systems transmit information by post-­translationally modifying signaling proteins, often via phosphorylation. While thousands of sites of phosphorylation have been identified in proteomic studies, the vast majority of sites have no known function. Assigning functional roles to the catalog of uncharacterized phosphorylation sites is a key research challenge. Here we present a general approach to address this challenge and apply it to a prototypical signaling pathway, the pheromone response pathway in Saccharomyces cerevisiae. The pheromone pathway includes a mitogen activated protein kinase (MAPK) cascade activated by a G-­protein coupled receptor (GPCR). We used mass spectrometry-based proteomics to identify sites whose phosphorylation changed when the system was active, and evolutionary conservation to assign priority to a list of candidate MAPK regulatory sites. We made targeted alterations in those sites, and measured the effects of the mutations on pheromone pathway output in single cells. Our work identified six new sites that quantitatively tuned system output. We developed simple computational models to find system architectures that recapitulated the quantitative phenotypes of the mutants. Our results identify a number of regulated phosphorylation events that contribute to adjust the input-­output relationship of this model eukaryotic signaling system. We believe this combined approach constitutes a general means not only to reveal modification sites required to turn a pathway on and off, but also those required for more subtle quantitative effects that tune pathway output. Our results further suggest that relatively small quantitative influences from individual regulatory phosphorylation events endow signaling systems with plasticity that evolution may exploit to quantitatively tailor signaling outcomes.

  7. A genome-wide map of hyper-edited RNA reveals numerous new sites.

    PubMed

    Porath, Hagit T; Carmi, Shai; Levanon, Erez Y

    2014-01-01

    Adenosine-to-inosine editing is one of the most frequent post-transcriptional modifications, manifested as A-to-G mismatches when comparing RNA sequences with their source DNA. Recently, a number of RNA-seq data sets have been screened for the presence of A-to-G editing, and hundreds of thousands of editing sites identified. Here we show that existing screens missed the majority of sites by ignoring reads with excessive ('hyper') editing that do not easily align to the genome. We show that careful alignment and examination of the unmapped reads in RNA-seq studies reveal numerous new sites, usually many more than originally discovered, and in precisely those regions that are most heavily edited. Specifically, we discover 327,096 new editing sites in the heavily studied Illumina Human BodyMap data and more than double the number of detected sites in several published screens. We also identify thousands of new sites in mouse, rat, opossum and fly. Our results establish that hyper-editing events account for the majority of editing sites. PMID:25158696

  8. Assigning Quantitative Function to Post-Translational Modifications Reveals Multiple Sites of Phosphorylation That Tune Yeast Pheromone Signaling Output

    PubMed Central

    Pincus, David; Ryan, Christopher J.; Smith, Richard D.

    2013-01-01

    Cell signaling systems transmit information by post-translationally modifying signaling proteins, often via phosphorylation. While thousands of sites of phosphorylation have been identified in proteomic studies, the vast majority of sites have no known function. Assigning functional roles to the catalog of uncharacterized phosphorylation sites is a key research challenge. Here we present a general approach to address this challenge and apply it to a prototypical signaling pathway, the pheromone response pathway in Saccharomyces cerevisiae. The pheromone pathway includes a mitogen activated protein kinase (MAPK) cascade activated by a G-protein coupled receptor (GPCR). We used published mass spectrometry-based proteomics data to identify putative sites of phosphorylation on pheromone pathway components, and we used evolutionary conservation to assign priority to a list of candidate MAPK regulatory sites. We made targeted alterations in those sites, and measured the effects of the mutations on pheromone pathway output in single cells. Our work identified six new sites that quantitatively tuned system output. We developed simple computational models to find system architectures that recapitulated the quantitative phenotypes of the mutants. Our results identify a number of putative phosphorylation events that contribute to adjust the input-output relationship of this model eukaryotic signaling system. We believe this combined approach constitutes a general means not only to reveal modification sites required to turn a pathway on and off, but also those required for more subtle quantitative effects that tune pathway output. Our results suggest that relatively small quantitative influences from individual phosphorylation events endow signaling systems with plasticity that evolution may exploit to quantitatively tailor signaling outcomes. PMID:23554854

  9. Metal active site elasticity linked to activation of homocysteine in methionine synthases

    SciTech Connect

    Koutmos, Markos; Pejchal, Robert; Bomer, Theresa M.; Matthews, Rowena G.; Smith, Janet L.; Ludwig, Martha L.

    2008-04-02

    Enzymes possessing catalytic zinc centers perform a variety of fundamental processes in nature, including methyl transfer to thiols. Cobalamin-independent (MetE) and cobalamin-dependent (MetH) methionine synthases are two such enzyme families. Although they perform the same net reaction, transfer of a methyl group from methyltetrahydrofolate to homocysteine (Hcy) to form methionine, they display markedly different catalytic strategies, modular organization, and active site zinc centers. Here we report crystal structures of zinc-replete MetE and MetH, both in the presence and absence of Hcy. Structural investigation of the catalytic zinc sites of these two methyltransferases reveals an unexpected inversion of zinc geometry upon binding of Hcy and displacement of an endogenous ligand in both enzymes. In both cases a significant movement of the zinc relative to the protein scaffold accompanies inversion. These structures provide new information on the activation of thiols by zinc-containing enzymes and have led us to propose a paradigm for the mechanism of action of the catalytic zinc sites in these and related methyltransferases. Specifically, zinc is mobile in the active sites of MetE and MetH, and its dynamic nature helps facilitate the active site conformational changes necessary for thiol activation and methyl transfer.

  10. Memory activation reveals abnormal EEG in preclinical Huntington's disease.

    PubMed

    van der Hiele, Karin; Jurgens, Caroline K; Vein, Alla A; Reijntjes, Robert H A M; Witjes-Ané, Marie-Noëlle W; Roos, Raymund A C; van Dijk, Gert; Middelkoop, Huub A M

    2007-04-15

    The EEG is potentially useful as a marker of early Huntington's disease (HD). In dementia, the EEG during a memory activation challenge showed abnormalities where the resting EEG did not. We investigated whether memory activation also reveals EEG abnormalities in preclinical HD. Sixteen mutation carriers for HD and 13 nonmutation carriers underwent neurological, neuropsychological, MRI and EEG investigations. The EEG was registered during a rest condition, i.e. eyes closed, and a working memory task. In each condition we determined absolute power in the theta (4-8 Hz) and alpha (8-13 Hz) bands and subsequently calculated relative alpha power. The EEG during eyes closed did not differ between groups. The EEG during memory activation showed less relative alpha power in mutation carriers as compared to nonmutation carriers, even though memory performance was similar [F (1,27) = 10.87; P = 0.003]. Absolute powers also showed less alpha power [F (1,27) = 7.02; P = 0.013] but similar theta power. No correlations were found between absolute and relative alpha power on the one hand and neuropsychological scores, motor scores or number of CAG repeats on the other. In conclusion, memory activation reveals functional brain changes in Huntington's disease before clinical signs become overt. PMID:17266047

  11. Small molecules reveal an alternative mechanism of Bax activation

    PubMed Central

    Brahmbhatt, Hetal; Uehling, David; Al-awar, Rima; Leber, Brian; Andrews, David

    2016-01-01

    The pro-apoptotic protein Bax commits a cell to death by permeabilizing the mitochondrial outer membrane (MOM). To obtain small-molecule probes for elucidating the molecular mechanism(s) of Bax activation, we screened for compounds that induced Bax-mediated liposome permeabilization. We identified five structurally different small molecules that promoted both Bax targeting to and oligomerization at membranes. All five compounds initiated Bax oligomerization in the absence of membranes by a mechanism unlike Bax activation by Bcl-2 homology 3 domain (BH3) proteins. Some of the compounds induced Bax/Bak-dependent apoptosis in cells. Activation of Bax by the most active compound was poorly inhibited by the anti-apoptotic protein Bcl-XL and requires a cysteine residue at position 126 of Bax that is not required for activation by BH3 proteins. Our results reveal a novel pathway for Bax activation independent of pro-apoptotic BH3 proteins that may have important implications for the regulation of Bax activity in cells. PMID:26916338

  12. Small molecules reveal an alternative mechanism of Bax activation.

    PubMed

    Brahmbhatt, Hetal; Uehling, David; Al-Awar, Rima; Leber, Brian; Andrews, David

    2016-04-15

    The pro-apoptotic protein Bax commits a cell to death by permeabilizing the mitochondrial outer membrane (MOM). To obtain small-molecule probes for elucidating the molecular mechanism(s) of Bax activation, we screened for compounds that induced Bax-mediated liposome permeabilization. We identified five structurally different small molecules that promoted both Bax targeting to and oligomerization at membranes. All five compounds initiated Bax oligomerization in the absence of membranes by a mechanism unlike Bax activation by Bcl-2 homology 3 domain (BH3) proteins. Some of the compounds induced Bax/Bak-dependent apoptosis in cells. Activation of Bax by the most active compound was poorly inhibited by the anti-apoptotic protein Bcl-XL and requires a cysteine residue at position 126 of Bax that is not required for activation by BH3 proteins. Our results reveal a novel pathway for Bax activation independent of pro-apoptotic BH3 proteins that may have important implications for the regulation of Bax activity in cells. PMID:26916338

  13. Femtosecond near-infrared laser microirradiation reveals a crucial role for PARP signaling on factor assemblies at DNA damage sites

    PubMed Central

    Saquilabon Cruz, Gladys Mae; Kong, Xiangduo; Silva, Bárbara Alcaraz; Khatibzadeh, Nima; Thai, Ryan; Berns, Michael W.; Yokomori, Kyoko

    2016-01-01

    Laser microirradiation is a powerful tool for real-time single-cell analysis of the DNA damage response (DDR). It is often found, however, that factor recruitment or modification profiles vary depending on the laser system employed. This is likely due to an incomplete understanding of how laser conditions/dosages affect the amounts and types of damage and the DDR. We compared different irradiation conditions using a femtosecond near-infrared laser and found distinct damage site recruitment thresholds for 53BP1 and TRF2 correlating with the dose-dependent increase of strand breaks and damage complexity. Low input-power microirradiation that induces relatively simple strand breaks led to robust recruitment of 53BP1 but not TRF2. In contrast, increased strand breaks with complex damage including crosslinking and base damage generated by high input-power microirradiation resulted in TRF2 recruitment to damage sites with no 53BP1 clustering. We found that poly(ADP-ribose) polymerase (PARP) activation distinguishes between the two damage states and that PARP activation is essential for rapid TRF2 recruitment while suppressing 53BP1 accumulation at damage sites. Thus, our results reveal that careful titration of laser irradiation conditions allows induction of varying amounts and complexities of DNA damage that are gauged by differential PARP activation regulating protein assembly at the damage site. PMID:26424850

  14. Active Site Loop Conformation Regulates Promiscuous Activity in a Lactonase from Geobacillus kaustophilus HTA426

    PubMed Central

    Zhang, Yu; An, Jiao; Yang, Guang-Yu; Bai, Aixi; Zheng, Baisong; Lou, Zhiyong; Wu, Geng; Ye, Wei; Chen, Hai-Feng; Feng, Yan; Manco, Giuseppe

    2015-01-01

    Enzyme promiscuity is a prerequisite for fast divergent evolution of biocatalysts. A phosphotriesterase-like lactonase (PLL) from Geobacillus kaustophilus HTA426 (GkaP) exhibits main lactonase and promiscuous phosphotriesterase activities. To understand its catalytic and evolutionary mechanisms, we investigated a “hot spot” in the active site by saturation mutagenesis as well as X-ray crystallographic analyses. We found that position 99 in the active site was involved in substrate discrimination. One mutant, Y99L, exhibited 11-fold improvement over wild-type in reactivity (kcat/Km) toward the phosphotriesterase substrate ethyl-paraoxon, but showed 15-fold decrease toward the lactonase substrate δ-decanolactone, resulting in a 157-fold inversion of the substrate specificity. Structural analysis of Y99L revealed that the mutation causes a ∼6.6 Å outward shift of adjacent loop 7, which may cause increased flexibility of the active site and facilitate accommodation and/or catalysis of organophosphate substrate. This study provides for the PLL family an example of how the evolutionary route from promiscuity to specificity can derive from very few mutations, which promotes alteration in the conformational adjustment of the active site loops, in turn draws the capacity of substrate binding and activity. PMID:25706379

  15. Inacessible Andean sites reveal land-use induced stabilisation of soil organic carbon

    NASA Astrophysics Data System (ADS)

    Heitkamp, Felix; Maqsood, Shafique; Sylvester, Steven; Kessler, Michael; Jungkunst, Hermann

    2015-04-01

    Human activity affects properties and development of ecosystems across the globe to such a degree that it is challenging to get baseline values for undisturbed ecosystems. This is especially true for soils, which are affected by land-use history and hold a legacy of past human interventions. Therefore, it is still largely unknown how soil would have developed "naturally" and if processes of organic matter stabilisation would be different in comparison to managed soils. Here, we show undisturbed soil development, i.e., the processes of weathering and accumulation of soil organic carbon (SOC), by comparing pristine with grazed sites in the high Andes (4500 m) of southern Peru. We located study plots on a large ledge (0.2 km²) that is only accessible with mountaineering equipment. Plots with pristine vegetation were compared to rangeland plots that were constantly under grazing management for at least four millennia. All "state factors"; climate, potential biota, topography, parent material and time; besides "land-use" were, therefore, identical. Vegetation change, induced by grazing management, led to lower vegetation cover of the soil, thereby increasing soil surface temperatures and soil acidification. Both factors increased weathering in rangeland soils, as indicated by the presence of pedogenic oxides, especially amorphous Al-(oxy)hydroxides (oxalate-extractable Al). Higher losses of base cations (K, Na, Ca) and lower pH-values were related to a low base saturation of exchange sites in rangelands. Therefore, rangeland soils were classified as Umbrisol, whereas soils under pristine vegetation were classified as Phaeozeme. All profiles were rich in SOC (100 to 126 g kg-1) with no significant differences in concentrations or stocks. SOC of rangeland soils was, however, less available for microorganisms (proportion of microbial C on SOC: 1.8 vs. 0.6% in pristine and rangeland soils, respectively) and showed higher stability against thermal degradation. Reasons for

  16. An Extensive Survey of Tyrosine Phosphorylation Revealing New Sites in Human Mammary Epithelial Cells

    SciTech Connect

    Heibeck, Tyler H.; Ding, Shi-Jian; Opresko, Lee K.; Zhao, Rui; Schepmoes, Athena A.; Yang, Feng; Tolmachev, Aleksey V.; Monroe, Matthew E.; Camp, David G.; Smith, Richard D.; Wiley, H. S.; Qian, Weijun

    2009-08-01

    Protein tyrosine phosphorylation is a central regulatory mechanism in cell signaling. To extensively characterize the site-specific tyrosine phosphorylation in human cells, we present here a global survey of tyrosine phosphorylation sites in a normal-derived human mammary epithelial cell (HMEC) line by applying anti-phosphotyrosine (pTyr) peptide immunoaffinity purification (IP) coupled with high sensitivity LC-MS/MS. A total of 481 tyrosine phosphorylation sites (covered by 716 unique peptides) from 285 proteins were confidently identified in HMEC following the analysis of both the basal condition and an acute stimulated condition with epidermal growth factor (EGF). The estimated false discovery rate is 1.0% as measured by comparison against a scrambled database search. Comparison of these data to the literature showed significant agreement in site matches. Additionally 281 sites were not previously observed in HMEC culture were found. Twenty-nine of these sites have not been reported in any human cell or tissue system. The global profiling also allowed us to examine the phosphorylation stoichiometry differences based on spectral count information. Comparison of the data to a previous global proteome profiling study illustrates that most of the highly phoshorylated proteins are of relatively low-abundance. Large differences in phosphorylation stoichiometry for sites within the same protein were also observed for many of the identified proteins, suggesting potentially more important functional roles for those highly phosphorylated pTyr sites within a given protein. By mapping to major signaling networks such as EGF receptor and insulin growth factor-1 receptor signaling pathways, many known proteins involved in these pathways were revealed to be tyrosine phosphorylated, which should allow us to select interesting targeted involved in a given pathway for more directed studies. This extensive HMEC tyrosine phosphorylation dataset represents an important database

  17. Chromatin states reveal functional associations for globally defined transcription start sites in four human cell lines

    PubMed Central

    2014-01-01

    Background Deciphering the most common modes by which chromatin regulates transcription, and how this is related to cellular status and processes is an important task for improving our understanding of human cellular biology. The FANTOM5 and ENCODE projects represent two independent large scale efforts to map regulatory and transcriptional features to the human genome. Here we investigate chromatin features around a comprehensive set of transcription start sites in four cell lines by integrating data from these two projects. Results Transcription start sites can be distinguished by chromatin states defined by specific combinations of both chromatin mark enrichment and the profile shapes of these chromatin marks. The observed patterns can be associated with cellular functions and processes, and they also show association with expression level, location relative to nearby genes, and CpG content. In particular we find a substantial number of repressed inter- and intra-genic transcription start sites enriched for active chromatin marks and Pol II, and these sites are strongly associated with immediate-early response processes and cell signaling. Associations between start sites with similar chromatin patterns are validated by significant correlations in their global expression profiles. Conclusions The results confirm the link between chromatin state and cellular function for expressed transcripts, and also indicate that active chromatin states at repressed transcripts may poise transcripts for rapid activation during immune response. PMID:24669905

  18. Autotaxin Structure Activity Relationships Revealed through Lysophosphatidylcholine Analogs

    PubMed Central

    North, E. Jeffrey; Osborne, Daniel A.; Bridson, Peter K.; Baker, Daniel L.; Parrill, Abby L.

    2009-01-01

    Autotaxin (ATX) catalyzes the hydrolysis of lysophosphatidylcholine (LPC) to form the bioactive lipid lysophosphatidic acid (LPA). LPA stimulates cell proliferation, cell survival, and cell migration and is involved in obesity, rheumatoid arthritis, neuropathic pain, atherosclerosis and various cancers, suggesting that ATX inhibitors have broad therapeutic potential. Product feedback inhibition of ATX by LPA has stimulated structure activity studies focused on LPA analogs. However, LPA displays mixed mode inhibition, indicating it can bind to both the enzyme and the enzyme-substrate complex. This suggests that LPA may not interact solely with the catalytic site. In this report we have prepared LPC analogs to help map out substrate structure activity relationships. The structural variances include length and unsaturation of the fatty tail, choline and polar linker presence, acyl versus ether linkage of the hydrocarbon chain, and methylene and nitrogen replacement of the choline oxygen. All LPC analogs were assayed in competition with the synthetic substrate, FS-3, to show the preference ATX has for each alteration. Choline presence and methylene replacement of the choline oxygen were detrimental to ATX recognition. These findings provide insights into the structure of the enzyme in the vicinity of the catalytic site as well as suggesting that ATX produces rate enhancement, at least in part, by substrate destabilization. PMID:19345587

  19. The first crystal structure of human RNase 6 reveals a novel substrate-binding and cleavage site arrangement

    PubMed Central

    Prats-Ejarque, Guillem; Arranz-Trullén, Javier; Blanco, Jose A.; Pulido, David; Nogués, M. Victòria; Moussaoui, Mohammed; Boix, Ester

    2016-01-01

    Human RNase 6 is a cationic secreted protein that belongs to the RNase A superfamily. Its expression is induced in neutrophils and monocytes upon bacterial infection, suggesting a role in host defence. We present here the crystal structure of RNase 6 obtained at 1.72 Å (1 Å=0.1 nm) resolution, which is the first report for the protein 3D structure and thereby setting the basis for functional studies. The structure shows an overall kidney-shaped globular fold shared with the other known family members. Three sulfate anions bound to RNase 6 were found, interacting with residues at the main active site (His15, His122 and Gln14) and cationic surface-exposed residues (His36, His39, Arg66 and His67). Kinetic characterization, together with prediction of protein–nucleotide complexes by molecular dynamics, was applied to analyse the RNase 6 substrate nitrogenous base and phosphate selectivity. Our results reveal that, although RNase 6 is a moderate catalyst in comparison with the pancreatic RNase type, its structure includes lineage-specific features that facilitate its activity towards polymeric nucleotide substrates. In particular, enzyme interactions at the substrate 5′ end can provide an endonuclease-type cleavage pattern. Interestingly, the RNase 6 crystal structure revealed a novel secondary active site conformed by the His36–His39 dyad that facilitates the polynucleotide substrate catalysis. PMID:27013146

  20. The first crystal structure of human RNase 6 reveals a novel substrate-binding and cleavage site arrangement.

    PubMed

    Prats-Ejarque, Guillem; Arranz-Trullén, Javier; Blanco, Jose A; Pulido, David; Nogués, M Victòria; Moussaoui, Mohammed; Boix, Ester

    2016-06-01

    Human RNase 6 is a cationic secreted protein that belongs to the RNase A superfamily. Its expression is induced in neutrophils and monocytes upon bacterial infection, suggesting a role in host defence. We present here the crystal structure of RNase 6 obtained at 1.72 Å (1 Å=0.1 nm) resolution, which is the first report for the protein 3D structure and thereby setting the basis for functional studies. The structure shows an overall kidney-shaped globular fold shared with the other known family members. Three sulfate anions bound to RNase 6 were found, interacting with residues at the main active site (His(15), His(122) and Gln(14)) and cationic surface-exposed residues (His(36), His(39), Arg(66) and His(67)). Kinetic characterization, together with prediction of protein-nucleotide complexes by molecular dynamics, was applied to analyse the RNase 6 substrate nitrogenous base and phosphate selectivity. Our results reveal that, although RNase 6 is a moderate catalyst in comparison with the pancreatic RNase type, its structure includes lineage-specific features that facilitate its activity towards polymeric nucleotide substrates. In particular, enzyme interactions at the substrate 5' end can provide an endonuclease-type cleavage pattern. Interestingly, the RNase 6 crystal structure revealed a novel secondary active site conformed by the His(36)-His(39) dyad that facilitates the polynucleotide substrate catalysis. PMID:27013146

  1. Aberrant Activity in Degenerated Retinas Revealed by Electrical Imaging

    PubMed Central

    Zeck, Günther

    2016-01-01

    In this review, I present and discuss the current understanding of aberrant electrical activity found in the ganglion cell layer (GCL) of rod-degenerated (rd) mouse retinas. The reported electrophysiological properties revealed by electrical imaging using high-density microelectrode arrays can be subdivided between spiking activity originating from retinal ganglion cells (RGCs) and local field potentials (LFPs) reflecting strong trans-membrane currents within the GCL. RGCs in rd retinas show increased and rhythmic spiking compared to age-matched wild-type retinas. Fundamental spiking frequencies range from 5 to 15 Hz in various mouse models. The rhythmic RGC spiking is driven by a presynaptic network comprising AII amacrine and bipolar cells. In the healthy retina this rhythm-generating circuit is inhibited by photoreceptor input. A unique physiological feature of rd retinas is rhythmic LFP manifested as spatially-restricted low-frequency (5–15 Hz) voltage changes. Their spatiotemporal characterization revealed propagation and correlation with RGC spiking. LFPs rely on gap-junctional coupling and are shaped by glycinergic and by GABAergic transmission. The aberrant RGC spiking and LFPs provide a simple readout of the functionality of the remaining retinal circuitry which can be used in the development of improved vision restoration strategies. PMID:26903810

  2. Whole Exome Sequencing Reveals Novel PHEX Splice Site Mutations in Patients with Hypophosphatemic Rickets

    PubMed Central

    Gillies, Christopher; Sampson, Matthew G.; Kher, Vijay; Sethi, Sidharth K.; Otto, Edgar A.

    2015-01-01

    Objective Hypophosphatemic rickets (HR) is a heterogeneous genetic phosphate wasting disorder. The disease is most commonly caused by mutations in the PHEX gene located on the X-chromosome or by mutations in CLCN5, DMP1, ENPP1, FGF23, and SLC34A3. The aims of this study were to perform molecular diagnostics for four patients with HR of Indian origin (two independent families) and to describe their clinical features. Methods We performed whole exome sequencing (WES) for the affected mother of two boys who also displayed the typical features of HR, including bone malformations and phosphate wasting. B-lymphoblast cell lines were established by EBV transformation and subsequent RT-PCR to investigate an uncommon splice site variant found by WES. An in silico analysis was done to obtain accurate nucleotide frequency occurrences of consensus splice positions other than the canonical sites of all human exons. Additionally, we applied direct Sanger sequencing for all exons and exon/intron boundaries of the PHEX gene for an affected girl from an independent second Indian family. Results WES revealed a novel PHEX splice acceptor mutation in intron 9 (c.1080-3C>A) in a family with 3 affected individuals with HR. The effect on splicing of this mutation was further investigated by RT-PCR using RNA obtained from a patient’s EBV-transformed lymphoblast cell line. RT-PCR revealed an aberrant splice transcript skipping exons 10-14 which was not observed in control samples, confirming the diagnosis of X-linked dominant hypophosphatemia (XLH). The in silico analysis of all human splice sites adjacent to all 327,293 exons across 81,814 transcripts among 20,345 human genes revealed that cytosine is, with 64.3%, the most frequent nucleobase at the minus 3 splice acceptor position, followed by thymidine with 28.7%, adenine with 6.3%, and guanine with 0.8%. We generated frequency tables and pictograms for the extended donor and acceptor splice consensus regions by analyzing all human

  3. Nanopharmacological Force Sensing to Reveal Allosteric Coupling in Transporter Binding Sites.

    PubMed

    Zhu, Rong; Sinwel, Doris; Hasenhuetl, Peter S; Saha, Kusumika; Kumar, Vivek; Zhang, Peng; Rankl, Christian; Holy, Marion; Sucic, Sonja; Kudlacek, Oliver; Karner, Andreas; Sandtner, Walter; Stockner, Thomas; Gruber, Hermann J; Freissmuth, Michael; Hauck Newman, Amy; Sitte, Harald H; Hinterdorfer, Peter

    2016-01-26

    Controversy regarding the number and function of ligand binding sites in neurotransmitter/sodium symporters arose from conflicting data in crystal structures and molecular pharmacology. Here, we have designed novel tools for atomic force microscopy that directly measure the interaction forces between the serotonin transporter (SERT) and the S- and R-enantiomers of citalopram on the single molecule level. This approach is based on force spectroscopy, which allows for the extraction of dynamic information under physiological conditions thus inaccessible via X-ray crystallography. Two distinct populations of characteristic binding strengths of citalopram to SERT were revealed in Na(+)-containing buffer. In contrast, in Li(+) -containing buffer, SERT showed only low force interactions. Conversely, the vestibular mutant SERT-G402H merely displayed the high force population. These observations provide physical evidence for the existence of two binding sites in SERT when accessed in a physiological context. Competition experiments revealed that these two sites are allosterically coupled and exert reciprocal modulation. PMID:26695726

  4. Active Mars Revealed through HiRISE DTMs and Orthoimages

    NASA Astrophysics Data System (ADS)

    Mattson, Sarah; McEwen, Alfred S.; Bridges, Nathan; Byrne, Shane; Chojnacki, Matthew; Daubar, Ingrid; Dundas, Colin; Russell, Patrick

    2014-11-01

    Before the arrival of the Mars Reconnaissance Orbiter (MRO) with the High-Resolution Imaging Science Experiment (HiRISE), the amount of surface activity on Mars was not well known. HiRISE repeat imaging (often at ~30 cm/pixel), combined with the ability to take stereo images and generate high resolution Digital Terrain Models (DTMs) reveals the many types of surface processes that are currently active on Mars. Examples of active processes on Mars studied with HiRISE data include aeolian activity [Bridges et al., 2012, Nature 485; Chojnacki et al., 2014, Icarus 232], Recurring Slope Lineae (RSL) [McEwen et al., 2011, Science 333; 2014, Nature Geoscience 7], active gullies [Dundas et al., 2012, Icarus 220], polar processes [Hansen et al., 2011, Science 331; Portyankina et al. 2013, AGU], new impacts [Byrne et al., 2009, Science 325; Daubar et al., 2013, Icarus 225; Dundas et al., 2014, JGR 119], and north polar scarp avalanches [Russell et al., 2008, GRL 35, 2014, LPSC]. These studies utilize images from multiple Mars years and seasons. We generate animated gifs with sequences of orthorectified images to analyze temporal changes (see http://www.uahirise.org/sim/). HiRISE DTMs and orthoimages can be used to quantitatively map and record changes in geospatial software. More than 200 DTMs and 400 orthoimages are available through the Planetary Data System (see http://uahirise.org/dtm). Three-band color (blue-green, red, and near infrared) orthoimages are also available in many cases. The ability to monitor the surface of Mars at high spatial and temporal resolution provides insight into seasonal and annual changes, further increasing our understanding of Mars as an active planet.

  5. Structures of bacterial kynurenine formamidase reveal a crowded binuclear zinc catalytic site primed to generate a potent nucleophile

    PubMed Central

    Díaz-Sáez, Laura; Srikannathasan, Velupillai; Zoltner, Martin; Hunter, William N.

    2014-01-01

    Tryptophan is an important precursor for chemical entities that ultimately support the biosynthesis of key metabolites. The second stage of tryptophan catabolism is catalysed by kynurenine formamidase, an enzyme that is different between eukaryotes and prokaryotes. In the present study, we characterize the catalytic properties and present the crystal structures of three bacterial kynurenine formamidases. The structures reveal a new amidase protein fold, a highly organized and distinctive binuclear Zn2+ catalytic centre in a confined, hydrophobic and relatively rigid active site. The structure of a complex with 2-aminoacetophenone delineates aspects of molecular recognition extending to the observation that the substrate itself may be conformationally restricted to assist binding in the confined space of the active site and for subsequent processing. The cations occupy a crowded environment, and, unlike most Zn2+-dependent enzymes, there is little scope to increase co-ordination number during catalysis. We propose that the presence of a bridging water/hydroxide ligand in conjunction with the placement of an active site histidine supports a distinctive amidation mechanism. PMID:24942958

  6. Dissecting the active site of a photoreceptor protein

    NASA Astrophysics Data System (ADS)

    Hoff, Wouter; Hara, Miwa; Ren, Jie; Moghadam, Farzaneh; Xie, Aihua; Kumauchi, Masato

    While enzymes are quite large molecules, functionally important chemical events are often limited to a small region of the protein: the active site. The physical and chemical properties of residues at such active sites are often strongly altered compared to the same groups dissolved in water. Understanding such effects is important for unraveling the mechanisms underlying protein function and for protein engineering, but has proven challenging. Here we report on our ongoing efforts on using photoactive yellow protein (PYP), a bacterial photoreceptor, as a model system for such effects. We will report on the following questions: How many residues affect active site properties? Are these residues in direct physical contact with the active site? Can functionally important residues be recognized in the crystal structure of a protein? What structural resolution is needed to understand active sites? What spectroscopic techniques are most informative? Which weak interactions dominate active site properties?

  7. Ultrafast ligand binding dynamics in the active site of native bacterial nitric oxide reductase.

    PubMed

    Kapetanaki, Sofia M; Field, Sarah J; Hughes, Ross J L; Watmough, Nicholas J; Liebl, Ursula; Vos, Marten H

    2008-01-01

    The active site of nitric oxide reductase from Paracoccus denitrificans contains heme and non-heme iron and is evolutionarily related to heme-copper oxidases. The CO and NO dynamics in the active site were investigated using ultrafast transient absorption spectroscopy. We find that, upon photodissociation from the active site heme, 20% of the CO rebinds in 170 ps, suggesting that not all the CO transiently binds to the non-heme iron. The remaining 80% does not rebind within 4 ns and likely migrates out of the active site without transient binding to the non-heme iron. Rebinding of NO to ferrous heme takes place in approximately 13 ps. Our results reveal that heme-ligand recombination in this enzyme is considerably faster than in heme-copper oxidases and are consistent with a more confined configuration of the active site. PMID:18420024

  8. Evidence for segmental mobility in the active site of pepsin

    SciTech Connect

    Pohl, J.; Strop, P.; Senn, H.; Foundling, S.; Kostka, V.

    1986-05-01

    The low hydrolytic activity (k/sub cat/ < 0.001 s/sup -1/) of chicken pepsin (CP) towards tri- and tetrapeptides is enhanced at least 100 times by modification of its single sulfhydryl group of Cys-115, with little effect on K/sub m/-values. Modification thus simulates the effect of secondary substrate binding on pepsin catalysis. The rate of Cys-115 modification is substantially decreased in the presence of some competitive inhibitors, suggesting its active site location. Experiments with CP alkylated at Cys-115 with Acrylodan as a fluorescent probe or with N-iodoacetyl-(4-fluoro)-aniline as a /sup 19/F-nmr probe suggest conformation change around Cys-115 to occur on substrate or substrate analog binding. The difference /sup 1/H-nmr spectra (500 MHz) of unmodified free and inhibitor-complexed CP reveal chemical shifts almost exclusively in the aromatic region. The effects of Cu/sup + +/ on /sup 19/F- and /sup 1/H-nmr spectra have been studied. Examination of a computer graphics model of CP based on E. parasitica pepsin-inhibitor complex X-ray coordinates suggests that Cys-115 is located near the S/sub 3//S/sub 5/ binding site. The results are interpreted in favor of segmental mobility of this region important for pepsin substrate binding and catalysis.

  9. Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues.

    PubMed

    Youngblut, Matthew D; Tsai, Chi-Lin; Clark, Iain C; Carlson, Hans K; Maglaqui, Adrian P; Gau-Pan, Phonchien S; Redford, Steven A; Wong, Alan; Tainer, John A; Coates, John D

    2016-04-22

    Perchlorate is an important ion on both Earth and Mars. Perchlorate reductase (PcrAB), a specialized member of the dimethylsulfoxide reductase superfamily, catalyzes the first step of microbial perchlorate respiration, but little is known about the biochemistry, specificity, structure, and mechanism of PcrAB. Here we characterize the biophysics and phylogeny of this enzyme and report the 1.86-Å resolution PcrAB complex crystal structure. Biochemical analysis revealed a relatively high perchlorate affinity (Km = 6 μm) and a characteristic substrate inhibition compared with the highly similar respiratory nitrate reductase NarGHI, which has a relatively much lower affinity for perchlorate (Km = 1.1 mm) and no substrate inhibition. Structural analysis of oxidized and reduced PcrAB with and without the substrate analog SeO3 (2-) bound to the active site identified key residues in the positively charged and funnel-shaped substrate access tunnel that gated substrate entrance and product release while trapping transiently produced chlorate. The structures suggest gating was associated with shifts of a Phe residue between open and closed conformations plus an Asp residue carboxylate shift between monodentate and bidentate coordination to the active site molybdenum atom. Taken together, structural and mutational analyses of gate residues suggest key roles of these gate residues for substrate entrance and product release. Our combined results provide the first detailed structural insight into the mechanism of biological perchlorate reduction, a critical component of the chlorine redox cycle on Earth. PMID:26940877

  10. Mars Surveyor Project Landing Site Activities

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C.; Briggs, Geoffrey; Saunders, R. Stephen; Gilmore, Martha; Soderblom, Larry

    1999-01-01

    The Mars Surveyor Program --now a cooperative program led by NASA and CNES along with other international partners -- is underway. It has the primary science objective of furthering our understanding of the biological potential and possible biological history of Mars and has the complementary objective of improving our understanding of martian climate evolution and planetary history The missions will develop technology and acquire data necessary for eventual human Exploration. Launches of orbiters, landers and rovers will take place in 2001 and in 2003; in 2005 a complete system will be launched capable of returning samples to Earth by 2008. A key aspect of the program is the selection of landing sites. This abstract 1) reports on the status of the landing site selection process that begins with the 2001 lander mission and 2) outlines be opportunities for the Mars community to provide input into the landing site selection process.

  11. Mars Surveyor Project Landing Site Activities

    NASA Technical Reports Server (NTRS)

    Gulick, V. C.; Briggs, Geoffrey; Saunders, R. Stephen; Gilmore, Martha; Soderblom, Larry

    1999-01-01

    The Mars Surveyor Program -- now a cooperative program led by NASA and CNES along with other international partners -- is underway. It has the primary science objective of furthering our understanding of the biological potential and possible biological history of Mars and has the complementary objective of improving our understanding of martian climate evolution and planetary history. The missions will develop technology and acquire data necessary for eventual human exploration. Launches of orbiters, landers and rovers will take place in 2001 and in 2003; in 2005 a complete system will be launched capable of returning samples to Earth by 2008. A key aspect of the program is the selection of landing sites. This abstract 1) reports on the status of the landing site selection process that begins with the 2001 lander mission and 2) outlines the opportunities for the Mars community to provide input into the landing site selection process.

  12. Covert Waking Brain Activity Reveals Instantaneous Sleep Depth

    PubMed Central

    McKinney, Scott M.; Dang-Vu, Thien Thanh; Buxton, Orfeu M.; Solet, Jo M.; Ellenbogen, Jeffrey M.

    2011-01-01

    The neural correlates of the wake-sleep continuum remain incompletely understood, limiting the development of adaptive drug delivery systems for promoting sleep maintenance. The most useful measure for resolving early positions along this continuum is the alpha oscillation, an 8–13 Hz electroencephalographic rhythm prominent over posterior scalp locations. The brain activation signature of wakefulness, alpha expression discloses immediate levels of alertness and dissipates in concert with fading awareness as sleep begins. This brain activity pattern, however, is largely ignored once sleep begins. Here we show that the intensity of spectral power in the alpha band actually continues to disclose instantaneous responsiveness to noise—a measure of sleep depth—throughout a night of sleep. By systematically challenging sleep with realistic and varied acoustic disruption, we found that sleepers exhibited markedly greater sensitivity to sounds during moments of elevated alpha expression. This result demonstrates that alpha power is not a binary marker of the transition between sleep and wakefulness, but carries rich information about immediate sleep stability. Further, it shows that an empirical and ecologically relevant form of sleep depth is revealed in real-time by EEG spectral content in the alpha band, a measure that affords prediction on the order of minutes. This signal, which transcends the boundaries of classical sleep stages, could potentially be used for real-time feedback to novel, adaptive drug delivery systems for inducing sleep. PMID:21408616

  13. The bifunctional active site of s-adenosylmethionine synthetase. Roles of the active site aspartates.

    PubMed

    Taylor, J C; Markham, G D

    1999-11-12

    S-Adenosylmethionine (AdoMet) synthetase catalyzes the biosynthesis of AdoMet in a unique enzymatic reaction. Initially the sulfur of methionine displaces the intact tripolyphosphate chain (PPP(i)) from ATP, and subsequently PPP(i) is hydrolyzed to PP(i) and P(i) before product release. The crystal structure of Escherichia coli AdoMet synthetase shows that the active site contains four aspartate residues. Aspartate residues Asp-16* and Asp-271 individually provide the sole protein ligand to one of the two required Mg(2+) ions (* denotes a residue from a second subunit); aspartates Asp-118 and Asp-238* are proposed to interact with methionine. Each aspartate has been changed to an uncharged asparagine, and the metal binding residues were also changed to alanine, to assess the roles of charge and ligation ability on catalytic efficiency. The resultant enzyme variants all structurally resemble the wild type enzyme as indicated by circular dichroism spectra and are tetramers. However, all have k(cat) reductions of approximately 10(3)-fold in AdoMet synthesis, whereas the MgATP and methionine K(m) values change by less than 3- and 8-fold, respectively. In the partial reaction of PPP(i) hydrolysis, mutants of the Mg(2+) binding residues have >700-fold reduced catalytic efficiency (k(cat)/K(m)), whereas the D118N and D238*N mutants are impaired less than 35-fold. The catalytic efficiency for PPP(i) hydrolysis by Mg(2+) site mutants is improved by AdoMet, like the wild type enzyme. In contrast AdoMet reduces the catalytic efficiency for PPP(i) hydrolysis by the D118N and D238*N mutants, indicating that the events involved in AdoMet activation are hindered in these methionyl binding site mutants. Ca(2+) uniquely activates the D271A mutant enzyme to 15% of the level of Mg(2+), in contrast to the approximately 1% Ca(2+) activation of the wild type enzyme. This indicates that the Asp-271 side chain size is a discriminator between the activating ability of Ca(2+) and the

  14. Active-Site Hydration and Water Diffusion in Cytochrome P450cam: A Highly Dynamic Process

    SciTech Connect

    Miao, Yinglong; Baudry, Jerome Y

    2011-01-01

    Long-timescale molecular dynamics simulations (300 ns) are performed on both the apo- (i.e., camphor-free) and camphor-bound cytochrome P450cam (CYP101). Water diffusion into and out of the protein active site is observed without biased sampling methods. During the course of the molecular dynamics simulation, an average of 6.4 water molecules is observed in the camphor-binding site of the apo form, compared to zero water molecules in the binding site of the substrate-bound form, in agreement with the number of water molecules observed in crystal structures of the same species. However, as many as 12 water molecules can be present at a given time in the camphor-binding region of the active site in the case of apo-P450cam, revealing a highly dynamic process for hydration of the protein active site, with water molecules exchanging rapidly with the bulk solvent. Water molecules are also found to exchange locations frequently inside the active site, preferentially clustering in regions surrounding the water molecules observed in the crystal structure. Potential-of-mean-force calculations identify thermodynamically favored trans-protein pathways for the diffusion of water molecules between the protein active site and the bulk solvent. Binding of camphor in the active site modifies the free-energy landscape of P450cam channels toward favoring the diffusion of water molecules out of the protein active site.

  15. Evolutionary comparison reveals that diverging CTCF sites are signatures of ancestral topological associating domains borders.

    PubMed

    Gómez-Marín, Carlos; Tena, Juan J; Acemel, Rafael D; López-Mayorga, Macarena; Naranjo, Silvia; de la Calle-Mustienes, Elisa; Maeso, Ignacio; Beccari, Leonardo; Aneas, Ivy; Vielmas, Erika; Bovolenta, Paola; Nobrega, Marcelo A; Carvajal, Jaime; Gómez-Skarmeta, José Luis

    2015-06-16

    Increasing evidence in the last years indicates that the vast amount of regulatory information contained in mammalian genomes is organized in precise 3D chromatin structures. However, the impact of this spatial chromatin organization on gene expression and its degree of evolutionary conservation is still poorly understood. The Six homeobox genes are essential developmental regulators organized in gene clusters conserved during evolution. Here, we reveal that the Six clusters share a deeply evolutionarily conserved 3D chromatin organization that predates the Cambrian explosion. This chromatin architecture generates two largely independent regulatory landscapes (RLs) contained in two adjacent topological associating domains (TADs). By disrupting the conserved TAD border in one of the zebrafish Six clusters, we demonstrate that this border is critical for preventing competition between promoters and enhancers located in separated RLs, thereby generating different expression patterns in genes located in close genomic proximity. Moreover, evolutionary comparison of Six-associated TAD borders reveals the presence of CCCTC-binding factor (CTCF) sites with diverging orientations in all studied deuterostomes. Genome-wide examination of mammalian HiC data reveals that this conserved CTCF configuration is a general signature of TAD borders, underscoring that common organizational principles underlie TAD compartmentalization in deuterostome evolution. PMID:26034287

  16. Evolutionary comparison reveals that diverging CTCF sites are signatures of ancestral topological associating domains borders

    PubMed Central

    Gómez-Marín, Carlos; Tena, Juan J.; Acemel, Rafael D.; López-Mayorga, Macarena; Naranjo, Silvia; de la Calle-Mustienes, Elisa; Maeso, Ignacio; Beccari, Leonardo; Aneas, Ivy; Vielmas, Erika; Bovolenta, Paola; Nobrega, Marcelo A.; Carvajal, Jaime; Gómez-Skarmeta, José Luis

    2015-01-01

    Increasing evidence in the last years indicates that the vast amount of regulatory information contained in mammalian genomes is organized in precise 3D chromatin structures. However, the impact of this spatial chromatin organization on gene expression and its degree of evolutionary conservation is still poorly understood. The Six homeobox genes are essential developmental regulators organized in gene clusters conserved during evolution. Here, we reveal that the Six clusters share a deeply evolutionarily conserved 3D chromatin organization that predates the Cambrian explosion. This chromatin architecture generates two largely independent regulatory landscapes (RLs) contained in two adjacent topological associating domains (TADs). By disrupting the conserved TAD border in one of the zebrafish Six clusters, we demonstrate that this border is critical for preventing competition between promoters and enhancers located in separated RLs, thereby generating different expression patterns in genes located in close genomic proximity. Moreover, evolutionary comparison of Six-associated TAD borders reveals the presence of CCCTC-binding factor (CTCF) sites with diverging orientations in all studied deuterostomes. Genome-wide examination of mammalian HiC data reveals that this conserved CTCF configuration is a general signature of TAD borders, underscoring that common organizational principles underlie TAD compartmentalization in deuterostome evolution. PMID:26034287

  17. Varenicline Interactions at the 5-HT3 Receptor Ligand Binding Site are Revealed by 5-HTBP

    PubMed Central

    2015-01-01

    Cys-loop receptors are the site of action of many therapeutic drugs. One of these is the smoking cessation agent varenicline, which has its major therapeutic effects at nicotinic acetylcholine (nACh) receptors but also acts at 5-HT3 receptors. Here, we report the X-ray crystal structure of the 5-HT binding protein (5-HTBP) in complex with varenicline, and test the predicted interactions by probing the potency of varenicline in a range of mutant 5-HT3 receptors expressed in HEK293 cells and Xenopus oocytes. The structure reveals a range of interactions between varenicline and 5-HTBP. We identified residues within 5 Å of varenicline and substituted the equivalent residues in the 5-HT3 receptor with Ala or a residue with similar chemical properties. Functional characterization of these mutant 5-HT3 receptors, using a fluorescent membrane potential dye in HEK cells and voltage clamp in oocytes, supports interactions between varenicline and the receptor that are similar to those in 5-HTBP. The structure also revealed C-loop closure that was less than in the 5-HT-bound 5-HTBP, and hydrogen bonding between varenicline and the complementary face of the binding pocket via a water molecule, which are characteristics consistent with partial agonist behavior of varenicline in the 5-HT3 receptor. Together, these data reveal detailed insights into the molecular interaction of varenicline in the 5-HT3 receptor. PMID:25648658

  18. Single molecule analysis reveals reversible and irreversible steps during spliceosome activation

    PubMed Central

    Hoskins, Aaron A; Rodgers, Margaret L; Friedman, Larry J; Gelles, Jeff; Moore, Melissa J

    2016-01-01

    The spliceosome is a complex machine composed of small nuclear ribonucleoproteins (snRNPs) and accessory proteins that excises introns from pre-mRNAs. After assembly the spliceosome is activated for catalysis by rearrangement of subunits to form an active site. How this rearrangement is coordinated is not well-understood. During activation, U4 must be released to allow U6 conformational change, while Prp19 complex (NTC) recruitment is essential for stabilizing the active site. We used multi-wavelength colocalization single molecule spectroscopy to directly observe the key events in Saccharomyces cerevisiae spliceosome activation. Following binding of the U4/U6.U5 tri-snRNP, the spliceosome either reverses assembly by discarding tri-snRNP or proceeds to activation by irreversible U4 loss. The major pathway for NTC recruitment occurs after U4 release. ATP stimulates both the competing U4 release and tri-snRNP discard processes. The data reveal the activation mechanism and show that overall splicing efficiency may be maintained through repeated rounds of disassembly and tri-snRNP reassociation. DOI: http://dx.doi.org/10.7554/eLife.14166.001 PMID:27244240

  19. Pseudohalide anions reveal a novel extracellular site for potentiators to increase CFTR function

    PubMed Central

    Li, Man-Song; Cowley, Elizabeth A; Linsdell, Paul

    2012-01-01

    BACKGROUND AND PURPOSE There is great interest in the development of potentiator drugs to increase the activity of the cystic fibrosis transmembrane conductance regulator (CFTR) in cystic fibrosis. We tested the ability of several anions to potentiate CFTR activity by a novel mechanism. EXPERIMENTAL APPROACH Patch clamp recordings were used to investigate the ability of extracellular pseudohalide anions (Co(CN)63−, Co(NO2)63−, Fe(CN)63−, IrCl63−, Fe(CN)64−) to increase the macroscopic conductance of mutant CFTR in intact cells via interactions with cytoplasmic blocking anions. Mutagenesis of CFTR was used to identify a possible molecular mechanism of action. Transepithelial short-circuit current recordings from human airway epithelial cells were used to determine effects on net anion secretion. KEY RESULTS Extracellular pseudohalide anions were able to increase CFTR conductance in intact cells, as well as increase anion secretion in airway epithelial cells. This effect appears to reflect the interaction of these substances with a site on the extracellular face of the CFTR protein. CONCLUSIONS AND IMPLICATIONS Our results identify pseudohalide anions as increasing CFTR function by a previously undescribed molecular mechanism that involves an interaction with an extracellular site on the CFTR protein. Future drugs could utilize this mechanism to increase CFTR activity in cystic fibrosis, possibly in conjunction with known intracellularly-active potentiators. PMID:22612315

  20. Selective small molecule inhibitor of the Mycobacterium tuberculosis fumarate hydratase reveals an allosteric regulatory site

    PubMed Central

    Kasbekar, Monica; Fischer, Gerhard; Mott, Bryan T.; Yasgar, Adam; Hyvönen, Marko; Boshoff, Helena I. M.; Abell, Chris; Barry, Clifton E.; Thomas, Craig J.

    2016-01-01

    Enzymes in essential metabolic pathways are attractive targets for the treatment of bacterial diseases, but in many cases, the presence of homologous human enzymes makes them impractical candidates for drug development. Fumarate hydratase, an essential enzyme in the tricarboxylic acid (TCA) cycle, has been identified as one such potential therapeutic target in tuberculosis. We report the discovery of the first small molecule inhibitor, to our knowledge, of the Mycobacterium tuberculosis fumarate hydratase. A crystal structure at 2.0-Å resolution of the compound in complex with the protein establishes the existence of a previously unidentified allosteric regulatory site. This allosteric site allows for selective inhibition with respect to the homologous human enzyme. We observe a unique binding mode in which two inhibitor molecules interact within the allosteric site, driving significant conformational changes that preclude simultaneous substrate and inhibitor binding. Our results demonstrate the selective inhibition of a highly conserved metabolic enzyme that contains identical active site residues in both the host and the pathogen. PMID:27325754

  1. Selective small molecule inhibitor of the Mycobacterium tuberculosis fumarate hydratase reveals an allosteric regulatory site.

    PubMed

    Kasbekar, Monica; Fischer, Gerhard; Mott, Bryan T; Yasgar, Adam; Hyvönen, Marko; Boshoff, Helena I M; Abell, Chris; Barry, Clifton E; Thomas, Craig J

    2016-07-01

    Enzymes in essential metabolic pathways are attractive targets for the treatment of bacterial diseases, but in many cases, the presence of homologous human enzymes makes them impractical candidates for drug development. Fumarate hydratase, an essential enzyme in the tricarboxylic acid (TCA) cycle, has been identified as one such potential therapeutic target in tuberculosis. We report the discovery of the first small molecule inhibitor, to our knowledge, of the Mycobacterium tuberculosis fumarate hydratase. A crystal structure at 2.0-Å resolution of the compound in complex with the protein establishes the existence of a previously unidentified allosteric regulatory site. This allosteric site allows for selective inhibition with respect to the homologous human enzyme. We observe a unique binding mode in which two inhibitor molecules interact within the allosteric site, driving significant conformational changes that preclude simultaneous substrate and inhibitor binding. Our results demonstrate the selective inhibition of a highly conserved metabolic enzyme that contains identical active site residues in both the host and the pathogen. PMID:27325754

  2. The active site of ribulose-bisphosphate carboxylase/oxygenase

    SciTech Connect

    Hartman, F.C.

    1991-01-01

    The active site of ribulose-bisphosphate carboxylase/oxygenase requires interacting domains of adjacent, identical subunits. Most active-site residues are located within the loop regions of an eight-stranded {beta}/{alpha}-barrel which constitutes the larger C-terminal domain; additional key residues are located within a segment of the smaller N-terminal domain which partially covers the mouth of the barrel. Site-directed mutagenesis of the gene encoding the enzyme from Rhodospirillum rubrum has been used to delineate functions of active-site residues. 6 refs., 2 figs.

  3. A study on the flexibility of enzyme active sites

    PubMed Central

    2011-01-01

    Background A common assumption about enzyme active sites is that their structures are highly conserved to specifically distinguish between closely similar compounds. However, with the discovery of distinct enzymes with similar reaction chemistries, more and more studies discussing the structural flexibility of the active site have been conducted. Results Most of the existing works on the flexibility of active sites focuses on a set of pre-selected active sites that were already known to be flexible. This study, on the other hand, proposes an analysis framework composed of a new data collecting strategy, a local structure alignment tool and several physicochemical measures derived from the alignments. The method proposed to identify flexible active sites is highly automated and robust so that more extensive studies will be feasible in the future. The experimental results show the proposed method is (a) consistent with previous works based on manually identified flexible active sites and (b) capable of identifying potentially new flexible active sites. Conclusions This proposed analysis framework and the former analyses on flexibility have their own advantages and disadvantage, depending on the cause of the flexibility. In this regard, this study proposes an alternative that complements previous studies and helps to construct a more comprehensive view of the flexibility of enzyme active sites. PMID:21342563

  4. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    SciTech Connect

    Zull, Lawrence M.; Yeniscavich, William

    2008-01-15

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

  5. DOE site performance assessment activities. Radioactive Waste Technical Support Program

    SciTech Connect

    Not Available

    1990-07-01

    Information on performance assessment capabilities and activities was collected from eight DOE sites. All eight sites either currently dispose of low-level radioactive waste (LLW) or plan to dispose of LLW in the near future. A survey questionnaire was developed and sent to key individuals involved in DOE Order 5820.2A performance assessment activities at each site. The sites surveyed included: Hanford Site (Hanford), Idaho National Engineering Laboratory (INEL), Los Alamos National Laboratory (LANL), Nevada Test Site (NTS), Oak Ridge National Laboratory (ORNL), Paducah Gaseous Diffusion Plant (Paducah), Portsmouth Gaseous Diffusion Plant (Portsmouth), and Savannah River Site (SRS). The questionnaire addressed all aspects of the performance assessment process; from waste source term to dose conversion factors. This report presents the information developed from the site questionnaire and provides a comparison of site-specific performance assessment approaches, data needs, and ongoing and planned activities. All sites are engaged in completing the radioactive waste disposal facility performance assessment required by DOE Order 5820.2A. Each site has achieved various degrees of progress and have identified a set of critical needs. Within several areas, however, the sites identified common needs and questions.

  6. Savannah River Site prioritization of transition activities

    SciTech Connect

    Finley, R.H.

    1993-11-01

    Effective management of SRS conversion from primarily a production facility to other missions (or Decontamination and Decommissioning (D&D)) requires a systematic and consistent method of prioritizing the transition activities. This report discusses the design of a prioritizing method developed to achieve systematic and consistent methods of prioritizing these activities.

  7. Cassava root membrane proteome reveals activities during storage root maturation.

    PubMed

    Naconsie, Maliwan; Lertpanyasampatha, Manassawe; Viboonjun, Unchera; Netrphan, Supatcharee; Kuwano, Masayoshi; Ogasawara, Naotake; Narangajavana, Jarunya

    2016-01-01

    Cassava (Manihot esculenta Crantz) is one of the most important crops of Thailand. Its storage roots are used as food, feed, starch production, and be the important source for biofuel and biodegradable plastic production. Despite the importance of cassava storage roots, little is known about the mechanisms involved in their formation. This present study has focused on comparison of the expression profiles of cassava root proteome at various developmental stages using two-dimensional gel electrophoresis and LC-MS/MS. Based on an anatomical study using Toluidine Blue, the secondary growth was confirmed to be essential during the development of cassava storage root. To investigate biochemical processes occurring during storage root maturation, soluble and membrane proteins were isolated from storage roots harvested from 3-, 6-, 9-, and 12-month-old cassava plants. The proteins with differential expression pattern were analysed and identified to be associated with 8 functional groups: protein folding and degradation, energy, metabolism, secondary metabolism, stress response, transport facilitation, cytoskeleton, and unclassified function. The expression profiling of membrane proteins revealed the proteins involved in protein folding and degradation, energy, and cell structure were highly expressed during early stages of development. Integration of these data along with the information available in genome and transcriptome databases is critical to expand knowledge obtained solely from the field of proteomics. Possible role of identified proteins were discussed in relation with the activities during storage root maturation in cassava. PMID:26547558

  8. Active site hydrophobicity is critical to the bioluminescence activity of Vibrio harveyi luciferase.

    PubMed

    Li, Chi-Hui; Tu, Shiao-Chun

    2005-10-01

    Vibrio harveyi luciferase is an alphabeta heterodimer containing a single active site, proposed earlier to be at a cleft in the alpha subunit. In this work, six conserved phenylalanine residues at this proposed active site were subjected to site-directed mutations to investigate their possible functional roles and to delineate the makeup of luciferase active site. After initial screening of Phe --> Ala mutants, alphaF46, alphaF49, alphaF114, and alphaF117 were chosen for additional mutations to Asp, Ser, and Tyr. Comparisons of the general kinetic properties of wild-type and mutated luciferases indicated that the hydrophobic nature of alphaF46, alphaF49, alphaF114, and alphaF117 was important to luciferase V(max) and V(max)/K(m), which were reduced by 3-5 orders of magnitude for the Phe --> Asp mutants. Both alphaF46 and alphaF117 also appeared to be involved in the binding of reduced flavin substrate. Additional studies on the stability and yield of the 4a-hydroperoxyflavin intermediate II and measurements of decanal substrate oxidation by alphaF46D, alphaF49D, alphaF114D, and alphaF117D revealed that their marked reductions in the overall quantum yield (phi( degrees )) were a consequence of diminished yields of luciferase intermediates and, with the exception of alphaF114D, emission quantum yield of the excited emitter due to the replacement of the hydrophobic Phe by the anionic Asp. The locations of these four critical Phe residues in relation to other essential and/or hydrophobic residues are depicted in a refined map of the active site. Functional implications of these residues are discussed. PMID:16185065

  9. Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations

    PubMed Central

    Steinkellner, Georg; Gruber, Christian C.; Pavkov-Keller, Tea; Binter, Alexandra; Steiner, Kerstin; Winkler, Christoph; Łyskowski, Andrzej; Schwamberger, Orsolya; Oberer, Monika; Schwab, Helmut; Faber, Kurt; Macheroux, Peter; Gruber, Karl

    2014-01-01

    The exploitation of catalytic promiscuity and the application of de novo design have recently opened the access to novel, non-natural enzymatic activities. Here we describe a structural bioinformatic method for predicting catalytic activities of enzymes based on three-dimensional constellations of functional groups in active sites (‘catalophores’). As a proof-of-concept we identify two enzymes with predicted promiscuous ene-reductase activity (reduction of activated C–C double bonds) and compare them with known ene-reductases, that is, members of the Old Yellow Enzyme family. Despite completely different amino acid sequences, overall structures and protein folds, high-resolution crystal structures reveal equivalent binding modes of typical Old Yellow Enzyme substrates and ligands. Biochemical and biocatalytic data show that the two enzymes indeed possess ene-reductase activity and reveal an inverted stereopreference compared with Old Yellow Enzymes for some substrates. This method could thus be a tool for the identification of viable starting points for the development and engineering of novel biocatalysts. PMID:24954722

  10. Ionizable Side Chains at Catalytic Active Sites of Enzymes

    PubMed Central

    Jimenez-Morales, David; Liang, Jie

    2012-01-01

    Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1072 Å3. The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes. PMID:22484856

  11. Control of the active site structure of giant bilayer hemoglobin from the Annelid Eisenia foetida using hierarchic assemblies

    SciTech Connect

    Girasole, Marco; Arcovito, Alessandro; Marconi, Augusta; Davoli, Camilla; Congiu-Castellano, Agostina; Bellelli, Andrea; Amiconi, Gino

    2005-12-05

    The active site structure of the oxygenated derivative of the main subassemblies (whole protein, dodecamers, and trimers) of the giant haemoglobin from Eisenia foetida has been characterized by x-ray absorption near edge structure spectroscopy. The data revealed a remarkable effect of the hierarchic assemblies on the active site of the subunit. Specifically, the whole protein has the same site structure of the dodecamer, while a sharp conformational transition occurs when the dodecamer is disassembled into trimers (and monomers) revealing that constraints due to the protein matrix determine the active site geometry and, consequently, the protein function in these large complexes.

  12. Comparison of S. cerevisiae F-BAR domain structures reveals a conserved inositol phosphate binding site

    PubMed Central

    Moravcevic, Katarina; Alvarado, Diego; Schmitz, Karl R.; Kenniston, Jon A.; Mendrola, Jeannine M.; Ferguson, Kathryn M.; Lemmon, Mark A.

