Science.gov

Sample records for active site side

  1. Ionizable Side Chains at Catalytic Active Sites of Enzymes

    PubMed Central

    Jimenez-Morales, David; Liang, Jie

    2012-01-01

    Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1072 Å3. The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes. PMID:22484856

  2. Modification of residue 42 of the active site loop with a lysine-mimetic side chain rescues isochorismate-pyruvate lyase activity in Pseudomonas aeruginosa PchB.

    PubMed

    Olucha, José; Meneely, Kathleen M; Lamb, Audrey L

    2012-09-25

    PchB is an isochorismate-pyruvate lyase from Pseudomonas aeruginosa. A positively charged lysine residue is located in a flexible loop that behaves as a lid to the active site, and the lysine residue is required for efficient production of salicylate. A variant of PchB that lacks the lysine at residue 42 has a reduced catalytic free energy of activation of up to 4.4 kcal/mol. Construction of a lysine isosteric residue bearing a positive charge at the appropriate position leads to the recovery of 2.5-2.7 kcal/mol (about 60%) of the 4.4 kcal/mol by chemical rescue. Exogenous addition of ethylamine to the K42A variant leads to a neglible recovery of activity (0.180 kcal/mol, roughly 7% rescue), whereas addition of propylamine caused an additional modest loss in catalytic power (0.056 kcal/mol, or 2% loss). This is consistent with the view that (a) the lysine-42 residue is required in a specific conformation to stabilize the transition state and (b) the correct conformation is achieved for a lysine-mimetic side chain at site 42 in the course of loop closure, as expected for transition-state stabilization by the side chain ammonio function. That the positive charge is the main effector of transition state stabilization is shown by the construction of a lysine-isosteric residue capable of exerting steric effects and hydrogen bonding but not electrostatic effects, leading to a modest increase of catalytic power (0.267-0.505 kcal/mol of catalytic free energy, or roughly 6-11% rescue). PMID:22970849

  3. FVT-1 is a mammalian 3-ketodihydrosphingosine reductase with an active site that faces the cytosolic side of the endoplasmic reticulum membrane.

    PubMed

    Kihara, Akio; Igarashi, Yasuyuki

    2004-11-19

    Sphingolipids are essential membrane components of eukaryotic cells. Their synthesis is initiated with the condensation of l-serine with palmitoyl-CoA, producing 3-ketodihydrosphingosine (KDS), followed by a reduction to dihydrosphingosine by KDS reductase. Until now, only yeast TSC10 has been identified as a KDS reductase gene. Here, we provide evidence that the human FVT-1 (hFVT-1) and mouse FVT-1 (mFVT-1) are functional mammalian KDS reductases. The forced expression of hFVT-1 or mFVT-1 in TSC10-null yeast cells suppressed growth defects, and hFVT-1 overproduced in cultured cells exhibited KDS reductase activity in vitro. Moreover, purified recombinant hFVT-1 protein exhibited NADPH-dependent KDS reductase activity. The identification of the FVT-1 genes enabled us to characterize the mammalian KDS reductase at the molecular level. Northern blot analyses demonstrated that both hFVT-1 and mFVT-1 mRNAs are ubiquitously expressed, suggesting that FVT-1 is a major KDS reductase. We also found the presence of hFVT-1 variants, which were differentially expressed among tissues. Immunofluorescence microscopic analysis revealed that hFVT-1 is localized at the endoplasmic reticulum. Moreover, a proteinase K digestion assay revealed that the large hydrophilic domain of hFVT-1, which contains putative active site residues, faces the cytosol. These results suggest that KDS is converted to dihydrosphingosine in the cytosolic side of the endoplasmic reticulum membrane. Moreover, the topology studies provide insight into the spatial organization of the sphingolipid biosynthetic pathway.

  4. Active site-directed inhibitors of cytochrome P-450scc. Structural and mechanistic implications of a side chain-substituted series of amino-steroids.

    PubMed

    Sheets, J J; Vickery, L E

    1983-10-10

    A series of analogues of cholesterol, each having a shortened side chain and a primary amine group, were prepared and tested for their effects on bovine adrenocortical cholesterol side chain cleavage cytochrome P-450 (P-450scc). A previous study had shown that one derivative, 22-amino-23,24-bisnor-5-cholen-3 beta-ol, is a potent competitive inhibitor of the enzyme and forms a complex in which the steroid ring binds to the cholesterol site and the side chain amine forms a bond with the heme iron (Sheets, J. J., and Vickery, L. E. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 5773-5777). In the studies reported here, the 23-amine derivative, 23-amino-24-nor-5-cholen-3 beta-ol, was found to be an equally potent inhibitor and to be competitive with respect to cholesterol (Ki = 38 nM). Binding of the 23-amine to P-450scc also caused formation of a low spin complex with an absorption maximum at 422 nm, indicative of a nitrogen-donor ligand. Other derivatives in which the side chain amine was linked closer to the steroid, 17 beta-amino-5-androsten-3 beta-ol and (20 R + S)-20-amino-5-pregnen-3 beta-ol, were found to be only very weak inhibitors (I50 greater than 100 microM) and did not produce the 422 nm spectral form when bound. Derivatives in which the amine was attached a greater distance from the steroid ring, 24-amino-5-cholen-3 beta-ol and 25-amino-26,27-bisnor-5-cholesten-3 beta-ol, caused a progressive decrease in inhibitory potency and a failure to produce the 422 nm form on binding. The dependence of the type of interaction of these amino-steroids with P-450scc upon the amine position establishes that the steroid binding site and the heme catalytic site of the enzyme are fixed within a specific distance of one another. The heme appears to be located sufficiently close to the position that the side chain of cholesterol would occupy to allow for direct attack of an iron-bound oxidant to occur during hydroxylation and side chain cleavage.

  5. Hangar no. 1 south and east side. Site view seen ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Hangar no. 1 south and east side. Site view seen from main runway. Note control tower building. Looking 340 NNW. - Marine Corps Air Station Tustin, Northern Lighter Than Air Ship Hangar, Meffett Avenue & Maxfield Street, Tustin, Orange County, CA

  6. Site overview. West side hangar no. 1. Seen from Severyns ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Site overview. West side hangar no. 1. Seen from Severyns Road. Looking 170 S. - Marine Corps Air Station Tustin, Northern Lighter Than Air Ship Hangar, Meffett Avenue & Maxfield Street, Tustin, Orange County, CA

  7. Site overview. South side of hangar no. 1. Note control ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Site overview. South side of hangar no. 1. Note control tower on right. Looking 4 N. - Marine Corps Air Station Tustin, Northern Lighter Than Air Ship Hangar, Meffett Avenue & Maxfield Street, Tustin, Orange County, CA

  8. Site overview. North and west sides of hangar no. 1. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Site overview. North and west sides of hangar no. 1. Seen from intersection of copeland and cross roads. Looking 2186 S. - Marine Corps Air Station Tustin, Northern Lighter Than Air Ship Hangar, Meffett Avenue & Maxfield Street, Tustin, Orange County, CA

  9. Active-Site Engineering of ω-Transaminase for Production of Unnatural Amino Acids Carrying a Side Chain Bulkier than an Ethyl Substituent

    PubMed Central

    Han, Sang-Woo; Park, Eul-Soo; Dong, Joo-Young

    2015-01-01

    ω-Transaminase (ω-TA) is a promising enzyme for use in the production of unnatural amino acids from keto acids using cheap amino donors such as isopropylamine. The small substrate-binding pocket of most ω-TAs permits entry of substituents no larger than an ethyl group, which presents a significant challenge to the preparation of structurally diverse unnatural amino acids. Here we report on the engineering of an (S)-selective ω-TA from Ochrobactrum anthropi (OATA) to reduce the steric constraint and thereby allow the small pocket to readily accept bulky substituents. On the basis of a docking model in which l-alanine was used as a ligand, nine active-site residues were selected for alanine scanning mutagenesis. Among the resulting variants, an L57A variant showed dramatic activity improvements in activity for α-keto acids and α-amino acids carrying substituents whose bulk is up to that of an n-butyl substituent (e.g., 48- and 56-fold increases in activity for 2-oxopentanoic acid and l-norvaline, respectively). An L57G mutation also relieved the steric constraint but did so much less than the L57A mutation did. In contrast, an L57V substitution failed to induce the improvements in activity for bulky substrates. Molecular modeling suggested that the alanine substitution of L57, located in a large pocket, induces an altered binding orientation of an α-carboxyl group and thereby provides more room to the small pocket. The synthetic utility of the L57A variant was demonstrated by carrying out the production of optically pure l- and d-norvaline (i.e., enantiomeric excess [ee] > 99%) by asymmetric amination of 2-oxopantanoic acid and kinetic resolution of racemic norvaline, respectively. PMID:26231640

  10. 1. Creosote plant site (NW side) as viewed with a ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Creosote plant site (NW side) as viewed with a telephoto lens from Winslow ferry terminal. Eagle Harbor is in foreground. Buildings include Machine Shop on left, Boiler Building with stack, and Engine Room Building at center. Office is at far right next to tree. - Pacific Creosoting Plant, 5350 Creosote Place, Northeast, Bremerton, Kitsap County, WA

  11. 2. EAST SIDE; LOOKING WEST FROM SITE OF STOCKYARDS; UPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EAST SIDE; LOOKING WEST FROM SITE OF STOCKYARDS; UPPER LEFT CORNER WAS ORIGINALLY ATTACHED TO SHEEP HOTEL (BUILDING 142); UPPER RIGHT CORNER WAS ORIGINALLY ATTACHED TO HOG HOTEL (BUILDING 138) - Rath Packing Company, Beef Killing Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  12. Site overview. View of east side of hangar no. 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Site overview. View of east side of hangar no. 2 at left and hangar no. 1 at rear. Seen from south edge of base near Warner Avenue and Jamboree Road. Looking 310 NW. - Marine Corps Air Station Tustin, Northern Lighter Than Air Ship Hangar, Meffett Avenue & Maxfield Street, Tustin, Orange County, CA

  13. 3. Creosote plant site (SW side) as seen from near ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Creosote plant site (SW side) as seen from near entrance from Creosote Place NE. View shows back of Engine Room building on left, all storage tanks, and small work shed on right. - Pacific Creosoting Plant, 5350 Creosote Place, Northeast, Bremerton, Kitsap County, WA

  14. 2. Creosote plant site (NE side) as viewed from passenger ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Creosote plant site (NE side) as viewed from passenger deck of Washington State Ferry as it approaches the Winslow landing. Remnants of Milwaukee Bock are visible on far left. Building at left is Office Engine Room Building with sloped roof is at center behind tanks. To the right is Boiler Building with stack. Long building is Machine Shop. Dock on right is West Dock. - Pacific Creosoting Plant, 5350 Creosote Place, Northeast, Bremerton, Kitsap County, WA

  15. Too packed to change: side-chain packing and site-specific substitution rates in protein evolution.

    PubMed

    Marcos, María Laura; Echave, Julian

    2015-01-01

    In protein evolution, due to functional and biophysical constraints, the rates of amino acid substitution differ from site to site. Among the best predictors of site-specific rates are solvent accessibility and packing density. The packing density measure that best correlates with rates is the weighted contact number (WCN), the sum of inverse square distances between a site's C α and the C α of the other sites. According to a mechanistic stress model proposed recently, rates are determined by packing because mutating packed sites stresses and destabilizes the protein's active conformation. While WCN is a measure of C α packing, mutations replace side chains. Here, we consider whether a site's evolutionary divergence is constrained by main-chain packing or side-chain packing. To address this issue, we extended the stress theory to model side chains explicitly. The theory predicts that rates should depend solely on side-chain contact density. We tested this prediction on a data set of structurally and functionally diverse monomeric enzymes. We compared side-chain contact density with main-chain contact density measures and with relative solvent accessibility (RSA). We found that side-chain contact density is the best predictor of rate variation among sites (it explains 39.2% of the variation). Moreover, the independent contribution of main-chain contact density measures and RSA are negligible. Thus, as predicted by the stress theory, site-specific evolutionary rates are determined by side-chain packing.

  16. Mössbauer characterization of an unusual high-spin side-on peroxo-Fe3+ species in the active site of superoxide reductase from Desulfoarculus Baarsii. Density functional calculations on related models.

    PubMed

    Horner, Olivier; Mouesca, Jean-Marie; Oddou, Jean-Louis; Jeandey, Claudine; Nivière, Vincent; Mattioli, Tony A; Mathé, Christelle; Fontecave, Marc; Maldivi, Pascale; Bonville, Pierre; Halfen, Jason A; Latour, Jean-Marc

    2004-07-13

    Superoxide reductase (SOR) is an Fe protein that catalyzes the reduction of superoxide to give H(2)O(2). Recently, the mutation of the Glu47 residue into alanine (E47A) in the active site of SOR from Desulfoarculus baarsii has allowed the stabilization of an iron-peroxo species when quickly reacted with H(2)O(2) [Mathé et al. (2002) J. Am. Chem. Soc. 124, 4966-4967]. To further investigate this non-heme peroxo-iron species, we have carried out a Mössbauer study of the (57)Fe-enriched E47A SOR from D. baarsii reacted quickly with H(2)O(2). Considering the Mössbauer data, we conclude, in conjunction with the other spectroscopic data available and with the results of density functional calculations on related models, that this species corresponds to a high-spin side-on peroxo-Fe(3+) complex. This is one of the first examples of such a species in a biological system for which Mössbauer parameters are now available: delta(/Fe) = 0.54 (1) mm/s, DeltaE(Q) = -0.80 (5) mm/s, and the asymmetry parameter eta = 0.60 (5) mm/s. The Mössbauer and spin Hamiltonian parameters have been evaluated on a model from the side-on peroxo complex (model 2) issued from the oxidized iron center in SOR from Pyrococcus furiosus, for which structural data are available in the literature [Yeh et al. (2000) Biochemistry 39, 2499-2508]. For comparison, similar calculations have been carried out on a model derived from 2 (model 3), where the [CH(3)-S](1)(-) group has been replaced by the neutral [NH(3)](0) group [Neese and Solomon (1998) J. Am. Chem. Soc. 120, 12829-12848]. Both models 2 and 3 contain a formally high-spin Fe(3+) ion (i.e., with empty minority spin orbitals). We found, however, a significant fraction ( approximately 0.6 for 2, approximately 0.8 for 3) of spin (equivalently charge) spread over two occupied (minority spin) orbitals. The quadrupole splitting value for 2 is found to be negative and matches quite well the experimental value. The computed quadrupole tensors are

  17. Intellihance: client-side and server-side architectures for photo site image enhancement

    NASA Astrophysics Data System (ADS)

    Pfeiffer, David M.

    2000-12-01

    Consumer Digital Photography (CDP_ has many advantages over film photography, including instant preview, on-demand- printing, image enhancement and Internet distribution. Despite its many advantages, CDP will not be broadly accepted until it meets and exceeds the defacto standards for quality, low cost and ease-of-use of the film based camera and its supporting infrastructure. With the advent of low-cost high-resolution image sensors, only ease-of-use will remain as a barrier to consumer acceptance of digital photography. Image enhancement is an easily understood CDP capability that allows the user to reclaim photos that might have otherwise been discarded due to composition problems or poor lighting conditions. While the consumer might recognize the saving power of image enhancement, it must be point and shoot simple. Intellihance supports a point and shoot approach to image enhancement, making good images better and rescuing images that may have otherwise been discarded. Intellihance, a proven technology in image editing applications, can also be used in photo Kiosks, digital cameras and photo web sites. This paper will specifically examine the Intellihance user interfaces and browser-based Intellihance solutions.

  18. Selective optimization of side activities: the SOSA approach.

    PubMed

    Wermuth, Camille G

    2006-02-01

    Selective optimization of side activities of drug molecules (the SOSA approach) is an intelligent and potentially more efficient strategy than HTS for the generation of new biological activities. Only a limited number of highly diverse drug molecules are screened, for which bioavailability and toxicity studies have already been performed and efficacy in humans has been confirmed. Once the screening has generated a hit it will be used as the starting point for a drug discovery program. Using traditional medicinal chemistry as well as parallel synthesis, the initial 'side activity' is transformed into the 'main activity' and, conversely, the initial 'main activity' is significantly reduced or abolished. This strategy has a high probability of yielding safe, bioavailable, original and patentable analogues. PMID:16533714

  19. A site check prior to regional anaesthesia to prevent wrong-sided blocks.

    PubMed

    Slocombe, P; Pattullo, S

    2016-07-01

    This paper describes the implementation of the 'Stop Before You Block' (SB4YB) initiative in an Australian teaching hospital. This process, which began in the UK in 2010, is a pre-procedure pause to confirm the correct side of a regional anaesthetic block. A change in practice was implemented with the formal roll out of a SB4YB educational program. Use of the initiative was then audited over a subsequent three-month period. It was hoped that after implementing the initiative, at least 80% of blocks would have a site check performed. However, despite apparent support for the initiative, uptake was less than expected with only about 57% of blocks having a site check performed. A site check was less frequent if the block was done as an emergency procedure, outside of an operating theatre or by a locum or visiting anaesthetist. Our conclusion from the audit was that education is insufficient to promote a change in this practice. We propose that Stop Before You Block or a block time-out should be performed prior to all unilateral nerve blocks. Success of this initiative requires education, and both cultural and systems changes to occur. We propose that a formal block time-out should become part of the surgical safety checklist and this activity should be endorsed and promoted by anaesthetic professional bodies. PMID:27456184

  20. Life Extension Program for the Modular Caustic Side Solvent Extraction Unit at Savannah River Site - 13179

    SciTech Connect

    Samadi, Azadeh

    2013-07-01

    Caustic Side Solvent Extraction (CSSX) is currently used at the U.S. Department of Energy (DOE) Savannah River Site (SRS) for removal of cesium from the high-level salt-wastes stored in underground tanks. Currently, the Actinide Removal Process (ARP) and the CSSX process are deployed in the (ARP)/Modular CSSX Unit (MCU), to process salt waste for permanent disposition. The CSSX technology utilizes a multi-component organic solvent and annular centrifugal contactors to extract cesium from alkaline salt waste. The original plant was permitted for a three year design life; however, given the successful operation of the plant, a life extension program was completed to continue operations. The program included detailed engineering analyses of the life-expectancy of passive and active components, resulting in component replacement and/or maintenance and monitoring program improvements. The program also included a review of the operations and resulted in a series of operational improvements. Since the improvements have been made, an accelerated processing rate has been demonstrated. In addition, plans for instituting a next-generation solvent are in place and will enhance the decontamination factors. (author)

  1. Salt site performance assessment activities

    SciTech Connect

    Kircher, J.F.; Gupta, S.K.

    1983-01-01

    During this year the first selection of the tools (codes) for performance assessments of potential salt sites have been tentatively selected and documented; the emphasis has shifted from code development to applications. During this period prior to detailed characterization of a salt site, the focus is on bounding calculations, sensitivity and with the data available. The development and application of improved methods for sensitivity and uncertainty analysis is a focus for the coming years activities and the subject of a following paper in these proceedings. Although the assessments to date are preliminary and based on admittedly scant data, the results indicate that suitable salt sites can be identified and repository subsystems designed which will meet the established criteria for protecting the health and safety of the public. 36 references, 5 figures, 2 tables.

  2. Discovery of native metal ion sites located on the ferredoxin docking side of photosystem I.

    SciTech Connect

    Utschig, L. M.; Chen, L. X.; Poluektov, O. G.; Chemical Sciences and Engineering Division

    2008-03-25

    Photosystem I (PSI) is a large membrane protein that catalyzes light-driven electron transfer across the thylakoid membrane from plastocyanin located in the lumen to ferredoxin in the stroma. Metal analysis reveals that PSI isolated from the cyanobacterial membranes of Synechococcus leopoliensis has a near-stoichiometric 1 molar equiv of Zn2+ per PSI monomer and two additional surface metal ion sites that favor Cu2+ binding. Two-dimensional hyperfine sublevel correlation (HYSCORE) spectroscopy reveals coupling to the so-called remote nitrogen of a single histidine coordinated to one of the Cu2+ centers. EPR and X-ray absorption fine structure (XAFS) studies of 2Cu?PSI complexes reveal the direct interaction of ferredoxin with the Cu2+ centers on PSI, establishing the location of native metal sites on the ferredoxin docking side of PSI. On the basis of these spectroscopic results and previously reported site-directed mutagenesis studies, inspection of the PSI crystal structure reveals a cluster of three highly conserved residues, His(D95), Glu(D103), and Asp(C23), as a likely Cu2+ binding site. The discovery of surface metal sites on the acceptor side of PSI provides a unique opportunity to probe the stromal region of PSI and the interactions of PSI with its reaction partner, the soluble electron carrier protein ferredoxin.

  3. Small-Sided Games: Developmentally Appropriate Applications in Traditional Activities.

    ERIC Educational Resources Information Center

    Petersen, Susan; Cruz, Luz

    This paper presents a systematic progression of small-sided games within two traditional sports units (soccer and volleyball). Developmentally appropriate guidelines encourage teachers at all levels to incorporate small-sided games (2v2, 3v3, and 4v4). Advantages of small-sided games include: allowing students numerous practice opportunities;…

  4. The application of active side arm controllers in helicopters

    NASA Technical Reports Server (NTRS)

    Knorr, R.; Melz, C.; Faulkner, A.; Obermayer, M.

    1993-01-01

    Eurocopter Deutschland (ECD) started simulation trials to investigate the particular problems of Side Arm Controllers (SAC) applied to helicopters. Two simulation trials have been performed. In the first trial, the handling characteristics of a 'passive' SAC and the basic requirements for the application of an 'active' SAC were evaluated in pilot-in-the-loop simulations, performing the tasks in a realistic scenario representing typical phases of a transport mission. The second simulation trial investigated the general control characteristics of the 'active' in comparison to the 'passive' control principle. A description of the SACs developed by ECD and the principle of the 'passive' and 'active' control concept is given, as well as specific ratings for the investigated dynamic and ergonomic parameters effecting SAC characteristics. The experimental arrangements, as well as the trials procedures of both simulation phases, are described and the results achieved are discussed emphasizing the advantages of the 'active' as opposed to the 'passive' SAC concept. This also includes the presentation of some critical aspects still to be improved and proposals to solve them.

  5. Radial Glial Cell-Neuron Interaction Directs Axon Formation at the Opposite Side of the Neuron from the Contact Site.

    PubMed

    Xu, Chundi; Funahashi, Yasuhiro; Watanabe, Takashi; Takano, Tetsuya; Nakamuta, Shinichi; Namba, Takashi; Kaibuchi, Kozo

    2015-10-28

    How extracellular cues direct axon-dendrite polarization in mouse developing neurons is not fully understood. Here, we report that the radial glial cell (RGC)-cortical neuron interaction directs axon formation at the opposite side of the neuron from the contact site. N-cadherin accumulates at the contact site between the RGC and cortical neuron. Inhibition of the N-cadherin-mediated adhesion decreases this oriented axon formation in vitro, and disrupts the axon-dendrite polarization in vivo. Furthermore, the RGC-neuron interaction induces the polarized distribution of active RhoA at the contacting neurite and active Rac1 at the opposite neurite. Inhibition of Rho-Rho-kinase signaling in a neuron impairs the oriented axon formation in vitro, and prevents axon-dendrite polarization in vivo. Collectively, these results suggest that the N-cadherin-mediated radial glia-neuron interaction determines the contacting neurite as the leading process for radial glia-guided neuronal migration and directs axon formation to the opposite side acting through the Rho family GTPases.

  6. Radial Glial Cell–Neuron Interaction Directs Axon Formation at the Opposite Side of the Neuron from the Contact Site

    PubMed Central

    Xu, Chundi; Funahashi, Yasuhiro; Watanabe, Takashi; Takano, Tetsuya; Nakamuta, Shinichi; Namba, Takashi

    2015-01-01

    How extracellular cues direct axon–dendrite polarization in mouse developing neurons is not fully understood. Here, we report that the radial glial cell (RGC)–cortical neuron interaction directs axon formation at the opposite side of the neuron from the contact site. N-cadherin accumulates at the contact site between the RGC and cortical neuron. Inhibition of the N-cadherin-mediated adhesion decreases this oriented axon formation in vitro, and disrupts the axon–dendrite polarization in vivo. Furthermore, the RGC–neuron interaction induces the polarized distribution of active RhoA at the contacting neurite and active Rac1 at the opposite neurite. Inhibition of Rho–Rho-kinase signaling in a neuron impairs the oriented axon formation in vitro, and prevents axon–dendrite polarization in vivo. Collectively, these results suggest that the N-cadherin-mediated radial glia–neuron interaction determines the contacting neurite as the leading process for radial glia-guided neuronal migration and directs axon formation to the opposite side acting through the Rho family GTPases. SIGNIFICANCE STATEMENT Neurons are highly polarized cell lines typically with a single axon and multiple dendrites, which underlies the ability of integrating and transmitting the information in the brain. How is the axon–dendrite polarity of neurons established in the developing neocortex? Here we show that the N-cadherin-mediated radial glial cell–neuron interaction directs axon–dendrite polarization, the radial glial cell–neuron interaction induces polarized distribution of active RhoA and active Rac1 in neurons, and Rho–Rho-kinase signaling is required for axon–dendrite polarization. Our work advances the overall understanding of how extracellular cues direct axon–dendrite polarization in mouse developing neurons. PMID:26511243

  7. Hip Muscle Activity During 3 Side-Lying Hip-Strengthening Exercises in Distance Runners

    PubMed Central

    McBeth, Joseph M.; Earl-Boehm, Jennifer E.; Cobb, Stephen C.; Huddleston, Wendy E.

    2012-01-01

    Context: Lower extremity overuse injuries are associated with gluteus medius (GMed) weakness. Understanding the activation of muscles about the hip during strengthening exercises is important for rehabilitation. Objective: To compare the electromyographic activity produced by the gluteus medius (GMed), tensor fascia latae (TFL), anterior hip flexors (AHF), and gluteus maximus (GMax) during 3 hip-strengthening exercises: hip abduction (ABD), hip abduction with external rotation (ABD-ER), and clamshell (CLAM) exercises. Design: Controlled laboratory study. Setting: Laboratory. Patients or Other Participants: Twenty healthy runners (9 men, 11 women; age = 25.45 ± 5.80 years, height = 1.71 ± 0.07 m, mass = 64.43 ± 7.75 kg) participated. Intervention(s): A weight equal to 5% body mass was affixed to the ankle for the ABD and ABD-ER exercises, and an equivalent load was affixed for the CLAM exercise. A pressure biofeedback unit was placed beneath the trunk to provide positional feedback. Main Outcome Measure(s): Surface electromyography (root mean square normalized to maximal voluntary isometric contraction) was recorded over the GMed, TFL, AHF, and GMax. Results: Three 1-way, repeated-measures analyses of variance indicated differences for muscle activity among the ABD (F3,57 = 25.903, P<.001), ABD-ER (F3,57 = 10.458, P<.001), and CLAM (F3,57 = 4.640, P=.006) exercises. For the ABD exercise, the GMed (70.1 ± 29.9%), TFL (54.3 ± 19.1%), and AHF (28.2 ± 21.5%) differed in muscle activity. The GMax (25.3 ± 24.6%) was less active than the GMed and TFL but was not different from the AHF. For the ABD-ER exercise, the TFL (70.9 ± 17.2%) was more active than the AHF (54.3 ± 24.8%), GMed (53.03 ± 28.4%), and GMax (31.7 ± 24.1 %). For the CLAM exercise, the AHF (54.2 ± 25.2%) was more active than the TFL (34.4 ± 20.1%) and GMed (32.6 ± 16.9%) but was not different from the GMax (34.2 ± 24.8%). Conclusions: The ABD exercise is preferred if targeted activation of the

  8. Mutations of fumarase that distinguish between the active site and a nearby dicarboxylic acid binding site.

    PubMed Central

    Weaver, T.; Lees, M.; Banaszak, L.

    1997-01-01

    Two mutant forms of fumarase C from E. coli have been made using PCR and recombinant DNA. The recombinant form of the protein included a histidine arm on the C-terminal facilitating purification. Based on earlier studies, two different carboxylic acid binding sites, labeled A- and B-, were observed in crystal structures of the wild type and inhibited forms of the enzyme. A histidine at each of the sites was mutated to an asparagine. H188N at the A-site resulted in a large decrease in specific activity, while the H129N mutation at the B-site had essentially no effect. From the results, we conclude that the A-site is indeed the active site, and a dual role for H188 as a potential catalytic base is proposed. Crystal structures of the two mutant proteins produced some unexpected results. Both mutations reduced the affinity for the carboxylic acids at their respective sites. The H129N mutant should be particularly useful in future kinetic studies because it sterically blocks the B-site with the carboxyamide of asparagine assuming the position of the ligand's carboxylate. In the H188N mutation at the active site, the new asparagine side chain still interacts with an active site water that appears to have moved slightly as a result of the mutation. PMID:9098893

  9. Structural Origins of Nitroxide Side Chain Dynamics on Membrane Protein [alpha]-Helical Sites

    SciTech Connect

    Kroncke, Brett M.; Horanyi, Peter S.; Columbus, Linda

    2010-12-07

    Understanding the structure and dynamics of membrane proteins in their native, hydrophobic environment is important to understanding how these proteins function. EPR spectroscopy in combination with site-directed spin labeling (SDSL) can measure dynamics and structure of membrane proteins in their native lipid environment; however, until now the dynamics measured have been qualitative due to limited knowledge of the nitroxide spin label's intramolecular motion in the hydrophobic environment. Although several studies have elucidated the structural origins of EPR line shapes of water-soluble proteins, EPR spectra of nitroxide spin-labeled proteins in detergents or lipids have characteristic differences from their water-soluble counterparts, suggesting significant differences in the underlying molecular motion of the spin label between the two environments. To elucidate these differences, membrane-exposed {alpha}-helical sites of the leucine transporter, LeuT, from Aquifex aeolicus, were investigated using X-ray crystallography, mutational analysis, nitroxide side chain derivatives, and spectral simulations in order to obtain a motional model of the nitroxide. For each crystal structure, the nitroxide ring of a disulfide-linked spin label side chain (R1) is resolved and makes contacts with hydrophobic residues on the protein surface. The spin label at site I204 on LeuT makes a nontraditional hydrogen bond with the ortho-hydrogen on its nearest neighbor F208, whereas the spin label at site F177 makes multiple van der Waals contacts with a hydrophobic pocket formed with an adjacent helix. These results coupled with the spectral effect of mutating the i {+-} 3, 4 residues suggest that the spin label has a greater affinity for its local protein environment in the low dielectric than on a water-soluble protein surface. The simulations of the EPR spectra presented here suggest the spin label oscillates about the terminal bond nearest the ring while maintaining weak contact

  10. Life extension program for the modular caustic side solvent extraction unit at Savannah River Site

    SciTech Connect

    Samadi-Dezfouli, Azadeh

    2012-11-14

    Caustic Side Solvent Extraction (CSSX) is currently used at the U.S. Department of Energy (DOE) Savannah River Site (SRS) for removal of cesium from the high-level salt-wastes stored in underground tanks. At SRS, the CSSX process is deployed in the Modular CSSX Unit (MCU). The CSSX technology utilizes a multi-component organic solvent and annular centrifugal contactors to extract cesium from alkaline salt waste. Coalescers and decanters process the Decontaminated Salt Solution (DSS) and Strip Effluent (SE) streams to allow recovery and reuse of the organic solvent and to limit the quantity of solvent transferred to the downstream facilities. MCU is operated in series with the Actinide Removal Process (ARP) which removes strontium and actinides from salt waste utilizing monosodium titanate. ARP and MCU were developed and implemented as interim salt processing until future processing technology, the CSSX-based Salt Waste Processing Facility (SWPF), is operational. SWPF is slated to come on-line in October 2014. The three year design life of the ARP/MCU process, however, was reached in April 2011. Nevertheless, most of the individual process components are capable of operating longer. An evaluation determined ARP/MCU can operate until 2015 before major equipment failure is expected. The three year design life of the ARP/MCU Life Extension (ARP/MCU LE) program will bridge the gap between current ARP/MCU operations and the start of SWPF operation. The ARP/MCU LE program introduces no new technologies. As a portion of this program, a Next Generation Solvent (NGS) and corresponding flowsheet are being developed to provide a major performance enhancement at MCU. This paper discusses all the modifications performed in the facility to support the ARP/MCU Life Extension. It will also discuss the next generation chemistry, including NGS and new stripping chemistry, which will increase cesium removal efficiency in MCU. Possible implementation of the NGS chemistry in MCU

  11. The bifunctional active site of s-adenosylmethionine synthetase. Roles of the active site aspartates.

    PubMed

    Taylor, J C; Markham, G D

    1999-11-12

    S-Adenosylmethionine (AdoMet) synthetase catalyzes the biosynthesis of AdoMet in a unique enzymatic reaction. Initially the sulfur of methionine displaces the intact tripolyphosphate chain (PPP(i)) from ATP, and subsequently PPP(i) is hydrolyzed to PP(i) and P(i) before product release. The crystal structure of Escherichia coli AdoMet synthetase shows that the active site contains four aspartate residues. Aspartate residues Asp-16* and Asp-271 individually provide the sole protein ligand to one of the two required Mg(2+) ions (* denotes a residue from a second subunit); aspartates Asp-118 and Asp-238* are proposed to interact with methionine. Each aspartate has been changed to an uncharged asparagine, and the metal binding residues were also changed to alanine, to assess the roles of charge and ligation ability on catalytic efficiency. The resultant enzyme variants all structurally resemble the wild type enzyme as indicated by circular dichroism spectra and are tetramers. However, all have k(cat) reductions of approximately 10(3)-fold in AdoMet synthesis, whereas the MgATP and methionine K(m) values change by less than 3- and 8-fold, respectively. In the partial reaction of PPP(i) hydrolysis, mutants of the Mg(2+) binding residues have >700-fold reduced catalytic efficiency (k(cat)/K(m)), whereas the D118N and D238*N mutants are impaired less than 35-fold. The catalytic efficiency for PPP(i) hydrolysis by Mg(2+) site mutants is improved by AdoMet, like the wild type enzyme. In contrast AdoMet reduces the catalytic efficiency for PPP(i) hydrolysis by the D118N and D238*N mutants, indicating that the events involved in AdoMet activation are hindered in these methionyl binding site mutants. Ca(2+) uniquely activates the D271A mutant enzyme to 15% of the level of Mg(2+), in contrast to the approximately 1% Ca(2+) activation of the wild type enzyme. This indicates that the Asp-271 side chain size is a discriminator between the activating ability of Ca(2+) and the

  12. Catalysis: Elusive active site in focus

    NASA Astrophysics Data System (ADS)

    Labinger, Jay A.

    2016-08-01

    The identification of the active site of an iron-containing catalyst raises hopes of designing practically useful catalysts for the room-temperature conversion of methane to methanol, a potential fuel for vehicles. See Letter p.317

  13. Low dielectric response in enzyme active site

    PubMed Central

    Mertz, Edward L.; Krishtalik, Lev I.

    2000-01-01

    The kinetics of charge transfer depend crucially on the dielectric reorganization of the medium. In enzymatic reactions that involve charge transfer, atomic dielectric response of the active site and of its surroundings determines the efficiency of the protein as a catalyst. We report direct spectroscopic measurements of the reorganization energy associated with the dielectric response in the active site of α-chymotrypsin. A chromophoric inhibitor of the enzyme is used as a spectroscopic probe. We find that water strongly affects the dielectric reorganization in the active site of the enzyme in solution. The reorganization energy of the protein matrix in the vicinity of the active site is similar to that of low-polarity solvents. Surprisingly, water exhibits an anomalously high dielectric response that cannot be described in terms of the dielectric continuum theory. As a result, sequestering the active site from the aqueous environment inside low-dielectric enzyme body dramatically reduces the dielectric reorganization. This reduction is particularly important for controlling the rate of enzymatic reactions. PMID:10681440

  14. Pride on the Other Side: The Emergence of LGBT Web Sites for Prospective Students

    ERIC Educational Resources Information Center

    Mathis, Daniel; Tremblay, Christopher

    2010-01-01

    For several decades, colleges have maintained an LGBT Web presence for currently enrolled students. These Web sites inform students about resources, services, events, and staff . They serve as a way to communicate a school's inclusivity and commitment to the LGBT population. Only recently have Web sites specifically targeted for the prospective…

  15. Resisted side-stepping: the effect of posture on hip abductor muscle activation

    PubMed Central

    Berry, Justin W.; Lee, Theresa S.; Foley, Hanna D.; Lewis, Cara L.

    2016-01-01

    Study Design Controlled laboratory study, repeated-measures design. Objectives To compare hip abductor muscle activity and hip and knee joint kinematics in the moving limb to the stance limb during resisted side-stepping and also to determine if muscle activity was affected by the posture (upright standing versus squat) used to perform the exercise. Background Hip abductor weakness has been associated with a variety of lower extremity injuries. Resisted side-stepping is often used as an exercise to increase strength and endurance of the hip abductors. Exercise prescription would benefit from knowing the relative muscle activity level generated in each limb and for different postures during the side-stepping exercise. Methods Twenty-four healthy adults participated in this study. Kinematics and surface electromyographic (EMG) data from the gluteus maximus, gluteus medius, and tensor fascia lata (TFL) were collected as participants performed side-stepping with a resistive band around the ankle while maintaining each of 2 postures: 1) upright standing and 2) squat. Results Mean normalized EMG signal amplitude of the gluteus maximus, gluteus medius, and TFL was higher in the stance limb than the moving limb (P≤.001). Gluteal muscle activity was higher, while TFL muscle activity was lower, in the squat posture compared to the upright standing posture (P<.001). Hip abduction excursion was greater in the stance limb than in the moving limb (P<.001). Conclusions The 3 hip abductor muscles respond differently to the posture variations of side-stepping exercise in healthy individuals. When prescribing resisted side-stepping exercises, therapists should consider the differences in hip abductor activation across limbs and variations in trunk posture. PMID:26161629

  16. Structure–Activity Relationships for Side Chain Oxysterol Agonists of the Hedgehog Signaling Pathway

    PubMed Central

    2012-01-01

    Oxysterols (OHCs) are byproducts of cholesterol oxidation that are known to activate the Hedeghog (Hh) signaling pathway. While OHCs that incorporate hydroxyl groups throughout the scaffold are known, those that act as agonists of Hh signaling primarily contain a single hydroxyl on the alkyl side chain. We sought to further explore how side chain hydroxylation patterns affect oxysterol-mediated Hh activation, by performing a structure–activity relationship study on a series of synthetic OHCs. The most active analogue, 23(R)-OHC (35), demonstrated potent activation of Hh signaling in two Hh-dependent cell lines (EC50 values 0.54–0.65 μM). In addition, OHC 35 was approximately 3-fold selective for the Hh pathway as compared to the liver X receptor, a nuclear receptor that is also activated by endogenous OHCs. Finally, 35 induced osteogenic differentiation and osteoblast formation in cultured cells, indicating functional agonism of the Hh pathway. PMID:24900386

  17. CAUSTIC SIDE SOLVENT EXTRACTION AT THE SAVANNAH RIVER SITE OPERATING EXPERIENCE AND LESSONS LEARNED

    SciTech Connect

    Brown, S.

    2010-01-06

    The Modular Caustic-Side Solvent Extraction Unit (MCU) is the first, production-scale Caustic-Side Solvent Extraction process for cesium separation to be constructed. The process utilizes an engineered solvent to remove cesium from waste alkaline salt solution resulting from nuclear processes. While the application of this solvent extraction process is unique, the process uses commercially available centrifugal contactors for the primary unit operation as well as other common methods of physical separation of immiscible liquids. The fission product, cesium-137, is the primary focus of the process due to the hazards associated with its decay. The cesium is extracted from the waste, concentrated, and stripped out of the solvent resulting in a low-level waste salt solution and a concentrated cesium nitrate stream. The concentrated cesium stream can be vitrified into borosilicate glass with almost no increase in glass volume, and the salt solution can be dispositioned as a low-level grout. The unit is deployed as an interim process to disposition waste prior to start-up of the Salt Waste Processing Facility. The Salt Waste Processing Facility utilizes the same cesium removal technology, but will treat more contaminated waste. The MCU is not only fulfilling a critical need, it is the first demonstration of the process at production-scale.

  18. Affective behavior in patients with localized cortical excisions: role of lesion site and side.

    PubMed

    Kolb, B; Taylor, L

    1981-10-01

    The perception of emotion in verbal and facial expression, and the spontaneous production of conversational speech were studied in patients with unilateral focal excisions of frontal, temporal, or parieto-occipital cortex. Lesions of the left hemisphere impaired the matching of verbal descriptions to appropriate verbal categories of emotional states, whereas with lesions of the right hemisphere, the matching of different faces displaying similar emotional states was impaired. The effects of lesions of both left and right hemisphere occurred regardless of the locus of the lesion. On the other hand, frontal-lobe lesions had differential effects upon unsolicited talking; lesions of the left frontal lobe virtually abolished this behavior, whereas lesions of the right frontal lobe produced excessive talking. These data suggest that the nature of the behavioral stimulus as well as the locus and side of damage must be considered in the study of the neural basis of affective behavior. PMID:7280683

  19. Complement activation plays a key role in the side-effects of rituximab treatment.

    PubMed

    van der Kolk, L E; Grillo-López, A J; Baars, J W; Hack, C E; van Oers, M H

    2001-12-01

    Treatment with rituximab, a chimaeric anti-CD20 monoclonal antibody, can be associated with moderate to severe first-dose side-effects, notably in patients with high numbers of circulating tumour cells. The aim of this study was to elucidate the mechanism of these side-effects. At multiple early time points during the first infusion of rituximab, complement activation products (C3b/c and C4b/c) and cytokines [tumour necrosis factor alpha (TNF-alpha), interleukin 6 (IL-6) and IL-8] were measured in five relapsed low-grade non-Hodgkin's lymphoma (NHL) patients. Infusion of rituximab induced rapid complement activation, preceding the release of TNF-alpha, IL-6 and IL-8. Although the study group was small, the level of complement activation appeared to be correlated both with the number of circulating B cells prior to the infusion (r = 0.85; P = 0.07) and with the severity of the side-effects. We conclude that complement plays a pivotal role in the pathogenesis of side-effects of rituximab treatment. As complement activation can not be prevented by corticosteroids, it might be relevant to study the possible role of complement inhibitors during the first administration of rituximab.

  20. Analysis of trunk muscle activity in the side medicine-ball throw.

    PubMed

    Ikeda, Yusuke; Miyatsuji, Kazutaka; Kawabata, Koichi; Fuchimoto, Takafumi; Ito, Akira

    2009-11-01

    The purpose of this study was to compare the electromyogram (EMG) activity of the trunk musculature for long throwers and short throwers during the side medicine-ball throw. The study consisted of 2 sessions. Thirty athletes performed the side medicine-ball throw (S-MBT) in the first session. The top 5 subjects (long throwers) and the worst 5 subjects (short throwers) in the performance of the S-MBT proceeded to the second session. These subjects performed the fast side medicine-ball throw (FS-MBT) and the isometric maximal trunk rotation torque (IMTRT) test after applying surface electrodes bilaterally to the following muscles: pectoralis major, rectus abdominis, external oblique, and latissimus dorsi. The value of IMTRT in the left turn in long throwers was significantly greater (p < 0.05) than that recorded for short throwers, whereas no difference was observed in the right turn. The velocities of the medicine ball using 2-kg, 4-kg, and 6-kg medicine balls were significantly different (p < 0.01-0.001) between long throwers and short throwers The examination of EMG activity in each muscle group for long throwers and short throwers revealed that the major difference between the 2 groups is EMG activity of the left external oblique. These results suggest that the EMG activity of the external oblique on either side is an important factor for FS-MBT.

  1. The site of activation of factor X by cancer procoagulant.

    PubMed

    Gordon, S G; Mourad, A M

    1991-12-01

    Cancer procoagulant (CP) is a cysteine proteinase found in a variety of malignant cells and tissues and in human amnion-chorion tissue. It initiates coagulation by activating factor X. However, the amino acid sequence of the substrate protein that determines the cleavage site of cysteine proteinases is different from that of the serine proteinases that normally activate factor X, such as factor IXa, VIIa and Russell's Viper Venom (RVV). Therefore, it was of interest to determine the site of cleavage of human factor X by CP. Purified CP was incubated with purified factor X and the reaction mixture was electrophoresed on a 10% Tris-tricine SDS-PAGE gel. The proteins were electroeluted on to a polyvinylidene difluoride (PVDF) membrane, and stained with Coomassie blue. The heavy chain of activated factor X was cut out of the PVDF membrane and sequenced with an Applied Biosystems 477A with on-line HPLC. The primary cleavage sequence was Asp-Ala-Ala-Asp-Leu-Asp-Pro-; two other secondary sequences Ser-Ile-Thr-Trp-Lys-Pro- and Glu-Asn-Pro-Phe-Asp-Leu were found. The penultimate amino acid on the carbonyl side of the hydrolysed amide bond plays a critical role for the recognition of the cleavage site of cysteine proteinases. These data indicate that the penultimate amino acid for the primary cleavage site of factor X by CP is proline-20 and for the secondary sites, proline-13 and proline-28. This is in contrast to arginine-52 that determines the specificity of the cleavage by normal serine proteinase activation.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Side effects of anabolic androgenic steroids: pathological findings and structure-activity relationships.

    PubMed

    Büttner, Andreas; Thieme, Detlef

    2010-01-01

    Side effects of anabolic steroids with relevance in forensic medicine are mainly due to life-threatening health risks with potential fatal outcome and cases of uncertain limitations of criminal liability after steroid administration. Both problems are typically associated with long-term abuse and excessive overdose of anabolic steroids. Side effects may be due to direct genomic or nongenomic activities (myotrophic, hepatotoxic), can result from down-regulation of endogenous biosynthesis (antiandrogenic) or be indirect consequence of steroid biotransformation (estrogenic).Logically, there are no systematic clinical studies available and the number of causally determined fatalities is fairly limited. The following compilation reviews typical abundant observations in cases where nonnatural deaths (mostly liver failure and sudden cardiac death) were concurrent with steroid abuse. Moreover, frequent associations between structural characteristics and typical side effects are summarized.

  3. Active Sites Environmental Monitoring Program: Action levels

    SciTech Connect

    Ashwood, J.S.; Ashwood, T.L.

    1991-10-01

    The Active Sites Environmental Monitoring Program (ASEMP) was established at Oak Ridge National Laboratory to provide for early leak detection and to monitor performance of the active low-level waste disposal facilities in Solid Waste Storage Area (SWSA) 6 and the transuranic waste storage areas in SWSA 5 North. Early leak detection is accomplished by sampling runoff, groundwater, and perched water in burial trenches. Sample results are compared to action levels that represent background contamination by naturally occurring and fallout-derived radionuclides. 15 refs., 3 figs., 12 tabs.

  4. Characterization of active sites in zeolite catalysts

    SciTech Connect

    Eckert, J.; Bug, A.; Nicol, J.M.

    1997-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Atomic-level details of the interaction of adsorbed molecules with active sites in catalysts are urgently needed to facilitate development of more effective and/or environmentally benign catalysts. To this end the authors have carried out neutron scattering studies combined with theoretical calculations of the dynamics of small molecules inside the cavities of zeolite catalysts. The authors have developed the use of H{sub 2} as a probe of adsorption sites by observing the hindered rotations of the adsorbed H{sub 2} molecule, and they were able to show that an area near the four-rings is the most likely adsorption site for H{sub 2} in zeolite A while adsorption of H{sub 2} near cations located on six-ring sites decreases in strength as Ni {approximately} Co > Ca > Zn {approximately} Na. Vibrational and rotational motions of ethylene and cyclopropane adsorption complexes were used as a measure for zeolite-adsorbate interactions. Preliminary studies of the binding of water, ammonia, and methylamines were carried out in a number of related guest-host materials.

  5. FULL-SCALE TESTING OF A CAUSTIC SIDE SOLVENT EXTRACTION SYSTEM TO REMOVE CESIUM FROM SAVANNAH RIVER SITE RADIOACTIVE WASTE

    SciTech Connect

    Poirier, M; Thomas Peters, T; Earl Brass, E; Stanley Brown, S; Mark Geeting, M; Lcurtis Johnson, L; Charles02 Coleman, C; S Crump, S; Mark Barnes, M; Samuel Fink, S

    2007-10-15

    Savannah River Site (SRS) personnel have completed construction and assembly of the Modular Caustic Side Solvent Extraction Unit (MCU) facility. Following assembly, they conducted testing to evaluate the ability of the process to remove non-radioactive cesium and to separate the aqueous and organic phases. They conducted tests at salt solution flow rates of 3.5, 6.0, and 8.5 gpm. During testing, the MCU Facility collected samples and submitted them to Savannah River National Laboratory (SRNL) personnel for analysis of cesium, Isopar{reg_sign} L, and Modifier [1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol]. SRNL personnel analyzed the aqueous samples for cesium by Inductively-Coupled Plasma Mass Spectroscopy (ICP-MS) and the solvent samples for cesium using a Parr Bomb Digestion followed by ICP-MS. They analyzed aqueous samples for Isopar{reg_sign} L and Modifier by gas chromatography (GC).

  6. SCALE-UP OF CAUSTIC-SIDE SOLVENT EXTRACTION PROCESS FOR REMOVAL OF CESIUM AT SAVANNAH RIVER SITE

    SciTech Connect

    Geeting, M

    2007-10-19

    In 2004, the Department of Energy (DOE) directed Westinghouse Savannah River Company (WSRC) to develop a Caustic-Side Solvent Extraction (CSSX) process at the Savannah River Site (SRS) capable of removing cesium from 1 million gallons a year of dissolved salt solution. This facility would provide interim processing for cesium containing salt solution until the Salt Waste Processing Facility (SWPF) comes on-line. The DOE design inputs1 were to utilize contactors similar in design to those to be used in the SWPF, assume class C waste with less than 0.5 Ci/gal Cs-137, achieve a Decontamination Factor (DF) greater than 12, include the ability to clean the contactors in place, and assume an operating life of three years. WSRC embarked on a design, test, and build program to achieve these criteria as described in the following text. All DOE design criteria have been met or exceeded by WSRC.

  7. Complement activation during OKT3 treatment: a possible explanation for respiratory side effects.

    PubMed

    Raasveld, M H; Bemelman, F J; Schellekens, P T; van Diepen, F N; van Dongen, A; van Royen, E A; Hack, C E; ten Berge, I J

    1993-05-01

    Respiratory side effects that sometimes occur during treatment with anti-CD3 MAb OKT3 might result from pulmonary sequestration of activated neutrophils. Therefore, we studied complement activation in relation to activation and pulmonary sequestration of neutrophils during antirejection treatment with OKT3. In each of nine patients studied, plasma C3a-desarg and C4b/c levels increased compared with pretreatment values already in the first sample taken 15 minutes after the first dose of OKT3 (P < 0.05), with peak values at 15 and 30 minutes, respectively. Levels of neutrophil degranulation product elastase (complexed to alpha 1-antitrypsin) also increased already at 15 minutes after the first dose of OKT3 (P < 0.05), which is before elevated levels of the cytokines TNF alpha, IL-6 or IL-8 were detectable. In contrast, upon subsequent OKT3 administrations or in the control group treated with methylprednisolone, neither complement activation, cytokine release nor neutrophil degranulation occurred. In five studied patients treated with OKT3, pulmonary sequestration of radiolabeled granulocytes was observed from 3 until 15 minutes after the first dose of OKT3, together with peripheral blood granulocytopenia, which lasted at least 30 minutes. In conclusion, we demonstrate a simultaneous activation of complement and pulmonary sequestration of activated granulocytes immediately following the first dose of OKT3. These phenomena may be involved in the development of respiratory side effects complicating this therapy.

  8. Side Chain Degradable Cationic-Amphiphilic Polymers with Tunable Hydrophobicity Show in Vivo Activity.

    PubMed

    Uppu, Divakara S S M; Samaddar, Sandip; Hoque, Jiaul; Konai, Mohini M; Krishnamoorthy, Paramanandham; Shome, Bibek R; Haldar, Jayanta

    2016-09-12

    Cationic-amphiphilic antibacterial polymers with optimal amphiphilicity generally target the bacterial membranes instead of mammalian membranes. To date, this balance has been achieved by varying the cationic charge or side chain hydrophobicity in a variety of cationic-amphiphilic polymers. Optimal hydrophobicity of cationic-amphiphilic polymers has been considered as the governing factor for potent antibacterial activity yet minimal mammalian cell toxicity. However, the concomitant role of hydrogen bonding and hydrophobicity with constant cationic charge in the interactions of antibacterial polymers with bacterial membranes is not understood. Also, degradable polymers that result in nontoxic degradation byproducts offer promise as safe antibacterial agents. Here we show that amide- and ester (degradable)-bearing cationic-amphiphilic polymers with tunable side chain hydrophobicity can modulate antibacterial activity and cytotoxicity. Our results suggest that an amide polymer can be a potent antibacterial agent with lower hydrophobicity whereas the corresponding ester polymer needs a relatively higher hydrophobicity to be as effective as its amide counterpart. Our studies reveal that at higher hydrophobicities both amide and ester polymers have similar profiles of membrane-active antibacterial activity and mammalian cell toxicity. On the contrary, at lower hydrophobicities, amide and ester polymers are less cytotoxic, but the former have potent antibacterial and membrane activity compared to the latter. Incorporation of amide and ester moieties made these polymers side chain degradable, with amide polymers being more stable than the ester polymers. Further, the polymers are less toxic, and their degradation byproducts are nontoxic to mice. More importantly, the optimized amide polymer reduces the bacterial burden of burn wound infections in mice models. Our design introduces a new strategy of interplay between the hydrophobic and hydrogen bonding interactions

  9. Active site of ribulosebisphosphate carboxylase/oxygenase

    SciTech Connect

    Hartman, F.C.; Stringer, C.D.; Milanez, S.; Lee, E.H.

    1985-01-01

    Previous affinity labeling studies and comparative sequence analyses have identified two different lysines at the active site of ribulosebisphosphate carboxylase/oxygenase and have suggested their essentiality to function. The essential lysines occupy positions 166 and 329 in the Rhodospirillum rubrum enzyme and positions 175 and 334 in the spinach enzyme. Based on the pH-dependencies of inactivations of the two enzymes by trinitrobenzene sulfonate, Lys-166 (R. rubrum enzyme) exhibits a pK/sub a/ of 7.9 and Lys-334 (spinach enzyme) exhibits a pK/sub a/ of 9.0. These low pK/sub a/ values as well as the enhanced nucleophilicities of the lysyl residues argue that both are important to catalysis rather than to substrate binding. Lys-166 may correspond to the essential base that initiates catalysis and that displays a pK/sub a/ of 7.5 in the pH-curve for V/sub max//K/sub m/. Cross-linking experiments with 4,4'-diisothiocyano-2,2'-disulfonate stilbene demonstrate that the two active-site lysines are within 12 A. 50 refs., 7 figs., 1 tab.

  10. The copper active site of CBM33 polysaccharide oxygenases.

    PubMed

    Hemsworth, Glyn R; Taylor, Edward J; Kim, Robbert Q; Gregory, Rebecca C; Lewis, Sally J; Turkenburg, Johan P; Parkin, Alison; Davies, Gideon J; Walton, Paul H

    2013-04-24

    The capacity of metal-dependent fungal and bacterial polysaccharide oxygenases, termed GH61 and CBM33, respectively, to potentiate the enzymatic degradation of cellulose opens new possibilities for the conversion of recalcitrant biomass to biofuels. GH61s have already been shown to be unique metalloenzymes containing an active site with a mononuclear copper ion coordinated by two histidines, one of which is an unusual τ-N-methylated N-terminal histidine. We now report the structural and spectroscopic characterization of the corresponding copper CBM33 enzymes. CBM33 binds copper with high affinity at a mononuclear site, significantly stabilizing the enzyme. X-band EPR spectroscopy of Cu(II)-CBM33 shows a mononuclear type 2 copper site with the copper ion in a distorted axial coordination sphere, into which azide will coordinate as evidenced by the concomitant formation of a new absorption band in the UV/vis spectrum at 390 nm. The enzyme's three-dimensional structure contains copper, which has been photoreduced to Cu(I) by the incident X-rays, confirmed by X-ray absorption/fluorescence studies of both aqueous solution and intact crystals of Cu-CBM33. The single copper(I) ion is ligated in a T-shaped configuration by three nitrogen atoms from two histidine side chains and the amino terminus, similar to the endogenous copper coordination geometry found in fungal GH61. PMID:23540833

  11. Intrinsically bent DNA flanks both sides of an RNA polymerase I transcription start site. Both regions display novel electrophoretic mobility.

    PubMed

    Schroth, G P; Siino, J S; Cooney, C A; Th'ng, J P; Ho, P S; Bradbury, E M

    1992-05-15

    We have identified two intrinsically bent regions of DNA which flank the transcription start site of the rRNA gene from Physarum polycephalum. DNA fragments from both regions were analyzed by circular permutation polyacrylamide gel electrophoresis assay and computer modeling. Both types of analysis indicate that one fragment contains a relatively simple bend centered about 160 base pairs (bp) upstream of the transcription start site while the other fragment contains multiple bends, the most prominent of which is centered about 150 bp downstream of the start site. According to both gel mobilities and computer modeling we estimate that the net bending in each is about 45 degrees. These fragments were studied in detail by varying parameters of electrophoresis that are known to affect bending. Previous work indicates that anomalous mobility should decrease when temperature or ethidium bromide concentration is increased, whereas anomalous mobility should increase when polyacrylamide gel percentage is increased. The anomalous mobility of both fragments decreases as temperature is raised from 4 to 65 degrees C, although the bent structure centered at -160 bp is more temperature labile than the bend at +150 bp. Strikingly different behavior was observed for the two fragments as the polyacrylamide concentrations was varied. As polyacrylamide concentrations are increased from 6 to 10%, the anomalous mobility of the bend centered at -160 bp increases while that of the bend centered at +150 bp decreases. The bend centered at +150 bp is "straightened" at all ethidium concentrations tested. In sharp contrast and unexpectedly, the anomalous migration of the bend centered at -160 bp increases dramatically in 0.1 micrograms/ml ethidium bromide. Many of the mobility differences we observe suggest that the two regions studied represent structurally distinct forms of bent DNA. The location of these strongly bent regions on either side of a RNA polymerase I transcription start site

  12. Active Sites Environmental Monitoring Program: Program plan

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  13. Body side-specific control of motor activity during turning in a walking animal.

    PubMed

    Gruhn, Matthias; Rosenbaum, Philipp; Bockemühl, Till; Büschges, Ansgar

    2016-04-27

    Animals and humans need to move deftly and flexibly to adapt to environmental demands. Despite a large body of work on the neural control of walking in invertebrates and vertebrates alike, the mechanisms underlying the motor flexibility that is needed to adjust the motor behavior remain largely unknown. Here, we investigated optomotor-induced turning and the neuronal mechanisms underlying the differences between the leg movements of the two body sides in the stick insect Carausius morosus. We present data to show that the generation of turning kinematics in an insect are the combined result of descending unilateral commands that change the leg motor output via task-specific modifications in the processing of local sensory feedback as well as modification of the activity of local central pattern generating networks in a body-side-specific way. To our knowledge, this is the first study to demonstrate the specificity of such modifications in a defined motor task.

  14. Characterizing Active Site Conformational Heterogeneity along the Trajectory of an Enzymatic Phosphoryl Transfer Reaction.

    PubMed

    Zeymer, Cathleen; Werbeck, Nicolas D; Zimmermann, Sabine; Reinstein, Jochen; Hansen, D Flemming

    2016-09-12

    States along the phosphoryl transfer reaction catalyzed by the nucleoside monophosphate kinase UmpK were captured and changes in the conformational heterogeneity of conserved active site arginine side-chains were quantified by NMR spin-relaxation methods. In addition to apo and ligand-bound UmpK, a transition state analog (TSA) complex was utilized to evaluate the extent to which active site conformational entropy contributes to the transition state free energy. The catalytically essential arginine side-chain guanidino groups were found to be remarkably rigid in the TSA complex, indicating that the enzyme has evolved to restrict the conformational freedom along its reaction path over the energy landscape, which in turn allows the phosphoryl transfer to occur selectively by avoiding side reactions. PMID:27534930

  15. Novel method for the preparation of polymethacrylates with nonlinear optically active side groups

    NASA Astrophysics Data System (ADS)

    Strohriegl, Peter; Mueller, Harry; Nuyken, Oskar

    1993-01-01

    Because of their excellent optical properties, a variety of polymethacrylates with pendant NLO-chromophores has been prepared and investigated by different research groups. The method normally used for the synthesis of these polymers is the free radical polymerization of the corresponding methacrylates with NLO-active side groups. However, the NLO- chromophores, usually large conjugated molecules with an electron donor and an electron acceptor substituent, often contain a number of functional groups, e.g., nitro- or azo groups. These may act as retarders or inhibitors in a free radical polymerization. So in many cases the yields are not quantitative and the molecular weights are quite low. We present an alternative method for the preparation of polymethacrylates with pendant NLO-chromophores, the polymeranalogous esterification of poly(methacryloyl chloride). In a first step, reactive prepolymers are prepared by the free radical polymerization of methacryloyl chloride (MAC1) or by copolymerization of MAC1 with methyl methacrylate (MMA). These prepolymers are esterified using NLO-active side groups with a hydroxy-terminated spacer. Well defined, high molecular weight polymethacrylates with high dye contents can be prepared by this method. A copolymer with 19 mole% of azochromophores exhibits an electro-optical coefficient of 9 pm/V at 1300 mm after poling, whereas 19 pm/V (1500 nm) were measured for a polymer with 90 mole% of NLO active azobenzene side groups. In addition, the novel method provides easy access to some novel copolymers with both NLO-active azobenzene units and photocrosslinkable cinnamoyl groups.

  16. Key Role of Active-Site Water Molecules in Bacteriorhodopsin Proton-Transfer Reactions

    SciTech Connect

    Bondar, A.N.; Baudry, Jerome Y; Suhai, Sandor; Fischer, S.; Smith, Jeremy C

    2008-10-01

    The functional mechanism of the light-driven proton pump protein bacteriorhodopsin depends on the location of water molecules in the active site at various stages of the photocycle and on their roles in the proton-transfer steps. Here, free energy computations indicate that electrostatic interactions favor the presence of a cytoplasmic-side water molecule hydrogen bonding to the retinal Schiff base in the state preceding proton transfer from the retinal Schiff base to Asp85. However, the nonequilibrium nature of the pumping process means that the probability of occupancy of a water molecule in a given site depends both on the free energies of insertion of the water molecule in this and other sites during the preceding photocycle steps and on the kinetic accessibility of these sites on the time scale of the reaction steps. The presence of the cytoplasmic-side water molecule has a dramatic effect on the mechanism of proton transfer: the proton is channeled on the Thr89 side of the retinal, whereas the transfer on the Asp212 side is hindered. Reaction-path simulations and molecular dynamics simulations indicate that the presence of the cytoplasmic-side water molecule permits a low-energy bacteriorhodopsin conformer in which the water molecule bridges the twisted retinal Schiff base and the proton acceptor Asp85. From this low-energy conformer, proton transfer occurs via a concerted mechanism in which the water molecule participates as an intermediate proton carrier.

  17. GLYX-13, a NMDA receptor glycine-site functional partial agonist, induces antidepressant-like effects without ketamine-like side effects.

    PubMed

    Burgdorf, Jeffrey; Zhang, Xiao-lei; Nicholson, Katherine L; Balster, Robert L; Leander, J David; Stanton, Patric K; Gross, Amanda L; Kroes, Roger A; Moskal, Joseph R

    2013-04-01

    Recent human clinical studies with the NMDA receptor (NMDAR) antagonist ketamine have revealed profound and long-lasting antidepressant effects with rapid onset in several clinical trials, but antidepressant effects were preceded by dissociative side effects. Here we show that GLYX-13, a novel NMDAR glycine-site functional partial agonist, produces an antidepressant-like effect in the Porsolt, novelty induced hypophagia, and learned helplessness tests in rats without exhibiting substance abuse-related, gating, and sedative side effects of ketamine in the drug discrimination, conditioned place preference, pre-pulse inhibition and open-field tests. Like ketamine, the GLYX-13-induced antidepressant-like effects required AMPA/kainate receptor activation, as evidenced by the ability of NBQX to abolish the antidepressant-like effect. Both GLYX-13 and ketamine persistently (24 h) enhanced the induction of long-term potentiation of synaptic transmission and the magnitude of NMDAR-NR2B conductance at rat Schaffer collateral-CA1 synapses in vitro. Cell surface biotinylation studies showed that both GLYX-13 and ketamine led to increases in both NR2B and GluR1 protein levels, as measured by Western analysis, whereas no changes were seen in mRNA expression (microarray and qRT-PCR). GLYX-13, unlike ketamine, produced its antidepressant-like effect when injected directly into the medial prefrontal cortex (MPFC). These results suggest that GLYX-13 produces an antidepressant-like effect without the side effects seen with ketamine at least in part by directly modulating NR2B-containing NMDARs in the MPFC. Furthermore, the enhancement of 'metaplasticity' by both GLYX-13 and ketamine may help explain the long-lasting antidepressant effects of these NMDAR modulators. GLYX-13 is currently in a Phase II clinical development program for treatment-resistant depression. PMID:23303054

  18. Modulators of γ-Secretase Activity Can Facilitate the Toxic Side-Effects and Pathogenesis of Alzheimer's Disease

    PubMed Central

    Svedružić, Željko M.; Popović, Katarina; Šendula-Jengić, Vesna

    2013-01-01

    Background Selective modulation of different Aβ products of an intramembrane protease γ-secretase, could be the most promising strategy for development of effective therapies for Alzheimer's disease. We describe how different drug-candidates can modulate γ-secretase activity in cells, by studying how DAPT affects changes in γ-secretase activity caused by gradual increase in Aβ metabolism. Results Aβ 1–40 secretion in the presence of DAPT shows biphasic activation-inhibition dose-response curves. The biphasic mechanism is a result of modulation of γ-secretase activity by multiple substrate and inhibitor molecules that can bind to the enzyme simultaneously. The activation is due to an increase in γ-secretase's kinetic affinity for its substrate, which can make the enzyme increasingly more saturated with otherwise sub-saturating substrate. The noncompetitive inhibition that prevails at the saturating substrate can decrease the maximal activity. The synergistic activation-inhibition effects can drastically reduce γ-secretase's capacity to process its physiological substrates. This reduction makes the biphasic inhibitors exceptionally prone to the toxic side-effects and potentially pathogenic. Without the modulation, γ-secretase activity on it physiological substrate in cells is only 14% of its maximal activity, and far below the saturation. Significance Presented mechanism can explain why moderate inhibition of γ-secretase cannot lead to effective therapies, the pharmacodynamics of Aβ-rebound phenomenon, and recent failures of the major drug-candidates such as semagacestat. Novel improved drug-candidates can be prepared from competitive inhibitors that can bind to different sites on γ-secretase simultaneously. Our quantitative analysis of the catalytic capacity can facilitate the future studies of the therapeutic potential of γ-secretase and the pathogenic changes in Aβ metabolism. PMID:23308095

  19. [Dermal and systemic side effects of fluocortin butylester. Comparative skin tearing experiments with active principles from commercial preparations].

    PubMed

    Kapp, J F; Gliwitzki, B; Josefiuk, P; Weishaupt, W

    1977-01-01

    Different concentrations of butyl 6alpha-fluoro-11beta-hydroxy-16alpha-methyl-3,20-dioxo-1,4-pregnadien-21-oate (fluocortin butylester FCB, Vaspit) and of clobetasone-17-butyrate, clobetasole-17-propionate and hydrocortisone-17-butyrate have been administered topically in order to investigate dermal and systemic side effects. It could be shown that FCB exhibits by far the least side effects. A specially devised apparatus covering the site of substance application, guaranteed an exclusive dermal absorption. Side effects, therefore, cannot be ascribed to oral ingestion of the drugs.

  20. FACILITY UPGRADES FOR RECEIPT FROM ACTINIDE REMOVAL AND MODULAR CAUSTIC SIDE SOLVENT EXTRACTION PROCESSES AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Fellinger, T; Stephen Phillips, S; Benjamin Culbertson, B; Beverly02 Davis, B; Aaron Staub, A

    2007-02-13

    The Savannah River Site (SRS) is currently on an aggressive program to empty its High Level Waste (HLW) tanks and immobilize its radioactive waste into a durable borosilicate glass in the Defense Waste Processing Facility (DWPF). As a part of that program, two new processes will be brought on-line to assist in emptying the HLW tanks. These processes are in addition to the current sludge removal process and are called the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction (MCU) Process. In order to accept and process the streams generated from these two new processes, several facility modifications are required and are broken down into several projects. These projects are handling the facility modifications required for the Tank Farm (241-96H), and DWPF vitrification facility (221-S), and DWPF ancillary facilities (511-S, and 512-S). Additional modifications to the 221-S building were required to address the flammability concern from the solvent carryover from the MCU process. This paper will describe a summary of the modifications impacting the 511-S, 512-S, and the 221-S facilities in order to receive the new streams from the ARP and MCU processes at the DWPF.

  1. Discovery of thiochroman derivatives bearing a carboxy-containing side chain as orally active pure antiestrogens.

    PubMed

    Kanbe, Yoshitake; Kim, Myung-Hwa; Nishimoto, Masahiro; Ohtake, Yoshihito; Tsunenari, Toshiaki; Taniguchi, Kenji; Ohizumi, Iwao; Kaiho, Shin-ichi; Nabuchi, Yoshiaki; Kawata, Setsu; Morikawa, Kazumi; Jo, Jae-Chon; Kwon, Hee-An; Lim, Hyun-Suk; Kim, Hak-Yeop

    2006-08-01

    In order to search for alternatives to the sulfoxide moiety in the long side chain of pure antiestrogens, several molecules that may interact with water in a fashion similar to ICI164,384 were designed and it was found that compounds with the carboxy, the sulfamide, or the sulfonamide instead of the sulfoxide moiety also functioned as pure antiestrogens. Interestingly, the compound possessing the carboxy moiety showed superior antiestrogen activity compared to ICI182,780 when dosed orally. Results of the pharmacokinetic evaluation indicated that the potent antiestrogen activity at oral dosing attributed to both the improved absorption from the intestinal wall and the metabolic stability of the compound in liver. PMID:16709454

  2. The apparent quorum-sensing inhibitory activity of pyrogallol is a side effect of peroxide production.

    PubMed

    Defoirdt, Tom; Pande, Gde Sasmita Julyantoro; Baruah, Kartik; Bossier, Peter

    2013-06-01

    There currently is more and more interest in the use of natural products, such as tea polyphenols, as therapeutic agents. The polyphenol compound pyrogallol has been reported before to inhibit quorum-sensing-regulated bioluminescence in Vibrio harveyi. Here, we report that the addition of 10 mg · liter(-1) pyrogallol protects both brine shrimp (Artemia franciscana) and giant river prawn (Macrobrachium rosenbergii) larvae from pathogenic Vibrio harveyi, whereas the compound showed relatively low toxicity (therapeutic index of 10). We further demonstrate that the apparent quorum-sensing-disrupting activity is a side effect of the peroxide-producing activity of this compound rather than true quorum-sensing inhibition. Our results emphasize that verification of minor toxic effects by using sensitive methods and the use of appropriate controls are essential when characterizing compounds as being able to disrupt quorum sensing. PMID:23545532

  3. Introducing endo-xylanase activity into an exo-acting arabinofuranosidase that targets side chains.

    PubMed

    McKee, Lauren S; Peña, Maria J; Rogowski, Artur; Jackson, Adam; Lewis, Richard J; York, William S; Krogh, Kristian B R M; Viksø-Nielsen, Anders; Skjøt, Michael; Gilbert, Harry J; Marles-Wright, Jon

    2012-04-24

    The degradation of the plant cell wall by glycoside hydrolases is central to environmentally sustainable industries. The major polysaccharides of the plant cell wall are cellulose and xylan, a highly decorated β-1,4-xylopyranose polymer. Glycoside hydrolases displaying multiple catalytic functions may simplify the enzymes required to degrade plant cell walls, increasing the industrial potential of these composite structures. Here we test the hypothesis that glycoside hydrolase family 43 (GH43) provides a suitable scaffold for introducing additional catalytic functions into enzymes that target complex structures in the plant cell wall. We report the crystal structure of Humicola insolens AXHd3 (HiAXHd3), a GH43 arabinofuranosidase that hydrolyses O3-linked arabinose of doubly substituted xylans, a feature of the polysaccharide that is recalcitrant to degradation. HiAXHd3 displays an N-terminal five-bladed β-propeller domain and a C-terminal β-sandwich domain. The interface between the domains comprises a xylan binding cleft that houses the active site pocket. Substrate specificity is conferred by a shallow arabinose binding pocket adjacent to the deep active site pocket, and through the orientation of the xylan backbone. Modification of the rim of the active site introduces endo-xylanase activity, whereas the resultant enzyme variant, Y166A, retains arabinofuranosidase activity. These data show that the active site of HiAXHd3 is tuned to hydrolyse arabinofuranosyl or xylosyl linkages, and it is the topology of the distal regions of the substrate binding surface that confers specificity. This report demonstrates that GH43 provides a platform for generating bespoke multifunctional enzymes that target industrially significant complex substrates, exemplified by the plant cell wall.

  4. Control of active sites in flocculation: Concept of equivalent active sites''

    SciTech Connect

    Behl, S.; Moudgil, B.M. . Dept. of Materials Science and Engineering)

    1993-12-01

    Flocculation and dispersion of solids are strong functions of the amount and conformation of the adsorbed polymer. Regions of dispersion and flocculation of solids with particular polymer molecules may be deduced from saturation adsorption data. The concept of equivalent active sites'' is proposed to explain flocculation and dispersion behavior irrespective of the amount or conformation of the adsorbed polymer. The concept has been further extended to study the selective flocculation process.

  5. A study of the K(+)-site mutant of ascorbate peroxidase: mutations of protein residues on the proximal side of the heme cause changes in iron ligation on the distal side.

    PubMed

    Cheek, J; Mandelman, D; Poulos, T L; Dawson, J H

    1999-02-01

    A series of ferric and ferrous derivatives of wild-type ascorbate peroxidase (APX) and of an engineered K(+)-site mutant of APX that has had its potassium cation binding site removed have been examined by electronic absorption and magnetic circular dichroism (MCD) spectroscopy at 4 degrees C. Wild-type ferric APX has spectroscopic properties that are very similar to those of ferric cytochrome c peroxidase (CCP) and likely exists primarily as a five-coordinate high-spin heme ligated on the proximal side by a histidine at pH 7. There is also evidence for minority contributions from six-coordinate high- and low-spin species (histidine-water, histidine-hydroxide, and bis-histidine). The K(+)-site mutant of APX varies considerably in the electronic absorption and MCD spectra in both the ferric and ferrous states when compared with spectra of the wild-type APX. The electronic absorption and MCD spectra of the engineered K(+)-site APX mutant are essentially identical to those of cytochrome b5, a known bis-imidazole (histidine) ligated heme system. It therefore appears that the K(+)-site mutant of APX has undergone a conformational change to yield a bis-histidine coordination structure in both the ferric and ferrous oxidation states at neutral pH. This conformational change is the result of mutagenesis of the protein to remove the K(+)-binding site which is located approximately 8 A from the peroxide binding pocket. Thus, mutations of protein residues on the proximal side of the heme cause changes in iron ligation on the distal side. PMID:10499104

  6. Body side-specific control of motor activity during turning in a walking animal

    PubMed Central

    Gruhn, Matthias; Rosenbaum, Philipp; Bockemühl, Till; Büschges, Ansgar

    2016-01-01

    Animals and humans need to move deftly and flexibly to adapt to environmental demands. Despite a large body of work on the neural control of walking in invertebrates and vertebrates alike, the mechanisms underlying the motor flexibility that is needed to adjust the motor behavior remain largely unknown. Here, we investigated optomotor-induced turning and the neuronal mechanisms underlying the differences between the leg movements of the two body sides in the stick insect Carausius morosus. We present data to show that the generation of turning kinematics in an insect are the combined result of descending unilateral commands that change the leg motor output via task-specific modifications in the processing of local sensory feedback as well as modification of the activity of local central pattern generating networks in a body-side-specific way. To our knowledge, this is the first study to demonstrate the specificity of such modifications in a defined motor task. DOI: http://dx.doi.org/10.7554/eLife.13799.001 PMID:27130731

  7. Synthesis and biological activities of new side chain and backbone cyclic bradykinin analogues.

    PubMed

    Schumann, C; Seyfarth, L; Greiner, G; Paegelow, I; Reissmann, S

    2002-08-01

    A series of conformationally constrained cyclic analogues of the peptide hormone bradykinin (BK, Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) was synthesized to check different turned structures proposed for the bioactive conformation of BK agonists and antagonists. Cycles differing in the size and direction of the lactam bridge were performed at the C- and N-terminal sequences of the molecule. Glutamic acid and lysine were introduced into the native BK sequence at different positions for cyclization through their side chains. Backbone cyclic analogues were synthesized by incorporation of N-carboxy alkylated and N-amino alkylated amino acids into the peptide chain. Although the coupling of Fmoc-glycine to the N-alkylated phenylalanine derivatives was effected with DIC/HOAt in SPPS, the dipeptide building units with more bulky amino acids were pre-built in solution. For backbone cyclization at the C-terminus an alternative building unit with an acylated reduced peptide bond was preformed in solution. Both types of building units were handled in the SPPS in the same manner as amino acids. The agonistic and antagonistic activities of the cyclic BK analogues were determined in rat uterus (RUT) and guinea-pig ileum (GPI) assays. Additionally, the potentiation of the BK-induced effects was examined. Among the series of cyclic BK agonists only compound 3 with backbone cyclization between positions 2 and 5 shows a significant agonistic activity on RUT. To study the influence of intramolecular ring closure we used an antagonistic analogue with weak activity, [D-Phe7]-BK. Side chain as well as backbone cyclization in the N-terminus of [D-Phe7]-BK resulted in analogues with moderate antagonistic activity on RUT. Also, compound 18 in which a lactam bridge between positions 6 and 9 was achieved via an acylated reduced peptide bond has moderate antagonistic activity on RUT. These results support the hypothesis of turn structures in both parts of the molecule as a requirement for BK

  8. Real-world activity, fuel use, and emissions of diesel side-loader refuse trucks

    NASA Astrophysics Data System (ADS)

    Sandhu, Gurdas S.; Frey, H. Christopher; Bartelt-Hunt, Shannon; Jones, Elizabeth

    2016-03-01

    Diesel refuse trucks have the worst fuel economy of onroad highway vehicles. The real-world effectiveness of recently introduced emission controls during low speed and low engine load driving has not been verified for these vehicles. A portable emission measurement system (PEMS) was used to measure rates of fuel use and emissions on six side-loader refuse trucks. The objectives were to: (1) characterize activity, fuel use, and emissions; (2) evaluate variability between cycles and trucks; and (3) compare results with the MOVES emission factor model. Quality assured data cover 210,000 s and 550 miles of operation during which the trucks collected 4200 cans and 50 tons of waste material. The average fuel economy was 2.6 mpg. Trash collection contributed 70%-80% of total fuel use and emissions. The daily activity Operating Mode (OpMode) distribution and cycle average fuel use and emissions is different from previously used cycles such as Central Business District (CBD), New York Garbage Truck (NYGT), and William H. Martin (WHM). NOx emission rates for trucks with selective catalytic reduction were over 90% lower than those for trucks without. Similarly, trucks with diesel particulate filters had over 90% lower particulate matter (PM) emissions than trucks without. Compared to unloaded trucks, loaded truck averaged 18% lower fuel economy while NOx and PM emissions were higher by 65% and 16%, respectively. MOVES predicted values are highly correlated to empirical data; however, MOVES estimates are 37% lower for NOx and 300% higher for PM emission rates. The data presented here can be used to develop more representative cycles and improve emission factors for side-loader refuse trucks, which in turn can improve the accuracy of refuse truck emission inventories.

  9. Cyclization and unsaturation rather than isomerisation of side chains govern the selective antibacterial activity of cationic-amphiphilic polymers.

    PubMed

    Uppu, D S S M; Bhowmik, M; Samaddar, S; Haldar, J

    2016-03-28

    Membrane-active agents represent a promising alternative to overcome antibiotic resistance. Here, we report cationic-amphiphilic polymers with variations in the side chain architecture such as cyclization, isomerization and unsaturation that resulted in potent antibacterial activity and low mammalian cell toxicity with a membrane-active mode of action.

  10. Spectroscopic definition of the copper active sites in mordenite: selective methane oxidation.

    PubMed

    Vanelderen, Pieter; Snyder, Benjamin E R; Tsai, Ming-Li; Hadt, Ryan G; Vancauwenbergh, Julie; Coussens, Olivier; Schoonheydt, Robert A; Sels, Bert F; Solomon, Edward I

    2015-05-20

    Two distinct [Cu-O-Cu](2+) sites with methane monooxygenase activity are identified in the zeolite Cu-MOR, emphasizing that this Cu-O-Cu active site geometry, having a ∠Cu-O-Cu ∼140°, is particularly formed and stabilized in zeolite topologies. Whereas in ZSM-5 a similar [Cu-O-Cu](2+) active site is located in the intersection of the two 10 membered rings, Cu-MOR provides two distinct local structures, situated in the 8 membered ring windows of the side pockets. Despite their structural similarity, as ascertained by electronic absorption and resonance Raman spectroscopy, the two Cu-O-Cu active sites in Cu-MOR clearly show different kinetic behaviors in selective methane oxidation. This difference in reactivity is too large to be ascribed to subtle differences in the ground states of the Cu-O-Cu sites, indicating the zeolite lattice tunes their reactivity through second-sphere effects. The MOR lattice is therefore functionally analogous to the active site pocket of a metalloenzyme, demonstrating that both the active site and its framework environment contribute to and direct reactivity in transition metal ion-zeolites.

  11. Dissecting the active site of a photoreceptor protein

    NASA Astrophysics Data System (ADS)

    Hoff, Wouter; Hara, Miwa; Ren, Jie; Moghadam, Farzaneh; Xie, Aihua; Kumauchi, Masato

    While enzymes are quite large molecules, functionally important chemical events are often limited to a small region of the protein: the active site. The physical and chemical properties of residues at such active sites are often strongly altered compared to the same groups dissolved in water. Understanding such effects is important for unraveling the mechanisms underlying protein function and for protein engineering, but has proven challenging. Here we report on our ongoing efforts on using photoactive yellow protein (PYP), a bacterial photoreceptor, as a model system for such effects. We will report on the following questions: How many residues affect active site properties? Are these residues in direct physical contact with the active site? Can functionally important residues be recognized in the crystal structure of a protein? What structural resolution is needed to understand active sites? What spectroscopic techniques are most informative? Which weak interactions dominate active site properties?

  12. Development of active edge pixel sensors and four-side buttable modules using vertical integration technologies

    NASA Astrophysics Data System (ADS)

    Macchiolo, A.; Andricek, L.; Moser, H.-G.; Nisius, R.; Richter, R. H.; Terzo, S.; Weigell, P.

    2014-11-01

    We present an R&D activity focused on the development of novel modules for the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The modules consist of n-in-p pixel sensors, 100 or 200 μm thick, produced at VTT (Finland) with an active edge technology, which considerably reduces the dead area at the periphery of the device. The sensors are interconnected with solder bump-bonding to the ATLAS FE-I3 and FE-I4 read-out chips, and characterised with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements will be discussed for devices before and after irradiation up to a fluence of 5 ×1015neq /cm2. We will also report on the R&D activity to obtain Inter Chip Vias (ICVs) on the ATLAS read-out chip in collaboration with the Fraunhofer Institute EMFT. This step is meant to prove the feasibility of the signal transport to the newly created readout pads on the backside of the chips allowing for four side buttable devices without the presently used cantilever for wire bonding. The read-out chips with ICVs will be interconnected to thin pixel sensors, 75 μm and 150 μm thick, with the Solid Liquid Interdiffusion (SLID) technology, which is an alternative to the standard solder bump-bonding.

  13. Mars Surveyor Project Landing Site Activities

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C.; Briggs, Geoffrey; Saunders, R. Stephen; Gilmore, Martha; Soderblom, Larry

    1999-01-01

    The Mars Surveyor Program --now a cooperative program led by NASA and CNES along with other international partners -- is underway. It has the primary science objective of furthering our understanding of the biological potential and possible biological history of Mars and has the complementary objective of improving our understanding of martian climate evolution and planetary history The missions will develop technology and acquire data necessary for eventual human Exploration. Launches of orbiters, landers and rovers will take place in 2001 and in 2003; in 2005 a complete system will be launched capable of returning samples to Earth by 2008. A key aspect of the program is the selection of landing sites. This abstract 1) reports on the status of the landing site selection process that begins with the 2001 lander mission and 2) outlines be opportunities for the Mars community to provide input into the landing site selection process.

  14. Mars Surveyor Project Landing Site Activities

    NASA Technical Reports Server (NTRS)

    Gulick, V. C.; Briggs, Geoffrey; Saunders, R. Stephen; Gilmore, Martha; Soderblom, Larry

    1999-01-01

    The Mars Surveyor Program -- now a cooperative program led by NASA and CNES along with other international partners -- is underway. It has the primary science objective of furthering our understanding of the biological potential and possible biological history of Mars and has the complementary objective of improving our understanding of martian climate evolution and planetary history. The missions will develop technology and acquire data necessary for eventual human exploration. Launches of orbiters, landers and rovers will take place in 2001 and in 2003; in 2005 a complete system will be launched capable of returning samples to Earth by 2008. A key aspect of the program is the selection of landing sites. This abstract 1) reports on the status of the landing site selection process that begins with the 2001 lander mission and 2) outlines the opportunities for the Mars community to provide input into the landing site selection process.

  15. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination.

    PubMed

    Rowley, Paul A; Kachroo, Aashiq H; Ma, Chien-Hui; Maciaszek, Anna D; Guga, Piotr; Jayaram, Makkuni

    2015-07-13

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5' to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions. PMID:25999343

  16. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination.

    PubMed

    Rowley, Paul A; Kachroo, Aashiq H; Ma, Chien-Hui; Maciaszek, Anna D; Guga, Piotr; Jayaram, Makkuni

    2015-07-13

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5' to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions.

  17. Technical and Physical Activities of Small-Sided Games in Young Korean Soccer Players.

    PubMed

    Joo, Chang H; Hwang-Bo, Kwan; Jee, Haemi

    2016-08-01

    Joo, CH, Hwang-Bo, K, and Jee, H. Technical and physical activities of small-sided games in young Korean soccer players. J Strength Cond Res 30(8): 2164-2173, 2016-The aim of this study was to examine the technical aspects and physical demands during small-sided games (SSGs) with different sized pitches in young Korean soccer players. Participants were randomly selected during a nationally held youth competition. Three different game formats were used: SSG8 (8 vs. 8 played on a small-sized field [68 × 47 m]), RSG8 (8 vs. 8 played on a regular-sized field [75 × 47 m]), and RSG11 (11 vs. 11 played on a regular-sized field). Eleven technical (ball touches, passes, and shots) and 6 physical demand variables (exercise frequency by intensity) were observed and analyzed. Same variables were also analyzed for the goalkeepers. As a result, SSG8 and RSG8 showed significantly greater numbers of technical plays in 5 and 4 variables in comparison to RSG11, respectively. In addition, although the exercise intensities increased slightly in both SSG formats, the amount was within the similar range as previous reports. In conclusion, the SSGs with reduced number of players may be referred in young players to effectively train them in technical aspects of the game by allowing greater ball exposure time without excessive physical demands. Various confounding factors such as pitch dimension should be carefully considered for training specific technical and physical variables in young Korean players.

  18. Activation of Inhibitors by Sortase Triggers Irreversible Modification of the Active Site*S

    PubMed Central

    Maresso, Anthony W.; Wu, Ruiying; Kern, Justin W.; Zhang, Rongguang; Janik, Dorota; Missiakas, Dominique M.; Duban, Mark-Eugene; Joachimiak, Andrzej; Schneewind, Olaf

    2011-01-01

    Sortases anchor surface proteins to the cell wall of Gram-positive pathogens through recognition of specific motif sequences. Loss of sortase leads to large reductions in virulence, which identifies sortase as a target for the development of antibacterials. By screening 135,625 small molecules for inhibition, we report here that aryl (β-amino)ethyl ketones inhibit sortase enzymes from staphylococci and bacilli. Inhibition of sortases occurs through an irreversible, covalent modification of their active site cysteine. Sortases specifically activate this class of molecules via β-elimination, generating a reactive olefin intermediate that covalently modifies the cysteine thiol. Analysis of the three-dimensional structure of Bacillus anthracis sortase B with and without inhibitor provides insights into the mechanism of inhibition and reveals binding pockets that can be exploited for drug discovery. PMID:17545669

  19. P/2006 HR30 (Siding Spring): A Low-activity Comet in Near-Earth Space

    NASA Technical Reports Server (NTRS)

    Hicks, Michael D.; Bauer, James M.

    2007-01-01

    The low cometary activity of P/2006 HR30 (Siding Spring) allowed a unique opportunity to study the nucleus of a periodic comet while near perihelion. P/2006 HR30 was originally targeted as a potential extinct comet, and we measured spectral reflectance and dust production using long-slit CCD spectroscopy and wide-field imaging obtained at the Palomar Mountain 200 inch telescope on 2006 August 3 and 4. The dust production Afp = 19.7 +/- 0.4 cm and mass-loss rate Q(dust) 4.1 +/- 0.1 kg/sec of the comet were approximately 2 orders of magnitude dust less than 1P/Halley at similar heliocentric distance. The VRI colors derived from the spectral reflectance were compared to Kuiper Belt objects, Centaurs, and other cometary nuclei. We found that the spectrum of P/2006 HR30 was consistent with other comets. However, the outer solar system bodies have a color distribution statistically distinct from cometary nuclei. It is our conjecture that cometary activity, most likely the reaccretion of ejected cometary dust, tends to moderate and mute the visible colors of the surface of cometary nuclei.

  20. Gastrointestinal motor-stimulating activity of macrolide antibiotics and analysis of their side effects on the canine gut.

    PubMed Central

    Itoh, Z; Suzuki, T; Nakaya, M; Inoue, M; Mitsuhashi, S

    1984-01-01

    For clarification of the nature of the side effects of macrolide antibiotics on the gastrointestinal tract, the motor-stimulating activity of these agents was studied in unanesthetized dogs. The results showed that erythromycin and oleandomycin, the 14-membered macrolides with two side chain sugars combined at C3 and C5 in a glycosidic linkage in parallel, strongly stimulate gastrointestinal motor activity, an action accompanied by vomiting at large doses. On the other hand, leucomycin, acetylspiramycin, and tylosin, belonging to a 16-membered macrolide with two side chain sugars in series combined at C5 of the lactone ring, did not induce contractions of the gastrointestinal tract. Motor-stimulating activity by erythromycin and oleandomycin was greatly inhibited by atropine sulfate. These results point to structure-physiological activity relationships. PMID:6524902

  1. An Accessory Agonist Binding Site Promotes Activation of α4β2* Nicotinic Acetylcholine Receptors.

    PubMed

    Wang, Jingyi; Kuryatov, Alexander; Sriram, Aarati; Jin, Zhuang; Kamenecka, Theodore M; Kenny, Paul J; Lindstrom, Jon

    2015-05-29

    Neuronal nicotinic acetylcholine receptors containing α4, β2, and sometimes other subunits (α4β2* nAChRs) regulate addictive and other behavioral effects of nicotine. These nAChRs exist in several stoichiometries, typically with two high affinity acetylcholine (ACh) binding sites at the interface of α4 and β2 subunits and a fifth accessory subunit. A third low affinity ACh binding site is formed when this accessory subunit is α4 but not if it is β2. Agonists selective for the accessory ACh site, such as 3-[3-(3-pyridyl)-1,2,4-oxadiazol-5-yl]benzonitrile (NS9283), cannot alone activate a nAChR but can facilitate more efficient activation in combination with agonists at the canonical α4β2 sites. We therefore suggest categorizing agonists according to their site selectivity. NS9283 binds to the accessory ACh binding site; thus it is termed an accessory site-selective agonist. We expressed (α4β2)2 concatamers in Xenopus oocytes with free accessory subunits to obtain defined nAChR stoichiometries and α4/accessory subunit interfaces. We show that α2, α3, α4, and α6 accessory subunits can form binding sites for ACh and NS9283 at interfaces with α4 subunits, but β2 and β4 accessory subunits cannot. To permit selective blockage of the accessory site, α4 threonine 126 located on the minus side of α4 that contributes to the accessory site, but not the α4β2 sites, was mutated to cysteine. Alkylation of this cysteine with a thioreactive reagent blocked activity of ACh and NS9283 at the accessory site. Accessory agonist binding sites are promising drug targets.

  2. The active site of ribulose-bisphosphate carboxylase/oxygenase

    SciTech Connect

    Hartman, F.C.

    1991-01-01

    The active site of ribulose-bisphosphate carboxylase/oxygenase requires interacting domains of adjacent, identical subunits. Most active-site residues are located within the loop regions of an eight-stranded {beta}/{alpha}-barrel which constitutes the larger C-terminal domain; additional key residues are located within a segment of the smaller N-terminal domain which partially covers the mouth of the barrel. Site-directed mutagenesis of the gene encoding the enzyme from Rhodospirillum rubrum has been used to delineate functions of active-site residues. 6 refs., 2 figs.

  3. Small-sided games in soccer: amateur vs. professional players' physiological responses, physical, and technical activities.

    PubMed

    Dellal, Alexandre; Hill-Haas, Stephen; Lago-Penas, Carlos; Chamari, Karim

    2011-09-01

    The aim of this study was to examine the relationship between the playing level in soccer (i.e., amateur vs. professional players) and the physiological impact, perceptual responses, time-motion characteristics, and technical activities during various small-sided games (SSGs). Twenty international players (27.4 ± 1.5 years and 17.4 ± 0.8 km·h(-1) of vVO(2)max) and 20 amateur players of the fourth French division (26.3 ± 2.2 years and 17.0 ± 1.2 km·h(-1) of vVO(2)max) played 9 SSGs (i.e., 2 vs. 2, 3 vs. 3, and 4 vs. 4) in which the number of ball touches authorized by possession varied (1 ball touch authorized = 1T, 2 ball touches authorized = 2T, and Free Play = FP). Heart rate (HR), blood lactate ([La]), subjective perception of effort (rating of perceived exertion [RPE]), physical performance, and technical performance of all players were analyzed during all SSGs. Across the various SSGs, amateurs completed a lower percent of successful passes (p < 0.01), recorded higher RPE and [La] values, lost a greater amount of ball possessions (p < 0.001), and covered less total distance with respect to sprinting and high-intensity running (HIR). The HR responses, however, were similar when expressed as %HRmax and %HRreserve. The comparison of the professional and amateur soccer players' activities during SSGs showed that the playing level influenced the physiological responses, physical and technical activities. Consequently, this study has shown that the main differences between elite and amateur players within SSGs concerned their capacity to perform high-intensity actions (HIR and sprints) and execute various technical abilities (in particular number of ball lost per possession and percentage of successful passes). PMID:21869625

  4. GLYX-13, an NMDA receptor glycine site functional partial agonist enhances cognition and produces antidepressant effects without the psychotomimetic side effects of NMDA receptor antagonists

    PubMed Central

    Moskal, Joseph R; Burch, Ronald; Burgdorf, Jeffrey S; Kroes, Roger A; Stanton, Patric K; Disterhoft, John F; Leander, J David

    2016-01-01

    Introduction The N-methyl-d-aspartate receptor-ionophore complex plays a key role in learning and memory and has efficacy in animals and humans with affective disorders. GLYX-13 is an N-methyl-d-aspartate receptor (NMDAR) glycine-site functional partial agonist and cognitive enhancer that also shows rapid antidepressant activity without psychotomimetic side effects. Areas covered The authors review the mechanism of action of GLYX-13 that was investigated in preclinical studies and evaluated in clinical studies. Specifically, the authors review its pharmacology, pharmacokinetics, and drug safety that were demonstrated in clinical studies. Expert opinion NMDAR full antagonists can produce rapid antidepressant effects in treatment-resistant subjects; however, they are often accompanied by psychotomimetic effects that make chronic use outside of a clinical trial inpatient setting problematic. GLYX-13 appears to exert its antidepressant effects in the frontal cortex via NMDAR-triggered synaptic plasticity. Understanding the mechanistic underpinning of GLYX-13’s antidepressant action should provide both novel insights into the role of the glutamatergic system in depression and identify new targets for therapeutic development. PMID:24251380

  5. An analysis of the factors influencing demand-side management activity in the electric utility industry

    NASA Astrophysics Data System (ADS)

    Bock, Mark Joseph

    Demand-side management (DSM), defined as the "planning, implementation, and monitoring of utility activities designed to encourage consumers to modify their pattern of electricity usage, including the timing and level of electricity demand," is a relatively new concept in the U.S. electric power industry. Nevertheless, in twenty years since it was first introduced, utility expenditures on DSM programs, as well as the number of such programs, have grown rapidly. At first glance, it may seem peculiar that a firm would actively attempt to reduce demand for its primary product. There are two primary explanations as to why a utility might pursue DSM: regulatory mandate, and self-interest. The purpose of this dissertation is to determine the impact these influences have on the amount of DSM undertaken by utilities. This research is important for two reasons. First, it provides insight into whether DSM will continue to exist as competition becomes more prevalent in the industry. Secondly, it is important because no one has taken a comprehensive look at firm-level DSM activity on an industry-wide basis. The primary data set used in this dissertation is the U.S. Department of Energy's Annual Electric Utility Report, Form EIA-861, which represents the most comprehensive data set available for analyzing DSM activity in the U.S. There are four measures of DSM activity in this data set: (1) utility expenditures on DSM programs; (2) energy savings by DSM program participants; and (3) the actual and (4) the potential reductions in peak load resulting from utility DSM measures. Each is used as the dependent variable in an econometric analysis where independent variables include various utility characteristics, regulatory characteristics, and service territory and customer characteristics. In general, the results from the econometric analysis suggest that in 1993, DSM activity was primarily the result of regulatory pressure. All of the evidence suggests that if DSM continues to

  6. Savannah River Site prioritization of transition activities

    SciTech Connect

    Finley, R.H.

    1993-11-01

    Effective management of SRS conversion from primarily a production facility to other missions (or Decontamination and Decommissioning (D&D)) requires a systematic and consistent method of prioritizing the transition activities. This report discusses the design of a prioritizing method developed to achieve systematic and consistent methods of prioritizing these activities.

  7. DOE site performance assessment activities. Radioactive Waste Technical Support Program

    SciTech Connect

    Not Available

    1990-07-01

    Information on performance assessment capabilities and activities was collected from eight DOE sites. All eight sites either currently dispose of low-level radioactive waste (LLW) or plan to dispose of LLW in the near future. A survey questionnaire was developed and sent to key individuals involved in DOE Order 5820.2A performance assessment activities at each site. The sites surveyed included: Hanford Site (Hanford), Idaho National Engineering Laboratory (INEL), Los Alamos National Laboratory (LANL), Nevada Test Site (NTS), Oak Ridge National Laboratory (ORNL), Paducah Gaseous Diffusion Plant (Paducah), Portsmouth Gaseous Diffusion Plant (Portsmouth), and Savannah River Site (SRS). The questionnaire addressed all aspects of the performance assessment process; from waste source term to dose conversion factors. This report presents the information developed from the site questionnaire and provides a comparison of site-specific performance assessment approaches, data needs, and ongoing and planned activities. All sites are engaged in completing the radioactive waste disposal facility performance assessment required by DOE Order 5820.2A. Each site has achieved various degrees of progress and have identified a set of critical needs. Within several areas, however, the sites identified common needs and questions.

  8. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    SciTech Connect

    Zull, Lawrence M.; Yeniscavich, William

    2008-01-15

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

  9. New insights into dietary supplements used in sport: active substances, pharmacological and side effects.

    PubMed

    Koncic, Marijana Zovko; Tomczyk, Michal

    2013-08-01

    As a society we are increasingly concerned about our physical appearance. For example, as much as 24% of people in developed countries admittedly exercise to improve their performance. Professional sportsmen and amateurs alike are in a constant search for new means that will enable them better sport results in shorter time. Among those means, a prominent place belongs to dietary supplements. However, the producers often advertise products whose use in sports is neither scientifically founded nor safe. This brings on an irrational use of herbal supplements which sometimes leads to unwanted side effects, but is more often of little use. Thus, the aim of this review will be to systematically evaluate some of the herbal supplements that are used as adaptogenic and ergogenic aids in sport. The review will include available data on Rhodiola rosea, Withania somnifera, Schisandra chinensis, Tribulus terrestris, Vitis vinifera, Citrus aurantium, and others. Their effects, active ingredients as well as possible adverse effects will be discussed with special focus on clinical studies. PMID:23574283

  10. New insights into dietary supplements used in sport: active substances, pharmacological and side effects.

    PubMed

    Koncic, Marijana Zovko; Tomczyk, Michal

    2013-08-01

    As a society we are increasingly concerned about our physical appearance. For example, as much as 24% of people in developed countries admittedly exercise to improve their performance. Professional sportsmen and amateurs alike are in a constant search for new means that will enable them better sport results in shorter time. Among those means, a prominent place belongs to dietary supplements. However, the producers often advertise products whose use in sports is neither scientifically founded nor safe. This brings on an irrational use of herbal supplements which sometimes leads to unwanted side effects, but is more often of little use. Thus, the aim of this review will be to systematically evaluate some of the herbal supplements that are used as adaptogenic and ergogenic aids in sport. The review will include available data on Rhodiola rosea, Withania somnifera, Schisandra chinensis, Tribulus terrestris, Vitis vinifera, Citrus aurantium, and others. Their effects, active ingredients as well as possible adverse effects will be discussed with special focus on clinical studies.

  11. Measurement of daily physical activity using the SenseWear Armband: Compliance, comfort, adverse side effects and usability.

    PubMed

    McNamara, Renae J; Tsai, Ling Ling Y; Wootton, Sally L; Ng, L W Cindy; Dale, Marita T; McKeough, Zoe J; Alison, Jennifer A

    2016-05-01

    Little is known about the acceptability of wearing physical activity-monitoring devices. This study aimed to examine the compliance, comfort, incidence of adverse side effects, and usability when wearing the SenseWear Armband (SWA) for daily physical activity assessment. In a prospective study, 314 participants (252 people with COPD, 36 people with a dust-related respiratory disease and 26 healthy age-matched people) completed a purpose-designed questionnaire following a 7-day period of wearing the SWA. Compliance, comfort levels during the day and night, adverse side effects and ease of using the device were recorded. Non-compliance with wearing the SWA over 7 days was 8%. The main reasons for removing the device were adverse side effects and discomfort. The SWA comfort level during the day was rated by 11% of participants as uncomfortable/very uncomfortable, with higher levels of discomfort reported during the night (16%). Nearly half of the participants (46%) experienced at least one adverse skin irritation side effect from wearing the SWA including itchiness, skin irritation and rashes, and/or bruising. Compliance with wearing the SWA for measurement of daily physical activity was found to be good, despite reports of discomfort and a high incidence of adverse side effects. PMID:26879695

  12. A three-dimensional model of mammalian tyrosinase active site accounting for loss of function mutations.

    PubMed

    Schweikardt, Thorsten; Olivares, Concepción; Solano, Francisco; Jaenicke, Elmar; García-Borrón, José Carlos; Decker, Heinz

    2007-10-01

    Tyrosinases are the first and rate-limiting enzymes in the synthesis of melanin pigments responsible for colouring hair, skin and eyes. Mutation of tyrosinases often decreases melanin production resulting in albinism, but the effects are not always understood at the molecular level. Homology modelling of mouse tyrosinase based on recently published crystal structures of non-mammalian tyrosinases provides an active site model accounting for loss-of-function mutations. According to the model, the copper-binding histidines are located in a helix bundle comprising four densely packed helices. A loop containing residues M374, S375 and V377 connects the CuA and CuB centres, with the peptide oxygens of M374 and V377 serving as hydrogen acceptors for the NH-groups of the imidazole rings of the copper-binding His367 and His180. Therefore, this loop is essential for the stability of the active site architecture. A double substitution (374)MS(375) --> (374)GG(375) or a single M374G mutation lead to a local perturbation of the protein matrix at the active site affecting the orientation of the H367 side chain, that may be unable to bind CuB reliably, resulting in loss of activity. The model also accounts for loss of function in two naturally occurring albino mutations, S380P and V393F. The hydroxyl group in S380 contributes to the correct orientation of M374, and the substitution of V393 for a bulkier phenylalanine sterically impedes correct side chain packing at the active site. Therefore, our model explains the mechanistic necessity for conservation of not only active site histidines but also adjacent amino acids in tyrosinase. PMID:17850513

  13. Enhanced bone-forming activity of side population cells in the periodontal ligament.

    PubMed

    Ninomiya, Tadashi; Hiraga, Toru; Hosoya, Akihiro; Ohnuma, Kiyoshi; Ito, Yuzuru; Takahashi, Masafumi; Ito, Susumu; Asashima, Makoto; Nakamura, Hiroaki

    2014-04-01

    Regeneration of alveolar bone is critical for the successful treatment of periodontal diseases. The periodontal ligament (PDL) has been widely investigated as a source of cells for the regeneration of periodontal tissues. In the present study where we attempted to develop an effective strategy for alveolar bone regeneration, we examined the osteogenic potential of side population (SP) cells, a stem cell-containing population that has been shown to be highly abundant in several kinds of tissues, in PDL cells. Isolated SP cells from the rat PDL exhibited a superior ability to differentiate into osteoblastic cells compared with non-SP (NSP) and unsorted PDL cells in vitro. The mRNA expressions of osteoblast markers and bone morphogenetic protein (BMP) 2 were significantly upregulated in SP cells and were further increased by osteogenic induction. To examine the bone-forming activity of SP cells in vivo, PDL SP cells isolated from green fluorescent protein (GFP)-transgenic rats were transplanted with hydroxyapatite (HA) disks into wild-type animals. SP cells exhibited a high ability to induce the mineralized matrix compared with NSP and unsorted PDL cells. At 12 weeks after the implantation, some of the pores in the HA disks with SP cells were filled with mineralized matrices, which were positive for bone matrix proteins, such as osteopontin, bone sialoprotein, and osteocalcin. Furthermore, osteoblast- and osteocyte-like cells on and in the bone-like mineralized matrices were GFP positive, suggesting that the matrices were directly formed by the transplanted cells. These results suggest that PDL SP cells possess enhanced osteogenic potential and could be a potential source for cell-based regenerative therapy for alveolar bone.

  14. Substrate Shuttling Between Active Sites of Uroporphyrinogen Decarboxylase in Not Required to Generate Coproporphyrinogen

    SciTech Connect

    Phillips, J.; Warby, C; Whitby, F; Kushner, J; Hill, C

    2009-01-01

    Uroporphyrinogen decarboxylase (URO-D; EC 4.1.1.37), the fifth enzyme of the heme biosynthetic pathway, is required for the production of heme, vitamin B12, siroheme, and chlorophyll precursors. URO-D catalyzes the sequential decarboxylation of four acetate side chains in the pyrrole groups of uroporphyrinogen to produce coproporphyrinogen. URO-D is a stable homodimer, with the active-site clefts of the two subunits adjacent to each other. It has been hypothesized that the two catalytic centers interact functionally, perhaps by shuttling of reaction intermediates between subunits. We tested this hypothesis by construction of a single-chain protein (single-chain URO-D) in which the two subunits were connected by a flexible linker. The crystal structure of this protein was shown to be superimposable with wild-type activity and to have comparable catalytic activity. Mutations that impaired one or the other of the two active sites of single-chain URO-D resulted in approximately half of wild-type activity. The distributions of reaction intermediates were the same for mutant and wild-type sequences and were unaltered in a competition experiment using I and III isomer substrates. These observations indicate that communication between active sites is not required for enzyme function and suggest that the dimeric structure of URO-D is required to achieve conformational stability and to create a large active-site cleft.

  15. Contribution of active-site glutamine to rate enhancement in ubiquitin carboxy terminal hydrolases

    PubMed Central

    Boudreaux, David; Chaney, Joseph; Maiti, Tushar K.; Das, Chittaranjan

    2012-01-01

    Ubiquitin carboxy terminal hydrolases (UCHs) are cysteine proteases featuring a classical cysteine-histidine-aspartate catalytic triad, also a highly conserved glutamine thought to be a part of the oxyanion hole. However, the contribution of this side chain to the catalysis by UCH enzymes is not known. Herein, we demonstrate that the glutamine side chain contributes to rate enhancement in UCHL1, UCHL3 and UCHL5. Mutation of the glutamine to alanine in these enzymes impairs the catalytic efficiency mainly due to a 16 to 30-fold reduction in kcat, which is consistent with a loss of approximately 2 kcal/mol in transition-state stabilization. However, the contribution to transition-state stabilization observed here is rather modest for the side chain’s role in oxyanion stabilization. Interestingly, we discovered that the carbonyl oxygen of this side chain is engaged in a C—H•••O hydrogen-bonding contact with the CεH group of the catalytic histidine. Upon further analysis, we found that this interaction is a common active-site structural feature in most cysteine proteases, including papain, belonging to families with the QCH(N/D) type of active-site configuration. It is possible that removal of the glutamine side chain might have abolished the C—H•••O interaction, which typically accounts for 2 kcal/mol of stabilization, leading to the effect on catalysis observed here. Additional studies performed on UCHL3 by mutating the glutamine to glutamate (strong C—H•••O acceptor but oxyanion destabilizer) and to lysine (strong oxyanion stabilizer but lacking C—H•••O hydrogen-bonding property) suggest that the C—H•••O hydrogen bond could contribute to catalysis. PMID:22284438

  16. Active site - a site of binding of affinity inhibitors in baker's yeast inorganic pyrophosphatase

    SciTech Connect

    Svyato, I.E.; Sklyankina, V.A.; Avaeva, S.M.

    1986-03-20

    The interaction of the enzyme-substrate complex with methyl phosphate, O-phosphoethanolamine, O-phosphopropanolamine, N-acetylphosphoserine, and phosphoglyolic acid, as well as pyrophosphatase, modified by monoesters of phosphoric acid, with pyrophosphate and tripolyphosphate, was investigated. It was shown that the enzyme containing the substrate in the active site does not react with monophosphates, but modified pyrophosphatase entirely retains the ability to bind polyanions to the regulatory site. It is concluded that the inactivation of baker's yeast inorganic pyrophosphatase by monoesters of phosphoric acid, which are affinity inhibitors of it, is the result of modification of the active site of the enzyme.

  17. A novel approach to predict active sites of enzyme molecules.

    PubMed

    Chou, Kuo-Chen; Cai, Yu-dong

    2004-04-01

    Enzymes are critical in many cellular signaling cascades. With many enzyme structures being solved, there is an increasing need to develop an automated method for identifying their active sites. However, given the atomic coordinates of an enzyme molecule, how can we predict its active site? This is a vitally important problem because the core of an enzyme molecule is its active site from the viewpoints of both pure scientific research and industrial application. In this article, a topological entity was introduced to characterize the enzymatic active site. Based on such a concept, the covariant discriminant algorithm was formulated for identifying the active site. As a paradigm, the serine hydrolase family was demonstrated. The overall success rate by jackknife test for a data set of 88 enzyme molecules was 99.92%, and that for a data set of 50 independent enzyme molecules was 99.91%. Meanwhile, it was shown through an example that the prediction algorithm can also be used to find any typographic error of a PDB file in annotating the constituent amino acids of catalytic triad and to suggest a possible correction. The very high success rates are due to the introduction of a covariance matrix in the prediction algorithm that makes allowance for taking into account the coupling effects among the key constituent atoms of active site. It is anticipated that the novel approach is quite promising and may become a useful high throughput tool in enzymology, proteomics, and structural bioinformatics. PMID:14997541

  18. Growth exponents in surface models with non-active sites

    NASA Astrophysics Data System (ADS)

    Santos, M.; Figueiredo, W.; Aarão Reis, F. D. A.

    2006-11-01

    In this work, we studied the role played by the inactive sites present on the substrate of a growing surface. In our model, one particle sticks at the surface if the site where it falls is an active site. However, we allow the deposited particle to diffuse along the surface in accordance with some mechanism previously defined. Using Monte Carlo simulations, and some analytical results, we have investigated the model in (1+1) and (2+1) dimensions considering different relaxation mechanisms. We show that the consideration of non-active sites is a crucial point in the model. In fact, we have seen that the saturation regime is not observed for any value of the density of inactive sites. Besides, the growth exponent β turns to be one, at long times, whatever the mechanism of diffusion we consider in one and two dimensions.

  19. A small ribozyme with dual-site kinase activity

    PubMed Central

    Biondi, Elisa; Maxwell, Adam W.R.; Burke, Donald H.

    2012-01-01

    Phosphoryl transfer onto backbone hydroxyls is a recognized catalytic activity of nucleic acids. We find that kinase ribozyme K28 possesses an unusually complex active site that promotes (thio)phosphorylation of two residues widely separated in primary sequence. After allowing the ribozyme to radiolabel itself by phosphoryl transfer from [γ-32P]GTP, DNAzyme-mediated cleavage yielded two radiolabeled cleavage fragments, indicating phosphorylation sites within each of the two cleavage fragments. These sites were mapped by alkaline digestion and primer extension pausing. Enzymatic digestion and mutational analysis identified nucleotides important for activity and established the active structure as being a constrained pseudoknot with unusual connectivity that may juxtapose the two reactive sites. Nuclease sensitivities for nucleotides near the pseudoknot core were altered in the presence of GTPγS, indicating donor-induced folding. The 5′ target site was more strongly favored in full-length ribozyme K28 (128 nt) than in truncated RNAs (58 nt). Electrophoretic mobilities of self-thiophosphorylated products on organomercurial gels are distinct from the 5′ mono-thiophosphorylated product produced by reaction with polynucleotide kinase, potentially indicating simultaneous labeling of both sites within individual RNA strands. Our evidence supports a single, compact structure with local dynamics, rather than global rearrangement, as being responsible for dual-site phosphorylation. PMID:22618879

  20. Molecular Basis for Enzymatic Sulfite Oxidation -- HOW THREE CONSERVED ACTIVE SITE RESIDUES SHAPE ENZYME ACTIVITY

    SciTech Connect

    Bailey, Susan; Rapson, Trevor; Johnson-Winters, Kayunta; Astashkin, Andrei; Enemark, John; Kappler, Ulrike

    2008-11-10

    Sulfite dehydrogenases (SDHs) catalyze the oxidation and detoxification of sulfite to sulfate, a reaction critical to all forms of life. Sulfite-oxidizing enzymes contain three conserved active site amino acids (Arg-55, His-57, and Tyr-236) that are crucial for catalytic competency. Here we have studied the kinetic and structural effects of two novel and one previously reported substitution (R55M, H57A, Y236F) in these residues on SDH catalysis. Both Arg-55 and His-57 were found to have key roles in substrate binding. An R55M substitution increased Km(sulfite)(app) by 2-3 orders of magnitude, whereas His-57 was required for maintaining a high substrate affinity at low pH when the imidazole ring is fully protonated. This effect may be mediated by interactions of His-57 with Arg-55 that stabilize the position of the Arg-55 side chain or, alternatively, may reflect changes in the protonation state of sulfite. Unlike what is seen for SDHWT and SDHY236F, the catalytic turnover rates of SDHR55M and SDHH57A are relatively insensitive to pH (~;;60 and 200 s-1, respectively). On the structural level, striking kinetic effects appeared to correlate with disorder (in SDHH57A and SDHY236F) or absence of Arg-55 (SDHR55M), suggesting that Arg-55 and the hydrogen bonding interactions it engages in are crucial for substrate binding and catalysis. The structure of SDHR55M has sulfate bound at the active site, a fact that coincides with a significant increase in the inhibitory effect of sulfate in SDHR55M. Thus, Arg-55 also appears to be involved in enabling discrimination between the substrate and product in SDH.

  1. Immobilized low-activity waste site borehole 299-E17-21

    SciTech Connect

    Reidel, S.P.; Reynolds, K.D.; Horton, D.G.

    1998-08-01

    The Tank Waste Remediation System (TWRS) is the group at the Hanford Site responsible for the safe underground storage of liquid waste from previous Hanford Site operations, the storage and disposal of immobilized tank waste, and closure of underground tanks. The current plan is to dispose of immobilized low-activity tank waste (ILAW) in new facilities in the southcentral part of 200-East Area and in four existing vaults along the east side of 200-East Area. Boreholes 299-E17-21, B8501, and B8502 were drilled at the southwest corner of the ILAW site in support of the Performance Assessment activities for the disposal options. This report summarizes the initial geologic findings, field tests conducted on those boreholes, and ongoing studies. One deep (480 feet) borehole and two shallow (50 feet) boreholes were drilled at the southwest corner of the ILAW site. The primary factor dictating the location of the boreholes was their characterization function with respect to developing the geohydrologic model for the site and satisfying associated Data Quality Objectives. The deep borehole was drilled to characterize subsurface conditions beneath the ILAW site, and two shallow boreholes were drilled to support an ongoing environmental tracer study. The tracer study will supply information to the Performance Assessment. All the boreholes provide data on the vadose zone and saturated zone in a previously uncharacterized area.

  2. Architecture and active site of particulate methane monooxygenase

    PubMed Central

    Culpepper, Megen A.; Rosenzweig, Amy C.

    2012-01-01

    Particulate methane monooxygenase (pMMO) is an integral membrane metalloenzyme that oxidizes methane to methanol in methanotrophic bacteria, organisms that live on methane gas as their sole carbon source. Understanding pMMO function has important implications for bioremediation applications and for the development of new, environmentally friendly catalysts for the direct conversion of methane to methanol. Crystal structures of pMMOs from three different methanotrophs reveal a trimeric architecture, consisting of three copies each of the pmoB, pmoA, and pmoC subunits. There are three distinct metal centers in each protomer of the trimer, mononuclear and dinuclear copper sites in the periplasmic regions of pmoB and a mononuclear site within the membrane that can be occupied by copper or zinc. Various models for the pMMO active site have been proposed within these structural constraints, including dicopper, tricopper, and diiron centers. Biochemical and spectroscopic data on pMMO and recombinant soluble fragments, denoted spmoB proteins, indicate that the active site involves copper and is located at the site of the dicopper center in the pmoB subunit. Initial spectroscopic evidence for O2 binding at this site has been obtained. Despite these findings, questions remain about the active site identity and nuclearity and will be the focus of future studies. PMID:22725967

  3. O2 activation by binuclear Cu sites: Noncoupled versus exchange coupled reaction mechanisms

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Solomon, Edward I.

    2004-09-01

    Binuclear Cu proteins play vital roles in O2 binding and activation in biology and can be classified into coupled and noncoupled binuclear sites based on the magnetic interaction between the two Cu centers. Coupled binuclear Cu proteins include hemocyanin, tyrosinase, and catechol oxidase. These proteins have two Cu centers strongly magnetically coupled through direct bridging ligands that provide a mechanism for the 2-electron reduction of O2 to a µ-2:2 side-on peroxide bridged species. This side-on bridged peroxo-CuII2 species is activated for electrophilic attack on the phenolic ring of substrates. Noncoupled binuclear Cu proteins include peptidylglycine -hydroxylating monooxygenase and dopamine -monooxygenase. These proteins have binuclear Cu active sites that are distant, that exhibit no exchange interaction, and that activate O2 at a single Cu center to generate a reactive CuII/O2 species for H-atom abstraction from the C-H bond of substrates. O2 intermediates in the coupled binuclear Cu enzymes can be trapped and studied spectroscopically. Possible intermediates in noncoupled binuclear Cu proteins can be defined through correlation to mononuclear CuII/O2 model complexes. The different intermediates in these two classes of binuclear Cu proteins exhibit different reactivities that correlate with their different electronic structures and exchange coupling interactions between the binuclear Cu centers. These studies provide insight into the role of exchange coupling between the Cu centers in their reaction mechanisms.

  4. Molecular dioxygen enters the active site of 12/15-lipoxygenase via dynamic oxygen access channels.

    PubMed

    Saam, Jan; Ivanov, Igor; Walther, Matthias; Holzhütter, