Science.gov

Sample records for active site reveals

  1. Revealing the nature of the active site on the carbon catalyst for C-H bond activation.

    PubMed

    Sun, XiaoYing; Li, Bo; Su, Dangsheng

    2014-09-28

    A reactivity descriptor for the C-H bond activation on the nanostructured carbon catalyst is proposed. Furthermore the calculations reveal that the single ketone group can be an active site in ODH reaction.

  2. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site

    PubMed Central

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel

    2015-01-01

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called ‘catalytic residues’ are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes. DOI: http://dx.doi.org/10.7554/eLife.06181.001 PMID:25902402

  3. Crystal structure of an avian influenza polymerase PA[subscript N] reveals an endonuclease active site

    SciTech Connect

    Yuan, Puwei; Bartlam, Mark; Lou, Zhiyong; Chen, Shoudeng; Zhou, Jie; He, Xiaojing; Lv, Zongyang; Ge, Ruowen; Li, Xuemei; Deng, Tao; Fodor, Ervin; Rao, Zihe; Liu, Yingfang

    2009-11-10

    The heterotrimeric influenza virus polymerase, containing the PA, PB1 and PB2 proteins, catalyses viral RNA replication and transcription in the nucleus of infected cells. PB1 holds the polymerase active site and reportedly harbours endonuclease activity, whereas PB2 is responsible for cap binding. The PA amino terminus is understood to be the major functional part of the PA protein and has been implicated in several roles, including endonuclease and protease activities as well as viral RNA/complementary RNA promoter binding. Here we report the 2.2 angstrom (A) crystal structure of the N-terminal 197 residues of PA, termed PA(N), from an avian influenza H5N1 virus. The PA(N) structure has an alpha/beta architecture and reveals a bound magnesium ion coordinated by a motif similar to the (P)DX(N)(D/E)XK motif characteristic of many endonucleases. Structural comparisons and mutagenesis analysis of the motif identified in PA(N) provide further evidence that PA(N) holds an endonuclease active site. Furthermore, functional analysis with in vivo ribonucleoprotein reconstitution and direct in vitro endonuclease assays strongly suggest that PA(N) holds the endonuclease active site and has critical roles in endonuclease activity of the influenza virus polymerase, rather than PB1. The high conservation of this endonuclease active site among influenza strains indicates that PA(N) is an important target for the design of new anti-influenza therapeutics.

  4. Active-Site Monovalent Cations Revealed in a 1.55 Å Resolution Hammerhead Ribozyme Structure

    PubMed Central

    Anderson, Michael; Schultz, Eric P.; Martick, Monika; Scott, William G.

    2013-01-01

    We have obtained a 1.55 Å crystal structure of a hammerhead ribozyme derived from Schistosoma mansoni in conditions that permit detailed observations of Na+ ion binding in the ribozyme's active site. At least two such Na+ ions are observed. The first Na+ ion binds to the N7 of G10.1 and the adjacent A9 phosphate in a manner identical to that previously observed for divalent cations. A second Na+ ion binds to the Hoogsteen face of G12, the general base in the hammerhead cleavage reaction, thereby potentially dissipating the negative charge of the catalytically active enolate form of the nucleotide base. A potential but more ambiguous third site bridges the A9 and scissile phosphates in a manner consistent with previous predictions. Hammerhead ribozymes have been observed to be active in the presence of high concentrations of monovalent cations, including Na+, but the mechanism by which monovalent cations substitute for divalent cations in hammerhead catalysis remains unclear. Our results enable us to suggest that Na+ directly and specifically substitutes for divalent cations in the hammerhead active site. The detailed geometry of the pre-catalytic active site complex is also revealed with a new level of precision, thanks to the quality of the electron density maps obtained from what is currently the highest resolution ribozyme structure in the protein data bank. PMID:23711504

  5. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination.

    PubMed

    Rowley, Paul A; Kachroo, Aashiq H; Ma, Chien-Hui; Maciaszek, Anna D; Guga, Piotr; Jayaram, Makkuni

    2015-07-13

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5' to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions.

  6. Nanoscale electrochemical patterning reveals the active sites for catechol oxidation at graphite surfaces.

    PubMed

    Patel, Anisha N; McKelvey, Kim; Unwin, Patrick R

    2012-12-19

    Graphite-based electrodes (graphite, graphene, and nanotubes) are used widely in electrochemistry, and there is a long-standing view that graphite step edges are needed to catalyze many reactions, with the basal surface considered to be inert. In the present work, this model was tested directly for the first time using scanning electrochemical cell microscopy reactive patterning and shown to be incorrect. For the electro-oxidation of dopamine as a model process, the reaction rate was measured at high spatial resolution across a surface of highly oriented pyrolytic graphite. Oxidation products left behind in a pattern defined by the scanned electrochemical cell served as surface-site markers, allowing the electrochemical activity to be correlated directly with the graphite structure on the nanoscale. This process produced tens of thousands of electrochemical measurements at different locations across the basal surface, unambiguously revealing it to be highly electrochemically active, with step edges providing no enhanced activity. This new model of graphite electrodes has significant implications for the design of carbon-based biosensors, and the results are additionally important for understanding electrochemical processes on related sp(2)-hybridized materials such as pristine graphene and nanotubes.

  7. Structure analysis reveals the flexibility of the ADAMTS-5 active site

    SciTech Connect

    Shieh, Huey-Sheng; Tomasselli, Alfredo G.; Mathis, Karl J.; Schnute, Mark E.; Woodard, Scott S.; Caspers, Nicole; Williams, Jennifer M.; Kiefer, James R.; Munie, Grace; Wittwer, Arthur; Malfait, Anne-Marie; Tortorella, Micky D.

    2012-03-02

    A ((1S,2R)-2-hydroxy-2,3-dihydro-1H-inden-1-yl) succinamide derivative (here referred to as Compound 12) shows significant activity toward many matrix metalloproteinases (MMPs), including MMP-2, MMP-8, MMP-9, and MMP-13. Modeling studies had predicted that this compound would not bind to ADAMTS-5 (a disintegrin and metalloproteinase with thrombospondin motifs-5) due to its shallow S1' pocket. However, inhibition analysis revealed it to be a nanomolar inhibitor of both ADAMTS-4 and -5. The observed inconsistency was explained by analysis of crystallographic structures, which showed that Compound 12 in complex with the catalytic domain of ADAMTS-5 (cataTS5) exhibits an unusual conformation in the S1' pocket of the protein. This first demonstration that cataTS5 can undergo an induced conformational change in its active site pocket by a molecule like Compound 12 should enable the design of new aggrecanase inhibitors with better potency and selectivity profiles.

  8. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes

    PubMed Central

    Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data. PMID:27504624

  9. Structure of Saccharomyces cerevisiae Rtr1 reveals an active site for an atypical phosphatase.

    PubMed

    Irani, Seema; Yogesha, S D; Mayfield, Joshua; Zhang, Mengmeng; Zhang, Yong; Matthews, Wendy L; Nie, Grace; Prescott, Nicholas A; Zhang, Yan Jessie

    2016-03-01

    Changes in the phosphorylation status of the carboxyl-terminal domain (CTD) of RNA polymerase II (RNAPII) correlate with the process of eukaryotic transcription. The yeast protein regulator of transcription 1 (Rtr1) and the human homolog RNAPII-associated protein 2 (RPAP2) may function as CTD phosphatases; however, crystal structures of Kluyveromyces lactis Rtr1 lack a consensus active site. We identified a phosphoryl transfer domain in Saccharomyces cerevisiae Rtr1 by obtaining and characterizing a 2.6 Å resolution crystal structure. We identified a putative substrate-binding pocket in a deep groove between the zinc finger domain and a pair of helices that contained a trapped sulfate ion. Because sulfate mimics the chemistry of a phosphate group, this structural data suggested that this groove represents the phosphoryl transfer active site. Mutagenesis of the residues lining this groove disrupted catalytic activity of the enzyme assayed in vitro with a fluorescent chemical substrate, and expression of the mutated Rtr1 failed to rescue growth of yeast lacking Rtr1. Characterization of the phosphatase activity of RPAP2 and a mutant of the conserved putative catalytic site in the same chemical assay indicated a conserved reaction mechanism. Our data indicated that the structure of the phosphoryl transfer domain and reaction mechanism for the phosphoryl transfer activity of Rtr1 is distinct from those of other phosphatase families.

  10. Structure of Saccharomyces cerevisiae Rtr1 reveals an active site for an atypical phosphatase

    PubMed Central

    Mayfield, Joshua; Zhang, Mengmeng; Zhang, Yong; Matthews, Wendy L.; Nie, Grace; Prescott, Nicholas A.; Zhang, Yan Jessie

    2016-01-01

    Changes in the phosphorylation status of the carboxyl-terminal domain (CTD) of RNA polymerase II (RNAPII) correlate with the process of eukaryotic transcription. The yeast protein regulator of transcription 1 (Rtr1) and the human homolog RNAPII-associated protein 2 (RPAP2) may function as CTD phosphatases; however, crystal structures of Kluyveromyces lactis Rtr1 lack a consensus active site. We identified a phosphoryl transfer domain in Saccharomyces cerevisiae Rtr1 by obtaining and characterizing a 2.6 Å resolution crystal structure. We identified a putative substrate-binding pocket in a deep groove between the zinc finger domain and a pair of helices that contained a trapped sulfate ion. Because sulfate mimics the chemistry of a phosphate group, this structural data suggested that this groove represents the phosphoryl transfer active site. Mutagenesis of the residues lining this groove disrupted catalytic activity of the enzyme assayed in vitro with a fluorescent chemical substrate, and expression of the mutated Rtr1 failed to rescue growth of yeast lacking Rtr1. Characterization of the phosphatase activity of RPAP2 and a mutant of the conserved putative catalytic site in the same chemical assay indicated a conserved reaction mechanism. Our data indicated that the structure of the phosphoryl transfer domain and reaction mechanism for the phosphoryl transfer activity of Rtr1 is distinct from those of other phosphatase families. PMID:26933063

  11. How Force Might Activate Talin's Vinculin Binding Sites: SMD Reveals a Structural Mechanism

    PubMed Central

    Hytönen, Vesa P; Vogel, Viola

    2008-01-01

    Upon cell adhesion, talin physically couples the cytoskeleton via integrins to the extracellular matrix, and subsequent vinculin recruitment is enhanced by locally applied tensile force. Since the vinculin binding (VB) sites are buried in the talin rod under equilibrium conditions, the structural mechanism of how vinculin binding to talin is force-activated remains unknown. Taken together with experimental data, a biphasic vinculin binding model, as derived from steered molecular dynamics, provides high resolution structural insights how tensile mechanical force applied to the talin rod fragment (residues 486–889 constituting helices H1–H12) might activate the VB sites. Fragmentation of the rod into three helix subbundles is prerequisite to the sequential exposure of VB helices to water. Finally, unfolding of a VB helix into a completely stretched polypeptide might inhibit further binding of vinculin. The first events in fracturing the H1–H12 rods of talin1 and talin2 in subbundles are similar. The proposed force-activated α-helix swapping mechanism by which vinculin binding sites in talin rods are exposed works distinctly different from that of other force-activated bonds, including catch bonds. PMID:18282082

  12. Substrate-binding specificity of chitinase and chitosanase as revealed by active-site architecture analysis.

    PubMed

    Liu, Shijia; Shao, Shangjin; Li, Linlin; Cheng, Zhi; Tian, Li; Gao, Peiji; Wang, Lushan

    2015-12-11

    Chitinases and chitosanases, referred to as chitinolytic enzymes, are two important categories of glycoside hydrolases (GH) that play a key role in degrading chitin and chitosan, two naturally abundant polysaccharides. Here, we investigate the active site architecture of the major chitosanase (GH8, GH46) and chitinase families (GH18, GH19). Both charged (Glu, His, Arg, Asp) and aromatic amino acids (Tyr, Trp, Phe) are observed with higher frequency within chitinolytic active sites as compared to elsewhere in the enzyme structure, indicating significant roles related to enzyme function. Hydrogen bonds between chitinolytic enzymes and the substrate C2 functional groups, i.e. amino groups and N-acetyl groups, drive substrate recognition, while non-specific CH-π interactions between aromatic residues and substrate mainly contribute to tighter binding and enhanced processivity evident in GH8 and GH18 enzymes. For different families of chitinolytic enzymes, the number, type, and position of substrate atoms bound in the active site vary, resulting in different substrate-binding specificities. The data presented here explain the synergistic action of multiple enzyme families at a molecular level and provide a more reasonable method for functional annotation, which can be further applied toward the practical engineering of chitinases and chitosanases.

  13. Mutational and structural analyses of Caldanaerobius polysaccharolyticus Man5B reveal novel active site residues for family 5 glycoside hydrolases.

    PubMed

    Oyama, Takuji; Schmitz, George E; Dodd, Dylan; Han, Yejun; Burnett, Alanna; Nagasawa, Naoko; Mackie, Roderick I; Nakamura, Haruki; Morikawa, Kosuke; Cann, Isaac

    2013-01-01

    CpMan5B is a glycoside hydrolase (GH) family 5 enzyme exhibiting both β-1,4-mannosidic and β-1,4-glucosidic cleavage activities. To provide insight into the amino acid residues that contribute to catalysis and substrate specificity, we solved the structure of CpMan5B at 1.6 Å resolution. The structure revealed several active site residues (Y12, N92 and R196) in CpMan5B that are not present in the active sites of other structurally resolved GH5 enzymes. Residue R196 in GH5 enzymes is thought to be strictly conserved as a histidine that participates in an electron relay network with the catalytic glutamates, but we show that an arginine fulfills a functionally equivalent role and is found at this position in every enzyme in subfamily GH5_36, which includes CpMan5B. Residue N92 is required for full enzymatic activity and forms a novel bridge over the active site that is absent in other family 5 structures. Our data also reveal a role of Y12 in establishing the substrate preference for CpMan5B. Using these molecular determinants as a probe allowed us to identify Man5D from Caldicellulosiruptor bescii as a mannanase with minor endo-glucanase activity.

  14. Mutational and Structural Analyses of Caldanaerobius polysaccharolyticus Man5B Reveal Novel Active Site Residues for Family 5 Glycoside Hydrolases

    PubMed Central

    Han, Yejun; Burnett, Alanna; Nagasawa, Naoko; Mackie, Roderick I.; Nakamura, Haruki; Morikawa, Kosuke; Cann, Isaac

    2013-01-01

    CpMan5B is a glycoside hydrolase (GH) family 5 enzyme exhibiting both β-1,4-mannosidic and β-1,4-glucosidic cleavage activities. To provide insight into the amino acid residues that contribute to catalysis and substrate specificity, we solved the structure of CpMan5B at 1.6 Å resolution. The structure revealed several active site residues (Y12, N92 and R196) in CpMan5B that are not present in the active sites of other structurally resolved GH5 enzymes. Residue R196 in GH5 enzymes is thought to be strictly conserved as a histidine that participates in an electron relay network with the catalytic glutamates, but we show that an arginine fulfills a functionally equivalent role and is found at this position in every enzyme in subfamily GH5_36, which includes CpMan5B. Residue N92 is required for full enzymatic activity and forms a novel bridge over the active site that is absent in other family 5 structures. Our data also reveal a role of Y12 in establishing the substrate preference for CpMan5B. Using these molecular determinants as a probe allowed us to identify Man5D from Caldicellulosiruptor bescii as a mannanase with minor endo-glucanase activity. PMID:24278284

  15. Structure of protein O-mannose kinase reveals a unique active site architecture

    PubMed Central

    Zhu, Qinyu; Venzke, David; Walimbe, Ameya S; Anderson, Mary E; Fu, Qiuyu; Kinch, Lisa N; Wang, Wei; Chen, Xing; Grishin, Nick V; Huang, Niu; Yu, Liping; Dixon, Jack E; Campbell, Kevin P; Xiao, Junyu

    2016-01-01

    The ‘pseudokinase’ SgK196 is a protein O-mannose kinase (POMK) that catalyzes an essential phosphorylation step during biosynthesis of the laminin-binding glycan on α-dystroglycan. However, the catalytic mechanism underlying this activity remains elusive. Here we present the crystal structure of Danio rerio POMK in complex with Mg2+ ions, ADP, aluminum fluoride, and the GalNAc-β3-GlcNAc-β4-Man trisaccharide substrate, thereby providing a snapshot of the catalytic transition state of this unusual kinase. The active site of POMK is established by residues located in non-canonical positions and is stabilized by a disulfide bridge. GalNAc-β3-GlcNAc-β4-Man is recognized by a surface groove, and the GalNAc-β3-GlcNAc moiety mediates the majority of interactions with POMK. Expression of various POMK mutants in POMK knockout cells further validated the functional requirements of critical residues. Our results provide important insights into the ability of POMK to function specifically as a glycan kinase, and highlight the structural diversity of the human kinome. DOI: http://dx.doi.org/10.7554/eLife.22238.001 PMID:27879205

  16. Structures of lipoyl synthase reveal a compact active site for controlling sequential sulfur insertion reactions.

    PubMed

    Harmer, Jenny E; Hiscox, Martyn J; Dinis, Pedro C; Fox, Stephen J; Iliopoulos, Andreas; Hussey, James E; Sandy, James; Van Beek, Florian T; Essex, Jonathan W; Roach, Peter L

    2014-11-15

    Lipoyl cofactors are essential for living organisms and are produced by the insertion of two sulfur atoms into the relatively unreactive C-H bonds of an octanoyl substrate. This reaction requires lipoyl synthase, a member of the radical S-adenosylmethionine (SAM) enzyme superfamily. In the present study, we solved crystal structures of lipoyl synthase with two [4Fe-4S] clusters bound at opposite ends of the TIM barrel, the usual fold of the radical SAM superfamily. The cluster required for reductive SAM cleavage conserves the features of the radical SAM superfamily, but the auxiliary cluster is bound by a CX4CX5C motif unique to lipoyl synthase. The fourth ligand to the auxiliary cluster is an extremely unusual serine residue. Site-directed mutants show this conserved serine ligand is essential for the sulfur insertion steps. One crystallized lipoyl synthase (LipA) complex contains 5'-methylthioadenosine (MTA), a breakdown product of SAM, bound in the likely SAM-binding site. Modelling has identified an 18 Å (1 Å=0.1 nm) deep channel, well-proportioned to accommodate an octanoyl substrate. These results suggest that the auxiliary cluster is the likely sulfur donor, but access to a sulfide ion for the second sulfur insertion reaction requires the loss of an iron atom from the auxiliary cluster, which the serine ligand may enable.

  17. Structural investigation of heteroyohimbine alkaloid synthesis reveals active site elements that control stereoselectivity

    PubMed Central

    Stavrinides, Anna; Tatsis, Evangelos C.; Caputi, Lorenzo; Foureau, Emilien; Stevenson, Clare E. M.; Lawson, David M.; Courdavault, Vincent; O'Connor, Sarah E.

    2016-01-01

    Plants produce an enormous array of biologically active metabolites, often with stereochemical variations on the same molecular scaffold. These changes in stereochemistry dramatically impact biological activity. Notably, the stereoisomers of the heteroyohimbine alkaloids show diverse pharmacological activities. We reported a medium chain dehydrogenase/reductase (MDR) from Catharanthus roseus that catalyses formation of a heteroyohimbine isomer. Here we report the discovery of additional heteroyohimbine synthases (HYSs), one of which produces a mixture of diastereomers. The crystal structures for three HYSs have been solved, providing insight into the mechanism of reactivity and stereoselectivity, with mutation of one loop transforming product specificity. Localization and gene silencing experiments provide a basis for understanding the function of these enzymes in vivo. This work sets the stage to explore how MDRs evolved to generate structural and biological diversity in specialized plant metabolism and opens the possibility for metabolic engineering of new compounds based on this scaffold. PMID:27418042

  18. X-ray structure of human aromatase reveals an androgen-specific active site.

    PubMed

    Ghosh, Debashis; Griswold, Jennifer; Erman, Mary; Pangborn, Walter

    2010-02-28

    Aromatase is a unique cytochrome P450 that catalyzes the removal of the 19-methyl group and aromatization of the A-ring of androgens for the synthesis of estrogens. All human estrogens are synthesized via this enzymatic aromatization pathway. Aromatase inhibitors thus constitute a frontline therapy for estrogen-dependent breast cancer. Despite decades of intense investigation, this enzyme of the endoplasmic reticulum membrane has eluded all structure determination efforts. We have determined the crystal structure of the highly active aromatase purified from human placenta, in complex with its natural substrate androstenedione. The structure shows the binding mode of androstenedione in the catalytically active oxidized high-spin ferric state of the enzyme. Hydrogen bond-forming interactions and tight packing hydrophobic side chains that complement the puckering of the steroid backbone provide the molecular basis for the exclusive androgenic specificity of aromatase. Locations of catalytic residues and water molecules shed new light on the mechanism of the aromatization step. The structure also suggests a membrane integration model indicative of the passage of steroids through the lipid bilayer.

  19. The structure of the Mycobacterium smegmatis trehalose synthase reveals an unusual active site configuration and acarbose-binding mode†

    PubMed Central

    Caner, Sami; Nguyen, Nham; Aguda, Adeleke; Zhang, Ran; Pan, Yuan T; Withers, Stephen G; Brayer, Gary D

    2013-01-01

    Trehalose synthase (TreS) catalyzes the reversible conversion of maltose into trehalose in mycobacteria as one of three biosynthetic pathways to this nonreducing disaccharide. Given the importance of trehalose to survival of mycobacteria, there has been considerable interest in understanding the enzymes involved in its production; indeed the structures of the key enzymes in the other two pathways have already been determined. Herein, we present the first structure of TreS from Mycobacterium smegmatis, thereby providing insights into the catalytic machinery involved in this intriguing intramolecular reaction. This structure, which is of interest both mechanistically and as a potential pharmaceutical target, reveals a narrow and enclosed active site pocket within which intramolecular substrate rearrangements can occur. We also present the structure of a complex of TreS with acarbose, revealing a hitherto unsuspected oligosaccharide-binding site within the C-terminal domain. This may well provide an anchor point for the association of TreS with glycogen, thereby enhancing its role in glycogen biosynthesis and degradation. PMID:23735230

  20. The structure of the Mycobacterium smegmatis trehalose synthase reveals an unusual active site configuration and acarbose-binding mode.

    PubMed

    Caner, Sami; Nguyen, Nham; Aguda, Adeleke; Zhang, Ran; Pan, Yuan T; Withers, Stephen G; Brayer, Gary D

    2013-09-01

    Trehalose synthase (TreS) catalyzes the reversible conversion of maltose into trehalose in mycobacteria as one of three biosynthetic pathways to this nonreducing disaccharide. Given the importance of trehalose to survival of mycobacteria, there has been considerable interest in understanding the enzymes involved in its production; indeed the structures of the key enzymes in the other two pathways have already been determined. Herein, we present the first structure of TreS from Mycobacterium smegmatis, thereby providing insights into the catalytic machinery involved in this intriguing intramolecular reaction. This structure, which is of interest both mechanistically and as a potential pharmaceutical target, reveals a narrow and enclosed active site pocket within which intramolecular substrate rearrangements can occur. We also present the structure of a complex of TreS with acarbose, revealing a hitherto unsuspected oligosaccharide-binding site within the C-terminal domain. This may well provide an anchor point for the association of TreS with glycogen, thereby enhancing its role in glycogen biosynthesis and degradation.

  1. The Crystal Structure of Dehi Reveals a New A-Haloacid Dehalogenase Fold And Active Site Mechanism

    SciTech Connect

    Schmidberger, J.W.; Wilce, J.A.; Weightman, A.J.; Whisstock, J.C.; Wilce, M.C.J.

    2009-05-27

    Haloacid dehalogenases catalyse the removal of halides from organic haloacids and are of interest for bioremediation and for their potential use in the synthesis of industrial chemicals. We present the crystal structure of the homodimer DehI from Pseudomonas putida strain PP3, the first structure of a group I {alpha}-haloacid dehalogenase that can process both L- and D-substrates. The structure shows that the DehI monomer consists of two domains of {approx}130 amino acids that have {approx}16% sequence identity yet adopt virtually identical and unique folds that form a pseudo-dimer. Analysis of the active site reveals the likely binding mode of both L- and D-substrates with respect to key catalytic residues. Asp189 is predicted to activate a water molecule for nucleophilic attack of the substrate chiral centre resulting in an inversion of configuration of either L- or D-substrates in contrast to D-only enzymes. These details will assist with future bioengineering of dehalogenases.

  2. Crystal structures of glutaminyl cyclases (QCs) from Drosophila melanogaster reveal active site conservation between insect and mammalian QCs.

    PubMed

    Koch, Birgit; Kolenko, Petr; Buchholz, Mirko; Carrillo, David Ruiz; Parthier, Christoph; Wermann, Michael; Rahfeld, Jens-Ulrich; Reuter, Gunter; Schilling, Stephan; Stubbs, Milton T; Demuth, Hans-Ulrich

    2012-09-18

    Glutaminyl cyclases (QCs), which catalyze the formation of pyroglutamic acid (pGlu) at the N-terminus of a variety of peptides and proteins, have attracted particular attention for their potential role in Alzheimer's disease. In a transgenic Drosophila melanogaster (Dm) fruit fly model, oral application of the potent competitive QC inhibitor PBD150 was shown to reduce the burden of pGlu-modified Aβ. In contrast to mammals such as humans and rodents, there are at least three DmQC species, one of which (isoDromeQC) is localized to mitochondria, whereas DromeQC and an isoDromeQC splice variant possess signal peptides for secretion. Here we present the recombinant expression, characterization, and crystal structure determination of mature DromeQC and isoDromeQC, revealing an overall fold similar to that of mammalian QCs. In the case of isoDromeQC, the putative extended substrate binding site might be affected by the proximity of the N-terminal residues. PBD150 inhibition of DromeQC is roughly 1 order of magnitude weaker than that of the human and murine QCs. The inhibitor binds to isoDromeQC in a fashion similar to that observed for human QCs, whereas it adopts alternative binding modes in a DromeQC variant lacking the conserved cysteines near the active center and shows a disordered dimethoxyphenyl moiety in wild-type DromeQC, providing an explanation for the lower affinity. Our biophysical and structural data suggest that isoDromeQC and human QC are similar with regard to functional aspects. The two Dm enzymes represent a suitable model for further in-depth analysis of the catalytic mechanism of animal QCs, and isoDromeQC might serve as a model system for the structure-based design of potential AD therapeutics.

  3. Ligand-binding specificity and promiscuity of the main lignocellulolytic enzyme families as revealed by active-site architecture analysis

    PubMed Central

    Tian, Li; Liu, Shijia; Wang, Shuai; Wang, Lushan

    2016-01-01

    Biomass can be converted into sugars by a series of lignocellulolytic enzymes, which belong to the glycoside hydrolase (GH) families summarized in CAZy databases. Here, using a structural bioinformatics method, we analyzed the active site architecture of the main lignocellulolytic enzyme families. The aromatic amino acids Trp/Tyr and polar amino acids Glu/Asp/Asn/Gln/Arg occurred at higher frequencies in the active site architecture than in the whole enzyme structure. And the number of potential subsites was significantly different among different families. In the cellulase and xylanase families, the conserved amino acids in the active site architecture were mostly found at the −2 to +1 subsites, while in β-glucosidase they were mainly concentrated at the −1 subsite. Families with more conserved binding amino acid residues displayed strong selectivity for their ligands, while those with fewer conserved binding amino acid residues often exhibited promiscuity when recognizing ligands. Enzymes with different activities also tended to bind different hydroxyl oxygen atoms on the ligand. These results may help us to better understand the common and unique structural bases of enzyme-ligand recognition from different families and provide a theoretical basis for the functional evolution and rational design of major lignocellulolytic enzymes. PMID:27009476

  4. Structure of Arabidopsis thaliana 5-methylthioribose kinase reveals a more occluded active site than its bacterial homolog

    PubMed Central

    Ku, Shao-Yang; Cornell, Kenneth A; Howell, P Lynne

    2007-01-01

    Background Metabolic variations exist between the methionine salvage pathway of humans and a number of plants and microbial pathogens. 5-Methylthioribose (MTR) kinase is a key enzyme required for methionine salvage in plants and many bacteria. The absence of a mammalian homolog suggests that MTR kinase is a good target for the design of specific herbicides or antibiotics. Results The structure of Arabidopsis thaliana MTR kinase co-crystallized with ATPγS and MTR has been determined at 1.9 Å resolution. The structure is similar to B. subtilis MTR kinase and has the same protein kinase fold observed in other evolutionarily related protein kinase-like phosphotransferases. The active site is comparable between the two enzymes with the DXE-motif coordinating the nucleotide-Mg, the D238 of the HGD catalytic loop polarizing the MTR O1 oxygen, and the RR-motif interacting with the substrate MTR. Unlike its bacterial homolog, however, the Gly-rich loop (G-loop) of A. thaliana MTR kinase has an extended conformation, which shields most of the active site from solvent, a feature that resembles eukaryotic protein kinases more than the bacterial enzyme. The G- and W-loops of A. thaliana and B. subtilis MTR kinase adopt different conformations despite high sequence similarity. The ATPγS analog was hydrolyzed during the co-crystallization procedure, resulting in ADP in the active site. This suggests that the A. thaliana enzyme, like its bacterial homolog, may have significant ATPase activity in the absence of MTR. Conclusion The structure of A. thaliana MTR kinase provides a template for structure-based design of agrochemicals, particularly herbicides whose effectiveness could be regulated by nutrient levels. Features of the MTR binding site offer an opportunity for a simple organic salt of an MTR analog to specifically inhibit MTR kinase. PMID:17961230

  5. Structure of Arabidopsis thaliana 5-methylthioribose Kinase Reveals a More Occluded Active Site Than its Bacterial Homolog

    SciTech Connect

    Ku,S.; Cornell, K.; Howell, P.

    2007-01-01

    Metabolic variations exist between the methionine salvage pathway of humans and a number of plants and microbial pathogens. 5-Methylthioribose (MTR) kinase is a key enzyme required for methionine salvage in plants and many bacteria. The absence of a mammalian homolog suggests that MTR kinase is a good target for the design of specific herbicides or antibiotics. The structure of Arabidopsis thaliana MTR kinase co-crystallized with ATP?S and MTR has been determined at 1.9 Angstroms resolution. The structure is similar to B. subtilis MTR kinase and has the same protein kinase fold observed in other evolutionarily related protein kinase-like phosphotransferases. The active site is comparable between the two enzymes with the DXE-motif coordinating the nucleotide-Mg, the D238 of the HGD catalytic loop polarizing the MTR O1 oxygen, and the RR-motif interacting with the substrate MTR. Unlike its bacterial homolog, however, the Gly-rich loop (G-loop) of A. thaliana MTR kinase has an extended conformation, which shields most of the active site from solvent, a feature that resembles eukaryotic protein kinases more than the bacterial enzyme. The G- and W-loops of A. thaliana and B. subtilis MTR kinase adopt different conformations despite high sequence similarity. The ATP?S analog was hydrolyzed during the co-crystallization procedure, resulting in ADP in the active site. This suggests that the A. thaliana enzyme, like its bacterial homolog, may have significant ATPase activity in the absence of MTR. The structure of A. thaliana MTR kinase provides a template for structure-based design of agrochemicals, particularly herbicides whose effectiveness could be regulated by nutrient levels. Features of the MTR binding site offer an opportunity for a simple organic salt of an MTR analog to specifically inhibit MTR kinase.

  6. Conformational transition of FGFR kinase activation revealed by site-specific unnatural amino acid reporter and single molecule FRET

    PubMed Central

    Perdios, Louis; Lowe, Alan R.; Saladino, Giorgio; Bunney, Tom D.; Thiyagarajan, Nethaji; Alexandrov, Yuriy; Dunsby, Christopher; French, Paul M. W.; Chin, Jason W.; Gervasio, Francesco Luigi; Tate, Edward W.; Katan, Matilda

    2017-01-01

    Protein kinases share significant structural similarity; however, structural features alone are insufficient to explain their diverse functions. Thus, bridging the gap between static structure and function requires a more detailed understanding of their dynamic properties. For example, kinase activation may occur via a switch-like mechanism or by shifting a dynamic equilibrium between inactive and active states. Here, we utilize a combination of FRET and molecular dynamics (MD) simulations to probe the activation mechanism of the kinase domain of Fibroblast Growth Factor Receptor (FGFR). Using genetically-encoded, site-specific incorporation of unnatural amino acids in regions essential for activation, followed by specific labeling with fluorescent moieties, we generated a novel class of FRET-based reporter to monitor conformational differences corresponding to states sampled by non phosphorylated/inactive and phosphorylated/active forms of the kinase. Single molecule FRET analysis in vitro, combined with MD simulations, shows that for FGFR kinase, there are populations of inactive and active states separated by a high free energy barrier resulting in switch-like activation. Compared to recent studies, these findings support diversity in features of kinases that impact on their activation mechanisms. The properties of these FRET-based constructs will also allow further studies of kinase dynamics as well as applications in vivo. PMID:28045057

  7. Conformational transition of FGFR kinase activation revealed by site-specific unnatural amino acid reporter and single molecule FRET

    NASA Astrophysics Data System (ADS)

    Perdios, Louis; Lowe, Alan R.; Saladino, Giorgio; Bunney, Tom D.; Thiyagarajan, Nethaji; Alexandrov, Yuriy; Dunsby, Christopher; French, Paul M. W.; Chin, Jason W.; Gervasio, Francesco Luigi; Tate, Edward W.; Katan, Matilda

    2017-01-01

    Protein kinases share significant structural similarity; however, structural features alone are insufficient to explain their diverse functions. Thus, bridging the gap between static structure and function requires a more detailed understanding of their dynamic properties. For example, kinase activation may occur via a switch-like mechanism or by shifting a dynamic equilibrium between inactive and active states. Here, we utilize a combination of FRET and molecular dynamics (MD) simulations to probe the activation mechanism of the kinase domain of Fibroblast Growth Factor Receptor (FGFR). Using genetically-encoded, site-specific incorporation of unnatural amino acids in regions essential for activation, followed by specific labeling with fluorescent moieties, we generated a novel class of FRET-based reporter to monitor conformational differences corresponding to states sampled by non phosphorylated/inactive and phosphorylated/active forms of the kinase. Single molecule FRET analysis in vitro, combined with MD simulations, shows that for FGFR kinase, there are populations of inactive and active states separated by a high free energy barrier resulting in switch-like activation. Compared to recent studies, these findings support diversity in features of kinases that impact on their activation mechanisms. The properties of these FRET-based constructs will also allow further studies of kinase dynamics as well as applications in vivo.

  8. Structure of a Clostridium botulinum C143S thiaminase I/thiamin complex reveals active site architecture .

    PubMed

    Sikowitz, Megan D; Shome, Brateen; Zhang, Yang; Begley, Tadhg P; Ealick, Steven E

    2013-11-05

    Thiaminases are responsible for the degradation of thiamin and its metabolites. Two classes of thiaminases have been identified based on their three-dimensional structures and their requirements for a nucleophilic second substrate. Although the reactions of several thiaminases have been characterized, the physiological role of thiamin degradation is not fully understood. We have determined the three-dimensional X-ray structure of an inactive C143S mutant of Clostridium botulinum (Cb) thiaminase I with bound thiamin at 2.2 Å resolution. The C143S/thiamin complex provides atomic level details of the orientation of thiamin upon binding to Cb-thiaminase I and the identity of active site residues involved in substrate binding and catalysis. The specific roles of active site residues were probed by using site directed mutagenesis and kinetic analyses, leading to a detailed mechanism for Cb-thiaminase I. The structure of Cb-thiaminase I is also compared to the functionally similar but structurally distinct thiaminase II.

  9. Crystal Structure of a Bacterial Type IB DNA Topoisomerase Reveals a Preassembled Active Site in the Absence of DNA

    SciTech Connect

    Patel, Asmita; Shuman, Stewart; Mondragon, Alfonso

    2010-03-08

    Type IB DNA topoisomerases are found in all eukarya, two families of eukaryotic viruses (poxviruses and mimivirus), and many genera of bacteria. They alter DNA topology by cleaving and resealing one strand of duplex DNA via a covalent DNA-(3-phosphotyrosyl)-enzyme intermediate. Bacterial type IB enzymes were discovered recently and are described as poxvirus-like with respect to their small size, primary structures, and bipartite domain organization. Here we report the 1.75-{angstrom} crystal structure of Deinococcus radiodurans topoisomerase IB (DraTopIB), a prototype of the bacterial clade. DraTopIB consists of an amino-terminal (N) {beta}-sheet domain (amino acids 1-90) and a predominantly {alpha}-helical carboxyl-terminal (C) domain (amino acids 91-346) that closely resemble the corresponding domains of vaccinia virus topoisomerase IB. The five amino acids of DraTopIB that comprise the catalytic pentad (Arg-137, Lys-174, Arg-239, Asn-280, and Tyr-289) are preassembled into the active site in the absence of DNA in a manner nearly identical to the pentad configuration in human topoisomerase I bound to DNA. This contrasts with the apoenzyme of vaccinia topoisomerase, in which three of the active site constituents are either displaced or disordered. The N and C domains of DraTopIB are splayed apart in an 'open' conformation, in which the surface of the catalytic domain containing the active site is exposed for DNA binding. A comparison with the human topoisomerase I-DNA cocrystal structure suggests how viral and bacterial topoisomerase IB enzymes might bind DNA circumferentially via movement of the N domain into the major groove and clamping of a disordered loop of the C domain around the helix.

  10. Structural analysis of peroxide-soaked MnSOD crystals reveals side-on binding of peroxide to active-site manganese.

    PubMed

    Porta, Jason; Vahedi-Faridi, Ardeschir; Borgstahl, Gloria E O

    2010-06-11

    The superoxide dismutase (SOD) enzymes are important antioxidant agents that protect cells from reactive oxygen species. The SOD family is responsible for catalyzing the disproportionation of superoxide radical to oxygen and hydrogen peroxide. Manganese- and iron-containing SOD exhibit product inhibition whereas Cu/ZnSOD does not. Here, we report the crystal structure of Escherichia coli MnSOD with hydrogen peroxide cryotrapped in the active site. Crystallographic refinement to 1.55 A and close inspection revealed electron density for hydrogen peroxide in three of the four active sites in the asymmetric unit. The hydrogen peroxide molecules are in the position opposite His26 that is normally assumed by water in the trigonal bipyramidal resting state of the enzyme. Hydrogen peroxide is present in active sites B, C, and D and is side-on coordinated to the active-site manganese. In chains B and D, the peroxide is oriented in the plane formed by manganese and ligands Asp167 and His26. In chain C, the peroxide is bound, making a 70 degrees angle to the plane. Comparison of the peroxide-bound active site with the hydroxide-bound octahedral form shows a shifting of residue Tyr34 towards the active site when peroxide is bound. Comparison with peroxide-soaked Cu/ZnSOD indicates end-on binding of peroxide when the SOD does not exhibit inhibition by peroxide and side-on binding of peroxide in the product-inhibited state of MnSOD.

  11. Structural and biochemical characterisation of Archaeoglobus fulgidus esterase reveals a bound CoA molecule in the vicinity of the active site

    PubMed Central

    Sayer, Christopher; Finnigan, William; Isupov, Michail N.; Levisson, Mark; Kengen, Servé W. M.; van der Oost, John; Harmer, Nicholas J.; Littlechild, Jennifer A.

    2016-01-01

    A new carboxyl esterase, AF-Est2, from the hyperthermophilic archaeon Archaeoglobus fulgidus has been cloned, over-expressed in Escherichia coli and biochemically and structurally characterized. The enzyme has high activity towards short- to medium-chain p-nitrophenyl carboxylic esters with optimal activity towards the valerate ester. The AF-Est2 has good solvent and pH stability and is very thermostable, showing no loss of activity after incubation for 30 min at 80 °C. The 1.4 Å resolution crystal structure of AF-Est2 reveals Coenzyme A (CoA) bound in the vicinity of the active site. Despite the presence of CoA bound to the AF-Est2 this enzyme has no CoA thioesterase activity. The pantetheine group of CoA partially obstructs the active site alcohol pocket suggesting that this ligand has a role in regulation of the enzyme activity. A comparison with closely related α/β hydrolase fold enzyme structures shows that the AF-Est2 has unique structural features that allow CoA binding. A comparison of the structure of AF-Est2 with the human carboxyl esterase 1, which has CoA thioesterase activity, reveals that CoA is bound to different parts of the core domain in these two enzymes and approaches the active site from opposite directions. PMID:27160974

  12. The Crystal Structure of a Cardiovirus RNA-Dependent RNA Polymerase Reveals an Unusual Conformation of the Polymerase Active Site

    PubMed Central

    Vives-Adrian, Laia; Lujan, Celia; Oliva, Baldo; van der Linden, Lonneke; Selisko, Barbara; Coutard, Bruno; Canard, Bruno; van Kuppeveld, Frank J. M.

    2014-01-01

    ABSTRACT Encephalomyocarditis virus (EMCV) is a member of the Cardiovirus genus within the large Picornaviridae family, which includes a number of important human and animal pathogens. The RNA-dependent RNA polymerase (RdRp) 3Dpol is a key enzyme for viral genome replication. In this study, we report the X-ray structures of two different crystal forms of the EMCV RdRp determined at 2.8- and 2.15-Å resolution. The in vitro elongation and VPg uridylylation activities of the purified enzyme have also been demonstrated. Although the overall structure of EMCV 3Dpol is shown to be similar to that of the known RdRps of other members of the Picornaviridae family, structural comparisons show a large reorganization of the active-site cavity in one of the crystal forms. The rearrangement affects mainly motif A, where the conserved residue Asp240, involved in ribonucleoside triphosphate (rNTP) selection, and its neighbor residue, Phe239, move about 10 Å from their expected positions within the ribose binding pocket toward the entrance of the rNTP tunnel. This altered conformation of motif A is stabilized by a cation-π interaction established between the aromatic ring of Phe239 and the side chain of Lys56 within the finger domain. Other contacts, involving Phe239 and different residues of motif F, are also observed. The movement of motif A is connected with important conformational changes in the finger region flanked by residues 54 to 63, harboring Lys56, and in the polymerase N terminus. The structures determined in this work provide essential information for studies on the cardiovirus RNA replication process and may have important implications for the development of new antivirals targeting the altered conformation of motif A. IMPORTANCE The Picornaviridae family is one of the largest virus families known, including many important human and animal pathogens. The RNA-dependent RNA polymerase (RdRp) 3Dpol is a key enzyme for picornavirus genome replication and a validated

  13. Crystal structures of human CtBP in complex with substrate MTOB reveal active site features useful for inhibitor design

    PubMed Central

    Hilbert, Brendan J.; Grossman, Steven R.; Schiffer, Celia A.; Royer, William E.

    2014-01-01

    The oncogenic corepressors C-terminal Binding Protein (CtBP) 1 and 2 harbor regulatory D-isomer specific 2-hydroxyacid dehydrogenase (D2-HDH) domains. 4-Methylthio 2-oxobutyric acid (MTOB) exhibits substrate inhibition and can interfere with CtBP oncogenic activity in cell culture and mice. Crystal structures of human CtBP1 and CtBP2 in complex with MTOB and NAD+ revealed two key features: a conserved tryptophan that likely contributes to substrate specificity and a hydrophilic cavity that links MTOB with an NAD+ phosphate. Neither feature is present in other D2-HDH enzymes. These structures thus offer key opportunities for the development of highly selective anti-neoplastic CtBP inhibitors. PMID:24657618

  14. The structure of sedoheptulose-7-phosphate isomerase from Burkholderia pseudomallei reveals a zinc binding site at the heart of the active site.

    PubMed

    Harmer, Nicholas J

    2010-07-16

    Heptoses are found in the surface polysaccharides of most bacteria, contributing to structures that are essential for virulence and antibiotic resistance. Consequently, the biosynthetic enzymes for these sugars are attractive targets for novel antibiotics. The best characterized biosynthetic enzyme is GmhA, which catalyzes the conversion of sedoheptulose-7-phosphate into D-glycero-D-manno-heptopyranose-7-phosphate, the first step in the biosynthesis of heptose. Here, the structure of GmhA from Burkholderia pseudomallei is reported. This enzyme contains a zinc ion at the heart of its active site: this ion stabilizes the active, closed form of the enzyme and presents coordinating side chains as a potential acid and base to drive catalysis. A complex with the product demonstrates that the enzyme retains activity in the crystal and thus suggests that the closed conformation is catalytically relevant and is an excellent target for the development of therapeutics. A revised mechanism for the action of GmhA is postulated on the basis of this structure and the activity of B. pseudomallei GmhA mutants.

  15. Whole-genome analysis reveals that active heat shock factor binding sites are mostly associated with non-heat shock genes in Drosophila melanogaster.

    PubMed

    Gonsalves, Sarah E; Moses, Alan M; Razak, Zak; Robert, Francois; Westwood, J Timothy

    2011-01-14

    During heat shock (HS) and other stresses, HS gene transcription in eukaryotes is up-regulated by the transcription factor heat shock factor (HSF). While the identities of the major HS genes have been known for more than 30 years, it has been suspected that HSF binds to numerous other genes and potentially regulates their transcription. In this study, we have used a chromatin immunoprecipitation and microarray (ChIP-chip) approach to identify 434 regions in the Drosophila genome that are bound by HSF. We have also performed a transcript analysis of heat shocked Kc167 cells and third instar larvae and compared them to HSF binding sites. The heat-induced transcription profiles were quite different between cells and larvae and surprisingly only about 10% of the genes associated with HSF binding sites show changed transcription. There were also genes that showed changes in transcript levels that did not appear to correlate with HSF binding sites. Analysis of the locations of the HSF binding sites revealed that 57% were contained within genes with approximately 2/3rds of these sites being in introns. We also found that the insulator protein, BEAF, has enriched binding prior to HS to promoters of genes that are bound by HSF upon HS but that are not transcriptionally induced during HS. When the genes associated with HSF binding sites in promoters were analyzed for gene ontology terms, categories such as stress response and transferase activity were enriched whereas analysis of genes having HSF binding sites in introns identified those categories plus ones related to developmental processes and reproduction. These results suggest that Drosophila HSF may be regulating many genes besides the known HS genes and that some of these genes may be regulated during non-stress conditions.

  16. Newly identified essential amino acid residues affecting ^8-sphingolipid desaturase activity revealed by site-directed mutagenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to identify amino acid residues crucial for the enzymatic activity of ^8-sphingolipid desaturases, a sequence comparison was performed among ^8-sphingolipid desaturases and ^6-fatty acid desaturase from various plants. In addition to the known conserved cytb5 (cytochrome b5) HPGG motif and...

  17. Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection

    PubMed Central

    Flavell, Steven W.; Kim, Tae-Kyung; Gray, Jesse M.; Harmin, David A.; Hemberg, Martin; Hong, Elizabeth J.; Markenscoff-Papadimitriou, Eirene; Bear, Daniel M.; Greenberg, Michael E.

    2009-01-01

    SUMMARY Although many transcription factors are known to control important aspects of neural development, the genome-wide programs that are directly regulated by these factors are not known. We have characterized the genetic program that is activated by MEF2, a key regulator of activity-dependent synapse development. These MEF2 target genes have diverse functions at synapses, revealing a broad role for MEF2 in synapse development. Several of the MEF2 targets are mutated in human neurological disorders including epilepsy and autism-spectrum disorders, suggesting that these disorders may be caused by disruption of an activity-dependent gene program that controls synapse development. Our analyses also reveal that neuronal activity promotes alternative polyadenylation site usage at many of the MEF2 target genes, leading to the production of truncated mRNAs that may have different functions than their full-length counterparts. Taken together, these analyses suggest that the ubiquitously expressed transcription factor MEF2 regulates an intricate transcriptional program in neurons that controls synapse development. PMID:19109909

  18. The Structures of the C185S and C185A Mutants of Sulfite Oxidase Reveal Rearrangement of the Active Site

    SciTech Connect

    Qiu, James A.; Wilson, Heather L.; Pushie, M. Jake; Kisker, Caroline; George, Graham N.; Rajagopalan, K.V.

    2010-11-03

    Sulfite oxidase (SO) catalyzes the physiologically critical conversion of sulfite to sulfate. Enzymatic activity is dependent on the presence of the metal molybdenum complexed with a pyranopterin-dithiolene cofactor termed molybdopterin. Comparison of the amino acid sequences of SOs from a variety of sources has identified a single conserved Cys residue essential for catalytic activity. The crystal structure of chicken liver sulfite oxidase indicated that this residue, Cys185 in chicken SO, coordinates the Mo atom in the active site. To improve our understanding of the role of this residue in the catalytic mechanism of sulfite oxidase, serine and alanine variants at position 185 of recombinant chicken SO were generated. Spectroscopic and kinetic studies indicate that neither variant is capable of sulfite oxidation. The crystal structure of the C185S variant was determined to 1.9 {angstrom} resolution and to 2.4 {angstrom} resolution in the presence of sulfite, and the C185A variant to 2.8 {angstrom} resolution. The structures of the C185S and C185A variants revealed that neither the Ser or Ala side chains appeared to closely interact with the Mo atom and that a third oxo group replaced the usual cysteine sulfur ligand at the Mo center, confirming earlier extended X-ray absorption fine structure spectroscopy (EXAFS) work on the human C207S mutant. An unexpected result was that in the C185S variant, in the absence of sulfite, the active site residue Tyr322 became disordered as did the loop region flanking it. In the C185S variant crystallized in the presence of sulfite, the Tyr322 residue relocalized to the active site. The C185A variant structure also indicated the presence of a third oxygen ligand; however, Tyr322 remained in the active site. EXAFS studies of the Mo coordination environment indicate the Mo atom is in the oxidized Mo{sup VI} state in both the C185S and C185A variants of chicken SO and show the expected trioxodithiolene active site. Density

  19. Beta-D-xylosidase from Selenomonas ruminantium: Role of Glutamate 186 in Catalysis Revealed by Site-Directed Mutagenesis, Alternate Substrates, and Active-site Inhibitor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beta-D-xylosidase/alpha-L-arabinofuranosidase from Selenomonas ruminantium (SXA) is the most active enzyme known for catalyzing hydrolysis of 1,4-beta-D-xylooligosaccharides to D xylose. Catalysis and inhibitor binding by the GH43 beta-xylosidase are governed by the protonation states of catalytic ...

  20. Brønsted analysis reveals Lys218 as the carboxylase active site base that deprotonates vitamin K hydroquinone to initiate vitamin K-dependent protein carboxylation.

    PubMed

    Rishavy, Mark A; Hallgren, Kevin W; Yakubenko, Anna V; Shtofman, Rebecca L; Runge, Kurt W; Berkner, Kathleen L

    2006-11-07

    The vitamin K-dependent (VKD) carboxylase converts Glu's to carboxylated Glu's in VKD proteins to render them functional in a broad range of physiologies. The carboxylase uses vitamin K hydroquinone (KH(2)) epoxidation to drive Glu carboxylation, and one of its critical roles is to provide a catalytic base that deprotonates KH(2) to allow epoxidation. A long-standing model invoked Cys as the catalytic base but was ruled out by activity retention in a mutant where every Cys is substituted by Ala. Inhibitor analysis of the cysteine-less mutant suggested that the base is an activated amine [Rishavy et al. (2004) Proc. Natl. Acad. Sci. U.S.A. 101, 13732-13737], and in the present study, we used an evolutionary approach to identify candidate amines, which revealed His160, His287, His381, and Lys218. When mutational analysis was performed using an expression system lacking endogenous carboxylase, the His to Ala mutants all showed full epoxidase activity but K218A activity was not detectable. The addition of exogenous amines restored K218A activity while having little effect on wild type carboxylase, and pH studies indicated that rescue was dependent upon the basic form of the amine. Importantly, Brønsted analysis that measured the effect of amines with different pK(a) values showed that K218A activity rescue depended upon the basicity of the amine. The combined results provide strong evidence that Lys218 is the essential base that deprotonates KH(2) to initiate the reaction. The identification of this base is an important advance in defining the carboxylase active site and has implications regarding carboxylase membrane topology and the feedback mechanism by which the Glu substrate regulates KH(2) oxygenation.

  1. List 9 - Active CERCLIS Sites:

    EPA Pesticide Factsheets

    The List 9 displays the sequence of activities undertaken at active CERCLIS sites. An active site is one at which site assessment, removal, remedial, enforcement, cost recovery, or oversight activities are being planned or conducted.

  2. Nuclear resonance vibrational spectroscopy reveals the FeS cluster composition and active site vibrational properties of an O2-tolerant NAD+-reducing [NiFe] hydrogenase

    DOE PAGES

    Lauterbach, Lars; Wang, Hongxin; Horch, Marius; ...

    2014-10-30

    Hydrogenases are complex metalloenzymes that catalyze the reversible splitting of molecular hydrogen into protons and electrons essentially without overpotential. The NAD+-reducing soluble hydrogenase (SH) from Ralstonia eutropha is capable of H2 conversion even in the presence of usually toxic dioxygen. The molecular details of the underlying reactions are largely unknown, mainly because of limited knowledge of the structure and function of the various metal cofactors present in the enzyme. Here, all iron-containing cofactors of the SH were investigated by 57Fe specific nuclear resonance vibrational spectroscopy (NRVS). Our data provide experimental evidence for one [2Fe2S] center and four [4Fe4S] clusters, whichmore » is consistent with the amino acid sequence composition. Only the [2Fe2S] cluster and one of the four [4Fe4S] clusters were reduced upon incubation of the SH with NADH. This finding explains the discrepancy between the large number of FeS clusters and the small amount of FeS cluster-related signals as detected by electron paramagnetic resonance spectroscopic analysis of several NAD+-reducing hydrogenases. For the first time, Fe–CO and Fe–CN modes derived from the [NiFe] active site could be distinguished by NRVS through selective 13C labeling of the CO ligand. This strategy also revealed the molecular coordinates that dominate the individual Fe–CO modes. The present approach explores the complex vibrational signature of the Fe–S clusters and the hydrogenase active site, thereby showing that NRVS represents a powerful tool for the elucidation of complex biocatalysts containing multiple cofactors.« less

  3. Synergic Effect of Active Sites in Zinc-Modified ZSM-5 Zeolites as Revealed by High-Field Solid-State NMR Spectroscopy.

    PubMed

    Qi, Guodong; Wang, Qiang; Xu, Jun; Trébosc, Julien; Lafon, Olivier; Wang, Chao; Amoureux, Jean-Paul; Deng, Feng

    2016-12-19

    Understanding the nature of active sites in metal-supported catalysts is of great importance towards establishing their structure-property relationships. The outstanding catalytic performance of metal-supported catalysts is frequently ascribed to the synergic effect of different active sites, which is however not well spectroscopically characterized. Herein, we report the direct detection of surface Zn species and (1) H-(67) Zn internuclear interaction between Zn(2+) ions and Brønsted acid sites on Zn-modified ZSM-5 zeolites by high-field solid-state NMR spectroscopy. The observed promotion of C-H bond activation of methane is rationalized by the enhanced Brønsted acidity generated by synergic effects arising from the spatial proximity/interaction between Zn(2+) ions and Brønsted acidic protons. The concentration of synergic active sites is determined by (1) H-(67) Zn double-resonance solid-state NMR spectroscopy.

  4. The crystal structure of a homodimeric Pseudomonas glyoxalase I enzyme reveals asymmetric metallation commensurate with half-of-sites activity.

    PubMed

    Bythell-Douglas, Rohan; Suttisansanee, Uthaiwan; Flematti, Gavin R; Challenor, Michael; Lee, Mihwa; Panjikar, Santosh; Honek, John F; Bond, Charles S

    2015-01-07

    The Zn inactive class of glyoxalase I (Glo1) metalloenzymes are typically homodimeric with two metal-dependent active sites. While the two active sites share identical amino acid composition, this class of enzyme is optimally active with only one metal per homodimer. We have determined the X-ray crystal structure of GloA2, a Zn inactive Glo1 enzyme from Pseudomonas aeruginosa. The presented structures exhibit an unprecedented metal-binding arrangement consistent with half-of-sites activity: one active site contains a single activating Ni(2+) ion, whereas the other contains two inactivating Zn(2+) ions. Enzymological experiments prompted by the binuclear Zn(2+) site identified a novel catalytic property of GloA2. The enzyme can function as a Zn(2+) /Co(2+) -dependent hydrolase, in addition to its previously determined glyoxalase I activity. The presented findings demonstrate that GloA2 can accommodate two distinct metal-binding arrangements simultaneously, each of which catalyzes a different reaction.

  5. Deep Sequencing of Random Mutant Libraries Reveals the Active Site of the Narrow Specificity CphA Metallo-β-Lactamase is Fragile to Mutations

    PubMed Central

    Sun, Zhizeng; Mehta, Shrenik C.; Adamski, Carolyn J.; Gibbs, Richard A.; Palzkill, Timothy

    2016-01-01

    CphA is a Zn2+-dependent metallo-β-lactamase that efficiently hydrolyzes only carbapenem antibiotics. To understand the sequence requirements for CphA function, single codon random mutant libraries were constructed for residues in and near the active site and mutants were selected for E. coli growth on increasing concentrations of imipenem, a carbapenem antibiotic. At high concentrations of imipenem that select for phenotypically wild-type mutants, the active-site residues exhibit stringent sequence requirements in that nearly all residues in positions that contact zinc, the substrate, or the catalytic water do not tolerate amino acid substitutions. In addition, at high imipenem concentrations a number of residues that do not directly contact zinc or substrate are also essential and do not tolerate substitutions. Biochemical analysis confirmed that amino acid substitutions at essential positions decreased the stability or catalytic activity of the CphA enzyme. Therefore, the CphA active - site is fragile to substitutions, suggesting active-site residues are optimized for imipenem hydrolysis. These results also suggest that resistance to inhibitors targeted to the CphA active site would be slow to develop because of the strong sequence constraints on function. PMID:27616327

  6. Redox-dependent open and closed forms of the active site of the bacterial respiratory nitric-oxide reductase revealed by cyanide binding studies.

    PubMed

    Grönberg, Karin L C; Watmough, Nicholas J; Thomson, Andrew J; Richardson, David J; Field, Sarah J

    2004-04-23

    The bacterial respiratory nitric-oxide reductase (NOR) catalyzes the respiratory detoxification of nitric oxide in bacteria and Archaea. It is a member of the well known super-family of heme-copper oxidases but has a [heme Fe-non-heme Fe] active site rather than the [heme Fe-Cu(B)] active site normally associated with oxygen reduction. Paracoccus denitrificans NOR is spectrally characterized by a ligand-to-metal charge transfer absorption band at 595 nm, which arises from the high spin ferric heme iron of a micro-oxo-bridged [heme Fe(III)-O-Fe(III)] active site. On reduction of the nonheme iron, the micro-oxo bridge is broken, and the ferric heme iron is hydroxylated or hydrated, depending on the pH. At present, the catalytic cycle of NOR is a matter of much debate, and it is not known to which redox state(s) of the enzyme nitric oxide can bind. This study has used cyanide to probe the nature of the active site in a number of different redox states. Our observations suggest that the micro-oxo-bridged [heme Fe(III)-O-Fe(III)] active site represents a closed or resting state of NOR that can be opened by reduction of the non-heme iron.

  7. Crystal structure of a member of a novel family of dioxygenases (PF10014) reveals a conserved cupin fold and active site

    PubMed Central

    Xu, Qingping; Grant, Joanna; Chiu, Hsiu-Ju; Farr, Carol L.; Jaroszewski, Lukasz; Knuth, Mark W.; Miller, Mitchell D.; Lesley, Scott A.; Godzik, Adam; Elsliger, Marc-André; Deacon, Ashley M.; Wilson, Ian A.

    2014-01-01

    PF10014 is a novel family of 2-oxyglutarate-Fe2+-dependent dioxygenases that are involved in biosynthesis of antibiotics and regulation of biofilm formation, likely by catalyzing hydroxylation of free amino acids or other related ligands. The crystal structure of a PF10014 member from Methylibium petroleiphilum at 1.9 Å resolution shows strong structural similarity to cupin dioxygenases in overall fold and active site, despite very remote homology. However, one of the β-strands of the cupin catalytic core is replaced by a loop that displays conformational isomerism that likely regulates the active site. PMID:23852666

  8. Crystal structure of a member of a novel family of dioxygenases (PF10014) reveals a conserved cupin fold and active site.

    PubMed

    Xu, Qingping; Grant, Joanna; Chiu, Hsiu-Ju; Farr, Carol L; Jaroszewski, Lukasz; Knuth, Mark W; Miller, Mitchell D; Lesley, Scott A; Godzik, Adam; Elsliger, Marc-André; Deacon, Ashley M; Wilson, Ian A

    2014-01-01

    PF10014 is a novel family of 2-oxyglutarate-Fe(2+) -dependent dioxygenases that are involved in biosynthesis of antibiotics and regulation of biofilm formation, likely by catalyzing hydroxylation of free amino acids or other related ligands. The crystal structure of a PF10014 member from Methylibium petroleiphilum at 1.9 Å resolution shows strong structural similarity to cupin dioxygenases in overall fold and active site, despite very remote homology. However, one of the β-strands of the cupin catalytic core is replaced by a loop that displays conformational isomerism that likely regulates the active site.

  9. The Structure of a Novel Thermophilic Esterase from the Planctomycetes Species, Thermogutta terrifontis Reveals an Open Active Site Due to a Minimal ‘Cap’ Domain

    PubMed Central

    Sayer, Christopher; Szabo, Zalan; Isupov, Michail N.; Ingham, Colin; Littlechild, Jennifer A.

    2015-01-01

    A carboxyl esterase (TtEst2) has been identified in a novel thermophilic bacterium, Thermogutta terrifontis from the phylum Planctomycetes and has been cloned and over-expressed in Escherichia coli. The enzyme has been characterized biochemically and shown to have activity toward small p-nitrophenyl (pNP) carboxylic esters with optimal activity for pNP-acetate. The enzyme shows moderate thermostability retaining 75% activity after incubation for 30 min at 70°C. The crystal structures have been determined for the native TtEst2 and its complexes with the carboxylic acid products propionate, butyrate, and valerate. TtEst2 differs from most enzymes of the α/β-hydrolase family 3 as it lacks the majority of the ‘cap’ domain and its active site cavity is exposed to the solvent. The bound ligands have allowed the identification of the carboxyl pocket in the enzyme active site. Comparison of TtEst2 with structurally related enzymes has given insight into how differences in their substrate preference can be rationalized based upon the properties of their active site pockets. PMID:26635762

  10. New insights into the catalytic mechanism of histidine phosphatases revealed by a functionally essential arginine residue within the active site of the Sts phosphatases.

    PubMed

    San Luis, Boris; Nassar, Nicolas; Carpino, Nick

    2013-07-01

    Sts (suppressor of T-cell receptor signalling)-1 and Sts-2 are HPs (histidine phosphatases) that negatively regulate TCR (T-cell receptor) signalling pathways, including those involved in cytokine production. HPs play key roles in such varied biological processes as metabolism, development and intracellular signalling. They differ considerably in their primary sequence and substrate specificity, but possess a catalytic core formed by an invariant quartet of active-site residues. Two histidine and two arginine residues cluster together within the HP active site and are thought to participate in a two-step dephosphorylation reaction. To date there has been little insight into any additional residues that might play an important functional role. In the present study, we identify and characterize an additional residue within the Sts phosphatases (Sts-1 Arg383 or Sts-2 Arg369) that is critical for catalytic activity and intracellular function. Mutation of Sts-1 Arg383 to an alanine residue compromises the enzyme's activity and renders Sts-1 unable to suppress TCR-induced cytokine induction. Of the multiple amino acids substituted for Arg383, only lysine partially rescues the catalytic activity of Sts-1. Although Sts-1 Arg383 is conserved in all Sts homologues, it is only conserved in one of the two sub-branches of HPs. The results of the present study highlight an essential role for Sts-1 phosphatase activity in regulating T-cell activation and add a new dimension of complexity to our understanding of HP catalytic activity.

  11. Active site plasticity revealed from the structure of the enterobacterial N-ribohydrolase RihA bound to a competitive inhibitor

    PubMed Central

    2010-01-01

    Background Pyrimidine-preferring N-ribohydrolases (CU-NHs) are a class of Ca2+-dependent enzymes that catalyze the hydrolytic cleavage of the N-glycosidic bond in pyrimidine nucleosides. With the exception of few selected organisms, their physiological relevance in prokaryotes and eukaryotes is yet under investigation. Results Here, we report the first crystal structure of a CU-NH bound to a competitive inhibitor, the complex between the Escherichia coli enzyme RihA bound to 3, 4-diaminophenyl-iminoribitol (DAPIR) to a resolution of 2.1 Å. The ligand can bind at the active site in two distinct orientations, and the stabilization of two flexible active site regions is pivotal to establish the interactions required for substrate discrimination and catalysis. Conclusions A comparison with the product-bound RihA structure allows a rationalization of the structural rearrangements required for an enzymatic catalytic cycle, highlighting a substrate-assisted cooperative motion, and suggesting a yet overlooked role of the conserved His82 residue in modulating product release. Differences in the structural features of the active sites in the two homologous CU-NHs RihA and RihB from E. coli provide a rationale for their fine differences in substrate specificity. These new findings hint at a possible role of CU-NHs in the breakdown of modified nucleosides derived from RNA molecules. PMID:20529317

  12. Kinetic analysis of Escherichia coli 2-C-methyl-D-erythritol-4-phosphate cytidyltransferase, wild type and mutants, reveals roles of active site amino acids.

    PubMed

    Richard, Stéphane B; Lillo, Antonietta M; Tetzlaff, Charles N; Bowman, Marianne E; Noel, Joseph P; Cane, David E

    2004-09-28

    Escherichia coli 2-C-methyl-D-erythritol-4-phosphate cytidyltransferase (YgbP or IspD) catalyzes the conversion of 2-C-methyl-D-erythritol 4-phosphate (MEP) and cytidine triphosphate (CTP) to 4-diphosphocytidyl-2-C-methylerythritol (CDPME). Pulse chase experiments established that the reaction involves an ordered sequential mechanism with mandatory initial binding of CTP. On the basis of analysis of the previously reported crystal structures of apo-YgbP as well as YgbP complexed with both CTP.Mg(2+) and CDPME.Mg(2+) [Richard, S. B., Bowman, M. E., Kwiatkowski, W., Kang, I., Chow, C., Lillo, A. M., Cane, D. E., and Noel, J. P. (2001) Nat. Struct. Biol. 8, 641-648], a group of active site residues were selected for site-directed mutagenesis and steady-state kinetic analysis. Both Lys27 and Lys213 were shown to be essential to catalytic activity, consistent with their proposed role in stabilization of a pentacoordinate phosphate transition state resulting from in-line attack of the MEP phosphate on the alpha-phosphate of CTP. In addition, Thr140, Arg109, Asp106, and Thr165 were all shown to play critical roles in the binding and proper orientation of the MEP substrate.

  13. Crystal structure of the cystic fibrosis transmembrane conductance regulator inhibitory factor Cif reveals novel active-site features of an epoxide hydrolase virulence factor.

    PubMed

    Bahl, Christopher D; Morisseau, Christophe; Bomberger, Jennifer M; Stanton, Bruce A; Hammock, Bruce D; O'Toole, George A; Madden, Dean R

    2010-04-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif) is a virulence factor secreted by Pseudomonas aeruginosa that reduces the quantity of CFTR in the apical membrane of human airway epithelial cells. Initial sequence analysis suggested that Cif is an epoxide hydrolase (EH), but its sequence violates two strictly conserved EH motifs and also is compatible with other alpha/beta hydrolase family members with diverse substrate specificities. To investigate the mechanistic basis of Cif activity, we have determined its structure at 1.8-A resolution by X-ray crystallography. The catalytic triad consists of residues Asp129, His297, and Glu153, which are conserved across the family of EHs. At other positions, sequence deviations from canonical EH active-site motifs are stereochemically conservative. Furthermore, detailed enzymatic analysis confirms that Cif catalyzes the hydrolysis of epoxide compounds, with specific activity against both epibromohydrin and cis-stilbene oxide, but with a relatively narrow range of substrate selectivity. Although closely related to two other classes of alpha/beta hydrolase in both sequence and structure, Cif does not exhibit activity as either a haloacetate dehalogenase or a haloalkane dehalogenase. A reassessment of the structural and functional consequences of the H269A mutation suggests that Cif's effect on host-cell CFTR expression requires the hydrolysis of an extended endogenous epoxide substrate.

  14. Crystal Structure of the Cystic Fibrosis Transmembrane Conductance Regulator Inhibitory Factor Cif Reveals Novel Active-Site Features of an Epoxide Hydrolase Virulence Factor

    SciTech Connect

    Bahl, C.; Morisseau, C; Bomberger, J; Stanton, B; Hammock, B; O' Toole, G; Madden, D

    2010-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif) is a virulence factor secreted by Pseudomonas aeruginosa that reduces the quantity of CFTR in the apical membrane of human airway epithelial cells. Initial sequence analysis suggested that Cif is an epoxide hydrolase (EH), but its sequence violates two strictly conserved EH motifs and also is compatible with other {alpha}/{beta} hydrolase family members with diverse substrate specificities. To investigate the mechanistic basis of Cif activity, we have determined its structure at 1.8-{angstrom} resolution by X-ray crystallography. The catalytic triad consists of residues Asp129, His297, and Glu153, which are conserved across the family of EHs. At other positions, sequence deviations from canonical EH active-site motifs are stereochemically conservative. Furthermore, detailed enzymatic analysis confirms that Cif catalyzes the hydrolysis of epoxide compounds, with specific activity against both epibromohydrin and cis-stilbene oxide, but with a relatively narrow range of substrate selectivity. Although closely related to two other classes of {alpha}/{beta} hydrolase in both sequence and structure, Cif does not exhibit activity as either a haloacetate dehalogenase or a haloalkane dehalogenase. A reassessment of the structural and functional consequences of the H269A mutation suggests that Cif's effect on host-cell CFTR expression requires the hydrolysis of an extended endogenous epoxide substrate.

  15. Salt bridges overlapping the gonadotropin-releasing hormone receptor agonist binding site reveal a coincidence detector for G protein-coupled receptor activation.

    PubMed

    Janovick, Jo Ann; Pogozheva, Irina D; Mosberg, Henry I; Conn, P Michael

    2011-08-01

    G protein-coupled receptors (GPCRs) play central roles in most physiological functions, and mutations in them cause heritable diseases. Whereas crystal structures provide details about the structure of GPCRs, there is little information that identifies structural features that permit receptors to pass the cellular quality control system or are involved in transition from the ground state to the ligand-activated state. The gonadotropin-releasing hormone receptor (GnRHR), because of its small size among GPCRs, is amenable to molecular biological approaches and to computer modeling. These techniques and interspecies comparisons are used to identify structural features that are important for both intracellular trafficking and GnRHR activation yet distinguish between these processes. Our model features two salt (Arg(38)-Asp(98) and Glu(90)-Lys(121)) and two disulfide (Cys(14)-Cys(200) and Cys(114)-Cys(196)) bridges, all of which are required for the human GnRHR to traffic to the plasma membrane. This study reveals that both constitutive and ligand-induced activation are associated with a "coincidence detector" that occurs when an agonist binds. The observed constitutive activation of receptors lacking Glu(90)-Lys(121), but not Arg(38)-Asp(98) ionic bridge, suggests that the role of the former connection is holding the receptor in the inactive conformation. Both the aromatic ring and hydroxyl group of Tyr(284) and the hydrogen bonding of Ser(217) are important for efficient receptor activation. Our modeling results, supported by the observed influence of Lys(191) from extracellular loop 2 (EL2) and a four-residue motif surrounding this loop on ligand binding and receptor activation, suggest that the positioning of EL2 within the seven-α-helical bundle regulates receptor stability, proper trafficking, and function.

  16. Structure of Mycobacterium tuberculosis phosphopantetheine adenylyltransferase in complex with the feedback inhibitor CoA reveals only one active-site conformation

    SciTech Connect

    Wubben, T.; Mesecar, A.D.

    2014-10-02

    Phosphopantetheine adenylyltransferase (PPAT) catalyzes the penultimate step in the coenzyme A (CoA) biosynthetic pathway, reversibly transferring an adenylyl group from ATP to 4'-phosphopantetheine to form dephosphocoenzyme A (dPCoA). To complement recent biochemical and structural studies on Mycobacterium tuberculosis PPAT (MtPPAT) and to provide further insight into the feedback regulation of MtPPAT by CoA, the X-ray crystal structure of the MtPPAT enzyme in complex with CoA was determined to 2.11 {angstrom} resolution. Unlike previous X-ray crystal structures of PPAT-CoA complexes from other bacteria, which showed two distinct CoA conformations bound to the active site, only one conformation of CoA is observed in the MtPPAT-CoA complex.

  17. Human γ-Glutamyl Transpeptidase 1: STRUCTURES OF THE FREE ENZYME, INHIBITOR-BOUND TETRAHEDRAL TRANSITION STATES, AND GLUTAMATE-BOUND ENZYME REVEAL NOVEL MOVEMENT WITHIN THE ACTIVE SITE DURING CATALYSIS.

    PubMed

    Terzyan, Simon S; Burgett, Anthony W G; Heroux, Annie; Smith, Clyde A; Mooers, Blaine H M; Hanigan, Marie H

    2015-07-10

    γ-Glutamyl transpeptidase 1 (GGT1) is a cell surface, N-terminal nucleophile hydrolase that cleaves glutathione and other γ-glutamyl compounds. GGT1 expression is essential in cysteine homeostasis, and its induction has been implicated in the pathology of asthma, reperfusion injury, and cancer. In this study, we report four new crystal structures of human GGT1 (hGGT1) that show conformational changes within the active site as the enzyme progresses from the free enzyme to inhibitor-bound tetrahedral transition states and finally to the glutamate-bound structure prior to the release of this final product of the reaction. The structure of the apoenzyme shows flexibility within the active site. The serine-borate-bound hGGT1 crystal structure demonstrates that serine-borate occupies the active site of the enzyme, resulting in an enzyme-inhibitor complex that replicates the enzyme's tetrahedral intermediate/transition state. The structure of GGsTop-bound hGGT1 reveals its interactions with the enzyme and why neutral phosphonate diesters are more potent inhibitors than monoanionic phosphonates. These structures are the first structures for any eukaryotic GGT that include a molecule in the active site covalently bound to the catalytic Thr-381. The glutamate-bound structure shows the conformation of the enzyme prior to release of the final product and reveals novel information regarding the displacement of the main chain atoms that form the oxyanion hole and movement of the lid loop region when the active site is occupied. These data provide new insights into the mechanism of hGGT1-catalyzed reactions and will be invaluable in the development of new classes of hGGT1 inhibitors for therapeutic use.

  18. Human γ-glutamyl transpeptidase 1: Structures of the free enzyme, inhibitor-bound tetrahedral transition states, and glutamate-bound enzyme reveal novel movement within the active site during catalysis [Human gamma-glutamyl transpeptidase: Inhibitor binding and movement within the active site

    SciTech Connect

    Terzyan, Simon S.; Burgett, Anthony W. G.; Heroux, Annie; Smith, Clyde A.; Mooers, Blaine H. M.; Hanigan, Marie H.

    2015-05-26

    γ-Glutamyl transpeptidase 1 (GGT1) is a cell surface, N-terminal nucleophile hydrolase that cleaves glutathione and other γ-glutamyl compounds. GGT1 expression is essential in cysteine homeostasis, and its induction has been implicated in the pathology of asthma, reperfusion injury, and cancer. In this study, we report four new crystal structures of human GGT1 (hGGT1) that show conformational changes within the active site as the enzyme progresses from the free enzyme to inhibitor-bound tetrahedral transition states and finally to the glutamate-bound structure prior to the release of this final product of the reaction. The structure of the apoenzyme shows flexibility within the active site. The serine-borate-bound hGGT1 crystal structure demonstrates that serine-borate occupies the active site of the enzyme, resulting in an enzyme-inhibitor complex that replicates the enzyme's tetrahedral intermediate/transition state. The structure of GGsTop-bound hGGT1 reveals its interactions with the enzyme and why neutral phosphonate diesters are more potent inhibitors than monoanionic phosphonates. These structures are the first structures for any eukaryotic GGT that include a molecule in the active site covalently bound to the catalytic Thr-381. The glutamate-bound structure shows the conformation of the enzyme prior to release of the final product and reveals novel information regarding the displacement of the main chain atoms that form the oxyanion hole and movement of the lid loop region when the active site is occupied. Lastly,tThese data provide new insights into the mechanism of hGGT1-catalyzed reactions and will be invaluable in the development of new classes of hGGT1 inhibitors for therapeutic use.

  19. Human γ-glutamyl transpeptidase 1: Structures of the free enzyme, inhibitor-bound tetrahedral transition states, and glutamate-bound enzyme reveal novel movement within the active site during catalysis [Human gamma-glutamyl transpeptidase: Inhibitor binding and movement within the active site

    DOE PAGES

    Terzyan, Simon S.; Burgett, Anthony W. G.; Heroux, Annie; ...

    2015-05-26

    γ-Glutamyl transpeptidase 1 (GGT1) is a cell surface, N-terminal nucleophile hydrolase that cleaves glutathione and other γ-glutamyl compounds. GGT1 expression is essential in cysteine homeostasis, and its induction has been implicated in the pathology of asthma, reperfusion injury, and cancer. In this study, we report four new crystal structures of human GGT1 (hGGT1) that show conformational changes within the active site as the enzyme progresses from the free enzyme to inhibitor-bound tetrahedral transition states and finally to the glutamate-bound structure prior to the release of this final product of the reaction. The structure of the apoenzyme shows flexibility within themore » active site. The serine-borate-bound hGGT1 crystal structure demonstrates that serine-borate occupies the active site of the enzyme, resulting in an enzyme-inhibitor complex that replicates the enzyme's tetrahedral intermediate/transition state. The structure of GGsTop-bound hGGT1 reveals its interactions with the enzyme and why neutral phosphonate diesters are more potent inhibitors than monoanionic phosphonates. These structures are the first structures for any eukaryotic GGT that include a molecule in the active site covalently bound to the catalytic Thr-381. The glutamate-bound structure shows the conformation of the enzyme prior to release of the final product and reveals novel information regarding the displacement of the main chain atoms that form the oxyanion hole and movement of the lid loop region when the active site is occupied. Lastly,tThese data provide new insights into the mechanism of hGGT1-catalyzed reactions and will be invaluable in the development of new classes of hGGT1 inhibitors for therapeutic use.« less

  20. General view of the archaeological site showing excavation and revealing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the archaeological site showing excavation and revealing the steps leading down into the eighteenth-century burial vault - Harry Buck House, North of Main Street (14800 Governor Oden Bowie Drive), Upper Marlboro, Prince George's County, MD

  1. The crystal structure of the Rv0301-Rv0300 VapBC-3 toxin-antitoxin complex from M. tuberculosis reveals a Mg2+ ion in the active site and a putative RNA-binding site

    SciTech Connect

    Min, Andrew B; Miallau, Linda; Sawaya, Michael R; Habel, Jeff; Cascio, Duilio; Eisenberg, David

    2013-01-10

    VapBC pairs account for 45 out of 88 identified toxin-antitoxin (TA) pairs in the Mycobacterium tuberculosis (Mtb) H37Rv genome. A working model suggests that under times of stress, antitoxin molecules are degraded, releasing the toxins to slow the metabolism of the cell, which in the case of VapC toxins is via their RNase activity. Otherwise the TA pairs remain bound to their promoters, autoinhibiting transcription. The crystal structure of Rv0301-Rv0300, an Mtb VapBC TA complex determined at 1.49 Å resolution, suggests a mechanism for these three functions: RNase activity, its inhibition by antitoxin, and its ability to bind promoter DNA. The Rv0301 toxin consists of a core of five parallel beta strands flanked by alpha helices. Three proximal aspartates coordinate a Mg2+ ion forming the putative RNase active site. The Rv0300 antitoxin monomer is extended in structure, consisting of an N-terminal beta strand followed by four helices. The last two helices wrap around the toxin and terminate near the putative RNase active site, but with different conformations. In one conformation, the C-terminal arginine interferes with Mg2+ ion coordination, suggesting a mechanism by which the antitoxin can inhibit toxin activity. At the N-terminus of the antitoxin, two pairs of Ribbon-Helix-Helix (RHH) motifs are related by crystallographic twofold symmetry. The resulting hetero-octameric complex is similar to the FitAB system, but the two RHH motifs are about 30 Å closer together in the Rv0301-Rv0300 complex, suggesting either a different span of the DNA recognition sequence or a conformational change.

  2. Shared active site architecture between archaeal PolD and multi-subunit RNA polymerases revealed by X-ray crystallography.

    PubMed

    Sauguet, Ludovic; Raia, Pierre; Henneke, Ghislaine; Delarue, Marc

    2016-08-22

    Archaeal replicative DNA polymerase D (PolD) constitute an atypical class of DNA polymerases made of a proofreading exonuclease subunit (DP1) and a larger polymerase catalytic subunit (DP2), both with unknown structures. We have determined the crystal structures of Pyrococcus abyssi DP1 and DP2 at 2.5 and 2.2 Å resolution, respectively, revealing a catalytic core strikingly different from all other known DNA polymerases (DNAPs). Rather, the PolD DP2 catalytic core has the same 'double-psi β-barrel' architecture seen in the RNA polymerase (RNAP) superfamily, which includes multi-subunit transcriptases of all domains of life, homodimeric RNA-silencing pathway RNAPs and atypical viral RNAPs. This finding bridges together, in non-viral world, DNA transcription and DNA replication within the same protein superfamily. This study documents further the complex evolutionary history of the DNA replication apparatus in different domains of life and proposes a classification of all extant DNAPs.

  3. Shared active site architecture between archaeal PolD and multi-subunit RNA polymerases revealed by X-ray crystallography

    PubMed Central

    Sauguet, Ludovic; Raia, Pierre; Henneke, Ghislaine; Delarue, Marc

    2016-01-01

    Archaeal replicative DNA polymerase D (PolD) constitute an atypical class of DNA polymerases made of a proofreading exonuclease subunit (DP1) and a larger polymerase catalytic subunit (DP2), both with unknown structures. We have determined the crystal structures of Pyrococcus abyssi DP1 and DP2 at 2.5 and 2.2 Å resolution, respectively, revealing a catalytic core strikingly different from all other known DNA polymerases (DNAPs). Rather, the PolD DP2 catalytic core has the same ‘double-psi β-barrel' architecture seen in the RNA polymerase (RNAP) superfamily, which includes multi-subunit transcriptases of all domains of life, homodimeric RNA-silencing pathway RNAPs and atypical viral RNAPs. This finding bridges together, in non-viral world, DNA transcription and DNA replication within the same protein superfamily. This study documents further the complex evolutionary history of the DNA replication apparatus in different domains of life and proposes a classification of all extant DNAPs. PMID:27548043

  4. Resonance Raman spectroscopy reveals pH-dependent active site structural changes of lactoperoxidase compound 0 and its ferryl heme O-O bond cleavage products.

    PubMed

    Mak, Piotr J; Thammawichai, Warut; Wiedenhoeft, Dennis; Kincaid, James R

    2015-01-14

    The first step in the enzymatic cycle of mammalian peroxidases, including lactoperoxidase (LPO), is binding of hydrogen peroxide to the ferric resting state to form a ferric-hydroperoxo intermediate designated as Compound 0, the residual proton temporarily associating with the distal pocket His109 residue. Upon delivery of this "stored" proton to the hydroperoxo fragment, it rapidly undergoes O-O bond cleavage, thereby thwarting efforts to trap it using rapid mixing methods. Fortunately, as shown herein, both the peroxo and the hydroperoxo (Compound 0) forms of LPO can be trapped by cryoradiolysis, with acquisition of their resonance Raman (rR) spectra now permitting structural characterization of their key Fe-O-O fragments. Studies were conducted under both acidic and alkaline conditions, revealing pH-dependent differences in relative populations of these intermediates. Furthermore, upon annealing, the low pH samples convert to two forms of a ferryl heme O-O bond-cleavage product, whose ν(Fe═O) frequencies reflect substantially different Fe═O bond strengths. In the process of conducting these studies, rR structural characterization of the dioxygen adduct of LPO, commonly called Compound III, has also been completed, demonstrating a substantial difference in the strengths of the Fe-O linkage of the Fe-O-O fragment under acidic and alkaline conditions, an effect most reasonably attributed to a corresponding weakening of the trans-axial histidyl imidazole linkage at lower pH. Collectively, these new results provide important insight into the impact of pH on the disposition of the key Fe-O-O and Fe═O fragments of intermediates that arise in the enzymatic cycles of LPO, other mammalian peroxidases, and related proteins.

  5. Ligand-bound structures of 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase from Moraxella catarrhalis reveal a water channel connecting to the active site for the second step of catalysis.

    PubMed

    Dhindwal, Sonali; Priyadarshini, Priyanka; Patil, Dipak N; Tapas, Satya; Kumar, Pramod; Tomar, Shailly; Kumar, Pravindra

    2015-02-01

    KdsC, the third enzyme of the 3-deoxy-D-manno-octulosonic acid (KDO) biosynthetic pathway, catalyzes a substrate-specific reaction to hydrolyze 3-deoxy-D-manno-octulosonate 8-phosphate to generate a molecule of KDO and phosphate. KdsC is a phosphatase that belongs to the C0 subfamily of the HAD superfamily. To understand the molecular basis for the substrate specificity of this tetrameric enzyme, the crystal structures of KdsC from Moraxella catarrhalis (Mc-KdsC) with several combinations of ligands, namely metal ion, citrate and products, were determined. Various transition states of the enzyme have been captured in these crystal forms. The ligand-free and ligand-bound crystal forms reveal that the binding of ligands does not cause any specific conformational changes in the active site. However, the electron-density maps clearly showed that the conformation of KDO as a substrate is different from the conformation adopted by KDO when it binds as a cleaved product. Furthermore, structural evidence for the existence of an intersubunit tunnel has been reported for the first time in the C0 subfamily of enzymes. A role for this tunnel in transferring water molecules from the interior of the tetrameric structure to the active-site cleft has been proposed. At the active site, water molecules are required for the formation of a water bridge that participates as a proton shuttle during the second step of the two-step phosphoryl-transfer reaction. In addition, as the KDO biosynthesis pathway is a potential antibacterial target, pharmacophore-based virtual screening was employed to identify inhibitor molecules for the Mc-KdsC enzyme.

  6. Salt site performance assessment activities

    SciTech Connect

    Kircher, J.F.; Gupta, S.K.

    1983-01-01

    During this year the first selection of the tools (codes) for performance assessments of potential salt sites have been tentatively selected and documented; the emphasis has shifted from code development to applications. During this period prior to detailed characterization of a salt site, the focus is on bounding calculations, sensitivity and with the data available. The development and application of improved methods for sensitivity and uncertainty analysis is a focus for the coming years activities and the subject of a following paper in these proceedings. Although the assessments to date are preliminary and based on admittedly scant data, the results indicate that suitable salt sites can be identified and repository subsystems designed which will meet the established criteria for protecting the health and safety of the public. 36 references, 5 figures, 2 tables.

  7. Activity screening of environmental metagenomic libraries reveals novel carboxylesterase families

    PubMed Central

    Popovic, Ana; Hai, Tran; Tchigvintsev, Anatoly; Hajighasemi, Mahbod; Nocek, Boguslaw; Khusnutdinova, Anna N.; Brown, Greg; Glinos, Julia; Flick, Robert; Skarina, Tatiana; Chernikova, Tatyana N.; Yim, Veronica; Brüls, Thomas; Paslier, Denis Le; Yakimov, Michail M.; Joachimiak, Andrzej; Ferrer, Manuel; Golyshina, Olga V.; Savchenko, Alexei; Golyshin, Peter N.; Yakunin, Alexander F.

    2017-01-01

    Metagenomics has made accessible an enormous reserve of global biochemical diversity. To tap into this vast resource of novel enzymes, we have screened over one million clones from metagenome DNA libraries derived from sixteen different environments for carboxylesterase activity and identified 714 positive hits. We have validated the esterase activity of 80 selected genes, which belong to 17 different protein families including unknown and cyclase-like proteins. Three metagenomic enzymes exhibited lipase activity, and seven proteins showed polyester depolymerization activity against polylactic acid and polycaprolactone. Detailed biochemical characterization of four new enzymes revealed their substrate preference, whereas their catalytic residues were identified using site-directed mutagenesis. The crystal structure of the metal-ion dependent esterase MGS0169 from the amidohydrolase superfamily revealed a novel active site with a bound unknown ligand. Thus, activity-centered metagenomics has revealed diverse enzymes and novel families of microbial carboxylesterases, whose activity could not have been predicted using bioinformatics tools. PMID:28272521

  8. Structure of the first representative of Pfam family PF04016 (DUF364) reveals enolase and Rossmann-like folds that combine to form a unique active site with a possible role in heavy-metal chelation

    PubMed Central

    Miller, Mitchell D.; Aravind, L.; Bakolitsa, Constantina; Rife, Christopher L.; Carlton, Dennis; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Chiu, Hsiu-Ju; Clayton, Thomas; Deller, Marc C.; Duan, Lian; Feuerhelm, Julie; Grant, Joanna C.; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Marciano, David; McMullan, Daniel; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Reyes, Ron; van den Bedem, Henry; Weekes, Dana; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    The crystal structure of Dhaf4260 from Desulfitobacterium hafniense DCB-2 was determined by single-wavelength anomalous diffraction (SAD) to a resolution of 2.01 Å using the semi-automated high-throughput pipeline of the Joint Center for Structural Genomics (JCSG) as part of the NIGMS Protein Structure Initiative (PSI). This protein structure is the first representative of the PF04016 (DUF364) Pfam family and reveals a novel combination of two well known domains (an enolase N-terminal-like fold followed by a Rossmann-like domain). Structural and bioinformatic analyses reveal partial similarities to Rossmann-like methyltransferases, with residues from the enolase-like fold combining to form a unique active site that is likely to be involved in the condensation or hydrolysis of molecules implicated in the synthesis of flavins, pterins or other siderophores. The genome context of Dhaf4260 and homologs additionally supports a role in heavy-metal chelation. PMID:20944207

  9. Nuclear resonance vibrational spectroscopy reveals the FeS cluster composition and active site vibrational properties of an O2-tolerant NAD+-reducing [NiFe] hydrogenase

    SciTech Connect

    Lauterbach, Lars; Wang, Hongxin; Horch, Marius; Gee, Leland B.; Yoda, Yoshitaka; Tanaka, Yoshihito; Zebger, Ingo; Lenz, Oliver; Cramer, Stephen P.

    2014-10-30

    Hydrogenases are complex metalloenzymes that catalyze the reversible splitting of molecular hydrogen into protons and electrons essentially without overpotential. The NAD+-reducing soluble hydrogenase (SH) from Ralstonia eutropha is capable of H2 conversion even in the presence of usually toxic dioxygen. The molecular details of the underlying reactions are largely unknown, mainly because of limited knowledge of the structure and function of the various metal cofactors present in the enzyme. Here, all iron-containing cofactors of the SH were investigated by 57Fe specific nuclear resonance vibrational spectroscopy (NRVS). Our data provide experimental evidence for one [2Fe2S] center and four [4Fe4S] clusters, which is consistent with the amino acid sequence composition. Only the [2Fe2S] cluster and one of the four [4Fe4S] clusters were reduced upon incubation of the SH with NADH. This finding explains the discrepancy between the large number of FeS clusters and the small amount of FeS cluster-related signals as detected by electron paramagnetic resonance spectroscopic analysis of several NAD+-reducing hydrogenases. For the first time, Fe–CO and Fe–CN modes derived from the [NiFe] active site could be distinguished by NRVS through selective 13C labeling of the CO ligand. This strategy also revealed the molecular coordinates that dominate the individual Fe–CO modes. The present approach explores the complex vibrational signature of the Fe–S clusters and the hydrogenase active site, thereby showing that NRVS represents a powerful tool for the elucidation of complex biocatalysts containing multiple cofactors.

  10. In vivo binding of PRDM9 reveals interactions with noncanonical genomic sites

    PubMed Central

    Grey, Corinne; Clément, Julie A.J.; Buard, Jérôme; Leblanc, Benjamin; Gut, Ivo; Gut, Marta; Duret, Laurent

    2017-01-01

    In mouse and human meiosis, DNA double-strand breaks (DSBs) initiate homologous recombination and occur at specific sites called hotspots. The localization of these sites is determined by the sequence-specific DNA binding domain of the PRDM9 histone methyl transferase. Here, we performed an extensive analysis of PRDM9 binding in mouse spermatocytes. Unexpectedly, we identified a noncanonical recruitment of PRDM9 to sites that lack recombination activity and the PRDM9 binding consensus motif. These sites include gene promoters, where PRDM9 is recruited in a DSB-dependent manner. Another subset reveals DSB-independent interactions between PRDM9 and genomic sites, such as the binding sites for the insulator protein CTCF. We propose that these DSB-independent sites result from interactions between hotspot-bound PRDM9 and genomic sequences located on the chromosome axis. PMID:28336543

  11. In vivo binding of PRDM9 reveals interactions with noncanonical genomic sites.

    PubMed

    Grey, Corinne; Clément, Julie A J; Buard, Jérôme; Leblanc, Benjamin; Gut, Ivo; Gut, Marta; Duret, Laurent; de Massy, Bernard

    2017-04-01

    In mouse and human meiosis, DNA double-strand breaks (DSBs) initiate homologous recombination and occur at specific sites called hotspots. The localization of these sites is determined by the sequence-specific DNA binding domain of the PRDM9 histone methyl transferase. Here, we performed an extensive analysis of PRDM9 binding in mouse spermatocytes. Unexpectedly, we identified a noncanonical recruitment of PRDM9 to sites that lack recombination activity and the PRDM9 binding consensus motif. These sites include gene promoters, where PRDM9 is recruited in a DSB-dependent manner. Another subset reveals DSB-independent interactions between PRDM9 and genomic sites, such as the binding sites for the insulator protein CTCF. We propose that these DSB-independent sites result from interactions between hotspot-bound PRDM9 and genomic sequences located on the chromosome axis.

  12. Normal Modes Expose Active Sites in Enzymes

    PubMed Central

    Glantz-Gashai, Yitav; Samson, Abraham O.

    2016-01-01

    Accurate prediction of active sites is an important tool in bioinformatics. Here we present an improved structure based technique to expose active sites that is based on large changes of solvent accessibility accompanying normal mode dynamics. The technique which detects EXPOsure of active SITes through normal modEs is named EXPOSITE. The technique is trained using a small 133 enzyme dataset and tested using a large 845 enzyme dataset, both with known active site residues. EXPOSITE is also tested in a benchmark protein ligand dataset (PLD) comprising 48 proteins with and without bound ligands. EXPOSITE is shown to successfully locate the active site in most instances, and is found to be more accurate than other structure-based techniques. Interestingly, in several instances, the active site does not correspond to the largest pocket. EXPOSITE is advantageous due to its high precision and paves the way for structure based prediction of active site in enzymes. PMID:28002427

  13. MYST protein acetyltransferase activity requires active site lysine autoacetylation.

    PubMed

    Yuan, Hua; Rossetto, Dorine; Mellert, Hestia; Dang, Weiwei; Srinivasan, Madhusudan; Johnson, Jamel; Hodawadekar, Santosh; Ding, Emily C; Speicher, Kaye; Abshiru, Nebiyu; Perry, Rocco; Wu, Jiang; Yang, Chao; Zheng, Y George; Speicher, David W; Thibault, Pierre; Verreault, Alain; Johnson, F Bradley; Berger, Shelley L; Sternglanz, Rolf; McMahon, Steven B; Côté, Jacques; Marmorstein, Ronen

    2012-01-04

    The MYST protein lysine acetyltransferases are evolutionarily conserved throughout eukaryotes and acetylate proteins to regulate diverse biological processes including gene regulation, DNA repair, cell-cycle regulation, stem cell homeostasis and development. Here, we demonstrate that MYST protein acetyltransferase activity requires active site lysine autoacetylation. The X-ray crystal structures of yeast Esa1 (yEsa1/KAT5) bound to a bisubstrate H4K16CoA inhibitor and human MOF (hMOF/KAT8/MYST1) reveal that they are autoacetylated at a strictly conserved lysine residue in MYST proteins (yEsa1-K262 and hMOF-K274) in the enzyme active site. The structure of hMOF also shows partial occupancy of K274 in the unacetylated form, revealing that the side chain reorients to a position that engages the catalytic glutamate residue and would block cognate protein substrate binding. Consistent with the structural findings, we present mass spectrometry data and biochemical experiments to demonstrate that this lysine autoacetylation on yEsa1, hMOF and its yeast orthologue, ySas2 (KAT8) occurs in solution and is required for acetylation and protein substrate binding in vitro. We also show that this autoacetylation occurs in vivo and is required for the cellular functions of these MYST proteins. These findings provide an avenue for the autoposttranslational regulation of MYST proteins that is distinct from other acetyltransferases but draws similarities to the phosphoregulation of protein kinases.

  14. MYST protein acetyltransferase activity requires active site lysine autoacetylation

    PubMed Central

    Yuan, Hua; Rossetto, Dorine; Mellert, Hestia; Dang, Weiwei; Srinivasan, Madhusudan; Johnson, Jamel; Hodawadekar, Santosh; Ding, Emily C; Speicher, Kaye; Abshiru, Nebiyu; Perry, Rocco; Wu, Jiang; Yang, Chao; Zheng, Y George; Speicher, David W; Thibault, Pierre; Verreault, Alain; Johnson, F Bradley; Berger, Shelley L; Sternglanz, Rolf; McMahon, Steven B; Côté, Jacques; Marmorstein, Ronen

    2012-01-01

    The MYST protein lysine acetyltransferases are evolutionarily conserved throughout eukaryotes and acetylate proteins to regulate diverse biological processes including gene regulation, DNA repair, cell-cycle regulation, stem cell homeostasis and development. Here, we demonstrate that MYST protein acetyltransferase activity requires active site lysine autoacetylation. The X-ray crystal structures of yeast Esa1 (yEsa1/KAT5) bound to a bisubstrate H4K16CoA inhibitor and human MOF (hMOF/KAT8/MYST1) reveal that they are autoacetylated at a strictly conserved lysine residue in MYST proteins (yEsa1-K262 and hMOF-K274) in the enzyme active site. The structure of hMOF also shows partial occupancy of K274 in the unacetylated form, revealing that the side chain reorients to a position that engages the catalytic glutamate residue and would block cognate protein substrate binding. Consistent with the structural findings, we present mass spectrometry data and biochemical experiments to demonstrate that this lysine autoacetylation on yEsa1, hMOF and its yeast orthologue, ySas2 (KAT8) occurs in solution and is required for acetylation and protein substrate binding in vitro. We also show that this autoacetylation occurs in vivo and is required for the cellular functions of these MYST proteins. These findings provide an avenue for the autoposttranslational regulation of MYST proteins that is distinct from other acetyltransferases but draws similarities to the phosphoregulation of protein kinases. PMID:22020126

  15. Controlled Orientation of Active Sites in a Nanostructured Multienzyme Complex

    PubMed Central

    Lim, Sung In; Yang, Byungseop; Jung, Younghan; Cha, Jaehyun; Cho, Jinhwan; Choi, Eun-Sil; Kim, Yong Hwan; Kwon, Inchan

    2016-01-01

    Multistep cascade reactions in nature maximize reaction efficiency by co-assembling related enzymes. Such organization facilitates the processing of intermediates by downstream enzymes. Previously, the studies on multienzyme nanocomplexes assembled on DNA scaffolds demonstrated that closer interenzyme distance enhances the overall reaction efficiency. However, it remains unknown how the active site orientation controlled at nanoscale can have an effect on multienzyme reaction. Here, we show that controlled alignment of active sites promotes the multienzyme reaction efficiency. By genetic incorporation of a non-natural amino acid and two compatible bioorthogonal chemistries, we conjugated mannitol dehydrogenase to formate dehydrogenase with the defined active site arrangement with the residue-level accuracy. The study revealed that the multienzyme complex with the active sites directed towards each other exhibits four-fold higher relative efficiency enhancement in the cascade reaction and produces 60% more D-mannitol than the other complex with active sites directed away from each other. PMID:28004799

  16. The structure of the Helicobacter pylori ferric uptake regulator Fur reveals three functional metal binding sites.

    PubMed

    Dian, Cyril; Vitale, Sylvia; Leonard, Gordon A; Bahlawane, Christelle; Fauquant, Caroline; Leduc, Damien; Muller, Cécile; de Reuse, Hilde; Michaud-Soret, Isabelle; Terradot, Laurent

    2011-03-01

    Fur, the ferric uptake regulator, is a transcription factor that controls iron metabolism in bacteria. Binding of ferrous iron to Fur triggers a conformational change that activates the protein for binding to specific DNA sequences named Fur boxes. In Helicobacter pylori, HpFur is involved in acid response and is important for gastric colonization in model animals. Here we present the crystal structure of a functionally active HpFur mutant (HpFur2M; C78S-C150S) bound to zinc. Although its fold is similar to that of other Fur and Fur-like proteins, the crystal structure of HpFur reveals a unique structured N-terminal extension and an unusual C-terminal helix. The structure also shows three metal binding sites: S1 the structural ZnS₄ site previously characterized biochemically in HpFur and the two zinc sites identified in other Fur proteins. Site-directed mutagenesis and spectroscopy analyses of purified wild-type HpFur and various mutants show that the two metal binding sites common to other Fur proteins can be also metallated by cobalt. DNA protection and circular dichroism experiments demonstrate that, while these two sites influence the affinity of HpFur for DNA, only one is absolutely required for DNA binding and could be responsible for the conformational changes of Fur upon metal binding while the other is a secondary site.

  17. The X-ray Structure of a BAK Homodimer Reveals an Inhibitory Zinc Binding Site

    SciTech Connect

    Modoveanu,T.; Liu, Q.; Tocilj, A.; Watson, M.; Shore, G.; Gehring, K.

    2006-01-01

    BAK/BAX-mediated mitochondrial outer-membrane permeabilization (MOMP) drives cell death during development and tissue homeostasis from zebrafish to humans. In most cancers, this pathway is inhibited by BCL-2 family antiapoptotic members, which bind and block the action of proapoptotic BCL proteins. We report the 1.5 {angstrom} crystal structure of calpain-proteolysed BAK, cBAK, to reveal a zinc binding site that regulates its activity via homodimerization. cBAK contains an occluded BH3 peptide binding pocket that binds a BID BH3 peptide only weakly . Nonetheless, cBAK requires activation by truncated BID to induce cytochrome c release in mitochondria isolated from bak/bax double-knockout mouse embryonic fibroblasts. The BAK-mediated MOMP is inhibited by low micromolar zinc levels. This inhibition is alleviated by mutation of the zinc-coordination site in BAK. Our results link directly the antiapoptotic effects of zinc to BAK.

  18. Validated ligand mapping of ACE active site

    NASA Astrophysics Data System (ADS)

    Kuster, Daniel J.; Marshall, Garland R.

    2005-08-01

    Crystal structures of angiotensin-converting enzyme (ACE) complexed with three inhibitors (lisinopril, captopril, enalapril) provided experimental data for testing the validity of a prior active site model predicting the bound conformation of the inhibitors. The ACE active site model - predicted over 18 years ago using a series of potent ACE inhibitors of diverse chemical structure - was recreated using published data and commercial software. Comparison between the predicted structures of the three inhibitors bound to the active site of ACE and those determined experimentally yielded root mean square deviation (RMSD) values of 0.43-0.81 Å, among the distances defining the active site map. The bound conformations of the chemically relevant atoms were accurately deduced from the geometry of ligands, applying the assumption that the geometry of the active site groups responsible for binding and catalysis of amide hydrolysis was constrained. The mapping of bound inhibitors at the ACE active site was validated for known experimental compounds, so that the constrained conformational search methodology may be applied with confidence when no experimentally determined structure of the enzyme yet exists, but potent, diverse inhibitors are available.

  19. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site

    PubMed Central

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-01-01

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2 domains reveal that the (HhH)2 domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2 domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2 domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2 domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide. PMID:26908655

  20. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site.

    PubMed

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-04-20

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2 domains reveal that the (HhH)2 domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2 domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2 domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2 domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide.

  1. Phosphorylation site mapping of soluble proteins: bioinformatical filtering reveals potential plastidic phosphoproteins in Arabidopsis thaliana.

    PubMed

    Lohrig, Katharina; Müller, Bernd; Davydova, Joulia; Leister, Dario; Wolters, Dirk Andreas

    2009-04-01

    Protein phosphorylation is a major mode of regulation of metabolism, gene expression, and cell architecture. A combination of phosphopeptide enrichment strategies based on TiO(2) and IMAC in addition to our MudPIT strategy revealed the detection of 181 phosphorylation sites which are located on 125 potentially plastidic proteins predicted by GoMiner, TargetP/Predotar in Arabidopsis thaliana. In our study phosphorylation on serine is favored over threonine and this in turn over phosphorylation on tyrosine residues, showing a percentage of 67.4% to 24.3% to 8.3% for pS:pT:pY. Four phosphorylated residues (S208, Y239, T246 and T330), identified by our approach have been fitted to the structure of the activated form of spinach RuBisCO, which are located in close proximity to the substrate binding site for ribulosebisphosphate. Potentially, these phosphorylation sites exert a direct influence on the catalytic activity of the enzyme. Such examples show nicely the value of the presented mass spectrometric dataset for further biochemical applications, since alternative mutation analysis often turns out to be unsuccessful, caused by mutations in essential proteins which result in lethal phenotypes.

  2. Identification of putative active site residues of ACAT enzymes.

    PubMed

    Das, Akash; Davis, Matthew A; Rudel, Lawrence L

    2008-08-01

    In this report, we sought to determine the putative active site residues of ACAT enzymes. For experimental purposes, a particular region of the C-terminal end of the ACAT protein was selected as the putative active site domain due to its high degree of sequence conservation from yeast to humans. Because ACAT enzymes have an intrinsic thioesterase activity, we hypothesized that by analogy with the thioesterase domain of fatty acid synthase, the active site of ACAT enzymes may comprise a catalytic triad of ser-his-asp (S-H-D) amino acid residues. Mutagenesis studies revealed that in ACAT1, S456, H460, and D400 were essential for activity. In ACAT2, H438 was required for enzymatic activity. However, mutation of D378 destabilized the enzyme. Surprisingly, we were unable to identify any S mutations of ACAT2 that abolished catalytic activity. Moreover, ACAT2 was insensitive to serine-modifying reagents, whereas ACAT1 was not. Further studies indicated that tyrosine residues may be important for ACAT activity. Mutational analysis showed that the tyrosine residue of the highly conserved FYXDWWN motif was important for ACAT activity. Furthermore, Y518 was necessary for ACAT1 activity, whereas the analogous residue in ACAT2, Y496, was not. The available data suggest that the amino acid requirement for ACAT activity may be different for the two ACAT isozymes.

  3. Radiation inactivation reveals discrete cation binding sites that modulate dihydropyridine binding sites

    SciTech Connect

    Bolger, G.T.; Skolnick, P.; Kempner, E.S. )

    1989-08-01

    In low ionic strength buffer (5 mM Tris.HCl), the binding of (3H) nitrendipine to dihydropyridine calcium antagonist binding sites of mouse forebrain membranes is increased by both Na{sup +} and Ca{sup 2+}. Radiation inactivation was used to determine the target size of ({sup 3}H)nitrendipine binding sites in 5 mM Tris.HCl buffer, in the presence and absence of these cations. After irradiation, ({sup 3}H) nitrendipine binding in buffer with or without Na+ was diminished, due to a loss of binding sites and also to an increase in Kd. After accounting for radiation effects on the dissociation constant, the target size for the nitrendipine binding site in buffer was 160-170 kDa and was 170-180 kDa in the presence of sodium. In the presence of calcium ions, ({sup 3}H)nitrendipine binding showed no radiation effects on Kd and yielded a target size of 150-170 kDa. These findings suggest, as in the case of opioid receptors, the presence of high molecular weight membrane components that modulate cation-induced alterations in radioligand binding to dihydropyridine binding sites.

  4. Corrosion Research And Web Site Activities

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2001-01-01

    This report covers corrosion-related activities at the NASA Kennedy Space Center during the summer of 2000. The NASA Kennedy Space Center's corrosion web site, corrosion.ksc.nasa.gov, was updated with new information based on feedback over the past two years. The methodology for a two-year atmospheric exposure testing program to study the effectiveness of commercial chemicals sold for rinsing aircraft and other equipment was developed and some preliminary laboratory chemical analyses are presented.

  5. Corrosion Research and Web Site Activities

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2002-01-01

    This report covers corrosion-related activities at the NASA Kennedy Space Center during the summer of 2000. The NASA Kennedy Space Center's corrosion web site, corrosion.ksc.nasa.gov, was updated with new information based on feedback over the past two years. The methodology for a two-year atmospheric exposure testing program to study the effectiveness of commercial chemicals sold for rinsing aircraft and other equipment was developed and some preliminary laboratory chemical analyses are presented.

  6. Deuterium reveals the dynamics of notch activation.

    PubMed

    Raphael, Kopan

    2011-04-13

    Notch activation requires unfolding of a juxtamembrane negative regulatory domain (NRR). Tiyanont et al. (2011) analyzed the dynamics of NRR unfolding in the presence of EGTA. As predicted from the crystal structure and deletion analyses, the lin-Notch repeats unfold first, facilitating access by ADAM proteases. Surprisingly, the heterodimerization domain remains stable.

  7. Crystal structure of human phosphoribosylpyrophosphate synthetase 1 reveals a novel allosteric site.

    PubMed

    Li, Sheng; Lu, Yongcheng; Peng, Baozhen; Ding, Jianping

    2007-01-01

    PRPP (phosphoribosylpyrophosphate) is an important metabolite essential for nucleotide synthesis and PRS (PRPP synthetase) catalyses synthesis of PRPP from R5P (ribose 5-phosphate) and ATP. The enzymatic activity of PRS is regulated by phosphate ions, divalent metal cations and ADP. In the present study we report the crystal structures of recombinant human PRS1 in complexes with SO4(2-) ions alone and with ATP, Cd2+ and SO4(2-) ions respectively. The AMP moiety of ATP binds at the ATP-binding site, and a Cd2+ ion binds at the active site and in a position to interact with the beta- and gamma-phosphates of ATP. A SO4(2-) ion, an analogue of the activator phosphate, was found to bind at both the R5P-binding site and the allosteric site defined previously. In addi-tion, an extra SO4(2-) binds at a site at the dimer interface between the ATP-binding site and the allosteric site. Binding of this SO4(2-) stabilizes the conformation of the flexible loop at the active site, leading to the formation of the active, open conformation which is essential for binding of ATP and initiation of the catalytic reaction. This is the first time that structural stabilization at the active site caused by binding of an activator has been observed. Structural and biochemical data show that mutations of some residues at this site influence the binding of SO4(2-) and affect the enzymatic activity. The results in the present paper suggest that this new SO4(2-)-binding site is a second allosteric site to regulate the enzymatic activity which might also exist in other eukaryotic PRSs (except plant PRSs of class II), but not in bacterial PRSs.

  8. Involvement of novel autophosphorylation sites in ATM activation.

    PubMed

    Kozlov, Sergei V; Graham, Mark E; Peng, Cheng; Chen, Philip; Robinson, Phillip J; Lavin, Martin F

    2006-08-09

    ATM kinase plays a central role in signaling DNA double-strand breaks to cell cycle checkpoints and to the DNA repair machinery. Although the exact mechanism of ATM activation remains unknown, efficient activation requires the Mre11 complex, autophosphorylation on S1981 and the involvement of protein phosphatases and acetylases. We report here the identification of several additional phosphorylation sites on ATM in response to DNA damage, including autophosphorylation on pS367 and pS1893. ATM autophosphorylates all these sites in vitro in response to DNA damage. Antibodies against phosphoserine 1893 revealed rapid and persistent phosphorylation at this site after in vivo activation of ATM kinase by ionizing radiation, paralleling that observed for S1981 phosphorylation. Phosphorylation was dependent on functional ATM and on the Mre11 complex. All three autophosphorylation sites are physiologically important parts of the DNA damage response, as phosphorylation site mutants (S367A, S1893A and S1981A) were each defective in ATM signaling in vivo and each failed to correct radiosensitivity, genome instability and cell cycle checkpoint defects in ataxia-telangiectasia cells. We conclude that there are at least three functionally important radiation-induced autophosphorylation events in ATM.

  9. The active site structure and mechanism of phosphoenolpyruvate utilizing enzymes

    SciTech Connect

    Cheng, K.C.

    1989-01-01

    Arginine specific reagents showed irreversible inhibition of avian liver mitochondrial phosphoenolpyruvate carboxykinase. Potent protection against modification was elicited by CO{sub 2} or CO{sub 2} in the presence of other substrates. Labeling of enzyme with (7-{sup 14}C) phenylglyoxal showed that 1 or 2 arginines are involved in CO{sub 2} binding and activation. Peptide map studies showed this active site arginine residues is located at position 289. Histidine specific reagents showed pseudo first order inhibition of avian mitochondrial phosphoenolpyruvate carboxykinase activity. The best protection against modification was elicited by IDP or IDP and Mn{sup +2}. One histidine residue is at or near the phosphoenolpyruvate binding site as demonstrated in the increased absorbance at 240 nm and proton relaxation rate studies. Circular dichroism studies reveal that enzyme structure was perturbed by diethylpyrocarbonate modification. Metal binding studies suggest that this enzyme has only one metal binding site. The putative binding sites from several GTP and phosphoenolpyruvate utilizing enzymes are observed in P-enolpyruvate carboxykinase from different species.

  10. Active Sites Environmental Monitoring Program: Program plan

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  11. Allosteric site-mediated active site inhibition of PBP2a using Quercetin 3-O-rutinoside and its combination.

    PubMed

    Rani, Nidhi; Vijayakumar, Saravanan; P T V, Lakshmi; Arunachalam, Annamalai

    2016-08-01

    Recent crystallographic study revealed the involvement of allosteric site in active site inhibition of penicillin binding protein (PBP2a), where one molecule of Ceftaroline (Cef) binds to the allosteric site of PBP2a and paved way for the other molecule (Cef) to bind at the active site. Though Cef has the potency to inhibit the PBP2a, its adverse side effects are of major concern. Previous studies have reported the antibacterial property of Quercetin derivatives, a group of natural compounds. Hence, the present study aims to evaluate the effect of Quercetin 3-o-rutinoside (Rut) in allosteric site-mediated active site inhibition of PBP2a. The molecular docking studies between allosteric site and ligands (Rut, Que, and Cef) revealed a better binding efficiency (G-score) of Rut (-7.790318) and Cef (-6.194946) with respect to Que (-5.079284). Molecular dynamic (MD) simulation studies showed significant changes at the active site in the presence of ligands (Rut and Cef) at allosteric site. Four different combinations of Rut and Cef were docked and their G-scores ranged between -6.320 and -8.623. MD studies revealed the stability of the key residue (Ser403) with Rut being at both sites, compared to other complexes. Morphological analysis through electron microscopy confirmed that combination of Rut and Cefixime was able to disturb the bacterial cell membrane in a similar fashion to that of Rut and Cefixime alone. The results of this study indicate that the affinity of Rut at both sites were equally good, with further validations Rut could be considered as an alternative for inhibiting MRSA growth.

  12. [Structural regularities in activated cleavage sites of thrombin receptors].

    PubMed

    Mikhaĭlik, I V; Verevka, S V

    1999-01-01

    Comparison of thrombin receptors activation splitting sites sequences testifies to their similarity both in activation splitting sites of protein precursors and protein proteinase inhibitors reactive sites. In all these sites corresponded to effectory sites P2'-positions are placed by hydrophobic amino-acids only. The regularity defined conforms with previous thesis about the role of effectory S2'-site in regulation of the processes mediated by serine proteinases.

  13. Activation of AMP-activated protein kinase revealed by hydrogen/deuterium exchange Mass Spectrometry

    PubMed Central

    Landgraf, Rachelle R.; Goswami, Devrishi; Rajamohan, Francis; Harris, Melissa S.; Calabrese, Matthew; Hoth, Lise R.; Magyar, Rachelle; Pascal, Bruce D.; Chalmers, Michael J.; Busby, Scott A.; Kurumbail, Ravi; Griffin, Patrick R.

    2013-01-01

    Summary AMP-Activated protein kinase (AMPK) monitors cellular energy, regulates genes involved in ATP synthesis and consumption, and is allosterically activated by nucleotides and synthetic ligands. Analysis of the intact enzyme by hydrogen/deuterium exchange mass spectrometry reveals conformational perturbations of AMPK in response to binding of nucleotides, cyclodextrin and a synthetic small molecule activator, A769662. Results from this analysis clearly show that binding of AMP leads to conformational changes primarily in the γ subunit of AMPK and subtle changes in the α and β subunits. In contrast, A769662 causes profound conformational changes in the glycogen binding module of the β subunit and in the kinase domain of the α subunit suggesting that the molecular binding site of latter resides between the α and β subunits. The distinct short and long-range perturbations induced upon binding of AMP and A769662 suggest fundamentally different molecular mechanisms for activation of AMPK by these two ligands. PMID:24076403

  14. The structure of ribosome-lankacidin complex reveals ribosomal sites for synergistic antibiotics

    SciTech Connect

    Auerbach, Tamar; Mermershtain, Inbal; Davidovich, Chen; Bashan, Anat; Belousoff, Matthew; Wekselman, Itai; Zimmerman, Ella; Xiong, Liqun; Klepacki, Dorota; Arakawa, Kenji; Kinashi, Haruyasu; Mankin, Alexander S.; Yonath, Ada

    2010-04-26

    Crystallographic analysis revealed that the 17-member polyketide antibiotic lankacidin produced by Streptomyces rochei binds at the peptidyl transferase center of the eubacterial large ribosomal subunit. Biochemical and functional studies verified this finding and showed interference with peptide bond formation. Chemical probing indicated that the macrolide lankamycin, a second antibiotic produced by the same species, binds at a neighboring site, at the ribosome exit tunnel. These two antibiotics can bind to the ribosome simultaneously and display synergy in inhibiting bacterial growth. The binding site of lankacidin and lankamycin partially overlap with the binding site of another pair of synergistic antibiotics, the streptogramins. Thus, at least two pairs of structurally dissimilar compounds have been selected in the course of evolution to act synergistically by targeting neighboring sites in the ribosome. These results underscore the importance of the corresponding ribosomal sites for development of clinically relevant synergistic antibiotics and demonstrate the utility of structural analysis for providing new directions for drug discovery.

  15. Local site effects in Kumamoto City revealed by the 2016 Kumamoto earthquake

    NASA Astrophysics Data System (ADS)

    Tsuno, Seiji; Korenaga, Masahiro; Okamoto, Kyosuke; Yamanaka, Hiroaki; Chimoto, Kosuke; Matsushima, Takeshi

    2017-03-01

    To evaluate local site effects in Kumamoto City, we installed six temporary seismic stations along a 6-km north-south survey line in the city immediately after the 2016 Kumamoto earthquake foreshock (Mj 6.4), which occurred on April 14, 2016. Seismic data from the 2016 Kumamoto earthquake (Mj 7.3), which occurred on April 16, 2016, were successfully recorded at two sites and indicated large amplitudes in the frequency range of 0.5-3 Hz. Site amplifications estimated from weak ground motion data, with a station at Mt. Kinbo used as a reference, are relatively variable along this survey line; however, site amplification factors in the frequency range of 0.5-3 Hz are not large enough to explain the amplitudes produced by the main shock. Nevertheless, site amplifications estimated from strong ground motion data recorded at the two sites during the main shock are large in the frequency range of 1-3 Hz. These findings reveal that the strong ground motions in the frequency range of 1-3 Hz were enhanced by nonlinear behavior of the subsurface soil in Kumamoto City. Moreover, it is observed that the frequency contents of the main shock data in the frequency range of 0.7-3 Hz differ significantly between the two sites, despite the proximity of these sites (600-m interval). Therefore, we also performed single-station microtremor measurements with an interval distance of approximately 100 m between these two sites. We confirmed that the peak frequencies of the horizontal-to-vertical spectral ratios of microtremors have trends that are similar to those of the site amplification factors between the two sites. However, these results could not explain the differences in strong ground motions observed at the two sites during the 2016 Kumamoto earthquake.[Figure not available: see fulltext.

  16. Active site amino acid sequence of human factor D.

    PubMed

    Davis, A E

    1980-08-01

    Factor D was isolated from human plasma by chromatography on CM-Sephadex C50, Sephadex G-75, and hydroxylapatite. Digestion of reduced, S-carboxymethylated factor D with cyanogen bromide resulted in three peptides which were isolated by chromatography on Sephadex G-75 (superfine) equilibrated in 20% formic acid. NH2-Terminal sequences were determined by automated Edman degradation with a Beckman 890C sequencer using a 0.1 M Quadrol program. The smallest peptide (CNBr III) consisted of the NH2-terminal 14 amino acids. The other two peptides had molecular weights of 17,000 (CNBr I) and 7000 (CNBr II). Overlap of the NH2-terminal sequence of factor D with the NH2-terminal sequence of CNBr I established the order of the peptides. The NH2-terminal 53 residues of factor D are somewhat more homologous with the group-specific protease of rat intestine than with other serine proteases. The NH2-terminal sequence of CNBr II revealed the active site serine of factor D. The typical serine protease active site sequence (Gly-Asp-Ser-Gly-Gly-Pro was found at residues 12-17. The region surrounding the active site serine does not appear to be more highly homologous with any one of the other serine proteases. The structural data obtained point out the similarities between factor D and the other proteases. However, complete definition of the degree of relationship between factor D and other proteases will require determination of the remainder of the primary structure.

  17. Site directed mutagenesis of StSUT1 reveals target amino acids of regulation and stability.

    PubMed

    Krügel, Undine; Wiederhold, Elena; Pustogowa, Jelena; Hackel, Aleksandra; Grimm, Bernhard; Kühn, Christina

    2013-11-01

    Plant sucrose transporters (SUTs) are functional as sucrose-proton-cotransporters with an optimal transport activity in the acidic pH range. Recently, the pH optimum of the Solanum tuberosum sucrose transporter StSUT1 was experimentally determined to range at an unexpectedly low pH of 3 or even below. Various research groups have confirmed these surprising findings independently and in different organisms. Here we provide further experimental evidence for a pH optimum at physiological extrema. Site directed mutagenesis provides information about functional amino acids, which are highly conserved and responsible for this extraordinary increase in transport capacity under extreme pH conditions. Redox-dependent dimerization of the StSUT1 protein was described earlier. Here the ability of StSUT1 to form homodimers was demonstrated by heterologous expression in Lactococcus lactis and Xenopus leavis using Western blots, and in plants by bimolecular fluorescence complementation. Mutagenesis of highly conserved cysteine residues revealed their importance in protein stability. The accessibility of regulatory amino acid residues in the light of StSUT1's compartmentalization in membrane microdomains is discussed.

  18. Metal active site elasticity linked to activation of homocysteine in methionine synthases

    SciTech Connect

    Koutmos, Markos; Pejchal, Robert; Bomer, Theresa M.; Matthews, Rowena G.; Smith, Janet L.; Ludwig, Martha L.

    2008-04-02

    Enzymes possessing catalytic zinc centers perform a variety of fundamental processes in nature, including methyl transfer to thiols. Cobalamin-independent (MetE) and cobalamin-dependent (MetH) methionine synthases are two such enzyme families. Although they perform the same net reaction, transfer of a methyl group from methyltetrahydrofolate to homocysteine (Hcy) to form methionine, they display markedly different catalytic strategies, modular organization, and active site zinc centers. Here we report crystal structures of zinc-replete MetE and MetH, both in the presence and absence of Hcy. Structural investigation of the catalytic zinc sites of these two methyltransferases reveals an unexpected inversion of zinc geometry upon binding of Hcy and displacement of an endogenous ligand in both enzymes. In both cases a significant movement of the zinc relative to the protein scaffold accompanies inversion. These structures provide new information on the activation of thiols by zinc-containing enzymes and have led us to propose a paradigm for the mechanism of action of the catalytic zinc sites in these and related methyltransferases. Specifically, zinc is mobile in the active sites of MetE and MetH, and its dynamic nature helps facilitate the active site conformational changes necessary for thiol activation and methyl transfer.

  19. An Extensive Survey of Tyrosine Phosphorylation Revealing New Sites in Human Mammary Epithelial Cells

    PubMed Central

    Heibeck, Tyler H.; Ding, Shi-Jian; Opresko, Lee K.; Zhao, Rui; Schepmoes, Athena A.; Yang, Feng; Tolmachev, Aleksey V.; Monroe, Matthew E.; Camp, David G.; Smith, Richard D.; Wiley, H. Steven; Qian, Wei-Jun

    2010-01-01

    Protein tyrosine phosphorylation represents a central regulatory mechanism in cell signaling. Here we present an extensive survey of tyrosine phosphorylation sites in a normal-derived human mammary epithelial cell line by applying anti-phosphotyrosine peptide immunoaffinity purification coupled with high sensitivity capillary liquid chromatography tandem mass spectrometry. A total of 481 tyrosine phosphorylation sites (covered by 716 unique peptides) from 285 proteins were confidently identified in HMEC following the analysis of both the basal condition and acute stimulation with epidermal growth factor (EGF). The estimated false discovery rate was 1.0% as determined by searching against a scrambled database. Comparison of these data with existing literature showed significant agreement for previously reported sites. However, we observed 281 sites that were not previously reported for HMEC cultures and 29 of which have not been reported for any human cell or tissue system. The analysis showed that the majority of highly phosphorylated proteins were relatively low-abundance. Large differences in phosphorylation stoichiometry for sites within the same protein were also observed, raising the possibility of more important functional roles for such highly phosphorylated pTyr sites. By mapping to major signaling networks, such as the EGF receptor and insulin growth factor-1 receptor signaling pathways, many known proteins involved in these pathways were revealed to be tyrosine phosphorylated, which provides interesting targets for future hypothesis-driven and targeted quantitative studies involving tyrosine phosphorylation in HMEC or other human systems. PMID:19534553

  20. High-resolution profiling of Drosophila replication start sites reveals a DNA shape and chromatin signature of metazoan origins.

    PubMed

    Comoglio, Federico; Schlumpf, Tommy; Schmid, Virginia; Rohs, Remo; Beisel, Christian; Paro, Renato

    2015-05-05

    At every cell cycle, faithful inheritance of metazoan genomes requires the concerted activation of thousands of DNA replication origins. However, the genetic and chromatin features defining metazoan replication start sites remain largely unknown. Here, we delineate the origin repertoire of the Drosophila genome at high resolution. We address the role of origin-proximal G-quadruplexes and suggest that they transiently stall replication forks in vivo. We dissect the chromatin configuration of replication origins and identify a rich spatial organization of chromatin features at initiation sites. DNA shape and chromatin configurations, not strict sequence motifs, mark and predict origins in higher eukaryotes. We further examine the link between transcription and origin firing and reveal that modulation of origin activity across cell types is intimately linked to cell-type-specific transcriptional programs. Our study unravels conserved origin features and provides unique insights into the relationship among DNA topology, chromatin, transcription, and replication initiation across metazoa.

  1. Femtosecond near-infrared laser microirradiation reveals a crucial role for PARP signaling on factor assemblies at DNA damage sites

    PubMed Central

    Saquilabon Cruz, Gladys Mae; Kong, Xiangduo; Silva, Bárbara Alcaraz; Khatibzadeh, Nima; Thai, Ryan; Berns, Michael W.; Yokomori, Kyoko

    2016-01-01

    Laser microirradiation is a powerful tool for real-time single-cell analysis of the DNA damage response (DDR). It is often found, however, that factor recruitment or modification profiles vary depending on the laser system employed. This is likely due to an incomplete understanding of how laser conditions/dosages affect the amounts and types of damage and the DDR. We compared different irradiation conditions using a femtosecond near-infrared laser and found distinct damage site recruitment thresholds for 53BP1 and TRF2 correlating with the dose-dependent increase of strand breaks and damage complexity. Low input-power microirradiation that induces relatively simple strand breaks led to robust recruitment of 53BP1 but not TRF2. In contrast, increased strand breaks with complex damage including crosslinking and base damage generated by high input-power microirradiation resulted in TRF2 recruitment to damage sites with no 53BP1 clustering. We found that poly(ADP-ribose) polymerase (PARP) activation distinguishes between the two damage states and that PARP activation is essential for rapid TRF2 recruitment while suppressing 53BP1 accumulation at damage sites. Thus, our results reveal that careful titration of laser irradiation conditions allows induction of varying amounts and complexities of DNA damage that are gauged by differential PARP activation regulating protein assembly at the damage site. PMID:26424850

  2. Active Site Loop Conformation Regulates Promiscuous Activity in a Lactonase from Geobacillus kaustophilus HTA426

    PubMed Central

    Zhang, Yu; An, Jiao; Yang, Guang-Yu; Bai, Aixi; Zheng, Baisong; Lou, Zhiyong; Wu, Geng; Ye, Wei; Chen, Hai-Feng; Feng, Yan; Manco, Giuseppe

    2015-01-01

    Enzyme promiscuity is a prerequisite for fast divergent evolution of biocatalysts. A phosphotriesterase-like lactonase (PLL) from Geobacillus kaustophilus HTA426 (GkaP) exhibits main lactonase and promiscuous phosphotriesterase activities. To understand its catalytic and evolutionary mechanisms, we investigated a “hot spot” in the active site by saturation mutagenesis as well as X-ray crystallographic analyses. We found that position 99 in the active site was involved in substrate discrimination. One mutant, Y99L, exhibited 11-fold improvement over wild-type in reactivity (kcat/Km) toward the phosphotriesterase substrate ethyl-paraoxon, but showed 15-fold decrease toward the lactonase substrate δ-decanolactone, resulting in a 157-fold inversion of the substrate specificity. Structural analysis of Y99L revealed that the mutation causes a ∼6.6 Å outward shift of adjacent loop 7, which may cause increased flexibility of the active site and facilitate accommodation and/or catalysis of organophosphate substrate. This study provides for the PLL family an example of how the evolutionary route from promiscuity to specificity can derive from very few mutations, which promotes alteration in the conformational adjustment of the active site loops, in turn draws the capacity of substrate binding and activity. PMID:25706379

  3. Inacessible Andean sites reveal land-use induced stabilisation of soil organic carbon

    NASA Astrophysics Data System (ADS)

    Heitkamp, Felix; Maqsood, Shafique; Sylvester, Steven; Kessler, Michael; Jungkunst, Hermann

    2015-04-01

    Human activity affects properties and development of ecosystems across the globe to such a degree that it is challenging to get baseline values for undisturbed ecosystems. This is especially true for soils, which are affected by land-use history and hold a legacy of past human interventions. Therefore, it is still largely unknown how soil would have developed "naturally" and if processes of organic matter stabilisation would be different in comparison to managed soils. Here, we show undisturbed soil development, i.e., the processes of weathering and accumulation of soil organic carbon (SOC), by comparing pristine with grazed sites in the high Andes (4500 m) of southern Peru. We located study plots on a large ledge (0.2 km²) that is only accessible with mountaineering equipment. Plots with pristine vegetation were compared to rangeland plots that were constantly under grazing management for at least four millennia. All "state factors"; climate, potential biota, topography, parent material and time; besides "land-use" were, therefore, identical. Vegetation change, induced by grazing management, led to lower vegetation cover of the soil, thereby increasing soil surface temperatures and soil acidification. Both factors increased weathering in rangeland soils, as indicated by the presence of pedogenic oxides, especially amorphous Al-(oxy)hydroxides (oxalate-extractable Al). Higher losses of base cations (K, Na, Ca) and lower pH-values were related to a low base saturation of exchange sites in rangelands. Therefore, rangeland soils were classified as Umbrisol, whereas soils under pristine vegetation were classified as Phaeozeme. All profiles were rich in SOC (100 to 126 g kg-1) with no significant differences in concentrations or stocks. SOC of rangeland soils was, however, less available for microorganisms (proportion of microbial C on SOC: 1.8 vs. 0.6% in pristine and rangeland soils, respectively) and showed higher stability against thermal degradation. Reasons for

  4. Ubiquinone-binding site mutagenesis reveals the role of mitochondrial complex II in cell death initiation.

    PubMed

    Kluckova, K; Sticha, M; Cerny, J; Mracek, T; Dong, L; Drahota, Z; Gottlieb, E; Neuzil, J; Rohlena, J

    2015-05-07

    Respiratory complex II (CII, succinate dehydrogenase, SDH) inhibition can induce cell death, but the mechanistic details need clarification. To elucidate the role of reactive oxygen species (ROS) formation upon the ubiquinone-binding (Qp) site blockade, we substituted CII subunit C (SDHC) residues lining the Qp site by site-directed mutagenesis. Cell lines carrying these mutations were characterized on the bases of CII activity and exposed to Qp site inhibitors MitoVES, thenoyltrifluoroacetone (TTFA) and Atpenin A5. We found that I56F and S68A SDHC variants, which support succinate-mediated respiration and maintain low intracellular succinate, were less efficiently inhibited by MitoVES than the wild-type (WT) variant. Importantly, associated ROS generation and cell death induction was also impaired, and cell death in the WT cells was malonate and catalase sensitive. In contrast, the S68A variant was much more susceptible to TTFA inhibition than the I56F variant or the WT CII, which was again reflected by enhanced ROS formation and increased malonate- and catalase-sensitive cell death induction. The R72C variant that accumulates intracellular succinate due to compromised CII activity was resistant to MitoVES and TTFA treatment and did not increase ROS, even though TTFA efficiently generated ROS at low succinate in mitochondria isolated from R72C cells. Similarly, the high-affinity Qp site inhibitor Atpenin A5 rapidly increased intracellular succinate in WT cells but did not induce ROS or cell death, unlike MitoVES and TTFA that upregulated succinate only moderately. These results demonstrate that cell death initiation upon CII inhibition depends on ROS and that the extent of cell death correlates with the potency of inhibition at the Qp site unless intracellular succinate is high. In addition, this validates the Qp site of CII as a target for cell death induction with relevance to cancer therapy.

  5. Ubiquinone-binding site mutagenesis reveals the role of mitochondrial complex II in cell death initiation

    PubMed Central

    Kluckova, K; Sticha, M; Cerny, J; Mracek, T; Dong, L; Drahota, Z; Gottlieb, E; Neuzil, J; Rohlena, J

    2015-01-01

    Respiratory complex II (CII, succinate dehydrogenase, SDH) inhibition can induce cell death, but the mechanistic details need clarification. To elucidate the role of reactive oxygen species (ROS) formation upon the ubiquinone-binding (Qp) site blockade, we substituted CII subunit C (SDHC) residues lining the Qp site by site-directed mutagenesis. Cell lines carrying these mutations were characterized on the bases of CII activity and exposed to Qp site inhibitors MitoVES, thenoyltrifluoroacetone (TTFA) and Atpenin A5. We found that I56F and S68A SDHC variants, which support succinate-mediated respiration and maintain low intracellular succinate, were less efficiently inhibited by MitoVES than the wild-type (WT) variant. Importantly, associated ROS generation and cell death induction was also impaired, and cell death in the WT cells was malonate and catalase sensitive. In contrast, the S68A variant was much more susceptible to TTFA inhibition than the I56F variant or the WT CII, which was again reflected by enhanced ROS formation and increased malonate- and catalase-sensitive cell death induction. The R72C variant that accumulates intracellular succinate due to compromised CII activity was resistant to MitoVES and TTFA treatment and did not increase ROS, even though TTFA efficiently generated ROS at low succinate in mitochondria isolated from R72C cells. Similarly, the high-affinity Qp site inhibitor Atpenin A5 rapidly increased intracellular succinate in WT cells but did not induce ROS or cell death, unlike MitoVES and TTFA that upregulated succinate only moderately. These results demonstrate that cell death initiation upon CII inhibition depends on ROS and that the extent of cell death correlates with the potency of inhibition at the Qp site unless intracellular succinate is high. In addition, this validates the Qp site of CII as a target for cell death induction with relevance to cancer therapy. PMID:25950479

  6. Whole Exome Sequencing Reveals Novel PHEX Splice Site Mutations in Patients with Hypophosphatemic Rickets

    PubMed Central

    Gillies, Christopher; Sampson, Matthew G.; Kher, Vijay; Sethi, Sidharth K.; Otto, Edgar A.

    2015-01-01

    Objective Hypophosphatemic rickets (HR) is a heterogeneous genetic phosphate wasting disorder. The disease is most commonly caused by mutations in the PHEX gene located on the X-chromosome or by mutations in CLCN5, DMP1, ENPP1, FGF23, and SLC34A3. The aims of this study were to perform molecular diagnostics for four patients with HR of Indian origin (two independent families) and to describe their clinical features. Methods We performed whole exome sequencing (WES) for the affected mother of two boys who also displayed the typical features of HR, including bone malformations and phosphate wasting. B-lymphoblast cell lines were established by EBV transformation and subsequent RT-PCR to investigate an uncommon splice site variant found by WES. An in silico analysis was done to obtain accurate nucleotide frequency occurrences of consensus splice positions other than the canonical sites of all human exons. Additionally, we applied direct Sanger sequencing for all exons and exon/intron boundaries of the PHEX gene for an affected girl from an independent second Indian family. Results WES revealed a novel PHEX splice acceptor mutation in intron 9 (c.1080-3C>A) in a family with 3 affected individuals with HR. The effect on splicing of this mutation was further investigated by RT-PCR using RNA obtained from a patient’s EBV-transformed lymphoblast cell line. RT-PCR revealed an aberrant splice transcript skipping exons 10-14 which was not observed in control samples, confirming the diagnosis of X-linked dominant hypophosphatemia (XLH). The in silico analysis of all human splice sites adjacent to all 327,293 exons across 81,814 transcripts among 20,345 human genes revealed that cytosine is, with 64.3%, the most frequent nucleobase at the minus 3 splice acceptor position, followed by thymidine with 28.7%, adenine with 6.3%, and guanine with 0.8%. We generated frequency tables and pictograms for the extended donor and acceptor splice consensus regions by analyzing all human

  7. The first crystal structure of human RNase 6 reveals a novel substrate-binding and cleavage site arrangement

    PubMed Central

    Prats-Ejarque, Guillem; Arranz-Trullén, Javier; Blanco, Jose A.; Pulido, David; Nogués, M. Victòria; Moussaoui, Mohammed; Boix, Ester

    2016-01-01

    Human RNase 6 is a cationic secreted protein that belongs to the RNase A superfamily. Its expression is induced in neutrophils and monocytes upon bacterial infection, suggesting a role in host defence. We present here the crystal structure of RNase 6 obtained at 1.72 Å (1 Å=0.1 nm) resolution, which is the first report for the protein 3D structure and thereby setting the basis for functional studies. The structure shows an overall kidney-shaped globular fold shared with the other known family members. Three sulfate anions bound to RNase 6 were found, interacting with residues at the main active site (His15, His122 and Gln14) and cationic surface-exposed residues (His36, His39, Arg66 and His67). Kinetic characterization, together with prediction of protein–nucleotide complexes by molecular dynamics, was applied to analyse the RNase 6 substrate nitrogenous base and phosphate selectivity. Our results reveal that, although RNase 6 is a moderate catalyst in comparison with the pancreatic RNase type, its structure includes lineage-specific features that facilitate its activity towards polymeric nucleotide substrates. In particular, enzyme interactions at the substrate 5′ end can provide an endonuclease-type cleavage pattern. Interestingly, the RNase 6 crystal structure revealed a novel secondary active site conformed by the His36–His39 dyad that facilitates the polynucleotide substrate catalysis. PMID:27013146

  8. Evidence for segmental mobility in the active site of pepsin

    SciTech Connect

    Pohl, J.; Strop, P.; Senn, H.; Foundling, S.; Kostka, V.

    1986-05-01

    The low hydrolytic activity (k/sub cat/ < 0.001 s/sup -1/) of chicken pepsin (CP) towards tri- and tetrapeptides is enhanced at least 100 times by modification of its single sulfhydryl group of Cys-115, with little effect on K/sub m/-values. Modification thus simulates the effect of secondary substrate binding on pepsin catalysis. The rate of Cys-115 modification is substantially decreased in the presence of some competitive inhibitors, suggesting its active site location. Experiments with CP alkylated at Cys-115 with Acrylodan as a fluorescent probe or with N-iodoacetyl-(4-fluoro)-aniline as a /sup 19/F-nmr probe suggest conformation change around Cys-115 to occur on substrate or substrate analog binding. The difference /sup 1/H-nmr spectra (500 MHz) of unmodified free and inhibitor-complexed CP reveal chemical shifts almost exclusively in the aromatic region. The effects of Cu/sup + +/ on /sup 19/F- and /sup 1/H-nmr spectra have been studied. Examination of a computer graphics model of CP based on E. parasitica pepsin-inhibitor complex X-ray coordinates suggests that Cys-115 is located near the S/sub 3//S/sub 5/ binding site. The results are interpreted in favor of segmental mobility of this region important for pepsin substrate binding and catalysis.

  9. First Principles Computational Study of the Active Site of Arginase

    SciTech Connect

    Ivanov, Ivaylo; Klien, Micheal

    2004-01-14

    Ab initio density functional theory (DFT) methods were used to investigate the structural features of the active site of the binuclear enzyme rat liver arginase. Special emphasis was placed on the crucial role of the second shell ligand interactions. These interactions were systematically studied by performing calculations on models of varying size. It was determined that a water molecule, and not hydroxide, is the bridging exogenous ligand. The carboxylate ligands facilitate the close approach of the Mn (II) ions by attenuating the metal-metal electrostatic repulsion. Of the two metals, MnA was shown to carry a larger positive charge. Analysis of the electronic properties of the active site revealed that orbitals involving the terminal Asp234 residue, as well as the flexible -1,1 bridging Asp232, lie at high energies, suggesting weaker coordination. This is reflected in certain structural variability present in our models and is also consistent with recent experimental findings. Finally, implications of our findings for the biological function of the enzyme are delineated.

  10. What has DNA sequencing revealed about the VSG expression sites of African trypanosomes?

    PubMed

    McCulloch, Richard; Horn, David

    2009-08-01

    Antigenic variation is crucial for the survival of African trypanosomes in mammals and involves switches in expression of variant surface glycoprotein genes, which are co-transcribed with a number of expression-site-associated genes (ESAGs) from loci termed 'bloodstream expression sites' (BESs). Trypanosomes possess multiple BESs, although the reason for this (and why ESAGs are resident in these loci) has remained a subject of debate. The genome sequence of Trypanosoma brucei, released in 2005, did not include the BESs because of their telomeric disposition. This gap in our knowledge has now been bridged by two new studies, which we discuss here, asking what has been revealed about the biological significance of BES multiplicity and ESAG function and evolution.

  11. Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation.

    PubMed

    Ozsolak, Fatih; Kapranov, Philipp; Foissac, Sylvain; Kim, Sang Woo; Fishilevich, Elane; Monaghan, A Paula; John, Bino; Milos, Patrice M

    2010-12-10

    The emerging discoveries on the link between polyadenylation and disease states underline the need to fully characterize genome-wide polyadenylation states. Here, we report comprehensive maps of global polyadenylation events in human and yeast generated using refinements to the Direct RNA Sequencing technology. This direct approach provides a quantitative view of genome-wide polyadenylation states in a strand-specific manner and requires only attomole RNA quantities. The polyadenylation profiles revealed an abundance of unannotated polyadenylation sites, alternative polyadenylation patterns, and regulatory element-associated poly(A)(+) RNAs. We observed differences in sequence composition surrounding canonical and noncanonical human polyadenylation sites, suggesting novel noncoding RNA-specific polyadenylation mechanisms in humans. Furthermore, we observed the correlation level between sense and antisense transcripts to depend on gene expression levels, supporting the view that overlapping transcription from opposite strands may play a regulatory role. Our data provide a comprehensive view of the polyadenylation state and overlapping transcription.

  12. Crystal Structure of Escherichia coli Diaminopropionate Ammonia-lyase Reveals Mechanism of Enzyme Activation and Catalysis*

    PubMed Central

    Bisht, Shveta; Rajaram, Venkatesan; Bharath, Sakshibeedu R.; Kalyani, Josyula Nitya; Khan, Farida; Rao, Appaji N.; Savithri, Handanahal S.; Murthy, Mathur R. N.

    2012-01-01

    Pyridoxal 5′-phosphate (PLP)-dependent enzymes utilize the unique chemistry of a pyridine ring to carry out diverse reactions involving amino acids. Diaminopropionate (DAP) ammonia-lyase (DAPAL) is a prokaryotic PLP-dependent enzyme that catalyzes the degradation of d- and l-forms of DAP to pyruvate and ammonia. Here, we report the first crystal structure of DAPAL from Escherichia coli (EcDAPAL) in tetragonal and monoclinic forms at 2.0 and 2.2 Å resolutions, respectively. Structures of EcDAPAL soaked with substrates were also determined. EcDAPAL has a typical fold type II PLP-dependent enzyme topology consisting of a large and a small domain with the active site at the interface of the two domains. The enzyme is a homodimer with a unique biological interface not observed earlier. Structure of the enzyme in the tetragonal form had PLP bound at the active site, whereas the monoclinic structure was in the apo-form. Analysis of the apo and holo structures revealed that the region around the active site undergoes transition from a disordered to ordered state and assumes a conformation suitable for catalysis only upon PLP binding. A novel disulfide was found to occur near a channel that is likely to regulate entry of ligands to the active site. EcDAPAL soaked with dl-DAP revealed density at the active site appropriate for the reaction intermediate aminoacrylate, which is consistent with the observation that EcDAPAL has low activity under crystallization conditions. Based on the analysis of the structure and results of site-directed mutagenesis, a two-base mechanism of catalysis involving Asp120 and Lys77 is suggested. PMID:22505717

  13. Crystal structure of Escherichia coli diaminopropionate ammonia-lyase reveals mechanism of enzyme activation and catalysis.

    PubMed

    Bisht, Shveta; Rajaram, Venkatesan; Bharath, Sakshibeedu R; Kalyani, Josyula Nitya; Khan, Farida; Rao, Appaji N; Savithri, Handanahal S; Murthy, Mathur R N

    2012-06-08

    Pyridoxal 5'-phosphate (PLP)-dependent enzymes utilize the unique chemistry of a pyridine ring to carry out diverse reactions involving amino acids. Diaminopropionate (DAP) ammonia-lyase (DAPAL) is a prokaryotic PLP-dependent enzyme that catalyzes the degradation of d- and l-forms of DAP to pyruvate and ammonia. Here, we report the first crystal structure of DAPAL from Escherichia coli (EcDAPAL) in tetragonal and monoclinic forms at 2.0 and 2.2 Å resolutions, respectively. Structures of EcDAPAL soaked with substrates were also determined. EcDAPAL has a typical fold type II PLP-dependent enzyme topology consisting of a large and a small domain with the active site at the interface of the two domains. The enzyme is a homodimer with a unique biological interface not observed earlier. Structure of the enzyme in the tetragonal form had PLP bound at the active site, whereas the monoclinic structure was in the apo-form. Analysis of the apo and holo structures revealed that the region around the active site undergoes transition from a disordered to ordered state and assumes a conformation suitable for catalysis only upon PLP binding. A novel disulfide was found to occur near a channel that is likely to regulate entry of ligands to the active site. EcDAPAL soaked with dl-DAP revealed density at the active site appropriate for the reaction intermediate aminoacrylate, which is consistent with the observation that EcDAPAL has low activity under crystallization conditions. Based on the analysis of the structure and results of site-directed mutagenesis, a two-base mechanism of catalysis involving Asp(120) and Lys(77) is suggested.

  14. The active site of ribulose-bisphosphate carboxylase/oxygenase

    SciTech Connect

    Hartman, F.C.

    1991-01-01

    The active site of ribulose-bisphosphate carboxylase/oxygenase requires interacting domains of adjacent, identical subunits. Most active-site residues are located within the loop regions of an eight-stranded {beta}/{alpha}-barrel which constitutes the larger C-terminal domain; additional key residues are located within a segment of the smaller N-terminal domain which partially covers the mouth of the barrel. Site-directed mutagenesis of the gene encoding the enzyme from Rhodospirillum rubrum has been used to delineate functions of active-site residues. 6 refs., 2 figs.

  15. DOE site performance assessment activities. Radioactive Waste Technical Support Program

    SciTech Connect

    Not Available

    1990-07-01

    Information on performance assessment capabilities and activities was collected from eight DOE sites. All eight sites either currently dispose of low-level radioactive waste (LLW) or plan to dispose of LLW in the near future. A survey questionnaire was developed and sent to key individuals involved in DOE Order 5820.2A performance assessment activities at each site. The sites surveyed included: Hanford Site (Hanford), Idaho National Engineering Laboratory (INEL), Los Alamos National Laboratory (LANL), Nevada Test Site (NTS), Oak Ridge National Laboratory (ORNL), Paducah Gaseous Diffusion Plant (Paducah), Portsmouth Gaseous Diffusion Plant (Portsmouth), and Savannah River Site (SRS). The questionnaire addressed all aspects of the performance assessment process; from waste source term to dose conversion factors. This report presents the information developed from the site questionnaire and provides a comparison of site-specific performance assessment approaches, data needs, and ongoing and planned activities. All sites are engaged in completing the radioactive waste disposal facility performance assessment required by DOE Order 5820.2A. Each site has achieved various degrees of progress and have identified a set of critical needs. Within several areas, however, the sites identified common needs and questions.

  16. Active-Site Hydration and Water Diffusion in Cytochrome P450cam: A Highly Dynamic Process

    SciTech Connect

    Miao, Yinglong; Baudry, Jerome Y

    2011-01-01

    Long-timescale molecular dynamics simulations (300 ns) are performed on both the apo- (i.e., camphor-free) and camphor-bound cytochrome P450cam (CYP101). Water diffusion into and out of the protein active site is observed without biased sampling methods. During the course of the molecular dynamics simulation, an average of 6.4 water molecules is observed in the camphor-binding site of the apo form, compared to zero water molecules in the binding site of the substrate-bound form, in agreement with the number of water molecules observed in crystal structures of the same species. However, as many as 12 water molecules can be present at a given time in the camphor-binding region of the active site in the case of apo-P450cam, revealing a highly dynamic process for hydration of the protein active site, with water molecules exchanging rapidly with the bulk solvent. Water molecules are also found to exchange locations frequently inside the active site, preferentially clustering in regions surrounding the water molecules observed in the crystal structure. Potential-of-mean-force calculations identify thermodynamically favored trans-protein pathways for the diffusion of water molecules between the protein active site and the bulk solvent. Binding of camphor in the active site modifies the free-energy landscape of P450cam channels toward favoring the diffusion of water molecules out of the protein active site.

  17. Savannah River Site prioritization of transition activities

    SciTech Connect

    Finley, R.H.

    1993-11-01

    Effective management of SRS conversion from primarily a production facility to other missions (or Decontamination and Decommissioning (D&D)) requires a systematic and consistent method of prioritizing the transition activities. This report discusses the design of a prioritizing method developed to achieve systematic and consistent methods of prioritizing these activities.

  18. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    SciTech Connect

    Zull, Lawrence M.; Yeniscavich, William

    2008-01-15

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

  19. Comparison of splice sites reveals that long noncoding RNAs are evolutionarily well conserved

    PubMed Central

    Nitsche, Anne; Rose, Dominic; Fasold, Mario; Reiche, Kristin; Stadler, Peter F.

    2015-01-01

    Large-scale RNA sequencing has revealed a large number of long mRNA-like transcripts (lncRNAs) that do not code for proteins. The evolutionary history of these lncRNAs has been notoriously hard to study systematically due to their low level of sequence conservation that precludes comprehensive homology-based surveys and makes them nearly impossible to align. An increasing number of special cases, however, has been shown to be at least as old as the vertebrate lineage. Here we use the conservation of splice sites to trace the evolution of lncRNAs. We show that >85% of the human GENCODE lncRNAs were already present at the divergence of placental mammals and many hundreds of these RNAs date back even further. Nevertheless, we observe a fast turnover of intron/exon structures. We conclude that lncRNA genes are evolutionary ancient components of vertebrate genomes that show an unexpected and unprecedented evolutionary plasticity. We offer a public web service (http://splicemap.bioinf.uni-leipzig.de) that allows to retrieve sets of orthologous splice sites and to produce overview maps of evolutionarily conserved splice sites for visualization and further analysis. An electronic supplement containing the ncRNA data sets used in this study is available at http://www.bioinf.uni-leipzig.de/publications/supplements/12-001. PMID:25802408

  20. Selective small molecule inhibitor of the Mycobacterium tuberculosis fumarate hydratase reveals an allosteric regulatory site

    PubMed Central

    Kasbekar, Monica; Fischer, Gerhard; Mott, Bryan T.; Yasgar, Adam; Hyvönen, Marko; Boshoff, Helena I. M.; Abell, Chris; Barry, Clifton E.; Thomas, Craig J.

    2016-01-01

    Enzymes in essential metabolic pathways are attractive targets for the treatment of bacterial diseases, but in many cases, the presence of homologous human enzymes makes them impractical candidates for drug development. Fumarate hydratase, an essential enzyme in the tricarboxylic acid (TCA) cycle, has been identified as one such potential therapeutic target in tuberculosis. We report the discovery of the first small molecule inhibitor, to our knowledge, of the Mycobacterium tuberculosis fumarate hydratase. A crystal structure at 2.0-Å resolution of the compound in complex with the protein establishes the existence of a previously unidentified allosteric regulatory site. This allosteric site allows for selective inhibition with respect to the homologous human enzyme. We observe a unique binding mode in which two inhibitor molecules interact within the allosteric site, driving significant conformational changes that preclude simultaneous substrate and inhibitor binding. Our results demonstrate the selective inhibition of a highly conserved metabolic enzyme that contains identical active site residues in both the host and the pathogen. PMID:27325754

  1. The yeast regulator of transcription protein Rtr1 lacks an active site and phosphatase activity.

    PubMed

    Xiang, Kehui; Manley, James L; Tong, Liang

    2012-07-10

    The activity of RNA polymerase II (Pol II) is controlled in part by the phosphorylation state of the C-terminal domain (CTD) of its largest subunit. Recent reports have suggested that yeast regulator of transcription protein, Rtr1, and its human homologue RPAP2, possess Pol II CTD Ser5 phosphatase activity. Here we report the crystal structure of Kluyveromyces lactis Rtr1, which reveals a new type of zinc finger protein and does not have any close structural homologues. Importantly, the structure does not show evidence of an active site, and extensive experiments to demonstrate its CTD phosphatase activity have been unsuccessful, suggesting that Rtr1 has a non-catalytic role in CTD dephosphorylation.

  2. Evolutionary comparison reveals that diverging CTCF sites are signatures of ancestral topological associating domains borders

    PubMed Central

    Gómez-Marín, Carlos; Tena, Juan J.; Acemel, Rafael D.; López-Mayorga, Macarena; Naranjo, Silvia; de la Calle-Mustienes, Elisa; Maeso, Ignacio; Beccari, Leonardo; Aneas, Ivy; Vielmas, Erika; Bovolenta, Paola; Nobrega, Marcelo A.; Carvajal, Jaime; Gómez-Skarmeta, José Luis

    2015-01-01

    Increasing evidence in the last years indicates that the vast amount of regulatory information contained in mammalian genomes is organized in precise 3D chromatin structures. However, the impact of this spatial chromatin organization on gene expression and its degree of evolutionary conservation is still poorly understood. The Six homeobox genes are essential developmental regulators organized in gene clusters conserved during evolution. Here, we reveal that the Six clusters share a deeply evolutionarily conserved 3D chromatin organization that predates the Cambrian explosion. This chromatin architecture generates two largely independent regulatory landscapes (RLs) contained in two adjacent topological associating domains (TADs). By disrupting the conserved TAD border in one of the zebrafish Six clusters, we demonstrate that this border is critical for preventing competition between promoters and enhancers located in separated RLs, thereby generating different expression patterns in genes located in close genomic proximity. Moreover, evolutionary comparison of Six-associated TAD borders reveals the presence of CCCTC-binding factor (CTCF) sites with diverging orientations in all studied deuterostomes. Genome-wide examination of mammalian HiC data reveals that this conserved CTCF configuration is a general signature of TAD borders, underscoring that common organizational principles underlie TAD compartmentalization in deuterostome evolution. PMID:26034287

  3. Perspective: On the active site model in computational catalyst screening

    NASA Astrophysics Data System (ADS)

    Reuter, Karsten; Plaisance, Craig P.; Oberhofer, Harald; Andersen, Mie

    2017-01-01

    First-principles screening approaches exploiting energy trends in surface adsorption represent an unparalleled success story in recent computational catalysis research. Here we argue that our still limited understanding of the structure of active sites is one of the major bottlenecks towards an ever extended and reliable use of such computational screening for catalyst discovery. For low-index transition metal surfaces, the prevalently chosen high-symmetry (terrace and step) sites offered by the nominal bulk-truncated crystal lattice might be justified. For more complex surfaces and composite catalyst materials, computational screening studies will need to actively embrace a considerable uncertainty with respect to what truly are the active sites. By systematically exploring the space of possible active site motifs, such studies might eventually contribute towards a targeted design of optimized sites in future catalysts.

  4. Diffusional correlations among multiple active sites in a single enzyme.

    PubMed

    Echeverria, Carlos; Kapral, Raymond

    2014-04-07

    Simulations of the enzymatic dynamics of a model enzyme containing multiple substrate binding sites indicate the existence of diffusional correlations in the chemical reactivity of the active sites. A coarse-grain, particle-based, mesoscopic description of the system, comprising the enzyme, the substrate, the product and solvent, is constructed to study these effects. The reactive and non-reactive dynamics is followed using a hybrid scheme that combines molecular dynamics for the enzyme, substrate and product molecules with multiparticle collision dynamics for the solvent. It is found that the reactivity of an individual active site in the multiple-active-site enzyme is reduced substantially, and this effect is analyzed and attributed to diffusive competition for the substrate among the different active sites in the enzyme.

  5. Small molecules reveal an alternative mechanism of Bax activation

    PubMed Central

    Brahmbhatt, Hetal; Uehling, David; Al-awar, Rima; Leber, Brian; Andrews, David

    2016-01-01

    The pro-apoptotic protein Bax commits a cell to death by permeabilizing the mitochondrial outer membrane (MOM). To obtain small-molecule probes for elucidating the molecular mechanism(s) of Bax activation, we screened for compounds that induced Bax-mediated liposome permeabilization. We identified five structurally different small molecules that promoted both Bax targeting to and oligomerization at membranes. All five compounds initiated Bax oligomerization in the absence of membranes by a mechanism unlike Bax activation by Bcl-2 homology 3 domain (BH3) proteins. Some of the compounds induced Bax/Bak-dependent apoptosis in cells. Activation of Bax by the most active compound was poorly inhibited by the anti-apoptotic protein Bcl-XL and requires a cysteine residue at position 126 of Bax that is not required for activation by BH3 proteins. Our results reveal a novel pathway for Bax activation independent of pro-apoptotic BH3 proteins that may have important implications for the regulation of Bax activity in cells. PMID:26916338

  6. Robotics at Savannah River site: activity report

    SciTech Connect

    Byrd, J.S.

    1984-09-01

    The objectives of the Robotics Technology Group at the Savannah River Laboratory are to employ modern industrial robots and to develop unique automation and robotic systems to enhance process operations at the Savannah River site (SRP and SRL). The incentives are to improve safety, reduce personnel radiation exposure, improve product quality and productivity, and to reduce operating costs. During the past year robotic systems have been installed to fill chemical dilution vials in a SRP laboratory at 772-F and remove radioactive waste materials in the SRL Californium Production Facility at 773-A. A robotic system to lubricate an extrusion press has been developed and demonstrated in the SRL robotics laboratory and is scheduled for installation at the 321-M fuel fabrication area. A mobile robot was employed by SRP for a radiation monitoring task at a waste tank top in H-Area. Several other robots are installed in the SRL robotics laboratories and application development programs are underway. The status of these applications is presented in this report.

  7. Control of the active site structure of giant bilayer hemoglobin from the Annelid Eisenia foetida using hierarchic assemblies

    SciTech Connect

    Girasole, Marco; Arcovito, Alessandro; Marconi, Augusta; Davoli, Camilla; Congiu-Castellano, Agostina; Bellelli, Andrea; Amiconi, Gino

    2005-12-05

    The active site structure of the oxygenated derivative of the main subassemblies (whole protein, dodecamers, and trimers) of the giant haemoglobin from Eisenia foetida has been characterized by x-ray absorption near edge structure spectroscopy. The data revealed a remarkable effect of the hierarchic assemblies on the active site of the subunit. Specifically, the whole protein has the same site structure of the dodecamer, while a sharp conformational transition occurs when the dodecamer is disassembled into trimers (and monomers) revealing that constraints due to the protein matrix determine the active site geometry and, consequently, the protein function in these large complexes.

  8. Potent neutralization of hepatitis A virus reveals a receptor mimic mechanism and the receptor recognition site

    PubMed Central

    Wang, Xiangxi; Zhu, Ling; Dang, Minghao; Hu, Zhongyu; Gao, Qiang; Yuan, Shuai; Sun, Yao; Zhang, Bo; Ren, Jingshan; Kotecha, Abhay; Walter, Thomas S.; Wang, Junzhi; Fry, Elizabeth E.; Stuart, David I.; Rao, Zihe

    2017-01-01

    Hepatitis A virus (HAV) infects ∼1.4 million people annually and, although there is a vaccine, there are no licensed therapeutic drugs. HAV is unusually stable (making disinfection problematic) and little is known of how it enters cells and releases its RNA. Here we report a potent HAV-specific monoclonal antibody, R10, which neutralizes HAV infection by blocking attachment to the host cell. High-resolution cryo-EM structures of HAV full and empty particles and of the complex of HAV with R10 Fab reveal the atomic details of antibody binding and point to a receptor recognition site at the pentamer interface. These results, together with our observation that the R10 Fab destabilizes the capsid, suggest the use of a receptor mimic mechanism to neutralize virus infection, providing new opportunities for therapeutic intervention. PMID:28074040

  9. Potent neutralization of hepatitis A virus reveals a receptor mimic mechanism and the receptor recognition site.

    PubMed

    Wang, Xiangxi; Zhu, Ling; Dang, Minghao; Hu, Zhongyu; Gao, Qiang; Yuan, Shuai; Sun, Yao; Zhang, Bo; Ren, Jingshan; Kotecha, Abhay; Walter, Thomas S; Wang, Junzhi; Fry, Elizabeth E; Stuart, David I; Rao, Zihe

    2017-01-24

    Hepatitis A virus (HAV) infects ∼1.4 million people annually and, although there is a vaccine, there are no licensed therapeutic drugs. HAV is unusually stable (making disinfection problematic) and little is known of how it enters cells and releases its RNA. Here we report a potent HAV-specific monoclonal antibody, R10, which neutralizes HAV infection by blocking attachment to the host cell. High-resolution cryo-EM structures of HAV full and empty particles and of the complex of HAV with R10 Fab reveal the atomic details of antibody binding and point to a receptor recognition site at the pentamer interface. These results, together with our observation that the R10 Fab destabilizes the capsid, suggest the use of a receptor mimic mechanism to neutralize virus infection, providing new opportunities for therapeutic intervention.

  10. Active sites of thioredoxin reductases: why selenoproteins?

    PubMed

    Gromer, Stephan; Johansson, Linda; Bauer, Holger; Arscott, L David; Rauch, Susanne; Ballou, David P; Williams, Charles H; Schirmer, R Heiner; Arnér, Elias S J

    2003-10-28

    Selenium, an essential trace element for mammals, is incorporated into a selected class of selenoproteins as selenocysteine. All known isoenzymes of mammalian thioredoxin (Trx) reductases (TrxRs) employ selenium in the C-terminal redox center -Gly-Cys-Sec-Gly-COOH for reduction of Trx and other substrates, whereas the corresponding sequence in Drosophila melanogaster TrxR is -Ser-Cys-Cys-Ser-COOH. Surprisingly, the catalytic competence of these orthologous enzymes is similar, whereas direct Sec-to-Cys substitution of mammalian TrxR, or other selenoenzymes, yields almost inactive enzyme. TrxRs are therefore ideal for studying the biology of selenocysteine by comparative enzymology. Here we show that the serine residues flanking the C-terminal Cys residues of Drosophila TrxRs are responsible for activating the cysteines to match the catalytic efficiency of a selenocysteine-cysteine pair as in mammalian TrxR, obviating the need for selenium. This finding suggests that the occurrence of selenoenzymes, which implies that the organism is selenium-dependent, is not necessarily associated with improved enzyme efficiency. Our data suggest that the selective advantage of selenoenzymes is a broader range of substrates and a broader range of microenvironmental conditions in which enzyme activity is possible.

  11. Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations

    PubMed Central

    Steinkellner, Georg; Gruber, Christian C.; Pavkov-Keller, Tea; Binter, Alexandra; Steiner, Kerstin; Winkler, Christoph; Łyskowski, Andrzej; Schwamberger, Orsolya; Oberer, Monika; Schwab, Helmut; Faber, Kurt; Macheroux, Peter; Gruber, Karl

    2014-01-01

    The exploitation of catalytic promiscuity and the application of de novo design have recently opened the access to novel, non-natural enzymatic activities. Here we describe a structural bioinformatic method for predicting catalytic activities of enzymes based on three-dimensional constellations of functional groups in active sites (‘catalophores’). As a proof-of-concept we identify two enzymes with predicted promiscuous ene-reductase activity (reduction of activated C–C double bonds) and compare them with known ene-reductases, that is, members of the Old Yellow Enzyme family. Despite completely different amino acid sequences, overall structures and protein folds, high-resolution crystal structures reveal equivalent binding modes of typical Old Yellow Enzyme substrates and ligands. Biochemical and biocatalytic data show that the two enzymes indeed possess ene-reductase activity and reveal an inverted stereopreference compared with Old Yellow Enzymes for some substrates. This method could thus be a tool for the identification of viable starting points for the development and engineering of novel biocatalysts. PMID:24954722

  12. Revealing phosphoproteins playing role in tobacco pollen activated in vitro.

    PubMed

    Fíla, Jan; Matros, Andrea; Radau, Sonja; Zahedi, René Peiman; Capková, Věra; Mock, Hans-Peter; Honys, David

    2012-11-01

    The transition between the quiescent mature and the metabolically active germinating pollen grain most probably involves changes in protein phosphorylation status, since phosphorylation has been implicated in the regulation of many cellular processes. Given that, only a minor proportion of cellular proteins are phosphorylated at any one time, and that phosphorylated and nonphosphorylated forms of many proteins can co-exist within a cell, the identification of phosphoproteins requires some prior enrichment from a crude protein extract. Here, we have used metal oxide/hydroxide affinity chromatography (MOAC) based on an aluminum hydroxide matrix for this purpose, and have generated a population of phosphoprotein candidates from both mature and in vitro activated tobacco pollen grains. Both electrophoretic and nonelectrophoretic methods, allied to MS, were applied to these extracts to identify a set of 139 phosphoprotein candidates. In vitro phosphorylation was also used to validate the spectrum of phosphoprotein candidates obtained by the MOAC phosphoprotein enrichment. Since only one phosphorylation site was detected by the above approach, titanium dioxide phosphopeptide enrichment of trypsinized mature pollen crude extract was performed as well. It resulted in a detection of additional 51 phosphorylation sites giving a total of 52 identified phosphosites in this set of 139 phosphoprotein candidates.

  13. Earthquakes' local site effects in Christchurch revealed by Cosmo-Skymed and Envisat radar images

    NASA Astrophysics Data System (ADS)

    Closson, Damien; Abou Karaki, N.; Pasquali, P.; Holecz, P.; Riccardi, P.; Milisavljevic, N.; Bouaraba, A.

    2012-04-01

    In September 4th, 2010, and February 22nd, 2011, a 7.1 and 6.3 earthquakes have strongly affected the city of Chirstchurch, New Zealand. The hypocenters were located 40 km westwards and 10 km southwards respectively. The shallow depths of the epicenter were estimated to 10 and 5 km. The deformation field associated with the first event was mapped with Envisat data (C band). One month later, the Italian Space Agency started the surveillance of the city of Chirstchurch. Cosmo-Skymed images (X band) in spotlight mode (pixel of about one meter) were collected from November onwards with a minimum of four days between repeated acquisitions. In that framework, it was possible to study with great accuracy and precision the ground deformations caused by the aftershock that took place on February 22nd, 2011. One image was acquired three days before and another scene one day after. Moreover, two days after this event that killed 181 persons; an aerial survey was performed leading to an orthophoto of the city having a pixel size of 20 cm. An interferometric processing was applied to the Cosmo-Skymed scenes. The interferogram revealed the fringes of the major displacement with a precision of 1.5 cm (half of the wavelenght). At closer look, the general dislocation pattern shown numerous irregularities that have been interpreted as local sites effects. One of the most obvious evidence of local site effects can be seen in the kilometric abandoned landfill of Barwood. Field observations and interviews of local people support the observations regarding the limits of specific zones in the urban area. This research is still in progress and comparisons are currently performed with other earthquakes in Chili and Turkey. This work suggests that an independent method could provide new original data in the frame of the mapping of earthquakes local sites effects.

  14. Number and locations of agonist binding sites required to activate homomeric Cys-loop receptors.

    PubMed

    Rayes, Diego; De Rosa, María José; Sine, Steven M; Bouzat, Cecilia

    2009-05-06

    Homo-pentameric Cys-loop receptors contain five identical agonist binding sites, each formed at a subunit interface. To determine the number and locations of binding sites required to generate a stable active state, we constructed a receptor subunit with a mutation that disables the agonist binding site and a reporter mutation that alters unitary conductance and coexpressed mutant and nonmutant subunits. Although receptors with a range of different subunit compositions are produced, patch-clamp recordings reveal that the amplitude of each single-channel opening event reports the number and, for certain subunit combinations, the locations of subunits with intact binding sites. We find that receptors with three binding sites at nonconsecutive subunit interfaces exhibit maximal mean channel open time, receptors with binding sites at three consecutive or two nonconsecutive interfaces exhibit intermediate open time, and receptors with binding sites at two consecutive or one interface exhibit brief open time. Macroscopic recordings after rapid application of agonist reveal that channel activation slows and the extent of desensitization decreases as the number of binding sites per receptor decreases. The overall results provide a framework for defining mechanisms of activation and drug modulation for homo-pentameric Cys-loop receptors.

  15. Ligand Promiscuity of Aryl Hydrocarbon Receptor Agonists and Antagonists Revealed by Site-Directed Mutagenesis

    PubMed Central

    Soshilov, Anatoly A.

    2014-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that can be activated by structurally diverse chemicals. To examine the mechanisms responsible for the promiscuity in AhR ligand binding, we determined the effects of mutations within the AhR ligand-binding domain (LBD) on the activity of diverse AhR ligands. Site-directed mutagenesis identified Ile319 of the mouse AhR and, to a lesser extent, Phe318 as residues involved in ligand-selective modulation of AhR transformation using a panel of 12 AhR ligands. These ligands could be categorized into four distinct structurally related groups based on their ability to activate AhR mutants at position 319 in vitro. The mutation I319K was selectively activated by FICZ and not by other examined ligands in vitro and in cell culture. F318L and F318A mutations resulted in the conversion of AhR agonists β-naphthoflavone and 3-methylcholanthrene, respectively, into partial agonists/antagonists. Hsp90 binding to the AhR was decreased with several mutations and was inversely correlated with AhR ligand-binding promiscuity. Together, these data define overlapping amino acid residues within the AhR LBD involved in the selectivity of ligand binding, the agonist or antagonist mode of ligand binding, and hsp90 binding and provide insights into the ligand diversity of AhR activators. PMID:24591650

  16. Active medulloblastoma enhancers reveal subgroup-specific cellular origins.

    PubMed

    Lin, Charles Y; Erkek, Serap; Tong, Yiai; Yin, Linlin; Federation, Alexander J; Zapatka, Marc; Haldipur, Parthiv; Kawauchi, Daisuke; Risch, Thomas; Warnatz, Hans-Jörg; Worst, Barbara C; Ju, Bensheng; Orr, Brent A; Zeid, Rhamy; Polaski, Donald R; Segura-Wang, Maia; Waszak, Sebastian M; Jones, David T W; Kool, Marcel; Hovestadt, Volker; Buchhalter, Ivo; Sieber, Laura; Johann, Pascal; Chavez, Lukas; Gröschel, Stefan; Ryzhova, Marina; Korshunov, Andrey; Chen, Wenbiao; Chizhikov, Victor V; Millen, Kathleen J; Amstislavskiy, Vyacheslav; Lehrach, Hans; Yaspo, Marie-Laure; Eils, Roland; Lichter, Peter; Korbel, Jan O; Pfister, Stefan M; Bradner, James E; Northcott, Paul A

    2016-02-04

    Medulloblastoma is a highly malignant paediatric brain tumour, often inflicting devastating consequences on the developing child. Genomic studies have revealed four distinct molecular subgroups with divergent biology and clinical behaviour. An understanding of the regulatory circuitry governing the transcriptional landscapes of medulloblastoma subgroups, and how this relates to their respective developmental origins, is lacking. Here, using H3K27ac and BRD4 chromatin immunoprecipitation followed by sequencing (ChIP-seq) coupled with tissue-matched DNA methylation and transcriptome data, we describe the active cis-regulatory landscape across 28 primary medulloblastoma specimens. Analysis of differentially regulated enhancers and super-enhancers reinforced inter-subgroup heterogeneity and revealed novel, clinically relevant insights into medulloblastoma biology. Computational reconstruction of core regulatory circuitry identified a master set of transcription factors, validated by ChIP-seq, that is responsible for subgroup divergence, and implicates candidate cells of origin for Group 4. Our integrated analysis of enhancer elements in a large series of primary tumour samples reveals insights into cis-regulatory architecture, unrecognized dependencies, and cellular origins.

  17. Active medulloblastoma enhancers reveal subgroup-specific cellular origins

    PubMed Central

    Lin, Charles Y.; Erkek, Serap; Tong, Yiai; Yin, Linlin; Federation, Alexander J.; Zapatka, Marc; Haldipur, Parthiv; Kawauchi, Daisuke; Risch, Thomas; Warnatz, Hans-Jörg; Worst, Barbara C.; Ju, Bensheng; Orr, Brent A.; Zeid, Rhamy; Polaski, Donald R.; Segura-Wang, Maia; Waszak, Sebastian M.; Jones, David T.W.; Kool, Marcel; Hovestadt, Volker; Buchhalter, Ivo; Sieber, Laura; Johann, Pascal; Chavez, Lukas; Gröschel, Stefan; Ryzhova, Marina; Korshunov, Andrey; Chen, Wenbiao; Chizhikov, Victor V.; Millen, Kathleen J.; Amstislavskiy, Vyacheslav; Lehrach, Hans; Yaspo, Marie-Laure; Eils, Roland; Lichter, Peter; Korbel, Jan O.; Pfister, Stefan M.; Bradner, James E.; Northcott, Paul A.

    2016-01-01

    Summary Medulloblastoma is a highly malignant paediatric brain tumour, often inflicting devastating consequences on the developing child. Genomic studies have revealed four distinct molecular subgroups with divergent biology and clinical behaviour. An understanding of the regulatory circuitry governing the transcriptional landscapes of medulloblastoma subgroups, and how this relates to their respective developmental origins, is lacking. Using H3K27ac and BRD4 ChIP-Seq, coupled with tissue-matched DNA methylation and transcriptome data, we describe the active cis-regulatory landscape across 28 primary medulloblastoma specimens. Analysis of differentially regulated enhancers and super-enhancers reinforced inter-subgroup heterogeneity and revealed novel, clinically relevant insights into medulloblastoma biology. Computational reconstruction of core regulatory circuitry identified a master set of transcription factors, validated by ChIP-Seq, that are responsible for subgroup divergence and implicate candidate cells-of-origin for Group 4. Our integrated analysis of enhancer elements in a large series of primary tumour samples reveals insights into cis-regulatory architecture, unrecognized dependencies, and cellular origins. PMID:26814967

  18. Community Update on Site Activities, July 19, 2013

    EPA Pesticide Factsheets

    In an effort to engage and inform community members interested in the New Bedford Harbor Superfund Site cleanup, EPA will be issuing periodic topic-based fact sheets that will provide background information and updates about ongoing activities.

  19. Cross-species transcriptomic approach reveals genes in hamster implantation sites.

    PubMed

    Lei, Wei; Herington, Jennifer; Galindo, Cristi L; Ding, Tianbing; Brown, Naoko; Reese, Jeff; Paria, Bibhash C

    2014-12-01

    The mouse model has greatly contributed to understanding molecular mechanisms involved in the regulation of progesterone (P4) plus estrogen (E)-dependent blastocyst implantation process. However, little is known about contributory molecular mechanisms of the P4-only-dependent blastocyst implantation process that occurs in species such as hamsters, guineapigs, rabbits, pigs, rhesus monkeys, and perhaps humans. We used the hamster as a model of P4-only-dependent blastocyst implantation and carried out cross-species microarray (CSM) analyses to reveal differentially expressed genes at the blastocyst implantation site (BIS), in order to advance the understanding of molecular mechanisms of implantation. Upregulation of 112 genes and downregulation of 77 genes at the BIS were identified using a mouse microarray platform, while use of the human microarray revealed 62 up- and 38 down-regulated genes at the BIS. Excitingly, a sizable number of genes (30 up- and 11 down-regulated genes) were identified as a shared pool by both CSMs. Real-time RT-PCR and in situ hybridization validated the expression patterns of several up- and down-regulated genes identified by both CSMs at the hamster and mouse BIS to demonstrate the merit of CSM findings across species, in addition to revealing genes specific to hamsters. Functional annotation analysis found that genes involved in the spliceosome, proteasome, and ubiquination pathways are enriched at the hamster BIS, while genes associated with tight junction, SAPK/JNK signaling, and PPARα/RXRα signalings are repressed at the BIS. Overall, this study provides a pool of genes and evidence of their participation in up- and down-regulated cellular functions/pathways at the hamster BIS.

  20. Structural and Kinetic Analyses of Macrophage Migration Inhibitory Factor Active Site Interactions

    SciTech Connect

    Crichlow, G.; Lubetsky, J; Leng, L; Bucala, R; Lolis, E

    2009-01-01

    Macrophage migration inhibitory factor (MIF) is a secreted protein expressed in numerous cell types that counters the antiinflammatory effects of glucocorticoids and has been implicated in sepsis, cancer, and certain autoimmune diseases. Interestingly, the structure of MIF contains a catalytic site resembling the tautomerase/isomerase sites of microbial enzymes. While bona fide physiological substrates remain unknown, model substrates have been identified. Selected compounds that bind in the tautomerase active site also inhibit biological functions of MIF. It had previously been shown that the acetaminophen metabolite, N-acetyl-p-benzoquinone imine (NAPQI), covalently binds to the active site of MIF. In this study, kinetic data indicate that NAPQI inhibits MIF both covalently and noncovalently. The structure of MIF cocrystallized with NAPQI reveals that the NAPQI has undergone a chemical alteration forming an acetaminophen dimer (bi-APAP) and binds noncovalently to MIF at the mouth of the active site. We also find that the commonly used protease inhibitor, phenylmethylsulfonyl fluoride (PMSF), forms a covalent complex with MIF and inhibits the tautomerase activity. Crystallographic analysis reveals the formation of a stable, novel covalent bond for PMSF between the catalytic nitrogen of the N-terminal proline and the sulfur of PMSF with complete, well-defined electron density in all three active sites of the MIF homotrimer. Conclusions are drawn from the structures of these two MIF-inhibitor complexes regarding the design of novel compounds that may provide more potent reversible and irreversible inhibition of MIF.

  1. Active Mars Revealed through HiRISE DTMs and Orthoimages

    NASA Astrophysics Data System (ADS)

    Mattson, Sarah; McEwen, Alfred S.; Bridges, Nathan; Byrne, Shane; Chojnacki, Matthew; Daubar, Ingrid; Dundas, Colin; Russell, Patrick

    2014-11-01

    Before the arrival of the Mars Reconnaissance Orbiter (MRO) with the High-Resolution Imaging Science Experiment (HiRISE), the amount of surface activity on Mars was not well known. HiRISE repeat imaging (often at ~30 cm/pixel), combined with the ability to take stereo images and generate high resolution Digital Terrain Models (DTMs) reveals the many types of surface processes that are currently active on Mars. Examples of active processes on Mars studied with HiRISE data include aeolian activity [Bridges et al., 2012, Nature 485; Chojnacki et al., 2014, Icarus 232], Recurring Slope Lineae (RSL) [McEwen et al., 2011, Science 333; 2014, Nature Geoscience 7], active gullies [Dundas et al., 2012, Icarus 220], polar processes [Hansen et al., 2011, Science 331; Portyankina et al. 2013, AGU], new impacts [Byrne et al., 2009, Science 325; Daubar et al., 2013, Icarus 225; Dundas et al., 2014, JGR 119], and north polar scarp avalanches [Russell et al., 2008, GRL 35, 2014, LPSC]. These studies utilize images from multiple Mars years and seasons. We generate animated gifs with sequences of orthorectified images to analyze temporal changes (see http://www.uahirise.org/sim/). HiRISE DTMs and orthoimages can be used to quantitatively map and record changes in geospatial software. More than 200 DTMs and 400 orthoimages are available through the Planetary Data System (see http://uahirise.org/dtm). Three-band color (blue-green, red, and near infrared) orthoimages are also available in many cases. The ability to monitor the surface of Mars at high spatial and temporal resolution provides insight into seasonal and annual changes, further increasing our understanding of Mars as an active planet.

  2. Super-resolution microscopy reveals decondensed chromatin structure at transcription sites

    NASA Astrophysics Data System (ADS)

    Wang, Yejun; Maharana, Shovamayee; Wang, Michelle D.; Shivashankar, G. V.

    2014-03-01

    Remodeling of the local chromatin structure is essential for the regulation of gene expression. While a number of biochemical and bioimaging experiments suggest decondensed chromatin structures are associated with transcription, a direct visualization of DNA and transcriptionally active RNA polymerase II (RNA pol II) at super-resolution is still lacking. Here we investigate the structure of chromatin isolated from HeLa cells using binding activatable localization microscopy (BALM). The sample preparation method preserved the structural integrity of chromatin. Interestingly, BALM imaging of the chromatin spreads revealed the presence of decondensed chromatin as gap structures along the spreads. These gaps were enriched with phosphorylated S5 RNA pol II, and were sensitive to the cellular transcriptional state. Taken together, we could visualize the decondensed chromatin regions together with active RNA pol II for the first time using super-resolution microscopy.

  3. Simulations reveal the power and peril of artificial breeding sites for monitoring and managing animals.

    PubMed

    McClure, Christopher J W; Pauli, Benjamin P; Heath, Julie A

    2017-01-24

    Despite common use, the efficacy of artificial breeding sites (e.g., nest boxes, bat houses, artificial burrows) as tools for monitoring and managing animals depends on the demography of target populations and availability of natural sites. Yet, the conditions enabling artificial breeding sites to be useful or informative have yet to be articulated. We use a stochastic simulation model to determine situations where artificial breeding sites are either useful or disadvantageous for monitoring and managing animals. Artificial breeding sites are a convenient tool for monitoring animals and therefore occupancy of artificial breeding sites is often used as an index of population levels. However, systematic changes in availability of sites that are not monitored might induce trends in occupancy of monitored sites-a situation rarely considered by monitoring programs. We therefore examine how systematic changes in unmonitored sites could bias inference from trends in the occupancy of monitored sites. Our model also allows us to examine effects on population levels if artificial breeding sites either increase or decrease population vital rates (survival and fecundity). We demonstrate that trends in occupancy of monitored sites are misleading if the number of unmonitored sites changes over time. Further, breeding site fidelity can cause an initial lag in occupancy of newly installed sites that could be misinterpreted as an increasing population, even when the population has been continuously declining. Importantly, provisioning of artificial breeding sites only benefits populations if breeding sites are limiting or if artificial sites increase vital rates. There are many situations where installation of artificial breeding sites, and their use in monitoring, can have unintended consequences. Managers should therefore not assume that provision of artificial breeding sites will necessarily benefit populations. Further, trends in occupancy of artificial breeding sites should be

  4. Structural characterization of single nucleotide variants at ligand binding sites and enzyme active sites of human proteins

    PubMed Central

    Yamada, Kazunori D.; Nishi, Hafumi; Nakata, Junichi; Kinoshita, Kengo

    2016-01-01

    Functional sites on proteins play an important role in various molecular interactions and reactions between proteins and other molecules. Thus, mutations in functional sites can severely affect the overall phenotype. Progress of genome sequencing projects has yielded a wealth of information on single nucleotide variants (SNVs), especially those with less than 1% minor allele frequency (rare variants). To understand the functional influence of genetic variants at a protein level, we investigated the relationship between SNVs and protein functional sites in terms of minor allele frequency and the structural position of variants. As a result, we observed that SNVs were less abundant at ligand binding sites, which is consistent with a previous study on SNVs and protein interaction sites. Additionally, we found that non-rare variants tended to be located slightly apart from enzyme active sites. Examination of non-rare variants revealed that most of the mutations resulted in moderate changes of the physico-chemical properties of amino acids, suggesting the existence of functional constraints. In conclusion, this study shows that the mapping of genetic variants on protein structures could be a powerful approach to evaluate the functional impact of rare genetic variations. PMID:27924270

  5. Environmental proteomics reveals early microbial community responses to biostimulation at a uranium- and nitrate-contaminated site

    SciTech Connect

    Chourey, Karuna; Nissen, Silke; Vishnivetskaya, T.; Shah, Manesh B; Pffifner, Susan; Hettich, Robert {Bob} L; Loeffler, Frank E

    2013-01-01

    High performance mass spectrometry instrumentation coupled with improved protein extraction techniques enable metaproteomics to identify active members of soil and groundwater microbial communities. Metaproteomics workflows were applied to study the initial responses (i.e., 4 days post treatment) of the indigenous aquifer microbiota to biostimulation with emulsified vegetable oil (EVO) at a uranium-contaminated site. Members of the Betaproteobacteria (i.e., Dechloromonas, Ralstonia, Rhodoferax, Polaromonas, Delftia, Chromobacterium) and Firmicutes dominated the biostimulated aquifer community. Proteome characterization revealed distinct differences in protein expression between the microbial biomass collected from groundwater influenced by biostimulation and groundwater collected up-gradient of the EVO injection points. In particular, proteins involved in ammonium assimilation, EVO degradation, and polyhydroxybutyrate (PHB) granule formation were prominent following biostimulation. Interestingly, the atypical NosZ of a Dechloromonas sp. was highly expressed suggesting active nitrous oxide (N2O) respiration. c-type cytochromes were barely detected, as was citrate synthase, a biomarker for hexavalent uranium reduction activity, suggesting that metal reduction has not commenced 4 days post EVO delivery. Environmental metaproteomics identified microbial community responses to biostimulation and elucidated active pathways demonstrating the value of this technique for complementing nucleic acid-based approaches.

  6. Environmental proteomics reveals early microbial community responses to biostimulation at a uranium- and nitrate-contaminated site.

    PubMed

    Chourey, Karuna; Nissen, Silke; Vishnivetskaya, Tatiana; Shah, Manesh; Pfiffner, Susan; Hettich, Robert L; Löffler, Frank E

    2013-10-01

    High-performance MS instrumentation coupled with improved protein extraction techniques enables metaproteomics to identify active members of soil and groundwater microbial communities. Metaproteomics workflows were applied to study the initial responses (i.e. 4 days post treatment) of the indigenous aquifer microbiota to biostimulation with emulsified vegetable oil (EVO) at a uranium-contaminated site. Members of the Betaproteobacteria (i.e. Dechloromonas, Ralstonia, Rhodoferax, Polaromonas, Delftia, Chromobacterium) and the Firmicutes dominated the biostimulated aquifer community. Proteome characterization revealed distinct differences between the microbial biomass collected from groundwater influenced by biostimulation and groundwater collected upgradient of the EVO injection points. In particular, proteins involved in ammonium assimilation, EVO degradation, and polyhydroxybutyrate granule formation were prominent following biostimulation. Interestingly, the atypical NosZ of Dechloromonas spp. was highly abundant, suggesting active nitrous oxide (N2 O) respiration. c-Type cytochromes were barely detected, as was citrate synthase, a biomarker for hexavalent uranium reduction activity, suggesting that uranium reduction has not commenced 4 days post EVO amendment. Environmental metaproteomics identified microbial community responses to biostimulation and elucidated active pathways demonstrating the value of this technique as a monitoring tool and for complementing nucleic acid-based approaches.

  7. DNA fingerprinting reveals elevated mutation rates in herring gulls inhabiting a genotoxically contaminated site

    SciTech Connect

    Yauk, C.L.; Quinn, J.S.

    1995-12-31

    The authors used multi-locus DNA fingerprinting to examine families of herring gulls (Larus argentatus) from a genotoxically contaminated site (Hamilton Harbour) and from a pristine location (Kent Island, Bay of Fundy) to show significant differences in mutation rates between the locations. Overall the authors identified 17 mutant bands from 15 individuals of the 35 examined from Hamilton Harbour, and 7 mutant fragments from 7 individuals, of the 43 examined from Kent Island; a mutation frequency of 0.429 per nestling for Hamilton Harbour and 0.163 for Kent Island. The total number of individuals with mutant bands was significantly higher at Hamilton Harbour than at Kent Island (X{sup 2}=6.734; df = 1; P < 0.01). Ongoing analysis of other less contaminated sites also reveals lower mutation rates than those seen in Hamilton Harbour. With multi-locus DNA fingerprinting many regions of the genome can be surveyed simultaneously. The tandemly repeated arrays of nucleotides examined with DNA fingerprinting are known to have elevated rates of mutation. Furthermore, the mutations seen with DNA fingerprinting are predominantly heritable. Other biomarkers currently used in situ are not able to monitor direct and heritable DNA mutation, or measure biological endpoints that frequently result in spontaneous abortion creating difficulty in observing significantly elevated levels in viable offspring. The authors suggest that multilocus DNA fingerprinting can be used as a biomarker to identify potentially heritable risks before the onset of other types of ecological damage. This approach provides a direct measure of mutation in situ and in vivo in a vertebrate species under ambient conditions.

  8. A comprehensive immunoinformatics and target site study revealed the corner-stone toward Chikungunya virus treatment.

    PubMed

    Hasan, Md Anayet; Khan, Md Arif; Datta, Amit; Mazumder, Md Habibul Hasan; Hossain, Mohammad Uzzal

    2015-05-01

    Recent concerning facts of Chikungunya virus (CHIKV); a Togaviridae family alphavirus has proved this as a worldwide emerging threat which causes Chikungunya fever and devitalizing arthritis. Despite severe outbreaks and lack of antiviral drug, a mere progress has been made regarding to an epitope-based vaccine designed for CHIKV. In this study, we aimed to design an epitope-based vaccine that can trigger a significant immune response as well as to prognosticate inhibitor that can bind with potential drug target sites by using various immunoinformatics and docking simulation tools. Initially, whole proteome of CHIKV was retrieved from database and perused to identify the most immunogenic protein. Structural properties of the selected protein were analyzed. The capacity to induce both humoral and cell-mediated immunity by T cell and B cell were checked for the selected protein. The peptide region spanning 9 amino acids from 397 to 405 and the sequence YYYELYPTM were found as the most potential B cell and T cell epitopes respectively. This peptide could interact with as many as 19 HLAs and showed high population coverage ranging from 69.50% to 84.94%. By using in silico docking techniques the epitope was further assessed for binding against HLA molecules to verify the binding cleft interaction. In addition with this, the allergenicity of the epitopes was also evaluated. In the post therapeutic strategy, three dimensional structure was predicted along with validation and verification that resulted in molecular docking study to identify the potential drug binding sites and suitable therapeutic inhibitor against targeted protein. Finally, pharmacophore study was also performed in quest of seeing potent drug activity. However, this computational epitope-based peptide vaccine designing and target site prediction against CHIKV opens up a new horizon which may be the prospective way in Chikungunya virus research; the results require validation by in vitro and in vivo

  9. Site-directed spin labeling reveals a conformational switch in the phosphorylation domain of smooth muscle myosin.

    PubMed

    Nelson, Wendy D; Blakely, Sarah E; Nesmelov, Yuri E; Thomas, David D

    2005-03-15

    We have used site-directed spin labeling and EPR spectroscopy to detect structural changes within the regulatory light chain (RLC) of smooth muscle myosin upon phosphorylation. Smooth muscle contraction is activated by phosphorylation of S19 on RLC, but the structural basis of this process is unknown. There is no crystal structure containing a phosphorylated RLC, and there is no crystal structure for the N-terminal region of any RLC. Therefore, we have prepared single-Cys mutations throughout RLC, exchanged each mutant onto smooth muscle heavy meromyosin, verified normal regulatory function, and used EPR to determine dynamics and solvent accessibility at each site. A survey of spin-label sites throughout the RLC revealed that only the N-terminal region (first 24 aa) shows a significant change in dynamics upon phosphorylation, with most of the first 17 residues showing an increase in rotational amplitude. Therefore, we focused on this N-terminal region. Additional structural information was obtained from the pattern of oxygen accessibility along the sequence. In the absence of phosphorylation, little or no periodicity was observed, suggesting a lack of secondary structural order in this region. However, phosphorylation induced a strong helical pattern (3.6-residue periodicity) in the first 17 residues, while increasing accessibility throughout the first 24 residues. We have identified a domain within RLC, the N-terminal phosphorylation domain, in which phosphorylation increases helical order, internal dynamics, and accessibility. These results support a model in which this disorder-to-order transition within the phosphorylation domain results in decreased head-head interactions, activating myosin in smooth muscle.

  10. Active Interaction Mapping Reveals the Hierarchical Organization of Autophagy.

    PubMed

    Kramer, Michael H; Farré, Jean-Claude; Mitra, Koyel; Yu, Michael Ku; Ono, Keiichiro; Demchak, Barry; Licon, Katherine; Flagg, Mitchell; Balakrishnan, Rama; Cherry, J Michael; Subramani, Suresh; Ideker, Trey

    2017-02-16

    We have developed a general progressive procedure, Active Interaction Mapping, to guide assembly of the hierarchy of functions encoding any biological system. Using this process, we assemble an ontology of functions comprising autophagy, a central recycling process implicated in numerous diseases. A first-generation model, built from existing gene networks in Saccharomyces, captures most known autophagy components in broad relation to vesicle transport, cell cycle, and stress response. Systematic analysis identifies synthetic-lethal interactions as most informative for further experiments; consequently, we saturate the model with 156,364 such measurements across autophagy-activating conditions. These targeted interactions provide more information about autophagy than all previous datasets, producing a second-generation ontology of 220 functions. Approximately half are previously unknown; we confirm roles for Gyp1 at the phagophore-assembly site, Atg24 in cargo engulfment, Atg26 in cytoplasm-to-vacuole targeting, and Ssd1, Did4, and others in selective and non-selective autophagy. The procedure and autophagy hierarchy are at http://atgo.ucsd.edu/.

  11. Single molecule analysis reveals reversible and irreversible steps during spliceosome activation

    PubMed Central

    Hoskins, Aaron A; Rodgers, Margaret L; Friedman, Larry J; Gelles, Jeff; Moore, Melissa J

    2016-01-01

    The spliceosome is a complex machine composed of small nuclear ribonucleoproteins (snRNPs) and accessory proteins that excises introns from pre-mRNAs. After assembly the spliceosome is activated for catalysis by rearrangement of subunits to form an active site. How this rearrangement is coordinated is not well-understood. During activation, U4 must be released to allow U6 conformational change, while Prp19 complex (NTC) recruitment is essential for stabilizing the active site. We used multi-wavelength colocalization single molecule spectroscopy to directly observe the key events in Saccharomyces cerevisiae spliceosome activation. Following binding of the U4/U6.U5 tri-snRNP, the spliceosome either reverses assembly by discarding tri-snRNP or proceeds to activation by irreversible U4 loss. The major pathway for NTC recruitment occurs after U4 release. ATP stimulates both the competing U4 release and tri-snRNP discard processes. The data reveal the activation mechanism and show that overall splicing efficiency may be maintained through repeated rounds of disassembly and tri-snRNP reassociation. DOI: http://dx.doi.org/10.7554/eLife.14166.001 PMID:27244240

  12. Covert Waking Brain Activity Reveals Instantaneous Sleep Depth

    PubMed Central

    McKinney, Scott M.; Dang-Vu, Thien Thanh; Buxton, Orfeu M.; Solet, Jo M.; Ellenbogen, Jeffrey M.

    2011-01-01

    The neural correlates of the wake-sleep continuum remain incompletely understood, limiting the development of adaptive drug delivery systems for promoting sleep maintenance. The most useful measure for resolving early positions along this continuum is the alpha oscillation, an 8–13 Hz electroencephalographic rhythm prominent over posterior scalp locations. The brain activation signature of wakefulness, alpha expression discloses immediate levels of alertness and dissipates in concert with fading awareness as sleep begins. This brain activity pattern, however, is largely ignored once sleep begins. Here we show that the intensity of spectral power in the alpha band actually continues to disclose instantaneous responsiveness to noise—a measure of sleep depth—throughout a night of sleep. By systematically challenging sleep with realistic and varied acoustic disruption, we found that sleepers exhibited markedly greater sensitivity to sounds during moments of elevated alpha expression. This result demonstrates that alpha power is not a binary marker of the transition between sleep and wakefulness, but carries rich information about immediate sleep stability. Further, it shows that an empirical and ecologically relevant form of sleep depth is revealed in real-time by EEG spectral content in the alpha band, a measure that affords prediction on the order of minutes. This signal, which transcends the boundaries of classical sleep stages, could potentially be used for real-time feedback to novel, adaptive drug delivery systems for inducing sleep. PMID:21408616

  13. Difference Between Dormant Conduction Sites Revealed by Adenosine Triphosphate Provocation and Unipolar Pace-Capture Sites Along the Ablation Line After Pulmonary Vein Isolation.

    PubMed

    Kogawa, Rikitake; Okumura, Yasuo; Watanabe, Ichiro; Sonoda, Kazumasa; Sasaki, Naoko; Takahashi, Keiko; Iso, Kazuki; Nagashima, Koichi; Ohkubo, Kimie; Nakai, Toshiko; Kunimoto, Satoshi; Hirayama, Atsushi

    2016-01-01

    Dormant pulmonary vein (PV) conduction revealed by adenosine/adenosine triphosphate (ATP) provocation test and exit block to the left atrium by pacing from the PV side of the ablation line ("pace and ablate" method) are used to ensure durable pulmonary vein isolation (PVI). However, the mechanistic relation between ATP-provoked PV reconnection and the unexcitable gap along the ablation line is unclear.Forty-five patients with atrial fibrillation (AF) (paroxysmal: 31 patients, persistent: 14 patients; age: 61.1 ± 9.7 years) underwent extensive encircling PVI (EEPVI, 179 PVs). After completion of EEPVI, an ATP provocation test (30 mg, bolus injection) and unipolar pacing (output, 10 mA; pulse width, 2 ms) were performed along the previous EEPVI ablation line to identify excitable gaps. Dormant conduction was revealed in 29 (34 sites) of 179 PVs (16.2%) after EEP-VI (22/45 patients). Pace capture was revealed in 59 (89 sites) of 179 PVs (33.0%) after EEPVI (39/45 patients), and overlapping sites, ie, sites showing both dormant conduction and pace capture, were observed in 22 of 179 (12.3%) PVs (17/45 patients).Some of the ATP-provoked dormant PV reconnection sites were identical to the sites with excitable gaps revealed by pace capture, but most of the PV sites were differently distributed, suggesting that the main underling mechanism differs between these two forms of reconnection. These findings also suggest that performance of the ATP provocation test followed by the "pace and ablate" method can reduce the occurrence of chronic PV reconnections.

  14. Molecular dynamics explorations of active site structure in designed and evolved enzymes.

    PubMed

    Osuna, Sílvia; Jiménez-Osés, Gonzalo; Noey, Elizabeth L; Houk, K N

    2015-04-21

    This Account describes the use of molecular dynamics (MD) simulations to reveal how mutations alter the structure and organization of enzyme active sites. As proposed by Pauling about 70 years ago and elaborated by many others since then, biocatalysis is efficient when functional groups in the active site of an enzyme are in optimal positions for transition state stabilization. Changes in mechanism and covalent interactions are often critical parts of enzyme catalysis. We describe our explorations of the dynamical preorganization of active sites using MD, studying the fluctuations between active and inactive conformations normally concealed to static crystallography. MD shows how the various arrangements of active site residues influence the free energy of the transition state and relates the populations of the catalytic conformational ensemble to the enzyme activity. This Account is organized around three case studies from our laboratory. We first describe the importance of dynamics in evaluating a series of computationally designed and experimentally evolved enzymes for the Kemp elimination, a popular subject in the enzyme design field. We find that the dynamics of the active site is influenced not only by the original sequence design and subsequent mutations but also by the nature of the ligand present in the active site. In the second example, we show how microsecond MD has been used to uncover the role of remote mutations in the active site dynamics and catalysis of a transesterase, LovD. This enzyme was evolved by Tang at UCLA and Codexis, Inc., and is a useful commercial catalyst for the production of the drug simvastatin. X-ray analysis of inactive and active mutants did not reveal differences in the active sites, but relatively long time scale MD in solution showed that the active site of the wild-type enzyme preorganizes only upon binding of the acyl carrier protein (ACP) that delivers the natural acyl group to the active site. In the absence of bound ACP

  15. Conserved Hydration Sites in Pin1 Reveal a Distinctive Water Recognition Motif in Proteins.

    PubMed

    Barman, Arghya; Smitherman, Crystal; Souffrant, Michael; Gadda, Giovanni; Hamelberg, Donald

    2016-01-25

    Structurally conserved water molecules are important for biomolecular stability, flexibility, and function. X-ray crystallographic studies of Pin1 have resolved a number of water molecules around the enzyme, including two highly conserved water molecules within the protein. The functional role of these localized water molecules remains unknown and unexplored. Pin1 catalyzes cis/trans isomerizations of peptidyl prolyl bonds that are preceded by a phosphorylated serine or threonine residue. Pin1 is involved in many subcellular signaling processes and is a potential therapeutic target for the treatment of several life threatening diseases. Here, we investigate the significance of these structurally conserved water molecules in the catalytic domain of Pin1 using molecular dynamics (MD) simulations, free energy calculations, analysis of X-ray crystal structures, and circular dichroism (CD) experiments. MD simulations and free energy calculations suggest the tighter binding water molecule plays a crucial role in maintaining the integrity and stability of a critical hydrogen-bonding network in the active site. The second water molecule is exchangeable with bulk solvent and is found in a distinctive helix-turn-coil motif. Structural bioinformatics analysis of nonredundant X-ray crystallographic protein structures in the Protein Data Bank (PDB) suggest this motif is present in several other proteins and can act as a water site, akin to the calcium EF hand. CD experiments suggest the isolated motif is in a distorted PII conformation and requires the protein environment to fully form the α-helix-turn-coil motif. This study provides valuable insights into the role of hydration in the structural integrity of Pin1 that can be exploited in protein engineering and drug design.

  16. Promoter-proximal polyadenylation sites reduce transcription activity

    PubMed Central

    Andersen, Pia K.; Lykke-Andersen, Søren; Jensen, Torben Heick

    2012-01-01

    Gene expression relies on the functional communication between mRNA processing and transcription. We previously described the negative impact of a point-mutated splice donor (SD) site on transcription. Here we demonstrate that this mutation activates an upstream cryptic polyadenylation (CpA) site, which in turn causes reduced transcription. Functional depletion of U1 snRNP in the context of the wild-type SD triggers the same CpA event accompanied by decreased RNA levels. Thus, in accordance with recent findings, U1 snRNP can shield premature pA sites. The negative impact of unshielded pA sites on transcription requires promoter proximity, as demonstrated using artificial constructs and supported by a genome-wide data set. Importantly, transcription down-regulation can be recapitulated in a gene context devoid of splice sites by placing a functional bona fide pA site/transcription terminator within ∼500 base pairs of the promoter. In contrast, promoter-proximal positioning of a pA site-independent histone gene terminator supports high transcription levels. We propose that optimal communication between a pA site-dependent gene terminator and its promoter critically depends on gene length and that short RNA polymerase II-transcribed genes use specialized termination mechanisms to maintain high transcription levels. PMID:23028143

  17. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    PubMed

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined.

  18. Active Sites Environmental Monitoring Program: Mid-FY 1991 report

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1991-10-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1990 through March 1991. The ASEMP was established in 1989 by Solid Waste Operations and the Environmental Sciences Division to provide early detection and performance monitoring at active low-level radioactive waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. Monitoring results continue to demonstrate the no LLW is being leached from the storage vaults on the tumulus pads. Loading of vaults on Tumulus II began during this reporting period and 115 vaults had been loaded by the end of March 1991.

  19. Structure-activity relationships in carbohydrates revealed by their hydration.

    PubMed

    Maugeri, Laura; Busch, Sebastian; McLain, Sylvia E; Pardo, Luis Carlos; Bruni, Fabio; Ricci, Maria Antonietta

    2016-12-21

    One of the more intriguing aspects of carbohydrate chemistry is that despite having very similar molecular structures, sugars have very different properties. For instance, there is a sensible difference in sweet taste between glucose and trehalose, even though trehalose is a disaccharide that comprised two glucose units, suggesting a different ability of these two carbohydrates to bind to sweet receptors. Here we have looked at the hydration of specific sites and at the three-dimensional configuration of water molecules around three carbohydrates (glucose, cellobiose, and trehalose), combining neutron diffraction data with computer modelling. Results indicate that identical chemical groups can have radically different hydration patterns depending on their location on a given molecule. These differences can be linked with the specific activity of glucose, cellobiose, and trehalose as a sweet substance, as building block of cellulose fiber, and as a bioprotective agent, respectively. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editors: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.

  20. Active and regulatory sites of cytosolic 5'-nucleotidase.

    PubMed

    Pesi, Rossana; Allegrini, Simone; Careddu, Maria Giovanna; Filoni, Daniela Nicole; Camici, Marcella; Tozzi, Maria Grazia

    2010-12-01

    Cytosolic 5'-nucleotidase (cN-II), which acts preferentially on 6-hydroxypurine nucleotides, is essential for the survival of several cell types. cN-II catalyses both the hydrolysis of nucleotides and transfer of their phosphate moiety to a nucleoside acceptor through formation of a covalent phospho-intermediate. Both activities are regulated by a number of phosphorylated compounds, such as diadenosine tetraphosphate (Ap₄A), ADP, ATP, 2,3-bisphosphoglycerate (BPG) and phosphate. On the basis of a partial crystal structure of cN-II, we mutated two residues located in the active site, Y55 and T56. We ascertained that the ability to catalyse the transfer of phosphate depends on the presence of a bulky residue in the active site very close to the aspartate residue that forms the covalent phospho-intermediate. The molecular model indicates two possible sites at which adenylic compounds may interact. We mutated three residues that mediate interaction in the first activation site (R144, N154, I152) and three in the second (F127, M436 and H428), and found that Ap₄A and ADP interact with the same site, but the sites for ATP and BPG remain uncertain. The structural model indicates that cN-II is a homotetrameric protein that results from interaction through a specific interface B of two identical dimers that have arisen from interaction of two identical subunits through interface A. Point mutations in the two interfaces and gel-filtration experiments indicated that the dimer is the smallest active oligomerization state. Finally, gel-filtration and light-scattering experiments demonstrated that the native enzyme exists as a tetramer, and no further oligomerization is required for enzyme activation.

  1. Crystal structure of plant ferritin reveals a novel metal binding site that functions as a transit site for metal transfer in ferritin.

    PubMed

    Masuda, Taro; Goto, Fumiyuki; Yoshihara, Toshihiro; Mikami, Bunzo

    2010-02-05

    Ferritins are important iron storage and detoxification proteins that are widely distributed in living kingdoms. Because plant ferritin possesses both a ferroxidase site and a ferrihydrite nucleation site, it is a suitable model for studying the mechanism of iron storage in ferritin. This article presents for the first time the crystal structure of a plant ferritin from soybean at 1.8-A resolution. The soybean ferritin 4 (SFER4) had a high structural similarity to vertebrate ferritin, except for the N-terminal extension region, the C-terminal short helix E, and the end of the BC-loop. Similar to the crystal structures of other ferritins, metal binding sites were observed in the iron entry channel, ferroxidase center, and nucleation site of SFER4. In addition to these conventional sites, a novel metal binding site was discovered intermediate between the iron entry channel and the ferroxidase site. This site was coordinated by the acidic side chain of Glu(173) and carbonyl oxygen of Thr(168), which correspond, respectively, to Glu(140) and Thr(135) of human H chain ferritin according to their sequences. A comparison of the ferroxidase activities of the native and the E173A mutant of SFER4 clearly showed a delay in the iron oxidation rate of the mutant. This indicated that the glutamate residue functions as a transit site of iron from the 3-fold entry channel to the ferroxidase site, which may be universal among ferritins.

  2. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate.

    PubMed

    Johnson, Joseph L; Cusack, Bernadette; Davies, Matthew P; Fauq, Abdul; Rosenberry, Terrone L

    2003-05-13

    Acetylcholinesterase (AChE) contains a narrow and deep active site gorge with two sites of ligand binding, an acylation site (or A-site) at the base of the gorge, and a peripheral site (or P-site) near the gorge entrance. The P-site contributes to catalytic efficiency by transiently binding substrates on their way to the acylation site, where a short-lived acyl enzyme intermediate is produced. A conformational interaction between the A- and P-sites has recently been found to modulate ligand affinities. We now demonstrate that this interaction is of functional importance by showing that the acetylation rate constant of a substrate bound to the A-site is increased by a factor a when a second molecule of substrate binds to the P-site. This demonstration became feasible through the introduction of a new acetanilide substrate analogue of acetylcholine, 3-(acetamido)-N,N,N-trimethylanilinium (ATMA), for which a = 4. This substrate has a low acetylation rate constant and equilibrates with the catalytic site, allowing a tractable algebraic solution to the rate equation for substrate hydrolysis. ATMA affinities for the A- and P-sites deduced from the kinetic analysis were confirmed by fluorescence titration with thioflavin T as a reporter ligand. Values of a >1 give rise to a hydrolysis profile called substrate activation, and the AChE site-specific mutant W86F, and to a lesser extent wild-type human AChE itself, showed substrate activation with acetylthiocholine as the substrate. Substrate activation was incorporated into a previous catalytic scheme for AChE in which a bound P-site ligand can also block product dissociation from the A-site, and two additional features of the AChE catalytic pathway were revealed. First, the ability of a bound P-site ligand to increase the substrate acetylation rate constant varied with the structure of the ligand: thioflavin T accelerated ATMA acetylation by a factor a(2) of 1.3, while propidium failed to accelerate. Second, catalytic rate

  3. BAX Activation is Initiated at a Novel Interaction Site

    PubMed Central

    Gavathiotis, Evripidis; Suzuki, Motoshi; Davis, Marguerite L.; Pitter, Kenneth; Bird, Gregory H.; Katz, Samuel G.; Tu, Ho-Chou; Kim, Hyungjin; Cheng, Emily H.-Y.; Tjandra, Nico; Walensky, Loren D.

    2008-01-01

    BAX is a pro-apoptotic protein of the BCL-2 family stationed in the cytosol until activated by a diversity of stress stimuli to induce cell death. Anti-apoptotic proteins such as BCL-2 counteract BAX-mediated cell death. Although an interaction site that confers survival functionality has been defined for anti-apoptotic proteins, an activation site has not been identified for BAX, rendering its explicit trigger mechanism unknown. We previously developed Stabilized Alpha-Helix of BCL-2 domains (SAHBs) that directly initiate BAX-mediated mitochondrial apoptosis. Here we demonstrate by NMR analysis that BIM SAHB binds BAX at an interaction site that is distinct from the canonical binding groove characterized for anti-apoptotic proteins. The specificity of the BIM SAHB-BAX interaction is highlighted by point mutagenesis that abrogates functional activity, confirming that BAX activation is initiated at this novel structural location. Thus, we have now defined a BAX interaction site for direct activation, establishing a new target for therapeutic modulation of apoptosis. PMID:18948948

  4. Cassava root membrane proteome reveals activities during storage root maturation.

    PubMed

    Naconsie, Maliwan; Lertpanyasampatha, Manassawe; Viboonjun, Unchera; Netrphan, Supatcharee; Kuwano, Masayoshi; Ogasawara, Naotake; Narangajavana, Jarunya

    2016-01-01

    Cassava (Manihot esculenta Crantz) is one of the most important crops of Thailand. Its storage roots are used as food, feed, starch production, and be the important source for biofuel and biodegradable plastic production. Despite the importance of cassava storage roots, little is known about the mechanisms involved in their formation. This present study has focused on comparison of the expression profiles of cassava root proteome at various developmental stages using two-dimensional gel electrophoresis and LC-MS/MS. Based on an anatomical study using Toluidine Blue, the secondary growth was confirmed to be essential during the development of cassava storage root. To investigate biochemical processes occurring during storage root maturation, soluble and membrane proteins were isolated from storage roots harvested from 3-, 6-, 9-, and 12-month-old cassava plants. The proteins with differential expression pattern were analysed and identified to be associated with 8 functional groups: protein folding and degradation, energy, metabolism, secondary metabolism, stress response, transport facilitation, cytoskeleton, and unclassified function. The expression profiling of membrane proteins revealed the proteins involved in protein folding and degradation, energy, and cell structure were highly expressed during early stages of development. Integration of these data along with the information available in genome and transcriptome databases is critical to expand knowledge obtained solely from the field of proteomics. Possible role of identified proteins were discussed in relation with the activities during storage root maturation in cassava.

  5. Site-Directed Spin Labeling Reveals Pentameric Ligand-Gated Ion Channel Gating Motions

    PubMed Central

    Dellisanti, Cosma D.; Ghosh, Borna; Hanson, Susan M.; Raspanti, James M.; Grant, Valerie A.; Diarra, Gaoussou M.; Schuh, Abby M.; Satyshur, Kenneth; Klug, Candice S.; Czajkowski, Cynthia

    2013-01-01

    Pentameric ligand-gated ion channels (pLGICs) are neurotransmitter-activated receptors that mediate fast synaptic transmission. In pLGICs, binding of agonist to the extracellular domain triggers a structural rearrangement that leads to the opening of an ion-conducting pore in the transmembrane domain and, in the continued presence of neurotransmitter, the channels desensitize (close). The flexible loops in each subunit that connect the extracellular binding domain (loops 2, 7, and 9) to the transmembrane channel domain (M2–M3 loop) are essential for coupling ligand binding to channel gating. Comparing the crystal structures of two bacterial pLGIC homologues, ELIC and the proton-activated GLIC, suggests channel gating is associated with rearrangements in these loops, but whether these motions accurately predict the motions in functional lipid-embedded pLGICs is unknown. Here, using site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy and functional GLIC channels reconstituted into liposomes, we examined if, and how far, the loops at the ECD/TMD gating interface move during proton-dependent gating transitions from the resting to desensitized state. Loop 9 moves ∼9 Å inward toward the channel lumen in response to proton-induced desensitization. Loop 9 motions were not observed when GLIC was in detergent micelles, suggesting detergent solubilization traps the protein in a nonactivatable state and lipids are required for functional gating transitions. Proton-induced desensitization immobilizes loop 2 with little change in position. Proton-induced motion of the M2–M3 loop was not observed, suggesting its conformation is nearly identical in closed and desensitized states. Our experimentally derived distance measurements of spin-labeled GLIC suggest ELIC is not a good model for the functional resting state of GLIC, and that the crystal structure of GLIC does not correspond to a desensitized state. These findings advance our

  6. The three Mycobacterium tuberculosis antigen 85 isoforms have unique substrates and activities determined by non-active site regions.

    PubMed

    Backus, Keriann M; Dolan, Michael A; Barry, Conor S; Joe, Maju; McPhie, Peter; Boshoff, Helena I M; Lowary, Todd L; Davis, Benjamin G; Barry, Clifton E

    2014-09-05

    The three isoforms of antigen 85 (A, B, and C) are the most abundant secreted mycobacterial proteins and catalyze transesterification reactions that synthesize mycolated arabinogalactan, trehalose monomycolate (TMM), and trehalose dimycolate (TDM), important constituents of the outermost layer of the cellular envelope of Mycobacterium tuberculosis. These three enzymes are nearly identical at the active site and have therefore been postulated to exist to evade host immunity. Distal to the active site is a second putative carbohydrate-binding site of lower homology. Mutagenesis of the three isoforms at this second site affected both substrate selectivity and overall catalytic activity in vitro. Using synthetic and natural substrates, we show that these three enzymes exhibit unique selectivity; antigen 85A more efficiently mycolates TMM to form TDM, whereas C (and to a lesser extent B) has a higher rate of activity using free trehalose to form TMM. This difference in substrate selectivity extends to the hexasaccharide fragment of cell wall arabinan. Mutation of secondary site residues from the most active isoform (C) into those present in A or B partially interconverts this substrate selectivity. These experiments in combination with molecular dynamics simulations reveal that differences in the N-terminal helix α9, the adjacent Pro(216)-Phe(228) loop, and helix α5 are the likely cause of changes in activity and substrate selectivity. These differences explain the existence of three isoforms and will allow for future work in developing inhibitors.

  7. Resonant active sites in catalytic ammonia synthesis: A structural model

    NASA Astrophysics Data System (ADS)

    Cholach, Alexander R.; Bryliakova, Anna A.; Matveev, Andrey V.; Bulgakov, Nikolai N.

    2016-03-01

    Adsorption sites Mn consisted of n adjacent atoms M, each bound to the adsorbed species, are considered within a realistic model. The sum of bonds Σ lost by atoms in a site in comparison with the bulk atoms was used for evaluation of the local surface imperfection, while the reaction enthalpy at that site was used as a measure of activity. The comparative study of Mn sites (n = 1-5) at basal planes of Pt, Rh, Ir, Fe, Re and Ru with respect to heat of N2 dissociative adsorption QN and heat of Nad + Had → NHad reaction QNH was performed using semi-empirical calculations. Linear QN(Σ) increase and QNH(Σ) decrease allowed to specify the resonant Σ for each surface in catalytic ammonia synthesis at equilibrium Nad coverage. Optimal Σ are realizable for Ru2, Re2 and Ir4 only, whereas other centers meet steric inhibition or unreal crystal structure. Relative activity of the most active sites in proportion 5.0 × 10- 5: 4.5 × 10- 3: 1: 2.5: 3.0: 1080: 2270 for a sequence of Pt4, Rh4, Fe4(fcc), Ir4, Fe2-5(bcc), Ru2, Re2, respectively, is in agreement with relevant experimental data. Similar approach can be applied to other adsorption or catalytic processes exhibiting structure sensitivity.

  8. Analysis of a DNase I-hypersensitive site in transgenic Drosophila reveals a key regulatory element of Sgs3.

    PubMed Central

    Ramain, P; Giangrande, A; Richards, G; Bellard, M

    1988-01-01

    We have undertaken chromatin studies on transformed Drosophila strains carrying DNA sequences modified in the region of the DNase I (EC 3.1.4.5)-hypersensitive sites -750 and -600 base pairs upstream from the Sgs3 start site. Although both sites are developmentally specific, modifications in the -750 site have little or no effect on Sgs3-encoded transcript levels, whereas either deletion or replacement of sequences at the -600 site causes an important reduction in transcript levels. The element associated with the -600 site enhances Sgs3 transcription when displaced with respect to the start site. This combined approach has defined sequence elements necessary both for normal transcript levels as well as the chromatin structure characteristic of Sgs3 activity in vivo. Images PMID:3128796

  9. Chemical Modification of Papain and Subtilisin: An Active Site Comparison

    ERIC Educational Resources Information Center

    St-Vincent, Mireille; Dickman, Michael

    2004-01-01

    An experiment using methyle methanethiosulfonate (MMTS) and phenylmethylsulfonyl flouride (PMSF) to specifically modify the cysteine and serine residues in the active sites of papain and subtilism respectively is demonstrated. The covalent modification of these enzymes and subsequent rescue of papain shows the beginning biochemist that proteins…

  10. Spectroscopic studies of the active site of galactose oxidase

    SciTech Connect

    Knowles, P.F.; Brown, R.D. III; Koenig, S.H.

    1995-07-19

    X-ray absorption and EPR spectroscopy have been used to probe the copper site structure in galactose oxidase at pH 4.5 and 7.0. the results suggest that there are no major differences in the structure of the tetragonal Cu(II) site at these pH values. Analysis of the extended X-ray absorption fine structure (EXAFS) indicates that four N,O scatterers are present at approximately 2 {Angstrom}; these are presumably the equatorial ligands. In addition, the EXAFS data establish that oxidative activation to produce the active-site tyrosine radical does not cause major changes in the copper coordination environment. Therefore results obtained on the one-electron reduced enzyme, containing Cu(II) but not the tyrosine radical, probably also apply to the catalytically active Cu(II)/tyrosine radical state. Solvent water exchange, inhibitor binding, and substrate binding have been probed via nuclear magnetic relaxation dispersion (NMRD) measurements. The NMRD profile of galactose oxidase is quantitatively consistent with the rapid exchange of a single, equatorial water ligand with a Cu(II)-O separation of about 2.4 {Angstrom}. Azide and cyanide displace this coordinated water. The binding of azide and the substrate dihydroxyacetone produce very similar effects on the NMRD profile of galactose oxidase, indicating that substrates also bind to the active site Cu(II) in an equatorial position.

  11. Energy transfer at the active sites of heme proteins

    SciTech Connect

    Dlott, D.D.; Hill, J.R.

    1995-12-31

    Experiments using a picosecond pump-probe apparatus at the Picosecond Free-electron Laser Center at Stanford University, were performed to investigate the relaxation of carbon monoxide bound to the active sites of heme proteins. The significance of these experiments is two-fold: (1) they provide detailed information about molecular dynamics occurring at the active sites of proteins; and (2) they provide insight into the nature of vibrational relaxation processes in condensed matter. Molecular engineering is used to construct various molecular systems which are studied with the FEL. We have studied native proteins, mainly myoglobin obtained from different species, mutant proteins produced by genetic engineering using recombinant DNA techniques, and a variety of model systems which mimic the structures of the active sites of native proteins, which are produced using molecular synthesis. Use of these different systems permits us to investigate how specific molecular structural changes affect dynamical processes occurring at the active sites. This research provides insight into the problems of how different species needs are fulfilled by heme proteins which have greatly different functionality, which is induced by rather small structural changes.

  12. Evolution of anatase surface active sites probed by in situ sum-frequency phonon spectroscopy.

    PubMed

    Cao, Yue; Chen, Shiyou; Li, Yadong; Gao, Yi; Yang, Deheng; Shen, Yuen Ron; Liu, Wei-Tao

    2016-09-01

    Surface active sites of crystals often govern their relevant surface chemistry, yet to monitor them in situ in real atmosphere remains a challenge. Using surface-specific sum-frequency spectroscopy, we identified the surface phonon mode associated with the active sites of undercoordinated titanium ions and conjoint oxygen vacancies, and used it to monitor them on anatase (TiO2) (101) under ambient conditions. In conjunction with theory, we determined related surface structure around the active sites and tracked the evolution of oxygen vacancies under ultraviolet irradiation. We further found that unlike in vacuum, the surface oxygen vacancies, which dominate the surface reactivity, are strongly regulated by ambient gas molecules, including methanol and water, as well as weakly associated species, such as nitrogen and hydrogen. The result revealed a rich interplay between prevailing ambient species and surface reactivity, which can be omnipresent in environmental and catalytic applications of titanium dioxides.

  13. Evolution of anatase surface active sites probed by in situ sum-frequency phonon spectroscopy

    PubMed Central

    Cao, Yue; Chen, Shiyou; Li, Yadong; Gao, Yi; Yang, Deheng; Shen, Yuen Ron; Liu, Wei-Tao

    2016-01-01

    Surface active sites of crystals often govern their relevant surface chemistry, yet to monitor them in situ in real atmosphere remains a challenge. Using surface-specific sum-frequency spectroscopy, we identified the surface phonon mode associated with the active sites of undercoordinated titanium ions and conjoint oxygen vacancies, and used it to monitor them on anatase (TiO2) (101) under ambient conditions. In conjunction with theory, we determined related surface structure around the active sites and tracked the evolution of oxygen vacancies under ultraviolet irradiation. We further found that unlike in vacuum, the surface oxygen vacancies, which dominate the surface reactivity, are strongly regulated by ambient gas molecules, including methanol and water, as well as weakly associated species, such as nitrogen and hydrogen. The result revealed a rich interplay between prevailing ambient species and surface reactivity, which can be omnipresent in environmental and catalytic applications of titanium dioxides. PMID:27704049

  14. Whole Genome Resequencing Reveals Natural Target Site Preferences of Transposable Elements in Drosophila melanogaster

    PubMed Central

    Linheiro, Raquel S.; Bergman, Casey M.

    2012-01-01

    Transposable elements are mobile DNA sequences that integrate into host genomes using diverse mechanisms with varying degrees of target site specificity. While the target site preferences of some engineered transposable elements are well studied, the natural target preferences of most transposable elements are poorly characterized. Using population genomic resequencing data from 166 strains of Drosophila melanogaster, we identified over 8,000 new insertion sites not present in the reference genome sequence that we used to decode the natural target preferences of 22 families of transposable element in this species. We found that terminal inverted repeat transposon and long terminal repeat retrotransposon families present clade-specific target site duplications and target site sequence motifs. Additionally, we found that the sequence motifs at transposable element target sites are always palindromes that extend beyond the target site duplication. Our results demonstrate the utility of population genomics data for high-throughput inference of transposable element targeting preferences in the wild and establish general rules for terminal inverted repeat transposon and long terminal repeat retrotransposon target site selection in eukaryotic genomes. PMID:22347367

  15. Activation of phenylalanine hydroxylase by phenylalanine does not require binding in the active site.

    PubMed

    Roberts, Kenneth M; Khan, Crystal A; Hinck, Cynthia S; Fitzpatrick, Paul F

    2014-12-16

    Phenylalanine hydroxylase (PheH), a liver enzyme that catalyzes the hydroxylation of excess phenylalanine in the diet to tyrosine, is activated by phenylalanine. The lack of activity at low levels of phenylalanine has been attributed to the N-terminus of the protein's regulatory domain acting as an inhibitory peptide by blocking substrate access to the active site. The location of the site at which phenylalanine binds to activate the enzyme is unknown, and both the active site in the catalytic domain and a separate site in the N-terminal regulatory domain have been proposed. Binding of catecholamines to the active-site iron was used to probe the accessibility of the active site. Removal of the regulatory domain increases the rate constants for association of several catecholamines with the wild-type enzyme by ∼2-fold. Binding of phenylalanine in the active site is effectively abolished by mutating the active-site residue Arg270 to lysine. The k(cat)/K(phe) value is down 10⁴ for the mutant enzyme, and the K(m) value for phenylalanine for the mutant enzyme is >0.5 M. Incubation of the R270K enzyme with phenylalanine also results in a 2-fold increase in the rate constants for catecholamine binding. The change in the tryptophan fluorescence emission spectrum seen in the wild-type enzyme upon activation by phenylalanine is also seen with the R270K mutant enzyme in the presence of phenylalanine. Both results establish that activation of PheH by phenylalanine does not require binding of the amino acid in the active site. This is consistent with a separate allosteric site, likely in the regulatory domain.

  16. Site-directed mutagenesis of a tetrameric dandelion polyphenol oxidase (PPO-6) reveals the site of subunit interaction.

    PubMed

    Dirks-Hofmeister, Mareike E; Inlow, Jennifer K; Moerschbacher, Bruno M

    2012-09-01

    Polyphenol oxidases (PPOs) catalyze the oxidation of ortho-diphenols to the corresponding quinones (EC 1.10.3.1). In plants PPOs appear in gene families, and the corresponding isoenzymes are located to the thylakoid lumen of chloroplasts. Although plant PPOs are often discussed with regard to their role in defense reactions, a common physiological function has not yet been defined. We analyzed a tetrameric PPO isoenzyme (PPO-6) from dandelion (Taraxacum officinale) heterologously expressed in Escherichia coli, and found it to display cooperativity in catalysis, a phenomenon that has rarely been shown for plant PPOs previously. The identification of a surface-exposed cysteine (197) through molecular modeling followed by site-directed mutagenesis proved this amino acid residue to stabilize the tetramer via a disulfide linkage. The C197S-mutein still forms a tetrameric structure but shows impaired enzymatic efficiency and cooperativity and a reduction in stability. These findings indicate that oligomerization may be a physiological requirement for PPO-6 stability and function in vivo and raise new questions regarding distinct functions for specific PPO isoenzymes in plants.

  17. Structural snapshots of Xer recombination reveal activation by synaptic complex remodeling and DNA bending

    PubMed Central

    Bebel, Aleksandra; Karaca, Ezgi; Kumar, Banushree; Stark, W Marshall; Barabas, Orsolya

    2016-01-01

    Bacterial Xer site-specific recombinases play an essential genome maintenance role by unlinking chromosome multimers, but their mechanism of action has remained structurally uncharacterized. Here, we present two high-resolution structures of Helicobacter pylori XerH with its recombination site DNA difH, representing pre-cleavage and post-cleavage synaptic intermediates in the recombination pathway. The structures reveal that activation of DNA strand cleavage and rejoining involves large conformational changes and DNA bending, suggesting how interaction with the cell division protein FtsK may license recombination at the septum. Together with biochemical and in vivo analysis, our structures also reveal how a small sequence asymmetry in difH defines protein conformation in the synaptic complex and orchestrates the order of DNA strand exchanges. Our results provide insights into the catalytic mechanism of Xer recombination and a model for regulation of recombination activity during cell division. DOI: http://dx.doi.org/10.7554/eLife.19706.001 PMID:28009253

  18. Changes in active site histidine hydrogen bonding trigger cryptochrome activation.

    PubMed

    Ganguly, Abir; Manahan, Craig C; Top, Deniz; Yee, Estella F; Lin, Changfan; Young, Michael W; Thiel, Walter; Crane, Brian R

    2016-09-06

    Cryptochrome (CRY) is the principal light sensor of the insect circadian clock. Photoreduction of the Drosophila CRY (dCRY) flavin cofactor to the anionic semiquinone (ASQ) restructures a C-terminal tail helix (CTT) that otherwise inhibits interactions with targets that include the clock protein Timeless (TIM). All-atom molecular dynamics (MD) simulations indicate that flavin reduction destabilizes the CTT, which undergoes large-scale conformational changes (the CTT release) on short (25 ns) timescales. The CTT release correlates with the conformation and protonation state of conserved His378, which resides between the CTT and the flavin cofactor. Poisson-Boltzmann calculations indicate that flavin reduction substantially increases the His378 pKa Consistent with coupling between ASQ formation and His378 protonation, dCRY displays reduced photoreduction rates with increasing pH; however, His378Asn/Arg variants show no such pH dependence. Replica-exchange MD simulations also support CTT release mediated by changes in His378 hydrogen bonding and verify other responsive regions of the protein previously identified by proteolytic sensitivity assays. His378 dCRY variants show varying abilities to light-activate TIM and undergo self-degradation in cellular assays. Surprisingly, His378Arg/Lys variants do not degrade in light despite maintaining reactivity toward TIM, thereby implicating different conformational responses in these two functions. Thus, the dCRY photosensory mechanism involves flavin photoreduction coupled to protonation of His378, whose perturbed hydrogen-bonding pattern alters the CTT and surrounding regions.

  19. Changes in active site histidine hydrogen bonding trigger cryptochrome activation

    PubMed Central

    Ganguly, Abir; Manahan, Craig C.; Top, Deniz; Yee, Estella F.; Lin, Changfan; Young, Michael W.; Thiel, Walter; Crane, Brian R.

    2016-01-01

    Cryptochrome (CRY) is the principal light sensor of the insect circadian clock. Photoreduction of the Drosophila CRY (dCRY) flavin cofactor to the anionic semiquinone (ASQ) restructures a C-terminal tail helix (CTT) that otherwise inhibits interactions with targets that include the clock protein Timeless (TIM). All-atom molecular dynamics (MD) simulations indicate that flavin reduction destabilizes the CTT, which undergoes large-scale conformational changes (the CTT release) on short (25 ns) timescales. The CTT release correlates with the conformation and protonation state of conserved His378, which resides between the CTT and the flavin cofactor. Poisson-Boltzmann calculations indicate that flavin reduction substantially increases the His378 pKa. Consistent with coupling between ASQ formation and His378 protonation, dCRY displays reduced photoreduction rates with increasing pH; however, His378Asn/Arg variants show no such pH dependence. Replica-exchange MD simulations also support CTT release mediated by changes in His378 hydrogen bonding and verify other responsive regions of the protein previously identified by proteolytic sensitivity assays. His378 dCRY variants show varying abilities to light-activate TIM and undergo self-degradation in cellular assays. Surprisingly, His378Arg/Lys variants do not degrade in light despite maintaining reactivity toward TIM, thereby implicating different conformational responses in these two functions. Thus, the dCRY photosensory mechanism involves flavin photoreduction coupled to protonation of His378, whose perturbed hydrogen-bonding pattern alters the CTT and surrounding regions. PMID:27551082

  20. Crystal structure of equine serum albumin in complex with cetirizine reveals a novel drug binding site.

    PubMed

    Handing, Katarzyna B; Shabalin, Ivan G; Szlachta, Karol; Majorek, Karolina A; Minor, Wladek

    2016-03-01

    Serum albumin (SA) is the main transporter of drugs in mammalian blood plasma. Here, we report the first crystal structure of equine serum albumin (ESA) in complex with antihistamine drug cetirizine at a resolution of 2.1Å. Cetirizine is bound in two sites--a novel drug binding site (CBS1) and the fatty acid binding site 6 (CBS2). Both sites differ from those that have been proposed in multiple reports based on equilibrium dialysis and fluorescence studies for mammalian albumins as cetirizine binding sites. We show that the residues forming the binding pockets in ESA are highly conserved in human serum albumin (HSA), and suggest that binding of cetirizine to HSA will be similar. In support of that hypothesis, we show that the dissociation constants for cetirizine binding to CBS2 in ESA and HSA are identical using tryptophan fluorescence quenching. Presence of lysine and arginine residues that have been previously reported to undergo nonenzymatic glycosylation in CBS1 and CBS2 suggests that cetirizine transport in patients with diabetes could be altered. A review of all available SA structures from the PDB shows that in addition to the novel drug binding site we present here (CBS1), there are two pockets on SA capable of binding drugs that do not overlap with fatty acid binding sites and have not been discussed in published reviews.

  1. Probing the promiscuous active site of myo-inositol dehydrogenase using synthetic substrates, homology modeling, and active site modification.

    PubMed

    Daniellou, Richard; Zheng, Hongyan; Langill, David M; Sanders, David A R; Palmer, David R J

    2007-06-26

    The active site of myo-inositol dehydrogenase (IDH, EC 1.1.1.18) from Bacillus subtilis recognizes a variety of mono- and disaccharides, as well as 1l-4-O-substituted inositol derivatives. It catalyzes the NAD+-dependent oxidation of the axial alcohol of these substrates with comparable kinetic constants. We have found that 4-O-p-toluenesulfonyl-myo-inositol does not act as a substrate for IDH, in contrast to structurally similar compounds such as those bearing substituted benzyl substituents in the same position. X-ray crystallographic analysis of 4-O-p-toluenesulfonyl-myo-inositol and 4-O-(2-naphthyl)methyl-myo-inositol, which is a substrate for IDH, shows a distinct difference in the preferred conformation of the aryl substituent. Conformational analysis of known substrates of IDH suggests that this conformational difference may account for the difference in reactivity of 4-O-p-toluenesulfonyl-myo-inositol in the presence of IDH. A sequence alignment of IDH with the homologous glucose-fructose oxidoreductase allowed the construction of an homology model of inositol dehydrogenase, to which NADH and 4-O-benzyl-scyllo-inosose were docked and the active site energy minimized. The active site model is consistent with all experimental results and suggests that a conserved tyrosine-glycine-tyrosine motif forms the hydrophobic pocket adjoining the site of inositol recognition. Y233F and Y235F retain activity, while Y233R and Y235R do not. A histidine-aspartate pair, H176 and D172, are proposed to act as a dyad in which H176 is the active site acid/base. The enzyme is inactivated by diethyl pyrocarbonate, and the mutants H176A and D172N show a marked loss of activity. Kinetic isotope effect experiments with D172N indicate that chemistry is rate-determining for this mutant.

  2. Inactivation of Individual SeqA Binding Sites of the E. coli Origin Reveals Robustness of Replication Initiation Synchrony

    PubMed Central

    Jha, Jyoti K.

    2016-01-01

    The Escherichia coli origin of replication, oriC, comprises mostly binding sites of two proteins: DnaA, a positive regulator, and SeqA, a negative regulator. SeqA, although not essential, is required for timely initiation, and during rapid growth, synchronous initiation from multiple origins. Unlike DnaA, details of SeqA binding to oriC are limited. Here we have determined that SeqA binds to all its sites tested (9/11) and with variable efficiency. Titration of DnaA alters SeqA binding to two sites, both of which have overlapping DnaA sites. The altered SeqA binding, however, does not affect initiation synchrony. Synchrony is also unaffected when individual SeqA sites are mutated. An apparent exception was one mutant where the mutation also changed an overlapping DnaA site. In this mutant, the observed asynchrony could be from altered DnaA binding, as selectively mutating this SeqA site did not cause asynchrony. These results reveal robust initiation synchrony against alterations of individual SeqA binding sites. The redundancy apparently ensures SeqA function in controlling replication in E. coli. PMID:27930658

  3. Synthetic heparan sulfate dodecasaccharides reveal single sulfation site interconverts CXCL8 and CXCL12 chemokine biology.

    PubMed

    Jayson, Gordon C; Hansen, Steen U; Miller, Gavin J; Cole, Claire L; Rushton, Graham; Avizienyte, Egle; Gardiner, John M

    2015-09-18

    The multigram-scale synthesis of a sulfation-site programmed heparin-like dodecasaccharide is described. Evaluation alongside dodecasaccharides lacking this single glucosamine O6-sulfation, or having per-O6-sulfation, shows that site-specific modification of the terminal glucosamine dramatically interconverts regulation of in vitro and in vivo biology mediated by the two important chemokines, CXCL12 (SDF1α) or CXCL8 (IL-8).

  4. Cluster Analysis of p53 Binding Site Sequences Reveals Subsets with Different Functions

    PubMed Central

    Lim, Ji-Hyun; Latysheva, Natasha S.; Iggo, Richard D.; Barker, Daniel

    2016-01-01

    p53 is an important regulator of cell cycle arrest, senescence, apoptosis and metabolism, and is frequently mutated in tumors. It functions as a tetramer, where each component dimer binds to a decameric DNA region known as a response element. We identify p53 binding site subtypes and examine the functional and evolutionary properties of these subtypes. We start with over 1700 known binding sites and, with no prior labeling, identify two sets of response elements by unsupervised clustering. When combined, they give rise to three types of p53 binding sites. We find that probabilistic and alignment-based assessments of cross-species conservation show no strong evidence of differential conservation between types of binding sites. In contrast, functional analysis of the genes most proximal to the binding sites provides strong bioinformatic evidence of functional differentiation between the three types of binding sites. Our results are consistent with recent structural data identifying two conformations of the L1 loop in the DNA binding domain, suggesting that they reflect biologically meaningful groups imposed by the p53 protein structure. PMID:27812278

  5. 1-3-A Resolution Structure of Human Glutathione S-Transferase With S-Hexyl Glutathione Bound Reveals Possible Extended Ligandin Binding Site

    SciTech Connect

    Trong, I.Le; Stenkamp, R.E.; Ibarra, C.; Atkins, W.M.; Adman, E.T.

    2005-08-22

    Cytosolic glutathione S-transferases (GSTs) play a critical role in xenobiotic binding and metabolism, as well as in modulation of oxidative stress. Here, the high-resolution X-ray crystal structures of homodimeric human GSTA1-1 in the apo form and in complex with S-hexyl glutathione (two data sets) are reported at 1.8, 1.5, and 1.3A respectively. At this level of resolution, distinct conformations of the alkyl chain of S-hexyl glutathione are observed, reflecting the nonspecific nature of the hydrophobic substrate binding site (H-site). Also, an extensive network of ordered water, including 75 discrete solvent molecules, traverses the open subunit-subunit interface and connects the glutathione binding sites in each subunit. In the highest-resolution structure, three glycerol moieties lie within this network and directly connect the amino termini of the glutathione molecules. A search for ligand binding sites with the docking program Molecular Operating Environment identified the ordered water network binding site, lined mainly with hydrophobic residues, suggesting an extended ligand binding surface for nonsubstrate ligands, the so-called ligandin site. Finally, detailed comparison of the structures reported here with previously published X-ray structures reveal a possible reaction coordinate for ligand-dependent conformational changes in the active site and the C-terminus.

  6. Identification of Ice Nucleation Active Sites on Silicate Dust Particles

    NASA Astrophysics Data System (ADS)

    Zolles, Tobias; Burkart, Julia; Häusler, Thomas; Pummer, Bernhard; Hitzenberger, Regina; Grothe, Hinrich

    2015-04-01

    Mineral dusts originating from Earth's crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts [1-3]. Nevertheless, among those structures K-feldspar showed by far the highest ice nucleation activity. In this study, the reasons for its activity and the difference in the activity of the different feldspars were investigated in closer details. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. We give a potential explanation of the increased ice nucleation activity of K-feldspar. The ice nucleating sites are very much dependent on the alkali ion present by altering the water structure and the feldspar surface. The higher activity of K-feldspar can be attributed to the presence of potassium ions on the surface and surface bilayer. The alkali-ions have different hydration shells and thus an influence on the ice nucleation activity of feldspar. Chaotropic behavior of Calcium and Sodium ions are lowering the ice nucleation potential of the other feldspars, while kosmotropic Potassium has a neutral or even positive effect. Furthermore we investigated the influence of milling onto the ice nucleation of quartz particles. The ice nucleation activity can be increased by mechanical milling, by introducing more molecular, nucleation active defects to the particle surface. This effect is larger than expected by plane surface increase. [1] Atkinson et al. The Importance of Feldspar for Ice Nucleation by Mineral Dust in Mixed-Phase Clouds. Nature 2013, 498, 355-358. [2] Yakobi-Hancock et al.. Feldspar Minerals as Efficient Deposition Ice Nuclei. Atmos. Chem. Phys. 2013, 13, 11175-11185. [3] Zolles et al. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles. J. Phys. Chem. A 2015 accepted.

  7. Improving the neutral phytase activity from Bacillus amyloliquefaciens DSM 1061 by site-directed mutagenesis.

    PubMed

    Xu, Wei; Shao, Rong; Wang, Zupeng; Yan, Xiuhua

    2015-03-01

    Neutral phytase is used as a feed additive for degradation of anti-nutritional phytate in aquatic feed industry. Site-directed mutagenesis of Bacillus amyloliquefaciens DSM 1061 phytase was performed with an aim to increase its activity. Mutation residues were chosen based on multiple sequence alignments and structure analysis of neutral phytsaes from different microorganisms. The mutation sites on surface (D148E, S197E and N156E) and around the active site (D52E) of phytase were selected. Analysis of the phytase variants showed that the specific activities of mutants D148E and S197E remarkably increased by about 35 and 13% over a temperature range of 40-75 °C at pH 7.0, respectively. The k cat of mutants D148E and S197E were 1.50 and 1.25 times than that of the wild-type phytase, respectively. Both D148E and S197E showed much higher thermostability than that of the wild-type phytase. However, mutants N156E and D52E led to significant loss of specific activity of the enzyme. Structural analysis revealed that these mutations may affect conformation of the active site of phytase. The present mutant phytases D148E and S197E with increased activities and thermostabilities have application potential as additives in aquaculture feed.

  8. Face the Edges: Catalytic Active Sites of Nanomaterials

    PubMed Central

    Ni, Bing

    2015-01-01

    Edges are special sites in nanomaterials. The atoms residing on the edges have different environments compared to those in other parts of a nanomaterial and, therefore, they may have different properties. Here, recent progress in nanomaterial fields is summarized from the viewpoint of the edges. Typically, edge sites in MoS2 or metals, other than surface atoms, can perform as active centers for catalytic reactions, so the method to enhance performance lies in the optimization of the edge structures. The edges of multicomponent interfaces present even more possibilities to enhance the activities of nanomaterials. Nanoframes and ultrathin nanowires have similarities to conventional edges of nanoparticles, the application of which as catalysts can help to reduce the use of costly materials. Looking beyond this, the edge structures of graphene are also essential for their properties. In short, the edge structure can influence many properties of materials. PMID:27980960

  9. Archaeology. Sedimentary DNA from a submerged site reveals wheat in the British Isles 8000 years ago.

    PubMed

    Smith, Oliver; Momber, Garry; Bates, Richard; Garwood, Paul; Fitch, Simon; Pallen, Mark; Gaffney, Vincent; Allaby, Robin G

    2015-02-27

    The Mesolithic-to-Neolithic transition marked the time when a hunter-gatherer economy gave way to agriculture, coinciding with rising sea levels. Bouldnor Cliff, is a submarine archaeological site off the Isle of Wight in the United Kingdom that has a well-preserved Mesolithic paleosol dated to 8000 years before the present. We analyzed a core obtained from sealed sediments, combining evidence from microgeomorphology and microfossils with sedimentary ancient DNA (sedaDNA) analyses to reconstruct floral and faunal changes during the occupation of this site, before it was submerged. In agreement with palynological analyses, the sedaDNA sequences suggest a mixed habitat of oak forest and herbaceous plants. However, they also provide evidence of wheat 2000 years earlier than mainland Britain and 400 years earlier than proximate European sites. These results suggest that sophisticated social networks linked the Neolithic front in southern Europe to the Mesolithic peoples of northern Europe.

  10. Does distant homology with Evf reveal a lipid binding site in Bacillus thuringiensis cytolytic toxins?

    PubMed

    Rigden, Daniel J

    2009-05-19

    The Cry and Cyt classes of insecticidal toxins derived from the sporulating bacterium Bacillus thuringiensis are valuable substitutes for synthetic pesticides in agricultural contexts. Crystal structures and many biochemical data have provided insights into their molecular mechanisms, generally thought to involve oligomerization and pore formation, but have not localised the site on Cyt toxins responsible for selective binding of phospholipids containing unsaturated fatty acids. Here, distant homology between the structure of Cyt toxins and Erwinia virulence factor (Evf) is demonstrated which, along with sequence conservation analysis, allows a putative lipid binding site to be localised in the toxins.

  11. Active sites in char gasification: Final technical report

    SciTech Connect

    Wojtowicz, M.; Lilly, W.D.; Perkins, M.T.; Hradil, G.; Calo, J.M.; Suuberg, E.M.

    1987-09-01

    Among the key variables in the design of gasifiers and combustors is the reactivity of the chars which must be gasified or combusted. Significant loss of unburned char is unacceptable in virtually any process; the provision of sufficient residence time for complete conversion is essential. A very wide range of reactivities are observed, depending upon the nature of the char in a process. The current work focuses on furthering the understanding of gasification reactivities of chars. It has been well established that the reactivity of char to gasification generally depends upon three principal factors: (1) the concentration of ''active sites'' in the char; (2) mass transfer within the char; and (3) the type and concentration of catalytic impurities in the char. The present study primarily addresses the first factor. The subject of this research is the origin, nature, and fate of active sites in chars derived from parent hydrocarbons with coal-like structure. The nature and number of the active sites and their reactivity towards oxygen are examined in ''model'' chars derived from phenol-formaldehyde type resins. How the active sites are lost by the process of thermal annealing during heat treatment of chars are studied, and actual rate for the annealing process is derived. Since intrinsic char reactivities are of primary interest in the present study, a fair amount of attention was given to the model char synthesis and handling so that the effect of catalytic impurities and oxygen-containing functional groups in the chemical structure of the material were minimized, if not completely eliminated. The project would not be considered complete without comparing characteristic features of synthetic chars with kinetic behavior exhibited by natural chars, including coal chars.

  12. Proteome-wide Light/Dark Modulation of Thiol Oxidation in Cyanobacteria Revealed by Quantitative Site-specific Redox Proteomics*

    PubMed Central

    Guo, Jia; Nguyen, Amelia Y.; Dai, Ziyu; Su, Dian; Gaffrey, Matthew J.; Moore, Ronald J.; Jacobs, Jon M.; Monroe, Matthew E.; Smith, Richard D.; Koppenaal, David W.; Pakrasi, Himadri B.; Qian, Wei-Jun

    2014-01-01

    Reversible protein thiol oxidation is an essential regulatory mechanism of photosynthesis, metabolism, and gene expression in photosynthetic organisms. Herein, we present proteome-wide quantitative and site-specific profiling of in vivo thiol oxidation modulated by light/dark in the cyanobacterium Synechocystis sp. PCC 6803, an oxygenic photosynthetic prokaryote, using a resin-assisted thiol enrichment approach. Our proteomic approach integrates resin-assisted enrichment with isobaric tandem mass tag labeling to enable site-specific and quantitative measurements of reversibly oxidized thiols. The redox dynamics of ∼2,100 Cys-sites from 1,060 proteins under light, dark, and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (a photosystem II inhibitor) conditions were quantified. In addition to relative quantification, the stoichiometry or percentage of oxidation (reversibly oxidized/total thiols) for ∼1,350 Cys-sites was also quantified. The overall results revealed broad changes in thiol oxidation in many key biological processes, including photosynthetic electron transport, carbon fixation, and glycolysis. Moreover, the redox sensitivity along with the stoichiometric data enabled prediction of potential functional Cys-sites for proteins of interest. The functional significance of redox-sensitive Cys-sites in NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, peroxiredoxin (AhpC/TSA family protein Sll1621), and glucose 6-phosphate dehydrogenase was further confirmed with site-specific mutagenesis and biochemical studies. Together, our findings provide significant insights into the broad redox regulation of photosynthetic organisms. PMID:25118246

  13. Characterisation of Drosophila CMP-sialic acid synthetase activity reveals unusual enzymatic properties

    PubMed Central

    Mertsalov, Ilya B.; Novikov, Boris N.; Scott, Hilary; Dangott, Lawrence; Panin, Vladislav M.

    2016-01-01

    CMP-sialic acid synthetase (CSAS) is a key enzyme of the sialylation pathway. CSAS produces the activated sugar donor, CMP-sialic acid, which serves as a substrate for sialyltransferases to modify glycan termini with sialic acid. Unlike other animal CMP-Sia synthetases that normally localize in the nucleus, Drosophila melanogaster CSAS (DmCSAS) localizes in the cell secretory compartment, predominantly in the Golgi, which suggests that this enzyme has properties distinct from those of its vertebrate counterparts. To test this hypothesis, we purified recombinant DmCSAS and characterised its activity in vitro. Our experiments revealed several unique features of this enzyme. DmCSAS displays specificity for N-acetylneuraminic acid as a substrate, shows preference for lower pH and can function with a broad range of metal cofactors. When tested at a pH corresponding to the Golgi compartment, the enzyme showed significant activity with several metal cations, including Zn2+, Fe2+, Co2+ and Mn2+, while the activity with Mg2+ was found to be low. Protein sequence analysis and site-specific mutagenesis identified an aspartic acid residue that is necessary for enzymatic activity and predicted to be involved in coordinating a metal cofactor. DmCSAS enzymatic activity was found to be essential in vivo for rescuing the phenotype of DmCSAS mutants. Finally, our experiments revealed a steep dependence of the enzymatic activity on temperature. Taken together, our results indicate that DmCSAS underwent evolutionary adaptation to pH and ionic environment different from that of counterpart synthetases in vertebrates. Our data also suggest that environmental temperatures can regulate Drosophila sialylation, thus modulating neural transmission. PMID:27114558

  14. Characterization of Drosophila CMP-sialic acid synthetase activity reveals unusual enzymatic properties.

    PubMed

    Mertsalov, Ilya B; Novikov, Boris N; Scott, Hilary; Dangott, Lawrence; Panin, Vladislav M

    2016-07-01

    CMP-sialic acid synthetase (CSAS) is a key enzyme of the sialylation pathway. CSAS produces the activated sugar donor, CMP-sialic acid, which serves as a substrate for sialyltransferases to modify glycan termini with sialic acid. Unlike other animal CSASs that normally localize in the nucleus, Drosophila melanogaster CSAS (DmCSAS) localizes in the cell secretory compartment, predominantly in the Golgi, which suggests that this enzyme has properties distinct from those of its vertebrate counterparts. To test this hypothesis, we purified recombinant DmCSAS and characterized its activity in vitro Our experiments revealed several unique features of this enzyme. DmCSAS displays specificity for N-acetylneuraminic acid as a substrate, shows preference for lower pH and can function with a broad range of metal cofactors. When tested at a pH corresponding to the Golgi compartment, the enzyme showed significant activity with several metal cations, including Zn(2+), Fe(2+), Co(2+) and Mn(2+), whereas the activity with Mg(2+) was found to be low. Protein sequence analysis and site-specific mutagenesis identified an aspartic acid residue that is necessary for enzymatic activity and predicted to be involved in co-ordinating a metal cofactor. DmCSAS enzymatic activity was found to be essential in vivo for rescuing the phenotype of DmCSAS mutants. Finally, our experiments revealed a steep dependence of the enzymatic activity on temperature. Taken together, our results indicate that DmCSAS underwent evolutionary adaptation to pH and ionic environment different from that of counterpart synthetases in vertebrates. Our data also suggest that environmental temperatures can regulate Drosophila sialylation, thus modulating neural transmission.

  15. Site-specific mutagenesis and functional analysis of active sites of sulfur oxygenase reductase from Gram-positive moderate thermophile Sulfobacillus acidophilus TPY.

    PubMed

    Zhang, Huijun; Guo, Wenbin; Xu, Changan; Zhou, Hongbo; Chen, Xinhua

    2013-12-14

    Sequence alignments revealed that the conserved motifs of SORSa which formed an independent branch between archaea and Gram-negative bacteria SORs according to the phylogenetic relationship were similar with the archaea and Gram-negative bacteria SORs. In order to investigate the active sites of SORSa, cysteines 31, 101 and 104 (C31, C101, C104), histidines 86 and 90 (H86 and H90) and glutamate 114 (E114) of SORSa were chosen as the target amino acid residues for site-specific mutagenesis. The wild type and six mutant SORs were expressed in E. coli BL21, purified and confirmed by SDS-PAGE and Western blotting analysis. Enzyme activity determination revealed that the active sites of SORSa were identical with the archaea and Gram-negative bacteria SORs reported. Replacement of any cysteine residues reduced SOR activity by 53-100%, while the mutants of H86A, H90A and E114A lost their enzyme activities largely, only remaining 20%, 19% and 32% activity of the wild type SOR respectively. This study will enrich our awareness for active sites of SOR in a Gram-positive bacterium.

  16. Nest predation increases with parental activity: Separating nest site and parental activity effects

    USGS Publications Warehouse

    Martin, T.E.; Scott, J.; Menge, C.

    2000-01-01

    Alexander Skutch hypothesized that increased parental activity can increase the risk of nest predation. We tested this hypothesis using ten open-nesting bird species in Arizona, USA. Parental activity was greater during the nestling than incubation stage because parents visited the nest frequently to feed their young during the nestling stage. However, nest predation did not generally increase with parental activity between nesting stages across the ten study species. Previous investigators have found similar results. We tested whether nest site effects might yield higher predation during incubation because the most obvious sites are depredated most rapidly. We conducted experiments using nest sites from the previous year to remove parental activity. Our results showed that nest sites have highly repeatable effects on nest predation risk; poor nest sites incurred rapid predation and caused predation rates to be greater during the incubation than nestling stage. This pattern also was exhibited in a bird species with similar (i.e. controlled) parental activity between nesting stages. Once nest site effects are taken into account, nest predation shows a strong proximate increase with parental activity during the nestling stage within and across species. Parental activity and nest sites exert antagonistic influences on current estimates of nest predation between nesting stages and both must be considered in order to understand current patterns of nest predation, which is an important source of natural selection.

  17. Nest predation increases with parental activity: separating nest site and parental activity effects.

    PubMed Central

    Martin, T E; Scott, J; Menge, C

    2000-01-01

    Alexander Skutch hypothesized that increased parental activity can increase the risk of nest predation. We tested this hypothesis using ten open-nesting bird species in Arizona, USA. Parental activity was greater during the nestling than incubation stage because parents visited the nest frequently to feed their young during the nestling stage. However, nest predation did not generally increase with parental activity between nesting stages across the ten study species. Previous investigators have found similar results. We tested whether nest site effects might yield higher predation during incubation because the most obvious sites are depredated most rapidly. We conducted experiments using nest sites from the previous year to remove parental activity. Our results showed that nest sites have highly repeatable effects on nest predation risk; poor nest sites incurred rapid predation and caused predation rates to be greater during the incubation than nestling stage. This pattern also was exhibited in a bird species with similar (i.e. controlled) parental activity between nesting stages. Once nest site effects are taken into account, nest predation shows a strong proximate increase with parental activity during the nestling stage within and across species. Parental activity and nest sites exert antagonistic influences on current estimates of nest predation between nesting stages and both must be considered in order to understand current patterns of nest predation, which is an important source of natural selection. PMID:11413645

  18. Brownian aggregation rate of colloid particles with several active sites

    SciTech Connect

    Nekrasov, Vyacheslav M.; Yurkin, Maxim A.; Chernyshev, Andrei V.; Polshchitsin, Alexey A.; Yakovleva, Galina E.; Maltsev, Valeri P.

    2014-08-14

    We theoretically analyze the aggregation kinetics of colloid particles with several active sites. Such particles (so-called “patchy particles”) are well known as chemically anisotropic reactants, but the corresponding rate constant of their aggregation has not yet been established in a convenient analytical form. Using kinematic approximation for the diffusion problem, we derived an analytical formula for the diffusion-controlled reaction rate constant between two colloid particles (or clusters) with several small active sites under the following assumptions: the relative translational motion is Brownian diffusion, and the isotropic stochastic reorientation of each particle is Markovian and arbitrarily correlated. This formula was shown to produce accurate results in comparison with more sophisticated approaches. Also, to account for the case of a low number of active sites per particle we used Monte Carlo stochastic algorithm based on Gillespie method. Simulations showed that such discrete model is required when this number is less than 10. Finally, we applied the developed approach to the simulation of immunoagglutination, assuming that the formed clusters have fractal structure.

  19. [Mechanism of arginine deiminase activity by site-directed mutagenesis].

    PubMed

    Li, Lifeng; Ni, Ye; Sun, Zhihao

    2012-04-01

    Arginine deiminase (ADI) has been studied as a potential anti-cancer agent for inhibiting arginine-auxotrophic tumors (such as melanomas and hepatocellular carcinomas) in phase III clinical trials. In this work, we studied the molecular mechanism of arginine deiminase activity by site-directed mutagenesis. Three mutation sites, A128, H404 and 1410, were introduced into wild-type ADI gene by QuikChange site-directed mutagenesis method, and four ADI mutants M1 (A128T), M2 (H404R), M3 (I410L), and M4 (A128T, H404R) were obtained. The ADI mutants were individually expressed in Escherichia coli BL21 (DE3), and the enzymatic properties of the purified mutant proteins were determined. The results show that both A128T and H404R had enhanced optimum pH, higher activity and stability of ADI under physiological condition (pH 7.4), as well as reduced K(m) value. This study provides an insight into the molecular mechanism of the ADI activity, and also the experimental evidence for the rational protein evolution in the future.

  20. Potential sites of CFTR activation by tyrosine kinases

    PubMed Central

    Billet, Arnaud; Jia, Yanlin; Jensen, Timothy J.; Hou, Yue-Xian; Chang, Xiu-Bao; Riordan, John R.; Hanrahan, John W.

    2016-01-01

    ABSTRACT The CFTR chloride channel is tightly regulated by phosphorylation at multiple serine residues. Recently it has been proposed that its activity is also regulated by tyrosine kinases, however the tyrosine phosphorylation sites remain to be identified. In this study we examined 2 candidate tyrosine residues near the boundary between the first nucleotide binding domain and the R domain, a region which is important for channel function but devoid of PKA consensus sequences. Mutating tyrosines at positions 625 and 627 dramatically reduced responses to Src or Pyk2 without altering the activation by PKA, suggesting they may contribute to CFTR regulation. PMID:26645934

  1. MSK1 activity is controlled by multiple phosphorylation sites

    PubMed Central

    McCOY, Claire E.; Campbell, David G.; Deak, Maria; Bloomberg, Graham B.; Arthur, J. Simon C.

    2004-01-01

    MSK1 (mitogen- and stress-activated protein kinase) is a kinase activated in cells downstream of both the ERK1/2 (extracellular-signal-regulated kinase) and p38 MAPK (mitogen-activated protein kinase) cascades. In the present study, we show that, in addition to being phosphorylated on Thr-581 and Ser-360 by ERK1/2 or p38, MSK1 can autophosphorylate on at least six sites: Ser-212, Ser-376, Ser-381, Ser-750, Ser-752 and Ser-758. Of these sites, the N-terminal T-loop residue Ser-212 and the ‘hydrophobic motif’ Ser-376 are phosphorylated by the C-terminal kinase domain of MSK1, and their phosphorylation is essential for the catalytic activity of the N-terminal kinase domain of MSK1 and therefore for the phosphorylation of MSK1 substrates in vitro. Ser-381 is also phosphorylated by the C-terminal kinase domain, and mutation of Ser-381 decreases MSK1 activity, probably through the inhibition of Ser-376 phosphorylation. Ser-750, Ser-752 and Ser-758 are phosphorylated by the N-terminal kinase domain; however, their function is not known. The activation of MSK1 in cells therefore requires the activation of the ERK1/2 or p38 MAPK cascades and does not appear to require additional signalling inputs. This is in contrast with the closely related RSK (p90 ribosomal S6 kinase) proteins, whose activity requires phosphorylation by PDK1 (3-phosphoinositide-dependent protein kinase 1) in addition to phosphorylation by ERK1/2. PMID:15568999

  2. Combining Natural Sequence Variation with High Throughput Mutational Data to Reveal Protein Interaction Sites

    PubMed Central

    Melamed, Daniel; Young, David L.; Miller, Christina R.; Fields, Stanley

    2015-01-01

    Many protein interactions are conserved among organisms despite changes in the amino acid sequences that comprise their contact sites, a property that has been used to infer the location of these sites from protein homology. In an inter-species complementation experiment, a sequence present in a homologue is substituted into a protein and tested for its ability to support function. Therefore, substitutions that inhibit function can identify interaction sites that changed over evolution. However, most of the sequence differences within a protein family remain unexplored because of the small-scale nature of these complementation approaches. Here we use existing high throughput mutational data on the in vivo function of the RRM2 domain of the Saccharomyces cerevisiae poly(A)-binding protein, Pab1, to analyze its sites of interaction. Of 197 single amino acid differences in 52 Pab1 homologues, 17 reduce the function of Pab1 when substituted into the yeast protein. The majority of these deleterious mutations interfere with the binding of the RRM2 domain to eIF4G1 and eIF4G2, isoforms of a translation initiation factor. A large-scale mutational analysis of the RRM2 domain in a two-hybrid assay for eIF4G1 binding supports these findings and identifies peripheral residues that make a smaller contribution to eIF4G1 binding. Three single amino acid substitutions in yeast Pab1 corresponding to residues from the human orthologue are deleterious and eliminate binding to the yeast eIF4G isoforms. We create a triple mutant that carries these substitutions and other humanizing substitutions that collectively support a switch in binding specificity of RRM2 from the yeast eIF4G1 to its human orthologue. Finally, we map other deleterious substitutions in Pab1 to inter-domain (RRM2–RRM1) or protein-RNA (RRM2–poly(A)) interaction sites. Thus, the combined approach of large-scale mutational data and evolutionary conservation can be used to characterize interaction sites at single

  3. Kv3 channel assembly, trafficking and activity are regulated by zinc through different binding sites.

    PubMed

    Gu, Yuanzheng; Barry, Joshua; Gu, Chen

    2013-05-15

    Zinc, a divalent heavy metal ion and an essential mineral for life, regulates synaptic transmission and neuronal excitability via ion channels. However, its binding sites and regulatory mechanisms are poorly understood. Here, we report that Kv3 channel assembly, localization and activity are regulated by zinc through different binding sites. Local perfusion of zinc reversibly reduced spiking frequency of cultured neurons most likely by suppressing Kv3 channels. Indeed, zinc inhibited Kv3.1 channel activity and slowed activation kinetics, independent of its site in the N-terminal T1 domain. Biochemical assays surprisingly identified a novel zinc-binding site in the Kv3.1 C-terminus, critical for channel activity and axonal targeting, but not for the zinc inhibition. Finally, mutagenesis revealed an important role of the junction between the first transmembrane (TM) segment and the first extracellular loop in sensing zinc. Its mutant enabled fast spiking with relative resistance to the zinc inhibition. Therefore, our studies provide novel mechanistic insights into the multifaceted regulation of Kv3 channel activity and localization by divalent heavy metal ions.

  4. Ribosome•RelA structures reveal the mechanism of stringent response activation

    PubMed Central

    Loveland, Anna B; Bah, Eugene; Madireddy, Rohini; Zhang, Ying; Brilot, Axel F; Grigorieff, Nikolaus; Korostelev, Andrei A

    2016-01-01

    Stringent response is a conserved bacterial stress response underlying virulence and antibiotic resistance. RelA/SpoT-homolog proteins synthesize transcriptional modulators (p)ppGpp, allowing bacteria to adapt to stress. RelA is activated during amino-acid starvation, when cognate deacyl-tRNA binds to the ribosomal A (aminoacyl-tRNA) site. We report four cryo-EM structures of E. coli RelA bound to the 70S ribosome, in the absence and presence of deacyl-tRNA accommodating in the 30S A site. The boomerang-shaped RelA with a wingspan of more than 100 Å wraps around the A/R (30S A-site/RelA-bound) tRNA. The CCA end of the A/R tRNA pins the central TGS domain against the 30S subunit, presenting the (p)ppGpp-synthetase domain near the 30S spur. The ribosome and A/R tRNA are captured in three conformations, revealing hitherto elusive states of tRNA engagement with the ribosomal decoding center. Decoding-center rearrangements are coupled with the step-wise 30S-subunit 'closure', providing insights into the dynamics of high-fidelity tRNA decoding. DOI: http://dx.doi.org/10.7554/eLife.17029.001 PMID:27434674

  5. The active site of low-temperature methane hydroxylation in iron-containing zeolites

    NASA Astrophysics Data System (ADS)

    Snyder, Benjamin E. R.; Vanelderen, Pieter; Bols, Max L.; Hallaert, Simon D.; Böttger, Lars H.; Ungur, Liviu; Pierloot, Kristine; Schoonheydt, Robert A.; Sels, Bert F.; Solomon, Edward I.

    2016-08-01

    An efficient catalytic process for converting methane into methanol could have far-reaching economic implications. Iron-containing zeolites (microporous aluminosilicate minerals) are noteworthy in this regard, having an outstanding ability to hydroxylate methane rapidly at room temperature to form methanol. Reactivity occurs at an extra-lattice active site called α-Fe(II), which is activated by nitrous oxide to form the reactive intermediate α-O; however, despite nearly three decades of research, the nature of the active site and the factors determining its exceptional reactivity are unclear. The main difficulty is that the reactive species—α-Fe(II) and α-O—are challenging to probe spectroscopically: data from bulk techniques such as X-ray absorption spectroscopy and magnetic susceptibility are complicated by contributions from inactive ‘spectator’ iron. Here we show that a site-selective spectroscopic method regularly used in bioinorganic chemistry can overcome this problem. Magnetic circular dichroism reveals α-Fe(II) to be a mononuclear, high-spin, square planar Fe(II) site, while the reactive intermediate, α-O, is a mononuclear, high-spin Fe(IV)=O species, whose exceptional reactivity derives from a constrained coordination geometry enforced by the zeolite lattice. These findings illustrate the value of our approach to exploring active sites in heterogeneous systems. The results also suggest that using matrix constraints to activate metal sites for function—producing what is known in the context of metalloenzymes as an ‘entatic’ state—might be a useful way to tune the activity of heterogeneous catalysts.

  6. Zinc-induced oligomerization of zinc α2 glycoprotein reveals multiple fatty acid-binding sites.

    PubMed

    Zahid, Henna; Miah, Layeque; Lau, Andy M; Brochard, Lea; Hati, Debolina; Bui, Tam T T; Drake, Alex F; Gor, Jayesh; Perkins, Stephen J; McDermott, Lindsay C

    2016-01-01

    Zinc α2 glycoprotein (ZAG) is an adipokine with a class I MHC protein fold and is associated with obesity and diabetes. Although its intrinsic ligand remains unknown, ZAG binds the dansylated C11 fatty acid 11-(dansylamino)undecanoic acid (DAUDA) in the groove between the α1 and α2 domains. The surface of ZAG has approximately 15 weak zinc-binding sites deemed responsible for precipitation from human plasma. In the present study the functional significance of these metal sites was investigated. Analytical ultracentrifugation (AUC) and CD showed that zinc, but not other divalent metals, causes ZAG to oligomerize in solution. Thus ZAG dimers and trimers were observed in the presence of 1 and 2 mM zinc. Molecular modelling of X-ray scattering curves and sedimentation coefficients indicated a progressive stacking of ZAG monomers, suggesting that the ZAG groove may be occluded in these. Using fluorescence-detected sedimentation velocity, these ZAG-zinc oligomers were again observed in the presence of the fluorescent boron dipyrromethene fatty acid C16-BODIPY (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-hexadecanoic acid). Fluorescence spectroscopy confirmed that ZAG binds C16-BODIPY. ZAG binding to C16-BODIPY, but not to DAUDA, was reduced by increased zinc concentrations. We conclude that the lipid-binding groove in ZAG contains at least two distinct fatty acid-binding sites for DAUDA and C16-BODIPY, similar to the multiple lipid binding seen in the structurally related immune protein CD1c. In addition, because high concentrations of zinc occur in the pancreas, the perturbation of these multiple lipid-binding sites by zinc may be significant in Type 2 diabetes where dysregulation of ZAG and zinc homoeostasis occurs.

  7. Sequencing human-gibbon breakpoints of synteny reveals mosaic new insertions at rearrangement sites.

    PubMed

    Girirajan, Santhosh; Chen, Lin; Graves, Tina; Marques-Bonet, Tomas; Ventura, Mario; Fronick, Catrina; Fulton, Lucinda; Rocchi, Mariano; Fulton, Robert S; Wilson, Richard K; Mardis, Elaine R; Eichler, Evan E

    2009-02-01

    The gibbon genome exhibits extensive karyotypic diversity with an increased rate of chromosomal rearrangements during evolution. In an effort to understand the mechanistic origin and implications of these rearrangement events, we sequenced 24 synteny breakpoint regions in the white-cheeked gibbon (Nomascus leucogenys, NLE) in the form of high-quality BAC insert sequences (4.2 Mbp). While there is a significant deficit of breakpoints in genes, we identified seven human gene structures involved in signaling pathways (DEPDC4, GNG10), phospholipid metabolism (ENPP5, PLSCR2), beta-oxidation (ECH1), cellular structure and transport (HEATR4), and transcription (ZNF461), that have been disrupted in the NLE gibbon lineage. Notably, only three of these genes show the expected evolutionary signatures of pseudogenization. Sequence analysis of the breakpoints suggested both nonclassical nonhomologous end-joining (NHEJ) and replication-based mechanisms of rearrangement. A substantial number (11/24) of human-NLE gibbon breakpoints showed new insertions of gibbon-specific repeats and mosaic structures formed from disparate sequences including segmental duplications, LINE, SINE, and LTR elements. Analysis of these sites provides a model for a replication-dependent repair mechanism for double-strand breaks (DSBs) at rearrangement sites and insights into the structure and formation of primate segmental duplications at sites of genomic rearrangements during evolution.

  8. Illumina Amplicon Sequencing of 16S rRNA Tag Reveals Bacterial Community Development in the Rhizosphere of Apple Nurseries at a Replant Disease Site and a New Planting Site

    PubMed Central

    Sun, Jian; Zhang, Qiang; Zhou, Jia; Wei, Qinping

    2014-01-01

    We used a next-generation, Illumina-based sequencing approach to characterize the bacterial community development of apple rhizosphere soil in a replant site (RePlant) and a new planting site (NewPlant) in Beijing. Dwarfing apple nurseries of ‘Fuji’/SH6/Pingyitiancha trees were planted in the spring of 2013. Before planting, soil from the apple rhizosphere of the replant site (ReSoil) and from the new planting site (NewSoil) was sampled for analysis on the Illumina MiSeq platform. In late September, the rhizosphere soil from both sites was resampled (RePlant and NewPlant). More than 16,000 valid reads were obtained for each replicate, and the community was composed of five dominant groups (Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes and Actinobacteria). The bacterial diversity decreased after apple planting. Principal component analyses revealed that the rhizosphere samples were significantly different among treatments. Apple nursery planting showed a large impact on the soil bacterial community, and the community development was significantly different between the replanted and newly planted soils. Verrucomicrobia were less abundant in RePlant soil, while Pseudomonas and Lysobacter were increased in RePlant compared with ReSoil and NewPlant. Both RePlant and ReSoil showed relatively higher invertase and cellulase activities than NewPlant and NewSoil, but only NewPlant soil showed higher urease activity, and this soil also had the higher plant growth. Our experimental results suggest that planting apple nurseries has a significant impact on soil bacterial community development at both replant and new planting sites, and planting on new site resulted in significantly higher soil urease activity and a different bacterial community composition. PMID:25360786

  9. Illumina amplicon sequencing of 16S rRNA tag reveals bacterial community development in the rhizosphere of apple nurseries at a replant disease site and a new planting site.

    PubMed

    Sun, Jian; Zhang, Qiang; Zhou, Jia; Wei, Qinping

    2014-01-01

    We used a next-generation, Illumina-based sequencing approach to characterize the bacterial community development of apple rhizosphere soil in a replant site (RePlant) and a new planting site (NewPlant) in Beijing. Dwarfing apple nurseries of 'Fuji'/SH6/Pingyitiancha trees were planted in the spring of 2013. Before planting, soil from the apple rhizosphere of the replant site (ReSoil) and from the new planting site (NewSoil) was sampled for analysis on the Illumina MiSeq platform. In late September, the rhizosphere soil from both sites was resampled (RePlant and NewPlant). More than 16,000 valid reads were obtained for each replicate, and the community was composed of five dominant groups (Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes and Actinobacteria). The bacterial diversity decreased after apple planting. Principal component analyses revealed that the rhizosphere samples were significantly different among treatments. Apple nursery planting showed a large impact on the soil bacterial community, and the community development was significantly different between the replanted and newly planted soils. Verrucomicrobia were less abundant in RePlant soil, while Pseudomonas and Lysobacter were increased in RePlant compared with ReSoil and NewPlant. Both RePlant and ReSoil showed relatively higher invertase and cellulase activities than NewPlant and NewSoil, but only NewPlant soil showed higher urease activity, and this soil also had the higher plant growth. Our experimental results suggest that planting apple nurseries has a significant impact on soil bacterial community development at both replant and new planting sites, and planting on new site resulted in significantly higher soil urease activity and a different bacterial community composition.

  10. Sequencing the extrachromosomal circular mobilome reveals retrotransposon activity in plants

    PubMed Central

    Llauro, Christel; Jobet, Edouard; Robakowska-Hyzorek, Dagmara; Lasserre, Eric; Ghesquière, Alain; Panaud, Olivier

    2017-01-01

    Retrotransposons are mobile genetic elements abundant in plant and animal genomes. While efficiently silenced by the epigenetic machinery, they can be reactivated upon stress or during development. Their level of transcription not reflecting their transposition ability, it is thus difficult to evaluate their contribution to the active mobilome. Here we applied a simple methodology based on the high throughput sequencing of extrachromosomal circular DNA (eccDNA) forms of active retrotransposons to characterize the repertoire of mobile retrotransposons in plants. This method successfully identified known active retrotransposons in both Arabidopsis and rice material where the epigenome is destabilized. When applying mobilome-seq to developmental stages in wild type rice, we identified PopRice as a highly active retrotransposon producing eccDNA forms in the wild type endosperm. The mobilome-seq strategy opens new routes for the characterization of a yet unexplored fraction of plant genomes. PMID:28212378

  11. High-resolution crystal structures reveal plasticity in the metal binding site of apurinic/apyrimidinic endonuclease I.

    PubMed

    He, Hongzhen; Chen, Qiujia; Georgiadis, Millie M

    2014-10-21

    Apurinic/apyrimidinic endonuclease I (APE1) is an essential base excision repair enzyme that catalyzes a Mg²⁺-dependent reaction in which the phosphodiester backbone is cleaved 5' of an abasic site in duplex DNA. This reaction has been proposed to involve either one or two metal ions bound to the active site. In the present study, we report crystal structures of Mg²⁺, Mn²⁺, and apo-APE1 determined at 1.4, 2.2, and 1.65 Å, respectively, representing two of the highest resolution structures yet reported for APE1. In our structures, a single well-ordered Mn²⁺ ion was observed coordinated by D70 and E96; the Mg²⁺ site exhibited disorder modeled as two closely positioned sites coordinated by D70 and E96 or E96 alone. Direct metal binding analysis of wild-type, D70A, and E96A APE1, as assessed by differential scanning fluorimetry, indicated a role for D70 and E96 in binding of Mg²⁺ or Mn²⁺ to APE1. Consistent with the disorder exhibited by Mg²⁺ bound to the active site, two different conformations of E96 were observed coordinated to Mg²⁺. A third conformation for E96 in the apo structure is similar to that observed in the APE1-DNA-Mg²⁺ complex structure. Thus, binding of Mg²⁺ in three different positions within the active site of APE1 in these crystal structures corresponds directly with three different conformations of E96. Taken together, our results are consistent with the initial capture of metal by D70 and E96 and repositioning of Mg²⁺ facilitated by the structural plasticity of E96 in the active site.

  12. Recombinant Human Peptidoglycan Recognition Proteins Reveal Antichlamydial Activity.

    PubMed

    Bobrovsky, Pavel; Manuvera, Valentin; Polina, Nadezhda; Podgorny, Oleg; Prusakov, Kirill; Govorun, Vadim; Lazarev, Vassili

    2016-07-01

    Peptidoglycan recognition proteins (PGLYRPs) are innate immune components that recognize the peptidoglycan and lipopolysaccharides of bacteria and exhibit antibacterial activity. Recently, the obligate intracellular parasite Chlamydia trachomatis was shown to have peptidoglycan. However, the antichlamydial activity of PGLYRPs has not yet been demonstrated. The aim of our study was to test whether PGLYRPs exhibit antibacterial activity against C. trachomatis Thus, we cloned the regions containing the human Pglyrp1, Pglyrp2, Pglyrp3, and Pglyrp4 genes for subsequent expression in human cell lines. We obtained stable HeLa cell lines that secrete recombinant human PGLYRPs into culture medium. We also generated purified recombinant PGLYRP1, -2, and -4 and confirmed their activities against Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria. Furthermore, we examined the activities of recombinant PGLYRPs against C. trachomatis and determined their MICs. We also observed a decrease in the infectious ability of chlamydial elementary bodies in the next generation after a single exposure to PGLYRPs. Finally, we demonstrated that PGLYRPs attach to C. trachomatis elementary bodies and activate the expression of the chlamydial two-component stress response system. Thus, PGLYRPs inhibit the development of chlamydial infection.

  13. Recombinant Human Peptidoglycan Recognition Proteins Reveal Antichlamydial Activity

    PubMed Central

    Manuvera, Valentin; Polina, Nadezhda; Podgorny, Oleg; Prusakov, Kirill; Govorun, Vadim; Lazarev, Vassili

    2016-01-01

    Peptidoglycan recognition proteins (PGLYRPs) are innate immune components that recognize the peptidoglycan and lipopolysaccharides of bacteria and exhibit antibacterial activity. Recently, the obligate intracellular parasite Chlamydia trachomatis was shown to have peptidoglycan. However, the antichlamydial activity of PGLYRPs has not yet been demonstrated. The aim of our study was to test whether PGLYRPs exhibit antibacterial activity against C. trachomatis. Thus, we cloned the regions containing the human Pglyrp1, Pglyrp2, Pglyrp3, and Pglyrp4 genes for subsequent expression in human cell lines. We obtained stable HeLa cell lines that secrete recombinant human PGLYRPs into culture medium. We also generated purified recombinant PGLYRP1, -2, and -4 and confirmed their activities against Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria. Furthermore, we examined the activities of recombinant PGLYRPs against C. trachomatis and determined their MICs. We also observed a decrease in the infectious ability of chlamydial elementary bodies in the next generation after a single exposure to PGLYRPs. Finally, we demonstrated that PGLYRPs attach to C. trachomatis elementary bodies and activate the expression of the chlamydial two-component stress response system. Thus, PGLYRPs inhibit the development of chlamydial infection. PMID:27160295

  14. Current activities handbook: formerly utilized sites remedial action program

    SciTech Connect

    1981-02-27

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the activities each of the thirteen state legislatures potentially affected by the Formerly Utilized Sites Remedial Action Program. It contains a description of the state legislative procedural rules and a schedule of each legislative session; a summary of pending relevant legislation; the name and telephone number of legislative and state agency contacts; and the full text of all bills identified.

  15. Vitamin K epoxide reductase: homology, active site and catalytic mechanism.

    PubMed

    Goodstadt, Leo; Ponting, Chris P

    2004-06-01

    Vitamin K epoxide reductase (VKOR) recycles reduced vitamin K, which is used subsequently as a co-factor in the gamma-carboxylation of glutamic acid residues in blood coagulation enzymes. VKORC1, a subunit of the VKOR complex, has recently been shown to possess this activity. Here, we show that VKORC1 is a member of a large family of predicted enzymes that are present in vertebrates, Drosophila, plants, bacteria and archaea. Four cysteine residues and one residue, which is either serine or threonine, are identified as likely active-site residues. In some plant and bacterial homologues the VKORC1 homologous domain is fused with domains of the thioredoxin family of oxidoreductases. These might reduce disulfide bonds of VKORC1-like enzymes as a prerequisite for their catalytic activities.

  16. Activation of nanoscale allosteric protein domain motion revealed by neutron spin echo spectroscopy

    NASA Astrophysics Data System (ADS)

    Bu, Zimei; Farago, Bela; Callaway, David

    2012-02-01

    NHERF1 is a multi-domain scaffolding protein that assembles the signaling complexes, and regulates the cell surface expression and endocytic recycling of a variety of membrane proteins. The ability of the two PDZ domains in NHERF1 to assemble protein complexes is allosterically modulated by a membrane-cytoskeleton linker protein ezrin, whose binding site is located as far as 110 angstroms away from the PDZ domains. Here, using neutron spin echo (NSE) spectroscopy, selective deuterium labeling, and theoretical analyses, we reveal the activation of interdomain motion in NHERF1 on nanometer length scales and on sub-microsecond time scales upon forming a complex with ezrin. We show that a much simplified coarse-grained model is sufficient to describe inter-domain motion of a multi-domain protein or protein complex. We expect that future NSE experiments will benefit by exploiting our approach of selective deuteration to resolve the specific domain motions of interest from a plethora of global translational and rotational motions. The results demonstrate that propagation of allosteric signals to distal sites involves the activation of long-range coupled domain motions on submicrosecond time scales, and that these coupled motions can be distinguished and characterized by NSE.

  17. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    PubMed Central

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; Parks, Jerry M.; Elias, Dwayne A.; Hurt, Richard A.; Brown, Steven D.; Podar, Mircea

    2015-01-01

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential for mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. This study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin. PMID:25724962

  18. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    DOE PAGES

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; ...

    2015-02-27

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential formore » mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. Ultimately, this study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin.« less

  19. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    SciTech Connect

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; Parks, Jerry M.; Elias, Dwayne A.; Hurt, Richard A.; Brown, Steven D.; Podar, Mircea; Wall, Judy D.

    2015-02-27

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential for mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. Ultimately, this study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin.

  20. Enceladus's activity as revealed by Cassini-Huygens

    NASA Astrophysics Data System (ADS)

    Schmidt, Juergen

    2015-08-01

    The activity of Enceladus has been monitored by Cassini for nearly one decade after its discovery (see Science, 2006, 311, special issue). Thus, crucial properties of the vapor and dust plumes, heat output, surface properties, and the gravity field of the satellite are constrained in a fairly detailed manner. In this paper I review key observational facts and discuss implications for the vent geometries as well as interior structure and composition. Special emphasize I will give to data recorded by the Cassini Cosmic Dust Analyzer, and the conclusions drawn from it, concerning the number, size, and composition of grains ejected by the plumes associated with the south polar activity.

  1. Crystal Structure of Menin Reveals Binding Site for Mixed Lineage Leukemia (MLL) Protein

    SciTech Connect

    Murai, Marcelo J.; Chruszcz, Maksymilian; Reddy, Gireesh; Grembecka, Jolanta; Cierpicki, Tomasz

    2014-10-02

    Menin is a tumor suppressor protein that is encoded by the MEN1 (multiple endocrine neoplasia 1) gene and controls cell growth in endocrine tissues. Importantly, menin also serves as a critical oncogenic cofactor of MLL (mixed lineage leukemia) fusion proteins in acute leukemias. Direct association of menin with MLL fusion proteins is required for MLL fusion protein-mediated leukemogenesis in vivo, and this interaction has been validated as a new potential therapeutic target for development of novel anti-leukemia agents. Here, we report the first crystal structure of menin homolog from Nematostella vectensis. Due to a very high sequence similarity, the Nematostella menin is a close homolog of human menin, and these two proteins likely have very similar structures. Menin is predominantly an {alpha}-helical protein with the protein core comprising three tetratricopeptide motifs that are flanked by two {alpha}-helical bundles and covered by a {beta}-sheet motif. A very interesting feature of menin structure is the presence of a large central cavity that is highly conserved between Nematostella and human menin. By employing site-directed mutagenesis, we have demonstrated that this cavity constitutes the binding site for MLL. Our data provide a structural basis for understanding the role of menin as a tumor suppressor protein and as an oncogenic co-factor of MLL fusion proteins. It also provides essential structural information for development of inhibitors targeting the menin-MLL interaction as a novel therapeutic strategy in MLL-related leukemias.

  2. Revealing the function of a novel splice-site mutation of CHD7 in CHARGE syndrome.

    PubMed

    Lee, Byeonghyeon; Duz, Mehmet Bugrahan; Sagong, Borum; Koparir, Asuman; Lee, Kyu-Yup; Choi, Jae Young; Seven, Mehmet; Yuksel, Adnan; Kim, Un-Kyung; Ozen, Mustafa

    2016-02-01

    Most cases of CHARGE syndrome are sporadic and autosomal dominant. CHD7 is a major causative gene of CHARGE syndrome. In this study, we screened CHD7 in two Turkish patients demonstrating symptoms of CHARGE syndrome such as coloboma, heart defect, choanal atresia, retarded growth, genital abnomalities and ear anomalies. Two mutations of CHD7 were identified including a novel splice-site mutation (c.2443-2A>G) and a previously known frameshift mutation (c.2504_2508delATCTT). We performed exon trapping analysis to determine the effect of the c.2443-2A>G mutation at the transcriptional level, and found that it caused a complete skip of exon 7 and splicing at a cryptic splice acceptor site. Our current study is the second study demonstrating an exon 7 deficit in CHD7. Results of previous studies suggest that the c.2443-2A>G mutation affects the formation of nasal tissues and the neural retina during early development, resulting in choanal atresia and coloboma, respectively. The findings of the present study will improve our understanding of the genetic causes of CHARGE syndrome.

  3. Two interacting binding sites for quinacrine derivatives in the active site of trypanothione reductase – a template for drug design

    PubMed Central

    Saravanamuthu, Ahilan; Vickers, Tim J.; Bond, Charles S.; Peterson, Mark R.; Hunter, William N.; Fairlamb, Alan H.

    2012-01-01

    SUMMARY Trypanothione reductase is a key enzyme in the trypanothione-based redox metabolism of pathogenic trypanosomes. Since this system is absent in humans, being replaced with glutathione and glutathione reductase, it offers a target for selective inhibition. The rational design of potent inhibitors requires accurate structures of enzyme-inhibitor complexes, but this is lacking for trypanothione reductase. We therefore used quinacrine mustard, an alkylating derivative of the competitive inhibitor quinacrine, to probe the active site of this dimeric flavoprotein. Quinacrine mustard irreversibly inactivates Trypanosoma cruzi trypanothione reductase, but not human glutathione reductase, in a time-dependent manner with a stoichiometry of two inhibitors bound per monomer. The rate of inactivation is dependent upon the oxidation state of trypanothione reductase, with the NADPH-reduced form being inactivated significantly faster than the oxidised form. Inactivation is slowed by clomipramine and a melarsen oxide-trypanothione adduct (both are competitive inhibitors) but accelerated by quinacrine. The structure of the trypanothione reductase-quinacrine mustard adduct was determined to 2.7 Å, revealing two molecules of inhibitor bound in the trypanothione-binding site. The acridine moieties interact with each other through π-stacking effects, and one acridine interacts in a similar fashion with a tryptophan residue. These interactions provide a molecular explanation for the differing effects of clomipramine and quinacrine on inactivation by quinacrine mustard. Synergism with quinacrine occurs as a result of these planar acridines being able to stack together in the active site cleft, thereby gaining an increased number of binding interactions, whereas antagonism occurs with non-planar molecules, such as clomipramine, where stacking is not possible. PMID:15102853

  4. Revealing Student Blogging Activities Using RSS Feeds and LMS Logs

    ERIC Educational Resources Information Center

    Derntl, Michael

    2010-01-01

    Blogs are an easy-to-use, free alternative to classic means of computer-mediated communication. Moreover, they are authentically aligned with web activity patterns of today's students. The body of studies on integrating and implementing blogs in various educational settings has grown rapidly recently; however, it is often difficult to distill…

  5. Sleeping Beauty screen reveals Pparg activation in metastatic prostate cancer.

    PubMed

    Ahmad, Imran; Mui, Ernest; Galbraith, Laura; Patel, Rachana; Tan, Ee Hong; Salji, Mark; Rust, Alistair G; Repiscak, Peter; Hedley, Ann; Markert, Elke; Loveridge, Carolyn; van der Weyden, Louise; Edwards, Joanne; Sansom, Owen J; Adams, David J; Leung, Hing Y

    2016-07-19

    Prostate cancer (CaP) is the most common adult male cancer in the developed world. The paucity of biomarkers to predict prostate tumor biology makes it important to identify key pathways that confer poor prognosis and guide potential targeted therapy. Using a murine forward mutagenesis screen in a Pten-null background, we identified peroxisome proliferator-activated receptor gamma (Pparg), encoding a ligand-activated transcription factor, as a promoter of metastatic CaP through activation of lipid signaling pathways, including up-regulation of lipid synthesis enzymes [fatty acid synthase (FASN), acetyl-CoA carboxylase (ACC), ATP citrate lyase (ACLY)]. Importantly, inhibition of PPARG suppressed tumor growth in vivo, with down-regulation of the lipid synthesis program. We show that elevated levels of PPARG strongly correlate with elevation of FASN in human CaP and that high levels of PPARG/FASN and PI3K/pAKT pathway activation confer a poor prognosis. These data suggest that CaP patients could be stratified in terms of PPARG/FASN and PTEN levels to identify patients with aggressive CaP who may respond favorably to PPARG/FASN inhibition.

  6. Sleeping Beauty screen reveals Pparg activation in metastatic prostate cancer

    PubMed Central

    Ahmad, Imran; Mui, Ernest; Galbraith, Laura; Patel, Rachana; Tan, Ee Hong; Salji, Mark; Rust, Alistair G.; Repiscak, Peter; Hedley, Ann; Markert, Elke; Loveridge, Carolyn; van der Weyden, Louise; Edwards, Joanne; Sansom, Owen J.; Adams, David J.; Leung, Hing Y.

    2016-01-01

    Prostate cancer (CaP) is the most common adult male cancer in the developed world. The paucity of biomarkers to predict prostate tumor biology makes it important to identify key pathways that confer poor prognosis and guide potential targeted therapy. Using a murine forward mutagenesis screen in a Pten-null background, we identified peroxisome proliferator-activated receptor gamma (Pparg), encoding a ligand-activated transcription factor, as a promoter of metastatic CaP through activation of lipid signaling pathways, including up-regulation of lipid synthesis enzymes [fatty acid synthase (FASN), acetyl-CoA carboxylase (ACC), ATP citrate lyase (ACLY)]. Importantly, inhibition of PPARG suppressed tumor growth in vivo, with down-regulation of the lipid synthesis program. We show that elevated levels of PPARG strongly correlate with elevation of FASN in human CaP and that high levels of PPARG/FASN and PI3K/pAKT pathway activation confer a poor prognosis. These data suggest that CaP patients could be stratified in terms of PPARG/FASN and PTEN levels to identify patients with aggressive CaP who may respond favorably to PPARG/FASN inhibition. PMID:27357679

  7. Identification of covalent active site inhibitors of dengue virus protease

    PubMed Central

    Koh-Stenta, Xiaoying; Joy, Joma; Wang, Si Fang; Kwek, Perlyn Zekui; Wee, John Liang Kuan; Wan, Kah Fei; Gayen, Shovanlal; Chen, Angela Shuyi; Kang, CongBao; Lee, May Ann; Poulsen, Anders; Vasudevan, Subhash G; Hill, Jeffrey; Nacro, Kassoum

    2015-01-01

    Dengue virus (DENV) protease is an attractive target for drug development; however, no compounds have reached clinical development to date. In this study, we utilized a potent West Nile virus protease inhibitor of the pyrazole ester derivative class as a chemical starting point for DENV protease drug development. Compound potency and selectivity for DENV protease were improved through structure-guided small molecule optimization, and protease-inhibitor binding interactions were validated biophysically using nuclear magnetic resonance. Our work strongly suggests that this class of compounds inhibits flavivirus protease through targeted covalent modification of active site serine, contrary to an allosteric binding mechanism as previously described. PMID:26677315

  8. Structures of glycosylated mammalian glutaminyl cyclases reveal conformational variability near the active center.

    PubMed

    Ruiz-Carrillo, David; Koch, Birgit; Parthier, Christoph; Wermann, Michael; Dambe, Tresfore; Buchholz, Mirko; Ludwig, Hans-Henning; Heiser, Ulrich; Rahfeld, Jens-Ulrich; Stubbs, Milton T; Schilling, Stephan; Demuth, Hans-Ulrich

    2011-07-19

    Formation of N-terminal pyroglutamate (pGlu or pE) from glutaminyl or glutamyl precursors is catalyzed by glutaminyl cyclases (QC). As the formation of pGlu-amyloid has been linked with Alzheimer's disease, inhibitors of QCs are currently the subject of intense development. Here, we report three crystal structures of N-glycosylated mammalian QC from humans (hQC) and mice (mQC). Whereas the overall structures of the enzymes are similar to those reported previously, two surface loops in the neighborhood of the active center exhibit conformational variability. Furthermore, two conserved cysteine residues form a disulfide bond at the base of the active center that was not present in previous reports of hQC structure. Site-directed mutagenesis suggests a structure-stabilizing role of the disulfide bond. At the entrance to the active center, the conserved tryptophan residue, W(207), which displayed multiple orientations in previous structure, shows a single conformation in both glycosylated human and murine QCs. Although mutagenesis of W(207) into leucine or glutamine altered substrate conversion significantly, the binding constants of inhibitors such as the highly potent PQ50 (PBD150) were minimally affected. The crystal structure of PQ50 bound to the active center of murine QC reveals principal binding determinants provided by the catalytic zinc ion and a hydrophobic funnel. This study presents a first comparison of two mammalian QCs containing typical, conserved post-translational modifications.

  9. Site-directed mutagenesis of an alkaline phytase: influencing specificity, activity and stability in acidic milieu.

    PubMed

    Tran, Thuy T; Mamo, Gashaw; Búxo, Laura; Le, Nhi N; Gaber, Yasser; Mattiasson, Bo; Hatti-Kaul, Rajni

    2011-07-10

    Site-directed mutagenesis of a thermostable alkaline phytase from Bacillus sp. MD2 was performed with an aim to increase its specific activity and activity and stability in an acidic environment. The mutation sites are distributed on the catalytic surface of the enzyme (P257R, E180N, E229V and S283R) and in the active site (K77R, K179R and E227S). Selection of the residues was based on the idea that acid active phytases are more positively charged around their catalytic surfaces. Thus, a decrease in the content of negatively charged residues or an increase in the positive charges in the catalytic region of an alkaline phytase was assumed to influence the enzyme activity and stability at low pH. Moreover, widening of the substrate-binding pocket is expected to improve the hydrolysis of substrates that are not efficiently hydrolysed by wild type alkaline phytase. Analysis of the phytase variants revealed that E229V and S283R mutants increased the specific activity by about 19% and 13%, respectively. Mutation of the active site residues K77R and K179R led to severe reduction in the specific activity of the enzyme. Analysis of the phytase mutant-phytate complexes revealed increase in hydrogen bonding between the enzyme and the substrate, which might retard the release of the product, resulting in decreased activity. On the other hand, the double mutant (K77R-K179R) phytase showed higher stability at low pH (pH 2.6-3.0). The E227S variant was optimally active at pH 5.5 (in contrast to the wild type enzyme that had an optimum pH of 6) and it exhibited higher stability in acidic condition. This mutant phytase, displayed over 80% of its initial activity after 3h incubation at pH 2.6 while the wild type phytase retained only about 40% of its original activity. Moreover, the relative activity of this mutant phytase on calcium phytate, sodium pyrophosphate and p-nitro phenyl phosphate was higher than that of the wild type phytase.

  10. Phytoliths reveal the earliest fine reedy textile in China at the Tianluoshan site

    PubMed Central

    Zhang, Jianping; Lu, Houyuan; Sun, Guoping; Flad, Rowan; Wu, Naiqin; Huan, Xiujia; He, Keyang; Wang, Yonglei

    2016-01-01

    Textiles are among the longest and most widespread technologies in human history, although poor preservation of perishable artifacts in Paleolithic and Neolithic contexts makes them difficult to unearth and has hampered study of their production and use. Here we report evidence of a plain-woven mat from the Tianluoshan site, Zhejiang, Eastern China. Phytolith and AMS dating from the mat and modern reference collections shown that the mat was made of reeds (Phragmites australis (Cav.)) and dated to 6775–6645 cal. yr. BP. This is the earliest directly dated fiber artifact so far known in China, over at least one thousand years earlier than any established dates for woven remains elsewhere. The evidence of the mat and other related remains suggest that textile products might occur earlier than 7000–8000 years ago and are significant for understanding the history of textiles, as well as production and human adaptation in Neolithic China. PMID:26766794

  11. Phytoliths reveal the earliest fine reedy textile in China at the Tianluoshan site

    NASA Astrophysics Data System (ADS)

    Zhang, Jianping; Lu, Houyuan; Sun, Guoping; Flad, Rowan; Wu, Naiqin; Huan, Xiujia; He, Keyang; Wang, Yonglei

    2016-01-01

    Textiles are among the longest and most widespread technologies in human history, although poor preservation of perishable artifacts in Paleolithic and Neolithic contexts makes them difficult to unearth and has hampered study of their production and use. Here we report evidence of a plain-woven mat from the Tianluoshan site, Zhejiang, Eastern China. Phytolith and AMS dating from the mat and modern reference collections shown that the mat was made of reeds (Phragmites australis (Cav.)) and dated to 6775–6645 cal. yr. BP. This is the earliest directly dated fiber artifact so far known in China, over at least one thousand years earlier than any established dates for woven remains elsewhere. The evidence of the mat and other related remains suggest that textile products might occur earlier than 7000–8000 years ago and are significant for understanding the history of textiles, as well as production and human adaptation in Neolithic China.

  12. Phytoliths reveal the earliest fine reedy textile in China at the Tianluoshan site.

    PubMed

    Zhang, Jianping; Lu, Houyuan; Sun, Guoping; Flad, Rowan; Wu, Naiqin; Huan, Xiujia; He, Keyang; Wang, Yonglei

    2016-01-14

    Textiles are among the longest and most widespread technologies in human history, although poor preservation of perishable artifacts in Paleolithic and Neolithic contexts makes them difficult to unearth and has hampered study of their production and use. Here we report evidence of a plain-woven mat from the Tianluoshan site, Zhejiang, Eastern China. Phytolith and AMS dating from the mat and modern reference collections shown that the mat was made of reeds (Phragmites australis (Cav.)) and dated to 6775-6645 cal. yr. BP. This is the earliest directly dated fiber artifact so far known in China, over at least one thousand years earlier than any established dates for woven remains elsewhere. The evidence of the mat and other related remains suggest that textile products might occur earlier than 7000-8000 years ago and are significant for understanding the history of textiles, as well as production and human adaptation in Neolithic China.

  13. Distribution of ESCRT machinery at HIV assembly sites reveals virus scaffolding of ESCRT subunits.

    PubMed

    Van Engelenburg, Schuyler B; Shtengel, Gleb; Sengupta, Prabuddha; Waki, Kayoko; Jarnik, Michal; Ablan, Sherimay D; Freed, Eric O; Hess, Harald F; Lippincott-Schwartz, Jennifer

    2014-02-07

    The human immunodeficiency virus (HIV) hijacks the endosomal sorting complexes required for transport (ESCRT) to mediate virus release from infected cells. The nanoscale organization of ESCRT machinery necessary for mediating viral abscission is unclear. Here, we applied three-dimensional superresolution microscopy and correlative electron microscopy to delineate the organization of ESCRT components at HIV assembly sites. We observed ESCRT subunits localized within the head of budding virions and released particles, with head-localized levels of CHMP2A decreasing relative to Tsg101 and CHMP4B upon virus abscission. Thus, the driving force for HIV release may derive from initial scaffolding of ESCRT subunits within the viral bud interior followed by plasma membrane association and selective remodeling of ESCRT subunits.

  14. Mixture model of pottery decorations from Lake Chad Basin archaeological sites reveals ancient segregation patterns

    PubMed Central

    O'Brien, John D.; Lin, Kathryn; MacEachern, Scott

    2016-01-01

    We present a new statistical approach to analysing an extremely common archaeological data type—potsherds—that infers the structure of cultural relationships across a set of excavation units (EUs). This method, applied to data from a set of complex, culturally heterogeneous sites around the Mandara mountains in the Lake Chad Basin, helps elucidate cultural succession through the Neolithic and Iron Age. We show how the approach can be integrated with radiocarbon dates to provide detailed portraits of cultural dynamics and deposition patterns within single EUs. In this context, the analysis supports ancient cultural segregation analogous to historical ethnolinguistic patterning in the region. We conclude with a discussion of the many possible model extensions using other archaeological data types. PMID:27009217

  15. Mixture model of pottery decorations from Lake Chad Basin archaeological sites reveals ancient segregation patterns.

    PubMed

    O'Brien, John D; Lin, Kathryn; MacEachern, Scott

    2016-03-30

    We present a new statistical approach to analysing an extremely common archaeological data type--potsherds--that infers the structure of cultural relationships across a set of excavation units (EUs). This method, applied to data from a set of complex, culturally heterogeneous sites around the Mandara mountains in the Lake Chad Basin, helps elucidate cultural succession through the Neolithic and Iron Age. We show how the approach can be integrated with radiocarbon dates to provide detailed portraits of cultural dynamics and deposition patterns within single EUs. In this context, the analysis supports ancient cultural segregation analogous to historical ethnolinguistic patterning in the region. We conclude with a discussion of the many possible model extensions using other archaeological data types.

  16. Metaproteomic analysis reveals microbial metabolic activities in the deep ocean

    NASA Astrophysics Data System (ADS)

    Wang, Da-Zhi; Xie, Zhang-Xian; Zhang, Shu-Feng; Wang, Ming-Hua; Zhang, Hao; Kong, Ling-Fen; Lin, Lin

    2016-04-01

    The deep sea is the largest habitat on earth and holds many and varied microbial life forms. However, little is known about their metabolic activities in the deep ocean. Here, we characterized protein profiles of particulate (>0.22 μm) and dissolved (between 10 kDa and 0.22 μm) fractions collected from the deep South China Sea using a shotgun proteomic approach. SAR324, Alteromonadales and SAR11 were the most abundant groups, while Prasinophyte contributed most to eukaryotes and cyanophage to viruses. The dominant heterotrophic activity was evidenced by the abundant transporters (33%). Proteins participating in nitrification, methanogenesis, methyltrophy and CO2 fixation were detected. Notably, the predominance of unique cellular proteins in dissolved fraction suggested the presence of membrane structures. Moreover, the detection of translation proteins related to phytoplankton indicated that other process rather than sinking particles might be the downward export of living cells. Our study implied that novel extracellular activities and the interaction of deep water with its overlying water could be crucial to the microbial world of deep sea.

  17. Metatranscriptomics reveals overall active bacterial composition in caries lesions

    PubMed Central

    Simón-Soro, Aurea; Guillen-Navarro, Miriam; Mira, Alex

    2014-01-01

    Background Identifying the microbial species in caries lesions is instrumental to determine the etiology of dental caries. However, a significant proportion of bacteria in carious lesions have not been cultured, and the use of molecular methods has been limited to DNA-based approaches, which detect both active and inactive or dead microorganisms. Objective To identify the RNA-based, metabolically active bacterial composition of caries lesions at different stages of disease progression in order to provide a list of potential etiological agents of tooth decay. Design Non-cavitated enamel caries lesions (n=15) and dentin caries lesions samples (n=12) were collected from 13 individuals. RNA was extracted and cDNA was constructed, which was used to amplify the 16S rRNA gene. The resulting 780 bp polymerase chain reaction products were pyrosequenced using Titanium-plus chemistry, and the sequences obtained were used to determine the bacterial composition. Results A mean of 4,900 sequences of the 16S rRNA gene with an average read length of 661 bp was obtained per sample, giving a comprehensive view of the active bacterial communities in caries lesions. Estimates of bacterial diversity indicate that the microbiota of cavities is highly complex, each sample containing between 70 and 400 metabolically active species. The composition of these bacterial consortia varied among individuals and between caries lesions of the same individuals. In addition, enamel and dentin lesions had a different bacterial makeup. Lactobacilli were found almost exclusively in dentin cavities. Streptococci accounted for 40% of the total active community in enamel caries, and 20% in dentin caries. However, Streptococcus mutans represented only 0.02–0.73% of the total bacterial community. Conclusions The data indicate that the etiology of dental caries is tissue dependent and that the disease has a clear polymicrobial origin. The low proportion of mutans streptococci detected confirms that they

  18. Reducing contralateral SI activity reveals hindlimb receptive fields in the SI forelimb-stump representation of neonatally amputated rats.

    PubMed

    Pluto, Charles P; Chiaia, Nicolas L; Rhoades, Robert W; Lane, Richard D

    2005-09-01

    In adult rats that sustained forelimb amputation on the day of birth, >30% of multiunit recording sites in the forelimb-stump representation of primary somatosensory cortex (SI) also respond to cutaneous hindlimb stimulation when cortical GABA(A+B) receptors are blocked (GRB). This study examined whether hindlimb receptive fields could also be revealed in forelimb-stump sites by reducing one known source of excitatory input to SI GABAergic neurons, the contralateral SI cortex. Corpus callosum projection neurons connect homotopic SI regions, making excitatory contacts onto pyramidal cells and interneurons. Thus in addition to providing monosynaptic excitation in SI, callosal fibers can produce disynaptic inhibition through excitatory synapses with inhibitory interneurons. Based on the latter of these connections, we hypothesized that inactivating the contralateral (intact) SI forelimb region would "unmask" normally suppressed hindlimb responses by reducing the activity of SI GABAergic neurons. The SI forelimb-stump representation was first mapped under normal conditions and then during GRB to identify stump/hindlimb responsive sites. After GRB had dissipated, the contralateral (intact) SI forelimb region was mapped and reversibly inactivated with injections of 4% lidocaine, and selected forelimb-stump sites were retested. Contralateral SI inactivation revealed hindlimb responses in approximately 60% of sites that were stump/hindlimb responsive during GRB. These findings indicate that activity in the contralateral SI contributes to the suppression of reorganized hindlimb receptive fields in neonatally amputated rats.

  19. Target-classification approach applied to active UXO sites

    NASA Astrophysics Data System (ADS)

    Shubitidze, F.; Fernández, J. P.; Shamatava, Irma; Barrowes, B. E.; O'Neill, K.

    2013-06-01

    This study is designed to illustrate the discrimination performance at two UXO active sites (Oklahoma's Fort Sill and the Massachusetts Military Reservation) of a set of advanced electromagnetic induction (EMI) inversion/discrimination models which include the orthonormalized volume magnetic source (ONVMS), joint diagonalization (JD), and differential evolution (DE) approaches and whose power and flexibility greatly exceed those of the simple dipole model. The Fort Sill site is highly contaminated by a mix of the following types of munitions: 37-mm target practice tracers, 60-mm illumination mortars, 75-mm and 4.5'' projectiles, 3.5'', 2.36'', and LAAW rockets, antitank mine fuzes with and without hex nuts, practice MK2 and M67 grenades, 2.5'' ballistic windshields, M2A1-mines with/without bases, M19-14 time fuzes, and 40-mm practice grenades with/without cartridges. The site at the MMR site contains targets of yet different sizes. In this work we apply our models to EMI data collected using the MetalMapper (MM) and 2 × 2 TEMTADS sensors. The data for each anomaly are inverted to extract estimates of the extrinsic and intrinsic parameters associated with each buried target. (The latter include the total volume magnetic source or NVMS, which relates to size, shape, and material properties; the former includes location, depth, and orientation). The estimated intrinsic parameters are then used for classification performed via library matching and the use of statistical classification algorithms; this process yielded prioritized dig-lists that were submitted to the Institute for Defense Analyses (IDA) for independent scoring. The models' classification performance is illustrated and assessed based on these independent evaluations.

  20. Fifteen years of thermal activity at Vanuatu's volcanoes (2000-2015) revealed by MIROVA

    NASA Astrophysics Data System (ADS)

    Coppola, D.; Laiolo, M.; Cigolini, C.

    2016-08-01

    The Vanuatu archipelago consists of 80 islands and hosts 5 subaerial volcanoes (Yasur, Lopevi, Ambrym, Aoba and Gaua) that have shown sign of activity during the past decade. In this contribution we provide a 15 years-long datasets (2000-2015) of the thermal activity recorded at these active volcanoes by means of MIROVA (Middle InfraRed Observation of Volcanic Activity) a new volcanic hotspot detection system based on MODIS data. The analyzed volcanoes are characterized by a spectrum of volcanic activities whose thermal signature has been tracked and carefully analyzed. These include strombolian-vulcanian explosions at Yasur, lava flows at Lopevi, lava lakes at Ambrym, surtseyan-type eruptions within the Voui crater lake of Aoba and ash-dominated eruptions with strong degassing at Gaua. The collected data reveal several details of the long term eruptive dynamics at single sites such as a monthly long pulse in thermal emissions at Yasur volcano as well as at the two active craters of Ambrym (Benbow and Marum). Heating cycles within Aoba crater lake and intermittent pressurized eruptions at Lopevi volcano has also been detected and shed light in the eruptive dynamics of the analyzed volcanoes. In addition we were able to track a two years long intensification of thermal output at Benbow crater (Ambrym) that preceded the occurrence of the first intra-caldera eruptions of this volcano since 1989. We emphasize how the data provided by MIROVA represent a new, safe and affordable method for monitoring in near-real time a large spectrum of volcanic activities taking place at Vanuatu and other volcanic areas.

  1. Identification of Phosphorylation Sites Altering Pollen Soluble Inorganic Pyrophosphatase Activity.

    PubMed

    Eaves, Deborah J; Haque, Tamanna; Tudor, Richard L; Barron, Yoshimi; Zampronio, Cleidiane G; Cotton, Nicholas P J; de Graaf, Barend H J; White, Scott A; Cooper, Helen J; Franklin, F Christopher H; Harper, Jeffery F; Franklin-Tong, Vernonica E

    2017-03-01

    Protein phosphorylation regulates numerous cellular processes. Identifying the substrates and protein kinases involved is vital to understand how these important posttranslational modifications modulate biological function in eukaryotic cells. Pyrophosphatases catalyze the hydrolysis of inorganic phosphate (PPi) to inorganic phosphate Pi, driving biosynthetic reactions; they are essential for low cytosolic inorganic phosphate. It was suggested recently that posttranslational regulation of Family I soluble inorganic pyrophosphatases (sPPases) may affect their activity. We previously demonstrated that two pollen-expressed sPPases, Pr-p26.1a and Pr-p26.1b, from the flowering plant Papaver rhoeas were inhibited by phosphorylation. Despite the potential significance, there is a paucity of data on sPPase phosphorylation and regulation. Here, we used liquid chromatographic tandem mass spectrometry to map phosphorylation sites to the otherwise divergent amino-terminal extensions on these pollen sPPases. Despite the absence of reports in the literature on mapping phosphorylation sites on sPPases, a database survey of various proteomes identified a number of examples, suggesting that phosphorylation may be a more widely used mechanism to regulate these enzymes. Phosphomimetic mutants of Pr-p26.1a/b significantly and differentially reduced PPase activities by up to 2.5-fold at pH 6.8 and 52% in the presence of Ca(2+) and hydrogen peroxide over unmodified proteins. This indicates that phosphoregulation of key sites can inhibit the catalytic responsiveness of these proteins in concert with key intracellular events. As sPPases are essential for many metabolic pathways in eukaryotic cells, our findings identify the phosphorylation of sPPases as a potential master regulatory mechanism that could be used to attenuate metabolism.

  2. Single cell activity reveals direct electron transfer in methanotrophic consortia

    NASA Astrophysics Data System (ADS)

    McGlynn, Shawn E.; Chadwick, Grayson L.; Kempes, Christopher P.; Orphan, Victoria J.

    2015-10-01

    Multicellular assemblages of microorganisms are ubiquitous in nature, and the proximity afforded by aggregation is thought to permit intercellular metabolic coupling that can accommodate otherwise unfavourable reactions. Consortia of methane-oxidizing archaea and sulphate-reducing bacteria are a well-known environmental example of microbial co-aggregation; however, the coupling mechanisms between these paired organisms is not well understood, despite the attention given them because of the global significance of anaerobic methane oxidation. Here we examined the influence of interspecies spatial positioning as it relates to biosynthetic activity within structurally diverse uncultured methane-oxidizing consortia by measuring stable isotope incorporation for individual archaeal and bacterial cells to constrain their potential metabolic interactions. In contrast to conventional models of syntrophy based on the passage of molecular intermediates, cellular activities were found to be independent of both species intermixing and distance between syntrophic partners within consortia. A generalized model of electric conductivity between co-associated archaea and bacteria best fit the empirical data. Combined with the detection of large multi-haem cytochromes in the genomes of methanotrophic archaea and the demonstration of redox-dependent staining of the matrix between cells in consortia, these results provide evidence for syntrophic coupling through direct electron transfer.

  3. Oscillatory Brain Activity Reveals Linguistic Prints in the Quantity Code

    PubMed Central

    Salillas, Elena; Barraza, Paulo; Carreiras, Manuel

    2015-01-01

    Number representations change through education, although it is currently unclear whether and how language could impact the magnitude representation that we share with other species. The most prominent view is that language does not play any role in modulating the core numeric representation involved in the contrast of quantities. Nevertheless, possible cultural hints on the numerical magnitude representation are currently on discussion focus. In fact, the acquisition of number words provides linguistic input that the quantity system may not ignore. Bilingualism offers a window to the study of this question, especially in bilinguals where the two number wording systems imply also two different numerical systems, such as in Basque-Spanish bilinguals. The present study evidences linguistic prints in the core number representational system through the analysis of EEG oscillatory activity during a simple number comparison task. Gamma band synchronization appears when Basque-Spanish bilinguals compare pairs of Arabic numbers linked through the Basque base-20 wording system, but it does not if the pairs are related through the base-10 system. Crucially, this gamma activity, originated in a left fronto-parietal network, only appears in bilinguals who learned math in Basque and not in equivalent proficiency bilinguals who learned math in Spanish. Thus, this neural index reflected in gamma band synchrony appears to be triggered by early learning experience with the base-20 numerical associations in Basque number words. PMID:25875210

  4. Structures of protective antibodies reveal sites of vulnerability on Ebola virus.

    PubMed

    Murin, Charles D; Fusco, Marnie L; Bornholdt, Zachary A; Qiu, Xiangguo; Olinger, Gene G; Zeitlin, Larry; Kobinger, Gary P; Ward, Andrew B; Saphire, Erica Ollmann

    2014-12-02

    Ebola virus (EBOV) and related filoviruses cause severe hemorrhagic fever, with up to 90% lethality, and no treatments are approved for human use. Multiple recent outbreaks of EBOV and the likelihood of future human exposure highlight the need for pre- and postexposure treatments. Monoclonal antibody (mAb) cocktails are particularly attractive candidates due to their proven postexposure efficacy in nonhuman primate models of EBOV infection. Two candidate cocktails, MB-003 and ZMAb, have been extensively evaluated in both in vitro and in vivo studies. Recently, these two therapeutics have been combined into a new cocktail named ZMapp, which showed increased efficacy and has been given compassionately to some human patients. Epitope information and mechanism of action are currently unknown for most of the component mAbs. Here we provide single-particle EM reconstructions of every mAb in the ZMapp cocktail, as well as additional antibodies from MB-003 and ZMAb. Our results illuminate key and recurring sites of vulnerability on the EBOV glycoprotein and provide a structural rationale for the efficacy of ZMapp. Interestingly, two of its components recognize overlapping epitopes and compete with each other for binding. Going forward, this work now provides a basis for strategic selection of next-generation antibody cocktails against Ebola and related viruses and a model for predicting the impact of ZMapp on potential escape mutations in ongoing or future Ebola outbreaks.

  5. Metatranscriptomic Analysis of Groundwater Reveals an Active Anammox Bacterial Population

    NASA Astrophysics Data System (ADS)

    Jewell, T. N. M.; Karaoz, U.; Thomas, B. C.; Banfield, J. F.; Brodie, E.; Williams, K. H.; Beller, H. R.

    2014-12-01

    Groundwater is a major natural resource, yet little is known about the contribution of microbial anaerobic ammonium oxidation (anammox) activity to subsurface nitrogen cycling. During anammox, energy is generated as ammonium is oxidized under anaerobic conditions to dinitrogen gas, using nitrite as the final electron acceptor. This process is a global sink for fixed nitrogen. Only a narrow range of monophyletic bacteria within the Planctomycetes carries out anammox, and the full extent of their metabolism, and subsequent impact on nitrogen cycling and microbial community structure, is still unknown. Here, we employ a metatranscriptomic analysis on enriched mRNA to identify the abundance and activity of a population of anammox bacteria within an aquifer at Rifle, CO. Planktonic biomass was collected over a two-month period after injection of up to 1.5 mM nitrate. Illumina-generated sequences were mapped to a phylogenetically binned Rifle metagenome database. We identified transcripts for genes with high protein sequence identities (81-98%) to those of anammox strain KSU-1 and to two of the five anammox bacteria genera, Brocadia and Kuenenia, suggesting an active, if not diverse, anammox population. Many of the most abundant anammox transcripts mapped to a single scaffold, indicative of a single dominant anammox species. Transcripts of the genes necessary for the anammox pathway were present, including an ammonium transporter (amtB), nitrite/formate transporter, nitrite reductase (nirK), and hydrazine oxidoreductase (hzoB). The form of nitrite reductase encoded by anammox is species-dependent, and we only identified nirK, with no evidence of anammox nirS. In addition to the anammox pathway we saw evidence of the anammox bacterial dissimilatory nitrate reduction to ammonium pathway (narH, putative nrfA, and nrfB), which provides an alternate means of generating substrates for anammox from nitrate, rather than relying on an external pool. Transcripts for hydroxylamine

  6. Activities on Facebook Reveal the Depressive State of Users

    PubMed Central

    Kwak, Jinah

    2013-01-01

    Background As online social media have become prominent, much effort has been spent on identifying users with depressive symptoms in order to aim at early diagnosis, treatment, and even prevention by using various online social media. In this paper, we focused on Facebook to discern any correlations between the platform’s features and users’ depressive symptoms. This work may be helpful in trying to reach and detect large numbers of depressed individuals more easily. Objective Our goal was to develop a Web application and identify depressive symptom–related features from users of Facebook, a popular social networking platform. Methods 55 Facebook users (male=40, female=15, mean age 24.43, SD 3.90) were recruited through advertisement fliers distributed to students in a large university in Korea. Using EmotionDiary, the Facebook application we developed, we evaluated depressive symptoms using the Center for Epidemiological Studies-Depression (CES-D) scale. We also provided tips and facts about depression to participants and measured their responses using EmotionDiary. To identify the Facebook features related to depression, correlation analyses were performed between CES-D and participants’ responses to tips and facts or Facebook social features. Last, we interviewed depressed participants (CES-D≥25) to assess their depressive symptoms by a psychiatrist. Results Facebook activities had predictive power in distinguishing depressed and nondepressed individuals. Participants’ response to tips and facts, which can be explained by the number of app tips viewed and app points, had a positive correlation (P=.04 for both cases), whereas the number of friends and location tags had a negative correlation with the CES-D scale (P=.08 and P=.045 respectively). Furthermore, in finding group differences in Facebook social activities, app tips viewed and app points resulted in significant differences (P=.01 and P=.03 respectively) between probably depressed and

  7. Neural activity reveals perceptual grouping in working memory.

    PubMed

    Rabbitt, Laura R; Roberts, Daniel M; McDonald, Craig G; Peterson, Matthew S

    2017-03-01

    There is extensive evidence that the contralateral delay activity (CDA), a scalp recorded event-related brain potential, provides a reliable index of the number of objects held in visual working memory. Here we present evidence that the CDA not only indexes visual object working memory, but also the number of locations held in spatial working memory. In addition, we demonstrate that the CDA can be predictably modulated by the type of encoding strategy employed. When individual locations were held in working memory, the pattern of CDA modulation mimicked previous findings for visual object working memory. Specifically, CDA amplitude increased monotonically until working memory capacity was reached. However, when participants were instructed to group individual locations to form a constellation, the CDA was prolonged and reached an asymptote at two locations. This result provides neural evidence for the formation of a unitary representation of multiple spatial locations.

  8. C-H Activation on Co,O Sites: Isolated Surface Sites versus Molecular Analogs.

    PubMed

    Estes, Deven P; Siddiqi, Georges; Allouche, Florian; Kovtunov, Kirill V; Safonova, Olga V; Trigub, Alexander L; Koptyug, Igor V; Copéret, Christophe

    2016-11-16

    The activation and conversion of hydrocarbons is one of the most important challenges in chemistry. Transition-metal ions (V, Cr, Fe, Co, etc.) isolated on silica surfaces are known to catalyze such processes. The mechanisms of these processes are currently unknown but are thought to involve C-H activation as the rate-determining step. Here, we synthesize well-defined Co(II) ions on a silica surface using a metal siloxide precursor followed by thermal treatment under vacuum at 500 °C. We show that these isolated Co(II) sites are catalysts for a number of hydrocarbon conversion reactions, such as the dehydrogenation of propane, the hydrogenation of propene, and the trimerization of terminal alkynes. We then investigate the mechanisms of these processes using kinetics, kinetic isotope effects, isotopic labeling experiments, parahydrogen induced polarization (PHIP) NMR, and comparison with a molecular analog. The data are consistent with all of these reactions occurring by a common mechanism, involving heterolytic C-H or H-H activation via a 1,2 addition across a Co-O bond.

  9. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer

    PubMed Central

    Dinpajooh, Mohammadhasan; Martin, Daniel R.; Matyushov, Dmitry V.

    2016-01-01

    Enzymes in biology’s energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work. PMID:27306204

  10. Active Sites Environmental Monitoring Program: Program plan. Revision 1

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  11. Methyl Substitution of a Rexinoid Agonist Improves Potency and Reveals Site of Lipid Toxicity

    PubMed Central

    2015-01-01

    (2E,4E,6Z,8E)-8-(3′,4′-Dihydro-1′(2′H)-naphthalen-1′-ylidene)-3,7-dimethyl-2,4,6-octatrienoic acid, 9cUAB30, is a selective rexinoid that displays substantial chemopreventive capacity with little toxicity. 4-Methyl-UAB30, an analogue of 9cUAB30, is a potent RXR agonist but caused increased lipid biosynthesis unlike 9cUAB30. To evaluate how methyl substitution influenced potency and lipid biosynthesis, we synthesized four 9cUAB30 homologues with methyl substitutions at the 5-, 6-, 7-, or 8-position of the tetralone ring. The syntheses and biological evaluations of these new analogues are reported here along with the X-ray crystal structures of each homologue bound to the ligand binding domain of hRXRα. We demonstrate that each homologue of 9cUAB30 is a more potent agonist, but only the 7-methyl-9cUAB30 caused severe hyperlipidemia in rats. On the basis of the X-ray crystal structures of these new rexinoids and bexarotene (Targretin) bound to hRXRα-LBD, we reveal that each rexinoid, which induced hyperlipidemia, had methyl groups that interacted with helix 7 residues of the LBD. PMID:24801499

  12. Metaproteomics and metabolomics analyses of chronically petroleum‐polluted sites reveal the importance of general anaerobic processes uncoupled with degradation

    PubMed Central

    Bargiela, Rafael; Herbst, Florian‐Alexander; Martínez‐Martínez, Mónica; Seifert, Jana; Rojo, David; Cappello, Simone; Genovese, María; Crisafi, Francesca; Denaro, Renata; Chernikova, Tatyana N.; Barbas, Coral; von Bergen, Martin; Yakimov, Michail M.; Golyshin, Peter N.

    2015-01-01

    Crude oil is one of the most important natural assets for humankind, yet it is a major environmental pollutant, notably in marine environments. One of the largest crude oil polluted areas in the word is the semi‐enclosed Mediterranean Sea, in which the metabolic potential of indigenous microbial populations towards the large‐scale chronic pollution is yet to be defined, particularly in anaerobic and micro‐aerophilic sites. Here, we provide an insight into the microbial metabolism in sediments from three chronically polluted marine sites along the coastline of Italy: the Priolo oil terminal/refinery site (near Siracuse, Sicily), harbour of Messina (Sicily) and shipwreck of MT Haven (near Genoa). Using shotgun metaproteomics and community metabolomics approaches, the presence of 651 microbial proteins and 4776 metabolite mass features have been detected in these three environments, revealing a high metabolic heterogeneity between the investigated sites. The proteomes displayed the prevalence of anaerobic metabolisms that were not directly related with petroleum biodegradation, indicating that in the absence of oxygen, biodegradation is significantly suppressed. This suppression was also suggested by examining the metabolome patterns. The proteome analysis further highlighted the metabolic coupling between methylotrophs and sulphate reducers in oxygen‐depleted petroleum‐polluted sediments. PMID:26201687

  13. Active Site and Laminarin Binding in Glycoside Hydrolase Family 55*

    PubMed Central

    Bianchetti, Christopher M.; Takasuka, Taichi E.; Deutsch, Sam; Udell, Hannah S.; Yik, Eric J.; Bergeman, Lai F.; Fox, Brian G.

    2015-01-01

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100–10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. PMID:25752603

  14. Co-infection with two strains of Brome mosaic bromovirus reveals common RNA recombination sites in different hosts.

    PubMed

    Kolondam, Beivy; Rao, Parth; Sztuba-Solinska, Joanna; Weber, Philipp H; Dzianott, Aleksandra; Johns, Mitrick A; Bujarski, Jozef J

    2015-01-01

    We have previously reported intra-segmental crossovers in Brome mosaic virus (BMV) RNAs. In this work, we studied the homologous recombination of BMV RNA in three different hosts: barley (Hordeum vulgare), Chenopodium quinoa, and Nicotiana benthamiana that were co-infected with two strains of BMV: Russian (R) and Fescue (F). Our work aimed at (1) establishing the frequency of recombination, (2) mapping the recombination hot spots, and (3) addressing host effects. The F and R nucleotide sequences differ from each other at many translationally silent nucleotide substitutions. We exploited this natural variability to track the crossover sites. Sequencing of a large number of cDNA clones revealed multiple homologous crossovers in each BMV RNA segment, in both the whole plants and protoplasts. Some recombination hot spots mapped at similar locations in different hosts, suggesting a role for viral factors, but other sites depended on the host. Our results demonstrate the chimeric ('mosaic') nature of the BMV RNA genome.

  15. Site-directed mutants of human RECQ1 reveal functional importance of the zinc binding domain.

    PubMed

    Sami, Furqan; Gary, Ronald K; Fang, Yayin; Sharma, Sudha

    2016-08-01

    RecQ helicases are a highly conserved family of ATP-dependent DNA-unwinding enzymes with key roles in DNA replication and repair in all kingdoms of life. The RECQ1 gene encodes the most abundant RecQ homolog in humans. We engineered full-length RECQ1 harboring point mutations in the zinc-binding motif (amino acids 419-480) within the conserved RecQ-specific-C-terminal (RQC) domain known to be critical for diverse biochemical and cellular functions of RecQ helicases. Wild-type RECQ1 contains a zinc ion. Substitution of three of the four conserved cysteine residues that coordinate zinc severely impaired the ATPase and DNA unwinding activities but retained DNA binding and single strand DNA annealing activities. Furthermore, alteration of these residues attenuated zinc binding and significantly changed the overall conformation of full-length RECQ1 protein. In contrast, substitution of cysteine residue at position 471 resulted in a wild-type like RECQ1 protein. Differential contribution of the conserved cysteine residues to the structure and functions of the RECQ1 protein is also inferred by homology modeling. Overall, our results indicate that the zinc binding motif in the RQC domain of RECQ1 is a key structural element that is essential for the structure-functions of RECQ1. Given the recent association of RECQ1 mutations with breast cancer, these results will contribute to understanding the molecular basis of RECQ1 functions in cancer etiology.

  16. An Active Site Water Network in the Plasminogen Activator Pla from Yersinia pestis

    SciTech Connect

    Eren, Elif; Murphy, Megan; Goguen, Jon; van den Berg, Bert

    2010-08-13

    The plasminogen activator Pla from Yersinia pestis is an outer membrane protease (omptin) that is important for the virulence of plague. Here, we present the high-resolution crystal structure of wild-type, enzymatically active Pla at 1.9 {angstrom}. The structure shows a water molecule located between active site residues D84 and H208, which likely corresponds to the nucleophilic water. A number of other water molecules are present in the active site, linking residues important for enzymatic activity. The R211 sidechain in loop L4 is close to the nucleophilic water and possibly involved in the stabilization of the oxyanion intermediate. Subtle conformational changes of H208 result from the binding of lipopolysaccharide to the outside of the barrel, explaining the unusual dependence of omptins on lipopolysaccharide for activity. The Pla structure suggests a model for the interaction with plasminogen substrate and provides a more detailed understanding of the catalytic mechanism of omptin proteases.

  17. An active site water network in the plasminogen activator pla from Yersinia pestis.

    PubMed

    Eren, Elif; Murphy, Megan; Goguen, Jon; van den Berg, Bert

    2010-07-14

    The plasminogen activator Pla from Yersinia pestis is an outer membrane protease (omptin) that is important for the virulence of plague. Here, we present the high-resolution crystal structure of wild-type, enzymatically active Pla at 1.9 A. The structure shows a water molecule located between active site residues D84 and H208, which likely corresponds to the nucleophilic water. A number of other water molecules are present in the active site, linking residues important for enzymatic activity. The R211 sidechain in loop L4 is close to the nucleophilic water and possibly involved in the stabilization of the oxyanion intermediate. Subtle conformational changes of H208 result from the binding of lipopolysaccharide to the outside of the barrel, explaining the unusual dependence of omptins on lipopolysaccharide for activity. The Pla structure suggests a model for the interaction with plasminogen substrate and provides a more detailed understanding of the catalytic mechanism of omptin proteases.

  18. Geo-Chip analysis reveals reduced functional diversity of the bacterial community at a dumping site for dredged Elbe sediment.

    PubMed

    Störmer, Rebecca; Wichels, Antje; Gerdts, Gunnar

    2013-12-15

    The dumping of dredged sediments represents a major stressor for coastal ecosystems. The impact on the ecosystem function is determined by its complexity not easy to assess. In the present study, we evaluated the potential of bacterial community analyses to act as ecological indicators in environmental monitoring programmes. We investigated the functional structure of bacterial communities, applying functional gene arrays (GeoChip4.2). The relationship between functional genes and environmental factors was analysed using distance-based multivariate multiple regression. Apparently, both the function and structure of the bacterial communities are impacted by dumping activities. The bacterial community at the dumping centre displayed a significant reduction of its entire functional diversity compared with that found at a reference site. DDX compounds separated bacterial communities of the dumping site from those of un-impacted sites. Thus, bacterial community analyses show great potential as ecological indicators in environmental monitoring.

  19. RNA Sequencing Identifies New RNase III Cleavage Sites in Escherichia coli and Reveals Increased Regulation of mRNA.

    PubMed

    Gordon, Gina C; Cameron, Jeffrey C; Pfleger, Brian F

    2017-03-28

    Ribonucleases facilitate rapid turnover of RNA, providing cells with another mechanism to adjust transcript and protein levels in response to environmental conditions. While many examples have been documented, a comprehensive list of RNase targets is not available. To address this knowledge gap, we compared levels of RNA sequencing coverage of Escherichia coli and a corresponding RNase III mutant to expand the list of known RNase III targets. RNase III is a widespread endoribonuclease that binds and cleaves double-stranded RNA in many critical transcripts. RNase III cleavage at novel sites found in aceEF, proP, tnaC, dctA, pheM, sdhC, yhhQ, glpT, aceK, and gluQ accelerated RNA decay, consistent with previously described targets wherein RNase III cleavage initiates rapid degradation of secondary messages by other RNases. In contrast, cleavage at three novel sites in the ahpF, pflB, and yajQ transcripts led to stabilized secondary transcripts. Two other novel sites in hisL and pheM overlapped with transcriptional attenuators that likely serve to ensure turnover of these highly structured RNAs. Many of the new RNase III target sites are located on transcripts encoding metabolic enzymes. For instance, two novel RNase III sites are located within transcripts encoding enzymes near a key metabolic node connecting glycolysis and the tricarboxylic acid (TCA) cycle. Pyruvate dehydrogenase activity was increased in an rnc deletion mutant compared to the wild-type (WT) strain in early stationary phase, confirming the novel link between RNA turnover and regulation of pathway activity. Identification of these novel sites suggests that mRNA turnover may be an underappreciated mode of regulating metabolism.IMPORTANCE The concerted action and overlapping functions of endoribonucleases, exoribonucleases, and RNA processing enzymes complicate the study of global RNA turnover and recycling of specific transcripts. More information about RNase specificity and activity is needed to make

  20. Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels.

    PubMed

    Shaya, David; Findeisen, Felix; Abderemane-Ali, Fayal; Arrigoni, Cristina; Wong, Stephanie; Nurva, Shailika Reddy; Loussouarn, Gildas; Minor, Daniel L

    2014-01-23

    Voltage-gated sodium channels (NaVs) are central elements of cellular excitation. Notwithstanding advances from recent bacterial NaV (BacNaV) structures, key questions about gating and ion selectivity remain. Here, we present a closed conformation of NaVAe1p, a pore-only BacNaV derived from NaVAe1, a BacNaV from the arsenite oxidizer Alkalilimnicola ehrlichei found in Mono Lake, California, that provides insight into both fundamental properties. The structure reveals a pore domain in which the pore-lining S6 helix connects to a helical cytoplasmic tail. Electrophysiological studies of full-length BacNaVs show that two elements defined by the NaVAe1p structure, an S6 activation gate position and the cytoplasmic tail "neck", are central to BacNaV gating. The structure also reveals the selectivity filter ion entry site, termed the "outer ion" site. Comparison with mammalian voltage-gated calcium channel (CaV) selectivity filters, together with functional studies, shows that this site forms a previously unknown determinant of CaV high-affinity calcium binding. Our findings underscore commonalities between BacNaVs and eukaryotic voltage-gated channels and provide a framework for understanding gating and ion permeation in this superfamily.

  1. Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels

    PubMed Central

    Shaya, David; Findeisen, Felix; Abderemane-Ali, Fayal; Arrigoni, Cristina; Wong, Stephanie; Nurva, Shailika Reddy; Loussouarn, Gildas; Minor, Daniel L.

    2013-01-01

    Voltage-gated sodium channels (NaVs) are central elements of cellular excitation. Notwithstanding advances from recent bacterial NaV (BacNaV) structures, key questions about gating and ion selectivity remain. Here, we present a closed conformation of NaVAe1p, a pore-only BacNaV derived from NaVAe1, a BacNaV from the arsenite oxidizer Alkalilimnicola ehrlichei found in Mono Lake, California, that provides insight into both fundamental properties. The structure reveals a pore domain in which the pore-lining S6 helix connects to a helical cytoplasmic tail. Electrophysiological studies of full-length BacNaVs show that two elements defined by the NaVAe1p structure, an S6 activation gate position and the cytoplasmic tail ‘neck’, are central to BacNaV gating. The structure also reveals the selectivity filter ion entry site, termed the ‘outer ion’ site. Comparison with mammalian voltage-gated calcium channel (CaV) selectivity filters, together with functional studies shows that this site forms a previously unknown determinant of CaV high affinity calcium binding. Our findings underscore commonalities between BacNaVs and eukaryotic voltage-gated channels and provide a framework for understanding gating and ion permeation in this superfamily. PMID:24120938

  2. RNA Sequencing Identifies New RNase III Cleavage Sites in Escherichia coli and Reveals Increased Regulation of mRNA

    PubMed Central

    Gordon, Gina C.; Cameron, Jeffrey C.

    2017-01-01

    ABSTRACT Ribonucleases facilitate rapid turnover of RNA, providing cells with another mechanism to adjust transcript and protein levels in response to environmental conditions. While many examples have been documented, a comprehensive list of RNase targets is not available. To address this knowledge gap, we compared levels of RNA sequencing coverage of Escherichia coli and a corresponding RNase III mutant to expand the list of known RNase III targets. RNase III is a widespread endoribonuclease that binds and cleaves double-stranded RNA in many critical transcripts. RNase III cleavage at novel sites found in aceEF, proP, tnaC, dctA, pheM, sdhC, yhhQ, glpT, aceK, and gluQ accelerated RNA decay, consistent with previously described targets wherein RNase III cleavage initiates rapid degradation of secondary messages by other RNases. In contrast, cleavage at three novel sites in the ahpF, pflB, and yajQ transcripts led to stabilized secondary transcripts. Two other novel sites in hisL and pheM overlapped with transcriptional attenuators that likely serve to ensure turnover of these highly structured RNAs. Many of the new RNase III target sites are located on transcripts encoding metabolic enzymes. For instance, two novel RNase III sites are located within transcripts encoding enzymes near a key metabolic node connecting glycolysis and the tricarboxylic acid (TCA) cycle. Pyruvate dehydrogenase activity was increased in an rnc deletion mutant compared to the wild-type (WT) strain in early stationary phase, confirming the novel link between RNA turnover and regulation of pathway activity. Identification of these novel sites suggests that mRNA turnover may be an underappreciated mode of regulating metabolism. PMID:28351917

  3. Active Site Structures in Nitrogen-Doped Carbon-Supported Cobalt Catalysts for the Oxygen Reduction Reaction.

    PubMed

    Qian, Yingdan; Liu, Zheng; Zhang, Hui; Wu, Ping; Cai, Chenxin

    2016-12-07

    The catalytic mechanism and the nature of active sites are revealed for the oxygen reduction reaction (ORR) with new non-noble-metal nitrogen-doped carbon-supported transition-metal catalysts (metal-N-C catalyst). Specifically, new nitrogen-doped carbon-supported cobalt catalysts (Co-N-C catalysts) are made by pyrolyzing various ratios of the nitrogen-atom rich heterocycle compound, 1-ethyl-3-methyl imidazolium dicyanamide (EMIM-dca) and cobalt salt (Co(NO3)2). The ORR activity (JK at 0.8 V vs RHE, in 0.1 M KOH solution) of a typical catalyst in this family, Co15-N-C800, is 8.25 mA/mg, which is much higher than the ORR activity values of N-C catalysts (0.41 mA/mg). The active site in the catalyst is found to be the Co-N species, which is most likely in the form of Co2N. Metallic cobalt (Co) particles, Co3C species, and N-C species are not catalytically active sites, nor do these moieties interact with the Co-N active sites during the catalysis of the ORR. Increasing the Co salt content during the synthesis favors the formation of Co-N active sites in the final catalyst. Higher pyrolysis temperatures (e.g., a temperature higher than 800 °C) do not favor the formation of the Co-N active sites, but cause the formed Co-N active sites to decompose, which, therefore, leads to a lower catalytic activity. This reveals that the control of the parameters that affect the final structure is critical to catalyst performance and, therefore, the effective development of high-performance heteroatom-doped non-noble-metal ORR catalysts.

  4. Structural role of the active-site metal in the conformation of Trypanosoma brucei phosphoglycerate mutase.

    PubMed

    Mercaldi, Gustavo F; Pereira, Humberto M; Cordeiro, Artur T; Michels, Paul A M; Thiemann, Otavio H

    2012-06-01

    Phosphoglycerate mutases (PGAMs) participate in both the glycolytic and the gluconeogenic pathways in reversible isomerization of 3-phosphoglycerate and 2-phosphoglycerate. PGAMs are members of two distinct protein families: enzymes that are dependent on or independent of the 2,3-bisphosphoglycerate cofactor. We determined the X-ray structure of the monomeric Trypanosoma brucei independent PGAM (TbiPGAM) in its apoenzyme form, and confirmed this observation by small angle X-ray scattering data. Comparing the TbiPGAM structure with the Leishmania mexicana independent PGAM structure, previously reported with a phosphoglycerate molecule bound to the active site, revealed the domain movement resulting from active site occupation. The structure reported here shows the interaction between Asp319 and the metal bound to the active site, and its contribution to the domain movement. Substitution of the metal-binding residue Asp319 by Ala resulted in complete loss of independent PGAM activity, and showed for the first time its involvement in the enzyme's function. As TbiPGAM is an attractive molecular target for drug development, the apoenzyme conformation described here provides opportunities for its use in structure-based drug design approaches. Database Structural data for the Trypanosoma brucei 2,3-bisphosphoglycerate-independent phosphoglycerate mutase (iPGAM) has been deposited with the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank under code 3NVL.

  5. Structure-based drug design: exploring the proper filling of apolar pockets at enzyme active sites.

    PubMed

    Zürcher, Martina; Diederich, François

    2008-06-20

    The proper filling of apolar pockets at enzyme active sites is central for increasing binding activity and selectivity of hits and leads in medicinal chemistry. In our structure-based design approach toward the generation of potent enzyme inhibitors, we encountered a variety of challenges in gaining suitable binding affinity from the occupation of such pockets. We summarize them here for the first time. A fluorine scan of tricyclic thrombin inhibitors led to the discovery of favorable orthogonal dipolar C-F...CO interactions. Efficient cation-pi interactions were established in the S4 pocket of factor Xa, another serine protease from the blood coagulation cascade. Changing from mono- to bisubstrate inhibitors of catechol O-methyltransferase, a target in the L-Dopa-based treatment of Parkinson's disease, enabled the full exploitation of a previously unexplored hydrophobic pocket. Conformational preorganization of a pocket at an enzyme active site is crucial for harvesting binding affinity. This is demonstrated for two enzymes from the nonmevalonate pathway of isoprenoid biosynthesis, IspE and IspF, which are pursued as antimalarial targets. Disrupting crystallographically defined water networks on the way into a pocket might cost all of the binding free enthalpy gained from its occupation, as revealed in studies with tRNA-guanine transglycosylase, a target against shigellosis. Investigations of the active site of plasmepsin II, another antimalarial target, showed that principles for proper apolar cavity filling, originally developed for synthetic host-guest systems, are also applicable to enzyme environments.

  6. Characterization of the active site of ADP-ribosyl cyclase.

    PubMed

    Munshi, C; Thiel, D J; Mathews, I I; Aarhus, R; Walseth, T F; Lee, H C

    1999-10-22

    ADP-ribosyl cyclase synthesizes two Ca(2+) messengers by cyclizing NAD to produce cyclic ADP-ribose and exchanging nicotinic acid with the nicotinamide group of NADP to produce nicotinic acid adenine dinucleotide phosphate. Recombinant Aplysia cyclase was expressed in yeast and co-crystallized with a substrate, nicotinamide. x-ray crystallography showed that the nicotinamide was bound in a pocket formed in part by a conserved segment and was near the central cleft of the cyclase. Glu(98), Asn(107) and Trp(140) were within 3.5 A of the bound nicotinamide and appeared to coordinate it. Substituting Glu(98) with either Gln, Gly, Leu, or Asn reduced the cyclase activity by 16-222-fold, depending on the substitution. The mutant N107G exhibited only a 2-fold decrease in activity, while the activity of W140G was essentially eliminated. The base exchange activity of all mutants followed a similar pattern of reduction, suggesting that both reactions occur at the same active site. In addition to NAD, the wild-type cyclase also cyclizes nicotinamide guanine dinucleotide to cyclic GDP-ribose. All mutant enzymes had at least half of the GDP-ribosyl cyclase activity of the wild type, some even 2-3-fold higher, indicating that the three coordinating amino acids are responsible for positioning of the substrate but not absolutely critical for catalysis. To search for the catalytic residues, other amino acids in the binding pocket were mutagenized. E179G was totally devoid of GDP-ribosyl cyclase activity, and both its ADP-ribosyl cyclase and the base exchange activities were reduced by 10,000- and 18,000-fold, respectively. Substituting Glu(179) with either Asn, Leu, Asp, or Gln produced similar inactive enzymes, and so was the conversion of Trp(77) to Gly. However, both E179G and the double mutant E179G/W77G retained NAD-binding ability as shown by photoaffinity labeling with [(32)P]8-azido-NAD. These results indicate that both Glu(179) and Trp(77) are crucial for catalysis and

  7. Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features

    PubMed Central

    Cayrou, Christelle; Coulombe, Philippe; Vigneron, Alice; Stanojcic, Slavica; Ganier, Olivier; Peiffer, Isabelle; Rivals, Eric; Puy, Aurore; Laurent-Chabalier, Sabine; Desprat, Romain; Méchali, Marcel

    2011-01-01

    In metazoans, thousands of DNA replication origins (Oris) are activated at each cell cycle. Their genomic organization and their genetic nature remain elusive. Here, we characterized Oris by nascent strand (NS) purification and a genome-wide analysis in Drosophila and mouse cells. We show that in both species most CpG islands (CGI) contain Oris, although methylation is nearly absent in Drosophila, indicating that this epigenetic mark is not crucial for defining the activated origin. Initiation of DNA synthesis starts at the borders of CGI, resulting in a striking bimodal distribution of NS, suggestive of a dual initiation event. Oris contain a unique nucleotide skew around NS peaks, characterized by G/T and C/A overrepresentation at the 5′ and 3′ of Ori sites, respectively. Repeated GC-rich elements were detected, which are good predictors of Oris, suggesting that common sequence features are part of metazoan Oris. In the heterochromatic chromosome 4 of Drosophila, Oris correlated with HP1 binding sites. At the chromosome level, regions rich in Oris are early replicating, whereas Ori-poor regions are late replicating. The genome-wide analysis was coupled with a DNA combing analysis to unravel the organization of Oris. The results indicate that Oris are in a large excess, but their activation does not occur at random. They are organized in groups of site-specific but flexible origins that define replicons, where a single origin is activated in each replicon. This organization provides both site specificity and Ori firing flexibility in each replicon, allowing possible adaptation to environmental cues and cell fates. PMID:21750104

  8. Mutations inducing an active-site aperture in Rhizobium sp. sucrose isomerase confer hydrolytic activity.

    PubMed

    Lipski, Alexandra; Watzlawick, Hildegard; Ravaud, Stéphanie; Robert, Xavier; Rhimi, Moez; Haser, Richard; Mattes, Ralf; Aghajari, Nushin

    2013-02-01

    Sucrose isomerase is an enzyme that catalyzes the production of sucrose isomers of high biotechnological and pharmaceutical interest. Owing to the complexity of the chemical synthesis of these isomers, isomaltulose and trehalulose, enzymatic conversion remains the preferred method for obtaining these products. Depending on the microbial source, the ratio of the sucrose-isomer products varies significantly. In studies aimed at understanding and explaining the underlying molecular mechanisms of these reactions, mutations obtained using a random-mutagenesis approach displayed a major hydrolytic activity. Two of these variants, R284C and F164L, of sucrose isomerase from Rhizobium sp. were therefore crystallized and their crystal structures were determined. The three-dimensional structures of these mutants allowed the identification of the molecular determinants that favour hydrolytic activity compared with transferase activity. Substantial conformational changes resulting in an active-site opening were observed, as were changes in the pattern of water molecules bordering the active-site region.

  9. Barriers to physical activity in an on-site corporate fitness center.

    PubMed

    Schwetschenau, Heather M; O'Brien, William H; Cunningham, Christopher J L; Jex, Steve M

    2008-10-01

    Many corporations provide employees the option of participating in on-site fitness centers, but utilization rates are low. Perceived barriers to physical activity have been established as important correlates of physical activity, and recent research indicates that barriers may vary across settings. Work-site fitness centers may present unique barriers to participation, but there are currently no standardized measures that assess such barriers. Eighty-eight employees of a midwestern corporation completed a survey designed to identify and evaluate the extent to which barriers influence participation in an on-site corporate fitness center. Regression analyses revealed that external environmental barriers (e.g., inadequate exercise facilities) significantly accounted for not joining the fitness center, and for decreased duration of visits to the facility among members. Internal barriers (e.g., feeling embarrassed to exercise around coworkers) significantly accounted for frequency of fitness center visits among members. This corporate specific measure may lead to more effective interventions aimed to increase use of on-site corporate fitness centers.

  10. High-Throughput Genotyping of Green Algal Mutants Reveals Random Distribution of Mutagenic Insertion Sites and Endonucleolytic Cleavage of Transforming DNA.

    PubMed

    Zhang, Ru; Patena, Weronika; Armbruster, Ute; Gang, Spencer S; Blum, Sean R; Jonikas, Martin C

    2014-04-01

    A high-throughput genetic screening platform in a single-celled photosynthetic eukaryote would be a transformative addition to the plant biology toolbox. Here, we present ChlaMmeSeq (Chlamydomonas MmeI-based insertion site Sequencing), a tool for simultaneous mapping of tens of thousands of mutagenic insertion sites in the eukaryotic unicellular green alga Chlamydomonas reinhardtii. We first validated ChlaMmeSeq by in-depth characterization of individual insertion sites. We then applied ChlaMmeSeq to a mutant pool and mapped 11,478 insertions, covering 39% of annotated protein coding genes. We observe that insertions are distributed in a manner largely indistinguishable from random, indicating that mutants in nearly all genes can be obtained efficiently. The data reveal that sequence-specific endonucleolytic activities cleave the transforming DNA and allow us to propose a simple model to explain the origin of the poorly understood exogenous sequences that sometimes surround insertion sites. ChlaMmeSeq is quantitatively reproducible, enabling its use for pooled enrichment screens and for the generation of indexed mutant libraries. Additionally, ChlaMmeSeq allows genotyping of hits from Chlamydomonas screens on an unprecedented scale, opening the door to comprehensive identification of genes with roles in photosynthesis, algal lipid metabolism, the algal carbon-concentrating mechanism, phototaxis, the biogenesis and function of cilia, and other processes for which C. reinhardtii is a leading model system.

  11. The pepsin residue glycine-76 contributes to active-site loop flexibility and participates in catalysis.

    PubMed Central

    Okoniewska, M; Tanaka, T; Yada, R Y

    2000-01-01

    Glycine residues are known to contribute to conformational flexibility of polypeptide chains, and have been found to contribute to flexibility of some loops associated with enzymic catalysis. A comparison of porcine pepsin in zymogen, mature and inhibited forms revealed that a loop (a flap), consisting of residues 71--80, located near the active site changed its position upon substrate binding. The loop residue, glycine-76, has been implicated in the catalytic process and thought to participate in a hydrogen-bond network aligning the substrate. This study investigated the role of glycine-76 using site-directed mutagenesis. Three mutants, G76A, G76V and G76S, were constructed to increase conformational restriction of a polypeptide chain. In addition, the serine mutant introduced a hydrogen-bonding potential at position 76 similar to that observed in human renin. All the mutants, regardless of amino acid size and polarity, had lower catalytic efficiency and activated more slowly than the wild-type enzyme. The slower activation process was associated directly with altered proteolytic activity. Consequently, it was proposed that a proteolytic cleavage represents a limiting step of the activation process. Lower catalytic efficiency of the mutants was explained as a decrease in the flap flexibility and, therefore, a different pattern of hydrogen bonds responsible for substrate alignment and flap conformation. The results demonstrated that flap flexibility is essential for efficient catalytic and activation processes. PMID:10861225

  12. Stromal transcriptional profiles reveal hierarchies of anatomical site, serum response and disease and identify disease specific pathways.

    PubMed

    Filer, Andrew; Antczak, Philipp; Parsonage, Greg N; Legault, Holly M; O'Toole, Margot; Pearson, Mark J; Thomas, Andrew M; Scheel-Toellner, Dagmar; Raza, Karim; Buckley, Christopher D; Falciani, Francesco

    2015-01-01

    Synovial fibroblasts in persistent inflammatory arthritis have been suggested to have parallels with cancer growth and wound healing, both of which involve a stereotypical serum response programme. We tested the hypothesis that a serum response programme can be used to classify diseased tissues, and investigated the serum response programme in fibroblasts from multiple anatomical sites and two diseases. To test our hypothesis we utilized a bioinformatics approach to explore a publicly available microarray dataset including rheumatoid arthritis (RA), osteoarthritis (OA) and normal synovial tissue, then extended those findings in a new microarray dataset representing matched synovial, bone marrow and skin fibroblasts cultured from RA and OA patients undergoing arthroplasty. The classical fibroblast serum response programme discretely classified RA, OA and normal synovial tissues. Analysis of low and high serum treated fibroblast microarray data revealed a hierarchy of control, with anatomical site the most powerful classifier followed by response to serum and then disease. In contrast to skin and bone marrow fibroblasts, exposure of synovial fibroblasts to serum led to convergence of RA and OA expression profiles. Pathway analysis revealed three inter-linked gene networks characterising OA synovial fibroblasts: Cell remodelling through insulin-like growth factors, differentiation and angiogenesis through _3 integrin, and regulation of apoptosis through CD44. We have demonstrated that Fibroblast serum response signatures define disease at the tissue level, and that an OA specific, serum dependent repression of genes involved in cell adhesion, extracellular matrix remodelling and apoptosis is a critical discriminator between cultured OA and RA synovial fibroblasts.

  13. Canine epidermal lipid sampling by skin scrub revealed variations between different body sites and normal and atopic dogs

    PubMed Central

    2014-01-01

    Background Previously, we evaluated a minimally invasive epidermal lipid sampling method called skin scrub, which achieved reproducible and comparable results to skin scraping. The present study aimed at investigating regional variations in canine epidermal lipid composition using the skin scrub technique and its suitability for collecting skin lipids in dogs suffering from certain skin diseases. Eight different body sites (5 highly and 3 lowly predisposed for atopic lesions) were sampled by skin scrub in 8 control dogs with normal skin. Additionally, lesional and non-lesional skin was sampled from 12 atopic dogs and 4 dogs with other skin diseases by skin scrub. Lipid fractions were separated by high performance thin layer chromatography and analysed densitometrically. Results No significant differences in total lipid content were found among the body sites tested in the control dogs. However, the pinna, lip and caudal back contained significantly lower concentrations of ceramides, whereas the palmar metacarpus and the axillary region contained significantly higher amounts of ceramides and cholesterol than most other body sites. The amount of total lipids and ceramides including all ceramide classes were significantly lower in both lesional and non-lesional skin of atopic dogs compared to normal skin, with the reduction being more pronounced in lesional skin. The sampling by skin scrub was relatively painless and caused only slight erythema at the sampled areas but no oedema. Histological examinations of skin biopsies at 2 skin scrubbed areas revealed a potential lipid extraction from the transition zone between stratum corneum and granulosum. Conclusions The present study revealed regional variations in the epidermal lipid and ceramide composition in dogs without skin abnormalities but no connection between lipid composition and predilection sites for canine atopic dermatitis lesions. The skin scrub technique proved to be a practicable sampling method for canine

  14. Mass spectrometric phosphoproteome analysis of HIV-infected brain reveals novel phosphorylation sites and differential phosphorylation patterns

    PubMed Central

    Uzasci, Lerna; Auh, Sungyoung; Cotter, Robert J.; Nath, Avindra

    2016-01-01

    Purpose To map the phosphoproteome and identify changes in the phosphorylation patterns in the HIV-infected and uninfected brain using high-resolution mass spectrometry. Experimental Design Parietal cortex from brain of individuals with and without HIV infection were lysed and trypsinized. The peptides were labeled with iTRAQ reagents, combined, phospho-enriched by titanium dioxide chromatography, and analyzed by LC-MS/MS with high-resolution. Results Our phosphoproteomic workflow resulted in the identification of 112 phosphorylated proteins and 17 novel phosphorylation sites in all the samples that were analyzed. The phosphopeptide sequences were searched for kinase substrate motifs which revealed potential kinases involved in important signaling pathways. The site-specific phosphopeptide quantification showed that peptides from neurofilament medium polypeptide, myelin basic protein, and 2′–3′-cyclic nucleotide-3′ phosphodiesterase have relatively higher phosphorylation levels during HIV infection. Clinical Relevance This study has enriched the global phosphoproteome knowledge of the human brain by detecting novel phosphorylation sites on neuronal proteins and identifying differentially phosphorylated brain proteins during HIV infection. Kinases that lead to unusual phosphorylations could be therapeutic targets for the treatment of HIV-associated neurocognitive disorders (HAND). PMID:26033855

  15. Revealing the Atomic Site-Dependent g Factor within a Single Magnetic Molecule via the Extended Kondo Effect

    NASA Astrophysics Data System (ADS)

    Du, Shixuan

    Control over charge and spin states at the single molecule level is crucial not only for a fundamental understanding of charge and spin interactions but also represents a prerequisite for development of molecular electronics and spintronics. In this talk, I will talk about the extended spin distribution in space beyond the central Mn ion, and onto the non-magnetic constituent atoms of the MnPc molecule. This extended spin distribution results in an extended Kondo effect, which can be explained by spin polarization induced by symmetry breaking of the molecular framework, as confirmed by DFT calculations. Measuring the evolution of the Kondo splitting with applied magnetic fields at different atomic sites, we find a spatial variation of the g-factor within a single molecule for the first time. The existence of atomic site-dependent g-factors can be attributed to specific molecular orbitals distributed over the entire molecule. This work not only open up a new opportunity for quantum information recording, but also provide a new route to explore the internal electronic and spin structure of complex molecules, hard to achieve otherwise. (L. W. Liu et al., Phys. Rev. Lett. 2015, 114, 126601. In collaboration with Liwei Liu, Kai Yang, Yuhang Jiang, Li Gao, Qi Liu, Boqun Song, Wende Xiao, Haitao Zhou, Hongjun Gao in CAS, Min Ouyang in MU, and A.H. Castro Neto in SNU.) Revealing the Atomic Site-Dependent g Factor within a Single Magnetic Molecule via the Extended Kondo Effect.

  16. Field-scale tracking of active methane-oxidizing communities in a landfill cover soil reveals spatial and seasonal variability.

    PubMed

    Henneberger, Ruth; Chiri, Eleonora; Bodelier, Paul E L; Frenzel, Peter; Lüke, Claudia; Schroth, Martin H

    2015-05-01

    Aerobic methane-oxidizing bacteria (MOB) in soils mitigate methane (CH4 ) emissions. We assessed spatial and seasonal differences in active MOB communities in a landfill cover soil characterized by highly variable environmental conditions. Field-based measurements of CH4 oxidation activity and stable-isotope probing of polar lipid-derived fatty acids (PLFA-SIP) were complemented by microarray analysis of pmoA genes and transcripts, linking diversity and function at the field scale. In situ CH4 oxidation rates varied between sites and were generally one order of magnitude lower in winter compared with summer. Results from PLFA-SIP and pmoA transcripts were largely congruent, revealing distinct spatial and seasonal clustering. Overall, active MOB communities were highly diverse. Type Ia MOB, specifically Methylomonas and Methylobacter, were key drivers for CH4 oxidation, particularly at a high-activity site. Type II MOB were mainly active at a site showing substantial fluctuations in CH4 loading and soil moisture content. Notably, Upland Soil Cluster-gamma-related pmoA transcripts were also detected, indicating concurrent oxidation of atmospheric CH4 . Spatial separation was less distinct in winter, with Methylobacter and uncultured MOB mediating CH4 oxidation. We propose that high diversity of active MOB communities in this soil is promoted by high variability in environmental conditions, facilitating substantial removal of CH4 generated in the waste body.

  17. Substrate and Substrate-Mimetic Chaperone Binding Sites in Human α-Galactosidase A Revealed by Affinity-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Moise, Adrian; Maeser, Stefan; Rawer, Stephan; Eggers, Frederike; Murphy, Mary; Bornheim, Jeff; Przybylski, Michael

    2016-06-01

    Fabry disease (FD) is a rare metabolic disorder of a group of lysosomal storage diseases, caused by deficiency or reduced activity of the enzyme α-galactosidase. Human α-galactosidase A (hαGAL) hydrolyses the terminal α-galactosyl moiety from glycosphingolipids, predominantly globotriaosylceramide (Gb3). Enzyme deficiency leads to incomplete or blocked breakdown and progressive accumulation of Gb3, with detrimental effects on normal organ functions. FD is successfully treated by enzyme replacement therapy (ERT) with purified recombinant hαGAL. An emerging treatment strategy, pharmacologic chaperone therapy (PCT), employs small molecules that can increase and/or reconstitute the activity of lysosomal enzyme trafficking by stabilizing misfolded isoforms. One such chaperone, 1-deoxygalactonojirimycin (DGJ), is a structural galactose analogue currently validated in clinical trials. DGJ is an active-site-chaperone that binds at the same or similar location as galactose; however, the molecular determination of chaperone binding sites in lysosomal enzymes represents a considerable challenge. Here we report the identification of the galactose and DGJ binding sites in recombinant α-galactosidase through a new affinity-mass spectrometry-based approach that employs selective proteolytic digestion of the enzyme-galactose or -inhibitor complex. Binding site peptides identified by mass spectrometry, [39-49], [83-100], and [141-168], contain the essential ligand-contacting amino acids, in agreement with the known X-ray crystal structures. The inhibitory effect of DGJ on galactose recognition was directly characterized through competitive binding experiments and mass spectrometry. The methods successfully employed in this study should have high potential for the characterization of (mutated) enzyme-substrate and -chaperone interactions, and for identifying chaperones without inhibitory effects.

  18. Site-specific PEGylation of lidamycin and its antitumor activity

    PubMed Central

    Li, Liang; Shang, Boyang; Hu, Lei; Shao, Rongguang; Zhen, Yongsu

    2015-01-01

    In this study, N-terminal site-specific mono-PEGylation of the recombinant lidamycin apoprotein (rLDP) of lidamycin (LDM) was prepared using a polyethyleneglycol (PEG) derivative (Mw 20 kDa) through a reactive terminal aldehyde group under weak acidic conditions (pH 5.5). The biochemical properties of mPEG-rLDP-AE, an enediyne-integrated conjugate, were analyzed by SDS-PAGE, RP-HPLC, SEC-HPLC and MALDI-TOF. Meanwhile, in vitro and in vivo antitumor activity of mPEG-rLDP-AE was evaluated by MTT assays and in xenograft model. The results indicated that mPEG-rLDP-AE showed significant antitumor activity both in vitro and in vivo. After PEGylation, mPEG-rLDP still retained the binding capability to the enediyne AE and presented the physicochemical characteristics similar to that of native LDP. It is of interest that the PEGylation did not diminish the antitumor efficacy of LDM, implying the possibility that this derivative may function as a payload to deliver novel tumor-targeted drugs. PMID:26579455

  19. An anti-hapten camelid antibody reveals a cryptic binding site with significant energetic contributions from a nonhypervariable loop

    SciTech Connect

    Fanning, Sean W.; Horn, James R.

    2014-03-05

    Conventional anti-hapten antibodies typically bind low-molecular weight compounds (haptens) in the crevice between the variable heavy and light chains. Conversely, heavy chain-only camelid antibodies, which lack a light chain, must rely entirely on a single variable domain to recognize haptens. While several anti-hapten VHHs have been generated, little is known regarding the underlying structural and thermodynamic basis for hapten recognition. Here, an anti-methotrexate VHH (anti-MTX VHH) was generated using grafting methods whereby the three complementarity determining regions (CDRs) were inserted onto an existing VHH framework. Thermodynamic analysis of the anti-MTX VHH CDR1-3 Graft revealed a micromolar binding affinity, while the crystal structure of the complex revealed a somewhat surprising noncanonical binding site which involved MTX tunneling under the CDR1 loop. Due to the close proximity of MTX to CDR4, a nonhypervariable loop, the CDR4 loop sequence was subsequently introduced into the CDR1-3 graft, which resulted in a dramatic 1000-fold increase in the binding affinity. Crystal structure analysis of both the free and complex anti-MTX CDR1-4 graft revealed CDR4 plays a significant role in both intermolecular contacts and binding site conformation that appear to contribute toward high affinity binding. Additionally, the anti-MTX VHH possessed relatively high specificity for MTX over closely related compounds aminopterin and folate, demonstrating that VHH domains are capable of binding low-molecular weight ligands with high affinity and specificity, despite their reduced interface.

  20. An anti-hapten camelid antibody reveals a cryptic binding site with significant energetic contributions from a nonhypervariable loop

    PubMed Central

    Fanning, Sean W; Horn, James R

    2011-01-01

    Conventional anti-hapten antibodies typically bind low-molecular weight compounds (haptens) in the crevice between the variable heavy and light chains. Conversely, heavy chain-only camelid antibodies, which lack a light chain, must rely entirely on a single variable domain to recognize haptens. While several anti-hapten VHHs have been generated, little is known regarding the underlying structural and thermodynamic basis for hapten recognition. Here, an anti-methotrexate VHH (anti-MTX VHH) was generated using grafting methods whereby the three complementarity determining regions (CDRs) were inserted onto an existing VHH framework. Thermodynamic analysis of the anti-MTX VHH CDR1-3 Graft revealed a micromolar binding affinity, while the crystal structure of the complex revealed a somewhat surprising noncanonical binding site which involved MTX tunneling under the CDR1 loop. Due to the close proximity of MTX to CDR4, a nonhypervariable loop, the CDR4 loop sequence was subsequently introduced into the CDR1-3 graft, which resulted in a dramatic 1000-fold increase in the binding affinity. Crystal structure analysis of both the free and complex anti-MTX CDR1-4 graft revealed CDR4 plays a significant role in both intermolecular contacts and binding site conformation that appear to contribute toward high affinity binding. Additionally, the anti-MTX VHH possessed relatively high specificity for MTX over closely related compounds aminopterin and folate, demonstrating that VHH domains are capable of binding low-molecular weight ligands with high affinity and specificity, despite their reduced interface. PMID:21557375

  1. A Relaxed Active Site After Exon Ligation by the Group I Intron

    SciTech Connect

    Lipchock,S.; Strobel, S.

    2008-01-01

    During RNA maturation, the group I intron promotes two sequential phosphorotransfer reactions resulting in exon ligation and intron release. Here, we report the crystal structure of the intron in complex with spliced exons and two additional structures that examine the role of active-site metal ions during the second step of RNA splicing. These structures reveal a relaxed active site, in which direct metal coordination by the exons is lost after ligation, while other tertiary interactions are retained between the exon and the intron. Consistent with these structural observations, kinetic and thermodynamic measurements show that the scissile phosphate makes direct contact with metals in the ground state before exon ligation and in the transition state, but not after exon ligation. Despite no direct exonic interactions and even in the absence of the scissile phosphate, two metal ions remain bound within the active site. Together, these data suggest that release of the ligated exons from the intron is preceded by a change in substrate-metal coordination before tertiary hydrogen bonding contacts to the exons are broken.

  2. Interactions of divalent cations with calcium binding sites of BK channels reveal independent motions within the gating ring

    PubMed Central

    Miranda, Pablo; Giraldez, Teresa; Holmgren, Miguel

    2016-01-01

    Large-conductance voltage- and calcium-activated K+ (BK) channels are key physiological players in muscle, nerve, and endocrine function by integrating intracellular Ca2+ and membrane voltage signals. The open probability of BK channels is regulated by the intracellular concentration of divalent cations sensed by a large structure in the BK channel called the “gating ring,” which is formed by four tandems of regulator of conductance for K+ (RCK1 and RCK2) domains. In contrast to Ca2+ that binds to both RCK domains, Mg2+, Cd2+, or Ba2+ interact preferentially with either one or the other. Interaction of cations with their binding sites causes molecular rearrangements of the gating ring, but how these motions occur remains elusive. We have assessed the separate contributions of each RCK domain to the cation-induced gating-ring structural rearrangements, using patch-clamp fluorometry. Here we show that Mg2+ and Ba2+ selectively induce structural movement of the RCK2 domain, whereas Cd2+ causes motions of RCK1, in all cases substantially smaller than those elicited by Ca2+. By combining divalent species interacting with unique sites, we demonstrate that RCK1 and RCK2 domains move independently when their specific binding sites are occupied. Moreover, binding of chemically distinct cations to both RCK domains is additive, emulating the effect of fully occupied Ca2+ binding sites. PMID:27872281

  3. The crystal structure of Pseudomonas putida azoreductase - the active site revisited.

    PubMed

    Gonçalves, Ana Maria D; Mendes, Sónia; de Sanctis, Daniele; Martins, Lígia O; Bento, Isabel

    2013-12-01

    The enzymatic degradation of azo dyes begins with the reduction of the azo bond. In this article, we report the crystal structures of the native azoreductase from Pseudomonas putida MET94 (PpAzoR) (1.60 Å), of PpAzoR in complex with anthraquinone-2-sulfonate (1.50 Å), and of PpAzoR in complex with Reactive Black 5 dye (1.90 Å). These structures reveal the residues and subtle changes that accompany substrate binding and release. Such changes highlight the fine control of access to the catalytic site that is required by the ping-pong mechanism, and in turn the specificity offered by the enzyme towards different substrates. The topology surrounding the active site shows novel features of substrate recognition and binding that help to explain and differentiate the substrate specificity observed among different bacterial azoreductases.

  4. (13)C ENDOR Spectroscopy of Lipoxygenase-Substrate Complexes Reveals the Structural Basis for C-H Activation by Tunneling.

    PubMed

    Horitani, Masaki; Offenbacher, Adam R; Carr, Cody A Marcus; Yu, Tao; Hoeke, Veronika; Cutsail, George E; Hammes-Schiffer, Sharon; Klinman, Judith P; Hoffman, Brian M

    2017-02-08

    In enzymatic C-H activation by hydrogen tunneling, reduced barrier width is important for efficient hydrogen wave function overlap during catalysis. For native enzymes displaying nonadiabatic tunneling, the dominant reactive hydrogen donor-acceptor distance (DAD) is typically ca. 2.7 Å, considerably shorter than normal van der Waals distances. Without a ground state substrate-bound structure for the prototypical nonadiabatic tunneling system, soybean lipoxygenase (SLO), it has remained unclear whether the requisite close tunneling distance occurs through an unusual ground state active site arrangement or by thermally sampling conformational substates. Herein, we introduce Mn(2+) as a spin-probe surrogate for the SLO Fe ion; X-ray diffraction shows Mn-SLO is structurally faithful to the native enzyme. (13)C ENDOR then reveals the locations of (13)C10 and reactive (13)C11 of linoleic acid relative to the metal; (1)H ENDOR and molecular dynamics simulations of the fully solvated SLO model using ENDOR-derived restraints give additional metrical information. The resulting three-dimensional representation of the SLO active site ground state contains a reactive (a) conformer with hydrogen DAD of ∼3.1 Å, approximately van der Waals contact, plus an inactive (b) conformer with even longer DAD, establishing that stochastic conformational sampling is required to achieve reactive tunneling geometries. Tunneling-impaired SLO variants show increased DADs and variations in substrate positioning and rigidity, confirming previous kinetic and theoretical predictions of such behavior. Overall, this investigation highlights the (i) predictive power of nonadiabatic quantum treatments of proton-coupled electron transfer in SLO and (ii) sensitivity of ENDOR probes to test, detect, and corroborate kinetically predicted trends in active site reactivity and to reveal unexpected features of active site architecture.

  5. A split active site couples cap recognition by Dcp2 to activation

    PubMed Central

    Floor, Stephen N.; Jones, Brittnee N.; Hernandez, Gail A.; Gross, John D.

    2010-01-01

    Decapping by Dcp2 is an essential step in 5′-3′ mRNA decay. In yeast, decapping requires an open-to-closed transition in Dcp2, though the link between closure and catalysis remains elusive. Here we show using NMR that cap binds conserved residues on both the catalytic and regulatory domains of Dcp2. Lesions in the cap-binding site on the regulatory domain reduce the catalytic step two orders of magnitude and block formation of the closed state whereas Dcp1 enhances the catalytic step by a factor of ten and promotes closure. We conclude that closure occurs during the rate-limiting catalytic step of decapping, juxtaposing the cap-binding region of each domain to form a composite active site. This work suggests a model for regulation of decapping, where coactivators trigger decapping by stabilizing a labile composite active site. PMID:20711189

  6. Site-directed spectroscopy of cardiac myosin-binding protein C reveals effects of phosphorylation on protein structural dynamics

    PubMed Central

    Colson, Brett A.; Thompson, Andrew R.; Espinoza-Fonseca, L. Michel; Thomas, David D.

    2016-01-01

    We have used the site-directed spectroscopies of time-resolved fluorescence resonance energy transfer (TR-FRET) and double electron–electron resonance (DEER), combined with complementary molecular dynamics (MD) simulations, to resolve the structure and dynamics of cardiac myosin-binding protein C (cMyBP-C), focusing on the N-terminal region. The results have implications for the role of this protein in myocardial contraction, with particular relevance to β-adrenergic signaling, heart failure, and hypertrophic cardiomyopathy. N-terminal cMyBP-C domains C0–C2 (C0C2) contain binding regions for potential interactions with both thick and thin filaments. Phosphorylation by PKA in the MyBP-C motif regulates these binding interactions. Our spectroscopic assays detect distances between pairs of site-directed probes on cMyBP-C. We engineered intramolecular pairs of labeling sites within cMyBP-C to measure, with high resolution, the distance and disorder in the protein’s flexible regions using TR-FRET and DEER. Phosphorylation reduced the level of molecular disorder and the distribution of C0C2 intramolecular distances became more compact, with probes flanking either the motif between C1 and C2 or the Pro/Ala-rich linker (PAL) between C0 and C1. Further insight was obtained from microsecond MD simulations, which revealed a large structural change in the disordered motif region in which phosphorylation unmasks the surface of a series of residues on a stable α-helix within the motif with high potential as a protein–protein interaction site. These experimental and computational findings elucidate structural transitions in the flexible and dynamic portions of cMyBP-C, providing previously unidentified molecular insight into the modulatory role of this protein in cardiac muscle contractility. PMID:26908877

  7. Site-directed spectroscopy of cardiac myosin-binding protein C reveals effects of phosphorylation on protein structural dynamics.

    PubMed

    Colson, Brett A; Thompson, Andrew R; Espinoza-Fonseca, L Michel; Thomas, David D

    2016-03-22

    We have used the site-directed spectroscopies of time-resolved fluorescence resonance energy transfer (TR-FRET) and double electron-electron resonance (DEER), combined with complementary molecular dynamics (MD) simulations, to resolve the structure and dynamics of cardiac myosin-binding protein C (cMyBP-C), focusing on the N-terminal region. The results have implications for the role of this protein in myocardial contraction, with particular relevance to β-adrenergic signaling, heart failure, and hypertrophic cardiomyopathy. N-terminal cMyBP-C domains C0-C2 (C0C2) contain binding regions for potential interactions with both thick and thin filaments. Phosphorylation by PKA in the MyBP-C motif regulates these binding interactions. Our spectroscopic assays detect distances between pairs of site-directed probes on cMyBP-C. We engineered intramolecular pairs of labeling sites within cMyBP-C to measure, with high resolution, the distance and disorder in the protein's flexible regions using TR-FRET and DEER. Phosphorylation reduced the level of molecular disorder and the distribution of C0C2 intramolecular distances became more compact, with probes flanking either the motif between C1 and C2 or the Pro/Ala-rich linker (PAL) between C0 and C1. Further insight was obtained from microsecond MD simulations, which revealed a large structural change in the disordered motif region in which phosphorylation unmasks the surface of a series of residues on a stable α-helix within the motif with high potential as a protein-protein interaction site. These experimental and computational findings elucidate structural transitions in the flexible and dynamic portions of cMyBP-C, providing previously unidentified molecular insight into the modulatory role of this protein in cardiac muscle contractility.

  8. Crystallographic Analysis of Active Site Contributions to Regiospecificity in the Diiron Enzyme Toluene 4-Monooxygenase

    SciTech Connect

    Bailey, Lucas J.; Acheson, Justin F.; McCoy, Jason G.; Elsen, Nathaniel L.; Phillips, Jr., George N.; Fox, Brian G.

    2014-10-02

    Crystal structures of toluene 4-monooxygenase hydroxylase in complex with reaction products and effector protein reveal active site interactions leading to regiospecificity. Complexes with phenolic products yield an asymmetric {mu}-phenoxo-bridged diiron center and a shift of diiron ligand E231 into a hydrogen bonding position with conserved T201. In contrast, complexes with inhibitors p-NH{sub 2}-benzoate and p-Br-benzoate showed a {mu}-1,1 coordination of carboxylate oxygen between the iron atoms and only a partial shift in the position of E231. Among active site residues, F176 trapped the aromatic ring of products against a surface of the active site cavity formed by G103, E104 and A107, while F196 positioned the aromatic ring against this surface via a {pi}-stacking interaction. The proximity of G103 and F176 to the para substituent of the substrate aromatic ring and the structure of G103L T4moHD suggest how changes in regiospecificity arise from mutations at G103. Although effector protein binding produced significant shifts in the positions of residues along the outer portion of the active site (T201, N202, and Q228) and in some iron ligands (E231 and E197), surprisingly minor shifts (<1 {angstrom}) were produced in F176, F196, and other interior residues of the active site. Likewise, products bound to the diiron center in either the presence or absence of effector protein did not significantly shift the position of the interior residues, suggesting that positioning of the cognate substrates will not be strongly influenced by effector protein binding. Thus, changes in product distributions in the absence of the effector protein are proposed to arise from differences in rates of chemical steps of the reaction relative to motion of substrates within the active site channel of the uncomplexed, less efficient enzyme, while structural changes in diiron ligand geometry associated with cycling between diferrous and diferric states are discussed for their potential

  9. Intramolecular relationships in cholinesterases revealed by oocyte expression of site-directed and natural variants of human BCHE.

    PubMed Central

    Neville, L F; Gnatt, A; Loewenstein, Y; Seidman, S; Ehrlich, G; Soreq, H

    1992-01-01

    Structure-function relationships of cholinesterases (CHEs) were studied by expressing site-directed and naturally occurring mutants of human butyrylcholinesterase (BCHE) in microinjected Xenopus oocytes. Site-directed mutagenesis of the conserved electronegative Glu441,Ile442,Glu443 domain to Gly441,Ile442,Gln443 drastically reduced the rate of butyrylthiocholine (BTCh) hydrolysis and caused pronounced resistance to dibucaine binding. These findings implicate the charged Glu441,Ile442,Glu443 domain as necessary for a functional CHE catalytic triad as well as for binding quinoline derivatives. Asp70 to Gly substitution characteristic of 'atypical' BCHE, failed to alter its Km towards BTCh or dibucaine binding but reduced hydrolytic activity to 25% of control. Normal hydrolytic activity was restored to Gly70 BCHE by additional His114 or Tyr561 mutations, both of which co-appear with Gly70 in natural BCHE variants, which implies a likely selection advantage for these double BCHE mutants over the single Gly70 BCHE variant. Gly70 BCHE variants also displayed lower binding as compared with Asp70 BCHE to cholinergic drugs, certain choline esters and solanidine. These effects were ameliorated in part by additional mutations or in binding solanidine complexed with sugar residues. These observations indicate that structural interactions exist between N' and C' terminal domains in CHEs which contribute to substrate and inhibitor binding and suggest a crucial involvement of both electrostatic and hydrophobic domains in the build-up of the CHE active center. Images PMID:1373381

  10. Crystal Structure of the Metallo-β-Lactamase GOB in the Periplasmic Dizinc Form Reveals an Unusual Metal Site

    PubMed Central

    Morán-Barrio, Jorgelina; Lisa, María-Natalia; Larrieux, Nicole; Drusin, Salvador I.; Viale, Alejandro M.; Moreno, Diego M.

    2016-01-01

    Metallo-beta-lactamases (MBLs) are broad-spectrum, Zn(II)-dependent lactamases able to confer resistance to virtually every β-lactam antibiotic currently available. The large diversity of active-site structures and metal content among MBLs from different sources has limited the design of a pan-MBL inhibitor. GOB-18 is a divergent MBL from subclass B3 that is expressed by the opportunistic Gram-negative pathogen Elizabethkingia meningoseptica. This MBL is atypical, since several residues conserved in B3 enzymes (such as a metal ligand His) are substituted in GOB enzymes. Here, we report the crystal structure of the periplasmic di-Zn(II) form of GOB-18. This enzyme displays a unique active-site structure, with residue Gln116 coordinating the Zn1 ion through its terminal amide moiety, replacing a ubiquitous His residue. This situation contrasts with that of B2 MBLs, where an equivalent His116Asn substitution leads to a di-Zn(II) inactive species. Instead, both the mono- and di-Zn(II) forms of GOB-18 are active against penicillins, cephalosporins, and carbapenems. In silico docking and molecular dynamics simulations indicate that residue Met221 is not involved in substrate binding, in contrast to Ser221, which otherwise is conserved in most B3 enzymes. These distinctive features are conserved in recently reported GOB orthologues in environmental bacteria. These findings provide valuable information for inhibitor design and also posit that GOB enzymes have alternative functions. PMID:27458232

  11. Crystal Structure of the Metallo-β-Lactamase GOB in the Periplasmic Dizinc Form Reveals an Unusual Metal Site.

    PubMed

    Morán-Barrio, Jorgelina; Lisa, María-Natalia; Larrieux, Nicole; Drusin, Salvador I; Viale, Alejandro M; Moreno, Diego M; Buschiazzo, Alejandro; Vila, Alejandro J

    2016-10-01

    Metallo-beta-lactamases (MBLs) are broad-spectrum, Zn(II)-dependent lactamases able to confer resistance to virtually every β-lactam antibiotic currently available. The large diversity of active-site structures and metal content among MBLs from different sources has limited the design of a pan-MBL inhibitor. GOB-18 is a divergent MBL from subclass B3 that is expressed by the opportunistic Gram-negative pathogen Elizabethkingia meningoseptica This MBL is atypical, since several residues conserved in B3 enzymes (such as a metal ligand His) are substituted in GOB enzymes. Here, we report the crystal structure of the periplasmic di-Zn(II) form of GOB-18. This enzyme displays a unique active-site structure, with residue Gln116 coordinating the Zn1 ion through its terminal amide moiety, replacing a ubiquitous His residue. This situation contrasts with that of B2 MBLs, where an equivalent His116Asn substitution leads to a di-Zn(II) inactive species. Instead, both the mono- and di-Zn(II) forms of GOB-18 are active against penicillins, cephalosporins, and carbapenems. In silico docking and molecular dynamics simulations indicate that residue Met221 is not involved in substrate binding, in contrast to Ser221, which otherwise is conserved in most B3 enzymes. These distinctive features are conserved in recently reported GOB orthologues in environmental bacteria. These findings provide valuable information for inhibitor design and also posit that GOB enzymes have alternative functions.

  12. Characterization of the biocontrol activity of pseudomonas fluorescens strain X reveals novel genes regulated by glucose.

    PubMed

    Kremmydas, Gerasimos F; Tampakaki, Anastasia P; Georgakopoulos, Dimitrios G

    2013-01-01

    Pseudomonas fluorescens strain X, a bacterial isolate from the rhizosphere of bean seedlings, has the ability to suppress damping-off caused by the oomycete Pythium ultimum. To determine the genes controlling the biocontrol activity of strain X, transposon mutagenesis, sequencing and complementation was performed. Results indicate that, biocontrol ability of this isolate is attributed to gcd gene encoding glucose dehydrogenase, genes encoding its co-enzyme pyrroloquinoline quinone (PQQ), and two genes (sup5 and sup6) which seem to be organized in a putative operon. This operon (named supX) consists of five genes, one of which encodes a non-ribosomal peptide synthase. A unique binding site for a GntR-type transcriptional factor is localized upstream of the supX putative operon. Synteny comparison of the genes in supX revealed that they are common in the genus Pseudomonas, but with a low degree of similarity. supX shows high similarity only to the mangotoxin operon of Ps. syringae pv. syringae UMAF0158. Quantitative real-time PCR analysis indicated that transcription of supX is strongly reduced in the gcd and PQQ-minus mutants of Ps. fluorescens strain X. On the contrary, transcription of supX in the wild type is enhanced by glucose and transcription levels that appear to be higher during the stationary phase. Gcd, which uses PQQ as a cofactor, catalyses the oxidation of glucose to gluconic acid, which controls the activity of the GntR family of transcriptional factors. The genes in the supX putative operon have not been implicated before in the biocontrol of plant pathogens by pseudomonads. They are involved in the biosynthesis of an antimicrobial compound by Ps. fluorescens strain X and their transcription is controlled by glucose, possibly through the activity of a GntR-type transcriptional factor binding upstream of this putative operon.

  13. NMR and XAS reveal an inner-sphere metal binding site in the P4 helix of the metallo-ribozyme ribonuclease P

    PubMed Central

    Koutmou, Kristin S.; Casiano-Negroni, Anette; Getz, Melissa M.; Pazicni, Samuel; Andrews, Andrew J.; Penner-Hahn, James E.; Al-Hashimi, Hashim M.; Fierke, Carol A.

    2010-01-01

    Functionally critical metals interact with RNA through complex coordination schemes that are currently difficult to visualize at the atomic level under solution conditions. Here, we report a new approach that combines NMR and XAS to resolve and characterize metal binding in the most highly conserved P4 helix of ribonuclease P (RNase P), the ribonucleoprotein that catalyzes the divalent metal ion-dependent maturation of the 5′ end of precursor tRNA. Extended X-ray absorption fine structure (EXAFS) spectroscopy reveals that the Zn2+ bound to a P4 helix mimic is six-coordinate, with an average Zn-O/N bond distance of 2.08 Å. The EXAFS data also show intense outer-shell scattering indicating that the zinc ion has inner-shell interactions with one or more RNA ligands. NMR Mn2+ paramagnetic line broadening experiments reveal strong metal localization at residues corresponding to G378 and G379 in B. subtilis RNase P. A new “metal cocktail” chemical shift perturbation strategy involving titrations with , Zn2+, and confirm an inner-sphere metal interaction with residues G378 and G379. These studies present a unique picture of how metals coordinate to the putative RNase P active site in solution, and shed light on the environment of an essential metal ion in RNase P. Our experimental approach presents a general method for identifying and characterizing inner-sphere metal ion binding sites in RNA in solution. PMID:20133747

  14. Characterization of Active Site Residues of Nitroalkane Oxidase†

    PubMed Central

    Valley, Michael P.; Fenny, Nana S.; Ali, Shah R.; Fitzpatrick, Paul F.

    2010-01-01

    The flavoenzyme nitroalkane oxidase catalyzes the oxidation of primary and secondary nitrolkanes to the corresponding aldehydes and ketones plus nitrite. The structure of the enzyme shows that Serl71 forms a hydrogen bond to the flavin N5, suggesting that it plays a role in catalysis. Cys397 and Tyr398 were previously identified by chemical modification as potential active site residues. To more directly probe the roles of these residues, the S171A, S171V, S171T, C397S, and Y398F enzymes have been characterized with nitroethane as substrate. The C397S and Y398 enzymes were less stable than the wild-type enzyme, and the C397S enzyme routinely contained a substoichiometric amount of FAD. Analysis of the steady-state kinetic parameters for the mutant enzymes, including deuterium isotope effects, establishes that all of the mutations result in decreases in the rate constants for removal of the substrate proton by ~5-fold and decreases in the rate constant for product release of ~2-fold. Only the S171V and S171T mutations alter the rate constant for flavin oxidation. These results establish that these residues are not involved in catalysis, but rather are required for maintaining the protein structure. PMID:20056514

  15. Detection limit for activation measurements in ultralow background sites

    NASA Astrophysics Data System (ADS)

    Trache, Livius; Chesneanu, D.; Margineanu, R.; Pantelica, A.; Ghita, D. G.; Burducea, I.; Straticiuc, M.; Tang, X. D.

    2014-09-01

    We used 12C +13C fusion at the beam energies E = 6, 7 and 8 MeV to determine the sensitivity and the limits of activation method measurements in ultralow background sites. A 13C beam of 0.5 μA from the 3 MV Tandem accelerator of the Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH impinged on thick graphite targets. After about 24 hrs of irradiation targets were measured in two different laboratories: one with a heavy shielded Ge detector in the institute (at the surface) and one located underground in the microBequerel laboratory, in the salt mine of Slanic-Prahova, Romania. The 1369- and 2754 keV peaks from 24Na deactivation were clearly observed in the γ-ray spectra obtained for acquisitions lasting a few hours, or a few days. Determination of the detection limit in evaluating the cross sections for the target irradiated at Ec . m = 3 MeV indicates the fact that it is possible to measure gamma spectrum in underground laboratory down to Ec . m = 2 . 6 MeV. Cleaning the spectra with beta-gamma coincidences and increasing beam intensity 20 times will take as further down. The measurements are motivated by the study of the 12 C +12 C reaction at astrophysical energies.

  16. Disturbance opens recruitment sites for bacterial colonization in activated sludge.

    PubMed

    Vuono, David C; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E

    2016-01-01

    Little is known about the role of immigration in shaping bacterial communities or the factors that may dictate success or failure of colonization by bacteria from regional species pools. To address these knowledge gaps, the influence of bacterial colonization into an ecosystem (activated sludge bioreactor) was measured through a disturbance gradient (successive decreases in the parameter solids retention time) relative to stable operational conditions. Through a DNA sequencing approach, we show that the most abundant bacteria within the immigrant community have a greater probability of colonizing the receiving ecosystem, but mostly as low abundance community members. Only during the disturbance do some of these bacterial populations significantly increase in abundance beyond background levels and in few cases become dominant community members post-disturbance. Two mechanisms facilitate the enhanced enrichment of immigrant populations during disturbance: (i) the availability of resources left unconsumed by established species and (ii) the increased availability of niche space for colonizers to establish and displace resident populations. Thus, as a disturbance decreases local diversity, recruitment sites become available to promote colonization. This work advances our understanding of microbial resource management and diversity maintenance in complex ecosystems.

  17. Noncovalent intermolecular interactions between dehydroepiandrosterone and the active site of human dehydroepiandrosterone sulphotransferase: A density functional theory based treatment

    NASA Astrophysics Data System (ADS)

    Astani, Elahe; Heshmati, Emran; Chen, Chun-Jung; Hadipour, Nasser L.; Shekarsaraei, Setareh

    2016-04-01

    A theoretical study was performed to characterize noncovalent intermolecular interactions, especially hydrogen bond (HB), in the active site of enzyme human dehydroepiandrosterone sulphotransferase (SULT2A1/DHEA) using the local (M06-L) and hybrid (M06, M06-2X) meta-GGA functionals of density functional theory (DFT). Results revealed that DHEA is able to form HBs with residues His99, Tyr231, Met137 and Met16 in the active site of the SULT2A1/DHEA. It was found that DHEA interacts with the other residues through electrostatic and Van der Waals interactions.

  18. Global geno-proteomic analysis reveals cross-continental sequence conservation and druggable sites among influenza virus polymerases.

    PubMed

    Babar, Mustafeez Mujtaba; Zaidi, Najam-us-Sahar Sadaf; Tahir, Muhammad

    2014-12-01

    Influenza virus is one of the major causes of mortality and morbidity associated with respiratory diseases. The high rate of mutation in the viral proteome provides it with the ability to survive in a variety of host species. This property helps it in maintaining and developing its pathogenicity, transmission and drug resistance. Alternate drug targets, particularly the internal proteins, can potentially be exploited for addressing the resistance issues. In the current analysis, the degree of conservation of influenza virus polymerases has been studied as one of the essential elements for establishing its candidature as a potential target of antiviral therapy. We analyzed more than 130,000 nucleotide and amino acid sequences by classifying them on the basis of continental presence of host organisms. Computational analyses including genetic polymorphism study, mutation pattern determination, molecular evolution and geophylogenetic analysis were performed to establish the high degree of conservation among the sequences. These studies lead to establishing the polymerases, in particular PB1, as highly conserved proteins. Moreover, we mapped the conservation percentage on the tertiary structures of proteins to identify the conserved, druggable sites. The research study, hence, revealed that the influenza virus polymerases are highly conserved (95-99%) proteins with a very slow mutation rate. Potential drug binding sites on various polymerases have also been reported. A scheme for drug target candidate development that can be employed to rapidly mutating proteins has been presented. Moreover, the research output can help in designing new therapeutic molecules against the identified targets.

  19. Structure of the Acinetobacter baumannii dithiol oxidase DsbA bound to elongation factor EF-Tu reveals a novel protein interaction site.

    PubMed

    Premkumar, Lakshmanane; Kurth, Fabian; Duprez, Wilko; Grøftehauge, Morten K; King, Gordon J; Halili, Maria A; Heras, Begoña; Martin, Jennifer L

    2014-07-18

    The multidrug resistant bacterium Acinetobacter baumannii is a significant cause of nosocomial infection. Biofilm formation, that requires both disulfide bond forming and chaperone-usher pathways, is a major virulence trait in this bacterium. Our biochemical characterizations show that the periplasmic A. baumannii DsbA (AbDsbA) enzyme has an oxidizing redox potential and dithiol oxidase activity. We found an unexpected non-covalent interaction between AbDsbA and the highly conserved prokaryotic elongation factor, EF-Tu. EF-Tu is a cytoplasmic protein but has been localized extracellularly in many bacterial pathogens. The crystal structure of this complex revealed that the EF-Tu switch I region binds to the non-catalytic surface of AbDsbA. Although the physiological and pathological significance of a DsbA/EF-Tu association is unknown, peptides derived from the EF-Tu switch I region bound to AbDsbA with submicromolar affinity. We also identified a seven-residue DsbB-derived peptide that bound to AbDsbA with low micromolar affinity. Further characterization confirmed that the EF-Tu- and DsbB-derived peptides bind at two distinct sites. These data point to the possibility that the non-catalytic surface of DsbA is a potential substrate or regulatory protein interaction site. The two peptides identified in this work together with the newly characterized interaction site provide a novel starting point for inhibitor design targeting AbDsbA.

  20. Variability of ribosomal DNA sites in Festuca pratensis, Lolium perenne, and their intergeneric hybrids, revealed by FISH and GISH.

    PubMed

    Ksiazczyk, T; Taciak, M; Zwierzykowski, Z

    2010-01-01

    This study focuses on the variability of chromosomal location and number of ribosomal DNA (rDNA) sites in some diploid and autotetraploid Festuca pratensis and Lolium perenne cultivars, as well as on identification of rDNA-bearing chromosomes in their triploid and tetraploid F. pratensis × L. perenne hybrids. The rDNA loci were mapped using fluorescence in situ hybridization (FISH) with 5S and 25S rDNA probes, and the origin of parental genomes was verified by genomic in situ hybridization (GISH) with L. perenne genomic DNA as a probe, and F. pratensis genomic DNA as a block. FISH detected variation in the number and chromosomal location of both 5S and 45S rDNA sites. In F. pratensis mostly additional signals of 5S rDNA loci occurred, as compared with standard F. pratensis karyotypes. Losses of 45S rDNA loci were more frequent in L. perenne cultivars and intergeneric hybrids. Comparison of the F. pratensis and L. perenne genomes approved a higher number of rDNA sites as well as variation in chromosomal rDNA location in L. perenne. A greater instability of F. pratensis-genome-like and L. perenne-genome-like chromosomes in tetraploid hybrids was revealed, indicating gains and losses of rDNA loci, respectively. Our data indicate that the rDNA loci physically mapped on chromosomes 2 and 3 in F. pratensis and on chromosome 3 in L. perenne are useful markers for these chromosomes in intergeneric Festuca × Lolium hybrids.

  1. A binding site for activation by the Bacillus subtilis AhrC protein, a repressor/activator of arginine metabolism.

    PubMed

    Klingel, U; Miller, C M; North, A K; Stockley, P G; Baumberg, S

    1995-08-21

    In Bacillus subtilis, the AhrC protein represses genes encoding enzymes of arginine biosynthesis and activates those mediating its catabolism. To determine how this repressor also functions as an activator, we attempted to clone catabolic genes by searching for insertions of the Tn917-lacZ transposon that express AhrC-dependent, arginine-inducible beta-galactosidase activity. One such isolate was obtained. The region upstream of lacZ was subcloned in Escherichia coli in such a way that it could be replaced in the B. subtilis chromosome after appropriate manipulation. Analysis of exonuclease III-derived deletions located an AhrC-dependent, arginine-inducible promoter to within a ca. 1.9 kb fragment. The sequence revealed: the 3' end of an ORF homologous to gdh genes encoding glutamate dehydrogenase, with highest homology to the homologue from Clostridium difficile; the 5' end of an ORF homologous to a Saccharomyces cerevisiae gene encoding delta 1-pyrroline 5-carboxylate dehydrogenase (P5CDH), an enzyme of arginine catabolism; and just upstream of the latter, a sequence with homology to known AhrC binding sites in the upstream part of the biosynthetic argCJBD-cpa-F cluster. The same region has also been sequenced by others as part of the B. subtilis genome sequencing project, revealing that the P5CDH gene is the first in a cluster termed rocABC. Restriction fragments containing the putative AhrC-binding sequence, but not those lacking it, showed retarded electrophoretic mobility in the presence of purified AhrC. A 277 bp AhrC-binding fragment also showed anomalous mobility in the absence of AhrC, consistent with its being intrinsically bent. DNAse I footprinting localized AhrC binding to bp -16/-22 to +1 (the transcription startpoint). Such a location for an activator binding site, i.e. overlapping the transcription start, is unusual.

  2. Fractionation of a Herbal Antidiarrheal Medicine Reveals Eugenol as an Inhibitor of Ca2+-Activated Cl− Channel TMEM16A

    PubMed Central

    Yao, Zhen; Namkung, Wan; Ko, Eun A.; Park, Jinhong; Tradtrantip, Lukmanee; Verkman, A. S.

    2012-01-01

    The Ca2+-activated Cl− channel TMEM16A is involved in epithelial fluid secretion, smooth muscle contraction and neurosensory signaling. We identified a Thai herbal antidiarrheal formulation that inhibited TMEM16A Cl− conductance. C18-reversed-phase HPLC fractionation of the herbal formulation revealed >98% of TMEM16A inhibition activity in one out of approximately 20 distinct peaks. The purified, active compound was identified as eugenol (4-allyl-2-methoxyphenol), the major component of clove oil. Eugenol fully inhibited TMEM16A Cl− conductance with single-site IC50∼150 µM. Eugenol inhibition of TMEM16A in interstitial cells of Cajal produced strong inhibition of intestinal contraction in mouse ileal segments. TMEM16A Cl− channel inhibition adds to the list of eugenol molecular targets and may account for some of its biological activities. PMID:22666439

  3. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing...

  4. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing...

  5. Identification of an activation site in Bak and mitochondrial Bax triggered by antibodies

    PubMed Central

    Iyer, Sweta; Anwari, Khatira; Alsop, Amber E.; Yuen, Wai Shan; Huang, David C. S.; Carroll, John; Smith, Nicholas A.; Smith, Brian J.; Dewson, Grant; Kluck, Ruth M.

    2016-01-01

    During apoptosis, Bak and Bax are activated by BH3-only proteins binding to the α2–α5 hydrophobic groove; Bax is also activated via a rear pocket. Here we report that antibodies can directly activate Bak and mitochondrial Bax by binding to the α1–α2 loop. A monoclonal antibody (clone 7D10) binds close to α1 in non-activated Bak to induce conformational change, oligomerization, and cytochrome c release. Anti-FLAG antibodies also activate Bak containing a FLAG epitope close to α1. An antibody (clone 3C10) to the Bax α1–α2 loop activates mitochondrial Bax, but blocks translocation of cytosolic Bax. Tethers within Bak show that 7D10 binding directly extricates α1; a structural model of the 7D10 Fab bound to Bak reveals the formation of a cavity under α1. Our identification of the α1–α2 loop as an activation site in Bak paves the way to develop intrabodies or small molecules that directly and selectively regulate these proteins. PMID:27217060

  6. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  7. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  8. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  9. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  10. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  11. Robotics and Automation Activities at the Savannah River Site: A Site Report for SUBWOG 39F

    SciTech Connect

    Teese, G.D.

    1995-09-28

    The Savannah River Site has successfully used robots, teleoperators, and remote video to reduce exposure to ionizing radiation, improve worker safety, and improve the quality of operations. Previous reports have described the use of mobile teleoperators in coping with a high level liquid waste spill, the removal of highly contaminated equipment, and the inspection of nuclear reactor vessels. This report will cover recent applications at the Savannah River, as well as systems which SRS has delivered to other DOE site customers.

  12. Structure of a small-molecule inhibitor complexed with GlmU from Haemophilus influenzae reveals an allosteric binding site

    SciTech Connect

    Mochalkin, Igor; Lightle, Sandra; Narasimhan, Lakshmi; Bornemeier, Dirk; Melnick, Michael; VanderRoest, Steven; McDowell, Laura

    2008-04-02

    N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU) is an essential enzyme in aminosugars metabolism and an attractive target for antibiotic drug discovery. GlmU catalyzes the formation of uridine-diphospho-N-acetylglucosamine (UDP-GlcNAc), an important precursor in the peptidoglycan and lipopolisaccharide biosynthesis in both Gram-negative and Gram-positive bacteria. Here we disclose a 1.9 {angstrom} resolution crystal structure of a synthetic small-molecule inhibitor of GlmU from Haemophilus influenzae (hiGlmU). The compound was identified through a high-throughput screening (HTS) configured to detect inhibitors that target the uridyltransferase active site of hiGlmU. The original HTS hit exhibited a modest micromolar potency (IC{sub 50} - 18 {mu}M in a racemic mixture) against hiGlmU and no activity against Staphylococcus aureus GlmU (saGlmU). The determined crystal structure indicated that the inhibitor occupies an allosteric site adjacent to the GlcNAc-1-P substrate-binding region. Analysis of the mechanistic model of the uridyltransferase reaction suggests that the binding of this allosteric inhibitor prevents structural rearrangements that are required for the enzymatic reaction, thus providing a basis for structure-guided design of a new class of mechanism-based inhibitors of GlmU.

  13. Regulation of active site coupling in glutamine-dependent NAD[superscript +] synthetase

    SciTech Connect

    LaRonde-LeBlanc, Nicole; Resto, Melissa; Gerratana, Barbara

    2009-05-21

    NAD{sup +} is an essential metabolite both as a cofactor in energy metabolism and redox homeostasis and as a regulator of cellular processes. In contrast to humans, Mycobacterium tuberculosis NAD{sup +} biosynthesis is absolutely dependent on the activity of a multifunctional glutamine-dependent NAD{sup +} synthetase, which catalyzes the ATP-dependent formation of NAD{sup +} at the synthetase domain using ammonia derived from L-glutamine in the glutaminase domain. Here we report the kinetics and structural characterization of M. tuberculosis NAD{sup +} synthetase. The kinetics data strongly suggest tightly coupled regulation of the catalytic activities. The structure, the first of a glutamine-dependent NAD{sup +} synthetase, reveals a homooctameric subunit organization suggesting a tight dependence of catalysis on the quaternary structure, a 40-{angstrom} intersubunit ammonia tunnel and structural elements that may be involved in the transfer of information between catalytic sites.

  14. GAS HYDRATES AT TWO SITES OF AN ACTIVE CONTINENTAL MARGIN.

    USGS Publications Warehouse

    Kvenvolden, K.A.

    1985-01-01

    Sediment containing gas hydrates from two distant Deep Sea Drilling Project sites (565 and 568), located about 670 km apart on the landward flank of the Middle America Trench, was studied to determine the geochemical conditions that characterize the occurrence of gas hydrates. Site 565 was located in the Pacific Ocean offshore the Nicoya Peninsula of Costa Rica in 3,111 m of water. The depth of the hole at this site was 328 m, and gas hydrates were recovered from 285 and 319 m. Site 568 was located about 670 km to the northwest offshore Guatemala in 2,031 m of water. At this site the hole penetrated to 418 m, and gas hydrates were encountered at 404 m.

  15. The crystal structure of the cysteine protease Xylellain from Xylella fastidiosa reveals an intriguing activation mechanism.

    PubMed

    Leite, Ney Ribeiro; Faro, Aline Regis; Dotta, Maria Amélia Oliva; Faim, Livia Maria; Gianotti, Andreia; Silva, Flavio Henrique; Oliva, Glaucius; Thiemann, Otavio Henrique

    2013-02-14

    Xylella fastidiosa is responsible for a wide range of economically important plant diseases. We report here the crystal structure and kinetic data of Xylellain, the first cysteine protease characterized from the genome of the pathogenic X. fastidiosa strain 9a5c. Xylellain has a papain-family fold, and part of the N-terminal sequence blocks the enzyme active site, thereby mediating protein activity. One novel feature identified in the structure is the presence of a ribonucleotide bound outside the active site. We show that this ribonucleotide plays an important regulatory role in Xylellain enzyme kinetics, possibly functioning as a physiological mediator.

  16. Lidar research activities and observations at NARL site, Gadanki, India

    NASA Astrophysics Data System (ADS)

    Yellapragada, Bhavani Kumar

    2016-05-01

    The National Atmospheric Research Laboratory (NARL), a unit of Department of Space (DOS), located at Gadanki village (13.5°N, 79.2°E, 370 m AMSL) in India, is involved in the development of lidar remote sensing technologies for atmospheric research. Several advanced lidar technologies employing micropulse, polarization, Raman and scanning have been developed at this site and demonstrated for atmospheric studies during the period between 2008 and 2015. The technology of micropulse lidar, operates at 532 nm wavelength, was successfully transferred to an industry and the commercial version has been identified for Indian Lidar network (I-LINK) programme. Under this lidar network activity, several lidar units were installed at different locations in India to study tropospheric aerosols and clouds. The polarization sensitive lidar technology was realized using a set of mini photomultiplier tube (PMT) units and has the capability to operate during day and night without a pause. The lidar technology uses a compact flashlamp pumped Qswitched laser and employs biaxial configuration between the transmitter and receiver units. The lidar technology has been utilized for understanding the polarization characteristics of boundary layer aerosols during the mixed layer development. The demonstrated Raman lidar technology, uses the third harmonic wavelength of Nd:YAG laser, provides the altitude profiles of aerosol backscattering, extinction and water vapor covering the boundary layer range and allows operation during nocturnal periods. The Raman lidar derived height profiles of aerosol backscattering and extinction coefficient, lidar ratio, and watervapor mixing ratio inform the tropical boundary layer aerosol characteristics. The scanning lidar technology uses a near infrared laser wavelength for probing the lower atmosphere and has been utilized for high resolution cloud profiling during convective periods. The lidar technology is also used for rain rate measurement during

  17. Dynamically achieved active site precision in enzyme catalysis.

    PubMed

    Klinman, Judith P

    2015-02-17

    CONSPECTUS: The grand challenge in enzymology is to define and understand all of the parameters that contribute to enzymes' enormous rate accelerations. The property of hydrogen tunneling in enzyme reactions has moved the focus of research away from an exclusive focus on transition state stabilization toward the importance of the motions of the heavy atoms of the protein, a role for reduced barrier width in catalysis, and the sampling of a protein conformational landscape to achieve a family of protein substates that optimize enzyme-substrate interactions and beyond. This Account focuses on a thermophilic alcohol dehydrogenase for which the chemical step of hydride transfer is rate determining across a wide range of experimental conditions. The properties of the chemical coordinate have been probed using kinetic isotope effects, indicating a transition in behavior below 30 °C that distinguishes nonoptimal from optimal C-H activation. Further, the introduction of single site mutants has the impact of either enhancing or eliminating the temperature dependent transition in catalysis. Biophysical probes, which include time dependent hydrogen/deuterium exchange and fluorescent lifetimes and Stokes shifts, have also been pursued. These studies allow the correlation of spatially resolved transitions in protein motions with catalysis. It is now possible to define a long-range network of protein motions in ht-ADH that extends from a dimer interface to the substrate binding domain across to the cofactor binding domain, over a distance of ca. 30 Å. The ongoing challenge to obtaining spatial and temporal resolution of catalysis-linked protein motions is discussed.

  18. Active-site zinc ligands and activated H2O of zinc enzymes.

    PubMed Central

    Vallee, B L; Auld, D S

    1990-01-01

    The x-ray crystallographic structures of 12 zinc enzymes have been chosen as standards of reference to identify the ligands to the catalytic and structural zinc atoms of other members of their respective enzyme families. Universally, H2O is a ligand and critical component of the catalytically active zinc sites. In addition, three protein side chains bind to the catalytic zinc atom, whereas four protein ligands bind to the structural zinc atom. The geometry and coordination number of zinc can vary greatly to accommodate particular ligands. Zinc forms complexes with nitrogen and oxygen just as readily as with sulfur, and this is reflected in catalytic zinc sites having a binding frequency of His much greater than Glu greater than Asp = Cys, three of which bind to the metal atom. The systematic spacing between the ligands is striking. For all catalytic zinc sites except the coenzyme-dependent alcohol dehydrogenase, the first two ligands are separated by a "short-spacer" consisting of 1 to 3 amino acids. These ligands are separated from the third ligand by a "long spacer" of approximately 20 to approximately 120 amino acids. The spacer enables formation of a primary bidentate zinc complex, whereas the long spacer contributes flexibility to the coordination sphere, which can poise the zinc for catalysis as well as bring other catalytic and substrate binding groups into apposition with the active site. The H2O is activated by ionization, polarization, or poised for displacement. Collectively, the data imply that the preferred mechanistic pathway for activating the water--e.g., zinc hydroxide or Lewis acid catalysis--will be determined by the identity of the other three ligands and their spacing. Images PMID:2104979

  19. Identification of Arg-12 in the active site of Escherichia coli K1 CMP-sialic acid synthetase.

    PubMed Central

    Stoughton, D M; Zapata, G; Picone, R; Vann, W F

    1999-01-01

    Escherichia coli K1 CMP-sialic acid synthetase catalyses the synthesis of CMP-sialic acid from CTP and sialic acid. The active site of the 418 amino acid E. coli enzyme was localized to its N-terminal half. The bacterial CMP-sialic acid synthetase enzymes have a conserved motif, IAIIPARXXSKGLXXKN, at their N-termini. Several basic residues have been identified at or near the active site of the E. coli enzyme by chemical modification and site-directed mutagenesis. Only one of the lysines in the N-terminal motif, Lys-21, appears to be essential for activity. Mutation of Lys-21 in the N-terminal motif results in an inactive enzyme. Furthermore, Arg-12 of the N-terminal motif appears to be an active-site residue, based on the following evidence. Substituting Arg-12 with glycine or alanine resulted in inactive enzymes, indicating that this residue is required for enzymic activity. The Arg-12-->Lys mutant was partially active, demonstrating that a positive charge is required at this site. Steady-state kinetic analysis reveals changes in k(cat), K(m) and K(s) for CTP, which implicates Arg-12 in catalysis and substrate binding. PMID:10510306

  20. Novel induced mlo mutant alleles in combination with site-directed mutagenesis reveal functionally important domains in the heptahelical barley Mlo protein

    PubMed Central

    2010-01-01

    Background Recessively inherited natural and induced mutations in the barley Mlo gene confer durable broad-spectrum resistance against the powdery mildew pathogen, Blumeria graminis f.sp. hordei. Mlo codes for a member of a plant-specific family of polytopic integral membrane proteins with unknown biochemical activity. Resistant barley mlo mutant alleles identify amino acid residues that are critical for Mlo function in the context of powdery mildew susceptibility. Results We molecularly analyzed a novel set of induced barley mlo mutants and used site-directed mutagenesis in combination with transient gene expression to unravel novel amino acid residues of functional significance. We integrate these results with previous findings to map functionally important regions of the heptahelical Mlo protein. Our data reveal the second and third cytoplasmic loop as being particularly sensitive to functional impediment by mutational perturbation, suggesting that these regions are critical for the susceptibility-conferring activity of the Mlo protein. In contrast, only mutations in the second but not the third cytoplasmic loop appear to trigger the Endoplasmic Reticulum-localized quality control machinery that ensures the biogenesis of properly folded membrane proteins. Conclusion Our findings identify functionally important regions of the polytopic barley Mlo protein and reveal the differential sensitivity of individual protein domains to cellular quality control. PMID:20170486

  1. Site-specific phosphorylation and microtubule dynamics control Pyrin inflammasome activation

    PubMed Central

    Gao, Wenqing; Yang, Jieling; Liu, Wang; Wang, Yupeng; Shao, Feng

    2016-01-01

    Pyrin, encoded by the MEFV gene, is best known for its gain-of-function mutations causing familial Mediterranean fever (FMF), an autoinflammatory disease. Pyrin forms a caspase-1–activating inflammasome in response to inactivating modifications of Rho GTPases by various bacterial toxins or effectors. Pyrin-mediated innate immunity is unique in that it senses bacterial virulence rather than microbial molecules, but its mechanism of activation is unknown. Here we show that Pyrin was phosphorylated in bone marrow-derived macrophages and dendritic cells. We identified Ser-205 and Ser-241 in mouse Pyrin whose phosphorylation resulted in inhibitory binding by cellular 14-3-3 proteins. The two serines underwent dephosphorylation upon toxin stimulation or bacterial infection, triggering 14-3-3 dissociation, which correlated with Pyrin inflammasome activation. We developed antibodies specific for phosphorylated Ser-205 and Ser-241, which confirmed the stimuli-induced dephosphorylation of endogenous Pyrin. Mutational analyses indicated that both phosphorylation and signal-induced dephosphorylation of Ser-205/241 are important for Pyrin activation. Moreover, microtubule drugs, including colchicine, commonly used to treat FMF, effectively blocked activation of the Pyrin inflammasome. These drugs did not affect Pyrin dephosphorylation and 14-3-3 dissociation but inhibited Pyrin-mediated apoptosis-associated Speck-like protein containing CARD (ASC) aggregation. Our study reveals that site-specific (de)phosphorylation and microtubule dynamics critically control Pyrin inflammasome activation, illustrating a fine and complex mechanism in cytosolic immunity. PMID:27482109

  2. Lethal Factor Active-Site Mutations Affect Catalytic Activity In Vitro

    PubMed Central

    Hammond, S. E.; Hanna, P. C.

    1998-01-01

    The lethal factor (LF) protein of Bacillus anthracis lethal toxin contains the thermolysin-like active-site and zinc-binding consensus motif HEXXH (K. R. Klimpel, N. Arora, and S. H. Leppla, Mol. Microbiol. 13:1093–1100, 1994). LF is hypothesized to act as a Zn2+ metalloprotease in the cytoplasm of macrophages, but no proteolytic activities have been previously shown on any target substrate. Here, synthetic peptides are hydrolyzed by LF in vitro. Mass spectroscopy and peptide sequencing of isolated cleavage products separated by reverse-phase high-pressure liquid chromatography indicate that LF seems to prefer proline-containing substrates. Substitution mutations within the consensus active-site residues completely abolish all in vitro catalytic functions, as does addition of 1,10-phenanthroline, EDTA, and certain amino acid hydroxamates, including the novel zinc metalloprotease inhibitor ZINCOV. In contrast, the protease inhibitors bestatin and lysine CMK, previously shown to block LF activity on macrophages, did not block LF activity in vitro. These data provide the first direct evidence that LF may act as an endopeptidase. PMID:9573135

  3. Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation

    SciTech Connect

    Boudreaux, David A.; Maiti, Tushar K.; Davies, Christopher W.; Das, Chittaranjan

    2010-07-06

    Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a Parkinson disease-associated, putative cysteine protease found abundantly and selectively expressed in neurons. The crystal structure of apo UCHL1 showed that the active-site residues are not aligned in a canonical form, with the nucleophilic cysteine being 7.7 {angstrom} from the general base histidine, an arrangement consistent with an inactive form of the enzyme. Here we report the crystal structures of the wild type and two Parkinson disease-associated variants of the enzyme, S18Y and I93M, bound to a ubiquitin-based suicide substrate, ubiquitin vinyl methyl ester. These structures reveal that ubiquitin vinyl methyl ester binds primarily at two sites on the enzyme, with its carboxy terminus at the active site and with its amino-terminal {beta}-hairpin at the distal site - a surface-exposed hydrophobic crevice 17 {angstrom} away from the active site. Binding at the distal site initiates a cascade of side-chain movements in the enzyme that starts at a highly conserved, surface-exposed phenylalanine and is relayed to the active site resulting in the reorientation and proximal placement of the general base within 4 {angstrom} of the catalytic cysteine, an arrangement found in productive cysteine proteases. Mutation of the distal-site, surface-exposed phenylalanine to alanine reduces ubiquitin binding and severely impairs the catalytic activity of the enzyme. These results suggest that the activity of UCHL1 may be regulated by its own substrate.

  4. A novel polyamine allosteric site of SpeG from Vibrio cholerae is revealed by its dodecameric structure

    PubMed Central

    Filippova, Ekaterina V.; Kuhn, Misty L.; Osipiuk, Jerzy; Kiryukhina, Olga; Joachimiak, Andrzej; Ballicora, Miguel A.

    2015-01-01

    Spermidine N-acetyltransferase, encoded by the gene speG, catalyzes the initial step in the degradation of polyamines and is a critical enzyme for determining the polyamine concentrations in bacteria. In Escherichia coli, studies have shown that SpeG is the enzyme responsible for acetylating spermidine under stress conditions and for preventing spermidine toxicity. Not all bacteria contain speG, and many bacterial pathogens have developed strategies to either acquire or silence it for pathogenesis. Here, we present thorough kinetic analyses combined with structural characterization of the VCA0947 SpeG enzyme from the important human pathogen Vibrio cholerae. Our studies revealed the unexpected presence of a previously unknown allosteric site and an unusual dodecameric structure for a member of the Gcn5-related N-acetyltransferase (GNAT) superfamily. We show that SpeG forms dodecamers in solution and in crystals and describe its three-dimensional structure in several ligand-free and liganded structures. Importantly, these structural data define the first view of a polyamine bound in an allosteric site of an N-acetyltransferase. Kinetic characterization of SpeG from V. cholerae showed that it acetylates spermidine and spermine. The behavior of this enzyme is complex and exhibits sigmoidal curves and substrate inhibition. We performed a detailed non-linear regression kinetic analysis to simultaneously fit families of substrate saturation curves to uncover a simple kinetic mechanism that explains the apparent complexity of this enzyme. Our results provide a fundamental understanding of the bacterial SpeG enzyme, which will be key towards understanding the regulation of polyamine levels in bacteria during pathogenesis. PMID:25623305

  5. Circular dichroism and site-directed spin labeling reveal structural and dynamical features of high-pressure states of myoglobin

    PubMed Central

    Lerch, Michael T.; Horwitz, Joseph; McCoy, John; Hubbell, Wayne L.

    2013-01-01

    Excited states of proteins may play important roles in function, yet are difficult to study spectroscopically because of their sparse population. High hydrostatic pressure increases the equilibrium population of excited states, enabling their characterization [Akasaka K (2003) Biochemistry 42:10875–85]. High-pressure site-directed spin-labeling EPR (SDSL-EPR) was developed recently to map the site-specific structure and dynamics of excited states populated by pressure. To monitor global secondary structure content by circular dichroism (CD) at high pressure, a modified optical cell using a custom MgF2 window with a reduced aperture is introduced. Here, a combination of SDSL-EPR and CD is used to map reversible structural transitions in holomyoglobin and apomyoglobin (apoMb) as a function of applied pressure up to 2 kbar. CD shows that the high-pressure excited state of apoMb at pH 6 has helical content identical to that of native apoMb, but reversible changes reflecting the appearance of a conformational ensemble are observed by SDSL-EPR, suggesting a helical topology that fluctuates slowly on the EPR time scale. Although the high-pressure state of apoMb at pH 6 has been referred to as a molten globule, the data presented here reveal significant differences from the well-characterized pH 4.1 molten globule of apoMb. Pressure-populated states of both holomyoglobin and apoMb at pH 4.1 have significantly less helical structure, and for the latter, that may correspond to a transient folding intermediate. PMID:24248390

  6. Integrative Multi-omic Analysis of Human Platelet eQTLs Reveals Alternative Start Site in Mitofusin 2

    PubMed Central

    Simon, Lukas M.; Chen, Edward S.; Edelstein, Leonard C.; Kong, Xianguo; Bhatlekar, Seema; Rigoutsos, Isidore; Bray, Paul F.; Shaw, Chad A.

    2016-01-01

    Platelets play a central role in ischemic cardiovascular events. Cardiovascular disease (CVD) is a major cause of death worldwide. Numerous genome-wide association studies (GWASs) have identified loci associated with CVD risk. However, our understanding of how these variants contribute to disease is limited. Using data from the platelet RNA and expression 1 (PRAX1) study, we analyzed cis expression quantitative trait loci (eQTLs) in platelets from 154 normal human subjects. We confirmed these results in silico by performing allele-specific expression (ASE) analysis, which demonstrated that the allelic directionality of eQTLs and ASE patterns correlate significantly. Comparison of platelet eQTLs with data from the Genotype-Tissue Expression (GTEx) project revealed that a number of platelet eQTLs are platelet specific and that platelet eQTL peaks localize to the gene body at a higher rate than eQTLs from other tissues. Upon integration with data from previously published GWASs, we found that the trait-associated variant rs1474868 coincides with the eQTL peak for mitofusin 2 (MFN2). Additional experimental and computational analyses revealed that this eQTL is linked to an unannotated alternate MFN2 start site preferentially expressed in platelets. Integration of phenotype data from the PRAX1 study showed that MFN2 expression levels were significantly associated with platelet count. This study links the variant rs1474868 to a platelet-specific regulatory role for MFN2 and demonstrates the utility of integrating multi-omic data with eQTL analysis in disease-relevant tissues for interpreting GWAS results. PMID:27132591

  7. Kinetics of Hydrogen Atom Abstraction from Substrate by an Active Site Thiyl Radical in Ribonucleotide Reductase

    PubMed Central

    2015-01-01

    Ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides to deoxynucleotides in all organisms. Active E. coli class Ia RNR is an α2β2 complex that undergoes reversible, long-range proton-coupled electron transfer (PCET) over a pathway of redox active amino acids (β-Y122 → [β-W48] → β-Y356 → α-Y731 → α-Y730 → α-C439) that spans ∼35 Å. To unmask PCET kinetics from rate-limiting conformational changes, we prepared a photochemical RNR containing a [ReI] photooxidant site-specifically incorporated at position 355 ([Re]-β2), adjacent to PCET pathway residue Y356 in β. [Re]-β2 was further modified by replacing Y356 with 2,3,5-trifluorotyrosine to enable photochemical generation and spectroscopic observation of chemically competent tyrosyl radical(s). Using transient absorption spectroscopy, we compare the kinetics of Y· decay in the presence of substrate and wt-α2, Y731F-α2 ,or C439S-α2, as well as with 3′-[2H]-substrate and wt-α2. We find that only in the presence of wt-α2 and the unlabeled substrate do we observe an enhanced rate of radical decay indicative of forward radical propagation. This observation reveals that cleavage of the 3′-C–H bond of substrate by the transiently formed C439· thiyl radical is rate-limiting in forward PCET through α and has allowed calculation of a lower bound for the rate constant associated with this step of (1.4 ± 0.4) × 104 s–1. Prompting radical propagation with light has enabled observation of PCET events heretofore inaccessible, revealing active site chemistry at the heart of RNR catalysis. PMID:25353063

  8. Prediction of P53 Mutants (Multiple Sites) Transcriptional Activity Based on Structural (2D&3D) Properties

    PubMed Central

    Geetha Ramani, R.; Jacob, Shomona Gracia

    2013-01-01

    Prediction of secondary site mutations that reinstate mutated p53 to normalcy has been the focus of intense research in the recent past owing to the fact that p53 mutants have been implicated in more than half of all human cancers and restoration of p53 causes tumor regression. However laboratory investigations are more often laborious and resource intensive but computational techniques could well surmount these drawbacks. In view of this, we formulated a novel approach utilizing computational techniques to predict the transcriptional activity of multiple site (one-site to five-site) p53 mutants. The optimal MCC obtained by the proposed approach on prediction of one-site, two-site, three-site, four-site and five-site mutants were 0.775,0.341,0.784,0.916 and 0.655 respectively, the highest reported thus far in literature. We have also demonstrated that 2D and 3D features generate higher prediction accuracy of p53 activity and our findings revealed the optimal results for prediction of p53 status, reported till date. We believe detection of the secondary site mutations that suppress tumor growth may facilitate better understanding of the relationship between p53 structure and function and further knowledge on the molecular mechanisms and biological activity of p53, a targeted source for cancer therapy. We expect that our prediction methods and reported results may provide useful insights on p53 functional mechanisms and generate more avenues for utilizing computational techniques in biological data analysis. PMID:23468845

  9. In vivo footprinting of the human IL-2 gene reveals a nuclear factor bound to the transcription start site in T cells.

    PubMed Central

    Brunvand, M W; Krumm, A; Groudine, M

    1993-01-01

    The IL-2 gene is a T cell specific gene that is expressed early during the activation-specific T lymphocyte development program. Electrophoretic mobility shift assay (EMSA) and DNase I footprinting assays have defined DNA/protein interactions at the IL-2 promoter cis-elements in vitro. To determine if the trans-activators documented in T cell nuclear extracts actually bind the IL-2 promoter in vivo, ligation mediated PCR (LMPCR) genomic footprinting was performed on the IL-2 promoter in both activated and non-activated T cells and HL60 promyelocytes, which do not express the IL-2 gene. The in vivo footprints indicate that the IL-2 gene transcription start site and TATA sequence are protected in both activated and resting T cells, prior to the appearance of detectable IL-2 steady state message. The distal NF-AT and the NF kappa B sites are each footprinted and the Oct/OAP site contains hypersensitive residues in the unstimulated T lymphocytes. Additional residues are protected in each of these sites after T cell activation. The proximal NF-AT site (NF-IL-2B) and the AP-1 site at -150 are protected in activated Jurkat T lymphocytes, but these two sites are not protected in activated Jurkat lymphocytes stably transfected a gene construct containing multiple NFAT binding sites. Images PMID:8233832

  10. Structural and Functional Characterization of CRM1-Nup214 Interactions Reveals Multiple FG-Binding Sites Involved in Nuclear Export.

    PubMed

    Port, Sarah A; Monecke, Thomas; Dickmanns, Achim; Spillner, Christiane; Hofele, Romina; Urlaub, Henning; Ficner, Ralf; Kehlenbach, Ralph H

    2015-10-27

    CRM1 is the major nuclear export receptor. During translocation through the nuclear pore, transport complexes transiently interact with phenylalanine-glycine (FG) repeats of multiple nucleoporins. On the cytoplasmic side of the nuclear pore, CRM1 tightly interacts with the nucleoporin Nup214. Here, we present the crystal structure of a 117-amino-acid FG-repeat-containing fragment of Nup214, in complex with CRM1, Snurportin 1, and RanGTP at 2.85 Å resolution. The structure reveals eight binding sites for Nup214 FG motifs on CRM1, with intervening stretches that are loosely attached to the transport receptor. Nup214 binds to N- and C-terminal regions of CRM1, thereby clamping CRM1 in a closed conformation and stabilizing the export complex. The role of conserved hydrophobic pockets for the recognition of FG motifs was analyzed in biochemical and cell-based assays. Comparative studies with RanBP3 and Nup62 shed light on specificities of CRM1-nucleoporin binding, which serves as a paradigm for transport receptor-nucleoporin interactions.

  11. Structures of KcsA in Complex with Symmetrical Quaternary Ammonium Compounds Reveal a Hydrophobic Binding Site

    PubMed Central

    2015-01-01

    Potassium channels allow for the passive movement of potassium ions across the cell membrane and are instrumental in controlling the membrane potential in all cell types. Quaternary ammonium (QA) compounds block potassium channels and have long been used to study the functional and structural properties of these channels. Here we describe the interaction between three symmetrical hydrophobic QAs and the prokaryotic potassium channel KcsA. The structures demonstrate the presence of a hydrophobic pocket between the inner helices of KcsA and provide insight into the binding site and blocking mechanism of hydrophobic QAs. The structures also reveal a structurally hidden pathway between the central cavity and the outside membrane environment reminiscent of the lateral fenestration observed in sodium channels that can be accessed through small conformational changes in the pore wall. We propose that the hydrophobic binding pocket stabilizes the alkyl chains of long-chain QA molecules and may play a key role in hydrophobic drug binding in general. PMID:25093676

  12. Revealing interaction between sulfobutylether-β-cyclodextrin and reserpine by chemiluminescence and site-directed molecular docking.

    PubMed

    Xiong, Xunyu; Wu, Min; Zhao, Xinfeng; Song, Zhenghua

    2014-09-01

    The host-guest interaction between sulfobutylether-β-cyclodextrin (SBE-β-CD) and reserpine (RSP) is described using flow injection-chemiluminescence (FI-CL) and site-directed molecular docking methods. It was found that RSP could inhibit the CL intensity produced by a luminol/SBE-β-CD system. The decrease in CL intensity was logarithmic over an RSP concentration range of 0.03 to 700.0 nM, giving a regression equation of ∆I = 107.1lgCRES  + 186.1 with a detection limit of 10 pM (3σ). The CL assay was successfully applied in the determination of RSP in injection, saliva and urine samples with recoveries in the range 93.5-106.1%. Using the proposed CL model, the binding constant (KCD-R ) and the stoichiometric ratio of SBE-β-CD/RSP were calculated to be 7.4 × 10(6)  M(-1) and 1 : 1, respectively. Using molecular docking, it was confirmed that luminol binds to the small cavity of SBE-β-CD with a nonpolar interaction, while RSP targeted the larger cavity of SBE-β-CD and formed a 1 : 1 complex with hydrogen bonds. The proposed new CL method has the potential to become a powerful tool for revealing the host-guest interaction between CDs and drugs, as well as monitoring drugs with high sensitivity.

  13. Natively glycosylated HIV-1 Env structure reveals new mode for antibody recognition of the CD4-binding site

    PubMed Central

    West, Anthony P; Schamber, Michael; Gazumyan, Anna; Golijanin, Jovana; Seaman, Michael S; Fätkenheuer, Gerd; Klein, Florian; Nussenzweig, Michel C; Bjorkman, Pamela J

    2016-01-01

    HIV-1 vaccine design is informed by structural studies elucidating mechanisms by which broadly neutralizing antibodies (bNAbs) recognize and/or accommodate N-glycans on the trimeric envelope glycoprotein (Env). Variability in high-mannose and complex-type Env glycoforms leads to heterogeneity that usually precludes visualization of the native glycan shield. We present 3.5-Å- and 3.9-Å-resolution crystal structures of the HIV-1 Env trimer with fully processed and native glycosylation, revealing a glycan shield of high-mannose and complex-type N-glycans, which we used to define complete epitopes of two bNAbs. Env trimer was complexed with 10-1074 (against the V3-loop) and IOMA, a new CD4-binding site (CD4bs) antibody. Although IOMA derives from VH1-2*02, the germline gene of CD4bs-targeting VRC01-class bNAbs, its light chain lacks the short CDRL3 that defines VRC01-class bNAbs. Thus IOMA resembles 8ANC131-class/VH1-46–derived CD4bs bNAbs, which have normal-length CDRL3s. The existence of bNAbs that combine features of VRC01-class and 8ANC131-class antibodies has implications for immunization strategies targeting VRC01-like bNAbs. PMID:27617431

  14. Structural Basis for the Inhibition of RNase H Activity of HIV-1 Reverse Transcriptase by RNase H Active Site-Directed Inhibitors

    SciTech Connect

    Su, Hua-Poo; Yan, Youwei; Prasad, G. Sridhar; Smith, Robert F.; Daniels, Christopher L.; Abeywickrema, Pravien D.; Reid, John C.; Loughran, H. Marie; Kornienko, Maria; Sharma, Sujata; Grobler, Jay A.; Xu, Bei; Sardana, Vinod; Allison, Timothy J.; Williams, Peter D.; Darke, Paul L.; Hazuda, Daria J.; Munshi, Sanjeev

    2010-09-02

    HIV/AIDS continues to be a menace to public health. Several drugs currently on the market have successfully improved the ability to manage the viral burden in infected patients. However, new drugs are needed to combat the rapid emergence of mutated forms of the virus that are resistant to existing therapies. Currently, approved drugs target three of the four major enzyme activities encoded by the virus that are critical to the HIV life cycle. Although a number of inhibitors of HIV RNase H activity have been reported, few inhibit by directly engaging the RNase H active site. Here, we describe structures of naphthyridinone-containing inhibitors bound to the RNase H active site. This class of compounds binds to the active site via two metal ions that are coordinated by catalytic site residues, D443, E478, D498, and D549. The directionality of the naphthyridinone pharmacophore is restricted by the ordering of D549 and H539 in the RNase H domain. In addition, one of the naphthyridinone-based compounds was found to bind at a second site close to the polymerase active site and non-nucleoside/nucleotide inhibitor sites in a metal-independent manner. Further characterization, using fluorescence-based thermal denaturation and a crystal structure of the isolated RNase H domain reveals that this compound can also bind the RNase H site and retains the metal-dependent binding mode of this class of molecules. These structures provide a means for structurally guided design of novel RNase H inhibitors.

  15. Targeting extracellular domains D4 and D7 of vascular endothelial growth factor receptor 2 reveals allosteric receptor regulatory sites.

    PubMed

    Hyde, Caroline A C; Giese, Alexandra; Stuttfeld, Edward; Abram Saliba, Johan; Villemagne, Denis; Schleier, Thomas; Binz, H Kaspar; Ballmer-Hofer, Kurt

    2012-10-01

    Vascular endothelial growth factors (VEGFs) activate three receptor tyrosine kinases, VEGFR-1, -2, and -3, which regulate angiogenic and lymphangiogenic signaling. VEGFR-2 is the most prominent receptor in angiogenic signaling by VEGF ligands. The extracellular part of VEGF receptors consists of seven immunoglobulin homology domains (Ig domains). Earlier studies showed that domains 2 and 3 (D23) mediate ligand binding, while structural analysis of dimeric ligand/receptor complexes by electron microscopy and small-angle solution scattering revealed additional homotypic contacts in membrane-proximal Ig domains D4 and D7. Here we show that D4 and D7 are indispensable for receptor signaling. To confirm the essential role of these domains in signaling, we isolated VEGFR-2-inhibitory "designed ankyrin repeat proteins" (DARPins) that interact with D23, D4, or D7. DARPins that interact with D23 inhibited ligand binding, receptor dimerization, and receptor kinase activation, while DARPins specific for D4 or D7 did not prevent ligand binding or receptor dimerization but effectively blocked receptor signaling and functional output. These data show that D4 and D7 allosterically regulate VEGFR-2 activity. We propose that these extracellular-domain-specific DARPins represent a novel generation of receptor-inhibitory drugs for in vivo applications such as targeting of VEGFRs in medical diagnostics and for treating vascular pathologies.

  16. Targeting Extracellular Domains D4 and D7 of Vascular Endothelial Growth Factor Receptor 2 Reveals Allosteric Receptor Regulatory Sites

    PubMed Central

    Hyde, Caroline A. C.; Giese, Alexandra; Stuttfeld, Edward; Abram Saliba, Johan; Villemagne, Denis; Schleier, Thomas; Binz, H. Kaspar

    2012-01-01

    Vascular endothelial growth factors (VEGFs) activate three receptor tyrosine kinases, VEGFR-1, -2, and -3, which regulate angiogenic and lymphangiogenic signaling. VEGFR-2 is the most prominent receptor in angiogenic signaling by VEGF ligands. The extracellular part of VEGF receptors consists of seven immunoglobulin homology domains (Ig domains). Earlier studies showed that domains 2 and 3 (D23) mediate ligand binding, while structural analysis of dimeric ligand/receptor complexes by electron microscopy and small-angle solution scattering revealed additional homotypic contacts in membrane-proximal Ig domains D4 and D7. Here we show that D4 and D7 are indispensable for receptor signaling. To confirm the essential role of these domains in signaling, we isolated VEGFR-2-inhibitory “designed ankyrin repeat proteins” (DARPins) that interact with D23, D4, or D7. DARPins that interact with D23 inhibited ligand binding, receptor dimerization, and receptor kinase activation, while DARPins specific for D4 or D7 did not prevent ligand binding or receptor dimerization but effectively blocked receptor signaling and functional output. These data show that D4 and D7 allosterically regulate VEGFR-2 activity. We propose that these extracellular-domain-specific DARPins represent a novel generation of receptor-inhibitory drugs for in vivo applications such as targeting of VEGFRs in medical diagnostics and for treating vascular pathologies. PMID:22801374

  17. Structure of the endonuclease IV homologue from Thermotoga maritima in the presence of active-site divalent metal ions

    SciTech Connect

    Tomanicek, Stephen J.; Hughes, Ronny C.; Ng, Joseph D.; Coates, Leighton

    2010-10-05

    The most frequent lesion in DNA is at apurinic/apyrimidinic (AP) sites resulting from DNA-base losses. These AP-site lesions can stall DNA replication and lead to genome instability if left unrepaired. The AP endonucleases are an important class of enzymes that are involved in the repair of AP-site intermediates during damage-general DNA base-excision repair pathways. These enzymes hydrolytically cleave the 5{prime}-phosphodiester bond at an AP site to generate a free 3{prime}-hydroxyl group and a 5{prime}-terminal sugar phosphate using their AP nuclease activity. Specifically, Thermotoga maritima endonuclease IV is a member of the second conserved AP endonuclease family that includes Escherichia coli endonuclease IV, which is the archetype of the AP endonuclease superfamily. In order to more fully characterize the AP endonuclease family of enzymes, two X-ray crystal structures of the T. maritima endonuclease IV homologue were determined in the presence of divalent metal ions bound in the active-site region. These structures of the T. maritima endonuclease IV homologue further revealed the use of the TIM-barrel fold and the trinuclear metal binding site as important highly conserved structural elements that are involved in DNA-binding and AP-site repair processes in the AP endonuclease superfamily.

  18. Similarities in the HIV-1 and ASV Integrease Active Site Upon Metal Binding

    SciTech Connect

    Lins, Roberto D.; Straatsma, TP; Briggs, J. M.

    2000-04-05

    The HIV-1 integrase, which is essential for viral replication, catalyzes the insertion of viral DNA into the host chromosome thereby recruiting host cell machinery into making viral proteins. It represents the third main HIV enzyme target for inhibitor design, the first two being the reverse transcriptase and the protease. We report here a fully hydrated 2 ns molecular dynamics simulation performed using parallel NWChem3.2.1 with the AMBER95 force field. The HIV-1 integrase catalytic domain previously determined by crystallography (1B9D) and modeling including two Mg2+ ions placed into the active site based on an alignment against an ASV integrase structure containing two divalent metals (1VSH), was used as the starting structure. The simulation reveals a high degree of flexibility in the region of residues 140-149 even in the presence of a second divalent metal ion and a dramatic conformational change of the side chain of E152 when the second metal ion is present. This study shows similarities in the behavior of the catalytic residues in the HIV-1 and ASV integrases upon metal binding. The present simulation also provides support to the hypothesis that the second metal ion is likely to be carried into the HIV-1 integrase active site by the substrate, a strand of DNA.

  19. Distance between two active-site lysines of ribulosebis-phosphate carboxylase/oxygenase

    SciTech Connect

    Lee, E.H.; Hartman, F.C.

    1986-05-01

    Previous affinity labeling studies and comparative sequence analyses have identified two different lysines at the active site of the title enzyme (Lys-166 and Lys-329 in the Rhodospirillum rubrum enzyme and Lys-175 and Lys-334 in the spinach enzyme). Because the two lysines are mutually exclusive to various reagents, they appear to be in proximity. To challenge this postulate, the authors have explored the reactions of the R. rubrum enzyme (a homodimer) with chemical cross-linking agents. 4,4'-Diisothiocyano-2,2'-disulfonate stilbene, which spans 12 A, rapidly inactivates the enzyme with protection afforded by the competitive inhibitor 2-carboxyribitol-1,5-bisphosphate. The inactivated enzyme was subjected to gel filtration in the presence of urea to remove material arising from intersubunit or intermolecular cross-linking. The monomeric fraction was digested with trypsin; inspection of the digest by HPLC revealed that over-half of the incorporated reagent was associated with a single peptide. This peptide was purified by successive ion-exchange chromatography and gel filtration. The amino acid composition and sequence of the purified peptide demonstrated that it is comprised of two chains, encompassing position 149-168 and 314-337 of the original protein subunit and connected by a cross-link between Lys-166 and Lys-329. Thus, the two active-site lysines can be juxtaposed only 12 A apart.

  20. In silico Analysis of Combinatorial microRNA Activity Reveals Target Genes and Pathways Associated with Breast Cancer Metastasis

    PubMed Central

    Dombkowski, Alan A.; Sultana, Zakia; Craig, Douglas B.; Jamil, Hasan

    2011-01-01

    This is an open access article. Unrestricted non-commercial use is permitted provided the original work is properly cited. Aberrant microRNA activity has been reported in many diseases, and studies often find numerous microRNAs concurrently dysregulated. Most target genes have binding sites for multiple microRNAs, and mounting evidence indicates that it is important to consider their combinatorial effect on target gene repression. A recent study associated the coincident loss of expression of six microRNAs with metastatic potential in breast cancer. Here, we used a new computational method, miR-AT!, to investigate combinatorial activity among this group of microRNAs. We found that the set of transcripts having multiple target sites for these microRNAs was significantly enriched with genes involved in cellular processes commonly perturbed in metastatic tumors: cell cycle regulation, cytoskeleton organization, and cell adhesion. Network analysis revealed numerous target genes upstream of cyclin D1 and c-Myc, indicating that the collective loss of the six microRNAs may have a focal effect on these two key regulatory nodes. A number of genes previously implicated in cancer metastasis are among the predicted combinatorial targets, including TGFB1, ARPC3, and RANKL. In summary, our analysis reveals extensive combinatorial interactions that have notable implications for their potential role in breast cancer metastasis and in therapeutic development. PMID:21552493

  1. Nuclear Site Security in the Event of Terrorist Activity

    SciTech Connect

    Thomson, M.L.; Sims, J.

    2008-07-01

    This paper, presented as a poster, identifies why ballistic protection should now be considered at nuclear sites to counter terrorist threats. A proven and flexible form of multi purpose protection is described in detail with identification of trial results that show its suitability for this role. (authors)

  2. Two Antagonistic MALT1 Auto-Cleavage Mechanisms Reveal a Role for TRAF6 to Unleash MALT1 Activation.

    PubMed

    Ginster, Stefanie; Bardet, Maureen; Unterreiner, Adeline; Malinverni, Claire; Renner, Florian; Lam, Stephen; Freuler, Felix; Gerrits, Bertran; Voshol, Johannes; Calzascia, Thomas; Régnier, Catherine H; Renatus, Martin; Nikolay, Rainer; Israël, Laura; Bornancin, Frédéric

    2017-01-01

    The paracaspase MALT1 has arginine-directed proteolytic activity triggered by engagement of immune receptors. Recruitment of MALT1 into activation complexes is required for MALT1 proteolytic function. Here, co-expression of MALT1 in HEK293 cells, either with activated CARD11 and BCL10 or with TRAF6, was used to explore the mechanism of MALT1 activation at the molecular level. This work identified a prominent self-cleavage site of MALT1 isoform A (MALT1A) at R781 (R770 in MALT1B) and revealed that TRAF6 can activate MALT1 independently of the CBM. Intramolecular cleavage at R781/R770 removes a C-terminal TRAF6-binding site in both MALT1 isoforms, leaving MALT1B devoid of the two key interaction sites with TRAF6. A previously identified auto-proteolysis site of MALT1 at R149 leads to deletion of the death-domain, thereby abolishing interaction with BCL10. By using MALT1 isoforms and cleaved fragments thereof, as well as TRAF6 WT and mutant forms, this work shows that TRAF6 induces N-terminal auto-proteolytic cleavage of MALT1 at R149 and accelerates MALT1 protein turnover. The MALT1 fragment generated by N-terminal self-cleavage at R149 was labile and displayed enhanced signaling properties that required an intact K644 residue, previously shown to be a site for mono-ubiquitination of MALT1. Conversely, C-terminal self-cleavage at R781/R770 hampered the ability for self-cleavage at R149 and stabilized MALT1 by hindering interaction with TRAF6. C-terminal self-cleavage had limited impact on MALT1A but severely reduced MALT1B proteolytic and signaling functions. It also abrogated NF-κB activation by N-terminally cleaved MALT1A. Altogether, this study provides further insights into mechanisms that regulate the scaffolding and activation cycle of MALT1. It also emphasizes the reduced functional capacity of MALT1B as compared to MALT1A.

  3. Two Antagonistic MALT1 Auto-Cleavage Mechanisms Reveal a Role for TRAF6 to Unleash MALT1 Activation

    PubMed Central

    Renner, Florian; Lam, Stephen; Freuler, Felix; Gerrits, Bertran; Voshol, Johannes; Calzascia, Thomas; Régnier, Catherine H.; Renatus, Martin; Nikolay, Rainer; Israël, Laura; Bornancin, Frédéric

    2017-01-01

    The paracaspase MALT1 has arginine-directed proteolytic activity triggered by engagement of immune receptors. Recruitment of MALT1 into activation complexes is required for MALT1 proteolytic function. Here, co-expression of MALT1 in HEK293 cells, either with activated CARD11 and BCL10 or with TRAF6, was used to explore the mechanism of MALT1 activation at the molecular level. This work identified a prominent self-cleavage site of MALT1 isoform A (MALT1A) at R781 (R770 in MALT1B) and revealed that TRAF6 can activate MALT1 independently of the CBM. Intramolecular cleavage at R781/R770 removes a C-terminal TRAF6-binding site in both MALT1 isoforms, leaving MALT1B devoid of the two key interaction sites with TRAF6. A previously identified auto-proteolysis site of MALT1 at R149 leads to deletion of the death-domain, thereby abolishing interaction with BCL10. By using MALT1 isoforms and cleaved fragments thereof, as well as TRAF6 WT and mutant forms, this work shows that TRAF6 induces N-terminal auto-proteolytic cleavage of MALT1 at R149 and accelerates MALT1 protein turnover. The MALT1 fragment generated by N-terminal self-cleavage at R149 was labile and displayed enhanced signaling properties that required an intact K644 residue, previously shown to be a site for mono-ubiquitination of MALT1. Conversely, C-terminal self-cleavage at R781/R770 hampered the ability for self-cleavage at R149 and stabilized MALT1 by hindering interaction with TRAF6. C-terminal self-cleavage had limited impact on MALT1A but severely reduced MALT1B proteolytic and signaling functions. It also abrogated NF-κB activation by N-terminally cleaved MALT1A. Altogether, this study provides further insights into mechanisms that regulate the scaffolding and activation cycle of MALT1. It also emphasizes the reduced functional capacity of MALT1B as compared to MALT1A. PMID:28052131

  4. Activation induced deaminase mutational signature overlaps with CpG methylation sites in follicular lymphoma and other cancers

    PubMed Central

    Rogozin, Igor B.; Lada, Artem G.; Goncearenco, Alexander; Green, Michael R.; De, Subhajyoti; Nudelman, German; Panchenko, Anna R.; Koonin, Eugene V.; Pavlov, Youri I.

    2016-01-01

    Follicular lymphoma (FL) is an uncurable cancer characterized by progressive severity of relapses. We analyzed sequence context specificity of mutations in the B cells from a large cohort of FL patients. We revealed substantial excess of mutations within a novel hybrid nucleotide motif: the signature of somatic hypermutation (SHM) enzyme, Activation Induced Deaminase (AID), which overlaps the CpG methylation site. This finding implies that in FL the SHM machinery acts at genomic sites containing methylated cytosine. We identified the prevalence of this hybrid mutational signature in many other types of human cancer, suggesting that AID-mediated, CpG-methylation dependent mutagenesis is a common feature of tumorigenesis. PMID:27924834

  5. Role of a cysteine residue in the active site of ERK and the MAPKK family

    SciTech Connect

    Ohori, Makoto; Kinoshita, Takayoshi; Yoshimura, Seiji; Warizaya, Masaichi; Nakajima, Hidenori . E-mail: hidenori.nakajima@jp.astellas.com; Miyake, Hiroshi

    2007-02-16

    Kinases of mitogen-activated protein kinase (MAPK) cascades, including extracellular signal-regulated protein kinase (ERK), represent likely targets for pharmacological intervention in proliferative diseases. Here, we report that FR148083 inhibits ERK2 enzyme activity and TGF{beta}-induced AP-1-dependent luciferase expression with respective IC{sub 50} values of 0.08 and 0.05 {mu}M. FR265083 (1'-2' dihydro form) and FR263574 (1'-2' and 7'-8' tetrahydro form) exhibited 5.5-fold less and no activity, respectively, indicating that both the {alpha},{beta}-unsaturated ketone and the conformation of the lactone ring contribute to this inhibitory activity. The X-ray crystal structure of the ERK2/FR148083 complex revealed that the compound binds to the ATP binding site of ERK2, involving a covalent bond to S{gamma} of ERK2 Cys166, hydrogen bonds with the backbone NH of Met108, N{zeta} of Lys114, backbone C=O of Ser153, N{delta}2 of Asn154, and hydrophobic interactions with the side chains of Ile31, Val39, Ala52, and Leu156. The covalent bond motif in the ERK2/FR148083 complex assures that the inhibitor has high activity for ERK2 and no activity for other MAPKs such as JNK1 and p38MAPK{alpha}/{beta}/{gamma}/{delta} which have leucine residues at the site corresponding to Cys166 in ERK2. On the other hand, MEK1 and MKK7, kinases of the MAPKK family which also can be inhibited by FR148083, contain a cysteine residue corresponding to Cys166 of ERK2. The covalent binding to the common cysteine residue in the ATP-binding site is therefore likely to play a crucial role in the inhibitory activity for these MAP kinases. These findings on the molecular recognition mechanisms of FR148083 for kinases with Cys166 should provide a novel strategy for the pharmacological intervention of MAPK cascades.

  6. Identification of a putative binding site critical for general anesthetic activation of TRPA1.

    PubMed

    Ton, Hoai T; Phan, Thieu X; Abramyan, Ara M; Shi, Lei; Ahern, Gerard P

    2017-04-04

    General anesthetics suppress CNS activity by modulating the function of membrane ion channels, in particular, by enhancing activity of GABAA receptors. In contrast, several volatile (isoflurane, desflurane) and i.v. (propofol) general anesthetics excite peripheral sensory nerves to cause pain and irritation upon administration. These noxious anesthetics activate transient receptor potential ankyrin repeat 1 (TRPA1), a major nociceptive ion channel, but the underlying mechanisms and site of action are unknown. Here we exploit the observation that pungent anesthetics activate mammalian but not Drosophila TRPA1. Analysis of chimeric Drosophila and mouse TRPA1 channels reveal a critical role for the fifth transmembrane domain (S5) in sensing anesthetics. Interestingly, we show that anesthetics share with the antagonist A-967079 a potential binding pocket lined by residues in the S5, S6, and the first pore helix; isoflurane competitively disrupts A-967079 antagonism, and introducing these mammalian TRPA1 residues into dTRPA1 recapitulates anesthetic agonism. Furthermore, molecular modeling predicts that isoflurane and propofol bind to this pocket by forming H-bond and halogen-bond interactions with Ser-876, Met-915, and Met-956. Mutagenizing Met-915 or Met-956 selectively abolishes activation by isoflurane and propofol without affecting actions of A-967079 or the agonist, menthol. Thus, our combined experimental and computational results reveal the potential binding mode of noxious general anesthetics at TRPA1. These data may provide a structural basis for designing drugs to counter the noxious and vasorelaxant properties of general anesthetics and may prove useful in understanding effects of anesthetics on related ion channels.

  7. Synthesis and evaluation of M. tuberculosis salicylate synthase (MbtI) inhibitors designed to probe plasticity in the active site.

    PubMed

    Manos-Turvey, Alexandra; Cergol, Katie M; Salam, Noeris K; Bulloch, Esther M M; Chi, Gamma; Pang, Angel; Britton, Warwick J; West, Nicholas P; Baker, Edward N; Lott, J Shaun; Payne, Richard J

    2012-12-14

    Mycobacterium tuberculosis salicylate synthase (MbtI) catalyses the first committed step in the biosynthesis of mycobactin T, an iron-chelating siderophore essential for the virulence and survival of M. tuberculosis. Co-crystal structures of MbtI with members of a first generation inhibitor library revealed large inhibitor-induced rearrangements within the active site of the enzyme. This plasticity of the MbtI active site was probed via the preparation of a library of inhibitors based on a 2,3-dihydroxybenzoate scaffold with a range of substituted phenylacrylate side chains appended to the C3 position. Most compounds exhibited moderate inhibitory activity against the enzyme, with inhibition constants in the micromolar range, while several dimethyl ester variants possessed promising anti-tubercular activity in vitro.

  8. Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory

    SciTech Connect

    Taylor, D.D.; Hoskinson, R.L.; Kingsford, C.O.; Ball, L.W.

    1994-09-01

    The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria.

  9. Tertiary Contacts Distant from the Active Site Prime a Ribozyme for Catalysis

    PubMed Central

    Martick, Monika; Scott, William G.

    2015-01-01

    SUMMARY Minimal hammerhead ribozymes have been characterized extensively by static and time-resolved crystallography as well as numerous biochemical analyses, leading to mutually contradictory mechanistic explanations for catalysis. We present the 2.2 Å resolution crystal structure of a full-length Schistosoma mansoni hammerhead ribozyme that permits us to explain the structural basis for its 1000-fold catalytic enhancement. The full-length hammerhead structure reveals how tertiary interactions occurring remotely from the active site prime this ribozyme for catalysis. G-12 and G-8 are positioned consistent with their previously suggested roles in acid-base catalysis, the nucleophile is aligned with a scissile phosphate positioned proximal to the A-9 phosphate, and previously unexplained roles of other conserved nucleotides become apparent within the context of a distinctly new fold that nonetheless accommodates the previous structural studies. These interactions permit us to explain the previously irreconcilable sets of experimental results in a unified, consistent, and unambiguous manner. PMID:16859740

  10. Cellular Active N-Hydroxyurea FEN1 Inhibitors Block Substrate Entry to the Active Site

    PubMed Central

    Exell, Jack C.; Thompson, Mark J.; Finger, L. David; Shaw, Steven J.; Debreczeni, Judit; Ward, Thomas A.; McWhirter, Claire; Siöberg, Catrine L. B.; Martinez Molina, Daniel; Mark Abbott, W.; Jones, Clifford D.; Nissink, J. Willem M.; Durant, Stephen T.; Grasby, Jane A.

    2016-01-01

    The structure-specific nuclease human flap endonuclease-1 (hFEN1) plays a key role in DNA replication and repair and may be of interest as an oncology target. We present the first crystal structure of inhibitor-bound hFEN1 and show a cyclic N-hydroxyurea bound in the active site coordinated to two magnesium ions. Three such compounds had similar IC50 values but differed subtly in mode of action. One had comparable affinity for protein and protein–substrate complex and prevented reaction by binding to active site catalytic metal ions, blocking the unpairing of substrate DNA necessary for reaction. Other compounds were more competitive with substrate. Cellular thermal shift data showed engagement of both inhibitor types with hFEN1 in cells with activation of the DNA damage response evident upon treatment. However, cellular EC50s were significantly higher than in vitro inhibition constants and the implications of this for exploitation of hFEN1 as a drug target are discussed. PMID:27526030

  11. Active Layer and Moisture Measurements for Intensive Site 0 and 1, Barrow, Alaska

    DOE Data Explorer

    John Peterson

    2015-04-17

    These are measurements of Active Layer Thickness collected along several lines beginning in September, 2011 to the present. The data were collected at several time periods along the Site0 L2 Line, the Site1 AB Line, and an ERT Monitoring Line near Area A in Site1.

  12. Integrative Proteomics and Phosphoproteomics Profiling Reveals Dynamic Signaling Networks and Bioenergetics Pathways Underlying T Cell Activation.

    PubMed

    Tan, Haiyan; Yang, Kai; Li, Yuxin; Shaw, Timothy I; Wang, Yanyan; Blanco, Daniel Bastardo; Wang, Xusheng; Cho, Ji-Hoon; Wang, Hong; Rankin, Sherri; Guy, Cliff; Peng, Junmin; Chi, Hongbo

    2017-03-21

    The molecular circuits by which antigens activate quiescent T cells remain poorly understood. We combined temporal profiling of the whole proteome and phosphoproteome via multiplexed isobaric labeling proteomics technology, computational pipelines for integrating multi-omics datasets, and functional perturbation to systemically reconstruct regulatory networks underlying T cell activation. T cell receptors activated the T cell proteome and phosphoproteome with discrete kinetics, marked by early dynamics of phosphorylation and delayed ribosome biogenesis and mitochondrial activation. Systems biology analyses identified multiple functional modules, active kinases, transcription factors and connectivity between them, and mitochondrial pathways including mitoribosomes and complex IV. Genetic perturbation revealed physiological roles for mitochondrial enzyme COX10-mediated oxidative phosphorylation in T cell quiescence exit. Our multi-layer proteomics profiling, integrative network analysis, and functional studies define landscapes of the T cell proteome and phosphoproteome and reveal signaling and bioenergetics pathways that mediate lymphocyte exit from quiescence.

  13. Structural Analysis of Glycine Sarcosine N-methyltransferase from Methanohalophilus portucalensis Reveals Mechanistic Insights into the Regulation of Methyltransferase Activity

    PubMed Central

    Lee, Yi-Ru; Lin, Te-Sheng; Lai, Shu-Jung; Liu, Mu-Sen; Lai, Mei-Chin; Chan, Nei-Li

    2016-01-01

    Methyltransferases play crucial roles in many cellular processes, and various regulatory mechanisms have evolved to control their activities. For methyltransferases involved in biosynthetic pathways, regulation via feedback inhibition is a commonly employed strategy to prevent excessive accumulation of the pathways’ end products. To date, no biosynthetic methyltransferases have been characterized by X-ray crystallography in complex with their corresponding end product. Here, we report the crystal structures of the glycine sarcosine N-methyltransferase from the halophilic archaeon Methanohalophilus portucalensis (MpGSMT), which represents the first structural elucidation of the GSMT methyltransferase family. As the first enzyme in the biosynthetic pathway of the osmoprotectant betaine, MpGSMT catalyzes N-methylation of glycine and sarcosine, and its activity is feedback-inhibited by the end product betaine. A structural analysis revealed that, despite the simultaneous presence of both substrate (sarcosine) and cofactor (S-adenosyl-L-homocysteine; SAH), the enzyme was likely crystallized in an inactive conformation, as additional structural changes are required to complete the active site assembly. Consistent with this interpretation, the bound SAH can be replaced by the methyl donor S-adenosyl-L-methionine without triggering the methylation reaction. Furthermore, the observed conformational state was found to harbor a betaine-binding site, suggesting that betaine may inhibit MpGSMT activity by trapping the enzyme in an inactive form. This work implicates a structural basis by which feedback inhibition of biosynthetic methyltransferases may be achieved. PMID:27934872

  14. Improved ethanol electrooxidation performance by shortening Pd–Ni active site distance in Pd–Ni–P nanocatalysts

    PubMed Central

    Chen, Lin; Lu, Lilin; Zhu, Hengli; Chen, Yueguang; Huang, Yu; Li, Yadong; Wang, Leyu

    2017-01-01

    Incorporating oxophilic metals into noble metal-based catalysts represents an emerging strategy to improve the catalytic performance of electrocatalysts in fuel cells. However, effects of the distance between the noble metal and oxophilic metal active sites on the catalytic performance have rarely been investigated. Herein, we report on ultrasmall (∼5 nm) Pd–Ni–P ternary nanoparticles for ethanol electrooxidation. The activity is improved up to 4.95 A per mgPd, which is 6.88 times higher than commercial Pd/C (0.72 A per mgPd), by shortening the distance between Pd and Ni active sites, achieved through shape transformation from Pd/Ni–P heterodimers into Pd–Ni–P nanoparticles and tuning the Ni/Pd atomic ratio to 1:1. Density functional theory calculations reveal that the improved activity and stability stems from the promoted production of free OH radicals (on Ni active sites) which facilitate the oxidative removal of carbonaceous poison and combination with CH3CO radicals on adjacent Pd active sites. PMID:28071650

  15. Improved ethanol electrooxidation performance by shortening Pd-Ni active site distance in Pd-Ni-P nanocatalysts.

    PubMed

    Chen, Lin; Lu, Lilin; Zhu, Hengli; Chen, Yueguang; Huang, Yu; Li, Yadong; Wang, Leyu

    2017-01-10

    Incorporating oxophilic metals into noble metal-based catalysts represents an emerging strategy to improve the catalytic performance of electrocatalysts in fuel cells. However, effects of the distance between the noble metal and oxophilic metal active sites on the catalytic performance have rarely been investigated. Herein, we report on ultrasmall (∼5 nm) Pd-Ni-P ternary nanoparticles for ethanol electrooxidation. The activity is improved up to 4.95 A per mgPd, which is 6.88 times higher than commercial Pd/C (0.72 A per mgPd), by shortening the distance between Pd and Ni active sites, achieved through shape transformation from Pd/Ni-P heterodimers into Pd-Ni-P nanoparticles and tuning the Ni/Pd atomic ratio to 1:1. Density functional theory calculations reveal that the improved activity and stability stems from the promoted production of free OH radicals (on Ni active sites) which facilitate the oxidative removal of carbonaceous poison and combination with CH3CO radicals on adjacent Pd active sites.

  16. Improved ethanol electrooxidation performance by shortening Pd-Ni active site distance in Pd-Ni-P nanocatalysts

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Lu, Lilin; Zhu, Hengli; Chen, Yueguang; Huang, Yu; Li, Yadong; Wang, Leyu

    2017-01-01

    Incorporating oxophilic metals into noble metal-based catalysts represents an emerging strategy to improve the catalytic performance of electrocatalysts in fuel cells. However, effects of the distance between the noble metal and oxophilic metal active sites on the catalytic performance have rarely been investigated. Herein, we report on ultrasmall (~5 nm) Pd-Ni-P ternary nanoparticles for ethanol electrooxidation. The activity is improved up to 4.95 A per mgPd, which is 6.88 times higher than commercial Pd/C (0.72 A per mgPd), by shortening the distance between Pd and Ni active sites, achieved through shape transformation from Pd/Ni-P heterodimers into Pd-Ni-P nanoparticles and tuning the Ni/Pd atomic ratio to 1:1. Density functional theory calculations reveal that the improved activity and stability stems from the promoted production of free OH radicals (on Ni active sites) which facilitate the oxidative removal of carbonaceous poison and combination with CH3CO radicals on adjacent Pd active sites.

  17. Are nest sites actively chosen? Testing a common assumption for three non-resource limited birds

    NASA Astrophysics Data System (ADS)

    Goodenough, A. E.; Elliot, S. L.; Hart, A. G.

    2009-09-01

    Many widely-accepted ecological concepts are simplified assumptions about complex situations that remain largely untested. One example is the assumption that nest-building species choose nest sites actively when they are not resource limited. This assumption has seen little direct empirical testing: most studies on nest-site selection simply assume that sites are chosen actively (and seek explanations for such behaviour) without considering that sites may be selected randomly. We used 15 years of data from a nestbox scheme in the UK to test the assumption of active nest-site choice in three cavity-nesting bird species that differ in breeding and migratory strategy: blue tit ( Cyanistes caeruleus), great tit ( Parus major) and pied flycatcher ( Ficedula hypoleuca). Nest-site selection was non-random (implying active nest-site choice) for blue and great tits, but not for pied flycatchers. We also considered the relative importance of year-specific and site-specific factors in determining occupation of nest sites. Site-specific factors were more important than year-specific factors for the tit species, while the reverse was true for pied flycatchers. Our results show that nest-site selection, in birds at least, is not always the result of active choice, such that choice should not be assumed automatically in studies of nesting behaviour. We use this example to highlight the need to test key ecological assumptions empirically, and the importance of doing so across taxa rather than for single "model" species.

  18. Structural Insights into the Protease-like Antigen Plasmodium falciparum SERA5 and Its Noncanonical Active-Site Serine

    SciTech Connect

    Hodder, Anthony N.; Malby, Robyn L.; Clarke, Oliver B.; Fairlie, W. Douglas; Colman, Peter M.; Crabb, Brendan S.; Smith, Brian J.

    2009-08-28

    The sera genes of the malaria-causing parasite Plasmodium encode a family of unique proteins that are maximally expressed at the time of egress of parasites from infected red blood cells. These multi-domain proteins are unique, containing a central papain-like cysteine-protease fragment enclosed between the disulfide-linked N- and C-terminal domains. However, the central fragment of several members of this family, including serine repeat antigen 5 (SERA5), contains a serine (S596) in place of the active-site cysteine. Here we report the crystal structure of the central protease-like domain of Plasmodium falciparum SERA5, revealing a number of anomalies in addition to the putative nucleophilic serine: (1) the structure of the putative active site is not conducive to binding substrate in the canonical cysteine-protease manner; (2) the side chain of D594 restricts access of substrate to the putative active site; and (3) the S{sub 2} specificity pocket is occupied by the side chain of Y735, reducing this site to a small depression on the protein surface. Attempts to determine the structure in complex with known inhibitors were not successful. Thus, despite having revealed its structure, the function of the catalytic domain of SERA5 remains an enigma.

  19. Early Site Permit Demonstration Program: Recommendations for communication activities and public participation in the Early Site Permit Demonstration Program

    SciTech Connect

    Not Available

    1993-01-27

    On October 24, 1992, President Bush signed into law the National Energy Policy Act of 1992. The bill is a sweeping, comprehensive overhaul of the Nation`s energy laws, the first in more than a decade. Among other provisions, the National Energy Policy Act reforms the licensing process for new nuclear power plants by adopting a new approach developed by the US Nuclear Regulatory Commission (NRC) in 1989, and upheld in court in 1992. The NRC 10 CFR Part 52 rule is a three-step process that guarantees public participation at each step. The steps are: early site permit approval; standard design certifications; and, combined construction/operating licenses for nuclear power reactors. Licensing reform increases an organization`s ability to respond to future baseload electricity generation needs with less financial risk for ratepayers and the organization. Costly delays can be avoided because design, safety and siting issues will be resolved before a company starts to build a plant. Specifically, early site permit approval allows for site suitability and acceptability issues to be addressed prior to an organization`s commitment to build a plant. Responsibility for site-specific activities, including communications and public participation, rests with those organizations selected to try out early site approval. This plan has been prepared to assist those companies (referred to as sponsoring organizations) in planning their communications and public involvement programs. It provides research findings, information and recommendations to be used by organizations as a resource and starting point in developing their own plans.

  20. Structure of the Acinetobacter baumannii Dithiol Oxidase DsbA Bound to Elongation Factor EF-Tu Reveals a Novel Protein Interaction Site

    PubMed Central

    Premkumar, Lakshmanane; Kurth, Fabian; Duprez, Wilko; Grøftehauge, Morten K.; King, Gordon J.; Halili, Maria A.; Heras, Begoña; Martin, Jennifer L.

    2014-01-01

    The multidrug resistant bacterium Acinetobacter baumannii is a significant cause of nosocomial infection. Biofilm formation, that requires both disulfide bond forming and chaperone-usher pathways, is a major virulence trait in this bacterium. Our biochemical characterizations show that the periplasmic A. baumannii DsbA (AbDsbA) enzyme has an oxidizing redox potential and dithiol oxidase activity. We found an unexpected non-covalent interaction between AbDsbA and the highly conserved prokaryotic elongation factor, EF-Tu. EF-Tu is a cytoplasmic protein but has been localized extracellularly in many bacterial pathogens. The crystal structure of this complex revealed that the EF-Tu switch I region binds to the non-catalytic surface of AbDsbA. Although the physiological and pathological significance of a DsbA/EF-Tu association is unknown, peptides derived from the EF-Tu switch I region bound to AbDsbA with submicromolar affinity. We also identified a seven-residue DsbB-derived peptide that bound to AbDsbA with low micromolar affinity. Further characterization confirmed that the EF-Tu- and DsbB-derived peptides bind at two distinct sites. These data point to the possibility that the non-catalytic surface of DsbA is a potential substrate or regulatory protein interaction site. The two peptides identified in this work together with the newly characterized interaction site provide a novel starting point for inhibitor design targeting AbDsbA. PMID:24860094

  1. Lamellipodial actin mechanically links myosin activity with adhesion site formation

    PubMed Central

    Giannone, Gregory; Dubin-Thaler, Benjamin; Rossier, Olivier; Cai, Yunfei; Chaga, Oleg; Jiang, Guoying; Beaver, William; Döbereiner, Hans-Günther; Freund, Yoav; Borisy, Gary; Sheetz, Michael P.

    2013-01-01

    Summary Cell motility proceeds by cycles of edge protrusion, adhesion and retraction. Whether these functions are coordinated by biochemical or biomechanical processes is unknown. We find that myosin II pulls the rear of the lamellipodial actin network, causing upward bending, edge retraction and initiation of new adhesion sites. The network then separates from the edge and condenses over the myosin. Protrusion resumes as lamellipodial actin regenerates from the front and extends rearward until it reaches newly assembled myosin, initiating the next cycle. Upward bending, observed by evanescence and electron microscopy, results in ruffle formation when adhesion strength is low. Correlative fluorescence and electron microscopy shows that the regenerating lamellipodium forms a cohesive, separable layer of actin above the lamellum. Thus, actin polymerization periodically builds a mechanical link, the lamellipodium, connecting myosin motors with the initiation of adhesion sites, suggesting that the major functions driving motility are coordinated by a biomechanical process. PMID:17289574

  2. New strategy for specific activation of recombinant microbial pro-transglutaminase by introducing an enterokinase cleavage site.

    PubMed

    Wang, Kun; Wang, Bin; Yang, Hui-Lin; Pan, Li

    2013-03-01

    Recombinant microbial transglutaminase (rMTG) is usually expressed as a soluble zymogen (pro-rMTG) in heterologous expression systems but proteolytic activation of the inactive pro-rMTG is essential. Instead of screening proteases for activating pro-rMTG, we examined an alternative method by introducing a specific cleavage site of enterokinase between the pro-peptide and mature rMTG, generating three pro-rMTG variants (Pro-mrMTG, Pro-m-rMTG and mPro-rMTG). Pro-mrMTG and Pro-m-rMTG were activated by enterokinase without degrading mature rMTG. The activation productivity of Pro-m-rMTG by enterokinase reached 92 % after 22 h activation, while the activation productivity of Pro-rMTG activated by trypsin was 47 %. MALDI-MS analysis revealed that the pro-peptide including the cleavage site was specifically removed from Pro-m-rMTG after activation. This methodology has the potential to be applied in rMTG production by incorporating highly specific cleavage sites of other proteases.

  3. Kinetic and structural evaluation of selected active site mutants of the Aspergillus fumigatus KDNase (sialidase).

    PubMed

    Yeung, Juliana H F; Telford, Judith C; Shidmoossavee, Fahimeh S; Bennet, Andrew J; Taylor, Garry L; Moore, Margo M

    2013-12-23

    Aspergillus fumigatus is an airborne fungal pathogen. We previously cloned and characterized an exo-sialidase from A. fumigatus and showed that it preferred 2-keto-3-deoxynononic acid (KDN) as a substrate to N-acetylneuraminic acid (Neu5Ac). The purpose of this study was to investigate the structure-function relationships of critical catalytic site residues. Site-directed mutagenesis was used to create three mutant recombinant enzymes: the catalytic nucleophile (Y358H), the general acid/base catalyst (D84A), and an enlargement of the binding pocket to attempt to accommodate the N-acetyl group of Neu5Ac (R171L). Crystal structures for all enzymes were determined. The D84A mutation had an effect in decreasing the activity of AfKDNase that was stronger than that of the same mutation in the structurally similar sialidase from the bacterium Micromonospora viridifaciens. These data suggest that the catalytic acid is more important in the reaction of AfKDNase and that catalysis is less dependent on nucleophilic or electrostatic stabilization of the developing positive charge at the transition state for hydrolysis. Removal of the catalytic nucleophile (Y358H) significantly lowered the activity of the enzyme, but this mutant remained a retaining glycosidase as demonstrated by nuclear magnetic resonance spectroscopic analysis. This is a novel finding that has not been shown with other sialidases. Kinetic activity measured at pH 5.2 revealed that R171L had higher activity on a Neu5Ac-based substrate than wild-type KDNase; hence, leucine in place of arginine in the binding pocket improved catalysis toward Neu5Ac substrates. Hence, whether a sialidase is primarily a KDNase or a neuraminidase is due in part to the presence of an amino acid that creates a steric clash with the N-acetyl group.

  4. Hedgehog Pathway Antagonist 5E1 Binds Hedgehog at the Pseudo-active Site

    PubMed Central

    Maun, Henry R.; Wen, Xiaohui; Lingel, Andreas; de Sauvage, Frederic J.; Lazarus, Robert A.; Scales, Suzie J.; Hymowitz, Sarah G.

    2010-01-01

    Proper hedgehog (Hh) signaling is crucial for embryogenesis and tissue regeneration. Dysregulation of this pathway is associated with several types of cancer. The monoclonal antibody 5E1 is a Hh pathway inhibitor that has been extensively used to elucidate vertebrate Hh biology due to its ability to block binding of the three mammalian Hh homologs to the receptor, Patched1 (Ptc1). Here, we engineered a murine:human chimeric 5E1 (ch5E1) with similar Hh-binding properties to the original murine antibody. Using biochemical, biophysical, and x-ray crystallographic studies, we show that, like the regulatory receptors Cdon and Hedgehog-interacting protein (Hhip), ch5E1 binding to Sonic hedgehog (Shh) is enhanced by calcium ions. In the presence of calcium and zinc ions, the ch5E1 binding affinity increases 10–20-fold to tighter than 1 nm primarily because of a decrease in the dissociation rate. The co-crystal structure of Shh bound to the Fab fragment of ch5E1 reveals that 5E1 binds at the pseudo-active site groove of Shh with an epitope that largely overlaps with the binding site of its natural receptor antagonist Hhip. Unlike Hhip, the side chains of 5E1 do not directly coordinate the Zn2+ cation in the pseudo-active site, despite the modest zinc-dependent increase in 5E1 affinity for Shh. Furthermore, to our knowledge, the ch5E1 Fab-Shh complex represents the first structure of an inhibitor antibody bound to a metalloprotease fold. PMID:20504762

  5. Structural analysis of the active site geometry of N5-carboxyaminoimidazole ribonucleotide synthetase from Escherichia coli.

    PubMed

    Thoden, James B; Holden, Hazel M; Firestine, Steven M

    2008-12-16

    N(5)-Carboxyaminoimidazole ribonucleotide synthetase (N(5)-CAIR synthetase) converts 5-aminoimidazole ribonucleotide (AIR), MgATP, and bicarbonate into N(5)-CAIR, MgADP, and P(i). The enzyme is required for de novo purine biosynthesis in microbes yet is not found in humans suggesting that it represents an ideal and unexplored target for antimicrobial drug design. Here we report the X-ray structures of N(5)-CAIR synthetase from Escherichia coli with either MgATP or MgADP/P(i) bound in the active site cleft. These structures, determined to 1.6-A resolution, provide detailed information regarding the active site geometry before and after ATP hydrolysis. In both structures, two magnesium ions are observed. Each of these is octahedrally coordinated, and the carboxylate side chain of Glu238 bridges them. For the structure of the MgADP/P(i) complex, crystals were grown in the presence of AIR and MgATP. No electron density was observed for AIR, and the electron density corresponding to the nucleotide clearly revealed the presence of ADP and P(i) rather than ATP. The bound P(i) shifts by approximately 3 A relative to the gamma-phosphoryl group of ATP and forms electrostatic interactions with the side chains of Arg242 and His244. Since the reaction mechanism of N(5)-CAIR synthetase is believed to proceed via a carboxyphosphate intermediate, we propose that the location of the inorganic phosphate represents the binding site for stabilization of this reactive species. Using the information derived from the two structures reported here, coupled with molecular modeling, we propose a catalytic mechanism for N(5)-CAIR synthetase.

  6. A primary survey on bryophyte species reveals two novel classes of nucleotide-binding site (NBS) genes.

    PubMed

    Xue, Jia-Yu; Wang, Yue; Wu, Ping; Wang, Qiang; Yang, Le-Tian; Pan, Xiao-Han; Wang, Bin; Chen, Jian-Qun

    2012-01-01

    Due to their potential roles in pathogen defense, genes encoding nucleotide-binding site (NBS) domain have been particularly surveyed in many angiosperm genomes. Two typical classes were found: one is the TIR-NBS-LRR (TNL) class and the other is the CC-NBS-LRR (CNL) class. It is seldom known, however, what kind of NBS-encoding genes are mainly present in other plant groups, especially the most ancient groups of land plants, that is, bryophytes. To fill this gap of knowledge, in this study, we mainly focused on two bryophyte species: the moss Physcomitrella patens and the liverwort Marchantia polymorpha, to survey their NBS-encoding genes. Surprisingly, two novel classes of NBS-encoding genes were discovered. The first novel class is identified from the P. patens genome and a typical member of this class has a protein kinase (PK) domain at the N-terminus and a LRR domain at the C-terminus, forming a complete structure of PK-NBS-LRR (PNL), reminiscent of TNL and CNL classes in angiosperms. The second class is found from the liverwort genome and a typical member of this class possesses an α/β-hydrolase domain at the N-terminus and also a LRR domain at the C-terminus (Hydrolase-NBS-LRR, HNL). Analysis on intron positions and phases also confirmed the novelty of HNL and PNL classes, as reflected by their specific intron locations or phase characteristics. Phylogenetic analysis covering all four classes of NBS-encoding genes revealed a closer relationship among the HNL, PNL and TNL classes, suggesting the CNL class having a more divergent status from the others. The presence of specific introns highlights the chimerical structures of HNL, PNL and TNL genes, and implies their possible origin via exon-shuffling during the quick lineage separation processes of early land plants.

  7. Structural mechanism of RuBisCO activation by carbamylation of the active site lysine.

    PubMed

    Stec, Boguslaw

    2012-11-13

    Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is a crucial enzyme in carbon fixation and the most abundant protein on earth. It has been studied extensively by biochemical and structural methods; however, the most essential activation step has not yet been described. Here, we describe the mechanistic details of Lys carbamylation that leads to RuBisCO activation by atmospheric CO(2). We report two crystal structures of nitrosylated RuBisCO from the red algae Galdieria sulphuraria with O(2) and CO(2) bound at the active site. G. sulphuraria RuBisCO is inhibited by cysteine nitrosylation that results in trapping of these gaseous ligands. The structure with CO(2) defines an elusive, preactivation complex that contains a metal cation Mg(2+) surrounded by three H(2)O/OH molecules. Both structures suggest the mechanism for discriminating gaseous ligands by their quadrupole electric moments. We describe conformational changes that allow for intermittent binding of the metal ion required for activation. On the basis of these structures we propose the individual steps of the activation mechanism. Knowledge of all these elements is indispensable for engineering RuBisCO into a more efficient enzyme for crop enhancement or as a remedy to global warming.

  8. ALV-J GP37 molecular analysis reveals novel virus-adapted sites and three tyrosine-based Env species.

    PubMed

    Ye, Jianqiang; Fan, Zhonglei; Shang, Jianjun; Tian, Xiaoyan; Yang, Jialiang; Chen, Hongjun; Shao, Hongxia; Qin, Aijian

    2015-01-01

    Compared to other avian leukosis viruses (ALV), ALV-J primarily induces myeloid leukemia and hemangioma and causes significant economic loss for the poultry industry. The ALV-J Env protein is hypothesized to be related to its unique pathogenesis. However, the molecular determinants of Env for ALV-J pathogenesis are unclear. In this study, we compared and analyzed GP37 of ALV-J Env and the EAV-HP sequence, which has high homology to that of ALV-J Env. Phylogenetic analysis revealed five groups of ALV-J GP37 and two novel ALV-J Envs with endemic GP85 and EAV-HP-like GP37. Furthermore, at least 15 virus-adapted mutations were detected in GP37 compared to the EAV-HP sequence. Further analysis demonstrated that three tyrosine-based motifs (YxxM, ITIM (immune tyrosine-based inhibitory motif) and ITAM-like (immune tyrosine-based active motif like)) associated with immune disease and oncogenesis were found in the cytoplasmic tail of GP37. Based on the potential function and distribution of these motifs in GP37, ALV-J Env was grouped into three species, inhibitory Env, bifunctional Env and active Env. Accordingly, 36.91%, 61.74% and 1.34% of ALV-J Env sequences from GenBank are classified as inhibitory, bifunctional and active Env, respectively. Additionally, the Env of the ALV-J prototype strain, HPRS-103, and 17 of 18 EAV-HP sequences belong to the inhibitory Env. And models for signal transduction of the three ALV-J Env species were predicted. Our findings and models provide novel insights for identifying the roles and molecular mechanism of ALV-J Env in the unique pathogenesis of ALV-J.

  9. Functional properties and active-site topographies of factor X Gla- and prothrombin Gla-domain chimeras of activated protein C.

    PubMed

    Qureshi, Shabir H; Yang, Likui; Manithody, Chandrashekhara; Bae, Jong-Sup; Rezaie, Alireza R

    2008-09-01

    Substitution of the Gla-domain of activated protein C (APC) with the Gla-domain of prothrombin (APC-PTGla) improves the anticoagulant activity of APC independent of protein S. Previous FRET studies showed that this substitution alters the active-site topography of this mutant, rendering it identical to the active site of the APC-protein S complex. In this study, we characterized the functional properties and the active-site topography of another APC chimera containing the Gla-domain of factor X (APC-FXGla). We discovered that the anticoagulant activity of this mutant was similarly improved independent of protein S. The average distance of the closest approach (L) between the donor dye fluorescein attached to the active site of APC derivatives and the acceptor dye octadecylrhodamine incorporated into PC/PS vesicles was determined to be 99 A for APC and 84-86 A for both APC-PTGla and APC-FXGla. Protein S minimally influenced the L values of the APC chimeras, however, it lowered this value to 87 A for wild-type APC. Further studies revealed that neither chimera elicits a protective signaling response in the TNF-alpha-activated endothelial cells. These results suggest that unique structural features within the Gla-domain of APC enable the protease to interact with endothelial protein C receptor in the antiinflammatory pathway, while the same features also cause an inherently lower specific activity for APC in the anticoagulant pathway. This adaptation has made APC a cofactor-dependent protease, requiring the cofactor function of protein S for its optimal anticoagulant function, which appears to involve the alteration of the active-site topography of APC above the membrane surface.

  10. A Global Genomic Screening Strategy Reveals Diverse Activators of Constitutive Activated Receptor (CAR)

    EPA Science Inventory

    A comprehensive survey of conditions that activate CAR in the mouse liver has not been carried out but would be useful in understanding their impact on CAR-dependent liver tumor induction. A gene signature dependent on CAR activation was identified by comparing the transcript pr...

  11. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    SciTech Connect

    Wernimont, Amy K; Artz, Jennifer D.; Jr, Patrick Finerty; Lin, Yu-Hui; Amani, Mehrnaz; Allali-Hassani, Abdellah; Senisterra, Guillermo; Vedadi, Masoud; Tempel, Wolfram; Mackenzie, Farrell; Chau, Irene; Lourido, Sebastian; Sibley, L. David; Hui, Raymond

    2010-09-21

    Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium binding triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate binding site. This large conformational change constitutes a distinct mechanism in calcium signal-transduction pathways.

  12. Silver-Coated Nylon Dressing Plus Active DC Microcurrent for Healing of Autogenous Skin Donor Sites

    DTIC Science & Technology

    2013-08-01

    Silver-Coated Nylon Dressing Plus Active DC Microcurrent for Healing of Autogenous Skin Donor Sites Edward W. Malin, MD, Chaya M. Galin, BSN, RN... microcurrent in comparison to silver-coated dressing with sham microcurrent on wound-closure time for autogenous skin donor sites. Methods: Four...hundred five patients were screened for treatment of their donor sites using a silver-coated nylon dressing with either sham or active microcurrent

  13. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles

    PubMed Central

    2015-01-01

    Mineral dusts originating from Earth’s crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts. Here we investigated in closer detail the reasons for its activity and the difference in the activity of the different feldspars. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. K-feldspar showed by far the highest ice nucleation activity. Finally, we give a potential explanation of this effect, finding alkali-metal ions having different hydration shells and thus an influence on the ice nucleation activity of feldspar surfaces. PMID:25584435

  14. 76 FR 30696 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites AGENCY: Department of... eligible active uranium and thorium processing site licensees for reimbursement under Title X of the Energy... requires DOE to reimburse eligible uranium and thorium licensees for certain costs of...

  15. 76 FR 24871 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites AGENCY: Department of... from eligible active uranium and thorium processing site licensees for reimbursement under Title X of...). Title X requires DOE to reimburse eligible uranium and thorium licensees for certain costs...

  16. Structure of the Catalytic Domain of EZH2 Reveals Conformational Plasticity in Cofactor and Substrate Binding Sites and Explains Oncogenic Mutations

    PubMed Central

    Wu, Hong; Zeng, Hong; Dong, Aiping; Li, Fengling; He, Hao; Senisterra, Guillermo; Seitova, Alma; Duan, Shili; Brown, Peter J.; Vedadi, Masoud; Arrowsmith, Cheryl H.; Schapira, Matthieu

    2013-01-01

    Polycomb repressive complex 2 (PRC2) is an important regulator of cellular differentiation and cell type identity. Overexpression or activating mutations of EZH2, the catalytic component of the PRC2 complex, are linked to hyper-trimethylation of lysine 27 of histone H3 (H3K27me3) in many cancers. Potent EZH2 inhibitors that reduce levels of H3K27me3 kill mutant lymphoma cells and are efficacious in a mouse xenograft model of malignant rhabdoid tumors. Unlike most SET domain methyltransferases, EZH2 requires PRC2 components, SUZ12 and EED, for activity, but the mechanism by which catalysis is promoted in the PRC2 complex is unknown. We solved the 2.0 Å crystal structure of the EZH2 methyltransferase domain revealing that most of the canonical structural features of SET domain methyltransferase structures are conserved. The site of methyl transfer is in a catalytically competent state, and the structure clarifies the structural mechanism underlying oncogenic hyper-trimethylation of H3K27 in tumors harboring mutations at Y641 or A677. On the other hand, the I-SET and post-SET domains occupy atypical positions relative to the core SET domain resulting in incomplete formation of the cofactor binding site and occlusion of the substrate binding groove. A novel CXC domain N-terminal to the SET domain may contribute to the apparent inactive conformation. We propose that protein interactions within the PRC2 complex modulate the trajectory of the post-SET and I-SET domains of EZH2 in favor of a catalytically competent conformation. PMID:24367611

  17. Alanine-Scanning Mutational Analysis of Durancin GL Reveals Residues Important for Its Antimicrobial Activity.

    PubMed

    Ju, Xingrong; Chen, Xinquan; Du, Lihui; Wu, Xueyou; Liu, Fang; Yuan, Jian

    2015-07-22

    Durancin GL is a novel class IIa bacteriocin with 43 residues produced by Enterococcus durans 41D. This bacteriocin demonstrates narrow inhibition spectrum and potent antimicrobial activity against several Listeria monocytogenes strains, including nisin-resistant L. monocytogenes NR30. A systematic alanine-scanning mutational analysis with site-directed mutagenesis was performed to analyze durancin GL residues important for antimicrobial activity and specificity. Results showed that three mutations lost their antimicrobial activity, ten mutations demonstrated a decreased effect on the activity, and seven mutations exhibited relatively high activity. With regard to inhibitory spectrum, four mutants demonstrated a narrower antimicrobial spectrum than wild-type durancin GL. Another four mutants displayed a broader target cell spectrum and increased potency relative to wild-type durancin GL. These findings broaden our understanding of durancin GL residues important for its antimicrobial activity and contribute to future rational design of variants with increased potency.

  18. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex

    PubMed Central

    Žáková, Lenka; Kletvíková, Emília; Lepšík, Martin; Collinsová, Michaela; Watson, Christopher J.; Turkenburg, Johan P.; Jiráček, Jiří; Brzozowski, Andrzej M.

    2014-01-01

    The structural characterization of the insulin–insulin receptor (IR) interaction still lacks the conformation of the crucial B21–B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that in all known structures of the native hormone. It also matches the receptor interface, avoiding substantial steric clashes. This indicates that insulin may attain a B26-turn-like conformation upon IR binding. Moreover, there is an unexpected, but significant, binding specificity of the AsnB26 mutant for predominantly the metabolic B isoform of the receptor. As it is correlated with the B26 bend of the B-chain of the hormone, the structures of AsnB26 analogues may provide the first structural insight into the structural origins of differential insulin signalling through insulin receptor A and B isoforms. PMID:25286859

  19. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex

    SciTech Connect

    Žáková, Lenka; Kletvíková, Emília; Lepšík, Martin; Collinsová, Michaela; Watson, Christopher J.; Turkenburg, Johan P.; Jiráček, Jiří; Brzozowski, Andrzej M.

    2014-10-01

    [AsnB26]- and [GlyB26]-insulin mutants attain a B26-turn like fold without assistance of chemical modifications. Their structures match the insulin receptor interface and expand the spectrum of insulin conformations. The structural characterization of the insulin–insulin receptor (IR) interaction still lacks the conformation of the crucial B21–B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that in all known structures of the native hormone. It also matches the receptor interface, avoiding substantial steric clashes. This indicates that insulin may attain a B26-turn-like conformation upon IR binding. Moreover, there is an unexpected, but significant, binding specificity of the AsnB26 mutant for predominantly the metabolic B isoform of the receptor. As it is correlated with the B26 bend of the B-chain of the hormone, the structures of AsnB26 analogues may provide the first structural insight into the structural origins of differential insulin signalling through insulin receptor A and B isoforms.

  20. A model of the rabies virus glycoprotein active site.

    PubMed

    Rustici, M; Bracci, L; Lozzi, L; Neri, P; Santucci, A; Soldani, P; Spreafico, A; Niccolai, N

    1993-06-01

    The glycoprotein from the neurotropic rabies virus shows a significant homology with the alpha neurotoxin that binds to the nicotinic acetylcholine receptor. The crystal structure of the alpha neurotoxins suggests that the Arg 37 guanidinium group and the Asp 31 side-chain carboxylate of the erabutoxin have stereochemical features resembling those of acetylcholine. Conformational studies on the Asn194-Ser195-Arg196-Gly197 tetrapeptide, an essential part of the binding site of the rabies virus glycoprotein, indicate that the side chains of Asn and Arg could also mimic the acetylcholine structure. This observation is consistent with the recently proposed mechanism of the viral infection.

  1. Active Site Hydrophobicity and the Convergent Evolution of Paraoxonase Activity in Structurally Divergent Enzymes: The Case of Serum Paraoxonase 1

    PubMed Central

    2016-01-01

    Serum paraoxonase 1 (PON1) is a native lactonase capable of promiscuously hydrolyzing a broad range of substrates, including organophosphates, esters, and carbonates. Structurally, PON1 is a six-bladed β-propeller with a flexible loop (residues 70–81) covering the active site. This loop contains a functionally critical Tyr at position 71. We have performed detailed experimental and computational analyses of the role of selected Y71 variants in the active site stability and catalytic activity in order to probe the role of Y71 in PON1’s lactonase and organophosphatase activities. We demonstrate that the impact of Y71 substitutions on PON1’s lactonase activity is minimal, whereas the kcat for the paraoxonase activity is negatively perturbed by up to 100-fold, suggesting greater mutational robustness of the native activity. Additionally, while these substitutions modulate PON1’s active site shape, volume, and loop flexibility, their largest effect is in altering the solvent accessibility of the active site by expanding the active site volume, allowing additional water molecules to enter. This effect is markedly more pronounced in the organophosphatase activity than the lactonase activity. Finally, a detailed comparison of PON1 to other organophosphatases demonstrates that either a similar “gating loop” or a highly buried solvent-excluding active site is a common feature of these enzymes. We therefore posit that modulating the active site hydrophobicity is a key element in facilitating the evolution of organophosphatase activity. This provides a concrete feature that can be utilized in the rational design of next-generation organophosphate hydrolases that are capable of selecting a specific reaction from a pool of viable substrates. PMID:28026940

  2. Inactivation during denaturation of ribonuclease A by guanidinium chloride is accompanied by unfolding at the active site.

    PubMed Central

    Yang, H J; Tsou, C L

    1995-01-01

    Inactivation of pancreatic RNAase A occurs in guanidinium chloride (GdmCl) at low concentrations before the unfolding of the molecule as a whole can be detected [Liu and Tsou (1987) Biochim. Biophys. Acta 916, 455-464]. We have now shown that the rate of digestion of the RNAase molecule by either trypsin or proteinase K increases significantly at low concentrations of GdmCl where the enzyme is largely inactivated, but fluorescence and absorption measurements reveal no conformational changes. N-Terminal sequence analysis of the peptide fragments generated shows that proteolysis occurs primarily at or near the active site. The decrease in activity of RNAase at low concentrations of GdmCl is therefore due to partial unfolding of the molecule, particularly at the active site and not to an inhibition by the denaturant. Images Figure 4 PMID:7832749

  3. Proteome-wide analysis of nonsynonymous single-nucleotide variations in active sites of human proteins.

    PubMed

    Dingerdissen, Hayley; Motwani, Mona; Karagiannis, Konstantinos; Simonyan, Vahan; Mazumder, Raja

    2013-03-01

    An enzyme's active site is essential to normal protein activity such that any disruptions at this site may lead to dysfunction and disease. Nonsynonymous single-nucleotide variations (nsSNVs), which alter the amino acid sequence, are one type of disruption that can alter the active site. When this occurs, it is assumed that enzyme activity will vary because of the criticality of the site to normal protein function. We integrate nsSNV data and active site annotations from curated resources to identify all active-site-impacting nsSNVs in the human genome and search for all pathways observed to be associated with this data set to assess the likely consequences. We find that there are 934 unique nsSNVs that occur at the active sites of 559 proteins. Analysis of the nsSNV data shows an over-representation of arginine and an under-representation of cysteine, phenylalanine and tyrosine when comparing the list of nsSNV-impacted active site residues with the list of all possible proteomic active site residues, implying a potential bias for or against variation of these residues at the active site. Clustering analysis shows an abundance of hydrolases and transferases. Pathway and functional analysis shows several pathways over- or under-represented in the data set, with the most significantly affected pathways involved in carbohydrate metabolism. We provide a table of 32 variation-substrate/product pairs that can be used in targeted metabolomics experiments to assay the effects of specific variations. In addition, we report the significant prevalence of aspartic acid to histidine variation in eight proteins associated with nine diseases including glycogen storage diseases, lacrimo-auriculo-dento-digital syndrome, Parkinson's disease and several cancers.

  4. Structure of the Bifunctional Acyltransferase/Decarboxylase LnmK from the Leinamycin Biosynthetic Pathway Revealing Novel Activity for a Double-Hot-Dog Fold

    SciTech Connect

    Lohman, Jeremy R.; Bingman, Craig A.; George N. Phillips Jr.; Shen, Ben

    2013-01-15

    The β-branched C3 unit in leinamycin biosynthesis is installed by a set of four proteins, LnmFKLM. In vitro biochemical investigation confirmed that LnmK is a bifunctional acyltransferase/decarboxylase (AT/DC) that catalyzes first self-acylation using methylmalonyl-CoA as a substrate and subsequently transacylation of the methylmalonyl group to the phosphopantetheinyl group of the LnmL acyl carrier protein [Liu, T., Huang, Y., and Shen, B. (2009) J. Am. Chem. Soc. 131, 6900–6901]. LnmK shows no sequence homology to proteins of known function, representing a new family of AT/DC enzymes. Here we report the X-ray structure of LnmK. LnmK is homodimer with each of the monomers adopting a double-hot-dog fold. Cocrystallization of LnmK with methylmalonyl-CoA revealed an active site tunnel terminated by residues from the dimer interface. But, to canonical AT and ketosynthase enzymes that employ Ser or Cys as an active site residue, none of these residues are found in the vicinity of the LnmK active site. Instead, three tyrosines were identified, one of which, Tyr62, was established, by site-directed mutagenesis, to be the most likely active site residue for the AT activity of LnmK. Moreover, LnmK represents the first AT enzyme that employs a Tyr as an active site residue and the first member of the family of double-hot-dog fold enzymes that displays an AT activity known to date. The LnmK structure sets the stage for probing of the DC activity of LnmK through site-directed mutagenesis. These findings highlight natural product biosynthetic machinery as a rich source of novel enzyme activities, mechanisms, and structures.

  5. Microbial community changes along the active seepage site of one cold seep in the Red Sea

    PubMed Central

    Cao, Huiluo; Zhang, Weipeng; Wang, Yong; Qian, Pei-Yuan

    2015-01-01

    The active seepage of the marine cold seeps could be a critical process for the exchange of energy between the submerged geosphere and the sea floor environment through organic-rich fluids, potentially even affecting surrounding microbial habitats. However, few studies have investigated the associated microbial community changes. In the present study, 16S rRNA genes were pyrosequenced to decipher changes in the microbial communities from the Thuwal seepage point in the Red Sea to nearby marine sediments in the brine pool, normal marine sediments and water, and benthic microbial mats. An unexpected number of reads from unclassified groups were detected in these habitats; however, the ecological functions of these groups remain unresolved. Furthermore, ammonia-oxidizing archaeal community structures were investigated using the ammonia monooxygenase subunit A (amoA) gene. Analysis of amoA showed that planktonic marine habitats, including seeps and marine water, hosted archaeal ammonia oxidizers that differed from those in microbial mats and marine sediments, suggesting modifications of the ammonia oxidizing archaeal (AOA) communities along the environmental gradient from active seepage sites to peripheral areas. Changes in the microbial community structure of AOA in different habitats (water vs. sediment) potentially correlated with changes in salinity and oxygen concentrations. Overall, the present results revealed for the first time unanticipated novel microbial groups and changes in the ammonia-oxidizing archaea in response to environmental gradients near the active seepages of a cold seep. PMID:26284035

  6. In situ probing of the active site geometry of ultrathin nanowires for the oxygen reduction reaction

    SciTech Connect

    Liu, Haiqing; Wong, Stanislaus S.; An, Wei; Li, Yuanyuan; Frenkel, Anatoly I.; Sasaki, Kotaro; Koenigsmann, Christopher; Su, Dong; Anderson, Rachel M.; Crooks, Richard M.; Adzic, Radoslav R.; Liu, Ping

    2015-09-24

    To create truly effective electrocatalysts for the cathodic reaction governing proton exchange membrane fuel cells (PEMFC), namely the oxygen reduction reaction (ORR), necessitates an accurate and detailed structural understanding of these electrocatalysts, especially at the nanoscale, and to precisely correlate that structure with demonstrable performance enhancement. To address this key issue, we have combined and interwoven theoretical calculations with experimental, spectroscopic observations in order to acquire useful structural insights into the active site geometry with implications for designing optimized nanoscale electrocatalysts with rationally predicted properties. Specifically, we have probed ultrathin (~2 nm) core–shell Pt~Pd9Au nanowires, which have been previously shown to be excellent candidates for ORR in terms of both activity and long-term stability, from the complementary perspectives of both DFT calculations and X-ray absorption spectroscopy (XAS). The combination and correlation of data from both experimental and theoretical studies has revealed for the first time that the catalytically active structure of our ternary nanowires can actually be ascribed to a PtAu~Pd configuration, comprising a PtAu binary shell and a pure inner Pd core. Moreover, we have plausibly attributed the resulting structure to a specific synthesis step, namely the Cu underpotential deposition (UPD) followed by galvanic replacement with Pt. Thus, the fundamental insights gained into the performance of our ultrathin nanowires from our demonstrated approach will likely guide future directed efforts aimed at broadly improving upon the durability and stability of nanoscale electrocatalysts in general.

  7. Hydrogen production by the naked active site of the di-iron hydrogenases in water.

    PubMed

    Zipoli, Federico; Car, Roberto; Cohen, Morrel H; Selloni, Annabella

    2009-10-01

    We explored the reactivity of the active center of the [FeFe]-hydrogenases detached from the enzyme and immersed in acidified water by first-principles Car-Parrinello molecular-dynamics simulations. We focused on the identification of the structures that are stable and metastable in acidified water and on their activity for hydrogen production. Our calculations revealed that the naked active center could be an efficient catalyst provided that electrons are transferred to the cluster. We found that both bridging and terminal isomers are present at equilibrium and that the bridging configuration is essential for efficient hydrogen production. The formation of the hydrogen molecule occurs via sequential protonations of the distal iron and of the N-atom of the S-CH(2)-NH-CH(2)-S chelating group. H(2) desorption does not involve a significant energy barrier, making the process very efficient at room temperature. We established that the bottleneck in the reaction is the direct proton transfer from water to the vacant site of the distal iron. Moreover, we found that even if the terminal isomer is present at the equilibrium, its strong local hydrophobicity prevents poisoning of the cluster.

  8. In Situ Probing of the Active Site Geometry of Ultrathin Nanowires for the Oxygen Reduction Reaction.

    PubMed

    Liu, Haiqing; An, Wei; Li, Yuanyuan; Frenkel, Anatoly I; Sasaki, Kotaro; Koenigsmann, Christopher; Su, Dong; Anderson, Rachel M; Crooks, Richard M; Adzic, Radoslav R; Liu, Ping; Wong, Stanislaus S

    2015-10-07

    To create truly effective electrocatalysts for the cathodic reaction governing proton exchange membrane fuel cells (PEMFC), namely the oxygen reduction reaction (ORR), necessitates an accurate and detailed structural understanding of these electrocatalysts, especially at the nanoscale, and to precisely correlate that structure with demonstrable performance enhancement. To address this key issue, we have combined and interwoven theoretical calculations with experimental, spectroscopic observations in order to acquire useful structural insights into the active site geometry with implications for designing optimized nanoscale electrocatalysts with rationally predicted properties. Specifically, we have probed ultrathin (∼2 nm) core-shell Pt∼Pd9Au nanowires, which have been previously shown to be excellent candidates for ORR in terms of both activity and long-term stability, from the complementary perspectives of both DFT calculations and X-ray absorption spectroscopy (XAS). The combination and correlation of data from both experimental and theoretical studies has revealed for the first time that the catalytically active structure of our ternary nanowires can actually be ascribed to a PtAu∼Pd configuration, comprising a PtAu binary shell and a pure inner Pd core. Moreover, we have plausibly attributed the resulting structure to a specific synthesis step, namely the Cu underpotential deposition (UPD) followed by galvanic replacement with Pt. Hence, the fundamental insights gained into the performance of our ultrathin nanowires from our demonstrated approach will likely guide future directed efforts aimed at broadly improving upon the durability and stability of nanoscale electrocatalysts in general.

  9. Microbial community changes along the active seepage site of one cold seep in the Red Sea.

    PubMed

    Cao, Huiluo; Zhang, Weipeng; Wang, Yong; Qian, Pei-Yuan

    2015-01-01

    The active seepage of the marine cold seeps could be a critical process for the exchange of energy between the submerged geosphere and the sea floor environment through organic-rich fluids, potentially even affecting surrounding microbial habitats. However, few studies have investigated the associated microbial community changes. In the present study, 16S rRNA genes were pyrosequenced to decipher changes in the microbial communities from the Thuwal seepage point in the Red Sea to nearby marine sediments in the brine pool, normal marine sediments and water, and benthic microbial mats. An unexpected number of reads from unclassified groups were detected in these habitats; however, the ecological functions of these groups remain unresolved. Furthermore, ammonia-oxidizing archaeal community structures were investigated using the ammonia monooxygenase subunit A (amoA) gene. Analysis of amoA showed that planktonic marine habitats, including seeps and marine water, hosted archaeal ammonia oxidizers that differed from those in microbial mats and marine sediments, suggesting modifications of the ammonia oxidizing archaeal (AOA) communities along the environmental gradient from active seepage sites to peripheral areas. Changes in the microbial community structure of AOA in different habitats (water vs. sediment) potentially correlated with changes in salinity and oxygen concentrations. Overall, the present results revealed for the first time unanticipated novel microbial groups and changes in the ammonia-oxidizing archaea in response to environmental gradients near the active seepages of a cold seep.

  10. In situ probing of the active site geometry of ultrathin nanowires for the oxygen reduction reaction

    DOE PAGES

    Liu, Haiqing; Wong, Stanislaus S.; An, Wei; ...

    2015-09-24

    To create truly effective electrocatalysts for the cathodic reaction governing proton exchange membrane fuel cells (PEMFC), namely the oxygen reduction reaction (ORR), necessitates an accurate and detailed structural understanding of these electrocatalysts, especially at the nanoscale, and to precisely correlate that structure with demonstrable performance enhancement. To address this key issue, we have combined and interwoven theoretical calculations with experimental, spectroscopic observations in order to acquire useful structural insights into the active site geometry with implications for designing optimized nanoscale electrocatalysts with rationally predicted properties. Specifically, we have probed ultrathin (~2 nm) core–shell Pt~Pd9Au nanowires, which have been previously shownmore » to be excellent candidates for ORR in terms of both activity and long-term stability, from the complementary perspectives of both DFT calculations and X-ray absorption spectroscopy (XAS). The combination and correlation of data from both experimental and theoretical studies has revealed for the first time that the catalytically active structure of our ternary nanowires can actually be ascribed to a PtAu~Pd configuration, comprising a PtAu binary shell and a pure inner Pd core. Moreover, we have plausibly attributed the resulting structure to a specific synthesis step, namely the Cu underpotential deposition (UPD) followed by galvanic replacement with Pt. Thus, the fundamental insights gained into the performance of our ultrathin nanowires from our demonstrated approach will likely guide future directed efforts aimed at broadly improving upon the durability and stability of nanoscale electrocatalysts in general.« less

  11. Active site conformational changes of prostasin provide a new mechanism of protease regulation by divalent cations

    SciTech Connect

    Spraggon, Glen; Hornsby, Michael; Shipway, Aaron; Tully, David C.; Bursulaya, Badry; Danahay, Henry; Harris, Jennifer L.; Lesley, Scott A.

    2010-01-12

    Prostasin or human channel-activating protease 1 has been reported to play a critical role in the regulation of extracellular sodium ion transport via its activation of the epithelial cell sodium channel. Here, the structure of the extracellular portion of the membrane associated serine protease has been solved to high resolution in complex with a nonselective d-FFR chloromethyl ketone inhibitor, in an apo form, in a form where the apo crystal has been soaked with the covalent inhibitor camostat and in complex with the protein inhibitor aprotinin. It was also crystallized in the presence of the divalent cation Ca{sup +2}. Comparison of the structures with each other and with other members of the trypsin-like serine protease family reveals unique structural features of prostasin and a large degree of conformational variation within specificity determining loops. Of particular interest is the S1 subsite loop which opens and closes in response to basic residues or divalent ions, directly binding Ca{sup +2} cations. This induced fit active site provides a new possible mode of regulation of trypsin-like proteases adapted in particular to extracellular regions with variable ionic concentrations such as the outer membrane layer of the epithelial cell.

  12. Direct Visualization of Catalytically Active Sites at the FeO-Pt(111) Interface

    SciTech Connect

    Kudernatsch, Wilhelmine; Peng, Guowen; Zeuthen, Helene; Bai, Yunhai; Merte, L. R.; Lammich, Lutz; Besenbacher, Fleming; Mavrikakis, Manos; Wendt, Stefen

    2015-08-25

    Within the area of surface science, one of the “holy grails” is to directly visualize a chemical reaction at the atomic scale. Whereas this goal has been reached by high-resolution scanning tunneling microscopy (STM) in a number of cases for reactions occurring at flat surfaces, such a direct view is often inhibited for reaction occurring at steps and interfaces. Here we have studied the CO oxidation reaction at the interface between ultrathin FeO islands and a Pt(111) support by in situ STM and density functional theory (DFT) calculations. Time-lapsed STM imaging on this inverse model catalyst in O2 and CO environments revealed catalytic activity occurring at the FeO-Pt(111) interface and directly showed that the Fe-edges host the catalytically most active sites for the CO oxidation reaction. This is an important result since previous evidence for the catalytic activity of the FeO-Pt(111) interface is essentially based on averaging techniques in conjunction with DFT calculations. The presented STM results are in accord with DFTþU calculations, in which we compare possible CO oxidation pathways on oxidized Fe-edges and O-edges. We found that the CO oxidation reaction is more favorable on the oxidized Fe-edges, both thermodynamically and kinetically.

  13. Energy Landscape Topography Reveals the Underlying Link Between Binding Specificity and Activity of Enzymes.

    PubMed

    Chu, Wen-Ting; Wang, Jin

    2016-06-14

    Enzyme activity (often quantified by kcat/Km) is the main function of enzyme when it is active against the specific substrate. Higher or lower activities are highly desired for the design of novel enzyme and drug resistance. However, it is difficult to measure the activities of all possible variants and find the "hot-spot" within the limit of experimental time. In this study, we explore the underlying energy landscape of enzyme-substrate interactions and introduce the intrinsic specificity ratio (ISR), which reflects the landscape topography. By studying two concrete systems, we uncover the statistical correlation between the intrinsic specificity and the enzyme activity kcat/Km. This physics-based concept and method show that the energy landscape topography is valuable for understanding the relationship between enzyme specificity and activity. In addition, it can reveal the underlying mechanism of enzyme-substrate actions and has potential applications on enzyme design.

  14. Energy Landscape Topography Reveals the Underlying Link Between Binding Specificity and Activity of Enzymes

    NASA Astrophysics Data System (ADS)

    Chu, Wen-Ting; Wang, Jin

    2016-06-01

    Enzyme activity (often quantified by kcat/Km) is the main function of enzyme when it is active against the specific substrate. Higher or lower activities are highly desired for the design of novel enzyme and drug resistance. However, it is difficult to measure the activities of all possible variants and find the “hot-spot” within the limit of experimental time. In this study, we explore the underlying energy landscape of enzyme-substrate interactions and introduce the intrinsic specificity ratio (ISR), which reflects the landscape topography. By studying two concrete systems, we uncover the statistical correlation between the intrinsic specificity and the enzyme activity kcat/Km. This physics-based concept and method show that the energy landscape topography is valuable for understanding the relationship between enzyme specificity and activity. In addition, it can reveal the underlying mechanism of enzyme-substrate actions and has potential applications on enzyme design.

  15. Energy Landscape Topography Reveals the Underlying Link Between Binding Specificity and Activity of Enzymes

    PubMed Central

    Chu, Wen-Ting; Wang, Jin

    2016-01-01

    Enzyme activity (often quantified by kcat/Km) is the main function of enzyme when it is active against the specific substrate. Higher or lower activities are highly desired for the design of novel enzyme and drug resistance. However, it is difficult to measure the activities of all possible variants and find the “hot-spot” within the limit of experimental time. In this study, we explore the underlying energy landscape of enzyme-substrate interactions and introduce the intrinsic specificity ratio (ISR), which reflects the landscape topography. By studying two concrete systems, we uncover the statistical correlation between the intrinsic specificity and the enzyme activity kcat/Km. This physics-based concept and method show that the energy landscape topography is valuable for understanding the relationship between enzyme specificity and activity. In addition, it can reveal the underlying mechanism of enzyme-substrate actions and has potential applications on enzyme design. PMID:27298067

  16. Assessment of activation products in the Savannah River Site environment

    SciTech Connect

    Carlton, W.H.; Denham, M.

    1996-07-01

    This document assesses the impact of radioactive activation products released from SRS facilities since the first reactor became operational late in 1953. The isotopes reported here are those whose release resulted in the highest dose to people living near SRS: {sup 32}P, {sup 51}Cr, {sup 60}C, and {sup 65}Zn. Release pathways, emission control features, and annual releases to the aqueous and atmospheric environments are discussed. No single incident has resulted in a major acute release of activation products to the environment. The releases were the result of normal operations of the reactors and separations facilities. Releases declined over the years as better controls were established and production was reduced. The overall radiological impact of SRS activation product atmospheric releases from 1954 through 1994 on the offsite maximally exposed individual can be characterized by a total dose of 0.76 mrem. During the same period, such an individual received a total dose of 14,400 mrem from non-SRS sources of ionizing radiation present in the environment. SRS activation product aqueous releases between 1954 and 1994 resulted in a total dose of 54 mrem to the offsite maximally exposed individual. The impact of SRS activation product releases on offsite populations also has been evaluated.

  17. All the catalytic active sites of MoS2 for hydrogen evolution

    DOE PAGES

    Li, Guoqing; Zhang, Du; Qiao, Qiao; ...

    2016-11-29

    MoS2 presents a promising low-cost catalyst for the hydrogen evolution reaction (HER), but the understanding about its active sites has remained limited. Here we present an unambiguous study of the catalytic activities of all possible reaction sites of MoS2, including edge sites, sulfur vacancies, and grain boundaries. We demonstrate that, in addition to the well-known catalytically active edge sites, sulfur vacancies provide another major active site for the HER, while the catalytic activity of grain boundaries is much weaker. Here, the intrinsic turnover frequencies (Tafel slopes) of the edge sites, sulfur vacancies, and grain boundaries are estimated to be 7.5more » s–1 (65–75 mV/dec), 3.2 s–1 (65–85 mV/dec), and 0.1 s–1 (120–160 mV/dec), respectively. We also demonstrate that the catalytic activity of sulfur vacancies strongly depends on the density of the vacancies and the local crystalline structure in proximity to the vacancies. Unlike edge sites, whose catalytic activity linearly depends on the length, sulfur vacancies show optimal catalytic activities when the vacancy density is in the range of 7–10%, and the number of sulfur vacancies in high crystalline quality MoS2 is higher than that in low crystalline quality MoS2, which may be related with the proximity of different local crystalline structures to the vacancies.« less

  18. An insight into synthetic Schiff bases revealing antiproliferative activities in vitro.

    PubMed

    Sztanke, Krzysztof; Maziarka, Agata; Osinka, Anna; Sztanke, Małgorzata

    2013-07-01

    Schiff bases or azomethines are among the most important groups of biomolecules. These compounds have been found to reveal both remarkable biological activities and a variety of valuable practical applications. An interest in the exploration of novel series of synthetic Schiff bases has undoubtedly been growing due to their proven utility as attractive lead structures for the design of novel cytotoxic and cytostatic agents with a mechanism of action that sometimes differs from that of clinically authorized anticancer agents. Therefore, in the present paper we have focussed our attention on the collected synthetic simple Schiff bases of aldimine- and ketimine-types revealing anticancer activities in vitro, that have been described in the scientific literature during the last decade, and on structural variations whose affect the antiproliferative activity in sets of the designed molecules.

  19. Structure of Escherichia coli tyrosine Kinase Etk Reveals a Novel Activation Mechanism

    SciTech Connect

    Lee,D.; Zheng, J.; She, Y.; Jia, Z.

    2008-01-01

    While protein tyrosine (Tyr) kinases (PTKs) have been extensively characterized in eukaryotes, far less is known about their emerging counterparts in prokaryotes. The inner-membrane Wzc/Etk protein belongs to the bacterial PTK family, which has an important function in regulating the polymerization and transport of virulence-determining capsular polysaccharide (CPS). The kinase uses a unique two-step activation process involving intra-phosphorylation of a Tyr residue, although the molecular mechanism remains unknown. Herein, we report the first crystal structure of a bacterial PTK, the C-terminal kinase domain of Escherichia coli Tyr kinase (Etk) at 2.5-Angstroms resolution. The fold of the Etk kinase domain differs markedly from that of eukaryotic PTKs. Based on the observed structure and supporting mass spectrometric evidence of Etk, a unique activation mechanism is proposed that involves the phosphorylated Tyr residue, Y574, at the active site and its specific interaction with a previously unidentified key Arg residue, R614, to unblock the active site. Both in vitro kinase activity and in vivo antibiotics resistance studies using structure-guided mutants further support the novel activation mechanism.

  20. Analysis of eukaryotic topoisomerase II cleavage sites in the presence of the quinolone CP-115,953 reveals drug-dependent and -independent recognition elements.

    PubMed

    Spitzner, J R; Chung, I K; Gootz, T D; McGuirk, P R; Muller, M T

    1995-08-01

    The quinolone derivative CP-115,953 [6,8-difluoro-7-(4-hydroxyphenyl)-1-cyclopropyl-4-quinolone-3-carboxylic acid] has been shown to induce eukaryotic topoisomerase II-mediated breaks in DNA, producing cleavage patterns that are distinct from those induced by the anticancer drugs amsacrine, etoposide, and teniposide. High levels of the quinolone have been found to inhibit topoisomerase II activity via an interaction with the enzyme and not by DNA unwinding. Topoisomerase II cleavage sites were analyzed on nine DNA fragments, and 85 quinolone-induced sites were sequenced, as well as 86 amsacrine and 134 teniposide sites. A consensus sequence was derived for the quinolone sites that is different from those reported for other drugs; however, because topoisomerase II cleavage sites are double-stranded but not palindromic, different consensus sequences are not easily compared. For this reason, a new, double-stranded, consensus sequence method, the "unique-base analysis," was developed; this was applied to the quinolone sites as well as six other large sets of topoisomerase II sites determined in the absence or presence of drugs. For each of the seven sets of sites, conserved bases were found in the 16-base region spanning positions -6 to +10, relative to the enzyme cleavage site (DNA breakage between -1 and +1). The conserved bases were virtually identical in the regions flanking the cleavage site for all seven data sets. In contrast, the base preferences identified proximal to the cleavage sites were unique to the drug tested. These observations suggest that the selection of cleavage sites by topoisomerase II involves both enzyme-dependent and drug-dependent recognition elements. The single most preferred base in the quinolone sites was a cytosine at -1; the same preference was found with teniposide, and 60 of the 85 quinolone sites co-localized with teniposide sites.

  1. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts

    PubMed Central

    Sahraie, Nastaran Ranjbar; Kramm, Ulrike I.; Steinberg, Julian; Zhang, Yuanjian; Thomas, Arne; Reier, Tobias; Paraknowitsch, Jens-Peter; Strasser, Peter

    2015-01-01

    Carbon materials doped with transition metal and nitrogen are highly active, non-precious metal catalysts for the electrochemical conversion of molecular oxygen in fuel cells, metal air batteries, and electrolytic processes. However, accurate measurement of their intrinsic turn-over frequency and active-site density based on metal centres in bulk and surface has remained difficult to date, which has hampered a more rational catalyst design. Here we report a successful quantification of bulk and surface-based active-site density and associated turn-over frequency values of mono- and bimetallic Fe/N-doped carbons using a combination of chemisorption, desorption and 57Fe Mössbauer spectroscopy techniques. Our general approach yields an experimental descriptor for the intrinsic activity and the active-site utilization, aiding in the catalyst development process and enabling a previously unachieved level of understanding of reactivity trends owing to a deconvolution of site density and intrinsic activity. PMID:26486465

  2. Incorporating in situ habitat patchiness in site selection models reveals that site fidelity is not always a consequence of animal choice.

    PubMed

    Martinez, Aline S; Queiroz, Eduardo V; Bryson, Mitch; Byrne, Maria; Coleman, Ross A

    2017-03-25

    1.Understanding site fidelity is important in animal ecology, but evidence is lacking that this behaviour is due to an animal choosing a specific location. To discern site selection behaviour it is necessary to consider the spatial distribution of habitats that animals can occupy within a landscape. Tracking animals and defining clear habitat boundaries, however, is often difficult. 2.We use in situ habitat distribution data and animal movement simulations to investigate behavioural choice in site fidelity patterns. We resolved the difficulty of gathering data by working with intertidal rock pool systems, which are of manageable size and where boundaries are easy to define. Movements of the intertidal starfish Parvulastra exigua were quantified to test the hypotheses that (1) this species displays fidelity to a particular rock pool and that (2) rock pool fidelity is due to site selection behaviour. Observed patterns of individuals (n=10 starfish) returning to a previously occupied rock pool (n = 5 pools per location) were tested against an expected null distribution generated through simulations of random movements within their natural patchy environment. 3. Starfish exhibited site selection behaviour at only one location even though site fidelity was high (av. 7.4 starfish out of 10 found in test pools) in 2 of the 3 locations. The random chance of a starfish returning to a pool increased 67% for each metre further a rock pool was from the original pool, and 120% for each square metre increase in surface area of an original pool. The decision of returning to an original rock pool was influenced by food availability. When microalgal cover was > 60%, there was a ~ 50% chance of animals staying faithful to that pool. 4. Our results show the importance to consider spatial distribution of habitats in understanding patterns of animal movement associated with animal choices and site fidelity. Returning to a particular place does not necessarily mean that an

  3. Marine Biology Field Trip Sites. Ocean Related Curriculum Activities.

    ERIC Educational Resources Information Center

    Pauls, John

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  4. Nuclear RNA-seq of single neurons reveals molecular signatures of activation.

    PubMed

    Lacar, Benjamin; Linker, Sara B; Jaeger, Baptiste N; Krishnaswami, Suguna; Barron, Jerika; Kelder, Martijn; Parylak, Sarah; Paquola, Apuã; Venepally, Pratap; Novotny, Mark; O'Connor, Carolyn; Fitzpatrick, Conor; Erwin, Jennifer; Hsu, Jonathan Y; Husband, David; McConnell, Michael J; Lasken, Roger; Gage, Fred H

    2016-04-19

    Single-cell sequencing methods have emerged as powerful tools for identification of heterogeneous cell types within defined brain regions. Application of single-cell techniques to study the transcriptome of activated neurons can offer insight into molecular dynamics associated with differential neuronal responses to a given experience. Through evaluation of common whole-cell and single-nuclei RNA-sequencing (snRNA-seq) methods, here we show that snRNA-seq faithfully recapitulates transcriptional patterns associated with experience-driven induction of activity, including immediate early genes (IEGs) such as Fos, Arc and Egr1. SnRNA-seq of mouse dentate granule cells reveals large-scale changes in the activated neuronal transcriptome after brief novel environment exposure, including induction of MAPK pathway genes. In addition, we observe a continuum of activation states, revealing a pseudotemporal pattern of activation from gene expression alone. In summary, snRNA-seq of activated neurons enables the examination of gene expression beyond IEGs, allowing for novel insights into neuronal activation patterns in vivo.

  5. Nuclear RNA-seq of single neurons reveals molecular signatures of activation

    PubMed Central

    Lacar, Benjamin; Linker, Sara B.; Jaeger, Baptiste N.; Krishnaswami, Suguna; Barron, Jerika; Kelder, Martijn; Parylak, Sarah; Paquola, Apuã; Venepally, Pratap; Novotny, Mark; O'Connor, Carolyn; Fitzpatrick, Conor; Erwin, Jennifer; Hsu, Jonathan Y.; Husband, David; McConnell, Michael J.; Lasken, Roger; Gage, Fred H.

    2016-01-01

    Single-cell sequencing methods have emerged as powerful tools for identification of heterogeneous cell types within defined brain regions. Application of single-cell techniques to study the transcriptome of activated neurons can offer insight into molecular dynamics associated with differential neuronal responses to a given experience. Through evaluation of common whole-cell and single-nuclei RNA-sequencing (snRNA-seq) methods, here we show that snRNA-seq faithfully recapitulates transcriptional patterns associated with experience-driven induction of activity, including immediate early genes (IEGs) such as Fos, Arc and Egr1. SnRNA-seq of mouse dentate granule cells reveals large-scale changes in the activated neuronal transcriptome after brief novel environment exposure, including induction of MAPK pathway genes. In addition, we observe a continuum of activation states, revealing a pseudotemporal pattern of activation from gene expression alone. In summary, snRNA-seq of activated neurons enables the examination of gene expression beyond IEGs, allowing for novel insights into neuronal activation patterns in vivo. PMID:27090946

  6. An active site mutation increases the polymerase activity of the guinea pig-lethal Marburg virus.

    PubMed

    Koehler, Alexander; Kolesnikova, Larissa; Becker, Stephan

    2016-10-01

    Marburg virus (MARV) causes severe, often fatal, disease in humans and transient illness in rodents. Sequential passaging of MARV in guinea pigs resulted in selection of a lethal virus containing 4 aa changes. A D184N mutation in VP40 (VP40D184N), which leads to a species-specific gain of viral fitness, and three mutations in the active site of viral RNA-dependent RNA polymerase L, which were investigated in the present study for functional significance in human and guinea pig cells. The transcription/replication activity of L mutants was strongly enhanced by a substitution at position 741 (S741C), and inhibited by other substitutions (D758A and A759D) in both species. The polymerase activity of L carrying the S741C substitution was eightfold higher in guinea pig cells than in human cells upon co-expression with VP40D184N, suggesting that the additive effect of the two mutations provides MARV a replicative advantage in the new host.

  7. Active urea transport by the skin of Bufo viridis: Amiloride- and phloretin-sensitive transport sites

    SciTech Connect

    Rapoport, J.; Abuful, A.; Chaimovitz, C.; Noeh, Z.; Hays, R.M. Albert Einstein College of Medicine, New York, NY )

    1988-09-01

    Urea is actively transported inwardly (J{sub i}) across the skin of the green toad Bufo viridis. J{sub i} is markedly enhanced in toads adapted to hypertonic saline. The authors studied urea transport across the skin of Bufo viridis under a variety of experimental conditions, including treatment with amiloride and phloretin, agents that inhibit urea permeability in the bladder of Bufo marinus. Amiloride (10{sup {minus}4} M) significantly inhibited J{sub i} in both adapted and unadapted animals and was unaffected by removal of sodium from the external medium. Phloretin (10{sup {minus}4} M) significantly inhibited J{sub i} in adapted animals by 23-46%; there was also a reduction in J{sub i} in unadapted toads at 10{sup {minus}4} and 5 {times} 10{sup {minus}4} M phloretin. A dose-response study revealed that the concentration of phloretin causing half-maximal inhibition (K{sub {1/2}}) was 5 {times} 10{sup {minus}4} M for adapted animals. J{sub i} was unaffected by the substitution of sucrose for Ringer solution or by ouabain. They conclude (1) the process of adaptation appears to involve an increase in the number of amiloride- and phloretin-inhibitable urea transport sites in the skin, with a possible increase in the affinity of the sites for phloretin; (2) the adapted skin resembles the Bufo marinus urinary bladder with respect to amiloride and phloretin-inhibitable sites; (3) they confirm earlier observations that J{sub i} is independent of sodium transport.

  8. Encroachment of Human Activity on Sea Turtle Nesting Sites

    NASA Astrophysics Data System (ADS)

    Ziskin, D.; Aubrecht, C.; Elvidge, C.; Tuttle, B.; Baugh, K.; Ghosh, T.

    2008-12-01

    The encroachment of anthropogenic lighting on sea turtle nesting sites poses a serious threat to the survival of these animals [Nicholas, 2001]. This danger is quantified by combining two established data sets. The first is the Nighttime Lights data produced by the NOAA National Geophysical Data Center [Elvidge et al., 1997]. The second is the Marine Turtle Database produced by the World Conservation Monitoring Centre (WCMC). The technique used to quantify the threat of encroachment is an adaptation of the method described in Aubrecht et al. [2008], which analyzes the stress on coral reef systems by proximity to nighttime lights near the shore. Nighttime lights near beaches have both a direct impact on turtle reproductive success since they disorient hatchlings when they mistake land-based lights for the sky-lit surf [Lorne and Salmon, 2007] and the lights are also a proxy for other anthropogenic threats. The identification of turtle nesting sites with high rates of encroachment will hopefully steer conservation efforts to mitigate their effects [Witherington, 1999]. Aubrecht, C, CD Elvidge, T Longcore, C Rich, J Safran, A Strong, M Eakin, KE Baugh, BT Tuttle, AT Howard, EH Erwin, 2008, A global inventory of coral reef stressors based on satellite observed nighttime lights, Geocarto International, London, England: Taylor and Francis. In press. Elvidge, CD, KE Baugh, EA Kihn, HW Kroehl, ER Davis, 1997, Mapping City Lights with Nighttime Data from the DMSP Operational Linescan System, Photogrammatic Engineering and Remote Sensing, 63:6, pp. 727-734. Lorne, JK, M Salmon, 2007, Effects of exposure to artificial lighting on orientation of hatchling sea turtles on the beach and in the ocean, Endangered Species Research, Vol. 3: 23-30. Nicholas, M, 2001, Light Pollution and Marine Turtle Hatchlings: The Straw that Breaks the Camel's Back?, George Wright Forum, 18:4, p77-82. Witherington, BE, 1999, Reducing Threats To Nesting Habitat, Research and Management Techniques for

  9. Molecular Basis for Enzymatic Sulfite Oxidation -- HOW THREE CONSERVED ACTIVE SITE RESIDUES SHAPE ENZYME ACTIVITY

    SciTech Connect

    Bailey, Susan; Rapson, Trevor; Johnson-Winters, Kayunta; Astashkin, Andrei; Enemark, John; Kappler, Ulrike

    2008-11-10

    Sulfite dehydrogenases (SDHs) catalyze the oxidation and detoxification of sulfite to sulfate, a reaction critical to all forms of life. Sulfite-oxidizing enzymes contain three conserved active site amino acids (Arg-55, His-57, and Tyr-236) that are crucial for catalytic competency. Here we have studied the kinetic and structural effects of two novel and one previously reported substitution (R55M, H57A, Y236F) in these residues on SDH catalysis. Both Arg-55 and His-57 were found to have key roles in substrate binding. An R55M substitution increased Km(sulfite)(app) by 2-3 orders of magnitude, whereas His-57 was required for maintaining a high substrate affinity at low pH when the imidazole ring is fully protonated. This effect may be mediated by interactions of His-57 with Arg-55 that stabilize the position of the Arg-55 side chain or, alternatively, may reflect changes in the protonation state of sulfite. Unlike what is seen for SDHWT and SDHY236F, the catalytic turnover rates of SDHR55M and SDHH57A are relatively insensitive to pH (~;;60 and 200 s-1, respectively). On the structural level, striking kinetic effects appeared to correlate with disorder (in SDHH57A and SDHY236F) or absence of Arg-55 (SDHR55M), suggesting that Arg-55 and the hydrogen bonding interactions it engages in are crucial for substrate binding and catalysis. The structure of SDHR55M has sulfate bound at the active site, a fact that coincides with a significant increase in the inhibitory effect of sulfate in SDHR55M. Thus, Arg-55 also appears to be involved in enabling discrimination between the substrate and product in SDH.

  10. Identification of inhibitors against the potential ligandable sites in the active cholera toxin.

    PubMed

    Gangopadhyay, Aditi; Datta, Abhijit

    2015-04-01

    The active cholera toxin responsible for the massive loss of water and ions in cholera patients via its ADP ribosylation activity is a heterodimer of the A1 subunit of the bacterial holotoxin and the human cytosolic ARF6 (ADP Ribosylation Factor 6). The active toxin is a potential target for the design of inhibitors against cholera. In this study we identified the potential ligandable sites of the active cholera toxin which can serve as binding sites for drug-like molecules. By employing an energy-based approach to identify ligand binding sites, and comparison with the results of computational solvent mapping, we identified two potential ligandable sites in the active toxin which can be targeted during structure-based drug design against cholera. Based on the probe affinities of the identified ligandable regions, docking-based virtual screening was employed to identify probable inhibitors against these sites. Several indole-based alkaloids and phosphates showed strong interactions to the important residues of the ligandable region at the A1 active site. On the other hand, 26 top scoring hits were identified against the ligandable region at the A1 ARF6 interface which showed strong hydrogen bonding interactions, including guanidines, phosphates, Leucopterin and Aristolochic acid VIa. This study has important implications in the application of hybrid structure-based and ligand-based methods against the identified ligandable sites using the identified inhibitors as reference ligands, for drug design against the active cholera toxin.

  11. Barium ions selectively activate BK channels via the Ca2+-bowl site.

    PubMed

    Zhou, Yu; Zeng, Xu-Hui; Lingle, Christopher J

    2012-07-10

    Activation of Ca(2+)-dependent BK channels is increased via binding of micromolar Ca(2+) to two distinct high-affinity sites per BK α-subunit. One site, termed the Ca(2+) bowl, is embedded within the second RCK domain (RCK2; regulator of conductance for potassium) of each α-subunit, while oxygen-containing residues in the first RCK domain (RCK1) have been linked to a separate Ca(2+) ligation site. Although both sites are activated by Ca(2+) and Sr(2+), Cd(2+) selectively favors activation via the RCK1 site. Divalent cations of larger ionic radius than Sr(2+) are thought to be ineffective at activating BK channels. Here we show that Ba(2+), better known as a blocker of K(+) channels, activates BK channels and that this effect arises exclusively from binding at the Ca(2+)-bowl site. Compared with previous estimates for Ca(2+) bowl-mediated activation by Ca(2+), the affinity of Ba(2+) to the Ca(2+) bowl is reduced about fivefold, and coupling of binding to activation is reduced from ∼3.6 for Ca(2+) to about ∼2.8 for Ba(2+). These results support the idea that ionic radius is an important determinant of selectivity differences among different divalent cations observed for each Ca(2+)-binding site.

  12. Activation of brown adipose tissue mitochondrial GDP binding sites

    SciTech Connect

    Swick, A.G.

    1987-01-01

    The primary function of brown adipose tissue (BAT) is heat production. This ability is attributed to the existence of a unique inner mitochondrial membrane protein termed the uncoupling protein or thermogenin. This protein is permeable to H+ and thus allows respiration (and therefore thermogenesis) to proceed at a rapid rate, independent of ADP phosphorylation. Proton conductance can be inhibited by the binding of purine nucleotides to the uncoupling protein. The binding of (/sup 3/H)-GDP to BAT mitochondria is frequently used as a measure of BAT thermogenic activity. Rats fed a diet that was low but adequate in protein exhibited a decrease in feed efficiency. In addition, BAT thermogenesis was activated as indicated by an elevation in the level of GDP binding to BAT mitochondria. This phenomena occurred in older rats and persisted over time.

  13. Active VSG expression sites in Trypanosoma brucei are depleted of nucleosomes.

    PubMed

    Stanne, Tara M; Rudenko, Gloria

    2010-01-01

    African trypanosomes regulate transcription differently from other eukaryotes. Most of the trypanosome genome is constitutively transcribed by RNA polymerase II (Pol II) as large polycistronic transcription units while the genes encoding the major surface proteins are transcribed by RNA polymerase I (Pol I). In bloodstream form Trypanosoma brucei, the gene encoding the variant surface glycoprotein (VSG) coat is expressed in a monoallelic fashion from one of about 15 VSG bloodstream form expression sites (BESs). Little is known about the chromatin structure of the trypanosome genome, and the chromatin state of active versus silent VSG BESs remains controversial. Here, we determined histone H3 occupancy within the genome of T. brucei, focusing on active versus silent VSG BESs in the bloodstream form. We found that histone H3 was most enriched in the nontranscribed 50-bp and 177-bp repeats and relatively depleted in Pol I, II, and III transcription units, with particular depletion over promoter regions. Using two isogenic T. brucei lines containing marker genes in different VSG BESs, we determined that histone H3 is 11- to 40-fold depleted from active VSG BESs compared with silent VSG BESs. Quantitative PCR analysis of fractionated micrococcal nuclease-digested chromatin revealed that the active VSG BES is depleted of nucleosomes. Therefore, in contrast to earlier views, nucleosome positioning appears to be involved in the monoalleleic control of VSG BESs in T. brucei. This may provide a level of epigenetic regulation enabling bloodstream form trypanosomes to efficiently pass on the transcriptional state of active and silent BESs to daughter cells.

  14. Structure and Reactivity of the Phosphotriesterase Active Site

    DTIC Science & Technology

    2002-01-01

    characterize different catalytic conformations for chorismate mutase . Preliminary evidence for water binding in phosphotriesterase suggests that activity in...MD/QM study of the chorismate mutase catalyzed Claisen rearrangement reaction. 2001.subm. J.Phys.Chem.B 22.Day, P.N.J., J.H.; Gordon,M.S.; Webb,S.P...Claisen rearrangement of an unusual substrate in chorismate mutase . 2001.subm. J.Phys.Chem.B 38.Stevens, W.J., Basch,H., Krauss,M., Compact effective

  15. Metabolomics reveals a novel vitamin E metabolite and attenuated vitamin E metabolism upon PXR activation.

    PubMed

    Cho, Joo-Youn; Kang, Dong Wook; Ma, Xiaochao; Ahn, Sung-Hoon; Krausz, Kristopher W; Luecke, Hans; Idle, Jeffrey R; Gonzalez, Frank J

    2009-05-01

    Pregnane X receptor (PXR) is an important nuclear receptor xenosensor that regulates the expression of metabolic enzymes and transporters involved in the metabolism of xenobiotics and endobiotics. In this study, ultra-performance liquid chromatography (UPLC) coupled with electrospray time-of-flight mass spectrometry (TOFMS), revealed altered urinary metabolomes in both Pxr-null and wild-type mice treated with the mouse PXR activator pregnenolone 16alpha-carbonitrile (PCN). Multivariate data analysis revealed that PCN significantly attenuated the urinary vitamin E metabolite alpha-carboxyethyl hydroxychroman (CEHC) glucuronide together with a novel metabolite in wild-type but not Pxr-null mice. Deconjugation experiments with beta-glucuronidase and beta-glucosidase suggested that the novel urinary metabolite was gamma-CEHC beta-D-glucoside (Glc). The identity of gamma-CEHC Glc was confirmed by chemical synthesis and by comparing tandem mass fragmentation of the urinary metabolite with the authentic standard. The lower urinary CEHC was likely due to PXR-mediated repression of hepatic sterol carrier protein 2 involved in peroxisomal beta-oxidation of branched-chain fatty acids (BCFA). Using a combination of metabolomic analysis and a genetically modified mouse model, this study revealed that activation of PXR results in attenuated levels of the two vitamin E conjugates, and identification of a novel vitamin E metabolite, gamma-CEHC Glc. Activation of PXR results in attenuated levels of the two vitamin E conjugates that may be useful as biomarkers of PXR activation.

  16. Nature of Catalytic Active Sites Present on the Surface of Advanced Bulk Tantalum Mixed Oxide Photocatalysts

    SciTech Connect

    Phivilay, Somphonh; Puretzky, Alexander A; Domen, Kazunari Domen; Wachs, Israel

    2013-01-01

    The most active photocatalyst system for water splitting under UV irradiation (270 nm) is the promoted 0.2%NiO/NaTaO3:2%La photocatalyst with optimized photonic efficiency (P.E.) of 56%, but fundamental issues about the nature of the surface catalytic active sites and their involvement in the photocatalytic process still need to be clarified. This is the first study to apply cutting edge surface spectroscopic analyses to determine the surface nature of tantalum mixed oxide photocatalysts. Surface analysis with HR-XPS (1-3nm) and HS-LEIS (0.3nm) spectroscopy indicates that the NiO and La2O3 promoters are concentrated in the surface region of the bulk NaTaO3 phase. The La2O3 is concentrated on the NaTaO3 outermost surface layers while NiO is distributed throughout the NaTaO3 surface region (1-3nm). Raman and UV-vis spectroscopy revealed that the bulk molecular and electronic structures, respectively, of NaTaO3 were not modified by the addition of the La2O3 and NiO promoters, with La2O3 resulting in a slightly more ordered structure. Photoluminescence (PL) spectroscopy reveals that the addition of La2O3 and NiO produces a greater number of electron traps resulting in the suppression of the recombination of excited electrons/holes. In contrast to earlier reports, the La2O3 is only a textural promoter (increasing the BET surface area ~7x by stabilizing smaller NaTaO3 particles), but causes a ~3x decrease in the specific photocatalytic TORs ( mol H2/m2/h) rate because surface La2O3 blocks exposed catalytic active NaTaO3 sites. The NiO promoter was found to be a potent electronic promoter that enhances the NaTaO3 surface normalized TORs by a factor of ~10-50 and TOF by a factor of ~10. The level of NiO promotion is the same in the absence and presence of La2O3 demonstrating that there is no promotional synergistic interaction between the NiO and La2O3 promoters. This study demonstrates the important contributions of the photocatalyst surface properties to the fundamental

  17. Spores of most common airborne fungi reveal no ice nucleation activity

    NASA Astrophysics Data System (ADS)

    Pummer, B. G.; Atanasova, L.; Bauer, H.; Bernardi, J.; Druzhinina, I. S.; Grothe, H.

    2013-06-01

    Fungal spores are ubiquitous biological aerosols, which are considered to show ice nucleation (IN) activity. In this study the respective IN activity was tested in oil emulsion in the immersion freezing mode. The focus was laid on species of economical, ecological or sanitary significance. For the first time, not only common moulds, but also edible mushrooms (Basidiomycota, Agaricomycetes) were investigated, as they contribute massively to the total amount of fungal spores in the atmosphere. Only Fusarium avenaceum showed freezing events at low subzero-temperatures, while the other investigated fungal spores showed no significant IN activity. Furthermore, we selected a set of fungal strains from different sites and exposed them to occasional freezing stress during cultivation. Although the total protein expression was altered by this treatment, it had no significant impact on the IN activity.

  18. Activation pathway of Src kinase reveals intermediate states as targets for drug design

    NASA Astrophysics Data System (ADS)

    Shukla, Diwakar; Meng, Yilin; Roux, Benoît; Pande, Vijay S.

    2014-03-01

    Unregulated activation of Src kinases leads to aberrant signalling, uncontrolled growth and differentiation of cancerous cells. Reaching a complete mechanistic understanding of large-scale conformational transformations underlying the activation of kinases could greatly help in the development of therapeutic drugs for the treatment of these pathologies. In principle, the nature of conformational transition could be modelled in silico via atomistic molecular dynamics simulations, although this is very challenging because of the long activation timescales. Here we employ a computational paradigm that couples transition pathway techniques and Markov state model-based massively distributed simulations for mapping the conformational landscape of c-src tyrosine kinase. The computations provide the thermodynamics and kinetics of kinase activation for the first time, and help identify key structural intermediates. Furthermore, the presence of a novel allosteric site in an intermediate state of c-src that could be potentially used for drug design is predicted.

  19. Multiple roles of the active site lysine of Dopa decarboxylase.

    PubMed

    Bertoldi, Mariarita; Voltattorni, Carla Borri

    2009-08-15

    The pyridoxal 5'-phosphate dependent-enzyme Dopa decarboxylase, responsible for the irreversible conversion of l-Dopa to dopamine, is an attractive drug target. The contribution of the pyridoxal-Lys303 to the catalytic mechanisms of decarboxylation and oxidative deamination is analyzed. The K303A variant binds the coenzyme with a 100-fold decreased apparent equilibrium binding affinity with respect to the wild-type enzyme. Unlike the wild-type, K303A in the presence of l-Dopa displays a parallel progress course of formation of both dopamine and 3,4-dihydroxyphenylacetaldehyde (plus ammonia) with a burst followed by a linear phase. Moreover, the finding that the catalytic efficiencies of decarboxylation and of oxidative deamination display a decrease of 1500- and 17-fold, respectively, with respect to the wild-type, is indicative of a different impact of Lys303 mutation on these reactions. Kinetic analyses reveal that Lys303 is involved in external aldimine formation and hydrolysis as well as in product release which affects the rate-determining step of decarboxylation.

  20. Functional Screening of Hydrolytic Activities Reveals an Extremely Thermostable Cellulase from a Deep-Sea Archaeon

    PubMed Central

    Leis, Benedikt; Heinze, Simon; Angelov, Angel; Pham, Vu Thuy Trang; Thürmer, Andrea; Jebbar, Mohamed; Golyshin, Peter N.; Streit, Wolfgang R.; Daniel, Rolf; Liebl, Wolfgang

    2015-01-01

    Extreme habitats serve as a source of enzymes that are active under extreme conditions and are candidates for industrial applications. In this work, six large-insert mixed genomic libraries were screened for hydrolase activities in a broad temperature range (8–70°C). Among a variety of hydrolytic activities, one fosmid clone, derived from a library of pooled isolates of hyperthermophilic archaea from deep sea vents, displayed hydrolytic activity on carboxymethyl cellulose substrate plates at 70°C but not at lower temperatures. Sequence analysis of the fosmid insert revealed a gene encoding a novel glycoside hydrolase family 12 (GHF12) endo-1,4-β-glucanase, termed Cel12E. The enzyme shares 45% sequence identity with a protein from the archaeon Thermococcus sp. AM4 and displays a unique multidomain architecture. Biochemical characterization of Cel12E revealed a remarkably thermostable protein, which appears to be of archaeal origin. The enzyme displayed maximum activity at 92°C and was active on a variety of linear 1,4-β-glucans like carboxymethyl cellulose, β-glucan, lichenan, and phosphoric acid swollen cellulose. The protein is able to bind to various insoluble β-glucans. Product pattern analysis indicated that Cel12E is an endo-cleaving β-glucanase. Cel12E expands the toolbox of hyperthermostable archaeal cellulases with biotechnological potential. PMID:26191525

  1. Crystal Structure of a Bacterial Topoisomerase IB in Complex with DNA Reveals a Secondary DNA Binding Site

    SciTech Connect

    Patel, Asmita; Yakovleva, Lyudmila; Shuman, Stewart; Mondragón, Alfonso

    2010-10-22

    Type IB DNA topoisomerases (TopIB) are monomeric enzymes that relax supercoils by cleaving and resealing one strand of duplex DNA within a protein clamp that embraces a {approx}21 DNA segment. A longstanding conundrum concerns the capacity of TopIB enzymes to stabilize intramolecular duplex DNA crossovers and form protein-DNA synaptic filaments. Here we report a structure of Deinococcus radiodurans TopIB in complex with a 12 bp duplex DNA that demonstrates a secondary DNA binding site located on the surface of the C-terminal domain. It comprises a distinctive interface with one strand of the DNA duplex and is conserved in all TopIB enzymes. Modeling of a TopIB with both DNA sites suggests that the secondary site could account for DNA crossover binding, nucleation of DNA synapsis, and generation of a filamentous plectoneme. Mutations of the secondary site eliminate synaptic plectoneme formation without affecting DNA cleavage or supercoil relaxation.

  2. Active site proton delivery and the lyase activity of human CYP17A1

    SciTech Connect

    Khatri, Yogan; Gregory, Michael C.; Grinkova, Yelena V.; Denisov, Ilia G.; Sligar, Stephen G.

    2014-01-03

    equivalents and protons are funneled into non-productive pathways. This is similar to previous work with other P450 catalyzed hydroxylation. However, catalysis of carbon–carbon bond scission by the T306A mutant was largely unimpeded by disruption of the CYP17A1 acid-alcohol pair. The unique response of CYP17A1 lyase activity to mutation of Thr306 is consistent with a reactive intermediate formed independently of proton delivery in the active site, and supports involvement of a nucleophilic peroxo-anion rather than the traditional Compound I in catalysis.

  3. Site-directed mutations and kinetic studies show key residues involved in alkylammonium interactions and reveal two sites for phosphorylcholine in Pseudomonas aeruginosa phosphorylcholine phosphatase.

    PubMed

    Beassoni, Paola R; Otero, Lisandro H; Boetsch, Cristhian; Domenech, Carlos E; González-Nilo, Fernado D; Lisa, Angela T

    2011-07-01

    Pseudomonas aeruginosa phosphorylcholine phosphatase (PchP) catalyzes the hydrolysis of phosphorylcholine (Pcho) to produce choline and inorganic phosphate. PchP belongs to the haloacid dehalogenase superfamily (HAD) and possesses the three characteristic motifs of this family: motif I ((31)D and (33)D), motif II ((166)S), and motif III ((242)K, (261)G, (262)D and (267)D), which fold to form the catalytic site that binds the metal ion and the phosphate moiety of Pcho. Based on comparisons to the PHOSPHO1 and PHOSPHO2 human enzymes and the choline-binding proteins of Gram-(+) bacteria, we selected residues (42)E and (43)E and the aromatic triplet (82)YYY(84) for site-directed mutagenesis to study the interactions with Pcho and p-nitrophenylphosphate as substrates of PchP. Because mutations in (42)E, (43)E and the three tyrosine residues affect both the substrate affinity and the inhibitory effect produced by high Pcho concentrations, we postulate that two sites, one catalytic and one inhibitory, are present in PchP and that they are adjacent and share residues.

  4. Pathways of H2 toward the Active Site of [NiFe]-Hydrogenase

    PubMed Central

    Teixeira, Vitor H.; Baptista, António M.; Soares, Cláudio M.

    2006-01-01

    Hydrogenases catalyze the reversible oxidation of molecular hydrogen (H2), but little is known about the diffusion of H2 toward the active site. Here we analyze pathways for H2 permeation using molecular dynamics (MD) simulations in explicit solvent. Various MD simulation replicates were done, to improve the sampling of the system states. H2 easily permeates hydrogenase in every simulation and it moves preferentially in channels. All H2 molecules that reach the active site made their approach from the side of the Ni ion. H2 is able to reach distances of <4 Å from the active site, although after 6 Å permeation is difficult. In this region we mutated Val-67 into alanine and perform new MD simulations. These simulations show an increase of H2 inside the protein and at lower distances from the active site. This valine can be a control point in the H2 access to the active center. PMID:16731562

  5. Chondroitinase ABC I from Proteus vulgaris: cloning, recombinant expression and active site identification.

    PubMed

    Prabhakar, Vikas; Capila, Ishan; Bosques, Carlos J; Pojasek, Kevin; Sasisekharan, Ram

    2005-02-15

    GalAGs (galactosaminoglycans) are one subset of the GAG (glycosaminoglycan) family of chemically heterogeneous polysaccharides that are involved in a wide range of biological processes. These complex biomacromolecules are believed to be responsible for the inhibition of nerve regeneration following injury to the central nervous system. The enzymic degradation of GAG chains in damaged nervous tissue by cABC I (chondroitinase ABC I), a broad-specificity lyase that degrades GalAGs, promotes neural recovery. In the present paper, we report the subcloning of cABC I from Proteus vulgaris, and discuss a simple methodology for the recombinant expression and purification of this enzyme. The originally expressed cABC I clone resulted in an enzyme with negligible activity against a variety of GalAG substrates. Sequencing of the cABC I clone revealed four point mutations at issue with the electron-density data of the cABC I crystal structure. Site-directed mutagenesis produced a clone with restored GalAG-degrading function. We have characterized this enzyme biochemically, including an analysis of its substrate specificity. By coupling structural inspections of cABC I and an evaluation of sequence homology against other GAG-degrading lyases, a set of amino acids was chosen for further study. Mutagenesis studies of these residues resulted in the first experimental evidence of cABC I's active site. This work will facilitate the structure-function characterization of biomedically relevant GalAGs and further the development of therapeutics for nerve regeneration.

  6. Target selectivity of vertebrate notch proteins. Collaboration between discrete domains and CSL-binding site architecture determines activation probability.

    PubMed

    Ong, Chin-Tong; Cheng, Hui-Teng; Chang, Li-Wei; Ohtsuka, Toshiyuki; Kageyama, Ryoichiro; Stormo, Gary D; Kopan, Raphael

    2006-02-24

    All four mammalian Notch proteins interact with a single DNA-binding protein (RBP-jkappa), yet they are not equivalent in activating target genes. Parallel assays of three Notch-responsive promoters in several cell lines revealed that relative activation strength is dependent on protein module and promoter context more than the cellular context. Each Notch protein reads binding site orientation and distribution on the promoter differently; Notch1 performs extremely well on paired sites, and Notch3 prefers single sites in conjunction with a proximal zinc finger transcription factor. Although head-head sites can elicit a Notch response on their own, use of CBS (CSL binding site) in tail-tail orientation is context-dependent. Bias for specific DNA elements is achieved by interplay between the N-terminal RAM (RBP-jkappa-associated molecule/ankyrin region), which interprets CBS proximity and orientation, and the C-terminal transactivation domain that interacts specifically with the transcription machinery or nearby factors. To confirm the prediction that modular design underscores the evolution of functional divergence between Notch proteins, we generated a synthetic Notch protein (Notch1 ankyrin with Notch3 transactivation domain) that displayed superior signaling strength on the hes5 promoter. Consistent with the prediction that "preferred" targets (Hes1) should respond faster and at lower Notch concentration than other targets, we showed that Hes5-GFP was extinguished fast and recovered slowly, whereas Hes1-GFP was inhibited late and recovered quickly after a pulse of DAPT in metanephroi cultures.

  7. Maintenance of plastid RNA editing activities independently of their target sites.

    PubMed

    Tillich, Michael; Poltnigg, Peter; Kushnir, Sergei; Schmitz-Linneweber, Christian

    2006-03-01

    RNA editing in plant organelles is mediated by site-specific, nuclear-encoded factors. Previous data suggested that the maintenance of these factors depends on the presence of their rapidly evolving cognate sites. The surprising ability of allotetraploid Nicotiana tabacum (tobacco) to edit a foreign site in the chloroplast ndhA messenger RNA was thought to be inherited from its diploid male ancestor, Nicotiana tomentosiformis. Here, we show that the same ndhA editing activity is also present in Nicotiana sylvestris, which is the female diploid progenitor of tobacco and which lacks the ndhA site. Hence, heterologous editing is not simply a result of tobacco's allopolyploid genome organization. Analyses of other editing sites after sexual or somatic transfer between land plants showed that heterologous editing occurs at a surprisingly high frequency. This suggests that the corresponding editing activities are conserved despite the absence of their target sites, potentially because they serve other functions in the plant cell.

  8. Mutational Studies on Resurrected Ancestral Proteins Reveal Conservation of Site-Specific Amino Acid Preferences throughout Evolutionary History

    PubMed Central

    Risso, Valeria A.; Manssour-Triedo, Fadia; Delgado-Delgado, Asunción; Arco, Rocio; Barroso-delJesus, Alicia; Ingles-Prieto, Alvaro; Godoy-Ruiz, Raquel; Gavira, Jose A.; Gaucher, Eric A.; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M.

    2015-01-01

    Local protein interactions (“molecular context” effects) dictate amino acid replacements and can be described in terms of site-specific, energetic preferences for any different amino acid. It has been recently debated whether these preferences remain approximately constant during evolution or whether, due to coevolution of sites, they change strongly. Such research highlights an unresolved and fundamental issue with far-reaching implications for phylogenetic analysis and molecular evolution modeling. Here, we take advantage of the recent availability of phenotypically supported laboratory resurrections of Precambrian thioredoxins and β-lactamases to experimentally address the change of site-specific amino acid preferences over long geological timescales. Extensive mutational analyses support the notion that evolutionary adjustment to a new amino acid may occur, but to a large extent this is insufficient to erase the primitive preference for amino acid replacements. Generally, site-specific amino acid preferences appear to remain conserved throughout evolutionary history despite local sequence divergence. We show such preference conservation to be readily understandable in molecular terms and we provide crystallographic evidence for an intriguing structural-switch mechanism: Energetic preference for an ancestral amino acid in a modern protein can be linked to reorganization upon mutation to the ancestral local structure around the mutated site. Finally, we point out that site-specific preference conservation naturally leads to one plausible evolutionary explanation for the existence of intragenic global suppressor mutations. PMID:25392342

  9. Mutagenesis and crystallographic studies of the catalytic residues of the papain family protease bleomycin hydrolase: new insights into active-site structure

    PubMed Central

    O'Farrell, Paul A.; Joshua-Tor, Leemor

    2006-01-01

    Bleomycin hydrolase (BH) is a hexameric papain family cysteine protease which is involved in preparing peptides for antigen presentation and has been implicated in tumour cell resistance to bleomycin chemotherapy. Structures of active-site mutants of yeast BH yielded unexpected results. Replacement of the active-site asparagine with alanine, valine or leucine results in the destabilization of the histidine side chain, demonstrating unambiguously the role of the asparagine residue in correctly positioning the histidine for catalysis. Replacement of the histidine with alanine or leucine destabilizes the asparagine position, indicating a delicate arrangement of the active-site residues. In all of the mutants, the C-terminus of the protein, which lies in the active site, protrudes further into the active site. All mutants were compromised in their catalytic activity. The structures also revealed the importance of a tightly bound water molecule which stabilizes a loop near the active site and which is conserved throughout the papain family. It is displaced in a number of the mutants, causing destabilization of this loop and a nearby loop, resulting in a large movement of the active-site cysteine. The results imply that this water molecule plays a key structural role in this family of enzymes. PMID:17007609

  10. Crystal structure at 1.63 A resolution of the native form of porcine beta-trypsin: revealing an acetate ion binding site and functional water network.

    PubMed

    Johnson, A; Gautham, N; Pattabhi, V

    1999-11-16

    The active center of a serine protease is the catalytic triad composed of His-57, Ser-195 and Asp-102. The existing crystal structure data on serine proteases have not fully answered a number of fundamental questions relating to the catalytic activity of serine proteases. The new high resolution native porcine beta-trypsin (BPT) structure is aimed at extending the knowledge on the conformation of the active site and the ordered water structure within and around the active site. The crystal structure of BPT has been determined at 1.63 A resolution. An acetate ion bound at the active site of a trypsin molecule by both classical hydrogen bonds and C-HellipsisO hydrogen bonds has been identified for the first time. A large network of water molecules extending from the recognition amino acid Asp-184 to the entry of the active site has been observed in the BPT structure. A detailed comparison with inhibitor complexes and autolysates indicates that the sulfate ion and the acetate ion bind at the same site of the trypsin molecule. The Ser-195 Cbeta-Ogamma-His-57 Nepsilon angle in the catalytic triad of BPT is intermediate between the corresponding values of the complex and native structure due to acetate ion binding. The network of waters from the recognition amino acid to the active site entry is probably the first ever complete picture of functional waters around the active site. Structural comparisons show that the functional waters involved in the binding of small molecule inhibitors and protease inhibitors are distinctly different.

  11. Structural Differences between Active Forms of Plasminogen Activator Inhibitor Type 1 Revealed by Conformationally Sensitive Ligands*

    PubMed Central

    Li, Shih-Hon; Gorlatova, Natalia V.; Lawrence, Daniel A.; Schwartz, Bradford S.

    2008-01-01

    Plasminogen activator inhibitor type 1 (PAI-1) is a serine protease inhibitor (serpin) in which the reactive center loop (RCL) spontaneously inserts into a central β-sheet, β-sheet A, resulting in inactive inhibitor. Available x-ray crystallographic studies of PAI-1 in an active conformation relied on the use of stabilizing mutations. Recently it has become evident that these structural models do not adequately explain the behavior of wild-type PAI-1 (wtPAI-1) in solution. To probe the structure of native wtPAI-1, we used three conformationally sensitive ligands: the physiologic cofactor, vitronectin; a monoclonal antibody, 33B8, that binds preferentially to RCL-inserted forms of PAI-1; and RCL-mimicking peptides that insert into β-sheet A. From patterns of interaction with wtPAI-1 and the stable mutant, 14-1B, we propose a model of the native conformation of wtPAI-1 in which the bottom of the central sheet is closed, whereas the top of the β-sheet A is open to allow partial insertion of the RCL. Because the incorporation of RCL-mimicking peptides into wtPAI-1 is accelerated by vitronectin, we further propose that vitronectin alters the conformation of the RCL to allow increased accessibility to β-sheet A, yielding a structural hypothesis that is contradictory to the current structural model of PAI-1 in solution and its interaction with vitronectin. PMID:18436534

  12. Elucidating the mechanism and active site of the cyclohexanol dehydrogenation on copper-based catalysts: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Wang, Ziyun; Liu, Xinyi; Rooney, D. W.; Hu, P.

    2015-10-01

    The dehydrogenation of cyclohexanol to cyclohexanone is very important in the manufacture of nylon. Copper-based catalysts are the most popular catalysts for this reaction, and on these catalysts the reaction mechanism and active site are in debate. In order to elucidate the mechanism and active site of the cyclohexanol dehydrogenation on copper-based catalysts, density functional theory with dispersion corrections were performed on up to six facets of copper in two different oxidation states: monovalent copper and metallic copper. By calculating the surface energies of these facets, Cu(111) and Cu2O(111) were found to be the most stable facets for metallic copper and for monovalent copper, respectively. On these two facets, all the possible elementary steps in the dehydrogenation pathway of cyclohexanol were calculated, including the adsorption, dehydrogenation, hydrogen coupling and desorption. Two different reaction pathways for dehydrogenation were considered on both surfaces. It was revealed that the dehydrogenation mechanisms are different on these two surfaces: on Cu(111) the hydrogen belonging to the hydroxyl is removed first, then the hydrogen belonging to the carbon is subtracted, while on Cu2O(111) the hydrogen belonging to the carbon is removed followed by the subtraction of the hydrogen in the hydroxyl group. Furthermore, by comparing the energy profiles of these two surfaces, Cu2O(111) was found to be more active for cyclohexanol dehydrogenation than Cu(111). In addition, we found that the coordinatively unsaturated copper sites on Cu2O(111) are the reaction sites for all the steps. Therefore, the coordinatively unsaturated copper site on Cu2O(111) is likely to be the active site for cyclohexanol dehydrogenation on the copper-based catalysts.

  13. A Processive Carbohydrate Polymerase That Mediates Bifunctional Catalysis Using a Single Active Site

    PubMed Central

    May, John F.; Levengood, Matthew R.; Splain, Rebecca A.; Brown, Christopher D.; Kiessling, Laura L.

    2012-01-01

    Even in the absence of a template, glycosyltransferases can catalyze the synthesis of carbohydrate polymers of specific sequence. The paradigm has been that one enzyme catalyzes the formation of one type of glycosidic linkage, yet certain glycosyltransferases generate polysaccharide sequences composed of two distinct linkage types. In principle, bifunctional glycosyltransferases can possess separate active sites for each catalytic activity or one active site with dual activities. We encountered the fundamental question of one or two distinct active sites in our investigation of the galactosyltransferase GlfT2. GlfT2 catalyzes the formation of mycobacterial galactan, a critical cell-wall polymer composed of galactofuranose residues connected with alternating, regioisomeric linkages. We found that GlfT2 mediates galactan polymerization using only one active site that manifests dual regioselectivity. Structural modeling of the bifunctional glycosyltransferases hyaluronan synthase and cellulose synthase suggests that these enzymes also generate multiple glycosidic linkages using a single active site. These results highlight the versatility of glycosyltransferases for generating polysaccharides of specific sequence. We postulate that a hallmark of processive elongation of a carbohydrate polymer by a bifunctional enzyme is that one active site can give rise to two separate types of glycosidic bonds. PMID:22217153

  14. A Tale of Two Emergences: Sunrise II Observations of Emergence Sites in a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Centeno, R.; Blanco Rodríguez, J.; Del Toro Iniesta, J. C.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; van Noort, M.; Orozco Suárez, D.; Berkefeld, T.; Schmidt, W.; Martínez Pillet, V.; Knölker, M.

    2017-03-01

    In 2013 June, the two scientific instruments on board the second Sunrise mission witnessed, in detail, a small-scale magnetic flux emergence event as part of the birth of an active region. The Imaging Magnetograph Experiment (IMaX) recorded two small (∼ 5\\prime\\prime ) emerging flux patches in the polarized filtergrams of a photospheric Fe i spectral line. Meanwhile, the Sunrise Filter Imager (SuFI) captured the highly dynamic chromospheric response to the magnetic fields pushing their way through the lower solar atmosphere. The serendipitous capture of this event offers a closer look at the inner workings of active region emergence sites. In particular, it reveals in meticulous detail how the rising magnetic fields interact with the granulation as they push through the Sun’s surface, dragging photospheric plasma in their upward travel. The plasma that is burdening the rising field slides along the field lines, creating fast downflowing channels at the footpoints. The weight of this material anchors this field to the surface at semi-regular spatial intervals, shaping it in an undulatory fashion. Finally, magnetic reconnection enables the field to release itself from its photospheric anchors, allowing it to continue its voyage up to higher layers. This process releases energy that lights up the arch-filament systems and heats the surrounding chromosphere.

  15. Reverse evolution leads to genotypic incompatibility despite functional and active site convergence

    PubMed Central

    Kaltenbach, Miriam; Jackson, Colin J; Campbell, Eleanor C; Hollfelder, Florian; Tokuriki, Nobuhiko

    2015-01-01

    Understanding the extent to which enzyme evolution is reversible can shed light on the fundamental relationship between protein sequence, structure, and function. Here, we perform an experimental test of evolutionary reversibility using directed evolution from a phosphotriesterase to an arylesterase, and back, and examine the underlying molecular basis. We find that wild-type phosphotriesterase function could be restored (>104-fold activity increase), but via an alternative set of mutations. The enzyme active site converged towards its original state, indicating evolutionary constraints imposed by catalytic requirements. We reveal that extensive epistasis prevents reversions and necessitates fixation of new mutations, leading to a functionally identical sequence. Many amino acid exchanges between the new and original enzyme are not tolerated, implying sequence incompatibility. Therefore, the evolution was phenotypically reversible but genotypically irreversible. Our study illustrates that the enzyme's adaptive landscape is highly rugged, and different functional sequences may constitute separate fitness peaks. DOI: http://dx.doi.org/10.7554/eLife.06492.001 PMID:26274563

  16. Quantitative Persulfide Site Identification (qPerS-SID) Reveals Protein Targets of H2S Releasing Donors in Mammalian Cells

    PubMed Central

    Longen, Sebastian; Richter, Florian; Köhler, Yvette; Wittig, Ilka; Beck, Karl-Friedrich; Pfeilschifter, Josef

    2016-01-01

    H2S is an important signalling molecule involved in diverse biological processes. It mediates the formation of cysteine persulfides (R-S-SH), which affect the activity of target proteins. Like thiols, persulfides show reactivity towards electrophiles and behave similarly to other cysteine modifications in a biotin switch assay. In this manuscript, we report on qPerS-SID a mass spectrometry-based method allowing the isolation of persulfide containing peptides in the mammalian proteome. With this method, we demonstrated that H2S donors differ in their efficacy to induce persulfides in HEK293 cells. Furthermore, data analysis revealed that persulfide formation affects all subcellular compartments and various cellular processes. Negatively charged amino acids appeared more frequently adjacent to cysteines forming persulfides. We confirmed our proteomic data using pyruvate kinase M2 as a model protein and showed that several cysteine residues are prone to persulfide formation finally leading to its inactivation. Taken together, the site-specific identification of persulfides on a proteome scale can help to identify target proteins involved in H2S signalling and enlightens the biology of H2S and its releasing agents. PMID:27411966

  17. An Accessory Agonist Binding Site Promotes Activation of α4β2* Nicotinic Acetylcholine Receptors*

    PubMed Central

    Wang, Jingyi; Kuryatov, Alexander; Sriram, Aarati; Jin, Zhuang; Kamenecka, Theodore M.; Kenny, Paul J.; Lindstrom, Jon

    2015-01-01

    Neuronal nicotinic acetylcholine receptors containing α4, β2, and sometimes other subunits (α4β2* nAChRs) regulate addictive and other behavioral effects of nicotine. These nAChRs exist in several stoichiometries, typically with two high affinity acetylcholine (ACh) binding sites at the interface of α4 and β2 subunits and a fifth accessory subunit. A third low affinity ACh binding site is formed when this accessory subunit is α4 but not if it is β2. Agonists selective for the accessory ACh site, such as 3-[3-(3-pyridyl)-1,2,4-oxadiazol-5-yl]benzonitrile (NS9283), cannot alone activate a nAChR but can facilitate more efficient activation in combination with agonists at the canonical α4β2 sites. We therefore suggest categorizing agonists according to their site selectivity. NS9283 binds to the accessory ACh binding site; thus it is termed an accessory site-selective agonist. We expressed (α4β2)2 concatamers in Xenopus oocytes with free accessory subunits to obtain defined nAChR stoichiometries and α4/accessory subunit interfaces. We show that α2, α3, α4, and α6 accessory subunits can form binding sites for ACh and NS9283 at interfaces with α4 subunits, but β2 and β4 accessory subunits cannot. To permit selective blockage of the accessory site, α4 threonine 126 located on the minus side of α4 that contributes to the accessory site, but not the α4β2 sites, was mutated to cysteine. Alkylation of this cysteine with a thioreactive reagent blocked activity of ACh and NS9283 at the accessory site. Accessory agonist binding sites are promising drug targets. PMID:25869137

  18. Nucleosome positioning and kinetics near transcription-start-site barriers are controlled by interplay between active remodeling and DNA sequence.

    PubMed

    Parmar, Jyotsana J; Marko, John F; Padinhateeri, Ranjith

    2014-01-01

    We investigate how DNA sequence, ATP-dependent chromatin remodeling and nucleosome-depleted 'barriers' co-operate to determine the kinetics of nucleosome organization, in a stochastic model of nucleosome positioning and dynamics. We find that 'statistical' positioning of nucleosomes against 'barriers', hypothesized to control chromatin structure near transcription start sites, requires active remodeling and therefore cannot be described using equilibrium statistical mechanics. We show that, unlike steady-state occupancy, DNA site exposure kinetics near a barrier is dominated by DNA sequence rather than by proximity to the barrier itself. The timescale for formation of positioning patterns near barriers is proportional to the timescale for active nucleosome eviction. We also show that there are strong gene-to-gene variations in nucleosome positioning near barriers, which are eliminated by averaging over many genes. Our results suggest that measurement of nucleosome kinetics can reveal information about sequence-dependent regulation that is not apparent in steady-state nucleosome occupancy.

  19. The amino acid sequence around the active-site cysteine and histidine residues, and the buried cysteine residue in ficin.

    PubMed

    Husain, S S; Lowe, G

    1970-04-01

    Ficin that had been prepared from the latex of Ficus glabrata by salt fractionation and chromatography on carboxymethylcellulose was completely and irreversibly inhibited with 1,3-dibromo[2-(14)C]acetone and then treated with N-(4-dimethylamino-3,5-dinitrophenyl)maleimide in 6m-guanidinium chloride. After reduction and carboxymethylation of the labelled protein, it was digested with trypsin and alpha-chymotrypsin. Two radioactive peptides and two coloured peptides were isolated chromatographically and their sequences determined. The radioactive peptides revealed the amino acid sequences around the active-site cysteine and histidine residues and showed a high degree of homology with the omino acid sequence around the active-site cysteine and histidine residues in papain. The coloured peptides allowed the amino acid sequence around the buried cysteine residue in ficin to be determined.

  20. A High-Throughput Screen Reveals New Small-Molecule Activators and Inhibitors of Pantothenate Kinases

    PubMed Central

    2016-01-01

    Pantothenate kinase (PanK) is a regulatory enzyme that controls coenzyme A (CoA) biosynthesis. The association of PanK with neurodegeneration and diabetes suggests that chemical modifiers of PanK activity may be useful therapeutics. We performed a high throughput screen of >520000 compounds from the St. Jude compound library and identified new potent PanK inhibitors and activators with chemically tractable scaffolds. The HTS identified PanK inhibitors exemplified by the detailed characterization of a tricyclic compound (7) and a preliminary SAR. Biophysical studies reveal that the PanK inhibitor acts by binding to the ATP–enzyme complex. PMID:25569308

  1. Extending the Diffuse Layer Model of Surface Acidity Behavior: III. Estimating Bound Site Activity Coefficients

    EPA Science Inventory

    Although detailed thermodynamic analyses of the 2-pK diffuse layer surface complexation model generally specify bound site activity coefficients for the purpose of accounting for those non-ideal excess free energies contributing to bound site electrochemical potentials, in applic...

  2. 75 FR 71677 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites AGENCY: Department of... uranium and thorium processing site licensees for reimbursement under Title X of the Energy Policy Act of... requires DOE to reimburse eligible uranium and thorium licensees for certain costs of...

  3. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...). (e) For all asbestos-containing waste material received, the owner or operator of the active waste... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an...

  4. Structure and nuclearity of active sites in Fe-zeolites: comparison with iron sites in enzymes and homogeneous catalysts.

    PubMed

    Zecchina, Adriano; Rivallan, Mickaël; Berlier, Gloria; Lamberti, Carlo; Ricchiardi, Gabriele

    2007-07-21

    Fe-ZSM-5 and Fe-silicalite zeolites efficiently catalyse several oxidation reactions which find close analogues in the oxidation reactions catalyzed by homogeneous and enzymatic compounds. The iron centres are highly dispersed in the crystalline matrix and on highly diluted samples, mononuclear and dinuclear structures are expected to become predominant. The crystalline and robust character of the MFI framework has allowed to hypothesize that the catalytic sites are located in well defined crystallographic positions. For this reason these catalysts have been considered as the closest and best defined heterogeneous counterparts of heme and non heme iron complexes and of Fenton type Fe(2+) homogeneous counterparts. On this basis, an analogy with the methane monooxygenase has been advanced several times. In this review we have examined the abundant literature on the subject and summarized the most widely accepted views on the structure, nuclearity and catalytic activity of the iron species. By comparing the results obtained with the various characterization techniques, we conclude that Fe-ZSM-5 and Fe-silicalite are not the ideal samples conceived before and that many types of species are present, some active and some other silent from adsorptive and catalytic point of view. The relative concentration of these species changes with thermal treatments, preparation procedures and loading. Only at lowest loadings the catalytically active species become the dominant fraction of the iron species. On the basis of the spectroscopic titration of the active sites by using NO as a probe, we conclude that the active species on very diluted samples are isolated and highly coordinatively unsaturated Fe(2+) grafted to the crystalline matrix. Indication of the constant presence of a smaller fraction of Fe(2+) presumably located on small clusters is also obtained. The nitrosyl species formed upon dosing NO from the gas phase on activated Fe-ZSM-5 and Fe-silicalite, have been analyzed

  5. Novel mechanisms for superoxide-scavenging activity of human manganese superoxide dismutase determined by the K68 key acetylation site.

    PubMed

    Lu, Jiaqi; Cheng, Kuoyuan; Zhang, Bo; Xu, Huan; Cao, Yuanzhao; Guo, Fei; Feng, Xudong; Xia, Qing

    2015-08-01

    Superoxide is the primary reactive oxygen species generated in the mitochondria. Manganese superoxide dismutase (SOD2) is the major enzymatic superoxide scavenger present in the mitochondrial matrix and one of the most crucial reactive oxygen species-scavenging enzymes in the cell. SOD2 is activated by sirtuin 3 (SIRT3) through NAD(+)-dependent deacetylation. However, the exact acetylation sites of SOD2 are ambiguous and the mechanisms underlying the deacetylation-mediated SOD2 activation largely remain unknown. We are the first to characterize SOD2 mutants of the acetylation sites by investigating the relative enzymatic activity, structures, and electrostatic potential of SOD2 in this study. These SOD2 mutations affected the superoxide-scavenging activity in vitro and in HEK293T cells. The lysine 68 (K68) site is the most important acetylation site contributing to SOD2 activation and plays a role in cell survival after paraquat treatment. The molecular basis underlying the regulation of SOD2 activity by K68 was investigated in detail. Molecular dynamics simulations revealed that K68 mutations induced a conformational shift of residues located in the active center of SOD2 and altered the charge distribution on the SOD2 surface. Thus, the entry of the superoxide anion into the coordinated core of SOD2 was inhibited. Our results provide a novel mechanistic insight, whereby SOD2 acetylation affects the structure and charge distribution of SOD2, its tetramerization, and p53-SOD2 interactions of SOD2 in the mitochondria, which may play a role in nuclear-mitochondrial communication during aging.

  6. Long-term home cage activity scans reveal lowered exploratory behaviour in symptomatic female Rett mice.

    PubMed

    Robinson, Lianne; Plano, Andrea; Cobb, Stuart; Riedel, Gernot

    2013-08-01

    Numerous experimental models have been developed to reiterate endophenotypes of Rett syndrome, a neurodevelopmental disorder with a multitude of motor, cognitive and vegetative symptoms. Here, female Mecp2(Stop) mice [1] were characterised at mild symptomatic conditions in tests for anxiety (open field, elevated plus maze) and home cage observation systems for food intake, locomotor activity and circadian rhythms. Aged 8-9 months, Mecp2(Stop) mice presented with heightened body weight, lower overall activity in the open field, but no anxiety phenotype. Although home cage activity scans conducted in two different observation systems, PhenoMaster and PhenoTyper, confirmed normal circadian activity, they revealed severely compromised habituation to a novel environment in all parameters registered including those derived from a non-linear decay model such as initial exploration maximum, decay half-life of activity and span, as well as plateau. Furthermore, overall activity was significantly reduced in nocturnal periods due to reductions in both fast ambulatory movements, but also a slow lingering. In contrast, light-period activity profiles during which the amount of sleep was highest remained normal in Mecp2(Stop) mice. These data confirm the slow and progressive development of Rett-like symptoms in female Mecp2(Stop) mice resulting in a prominent reduction of overall locomotor activity, while circadian rhythms are maintained. Alterations in the time-course of habituation may indicate deficiencies in cognitive processing.

  7. Monocopper active site for partial methane oxidation in Cu-exchanged 8MR zeolites

    SciTech Connect

    Kulkarni, Ambarish R.; Zhao, Zhi -Jian; Siahrostami, Samira; Nørskov, Jens K.; Studt, Felix

    2016-08-17

    Direct conversion of methane to methanol using oxygen is experiencing renewed interest owing to the availability of new natural gas resources. Copper-exchanged zeolites such as mordenite and ZSM-5 have shown encouraging results, and di- and tri-copper species have been suggested as active sites. Recently, small eight-membered ring (8MR) zeolites including SSZ-13, -16, and -39 have been shown to be active for methane oxidation, but the active sites and reaction mechanisms in these 8MR zeolites are not known. In this work, we use density functional theory (DFT) calculations to systematically evaluate monocopper species as active sites for the partial methane oxidation reaction in Cu-exchanged SSZ-13. On the basis of kinetic and thermodynamic arguments, we suggest that [CuIIOH]+ species in the 8MR are responsible for the experimentally observed activity. Furthermore, our results successfully explain the available spectroscopic data and experimental observations including (i) the necessity of water for methanol extraction and (ii) the effect of Si/Al ratio on the catalyst activity. Monocopper species have not yet been suggested as an active site for the partial methane oxidation reaction, and our results suggest that [CuIIOH]+ active site may provide complementary routes for methane activation in zeolites in addition to the known [Cu–O–Cu]2+ and Cu3O3 motifs.

  8. Monocopper active site for partial methane oxidation in Cu-exchanged 8MR zeolites

    DOE PAGES

    Kulkarni, Ambarish R.; Zhao, Zhi -Jian; Siahrostami, Samira; ...

    2016-08-17

    Direct conversion of methane to methanol using oxygen is experiencing renewed interest owing to the availability of new natural gas resources. Copper-exchanged zeolites such as mordenite and ZSM-5 have shown encouraging results, and di- and tri-copper species have been suggested as active sites. Recently, small eight-membered ring (8MR) zeolites including SSZ-13, -16, and -39 have been shown to be active for methane oxidation, but the active sites and reaction mechanisms in these 8MR zeolites are not known. In this work, we use density functional theory (DFT) calculations to systematically evaluate monocopper species as active sites for the partial methane oxidationmore » reaction in Cu-exchanged SSZ-13. On the basis of kinetic and thermodynamic arguments, we suggest that [CuIIOH]+ species in the 8MR are responsible for the experimentally observed activity. Furthermore, our results successfully explain the available spectroscopic data and experimental observations including (i) the necessity of water for methanol extraction and (ii) the effect of Si/Al ratio on the catalyst activity. Monocopper species have not yet been suggested as an active site for the partial methane oxidation reaction, and our results suggest that [CuIIOH]+ active site may provide complementary routes for methane activation in zeolites in addition to the known [Cu–O–Cu]2+ and Cu3O3 motifs.« less

  9. Computer-aided active-site-directed modeling of the Herpes Simplex Virus 1 and human thymidine kinase

    NASA Astrophysics Data System (ADS)

    Folkers, Gerd; Trumpp-Kallmeyer, Susanne; Gutbrod, Oliver; Krickl, Sabine; Fetzer, Jürgen; Keil, Günther M.

    1991-10-01

    Thymidine kinase (TK), which is induced by Herpes Simplex Virus 1 (HSV1), plays a key role in the antiviral activity of guanine derivatives such as aciclovir (ACV). In contrast, ACV shows only low affinity to the corresponding host cell enzyme. In order to define the differences in substrate binding of the two enzymes on molecular level, models for the three-dimensional (3-D) structures of the active sites of HSV1-TK and human TK were developed. The reconstruction of the active sites started from primary and secondary structure analysis of various kinases. The results were validated to homologous enzymes with known 3-D structures. The models predict that both enzymes consist of a central core β-sheet structure, connected by loops and α-helices very similar to the overall structure of other nucleotide binding enzymes. The phosphate binding is made up of a highly conserved glycine-rich loop at the N-terminus of the proteins and a conserved region at the C-terminus. The thymidine recognition site was found about 100 amino acids downstream from the phosphate binding loop. The differing substrate specificity of human and HSV1-TK can be explained by amino-acid substitutions in the homologous regions. To achieve a better understanding of the structure of the active site and how the thymidine kinase proteins interact with their substrates, the corresponding complexes of thymidine and dihydroxypropoxyguanine (DHPG) with HSV1 and human TK were built. For the docking of the guanine derivative, the X-ray structure of Elongation Factor Tu (EF-Tu), co-crystallized with guanosine diphosphate, was taken as reference. Fitting of thymidine into the active sites was done with respect to similar interactions found in thymidylate kinase. To complement the analysis of the 3-D structures of the two kinases and the substrate enzyme interactions, site-directed mutagenesis of the thymidine recognition site of HSV1-TK has been undertaken, changing Asp162 in the thymidine recognition site

  10. 1993 annual report of hazardous waste activities for the Oak Ridge K-25 site

    SciTech Connect

    Not Available

    1994-02-01

    This report is a detailed listing of all of the Hazardous Waste activities occurring at Martin Marietta`s K-25 site. Contained herein are hazardous waste notification forms, waste stream reports, generator fee forms and various TSDR reports.

  11. Count trends for migratory Bald Eagles reveal differences between two populations at a spring site along the Lake Ontario shoreline.

    PubMed

    Wright, Kyle R

    2016-01-01

    The recovery of Bald Eagles (Haliaeetus leucophalus), after DDT and other organochlori