    2015-01-01

    SUMMARY F-BAR domains control membrane interactions in endocytosis, cytokinesis, and cell signaling. Although generally thought to bind curved membranes containing negatively charged phospholipids, numerous functional studies argue that differences in lipid-binding selectivities of F-BAR domains are functionally important. Here, we compare membrane-binding properties of the S. cerevisiae F-BAR domains in vitro and in vivo. Whereas some F-BAR domains (such as Bzz1p and Hof1p F-BARs) bind equally well to all phospholipids, the F-BAR domain from the RhoGAP Rgd1p preferentially binds phosphoinositides. We determined X-ray crystal structures of F-BAR domains from Hof1p and Rgd1p, the latter bound to an inositol phosphate. The structures explain phospholipid-binding selectivity differences, and reveal an F-BAR phosphoinositide binding site that is fully conserved in a mammalian RhoGAP called Gmip, and is partly retained in certain other F-BAR domains. Our findings reveal previously unappreciated determinants of F-BAR domain lipid-binding specificity, and provide a basis for its prediction from sequence. PMID:25620000

  13. Cross-species transcriptomic approach reveals genes in hamster implantation sites.

    PubMed

    Lei, Wei; Herington, Jennifer; Galindo, Cristi L; Ding, Tianbing; Brown, Naoko; Reese, Jeff; Paria, Bibhash C

    2014-12-01

    The mouse model has greatly contributed to understanding molecular mechanisms involved in the regulation of progesterone (P4) plus estrogen (E)-dependent blastocyst implantation process. However, little is known about contributory molecular mechanisms of the P4-only-dependent blastocyst implantation process that occurs in species such as hamsters, guineapigs, rabbits, pigs, rhesus monkeys, and perhaps humans. We used the hamster as a model of P4-only-dependent blastocyst implantation and carried out cross-species microarray (CSM) analyses to reveal differentially expressed genes at the blastocyst implantation site (BIS), in order to advance the understanding of molecular mechanisms of implantation. Upregulation of 112 genes and downregulation of 77 genes at the BIS were identified using a mouse microarray platform, while use of the human microarray revealed 62 up- and 38 down-regulated genes at the BIS. Excitingly, a sizable number of genes (30 up- and 11 down-regulated genes) were identified as a shared pool by both CSMs. Real-time RT-PCR and in situ hybridization validated the expression patterns of several up- and down-regulated genes identified by both CSMs at the hamster and mouse BIS to demonstrate the merit of CSM findings across species, in addition to revealing genes specific to hamsters. Functional annotation analysis found that genes involved in the spliceosome, proteasome, and ubiquination pathways are enriched at the hamster BIS, while genes associated with tight junction, SAPK/JNK signaling, and PPARα/RXRα signalings are repressed at the BIS. Overall, this study provides a pool of genes and evidence of their participation in up- and down-regulated cellular functions/pathways at the hamster BIS. PMID:25252651

  14. Extensive hydrothermal activity in the NE Lau basin revealed by ROV dives

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Resing, J. A.; Tebo, B.; Baker, E. T.; Butterfield, D. A.; Chadwick, B.; Davis, R.; de Ronde, C. E. J.; Lilley, M. D.; Lupton, J. E.; Merle, S. G.; Rubin, K. H.; Shank, T. M.; Walker, S. L.; Arculus, R. J.; Bobbitt, A. M.; Buck, N. J.; Caratori Tontini, F.; Crowhurst, P. V.; Mitchell, E.; Olson, E. J.; Ratmeyer, V.; Richards, S.; Roe, K. K.; Kenner-Chavis, P.; Martinez-Lyons, A.; Sheehan, C.; Brian, R.

    2014-12-01

    Dives with the QUEST 4000 ROV (Remotely Operated Vehicle) in September 2012 discovered nine hydrothermal sites in the arc and rear-arc region of the NE Lau Basin in 1150 m to 2630 m depth. These sites, originally detected by water column and seafloor surveys conducted in 2008-2011, include: (1) a paired sulfur-rich/black smoker field on the summit of a tectonically deformed magmatic arc volcano (Niua), (2) fracture-controlled black smoker venting on several small en echelon seamounts (north Matas) that lie between the magmatic arc and the backarc spreading center and (3) a magmatic degassing site on the summit of a dacite cone within a large (~12 km diameter) caldera volcano (Niuatahi). Dives at West Mata Seamount, which was undergoing strombolian volcanic activity and effusive rift-zone eruptions from 2008 to 2010, revealed a dormant volcanic phase in September 2012, with continued low-temperature diffuse venting. The high-temperature venting is likely driven by magmatic heat indicative of underlying partial melt zones and/or melt pockets distributed through the region. The occurrence of the youngest known boninite eruptions on the Mata volcanoes is consistent with subduction fluid flux melting extending into the rear-arc zone. Extension related to the transition from subduction to strike-slip motion of the northern Tonga Arc over the active Subduction-Transform Edge Propagator (STEP) fault probably contributes to the enhanced volcanism/hydrothermal activity in the NE Lau Basin. Chemosynthetic ecosystems at these sites range from mostly motile, lower diversity ecosystems at the eruptive/magmatically-degassing sites to higher diversity ecosystems with less mobile faunal components at the black-smoker systems. The wide range of fluid chemistry, water depth and geologic settings of the hydrothermal systems in this area provides an intriguing template to study the interaction of hydrothermal fluid chemistry, chemosynthetic habitats and their geologic underpinning

  15. Hyperactive hydrothermal activity in the NE Lau basin revealed by ROV dives

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Resing, J. A.; Tebo, B.; Baker, E. T.; Butterfield, D. A.; Chadwick, B.; Davis, R.; de Ronde, C. E.; Lilley, M. D.; Lupton, J. E.; Merle, S. G.; Rubin, K. H.; Shank, T. M.; Walker, S. L.; Arculus, R. J.; Bobbitt, A. M.; Buck, N.; Caratori Tontini, F.; Crowhurst, P. V.; Mitchell, E.; Olson, E. J.; Ratmeyer, V.; Richards, S.; Roe, K. K.; Keener, P.; Martinez Lyons, A.; Sheehan, C.; Brian, R.

    2013-12-01

    Dives with the QUEST 4000 ROV (Remotely Operated Vehicle) in September 2012 discovered nine hydrothermal sites in the arc and rear-arc region of the NE Lau Basin in 1150 m to 2630 m depth. These sites, originally detected by water column and seafloor surveys conducted in 2008-2011, include: (1) a paired sulfur-rich/black smoker field on the summit of a tectonically deformed magmatic arc volcano (Niua), (2) fracture-controlled black smoker venting on several small en echelon seamounts (north Matas) that lie between the magmatic arc and the backarc spreading center and (3) a magmatic degassing site on the summit of a dacite cone within a large (~12 km diameter) caldera volcano (Niuatahi). Dives at West Mata Seamount, which was undergoing strombolian volcanic activity and effusive rift-zone eruptions from 2008 to 2010, revealed a dormant volcanic phase in September 2012, with continued low-temperature diffuse venting. The high-temperature venting is likely driven by magmatic heat indicative of underlying partial melt zones and/or melt pockets distributed through the region. The occurrence of the youngest known boninite eruptions on the Mata volcanoes is consistent with subduction fluid flux melting extending into the rear-arc zone. Extension related to the transition from subduction to strike-slip motion of the northern Tonga Arc over the active Subduction-Transform Edge Propagator (STEP) fault probably contributes to the enhanced volcanism/hydrothermal activity in the NE Lau Basin. Chemosynthetic ecosystems at these sites range from mostly motile, lower diversity ecosystems at the eruptive/magmatically-degassing sites to higher diversity ecosystems with less mobile faunal components at the black-smoker systems. The wide range of fluid chemistry, water depth and geologic settings of the hydrothermal systems in this area provides an intriguing template to study the interaction of hydrothermal fluid chemistry, chemosynthetic habitats and their geologic underpinning

  16. DNA Replication Stress Phosphoproteome Profiles Reveal Novel Functional Phosphorylation Sites on Xrs2 in Saccharomyces cerevisiae.

    PubMed

    Huang, Dongqing; Piening, Brian D; Kennedy, Jacob J; Lin, Chenwei; Jones-Weinert, Corey W; Yan, Ping; Paulovich, Amanda G

    2016-05-01

    In response to replication stress, a phospho-signaling cascade is activated and required for coordination of DNA repair and replication of damaged templates (intra-S-phase checkpoint) . How phospho-signaling coordinates the DNA replication stress response is largely unknown. We employed state-of-the-art liquid chromatography tandem-mass spectrometry (LC-MS/MS) approaches to generate high-coverage and quantitative proteomic and phospho-proteomic profiles during replication stress in yeast, induced by continuous exposure to the DNA alkylating agent methyl methanesulfonate (MMS) . We identified 32,057 unique peptides representing the products of 4296 genes and 22,061 unique phosphopeptides representing the products of 3183 genes. A total of 542 phosphopeptides (mapping to 339 genes) demonstrated an abundance change of greater than or equal to twofold in response to MMS. The screen enabled detection of nearly all of the proteins known to be involved in the DNA damage response, as well as many novel MMS-induced phosphorylations. We assessed the functional importance of a subset of key phosphosites by engineering a panel of phosphosite mutants in which an amino acid substitution prevents phosphorylation. In total, we successfully mutated 15 MMS-responsive phosphorylation sites in seven representative genes including APN1 (base excision repair); CTF4 and TOF1 (checkpoint and sister-chromatid cohesion); MPH1 (resolution of homologous recombination intermediates); RAD50 and XRS2 (MRX complex); and RAD18 (PRR). All of these phosphorylation site mutants exhibited MMS sensitivity, indicating an important role in protecting cells from DNA damage. In particular, we identified MMS-induced phosphorylation sites on Xrs2 that are required for MMS resistance in the absence of the MRX activator, Sae2, and that affect telomere maintenance. PMID:27017623

  17. Super-resolution microscopy reveals decondensed chromatin structure at transcription sites

    NASA Astrophysics Data System (ADS)

    Wang, Yejun; Maharana, Shovamayee; Wang, Michelle D.; Shivashankar, G. V.

    2014-03-01

    Remodeling of the local chromatin structure is essential for the regulation of gene expression. While a number of biochemical and bioimaging experiments suggest decondensed chromatin structures are associated with transcription, a direct visualization of DNA and transcriptionally active RNA polymerase II (RNA pol II) at super-resolution is still lacking. Here we investigate the structure of chromatin isolated from HeLa cells using binding activatable localization microscopy (BALM). The sample preparation method preserved the structural integrity of chromatin. Interestingly, BALM imaging of the chromatin spreads revealed the presence of decondensed chromatin as gap structures along the spreads. These gaps were enriched with phosphorylated S5 RNA pol II, and were sensitive to the cellular transcriptional state. Taken together, we could visualize the decondensed chromatin regions together with active RNA pol II for the first time using super-resolution microscopy.

  18. Super-resolution microscopy reveals decondensed chromatin structure at transcription sites.

    PubMed

    Wang, Yejun; Maharana, Shovamayee; Wang, Michelle D; Shivashankar, G V

    2014-01-01

    Remodeling of the local chromatin structure is essential for the regulation of gene expression. While a number of biochemical and bioimaging experiments suggest decondensed chromatin structures are associated with transcription, a direct visualization of DNA and transcriptionally active RNA polymerase II (RNA pol II) at super-resolution is still lacking. Here we investigate the structure of chromatin isolated from HeLa cells using binding activatable localization microscopy (BALM). The sample preparation method preserved the structural integrity of chromatin. Interestingly, BALM imaging of the chromatin spreads revealed the presence of decondensed chromatin as gap structures along the spreads. These gaps were enriched with phosphorylated S5 RNA pol II, and were sensitive to the cellular transcriptional state. Taken together, we could visualize the decondensed chromatin regions together with active RNA pol II for the first time using super-resolution microscopy. PMID:24667378

  19. Super-resolution microscopy reveals decondensed chromatin structure at transcription sites

    PubMed Central

    Wang, Yejun; Maharana, Shovamayee; Wang, Michelle D.; Shivashankar, G. V.

    2014-01-01

    Remodeling of the local chromatin structure is essential for the regulation of gene expression. While a number of biochemical and bioimaging experiments suggest decondensed chromatin structures are associated with transcription, a direct visualization of DNA and transcriptionally active RNA polymerase II (RNA pol II) at super-resolution is still lacking. Here we investigate the structure of chromatin isolated from HeLa cells using binding activatable localization microscopy (BALM). The sample preparation method preserved the structural integrity of chromatin. Interestingly, BALM imaging of the chromatin spreads revealed the presence of decondensed chromatin as gap structures along the spreads. These gaps were enriched with phosphorylated S5 RNA pol II, and were sensitive to the cellular transcriptional state. Taken together, we could visualize the decondensed chromatin regions together with active RNA pol II for the first time using super-resolution microscopy. PMID:24667378

  20. Environmental proteomics reveals early microbial community responses to biostimulation at a uranium- and nitrate-contaminated site

    SciTech Connect

    Chourey, Karuna; Nissen, Silke; Vishnivetskaya, T.; Shah, Manesh B; Pffifner, Susan; Hettich, Robert {Bob} L; Loeffler, Frank E

    2013-01-01

    High performance mass spectrometry instrumentation coupled with improved protein extraction techniques enable metaproteomics to identify active members of soil and groundwater microbial communities. Metaproteomics workflows were applied to study the initial responses (i.e., 4 days post treatment) of the indigenous aquifer microbiota to biostimulation with emulsified vegetable oil (EVO) at a uranium-contaminated site. Members of the Betaproteobacteria (i.e., Dechloromonas, Ralstonia, Rhodoferax, Polaromonas, Delftia, Chromobacterium) and Firmicutes dominated the biostimulated aquifer community. Proteome characterization revealed distinct differences in protein expression between the microbial biomass collected from groundwater influenced by biostimulation and groundwater collected up-gradient of the EVO injection points. In particular, proteins involved in ammonium assimilation, EVO degradation, and polyhydroxybutyrate (PHB) granule formation were prominent following biostimulation. Interestingly, the atypical NosZ of a Dechloromonas sp. was highly expressed suggesting active nitrous oxide (N2O) respiration. c-type cytochromes were barely detected, as was citrate synthase, a biomarker for hexavalent uranium reduction activity, suggesting that metal reduction has not commenced 4 days post EVO delivery. Environmental metaproteomics identified microbial community responses to biostimulation and elucidated active pathways demonstrating the value of this technique for complementing nucleic acid-based approaches.

  1. Active Sites Environmental Monitoring Program FY 1996 annual report

    SciTech Connect

    Morrissey, C.M.; Marshall, D.S.; Cunningham, G.R.

    1997-11-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1995 through September 1996. The Radioactive Solid Waste Operations Group (RSWOG) of the Waste Management and Remedial Action Division (WMRAD) and the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) established ASEMP in 1989. The purpose of the program is to provide early detection and performance monitoring at active low-level waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 North as required by Chapters 2 and 3 of US Department of Energy Order 5820.2A.

  2. Active sites environmental monitoring Program - Program Plan: Revision 2

    SciTech Connect

    Morrissey, C.M.; Hicks, D.S.; Ashwood, T.L.; Cunningham, G.R.

    1994-05-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of active low-level-waste (LLW) and transuranic (TRU) waste facilities at Oak Ridge National Laboratory (ORNL). Several changes have recently occurred in regard to the sites that are currently used for waste storage and disposal. These changes require a second set of revisions to the ASEMP program plan. This document incorporates those revisions. This program plan presents the organization and procedures for monitoring the active sites. The program plan also provides internal reporting levels to guide the evaluation of monitoring results.

  3. A Chemical Biology Approach to Reveal Sirt6-targeted Histone H3 Sites in Nucleosomes.

    PubMed

    Wang, Wesley Wei; Zeng, Yu; Wu, Bo; Deiters, Alexander; Liu, Wenshe R

    2016-07-15

    As a member of a highly conserved family of NAD(+)-dependent histone deacetylases, Sirt6 is a key regulator of mammalian genome stability, metabolism, and life span. Previous studies indicated that Sirt6 is hardwired to remove histone acetylation at H3K9 and H3K56. However, how Sirt6 recognizes its nucleosome substrates has been elusive due to the difficulty of accessing homogeneous acetyl-nucleosomes and the low activity of Sirt6 toward peptide substrates. Based on the fact that Sirt6 has an enhanced activity to remove long chain fatty acylation from lysine, we developed an approach to recombinantly synthesize histone H3 with a fatty acylated lysine, N(ε)-(7-octenoyl)-lysine (OcK), installed at a number of lysine sites and used these acyl-H3 proteins to assemble acyl-nucleosomes as active Sirt6 substrates. A chemical biology approach that visualizes OcK in nucleosomes and therefore allows direct sensitization of Sirt6 activities on its acyl-nucleosome substrates was also formulated. By combining these two approaches, we showed that Sirt6 actively removes acylation from H3K9, H3K18, and H3K27; has relatively low activities toward H3K4 and K3K23; but sluggishly removes acylation at H3K14, H3K36, H3K56, and H3K79. Overexpressing Sirt6 in 293T cells led to downregulated acetylation at H3K18 and K3K27, confirming these two novel Sirt6-targeted nucleosome lysine sites in cells. Given that downregulation of H3K18 acetylation is correlated with a poor prognosis of several cancer types and H3K27 acetylation antagonizes repressive gene regulation by di- and trimethylation at H3K27, our current study implies that Sirt6 may serve as a target for cancer intervention and regulatory pathway investigation in cells. PMID:27152839

  4. Structural and Kinetic Analyses of Macrophage Migration Inhibitory Factor Active Site Interactions

    SciTech Connect

    Crichlow, G.; Lubetsky, J; Leng, L; Bucala, R; Lolis, E

    2009-01-01

    Macrophage migration inhibitory factor (MIF) is a secreted protein expressed in numerous cell types that counters the antiinflammatory effects of glucocorticoids and has been implicated in sepsis, cancer, and certain autoimmune diseases. Interestingly, the structure of MIF contains a catalytic site resembling the tautomerase/isomerase sites of microbial enzymes. While bona fide physiological substrates remain unknown, model substrates have been identified. Selected compounds that bind in the tautomerase active site also inhibit biological functions of MIF. It had previously been shown that the acetaminophen metabolite, N-acetyl-p-benzoquinone imine (NAPQI), covalently binds to the active site of MIF. In this study, kinetic data indicate that NAPQI inhibits MIF both covalently and noncovalently. The structure of MIF cocrystallized with NAPQI reveals that the NAPQI has undergone a chemical alteration forming an acetaminophen dimer (bi-APAP) and binds noncovalently to MIF at the mouth of the active site. We also find that the commonly used protease inhibitor, phenylmethylsulfonyl fluoride (PMSF), forms a covalent complex with MIF and inhibits the tautomerase activity. Crystallographic analysis reveals the formation of a stable, novel covalent bond for PMSF between the catalytic nitrogen of the N-terminal proline and the sulfur of PMSF with complete, well-defined electron density in all three active sites of the MIF homotrimer. Conclusions are drawn from the structures of these two MIF-inhibitor complexes regarding the design of novel compounds that may provide more potent reversible and irreversible inhibition of MIF.

  5. DNA fingerprinting reveals elevated mutation rates in herring gulls inhabiting a genotoxically contaminated site

    SciTech Connect

    Yauk, C.L.; Quinn, J.S.

    1995-12-31

    The authors used multi-locus DNA fingerprinting to examine families of herring gulls (Larus argentatus) from a genotoxically contaminated site (Hamilton Harbour) and from a pristine location (Kent Island, Bay of Fundy) to show significant differences in mutation rates between the locations. Overall the authors identified 17 mutant bands from 15 individuals of the 35 examined from Hamilton Harbour, and 7 mutant fragments from 7 individuals, of the 43 examined from Kent Island; a mutation frequency of 0.429 per nestling for Hamilton Harbour and 0.163 for Kent Island. The total number of individuals with mutant bands was significantly higher at Hamilton Harbour than at Kent Island (X{sup 2}=6.734; df = 1; P < 0.01). Ongoing analysis of other less contaminated sites also reveals lower mutation rates than those seen in Hamilton Harbour. With multi-locus DNA fingerprinting many regions of the genome can be surveyed simultaneously. The tandemly repeated arrays of nucleotides examined with DNA fingerprinting are known to have elevated rates of mutation. Furthermore, the mutations seen with DNA fingerprinting are predominantly heritable. Other biomarkers currently used in situ are not able to monitor direct and heritable DNA mutation, or measure biological endpoints that frequently result in spontaneous abortion creating difficulty in observing significantly elevated levels in viable offspring. The authors suggest that multilocus DNA fingerprinting can be used as a biomarker to identify potentially heritable risks before the onset of other types of ecological damage. This approach provides a direct measure of mutation in situ and in vivo in a vertebrate species under ambient conditions.

  6. The active site behaviour of electrochemically synthesised gold nanomaterials.

    PubMed

    Plowman, Blake J; O'Mullane, Anthony P; Bhargava, Suresh K

    2011-01-01

    Even though gold is the noblest of metals, a weak chemisorber and is regarded as being quite inert, it demonstrates significant electrocatalytic activity in its nanostructured form. It is demonstrated here that nanostructured and even evaporated thin films of gold are covered with active sites which are responsible for such activity. The identification of these sites is demonstrated with conventional electrochemical techniques such as cyclic voltammetry as well as a large amplitude Fourier transformed alternating current (FT-ac) method under acidic and alkaline conditions. The latter technique is beneficial in determining if an electrode process is either Faradaic or capacitive in nature. The observed behaviour is analogous to that observed for activated gold electrodes whose surfaces have been severely disrupted by cathodic polarisation in the hydrogen evolution region. It is shown that significant electrochemical oxidation responses occur at discrete potential values well below that for the formation of the compact monolayer oxide of bulk gold and are attributed to the facile oxidation of surface active sites. Several electrocatalytic reactions are explored in which the onset potential is determined by the presence of such sites on the surface. Significantly, the facile oxidation of active sites is used to drive the electroless deposition of metals such as platinum, palladium and silver from their aqueous salts on the surface of gold nanostructures. The resultant surface decoration of gold with secondary metal nanoparticles not only indicates regions on the surface which are rich in active sites but also provides a method to form interesting bimetallic surfaces. PMID:22455038

  7. Cofactor bypass variants reveal a conformational control mechanism governing cell wall polymerase activity.

    PubMed

    Markovski, Monica; Bohrhunter, Jessica L; Lupoli, Tania J; Uehara, Tsuyoshi; Walker, Suzanne; Kahne, Daniel E; Bernhardt, Thomas G

    2016-04-26

    To fortify their cytoplasmic membrane and protect it from osmotic rupture, most bacteria surround themselves with a peptidoglycan (PG) exoskeleton synthesized by the penicillin-binding proteins (PBPs). As their name implies, these proteins are the targets of penicillin and related antibiotics. We and others have shown that the PG synthases PBP1b and PBP1a of Escherichia coli require the outer membrane lipoproteins LpoA and LpoB, respectively, for their in vivo function. Although it has been demonstrated that LpoB activates the PG polymerization activity of PBP1b in vitro, the mechanism of activation and its physiological relevance have remained unclear. We therefore selected for variants of PBP1b (PBP1b*) that bypass the LpoB requirement for in vivo function, reasoning that they would shed light on LpoB function and its activation mechanism. Several of these PBP1b variants were isolated and displayed elevated polymerization activity in vitro, indicating that the activation of glycan polymer growth is indeed one of the relevant functions of LpoB in vivo. Moreover, the location of amino acid substitutions causing the bypass phenotype on the PBP1b structure support a model in which polymerization activation proceeds via the induction of a conformational change in PBP1b initiated by LpoB binding to its UB2H domain, followed by its transmission to the glycosyl transferase active site. Finally, phenotypic analysis of strains carrying a PBP1b* variant revealed that the PBP1b-LpoB complex is most likely not providing an important physical link between the inner and outer membranes at the division site, as has been previously proposed. PMID:27071112

  8. Comparative structural studies on Lys49-phospholipases A(2) from Bothrops genus reveal their myotoxic site.

    PubMed

    dos Santos, Juliana I; Soares, Andreimar Martins; Fontes, Marcos R M

    2009-08-01

    Phospholipases A(2) (PLA(2)s) are membrane-associated enzymes that hydrolyze phospholipids at the sn-2 position, releasing lysophospholipids and free fatty acids. Phospholipase A(2) homologues (Lys49-PLA(2)s) are highly myotoxic and cause extensive tissue damage despite not showing measurable catalytic activity. They are found in different snake venoms and represent one third of bothropic venom composition. The importance of these toxins during envenomation is related to the pronounced local myotoxic effect they induce since this effect is not neutralized by serum therapy. We present herein three structures of Lys49-PLA(2)s from Bothrops genus snake venom crystallized under the same conditions, two of which were grown in the presence of alpha-tocopherol (vitamin E). Comparative structural analysis of these and other Lys49-PLA(2)s showed two different patterns of oligomeric conformation that are related to the presence or absence of ligands in the hydrophobic channel. This work also confirms the biological dimer indicated by recent studies in which both C-termini are in the dimeric interface. In this configuration, we propose that the myotoxic site of these toxins is composed by the Lys 20, Lys115 and Arg118 residues. For the first time, a residue from the short-helix (Lys20) is suggested as a member of this site and the importance of Tyr119 residue to myotoxicity of bothropic Lys49-PLA(2)s is also discussed. These results support a complete hypothesis for these PLA(2)s myotoxic activity consistent with all findings on bothropic Lys49-PLA(2)s studied up to this moment, including crystallographic, bioinformatics, biochemical and biophysical data. PMID:19401234

  9. Tristetraprolin binding site atlas in the macrophage transcriptome reveals a switch for inflammation resolution.

    PubMed

    Sedlyarov, Vitaly; Fallmann, Jörg; Ebner, Florian; Huemer, Jakob; Sneezum, Lucy; Ivin, Masa; Kreiner, Kristina; Tanzer, Andrea; Vogl, Claus; Hofacker, Ivo; Kovarik, Pavel

    2016-01-01

    Precise regulation of mRNA decay is fundamental for robust yet not exaggerated inflammatory responses to pathogens. However, a global model integrating regulation and functional consequences of inflammation-associated mRNA decay remains to be established. Using time-resolved high-resolution RNA binding analysis of the mRNA-destabilizing protein tristetraprolin (TTP), an inflammation-limiting factor, we qualitatively and quantitatively characterize TTP binding positions in the transcriptome of immunostimulated macrophages. We identify pervasive destabilizing and non-destabilizing TTP binding, including a robust intronic binding, showing that TTP binding is not sufficient for mRNA destabilization. A low degree of flanking RNA structuredness distinguishes occupied from silent binding motifs. By functionally relating TTP binding sites to mRNA stability and levels, we identify a TTP-controlled switch for the transition from inflammatory into the resolution phase of the macrophage immune response. Mapping of binding positions of the mRNA-stabilizing protein HuR reveals little target and functional overlap with TTP, implying a limited co-regulation of inflammatory mRNA decay by these proteins. Our study establishes a functionally annotated and navigable transcriptome-wide atlas (http://ttp-atlas.univie.ac.at) of cis-acting elements controlling mRNA decay in inflammation. PMID:27178967

  10. Active site - a site of binding of affinity inhibitors in baker's yeast inorganic pyrophosphatase

    SciTech Connect

    Svyato, I.E.; Sklyankina, V.A.; Avaeva, S.M.

    1986-03-20

    The interaction of the enzyme-substrate complex with methyl phosphate, O-phosphoethanolamine, O-phosphopropanolamine, N-acetylphosphoserine, and phosphoglyolic acid, as well as pyrophosphatase, modified by monoesters of phosphoric acid, with pyrophosphate and tripolyphosphate, was investigated. It was shown that the enzyme containing the substrate in the active site does not react with monophosphates, but modified pyrophosphatase entirely retains the ability to bind polyanions to the regulatory site. It is concluded that the inactivation of baker's yeast inorganic pyrophosphatase by monoesters of phosphoric acid, which are affinity inhibitors of it, is the result of modification of the active site of the enzyme.

  11. Characterization of Drosophila CMP-sialic acid synthetase activity reveals unusual enzymatic properties.

    PubMed

    Mertsalov, Ilya B; Novikov, Boris N; Scott, Hilary; Dangott, Lawrence; Panin, Vladislav M

    2016-07-01

    CMP-sialic acid synthetase (CSAS) is a key enzyme of the sialylation pathway. CSAS produces the activated sugar donor, CMP-sialic acid, which serves as a substrate for sialyltransferases to modify glycan termini with sialic acid. Unlike other animal CSASs that normally localize in the nucleus, Drosophila melanogaster CSAS (DmCSAS) localizes in the cell secretory compartment, predominantly in the Golgi, which suggests that this enzyme has properties distinct from those of its vertebrate counterparts. To test this hypothesis, we purified recombinant DmCSAS and characterized its activity in vitro Our experiments revealed several unique features of this enzyme. DmCSAS displays specificity for N-acetylneuraminic acid as a substrate, shows preference for lower pH and can function with a broad range of metal cofactors. When tested at a pH corresponding to the Golgi compartment, the enzyme showed significant activity with several metal cations, including Zn(2+), Fe(2+), Co(2+) and Mn(2+), whereas the activity with Mg(2+) was found to be low. Protein sequence analysis and site-specific mutagenesis identified an aspartic acid residue that is necessary for enzymatic activity and predicted to be involved in co-ordinating a metal cofactor. DmCSAS enzymatic activity was found to be essential in vivo for rescuing the phenotype of DmCSAS mutants. Finally, our experiments revealed a steep dependence of the enzymatic activity on temperature. Taken together, our results indicate that DmCSAS underwent evolutionary adaptation to pH and ionic environment different from that of counterpart synthetases in vertebrates. Our data also suggest that environmental temperatures can regulate Drosophila sialylation, thus modulating neural transmission. PMID:27114558

  12. A small ribozyme with dual-site kinase activity

    PubMed Central

    Biondi, Elisa; Maxwell, Adam W.R.; Burke, Donald H.

    2012-01-01

    Phosphoryl transfer onto backbone hydroxyls is a recognized catalytic activity of nucleic acids. We find that kinase ribozyme K28 possesses an unusually complex active site that promotes (thio)phosphorylation of two residues widely separated in primary sequence. After allowing the ribozyme to radiolabel itself by phosphoryl transfer from [γ-32P]GTP, DNAzyme-mediated cleavage yielded two radiolabeled cleavage fragments, indicating phosphorylation sites within each of the two cleavage fragments. These sites were mapped by alkaline digestion and primer extension pausing. Enzymatic digestion and mutational analysis identified nucleotides important for activity and established the active structure as being a constrained pseudoknot with unusual connectivity that may juxtapose the two reactive sites. Nuclease sensitivities for nucleotides near the pseudoknot core were altered in the presence of GTPγS, indicating donor-induced folding. The 5′ target site was more strongly favored in full-length ribozyme K28 (128 nt) than in truncated RNAs (58 nt). Electrophoretic mobilities of self-thiophosphorylated products on organomercurial gels are distinct from the 5′ mono-thiophosphorylated product produced by reaction with polynucleotide kinase, potentially indicating simultaneous labeling of both sites within individual RNA strands. Our evidence supports a single, compact structure with local dynamics, rather than global rearrangement, as being responsible for dual-site phosphorylation. PMID:22618879

  13. Structure-Based Simulations Reveal Concerted Dynamics of GPCR Activation

    PubMed Central

    Leioatts, Nicholas; Suresh, Pooja; Romo, Tod D.; Grossfield, Alan

    2014-01-01

    G protein-coupled receptors (GPCRs) are a vital class of proteins that transduce biological signals across the cell membrane. However, their allosteric activation mechanism is not fully understood; crystal structures of active and inactive receptors have been reported, but the functional pathway between these two states remains elusive. Here, we employ structure-based (Gō-like) models to simulate activation of two GPCRs, rhodopsin and the β2 adrenergic receptor (β2AR). We used data-derived reaction coordinates that capture the activation mechanism for both proteins, showing that activation proceeds through quantitatively different paths in the two systems. Both reaction coordinates are determined from the dominant concerted motions in the simulations so the technique is broadly applicable. There were two surprising results. First, the main structural changes in the simulations were distributed throughout the transmembrane bundle, and not localized to the obvious areas of interest, such as the intracellular portion of helix 6. Second, the activation (and deactivation) paths were distinctly non-monotonic, populating states that were not simply interpolations between the inactive and active structures. These transitions also suggest a functional explanation for β2AR’s basal activity: it can proceed through a more broadly defined path during the observed transitions. PMID:24889093

  14. Conserved Hydration Sites in Pin1 Reveal a Distinctive Water Recognition Motif in Proteins.

    PubMed

    Barman, Arghya; Smitherman, Crystal; Souffrant, Michael; Gadda, Giovanni; Hamelberg, Donald

    2016-01-25

    Structurally conserved water molecules are important for biomolecular stability, flexibility, and function. X-ray crystallographic studies of Pin1 have resolved a number of water molecules around the enzyme, including two highly conserved water molecules within the protein. The functional role of these localized water molecules remains unknown and unexplored. Pin1 catalyzes cis/trans isomerizations of peptidyl prolyl bonds that are preceded by a phosphorylated serine or threonine residue. Pin1 is involved in many subcellular signaling processes and is a potential therapeutic target for the treatment of several life threatening diseases. Here, we investigate the significance of these structurally conserved water molecules in the catalytic domain of Pin1 using molecular dynamics (MD) simulations, free energy calculations, analysis of X-ray crystal structures, and circular dichroism (CD) experiments. MD simulations and free energy calculations suggest the tighter binding water molecule plays a crucial role in maintaining the integrity and stability of a critical hydrogen-bonding network in the active site. The second water molecule is exchangeable with bulk solvent and is found in a distinctive helix-turn-coil motif. Structural bioinformatics analysis of nonredundant X-ray crystallographic protein structures in the Protein Data Bank (PDB) suggest this motif is present in several other proteins and can act as a water site, akin to the calcium EF hand. CD experiments suggest the isolated motif is in a distorted PII conformation and requires the protein environment to fully form the α-helix-turn-coil motif. This study provides valuable insights into the role of hydration in the structural integrity of Pin1 that can be exploited in protein engineering and drug design. PMID:26651388

  15. Core microbial functional activities in ocean environments revealed by global metagenomic profiling analyses.

    PubMed

    Ferreira, Ari J S; Siam, Rania; Setubal, João C; Moustafa, Ahmed; Sayed, Ahmed; Chambergo, Felipe S; Dawe, Adam S; Ghazy, Mohamed A; Sharaf, Hazem; Ouf, Amged; Alam, Intikhab; Abdel-Haleem, Alyaa M; Lehvaslaiho, Heikki; Ramadan, Eman; Antunes, André; Stingl, Ulrich; Archer, John A C; Jankovic, Boris R; Sogin, Mitchell; Bajic, Vladimir B; El-Dorry, Hamza

    2014-01-01

    Metagenomics-based functional profiling analysis is an effective means of gaining deeper insight into the composition of marine microbial populations and developing a better understanding of the interplay between the functional genome content of microbial communities and abiotic factors. Here we present a comprehensive analysis of 24 datasets covering surface and depth-related environments at 11 sites around the world's oceans. The complete datasets comprises approximately 12 million sequences, totaling 5,358 Mb. Based on profiling patterns of Clusters of Orthologous Groups (COGs) of proteins, a core set of reference photic and aphotic depth-related COGs, and a collection of COGs that are associated with extreme oxygen limitation were defined. Their inferred functions were utilized as indicators to characterize the distribution of light- and oxygen-related biological activities in marine environments. The results reveal that, while light level in the water column is a major determinant of phenotypic adaptation in marine microorganisms, oxygen concentration in the aphotic zone has a significant impact only in extremely hypoxic waters. Phylogenetic profiling of the reference photic/aphotic gene sets revealed a greater variety of source organisms in the aphotic zone, although the majority of individual photic and aphotic depth-related COGs are assigned to the same taxa across the different sites. This increase in phylogenetic and functional diversity of the core aphotic related COGs most probably reflects selection for the utilization of a broad range of alternate energy sources in the absence of light. PMID:24921648

  16. Core Microbial Functional Activities in Ocean Environments Revealed by Global Metagenomic Profiling Analyses

    PubMed Central

    Ferreira, Ari J. S.; Siam, Rania; Setubal, João C.; Moustafa, Ahmed; Sayed, Ahmed; Chambergo, Felipe S.; Dawe, Adam S.; Ghazy, Mohamed A.; Sharaf, Hazem; Ouf, Amged; Alam, Intikhab; Abdel-Haleem, Alyaa M.; Lehvaslaiho, Heikki; Ramadan, Eman; Antunes, André; Stingl, Ulrich; Archer, John A. C.; Jankovic, Boris R.; Sogin, Mitchell; Bajic, Vladimir B.; El-Dorry, Hamza

    2014-01-01

    Metagenomics-based functional profiling analysis is an effective means of gaining deeper insight into the composition of marine microbial populations and developing a better understanding of the interplay between the functional genome content of microbial communities and abiotic factors. Here we present a comprehensive analysis of 24 datasets covering surface and depth-related environments at 11 sites around the world's oceans. The complete datasets comprises approximately 12 million sequences, totaling 5,358 Mb. Based on profiling patterns of Clusters of Orthologous Groups (COGs) of proteins, a core set of reference photic and aphotic depth-related COGs, and a collection of COGs that are associated with extreme oxygen limitation were defined. Their inferred functions were utilized as indicators to characterize the distribution of light- and oxygen-related biological activities in marine environments. The results reveal that, while light level in the water column is a major determinant of phenotypic adaptation in marine microorganisms, oxygen concentration in the aphotic zone has a significant impact only in extremely hypoxic waters. Phylogenetic profiling of the reference photic/aphotic gene sets revealed a greater variety of source organisms in the aphotic zone, although the majority of individual photic and aphotic depth-related COGs are assigned to the same taxa across the different sites. This increase in phylogenetic and functional diversity of the core aphotic related COGs most probably reflects selection for the utilization of a broad range of alternate energy sources in the absence of light. PMID:24921648

  17. Active site densities, oxygen activation and adsorbed reactive oxygen in alcohol activation on npAu catalysts.

    PubMed

    Wang, Lu-Cun; Friend, C M; Fushimi, Rebecca; Madix, Robert J

    2016-07-01

    The activation of molecular O2 as well as the reactivity of adsorbed oxygen species is of central importance in aerobic selective oxidation chemistry on Au-based catalysts. Herein, we address the issue of O2 activation on unsupported nanoporous gold (npAu) catalysts by applying a transient pressure technique, a temporal analysis of products (TAP) reactor, to measure the saturation coverage of atomic oxygen, its collisional dissociation probability, the activation barrier for O2 dissociation, and the facility with which adsorbed O species activate methanol, the initial step in the catalytic cycle of esterification. The results from these experiments indicate that molecular O2 dissociation is associated with surface silver, that the density of reactive sites is quite low, that adsorbed oxygen atoms do not spill over from the sites of activation onto the surrounding surface, and that methanol reacts quite facilely with the adsorbed oxygen atoms. In addition, the O species from O2 dissociation exhibits reactivity for the selective oxidation of methanol but not for CO. The TAP experiments also revealed that the surface of the npAu catalyst is saturated with adsorbed O under steady state reaction conditions, at least for the pulse reaction. PMID:27376884

  18. Sensors at Centrosomes Reveal Determinants of Local Separase Activity

    PubMed Central

    Agircan, Fikret Gurkan; Schiebel, Elmar

    2014-01-01

    Separase is best known for its function in sister chromatid separation at the metaphase-anaphase transition. It also has a role in centriole disengagement in late mitosis/G1. To gain insight into the activity of separase at centrosomes, we developed two separase activity sensors: mCherry-Scc1(142-467)-ΔNLS-eGFP-PACT and mCherry-kendrin(2059-2398)-eGFP-PACT. Both localize to the centrosomes and enabled us to monitor local separase activity at the centrosome in real time. Both centrosomal sensors were cleaved by separase before anaphase onset, earlier than the corresponding H2B-mCherry-Scc1(142-467)-eGFP sensor at chromosomes. This indicates that substrate cleavage by separase is not synchronous in the cells. Depletion of the proteins astrin or Aki1, which have been described as inhibitors of centrosomal separase, did not led to a significant activation of separase at centrosomes, emphasizing the importance of direct separase activity measurements at the centrosomes. Inhibition of polo-like kinase Plk1, on the other hand, decreased the separase activity towards the Scc1 but not the kendrin reporter. Together these findings indicate that Plk1 regulates separase activity at the level of substrate affinity at centrosomes and may explain in part the role of Plk1 in centriole disengagement. PMID:25299182

  19. Dashboard applications to monitor experiment activities at sites

    NASA Astrophysics Data System (ADS)

    Andreeva, Julia; Belforte, Stefano; Boehm, Max; Casajus, Adrian; Flix, Josep; Gaidioz, Benjamin; Grigoras, Costin; Kokoszkiewicz, Lukasz; Lanciotti, Elisa; Rocha, Ricardo; Saiz, Pablo; Santinelli, Roberto; Sidorova, Irina; Sciabà, Andrea; Tsaregorodtsev, Andrei

    2010-04-01

    In the framework of a distributed computing environment, such as WLCG, monitoring has a key role in order to keep under control activities going on in sites located in different countries and involving people based in many different sites. To be able to cope with such a large scale heterogeneous infrastructure, it is necessary to have monitoring tools providing a complete and reliable view of the overall performance of the sites. Moreover, the structure of a monitoring system critically depends on the object to monitor and on the users it is addressed to. In this article we will describe two different monitoring systems both aimed to monitor activities and services provided in the WLCG framework, but designed in order to meet the requirements of different users: Site Status Board has an overall view of the services available in all the sites supporting an experiment, whereas Siteview provides a complete view of all the activities going on at a site, for all the experiments supported by the site.

  20. Recombinant Human Peptidoglycan Recognition Proteins Reveal Antichlamydial Activity.

    PubMed

    Bobrovsky, Pavel; Manuvera, Valentin; Polina, Nadezhda; Podgorny, Oleg; Prusakov, Kirill; Govorun, Vadim; Lazarev, Vassili

    2016-07-01

    Peptidoglycan recognition proteins (PGLYRPs) are innate immune components that recognize the peptidoglycan and lipopolysaccharides of bacteria and exhibit antibacterial activity. Recently, the obligate intracellular parasite Chlamydia trachomatis was shown to have peptidoglycan. However, the antichlamydial activity of PGLYRPs has not yet been demonstrated. The aim of our study was to test whether PGLYRPs exhibit antibacterial activity against C. trachomatis Thus, we cloned the regions containing the human Pglyrp1, Pglyrp2, Pglyrp3, and Pglyrp4 genes for subsequent expression in human cell lines. We obtained stable HeLa cell lines that secrete recombinant human PGLYRPs into culture medium. We also generated purified recombinant PGLYRP1, -2, and -4 and confirmed their activities against Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria. Furthermore, we examined the activities of recombinant PGLYRPs against C. trachomatis and determined their MICs. We also observed a decrease in the infectious ability of chlamydial elementary bodies in the next generation after a single exposure to PGLYRPs. Finally, we demonstrated that PGLYRPs attach to C. trachomatis elementary bodies and activate the expression of the chlamydial two-component stress response system. Thus, PGLYRPs inhibit the development of chlamydial infection. PMID:27160295

  1. Ribosome•RelA structures reveal the mechanism of stringent response activation

    PubMed Central

    Loveland, Anna B; Bah, Eugene; Madireddy, Rohini; Zhang, Ying; Brilot, Axel F; Grigorieff, Nikolaus; Korostelev, Andrei A

    2016-01-01

    Stringent response is a conserved bacterial stress response underlying virulence and antibiotic resistance. RelA/SpoT-homolog proteins synthesize transcriptional modulators (p)ppGpp, allowing bacteria to adapt to stress. RelA is activated during amino-acid starvation, when cognate deacyl-tRNA binds to the ribosomal A (aminoacyl-tRNA) site. We report four cryo-EM structures of E. coli RelA bound to the 70S ribosome, in the absence and presence of deacyl-tRNA accommodating in the 30S A site. The boomerang-shaped RelA with a wingspan of more than 100 Å wraps around the A/R (30S A-site/RelA-bound) tRNA. The CCA end of the A/R tRNA pins the central TGS domain against the 30S subunit, presenting the (p)ppGpp-synthetase domain near the 30S spur. The ribosome and A/R tRNA are captured in three conformations, revealing hitherto elusive states of tRNA engagement with the ribosomal decoding center. Decoding-center rearrangements are coupled with the step-wise 30S-subunit 'closure', providing insights into the dynamics of high-fidelity tRNA decoding. DOI: http://dx.doi.org/10.7554/eLife.17029.001 PMID:27434674

  2. Ribosome•RelA structures reveal the mechanism of stringent response activation.

    PubMed

    Loveland, Anna B; Bah, Eugene; Madireddy, Rohini; Zhang, Ying; Brilot, Axel F; Grigorieff, Nikolaus; Korostelev, Andrei A

    2016-01-01

    Stringent response is a conserved bacterial stress response underlying virulence and antibiotic resistance. RelA/SpoT-homolog proteins synthesize transcriptional modulators (p)ppGpp, allowing bacteria to adapt to stress. RelA is activated during amino-acid starvation, when cognate deacyl-tRNA binds to the ribosomal A (aminoacyl-tRNA) site. We report four cryo-EM structures of E. coli RelA bound to the 70S ribosome, in the absence and presence of deacyl-tRNA accommodating in the 30S A site. The boomerang-shaped RelA with a wingspan of more than 100 Å wraps around the A/R (30S A-site/RelA-bound) tRNA. The CCA end of the A/R tRNA pins the central TGS domain against the 30S subunit, presenting the (p)ppGpp-synthetase domain near the 30S spur. The ribosome and A/R tRNA are captured in three conformations, revealing hitherto elusive states of tRNA engagement with the ribosomal decoding center. Decoding-center rearrangements are coupled with the step-wise 30S-subunit 'closure', providing insights into the dynamics of high-fidelity tRNA decoding. PMID:27434674

  3. The Three Mycobacterium tuberculosis Antigen 85 Isoforms Have Unique Substrates and Activities Determined by Non-active Site Regions*

    PubMed Central

    Backus, Keriann M.; Dolan, Michael A.; Barry, Conor S.; Joe, Maju; McPhie, Peter; Boshoff, Helena I. M.; Lowary, Todd L.; Davis, Benjamin G.; Barry, Clifton E.

    2014-01-01

    The three isoforms of antigen 85 (A, B, and C) are the most abundant secreted mycobacterial proteins and catalyze transesterification reactions that synthesize mycolated arabinogalactan, trehalose monomycolate (TMM), and trehalose dimycolate (TDM), important constituents of the outermost layer of the cellular envelope of Mycobacterium tuberculosis. These three enzymes are nearly identical at the active site and have therefore been postulated to exist to evade host immunity. Distal to the active site is a second putative carbohydrate-binding site of lower homology. Mutagenesis of the three isoforms at this second site affected both substrate selectivity and overall catalytic activity in vitro. Using synthetic and natural substrates, we show that these three enzymes exhibit unique selectivity; antigen 85A more efficiently mycolates TMM to form TDM, whereas C (and to a lesser extent B) has a higher rate of activity using free trehalose to form TMM. This difference in substrate selectivity extends to the hexasaccharide fragment of cell wall arabinan. Mutation of secondary site residues from the most active isoform (C) into those present in A or B partially interconverts this substrate selectivity. These experiments in combination with molecular dynamics simulations reveal that differences in the N-terminal helix α9, the adjacent Pro216–Phe228 loop, and helix α5 are the likely cause of changes in activity and substrate selectivity. These differences explain the existence of three isoforms and will allow for future work in developing inhibitors. PMID:25028517

  4. Enceladus's activity as revealed by Cassini-Huygens

    NASA Astrophysics Data System (ADS)

    Schmidt, Juergen

    2015-08-01

    The activity of Enceladus has been monitored by Cassini for nearly one decade after its discovery (see Science, 2006, 311, special issue). Thus, crucial properties of the vapor and dust plumes, heat output, surface properties, and the gravity field of the satellite are constrained in a fairly detailed manner. In this paper I review key observational facts and discuss implications for the vent geometries as well as interior structure and composition. Special emphasize I will give to data recorded by the Cassini Cosmic Dust Analyzer, and the conclusions drawn from it, concerning the number, size, and composition of grains ejected by the plumes associated with the south polar activity.

  5. Sleeping Beauty screen reveals Pparg activation in metastatic prostate cancer.

    PubMed

    Ahmad, Imran; Mui, Ernest; Galbraith, Laura; Patel, Rachana; Tan, Ee Hong; Salji, Mark; Rust, Alistair G; Repiscak, Peter; Hedley, Ann; Markert, Elke; Loveridge, Carolyn; van der Weyden, Louise; Edwards, Joanne; Sansom, Owen J; Adams, David J; Leung, Hing Y

    2016-07-19

    Prostate cancer (CaP) is the most common adult male cancer in the developed world. The paucity of biomarkers to predict prostate tumor biology makes it important to identify key pathways that confer poor prognosis and guide potential targeted therapy. Using a murine forward mutagenesis screen in a Pten-null background, we identified peroxisome proliferator-activated receptor gamma (Pparg), encoding a ligand-activated transcription factor, as a promoter of metastatic CaP through activation of lipid signaling pathways, including up-regulation of lipid synthesis enzymes [fatty acid synthase (FASN), acetyl-CoA carboxylase (ACC), ATP citrate lyase (ACLY)]. Importantly, inhibition of PPARG suppressed tumor growth in vivo, with down-regulation of the lipid synthesis program. We show that elevated levels of PPARG strongly correlate with elevation of FASN in human CaP and that high levels of PPARG/FASN and PI3K/pAKT pathway activation confer a poor prognosis. These data suggest that CaP patients could be stratified in terms of PPARG/FASN and PTEN levels to identify patients with aggressive CaP who may respond favorably to PPARG/FASN inhibition. PMID:27357679

  6. Sleeping Beauty screen reveals Pparg activation in metastatic prostate cancer

    PubMed Central

    Ahmad, Imran; Mui, Ernest; Galbraith, Laura; Patel, Rachana; Tan, Ee Hong; Salji, Mark; Rust, Alistair G.; Repiscak, Peter; Hedley, Ann; Markert, Elke; Loveridge, Carolyn; van der Weyden, Louise; Edwards, Joanne; Sansom, Owen J.; Adams, David J.; Leung, Hing Y.

    2016-01-01

    Prostate cancer (CaP) is the most common adult male cancer in the developed world. The paucity of biomarkers to predict prostate tumor biology makes it important to identify key pathways that confer poor prognosis and guide potential targeted therapy. Using a murine forward mutagenesis screen in a Pten-null background, we identified peroxisome proliferator-activated receptor gamma (Pparg), encoding a ligand-activated transcription factor, as a promoter of metastatic CaP through activation of lipid signaling pathways, including up-regulation of lipid synthesis enzymes [fatty acid synthase (FASN), acetyl-CoA carboxylase (ACC), ATP citrate lyase (ACLY)]. Importantly, inhibition of PPARG suppressed tumor growth in vivo, with down-regulation of the lipid synthesis program. We show that elevated levels of PPARG strongly correlate with elevation of FASN in human CaP and that high levels of PPARG/FASN and PI3K/pAKT pathway activation confer a poor prognosis. These data suggest that CaP patients could be stratified in terms of PPARG/FASN and PTEN levels to identify patients with aggressive CaP who may respond favorably to PPARG/FASN inhibition. PMID:27357679

  7. Revealing Student Blogging Activities Using RSS Feeds and LMS Logs

    ERIC Educational Resources Information Center

    Derntl, Michael

    2010-01-01

    Blogs are an easy-to-use, free alternative to classic means of computer-mediated communication. Moreover, they are authentically aligned with web activity patterns of today's students. The body of studies on integrating and implementing blogs in various educational settings has grown rapidly recently; however, it is often difficult to distill…

  8. Protons and Psalmotoxin-1 reveal nonproton ligand stimulatory sites in chicken acid-sensing ion channel

    PubMed Central

    Smith, Rachel N; Gonzales, Eric B

    2014-01-01

    Acid-sensing ion channels (ASICs) are proton-sensitive, sodium-selective channels expressed in the nervous system that sense changes in extracellular pH. These ion channels are sensitive to an increasing number of nonproton ligands that include natural venom peptides and guanidine compounds. In the case of chicken ASIC1, the spider toxin Psalmotoxin-1 (PcTx1) activates the channel, resulting in an inward current. Furthermore, a growing class of ligands containing a guanidine group has been identified that stimulate peripheral ASICs (ASIC3), but exert subtle influence on other ASIC subtypes. The effects of the guanidine compounds on cASIC1 have not been the focus of previous study. Here, we investigated the interaction of the guanidine compound 2-guanidine-4-methylquinazoline (GMQ) on cASIC1 proton activation and PcTx1 stimulation. Exposure of expressed cASIC1 to PcTx1 resulted in biphasic currents consisting of a transient peak followed by an irreversible cASIC1 PcTx1 persistent current. This cASIC1 PcTx1 persistent current may be the result of locking the cASIC1 protein into a desensitized transition state. The guanidine compound GMQ increased the apparent affinity of protons on cASIC1 and decreased the half-maximal constant of the cASIC1 steady-state desensitization profile. Furthermore, GMQ stimulated the cASIC1 PcTx1 persistent current in a concentration-dependent manner, which resulted in a non-desensitizing inward current. Our data suggests that GMQ may have multiple sites within cASIC1 and may act as a “molecular wedge” that forces the PcTx1-desensitized ASIC into an open state. Our findings indicate that guanidine compounds, such as GMQ, may alter acid-sensing ion channel activity in combination with other stimuli, and that additional ASIC subtypes (along with ASIC3) may serve to sense and mediate signals from multiple stimuli. PMID:24262969

  9. Site-directed mutagenesis and high-resolution NMR spectroscopy of the active site of porphobilinogen deaminase

    SciTech Connect

    Scott, A.I.; Roessner, C.A.; Stolowich, N.J.; Karuso, P.; Williams, H.J.; Grant, S.K.; Gonzalez, M.D.; Hoshino, T. )

    1988-10-18

    The active site of porphobilinogen (PBG){sup 1} deaminase from Escherichia coli has been found to contain an unusual dipyrromethane derived from four molecules of 5-aminolevulinic acid (ALA) covalently linked to Cys-242, one of the two cysteine residues conserved in E. coli and human deaminase. By use of a hemA{sup {minus}} strain of E. coli the enzyme was enriched from (5-{sup 13}C)ALA and examined by {sup 1}H-detected multiple quantum coherence spectroscopy, which revealed all of the salient features of a dipyrromethane composed of two PBG units linked heat to tail and terminating in a CH{sub 2}-S bond to a cysteine residue. Site-specific mutagenesis of Cys-99 and Cys-242, respectively, has shown that substitution of Ser for Cys-99 does not affect the enzymatic activity, whereas substitution of Ser for Cys-242 removes essentially all of the catalytic activity as measured by the conversion of the substrate PBG to uro'gen I. The NMR spectrum of the covalent complex of deaminase with the suicide inhibitor 2-bromo-(2,11-{sup 13}C{sub 2})PBG reveals that the aminomethyl terminus of the inhibitor reacts with the enzyme's cofactor at the {alpha}-free pyrrole. NMR spectroscopy of the ES{sub 2} complex confirmed a PBG-derived head-to-tail dipyrromethane attached to the {alpha}-free pyrrole position of the enzyme. A mechanistic rationale for deaminase is presented.

  10. Active Site Inhibitors Protect Protein Kinase C from Dephosphorylation and Stabilize Its Mature Form*

    PubMed Central

    Gould, Christine M.; Antal, Corina E.; Reyes, Gloria; Kunkel, Maya T.; Adams, Ryan A.; Ziyar, Ahdad; Riveros, Tania; Newton, Alexandra C.

    2011-01-01

    Conformational changes acutely control protein kinase C (PKC). We have previously shown that the autoinhibitory pseudosubstrate must be removed from the active site in order for 1) PKC to be phosphorylated by its upstream kinase phosphoinositide-dependent kinase 1 (PDK-1), 2) the mature enzyme to bind and phosphorylate substrates, and 3) the mature enzyme to be dephosphorylated by phosphatases. Here we show an additional level of conformational control; binding of active site inhibitors locks PKC in a conformation in which the priming phosphorylation sites are resistant to dephosphorylation. Using homogeneously pure PKC, we show that the active site inhibitor Gö 6983 prevents the dephosphorylation by pure protein phosphatase 1 (PP1) or the hydrophobic motif phosphatase, pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP). Consistent with results using pure proteins, treatment of cells with the competitive inhibitors Gö 6983 or bisindolylmaleimide I, but not the uncompetitive inhibitor bisindolylmaleimide IV, prevents the dephosphorylation and down-regulation of PKC induced by phorbol esters. Pulse-chase analyses reveal that active site inhibitors do not affect the net rate of priming phosphorylations of PKC; rather, they inhibit the dephosphorylation triggered by phorbol esters. These data provide a molecular explanation for the recent studies showing that active site inhibitors stabilize the phosphorylation state of protein kinases B/Akt and C. PMID:21715334

  11. Molecular Imprint of Enzyme Active Site by Camel Nanobodies

    PubMed Central

    Li, Jiang-Wei; Xia, Lijie; Su, Youhong; Liu, Hongchun; Xia, Xueqing; Lu, Qinxia; Yang, Chunjin; Reheman, Kalbinur

    2012-01-01

    Screening of inhibitory Ab1 antibodies is a critical step for producing catalytic antibodies in the anti-idiotypic approach. However, the incompatible surface of the active site of the enzyme and the antigen-binding site of heterotetrameric conventional antibodies become the limiting step. Because camelid-derived nanobodies possess the potential to preferentially bind to the active site of enzymes due to their small size and long CDR3, we have developed a novel approach to produce antibodies with alliinase activities by exploiting the molecular mimicry of camel nanobodies. By screening the camelid-derived variable region of the heavy chain cDNA phage display library with alliinase, we obtained an inhibitory nanobody VHHA4 that recognizes the active site. Further screening with VHHA4 from the same variable domain of the heavy chain of a heavy-chain antibody library led to a higher incidence of anti-idiotypic Ab2 abzymes with alliinase activities. One of the abzymes, VHHC10, showed the highest activity that can be inhibited by Ab1 VHHA4 and alliinase competitive inhibitor penicillamine and significantly suppressed the B16 tumor cell growth in the presence of alliin in vitro. The results highlight the feasibility of producing abzymes via anti-idiotypic nanobody approach. PMID:22374998

  12. Active Sites Environmental Monitoring Program: Mid-FY 1991 report

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1991-10-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1990 through March 1991. The ASEMP was established in 1989 by Solid Waste Operations and the Environmental Sciences Division to provide early detection and performance monitoring at active low-level radioactive waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. Monitoring results continue to demonstrate the no LLW is being leached from the storage vaults on the tumulus pads. Loading of vaults on Tumulus II began during this reporting period and 115 vaults had been loaded by the end of March 1991.

  13. An active-site peptide from pepsin C

    PubMed Central

    Kay, J.; Ryle, A. P.

    1971-01-01

    Porcine pepsin C is inactivated rapidly and irreversibly by diazoacetyl-dl-norleucine methyl ester in the presence of cupric ions at pH values above 4.5. The inactivation is specific in that complete inactivation accompanies the incorporation of 1mol of inhibitor residue/mol of enzyme and evidence has been obtained to suggest that the reaction occurs with an active site residue. The site of reaction is the β-carboxyl group of an aspartic acid residue in the sequence Ile-Val-Asp-Thr. This sequence is identical with the active-site sequence in pepsin and the significance of this in terms of the different activities of the two enzymes is discussed. PMID:4942834

  14. Metaproteomic analysis reveals microbial metabolic activities in the deep ocean

    NASA Astrophysics Data System (ADS)

    Wang, Da-Zhi; Xie, Zhang-Xian; Zhang, Shu-Feng; Wang, Ming-Hua; Zhang, Hao; Kong, Ling-Fen; Lin, Lin

    2016-04-01

    The deep sea is the largest habitat on earth and holds many and varied microbial life forms. However, little is known about their metabolic activities in the deep ocean. Here, we characterized protein profiles of particulate (>0.22 μm) and dissolved (between 10 kDa and 0.22 μm) fractions collected from the deep South China Sea using a shotgun proteomic approach. SAR324, Alteromonadales and SAR11 were the most abundant groups, while Prasinophyte contributed most to eukaryotes and cyanophage to viruses. The dominant heterotrophic activity was evidenced by the abundant transporters (33%). Proteins participating in nitrification, methanogenesis, methyltrophy and CO2 fixation were detected. Notably, the predominance of unique cellular proteins in dissolved fraction suggested the presence of membrane structures. Moreover, the detection of translation proteins related to phytoplankton indicated that other process rather than sinking particles might be the downward export of living cells. Our study implied that novel extracellular activities and the interaction of deep water with its overlying water could be crucial to the microbial world of deep sea.

  15. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    PubMed

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined. PMID:27243042

  16. Metatranscriptomics reveals overall active bacterial composition in caries lesions

    PubMed Central

    Simón-Soro, Aurea; Guillen-Navarro, Miriam; Mira, Alex

    2014-01-01

    Background Identifying the microbial species in caries lesions is instrumental to determine the etiology of dental caries. However, a significant proportion of bacteria in carious lesions have not been cultured, and the use of molecular methods has been limited to DNA-based approaches, which detect both active and inactive or dead microorganisms. Objective To identify the RNA-based, metabolically active bacterial composition of caries lesions at different stages of disease progression in order to provide a list of potential etiological agents of tooth decay. Design Non-cavitated enamel caries lesions (n=15) and dentin caries lesions samples (n=12) were collected from 13 individuals. RNA was extracted and cDNA was constructed, which was used to amplify the 16S rRNA gene. The resulting 780 bp polymerase chain reaction products were pyrosequenced using Titanium-plus chemistry, and the sequences obtained were used to determine the bacterial composition. Results A mean of 4,900 sequences of the 16S rRNA gene with an average read length of 661 bp was obtained per sample, giving a comprehensive view of the active bacterial communities in caries lesions. Estimates of bacterial diversity indicate that the microbiota of cavities is highly complex, each sample containing between 70 and 400 metabolically active species. The composition of these bacterial consortia varied among individuals and between caries lesions of the same individuals. In addition, enamel and dentin lesions had a different bacterial makeup. Lactobacilli were found almost exclusively in dentin cavities. Streptococci accounted for 40% of the total active community in enamel caries, and 20% in dentin caries. However, Streptococcus mutans represented only 0.02–0.73% of the total bacterial community. Conclusions The data indicate that the etiology of dental caries is tissue dependent and that the disease has a clear polymicrobial origin. The low proportion of mutans streptococci detected confirms that they

  17. A new class of mutations reveals a novel function for the original phosphatidylinositol 3-kinase binding site

    PubMed Central

    Hong, Y. Kate; Mikami, Aki; Schaffhausen, Brian; Jun, Toni; Roberts, Thomas M.

    2003-01-01

    Previous studies have demonstrated that the specificity of Src homology 2 (SH2) and phosphotyrosine-binding domain interactions are mediated by phosphorylated tyrosines and their neighboring amino acids. Two of the first phosphotyrosine-based binding sites were found on middle T antigen of polyoma virus. Tyr-250 acts as a binding site for ShcA, whereas Tyr-315 forms a binding site for the SH2 domain of the p85 subunit of phosphatidylinositol 3-kinase. However, genetic analysis of a given phosphotyrosine's role in signaling can be complicated when it serves as a binding site for multiple proteins. The situation is particularly difficult when the phosphotyrosine serves as a secondary binding site for a protein with primary binding determinates elsewhere. Mutation of a tyrosine residue to phenylalanine blocks association of all bound proteins. Here we show that the mutation of the amino acids following the phosphorylated tyrosine to alanine can reveal phosphotyrosine function as a secondary binding site, while abrogating the phosphotyrosine motif's role as a primary binding site for SH2 domains. We tested this methodology by using middle T antigen. Our results suggest that Tyr-250 is a secondary binding site for phosphatidylinositol 3-kinase, whereas Tyr-315 is a secondary binding site for a yet-to-be-identified protein, which is critical for transformation. PMID:12881485

  18. Whole genome resequencing reveals natural target site preferences of transposable elements in Drosophila melanogaster.

    PubMed

    Linheiro, Raquel S; Bergman, Casey M

    2012-01-01

    Transposable elements are mobile DNA sequences that integrate into host genomes using diverse mechanisms with varying degrees of target site specificity. While the target site preferences of some engineered transposable elements are well studied, the natural target preferences of most transposable elements are poorly characterized. Using population genomic resequencing data from 166 strains of Drosophila melanogaster, we identified over 8,000 new insertion sites not present in the reference genome sequence that we used to decode the natural target preferences of 22 families of transposable element in this species. We found that terminal inverted repeat transposon and long terminal repeat retrotransposon families present clade-specific target site duplications and target site sequence motifs. Additionally, we found that the sequence motifs at transposable element target sites are always palindromes that extend beyond the target site duplication. Our results demonstrate the utility of population genomics data for high-throughput inference of transposable element targeting preferences in the wild and establish general rules for terminal inverted repeat transposon and long terminal repeat retrotransposon target site selection in eukaryotic genomes. PMID:22347367

  19. Single cell activity reveals direct electron transfer in methanotrophic consortia.

    PubMed

    McGlynn, Shawn E; Chadwick, Grayson L; Kempes, Christopher P; Orphan, Victoria J

    2015-10-22

    Multicellular assemblages of microorganisms are ubiquitous in nature, and the proximity afforded by aggregation is thought to permit intercellular metabolic coupling that can accommodate otherwise unfavourable reactions. Consortia of methane-oxidizing archaea and sulphate-reducing bacteria are a well-known environmental example of microbial co-aggregation; however, the coupling mechanisms between these paired organisms is not well understood, despite the attention given them because of the global significance of anaerobic methane oxidation. Here we examined the influence of interspecies spatial positioning as it relates to biosynthetic activity within structurally diverse uncultured methane-oxidizing consortia by measuring stable isotope incorporation for individual archaeal and bacterial cells to constrain their potential metabolic interactions. In contrast to conventional models of syntrophy based on the passage of molecular intermediates, cellular activities were found to be independent of both species intermixing and distance between syntrophic partners within consortia. A generalized model of electric conductivity between co-associated archaea and bacteria best fit the empirical data. Combined with the detection of large multi-haem cytochromes in the genomes of methanotrophic archaea and the demonstration of redox-dependent staining of the matrix between cells in consortia, these results provide evidence for syntrophic coupling through direct electron transfer. PMID:26375009

  20. Oscillatory brain activity reveals linguistic prints in the quantity code.

    PubMed

    Salillas, Elena; Barraza, Paulo; Carreiras, Manuel

    2015-01-01

    Number representations change through education, although it is currently unclear whether and how language could impact the magnitude representation that we share with other species. The most prominent view is that language does not play any role in modulating the core numeric representation involved in the contrast of quantities. Nevertheless, possible cultural hints on the numerical magnitude representation are currently on discussion focus. In fact, the acquisition of number words provides linguistic input that the quantity system may not ignore. Bilingualism offers a window to the study of this question, especially in bilinguals where the two number wording systems imply also two different numerical systems, such as in Basque-Spanish bilinguals. The present study evidences linguistic prints in the core number representational system through the analysis of EEG oscillatory activity during a simple number comparison task. Gamma band synchronization appears when Basque-Spanish bilinguals compare pairs of Arabic numbers linked through the Basque base-20 wording system, but it does not if the pairs are related through the base-10 system. Crucially, this gamma activity, originated in a left fronto-parietal network, only appears in bilinguals who learned math in Basque and not in equivalent proficiency bilinguals who learned math in Spanish. Thus, this neural index reflected in gamma band synchrony appears to be triggered by early learning experience with the base-20 numerical associations in Basque number words. PMID:25875210

  1. Single cell activity reveals direct electron transfer in methanotrophic consortia

    NASA Astrophysics Data System (ADS)

    McGlynn, Shawn E.; Chadwick, Grayson L.; Kempes, Christopher P.; Orphan, Victoria J.

    2015-10-01

    Multicellular assemblages of microorganisms are ubiquitous in nature, and the proximity afforded by aggregation is thought to permit intercellular metabolic coupling that can accommodate otherwise unfavourable reactions. Consortia of methane-oxidizing archaea and sulphate-reducing bacteria are a well-known environmental example of microbial co-aggregation; however, the coupling mechanisms between these paired organisms is not well understood, despite the attention given them because of the global significance of anaerobic methane oxidation. Here we examined the influence of interspecies spatial positioning as it relates to biosynthetic activity within structurally diverse uncultured methane-oxidizing consortia by measuring stable isotope incorporation for individual archaeal and bacterial cells to constrain their potential metabolic interactions. In contrast to conventional models of syntrophy based on the passage of molecular intermediates, cellular activities were found to be independent of both species intermixing and distance between syntrophic partners within consortia. A generalized model of electric conductivity between co-associated archaea and bacteria best fit the empirical data. Combined with the detection of large multi-haem cytochromes in the genomes of methanotrophic archaea and the demonstration of redox-dependent staining of the matrix between cells in consortia, these results provide evidence for syntrophic coupling through direct electron transfer.

  2. Oscillatory Brain Activity Reveals Linguistic Prints in the Quantity Code

    PubMed Central

    Salillas, Elena; Barraza, Paulo; Carreiras, Manuel

    2015-01-01

    Number representations change through education, although it is currently unclear whether and how language could impact the magnitude representation that we share with other species. The most prominent view is that language does not play any role in modulating the core numeric representation involved in the contrast of quantities. Nevertheless, possible cultural hints on the numerical magnitude representation are currently on discussion focus. In fact, the acquisition of number words provides linguistic input that the quantity system may not ignore. Bilingualism offers a window to the study of this question, especially in bilinguals where the two number wording systems imply also two different numerical systems, such as in Basque-Spanish bilinguals. The present study evidences linguistic prints in the core number representational system through the analysis of EEG oscillatory activity during a simple number comparison task. Gamma band synchronization appears when Basque-Spanish bilinguals compare pairs of Arabic numbers linked through the Basque base-20 wording system, but it does not if the pairs are related through the base-10 system. Crucially, this gamma activity, originated in a left fronto-parietal network, only appears in bilinguals who learned math in Basque and not in equivalent proficiency bilinguals who learned math in Spanish. Thus, this neural index reflected in gamma band synchrony appears to be triggered by early learning experience with the base-20 numerical associations in Basque number words. PMID:25875210

  3. Active-site motions and polarity enhance catalytic turnover of hydrated subtilisin dissolved in organic solvents.

    PubMed

    Hudson, Elton P; Eppler, Ross K; Beaudoin, Julianne M; Dordick, Jonathan S; Reimer, Jeffrey A; Clark, Douglas S

    2009-04-01

    The enzyme subtilisin Carlsberg was surfactant-solubilized into two organic solvents, isooctane and tetrahydrofuran, and hydrated through stepwise changes in the thermodynamic water activity, a(w). The apparent turnover number k(cat)(app) in these systems ranged from 0.2 to 80 s(-1) and increased 11-fold in isooctane and up to 50-fold in tetrahydrofuran with increasing a(w). (19)F NMR relaxation experiments employing an active-site inhibitor were used to assess the dependence of active-site motions on a(w). The rates of NMR-derived fast (k > 10(7) s(-1)) and slow (k < 10(4) s(-1)) active-site motions increased in both solvents upon hydration, but only the slow motions correlated with k(cat). The (19)F chemical shift was a sensitive probe of the local electronic environment and provided an empirical measure of the active-site dielectric constant epsilon(as), which increased with hydration to epsilon(as) approximately 13 in each solvent. In both solvents, the transition state free energy data and epsilon(as) followed Kirkwood's model for the continuum solvation of a dipole, indicating that water also enhanced catalysis by altering the active-site's electronic environment and increasing its polarity to better stabilize the transition state. These results reveal that favorable dynamic and electrostatic effects both contribute to accelerated catalysis by solubilized subtilisin Carlsberg upon hydration in organic solvents. PMID:19317505

  4. Enhanced Enzyme Kinetic Stability by Increasing Rigidity within the Active Site*

    PubMed Central

    Xie, Yuan; An, Jiao; Yang, Guangyu; Wu, Geng; Zhang, Yong; Cui, Li; Feng, Yan

    2014-01-01

    Enzyme stability is an important issue for protein engineers. Understanding how rigidity in the active site affects protein kinetic stability will provide new insight into enzyme stabilization. In this study, we demonstrated enhanced kinetic stability of Candida antarctica lipase B (CalB) by mutating the structurally flexible residues within the active site. Six residues within 10 Å of the catalytic Ser105 residue with a high B factor were selected for iterative saturation mutagenesis. After screening 2200 colonies, we obtained the D223G/L278M mutant, which exhibited a 13-fold increase in half-life at 48 °C and a 12 °C higher T5015, the temperature at which enzyme activity is reduced to 50% after a 15-min heat treatment. Further characterization showed that global unfolding resistance against both thermal and chemical denaturation also improved. Analysis of the crystal structures of wild-type CalB and the D223G/L278M mutant revealed that the latter formed an extra main chain hydrogen bond network with seven structurally coupled residues within the flexible α10 helix that are primarily involved in forming the active site. Further investigation of the relative B factor profile and molecular dynamics simulation confirmed that the enhanced rigidity decreased fluctuation of the active site residues at high temperature. These results indicate that enhancing the rigidity of the flexible segment within the active site may provide an efficient method for improving enzyme kinetic stability. PMID:24448805

  5. Activities on Facebook Reveal the Depressive State of Users

    PubMed Central

    Kwak, Jinah

    2013-01-01

    Background As online social media have become prominent, much effort has been spent on identifying users with depressive symptoms in order to aim at early diagnosis, treatment, and even prevention by using various online social media. In this paper, we focused on Facebook to discern any correlations between the platform’s features and users’ depressive symptoms. This work may be helpful in trying to reach and detect large numbers of depressed individuals more easily. Objective Our goal was to develop a Web application and identify depressive symptom–related features from users of Facebook, a popular social networking platform. Methods 55 Facebook users (male=40, female=15, mean age 24.43, SD 3.90) were recruited through advertisement fliers distributed to students in a large university in Korea. Using EmotionDiary, the Facebook application we developed, we evaluated depressive symptoms using the Center for Epidemiological Studies-Depression (CES-D) scale. We also provided tips and facts about depression to participants and measured their responses using EmotionDiary. To identify the Facebook features related to depression, correlation analyses were performed between CES-D and participants’ responses to tips and facts or Facebook social features. Last, we interviewed depressed participants (CES-D≥25) to assess their depressive symptoms by a psychiatrist. Results Facebook activities had predictive power in distinguishing depressed and nondepressed individuals. Participants’ response to tips and facts, which can be explained by the number of app tips viewed and app points, had a positive correlation (P=.04 for both cases), whereas the number of friends and location tags had a negative correlation with the CES-D scale (P=.08 and P=.045 respectively). Furthermore, in finding group differences in Facebook social activities, app tips viewed and app points resulted in significant differences (P=.01 and P=.03 respectively) between probably depressed and

  6. Metatranscriptomic Analysis of Groundwater Reveals an Active Anammox Bacterial Population

    NASA Astrophysics Data System (ADS)

    Jewell, T. N. M.; Karaoz, U.; Thomas, B. C.; Banfield, J. F.; Brodie, E.; Williams, K. H.; Beller, H. R.

    2014-12-01

    Groundwater is a major natural resource, yet little is known about the contribution of microbial anaerobic ammonium oxidation (anammox) activity to subsurface nitrogen cycling. During anammox, energy is generated as ammonium is oxidized under anaerobic conditions to dinitrogen gas, using nitrite as the final electron acceptor. This process is a global sink for fixed nitrogen. Only a narrow range of monophyletic bacteria within the Planctomycetes carries out anammox, and the full extent of their metabolism, and subsequent impact on nitrogen cycling and microbial community structure, is still unknown. Here, we employ a metatranscriptomic analysis on enriched mRNA to identify the abundance and activity of a population of anammox bacteria within an aquifer at Rifle, CO. Planktonic biomass was collected over a two-month period after injection of up to 1.5 mM nitrate. Illumina-generated sequences were mapped to a phylogenetically binned Rifle metagenome database. We identified transcripts for genes with high protein sequence identities (81-98%) to those of anammox strain KSU-1 and to two of the five anammox bacteria genera, Brocadia and Kuenenia, suggesting an active, if not diverse, anammox population. Many of the most abundant anammox transcripts mapped to a single scaffold, indicative of a single dominant anammox species. Transcripts of the genes necessary for the anammox pathway were present, including an ammonium transporter (amtB), nitrite/formate transporter, nitrite reductase (nirK), and hydrazine oxidoreductase (hzoB). The form of nitrite reductase encoded by anammox is species-dependent, and we only identified nirK, with no evidence of anammox nirS. In addition to the anammox pathway we saw evidence of the anammox bacterial dissimilatory nitrate reduction to ammonium pathway (narH, putative nrfA, and nrfB), which provides an alternate means of generating substrates for anammox from nitrate, rather than relying on an external pool. Transcripts for hydroxylamine

  7. Crystal structure of equine serum albumin in complex with cetirizine reveals a novel drug binding site.

    PubMed

    Handing, Katarzyna B; Shabalin, Ivan G; Szlachta, Karol; Majorek, Karolina A; Minor, Wladek

    2016-03-01

    Serum albumin (SA) is the main transporter of drugs in mammalian blood plasma. Here, we report the first crystal structure of equine serum albumin (ESA) in complex with antihistamine drug cetirizine at a resolution of 2.1Å. Cetirizine is bound in two sites--a novel drug binding site (CBS1) and the fatty acid binding site 6 (CBS2). Both sites differ from those that have been proposed in multiple reports based on equilibrium dialysis and fluorescence studies for mammalian albumins as cetirizine binding sites. We show that the residues forming the binding pockets in ESA are highly conserved in human serum albumin (HSA), and suggest that binding of cetirizine to HSA will be similar. In support of that hypothesis, we show that the dissociation constants for cetirizine binding to CBS2 in ESA and HSA are identical using tryptophan fluorescence quenching. Presence of lysine and arginine residues that have been previously reported to undergo nonenzymatic glycosylation in CBS1 and CBS2 suggests that cetirizine transport in patients with diabetes could be altered. A review of all available SA structures from the PDB shows that in addition to the novel drug binding site we present here (CBS1), there are two pockets on SA capable of binding drugs that do not overlap with fatty acid binding sites and have not been discussed in published reviews. PMID:26896718

  8. Rat intestinal trehalase. Studies of the active site.

    PubMed

    Chen, C C; Guo, W J; Isselbacher, K J

    1987-11-01

    Rat intestinal trehalase was solubilized, purified and reconstituted into proteoliposomes. With octyl glucoside as the solubilizing detergent, the purified protein appeared as a single band on SDS/polyacrylamide-gel electrophoresis with an apparent molecular mass of 67 kDa. Kinetic studies indicated that the active site of this enzyme can be functionally divided into two adjacent regions, namely a binding site (with pKa 4.8) and a catalytic site (with pKa 7.2). Other findings suggested that the catalytic site contains a functional thiol group, which is sensitive to inhibition by N-ethylmaleimide, Hg2+ and iodoacetate. Substrate protection and iodoacetate labelling of the thiol group demonstrated that only a protein of 67 kDa was labelled. Furthermore, sucrose and phlorizin protected the thiol group, but Tris-like inhibitors did not. Structure-inhibition analysis of Tris-like inhibitors, the pH effect of Tris inhibition and Tris protection of 1-(3-dimethylaminopropyl)-3-ethylcarbodi-imide inactivation permitted characterization and location of a separate site containing a carboxy group for Tris binding, which may also be the binding region. On the basis of these findings, a possible structure for the active site of trehalase is proposed. PMID:3426558

  9. Active Site and Remote Contributions to Catalysis in Methylthioadenosine Nucleosidases

    PubMed Central

    Thomas, Keisha; Cameron, Scott A.; Almo, Steven C.; Burgos, Emmanuel S.; Gulab, Shivali A.; Schramm, Vern L.

    2015-01-01

    5′-Methylthioadenosine/S-adenosyl-L-homocysteine nucleosidases (MTANs) catalyze the hydrolysis of 5′-methylthioadenosine to adenine and 5-methylthioribose. The amino acid sequences of the MTANs from Vibrio cholerae (VcMTAN) and Escherichia coli (EcMTAN) are 60% identical and 75% similar. Protein structure folds and kinetic properties are similar. However, binding of transition-state analogues is dominated by favorable entropy in VcMTAN and by enthalpy in EcMTAN. Catalytic sites of VcMTAN and EcMTAN in contact with reactants differ by two residues; Ala113 and Val153 in VcMTAN are Pro113 and Ile152, respectively, in EcMTAN. We mutated the VcMTAN catalytic site residues to match those of EcMTAN in anticipation of altering its properties toward EcMTAN. Inhibition of VcMTAN by transition-state analogues required filling both active sites of the homodimer. However, in the Val153Ile mutant or double mutants, transition-state analogue binding at one site caused complete inhibition. Therefore, a single amino acid, Val153, alters the catalytic site cooperativity in VcMTAN. The transition-state analogue affinity and thermodynamics in mutant VcMTAN became even more unlike those of EcMTAN, the opposite of expectations from catalytic site similarity; thus, catalytic site contacts in VcMTAN are unable to recapitulate the properties of EcMTAN. X-ray crystal structures of EcMTAN, VcMTAN, and a multiple-site mutant of VcMTAN most closely resembling EcMTAN in catalytic site contacts show no major protein conformational differences. The overall protein architectures of these closely related proteins are implicated in contributing to the catalytic site differences. PMID:25806409

  10. Hidden Stages of Cognition Revealed in Patterns of Brain Activation.

    PubMed

    Anderson, John R; Pyke, Aryn A; Fincham, Jon M

    2016-09-01

    To advance cognitive theory, researchers must be able to parse the performance of a task into its significant mental stages. In this article, we describe a new method that uses functional MRI brain activation to identify when participants are engaged in different cognitive stages on individual trials. The method combines multivoxel pattern analysis to identify cognitive stages and hidden semi-Markov models to identify their durations. This method, applied to a problem-solving task, identified four distinct stages: encoding, planning, solving, and responding. We examined whether these stages corresponded to their ascribed functions by testing whether they are affected by appropriate factors. Planning-stage duration increased as the method for solving the problem became less obvious, whereas solving-stage duration increased as the number of calculations to produce the answer increased. Responding-stage duration increased with the difficulty of the motor actions required to produce the answer. PMID:27440808

  11. 19th century auroral observations reveal solar activity patterns

    NASA Astrophysics Data System (ADS)

    Silverman, Sam

    Growing interest in the aurora in the early part of the eighteenth century, which resulted from the spectacular reappearance of the aurora in 1707 and 1716, followed a relative scarcity of great auroras during the Maunder minimum, a period of prolonged reduced solar activity from about 1645-1715. Observations in the early eighteenth century led to questions about the geographical extent, nature, and temporal variability of the auroras. Typically, such observations were included as part of recorded meteorological notations, though occasionally early astronomers, such as Tycho Brahe in the 1590s, included auroras in their observations. Meteorological observations were important because of the effects of weather and climate on agriculture, and, according to the belief at the time, on disease.

  12. Resonant active sites in catalytic ammonia synthesis: A structural model

    NASA Astrophysics Data System (ADS)

    Cholach, Alexander R.; Bryliakova, Anna A.; Matveev, Andrey V.; Bulgakov, Nikolai N.

    2016-03-01

    Adsorption sites Mn consisted of n adjacent atoms M, each bound to the adsorbed species, are considered within a realistic model. The sum of bonds Σ lost by atoms in a site in comparison with the bulk atoms was used for evaluation of the local surface imperfection, while the reaction enthalpy at that site was used as a measure of activity. The comparative study of Mn sites (n = 1-5) at basal planes of Pt, Rh, Ir, Fe, Re and Ru with respect to heat of N2 dissociative adsorption QN and heat of Nad + Had → NHad reaction QNH was performed using semi-empirical calculations. Linear QN(Σ) increase and QNH(Σ) decrease allowed to specify the resonant Σ for each surface in catalytic ammonia synthesis at equilibrium Nad coverage. Optimal Σ are realizable for Ru2, Re2 and Ir4 only, whereas other centers meet steric inhibition or unreal crystal structure. Relative activity of the most active sites in proportion 5.0 × 10- 5: 4.5 × 10- 3: 1: 2.5: 3.0: 1080: 2270 for a sequence of Pt4, Rh4, Fe4(fcc), Ir4, Fe2-5(bcc), Ru2, Re2, respectively, is in agreement with relevant experimental data. Similar approach can be applied to other adsorption or catalytic processes exhibiting structure sensitivity.

  13. Catalysis-dependent selenium incorporation and migration in the nitrogenase active site iron-molybdenum cofactor

    PubMed Central

    Spatzal, Thomas; Perez, Kathryn A; Howard, James B; Rees, Douglas C

    2015-01-01

    Dinitrogen reduction in the biological nitrogen cycle is catalyzed by nitrogenase, a two-component metalloenzyme. Understanding of the transformation of the inert resting state of the active site FeMo-cofactor into an activated state capable of reducing dinitrogen remains elusive. Here we report the catalysis dependent, site-selective incorporation of selenium into the FeMo-cofactor from selenocyanate as a newly identified substrate and inhibitor. The 1.60 Å resolution structure reveals selenium occupying the S2B site of FeMo-cofactor in the Azotobacter vinelandii MoFe-protein, a position that was recently identified as the CO-binding site. The Se2B-labeled enzyme retains substrate reduction activity and marks the starting point for a crystallographic pulse-chase experiment of the active site during turnover. Through a series of crystal structures obtained at resolutions of 1.32–1.66 Å, including the CO-inhibited form of Av1-Se2B, the exchangeability of all three belt-sulfur sites is demonstrated, providing direct insights into unforeseen rearrangements of the metal center during catalysis. DOI: http://dx.doi.org/10.7554/eLife.11620.001 PMID:26673079

  14. Water in the Active Site of Ketosteroid Isomerase

    PubMed Central

    Hanoian, Philip; Hammes-Schiffer, Sharon

    2011-01-01

    Classical molecular dynamics simulations were utilized to investigate the structural and dynamical properties of water in the active site of ketosteroid isomerase (KSI) to provide insight into the role of these water molecules in the enzyme-catalyzed reaction. This reaction is thought to proceed via a dienolate intermediate that is stabilized by hydrogen bonding with residues Tyr16 and Asp103. A comparative study was performed for the wild-type (WT) KSI and the Y16F, Y16S, and Y16F/Y32F/Y57F (FFF) mutants. These systems were studied with three different bound ligands: equilenin, which is an intermediate analog, and the intermediate states of two steroid substrates. Several distinct water occupation sites were identified in the active site of KSI for the WT and mutant systems. Three additional sites were identified in the Y16S mutant that were not occupied in WT KSI or the other mutants studied. The number of water molecules directly hydrogen bonded to the ligand oxygen was approximately two waters in the Y16S mutant, one water in the Y16F and FFF mutants, and intermittent hydrogen bonding of one water molecule in WT KSI. The molecular dynamics trajectories of the Y16F and FFF mutants reproduced the small conformational changes of residue 16 observed in the crystal structures of these two mutants. Quantum mechanical/molecular mechanical calculations of 1H NMR chemical shifts of the protons in the active site hydrogen-bonding network suggest that the presence of water in the active site does not prevent the formation of short hydrogen bonds with far-downfield chemical shifts. The molecular dynamics simulations indicate that the active site water molecules exchange much more frequently for WT KSI and the FFF mutant than for the Y16F and Y16S mutants. This difference is most likely due to the hydrogen-bonding interaction between Tyr57 and an active site water molecule that is persistent in the Y16F and Y16S mutants but absent in the FFF mutant and significantly less

  15. 1-3-A Resolution Structure of Human Glutathione S-Transferase With S-Hexyl Glutathione Bound Reveals Possible Extended Ligandin Binding Site

    SciTech Connect

    Trong, I.Le; Stenkamp, R.E.; Ibarra, C.; Atkins, W.M.; Adman, E.T.

    2005-08-22

    Cytosolic glutathione S-transferases (GSTs) play a critical role in xenobiotic binding and metabolism, as well as in modulation of oxidative stress. Here, the high-resolution X-ray crystal structures of homodimeric human GSTA1-1 in the apo form and in complex with S-hexyl glutathione (two data sets) are reported at 1.8, 1.5, and 1.3A respectively. At this level of resolution, distinct conformations of the alkyl chain of S-hexyl glutathione are observed, reflecting the nonspecific nature of the hydrophobic substrate binding site (H-site). Also, an extensive network of ordered water, including 75 discrete solvent molecules, traverses the open subunit-subunit interface and connects the glutathione binding sites in each subunit. In the highest-resolution structure, three glycerol moieties lie within this network and directly connect the amino termini of the glutathione molecules. A search for ligand binding sites with the docking program Molecular Operating Environment identified the ordered water network binding site, lined mainly with hydrophobic residues, suggesting an extended ligand binding surface for nonsubstrate ligands, the so-called ligandin site. Finally, detailed comparison of the structures reported here with previously published X-ray structures reveal a possible reaction coordinate for ligand-dependent conformational changes in the active site and the C-terminus.

  16. Profile comparison revealed deviation from structural constraint at the positively selected sites.

    PubMed

    Oda, Hiroyuki; Ota, Motonori; Toh, Hiroyuki

    2016-09-01

    The amino acid substitutions at a site are affected by mixture of various constraints. It is also known that the amino acid substitutions are accelerated at sites under positive selection. However, the relationship between the substitutions at positively selected sites and the constraints has not been thoroughly examined. The advances in computational biology have enabled us to divide the mixture of the constraints into the structural constraint and the remainings by using the amino acid sequences and the tertiary structures, which is expressed as the deviation of the mixture of constraints from the structural constraint. Here, two types of profiles, or matrices with the size of 20 x (site length), are compared. One of the profiles represents the mixture of constraints, and is generated from a multiple amino acid sequence alignment, whereas the other is designed to represent the structural constraints. We applied the profile comparison method to proteins under positive selection to examine the relationship between the positive selection and constraints. The results suggested that the constraint at a site under positive selection tends to be deviated from the structural constraint at the site. PMID:27443483

  17. Energy transfer at the active sites of heme proteins

    SciTech Connect

    Dlott, D.D.; Hill, J.R.

    1995-12-31

    Experiments using a picosecond pump-probe apparatus at the Picosecond Free-electron Laser Center at Stanford University, were performed to investigate the relaxation of carbon monoxide bound to the active sites of heme proteins. The significance of these experiments is two-fold: (1) they provide detailed information about molecular dynamics occurring at the active sites of proteins; and (2) they provide insight into the nature of vibrational relaxation processes in condensed matter. Molecular engineering is used to construct various molecular systems which are studied with the FEL. We have studied native proteins, mainly myoglobin obtained from different species, mutant proteins produced by genetic engineering using recombinant DNA techniques, and a variety of model systems which mimic the structures of the active sites of native proteins, which are produced using molecular synthesis. Use of these different systems permits us to investigate how specific molecular structural changes affect dynamical processes occurring at the active sites. This research provides insight into the problems of how different species needs are fulfilled by heme proteins which have greatly different functionality, which is induced by rather small structural changes.

  18. Chemical Modification of Papain and Subtilisin: An Active Site Comparison

    ERIC Educational Resources Information Center

    St-Vincent, Mireille; Dickman, Michael

    2004-01-01

    An experiment using methyle methanethiosulfonate (MMTS) and phenylmethylsulfonyl flouride (PMSF) to specifically modify the cysteine and serine residues in the active sites of papain and subtilism respectively is demonstrated. The covalent modification of these enzymes and subsequent rescue of papain shows the beginning biochemist that proteins…

  19. Changes in active site histidine hydrogen bonding trigger cryptochrome activation.

    PubMed

    Ganguly, Abir; Manahan, Craig C; Top, Deniz; Yee, Estella F; Lin, Changfan; Young, Michael W; Thiel, Walter; Crane, Brian R

    2016-09-01

    Cryptochrome (CRY) is the principal light sensor of the insect circadian clock. Photoreduction of the Drosophila CRY (dCRY) flavin cofactor to the anionic semiquinone (ASQ) restructures a C-terminal tail helix (CTT) that otherwise inhibits interactions with targets that include the clock protein Timeless (TIM). All-atom molecular dynamics (MD) simulations indicate that flavin reduction destabilizes the CTT, which undergoes large-scale conformational changes (the CTT release) on short (25 ns) timescales. The CTT release correlates with the conformation and protonation state of conserved His378, which resides between the CTT and the flavin cofactor. Poisson-Boltzmann calculations indicate that flavin reduction substantially increases the His378 pKa Consistent with coupling between ASQ formation and His378 protonation, dCRY displays reduced photoreduction rates with increasing pH; however, His378Asn/Arg variants show no such pH dependence. Replica-exchange MD simulations also support CTT release mediated by changes in His378 hydrogen bonding and verify other responsive regions of the protein previously identified by proteolytic sensitivity assays. His378 dCRY variants show varying abilities to light-activate TIM and undergo self-degradation in cellular assays. Surprisingly, His378Arg/Lys variants do not degrade in light despite maintaining reactivity toward TIM, thereby implicating different conformational responses in these two functions. Thus, the dCRY photosensory mechanism involves flavin photoreduction coupled to protonation of His378, whose perturbed hydrogen-bonding pattern alters the CTT and surrounding regions. PMID:27551082

  20. Dynamic Allostery of the Catabolite Activator Protein Revealed by Interatomic Forces

    PubMed Central

    Louet, Maxime; Seifert, Christian; Hensen, Ulf; Gräter, Frauke

    2015-01-01

    The Catabolite Activator Protein (CAP) is a showcase example for entropic allostery. For full activation and DNA binding, the homodimeric protein requires the binding of two cyclic AMP (cAMP) molecules in an anti-cooperative manner, the source of which appears to be largely of entropic nature according to previous experimental studies. We here study at atomic detail the allosteric regulation of CAP with Molecular dynamics (MD) simulations. We recover the experimentally observed entropic penalty for the second cAMP binding event with our recently developed force covariance entropy estimator and reveal allosteric communication pathways with Force Distribution Analyses (FDA). Our observations show that CAP binding results in characteristic changes in the interaction pathways connecting the two cAMP allosteric binding sites with each other, as well as with the DNA binding domains. We identified crucial relays in the mostly symmetric allosteric activation network, and suggest point mutants to test this mechanism. Our study suggests inter-residue forces, as opposed to coordinates, as a highly sensitive measure for structural adaptations that, even though minute, can very effectively propagate allosteric signals. PMID:26244893

  1. Dynamic Allostery of the Catabolite Activator Protein Revealed by Interatomic Forces.

    PubMed

    Louet, Maxime; Seifert, Christian; Hensen, Ulf; Gräter, Frauke

    2015-08-01

    The Catabolite Activator Protein (CAP) is a showcase example for entropic allostery. For full activation and DNA binding, the homodimeric protein requires the binding of two cyclic AMP (cAMP) molecules in an anti-cooperative manner, the source of which appears to be largely of entropic nature according to previous experimental studies. We here study at atomic detail the allosteric regulation of CAP with Molecular dynamics (MD) simulations. We recover the experimentally observed entropic penalty for the second cAMP binding event with our recently developed force covariance entropy estimator and reveal allosteric communication pathways with Force Distribution Analyses (FDA). Our observations show that CAP binding results in characteristic changes in the interaction pathways connecting the two cAMP allosteric binding sites with each other, as well as with the DNA binding domains. We identified crucial relays in the mostly symmetric allosteric activation network, and suggest point mutants to test this mechanism. Our study suggests inter-residue forces, as opposed to coordinates, as a highly sensitive measure for structural adaptations that, even though minute, can very effectively propagate allosteric signals. PMID:26244893

  2. Activation of Nanoscale Allosteric Protein Domain Motion Revealed by Neutron Spin Echo Spectroscopy

    PubMed Central

    Farago, Bela; Li, Jianquan; Cornilescu, Gabriel; Callaway, David J.E.; Bu, Zimei

    2010-01-01

    NHERF1 is a multidomain scaffolding protein that assembles signaling complexes, and regulates the cell surface expression and endocytic recycling of a variety of membrane proteins. The ability of the two PDZ domains in NHERF1 to assemble protein complexes is allosterically modulated by the membrane-cytoskeleton linker protein ezrin, whose binding site is located as far as 110 Ångstroms away from the PDZ domains. Here, using neutron spin echo (NSE) spectroscopy, selective deuterium labeling, and theoretical analyses, we reveal the activation of interdomain motion in NHERF1 on nanometer length-scales and on submicrosecond timescales upon forming a complex with ezrin. We show that a much-simplified coarse-grained model suffices to describe interdomain motion of a multidomain protein or protein complex. We expect that future NSE experiments will benefit by exploiting our approach of selective deuteration to resolve the specific domain motions of interest from a plethora of global translational and rotational motions. Our results demonstrate that the dynamic propagation of allosteric signals to distal sites involves changes in long-range coupled domain motions on submicrosecond timescales, and that these coupled motions can be distinguished and characterized by NSE. PMID:21081097

  3. Active sites environmental monitoring program. Annual report FY 1992

    SciTech Connect

    Morrissey, C.M.; Ashwood, T.L.; Hicks, D.S.

    1994-04-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) at ORNL from October 1991 through September 1992. Solid Waste Operations and the Environmental Sciences Division established ASEMP in 1989 to provide early detection and performance monitoring at active low-level waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by Chapter 2 and 3 of US Department of Energy Order 5820.2A. The Interim Waste Management Facility (IWMF) began operation in December 1991. Monitoring results from the tumulus and IWMF disposal pads continue to indicate that no LLW is leaching from the storage vaults. Storm water falling on the IWMF active pad was collected and transported to the Process Waste Treatment Plant while operators awaited approval of the National Pollutant Discharge Elimination System (NPDES) permit. Several of the recent samples collected from the active IWMF pad had pH levels above the NPDES limit of 9.0 because of alkali leached from the concrete. The increase in gross beta activity has been slight; only 1 of the 21 samples collected contained activity above the 5.0 Bq/L action level. Automated sample-collection and flow-measurement equipment has been installed at IWMF and is being tested. The flume designed to electronically measure flow from the IWMF pads and underpads is too large to be of practical value for measuring most flows at this site. Modification of this system will be necessary. A CO{sub 2} bubbler system designed to reduce the pH of water from the pads is being tested at IWMF.

  4. A contrast agent recognizing activated platelets reveals murine cerebral malaria pathology undetectable by conventional MRI.

    PubMed

    von Zur Muhlen, Constantin; Sibson, Nicola R; Peter, Karlheinz; Campbell, Sandra J; Wilainam, Panop; Grau, Georges E; Bode, Christoph; Choudhury, Robin P; Anthony, Daniel C

    2008-03-01

    Human and murine cerebral malaria are associated with elevated levels of cytokines in the brain and adherence of platelets to the microvasculature. Here we demonstrated that the accumulation of platelets in the brain microvasculature can be detected with MRI, using what we believe to be a novel contrast agent, at a time when the pathology is undetectable by conventional MRI. Ligand-induced binding sites (LIBS) on activated platelet glycoprotein IIb/IIIa receptors were detected in the brains of malaria-infected mice 6 days after inoculation with Plasmodium berghei using microparticles of iron oxide (MPIOs) conjugated to a single-chain antibody specific for the LIBS (LIBS-MPIO). No binding of the LIBS-MPIO contrast agent was detected in uninfected animals. A combination of LIBS-MPIO MRI, confocal microscopy, and transmission electron microscopy revealed that the proinflammatory cytokine TNF-alpha, but not IL-1beta or lymphotoxin-alpha (LT-alpha), induced adherence of platelets to cerebrovascular endothelium. Peak platelet adhesion was found 12 h after TNF-alpha injection and was readily detected with LIBS-MPIO contrast-enhanced MRI. Temporal studies revealed that the level of MPIO-induced contrast was proportional to the number of platelets bound. Thus, the LIBS-MPIO contrast agent enabled noninvasive detection of otherwise undetectable cerebral pathology by in vivo MRI before the appearance of clinical disease, highlighting the potential of targeted contrast agents for diagnostic, mechanistic, and therapeutic studies. PMID:18274670

  5. A contrast agent recognizing activated platelets reveals murine cerebral malaria pathology undetectable by conventional MRI

    PubMed Central

    von zur Muhlen, Constantin; Sibson, Nicola R.; Peter, Karlheinz; Campbell, Sandra J.; Wilainam, Panop; Grau, Georges E.; Bode, Christoph; Choudhury, Robin P.; Anthony, Daniel C.

    2008-01-01

    Human and murine cerebral malaria are associated with elevated levels of cytokines in the brain and adherence of platelets to the microvasculature. Here we demonstrated that the accumulation of platelets in the brain microvasculature can be detected with MRI, using what we believe to be a novel contrast agent, at a time when the pathology is undetectable by conventional MRI. Ligand-induced binding sites (LIBS) on activated platelet glycoprotein IIb/IIIa receptors were detected in the brains of malaria-infected mice 6 days after inoculation with Plasmodium berghei using microparticles of iron oxide (MPIOs) conjugated to a single-chain antibody specific for the LIBS (LIBS-MPIO). No binding of the LIBS-MPIO contrast agent was detected in uninfected animals. A combination of LIBS-MPIO MRI, confocal microscopy, and transmission electron microscopy revealed that the proinflammatory cytokine TNF-α, but not IL-1β or lymphotoxin-α (LT-α), induced adherence of platelets to cerebrovascular endothelium. Peak platelet adhesion was found 12 h after TNF-α injection and was readily detected with LIBS-MPIO contrast-enhanced MRI. Temporal studies revealed that the level of MPIO-induced contrast was proportional to the number of platelets bound. Thus, the LIBS-MPIO contrast agent enabled noninvasive detection of otherwise undetectable cerebral pathology by in vivo MRI before the appearance of clinical disease, highlighting the potential of targeted contrast agents for diagnostic, mechanistic, and therapeutic studies. PMID:18274670

  6. Benzene Probes in Molecular Dynamics Simulations Reveal Novel Binding Sites for Ligand Design.

    PubMed

    Tan, Yaw Sing; Reeks, Judith; Brown, Christopher J; Thean, Dawn; Ferrer Gago, Fernando Jose; Yuen, Tsz Ying; Goh, Eunice Tze Leng; Lee, Xue Er Cheryl; Jennings, Claire E; Joseph, Thomas L; Lakshminarayanan, Rajamani; Lane, David P; Noble, Martin E M; Verma, Chandra S

    2016-09-01

    Protein flexibility poses a major challenge in binding site identification. Several computational pocket detection methods that utilize small-molecule probes in molecular dynamics (MD) simulations have been developed to address this issue. Although they have proven hugely successful at reproducing experimental structural data, their ability to predict new binding sites that are yet to be identified and characterized has not been demonstrated. Here, we report the use of benzenes as probe molecules in ligand-mapping MD (LMMD) simulations to predict the existence of two novel binding sites on the surface of the oncoprotein MDM2. One of them was serendipitously confirmed by biophysical assays and X-ray crystallography to be important for the binding of a new family of hydrocarbon stapled peptides that were specifically designed to target the other putative site. These results highlight the predictive power of LMMD and suggest that predictions derived from LMMD simulations can serve as a reliable basis for the identification of novel ligand binding sites in structure-based drug design. PMID:27532490

  7. Archaeology. Sedimentary DNA from a submerged site reveals wheat in the British Isles 8000 years ago.

    PubMed

    Smith, Oliver; Momber, Garry; Bates, Richard; Garwood, Paul; Fitch, Simon; Pallen, Mark; Gaffney, Vincent; Allaby, Robin G

    2015-02-27

    The Mesolithic-to-Neolithic transition marked the time when a hunter-gatherer economy gave way to agriculture, coinciding with rising sea levels. Bouldnor Cliff, is a submarine archaeological site off the Isle of Wight in the United Kingdom that has a well-preserved Mesolithic paleosol dated to 8000 years before the present. We analyzed a core obtained from sealed sediments, combining evidence from microgeomorphology and microfossils with sedimentary ancient DNA (sedaDNA) analyses to reconstruct floral and faunal changes during the occupation of this site, before it was submerged. In agreement with palynological analyses, the sedaDNA sequences suggest a mixed habitat of oak forest and herbaceous plants. However, they also provide evidence of wheat 2000 years earlier than mainland Britain and 400 years earlier than proximate European sites. These results suggest that sophisticated social networks linked the Neolithic front in southern Europe to the Mesolithic peoples of northern Europe. PMID:25722413

  8. Probing the promiscuous active site of myo-inositol dehydrogenase using synthetic substrates, homology modeling, and active site modification.

    PubMed

    Daniellou, Richard; Zheng, Hongyan; Langill, David M; Sanders, David A R; Palmer, David R J

    2007-06-26

    The active site of myo-inositol dehydrogenase (IDH, EC 1.1.1.18) from Bacillus subtilis recognizes a variety of mono- and disaccharides, as well as 1l-4-O-substituted inositol derivatives. It catalyzes the NAD+-dependent oxidation of the axial alcohol of these substrates with comparable kinetic constants. We have found that 4-O-p-toluenesulfonyl-myo-inositol does not act as a substrate for IDH, in contrast to structurally similar compounds such as those bearing substituted benzyl substituents in the same position. X-ray crystallographic analysis of 4-O-p-toluenesulfonyl-myo-inositol and 4-O-(2-naphthyl)methyl-myo-inositol, which is a substrate for IDH, shows a distinct difference in the preferred conformation of the aryl substituent. Conformational analysis of known substrates of IDH suggests that this conformational difference may account for the difference in reactivity of 4-O-p-toluenesulfonyl-myo-inositol in the presence of IDH. A sequence alignment of IDH with the homologous glucose-fructose oxidoreductase allowed the construction of an homology model of inositol dehydrogenase, to which NADH and 4-O-benzyl-scyllo-inosose were docked and the active site energy minimized. The active site model is consistent with all experimental results and suggests that a conserved tyrosine-glycine-tyrosine motif forms the hydrophobic pocket adjoining the site of inositol recognition. Y233F and Y235F retain activity, while Y233R and Y235R do not. A histidine-aspartate pair, H176 and D172, are proposed to act as a dyad in which H176 is the active site acid/base. The enzyme is inactivated by diethyl pyrocarbonate, and the mutants H176A and D172N show a marked loss of activity. Kinetic isotope effect experiments with D172N indicate that chemistry is rate-determining for this mutant. PMID:17539607

  9. Proteome-wide Light/Dark Modulation of Thiol Oxidation in Cyanobacteria Revealed by Quantitative Site-specific Redox Proteomics*

    PubMed Central

    Guo, Jia; Nguyen, Amelia Y.; Dai, Ziyu; Su, Dian; Gaffrey, Matthew J.; Moore, Ronald J.; Jacobs, Jon M.; Monroe, Matthew E.; Smith, Richard D.; Koppenaal, David W.; Pakrasi, Himadri B.; Qian, Wei-Jun

    2014-01-01

    Reversible protein thiol oxidation is an essential regulatory mechanism of photosynthesis, metabolism, and gene expression in photosynthetic organisms. Herein, we present proteome-wide quantitative and site-specific profiling of in vivo thiol oxidation modulated by light/dark in the cyanobacterium Synechocystis sp. PCC 6803, an oxygenic photosynthetic prokaryote, using a resin-assisted thiol enrichment approach. Our proteomic approach integrates resin-assisted enrichment with isobaric tandem mass tag labeling to enable site-specific and quantitative measurements of reversibly oxidized thiols. The redox dynamics of ∼2,100 Cys-sites from 1,060 proteins under light, dark, and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (a photosystem II inhibitor) conditions were quantified. In addition to relative quantification, the stoichiometry or percentage of oxidation (reversibly oxidized/total thiols) for ∼1,350 Cys-sites was also quantified. The overall results revealed broad changes in thiol oxidation in many key biological processes, including photosynthetic electron transport, carbon fixation, and glycolysis. Moreover, the redox sensitivity along with the stoichiometric data enabled prediction of potential functional Cys-sites for proteins of interest. The functional significance of redox-sensitive Cys-sites in NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, peroxiredoxin (AhpC/TSA family protein Sll1621), and glucose 6-phosphate dehydrogenase was further confirmed with site-specific mutagenesis and biochemical studies. Together, our findings provide significant insights into the broad redox regulation of photosynthetic organisms. PMID:25118246

  10. Proteome-wide light/dark modulation of thiol oxidation in cyanobacteria revealed by quantitative site-specific redox proteomics.

    PubMed

    Guo, Jia; Nguyen, Amelia Y; Dai, Ziyu; Su, Dian; Gaffrey, Matthew J; Moore, Ronald J; Jacobs, Jon M; Monroe, Matthew E; Smith, Richard D; Koppenaal, David W; Pakrasi, Himadri B; Qian, Wei-Jun

    2014-12-01

    Reversible protein thiol oxidation is an essential regulatory mechanism of photosynthesis, metabolism, and gene expression in photosynthetic organisms. Herein, we present proteome-wide quantitative and site-specific profiling of in vivo thiol oxidation modulated by light/dark in the cyanobacterium Synechocystis sp. PCC 6803, an oxygenic photosynthetic prokaryote, using a resin-assisted thiol enrichment approach. Our proteomic approach integrates resin-assisted enrichment with isobaric tandem mass tag labeling to enable site-specific and quantitative measurements of reversibly oxidized thiols. The redox dynamics of ∼2,100 Cys-sites from 1,060 proteins under light, dark, and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (a photosystem II inhibitor) conditions were quantified. In addition to relative quantification, the stoichiometry or percentage of oxidation (reversibly oxidized/total thiols) for ∼1,350 Cys-sites was also quantified. The overall results revealed broad changes in thiol oxidation in many key biological processes, including photosynthetic electron transport, carbon fixation, and glycolysis. Moreover, the redox sensitivity along with the stoichiometric data enabled prediction of potential functional Cys-sites for proteins of interest. The functional significance of redox-sensitive Cys-sites in NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, peroxiredoxin (AhpC/TSA family protein Sll1621), and glucose 6-phosphate dehydrogenase was further confirmed with site-specific mutagenesis and biochemical studies. Together, our findings provide significant insights into the broad redox regulation of photosynthetic organisms. PMID:25118246

  11. A Binding Site on IL-17A for Inhibitory Macrocycles Revealed by Hydrogen/Deuterium Exchange Mass Spectrometry.

    PubMed

    Espada, Alfonso; Broughton, Howard; Jones, Spencer; Chalmers, Michael J; Dodge, Jeffrey A

    2016-03-10

    Computational assessment of the IL-17A structure identified two distinct binding pockets, the β-hairpin pocket and the α-helix pocket. The β-hairpin pocket was hypothesized to be the site of binding for peptide macrocycles. Support for this hypothesis was obtained using HDX-MS which revealed protection to exchange only within the β-hairpin pocket. This data represents the first direct structural evidence of a small molecule binding site on IL-17A that functions to disrupt the interaction with its receptor. PMID:26854023

  12. Identification of Chronic Stress Activated Regions Reveals a Potential Recruited Circuit in Rat Brain

    PubMed Central

    Flak, Jonathan N.; Solomon, Matia B.; Jankord, Ryan; Krause, Eric G.; Herman, James P.

    2015-01-01

    Chronic stress induces pre-synaptic and post-synaptic modifications in the paraventricular nucleus of the hypothalamus (PVN) that are consistent with enhanced excitatory hypothalamo-pituitary-adrenocortical (HPA) axis drive. The brain regions mediating these molecular modifications are not known. We hypothesized that chronic variable stress (CVS) tonically activates stress-excitatory regions that interact with the PVN, culminating in stress facilitation. In order to identify chronically activated brain regions, ΔFosB, a documented marker of tonic neuronal activation, was assessed in known stress regulatory limbic and brainstem sites. Four experimental groups were included: CVS, repeated restraint (RR) (control for HPA habituation), animals weight-matched (WM) to CVS animals (control for changes in circulating metabolic factors due to reduced weight gain), and non-handled controls. CVS, but not RR or WM, induced adrenal hypertrophy, indicating that sustained HPA axis drive only occurred in the CVS group. CVS (but not RR or WM) selectively increased the number of FosB/ΔFosB nuclei in the nucleus of the solitary tract, posterior hypothalamic nucleus, and both the infralimbic and prelimbic divisions of the medial prefrontal cortex, indicating an involvement of these regions in chronic drive of the HPA axis. Increases in FosB/ΔFosB-immunoreactive cells were observed following both RR and CVS in the other regions (e.g., the dorsomedial hypothalamus), suggesting activation by both habituating and non-habituating stress conditions. The data suggest that unpredictable stress uniquely activates interconnected cortical, hypothalamic, and brainstem nuclei, potentially revealing the existence of a recruited circuitry mediating chronic drive of brain stress effector systems. PMID:22789020

  13. Active fault creep variations at Chihshang, Taiwan, revealed by creep meter monitoring, 1998-2001

    NASA Astrophysics Data System (ADS)

    Lee, Jian-Cheng; Angelier, Jacques; Chu, Hao-Tsu; Hu, Jyr-Ching; Jeng, Fu-Shu; Rau, Ruey-Juin

    2003-11-01

    The daily creep meter data recorded at Chihshang in 1998-2001 are presented. The Chihshang creep meter experiment was set up across the Chihshang thrust fault, the most active segment of the Longitudinal Valley Fault, which is the present-day plate suture between the Eurasian and the Philippine Sea plates in eastern Taiwan. Near-continuous data recording at two sites revealed different surface fault motions yet similar annual shortening rates: 16.2 mm at the Tapo site (comprising two connected creep meters) and 15.0 mm at the Chinyuan site (three creep meters straddling parallel fault branches). Four of the five creep meters showed a seasonal variation, with the fault moving steadily during the rainy season from April to October, and remaining quiescent during the rest of the year. The only exception was recorded by the creep meter located on a mélange-composed hillslope, where local gravitational landsliding played an additional role other than tectonic faulting. Through comparison with daily precipitation data, we inferred that moderate rainfall suffices to trigger or facilitate slippage on the surface fault, during the transition period of the dry/wet season. During the observation period from 1998 to 2001, the subsurface seismicity exhibited clusters of microearthquakes on the Chihshang Fault at depths of 10-25 km. Recurrent earthquakes occurred regardless of whether the season was wet or dry, indicating that the stress relaxation associated with seismicity in the seismogenic zone did not transfer immediately up to the surface. The accumulated strain on the Chihshang Fault at shallow surface levels was released through creep during the wet season. In addition to these short-term seasonal variations, an apparent decrease in the annual slipping rate on the Chihshang Fault during the last few years deserves further investigation in order to mitigate against seismic hazard.

  14. Active-site motions and polarity enhance catalytic turnover of hydrated subtilisin dissolved in organic solvents

    PubMed Central

    Hudson, Elton P; Eppler, Ross K; Beaudoin, Julianne M; Dordick, Jonathan S; Reimer, Jeffrey A; Clark, Douglas S

    2009-01-01

    The enzyme subtilisin Carlsberg was surfactant-solubilized into two organic solvents, isooctane and tetrahydrofuran, and hydrated through stepwise changes in the thermodynamic water activity, aw. The apparent turnover number kcatapp in these systems ranged from 0.2 to 80 s−1 and increased 11-fold in isooctane and up to 50-fold in tetrahydrofuran with increasing aw. 19F-NMR relaxation experiments employing an active-site inhibitor were used to assess the dependence of active-site motions on aw. The rates of NMR-derived fast (k > 107 s−1) and slow (k < 104 s−1) active-site motions increased in both solvents upon hydration, but only the slow motions correlated with kcat. The 19F chemical shift was a sensitive probe of the local electronic environment and provided an empirical measure of the active-site dielectric constant εas, which increased with hydration to εas ≈ 13 in each solvent. In both solvents the transition state free energy data and εas followed Kirkwood’s model for the continuum solvation of a dipole, indicating that water also enhanced catalysis by altering the active-site’s electronic environment and increasing its polarity to better stabilize the transition state. These results reveal that favorable dynamic and electrostatic effects both contribute to accelerated catalysis by solubilized subtilisin Carlsberg upon hydration in organic solvents. PMID:19317505

  15. Improving the neutral phytase activity from Bacillus amyloliquefaciens DSM 1061 by site-directed mutagenesis.

    PubMed

    Xu, Wei; Shao, Rong; Wang, Zupeng; Yan, Xiuhua

    2015-03-01

    Neutral phytase is used as a feed additive for degradation of anti-nutritional phytate in aquatic feed industry. Site-directed mutagenesis of Bacillus amyloliquefaciens DSM 1061 phytase was performed with an aim to increase its activity. Mutation residues were chosen based on multiple sequence alignments and structure analysis of neutral phytsaes from different microorganisms. The mutation sites on surface (D148E, S197E and N156E) and around the active site (D52E) of phytase were selected. Analysis of the phytase variants showed that the specific activities of mutants D148E and S197E remarkably increased by about 35 and 13% over a temperature range of 40-75 °C at pH 7.0, respectively. The k cat of mutants D148E and S197E were 1.50 and 1.25 times than that of the wild-type phytase, respectively. Both D148E and S197E showed much higher thermostability than that of the wild-type phytase. However, mutants N156E and D52E led to significant loss of specific activity of the enzyme. Structural analysis revealed that these mutations may affect conformation of the active site of phytase. The present mutant phytases D148E and S197E with increased activities and thermostabilities have application potential as additives in aquaculture feed. PMID:25613522

  16. The Asian Monsoon Moisture Transportation Revealed by Two Cave Sites in Myanmar

    NASA Astrophysics Data System (ADS)

    Liu, G.; Wang, X.; Chiang, H. W.; Maung Maung, P.; Jiang, X.; Aung, L. T.; Tun, S. T.

    2014-12-01

    Here we present two well-resolved, calcite δ18O records on Myanmar speleothems. The samples were collected from a coastal site in southeastern Myanmar and a plateau site in central Myanmar, respectively. Chronologically determined by high-precision U/Th dating techniques, both records span a large portion of the past 40,000 years. The two records show similar millennial-scale oscillations during the last glacial period, which are also in-phase with the speleothem records from Chinese cave sites located in the downstream of Indian Monsoon trajectories. The δ18O values between the two profiles are virtually the same, ~ -7.5‰, during late Holocene, in concert with the numbers in modern rainfall at the two sites. However, in glacial time, the δ18O value of the central Myanmar record shifts from -6.5‰ to -8‰, approximately 2‰ lower than that in the coastal dataset, which varies from -4.5‰ to -6‰. We interpret the similarly low δ18O values during Holocene in both records as a result of strong monsoonal rainfall and water recycling particularly through forest transpiration. However in glacial time, with a possibly drier and less forested land, water recycling is weaker. Therefore, rainfall δ18O and subsequently speleothem δ18O appear a stronger geographical gradient, possibly dominated by the continental rainout effect. Our interpretation can be supported by the speleothem δ13C records from the two sites. Calcite δ13C from the coastal site varies slightly from ~-7‰ in the last glacial to ~-9‰ in Holocene. Whereas it shares a similar value to the coastal record during Holocene, the δ13C profile from the plateau site shows a much higher value, up to -0.7‰, during the glacial time. This suggests that the mountainous region in central Myanmar was likely dominated by C4 plants (e.g., grass) during the glacial time, while the same region is covered by forests today. Such change on vegetation type and coverage may influence the δ18O of recycling

  17. Mapping Topoisomerase IV Binding and Activity Sites on the E. coli Genome.

    PubMed

    El Sayyed, Hafez; Le Chat, Ludovic; Lebailly, Elise; Vickridge, Elise; Pages, Carine; Cornet, Francois; Cosentino Lagomarsino, Marco; Espéli, Olivier

    2016-05-01

    Catenation links between sister chromatids are formed progressively during DNA replication and are involved in the establishment of sister chromatid cohesion. Topo IV is a bacterial type II topoisomerase involved in the removal of catenation links both behind replication forks and after replication during the final separation of sister chromosomes. We have investigated the global DNA-binding and catalytic activity of Topo IV in E. coli using genomic and molecular biology approaches. ChIP-seq revealed that Topo IV interaction with the E. coli chromosome is controlled by DNA replication. During replication, Topo IV has access to most of the genome but only selects a few hundred specific sites for its activity. Local chromatin and gene expression context influence site selection. Moreover strong DNA-binding and catalytic activities are found at the chromosome dimer resolution site, dif, located opposite the origin of replication. We reveal a physical and functional interaction between Topo IV and the XerCD recombinases acting at the dif site. This interaction is modulated by MatP, a protein involved in the organization of the Ter macrodomain. These results show that Topo IV, XerCD/dif and MatP are part of a network dedicated to the final step of chromosome management during the cell cycle. PMID:27171414

  18. Mapping Topoisomerase IV Binding and Activity Sites on the E. coli Genome

    PubMed Central

    Lebailly, Elise; Pages, Carine; Cornet, Francois; Cosentino Lagomarsino, Marco

    2016-01-01

    Catenation links between sister chromatids are formed progressively during DNA replication and are involved in the establishment of sister chromatid cohesion. Topo IV is a bacterial type II topoisomerase involved in the removal of catenation links both behind replication forks and after replication during the final separation of sister chromosomes. We have investigated the global DNA-binding and catalytic activity of Topo IV in E. coli using genomic and molecular biology approaches. ChIP-seq revealed that Topo IV interaction with the E. coli chromosome is controlled by DNA replication. During replication, Topo IV has access to most of the genome but only selects a few hundred specific sites for its activity. Local chromatin and gene expression context influence site selection. Moreover strong DNA-binding and catalytic activities are found at the chromosome dimer resolution site, dif, located opposite the origin of replication. We reveal a physical and functional interaction between Topo IV and the XerCD recombinases acting at the dif site. This interaction is modulated by MatP, a protein involved in the organization of the Ter macrodomain. These results show that Topo IV, XerCD/dif and MatP are part of a network dedicated to the final step of chromosome management during the cell cycle. PMID:27171414

  19. Active-Site-Accessible, Porphyrinic Metal;#8722;Organic Framework Materials

    SciTech Connect

    Farha, Omar K.; Shultz, Abraham M.; Sarjeant, Amy A.; Nguyen, SonBinh T.; Hupp, Joseph T.

    2012-02-06

    On account of their structural similarity to cofactors found in many metallo-enzymes, metalloporphyrins are obvious potential building blocks for catalytically active, metal-organic framework (MOF) materials. While numerous porphyrin-based MOFs have already been described, versions featuring highly accessible active sites and permanent microporosity are remarkably scarce. Indeed, of the more than 70 previously reported porphyrinic MOFs, only one has been shown to be both permanently microporous and contain internally accessible active sites for chemical catalysis. Attempts to generalize the design approach used in this single successful case have failed. Reported here, however, is the synthesis of an extended family of MOFs that directly incorporate a variety of metalloporphyrins (specifically Al{sup 3+}, Zn{sup 2+}, Pd{sup 2+}, Mn{sup 3+}, and Fe{sup 3+} complexes). These robust porphyrinic materials (RPMs) feature large channels and readily accessible active sites. As an illustrative example, one of the manganese-containing RPMs is shown to be catalytically competent for the oxidation of alkenes and alkanes.

  20. Nest predation increases with parental activity: Separating nest site and parental activity effects

    USGS Publications Warehouse

    Martin, T.E.; Scott, J.; Menge, C.

    2000-01-01

    Alexander Skutch hypothesized that increased parental activity can increase the risk of nest predation. We tested this hypothesis using ten open-nesting bird species in Arizona, USA. Parental activity was greater during the nestling than incubation stage because parents visited the nest frequently to feed their young during the nestling stage. However, nest predation did not generally increase with parental activity between nesting stages across the ten study species. Previous investigators have found similar results. We tested whether nest site effects might yield higher predation during incubation because the most obvious sites are depredated most rapidly. We conducted experiments using nest sites from the previous year to remove parental activity. Our results showed that nest sites have highly repeatable effects on nest predation risk; poor nest sites incurred rapid predation and caused predation rates to be greater during the incubation than nestling stage. This pattern also was exhibited in a bird species with similar (i.e. controlled) parental activity between nesting stages. Once nest site effects are taken into account, nest predation shows a strong proximate increase with parental activity during the nestling stage within and across species. Parental activity and nest sites exert antagonistic influences on current estimates of nest predation between nesting stages and both must be considered in order to understand current patterns of nest predation, which is an important source of natural selection.

  1. Nest predation increases with parental activity: separating nest site and parental activity effects.

    PubMed Central

    Martin, T E; Scott, J; Menge, C

    2000-01-01

    Alexander Skutch hypothesized that increased parental activity can increase the risk of nest predation. We tested this hypothesis using ten open-nesting bird species in Arizona, USA. Parental activity was greater during the nestling than incubation stage because parents visited the nest frequently to feed their young during the nestling stage. However, nest predation did not generally increase with parental activity between nesting stages across the ten study species. Previous investigators have found similar results. We tested whether nest site effects might yield higher predation during incubation because the most obvious sites are depredated most rapidly. We conducted experiments using nest sites from the previous year to remove parental activity. Our results showed that nest sites have highly repeatable effects on nest predation risk; poor nest sites incurred rapid predation and caused predation rates to be greater during the incubation than nestling stage. This pattern also was exhibited in a bird species with similar (i.e. controlled) parental activity between nesting stages. Once nest site effects are taken into account, nest predation shows a strong proximate increase with parental activity during the nestling stage within and across species. Parental activity and nest sites exert antagonistic influences on current estimates of nest predation between nesting stages and both must be considered in order to understand current patterns of nest predation, which is an important source of natural selection. PMID:11413645

  2. Bithionol Potently Inhibits Human Soluble Adenylyl Cyclase through Binding to the Allosteric Activator Site.

    PubMed

    Kleinboelting, Silke; Ramos-Espiritu, Lavoisier; Buck, Hannes; Colis, Laureen; van den Heuvel, Joop; Glickman, J Fraser; Levin, Lonny R; Buck, Jochen; Steegborn, Clemens

    2016-04-29

    The signaling molecule cAMP regulates functions ranging from bacterial transcription to mammalian memory. In mammals, cAMP is synthesized by nine transmembrane adenylyl cyclases (ACs) and one soluble AC (sAC). Despite similarities in their catalytic domains, these ACs differ in regulation. Transmembrane ACs respond to G proteins, whereas sAC is uniquely activated by bicarbonate. Via bicarbonate regulation, sAC acts as a physiological sensor for pH/bicarbonate/CO2, and it has been implicated as a therapeutic target, e.g. for diabetes, glaucoma, and a male contraceptive. Here we identify the bisphenols bithionol and hexachlorophene as potent, sAC-specific inhibitors. Inhibition appears mostly non-competitive with the substrate ATP, indicating that they act via an allosteric site. To analyze the interaction details, we solved a crystal structure of an sAC·bithionol complex. The structure reveals that the compounds are selective for sAC because they bind to the sAC-specific, allosteric binding site for the physiological activator bicarbonate. Structural comparison of the bithionol complex with apo-sAC and other sAC·ligand complexes along with mutagenesis experiments reveals an allosteric mechanism of inhibition; the compound induces rearrangements of substrate binding residues and of Arg(176), a trigger between the active site and allosteric site. Our results thus provide 1) novel insights into the communication between allosteric regulatory and active sites, 2) a novel mechanism for sAC inhibition, and 3) pharmacological compounds targeting this allosteric site and utilizing this mode of inhibition. These studies provide support for the future development of sAC-modulating drugs. PMID:26961873

  3. Novel autophosphorylation sites of Src family kinases regulate kinase activity and SH2 domain-binding capacity.

    PubMed

    Weir, Marion E; Mann, Jacqueline E; Corwin, Thomas; Fulton, Zachary W; Hao, Jennifer M; Maniscalco, Jeanine F; Kenney, Marie C; Roman Roque, Kristal M; Chapdelaine, Elizabeth F; Stelzl, Ulrich; Deming, Paula B; Ballif, Bryan A; Hinkle, Karen L

    2016-04-01

    Src family tyrosine kinases (SFKs) are critical players in normal and aberrant biological processes. While phosphorylation importantly regulates SFKs at two known tyrosines, large-scale phosphoproteomics have revealed four additional tyrosines commonly phosphorylated in SFKs. We found these novel tyrosines to be autophosphorylation sites. Mimicking phosphorylation at the C-terminal site to the activation loop decreased Fyn activity. Phosphomimetics and direct phosphorylation at the three SH2 domain sites increased Fyn activity while reducing phosphotyrosine-dependent interactions. While 68% of human SH2 domains exhibit conservation of at least one of these tyrosines, few have been found phosphorylated except when found in cis to a kinase domain. PMID:27001024

  4. Identification of Ice Nucleation Active Sites on Silicate Dust Particles

    NASA Astrophysics Data System (ADS)

    Zolles, Tobias; Burkart, Julia; Häusler, Thomas; Pummer, Bernhard; Hitzenberger, Regina; Grothe, Hinrich

    2015-04-01

    Mineral dusts originating from Earth's crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts [1-3]. Nevertheless, among those structures K-feldspar showed by far the highest ice nucleation activity. In this study, the reasons for its activity and the difference in the activity of the different feldspars were investigated in closer details. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. We give a potential explanation of the increased ice nucleation activity of K-feldspar. The ice nucleating sites are very much dependent on the alkali ion present by altering the water structure and the feldspar surface. The higher activity of K-feldspar can be attributed to the presence of potassium ions on the surface and surface bilayer. The alkali-ions have different hydration shells and thus an influence on the ice nucleation activity of feldspar. Chaotropic behavior of Calcium and Sodium ions are lowering the ice nucleation potential of the other feldspars, while kosmotropic Potassium has a neutral or even positive effect. Furthermore we investigated the influence of milling onto the ice nucleation of quartz particles. The ice nucleation activity can be increased by mechanical milling, by introducing more molecular, nucleation active defects to the particle surface. This effect is larger than expected by plane surface increase. [1] Atkinson et al. The Importance of Feldspar for Ice Nucleation by Mineral Dust in Mixed-Phase Clouds. Nature 2013, 498, 355-358. [2] Yakobi-Hancock et al.. Feldspar Minerals as Efficient Deposition Ice Nuclei. Atmos. Chem. Phys. 2013, 13, 11175-11185. [3] Zolles et al. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles. J. Phys. Chem. A 2015 accepted.

  5. Context Differences Reveal Insulator and Activator Functions of a Su(Hw) Binding Region

    PubMed Central

    Wehling, Misty D.; Geyer, Pamela K.

    2008-01-01

    Insulators are DNA elements that divide chromosomes into independent transcriptional domains. The Drosophila genome contains hundreds of binding sites for the Suppressor of Hairy-wing [Su(Hw)] insulator protein, corresponding to locations of the retroviral gypsy insulator and non-gypsy binding regions (BRs). The first non-gypsy BR identified, 1A-2, resides in cytological region 1A. Using a quantitative transgene system, we show that 1A-2 is a composite insulator containing enhancer blocking and facilitator elements. We discovered that 1A-2 separates the yellow (y) gene from a previously unannotated, non-coding RNA gene, named yar for y-achaete (ac) intergenic RNA. The role of 1A-2 was elucidated using homologous recombination to excise these sequences from the natural location, representing the first deletion of any Su(Hw) BR in the genome. Loss of 1A-2 reduced yar RNA accumulation, without affecting mRNA levels from the neighboring y and ac genes. These data indicate that within the 1A region, 1A-2 acts an activator of yar transcription. Taken together, these studies reveal that the properties of 1A-2 are context-dependent, as this element has both insulator and enhancer activities. These findings imply that the function of non-gypsy Su(Hw) BRs depends on the genomic environment, predicting that Su(Hw) BRs represent a diverse collection of genomic regulatory elements. PMID:18704163

  6. Structural characterization reveals the keratinolytic activity of an arthrobacter nicotinovorans protease.

    PubMed

    Sone, Teruo; Haraguchi, Yumiko; Kuwahara, Aki; Ose, Toyoyuki; Takano, Megumi; Abe, Ayumi; Tanaka, Michiko; Tanaka, Isao; Asano, Kozo

    2015-01-01

    Elevated cadmium (Cd) concentrations in fishery byproducts are an environmental concern, that might be reduced by enzymatic removal and adsorption of the contaminants during recycling the byproducts as animal food. We cloned the gene for Arthrobacter nicotinovorans serine protease (ANISEP), which was isolated from the hepatopancreas of the Japanese scallop (Patiopecten yessoensis) and has been found to be an effective enzyme for Cd(II) removal. The gene is 993 bp in length and encodes 330 amino acids, including the pre (1-30) and pro (31-111) sequences. The catalytic triad consists of His, Asp, and Ser. Sequence similarities indicate that ANISEP is a extracellular serine protease. X-ray crystallography revealed structural similarities between ANISEP and the trypsin-like serine protease NAALP from Nesterenkonia sp. Site-directed mutagenesis identified Ser171 as catalytic residue. The keratinolytic activity of ANISEP was 10-fold greater than that of trypsin. ANISEP digested Cd(II)-bound recombinant metallothionein MT-10a from Laternula elliptica, but did not release Cd. These results further suggest ANISEP is a trypsin-like serine protease that can release Cd from the Japanese scallop hepatopancreas because of its strong keratinolytic activity. PMID:25256266

  7. Bi-site activation occurs with the native and nucleotide-depleted mitochondrial F1-ATPase.

    PubMed Central

    Milgrom, Y M; Murataliev, M B; Boyer, P D

    1998-01-01

    Experiments are reported on the uni-site catalysis and the transition from uni-site to multi-site catalysis with bovine heart mitochondrial F1-ATPase. The very slow uni-site ATP hydrolysis is shown to occur without tightly bound nucleotides present and with or without Pi in the buffer. Measurements of the transition to higher rates and the amount of bound ATP committed to hydrolysis as the ATP concentration is increased at different fixed enzyme concentrations give evidence that the filling of a second site can initiate near maximal turnover rates. They provide rate constant information, and show that an apparent Km for a second site of about 2 microM and Vmax of 10 s-1, as suggested by others, is not operative. Careful initial velocity measurements also eliminate other suggested Km values and are consistent with bi-site activation to near maximal hydrolysis rates, with a Km of about 130 microM and Vmax of about 700 s-1. However, the results do not eliminate the possibility of additional 'hidden' Km values with similar Vmax:Km ratios. Recent data on competition between TNP-ATP and ATP revealed a third catalytic site for ATP in the millimolar concentration range. This result, and those reported in the present paper, allow the conclusion that the mitochondrial F1-ATPase can attain near maximal activity in bi-site catalysis. Our data also add to the evidence that a recent claim, that the mitochondrial F1-ATPase does not show catalytic site cooperativity, is invalid. PMID:9480927

  8. Zinc-induced oligomerization of zinc α2 glycoprotein reveals multiple fatty acid-binding sites.

    PubMed

    Zahid, Henna; Miah, Layeque; Lau, Andy M; Brochard, Lea; Hati, Debolina; Bui, Tam T T; Drake, Alex F; Gor, Jayesh; Perkins, Stephen J; McDermott, Lindsay C

    2016-01-01

    Zinc α2 glycoprotein (ZAG) is an adipokine with a class I MHC protein fold and is associated with obesity and diabetes. Although its intrinsic ligand remains unknown, ZAG binds the dansylated C11 fatty acid 11-(dansylamino)undecanoic acid (DAUDA) in the groove between the α1 and α2 domains. The surface of ZAG has approximately 15 weak zinc-binding sites deemed responsible for precipitation from human plasma. In the present study the functional significance of these metal sites was investigated. Analytical ultracentrifugation (AUC) and CD showed that zinc, but not other divalent metals, causes ZAG to oligomerize in solution. Thus ZAG dimers and trimers were observed in the presence of 1 and 2 mM zinc. Molecular modelling of X-ray scattering curves and sedimentation coefficients indicated a progressive stacking of ZAG monomers, suggesting that the ZAG groove may be occluded in these. Using fluorescence-detected sedimentation velocity, these ZAG-zinc oligomers were again observed in the presence of the fluorescent boron dipyrromethene fatty acid C16-BODIPY (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-hexadecanoic acid). Fluorescence spectroscopy confirmed that ZAG binds C16-BODIPY. ZAG binding to C16-BODIPY, but not to DAUDA, was reduced by increased zinc concentrations. We conclude that the lipid-binding groove in ZAG contains at least two distinct fatty acid-binding sites for DAUDA and C16-BODIPY, similar to the multiple lipid binding seen in the structurally related immune protein CD1c. In addition, because high concentrations of zinc occur in the pancreas, the perturbation of these multiple lipid-binding sites by zinc may be significant in Type 2 diabetes where dysregulation of ZAG and zinc homoeostasis occurs. PMID:26487699

  9. Functional copper at the acetyl-CoA synthase active site

    PubMed Central

    Seravalli, Javier; Gu, Weiwei; Tam, Annie; Strauss, Erick; Begley, Tadhg P.; Cramer, Stephen P.; Ragsdale, Stephen W.

    2003-01-01

    The bifunctional CO dehydrogenase/acetyl-CoA synthase (CODH/ACS) plays a central role in the Wood–Ljungdahl pathway of autotrophic CO2 fixation. A recent structure of the Moorella thermoacetica enzyme revealed that the ACS active site contains a [4Fe-4S] cluster bridged to a binuclear Cu-Ni site. Here, biochemical and x-ray absorption spectroscopic (XAS) evidence is presented that the copper ion at the M. thermoacetica ACS active site is essential. Depletion of copper correlates with reduction in ACS activity and in intensity of the “NiFeC” EPR signal without affecting either the activity or the EPR spectroscopic properties associated with CODH. In contrast, Zn content is negatively correlated with ACS activity without any apparent relationship to CODH activity. Cu is also found in the methanogenic CODH/ACS from Methanosarcina thermophila. XAS studies are consistent with a distorted Cu(I)–S3 site in the fully active enzyme in solution. Cu extended x-ray absorption fine structure analysis indicates an average Cu–S bond length of 2.25 Å and a metal neighbor at 2.65 Å, consistent with the Cu–Ni distance observed in the crystal structure. XAS experiments in the presence of seleno-CoA reveal a Cu–S3Se environment with a 2.4-Å Se–Cu bond, strongly implicating a Cu–SCoA intermediate in the mechanism of acetyl-CoA synthesis. These results indicate an essential and functional role for copper in the CODH/ACS from acetogenic and methanogenic organisms. PMID:12589021

  10. Active Sites Environmental Monitoring Program. FY 1993: Annual report

    SciTech Connect

    Morrissey, C.M.; Ashwood, T.L.; Hicks, D.S.; Marsh, J.D.

    1994-08-01

    This report continues a series of annual and semiannual reports that present the results of the Active Sites Environmental Monitoring Program (ASEMP) monitoring activities. The report details monitoring data for fiscal year (FY) 1993 and is divided into three major areas: SWSA 6 [including tumulus pads, Interim Waste Management Facility (IWMF), and other sites], the low-level Liquid-Waste Solidification Project (LWSP), and TRU-waste storage facilities in SWSA 5 N. The detailed monitoring methodology is described in the second revision of the ASEMP program plan. This report also presents a summary of the methodology used to gather data for each major area along with the results obtained during FY 1993.

  11. Probing the Role of Active Site Water in the Sesquiterpene Cyclization Reaction Catalyzed by Aristolochene Synthase.

    PubMed

    Chen, Mengbin; Chou, Wayne K W; Al-Lami, Naeemah; Faraldos, Juan A; Allemann, Rudolf K; Cane, David E; Christianson, David W

    2016-05-24

    Aristolochene synthase (ATAS) is a high-fidelity terpenoid cyclase that converts farnesyl diphosphate exclusively into the bicyclic hydrocarbon aristolochene. Previously determined crystal structures of ATAS complexes revealed trapped active site water molecules that could potentially interact with catalytic intermediates: water "w" hydrogen bonds with S303 and N299, water molecules "w1" and "w2" hydrogen bond with Q151, and a fourth water molecule coordinates to the Mg(2+)C ion. There is no obvious role for water in the ATAS mechanism because the enzyme exclusively generates a hydrocarbon product. Thus, these water molecules are tightly controlled so that they cannot react with carbocation intermediates. Steady-state kinetics and product distribution analyses of eight ATAS mutants designed to perturb interactions with active site water molecules (S303A, S303H, S303D, N299A, N299L, N299A/S303A, Q151H, and Q151E) indicate relatively modest effects on catalysis but significant effects on sesquiterpene product distributions. X-ray crystal structures of S303A, N299A, N299A/S303A, and Q151H mutants reveal minimal perturbation of active site solvent structure. Seven of the eight mutants generate farnesol and nerolidol, possibly resulting from addition of the Mg(2+)C-bound water molecule to the initially formed farnesyl cation, but no products are generated that would suggest enhanced reactivity of other active site water molecules. However, intermediate germacrene A tends to accumulate in these mutants. Thus, apart from the possible reactivity of Mg(2+)C-bound water, active site water molecules in ATAS are not directly involved in the chemistry of catalysis but instead contribute to the template that governs the conformation of the flexible substrate and carbocation intermediates. PMID:27172425

  12. The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer.

    PubMed

    Trausch, Jeremiah J; Ceres, Pablo; Reyes, Francis E; Batey, Robert T

    2011-10-12

    Transport and biosynthesis of folate and its derivatives are frequently controlled by the tetrahydrofolate (THF) riboswitch in Firmicutes. We have solved the crystal structure of the THF riboswitch aptamer in complex with folinic acid, a THF analog. Uniquely, this structure reveals two molecules of folinic acid binding to a single structured domain. These two sites interact with ligand in a similar fashion, primarily through recognition of the reduced pterin moiety. 7-deazaguanine, a soluble analog of guanine, binds the riboswitch with nearly the same affinity as its natural effector. However, 7-deazaguanine effects transcriptional termination to a substantially lesser degree than folinic acid, suggesting that the cellular guanine pool does not act upon the THF riboswitch. Under physiological conditions the ligands display strong cooperative binding, with one of the two sites playing a greater role in eliciting the regulatory response, which suggests that the second site may play another functional role. PMID:21906956

  13. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    PubMed Central

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; Parks, Jerry M.; Elias, Dwayne A.; Hurt, Richard A.; Brown, Steven D.; Podar, Mircea

    2015-01-01

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential for mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. This study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin. PMID:25724962

  14. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    SciTech Connect

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; Parks, Jerry M.; Elias, Dwayne A.; Hurt, Richard A.; Brown, Steven D.; Podar, Mircea; Wall, Judy D.

    2015-02-27

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential for mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. Ultimately, this study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin.

  15. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    DOE PAGESBeta

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; Parks, Jerry M.; Elias, Dwayne A.; Hurt, Richard A.; Brown, Steven D.; Podar, Mircea; Wall, Judy D.

    2015-02-27

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential formore » mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. Ultimately, this study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin.« less

  16. Active sites in char gasification: Final technical report

    SciTech Connect

    Wojtowicz, M.; Lilly, W.D.; Perkins, M.T.; Hradil, G.; Calo, J.M.; Suuberg, E.M.

    1987-09-01

    Among the key variables in the design of gasifiers and combustors is the reactivity of the chars which must be gasified or combusted. Significant loss of unburned char is unacceptable in virtually any process; the provision of sufficient residence time for complete conversion is essential. A very wide range of reactivities are observed, depending upon the nature of the char in a process. The current work focuses on furthering the understanding of gasification reactivities of chars. It has been well established that the reactivity of char to gasification generally depends upon three principal factors: (1) the concentration of ''active sites'' in the char; (2) mass transfer within the char; and (3) the type and concentration of catalytic impurities in the char. The present study primarily addresses the first factor. The subject of this research is the origin, nature, and fate of active sites in chars derived from parent hydrocarbons with coal-like structure. The nature and number of the active sites and their reactivity towards oxygen are examined in ''model'' chars derived from phenol-formaldehyde type resins. How the active sites are lost by the process of thermal annealing during heat treatment of chars are studied, and actual rate for the annealing process is derived. Since intrinsic char reactivities are of primary interest in the present study, a fair amount of attention was given to the model char synthesis and handling so that the effect of catalytic impurities and oxygen-containing functional groups in the chemical structure of the material were minimized, if not completely eliminated. The project would not be considered complete without comparing characteristic features of synthetic chars with kinetic behavior exhibited by natural chars, including coal chars.

  17. Field-scale tracking of active methane-oxidizing communities in a landfill cover soil reveals spatial and seasonal variability.

    PubMed

    Henneberger, Ruth; Chiri, Eleonora; Bodelier, Paul E L; Frenzel, Peter; Lüke, Claudia; Schroth, Martin H

    2015-05-01

    Aerobic methane-oxidizing bacteria (MOB) in soils mitigate methane (CH4 ) emissions. We assessed spatial and seasonal differences in active MOB communities in a landfill cover soil characterized by highly variable environmental conditions. Field-based measurements of CH4 oxidation activity and stable-isotope probing of polar lipid-derived fatty acids (PLFA-SIP) were complemented by microarray analysis of pmoA genes and transcripts, linking diversity and function at the field scale. In situ CH4 oxidation rates varied between sites and were generally one order of magnitude lower in winter compared with summer. Results from PLFA-SIP and pmoA transcripts were largely congruent, revealing distinct spatial and seasonal clustering. Overall, active MOB communities were highly diverse. Type Ia MOB, specifically Methylomonas and Methylobacter, were key drivers for CH4 oxidation, particularly at a high-activity site. Type II MOB were mainly active at a site showing substantial fluctuations in CH4 loading and soil moisture content. Notably, Upland Soil Cluster-gamma-related pmoA transcripts were also detected, indicating concurrent oxidation of atmospheric CH4 . Spatial separation was less distinct in winter, with Methylobacter and uncultured MOB mediating CH4 oxidation. We propose that high diversity of active MOB communities in this soil is promoted by high variability in environmental conditions, facilitating substantial removal of CH4 generated in the waste body. PMID:25186436

  18. Illumina Amplicon Sequencing of 16S rRNA Tag Reveals Bacterial Community Development in the Rhizosphere of Apple Nurseries at a Replant Disease Site and a New Planting Site

    PubMed Central

    Sun, Jian; Zhang, Qiang; Zhou, Jia; Wei, Qinping

    2014-01-01

    We used a next-generation, Illumina-based sequencing approach to characterize the bacterial community development of apple rhizosphere soil in a replant site (RePlant) and a new planting site (NewPlant) in Beijing. Dwarfing apple nurseries of ‘Fuji’/SH6/Pingyitiancha trees were planted in the spring of 2013. Before planting, soil from the apple rhizosphere of the replant site (ReSoil) and from the new planting site (NewSoil) was sampled for analysis on the Illumina MiSeq platform. In late September, the rhizosphere soil from both sites was resampled (RePlant and NewPlant). More than 16,000 valid reads were obtained for each replicate, and the community was composed of five dominant groups (Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes and Actinobacteria). The bacterial diversity decreased after apple planting. Principal component analyses revealed that the rhizosphere samples were significantly different among treatments. Apple nursery planting showed a large impact on the soil bacterial community, and the community development was significantly different between the replanted and newly planted soils. Verrucomicrobia were less abundant in RePlant soil, while Pseudomonas and Lysobacter were increased in RePlant compared with ReSoil and NewPlant. Both RePlant and ReSoil showed relatively higher invertase and cellulase activities than NewPlant and NewSoil, but only NewPlant soil showed higher urease activity, and this soil also had the higher plant growth. Our experimental results suggest that planting apple nurseries has a significant impact on soil bacterial community development at both replant and new planting sites, and planting on new site resulted in significantly higher soil urease activity and a different bacterial community composition. PMID:25360786

  19. DNA binding induces active site conformational change in the human TREX2 3'-exonuclease.

    PubMed

    de Silva, Udesh; Perrino, Fred W; Hollis, Thomas

    2009-04-01

    The TREX enzymes process DNA as the major 3'-->5' exonuclease activity in mammalian cells. TREX2 and TREX1 are members of the DnaQ family of exonucleases and utilize a two metal ion catalytic mechanism of hydrolysis. The structure of the dimeric TREX2 enzyme in complex with single-stranded DNA has revealed binding properties that are distinct from the TREX1 protein. The TREX2 protein undergoes a conformational change in the active site upon DNA binding including ordering of active site residues and a shift of an active site helix. Surprisingly, even when a single monomer binds DNA, both monomers in the dimer undergo the structural rearrangement. From this we have proposed a model for DNA binding and 3' hydrolysis for the TREX2 dimer. The structure also shows how TREX proteins potentially interact with double-stranded DNA and suggest features that might be involved in strand denaturation to provide a single-stranded substrate for the active site. PMID:19321497

  20. Potential sites of CFTR activation by tyrosine kinases.

    PubMed

    Billet, Arnaud; Jia, Yanlin; Jensen, Timothy J; Hou, Yue-Xian; Chang, Xiu-Bao; Riordan, John R; Hanrahan, John W

    2016-05-01

    The CFTR chloride channel is tightly regulated by phosphorylation at multiple serine residues. Recently it has been proposed that its activity is also regulated by tyrosine kinases, however the tyrosine phosphorylation sites remain to be identified. In this study we examined 2 candidate tyrosine residues near the boundary between the first nucleotide binding domain and the R domain, a region which is important for channel function but devoid of PKA consensus sequences. Mutating tyrosines at positions 625 and 627 dramatically reduced responses to Src or Pyk2 without altering the activation by PKA, suggesting they may contribute to CFTR regulation. PMID:26645934

  1. Brownian aggregation rate of colloid particles with several active sites

    SciTech Connect

    Nekrasov, Vyacheslav M.; Yurkin, Maxim A.; Chernyshev, Andrei V.; Polshchitsin, Alexey A.; Yakovleva, Galina E.; Maltsev, Valeri P.

    2014-08-14

    We theoretically analyze the aggregation kinetics of colloid particles with several active sites. Such particles (so-called “patchy particles”) are well known as chemically anisotropic reactants, but the corresponding rate constant of their aggregation has not yet been established in a convenient analytical form. Using kinematic approximation for the diffusion problem, we derived an analytical formula for the diffusion-controlled reaction rate constant between two colloid particles (or clusters) with several small active sites under the following assumptions: the relative translational motion is Brownian diffusion, and the isotropic stochastic reorientation of each particle is Markovian and arbitrarily correlated. This formula was shown to produce accurate results in comparison with more sophisticated approaches. Also, to account for the case of a low number of active sites per particle we used Monte Carlo stochastic algorithm based on Gillespie method. Simulations showed that such discrete model is required when this number is less than 10. Finally, we applied the developed approach to the simulation of immunoagglutination, assuming that the formed clusters have fractal structure.

  2. The active site of low-temperature methane hydroxylation in iron-containing zeolites.

    PubMed

    Snyder, Benjamin E R; Vanelderen, Pieter; Bols, Max L; Hallaert, Simon D; Böttger, Lars H; Ungur, Liviu; Pierloot, Kristine; Schoonheydt, Robert A; Sels, Bert F; Solomon, Edward I

    2016-08-18

    An efficient catalytic process for converting methane into methanol could have far-reaching economic implications. Iron-containing zeolites (microporous aluminosilicate minerals) are noteworthy in this regard, having an outstanding ability to hydroxylate methane rapidly at room temperature to form methanol. Reactivity occurs at an extra-lattice active site called α-Fe(ii), which is activated by nitrous oxide to form the reactive intermediate α-O; however, despite nearly three decades of research, the nature of the active site and the factors determining its exceptional reactivity are unclear. The main difficulty is that the reactive species-α-Fe(ii) and α-O-are challenging to probe spectroscopically: data from bulk techniques such as X-ray absorption spectroscopy and magnetic susceptibility are complicated by contributions from inactive 'spectator' iron. Here we show that a site-selective spectroscopic method regularly used in bioinorganic chemistry can overcome this problem. Magnetic circular dichroism reveals α-Fe(ii) to be a mononuclear, high-spin, square planar Fe(ii) site, while the reactive intermediate, α-O, is a mononuclear, high-spin Fe(iv)=O species, whose exceptional reactivity derives from a constrained coordination geometry enforced by the zeolite lattice. These findings illustrate the value of our approach to exploring active sites in heterogeneous systems. The results also suggest that using matrix constraints to activate metal sites for function-producing what is known in the context of metalloenzymes as an 'entatic' state-might be a useful way to tune the activity of heterogeneous catalysts. PMID:27535535

  3. Laser Microdissection of Grapevine Leaves Reveals Site-Specific Regulation of Transcriptional Response to Plasmopara viticola.

    PubMed

    Lenzi, Luisa; Caruso, Carla; Bianchedi, Pier Luigi; Pertot, Ilaria; Perazzolli, Michele

    2016-01-01

    Grapevine is one of the most important fruit crops in the world, and it is highly susceptible to downy mildew caused by the biotrophic oomycete Plasmopara viticola. Gene expression profiling has been used extensively to investigate the regulation processes of grapevine-P. viticola interaction, but all studies to date have involved the use of whole leaves. However, only a small fraction of host cells is in contact with the pathogen, so highly localized transcriptional changes of infected cells may be masked by the large portion of non-infected cells when analyzing the whole leaf. In order to understand the transcriptional regulation of the plant reaction at the sites of pathogen infection, we optimized a laser microdissection protocol and analyzed the transcriptional changes in stomata cells and surrounding areas of grapevine leaves at early stages of P. viticola infection. The results indicate that the expression levels of seven P. viticola-responsive genes were greater in microdissected cells than in whole leaves, highlighting the site-specific transcriptional regulation of the host response. The gene modulation was restricted to the stomata cells and to the surrounding areas of infected tissues, indicating that the host response is mainly located at the infection sites and that short-distance signals are implicated. In addition, due to the high sensitivity of the laser microdissection technique, significant modulations of three genes that were completely masked in the whole tissue analysis were detected. The protocol validated in this study could greatly increase the sensitivity of further transcriptomic studies of the grapevine-P. viticola interaction. PMID:26546320

  4. Identification of the REST regulon reveals extensive transposable element-mediated binding site duplication

    PubMed Central

    Johnson, Rory; Gamblin, Richard J.; Ooi, Lezanne; Bruce, Alexander W.; Donaldson, Ian J.; Westhead, David R.; Wood, Ian C.; Jackson, Richard M.; Buckley, Noel J.

    2006-01-01

    The genome-wide mapping of gene-regulatory motifs remains a major goal that will facilitate the modelling of gene-regulatory networks and their evolution. The repressor element 1 is a long, conserved transcription factor-binding site which recruits the transcriptional repressor REST to numerous neuron-specific target genes. REST plays important roles in multiple biological processes and disease states. To map RE1 sites and target genes, we created a position specific scoring matrix representing the RE1 and used it to search the human and mouse genomes. We identified 1301 and 997 RE1s inhuman and mouse genomes, respectively, of which >40% are novel. By employing an ontological analysis we show that REST target genes are significantly enriched in a number of functional classes. Taking the novel REST target gene CACNA1A as an experimental model, we show that it can be regulated by multiple RE1s of different binding affinities, which are only partially conserved between human and mouse. A novel BLAST methodology indicated that many RE1s belong to closely related families. Most of these sequences are associated with transposable elements, leading us to propose that transposon-mediated duplication and insertion of RE1s has led to the acquisition of novel target genes by REST during evolution. PMID:16899447

  5. Crystal Structure of Menin Reveals Binding Site for Mixed Lineage Leukemia (MLL) Protein

    SciTech Connect

    Murai, Marcelo J.; Chruszcz, Maksymilian; Reddy, Gireesh; Grembecka, Jolanta; Cierpicki, Tomasz

    2014-10-02

    Menin is a tumor suppressor protein that is encoded by the MEN1 (multiple endocrine neoplasia 1) gene and controls cell growth in endocrine tissues. Importantly, menin also serves as a critical oncogenic cofactor of MLL (mixed lineage leukemia) fusion proteins in acute leukemias. Direct association of menin with MLL fusion proteins is required for MLL fusion protein-mediated leukemogenesis in vivo, and this interaction has been validated as a new potential therapeutic target for development of novel anti-leukemia agents. Here, we report the first crystal structure of menin homolog from Nematostella vectensis. Due to a very high sequence similarity, the Nematostella menin is a close homolog of human menin, and these two proteins likely have very similar structures. Menin is predominantly an {alpha}-helical protein with the protein core comprising three tetratricopeptide motifs that are flanked by two {alpha}-helical bundles and covered by a {beta}-sheet motif. A very interesting feature of menin structure is the presence of a large central cavity that is highly conserved between Nematostella and human menin. By employing site-directed mutagenesis, we have demonstrated that this cavity constitutes the binding site for MLL. Our data provide a structural basis for understanding the role of menin as a tumor suppressor protein and as an oncogenic co-factor of MLL fusion proteins. It also provides essential structural information for development of inhibitors targeting the menin-MLL interaction as a novel therapeutic strategy in MLL-related leukemias.

  6. Revealing the function of a novel splice-site mutation of CHD7 in CHARGE syndrome.

    PubMed

    Lee, Byeonghyeon; Duz, Mehmet Bugrahan; Sagong, Borum; Koparir, Asuman; Lee, Kyu-Yup; Choi, Jae Young; Seven, Mehmet; Yuksel, Adnan; Kim, Un-Kyung; Ozen, Mustafa

    2016-02-01

    Most cases of CHARGE syndrome are sporadic and autosomal dominant. CHD7 is a major causative gene of CHARGE syndrome. In this study, we screened CHD7 in two Turkish patients demonstrating symptoms of CHARGE syndrome such as coloboma, heart defect, choanal atresia, retarded growth, genital abnomalities and ear anomalies. Two mutations of CHD7 were identified including a novel splice-site mutation (c.2443-2A>G) and a previously known frameshift mutation (c.2504_2508delATCTT). We performed exon trapping analysis to determine the effect of the c.2443-2A>G mutation at the transcriptional level, and found that it caused a complete skip of exon 7 and splicing at a cryptic splice acceptor site. Our current study is the second study demonstrating an exon 7 deficit in CHD7. Results of previous studies suggest that the c.2443-2A>G mutation affects the formation of nasal tissues and the neural retina during early development, resulting in choanal atresia and coloboma, respectively. The findings of the present study will improve our understanding of the genetic causes of CHARGE syndrome. PMID:26551301

  7. Site-Specific DNA Structural and Dynamic Features Revealed by Nucleotide-Independent Nitroxide Probes

    SciTech Connect

    Popova, Anna; Kalai, Tamas; Hideg, Kalman; Qin, Peter Z.

    2009-09-15

    In site-directed spin labeling, a covalently attached nitroxide probe containing a chemically inert unpaired electron is utilized to obtain information on the local environment of the parent macromolecule. Studies presented here examine the feasibility of probing local DNA structural and dynamic features using a class of nitroxide probes that are linked to chemically substituted phosphorothioate positions at the DNA backbone. Two members of this family, designated as R5 and R5a, were attached to eight different sites of a dodecameric DNA duplex without severely perturbing the native B-form conformation. Measured X-band electron paramagnetic resonance (EPR) spectra, which report on nitroxide rotational motions, were found to vary depending on the location of the label (e.g., duplex center vs termini) and the surrounding DNA sequence. This indicates that R5 and R5a can provide information on the DNA local environment at the level of an individual nucleotide. As these probes can be attached to arbitrary nucleotides within a nucleic acid sequence, they may provide a means to “scan” a given DNA molecule in order to interrogate its local structural and dynamic features.

  8. Geophysical Research for Revealing and Studying of Ancient Ruins in the Archaeological Site "argamum"

    NASA Astrophysics Data System (ADS)

    Anghel, S.

    2008-12-01

    The geophysical studies were carried out within the archaeological site both in 2005 as well as in 2006.Geophysical works were conducted using Geometrics equipment (G856 proton procession magnetometer) with a 0.1nT precision, which allowed for a highly detailed local morphology of the geomagnetic field and for the mapping of the magnetic anomaly. The working technology has been chosen to enable to emphasize mainly abnormal effects produced by sources located at depths of 0-5 m. On the south side of the late Roman fortification, outside the precinct wall, an artisanal area including a furnace for manufacturing building materials dated from the late Roman period, was found as well as some Greek furnaces for manufacturing ordinary brick. The south area of the site has been studied within this research project using the magnetometrical method (Fig. 5). Geophysical studies will prove very useful for further archaeological diggings, supplying them with a more clearly defined image on the substratum situation. There is a growing involvement lately, in matters related to archaeogeophysics, of electromagnetic methods which also have an extremely high productivity. Outstanding progress achieved in increasing geophysical equipment sensitivity, more and more sophisticated techniques of processing, interpreting and two and tree dimensional shaping of results has enabled approaching using geophysical means a more larger scope of archaeological issues. Geophysical works have been carried out using Geometrics equipment with a 0.1nT precision, which allowed for highly detailed images of the local morphology of geomagnetic field and drawing of maps presenting the magnetic anomaly. The working technology has been chosen to enable to emphasize mainly abnormal effects produced by sources located at depths of 0-5 m. The first works carried out were topographical works, with the help of which the observation networks were transposed within the field, the eye of the network having 1 m

  9. The ATP-binding site of Ca(2+)-ATPase revealed by electron image analysis.

    PubMed Central

    Yonekura, K; Stokes, D L; Sasabe, H; Toyoshima, C

    1997-01-01

    The location of the ATP-binding site of a P-type ion pump, Ca(2+)-ATPase from rabbit sarcoplasmic reticulum, was examined by cryoelectron microscopy. A nonhydrolyzable analog of ATP, beta, gamma-bidentate chromium (III) complex of ATP (CrATP), was used to stabilize the enzyme in the Ca(2+)-occluded state. Tubular crystals were then induced by vanadate in the presence of EGTA, keeping CrATP bound to the enzyme. The three-dimensional structures of the crystals were determined at 14 A resolution by cryoelectron microscopy and helical image analysis. Statistical comparison of the structures with and without CrATP showed clear and significant differences at the groove proposed previously as the ATP-binding pocket. Images FIGURE 3 FIGURE 6 FIGURE 7 PMID:9138598

  10. Mixture model of pottery decorations from Lake Chad Basin archaeological sites reveals ancient segregation patterns.

    PubMed

    O'Brien, John D; Lin, Kathryn; MacEachern, Scott

    2016-03-30

    We present a new statistical approach to analysing an extremely common archaeological data type--potsherds--that infers the structure of cultural relationships across a set of excavation units (EUs). This method, applied to data from a set of complex, culturally heterogeneous sites around the Mandara mountains in the Lake Chad Basin, helps elucidate cultural succession through the Neolithic and Iron Age. We show how the approach can be integrated with radiocarbon dates to provide detailed portraits of cultural dynamics and deposition patterns within single EUs. In this context, the analysis supports ancient cultural segregation analogous to historical ethnolinguistic patterning in the region. We conclude with a discussion of the many possible model extensions using other archaeological data types. PMID:27009217

  11. Phytoliths reveal the earliest fine reedy textile in China at the Tianluoshan site

    PubMed Central

    Zhang, Jianping; Lu, Houyuan; Sun, Guoping; Flad, Rowan; Wu, Naiqin; Huan, Xiujia; He, Keyang; Wang, Yonglei

    2016-01-01

    Textiles are among the longest and most widespread technologies in human history, although poor preservation of perishable artifacts in Paleolithic and Neolithic contexts makes them difficult to unearth and has hampered study of their production and use. Here we report evidence of a plain-woven mat from the Tianluoshan site, Zhejiang, Eastern China. Phytolith and AMS dating from the mat and modern reference collections shown that the mat was made of reeds (Phragmites australis (Cav.)) and dated to 6775–6645 cal. yr. BP. This is the earliest directly dated fiber artifact so far known in China, over at least one thousand years earlier than any established dates for woven remains elsewhere. The evidence of the mat and other related remains suggest that textile products might occur earlier than 7000–8000 years ago and are significant for understanding the history of textiles, as well as production and human adaptation in Neolithic China. PMID:26766794

  12. Phytoliths reveal the earliest fine reedy textile in China at the Tianluoshan site

    NASA Astrophysics Data System (ADS)

    Zhang, Jianping; Lu, Houyuan; Sun, Guoping; Flad, Rowan; Wu, Naiqin; Huan, Xiujia; He, Keyang; Wang, Yonglei

    2016-01-01

    Textiles are among the longest and most widespread technologies in human history, although poor preservation of perishable artifacts in Paleolithic and Neolithic contexts makes them difficult to unearth and has hampered study of their production and use. Here we report evidence of a plain-woven mat from the Tianluoshan site, Zhejiang, Eastern China. Phytolith and AMS dating from the mat and modern reference collections shown that the mat was made of reeds (Phragmites australis (Cav.)) and dated to 6775-6645 cal. yr. BP. This is the earliest directly dated fiber artifact so far known in China, over at least one thousand years earlier than any established dates for woven remains elsewhere. The evidence of the mat and other related remains suggest that textile products might occur earlier than 7000-8000 years ago and are significant for understanding the history of textiles, as well as production and human adaptation in Neolithic China.

  13. Phytoliths reveal the earliest fine reedy textile in China at the Tianluoshan site.

    PubMed

    Zhang, Jianping; Lu, Houyuan; Sun, Guoping; Flad, Rowan; Wu, Naiqin; Huan, Xiujia; He, Keyang; Wang, Yonglei

    2016-01-01

    Textiles are among the longest and most widespread technologies in human history, although poor preservation of perishable artifacts in Paleolithic and Neolithic contexts makes them difficult to unearth and has hampered study of their production and use. Here we report evidence of a plain-woven mat from the Tianluoshan site, Zhejiang, Eastern China. Phytolith and AMS dating from the mat and modern reference collections shown that the mat was made of reeds (Phragmites australis (Cav.)) and dated to 6775-6645 cal. yr. BP. This is the earliest directly dated fiber artifact so far known in China, over at least one thousand years earlier than any established dates for woven remains elsewhere. The evidence of the mat and other related remains suggest that textile products might occur earlier than 7000-8000 years ago and are significant for understanding the history of textiles, as well as production and human adaptation in Neolithic China. PMID:26766794

  14. Active site electrostatics protect genome integrity by blocking abortive hydrolysis during DNA recombination

    PubMed Central

    Ma, Chien-Hui; Rowley, Paul A; Macieszak, Anna; Guga, Piotr; Jayaram, Makkuni

    2009-01-01

    Water, acting as a rogue nucleophile, can disrupt transesterification steps of important phosphoryl transfer reactions in DNA and RNA. We have unveiled this risk, and identified safeguards instituted against it, during strand cleavage and joining by the tyrosine site-specific recombinase Flp. Strand joining is threatened by a latent Flp endonuclease activity (type I) towards the 3′-phosphotyrosyl intermediate resulting from strand cleavage. This risk is not alleviated by phosphate electrostatics; neutralizing the negative charge on the scissile phosphate through methylphosphonate (MeP) substitution does not stimulate type I endonuclease. Rather, protection derives from the architecture of the recombination synapse and conformational dynamics within it. Strand cleavage is protected against water by active site electrostatics. Replacement of the catalytic Arg-308 of Flp by alanine, along with MeP substitution, elicits a second Flp endonuclease activity (type II) that directly targets the scissile phosphodiester bond in DNA. MeP substitution, combined with appropriate active site mutations, will be useful in revealing anti-hydrolytic mechanisms engendered by systems that mediate DNA relaxation, DNA transposition, site-specific recombination, telomere resolution, RNA splicing and retrohoming of mobile introns. PMID:19440204

  15. Modulators of Stomatal Lineage Signal Transduction Alter Membrane Contact Sites and Reveal Specialization among ERECTA Kinases.

    PubMed

    Ho, Chin-Min Kimmy; Paciorek, Tomasz; Abrash, Emily; Bergmann, Dominique C

    2016-08-22

    Signal transduction from a cell's surface to its interior requires dedicated signaling elements and a cellular environment conducive to signal propagation. Plant development, defense, and homeostasis rely on plasma membrane receptor-like kinases to perceive endogenous and environmental signals, but little is known about their immediate downstream targets and signaling modifiers. Using genetics, biochemistry, and live-cell imaging, we show that the VAP-RELATED SUPPRESSOR OF TMM (VST) family is required for ERECTA-mediated signaling in growth and cell-fate determination and reveal a role for ERECTA-LIKE2 in modulating signaling by its sister kinases. We show that VSTs are peripheral plasma membrane proteins that can form complexes with integral ER-membrane proteins, thereby potentially influencing the organization of the membrane milieu to promote efficient and differential signaling from the ERECTA-family members to their downstream intracellular targets. PMID:27554856

  16. Current activities handbook: formerly utilized sites remedial action program

    SciTech Connect

    1981-02-27

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the activities each of the thirteen state legislatures potentially affected by the Formerly Utilized Sites Remedial Action Program. It contains a description of the state legislative procedural rules and a schedule of each legislative session; a summary of pending relevant legislation; the name and telephone number of legislative and state agency contacts; and the full text of all bills identified.

  17. Targeting Large Kinase Active Site with Rigid, Bulky Octahedral Ruthenium Complexes

    SciTech Connect

    Maksimoska, Jasna; Feng, Li; Harms, Klaus; Yi, Chunling; Kissil, Joseph; Marmorstein, Ronen; Meggers, Eric

    2009-09-02

    A strategy for targeting protein kinases with large ATP-binding sites by using bulky and rigid octahedral ruthenium complexes as structural scaffolds is presented. A highly potent and selective GSK3 and Pim1 half-sandwich complex NP309 was successfully converted into a PAK1 inhibitor by making use of the large octahedral compounds {Lambda}-FL172 and {Lambda}-FL411 in which the cyclopentadienyl moiety of NP309 is replaced by a chloride and sterically demanding diimine ligands. A 1.65 {angstrom}cocrystal structure of PAK1 with {Lambda}-FL172 reveals how the large coordination sphere of the ruthenium complex matches the size of the active site and serves as a yardstick to discriminate between otherwise closely related binding sites.

  18. Site-specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation.

    PubMed

    Yamano, Koji; Queliconi, Bruno B; Koyano, Fumika; Saeki, Yasushi; Hirokawa, Takatsugu; Tanaka, Keiji; Matsuda, Noriyuki

    2015-10-16

    Damaged mitochondria are eliminated through autophagy machinery. A cytosolic E3 ubiquitin ligase Parkin, a gene product mutated in familial Parkinsonism, is essential for this pathway. Recent progress has revealed that phosphorylation of both Parkin and ubiquitin at Ser(65) by PINK1 are crucial for activation and recruitment of Parkin to the damaged mitochondria. However, the mechanism by which phosphorylated ubiquitin associates with and activates phosphorylated Parkin E3 ligase activity remains largely unknown. Here, we analyze interactions between phosphorylated forms of both Parkin and ubiquitin at a spatial resolution of the amino acid residue by site-specific photo-crosslinking. We reveal that the in-between-RING (IBR) domain along with RING1 domain of Parkin preferentially binds to ubiquitin in a phosphorylation-dependent manner. Furthermore, another approach, the Fluoppi (fluorescent-based technology detecting protein-protein interaction) assay, also showed that pathogenic mutations in these domains blocked interactions with phosphomimetic ubiquitin in mammalian cells. Molecular modeling based on the site-specific photo-crosslinking interaction map combined with mass spectrometry strongly suggests that a novel binding mechanism between Parkin and ubiquitin leads to a Parkin conformational change with subsequent activation of Parkin E3 ligase activity. PMID:26260794

  19. Structures of protective antibodies reveal sites of vulnerability on Ebola virus

    PubMed Central

    Murin, Charles D.; Fusco, Marnie L.; Bornholdt, Zachary A.; Qiu, Xiangguo; Olinger, Gene G.; Zeitlin, Larry; Kobinger, Gary P.; Ward, Andrew B.; Saphire, Erica Ollmann

    2014-01-01

    Ebola virus (EBOV) and related filoviruses cause severe hemorrhagic fever, with up to 90% lethality, and no treatments are approved for human use. Multiple recent outbreaks of EBOV and the likelihood of future human exposure highlight the need for pre- and postexposure treatments. Monoclonal antibody (mAb) cocktails are particularly attractive candidates due to their proven postexposure efficacy in nonhuman primate models of EBOV infection. Two candidate cocktails, MB-003 and ZMAb, have been extensively evaluated in both in vitro and in vivo studies. Recently, these two therapeutics have been combined into a new cocktail named ZMapp, which showed increased efficacy and has been given compassionately to some human patients. Epitope information and mechanism of action are currently unknown for most of the component mAbs. Here we provide single-particle EM reconstructions of every mAb in the ZMapp cocktail, as well as additional antibodies from MB-003 and ZMAb. Our results illuminate key and recurring sites of vulnerability on the EBOV glycoprotein and provide a structural rationale for the efficacy of ZMapp. Interestingly, two of its components recognize overlapping epitopes and compete with each other for binding. Going forward, this work now provides a basis for strategic selection of next-generation antibody cocktails against Ebola and related viruses and a model for predicting the impact of ZMapp on potential escape mutations in ongoing or future Ebola outbreaks. PMID:25404321

  20. Single-cell polyadenylation site mapping reveals 3′ isoform choice variability

    PubMed Central

    Velten, Lars; Anders, Simon; Pekowska, Aleksandra; Järvelin, Aino I; Huber, Wolfgang; Pelechano, Vicent; Steinmetz, Lars M

    2015-01-01

    Cell-to-cell variability in gene expression is important for many processes in biology, including embryonic development and stem cell homeostasis. While heterogeneity of gene expression levels has been extensively studied, less attention has been paid to mRNA polyadenylation isoform choice. 3′ untranslated regions regulate mRNA fate, and their choice is tightly controlled during development, but how 3′ isoform usage varies within genetically and developmentally homogeneous cell populations has not been explored. Here, we perform genome-wide quantification of polyadenylation site usage in single mouse embryonic and neural stem cells using a novel single-cell transcriptomic method, BATSeq. By applying BATBayes, a statistical framework for analyzing single-cell isoform data, we find that while the developmental state of the cell globally determines isoform usage, single cells from the same state differ in the choice of isoforms. Notably this variation exceeds random selection with equal preference in all cells, a finding that was confirmed by RNA FISH data. Variability in 3′ isoform choice has potential implications on functional cell-to-cell heterogeneity as well as utility in resolving cell populations. PMID:26040288

  1. Structure-based mutagenesis reveals the albumin-binding site of the neonatal Fc receptor

    PubMed Central

    Andersen, Jan Terje; Dalhus, Bjørn; Cameron, Jason; Daba, Muluneh Bekele; Plumridge, Andrew; Evans, Leslie; Brennan, Stephan O.; Gunnarsen, Kristin Støen; Bjørås, Magnar; Sleep, Darrell; Sandlie, Inger

    2012-01-01

    Albumin is the most abundant protein in blood where it has a pivotal role as a transporter of fatty acids and drugs. Like IgG, albumin has long serum half-life, protected from degradation by pH-dependent recycling mediated by interaction with the neonatal Fc receptor, FcRn. Although the FcRn interaction with IgG is well characterized at the atomic level, its interaction with albumin is not. Here we present structure-based modelling of the FcRn–albumin complex, supported by binding analysis of site-specific mutants, providing mechanistic evidence for the presence of pH-sensitive ionic networks at the interaction interface. These networks involve conserved histidines in both FcRn and albumin domain III. Histidines also contribute to intramolecular interactions that stabilize the otherwise flexible loops at both the interacting surfaces. Molecular details of the FcRn–albumin complex may guide the development of novel albumin variants with altered serum half-life as carriers of drugs. PMID:22215085

  2. Fractionation of a Herbal Antidiarrheal Medicine Reveals Eugenol as an Inhibitor of Ca2+-Activated Cl− Channel TMEM16A

    PubMed Central

    Yao, Zhen; Namkung, Wan; Ko, Eun A.; Park, Jinhong; Tradtrantip, Lukmanee; Verkman, A. S.

    2012-01-01

    The Ca2+-activated Cl− channel TMEM16A is involved in epithelial fluid secretion, smooth muscle contraction and neurosensory signaling. We identified a Thai herbal antidiarrheal formulation that inhibited TMEM16A Cl− conductance. C18-reversed-phase HPLC fractionation of the herbal formulation revealed >98% of TMEM16A inhibition activity in one out of approximately 20 distinct peaks. The purified, active compound was identified as eugenol (4-allyl-2-methoxyphenol), the major component of clove oil. Eugenol fully inhibited TMEM16A Cl− conductance with single-site IC50∼150 µM. Eugenol inhibition of TMEM16A in interstitial cells of Cajal produced strong inhibition of intestinal contraction in mouse ileal segments. TMEM16A Cl− channel inhibition adds to the list of eugenol molecular targets and may account for some of its biological activities. PMID:22666439

  3. Fractionation of a herbal antidiarrheal medicine reveals eugenol as an inhibitor of Ca2+-Activated Cl- channel TMEM16A.

    PubMed

    Yao, Zhen; Namkung, Wan; Ko, Eun A; Park, Jinhong; Tradtrantip, Lukmanee; Verkman, A S

    2012-01-01

    The Ca(2+)-activated Cl(-) channel TMEM16A is involved in epithelial fluid secretion, smooth muscle contraction and neurosensory signaling. We identified a Thai herbal antidiarrheal formulation that inhibited TMEM16A Cl(-) conductance. C18-reversed-phase HPLC fractionation of the herbal formulation revealed >98% of TMEM16A inhibition activity in one out of approximately 20 distinct peaks. The purified, active compound was identified as eugenol (4-allyl-2-methoxyphenol), the major component of clove oil. Eugenol fully inhibited TMEM16A Cl(-) conductance with single-site IC(50)~150 µM. Eugenol inhibition of TMEM16A in interstitial cells of Cajal produced strong inhibition of intestinal contraction in mouse ileal segments. TMEM16A Cl(-) channel inhibition adds to the list of eugenol molecular targets and may account for some of its biological activities. PMID:22666439

  4. Expression profiling of lymph nodes in tuberculosis patients reveal inflammatory milieu at site of infection

    PubMed Central

    Maji, Abhijit; Misra, Richa; Kumar Mondal, Anupam; Kumar, Dhirendra; Bajaj, Divya; Singhal, Anshika; Arora, Gunjan; Bhaduri, Asani; Sajid, Andaleeb; Bhatia, Sugandha; Singh, Sompal; Singh, Harshvardhan; Rao, Vivek; Dash, Debasis; Baby Shalini, E; Sarojini Michael, Joy; Chaudhary, Anil; Gokhale, Rajesh S.; Singh, Yogendra

    2015-01-01

    Extrapulmonary manifestations constitute 15 to 20% of tuberculosis cases, with lymph node tuberculosis (LNTB) as the most common form of infection. However, diagnosis and treatment advances are hindered by lack of understanding of LNTB biology. To identify host response, Mycobacterium tuberculosis infected lymph nodes from LNTB patients were studied by means of transcriptomics and quantitative proteomics analyses. The selected targets obtained by comparative analyses were validated by quantitative PCR and immunohistochemistry. This approach provided expression data for 8,728 transcripts and 102 proteins, differentially regulated in the infected human lymph node. Enhanced inflammation with upregulation of T-helper1-related genes, combined with marked dysregulation of matrix metalloproteinases, indicates tissue damage due to high immunoactivity at infected niche. This expression signature was accompanied by significant upregulation of an immunoregulatory gene, leukotriene A4 hydrolase, at both transcript and protein levels. Comparative transcriptional analyses revealed LNTB-specific perturbations. In contrast to pulmonary TB-associated increase in lipid metabolism, genes involved in fatty-acid metabolism were found to be downregulated in LNTB suggesting differential lipid metabolic signature. This study investigates the tissue molecular signature of LNTB patients for the first time and presents findings that indicate the possible mechanism of disease pathology through dysregulation of inflammatory and tissue-repair processes. PMID:26469538

  5. Methyl substitution of a rexinoid agonist improves potency and reveals site of lipid toxicity.

    PubMed

    Atigadda, Venkatram R; Xia, Gang; Desphande, Anil; Boerma, LeeAnn J; Lobo-Ruppert, Susan; Grubbs, Clinton J; Smith, Craig D; Brouillette, Wayne J; Muccio, Donald D

    2014-06-26

    (2E,4E,6Z,8E)-8-(3',4'-Dihydro-1'(2'H)-naphthalen-1'-ylidene)-3,7-dimethyl-2,4,6-octatrienoic acid, 9cUAB30, is a selective rexinoid that displays substantial chemopreventive capacity with little toxicity. 4-Methyl-UAB30, an analogue of 9cUAB30, is a potent RXR agonist but caused increased lipid biosynthesis unlike 9cUAB30. To evaluate how methyl substitution influenced potency and lipid biosynthesis, we synthesized four 9cUAB30 homologues with methyl substitutions at the 5-, 6-, 7-, or 8-position of the tetralone ring. The syntheses and biological evaluations of these new analogues are reported here along with the X-ray crystal structures of each homologue bound to the ligand binding domain of hRXRα. We demonstrate that each homologue of 9cUAB30 is a more potent agonist, but only the 7-methyl-9cUAB30 caused severe hyperlipidemia in rats. On the basis of the X-ray crystal structures of these new rexinoids and bexarotene (Targretin) bound to hRXRα-LBD, we reveal that each rexinoid, which induced hyperlipidemia, had methyl groups that interacted with helix 7 residues of the LBD. PMID:24801499

  6. Methyl Substitution of a Rexinoid Agonist Improves Potency and Reveals Site of Lipid Toxicity

    PubMed Central

    2015-01-01

    (2E,4E,6Z,8E)-8-(3′,4′-Dihydro-1′(2′H)-naphthalen-1′-ylidene)-3,7-dimethyl-2,4,6-octatrienoic acid, 9cUAB30, is a selective rexinoid that displays substantial chemopreventive capacity with little toxicity. 4-Methyl-UAB30, an analogue of 9cUAB30, is a potent RXR agonist but caused increased lipid biosynthesis unlike 9cUAB30. To evaluate how methyl substitution influenced potency and lipid biosynthesis, we synthesized four 9cUAB30 homologues with methyl substitutions at the 5-, 6-, 7-, or 8-position of the tetralone ring. The syntheses and biological evaluations of these new analogues are reported here along with the X-ray crystal structures of each homologue bound to the ligand binding domain of hRXRα. We demonstrate that each homologue of 9cUAB30 is a more potent agonist, but only the 7-methyl-9cUAB30 caused severe hyperlipidemia in rats. On the basis of the X-ray crystal structures of these new rexinoids and bexarotene (Targretin) bound to hRXRα-LBD, we reveal that each rexinoid, which induced hyperlipidemia, had methyl groups that interacted with helix 7 residues of the LBD. PMID:24801499

  7. Deletion of CFTR Translation Start Site Reveals Functional Isoforms of the Protein in CF Patients

    PubMed Central

    Ramalho, Anabela S.; Lewandowska, Marzena A.; Farinha, Carlos M.; Mendes, Filipa; Gonçalves, Juan; Barreto, Celeste; Harris, Ann; Amaral, Margarida D.

    2009-01-01

    Background/Aims: Mutations in the CFTR gene cause Cystic Fibrosis (CF) the most common life-threatening autosomal recessive disease affecting Caucasians. We identified a CFTR mutation (c.120del23) abolishing the normal translation initiation codon, which occurs in two Portuguese CF patients. This study aims at functionally characterizing the effect of this novel mutation. Methods: RNA and protein techniques were applied to both native tissues from CF patients and recombinant cells expressing CFTR constructs to determine whether c.120del23 allows CFTR protein production through usage of alternative internal codons, and to characterize the putative truncated CFTR form(s). Results: Our data show that two shorter forms of CFTR protein are produced when the initiation translation codon is deleted indicating usage of internal initiation codons. The N-truncated CFTR generated by this mutation has decreased stability, very low processing efficiency, and drastically reduced function. Analysis of mutants of four methionine codons downstream to M1 (M82, M150, M152, M156) revealed that each of the codons M150/M152/M156 (exon 4) can mediate CFTR alternative translation. Conclusions: The CFTR N-terminus has an important role in avoiding CFTR turnover and in rendering effective its plasma membrane traffic. These data correlate well with the severe clinical phenotype of CF patients bearing the c.120del23 mutation. PMID:19910674

  8. Thiolactomycin inhibits D-aspartate oxidase: a novel approach to probing the active site environment.

    PubMed

    Katane, Masumi; Saitoh, Yasuaki; Hanai, Toshihiko; Sekine, Masae; Furuchi, Takemitsu; Koyama, Nobuhiro; Nakagome, Izumi; Tomoda, Hiroshi; Hirono, Shuichi; Homma, Hiroshi

    2010-10-01

    D-Aspartate oxidase (DDO) and D-amino acid oxidase (DAO) are flavin adenine dinucleotide (FAD)-containing flavoproteins that catalyze the oxidative deamination of D-amino acids. While several functionally and structurally important amino acid residues have been identified in the DAO protein, little is known about the structure-function relationships of DDO. In the search for a potent DDO inhibitor as a novel tool for investigating its structure-function relationships, a large number of biologically active compounds of microbial origin were screened for their ability to inhibit the enzymatic activity of mouse DDO. We discovered several compounds that inhibited the activity of mouse DDO, and one of the compounds identified, thiolactomycin (TLM), was then characterized and evaluated as a novel DDO inhibitor. TLM reversibly inhibited the activity of mouse DDO with a mixed type of inhibition more efficiently than meso-tartrate and malonate, known competitive inhibitors of mammalian DDOs. The selectivity of TLM was investigated using various DDOs and DAOs, and it was found that TLM inhibits not only DDO, but also DAO. Further experiments with apoenzymes of DDO and DAO revealed that TLM is most likely to inhibit the activities of DDO and DAO by competition with both the substrate and the coenzyme, FAD. Structural models of mouse DDO/TLM complexes supported this finding. The binding mode of TLM to DDO was validated further by site-directed mutagenesis of an active site residue, Arg-237. Collectively, our findings show that TLM is a novel, active site-directed DDO inhibitor that will be useful for elucidating the molecular details of the active site environment of DDO. PMID:20603179

  9. Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels

    PubMed Central

    Shaya, David; Findeisen, Felix; Abderemane-Ali, Fayal; Arrigoni, Cristina; Wong, Stephanie; Nurva, Shailika Reddy; Loussouarn, Gildas; Minor, Daniel L.

    2013-01-01

    Voltage-gated sodium channels (NaVs) are central elements of cellular excitation. Notwithstanding advances from recent bacterial NaV (BacNaV) structures, key questions about gating and ion selectivity remain. Here, we present a closed conformation of NaVAe1p, a pore-only BacNaV derived from NaVAe1, a BacNaV from the arsenite oxidizer Alkalilimnicola ehrlichei found in Mono Lake, California, that provides insight into both fundamental properties. The structure reveals a pore domain in which the pore-lining S6 helix connects to a helical cytoplasmic tail. Electrophysiological studies of full-length BacNaVs show that two elements defined by the NaVAe1p structure, an S6 activation gate position and the cytoplasmic tail ‘neck’, are central to BacNaV gating. The structure also reveals the selectivity filter ion entry site, termed the ‘outer ion’ site. Comparison with mammalian voltage-gated calcium channel (CaV) selectivity filters, together with functional studies shows that this site forms a previously unknown determinant of CaV high affinity calcium binding. Our findings underscore commonalities between BacNaVs and eukaryotic voltage-gated channels and provide a framework for understanding gating and ion permeation in this superfamily. PMID:24120938

  10. A widespread distribution of genomic CeMyoD binding sites revealed and cross validated by ChIP-Chip and ChIP-Seq techniques.

    PubMed

    Lei, Haiyan; Fukushige, Tetsunari; Niu, Wei; Sarov, Mihail; Reinke, Valerie; Krause, Michael

    2010-01-01

    Identifying transcription factor binding sites genome-wide using chromatin immunoprecipitation (ChIP)-based technology is becoming an increasingly important tool in addressing developmental questions. However, technical problems associated with factor abundance and suitable ChIP reagents are common obstacles to these studies in many biological systems. We have used two completely different, widely applicable methods to determine by ChIP the genome-wide binding sites of the master myogenic regulatory transcription factor HLH-1 (CeMyoD) in C. elegans embryos. The two approaches, ChIP-seq and ChIP-chip, yield strongly overlapping results revealing that HLH-1 preferentially binds to promoter regions of genes enriched for E-box sequences (CANNTG), known binding sites for this well-studied class of transcription factors. HLH-1 binding sites were enriched upstream of genes known to be expressed in muscle, consistent with its role as a direct transcriptional regulator. HLH-1 binding was also detected at numerous sites unassociated with muscle gene expression, as has been previously described for its mouse homolog MyoD. These binding sites may reflect several additional functions for HLH-1, including its interactions with one or more co-factors to activate (or repress) gene expression or a role in chromatin organization distinct from direct transcriptional regulation of target genes. Our results also provide a comparison of ChIP methodologies that can overcome limitations commonly encountered in these types of studies while highlighting the complications of assigning in vivo functions to identified target sites. PMID:21209968

  11. A Widespread Distribution of Genomic CeMyoD Binding Sites Revealed and Cross Validated by ChIP-Chip and ChIP-Seq Techniques

    PubMed Central

    Lei, Haiyan; Fukushige, Tetsunari; Niu, Wei; Sarov, Mihail; Reinke, Valerie; Krause, Michael

    2010-01-01

    Identifying transcription factor binding sites genome-wide using chromatin immunoprecipitation (ChIP)-based technology is becoming an increasingly important tool in addressing developmental questions. However, technical problems associated with factor abundance and suitable ChIP reagents are common obstacles to these studies in many biological systems. We have used two completely different, widely applicable methods to determine by ChIP the genome-wide binding sites of the master myogenic regulatory transcription factor HLH-1 (CeMyoD) in C. elegans embryos. The two approaches, ChIP-seq and ChIP-chip, yield strongly overlapping results revealing that HLH-1 preferentially binds to promoter regions of genes enriched for E-box sequences (CANNTG), known binding sites for this well-studied class of transcription factors. HLH-1 binding sites were enriched upstream of genes known to be expressed in muscle, consistent with its role as a direct transcriptional regulator. HLH-1 binding was also detected at numerous sites unassociated with muscle gene expression, as has been previously described for its mouse homolog MyoD. These binding sites may reflect several additional functions for HLH-1, including its interactions with one or more co-factors to activate (or repress) gene expression or a role in chromatin organization distinct from direct transcriptional regulation of target genes. Our results also provide a comparison of ChIP methodologies that can overcome limitations commonly encountered in these types of studies while highlighting the complications of assigning in vivo functions to identified target sites. PMID:21209968

  12. The two active sites in human branched-chain alpha-keto acid dehydrogenase operate independently without an obligatory alternating-site mechanism.

    PubMed

    Li, Jun; Machius, Mischa; Chuang, Jacinta L; Wynn, R Max; Chuang, David T

    2007-04-20

    A long standing controversy is whether an alternating activesite mechanism occurs during catalysis in thiamine diphosphate (ThDP)-dependent enzymes. We address this question by investigating the ThDP-dependent decarboxylase/dehydrogenase (E1b) component of the mitochondrial branched-chain alpha-keto acid dehydrogenase complex (BCKDC). Our crystal structure reveals that conformations of the two active sites in the human E1b heterotetramer harboring the reaction intermediate are identical. Acidic residues in the core of the E1b heterotetramer, which align with the proton-wire residues proposed to participate in active-site communication in the related pyruvate dehydrogenase from Bacillus stearothermophilus, are mutated. Enzyme kinetic data show that, except in a few cases because of protein misfolding, these alterations are largely without effect on overall activity of BCKDC, ruling out the requirement of a proton-relay mechanism in E1b. BCKDC overall activity is nullified at 50% phosphorylation of E1b, but it is restored to nearly half of the pre-phosphorylation level after dissociation and reconstitution of BCKDC with the same phosphorylated E1b. The results suggest that the abolition of overall activity likely results from the specific geometry of the half-phosphorylated E1b in the BCKDC assembly and not due to a disruption of the alternating active-site mechanism. Finally, we show that a mutant E1b containing only one functional active site exhibits half of the wild-type BCKDC activity, which directly argues against the obligatory communication between active sites. The above results provide evidence that the two active sites in the E1b heterotetramer operate independently during the ThDP-dependent decarboxylation reaction. PMID:17329260

  13. iTRAQ-based chromatin proteomic screen reveals CHD4-dependent recruitment of MBD2 to sites of DNA damage.

    PubMed

    Sun, Yazhou; Yang, Yeran; Shen, Hongyan; Huang, Min; Wang, Zhifeng; Liu, Yang; Zhang, Hui; Tang, Tie-Shan; Guo, Caixia

    2016-02-26

    Many DNA repair proteins can be recruited to DNA damage sites upon genotoxic stress. In order to search potential DNA repair proteins involved in cellular response to mitomycin C treatment, we utilized a quantitative proteome to uncover proteins that manifest differentially enrichment in the chromatin fraction after DNA damage. 397 proteins were identified, among which many factors were shown to be involved in chromatin modification and DNA repair by GO analysis. Specifically, methyl-CpG-binding domain protein 2 (MBD2) is revealed to be recruited to DNA damage sites after laser microirradiation, which was mediated through MBD domain and MBD2 C-terminus. Additionally, the recruitment of MBD2 is dependent on poly (ADP-ribose) and chromodomain helicase DNA-binding protein 4 (CHD4). Moreover, knockdown of MBD2 by CRISPR-Cas9 technique results in MMC sensitivity in mammalian cells. PMID:26827827

  14. Metaproteomics and metabolomics analyses of chronically petroleum-polluted sites reveal the importance of general anaerobic processes uncoupled with degradation.

    PubMed

    Bargiela, Rafael; Herbst, Florian-Alexander; Martínez-Martínez, Mónica; Seifert, Jana; Rojo, David; Cappello, Simone; Genovese, María; Crisafi, Francesca; Denaro, Renata; Chernikova, Tatyana N; Barbas, Coral; von Bergen, Martin; Yakimov, Michail M; Ferrer, Manuel; Golyshin, Peter N

    2015-10-01

    Crude oil is one of the most important natural assets for humankind, yet it is a major environmental pollutant, notably in marine environments. One of the largest crude oil polluted areas in the word is the semi-enclosed Mediterranean Sea, in which the metabolic potential of indigenous microbial populations towards the large-scale chronic pollution is yet to be defined, particularly in anaerobic and micro-aerophilic sites. Here, we provide an insight into the microbial metabolism in sediments from three chronically polluted marine sites along the coastline of Italy: the Priolo oil terminal/refinery site (near Siracuse, Sicily), harbour of Messina (Sicily) and shipwreck of MT Haven (near Genoa). Using shotgun metaproteomics and community metabolomics approaches, the presence of 651 microbial proteins and 4776 metabolite mass features have been detected in these three environments, revealing a high metabolic heterogeneity between the investigated sites. The proteomes displayed the prevalence of anaerobic metabolisms that were not directly related with petroleum biodegradation, indicating that in the absence of oxygen, biodegradation is significantly suppressed. This suppression was also suggested by examining the metabolome patterns. The proteome analysis further highlighted the metabolic coupling between methylotrophs and sulphate reducers in oxygen-depleted petroleum-polluted sediments. PMID:26201687

  15. Metaproteomics and metabolomics analyses of chronically petroleum‐polluted sites reveal the importance of general anaerobic processes uncoupled with degradation

    PubMed Central

    Bargiela, Rafael; Herbst, Florian‐Alexander; Martínez‐Martínez, Mónica; Seifert, Jana; Rojo, David; Cappello, Simone; Genovese, María; Crisafi, Francesca; Denaro, Renata; Chernikova, Tatyana N.; Barbas, Coral; von Bergen, Martin; Yakimov, Michail M.; Golyshin, Peter N.

    2015-01-01

    Crude oil is one of the most important natural assets for humankind, yet it is a major environmental pollutant, notably in marine environments. One of the largest crude oil polluted areas in the word is the semi‐enclosed Mediterranean Sea, in which the metabolic potential of indigenous microbial populations towards the large‐scale chronic pollution is yet to be defined, particularly in anaerobic and micro‐aerophilic sites. Here, we provide an insight into the microbial metabolism in sediments from three chronically polluted marine sites along the coastline of Italy: the Priolo oil terminal/refinery site (near Siracuse, Sicily), harbour of Messina (Sicily) and shipwreck of MT Haven (near Genoa). Using shotgun metaproteomics and community metabolomics approaches, the presence of 651 microbial proteins and 4776 metabolite mass features have been detected in these three environments, revealing a high metabolic heterogeneity between the investigated sites. The proteomes displayed the prevalence of anaerobic metabolisms that were not directly related with petroleum biodegradation, indicating that in the absence of oxygen, biodegradation is significantly suppressed. This suppression was also suggested by examining the metabolome patterns. The proteome analysis further highlighted the metabolic coupling between methylotrophs and sulphate reducers in oxygen‐depleted petroleum‐polluted sediments. PMID:26201687

  16. Identification of covalent active site inhibitors of dengue virus protease

    PubMed Central

    Koh-Stenta, Xiaoying; Joy, Joma; Wang, Si Fang; Kwek, Perlyn Zekui; Wee, John Liang Kuan; Wan, Kah Fei; Gayen, Shovanlal; Chen, Angela Shuyi; Kang, CongBao; Lee, May Ann; Poulsen, Anders; Vasudevan, Subhash G; Hill, Jeffrey; Nacro, Kassoum

    2015-01-01

    Dengue virus (DENV) protease is an attractive target for drug development; however, no compounds have reached clinical development to date. In this study, we utilized a potent West Nile virus protease inhibitor of the pyrazole ester derivative class as a chemical starting point for DENV protease drug development. Compound potency and selectivity for DENV protease were improved through structure-guided small molecule optimization, and protease-inhibitor binding interactions were validated biophysically using nuclear magnetic resonance. Our work strongly suggests that this class of compounds inhibits flavivirus protease through targeted covalent modification of active site serine, contrary to an allosteric binding mechanism as previously described. PMID:26677315

  17. Site-directed mutants of human RECQ1 reveal functional importance of the zinc binding domain.

    PubMed

    Sami, Furqan; Gary, Ronald K; Fang, Yayin; Sharma, Sudha

    2016-08-01

    RecQ helicases are a highly conserved family of ATP-dependent DNA-unwinding enzymes with key roles in DNA replication and repair in all kingdoms of life. The RECQ1 gene encodes the most abundant RecQ homolog in humans. We engineered full-length RECQ1 harboring point mutations in the zinc-binding motif (amino acids 419-480) within the conserved RecQ-specific-C-terminal (RQC) domain known to be critical for diverse biochemical and cellular functions of RecQ helicases. Wild-type RECQ1 contains a zinc ion. Substitution of three of the four conserved cysteine residues that coordinate zinc severely impaired the ATPase and DNA unwinding activities but retained DNA binding and single strand DNA annealing activities. Furthermore, alteration of these residues attenuated zinc binding and significantly changed the overall conformation of full-length RECQ1 protein. In contrast, substitution of cysteine residue at position 471 resulted in a wild-type like RECQ1 protein. Differential contribution of the conserved cysteine residues to the structure and functions of the RECQ1 protein is also inferred by homology modeling. Overall, our results indicate that the zinc binding motif in the RQC domain of RECQ1 is a key structural element that is essential for the structure-functions of RECQ1. Given the recent association of RECQ1 mutations with breast cancer, these results will contribute to understanding the molecular basis of RECQ1 functions in cancer etiology. PMID:27248010

  18. Evolution of a designed retro-aldolase leads to complete active site remodeling

    PubMed Central

    Giger, Lars; Caner, Sami; Obexer, Richard; Kast, Peter; Baker, David; Ban, Nenad; Hilvert, Donald

    2013-01-01

    Evolutionary advances are often fueled by unanticipated innovation. Directed evolution of a computationally designed enzyme suggests that dramatic molecular changes can also drive the optimization of primitive protein active sites. The specific activity of an artificial retro-aldolase was boosted >4,400 fold by random mutagenesis and screening, affording catalytic efficiencies approaching those of natural enzymes. However, structural and mechanistic studies reveal that the engineered catalytic apparatus, consisting of a reactive lysine and an ordered water molecule, was unexpectedly abandoned in favor of a new lysine residue in a substrate binding pocket created during the optimization process. Structures of the initial in silico design, a mechanistically promiscuous intermediate, and one of the most evolved variants highlight the importance of loop mobility and supporting functional groups in the emergence of the new catalytic center. Such internal competition between alternative reactive sites may have characterized the early evolution of many natural enzymes. PMID:23748672

  19. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer.

    PubMed

    Dinpajooh, Mohammadhasan; Martin, Daniel R; Matyushov, Dmitry V

    2016-01-01

    Enzymes in biology's energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work. PMID:27306204

  20. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer

    NASA Astrophysics Data System (ADS)

    Dinpajooh, Mohammadhasan; Martin, Daniel R.; Matyushov, Dmitry V.

    2016-06-01

    Enzymes in biology’s energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work.

  1. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer

    PubMed Central

    Dinpajooh, Mohammadhasan; Martin, Daniel R.; Matyushov, Dmitry V.

    2016-01-01

    Enzymes in biology’s energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work. PMID:27306204

  2. Genome Wide Binding Site Analysis Reveals Transcriptional Coactivation of Cytokinin-Responsive Genes by DELLA Proteins

    PubMed Central

    Marín-de la Rosa, Nora; Pfeiffer, Anne; Hill, Kristine; Locascio, Antonella; Bhalerao, Rishikesh P.; Miskolczi, Pal; Grønlund, Anne L.; Wanchoo-Kohli, Aakriti; Thomas, Stephen G.; Bennett, Malcolm J.; Lohmann, Jan U.; Blázquez, Miguel A.; Alabadí, David

    2015-01-01

    The ability of plants to provide a plastic response to environmental cues relies on the connectivity between signaling pathways. DELLA proteins act as hubs that relay environmental information to the multiple transcriptional circuits that control growth and development through physical interaction with transcription factors from different families. We have analyzed the presence of one DELLA protein at the Arabidopsis genome by chromatin immunoprecipitation coupled to large-scale sequencing and we find that it binds at the promoters of multiple genes. Enrichment analysis shows a strong preference for cis elements recognized by specific transcription factor families. In particular, we demonstrate that DELLA proteins are recruited by type-B ARABIDOPSIS RESPONSE REGULATORS (ARR) to the promoters of cytokinin-regulated genes, where they act as transcriptional co-activators. The biological relevance of this mechanism is underpinned by the necessity of simultaneous presence of DELLAs and ARRs to restrict root meristem growth and to promote photomorphogenesis. PMID:26134422

  3. The copper active site of CBM33 polysaccharide oxygenases.

    PubMed

    Hemsworth, Glyn R; Taylor, Edward J; Kim, Robbert Q; Gregory, Rebecca C; Lewis, Sally J; Turkenburg, Johan P; Parkin, Alison; Davies, Gideon J; Walton, Paul H

    2013-04-24

    The capacity of metal-dependent fungal and bacterial polysaccharide oxygenases, termed GH61 and CBM33, respectively, to potentiate the enzymatic degradation of cellulose opens new possibilities for the conversion of recalcitrant biomass to biofuels. GH61s have already been shown to be unique metalloenzymes containing an active site with a mononuclear copper ion coordinated by two histidines, one of which is an unusual τ-N-methylated N-terminal histidine. We now report the structural and spectroscopic characterization of the corresponding copper CBM33 enzymes. CBM33 binds copper with high affinity at a mononuclear site, significantly stabilizing the enzyme. X-band EPR spectroscopy of Cu(II)-CBM33 shows a mononuclear type 2 copper site with the copper ion in a distorted axial coordination sphere, into which azide will coordinate as evidenced by the concomitant formation of a new absorption band in the UV/vis spectrum at 390 nm. The enzyme's three-dimensional structure contains copper, which has been photoreduced to Cu(I) by the incident X-rays, confirmed by X-ray absorption/fluorescence studies of both aqueous solution and intact crystals of Cu-CBM33. The single copper(I) ion is ligated in a T-shaped configuration by three nitrogen atoms from two histidine side chains and the amino terminus, similar to the endogenous copper coordination geometry found in fungal GH61. PMID:23540833

  4. The Copper Active Site of CBM33 Polysaccharide Oxygenases

    PubMed Central

    2013-01-01

    The capacity of metal-dependent fungal and bacterial polysaccharide oxygenases, termed GH61 and CBM33, respectively, to potentiate the enzymatic degradation of cellulose opens new possibilities for the conversion of recalcitrant biomass to biofuels. GH61s have already been shown to be unique metalloenzymes containing an active site with a mononuclear copper ion coordinated by two histidines, one of which is an unusual τ-N-methylated N-terminal histidine. We now report the structural and spectroscopic characterization of the corresponding copper CBM33 enzymes. CBM33 binds copper with high affinity at a mononuclear site, significantly stabilizing the enzyme. X-band EPR spectroscopy of Cu(II)-CBM33 shows a mononuclear type 2 copper site with the copper ion in a distorted axial coordination sphere, into which azide will coordinate as evidenced by the concomitant formation of a new absorption band in the UV/vis spectrum at 390 nm. The enzyme’s three-dimensional structure contains copper, which has been photoreduced to Cu(I) by the incident X-rays, confirmed by X-ray absorption/fluorescence studies of both aqueous solution and intact crystals of Cu-CBM33. The single copper(I) ion is ligated in a T-shaped configuration by three nitrogen atoms from two histidine side chains and the amino terminus, similar to the endogenous copper coordination geometry found in fungal GH61. PMID:23540833

  5. Structure of the Pseudokinase VRK3 Reveals a Degraded Catalytic Site, a Highly Conserved Kinase Fold, and a Putative Regulatory Binding Site

    PubMed Central

    Scheeff, Eric D.; Eswaran, Jeyanthy; Bunkoczi, Gabor; Knapp, Stefan; Manning, Gerard

    2009-01-01

    Summary About 10% of all protein kinases are predicted to be enzymatically inactive pseudokinases, but the structural details of kinase inactivation have remained unclear. We present the first structure of a pseudokinase, VRK3, and that of its closest active relative, VRK2. Profound changes to the active site region underlie the loss of catalytic activity, and VRK3 cannot bind ATP because of residue substitutions in the binding pocket. However, VRK3 still shares striking structural similarity with VRK2, and appears to be locked in a pseudoactive conformation. VRK3 also conserves residue interactions that are surprising in the absence of enzymatic function; these appear to play important architectural roles required for the residual functions of VRK3. Remarkably, VRK3 has an “inverted” pattern of sequence conservation: although the active site is poorly conserved, portions of the molecular surface show very high conservation, suggesting that they form key interactions that explain the evolutionary retention of VRK3. PMID:19141289

  6. An Active Site Water Network in the Plasminogen Activator Pla from Yersinia pestis

    SciTech Connect

    Eren, Elif; Murphy, Megan; Goguen, Jon; van den Berg, Bert

    2010-08-13

    The plasminogen activator Pla from Yersinia pestis is an outer membrane protease (omptin) that is important for the virulence of plague. Here, we present the high-resolution crystal structure of wild-type, enzymatically active Pla at 1.9 {angstrom}. The structure shows a water molecule located between active site residues D84 and H208, which likely corresponds to the nucleophilic water. A number of other water molecules are present in the active site, linking residues important for enzymatic activity. The R211 sidechain in loop L4 is close to the nucleophilic water and possibly involved in the stabilization of the oxyanion intermediate. Subtle conformational changes of H208 result from the binding of lipopolysaccharide to the outside of the barrel, explaining the unusual dependence of omptins on lipopolysaccharide for activity. The Pla structure suggests a model for the interaction with plasminogen substrate and provides a more detailed understanding of the catalytic mechanism of omptin proteases.

  7. Target-classification approach applied to active UXO sites

    NASA Astrophysics Data System (ADS)

    Shubitidze, F.; Fernández, J. P.; Shamatava, Irma; Barrowes, B. E.; O'Neill, K.

    2013-06-01

    This study is designed to illustrate the discrimination performance at two UXO active sites (Oklahoma's Fort Sill and the Massachusetts Military Reservation) of a set of advanced electromagnetic induction (EMI) inversion/discrimination models which include the orthonormalized volume magnetic source (ONVMS), joint diagonalization (JD), and differential evolution (DE) approaches and whose power and flexibility greatly exceed those of the simple dipole model. The Fort Sill site is highly contaminated by a mix of the following types of munitions: 37-mm target practice tracers, 60-mm illumination mortars, 75-mm and 4.5'' projectiles, 3.5'', 2.36'', and LAAW rockets, antitank mine fuzes with and without hex nuts, practice MK2 and M67 grenades, 2.5'' ballistic windshields, M2A1-mines with/without bases, M19-14 time fuzes, and 40-mm practice grenades with/without cartridges. The site at the MMR site contains targets of yet different sizes. In this work we apply our models to EMI data collected using the MetalMapper (MM) and 2 × 2 TEMTADS sensors. The data for each anomaly are inverted to extract estimates of the extrinsic and intrinsic parameters associated with each buried target. (The latter include the total volume magnetic source or NVMS, which relates to size, shape, and material properties; the former includes location, depth, and orientation). The estimated intrinsic parameters are then used for classification performed via library matching and the use of statistical classification algorithms; this process yielded prioritized dig-lists that were submitted to the Institute for Defense Analyses (IDA) for independent scoring. The models' classification performance is illustrated and assessed based on these independent evaluations.

  8. Differential Active Site Loop Conformations Mediate Promiscuous Activities in the Lactonase SsoPox

    PubMed Central

    Elias, Mikael; Chabriere, Eric

    2013-01-01

    Enzymes are proficient catalysts that enable fast rates of Michaelis-complex formation, the chemical step and products release. These different steps may require different conformational states of the active site that have distinct binding properties. Moreover, the conformational flexibility of the active site mediates alternative, promiscuous functions. Here we focused on the lactonase SsoPox from Sulfolobus solfataricus. SsoPox is a native lactonase endowed with promiscuous phosphotriesterase activity. We identified a position in the active site loop (W263) that governs its flexibility, and thereby affects the substrate specificity of the enzyme. We isolated two different sets of substitutions at position 263 that induce two distinct conformational sampling of the active loop and characterized the structural and kinetic effects of these substitutions. These sets of mutations selectively and distinctly mediate the improvement of the promiscuous phosphotriesterase and oxo-lactonase activities of SsoPox by increasing active-site loop flexibility. These observations corroborate the idea that conformational diversity governs enzymatic promiscuity and is a key feature of protein evolvability. PMID:24086491

  9. Spectroscopic Definition of the Ferroxidase Site in M Ferritin: Comparison of Binuclear Substrate vs. Cofactor Active Sites

    PubMed Central

    Schwartz, Jennifer K.; Liu, Xiaofeng S.; Tosha, Takehiko; Theil, Elizabeth C.; Solomon, Edward I.

    2008-01-01

    Maxi ferritins, 24 subunit protein nanocages, are essential in humans, plants, bacteria, and other animals for the concentration and storage of iron as hydrated ferric oxide, while minimizing free radical generation or use by pathogens. Formation of the precursors to these ferric oxides is catalyzed at a non-heme biferrous substrate site, which has some parallels with the cofactor sites in other biferrous enzymes. A combination of circular dichroism (CD), magnetic circular dichroism (MCD), and variable-temperature, variable-field MCD (VTVH MCD) has been used to probe Fe(II) binding to the substrate active site in frog M ferritin. These data determined that the active site within each subunit consists of two inequivalent five-coordinate (5C) ferrous centers that are weakly anti-ferromagnetically coupled, consistent with a μ-1,3 carboxylate bridge. The active site ligand set is unusual and likely includes a terminal water bound to each Fe(II) center. The Fe(II) ions bind to the active sites in a concerted manner, and cooperativity among the sites in each subunit is observed, potentially providing a mechanism for the control of ferritin iron loading. Differences in geometric and electronic structure – including a weak ligand field, availability of two water ligands at the biferrous substrate site, and the single carboxylate bridge in ferritin – coincide with the divergent reaction pathways observed between this substrate site and the previously studied cofactor active sites. PMID:18576633

  10. Eel calcitonin binding site distribution and antinociceptive activity in rats

    SciTech Connect

    Guidobono, F.; Netti, C.; Sibilia, V.; Villa, I.; Zamboni, A.; Pecile, A.

    1986-03-01

    The distribution of binding site for (/sup 125/I)-eel-calcitonin (ECT) to rat central nervous system, studied by an autoradiographic technique, showed concentrations of binding in the diencephalon, the brain stem and the spinal cord. Large accumulations of grains were seen in the hypothalamus, the amygdala, in the fasciculus medialis prosencephali, in the fasciculus longitudinalis medialis, in the ventrolateral part of the periventricular gray matter, in the lemniscus medialis and in the raphe nuclei. The density of grains in the reticular formation and in the nucleus tractus spinalis nervi trigemini was more moderate. In the spinal cord, grains were scattered throughout the dorsal horns. Binding of the ligand was displaced equally by cold ECT and by salmon CT(sCT), indicating that both peptides bind to the same receptors. Human CT was much weaker than sCT in displacing (/sup 125/I)-ECT binding. The administration of ECT into the brain ventricles of rats dose-dependently induced a significant and long-lasting enhancement of hot-plate latencies comparable with that obtained with sCT. The antinociceptive activity induced by ECT is compatible with the topographical distribution of binding sites for the peptide and is a further indication that fish CTs are active in the mammalian brain.

  11. High-Throughput Genotyping of Green Algal Mutants Reveals Random Distribution of Mutagenic Insertion Sites and Endonucleolytic Cleavage of Transforming DNA[W][OPEN

    PubMed Central

    Zhang, Ru; Patena, Weronika; Armbruster, Ute; Gang, Spencer S.; Blum, Sean R.; Jonikas, Martin C.

    2014-01-01

    A high-throughput genetic screening platform in a single-celled photosynthetic eukaryote would be a transformative addition to the plant biology toolbox. Here, we present ChlaMmeSeq (Chlamydomonas MmeI-based insertion site Sequencing), a tool for simultaneous mapping of tens of thousands of mutagenic insertion sites in the eukaryotic unicellular green alga Chlamydomonas reinhardtii. We first validated ChlaMmeSeq by in-depth characterization of individual insertion sites. We then applied ChlaMmeSeq to a mutant pool and mapped 11,478 insertions, covering 39% of annotated protein coding genes. We observe that insertions are distributed in a manner largely indistinguishable from random, indicating that mutants in nearly all genes can be obtained efficiently. The data reveal that sequence-specific endonucleolytic activities cleave the transforming DNA and allow us to propose a simple model to explain the origin of the poorly understood exogenous sequences that sometimes surround insertion sites. ChlaMmeSeq is quantitatively reproducible, enabling its use for pooled enrichment screens and for the generation of indexed mutant libraries. Additionally, ChlaMmeSeq allows genotyping of hits from Chlamydomonas screens on an unprecedented scale, opening the door to comprehensive identification of genes with roles in photosynthesis, algal lipid metabolism, the algal carbon-concentrating mechanism, phototaxis, the biogenesis and function of cilia, and other processes for which C. reinhardtii is a leading model system. PMID:24706510

  12. Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features

    PubMed Central

    Cayrou, Christelle; Coulombe, Philippe; Vigneron, Alice; Stanojcic, Slavica; Ganier, Olivier; Peiffer, Isabelle; Rivals, Eric; Puy, Aurore; Laurent-Chabalier, Sabine; Desprat, Romain; Méchali, Marcel

    2011-01-01

    In metazoans, thousands of DNA replication origins (Oris) are activated at each cell cycle. Their genomic organization and their genetic nature remain elusive. Here, we characterized Oris by nascent strand (NS) purification and a genome-wide analysis in Drosophila and mouse cells. We show that in both species most CpG islands (CGI) contain Oris, although methylation is nearly absent in Drosophila, indicating that this epigenetic mark is not crucial for defining the activated origin. Initiation of DNA synthesis starts at the borders of CGI, resulting in a striking bimodal distribution of NS, suggestive of a dual initiation event. Oris contain a unique nucleotide skew around NS peaks, characterized by G/T and C/A overrepresentation at the 5′ and 3′ of Ori sites, respectively. Repeated GC-rich elements were detected, which are good predictors of Oris, suggesting that common sequence features are part of metazoan Oris. In the heterochromatic chromosome 4 of Drosophila, Oris correlated with HP1 binding sites. At the chromosome level, regions rich in Oris are early replicating, whereas Ori-poor regions are late replicating. The genome-wide analysis was coupled with a DNA combing analysis to unravel the organization of Oris. The results indicate that Oris are in a large excess, but their activation does not occur at random. They are organized in groups of site-specific but flexible origins that define replicons, where a single origin is activated in each replicon. This organization provides both site specificity and Ori firing flexibility in each replicon, allowing possible adaptation to environmental cues and cell fates. PMID:21750104

  13. Synthesis of Isomeric Phosphoubiquitin Chains Reveals that Phosphorylation Controls Deubiquitinase Activity and Specificity.

    PubMed

    Huguenin-Dezot, Nicolas; De Cesare, Virginia; Peltier, Julien; Knebel, Axel; Kristaryianto, Yosua Adi; Rogerson, Daniel T; Kulathu, Yogesh; Trost, Matthias; Chin, Jason W

    2016-07-26

    Ubiquitin is post-translationally modified by phosphorylation at several sites, but the consequences of these modifications are largely unknown. Here, we synthesize multi-milligram quantities of ubiquitin phosphorylated at serine 20, serine 57, and serine 65 via genetic code expansion. We use these phosphoubiquitins for the enzymatic assembly of 20 isomeric phosphoubiquitin dimers, with different sites of isopeptide linkage and/or phosphorylation. We discover that phosphorylation of serine 20 on ubiquitin converts UBE3C from a dual-specificity E3 ligase into a ligase that primarily synthesizes K48 chains. We profile the activity of 31 deubiquitinases on the isomeric phosphoubiquitin dimers in 837 reactions, and we discover that phosphorylation at distinct sites in ubiquitin can activate or repress cleavage of a particular linkage by deubiquitinases and that phosphorylation at a single site in ubiquitin can control the specificity of deubiquitinases for distinct ubiquitin linkages. PMID:27425610

  14. Cooperativeness of the Higher Chromatin Structure of the β-Globin Locus Revealed by the Deletion Mutations of DNase I Hypersensitive site 3 of the LCR

    PubMed Central

    Fang, Xiangdong; Xiang, Ping; Yin, Wenxuan; Stamatoyannopoulos, George; Li, Qiliang

    2010-01-01

    High-level transcription of the globin genes requires the enhancement by a distant element, the locus control region (LCR). Such long-range regulation in vivo involves spatial interaction between transcriptional elements, with intervening chromatin looping out. It has been proposed that the clustering of the HS sites of the LCR, the active globin genes, as well as the remote 5′ hypersensitive sites (HSs) (HS-60/-62 in mouse, HS-110 in human) and 3′HS1 forms a specific spatial chromatin structure, termed active chromatin hub (ACH). Here we report the effects of the HS3 deletions of the LCR on the spatial chromatin structure of the β-globin locus as revealed by the chromatin conformation capture (3C) technology. The small HS3 core deletion (0.23 kb), but not the large HS3 deletion (2.3 kb), disrupted the spatial interactions among all the HS sites of the LCR, the β-globin gene and 3′HS1. We have previously demonstrated that the large HS3 deletion barely impairs the structure of the LCR holocomplex, while the structure is significantly disrupted by the HS3 core deletion. Taken together, these results suggest that the formation of the ACH is dependent on a largely intact LCR structure. We propose that the ACH indeed is an extension of the LCR holocomplex. PMID:17056066

  15. Stromal Transcriptional Profiles Reveal Hierarchies of Anatomical Site, Serum Response and Disease and Identify Disease Specific Pathways

    PubMed Central

    Parsonage, Greg N.; Legault, Holly M.; O’Toole, Margot; Pearson, Mark J.; Thomas, Andrew M.; Scheel-Toellner, Dagmar; Raza, Karim; Buckley, Christopher D.; Falciani, Francesco

    2015-01-01

    Synovial fibroblasts in persistent inflammatory arthritis have been suggested to have parallels with cancer growth and wound healing, both of which involve a stereotypical serum response programme. We tested the hypothesis that a serum response programme can be used to classify diseased tissues, and investigated the serum response programme in fibroblasts from multiple anatomical sites and two diseases. To test our hypothesis we utilized a bioinformatics approach to explore a publicly available microarray dataset including rheumatoid arthritis (RA), osteoarthritis (OA) and normal synovial tissue, then extended those findings in a new microarray dataset representing matched synovial, bone marrow and skin fibroblasts cultured from RA and OA patients undergoing arthroplasty. The classical fibroblast serum response programme discretely classified RA, OA and normal synovial tissues. Analysis of low and high serum treated fibroblast microarray data revealed a hierarchy of control, with anatomical site the most powerful classifier followed by response to serum and then disease. In contrast to skin and bone marrow fibroblasts, exposure of synovial fibroblasts to serum led to convergence of RA and OA expression profiles. Pathway analysis revealed three inter-linked gene networks characterising OA synovial fibroblasts: Cell remodelling through insulin-like growth factors, differentiation and angiogenesis through _3 integrin, and regulation of apoptosis through CD44. We have demonstrated that Fibroblast serum response signatures define disease at the tissue level, and that an OA specific, serum dependent repression of genes involved in cell adhesion, extracellular matrix remodelling and apoptosis is a critical discriminator between cultured OA and RA synovial fibroblasts. PMID:25807374

  16. A new autoinhibited kinase conformation reveals a salt-bridge switch in kinase activation

    PubMed Central

    Wei, Qiang; Yang, Shaoyuan; Li, Dan; Zhang, Xiaoying; Zheng, Jimin; Jia, Zongchao

    2016-01-01

    In the structure of autoinhibited EphA2 tyrosine kinase reported herein, we have captured the entire activation segment, revealing a previously unknown role of the conserved Arg762 in kinase autoinhibition by interacting with the essential Mg2+-chelating Asp757. While it is well known that this Arg residue is involved in an electrostatic interaction with the phospho-residue of the activation loop to stabilize the active conformation, our structure determination revealed a new role for the Arg, acting as a switch between the autoinhibited and activated conformations. Mutation of Arg762 to Ala in EphA2 sensitized Mg2+ response, resulting in enhanced kinase catalytic activity and Mg2+ cooperativity. Furthermore, mutation of the corresponding Arg/Lys to Ala in PKA and p38MAPK also exhibited similar behavior. This new salt bridge-mediated switch may thus be an important mechanism of activation on a broader scope for kinases which utilize autophosphorylation. PMID:27324091

  17. A kinetic description for sodium and potassium effects on (Na+ plus K+)-adenosine triphosphatase: a model for a two-nonequivalent site potassium activation and an analysis of multiequivalent site models for sodium activation.

    PubMed

    Lindenmayer, G E; Schwartz, A; Thompson, H K

    1974-01-01

    1. Dissociation constants for sodium and potassium of a site that modulates the rate of ouabain-(Na(+)+K(+))-ATPase interaction were applied to models for potassium activation of (Na(+)+K(+))-ATPase. The constants for potassium (0.213 mM) and for sodium (13.7 mM) were defined, respectively, as activation constant, K(a) and inhibitory constant, K(i).2. Tests of the one- and the two-equivalent site models, that describe sodium and potassium competition, revealed that neither model adequately predicts the activation effects of potassium in the presence of 100 or 200 mM sodium.3. The potassium-activation data, obtained at low potassium and high sodium, were explained by a two-nonequivalent site model where the dissociation constants of the first site are 0.213 mM for potassium and 13.7 mM for sodium. The second site was characterized by dissociation constants of 0.091 mM for potassium and 74.1 mM for sodium.4. The two-nonequivalent site model adequately predicted the responses to concentrations of potassium between 0.25 and 5 mM in the presence of 100-500 mM sodium. At lower sodium concentrations the predicted responses formed an upper limit for the function of observed activities. This limit was reached at lower concentrations of potassium and higher concentrations of sodium, which inferred saturation of the sodium-activation sites with sodium.5. Sodium-activation data were corrected for sodium interaction with potassium-activation sites by use of the two-nonequivalent site model for potassium activation. Tests of equivalent site models suggested that the corrected data for sodium activation may be most consistent with a model that has three-equivalent sites. Other multiequivalent site models (n = 2, 4, 5 or 6), however, cannot be statistically eliminated as possibilities. The three-equivalent site activation model was characterized by dissociation constants of 1.39 mM for sodium and 11.7 mM for potassium. The system theoretically would be half-maximally activated by

  18. Active Sites Environmental Monitoring Program: Program plan. Revision 1

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  19. The Histamine N-Methyltransferase T105I Polymorphism Affects Active Site Structure and Dynamics†

    PubMed Central

    Rutherford, Karen; Parson, William W.; Daggett, Valerie

    2010-01-01

    Histamine N-methyltransferase (HNMT) is the sole enzyme responsible for inactivating histamine in the mammalian brain. The human HNMT gene contains a common threonine-isoleucine polymorphism at residue 105, distal from the active site. The 105I variant has decreased activity and lower protein levels relative to the 105T protein. Crystal structures of both variants have been solved, but reveal little regarding how the T105I polymorphism affects activity. We performed molecular dynamics simulations of both 105T and 105I at 37°C to explore the structural and dynamic consequences of the polymorphism. The simulations indicate that replacing Thr with the larger Ile residue leads to greater burial of residue 105 and heightened packing interactions between residue105 and residues within helix α3 and strand β3. This altered packing is directly translated to the active site resulting in the reorientation of several co-substrate-binding residues. The simulations also show that the hydrophobic histamine-binding domain in both proteins undergoes a large-scale breathing motion that exposes key catalytic residues and lessens the hydrophobicity of the substrate-binding site. PMID:18154359

  20. Structural and kinetic contributions of the oxyanion binding site to the catalytic activity of acylaminoacyl peptidase.

    PubMed

    Kiss, András L; Palló, Anna; Náray-Szabó, Gábor; Harmat, Veronika; Polgár, László

    2008-05-01

    It is widely accepted that the catalytic activity of serine proteases depends primarily on the Asp-His-Ser catalytic triad and other residues within the vicinity of this motif. Some of these residues form the oxyanion binding site that stabilizes the tetrahedral intermediate by hydrogen bonding to the negatively charged oxyanion. In acylaminoacyl peptidase from the thermophile Aeropyrum pernix, the main chain NH group of Gly369 is one of the hydrogen bond donors forming the oxyanion binding site. The side chain of His367, a conserved residue in acylaminoacyl peptidases across all species, fastens the loop holding Gly369. Determination of the crystal structure of the H367A mutant revealed that this loop, including Gly369, moves away considerably, accounting for the observed three orders of magnitude decrease in the specificity rate constant. For the wild-type enzyme ln(k(cat)/K(m)) vs. 1/T deviates from linearity indicating greater rate enhancement with increasing temperature for the dissociation of the enzyme-substrate complex compared with its decomposition to product. In contrast, the H367A variant provided a linear Arrhenius plot, and its reaction was associated with unfavourable entropy of activation. These results show that a residue relatively distant from the active site can significantly affect the catalytic activity of acylaminoacyl peptidase without changing the overall structure of the enzyme. PMID:18325786

  1. Active Site and Laminarin Binding in Glycoside Hydrolase Family 55*

    PubMed Central

    Bianchetti, Christopher M.; Takasuka, Taichi E.; Deutsch, Sam; Udell, Hannah S.; Yik, Eric J.; Bergeman, Lai F.; Fox, Brian G.

    2015-01-01

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100–10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. PMID:25752603

  2. Active site and laminarin binding in glycoside hydrolase family 55.

    PubMed

    Bianchetti, Christopher M; Takasuka, Taichi E; Deutsch, Sam; Udell, Hannah S; Yik, Eric J; Bergeman, Lai F; Fox, Brian G

    2015-05-01

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100-10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. PMID:25752603

  3. The Combining Sites of Anti-lipid A Antibodies Reveal a Widely Utilized Motif Specific for Negatively Charged Groups.

    PubMed

    Haji-Ghassemi, Omid; Müller-Loennies, Sven; Rodriguez, Teresa; Brade, Lore; Grimmecke, Hans-Dieter; Brade, Helmut; Evans, Stephen V

    2016-05-01

    Lipopolysaccharide dispersed in the blood by Gram-negative bacteria can be a potent inducer of septic shock. One research focus has been based on antibody sequestration of lipid A (the endotoxic principle of LPS); however, none have been successfully developed into a clinical treatment. Comparison of a panel of anti-lipid A antibodies reveals highly specific antibodies produced through distinct germ line precursors. The structures of antigen-binding fragments for two homologous mAbs specific for lipid A, S55-3 and S55-5, have been determined both in complex with lipid A disaccharide backbone and unliganded. These high resolution structures reveal a conserved positively charged pocket formed within the complementarity determining region H2 loops that binds the terminal phosphates of lipid A. Significantly, this motif occurs in unrelated antibodies where it mediates binding to negatively charged moieties through a range of epitopes, including phosphorylated peptides used in diagnostics and therapeutics. S55-3 and S55-5 have combining sites distinct from anti-lipid A antibodies previously described (as a result of their separate germ line origin), which are nevertheless complementary both in shape and charge to the antigen. S55-3 and S55-5 display similar avidity toward lipid A despite possessing a number of different amino acid residues in their combining sites. Binding of lipid A occurs independent of the acyl chains, although the GlcN-O6 attachment point for the core oligosaccharide is buried in the combining site, which explains their inability to recognize LPS. Despite their lack of therapeutic potential, the observed motif may have significant immunological implications as a tool for engineering recombinant antibodies. PMID:26933033

  4. Insight into the mechanism of phosphoenolpyruvate mutase catalysis derived from site-directed mutagenesis studies of active site residues.

    PubMed

    Jia, Y; Lu, Z; Huang, K; Herzberg, O; Dunaway-Mariano, D

    1999-10-26

    PEP mutase catalyzes the conversion of phosphoenolpyruvate (PEP) to phosphonopyruvate in biosynthetic pathways leading to phosphonate secondary metabolites. A recent X-ray structure [Huang, K., Li, Z., Jia, Y., Dunaway-Mariano, D., and Herzberg, O. (1999) Structure (in press)] of the Mytilus edulis enzyme complexed with the Mg(II) cofactor and oxalate inhibitor reveals an alpha/beta-barrel backbone-fold housing an active site in which Mg(II) is bound by the two carboxylate groups of the oxalate ligand and the side chain of D85 and, via bridging water molecules, by the side chains of D58, D85, D87, and E114. The oxalate ligand, in turn, interacts with the side chains of R159, W44, and S46 and the backbone amide NHs of G47 and L48. Modeling studies identified two feasible PEP binding modes: model A in which PEP replaces oxalate with its carboxylate group interacting with R159 and its phosphoryl group positioned close to D58 and Mg(II) shifting slightly from its original position in the crystal structure, and model B in which PEP replaces oxalate with its phosphoryl group interacting with R159 and Mg(II) retaining its original position. Site-directed mutagenesis studies of the key mutase active site residues (R159, D58, D85, D87, and E114) were carried out in order to evaluate the catalytic roles predicted by the two models. The observed retention of low catalytic activity in the mutants R159A, D85A, D87A, and E114A, coupled with the absence of detectable catalytic activity in D58A, was interpreted as evidence for model A in which D58 functions in nucleophilic catalysis (phosphoryl transfer), R159 functions in PEP carboxylate group binding, and the carboxylates of D85, D87 and E114 function in Mg(II) binding. These results also provide evidence against model B in which R159 serves to mediate the phosphoryl transfer. A catalytic motif, which could serve both the phosphoryl transfer and the C-C cleavage enzymes of the PEP mutase superfamily, is proposed. PMID:10571990

  5. Revealing the Atomic Site-Dependent g Factor within a Single Magnetic Molecule via the Extended Kondo Effect

    NASA Astrophysics Data System (ADS)

    Du, Shixuan

    Control over charge and spin states at the single molecule level is crucial not only for a fundamental understanding of charge and spin interactions but also represents a prerequisite for development of molecular electronics and spintronics. In this talk, I will talk about the extended spin distribution in space beyond the central Mn ion, and onto the non-magnetic constituent atoms of the MnPc molecule. This extended spin distribution results in an extended Kondo effect, which can be explained by spin polarization induced by symmetry breaking of the molecular framework, as confirmed by DFT calculations. Measuring the evolution of the Kondo splitting with applied magnetic fields at different atomic sites, we find a spatial variation of the g-factor within a single molecule for the first time. The existence of atomic site-dependent g-factors can be attributed to specific molecular orbitals distributed over the entire molecule. This work not only open up a new opportunity for quantum information recording, but also provide a new route to explore the internal electronic and spin structure of complex molecules, hard to achieve otherwise. (L. W. Liu et al., Phys. Rev. Lett. 2015, 114, 126601. In collaboration with Liwei Liu, Kai Yang, Yuhang Jiang, Li Gao, Qi Liu, Boqun Song, Wende Xiao, Haitao Zhou, Hongjun Gao in CAS, Min Ouyang in MU, and A.H. Castro Neto in SNU.) Revealing the Atomic Site-Dependent g Factor within a Single Magnetic Molecule via the Extended Kondo Effect.

  6. A Remote Arene-Binding Site on Prostate Specific Membrane Antigen Revealed by Antibody-Recruiting Small Molecules

    SciTech Connect

    Zhang, Andrew X.; Murelli, Ryan P.; Barinka, Cyril; Michel, Julien; Cocleaza, Alexandra; Jorgensen, William L.; Lubkowski, Jacek; Spiegel, David A.

    2010-09-27

    Prostate specific membrane antigen (PSMA) is a membrane-bound glutamate carboxypeptidase overexpressed in many forms of prostate cancer. Our laboratory has recently disclosed a class of small molecules, called ARM-Ps (antibody-recruiting molecule targeting prostate cancer) that are capable of enhancing antibody-mediated immune recognition of prostate cancer cells. Interestingly, during the course of these studies, we found ARM-Ps to exhibit extraordinarily high potencies toward PSMA, compared to previously reported inhibitors. Here, we report in-depth biochemical, crystallographic, and computational investigations which elucidate the origin of the observed affinity enhancement. These studies reveal a previously unreported arene-binding site on PSMA, which we believe participates in an aromatic stacking interaction with ARMs. Although this site is composed of only a few amino acid residues, it drastically enhances small molecule binding affinity. These results provide critical insights into the design of PSMA-targeted small molecules for prostate cancer diagnosis and treatment; more broadly, the presence of similar arene-binding sites throughout the proteome could prove widely enabling in the optimization of small molecule-protein interactions.

  7. An anti-hapten camelid antibody reveals a cryptic binding site with significant energetic contributions from a nonhypervariable loop

    SciTech Connect

    Fanning, Sean W.; Horn, James R.

    2014-03-05

    Conventional anti-hapten antibodies typically bind low-molecular weight compounds (haptens) in the crevice between the variable heavy and light chains. Conversely, heavy chain-only camelid antibodies, which lack a light chain, must rely entirely on a single variable domain to recognize haptens. While several anti-hapten VHHs have been generated, little is known regarding the underlying structural and thermodynamic basis for hapten recognition. Here, an anti-methotrexate VHH (anti-MTX VHH) was generated using grafting methods whereby the three complementarity determining regions (CDRs) were inserted onto an existing VHH framework. Thermodynamic analysis of the anti-MTX VHH CDR1-3 Graft revealed a micromolar binding affinity, while the crystal structure of the complex revealed a somewhat surprising noncanonical binding site which involved MTX tunneling under the CDR1 loop. Due to the close proximity of MTX to CDR4, a nonhypervariable loop, the CDR4 loop sequence was subsequently introduced into the CDR1-3 graft, which resulted in a dramatic 1000-fold increase in the binding affinity. Crystal structure analysis of both the free and complex anti-MTX CDR1-4 graft revealed CDR4 plays a significant role in both intermolecular contacts and binding site conformation that appear to contribute toward high affinity binding. Additionally, the anti-MTX VHH possessed relatively high specificity for MTX over closely related compounds aminopterin and folate, demonstrating that VHH domains are capable of binding low-molecular weight ligands with high affinity and specificity, despite their reduced interface.

  8. Crystal structures of human soluble adenylyl cyclase reveal mechanisms of catalysis and of its activation through bicarbonate

    PubMed Central

    Kleinboelting, Silke; Diaz, Ana; Moniot, Sebastien; van den Heuvel, Joop; Weyand, Michael; Levin, Lonny R.; Buck, Jochen; Steegborn, Clemens

    2014-01-01

    cAMP is an evolutionary conserved, prototypic second messenger regulating numerous cellular functions. In mammals, cAMP is synthesized by one of 10 homologous adenylyl cyclases (ACs): nine transmembrane enzymes and one soluble AC (sAC). Among these, only sAC is directly activated by bicarbonate (HCO3−); it thereby serves as a cellular sensor for HCO3−, carbon dioxide (CO2), and pH in physiological functions, such as sperm activation, aqueous humor formation, and metabolic regulation. Here, we describe crystal structures of human sAC catalytic domains in the apo state and in complex with substrate analog, products, and regulators. The activator HCO3− binds adjacent to Arg176, which acts as a switch that enables formation of the catalytic cation sites. An anionic inhibitor, 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid, inhibits sAC through binding to the active site entrance, which blocks HCO3− activation through steric hindrance and trapping of the Arg176 side chain. Finally, product complexes reveal small, local rearrangements that facilitate catalysis. Our results provide a molecular mechanism for sAC catalysis and cellular HCO3− sensing and a basis for targeting this system with drugs. PMID:24567411

  9. Kinetic model of ethopropazine interaction with horse serum butyrylcholinesterase and its docking into the active site.

    PubMed

    Golicnik, Marko; Sinko, Goran; Simeon-Rudolf, Vera; Grubic, Zoran; Stojan, Jure

    2002-02-01

    The action of a potent tricyclic cholinesterase inhibitor ethopropazine on the hydrolysis of acetylthiocholine and butyrylthiocholine by purified horse serum butyrylcholinesterase (EC 3.1.1.8) was investigated at 25 and 37 degrees C. The enzyme activities were measured on a stopped-flow apparatus and the analysis of experimental data was done by applying a six-parameter model for substrate hydrolysis. The model, which was introduced to explain the kinetics of Drosophila melanogaster acetylcholinesterase [Stojan et al. (1998) FEBS Lett. 440, 85-88], is defined with two dissociation constants and four rate constants and can describe both cooperative phenomena, apparent activation at low substrate concentrations and substrate inhibition by excess of substrate. For the analysis of the data in the presence of ethopropazine at two temperatures, we have enlarged the reaction scheme to allow primarily its competition with the substrate at the peripheral site, but the competition at the acylation site was not excluded. The proposed reaction scheme revealed, upon analysis, competitive effects of ethopropazine at both sites; at 25 degrees C, three enzyme-inhibitor dissociation constants could be evaluated; at 37 degrees C, only two constants could be evaluated. Although the model considers both cooperative phenomena, it appears that decreased enzyme sensitivity at higher temperature, predominantly for the ligands at the peripheral binding site, makes the determination of some expected enzyme substrate and/or inhibitor complexes technically impossible. The same reason might also account for one of the paradoxes in cholinesterases: activities at 25 degrees C at low substrate concentrations are higher than at 37 degrees C. Positioning of ethopropazine in the active-site gorge by molecular dynamics simulations shows that A328, W82, D70, and Y332 amino acid residues stabilize binding of the inhibitor. PMID:11811945

  10. Substrate and Substrate-Mimetic Chaperone Binding Sites in Human α-Galactosidase A Revealed by Affinity-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Moise, Adrian; Maeser, Stefan; Rawer, Stephan; Eggers, Frederike; Murphy, Mary; Bornheim, Jeff; Przybylski, Michael

    2016-04-01

    Fabry disease (FD) is a rare metabolic disorder of a group of lysosomal storage diseases, caused by deficiency or reduced activity of the enzyme α-galactosidase. Human α-galactosidase A (hαGAL) hydrolyses the terminal α-galactosyl moiety from glycosphingolipids, predominantly globotriaosylceramide (Gb3). Enzyme deficiency leads to incomplete or blocked breakdown and progressive accumulation of Gb3, with detrimental effects on normal organ functions. FD is successfully treated by enzyme replacement therapy (ERT) with purified recombinant hαGAL. An emerging treatment strategy, pharmacologic chaperone therapy (PCT), employs small molecules that can increase and/or reconstitute the activity of lysosomal enzyme trafficking by stabilizing misfolded isoforms. One such chaperone, 1-deoxygalactonojirimycin (DGJ), is a structural galactose analogue currently validated in clinical trials. DGJ is an active-site-chaperone that binds at the same or similar location as galactose; however, the molecular determination of chaperone binding sites in lysosomal enzymes represents a considerable challenge. Here we report the identification of the galactose and DGJ binding sites in recombinant α-galactosidase through a new affinity-mass spectrometry-based approach that employs selective proteolytic digestion of the enzyme-galactose or -inhibitor complex. Binding site peptides identified by mass spectrometry, [39-49], [83-100], and [141-168], contain the essential ligand-contacting amino acids, in agreement with the known X-ray crystal structures. The inhibitory effect of DGJ on galactose recognition was directly characterized through competitive binding experiments and mass spectrometry. The methods successfully employed in this study should have high potential for the characterization of (mutated) enzyme-substrate and -chaperone interactions, and for identifying chaperones without inhibitory effects.

  11. Substrate and Substrate-Mimetic Chaperone Binding Sites in Human α-Galactosidase A Revealed by Affinity-Mass Spectrometry.

    PubMed

    Moise, Adrian; Maeser, Stefan; Rawer, Stephan; Eggers, Frederike; Murphy, Mary; Bornheim, Jeff; Przybylski, Michael

    2016-06-01

    Fabry disease (FD) is a rare metabolic disorder of a group of lysosomal storage diseases, caused by deficiency or reduced activity of the enzyme α-galactosidase. Human α-galactosidase A (hαGAL) hydrolyses the terminal α-galactosyl moiety from glycosphingolipids, predominantly globotriaosylceramide (Gb3). Enzyme deficiency leads to incomplete or blocked breakdown and progressive accumulation of Gb3, with detrimental effects on normal organ functions. FD is successfully treated by enzyme replacement therapy (ERT) with purified recombinant hαGAL. An emerging treatment strategy, pharmacologic chaperone therapy (PCT), employs small molecules that can increase and/or reconstitute the activity of lysosomal enzyme trafficking by stabilizing misfolded isoforms. One such chaperone, 1-deoxygalactonojirimycin (DGJ), is a structural galactose analogue currently validated in clinical trials. DGJ is an active-site-chaperone that binds at the same or similar location as galactose; however, the molecular determination of chaperone binding sites in lysosomal enzymes represents a considerable challenge. Here we report the identification of the galactose and DGJ binding sites in recombinant α-galactosidase through a new affinity-mass spectrometry-based approach that employs selective proteolytic digestion of the enzyme-galactose or -inhibitor complex. Binding site peptides identified by mass spectrometry, [39-49], [83-100], and [141-168], contain the essential ligand-contacting amino acids, in agreement with the known X-ray crystal structures. The inhibitory effect of DGJ on galactose recognition was directly characterized through competitive binding experiments and mass spectrometry. The methods successfully employed in this study should have high potential for the characterization of (mutated) enzyme-substrate and -chaperone interactions, and for identifying chaperones without inhibitory effects. Graphical Abstract ᅟ. PMID:27112153

  12. Substrate and Substrate-Mimetic Chaperone Binding Sites in Human α-Galactosidase A Revealed by Affinity-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Moise, Adrian; Maeser, Stefan; Rawer, Stephan; Eggers, Frederike; Murphy, Mary; Bornheim, Jeff; Przybylski, Michael

    2016-06-01

    Fabry disease (FD) is a rare metabolic disorder of a group of lysosomal storage diseases, caused by deficiency or reduced activity of the enzyme α-galactosidase. Human α-galactosidase A (hαGAL) hydrolyses the terminal α-galactosyl moiety from glycosphingolipids, predominantly globotriaosylceramide (Gb3). Enzyme deficiency leads to incomplete or blocked breakdown and progressive accumulation of Gb3, with detrimental effects on normal organ functions. FD is successfully treated by enzyme replacement therapy (ERT) with purified recombinant hαGAL. An emerging treatment strategy, pharmacologic chaperone therapy (PCT), employs small molecules that can increase and/or reconstitute the activity of lysosomal enzyme trafficking by stabilizing misfolded isoforms. One such chaperone, 1-deoxygalactonojirimycin (DGJ), is a structural galactose analogue currently validated in clinical trials. DGJ is an active-site-chaperone that binds at the same or similar location as galactose; however, the molecular determination of chaperone binding sites in lysosomal enzymes represents a considerable challenge. Here we report the identification of the galactose and DGJ binding sites in recombinant α-galactosidase through a new affinity-mass spectrometry-based approach that employs selective proteolytic digestion of the enzyme-galactose or -inhibitor complex. Binding site peptides identified by mass spectrometry, [39-49], [83-100], and [141-168], contain the essential ligand-contacting amino acids, in agreement with the known X-ray crystal structures. The inhibitory effect of DGJ on galactose recognition was directly characterized through competitive binding experiments and mass spectrometry. The methods successfully employed in this study should have high potential for the characterization of (mutated) enzyme-substrate and -chaperone interactions, and for identifying chaperones without inhibitory effects.

  13. In Operando Identification of Geometrical-Site-Dependent Water Oxidation Activity of Spinel Co3O4.

    PubMed

    Wang, Hsin-Yi; Hung, Sung-Fu; Chen, Han-Yi; Chan, Ting-Shan; Chen, Hao Ming; Liu, Bin

    2016-01-13

    Spinel Co3O4, comprising two types of cobalt ions: one Co(2+) in the tetrahedral site (Co(2+)(Td)) and the other two Co(3+) in the octahedral site (Co(3+)(Oh)), has been widely explored as a promising oxygen evolution reaction (OER) catalyst for water electrolysis. However, the roles of two geometrical cobalt ions toward the OER have remained elusive. Here, we investigated the geometrical-site-dependent OER activity of Co3O4 catalyst by substituting Co(2+)(Td) and Co(3+)(Oh) with inactive Zn(2+) and Al(3+), respectively. Following a thorough in operando analysis by electrochemical impedance spectroscopy and X-ray absorption spectroscopy, it was revealed that Co(2+)Td site is responsible for the formation of cobalt oxyhydroxide (CoOOH), which acted as the active site for water oxidation. PMID:26710084

  14. Active Site Detection by Spatial Conformity and Electrostatic Analysis—Unravelling a Proteolytic Function in Shrimp Alkaline Phosphatase

    PubMed Central

    Chakraborty, Sandeep; Minda, Renu; Salaye, Lipika; Bhattacharjee, Swapan K.; Rao, Basuthkar J.

    2011-01-01

    Computational methods are increasingly gaining importance as an aid in identifying active sites. Mostly these methods tend to have structural information that supplement sequence conservation based analyses. Development of tools that compute electrostatic potentials has further improved our ability to better characterize the active site residues in proteins. We have described a computational methodology for detecting active sites based on structural and electrostatic conformity - CataLytic Active Site Prediction (CLASP). In our pipelined model, physical 3D signature of any particular enzymatic function as defined by its active sites is used to obtain spatially congruent matches. While previous work has revealed that catalytic residues have large pKa deviations from standard values, we show that for a given enzymatic activity, electrostatic potential difference (PD) between analogous residue pairs in an active site taken from different proteins of the same family are similar. False positives in spatially congruent matches are further pruned by PD analysis where cognate pairs with large deviations are rejected. We first present the results of active site prediction by CLASP for two enzymatic activities - β-lactamases and serine proteases, two of the most extensively investigated enzymes. The results of CLASP analysis on motifs extracted from Catalytic Site Atlas (CSA) are also presented in order to demonstrate its ability to accurately classify any protein, putative or otherwise, with known structure. The source code and database is made available at www.sanchak.com/clasp/. Subsequently, we probed alkaline phosphatases (AP), one of the well known promiscuous enzymes, for additional activities. Such a search has led us to predict a hitherto unknown function of shrimp alkaline phosphatase (SAP), where the protein acts as a protease. Finally, we present experimental evidence of the prediction by CLASP by showing that SAP indeed has protease activity in vitro. PMID

  15. Structures of the PutA peripheral membrane flavoenzyme reveal a dynamic substrate-channeling tunnel and the quinone-binding site

    PubMed Central

    Singh, Harkewal; Arentson, Benjamin W.; Becker, Donald F.; Tanner, John J.

    2014-01-01

    Proline utilization A (PutA) proteins are bifunctional peripheral membrane flavoenzymes that catalyze the oxidation of l-proline to l-glutamate by the sequential activities of proline dehydrogenase and aldehyde dehydrogenase domains. Located at the inner membrane of Gram-negative bacteria, PutAs play a major role in energy metabolism by coupling the oxidation of proline imported from the environment to the reduction of membrane-associated quinones. Here, we report seven crystal structures of the 1,004-residue PutA from Geobacter sulfurreducens, along with determination of the protein oligomeric state by small-angle X-ray scattering and kinetic characterization of substrate channeling and quinone reduction. The structures reveal an elaborate and dynamic tunnel system featuring a 75-Å-long tunnel that links the two active sites and six smaller tunnels that connect the main tunnel to the bulk medium. The locations of these tunnels and their responses to ligand binding and flavin reduction suggest hypotheses about how proline, water, and quinones enter the tunnel system and where l-glutamate exits. Kinetic measurements show that glutamate production from proline occurs without a lag phase, consistent with substrate channeling and implying that the observed tunnel is functionally relevant. Furthermore, the structure of reduced PutA complexed with menadione bisulfite reveals the elusive quinone-binding site. The benzoquinone binds within 4.0 Å of the flavin si face, consistent with direct electron transfer. The location of the quinone site implies that the concave surface of the PutA dimer approaches the membrane. Altogether, these results provide insight into how PutAs couple proline oxidation to quinone reduction. PMID:24550478

  16. Structures of the PutA peripheral membrane flavoenzyme reveal a dynamic substrate-channeling tunnel and the quinone-binding site.

    PubMed

    Singh, Harkewal; Arentson, Benjamin W; Becker, Donald F; Tanner, John J

    2014-03-01

    Proline utilization A (PutA) proteins are bifunctional peripheral membrane flavoenzymes that catalyze the oxidation of L-proline to L-glutamate by the sequential activities of proline dehydrogenase and aldehyde dehydrogenase domains. Located at the inner membrane of Gram-negative bacteria, PutAs play a major role in energy metabolism by coupling the oxidation of proline imported from the environment to the reduction of membrane-associated quinones. Here, we report seven crystal structures of the 1,004-residue PutA from Geobacter sulfurreducens, along with determination of the protein oligomeric state by small-angle X-ray scattering and kinetic characterization of substrate channeling and quinone reduction. The structures reveal an elaborate and dynamic tunnel system featuring a 75-Å-long tunnel that links the two active sites and six smaller tunnels that connect the main tunnel to the bulk medium. The locations of these tunnels and their responses to ligand binding and flavin reduction suggest hypotheses about how proline, water, and quinones enter the tunnel system and where L-glutamate exits. Kinetic measurements show that glutamate production from proline occurs without a lag phase, consistent with substrate channeling and implying that the observed tunnel is functionally relevant. Furthermore, the structure of reduced PutA complexed with menadione bisulfite reveals the elusive quinone-binding site. The benzoquinone binds within 4.0 Å of the flavin si face, consistent with direct electron transfer. The location of the quinone site implies that the concave surface of the PutA dimer approaches the membrane. Altogether, these results provide insight into how PutAs couple proline oxidation to quinone reduction. PMID:24550478

  17. Barriers to physical activity in an on-site corporate fitness center.

    PubMed

    Schwetschenau, Heather M; O'Brien, William H; Cunningham, Christopher J L; Jex, Steve M

    2008-10-01

    Many corporations provide employees the option of participating in on-site fitness centers, but utilization rates are low. Perceived barriers to physical activity have been established as important correlates of physical activity, and recent research indicates that barriers may vary across settings. Work-site fitness centers may present unique barriers to participation, but there are currently no standardized measures that assess such barriers. Eighty-eight employees of a midwestern corporation completed a survey designed to identify and evaluate the extent to which barriers influence participation in an on-site corporate fitness center. Regression analyses revealed that external environmental barriers (e.g., inadequate exercise facilities) significantly accounted for not joining the fitness center, and for decreased duration of visits to the facility among members. Internal barriers (e.g., feeling embarrassed to exercise around coworkers) significantly accounted for frequency of fitness center visits among members. This corporate specific measure may lead to more effective interventions aimed to increase use of on-site corporate fitness centers. PMID:18837631

  18. Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization.

    PubMed

    Zhang, Liman; Chen, Shuobing; Ruan, Jianbin; Wu, Jiayi; Tong, Alexander B; Yin, Qian; Li, Yang; David, Liron; Lu, Alvin; Wang, Wei Li; Marks, Carolyn; Ouyang, Qi; Zhang, Xinzheng; Mao, Youdong; Wu, Hao

    2015-10-23

    The NLR family apoptosis inhibitory proteins (NAIPs) bind conserved bacterial ligands, such as the bacterial rod protein PrgJ, and recruit NLR family CARD-containing protein 4 (NLRC4) as the inflammasome adapter to activate innate immunity. We found that the PrgJ-NAIP2-NLRC4 inflammasome is assembled into multisubunit disk-like structures through a unidirectional adenosine triphosphatase polymerization, primed with a single PrgJ-activated NAIP2 per disk. Cryo-electron microscopy (cryo-EM) reconstruction at subnanometer resolution revealed a ~90° hinge rotation accompanying NLRC4 activation. Unlike in the related heptameric Apaf-1 apoptosome, in which each subunit needs to be conformationally activated by its ligand before assembly, a single PrgJ-activated NAIP2 initiates NLRC4 polymerization in a domino-like reaction to promote the disk assembly. These insights reveal the mechanism of signal amplification in NAIP-NLRC4 inflammasomes. PMID:26449474

  19. Site-directed spectroscopy of cardiac myosin-binding protein C reveals effects of phosphorylation on protein structural dynamics.

    PubMed

    Colson, Brett A; Thompson, Andrew R; Espinoza-Fonseca, L Michel; Thomas, David D

    2016-03-22

    We have used the site-directed spectroscopies of time-resolved fluorescence resonance energy transfer (TR-FRET) and double electron-electron resonance (DEER), combined with complementary molecular dynamics (MD) simulations, to resolve the structure and dynamics of cardiac myosin-binding protein C (cMyBP-C), focusing on the N-terminal region. The results have implications for the role of this protein in myocardial contraction, with particular relevance to β-adrenergic signaling, heart failure, and hypertrophic cardiomyopathy. N-terminal cMyBP-C domains C0-C2 (C0C2) contain binding regions for potential interactions with both thick and thin filaments. Phosphorylation by PKA in the MyBP-C motif regulates these binding interactions. Our spectroscopic assays detect distances between pairs of site-directed probes on cMyBP-C. We engineered intramolecular pairs of labeling sites within cMyBP-C to measure, with high resolution, the distance and disorder in the protein's flexible regions using TR-FRET and DEER. Phosphorylation reduced the level of molecular disorder and the distribution of C0C2 intramolecular distances became more compact, with probes flanking either the motif between C1 and C2 or the Pro/Ala-rich linker (PAL) between C0 and C1. Further insight was obtained from microsecond MD simulations, which revealed a large structural change in the disordered motif region in which phosphorylation unmasks the surface of a series of residues on a stable α-helix within the motif with high potential as a protein-protein interaction site. These experimental and computational findings elucidate structural transitions in the flexible and dynamic portions of cMyBP-C, providing previously unidentified molecular insight into the modulatory role of this protein in cardiac muscle contractility. PMID:26908877

  20. Rate of hydrolysis in ATP synthase is fine-tuned by α-subunit motif controlling active site conformation.

    PubMed

    Beke-Somfai, Tamás; Lincoln, Per; Nordén, Bengt

    2013-02-01

    Computer-designed artificial enzymes will require precise understanding of how conformation of active sites may control barrier heights of key transition states, including dependence on structure and dynamics at larger molecular scale. F(o)F(1) ATP synthase is interesting as a model system: a delicate molecular machine synthesizing or hydrolyzing ATP using a rotary motor. Isolated F(1) performs hydrolysis with a rate very sensitive to ATP concentration. Experimental and theoretical results show that, at low ATP concentrations, ATP is slowly hydrolyzed in the so-called tight binding site, whereas at higher concentrations, the binding of additional ATP molecules induces rotation of the central γ-subunit, thereby forcing the site to transform through subtle conformational changes into a loose binding site in which hydrolysis occurs faster. How the 1-Å-scale rearrangements are controlled is not yet fully understood. By a combination of theoretical approaches, we address how large macromolecular rearrangements may manipulate the active site and how the reaction rate changes with active site conformation. Simulations reveal that, in response to γ-subunit position, the active site conformation is fine-tuned mainly by small α-subunit changes. Quantum mechanics-based results confirm that the sub-Ångström gradual changes between tight and loose binding site structures dramatically alter the hydrolysis rate. PMID:23345443

  1. Metavanadate at the active site of the phosphatase VHZ.

    PubMed

    Kuznetsov, Vyacheslav I; Alexandrova, Anastassia N; Hengge, Alvan C

    2012-09-01

    Vanadate is a potent modulator of a number of biological processes and has been shown by crystal structures and NMR spectroscopy to interact with numerous enzymes. Although these effects often occur under conditions where oligomeric forms dominate, the crystal structures and NMR data suggest that the inhibitory form is usually monomeric orthovanadate, a particularly good inhibitor of phosphatases because of its ability to form stable trigonal-bipyramidal complexes. We performed a computational analysis of a 1.14 Å structure of the phosphatase VHZ in complex with an unusual metavanadate species and compared it with two classical trigonal-bipyramidal vanadate-phosphatase complexes. The results support extensive delocalized bonding to the apical ligands in the classical structures. In contrast, in the VHZ metavanadate complex, the central, planar VO(3)(-) moiety has only one apical ligand, the nucleophilic Cys95, and a gap in electron density between V and S. A computational analysis showed that the V-S interaction is primarily ionic. A mechanism is proposed to explain the formation of metavanadate in the active site from a dimeric vanadate species that previous crystallographic evidence has shown to be able to bind to the active sites of phosphatases related to VHZ. Together, the results show that the interaction of vanadate with biological systems is not solely reliant upon the prior formation of a particular inhibitory form in solution. The catalytic properties of an enzyme may act upon the oligomeric forms primarily present in solution to generate species such as the metavanadate ion observed in the VHZ structure. PMID:22876963

  2. Spatial heterogeneity of dechlorinating bacteria and limiting factors for in situ trichloroethene dechlorination revealed by analyses of sediment cores from a polluted field site.

    PubMed

    Dowideit, Kerstin; Scholz-Muramatsu, Heidrun; Miethling-Graff, Rona; Vigelahn, Lothar; Freygang, Martina; Dohrmann, Anja B; Tebbe, Christoph C

    2010-03-01

    Microbiological analyses of sediment samples were conducted to explore potentials and limitations for bioremediation of field sites polluted with chlorinated ethenes. Intact sediment cores, collected by direct push probing from a 35-ha contaminated area, were analyzed in horizontal layers. Cultivation-independent PCR revealed Dehalococcoides to be the most abundant 16S rRNA gene phylotype with a suspected potential for reductive dechlorination of the major contaminant trichloroethene (TCE). In declining abundances, Desulfitobacterium, Desulfuromonas and Dehalobacter were also detected. In TCE-amended sediment slurry incubations, 66% of 121 sediment samples were dechlorinating, among them one-third completely and the rest incompletely (end product cis-1,2-dichloroethene; cDCE). Both PCR and slurry analyses revealed highly heterogeneous horizontal and vertical distributions of the dechlorination potentials in the sediments. Complete reductive TCE dechlorination correlated with the presence of Dehalococcoides, accompanied by Acetobacterium and a relative of Trichococcus pasteurii. Sediment incubations under close to in situ conditions showed that a low TCE dechlorination activity could be stimulated by 7 mg L(-1) dissolved carbon for cDCE formation and by an additional 36 mg carbon (lactate) L(-1) for further dechlorination. The study demonstrates that the highly heterogeneous distribution of TCE degraders and their specific requirements for carbon and electrons are key issues for TCE degradation in contaminated sites. PMID:20041951

  3. Patterns of Activity Revealed by a Time Lag Analysis of a Model Active Region

    NASA Astrophysics Data System (ADS)

    Bradshaw, Stephen; Viall, Nicholeen

    2016-05-01

    We investigate the global activity patterns predicted from a model active region heated by distributions of nanoflares that have a range of average frequencies. The activity patterns are manifested in time lag maps of narrow-band instrument channel pairs. We combine an extrapolated magnetic skeleton with hydrodynamic and forward modeling codes to create a model active region, and apply the time lag method to synthetic observations. Our aim is to recover some typical properties and patterns of activity observed in active regions. Our key findings are: 1. Cooling dominates the time lag signature and the time lags between the channel pairs are generally consistent with observed values. 2. Shorter coronal loops in the core cool more quickly than longer loops at the periphery. 3. All channel pairs show zero time lag when the line-of-sight passes through coronal loop foot-points. 4. There is strong evidence that plasma must be re-energized on a time scale comparable to the cooling timescale to reproduce the observed coronal activity, but it is likely that a relatively broad spectrum of heating frequencies operates across active regions. 5. Due to their highly dynamic nature, we find nanoflare trains produce zero time lags along entire flux tubes in our model active region that are seen between the same channel pairs in observed active regions.

  4. A Relaxed Active Site After Exon Ligation by the Group I Intron

    SciTech Connect

    Lipchock,S.; Strobel, S.

    2008-01-01

    During RNA maturation, the group I intron promotes two sequential phosphorotransfer reactions resulting in exon ligation and intron release. Here, we report the crystal structure of the intron in complex with spliced exons and two additional structures that examine the role of active-site metal ions during the second step of RNA splicing. These structures reveal a relaxed active site, in which direct metal coordination by the exons is lost after ligation, while other tertiary interactions are retained between the exon and the intron. Consistent with these structural observations, kinetic and thermodynamic measurements show that the scissile phosphate makes direct contact with metals in the ground state before exon ligation and in the transition state, but not after exon ligation. Despite no direct exonic interactions and even in the absence of the scissile phosphate, two metal ions remain bound within the active site. Together, these data suggest that release of the ligated exons from the intron is preceded by a change in substrate-metal coordination before tertiary hydrogen bonding contacts to the exons are broken.

  5. Free energy simulations of active-site mutants of dihydrofolate reductase.

    PubMed

    Doron, Dvir; Stojković, Vanja; Gakhar, Lokesh; Vardi-Kilshtain, Alexandra; Kohen, Amnon; Major, Dan Thomas

    2015-01-22

    This study employs hybrid quantum mechanics-molecular mechanics (QM/MM) simulations to investigate the effect of mutations of the active-site residue I14 of E. coli dihydrofolate reductase (DHFR) on the hydride transfer. Recent kinetic measurements of the I14X mutants (X = V, A, and G) indicated slower hydride transfer rates and increasingly temperature-dependent kinetic isotope effects (KIEs) with systematic reduction of the I14 side chain. The QM/MM simulations show that when the original isoleucine residue is substituted in silico by valine, alanine, or glycine (I14V, I14A, and I14G DHFR, respectively), the free energy barrier height of the hydride transfer reaction increases relative to the wild-type enzyme. These trends are in line with the single-turnover rate measurements reported for these systems. In addition, extended dynamics simulations of the reactive Michaelis complex reveal enhanced flexibility in the mutants, and in particular for the I14G mutant, including considerable fluctuations of the donor-acceptor distance (DAD) and the active-site hydrogen bonding network compared with those detected in the native enzyme. These observations suggest that the perturbations induced by the mutations partly impair the active-site environment in the reactant state. On the other hand, the average DADs at the transition state of all DHFR variants are similar. Crystal structures of I14 mutants (V, A, and G) confirmed the trend of increased flexibility of the M20 and other loops. PMID:25382260

  6. Crystal Structures of Pseudomonas aeruginosa GIM-1: Active-Site Plasticity in Metallo-β-Lactamases

    PubMed Central

    Borra, Pardha Saradhi; Samuelsen, Ørjan; Spencer, James; Walsh, Timothy R.; Lorentzen, Marit Sjo

    2013-01-01

    Metallo-β-lactamases (MBLs) have rapidly disseminated worldwide among clinically important Gram-negative bacteria and have challenged the therapeutic use of β-lactam antibiotics, particularly carbapenems. The blaGIM-1 gene, encoding one such enzyme, was first discovered in a Pseudomonas aeruginosa isolate from 2002 and has more recently been reported in Enterobacteriaceae. Here, we present crystal structures of GIM-1 in the apo-zinc (metal-free), mono-zinc (where Cys221 was found to be oxidized), and di-zinc forms, providing nine independently refined views of the enzyme. GIM-1 is distinguished from related MBLs in possessing a narrower active-site groove defined by aromatic side chains (Trp228 and Tyr233) at positions normally occupied by hydrophilic residues in other MBLs. Our structures reveal considerable flexibility in two loops (loop 1, residues 60 to 66; loop 2, residues 223 to 242) adjacent to the active site, with open and closed conformations defined by alternative hydrogen-bonding patterns involving Trp228. We suggest that this capacity for rearrangement permits GIM-1 to hydrolyze a wide range of β-lactams in spite of possessing a more constrained active site. Our results highlight the structural diversity within the MBL enzyme family. PMID:23208706

  7. VARIABLE ACTIVE SITE LOOP CONFORMATIONS ACCOMMODATE THE BINDING OF MACROCYCLIC LARGAZOLE ANALOGUES TO HDAC8

    PubMed Central

    Decroos, Christophe; Clausen, Dane J.; Haines, Brandon E.; Wiest, Olaf; Williams, Robert M.; Christianson, David W.

    2015-01-01

    The macrocyclic depsipeptide Largazole is a potent inhibitor of metal-dependent histone deacetylases (HDACs), some of which are drug targets for cancer chemotherapy. Indeed, Largazole partially resembles Romidepsin (FK228), a macrocyclic depsipeptide already approved for clinical use. Each inhibitor contains a pendant side chain thiol that coordinates to the active site Zn2+ ion, as observed in the X-ray crystal structure of the HDAC8–Largazole complex [Cole, K. E.; Dowling, D. P.; Boone, M. A.; Phillips, A. J.; Christianson, D. W. J. Am. Chem. Soc. 2011, 133, 12474]. Here, we report the X-ray crystal structures of HDAC8 complexed with three synthetic analogues of Largazole in which the depsipeptide ester is replaced with a rigid amide linkage. In two of these analogues, a 6-membered pyridine ring is also substituted (with two different orientations) for the 5-membered thiazole ring in the macrocycle skeleton. The side chain thiol group of each analogue coordinates to the active site Zn2+ ion with nearly ideal geometry, thereby preserving the hallmark structural feature of inhibition by Largazole. Surprisingly, in comparison with the binding of Largazole, these analogues trigger alternative conformational changes in the L1 and L2 loops flanking the active site. However, despite these structural differences, inhibitory potency is generally comparable to, or just moderately less than, the inhibitory potency of Largazole. Thus, this study reveals important new structure-affinity relationships for the binding of macrocyclic inhibitors to HDAC8. PMID:25793284

  8. Mimicking enzymatic active sites on surfaces for energy conversion chemistry.

    PubMed

    Gutzler, Rico; Stepanow, Sebastian; Grumelli, Doris; Lingenfelder, Magalí; Kern, Klaus

    2015-07-21

    Metal-organic supramolecular chemistry on surfaces has matured to a point where its underlying growth mechanisms are well understood and structures of defined coordination environments of metal atoms can be synthesized in a controlled and reproducible procedure. With surface-confined molecular self-assembly, scientists have a tool box at hand which can be used to prepare structures with desired properties, as for example a defined oxidation number and spin state of the transition metal atoms within the organic matrix. From a structural point of view, these coordination sites in the supramolecular structure resemble the catalytically active sites of metallo-enzymes, both characterized by metal centers coordinated to organic ligands. Several chemical reactions take place at these embedded metal ions in enzymes and the question arises whether these reactions also take place using metal-organic networks as catalysts. Mimicking the active site of metal atoms and organic ligands of enzymes in artificial systems is the key to understanding the selectivity and efficiency of enzymatic reactions. Their catalytic activity depends on various parameters including the charge and spin configuration in the metal ion, but also on the organic environment, which can stabilize intermediate reaction products, inhibits catalytic deactivation, and serves mostly as a transport channel for the reactants and products and therefore ensures the selectivity of the enzyme. Charge and spin on the transition metal in enzymes depend on the one hand on the specific metal element, and on the other hand on its organic coordination environment. These two parameters can carefully be adjusted in surface confined metal-organic networks, which can be synthesized by virtue of combinatorial mixing of building synthons. Different organic ligands with varying functional groups can be combined with several transition metals and spontaneously assemble into ordered networks. The catalytically active metal

  9. Enhancing Electrocatalytic Oxygen Reduction on Nitrogen-Doped Graphene by Active Sites Implantation

    NASA Astrophysics Data System (ADS)

    Feng, Leiyu; Yang, Lanqin; Huang, Zujing; Luo, Jingyang; Li, Mu; Wang, Dongbo; Chen, Yinguang

    2013-11-01

    The shortage of nitrogen active sites and relatively low nitrogen content result in unsatisfying eletrocatalytic activity and durability of nitrogen-doped graphene (NG) for oxygen reduction reaction (ORR). Here we report a novel approach to substantially enhance electrocatalytic oxygen reduction on NG electrode by the implantation of nitrogen active sites with mesoporous graphitic carbon nitride (mpg-C3N4). Electrochemical characterization revealed that in neutral electrolyte the resulting NG (I-NG) exhibited super electrocatalytic activity (completely 100% of four-electron ORR pathway) and durability (nearly no activity change after 100000 potential cyclings). When I-NG was used as cathode catalyst in microbial fuel cells (MFCs), power density and its drop percentage were also much better than the NG and Pt/C ones, demonstrating that the current I-NG was a perfect alternative to Pt/C and offered a new potential for constructing high-performance and less expensive cathode which is crucial for large-scale application of MFC technology.

  10. Enhancing Electrocatalytic Oxygen Reduction on Nitrogen-Doped Graphene by Active Sites Implantation

    PubMed Central

    Feng, Leiyu; Yang, Lanqin; Huang, Zujing; Luo, Jingyang; Li, Mu; Wang, Dongbo; Chen, Yinguang

    2013-01-01

    The shortage of nitrogen active sites and relatively low nitrogen content result in unsatisfying eletrocatalytic activity and durability of nitrogen-doped graphene (NG) for oxygen reduction reaction (ORR). Here we report a novel approach to substantially enhance electrocatalytic oxygen reduction on NG electrode by the implantation of nitrogen active sites with mesoporous graphitic carbon nitride (mpg-C3N4). Electrochemical characterization revealed that in neutral electrolyte the resulting NG (I-NG) exhibited super electrocatalytic activity (completely 100% of four-electron ORR pathway) and durability (nearly no activity change after 100000 potential cyclings). When I-NG was used as cathode catalyst in microbial fuel cells (MFCs), power density and its drop percentage were also much better than the NG and Pt/C ones, demonstrating that the current I-NG was a perfect alternative to Pt/C and offered a new potential for constructing high-performance and less expensive cathode which is crucial for large-scale application of MFC technology. PMID:24264379

  11. A Global Genomic Screening Strategy Reveals Diverse Activators of Constitutive Activated Receptor (CAR)

    EPA Science Inventory

    A comprehensive survey of conditions that activate CAR in the mouse liver has not been carried out but would be useful in understanding their impact on CAR-dependent liver tumor induction. A gene signature dependent on CAR activation was identified by comparing the transcript pr...

  12. Hybrid [FeFe]-hydrogenases with modified active sites show remarkable residual enzymatic activity.

    PubMed

    Siebel, Judith F; Adamska-Venkatesh, Agnieszka; Weber, Katharina; Rumpel, Sigrun; Reijerse, Edward; Lubitz, Wolfgang

    2015-02-24

    [FeFe]-hydrogenases are to date the only enzymes for which it has been demonstrated that the native inorganic binuclear cofactor of the active site Fe2(adt)(CO)3(CN)2 (adt = azadithiolate = [S-CH2-NH-CH2-S](2-)) can be synthesized on the laboratory bench and subsequently inserted into the unmaturated enzyme to yield fully functional holo-enzyme (Berggren, G. et al. (2013) Nature 499, 66-70; Esselborn, J. et al. (2013) Nat. Chem. Biol. 9, 607-610). In the current study, we exploit this procedure to introduce non-native cofactors into the enzyme. Mimics of the binuclear subcluster with a modified bridging dithiolate ligand (thiodithiolate, N-methylazadithiolate, dimethyl-azadithiolate) and three variants containing only one CN(-) ligand were inserted into the active site of the enzyme. We investigated the activity of these variants for hydrogen oxidation as well as proton reduction and their structural accommodation within the active site was analyzed using Fourier transform infrared spectroscopy. Interestingly, the monocyanide variant with the azadithiolate bridge showed ∼50% of the native enzyme activity. This would suggest that the CN(-) ligands are not essential for catalytic activity, but rather serve to anchor the binuclear subsite inside the protein pocket through hydrogen bonding. The inserted artificial cofactors with a propanedithiolate and an N-methylazadithiolate bridge as well as their monocyanide variants also showed residual activity. However, these activities were less than 1% of the native enzyme. Our findings indicate that even small changes in the dithiolate bridge of the binuclear subsite lead to a rather strong decrease of the catalytic activity. We conclude that both the Brønsted base function and the conformational flexibility of the native azadithiolate amine moiety are essential for the high catalytic activity of the native enzyme. PMID:25633077

  13. Site-specific PEGylation of lidamycin and its antitumor activity.

    PubMed

    Li, Liang; Shang, Boyang; Hu, Lei; Shao, Rongguang; Zhen, Yongsu

    2015-05-01

    In this study, N-terminal site-specific mono-PEGylation of the recombinant lidamycin apoprotein (rLDP) of lidamycin (LDM) was prepared using a polyethyleneglycol (PEG) derivative (M w 20 kDa) through a reactive terminal aldehyde group under weak acidic conditions (pH 5.5). The biochemical properties of mPEG-rLDP-AE, an enediyne-integrated conjugate, were analyzed by SDS-PAGE, RP-HPLC, SEC-HPLC and MALDI-TOF. Meanwhile, in vitro and in vivo antitumor activity of mPEG-rLDP-AE was evaluated by MTT assays and in xenograft model. The results indicated that mPEG-rLDP-AE showed significant antitumor activity both in vitro and in vivo. After PEGylation, mPEG-rLDP still retained the binding capability to the enediyne AE and presented the physicochemical characteristics similar to that of native LDP. It is of interest that the PEGylation did not diminish the antitumor efficacy of LDM, implying the possibility that this derivative may function as a payload to deliver novel tumor-targeted drugs. PMID:26579455

  14. Crystallographic Analysis of Active Site Contributions to Regiospecificity in the Diiron Enzyme Toluene 4-Monooxygenase

    SciTech Connect

    Bailey, Lucas J.; Acheson, Justin F.; McCoy, Jason G.; Elsen, Nathaniel L.; Phillips, Jr., George N.; Fox, Brian G.

    2014-10-02

    Crystal structures of toluene 4-monooxygenase hydroxylase in complex with reaction products and effector protein reveal active site interactions leading to regiospecificity. Complexes with phenolic products yield an asymmetric {mu}-phenoxo-bridged diiron center and a shift of diiron ligand E231 into a hydrogen bonding position with conserved T201. In contrast, complexes with inhibitors p-NH{sub 2}-benzoate and p-Br-benzoate showed a {mu}-1,1 coordination of carboxylate oxygen between the iron atoms and only a partial shift in the position of E231. Among active site residues, F176 trapped the aromatic ring of products against a surface of the active site cavity formed by G103, E104 and A107, while F196 positioned the aromatic ring against this surface via a {pi}-stacking interaction. The proximity of G103 and F176 to the para substituent of the substrate aromatic ring and the structure of G103L T4moHD suggest how changes in regiospecificity arise from mutations at G103. Although effector protein binding produced significant shifts in the positions of residues along the outer portion of the active site (T201, N202, and Q228) and in some iron ligands (E231 and E197), surprisingly minor shifts (<1 {angstrom}) were produced in F176, F196, and other interior residues of the active site. Likewise, products bound to the diiron center in either the presence or absence of effector protein did not significantly shift the position of the interior residues, suggesting that positioning of the cognate substrates will not be strongly influenced by effector protein binding. Thus, changes in product distributions in the absence of the effector protein are proposed to arise from differences in rates of chemical steps of the reaction relative to motion of substrates within the active site channel of the uncomplexed, less efficient enzyme, while structural changes in diiron ligand geometry associated with cycling between diferrous and diferric states are discussed for their potential

  15. Structural Analysis of the Maize Rp1 Complex Reveals Numerous Sites and Unexpected Mechanisms of Local Rearrangement

    PubMed Central

    Ramakrishna, Wusirika; Emberton, John; Ogden, Matthew; SanMiguel, Phillip; Bennetzen, Jeffrey L.

    2002-01-01

    Rp1 is a complex disease resistance locus in maize that is exceptional in both allelic variability and meiotic instability. Genomic sequence analysis of three maize BACs from the Rp1 region of the B73 inbred line revealed 4 Rp1 homologs and 18 other gene-homologous sequences, of which at least 16 are truncated. Thirteen of the truncated genes are found in three clusters, suggesting that they arose from multiple illegitimate break repairs at the same sites or from complex repairs of each of these sites with multiple unlinked DNA templates. A 43-kb region that contains an Rp1 homolog, six truncated genes, and three Opie retrotransposons was found to be duplicated in this region. This duplication is relatively recent, occurring after the insertion of the three Opie elements. The breakpoints of the duplication are outside of any genes or identified repeat sequence, suggesting a duplication mechanism that did not involve unequal recombination. A physical map and partial sequencing of the Rp1 complex indicate the presence of 15 Rp1 homologs in regions of ∼250 and 300 kb in the B73 inbred line. Comparison of fully sequenced Rp1-homologous sequences in the region demonstrates a history of unequal recombination and diversifying selection within the Leu-rich repeat 2 region, resulting in chimeric gene structures. PMID:12468738

  16. Deep sequencing of the tobacco mitochondrial transcriptome reveals expressed ORFs and numerous editing sites outside coding regions

    PubMed Central

    2014-01-01

    Background The purpose of this study was to sequence and assemble the tobacco mitochondrial transcriptome and obtain a genomic-level view of steady-state RNA abundance. Plant mitochondrial genomes have a small number of protein coding genes with large and variably sized intergenic spaces. In the tobacco mitogenome these intergenic spaces contain numerous open reading frames (ORFs) with no clear function. Results The assembled transcriptome revealed distinct monocistronic and polycistronic transcripts along with large intergenic spaces with little to no detectable RNA. Eighteen of the 117 ORFs were found to have steady-state RNA amounts above background in both deep-sequencing and qRT-PCR experiments and ten of those were found to be polysome associated. In addition, the assembled transcriptome enabled a full mitogenome screen of RNA C→U editing sites. Six hundred and thirty five potential edits were found with 557 occurring within protein-coding genes, five in tRNA genes, and 73 in non-coding regions. These sites were found in every protein-coding transcript in the tobacco mitogenome. Conclusion These results suggest that a small number of the ORFs within the tobacco mitogenome may produce functional proteins and that RNA editing occurs in coding and non-coding regions of mitochondrial transcripts. PMID:24433288

  17. The Roles of Cytochrome b559 in Assembly and Photoprotection of Photosystem II Revealed by Site-Directed Mutagenesis Studies

    PubMed Central

    Chu, Hsiu-An; Chiu, Yi-Fang

    2016-01-01

    Cytochrome b559 (Cyt b559) is one of the essential components of the Photosystem II reaction center (PSII). Despite recent accomplishments in understanding the structure and function of PSII, the exact physiological function of Cyt b559 remains unclear. Cyt b559 is not involved in the primary electron transfer pathway in PSII but may participate in secondary electron transfer pathways that protect PSII against photoinhibition. Site-directed mutagenesis studies combined with spectroscopic and functional analysis have been used to characterize Cyt b559 mutant strains and their mutant PSII complex in higher plants, green algae, and cyanobacteria. These integrated studies have provided important in vivo evidence for possible physiological roles of Cyt b559 in the assembly and stability of PSII, protecting PSII against photoinhibition, and modulating photosynthetic light harvesting. This mini-review presents an overview of recent important progress in site-directed mutagenesis studies of Cyt b559 and implications for revealing the physiological functions of Cyt b559 in PSII. PMID:26793230

  18. Structural and Functional Analysis of JMJD2D Reveals Molecular Basis for Site-Specific Demethylation among JMJD2 Demethylases

    SciTech Connect

    Krishnan, Swathi; Trievel, Raymond C.

    2013-01-08

    We found that JMJD2 lysine demethylases (KDMs) participate in diverse genomic processes. Most JMJD2 homologs display dual selectivity toward H3K9me3 and H3K36me3, with the exception of JMJD2D, which is specific for H3K9me3. Here, we report the crystal structures of the JMJD2D•2-oxoglutarate•H3K9me3 ternary complex and JMJD2D apoenzyme. Utilizing structural alignments with JMJD2A, molecular docking, and kinetic analysis with an array of histone peptide substrates, we elucidate the specific signatures that permit efficient recognition of H3K9me3 by JMJD2A and JMJD2D, and the residues in JMJD2D that occlude H3K36me3 demethylation. Surprisingly, these results reveal that JMJD2A and JMJD2D exhibit subtle yet important differences in H3K9me3 recognition, despite the overall similarity in the substrate-binding conformation. Further, we show that H3T11 phosphorylation abrogates demethylation by JMJD2 KDMs. These studies reveal the molecular basis for JMJD2 site specificity and provide a framework for structure-based design of selective inhibitors of JMJD2 KDMs implicated in disease.

  19. Structural studies of neuropilin-2 reveal a zinc ion binding site remote from the vascular endothelial growth factor binding pocket.

    PubMed

    Tsai, Yi-Chun Isabella; Fotinou, Constantina; Rana, Rohini; Yelland, Tamas; Frankel, Paul; Zachary, Ian; Djordjevic, Snezana

    2016-05-01

    Neuropilin-2 is a transmembrane receptor involved in lymphangiogenesis and neuronal development. In adults, neuropilin-2 and its homologous protein neuropilin-1 have been implicated in cancers and infection. Molecular determinants of the ligand selectivity of neuropilins are poorly understood. We have identified and structurally characterized a zinc ion binding site on human neuropilin-2. The neuropilin-2-specific zinc ion binding site is located near the interface between domains b1 and b2 in the ectopic region of the protein, remote from the neuropilin binding site for its physiological ligand, i.e. vascular endothelial growth factor. We also present an X-ray crystal structure of the neuropilin-2 b1 domain in a complex with the C-terminal sub-domain of VEGF-A. Zn(2+) binding to neuropilin-2 destabilizes the protein structure but this effect was counteracted by heparin, suggesting that modifications by glycans and zinc in the extracellular matrix may affect functional neuropilin-2 ligand binding and signalling activity. PMID:26991001

  20. Noncovalent intermolecular interactions between dehydroepiandrosterone and the active site of human dehydroepiandrosterone sulphotransferase: A density functional theory based treatment

    NASA Astrophysics Data System (ADS)

    Astani, Elahe; Heshmati, Emran; Chen, Chun-Jung; Hadipour, Nasser L.; Shekarsaraei, Setareh

    2016-04-01

    A theoretical study was performed to characterize noncovalent intermolecular interactions, especially hydrogen bond (HB), in the active site of enzyme human dehydroepiandrosterone sulphotransferase (SULT2A1/DHEA) using the local (M06-L) and hybrid (M06, M06-2X) meta-GGA functionals of density functional theory (DFT). Results revealed that DHEA is able to form HBs with residues His99, Tyr231, Met137 and Met16 in the active site of the SULT2A1/DHEA. It was found that DHEA interacts with the other residues through electrostatic and Van der Waals interactions.

  1. Alanine-Scanning Mutational Analysis of Durancin GL Reveals Residues Important for Its Antimicrobial Activity.

    PubMed

    Ju, Xingrong; Chen, Xinquan; Du, Lihui; Wu, Xueyou; Liu, Fang; Yuan, Jian

    2015-07-22

    Durancin GL is a novel class IIa bacteriocin with 43 residues produced by Enterococcus durans 41D. This bacteriocin demonstrates narrow inhibition spectrum and potent antimicrobial activity against several Listeria monocytogenes strains, including nisin-resistant L. monocytogenes NR30. A systematic alanine-scanning mutational analysis with site-directed mutagenesis was performed to analyze durancin GL residues important for antimicrobial activity and specificity. Results showed that three mutations lost their antimicrobial activity, ten mutations demonstrated a decreased effect on the activity, and seven mutations exhibited relatively high activity. With regard to inhibitory spectrum, four mutants demonstrated a narrower antimicrobial spectrum than wild-type durancin GL. Another four mutants displayed a broader target cell spectrum and increased potency relative to wild-type durancin GL. These findings broaden our understanding of durancin GL residues important for its antimicrobial activity and contribute to future rational design of variants with increased potency. PMID:26168032

  2. Expression of the vertebrate Gli proteins in Drosophila reveals a distribution of activator and repressor activities.

    PubMed

    Aza-Blanc, P; Lin, H Y; Ruiz i Altaba, A; Kornberg, T B

    2000-10-01

    The Cubitus interruptus (Ci) and Gli proteins are transcription factors that mediate responses to Hedgehog proteins (Hh) in flies and vertebrates, respectively. During development of the Drosophila wing, Ci transduces the Hh signal and regulates transcription of different target genes at different locations. In vertebrates, the three Gli proteins are expressed in overlapping domains and are partially redundant. To assess how the vertebrate Glis correlate with Drosophila Ci, we expressed each in Drosophila and monitored their behaviors and activities. We found that each Gli has distinct activities that are equivalent to portions of the regulatory arsenal of Ci. Gli2 and Gli1 have activator functions that depend on Hh. Gli2 and Gli3 are proteolyzed to produce a repressor form able to inhibit hh expression. However, while Gli3 repressor activity is regulated by Hh, Gli2 repressor activity is not. These observations suggest that the separate activator and repressor functions of Ci are unevenly partitioned among the three Glis, yielding proteins with related yet distinct properties. PMID:10976059

  3. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    PubMed Central

    Wernimont, Amy K.; Artz, Jennifer D.; Finerty, Patrick; Lin, Y.; Amani, Mehrnaz; Allali-Hassani, Abdellah; Senisterra, Guillermo; Vedadi, Masoud; Tempel, Wolfram; Mackenzie, Farrell; Chau, Irene; Lourido, Sebastian; Sibley, L. David; Hui, Raymond

    2013-01-01

    Calcium-dependent protein kinases (CDPKs) play pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites, and comprise a CaMK-like kinase domain regulated by a calcium-binding domain in the C-terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N-terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium binding triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate-binding site. This large conformational change constitutes a distinct mechanism in calcium signal transduction pathways. PMID:20436473

  4. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    SciTech Connect

    Wernimont, Amy K; Artz, Jennifer D.; Jr, Patrick Finerty; Lin, Yu-Hui; Amani, Mehrnaz; Allali-Hassani, Abdellah; Senisterra, Guillermo; Vedadi, Masoud; Tempel, Wolfram; Mackenzie, Farrell; Chau, Irene; Lourido, Sebastian; Sibley, L. David; Hui, Raymond

    2010-09-21

    Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium binding triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate binding site. This large conformational change constitutes a distinct mechanism in calcium signal-transduction pathways.

  5. Directed evolution of Tau class glutathione transferases reveals a site that regulates catalytic efficiency and masks co-operativity.

    PubMed

    Axarli, Irine; Muleta, Abdi W; Vlachakis, Dimitrios; Kossida, Sophia; Kotzia, Georgia; Maltezos, Anastasios; Dhavala, Prathusha; Papageorgiou, Anastassios C; Labrou, Nikolaos E

    2016-03-01

    A library of Tau class GSTs (glutathione transferases) was constructed by DNA shuffling using the DNA encoding the Glycine max GSTs GmGSTU2-2, GmGSTU4-4 and GmGSTU10-10. The parental GSTs are >88% identical at the sequence level; however, their specificity varies towards different substrates. The DNA library contained chimaeric structures of alternated segments of the parental sequences and point mutations. Chimaeric GST sequences were expressed in Escherichia coli and their enzymatic activities towards CDNB (1-chloro-2,4-dinitrobenzene) and the herbicide fluorodifen (4-nitrophenyl α,α,α-trifluoro-2-nitro-p-tolyl ether) were determined. A chimaeric clone (Sh14) with enhanced CDNB- and fluorodifen-detoxifying activities, and unusual co-operative kinetics towards CDNB and fluorodifen, but not towards GSH, was identified. The structure of Sh14 was determined at 1.75 Å (1 Å=0.1 nm) resolution in complex with S-(p-nitrobenzyl)-glutathione. Analysis of the Sh14 structure showed that a W114C point mutation is responsible for the altered kinetic properties. This was confirmed by the kinetic properties of the Sh14 C114W mutant. It is suggested that the replacement of the bulky tryptophan residue by a smaller amino acid (cysteine) results in conformational changes of the active-site cavity, leading to enhanced catalytic activity of Sh14. Moreover, the structural changes allow the strengthening of the two salt bridges between Glu(66) and Lys(104) at the dimer interface that triggers an allosteric effect and the communication between the hydrophobic sites. PMID:26637269

  6. Energy Landscape Topography Reveals the Underlying Link Between Binding Specificity and Activity of Enzymes.

    PubMed

    Chu, Wen-Ting; Wang, Jin

    2016-01-01

    Enzyme activity (often quantified by kcat/Km) is the main function of enzyme when it is active against the specific substrate. Higher or lower activities are highly desired for the design of novel enzyme and drug resistance. However, it is difficult to measure the activities of all possible variants and find the "hot-spot" within the limit of experimental time. In this study, we explore the underlying energy landscape of enzyme-substrate interactions and introduce the intrinsic specificity ratio (ISR), which reflects the landscape topography. By studying two concrete systems, we uncover the statistical correlation between the intrinsic specificity and the enzyme activity kcat/Km. This physics-based concept and method show that the energy landscape topography is valuable for understanding the relationship between enzyme specificity and activity. In addition, it can reveal the underlying mechanism of enzyme-substrate actions and has potential applications on enzyme design. PMID:27298067

  7. Energy Landscape Topography Reveals the Underlying Link Between Binding Specificity and Activity of Enzymes

    PubMed Central

    Chu, Wen-Ting; Wang, Jin

    2016-01-01

    Enzyme activity (often quantified by kcat/Km) is the main function of enzyme when it is active against the specific substrate. Higher or lower activities are highly desired for the design of novel enzyme and drug resistance. However, it is difficult to measure the activities of all possible variants and find the “hot-spot” within the limit of experimental time. In this study, we explore the underlying energy landscape of enzyme-substrate interactions and introduce the intrinsic specificity ratio (ISR), which reflects the landscape topography. By studying two concrete systems, we uncover the statistical correlation between the intrinsic specificity and the enzyme activity kcat/Km. This physics-based concept and method show that the energy landscape topography is valuable for understanding the relationship between enzyme specificity and activity. In addition, it can reveal the underlying mechanism of enzyme-substrate actions and has potential applications on enzyme design. PMID:27298067

  8. Energy Landscape Topography Reveals the Underlying Link Between Binding Specificity and Activity of Enzymes

    NASA Astrophysics Data System (ADS)

    Chu, Wen-Ting; Wang, Jin

    2016-06-01

    Enzyme activity (often quantified by kcat/Km) is the main function of enzyme when it is active against the specific substrate. Higher or lower activities are highly desired for the design of novel enzyme and drug resistance. However, it is difficult to measure the activities of all possible variants and find the “hot-spot” within the limit of experimental time. In this study, we explore the underlying energy landscape of enzyme-substrate interactions and introduce the intrinsic specificity ratio (ISR), which reflects the landscape topography. By studying two concrete systems, we uncover the statistical correlation between the intrinsic specificity and the enzyme activity kcat/Km. This physics-based concept and method show that the energy landscape topography is valuable for understanding the relationship between enzyme specificity and activity. In addition, it can reveal the underlying mechanism of enzyme-substrate actions and has potential applications on enzyme design.

  9. Structure of a small-molecule inhibitor complexed with GlmU from Haemophilus influenzae reveals an allosteric binding site

    SciTech Connect

    Mochalkin, Igor; Lightle, Sandra; Narasimhan, Lakshmi; Bornemeier, Dirk; Melnick, Michael; VanderRoest, Steven; McDowell, Laura

    2008-04-02

    N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU) is an essential enzyme in aminosugars metabolism and an attractive target for antibiotic drug discovery. GlmU catalyzes the formation of uridine-diphospho-N-acetylglucosamine (UDP-GlcNAc), an important precursor in the peptidoglycan and lipopolisaccharide biosynthesis in both Gram-negative and Gram-positive bacteria. Here we disclose a 1.9 {angstrom} resolution crystal structure of a synthetic small-molecule inhibitor of GlmU from Haemophilus influenzae (hiGlmU). The compound was identified through a high-throughput screening (HTS) configured to detect inhibitors that target the uridyltransferase active site of hiGlmU. The original HTS hit exhibited a modest micromolar potency (IC{sub 50} - 18 {mu}M in a racemic mixture) against hiGlmU and no activity against Staphylococcus aureus GlmU (saGlmU). The determined crystal structure indicated that the inhibitor occupies an allosteric site adjacent to the GlcNAc-1-P substrate-binding region. Analysis of the mechanistic model of the uridyltransferase reaction suggests that the binding of this allosteric inhibitor prevents structural rearrangements that are required for the enzymatic reaction, thus providing a basis for structure-guided design of a new class of mechanism-based inhibitors of GlmU.

  10. A Unique Chitinase with Dual Active Sites and Triple Substrate Binding Sites from the Hyperthermophilic Archaeon Pyrococcus kodakaraensis KOD1

    PubMed Central

    Tanaka, Takeshi; Fujiwara, Shinsuke; Nishikori, Shingo; Fukui, Toshiaki; Takagi, Masahiro; Imanaka, Tadayuki

    1999-01-01

    We have found that the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 produces an extracellular chitinase. The gene encoding the chitinase (chiA) was cloned and sequenced. The chiA gene was found to be composed of 3,645 nucleotides, encoding a protein (1,215 amino acids) with a molecular mass of 134,259 Da, which is the largest among known chitinases. Sequence analysis indicates that ChiA is divided into two distinct regions with respective active sites. The N-terminal and C-terminal regions show sequence similarity with chitinase A1 from Bacillus circulans WL-12 and chitinase from Streptomyces erythraeus (ATCC 11635), respectively. Furthermore, ChiA possesses unique chitin binding domains (CBDs) (CBD1, CBD2, and CBD3) which show sequence similarity with cellulose binding domains of various cellulases. CBD1 was classified into the group of family V type cellulose binding domains. In contrast, CBD2 and CBD3 were classified into that of the family II type. chiA was expressed in Escherichia coli cells, and the recombinant protein was purified to homogeneity. The optimal temperature and pH for chitinase activity were found to be 85°C and 5.0, respectively. Results of thin-layer chromatography analysis and activity measurements with fluorescent substrates suggest that the enzyme is an endo-type enzyme which produces a chitobiose as a major end product. Various deletion mutants were constructed, and analyses of their enzyme characteristics revealed that both the N-terminal and C-terminal halves are independently functional as chitinases and that CBDs play an important role in insoluble chitin binding and hydrolysis. Deletion mutants which contain the C-terminal half showed higher thermostability than did N-terminal-half mutants and wild-type ChiA. PMID:10583986

  11. Transcriptomic Sequencing Reveals a Set of Unique Genes Activated by Butyrate-Induced Histone Modification.

    PubMed

    Li, Cong-Jun; Li, Robert W; Baldwin, Ransom L; Blomberg, Le Ann; Wu, Sitao; Li, Weizhong

    2016-01-01

    Butyrate is a nutritional element with strong epigenetic regulatory activity as a histone deacetylase inhibitor. Based on the analysis of differentially expressed genes in the bovine epithelial cells using RNA sequencing technology, a set of unique genes that are activated only after butyrate treatment were revealed. A complementary bioinformatics analysis of the functional category, pathway, and integrated network, using Ingenuity Pathways Analysis, indicated that these genes activated by butyrate treatment are related to major cellular functions, including cell morphological changes, cell cycle arrest, and apoptosis. Our results offered insight into the butyrate-induced transcriptomic changes and will accelerate our discerning of the molecular fundamentals of epigenomic regulation. PMID:26819550

  12. Transcriptomic Sequencing Reveals a Set of Unique Genes Activated by Butyrate-Induced Histone Modification

    PubMed Central

    Li, Cong-Jun; Li, Robert W.; Baldwin, Ransom L.; Blomberg, Le Ann; Wu, Sitao; Li, Weizhong

    2016-01-01

    Butyrate is a nutritional element with strong epigenetic regulatory activity as a histone deacetylase inhibitor. Based on the analysis of differentially expressed genes in the bovine epithelial cells using RNA sequencing technology, a set of unique genes that are activated only after butyrate treatment were revealed. A complementary bioinformatics analysis of the functional category, pathway, and integrated network, using Ingenuity Pathways Analysis, indicated that these genes activated by butyrate treatment are related to major cellular functions, including cell morphological changes, cell cycle arrest, and apoptosis. Our results offered insight into the butyrate-induced transcriptomic changes and will accelerate our discerning of the molecular fundamentals of epigenomic regulation. PMID:26819550

  13. Identification of an activation site in Bak and mitochondrial Bax triggered by antibodies

    PubMed Central

    Iyer, Sweta; Anwari, Khatira; Alsop, Amber E.; Yuen, Wai Shan; Huang, David C. S.; Carroll, John; Smith, Nicholas A.; Smith, Brian J.; Dewson, Grant; Kluck, Ruth M.

    2016-01-01

    During apoptosis, Bak and Bax are activated by BH3-only proteins binding to the α2–α5 hydrophobic groove; Bax is also activated via a rear pocket. Here we report that antibodies can directly activate Bak and mitochondrial Bax by binding to the α1–α2 loop. A monoclonal antibody (clone 7D10) binds close to α1 in non-activated Bak to induce conformational change, oligomerization, and cytochrome c release. Anti-FLAG antibodies also activate Bak containing a FLAG epitope close to α1. An antibody (clone 3C10) to the Bax α1–α2 loop activates mitochondrial Bax, but blocks translocation of cytosolic Bax. Tethers within Bak show that 7D10 binding directly extricates α1; a structural model of the 7D10 Fab bound to Bak reveals the formation of a cavity under α1. Our identification of the α1–α2 loop as an activation site in Bak paves the way to develop intrabodies or small molecules that directly and selectively regulate these proteins. PMID:27217060

  14. Identification of an activation site in Bak and mitochondrial Bax triggered by antibodies.

    PubMed

    Iyer, Sweta; Anwari, Khatira; Alsop, Amber E; Yuen, Wai Shan; Huang, David C S; Carroll, John; Smith, Nicholas A; Smith, Brian J; Dewson, Grant; Kluck, Ruth M

    2016-01-01

    During apoptosis, Bak and Bax are activated by BH3-only proteins binding to the α2-α5 hydrophobic groove; Bax is also activated via a rear pocket. Here we report that antibodies can directly activate Bak and mitochondrial Bax by binding to the α1-α2 loop. A monoclonal antibody (clone 7D10) binds close to α1 in non-activated Bak to induce conformational change, oligomerization, and cytochrome c release. Anti-FLAG antibodies also activate Bak containing a FLAG epitope close to α1. An antibody (clone 3C10) to the Bax α1-α2 loop activates mitochondrial Bax, but blocks translocation of cytosolic Bax. Tethers within Bak show that 7D10 binding directly extricates α1; a structural model of the 7D10 Fab bound to Bak reveals the formation of a cavity under α1. Our identification of the α1-α2 loop as an activation site in Bak paves the way to develop intrabodies or small molecules that directly and selectively regulate these proteins. PMID:27217060

  15. The Mechanism by which 146-N-Glycan Affects the Active Site of Neuraminidase.

    PubMed

    Liu, Pi; Wang, Zhonghua; Zhang, Lijie; Li, Dongmei; Lin, Jianping

    2015-01-01

    One of the most conserved glycosylation sites of neuraminidase (NA) is 146-N-glycan. This site is adjacent to the 150-cavity of NA, which is found within the active site and thought to be a target for rational drug development against the antiviral resistance of influenza. Here, through a total of 2.4 μs molecular dynamics (MD) simulations, we demonstrated that 146-N-glycan can stabilize the conformation of the 150-loop that controls the volume of the 150-cavity. Moreover, with 146-N-glycan, our simulation result was more consistent with crystal structures of NAs than simulations conducted without glycans. Cluster analysis of the MD trajectories showed that 146-N-glycan adopted three distinct conformations: monomer-bridged, dimer-bridged and standing. Of these conformations, the dimer-bridged 146-N-glycan was the most stable one and contributed to stabilization of the 150-loop conformation. Furthermore, our simulation revealed that various standing conformations of 146-N-glycan could block the entrance of the binding pocket. This result was consistent with experimental data and explained the relatively low activity of inhibitors with flexible substituents toward the 150-cavity. Together, our results lead us to hypothesize that rigid and hydrophobic substituents could serve as better inhibitors targeting the 150-cavity. PMID:26267136

  16. A proposed definition of the 'activity' of surface sites on lactose carriers for dry powder inhalation.

    PubMed

    Grasmeijer, Floris; Frijlink, Henderik W; de Boer, Anne H

    2014-06-01

    A new definition of the activity of surface sites on lactose carriers for dry powder inhalation is proposed which relates to drug detachment during dispersion. The new definition is expected to improve the understanding of 'carrier surface site activity', which stimulates the unambiguous communication about this subject and may aid in the rational design and interpretation of future formulation studies. In contrast to the currently prevailing view on carrier surface site activity, it follows from the newly proposed definition that carrier surface site activity depends on more variables than just the physicochemical properties of the carrier surface. Because the term 'active sites' is ambiguous, it is recommended to use the term 'highly active sites' instead to denote carrier surface sites with a relatively high activity. PMID:24613490

  17. Nuclear RNA-seq of single neurons reveals molecular signatures of activation

    PubMed Central

    Lacar, Benjamin; Linker, Sara B.; Jaeger, Baptiste N.; Krishnaswami, Suguna; Barron, Jerika; Kelder, Martijn; Parylak, Sarah; Paquola, Apuã; Venepally, Pratap; Novotny, Mark; O'Connor, Carolyn; Fitzpatrick, Conor; Erwin, Jennifer; Hsu, Jonathan Y.; Husband, David; McConnell, Michael J.; Lasken, Roger; Gage, Fred H.

    2016-01-01

    Single-cell sequencing methods have emerged as powerful tools for identification of heterogeneous cell types within defined brain regions. Application of single-cell techniques to study the transcriptome of activated neurons can offer insight into molecular dynamics associated with differential neuronal responses to a given experience. Through evaluation of common whole-cell and single-nuclei RNA-sequencing (snRNA-seq) methods, here we show that snRNA-seq faithfully recapitulates transcriptional patterns associated with experience-driven induction of activity, including immediate early genes (IEGs) such as Fos, Arc and Egr1. SnRNA-seq of mouse dentate granule cells reveals large-scale changes in the activated neuronal transcriptome after brief novel environment exposure, including induction of MAPK pathway genes. In addition, we observe a continuum of activation states, revealing a pseudotemporal pattern of activation from gene expression alone. In summary, snRNA-seq of activated neurons enables the examination of gene expression beyond IEGs, allowing for novel insights into neuronal activation patterns in vivo. PMID:27090946

  18. Nuclear RNA-seq of single neurons reveals molecular signatures of activation.

    PubMed

    Lacar, Benjamin; Linker, Sara B; Jaeger, Baptiste N; Krishnaswami, Suguna; Barron, Jerika; Kelder, Martijn; Parylak, Sarah; Paquola, Apuã; Venepally, Pratap; Novotny, Mark; O'Connor, Carolyn; Fitzpatrick, Conor; Erwin, Jennifer; Hsu, Jonathan Y; Husband, David; McConnell, Michael J; Lasken, Roger; Gage, Fred H

    2016-01-01

    Single-cell sequencing methods have emerged as powerful tools for identification of heterogeneous cell types within defined brain regions. Application of single-cell techniques to study the transcriptome of activated neurons can offer insight into molecular dynamics associated with differential neuronal responses to a given experience. Through evaluation of common whole-cell and single-nuclei RNA-sequencing (snRNA-seq) methods, here we show that snRNA-seq faithfully recapitulates transcriptional patterns associated with experience-driven induction of activity, including immediate early genes (IEGs) such as Fos, Arc and Egr1. SnRNA-seq of mouse dentate granule cells reveals large-scale changes in the activated neuronal transcriptome after brief novel environment exposure, including induction of MAPK pathway genes. In addition, we observe a continuum of activation states, revealing a pseudotemporal pattern of activation from gene expression alone. In summary, snRNA-seq of activated neurons enables the examination of gene expression beyond IEGs, allowing for novel insights into neuronal activation patterns in vivo. PMID:27090946

  19. Regulation of active site coupling in glutamine-dependent NAD[superscript +] synthetase

    SciTech Connect

    LaRonde-LeBlanc, Nicole; Resto, Melissa; Gerratana, Barbara

    2009-05-21

    NAD{sup +} is an essential metabolite both as a cofactor in energy metabolism and redox homeostasis and as a regulator of cellular processes. In contrast to humans, Mycobacterium tuberculosis NAD{sup +} biosynthesis is absolutely dependent on the activity of a multifunctional glutamine-dependent NAD{sup +} synthetase, which catalyzes the ATP-dependent formation of NAD{sup +} at the synthetase domain using ammonia derived from L-glutamine in the glutaminase domain. Here we report the kinetics and structural characterization of M. tuberculosis NAD{sup +} synthetase. The kinetics data strongly suggest tightly coupled regulation of the catalytic activities. The structure, the first of a glutamine-dependent NAD{sup +} synthetase, reveals a homooctameric subunit organization suggesting a tight dependence of catalysis on the quaternary structure, a 40-{angstrom} intersubunit ammonia tunnel and structural elements that may be involved in the transfer of information between catalytic sites.

  20. Reverse evolution leads to genotypic incompatibility despite functional and active site convergence.

    PubMed

    Kaltenbach, Miriam; Jackson, Colin J; Campbell, Eleanor C; Hollfelder, Florian; Tokuriki, Nobuhiko

    2015-01-01

    Understanding the extent to which enzyme evolution is reversible can shed light on the fundamental relationship between protein sequence, structure, and function. Here, we perform an experimental test of evolutionary reversibility using directed evolution from a phosphotriesterase to an arylesterase, and back, and examine the underlying molecular basis. We find that wild-type phosphotriesterase function could be restored (>10(4)-fold activity increase), but via an alternative set of mutations. The enzyme active site converged towards its original state, indicating evolutionary constraints imposed by catalytic requirements. We reveal that extensive epistasis prevents reversions and necessitates fixation of new mutations, leading to a functionally identical sequence. Many amino acid exchanges between the new and original enzyme are not tolerated, implying sequence incompatibility. Therefore, the evolution was phenotypically reversible but genotypically irreversible. Our study illustrates that the enzyme's adaptive landscape is highly rugged, and different functional sequences may constitute separate fitness peaks. PMID:26274563

  1. Disturbance opens recruitment sites for bacterial colonization in activated sludge.

    PubMed

    Vuono, David C; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E

    2016-01-01

    Little is known about the role of immigration in shaping bacterial communities or the factors that may dictate success or failure of colonization by bacteria from regional species pools. To address these knowledge gaps, the influence of bacterial colonization into an ecosystem (activated sludge bioreactor) was measured through a disturbance gradient (successive decreases in the parameter solids retention time) relative to stable operational conditions. Through a DNA sequencing approach, we show that the most abundant bacteria within the immigrant community have a greater probability of colonizing the receiving ecosystem, but mostly as low abundance community members. Only during the disturbance do some of these bacterial populations significantly increase in abundance beyond background levels and in few cases become dominant community members post-disturbance. Two mechanisms facilitate the enhanced enrichment of immigrant populations during disturbance: (i) the availability of resources left unconsumed by established species and (ii) the increased availability of niche space for colonizers to establish and displace resident populations. Thus, as a disturbance decreases local diversity, recruitment sites become available to promote colonization. This work advances our understanding of microbial resource management and diversity maintenance in complex ecosystems. PMID:25727891

  2. Construction of DNA recognition sites active in Haemophilus transformation.

    PubMed Central

    Danner, D B; Smith, H O; Narang, S A

    1982-01-01

    Competent Haemophilus cells recognize and preferentially take up Haemophilus DNA during genetic transformation. This preferential uptake is correlated with the presence on incoming DNA of an 11-base-pair (bp) sequence, 5'-A-A-G-T-G-C-G-G-T-C-A-3'. To prove that this sequence is the recognition site that identifies Haemophilus DNA to the competent cell, we have now constructed a series of plasmids, each of which contains the 11-bp sequence. Using two different assay systems we have tested the ability of fragments from these plasmids to compete with cloned Haemophilus DNA fragments that naturally contain the 11-bp sequence. We find that the addition of the 11-bp sequence to a DNA fragment is necessary and sufficient for preferential uptake of that fragment. However, plasmid DNAs containing this sequence may vary as much as 48-fold in uptake activity, and this variation correlates with the A+T-richness of the DNA flanking the 11-mer. Images PMID:6285382

  3. Characterization of active site residues of nitroalkane oxidase.

    PubMed

    Valley, Michael P; Fenny, Nana S; Ali, Shah R; Fitzpatrick, Paul F

    2010-06-01

    The flavoenzyme nitroalkane oxidase catalyzes the oxidation of primary and secondary nitroalkanes to the corresponding aldehydes and ketones plus nitrite. The structure of the enzyme shows that Ser171 forms a hydrogen bond to the flavin N5, suggesting that it plays a role in catalysis. Cys397 and Tyr398 were previously identified by chemical modification as potential active site residues. To more directly probe the roles of these residues, the S171A, S171V, S171T, C397S, and Y398F enzymes have been characterized with nitroethane as substrate. The C397S and Y398 enzymes were less stable than the wild-type enzyme, and the C397S enzyme routinely contained a substoichiometric amount of FAD. Analysis of the steady-state kinetic parameters for the mutant enzymes, including deuterium isotope effects, establishes that all of the mutations result in decreases in the rate constants for removal of the substrate proton by approximately 5-fold and decreases in the rate constant for product release of approximately 2-fold. Only the S171V and S171T mutations alter the rate constant for flavin oxidation. These results establish that these residues are not involved in catalysis, but rather are required for maintaining the protein structure. PMID:20056514

  4. Detection limit for activation measurements in ultralow background sites

    NASA Astrophysics Data System (ADS)

    Trache, Livius; Chesneanu, D.; Margineanu, R.; Pantelica, A.; Ghita, D. G.; Burducea, I.; Straticiuc, M.; Tang, X. D.

    2014-09-01

    We used 12C +13C fusion at the beam energies E = 6, 7 and 8 MeV to determine the sensitivity and the limits of activation method measurements in ultralow background sites. A 13C beam of 0.5 μA from the 3 MV Tandem accelerator of the Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH impinged on thick graphite targets. After about 24 hrs of irradiation targets were measured in two different laboratories: one with a heavy shielded Ge detector in the institute (at the surface) and one located underground in the microBequerel laboratory, in the salt mine of Slanic-Prahova, Romania. The 1369- and 2754 keV peaks from 24Na deactivation were clearly observed in the γ-ray spectra obtained for acquisitions lasting a few hours, or a few days. Determination of the detection limit in evaluating the cross sections for the target irradiated at Ec . m = 3 MeV indicates the fact that it is possible to measure gamma spectrum in underground laboratory down to Ec . m = 2 . 6 MeV. Cleaning the spectra with beta-gamma coincidences and increasing beam intensity 20 times will take as further down. The measurements are motivated by the study of the 12 C +12 C reaction at astrophysical energies.

  5. N6-Methyldeoxyadenosine Marks Active Transcription Start Sites in Chlamydomonas

    PubMed Central

    Chen, Kai; Deng, Xin; Yu, Miao; Han, Dali; Hao, Ziyang; Liu, Jianzhao; Lu, Xingyu; Dore, Louis C; Weng, Xiaocheng; Ji, Quanjiang; Mets, Laurens; He, Chuan

    2015-01-01

    SUMMARY N6-methyldeoxyadenosine (6mA or m6A) is a DNA modification preserved in prokaryotes to eukaryotes. It is widespread in bacteria, and functions in DNA mismatch repair, chromosome segregation, and virulence regulation. In contrast, the distribution and function of 6mA in eukaryotes have been unclear. Here we present a comprehensive analysis of the 6mA landscape in the genome of Chlamydomonas using new sequencing approaches. We identified the 6mA modification in 84% of genes in Chlamydomonas. We found that 6mA mainly locates at ApT dinucleotides around transcription start sites (TSS) with a bimodal distribution, and appears to mark active genes. A periodic pattern of 6mA deposition was also observed at base resolution, which is associated with nucleosome distribution near the TSS, suggesting a possible role in nucleosome positioning. The new genome-wide mapping of 6mA and its unique distribution in the Chlamydomonas genome suggest potential regulatory roles of 6mA in gene expression in eukaryotic organisms. PMID:25936837

  6. Influence of protonation on substrate and inhibitor interactions at the active site of human monoamine oxidase-A.

    PubMed

    Zapata-Torres, Gerald; Fierro, Angelica; Miranda-Rojas, Sebastian; Guajardo, Carlos; Saez-Briones, Patricio; Salgado, J Cristian; Celis-Barros, Cristian

    2012-05-25

    Although substrate conversion mediated by human monoaminooxidase (hMAO) has been associated with the deprotonated state of their amine moiety, data regarding the influence of protonation on substrate binding at the active site are scarce. Thus, in order to assess protonation influence, steered molecular dynamics (SMD) runs were carried out. These simulations revealed that the protonated form of the substrate serotonin (5-HT) exhibited stronger interactions at the protein surface compared to the neutral form. The latter displayed stronger interactions in the active site cavity. These observations support the possible role of the deprotonated form in substrate conversion. Multigrid docking studies carried out to rationalize the role of 5-HT protonation in other sites besides the active site indicated two energetically favored docking sites for the protonated form of 5-HT on the enzyme surface. These sites seem to be interconnected with the substrate/inhibitor cavity, as revealed by the tunnels observed by means of CAVER program. pK(a) calculations in the surface loci pointed to Glu³²⁷, Asp³²⁸, His⁴⁸⁸, and Asp¹³² as candidates for a possible in situ deprotonation step. Docking analysis of a group of inhibitors (structurally related to substrates) showed further interactions with the same two docking access sites. Interestingly, the protonated/deprotonated amine moiety of almost all compounds attained different docking poses in the active site, none of them oriented to the flavin moiety, thus producing a more variable and less productive orientations to act as substrates. Our results highlight the role of deprotonation in facilitating substrate conversion and also might reflect the necessity of inhibitor molecules to adopt specific orientations to achieve enzyme inhibition. PMID:22540832

  7. Structure of Escherichia coli tyrosine Kinase Etk Reveals a Novel Activation Mechanism

    SciTech Connect

    Lee,D.; Zheng, J.; She, Y.; Jia, Z.

    2008-01-01

    While protein tyrosine (Tyr) kinases (PTKs) have been extensively characterized in eukaryotes, far less is known about their emerging counterparts in prokaryotes. The inner-membrane Wzc/Etk protein belongs to the bacterial PTK family, which has an important function in regulating the polymerization and transport of virulence-determining capsular polysaccharide (CPS). The kinase uses a unique two-step activation process involving intra-phosphorylation of a Tyr residue, although the molecular mechanism remains unknown. Herein, we report the first crystal structure of a bacterial PTK, the C-terminal kinase domain of Escherichia coli Tyr kinase (Etk) at 2.5-Angstroms resolution. The fold of the Etk kinase domain differs markedly from that of eukaryotic PTKs. Based on the observed structure and supporting mass spectrometric evidence of Etk, a unique activation mechanism is proposed that involves the phosphorylated Tyr residue, Y574, at the active site and its specific interaction with a previously unidentified key Arg residue, R614, to unblock the active site. Both in vitro kinase activity and in vivo antibiotics resistance studies using structure-guided mutants further support the novel activation mechanism.

  8. Dynamic BRG1 Recruitment during T Helper Differentiation and Activation Reveals Distal Regulatory Elements▿§

    PubMed Central

    De, Supriyo; Wurster, Andrea L.; Precht, Patricia; Wood, William H.; Becker, Kevin G.; Pazin, Michael J.

    2011-01-01

    T helper cell differentiation and activation require specific transcriptional programs accompanied by changes in chromatin structure. However, little is known about the chromatin remodeling enzymes responsible. We performed genome-wide analysis to determine the general principles of BRG1 binding, followed by analysis of specific genes to determine whether these general rules were typical of key T cell genes. We found that binding of the remodeling protein BRG1 was programmed by both lineage and activation signals. BRG1 binding positively correlated with gene activity at protein-coding and microRNA (miRNA) genes. BRG1 binding was found at promoters and distal regions, including both novel and previously validated distal regulatory elements. Distal BRG1 binding correlated with expression, and novel distal sites in the Gata3 locus possessed enhancer-like activity, suggesting a general role for BRG1 in long-distance gene regulation. BRG1 recruitment to distal sites in Gata3 was impaired in cells lacking STAT6, a transcription factor that regulates lineage-specific genes. Together, these findings suggest that BRG1 interprets both differentiation and activation signals and plays a causal role in gene regulation, chromatin structure, and cell fate. Our findings suggest that BRG1 binding is a useful marker for identifying active cis-regulatory regions in protein-coding and miRNA genes. PMID:21262765

  9. Structure of the Bifunctional Acyltransferase/Decarboxylase LnmK from the Leinamycin Biosynthetic Pathway Revealing Novel Activity for a Double-Hot-Dog Fold

    SciTech Connect

    Lohman, Jeremy R.; Bingman, Craig A.; George N. Phillips Jr.; Shen, Ben

    2013-01-15

    The β-branched C3 unit in leinamycin biosynthesis is installed by a set of four proteins, LnmFKLM. In vitro biochemical investigation confirmed that LnmK is a bifunctional acyltransferase/decarboxylase (AT/DC) that catalyzes first self-acylation using methylmalonyl-CoA as a substrate and subsequently transacylation of the methylmalonyl group to the phosphopantetheinyl group of the LnmL acyl carrier protein [Liu, T., Huang, Y., and Shen, B. (2009) J. Am. Chem. Soc. 131, 6900–6901]. LnmK shows no sequence homology to proteins of known function, representing a new family of AT/DC enzymes. Here we report the X-ray structure of LnmK. LnmK is homodimer with each of the monomers adopting a double-hot-dog fold. Cocrystallization of LnmK with methylmalonyl-CoA revealed an active site tunnel terminated by residues from the dimer interface. But, to canonical AT and ketosynthase enzymes that employ Ser or Cys as an active site residue, none of these residues are found in the vicinity of the LnmK active site. Instead, three tyrosines were identified, one of which, Tyr62, was established, by site-directed mutagenesis, to be the most likely active site residue for the AT activity of LnmK. Moreover, LnmK represents the first AT enzyme that employs a Tyr as an active site residue and the first member of the family of double-hot-dog fold enzymes that displays an AT activity known to date. The LnmK structure sets the stage for probing of the DC activity of LnmK through site-directed mutagenesis. These findings highlight natural product biosynthetic machinery as a rich source of novel enzyme activities, mechanisms, and structures.

  10. The Structure of the Bifunctional Acyltransferase/Decarboxylase LnmK from the Leinamycin Biosynthetic Pathway Revealing Novel Activity for a Double Hot Dog Fold

    PubMed Central

    Lohman, Jeremy R.; Bingman, Craig A.; Phillips, George N.; Shen, Ben

    2013-01-01

    The β-branched C3 unit in leinamycin biosynthesis is installed by a set of four proteins, LnmFKLM. In vitro biochemical investigation confirmed that LnmK is a bifunctional acyltransferase/decarboxylase (AT/DC) that catalyzes first self-acylation using methylmalonyl-CoA as a substrate and subsequently trans-acylation of the methylmalonyl group to the phosphopantetheinyl group of the LnmL acyl carrier protein [Liu, T., Huang, Y., and Shen, B. (2009), J. Am. Chem. Soc. 131, 6900-6901]. LnmK shows no sequence homology to proteins of known function, representing a new family of AT/DC enzymes. Here we report the X-ray structure of LnmK. LnmK is homodimer with each of the monomers adopting a double-hot-dog fold. Co-crystallization of LnmK with methylmalonyl-CoA revealed an active site tunnel terminated by residues from the dimer interface. In contrast to canonical AT and ketosynthase enzymes that employ Ser or Cys as an active site residue, none of these residues are found in the vicinity of the LnmK active site. Instead, three tyrosines were identified, one of which, Tyr62, was established, by site-directed mutagenesis, to be the most likely active site residue for the AT activity of LnmK. LnmK represents the first AT enzyme that employs a Tyr as an active site residue and the first member of double-hot-dog fold enzymes that displays an AT activity known to date. The LnmK structure sets the stage to probe the DC activity of LnmK through site-directed mutagenesis. These findings highlight natural product biosynthetic machinery as a rich source of novel enzyme activities, mechanisms, and structures. PMID:23320975

  11. Circular dichroism and site-directed spin labeling reveal structural and dynamical features of high-pressure states of myoglobin

    PubMed Central

    Lerch, Michael T.; Horwitz, Joseph; McCoy, John; Hubbell, Wayne L.

    2013-01-01

    Excited states of proteins may play important roles in function, yet are difficult to study spectroscopically because of their sparse population. High hydrostatic pressure increases the equilibrium population of excited states, enabling their characterization [Akasaka K (2003) Biochemistry 42:10875–85]. High-pressure site-directed spin-labeling EPR (SDSL-EPR) was developed recently to map the site-specific structure and dynamics of excited states populated by pressure. To monitor global secondary structure content by circular dichroism (CD) at high pressure, a modified optical cell using a custom MgF2 window with a reduced aperture is introduced. Here, a combination of SDSL-EPR and CD is used to map reversible structural transitions in holomyoglobin and apomyoglobin (apoMb) as a function of applied pressure up to 2 kbar. CD shows that the high-pressure excited state of apoMb at pH 6 has helical content identical to that of native apoMb, but reversible changes reflecting the appearance of a conformational ensemble are observed by SDSL-EPR, suggesting a helical topology that fluctuates slowly on the EPR time scale. Although the high-pressure state of apoMb at pH 6 has been referred to as a molten globule, the data presented here reveal significant differences from the well-characterized pH 4.1 molten globule of apoMb. Pressure-populated states of both holomyoglobin and apoMb at pH 4.1 have significantly less helical structure, and for the latter, that may correspond to a transient folding intermediate. PMID:24248390

  12. Structural analysis and insertion study reveal the ideal sites for surface displaying foreign peptides on a betanodavirus-like particle.

    PubMed

    Xie, Junfeng; Li, Kunpeng; Gao, Yuanzhu; Huang, Runqing; Lai, Yuxiong; Shi, Yan; Yang, Shaowei; Zhu, Guohua; Zhang, Qinfen; He, Jianguo

    2016-01-01

    Betanodavirus infection causes fatal disease of viral nervous necrosis in many cultured marine and freshwater fish worldwide and the virus-like particles (VLP) are effective vaccines against betanodavirus. But vaccine and viral vector designs of betanodavirus VLP based on their structures remain lacking. Here, the three-dimensional structure of orange-spotted grouper nervous necrosis virus (OGNNV) VLP (RBS) at 3.9 Å reveals the organization of capsid proteins (CP). Based on the structural results, seven putative important sites were selected to genetically insert a 6× histidine (His)-tag for VLP formation screen, resulting in four His-tagged VLP (HV) at positions N-terminus, Ala220, Pro292 and C-terminus. The His-tags of N-terminal HV (NHV) were concealed inside virions while those of 220HV and C-terminal HV (CHV) were displayed at the outer surface. NHV, 220HV and CHV maintained the same cell entry ability as RBS in the Asian sea bass (SB) cell line, indicating that their similar surface structures can be recognized by the cellular entry receptor(s). For application of vaccine design, chromatography-purified CHV could provoke NNV-specific antibody responses as strong as those of RBS in a sea bass immunization assay. Furthermore, in carrying capacity assays, N-terminus and Ala220 can only carry short peptides and C-terminus can even accommodate large protein such as GFP to generate fluorescent VLP (CGV). For application of a viral vector, CGV could be real-time visualized to enter SB cells in invasion study. All the results confirmed that the C-terminus of CP is a suitable site to accommodate foreign peptides for vaccine design and viral vector development. PMID:26754256

  13. Circular dichroism and site-directed spin labeling reveal structural and dynamical features of high-pressure states of myoglobin.

    PubMed

    Lerch, Michael T; Horwitz, Joseph; McCoy, John; Hubbell, Wayne L

    2013-12-01

    Excited states of proteins may play important roles in function, yet are difficult to study spectroscopically because of their sparse population. High hydrostatic pressure increases the equilibrium population of excited states, enabling their characterization [Akasaka K (2003) Biochemistry 42:10875-85]. High-pressure site-directed spin-labeling EPR (SDSL-EPR) was developed recently to map the site-specific structure and dynamics of excited states populated by pressure. To monitor global secondary structure content by circular dichroism (CD) at high pressure, a modified optical cell using a custom MgF2 window with a reduced aperture is introduced. Here, a combination of SDSL-EPR and CD is used to map reversible structural transitions in holomyoglobin and apomyoglobin (apoMb) as a function of applied pressure up to 2 kbar. CD shows that the high-pressure excited state of apoMb at pH 6 has helical content identical to that of native apoMb, but reversible changes reflecting the appearance of a conformational ensemble are observed by SDSL-EPR, suggesting a helical topology that fluctuates slowly on the EPR time scale. Although the high-pressure state of apoMb at pH 6 has been referred to as a molten globule, the data presented here reveal significant differences from the well-characterized pH 4.1 molten globule of apoMb. Pressure-populated states of both holomyoglobin and apoMb at pH 4.1 have significantly less helical structure, and for the latter, that may correspond to a transient folding intermediate. PMID:24248390

  14. Computational investigation of locked nucleic acid (LNA) nucleotides in the active sites of DNA polymerases by molecular docking simulations.

    PubMed

    Poongavanam, Vasanthanathan; Madala, Praveen K; Højland, Torben; Veedu, Rakesh N

    2014-01-01

    Aptamers constitute a potential class of therapeutic molecules typically selected from a large pool of oligonucleotides against a specific target. With a scope of developing unique shorter aptamers with very high biostability and affinity, locked nucleic acid (LNA) nucleotides have been investigated as a substrate for various polymerases. Various reports showed that some thermophilic B-family DNA polymerases, particularly KOD and Phusion DNA polymerases, accepted LNA-nucleoside 5'-triphosphates as substrates. In this study, we investigated the docking of LNA nucleotides in the active sites of RB69 and KOD DNA polymerases by molecular docking simulations. The study revealed that the incoming LNA-TTP is bound in the active site of the RB69 and KOD DNA polymerases in a manner similar to that seen in the case of dTTP, and with LNA structure, there is no other option than the locked C3'-endo conformation which in fact helps better orienting within the active site. PMID:25036012

  15. Integrative Multi-omic Analysis of Human Platelet eQTLs Reveals Alternative Start Site in Mitofusin 2.

    PubMed

    Simon, Lukas M; Chen, Edward S; Edelstein, Leonard C; Kong, Xianguo; Bhatlekar, Seema; Rigoutsos, Isidore; Bray, Paul F; Shaw, Chad A

    2016-05-01

    Platelets play a central role in ischemic cardiovascular events. Cardiovascular disease (CVD) is a major cause of death worldwide. Numerous genome-wide association studies (GWASs) have identified loci associated with CVD risk. However, our understanding of how these variants contribute to disease is limited. Using data from the platelet RNA and expression 1 (PRAX1) study, we analyzed cis expression quantitative trait loci (eQTLs) in platelets from 154 normal human subjects. We confirmed these results in silico by performing allele-specific expression (ASE) analysis, which demonstrated that the allelic directionality of eQTLs and ASE patterns correlate significantly. Comparison of platelet eQTLs with data from the Genotype-Tissue Expression (GTEx) project revealed that a number of platelet eQTLs are platelet specific and that platelet eQTL peaks localize to the gene body at a higher rate than eQTLs from other tissues. Upon integration with data from previously published GWASs, we found that the trait-associated variant rs1474868 coincides with the eQTL peak for mitofusin 2 (MFN2). Additional experimental and computational analyses revealed that this eQTL is linked to an unannotated alternate MFN2 start site preferentially expressed in platelets. Integration of phenotype data from the PRAX1 study showed that MFN2 expression levels were significantly associated with platelet count. This study links the variant rs1474868 to a platelet-specific regulatory role for MFN2 and demonstrates the utility of integrating multi-omic data with eQTL analysis in disease-relevant tissues for interpreting GWAS results. PMID:27132591

  16. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  17. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  18. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  19. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  20. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  1. Survey of activated kinase proteins reveals potential targets for cholangiocarcinoma treatment.

    PubMed

    Dokduang, Hasaya; Juntana, Sirinun; Techasen, Anchalee; Namwat, Nisana; Yongvanit, Puangrat; Khuntikeo, Narong; Riggins, Gregory J; Loilome, Watcharin

    2013-12-01

    Improving therapy for patients with cholangiocarcinoma (CCA) presents a significant challenge. This is made more difficult by a lack of a clear understanding of potential molecular targets, such as deregulated kinases. In this work, we profiled the activated kinases in CCA in order to apply them as the targets for CCA therapy. Human phospho-receptor tyrosine kinases (RTKs) and phospho-kinase array analyses revealed that multiple kinases are activated in both CCA cell lines and human CCA tissues that included cell growth, apoptosis, cell to cell interaction, movement, and angiogenesis RTKs. Predominately, the kinases activated downstream were those in the PI3K/Akt, Ras/MAPK, JAK/STAT, and Wnt/β-catenin signaling pathways. Western blot analysis confirms that Erk1/2 and Akt activation were increased in CCA tissues when compared with their normal adjacent tissue. The inhibition of kinase activation using multi-targeted kinase inhibitors, sorafenib and sunitinib led to significant cell growth inhibition and apoptosis induction via suppression of Erk1/2 and Akt activation, whereas drugs with specificity to a single kinase showed less potency. In conclusion, our study reveals the involvement of multiple kinase proteins in CCA growth that might serve as therapeutic targets for combined kinase inhibition. PMID:23812726

  2. Functional Screening of Hydrolytic Activities Reveals an Extremely Thermostable Cellulase from a Deep-Sea Archaeon

    PubMed Central

    Leis, Benedikt; Heinze, Simon; Angelov, Angel; Pham, Vu Thuy Trang; Thürmer, Andrea; Jebbar, Mohamed; Golyshin, Peter N.; Streit, Wolfgang R.; Daniel, Rolf; Liebl, Wolfgang

    2015-01-01

    Extreme habitats serve as a source of enzymes that are active under extreme conditions and are candidates for industrial applications. In this work, six large-insert mixed genomic libraries were screened for hydrolase activities in a broad temperature range (8–70°C). Among a variety of hydrolytic activities, one fosmid clone, derived from a library of pooled isolates of hyperthermophilic archaea from deep sea vents, displayed hydrolytic activity on carboxymethyl cellulose substrate plates at 70°C but not at lower temperatures. Sequence analysis of the fosmid insert revealed a gene encoding a novel glycoside hydrolase family 12 (GHF12) endo-1,4-β-glucanase, termed Cel12E. The enzyme shares 45% sequence identity with a protein from the archaeon Thermococcus sp. AM4 and displays a unique multidomain architecture. Biochemical characterization of Cel12E revealed a remarkably thermostable protein, which appears to be of archaeal origin. The enzyme displayed maximum activity at 92°C and was active on a variety of linear 1,4-β-glucans like carboxymethyl cellulose, β-glucan, lichenan, and phosphoric acid swollen cellulose. The protein is able to bind to various insoluble β-glucans. Product pattern analysis indicated that Cel12E is an endo-cleaving β-glucanase. Cel12E expands the toolbox of hyperthermostable archaeal cellulases with biotechnological potential. PMID:26191525

  3. Site-specific phosphorylation and microtubule dynamics control Pyrin inflammasome activation.

    PubMed

    Gao, Wenqing; Yang, Jieling; Liu, Wang; Wang, Yupeng; Shao, Feng

    2016-08-16

    Pyrin, encoded by the MEFV gene, is best known for its gain-of-function mutations causing familial Mediterranean fever (FMF), an autoinflammatory disease. Pyrin forms a caspase-1-activating inflammasome in response to inactivating modifications of Rho GTPases by various bacterial toxins or effectors. Pyrin-mediated innate immunity is unique in that it senses bacterial virulence rather than microbial molecules, but its mechanism of activation is unknown. Here we show that Pyrin was phosphorylated in bone marrow-derived macrophages and dendritic cells. We identified Ser-205 and Ser-241 in mouse Pyrin whose phosphorylation resulted in inhibitory binding by cellular 14-3-3 proteins. The two serines underwent dephosphorylation upon toxin stimulation or bacterial infection, triggering 14-3-3 dissociation, which correlated with Pyrin inflammasome activation. We developed antibodies specific for phosphorylated Ser-205 and Ser-241, which confirmed the stimuli-induced dephosphorylation of endogenous Pyrin. Mutational analyses indicated that both phosphorylation and signal-induced dephosphorylation of Ser-205/241 are important for Pyrin activation. Moreover, microtubule drugs, including colchicine, commonly used to treat FMF, effectively blocked activation of the Pyrin inflammasome. These drugs did not affect Pyrin dephosphorylation and 14-3-3 dissociation but inhibited Pyrin-mediated apoptosis-associated Speck-like protein containing CARD (ASC) aggregation. Our study reveals that site-specific (de)phosphorylation and microtubule dynamics critically control Pyrin inflammasome activation, illustrating a fine and complex mechanism in cytosolic immunity. PMID:27482109

  4. Novel Phosphorylation Sites in the S. cerevisiae Cdc13 Protein Reveal New Targets for Telomere Length Regulation

    PubMed Central

    Wu, Yun; DiMaggio, Peter A.; Perlman, David H.; Zakian, Virginia A.; Garcia, Benjamin A.

    2013-01-01

    The S. cerevisiae Cdc13 is a multifunctional protein with key roles in regulation of telomerase, telomere end protection, and conventional telomere replication, all of which are cell cycle-regulated processes. Given that phosphorylation is a key mechanism for regulating protein function, we identified sites of phosphorylation using nano liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS). We also determined phosphorylation abundance on both wild type (WT) and a telomerase deficient form of Cdc13, encoded by the cdc13-2 allele, in both G1 phase cells, when telomerase is not active, and G2/M phase cells, when it is. We identified 21 sites of in vivo phosphorylation, of which only five had been reported previously. In contrast, phosphorylation of two in vitro targets of the ATM-like Tel1 kinase, S249 and S255, was not detected. This result helps resolve conflicting data on the importance of phosphorylation of these residues in telomerase recruitment. multiple residues showed differences in their cell cycle pattern of modification. For example, phosphorylation of S314 was significantly higher in the G2/M compared to the G1 phase and in WT versus mutant Cdc13, and a S314D mutation negatively affected telomere length. Our findings provide new targets in a key telomerase regulatory protein for modulation of telomere dynamics. PMID:23181431

  5. Active Site Dependent Reaction Mechanism over Ru/CeO2 Catalyst toward CO2 Methanation.

    PubMed

    Wang, Fei; He, Shan; Chen, Hao; Wang, Bin; Zheng, Lirong; Wei, Min; Evans, David G; Duan, Xue

    2016-05-18

    Oxygen vacancy on the surface of metal oxides is one of the most important defects which acts as the reactive site in a variety of catalytic reactions. In this work, operando spectroscopy methodology was employed to study the CO2 methanation reaction catalyzed by Ru/CeO2 (with oxygen vacancy in CeO2) and Ru/α-Al2O3 (without oxygen vacancy), respectively, so as to give a thorough understanding on active site dependent reaction mechanism. In Ru/CeO2 catalyst, operando XANES, IR, and Raman were used to reveal the generation process of Ce(3+), surface hydroxyl, and oxygen vacancy as well as their structural evolvements under practical reaction conditions. The steady-state isotope transient kinetic analysis (SSITKA)-type in situ DRIFT infrared spectroscopy undoubtedly substantiates that CO2 methanation undergoes formate route over Ru/CeO2 catalyst, and the formate dissociation to methanol catalyzed by oxygen vacancy is the rate-determining step. In contrast, CO2 methanation undergoes CO route over Ru surface in Ru/α-Al2O3 with the absence of oxygen vacancy, demonstrating active site dependent catalytic mechanism toward CO2 methanation. In addition, the catalytic activity evaluation and the oscillating reaction over Ru/CeO2 catalyst further prove that the oxygen vacancy catalyzes the rate-determining step with a much lower activation temperature compared with Ru surface in Ru/α-Al2O3 (125 vs 250 °C). PMID:27135417

  6. Targeted massively parallel sequencing of angiosarcomas reveals frequent activation of the mitogen activated protein kinase pathway

    PubMed Central

    Murali, Rajmohan; Chandramohan, Raghu; Möller, Inga; Scholz, Simone L.; Berger, Michael; Huberman, Kety; Viale, Agnes; Pirun, Mono; Socci, Nicholas D.; Bouvier, Nancy; Bauer, Sebastian; Artl, Monika; Schilling, Bastian; Schimming, Tobias; Sucker, Antje; Schwindenhammer, Benjamin; Grabellus, Florian; Speicher, Michael R.; Schaller, Jörg; Hillen, Uwe; Schadendorf, Dirk; Mentzel, Thomas; Cheng, Donavan T.; Wiesner, Thomas; Griewank, Klaus G.

    2015-01-01

    Angiosarcomas are rare malignant mesenchymal tumors of endothelial differentiation. The clinical behavior is usually aggressive and the prognosis for patients with advanced disease is poor with no effective therapies. The genetic bases of these tumors have been partially revealed in recent studies reporting genetic alterations such as amplifications of MYC (primarily in radiation-associated angiosarcomas), inactivating mutations in PTPRB and R707Q hotspot mutations of PLCG1. Here, we performed a comprehensive genomic analysis of 34 angiosarcomas using a clinically-approved, hybridization-based targeted next-generation sequencing assay for 341 well-established oncogenes and tumor suppressor genes. Over half of the angiosarcomas (n = 18, 53%) harbored genetic alterations affecting the MAPK pathway, involving mutations in KRAS, HRAS, NRAS, BRAF, MAPK1 and NF1, or amplifications in MAPK1/CRKL, CRAF or BRAF. The most frequently detected genetic aberrations were mutations in TP53 in 12 tumors (35%) and losses of CDKN2A in 9 tumors (26%). MYC amplifications were generally mutually exclusive of TP53 alterations and CDKN2A loss and were identified in 8 tumors (24%), most of which (n = 7, 88%) arose post-irradiation. Previously reported mutations in PTPRB (n = 10, 29%) and one (3%) PLCG1 R707Q mutation were also identified. Our results demonstrate that angiosarcomas are a genetically heterogeneous group of tumors, harboring a wide range of genetic alterations. The high frequency of genetic events affecting the MAPK pathway suggests that targeted therapies inhibiting MAPK signaling may be promising therapeutic avenues in patients with advanced angiosarcomas. PMID:26440310

  7. Spores of most common airborne fungi reveal no ice nucleation activity

    NASA Astrophysics Data System (ADS)

    Pummer, B. G.; Atanasova, L.; Bauer, H.; Bernardi, J.; Druzhinina, I. S.; Grothe, H.

    2013-06-01

    Fungal spores are ubiquitous biological aerosols, which are considered to show ice nucleation (IN) activity. In this study the respective IN activity was tested in oil emulsion in the immersion freezing mode. The focus was laid on species of economical, ecological or sanitary significance. For the first time, not only common moulds, but also edible mushrooms (Basidiomycota, Agaricomycetes) were investigated, as they contribute massively to the total amount of fungal spores in the atmosphere. Only Fusarium avenaceum showed freezing events at low subzero-temperatures, while the other investigated fungal spores showed no significant IN activity. Furthermore, we selected a set of fungal strains from different sites and exposed them to occasional freezing stress during cultivation. Although the total protein expression was altered by this treatment, it had no significant impact on the IN activity.

  8. Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation

    SciTech Connect

    Boudreaux, David A.; Maiti, Tushar K.; Davies, Christopher W.; Das, Chittaranjan

    2010-07-06

    Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a Parkinson disease-associated, putative cysteine protease found abundantly and selectively expressed in neurons. The crystal structure of apo UCHL1 showed that the active-site residues are not aligned in a canonical form, with the nucleophilic cysteine being 7.7 {angstrom} from the general base histidine, an arrangement consistent with an inactive form of the enzyme. Here we report the crystal structures of the wild type and two Parkinson disease-associated variants of the enzyme, S18Y and I93M, bound to a ubiquitin-based suicide substrate, ubiquitin vinyl methyl ester. These structures reveal that ubiquitin vinyl methyl ester binds primarily at two sites on the enzyme, with its carboxy terminus at the active site and with its amino-terminal {beta}-hairpin at the distal site - a surface-exposed hydrophobic crevice 17 {angstrom} away from the active site. Binding at the distal site initiates a cascade of side-chain movements in the enzyme that starts at a highly conserved, surface-exposed phenylalanine and is relayed to the active site resulting in the reorientation and proximal placement of the general base within 4 {angstrom} of the catalytic cysteine, an arrangement found in productive cysteine proteases. Mutation of the distal-site, surface-exposed phenylalanine to alanine reduces ubiquitin binding and severely impairs the catalytic activity of the enzyme. These results suggest that the activity of UCHL1 may be regulated by its own substrate.

  9. Active-site mutagenesis of tetanus neurotoxin implicates TYR-375 and GLU-271 in metalloproteolytic activity.

    PubMed

    Rossetto, O; Caccin, P; Rigoni, M; Tonello, F; Bortoletto, N; Stevens, R C; Montecucco, C

    2001-08-01

    Tetanus neurotoxin (TeNT) blocks neurotransmitter release by cleaving VAMP/synaptobrevin, a membrane associated protein involved in synaptic vesicle fusion. Such activity is exerted by the N-terminal 50kDa domain of TeNT which is a zinc-dependent endopeptidase (TeNT-L-chain). Based on the three-dimensional structure of botulinum neurotoxin serotype A (BoNT/A) and serotype B (BoNT/B), two proteins closely related to TeNT, and on X-ray scattering studies of TeNT, we have designed mutations at two active site residues to probe their involvement in activity. The active site of metalloproteases is composed of a primary sphere of residues co-ordinating the zinc atom, and a secondary sphere of residues that determines proteolytic specificity and activity. Glu-261 and Glu-267 directly co-ordinates the zinc atom in BoNT/A and BoNT/B respectively and the corresponding residue of TeNT was replaced by Asp or by the non conservative residue Ala. Tyr-365 is 4.3A away from zinc in BoNT/A, and the corresponding residue of TeNT was replaced by Phe or by Ala. The purified mutants had CD, fluorescence and UV spectra closely similar to those of the wild-type molecule. The proteolytic activity of TeNT-Asp-271 (E271D) is similar to that of the native molecule, whereas that of TeNT-Phe-375 (Y375F) is lower than the control. Interestingly, the two Ala mutants are completely devoid of enzymatic activity. These results demonstrate that both Glu-271 and Tyr-375 are essential for the proteolytic activity of TeNT. PMID:11306125

  10. Structural and Functional Characterization of CRM1-Nup214 Interactions Reveals Multiple FG-Binding Sites Involved in Nuclear Export.

    PubMed

    Port, Sarah A; Monecke, Thomas; Dickmanns, Achim; Spillner, Christiane; Hofele, Romina; Urlaub, Henning; Ficner, Ralf; Kehlenbach, Ralph H

    2015-10-27

    CRM1 is the major nuclear export receptor. During translocation through the nuclear pore, transport complexes transiently interact with phenylalanine-glycine (FG) repeats of multiple nucleoporins. On the cytoplasmic side of the nuclear pore, CRM1 tightly interacts with the nucleoporin Nup214. Here, we present the crystal structure of a 117-amino-acid FG-repeat-containing fragment of Nup214, in complex with CRM1, Snurportin 1, and RanGTP at 2.85 Å resolution. The structure reveals eight binding sites for Nup214 FG motifs on CRM1, with intervening stretches that are loosely attached to the transport receptor. Nup214 binds to N- and C-terminal regions of CRM1, thereby clamping CRM1 in a closed conformation and stabilizing the export complex. The role of conserved hydrophobic pockets for the recognition of FG motifs was analyzed in biochemical and cell-based assays. Comparative studies with RanBP3 and Nup62 shed light on specificities of CRM1-nucleoporin binding, which serves as a paradigm for transport receptor-nucleoporin interactions. PMID:26489467

  11. Comparative Genomic Hybridization of Human Malignant Gliomas Reveals Multiple Amplification Sites and Nonrandom Chromosomal Gains and Losses

    PubMed Central

    Schròck, Evelin; Thiel, Gundula; Lozanova, Tanka; du Manoir, Stanislas; Meffert, Marie-Christine; Jauch, Anna; Speicher, Michael R.; Nürnberg, Peter; Vogel, Siegfried; Janisch, Werner; Donis-Keller, Helen; Ried, Thomas; Witkowski, Regine; Cremer, Thomas

    1994-01-01

    Nine human malignant gliomas (2 astrocytomas grade III and 7 glioblastomas) were analyzed using comparative genomic hybridization (CGH). In addition to the amplification of the EGFR gene at 7p12 in 4 of 9 cases, six new amplification sites were mapped to 1q32, 4q12, 7q21.1, 7q21.2-3, 12p, and 22q12. Nonrandom chromosomal gains and losses were identified with overrepresentation of chromosome 7 and underrepresentation of chromosome 10 as the most frequent events (1 of 2 astrocytomas, 7 of 7 glioblastomas). Gain of a part or the whole chromosome 19 and losses of chromosome bands 9pter-23 and 22q13 were detected each in five cases. Loss of chromosome band 17p13 and gain of chromosome 20 were revealed each in three cases. The validity of the CGH data was confirmed using interphase cytogenetics with YAC clones, chromosome painting in tumor metaphase spreads, and DNA fingerprinting. A comparison of CGH data with the results of chromosome banding analyses indicates that metaphase spreads accessible in primary tumor cell cultures may not represent the clones predominant in the tumor tissue ImagesFigure 1Figure 4Figure 6 PMID:8203461

  12. GAS HYDRATES AT TWO SITES OF AN ACTIVE CONTINENTAL MARGIN.

    USGS Publications Warehouse

    Kvenvolden, K.A.

    1985-01-01

    Sediment containing gas hydrates from two distant Deep Sea Drilling Project sites (565 and 568), located about 670 km apart on the landward flank of the Middle America Trench, was studied to determine the geochemical conditions that characterize the occurrence of gas hydrates. Site 565 was located in the Pacific Ocean offshore the Nicoya Peninsula of Costa Rica in 3,111 m of water. The depth of the hole at this site was 328 m, and gas hydrates were recovered from 285 and 319 m. Site 568 was located about 670 km to the northwest offshore Guatemala in 2,031 m of water. At this site the hole penetrated to 418 m, and gas hydrates were encountered at 404 m.

  13. Dynamically Achieved Active Site Precision in Enzyme Catalysis

    PubMed Central

    2015-01-01

    Conspectus The grand challenge in enzymology is to define and understand all of the parameters that contribute to enzymes’ enormous rate accelerations. The property of hydrogen tunneling in enzyme reactions has moved the focus of research away from an exclusive focus on transition state stabilization toward the importance of the motions of the heavy atoms of the protein, a role for reduced barrier width in catalysis, and the sampling of a protein conformational landscape to achieve a family of protein substates that optimize enzyme–substrate interactions and beyond. This Account focuses on a thermophilic alcohol dehydrogenase for which the chemical step of hydride transfer is rate determining across a wide range of experimental conditions. The properties of the chemical coordinate have been probed using kinetic isotope effects, indicating a transition in behavior below 30 °C that distinguishes nonoptimal from optimal C–H activation. Further, the introduction of single site mutants has the impact of either enhancing or eliminating the temperature dependent transition in catalysis. Biophysical probes, which include time dependent hydrogen/deuterium exchange and fluorescent lifetimes and Stokes shifts, have also been pursued. These studies allow the correlation of spatially resolved transitions in protein motions with catalysis. It is now possible to define a long-range network of protein motions in ht-ADH that extends from a dimer interface to the substrate binding domain across to the cofactor binding domain, over a distance of ca. 30 Å. The ongoing challenge to obtaining spatial and temporal resolution of catalysis-linked protein motions is discussed. PMID:25539048

  14. Natural and semisynthetic analogues of manadoperoxide B reveal new structural requirements for trypanocidal activity.

    PubMed

    Chianese, Giuseppina; Scala, Fernando; Calcinai, Barbara; Cerrano, Carlo; Dien, Henny A; Kaiser, Marcel; Tasdemir, Deniz; Taglialatela-Scafati, Orazio

    2013-09-01

    Chemical analysis of the Indonesian sponge Plakortis cfr. lita afforded two new analogues of the potent trypanocidal agent manadoperoxide B (1), namely 12-isomanadoperoxide B (2) and manadoperoxidic acid B (3). These compounds were isolated along with a new short chain dicarboxylate monoester (4), bearing some interesting relationships with the polyketide endoperoxides found in this sponge. Some semi-synthetic analogues of manadoperoxide B (6-8) were prepared and evaluated for antitrypanosomal activity and cytotoxicity. These studies revealed crucial structure-activity relationships that should be taken into account in the design of optimized and simplified endoperoxyketal trypanocidal agents. PMID:23989650

  15. A High-Throughput Screen Reveals New Small-Molecule Activators and Inhibitors of Pantothenate Kinases

    PubMed Central

    2016-01-01

    Pantothenate kinase (PanK) is a regulatory enzyme that controls coenzyme A (CoA) biosynthesis. The association of PanK with neurodegeneration and diabetes suggests that chemical modifiers of PanK activity may be useful therapeutics. We performed a high throughput screen of >520000 compounds from the St. Jude compound library and identified new potent PanK inhibitors and activators with chemically tractable scaffolds. The HTS identified PanK inhibitors exemplified by the detailed characterization of a tricyclic compound (7) and a preliminary SAR. Biophysical studies reveal that the PanK inhibitor acts by binding to the ATP–enzyme complex. PMID:25569308

  16. Simulations of DNA topoisomerase 1B bound to supercoiled DNA reveal changes in the flexibility pattern of the enzyme and a secondary protein–DNA binding site

    PubMed Central

    D'Annessa, Ilda; Coletta, Andrea; Sutthibutpong, Thana; Mitchell, Jonathan; Chillemi, Giovanni; Harris, Sarah; Desideri, Alessandro

    2014-01-01

    Human topoisomerase 1B has been simulated covalently bound to a negatively supercoiled DNA minicircle, and its behavior compared to the enzyme bound to a simple linear DNA duplex. The presence of the more realistic supercoiled substrate facilitates the formation of larger number of protein–DNA interactions when compared to a simple linear duplex fragment. The number of protein–DNA hydrogen bonds doubles in proximity to the active site, affecting all of the residues in the catalytic pentad. The clamp over the DNA, characterized by the salt bridge between Lys369 and Glu497, undergoes reduced fluctuations when bound to the supercoiled minicircle. The linker domain of the enzyme, which is implicated in the controlled relaxation of superhelical stress, also displays an increased number of contacts with the minicircle compared to linear DNA. Finally, the more complex topology of the supercoiled DNA minicircle gives rise to a secondary DNA binding site involving four residues located on subdomain III. The simulation trajectories reveal significant changes in the interactions between the enzyme and the DNA for the more complex DNA topology, which are consistent with the experimental observation that the protein has a preference for binding to supercoiled DNA. PMID:25056319

  17. DNA polymerase beta reveals enhanced activity and processivity in reverse micelles.

    PubMed

    Anarbaev, Rashid O; Rogozina, Anastasia L; Lavrik, Olga I

    2009-04-01

    Water is essential for the stability and functions of proteins and DNA. Reverse micelles are simple model systems where the structure and dynamics of water are controlled. We have estimated the size of complex reverse micelles by light scattering technique and examined the local microenvironment using fluorescein as molecular probe. The micelle size and water polarity inside reverse micelles depend on water volume fraction. We have investigated the different hydration and confinement effects on activity, processivity, and stability of mammalian DNA polymerase beta in reverse micelles. The enzyme displays high processivity on primed single-stranded M13mp19 DNA with maximal activity at 10% of water content. The processivity and activity of DNA polymerase strongly depend on the protein concentration. The enzyme reveals also the enhanced stability in the presence of template-primer and at high protein concentration. The data provide direct evidence for strong influence of microenvironment on DNA polymerase activity. PMID:19138815

  18. Directed evolution of P-glycoprotein cysteines reveals site-specific, non-conservative substitutions that preserve multidrug resistance.

    PubMed

    Swartz, Douglas J; Mok, Leo; Botta, Sri K; Singh, Anukriti; Altenberg, Guillermo A; Urbatsch, Ina L

    2014-01-01

    Pgp (P-glycoprotein) is a prototype ABC (ATP-binding-cassette) transporter involved in multidrug resistance of cancer. We used directed evolution to replace six cytoplasmic Cys (cysteine) residues in Pgp with all 20 standard amino acids and selected for active mutants. From a pool of 75000 transformants for each block of three Cys, we identified multiple mutants that preserved drug resistance and yeast mating activity. The most frequent substitutions were glycine and serine for Cys427 (24 and 20%, respectively) and Cys1070 (37 and 25%) of the Walker A motifs in the NBDs (nucleotide-binding domains), Cys1223 in NBD2 (25 and 8%) and Cys638 in the linker region (24 and 16%), whereas close-by Cys669 tolerated glycine (16%) and alanine (14%), but not serine (absent). Cys1121 in NBD2 showed a clear preference for positively charged arginine (38%) suggesting a salt bridge with Glu269 in the ICL2 (intracellular loop 2) may stabilize domain interactions. In contrast, three Cys residues in transmembrane α-helices could be successfully replaced by alanine. The resulting CL (Cys-less) Pgp was fully active in yeast cells, and purified proteins displayed drug-stimulated ATPase activities indistinguishable from WT (wild-type) Pgp. Overall, directed evolution identified site-specific, non-conservative Cys substitutions that allowed building of a robust CL Pgp, an invaluable new tool for future functional and structural studies, and that may guide the construction of other CL proteins where alanine and serine have proven unsuccessful. PMID:24825346

  19. Structural Basis for the Inhibition of RNase H Activity of HIV-1 Reverse Transcriptase by RNase H Active Site-Directed Inhibitors

    SciTech Connect

    Su, Hua-Poo; Yan, Youwei; Prasad, G. Sridhar; Smith, Robert F.; Daniels, Christopher L.; Abeywickrema, Pravien D.; Reid, John C.; Loughran, H. Marie; Kornienko, Maria; Sharma, Sujata; Grobler, Jay A.; Xu, Bei; Sardana, Vinod; Allison, Timothy J.; Williams, Peter D.; Darke, Paul L.; Hazuda, Daria J.; Munshi, Sanjeev

    2010-09-02

    HIV/AIDS continues to be a menace to public health. Several drugs currently on the market have successfully improved the ability to manage the viral burden in infected patients. However, new drugs are needed to combat the rapid emergence of mutated forms of the virus that are resistant to existing therapies. Currently, approved drugs target three of the four major enzyme activities encoded by the virus that are critical to the HIV life cycle. Although a number of inhibitors of HIV RNase H activity have been reported, few inhibit by directly engaging the RNase H active site. Here, we describe structures of naphthyridinone-containing inhibitors bound to the RNase H active site. This class of compounds binds to the active site via two metal ions that are coordinated by catalytic site residues, D443, E478, D498, and D549. The directionality of the naphthyridinone pharmacophore is restricted by the ordering of D549 and H539 in the RNase H domain. In addition, one of the naphthyridinone-based compounds was found to bind at a second site close to the polymerase active site and non-nucleoside/nucleotide inhibitor sites in a metal-independent manner. Further characterization, using fluorescence-based thermal denaturation and a crystal structure of the isolated RNase H domain reveals that this compound can also bind the RNase H site and retains the metal-dependent binding mode of this class of molecules. These structures provide a means for structurally guided design of novel RNase H inhibitors.

  20. Kinetics of Hydrogen Atom Abstraction from Substrate by an Active Site Thiyl Radical in Ribonucleotide Reductase

    PubMed Central

    2015-01-01

    Ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides to deoxynucleotides in all organisms. Active E. coli class Ia RNR is an α2β2 complex that undergoes reversible, long-range proton-coupled electron transfer (PCET) over a pathway of redox active amino acids (β-Y122 → [β-W48] → β-Y356 → α-Y731 → α-Y730 → α-C439) that spans ∼35 Å. To unmask PCET kinetics from rate-limiting conformational changes, we prepared a photochemical RNR containing a [ReI] photooxidant site-specifically incorporated at position 355 ([Re]-β2), adjacent to PCET pathway residue Y356 in β. [Re]-β2 was further modified by replacing Y356 with 2,3,5-trifluorotyrosine to enable photochemical generation and spectroscopic observation of chemically competent tyrosyl radical(s). Using transient absorption spectroscopy, we compare the kinetics of Y· decay in the presence of substrate and wt-α2, Y731F-α2 ,or C439S-α2, as well as with 3′-[2H]-substrate and wt-α2. We find that only in the presence of wt-α2 and the unlabeled substrate do we observe an enhanced rate of radical decay indicative of forward radical propagation. This observation reveals that cleavage of the 3′-C–H bond of substrate by the transiently formed C439· thiyl radical is rate-limiting in forward PCET through α and has allowed calculation of a lower bound for the rate constant associated with this step of (1.4 ± 0.4) × 104 s–1. Prompting radical propagation with light has enabled observation of PCET events heretofore inaccessible, revealing active site chemistry at the heart of RNR catalysis. PMID:25353063

  1. Robotics and Automation Activities at the Savannah River Site: A Site Report for SUBWOG 39F

    SciTech Connect

    Teese, G.D.

    1995-09-28

    The Savannah River Site has successfully used robots, teleoperators, and remote video to reduce exposure to ionizing radiation, improve worker safety, and improve the quality of operations. Previous reports have described the use of mobile teleoperators in coping with a high level liquid waste spill, the removal of highly contaminated equipment, and the inspection of nuclear reactor vessels. This report will cover recent applications at the Savannah River, as well as systems which SRS has delivered to other DOE site customers.

  2. A comparative structure-function analysis of active-site inhibitors of Vibrio cholerae cholix toxin.

    PubMed

    Lugo, Miguel R; Merrill, A Rod

    2015-09-01

    Cholix toxin from Vibrio cholerae is a novel mono-ADP-ribosyltransferase (mART) toxin that shares structural and functional properties with Pseudomonas aeruginosa exotoxin A and Corynebacterium diphtheriae diphtheria toxin. Herein, we have used the high-resolution X-ray structure of full-length cholix toxin in the apo form, NAD(+) bound, and 10 structures of the cholix catalytic domain (C-domain) complexed with several strong inhibitors of toxin enzyme activity (NAP, PJ34, and the P-series) to study the binding mode of the ligands. A pharmacophore model based on the active pose of NAD(+) was compared with the active conformation of the inhibitors, which revealed a cationic feature in the side chain of the inhibitors that may determine the active pose. Moreover, a conformational search was conducted for the missing coordinates of one of the main active-site loops (R-loop). The resulting structural models were used to evaluate the interaction energies and for 3D-QSAR modeling. Implications for a rational drug design approach for mART toxins were derived. PMID:25756608

  3. Mutation of conserved active-site threonine residues in creatine kinase affects autophosphorylation and enzyme kinetics.

    PubMed Central

    Stolz, Martin; Hornemann, Thorsten; Schlattner, Uwe; Wallimann, Theo

    2002-01-01

    Muscle-type creatine kinase (MM-CK) is a member of an isoenzyme family with key functions in cellular energetics. It has become a matter of debate whether the enzyme is autophosphorylated, as reported earlier [Hemmer, Furter-Graves, Frank, Wallimann and Furter (1995) Biochim. Biophys. Acta 1251, 81-90], or exclusively nucleotidylated. In the present paper, we demonstrate unambiguously that CK is indeed autophosphorylated. However, this autophosphorylation is not solely responsible for the observed microheterogeneity of MM-CK on two-dimensional isoelectric focusing gels. Using phosphoamino-acid analysis of (32)P-labelled CK isoforms, phosphothreonine (P-Thr) residues were identified as the only product of autophosphorylation for all CK isoenzymes. The phosphorylated residues in chicken MM-CK were allocated to a region in the vicinity of the active site, where five putative phosphorylation sites were identified. Site-directed threonine-valine-replacement mutants reveal that autophosphorylation is not specific for one particular residue but occurs at all examined threonine residues. The enzyme kinetic parameters indicate that the autophosphorylation of CK exerts a modulatory effect on substrate binding and the equilibrium constant, rather than on the catalytic mechanism itself. PMID:11964180

  4. Improving upon Nature: Active site remodeling produces highly efficient aldolase activity towards hydrophobic electrophilic substrates

    PubMed Central

    Cheriyan, Manoj; Toone, Eric J.; Fierke, Carol A.

    2012-01-01

    Substrate specificity of enzymes is frequently narrow and constrained by multiple interactions, limiting the use of natural enzymes in biocatalytic applications. Aldolases have important synthetic applications, but the usefulness of these enzymes is hampered by their narrow reactivity profile with unnatural substrates. To explore the determinants of substrate selectivity and alter the specificity of E. coli 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase, we employed structure-based mutagenesis coupled with library screening of mutant enzymes localized to the bacterial periplasm. We identified two active site mutations (T161S/S184L) that work additively to enhance the substrate specificity of this aldolase to include catalysis of retro-aldol cleavage of (4S)-2-keto-4-hydroxy-4-(2′-pyridyl)butyrate (S-KHPB). These mutations improve the value of kcat/KMS-KHPB by >450-fold, resulting in a catalytic efficiency that is comparable to that of the wild-type enzyme with the natural substrate while retaining high stereoselectivity. Moreover, the value of kcatS-KHPB for this mutant enzyme, a parameter critical for biocatalytic applications, is 3-fold higher than the maximum value achieved by the natural aldolase with any substrate. This mutant also possesses high catalytic efficiency for the retro-aldol cleavage of the natural substrate, KDPG, and a >50-fold improved activity for cleavage of 2-keto-4-hydroxy-octonoate (KHO), a non-functionalized hydrophobic analog. These data suggest a substrate binding mode that illuminates the origin of facial selectivity in aldol addition reactions catalyzed by KDPG and 2-keto-3-deoxy-6-phosphogalactonate (KDPGal) aldolases. Furthermore, targeting mutations to the active site provides marked improvement in substrate selectivity, demonstrating that structure-guided active site mutagenesis combined with selection techniques can efficiently identify proteins with characteristics that compare favorably to naturally occurring enzymes. PMID

  5. Dimerization interface and dynamic properties of yeast IF1 revealed by Site-Directed Spin Labeling EPR spectroscopy.

    PubMed

    Le Breton, Nolwenn; Adrianaivomananjaona, Tiona; Gerbaud, Guillaume; Etienne, Emilien; Bisetto, Elena; Dautant, Alain; Guigliarelli, Bruno; Haraux, Francis; Martinho, Marlène; Belle, Valérie

    2016-01-01

    The mitochondrial ATPase inhibitor, IF1, regulates the activity of the mitochondrial ATP synthase. The oligomeric state of IF1 related to pH is crucial for its inhibitory activity. Although extensive structural studies have been performed to characterize the oligomeric states of bovine IF1, only little is known concerning those of yeast IF1. While bovine IF1 can be found as an inhibitory dimer at low pH and a non-inhibitory tetramer at high pH, a monomer/dimer equilibrium has been described for yeast IF1, high pH values favoring the monomeric state. Combining different strategies involving the grafting of nitroxide spin labels combined with Electron Paramagnetic Resonance (EPR) spectroscopy, the present study brings the first structural characterization, at the residue level, of yeast IF1 in its dimeric form. The results show that the dimerization interface involves the central region of the peptide revealing that the dimer corresponds to a non-inhibitory state. Moreover, we demonstrate that the C-terminal region of the peptide is highly dynamic and that this segment is probably folded back onto the central region. Finally, the pH-dependence of the inter-label distance distribution has been observed indicating a conformational change between two structural states in the dimer. PMID:26518384

  6. Atomically-thin two-dimensional sheets for understanding active sites in catalysis.

    PubMed

    Sun, Yongfu; Gao, Shan; Lei, Fengcai; Xie, Yi

    2015-02-01

    Catalysis can speed up chemical reactions and it usually occurs on the low coordinated steps, edges, terraces, kinks and corner atoms that are often called "active sites". However, the atomic level interplay between active sites and catalytic activity is still an open question, owing to the large difference between idealized models and real catalysts. This stimulates us to pursue a suitable material model for studying the active sites-catalytic activity relationship, in which the atomically-thin two-dimensional sheets could serve as an ideal model, owing to their relatively simple type of active site and the ultrahigh fraction of active sites that are comparable to the overall atoms. In this tutorial review, we focus on the recent progress in disclosing the factors that affect the activity of reactive sites, including characterization of atomic coordination number, structural defects and disorder in ultrathin two-dimensional sheets by X-ray absorption fine structure spectroscopy, positron annihilation spectroscopy, electron spin resonance and high resolution transmission electron microscopy. Also, we overview their applications in CO catalytic oxidation, photocatalytic water splitting, electrocatalytic oxygen and hydrogen evolution reactions, and hence highlight the atomic level interplay among coordination number, structural defects/disorder, active sites and catalytic activity in the two-dimensional sheets with atomic thickness. Finally, we also present the major challenges and opportunities regarding the role of active sites in catalysis. We believe that this review provides critical insights for understanding the catalysis and hence helps to develop new catalysts with high catalytic activity. PMID:25382246

  7. The active sites of supported silver particle catalysts in formaldehyde oxidation.

    PubMed

    Chen, Yaxin; Huang, Zhiwei; Zhou, Meijuan; Hu, Pingping; Du, Chengtian; Kong, Lingdong; Chen, Jianmin; Tang, Xingfu

    2016-08-01

    Surface silver atoms with upshifted d-orbitals are identified as the catalytically active sites in formaldehyde oxidation by correlating their activity with the number of surface silver atoms, and the degree of the d-orbital upshift governs the catalytic performance of the active sites. PMID:27406403

  8. Mutation of Gly721 Alters DNA Topoisomerase I Active Site Architecture and Sensitivity to Camptothecin*

    PubMed Central

    van der Merwe, Marie; Bjornsti, Mary-Ann

    2015-01-01

    DNA topoisomerase I (Top1p) catalyzes the relaxation of supercoiled DNA via a concerted mechanism of DNA strand cleavage and religation. Top1p is the cellular target of the anticancer drug camptothecin (CPT), which reversibly stabilizes a covalent enzyme-DNA intermediate. Top1p clamps around duplex DNA, wherein the core and C-terminal domains are connected by extended α-helices (linker domain), which position the active site Tyr of the C-terminal domain within the catalytic pocket. The physical connection of the linker with the Top1p clamp as well as linker flexibility affect enzyme sensitivity to CPT. Crystallographic data reveal that a conserved Gly residue (located at the juncture between the linker and C-terminal domains) is at one end of a short α-helix, which extends to the active site Tyr covalently linked to the DNA. In the presence of drug, the linker is rigid and this α-helix extends to include Gly and the preceding Leu. We report that mutation of this conserved Gly in yeast Top1p alters enzyme sensitivity to CPT. Mutating Gly to Asp, Glu, Asn, Gln, Leu, or Ala enhanced enzyme CPT sensitivity, with the acidic residues inducing the greatest increase in drug sensitivity in vivo and in vitro. By contrast, Val or Phe substituents rendered the enzyme CPT-resistant. Mutation-induced alterations in enzyme architecture preceding the active site Tyr suggest these structural transitions modulate enzyme sensitivity to CPT, while enhancing the rate of DNA cleavage. We postulate that this conserved Gly residue provides a flexible hinge within the Top1p catalytic pocket to facilitate linker dynamics and the structural alterations that accompany drug binding of the covalent enzyme-DNA intermediate. PMID:18056711

  9. Structure of the Acinetobacter baumannii Dithiol Oxidase DsbA Bound to Elongation Factor EF-Tu Reveals a Novel Protein Interaction Site

    PubMed Central

    Premkumar, Lakshmanane; Kurth, Fabian; Duprez, Wilko; Grøftehauge, Morten K.; King, Gordon J.; Halili, Maria A.; Heras, Begoña; Martin, Jennifer L.

    2014-01-01

    The multidrug resistant bacterium Acinetobacter baumannii is a significant cause of nosocomial infection. Biofilm formation, that requires both disulfide bond forming and chaperone-usher pathways, is a major virulence trait in this bacterium. Our biochemical characterizations show that the periplasmic A. baumannii DsbA (AbDsbA) enzyme has an oxidizing redox potential and dithiol oxidase activity. We found an unexpected non-covalent interaction between AbDsbA and the highly conserved prokaryotic elongation factor, EF-Tu. EF-Tu is a cytoplasmic protein but has been localized extracellularly in many bacterial pathogens. The crystal structure of this complex revealed that the EF-Tu switch I region binds to the non-catalytic surface of AbDsbA. Although the physiological and pathological significance of a DsbA/EF-Tu association is unknown, peptides derived from the EF-Tu switch I region bound to AbDsbA with submicromolar affinity. We also identified a seven-residue DsbB-derived peptide that bound to AbDsbA with low micromolar affinity. Further characterization confirmed that the EF-Tu- and DsbB-derived peptides bind at two distinct sites. These data point to the possibility that the non-catalytic surface of DsbA is a potential substrate or regulatory protein interaction site. The two peptides identified in this work together with the newly characterized interaction site provide a novel starting point for inhibitor design targeting AbDsbA. PMID:24860094

  10. Phosphoproteomic network analysis in the sea urchin Strongylocentrotus purpuratus reveals new candidates in egg activation.

    PubMed

    Guo, Hongbo; Garcia-Vedrenne, Ana Elisa; Isserlin, Ruth; Lugowski, Andrew; Morada, Anthony; Sun, Alex; Miao, Yishen; Kuzmanov, Uros; Wan, Cuihong; Ma, Hongyue; Foltz, Kathy; Emili, Andrew

    2015-12-01

    Fertilization triggers a dynamic symphony of molecular transformations induced by a rapid rise in intracellular calcium. Most prominent are surface alterations, metabolic activation, cytoskeletal reorganization, and cell-cycle reentry. While the activation process appears to be broadly evolutionarily conserved, and protein phosphorylation is known to play a key role, the signaling networks mediating the response to fertilization are not well described. To address this gap, we performed a time course phosphoproteomic analysis of egg activation in the sea urchin Strongylocentrotus purpuratus, a system that offers biochemical tractability coupled with exquisite synchronicity. By coupling large-scale phosphopeptide enrichment with unbiased quantitative MS, we identified striking changes in global phosphoprotein patterns at 2- and 5-min postfertilization as compared to unfertilized eggs. Overall, we mapped 8796 distinct phosphosite modifications on 2833 phosphoproteins, of which 15% were differentially regulated in early egg activation. Activated kinases were identified by phosphosite mapping, while enrichment analyses revealed conserved signaling cascades not previously associated with egg activation. This work represents the most comprehensive study of signaling associated with egg activation to date, suggesting novel mechanisms that can be experimentally tested and providing a valuable resource for the broader research community. All MS data have been deposited in the ProteomeXchange with identifier PXD002239 (http://proteomecentral.proteomexchange.org/dataset/PXD002239). PMID:26227301

  11. Structure of the endonuclease IV homologue from Thermotoga maritima in the presence of active-site divalent metal ions

    SciTech Connect

    Tomanicek, Stephen J.; Hughes, Ronny C.; Ng, Joseph D.; Coates, Leighton

    2010-10-05

    The most frequent lesion in DNA is at apurinic/apyrimidinic (AP) sites resulting from DNA-base losses. These AP-site lesions can stall DNA replication and lead to genome instability if left unrepaired. The AP endonucleases are an important class of enzymes that are involved in the repair of AP-site intermediates during damage-general DNA base-excision repair pathways. These enzymes hydrolytically cleave the 5{prime}-phosphodiester bond at an AP site to generate a free 3{prime}-hydroxyl group and a 5{prime}-terminal sugar phosphate using their AP nuclease activity. Specifically, Thermotoga maritima endonuclease IV is a member of the second conserved AP endonuclease family that includes Escherichia coli endonuclease IV, which is the archetype of the AP endonuclease superfamily. In order to more fully characterize the AP endonuclease family of enzymes, two X-ray crystal structures of the T. maritima endonuclease IV homologue were determined in the presence of divalent metal ions bound in the active-site region. These structures of the T. maritima endonuclease IV homologue further revealed the use of the TIM-barrel fold and the trinuclear metal binding site as important highly conserved structural elements that are involved in DNA-binding and AP-site repair processes in the AP endonuclease superfamily.

  12. ALV-J GP37 Molecular Analysis Reveals Novel Virus-Adapted Sites and Three Tyrosine-Based Env Species

    PubMed Central

    Shang, Jianjun; Tian, Xiaoyan; Yang, Jialiang; Chen, Hongjun; Shao, Hongxia; Qin, Aijian

    2015-01-01

    Compared to other avian leukosis viruses (ALV), ALV-J primarily induces myeloid leukemia and hemangioma and causes significant economic loss for the poultry industry. The ALV-J Env protein is hypothesized to be related to its unique pathogenesis. However, the molecular determinants of Env for ALV-J pathogenesis are unclear. In this study, we compared and analyzed GP37 of ALV-J Env and the EAV-HP sequence, which has high homology to that of ALV-J Env. Phylogenetic analysis revealed five groups of ALV-J GP37 and two novel ALV-J Envs with endemic GP85 and EAV-HP-like GP37. Furthermore, at least 15 virus-adapted mutations were detected in GP37 compared to the EAV-HP sequence. Further analysis demonstrated that three tyrosine-based motifs (YxxM, ITIM (immune tyrosine-based inhibitory motif) and ITAM-like (immune tyrosine-based active motif like)) associated with immune disease and oncogenesis were found in the cytoplasmic tail of GP37. Based on the potential function and distribution of these motifs in GP37, ALV-J Env was grouped into three species, inhibitory Env, bifunctional Env and active Env. Accordingly, 36.91%, 61.74% and 1.34% of ALV-J Env sequences from GenBank are classified as inhibitory, bifunctional and active Env, respectively. Additionally, the Env of the ALV-J prototype strain, HPRS-103, and 17 of 18 EAV-HP sequences belong to the inhibitory Env. And models for signal transduction of the three ALV-J Env species were predicted. Our findings and models provide novel insights for identifying the roles and molecular mechanism of ALV-J Env in the unique pathogenesis of ALV-J. PMID:25849207

  13. Similarities in the HIV-1 and ASV Integrease Active Site Upon Metal Binding

    SciTech Connect

    Lins, Roberto D.; Straatsma, TP; Briggs, J. M.

    2000-04-05

    The HIV-1 integrase, which is essential for viral replication, catalyzes the insertion of viral DNA into the host chromosome thereby recruiting host cell machinery into making viral proteins. It represents the third main HIV enzyme target for inhibitor design, the first two being the reverse transcriptase and the protease. We report here a fully hydrated 2 ns molecular dynamics simulation performed using parallel NWChem3.2.1 with the AMBER95 force field. The HIV-1 integrase catalytic domain previously determined by crystallography (1B9D) and modeling including two Mg2+ ions placed into the active site based on an alignment against an ASV integrase structure containing two divalent metals (1VSH), was used as the starting structure. The simulation reveals a high degree of flexibility in the region of residues 140-149 even in the presence of a second divalent metal ion and a dramatic conformational change of the side chain of E152 when the second metal ion is present. This study shows similarities in the behavior of the catalytic residues in the HIV-1 and ASV integrases upon metal binding. The present simulation also provides support to the hypothesis that the second metal ion is likely to be carried into the HIV-1 integrase active site by the substrate, a strand of DNA.

  14. Control of substrate access to the active site in methane monooxygenase.

    PubMed

    Lee, Seung Jae; McCormick, Michael S; Lippard, Stephen J; Cho, Uhn-Soo

    2013-02-21

    Methanotrophs consume methane as their major carbon source and have an essential role in the global carbon cycle by limiting escape of this greenhouse gas to the atmosphere. These bacteria oxidize methane to methanol by soluble and particulate methane monooxygenases (MMOs). Soluble MMO contains three protein components, a 251-kilodalton hydroxylase (MMOH), a 38.6-kilodalton reductase (MMOR), and a 15.9-kilodalton regulatory protein (MMOB), required to couple electron consumption with substrate hydroxylation at the catalytic diiron centre of MMOH. Until now, the role of MMOB has remained ambiguous owing to a lack of atomic-level information about the MMOH-MMOB (hereafter termed H-B) complex. Here we remedy this deficiency by providing a crystal structure of H-B, which reveals the manner by which MMOB controls the conformation of residues in MMOH crucial for substrate access to the active site. MMOB docks at the α(2)β(2) interface of α(2)β(2)γ(2) MMOH, and triggers simultaneous conformational changes in the α-subunit that modulate oxygen and methane access as well as proton delivery to the diiron centre. Without such careful control by MMOB of these substrate routes to the diiron active site, the enzyme operates as an NADH oxidase rather than a monooxygenase. Biological catalysis involving small substrates is often accomplished in nature by large proteins and protein complexes. The structure presented in this work provides an elegant example of this principle. PMID:23395959

  15. Mapping the ribonucleolytic active site of bovine seminal ribonuclease. The binding of pyrimidinyl phosphonucleotide inhibitors.

    PubMed

    Dossi, Kyriaki; Tsirkone, Vicky G; Hayes, Joseph M; Matousek, Josef; Poucková, Pavla; Soucek, Josef; Zadinova, Marie; Zographos, Spyros E; Leonidas, Demetres D

    2009-11-01

    Bovine seminal ribonuclease (BS-RNase) is a 27kDa homodimeric enzyme and a member of the pancreatic RNase A superfamily. It is the only RNase with a quaternary structure and it is a mixture of two dimeric forms. In the most abundant form the active site is formed by the swapping of the N-terminal segments. BS-RNase is a potent antitumor agent with severe side effects such as aspermatogenicity, and immunosuppression. As a first step towards the design of potent inhibitors of this enzyme we mapped its active site through the study of the binding of uridine 2'-phosphate (U2'p), uridine 3'-phosphate (U3'p), uridine 5'-diphosphate (UDP), cytidine 3'-phosphate (C3'p), and cytidine 5-phosphate (C5'p), by kinetics, and X-ray crystallography. These phosphonucleotides are potent inhibitors with C3'p being the most potent with a K(i) value of 22 microM. Absorption, distribution, metabolism, and excretion pharmacokinetic property predictions reveal U2'p, U3'p, and C5'p as the most promising with respect to oral bioavailability. In vivo studies on the aspermatogenic effect have shown that C3'p and C5'p inhibit significantly this biological action of BS-RNase. PMID:19643512

  16. Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior

    PubMed Central

    Portugues, Ruben; Feierstein, Claudia E.; Engert, Florian; Orger, Michael B.

    2014-01-01

    Summary Most behaviors, even simple innate reflexes, are mediated by circuits of neurons spanning areas throughout the brain. However, in most cases, the distribution and dynamics of firing patterns of these neurons during behavior are not known. We imaged activity, with cellular resolution, throughout the whole brains of zebrafish performing the optokinetic response. We found a sparse, broadly distributed network that has an elaborate, but ordered, pattern, with a bilaterally symmetrical organization. Activity patterns fell into distinct clusters reflecting sensory and motor processing. By correlating neuronal responses with an array of sensory and motor variables, we find that the network can be clearly divided into distinct functional modules. Comparing aligned data from multiple fish, we find that the spatiotemporal activity dynamics and functional organization are highly stereotyped across individuals. These experiments reveal, for the first time in a vertebrate, the comprehensive functional architecture of the neural circuits underlying a sensorimotor behavior. PMID:24656252

  17. Integrative analysis of breast cancer reveals prognostic haematopoietic activity and patient-specific immune response profiles

    PubMed Central

    Varn, Frederick S.; Andrews, Erik H.; Mullins, David W.; Cheng, Chao

    2016-01-01

    Transcriptional programmes active in haematopoietic cells enable a variety of functions including dedifferentiation, innate immunity and adaptive immunity. Understanding how these programmes function in the context of cancer can provide valuable insights into host immune response, cancer severity and potential therapy response. Here we present a method that uses the transcriptomes of over 200 murine haematopoietic cells, to infer the lineage-specific haematopoietic activity present in human breast tumours. Correlating this activity with patient survival and tumour purity reveals that the transcriptional programmes of many cell types influence patient prognosis and are found in environments of high lymphocytic infiltration. Collectively, these results allow for a detailed and personalized assessment of the patient immune response to a tumour. When combined with routinely collected patient biopsy genomic data, this method can enable a richer understanding of the complex interplay between the host immune system and cancer. PMID:26725977

  18. Integrative analysis of breast cancer reveals prognostic haematopoietic activity and patient-specific immune response profiles.

    PubMed

    Varn, Frederick S; Andrews, Erik H; Mullins, David W; Cheng, Chao

    2016-01-01

    Transcriptional programmes active in haematopoietic cells enable a variety of functions including dedifferentiation, innate immunity and adaptive immunity. Understanding how these programmes function in the context of cancer can provide valuable insights into host immune response, cancer severity and potential therapy response. Here we present a method that uses the transcriptomes of over 200 murine haematopoietic cells, to infer the lineage-specific haematopoietic activity present in human breast tumours. Correlating this activity with patient survival and tumour purity reveals that the transcriptional programmes of many cell types influence patient prognosis and are found in environments of high lymphocytic infiltration. Collectively, these results allow for a detailed and personalized assessment of the patient immune response to a tumour. When combined with routinely collected patient biopsy genomic data, this method can enable a richer understanding of the complex interplay between the host immune system and cancer. PMID:26725977

  19. Latent luciferase activity in the fruit fly revealed by a synthetic luciferin

    PubMed Central

    Mofford, David M.; Reddy, Gadarla Randheer; Miller, Stephen C.

    2014-01-01

    Beetle luciferases are thought to have evolved from fatty acyl-CoA synthetases present in all insects. Both classes of enzymes activate fatty acids with ATP to form acyl-adenylate intermediates, but only luciferases can activate and oxidize d-luciferin to emit light. Here we show that the Drosophila fatty acyl-CoA synthetase CG6178, which cannot use d-luciferin as a substrate, is able to catalyze light emission from the synthetic luciferin analog CycLuc2. Bioluminescence can be detected from the purified protein, live Drosophila Schneider 2 cells, and from mammalian cells transfected with CG6178. Thus, the nonluminescent fruit fly possesses an inherent capacity for bioluminescence that is only revealed upon treatment with a xenobiotic molecule. This result expands the scope of bioluminescence and demonstrates that the introduction of a new substrate can unmask latent enzymatic activity that differs significantly from an enzyme’s normal function without requiring mutation. PMID:24616520

  20. A Primary Survey on Bryophyte Species Reveals Two Novel Classes of Nucleotide-Binding Site (NBS) Genes

    PubMed Central

    Xue, Jia-Yu; Wang, Yue; Wu, Ping; Wang, Qiang; Yang, Le-Tian; Pan, Xiao-Han; Wang, Bin; Chen, Jian-Qun

    2012-01-01

    Due to their potential roles in pathogen defense, genes encoding nucleotide-binding site (NBS) domain have been particularly surveyed in many angiosperm genomes. Two typical classes were found: one is the TIR-NBS-LRR (TNL) class and the other is the CC-NBS-LRR (CNL) class. It is seldom known, however, what kind of NBS-encoding genes are mainly present in other plant groups, especially the most ancient groups of land plants, that is, bryophytes. To fill this gap of knowledge, in this study, we mainly focused on two bryophyte species: the moss Physcomitrella patens and the liverwort Marchantia polymorpha, to survey their NBS-encoding genes. Surprisingly, two novel classes of NBS-encoding genes were discovered. The first novel class is identified from the P. patens genome and a typical member of this class has a protein kinase (PK) domain at the N-terminus and a LRR domain at the C-terminus, forming a complete structure of PK-NBS-LRR (PNL), reminiscent of TNL and CNL classes in angiosperms. The second class is found from the liverwort genome and a typical member of this class possesses an α/β-hydrolase domain at the N-terminus and also a LRR domain at the C-terminus (Hydrolase-NBS-LRR, HNL). Analysis on intron positions and phases also confirmed the novelty of HNL and PNL classes, as reflected by their specific intron locations or phase characteristics. Phylogenetic analysis covering all four classes of NBS-encoding genes revealed a closer relationship among the HNL, PNL and TNL classes, suggesting the CNL class having a more divergent status from the others. The presence of specific introns highlights the chimerical structures of HNL, PNL and TNL genes, and implies their possible origin via exon-shuffling during the quick lineage separation processes of early land plants. PMID:22615795

  1. Role of a cysteine residue in the active site of ERK and the MAPKK family

    SciTech Connect

    Ohori, Makoto; Kinoshita, Takayoshi; Yoshimura, Seiji; Warizaya, Masaichi; Nakajima, Hidenori . E-mail: hidenori.nakajima@jp.astellas.com; Miyake, Hiroshi

    2007-02-16

    Kinases of mitogen-activated protein kinase (MAPK) cascades, including extracellular signal-regulated protein kinase (ERK), represent likely targets for pharmacological intervention in proliferative diseases. Here, we report that FR148083 inhibits ERK2 enzyme activity and TGF{beta}-induced AP-1-dependent luciferase expression with respective IC{sub 50} values of 0.08 and 0.05 {mu}M. FR265083 (1'-2' dihydro form) and FR263574 (1'-2' and 7'-8' tetrahydro form) exhibited 5.5-fold less and no activity, respectively, indicating that both the {alpha},{beta}-unsaturated ketone and the conformation of the lactone ring contribute to this inhibitory activity. The X-ray crystal structure of the ERK2/FR148083 complex revealed that the compound binds to the ATP binding site of ERK2, involving a covalent bond to S{gamma} of ERK2 Cys166, hydrogen bonds with the backbone NH of Met108, N{zeta} of Lys114, backbone C=O of Ser153, N{delta}2 of Asn154, and hydrophobic interactions with the side chains of Ile31, Val39, Ala52, and Leu156. The covalent bond motif in the ERK2/FR148083 complex assures that the inhibitor has high activity for ERK2 and no activity for other MAPKs such as JNK1 and p38MAPK{alpha}/{beta}/{gamma}/{delta} which have leucine residues at the site corresponding to Cys166 in ERK2. On the other hand, MEK1 and MKK7, kinases of the MAPKK family which also can be inhibited by FR148083, contain a cysteine residue corresponding to Cys166 of ERK2. The covalent binding to the common cysteine residue in the ATP-binding site is therefore likely to play a crucial role in the inhibitory activity for these MAP kinases. These findings on the molecular recognition mechanisms of FR148083 for kinases with Cys166 should provide a novel strategy for the pharmacological intervention of MAPK cascades.

  2. Tertiary Contacts Distant from the Active Site Prime a Ribozyme for Catalysis

    PubMed Central

    Martick, Monika; Scott, William G.

    2015-01-01

    SUMMARY Minimal hammerhead ribozymes have been characterized extensively by static and time-resolved crystallography as well as numerous biochemical analyses, leading to mutually contradictory mechanistic explanations for catalysis. We present the 2.2 Å resolution crystal structure of a full-length Schistosoma mansoni hammerhead ribozyme that permits us to explain the structural basis for its 1000-fold catalytic enhancement. The full-length hammerhead structure reveals how tertiary interactions occurring remotely from the active site prime this ribozyme for catalysis. G-12 and G-8 are positioned consistent with their previously suggested roles in acid-base catalysis, the nucleophile is aligned with a scissile phosphate positioned proximal to the A-9 phosphate, and previously unexplained roles of other conserved nucleotides become apparent within the context of a distinctly new fold that nonetheless accommodates the previous structural studies. These interactions permit us to explain the previously irreconcilable sets of experimental results in a unified, consistent, and unambiguous manner. PMID:16859740

  3. Cinnamyl Alcohol Dehydrogenase: Identification of New Sites of Promoter Activity in Transgenic Poplar.

    PubMed Central

    Hawkins, S.; Samaj, J.; Lauvergeat, V.; Boudet, A.; Grima-Pettenati, J.

    1997-01-01

    Stem sections from poplar that were stably transformed with a eucalypt cinnamyl alcohol dehydrogenase promoter-[beta]-glucuronidase construct were prepared by using either a technique routinely used in herbaceous species or a technique designed to take into account the particular anatomy of woody plants. Although both preparation techniques confirmed the pattern of expression previously observed (C. Feuillet, V. Lauvergeat, C. Deswarte, G. Pilate, A. Boudet and J. Grima-Pettenati [1995] Plant Mol Biol 27: 651-657), the latter technique also allowed the detection of other sites of promoter activity not revealed by the first technique. In situ hybridization confirmed the expression pattern obtained with the second sample preparation technique. PMID:12223610

  4. Structural Insights into the Protease-like Antigen Plasmodium falciparum SERA5 and Its Noncanonical Active-Site Serine

    SciTech Connect

    Hodder, Anthony N.; Malby, Robyn L.; Clarke, Oliver B.; Fairlie, W. Douglas; Colman, Peter M.; Crabb, Brendan S.; Smith, Brian J.

    2009-08-28

    The sera genes of the malaria-causing parasite Plasmodium encode a family of unique proteins that are maximally expressed at the time of egress of parasites from infected red blood cells. These multi-domain proteins are unique, containing a central papain-like cysteine-protease fragment enclosed between the disulfide-linked N- and C-terminal domains. However, the central fragment of several members of this family, including serine repeat antigen 5 (SERA5), contains a serine (S596) in place of the active-site cysteine. Here we report the crystal structure of the central protease-like domain of Plasmodium falciparum SERA5, revealing a number of anomalies in addition to the putative nucleophilic serine: (1) the structure of the putative active site is not conducive to binding substrate in the canonical cysteine-protease manner; (2) the side chain of D594 restricts access of substrate to the putative active site; and (3) the S{sub 2} specificity pocket is occupied by the side chain of Y735, reducing this site to a small depression on the protein surface. Attempts to determine the structure in complex with known inhibitors were not successful. Thus, despite having revealed its structure, the function of the catalytic domain of SERA5 remains an enigma.

  5. Metabolomics reveal 1-palmitoyl lysophosphatidylcholine production by peroxisome proliferator-activated receptor α.

    PubMed

    Takahashi, Haruya; Goto, Tsuyoshi; Yamazaki, Yota; Kamakari, Kosuke; Hirata, Mariko; Suzuki, Hideyuki; Shibata, Daisuke; Nakata, Rieko; Inoue, Hiroyasu; Takahashi, Nobuyuki; Kawada, Teruo

    2015-02-01

    PPARα is well known as a master regulator of lipid metabolism. PPARα activation enhances fatty acid oxidation and decreases the levels of circulating and cellular lipids in obese diabetic patients. Although PPARα target genes are widely known, little is known about the alteration of plasma and liver metabolites during PPARα activation. Here, we report that metabolome analysis-implicated upregulation of many plasma lysoGP species during bezafibrate (PPARα agonist) treatment. In particular, 1-palmitoyl lysophosphatidylcholine [LPC(16:0)] is increased by bezafibrate treatment in both plasma and liver. In mouse primary hepatocytes, the secretion of LPC(16:0) increased on PPARα activation, and this effect was attenuated by PPARα antagonist treatment. We demonstrated that Pla2g7 gene expression levels in the murine hepatocytes were increased by PPARα activation, and the secretion of LPC(16:0) was suppressed by Pla2g7 siRNA treatment. Interestingly, LPC(16:0) activates PPARα and induces the expression of PPARα target genes in hepatocytes. Furthermore, we showed that LPC(16:0) has the ability to recover glucose uptake in adipocytes induced insulin resistance. These results reveal that LPC(16:0) is induced by PPARα activation in hepatocytes; LPC(16:0) contributes to the upregulation of PPARα target genes in hepatocytes and the recovery of glucose uptake in insulin-resistant adipocytes. PMID:25510248

  6. Structural snapshots reveal distinct mechanisms of procaspase-3 and -7 activation

    PubMed Central

    Thomsen, Nathan D.; Koerber, James T.; Wells, James A.

    2013-01-01

    Procaspase-3 (P3) and procaspase-7 (P7) are activated through proteolytic maturation to form caspase-3 (C3) and caspase-7 (C7), respectively, which serve overlapping but nonredundant roles as the executioners of apoptosis in humans. However, it is unclear if differences in P3 and P7 maturation mechanisms underlie their unique biological functions, as the structure of P3 remains unknown. Here, we report structures of P3 in a catalytically inactive conformation, structures of P3 and P7 bound to covalent peptide inhibitors that reveal the active conformation of the zymogens, and the structure of a partially matured C7:P7 heterodimer. Along with a biochemical analysis, we show that P3 is catalytically inactive and matures through a symmetric all-or-nothing process. In contrast, P7 contains latent catalytic activity and matures through an asymmetric and tiered mechanism, suggesting a lower threshold for activation. Finally, we use our structures to design a selection strategy for conformation specific antibody fragments that stimulate procaspase activity, showing that executioner procaspase conformational equilibrium can be rationally modulated. Our studies provide a structural framework that may help to explain the unique roles of these important proapoptotic enzymes, and suggest general strategies for the discovery of proenzyme activators. PMID:23650375

  7. Metabolomics reveal 1-palmitoyl lysophosphatidylcholine production by peroxisome proliferator-activated receptor α[S

    PubMed Central

    Takahashi, Haruya; Goto, Tsuyoshi; Yamazaki, Yota; Kamakari, Kosuke; Hirata, Mariko; Suzuki, Hideyuki; Shibata, Daisuke; Nakata, Rieko; Inoue, Hiroyasu; Takahashi, Nobuyuki; Kawada, Teruo

    2015-01-01

    PPARα is well known as a master regulator of lipid metabolism. PPARα activation enhances fatty acid oxidation and decreases the levels of circulating and cellular lipids in obese diabetic patients. Although PPARα target genes are widely known, little is known about the alteration of plasma and liver metabolites during PPARα activation. Here, we report that metabolome analysis-implicated upregulation of many plasma lysoGP species during bezafibrate (PPARα agonist) treatment. In particular, 1-palmitoyl lysophosphatidylcholine [LPC(16:0)] is increased by bezaf­ibrate treatment in both plasma and liver. In mouse primary hepatocytes, the secretion of LPC(16:0) increased on PPARα activation, and this effect was attenuated by PPARα antagonist treatment. We demonstrated that Pla2g7 gene expression levels in the murine hepatocytes were increased by PPARα activation, and the secretion of LPC(16:0) was suppressed by Pla2g7 siRNA treatment. Interestingly, LPC(16:0) activates PPARα and induces the expression of PPARα target genes in hepatocytes. Furthermore, we showed that LPC(16:0) has the ability to recover glucose uptake in adipocytes induced insulin resistance. These results reveal that LPC(16:0) is induced by PPARα activation in hepatocytes; LPC(16:0) contributes to the upregulation of PPARα target genes in hepatocytes and the recovery of glucose uptake in insulin-resistant adipocytes. PMID:25510248

  8. Structure of the nisin leader peptidase NisP revealing a C-terminal autocleavage activity.

    PubMed

    Xu, Yueyang; Li, Xin; Li, Ruiqing; Li, Shanshan; Ni, Hongqian; Wang, Hui; Xu, Haijin; Zhou, Weihong; Saris, Per E J; Yang, Wen; Qiao, Mingqiang; Rao, Zihe

    2014-06-01

    Nisin is a widely used antibacterial lantibiotic polypeptide produced by Lactococcus lactis. NisP belongs to the subtilase family and functions in the last step of nisin maturation as the leader-peptide peptidase. Deletion of the nisP gene in LAC71 results in the production of a non-active precursor peptide with the leader peptide unremoved. Here, the 1.1 Å resolution crystal structure of NisP is reported. The structure shows similarity to other subtilases, which can bind varying numbers of Ca atoms. However, no calcium was found in this NisP structure, and the predicted calcium-chelating residues were placed so as to not allow NisP to bind a calcium ion in this conformation. Interestingly, a short peptide corresponding to its own 635-647 sequence was found to bind to the active site of NisP. Biochemical assays and native mass-spectrometric analysis confirmed that NisP possesses an auto-cleavage site between residues Arg647 and Ser648. Further, it was shown that NisP mutated at the auto-cleavage site (R647P/S648P) had full catalytic activity for nisin leader-peptide cleavage, although the C-terminal region of NisP was no longer cleaved. Expressing this mutant in L. lactis LAC71 did not affect the production of nisin but did decrease the proliferation rate of the bacteria, suggesting the biological significance of the C-terminal auto-cleavage of NisP. PMID:24914961

  9. Phenotype Specific Analyses Reveal Distinct Regulatory Mechanism for Chronically Activated p53

    PubMed Central

    Cairns, Jonathan M.; Menon, Suraj; Pérez-Mancera, Pedro A.; Tomimatsu, Kosuke; Bermejo-Rodriguez, Camino; Ito, Yoko; Chandra, Tamir; Narita, Masako; Lyons, Scott K.; Lynch, Andy G.; Kimura, Hiroshi; Ohbayashi, Tetsuya; Tavaré, Simon; Narita, Masashi

    2015-01-01

    The downstream functions of the DNA binding tumor suppressor p53 vary depending on the cellular context, and persistent p53 activation has recently been implicated in tumor suppression and senescence. However, genome-wide information about p53-target gene regulation has been derived mostly from acute genotoxic conditions. Using ChIP-seq and expression data, we have found distinct p53 binding profiles between acutely activated (through DNA damage) and chronically activated (in senescent or pro-apoptotic conditions) p53. Compared to the classical ‘acute’ p53 binding profile, ‘chronic’ p53 peaks were closely associated with CpG-islands. Furthermore, the chronic CpG-island binding of p53 conferred distinct expression patterns between senescent and pro-apoptotic conditions. Using the p53 targets seen in the chronic conditions together with external high-throughput datasets, we have built p53 networks that revealed extensive self-regulatory ‘p53 hubs’ where p53 and many p53 targets can physically interact with each other. Integrating these results with public clinical datasets identified the cancer-associated lipogenic enzyme, SCD, which we found to be directly repressed by p53 through the CpG-island promoter, providing a mechanistic link between p53 and the ‘lipogenic phenotype’, a hallmark of cancer. Our data reveal distinct phenotype associations of chronic p53 targets that underlie specific gene regulatory mechanisms. PMID:25790137

  10. Pyruvate Dehydrogenase Kinase-4 Structures Reveal a Metastable Open Conformation Fostering Robust Core-free Basal Activity

    SciTech Connect

    Wynn, R. Max; Kato, Masato; Chuang, Jacinta L.; Tso, Shih-Chia; Li, Jun; Chuang, David T.

    2008-10-21

    Human pyruvate dehydrogenase complex (PDC) is down-regulated by pyruvate dehydrogenase kinase (PDK) isoforms 1-4. PDK4 is overexpressed in skeletal muscle in type 2 diabetes, resulting in impaired glucose utilization. Here we show that human PDK4 has robust core-free basal activity, which is considerably higher than activity levels of other PDK isoforms stimulated by the PDC core. PDK4 binds the L3 lipoyl domain, but its activity is not significantly stimulated by any individual lipoyl domains or the core of PDC. The 2.0-{angstrom} crystal structures of the PDK4 dimer with bound ADP reveal an open conformation with a wider active-site cleft, compared with that in the closed conformation epitomized by the PDK2-ADP structure. The open conformation in PDK4 shows partially ordered C-terminal cross-tails, in which the conserved DW (Asp{sup 394}-Trp{sup 395}) motif from one subunit anchors to the N-terminal domain of the other subunit. The open conformation fosters a reduced binding affinity for ADP, facilitating the efficient removal of product inhibition by this nucleotide. Alteration or deletion of the DW-motif disrupts the C-terminal cross-tail anchor, resulting in the closed conformation and the nearly complete inactivation of PDK4. Fluorescence quenching and enzyme activity data suggest that compounds AZD7545 and dichloroacetate lock PDK4 in the open and the closed conformational states, respectively. We propose that PDK4 with bound ADP exists in equilibrium between the open and the closed conformations. The favored metastable open conformation is responsible for the robust basal activity of PDK4 in the absence of the PDC core.

  11. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex

    SciTech Connect

    Žáková, Lenka; Kletvíková, Emília; Lepšík, Martin; Collinsová, Michaela; Watson, Christopher J.; Turkenburg, Johan P.; Jiráček, Jiří; Brzozowski, Andrzej M.

    2014-10-01

    [AsnB26]- and [GlyB26]-insulin mutants attain a B26-turn like fold without assistance of chemical modifications. Their structures match the insulin receptor interface and expand the spectrum of insulin conformations. The structural characterization of the insulin–insulin receptor (IR) interaction still lacks the conformation of the crucial B21–B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that in all known structures of the native hormone. It also matches the receptor interface, avoiding substantial steric clashes. This indicates that insulin may attain a B26-turn-like conformation upon IR binding. Moreover, there is an unexpected, but significant, binding specificity of the AsnB26 mutant for predominantly the metabolic B isoform of the receptor. As it is correlated with the B26 bend of the B-chain of the hormone, the structures of AsnB26 analogues may provide the first structural insight into the structural origins of differential insulin signalling through insulin receptor A and B isoforms.

  12. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex

    PubMed Central

    Žáková, Lenka; Kletvíková, Emília; Lepšík, Martin; Collinsová, Michaela; Watson, Christopher J.; Turkenburg, Johan P.; Jiráček, Jiří; Brzozowski, Andrzej M.

    2014-01-01

    The structural characterization of the insulin–insulin receptor (IR) interaction still lacks the conformation of the crucial B21–B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that in all known structures of the native hormone. It also matches the receptor interface, avoiding substantial steric clashes. This indicates that insulin may attain a B26-turn-like conformation upon IR binding. Moreover, there is an unexpected, but significant, binding specificity of the AsnB26 mutant for predominantly the metabolic B isoform of the receptor. As it is correlated with the B26 bend of the B-chain of the hormone, the structures of AsnB26 analogues may provide the first structural insight into the structural origins of differential insulin signalling through insulin receptor A and B isoforms. PMID:25286859

  13. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex.

    PubMed

    Záková, Lenka; Kletvíková, Emília; Lepšík, Martin; Collinsová, Michaela; Watson, Christopher J; Turkenburg, Johan P; Jiráček, Jiří; Brzozowski, Andrzej M

    2014-10-01

    The structural characterization of the insulin-insulin receptor (IR) interaction still lacks the conformation of the crucial B21-B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that in all known structures of the native hormone. It also matches the receptor interface, avoiding substantial steric clashes. This indicates that insulin may attain a B26-turn-like conformation upon IR binding. Moreover, there is an unexpected, but significant, binding specificity of the AsnB26 mutant for predominantly the metabolic B isoform of the receptor. As it is correlated with the B26 bend of the B-chain of the hormone, the structures of AsnB26 analogues may provide the first structural insight into the structural origins of differential insulin signalling through insulin receptor A and B isoforms. PMID:25286859

  14. Kinetic and structural evaluation of selected active site mutants of the Aspergillus fumigatus KDNase (sialidase).

    PubMed

    Yeung, Juliana H F; Telford, Judith C; Shidmoossavee, Fahimeh S; Bennet, Andrew J; Taylor, Garry L; Moore, Margo M

    2013-12-23

    Aspergillus fumigatus is an airborne fungal pathogen. We previously cloned and characterized an exo-sialidase from A. fumigatus and showed that it preferred 2-keto-3-deoxynononic acid (KDN) as a substrate to N-acetylneuraminic acid (Neu5Ac). The purpose of this study was to investigate the structure-function relationships of critical catalytic site residues. Site-directed mutagenesis was used to create three mutant recombinant enzymes: the catalytic nucleophile (Y358H), the general acid/base catalyst (D84A), and an enlargement of the binding pocket to attempt to accommodate the N-acetyl group of Neu5Ac (R171L). Crystal structures for all enzymes were determined. The D84A mutation had an effect in decreasing the activity of AfKDNase that was stronger than that of the same mutation in the structurally similar sialidase from the bacterium Micromonospora viridifaciens. These data suggest that the catalytic acid is more important in the reaction of AfKDNase and that catalysis is less dependent on nucleophilic or electrostatic stabilization of the developing positive charge at the transition state for hydrolysis. Removal of the catalytic nucleophile (Y358H) significantly lowered the activity of the enzyme, but this mutant remained a retaining glycosidase as demonstrated by nuclear magnetic resonance spectroscopic analysis. This is a novel finding that has not been shown with other sialidases. Kinetic activity measured at pH 5.2 revealed that R171L had higher activity on a Neu5Ac-based substrate than wild-type KDNase; hence, leucine in place of arginine in the binding pocket improved catalysis toward Neu5Ac substrates. Hence, whether a sialidase is primarily a KDNase or a neuraminidase is due in part to the presence of an amino acid that creates a steric clash with the N-acetyl group. PMID:24295366

  15. Structural mechanism of RuBisCO activation by carbamylation of the active site lysine

    PubMed Central

    Stec, Boguslaw

    2012-01-01

    Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is a crucial enzyme in carbon fixation and the most abundant protein on earth. It has been studied extensively by biochemical and structural methods; however, the most essential activation step has not yet been described. Here, we describe the mechanistic details of Lys carbamylation that leads to RuBisCO activation by atmospheric CO2. We report two crystal structures of nitrosylated RuBisCO from the red algae Galdieria sulphuraria with O2 and CO2 bound at the active site. G. sulphuraria RuBisCO is inhibited by cysteine nitrosylation that results in trapping of these gaseous ligands. The structure with CO2 defines an elusive, preactivation complex that contains a metal cation Mg2+ surrounded by three H2O/OH molecules. Both structures suggest the mechanism for discriminating gaseous ligands by their quadrupole electric moments. We describe conformational changes that allow for intermittent binding of the metal ion required for activation. On the basis of these structures we propose the individual steps of the activation mechanism. Knowledge of all these elements is indispensable for engineering RuBisCO into a more efficient enzyme for crop enhancement or as a remedy to global warming. PMID:23112176

  16. NMR Mapping of the IFNAR1-EC binding site on IFNα2 reveals allosteric changes in the IFNAR2-EC binding site

    PubMed Central

    Akabayov, Sabine Ruth; Biron, Zohar; Lamken, Peter; Piehler, Jacob; Anglister, Jacob

    2010-01-01

    All type I interferons (IFNs) bind to a common cell-surface receptor consisting of two subunits. IFNs initiate intracellular signal transduction cascades by simultaneous interaction with the extracellular domains of its receptor subunits IFNAR1 and IFNAR2. In this study we mapped the surface of IFNα2 interacting with the extracellular domain of IFNAR1 (IFNAR1-EC) by following changes in or the disappearance of the [1H,15N]-TROSY-HSQC cross peaks of IFNα2 caused by the binding of the extracellular domain of IFNAR1 (IFNAR1-EC) to the binary complex of IFNα2 with IFNAR2-EC. The NMR study on the 89 kDa complex was conducted at pH 8 and 308 K using an 800 MHz spectrometer. IFNAR1 binding affected a total of 47 out of 165 IFNα2 residues contained in two large patches on the face of the protein opposing the binding site for IFNAR2 and in a third patch located on the face containing the IFNAR2 binding site. The first two patches form the IFNAR1 binding site and one of these matches the IFNAR1 binding site previously identified by site-directed mutagenesis. The third patch partially matches the IFNα2 binding site for IFNAR2-EC indicating allosteric communication between the binding sites for the two receptor subunits. PMID:20047337

  17. 78 FR 33908 - Commercial Wind Lease Issuance and Site Assessment Activities on the Atlantic Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... identified Wind Energy Area (WEA) on the OCS offshore Rhode Island (RI) and Massachusetts (MA). The revised... from leasing, site characterization, and site assessment in and around the Call Area (76 FR 51391). The... Bureau of Ocean Energy Management Commercial Wind Lease Issuance and Site Assessment Activities on...

  18. 77 FR 39508 - Commercial Wind Lease Issuance and Site Assessment Activities on the Atlantic Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ... specific project proposals on those leases) in an identified Wind Energy Area (WEA) on the OCS offshore..., site characterization, and site assessment in and around the Call Area (76 FR 51391). The Call Area is... Bureau of Ocean Energy Management Commercial Wind Lease Issuance and Site Assessment Activities on...

  19. Active Layer and Moisture Measurements for Intensive Site 0 and 1, Barrow, Alaska

    DOE Data Explorer

    John Peterson

    2015-04-17

    These are measurements of Active Layer Thickness collected along several lines beginning in September, 2011 to the present. The data were collected at several time periods along the Site0 L2 Line, the Site1 AB Line, and an ERT Monitoring Line near Area A in Site1.

  20. Regulatory roles of conserved phosphorylation sites in the activation T-loop of the MAP kinase ERK1

    PubMed Central

    Lai, Shenshen; Pelech, Steven

    2016-01-01

    The catalytic domains of most eukaryotic protein kinases are highly conserved in their primary structures. Their phosphorylation within the well-known activation T-loop, a variable region between protein kinase catalytic subdomains VII and VIII, is a common mechanism for stimulation of their phosphotransferase activities. Extracellular signal–regulated kinase 1 (ERK1), a member of the extensively studied mitogen-activated protein kinase (MAPK) family, serves as a paradigm for regulation of protein kinases in signaling modules. In addition to the well-documented T202 and Y204 stimulatory phosphorylation sites in the activation T-loop of ERK1 and its closest relative, ERK2, three additional flanking phosphosites have been confirmed (T198, T207, and Y210 from ERK1) by high-throughput mass spectrometry. In vitro kinase assays revealed the functional importance of T207 and Y210, but not T198, in negatively regulating ERK1 catalytic activity. The Y210 site could be important for proper conformational arrangement of the active site, and a Y210F mutant could not be recognized by MEK1 for phosphorylation of T202 and Y204 in vitro. Autophosphorylation of T207 reduces the catalytic activity and stability of activated ERK1. We propose that after the activation of ERK1 by MEK1, subsequent slower phosphorylation of the flanking sites results in inhibition of the kinase. Because the T207 and Y210 phosphosites of ERK1 are highly conserved within the eukaryotic protein kinase family, hyperphosphorylation within the kinase activation T-loop may serve as a general mechanism for protein kinase down-regulation after initial activation by their upstream kinases. PMID:26823016

  1. Nuclear Site Security in the Event of Terrorist Activity

    SciTech Connect

    Thomson, M.L.; Sims, J.

    2008-07-01

    This paper, presented as a poster, identifies why ballistic protection should now be considered at nuclear sites to counter terrorist threats. A proven and flexible form of multi purpose protection is described in detail with identification of trial results that show its suitability for this role. (authors)

  2. Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory

    SciTech Connect

    Taylor, D.D.; Hoskinson, R.L.; Kingsford, C.O.; Ball, L.W.

    1994-09-01

    The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria.

  3. Dynamic Transcription Factor Activity Profiles Reveal Key Regulatory Interactions During Megakaryocytic and Erythroid Differentiation

    PubMed Central

    Duncan, Mark T.; Shin, Seungjin; Wu, Jia J.; Mays, Zachary; Weng, Stanley; Bagheri, Neda; Miller, William M.; Shea, Lonnie D.

    2014-01-01

    The directed differentiation toward erythroid (E) or megakaryocytic (MK) lineages by the MK-E progenitor (MEP) could enhance the ex vivo generation of red blood cells and platelets for therapeutic transfusions. The lineage choice at the MEP bifurcation is controlled in large part by activity within the intracellular signal transduction network, the output of which determines the activity of transcription factors (TFs) and ultimately gene expression. Although many TFs have been implicated, E or MK differentiation is a complex process requiring multiple days, and the dynamics of TF activities during commitment and terminal maturation are relatively unexplored. Herein, we applied a living cell array for the large-scale, dynamic quantification of TF activities during MEP bifurcation. A panel of hematopoietic TFs (GATA-1, GATA-2, SCL/TAL1, FLI-1, NF-E2, PU.1, c-Myb) was characterized during E and MK differentiation of bipotent K562 cells. Dynamic TF activity profiles associated with differentiation towards each lineage were identified, and validated with previous reports. From these activity profiles, we show that GATA-1 is an important hub during early hemin- and PMA-induced differentiation, and reveal several characteristic TF interactions for E and MK differentiation that confirm regulatory mechanisms documented in the literature. Additionally, we highlight several novel TF interactions at various stages of E and MK differentiation. Furthermore, we investigated the mechanism by which nicotinamide (NIC) promoted terminal MK maturation using an MK-committed cell line, CHRF-288-11 (CHRF). Concomitant with its enhancement of ploidy, NIC strongly enhanced the activity of three TFs with known involvement in terminal MK maturation: FLI-1, NF-E2, and p53. Dynamic profiling of TF activity represents a novel tool to complement traditional assays focused on mRNA and protein expression levels to understand progenitor cell differentiation. PMID:24853077

  4. Dynamic transcription factor activity profiles reveal key regulatory interactions during megakaryocytic and erythroid differentiation.

    PubMed

    Duncan, Mark T; Shin, Seungjin; Wu, Jia J; Mays, Zachary; Weng, Stanley; Bagheri, Neda; Miller, William M; Shea, Lonnie D

    2014-10-01

    The directed differentiation toward erythroid (E) or megakaryocytic (MK) lineages by the MK-E progenitor (MEP) could enhance the ex vivo generation of red blood cells and platelets for therapeutic transfusions. The lineage choice at the MEP bifurcation is controlled in large part by activity within the intracellular signal transduction network, the output of which determines the activity of transcription factors (TFs) and ultimately gene expression. Although many TFs have been implicated, E or MK differentiation is a complex process requiring multiple days, and the dynamics of TF activities during commitment and terminal maturation are relatively unexplored. Herein, we applied a living cell array for the large-scale, dynamic quantification of TF activities during MEP bifurcation. A panel of hematopoietic TFs (GATA-1, GATA-2, SCL/TAL1, FLI-1, NF-E2, PU.1, c-Myb) was characterized during E and MK differentiation of bipotent K562 cells. Dynamic TF activity profiles associated with differentiation towards each lineage were identified, and validated with previous reports. From these activity profiles, we show that GATA-1 is an important hub during early hemin- and PMA-induced differentiation, and reveal several characteristic TF interactions for E and MK differentiation that confirm regulatory mechanisms documented in the literature. Additionally, we highlight several novel TF interactions at various stages of E and MK differentiation. Furthermore, we investigated the mechanism by which nicotinamide (NIC) promoted terminal MK maturation using an MK-committed cell line, CHRF-288-11 (CHRF). Concomitant with its enhancement of ploidy, NIC strongly enhanced the activity of three TFs with known involvement in terminal MK maturation: FLI-1, NF-E2, and p53. Dynamic profiling of TF activity represents a novel tool to complement traditional assays focused on mRNA and protein expression levels to understand progenitor cell differentiation. PMID:24853077

  5. Site-Specific, Intramolecular Cross-Linking of Pin1 Active Site Residues by the Lipid Electrophile 4-Oxo-2-nonenal

    PubMed Central

    2016-01-01

    Products of oxidative damage to lipids include 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE), both of which are cytotoxic electrophiles. ONE reacts more rapidly with nucleophilic amino acid side chains, resulting in covalent protein adducts, including residue–residue cross-links. Previously, we demonstrated that peptidylprolyl cis/trans isomerase A1 (Pin1) was highly susceptible to adduction by HNE and that the catalytic cysteine (Cys113) was the preferential site of modification. Here, we show that ONE also preferentially adducts Pin1 at the catalytic Cys but results in a profoundly different modification. Results from experiments using purified Pin1 incubated with ONE revealed the principal product to be a Cys-Lys pyrrole-containing cross-link between the side chains of Cys113 and Lys117. In vitro competition assays between HNE and ONE demonstrate that ONE reacts more rapidly than HNE with Cys113. Exposure of RKO cells to alkynyl-ONE (aONE) followed by copper-mediated click chemistry and streptavidin purification revealed that Pin1 is also modified by ONE in cells. Analysis of the Pin1 crystal structure reveals that Cys113 and Lys117 are oriented toward each other in the active site, facilitating formation of an ONE cross-link. PMID:25739016

  6. Active sensing associated with spatial learning reveals memory-based attention in an electric fish.

    PubMed

    Jun, James J; Longtin, André; Maler, Leonard

    2016-05-01

    Active sensing behaviors reveal what an animal is attending to and how it changes with learning. Gymnotus sp, a gymnotiform weakly electric fish, generates an electric organ discharge (EOD) as discrete pulses to actively sense its surroundings. We monitored freely behaving gymnotid fish in a large dark "maze" and extracted their trajectories and EOD pulse pattern and rate while they learned to find food with electrically detectable landmarks as cues. After training, they more rapidly found food using shorter, more stereotyped trajectories and spent more time near the food location. We observed three forms of active sensing: sustained high EOD rates per unit distance (sampling density), transient large increases in EOD rate (E-scans) and stereotyped scanning movements (B-scans) were initially strong at landmarks and food, but, after learning, intensified only at the food location. During probe (no food) trials, after learning, the fish's search area and intense active sampling was still centered on the missing food location, but now also increased near landmarks. We hypothesize that active sensing is a behavioral manifestation of attention and essential for spatial learning; the fish use spatial memory of landmarks and path integration to reach the expected food location and confine their attention to this region. PMID:26961107

  7. Blogs and Social Network Sites as Activity Systems: Exploring Adult Informal Learning Process through Activity Theory Framework

    ERIC Educational Resources Information Center

    Heo, Gyeong Mi; Lee, Romee

    2013-01-01

    This paper uses an Activity Theory framework to explore adult user activities and informal learning processes as reflected in their blogs and social network sites (SNS). Using the assumption that a web-based space is an activity system in which learning occurs, typical features of the components were investigated and each activity system then…

  8. Complex Regulation Pattern of IRF3 Activation Revealed by a Novel Dimerization Reporter System.

    PubMed

    Wang, Zining; Ji, Jingyun; Peng, Di; Ma, Feng; Cheng, Genhong; Qin, F Xiao-Feng

    2016-05-15

    Induction of type I IFN (IFN-I) is essential for host antiviral immune responses. However, IFN-I also plays divergent roles in antibacterial immunity, persistent viral infections, autoimmune diseases, and tumorigenesis. IFN regulatory factor 3 (IRF3) is the master transcription factor that controls IFN-I production via phosphorylation-dependent dimerization in most cell types in response to viral infections and various innate stimuli by pathogen-associated molecular patterns (PAMPs). To monitor the dynamic process of IRF3 activation, we developed a novel IRF3 dimerization reporter based on bimolecular luminescence complementation (BiLC) techniques, termed the IRF3-BiLC reporter. Robust induction of luciferase activity of the IRF3-BiLC reporter was observed upon viral infection and PAMP stimulation with a broad dynamic range. Knockout of TANK-binding kinase 1, the critical upstream kinase of IRF3, as well as the mutation of serine 386, the essential phosphorylation site of IRF3, completely abolished the luciferase activity of IRF3-BiLC reporter, confirming the authenticity of IRF3 activation. Taken together, these results demonstrated that the IRF3-BiLC reporter is a highly specific, reliable, and sensitive system to measure IRF3 activity. Using this reporter system, we further observed that the temporal pattern and magnitude of IRF3 activation induced by various PAMPs are highly complex with distinct cell type-specific characteristics, and IRF3 dimerization is a direct regulatory node for IFN-α/β receptor-mediated feed-forward regulation and crosstalk with other pathways. Therefore, the IRF3-BiLC reporter has multiple potential applications, including mechanistic studies as well as the identification of novel compounds that can modulate IRF3 activation. PMID:27045107

  9. Cloud-based simulations on Google Exacycle reveal ligand-modulation of GPCR activation pathways

    PubMed Central

    Bowman, Gregory R.; Konerding, David E.; Belov, Dan; Altman, Russ B.; Pande, Vijay S.

    2014-01-01

    Simulations can provide tremendous insight into atomistic details of biological mechanisms, but micro- to milliseconds timescales are historically only accessible on dedicated supercomputers. We demonstrate that cloud computing is a viable alternative, bringing long-timescale processes within reach of a broader community. We used Google's Exacycle cloud computing platform to simulate 2 milliseconds of dynamics of the β2 adrenergic receptor — a major drug target G protein-coupled receptor (GPCR). Markov state models aggregate independent simulations into a single statistical model that is validated by previous computational and experimental results. Moreover, our models provide an atomistic description of the activation of a GPCR, revealing multiple activation pathways. Agonists and inverse agonists interact differentially with these pathways, with profound implications for drug design PMID:24345941

  10. Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells.

    PubMed

    Luo, Yuping; Coskun, Volkan; Liang, Aibing; Yu, Juehua; Cheng, Liming; Ge, Weihong; Shi, Zhanping; Zhang, Kunshan; Li, Chun; Cui, Yaru; Lin, Haijun; Luo, Dandan; Wang, Junbang; Lin, Connie; Dai, Zachary; Zhu, Hongwen; Zhang, Jun; Liu, Jie; Liu, Hailiang; deVellis, Jean; Horvath, Steve; Sun, Yi Eve; Li, Siguang

    2015-05-21

    The scarcity of tissue-specific stem cells and the complexity of their surrounding environment have made molecular characterization of these cells particularly challenging. Through single-cell transcriptome and weighted gene co-expression network analysis (WGCNA), we uncovered molecular properties of CD133(+)/GFAP(-) ependymal (E) cells in the adult mouse forebrain neurogenic zone. Surprisingly, prominent hub genes of the gene network unique to ependymal CD133(+)/GFAP(-) quiescent cells were enriched for immune-responsive genes, as well as genes encoding receptors for angiogenic factors. Administration of vascular endothelial growth factor (VEGF) activated CD133(+) ependymal neural stem cells (NSCs), lining not only the lateral but also the fourth ventricles and, together with basic fibroblast growth factor (bFGF), elicited subsequent neural lineage differentiation and migration. This study revealed the existence of dormant ependymal NSCs throughout the ventricular surface of the CNS, as well as signals abundant after injury for their activation. PMID:26000486

  11. Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways

    NASA Astrophysics Data System (ADS)

    Kohlhoff, Kai J.; Shukla, Diwakar; Lawrenz, Morgan; Bowman, Gregory R.; Konerding, David E.; Belov, Dan; Altman, Russ B.; Pande, Vijay S.

    2014-01-01

    Simulations can provide tremendous insight into the atomistic details of biological mechanisms, but micro- to millisecond timescales are historically only accessible on dedicated supercomputers. We demonstrate that cloud computing is a viable alternative that brings long-timescale processes within reach of a broader community. We used Google's Exacycle cloud-computing platform to simulate two milliseconds of dynamics of a major drug target, the G-protein-coupled receptor β2AR. Markov state models aggregate independent simulations into a single statistical model that is validated by previous computational and experimental results. Moreover, our models provide an atomistic description of the activation of a G-protein-coupled receptor and reveal multiple activation pathways. Agonists and inverse agonists interact differentially with these pathways, with profound implications for drug design.

  12. A novel site contributing to growth-arrest-specific gene 6 binding to its receptors as revealed by a human monoclonal antibody

    PubMed Central

    2004-01-01

    Gas6 (growth-arrest-specific gene 6) is a vitamin K-dependent protein known to activate the Axl family of receptor tyrosine kinases. It is an important regulator of thrombosis and many other biological functions. The C-terminus of Gas6 binds to receptors and consists of two laminin-like globular domains LG1 and LG2. It has been reported that a Ca2+-binding site at the junction of LG1 and LG2 domains and a hydrophobic patch at the LG2 domain are important for receptor binding [Sasaki, Knyazev, Cheburkin, Gohring, Tisi, Ullrich, Timpl and Hohenester (2002) J. Biol. Chem. 277, 44164–44170]. In the present study, we developed a neutralizing human monoclonal antibody, named CNTO300, for Gas6. The antibody was generated by immunization of human IgG-expressing transgenic mice with recombinant human Gas6 protein and the anti-Gas6 IgG sequences were rescued from an unstable hybridoma clone. Binding of Gas6 to its receptors was partially inhibited by the CNTO300 antibody in a dose-dependent manner. To characterize further the interaction between Gas6 and this antibody, the binding kinetics of CNTO300 for recombinant Gas6 were compared with independently expressed LG1 and LG2. The CNTO300 antibody showed comparable binding affinity, yet different dependence on Ca2+, to Gas6 and LG1. No binding to LG2 was detected. In the presence of EDTA, binding of the antibody to Gas6 was disrupted, but no significant effect of EDTA on LG1 binding was evident. Further epitope mapping identified a Gas6 peptide sequence recognized by the CNTO300 antibody. This peptide sequence was found to be located at the LG1 domain distant from the Ca2+-binding site and the hydrophobic patch. Co-interaction of Gas6 with its receptor and CNTO300 antibody was detected by BIAcore analysis, suggesting a second receptor-binding site on the LG1 domain. This hypothesis was further supported by direct binding of Gas6 receptors to an independently expressed LG1 domain. Our results revealed, for the first time, a

  13. TAF4 Inactivation Reveals the 3 Dimensional Growth Promoting Activities of Collagen 6A3

    PubMed Central

    Duluc, Isabelle; Vicaire, Serge; Philipps, Muriel; Freund, Jean-Noel; Davidson, Irwin

    2014-01-01

    Collagen 6A3 (Col6a3), a component of extracellular matrix, is often up-regulated in tumours and is believed to play a pro-oncogenic role. However the mechanisms of its tumorigenic activity are poorly understood. We show here that Col6a3 is highly expressed in densely growing mouse embryonic fibroblasts (MEFs). In MEFs where the TAF4 subunit of general transcription factor IID (TFIID) has been inactivated, elevated Col6a3 expression prevents contact inhibition promoting their 3 dimensional growth as foci and fibrospheres. Analyses of gene expression in densely growing Taf4−/− MEFs revealed repression of the Hippo pathway and activation of Wnt signalling. The Hippo activator Kibra/Wwc1 is repressed under dense conditions in Taf4−/− MEFs, leading to nuclear accumulation of the proliferation factor YAP1 in the cells forming 3D foci. At the same time, Wnt9a is activated and the Sfrp2 antagonist of Wnt signalling is repressed. Surprisingly, treatment of Taf4−/− MEFs with all-trans retinoic acid (ATRA) restores contact inhibition suppressing 3D growth. ATRA represses Col6a3 expression independently of TAF4 expression and Col6a3 silencing is sufficient to restore contact inhibition in Taf4−/− MEFs and to suppress 3D growth by reactivating Kibra expression to induce Hippo signalling and by inducing Sfrp2 expression to antagonize Wnt signalling. All together, these results reveal a critical role for Col6a3 in regulating both Hippo and Wnt signalling to promote 3D growth, and show that the TFIID subunit TAF4 is essential to restrain the growth promoting properties of Col6a3. Our data provide new insight into the role of extra cellular matrix components in regulating cell growth. PMID:24498316

  14. Effect of location and filling of d-states on methane activation in single site Fe-based catalysts

    NASA Astrophysics Data System (ADS)

    Sahoo, Sanjubala; Reber, Arthur C.; Khanna, Shiv N.

    2016-09-01

    Theoretical studies on the activation of the C-H bond in methane by an Iron atom bound to four different sites on a silica model support indicate that the lowest activation barrier is found for the case when the Fe is bound to three exposed silicon sites. A molecular orbital analysis reveals that the transition state is stabilized by two filled 3d orbitals that mix with the HOMO and LUMO of methane respectively, indicating how the energy and occupation of the 3d orbitals determine the reaction barrier. The studies offer a strategy for identifying candidates with optimal electronic structure for maximizing C-H bond activation using non-precious metals.

  15. Site-directed mutagenesis of porcine pepsin: Possible role of Asp32, Thr33, Asp215 and Gly217 in maintaining the nuclease activity of pepsin.

    PubMed

    Zhang, Yanfang; Liu, Yu; Guo, Hui; Jiang, Wei; Dong, Ping; Liang, Xingguo

    2016-07-01

    Site-directed mutagenesis of porcine pepsin was performed to identify its active sites that regulate nucleic acid (NA) digestion activity and to analyze the mechanism pepsin-mediated NA digestion. The mutation sites were distributed at the catalytic center of the enzyme (T33A, G34A, Y75H, T77A, Y189H, V214A, G217A and S219A) and at its active site (D32A and D215A) for protein digestion. Mutation of the active site residues Asp32 and Asp215 led to the inactivation of pepsin (both the NA and protein digestion activity), which demonstrated that the active sites of the pepsin protease activity were also important for its nuclease activity. Analysis of the variants revealed that T33A and G217A mutants showed a complete loss of NA digestion activity. In conclusion, residues Asp32, Thr33, Asp215 and Gly217 were related to the pepsin active sites for NA digestion. Moreover, the Y189H and V214A variants showed a loss of digestion activity on double-strand DNA (dsDNA) but only a decrease in digestion activity on single-strand DNA (ssDNA). On the contrary, the G34A variant showed a loss of digestion activity on ssDNA but only a decrease in digestion activity on dsDNA. Our findings are the first to identify the active sites of pepsin nuclease activity and lay the framework for further study of the mechanism of pepsin nuclease activity. PMID:27233129

  16. Active Site Structure and Peroxidase Activity of Oxidatively Modified Cytochrome c Species in Complexes with Cardiolipin.

    PubMed

    Capdevila, Daiana A; Oviedo Rouco, Santiago; Tomasina, Florencia; Tortora, Verónica; Demicheli, Verónica; Radi, Rafael; Murgida, Daniel H

    2015-12-29

    We report a resonance Raman and UV-vis characterization of the active site structure of oxidatively modified forms of cytochrome c (Cyt-c) free in solution and in complexes with cardiolipin (CL). The studied post-translational modifications of Cyt-c include methionine sulfoxidation and tyrosine nitration, which lead to altered heme axial ligation and increased peroxidase activity with respect to those of the wild-type protein. In spite of the structural and activity differences between the protein variants free in solution, binding to CL liposomes induces in all cases the formation of a spectroscopically identical bis-His axial coordination conformer that more efficiently promotes lipid peroxidation. The spectroscopic results indicate that the bis-His form is in equilibrium with small amounts of high-spin species, thus suggesting a labile distal His ligand as the basis for the CL-induced increase in enzymatic activity observed for all protein variants. For Cyt-c nitrated at Tyr74 and sulfoxidized at Met80, the measured apparent binding affinities for CL are ∼4 times larger than for wild-type Cyt-c. On the basis of these results, we propose that these post-translational modifications may amplify the pro-apoptotic signal of Cyt-c under oxidative stress conditions at CL concentrations lower than for the unmodified protein. PMID:26620444

  17. Activity profiling reveals changes in the diversity and activity of proteins in Arabidopsis roots in response to nematode infection.

    PubMed

    Hütten, Marion; Geukes, Melanie; Misas-Villamil, Johana C; van der Hoorn, Renier A L; Grundler, Florian M W; Siddique, Shahid

    2015-12-01

    Cyst nematodes are obligate, sedentary endoparasites with a highly specialised biology and a huge economic impact in agriculture. Successful parasitism involves morphological and physiological modifications of the host cells which lead to the formation of specialised syncytial feeding structures in roots. The development of the syncytium is aided by a cocktail of nematode effectors that manipulate the host plant activities in a complex network of interactions through post-translational modifications. Traditional transcriptomic and proteomic approaches cannot display this functional proteomic information. Activity-based protein profiling (ABPP) is a powerful technology that can be used to investigate the activity of the proteome through activity-based probes. To better understand the functional proteomics of syncytium, ABPP was conducted on syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots. Our results demonstrated that the activity of several enzymes is differentially regulated in the syncytium compared to the control roots. Among those specifically activated in the syncytium are a putative S-formyl-glutathione hydrolase (SFGH), a putative methylesterase (MES) and two unidentified enzymes. In contrast, the activities of vacuolar processing enzymes (VPEs) are specifically suppressed in the syncytium. Competition labelling, quantitative gene expression and T-DNA knock-out mutants were used to further characterise the roles of the differentially regulated enzymes during plant-nematode interaction. In conclusion, our study will open the door to generate a comprehensive and integrated view of the host-pathogen warfare that results in the formation of long-term feeding sites for pathogens. PMID:26408809

  18. Conformational Disorganization within the Active Site of a Recently Evolved Organophosphate Hydrolase Limits Its Catalytic Efficiency.

    PubMed

    Mabbitt, Peter D; Correy, Galen J; Meirelles, Tamara; Fraser, Nicholas J; Coote, Michelle L; Jackson, Colin J

    2016-03-01

    The evolution of new enzymatic activity is rarely observed outside of the laboratory. In the agricultural pest Lucilia cuprina, a naturally occurring mutation (Gly137Asp) in α-esterase 7 (LcαE7) results in acquisition of organophosphate hydrolase activity and confers resistance to organophosphate insecticides. Here, we present an X-ray crystal structure of LcαE7:Gly137Asp that, along with kinetic data, suggests that Asp137 acts as a general base in the new catalytic mechanism. Unexpectedly, the conformation of Asp137 observed in the crystal structure obstructs the active site and is not catalytically productive. Molecular dynamics simulations reveal that alternative, catalytically competent conformers of Asp137 are sampled on the nanosecond time scale, although these states are less populated. Thus, although the mutation introduces the new reactive group responsible for organophosphate detoxification, the catalytic efficiency appears to be limited by conformational disorganization: the frequent sampling of low-energy nonproductive states. This result is consistent with a model of molecular evolution in which initial function-changing mutations can result in enzymes that display only a fraction of their catalytic potential due to conformational disorganization. PMID:26881849

  19. In situ probing of the active site geometry of ultrathin nanowires for the oxygen reduction reaction

    DOE PAGESBeta

    Liu, Haiqing; Wong, Stanislaus S.; An, Wei; Li, Yuanyuan; Frenkel, Anatoly I.; Sasaki, Kotaro; Koenigsmann, Christopher; Su, Dong; Anderson, Rachel M.; Crooks, Richard M.; et al

    2015-09-24

    To create truly effective electrocatalysts for the cathodic reaction governing proton exchange membrane fuel cells (PEMFC), namely the oxygen reduction reaction (ORR), necessitates an accurate and detailed structural understanding of these electrocatalysts, especially at the nanoscale, and to precisely correlate that structure with demonstrable performance enhancement. To address this key issue, we have combined and interwoven theoretical calculations with experimental, spectroscopic observations in order to acquire useful structural insights into the active site geometry with implications for designing optimized nanoscale electrocatalysts with rationally predicted properties. Specifically, we have probed ultrathin (~2 nm) core–shell Pt~Pd9Au nanowires, which have been previously shownmore » to be excellent candidates for ORR in terms of both activity and long-term stability, from the complementary perspectives of both DFT calculations and X-ray absorption spectroscopy (XAS). The combination and correlation of data from both experimental and theoretical studies has revealed for the first time that the catalytically active structure of our ternary nanowires can actually be ascribed to a PtAu~Pd configuration, comprising a PtAu binary shell and a pure inner Pd core. Moreover, we have plausibly attributed the resulting structure to a specific synthesis step, namely the Cu underpotential deposition (UPD) followed by galvanic replacement with Pt. Thus, the fundamental insights gained into the performance of our ultrathin nanowires from our demonstrated approach will likely guide future directed efforts aimed at broadly improving upon the durability and stability of nanoscale electrocatalysts in general.« less

  20. Active site conformational changes of prostasin provide a new mechanism of protease regulation by divalent cations

    SciTech Connect

    Spraggon, Glen; Hornsby, Michael; Shipway, Aaron; Tully, David C.; Bursulaya, Badry; Danahay, Henry; Harris, Jennifer L.; Lesley, Scott A.

    2010-01-12

    Prostasin or human channel-activating protease 1 has been reported to play a critical role in the regulation of extracellular sodium ion transport via its activation of the epithelial cell sodium channel. Here, the structure of the extracellular portion of the membrane associated serine protease has been solved to high resolution in complex with a nonselective d-FFR chloromethyl ketone inhibitor, in an apo form, in a form where the apo crystal has been soaked with the covalent inhibitor camostat and in complex with the protein inhibitor aprotinin. It was also crystallized in the presence of the divalent cation Ca{sup +2}. Comparison of the structures with each other and with other members of the trypsin-like serine protease family reveals unique structural features of prostasin and a large degree of conformational variation within specificity determining loops. Of particular interest is the S1 subsite loop which opens and closes in response to basic residues or divalent ions, directly binding Ca{sup +2} cations. This induced fit active site provides a new possible mode of regulation of trypsin-like proteases adapted in particular to extracellular regions with variable ionic concentrations such as the outer membrane layer of the epithelial cell.

  1. Hydrogen production by the naked active site of the di-iron hydrogenases in water.

    PubMed

    Zipoli, Federico; Car, Roberto; Cohen, Morrel H; Selloni, Annabella

    2009-10-01

    We explored the reactivity of the active center of the [FeFe]-hydrogenases detached from the enzyme and immersed in acidified water by first-principles Car-Parrinello molecular-dynamics simulations. We focused on the identification o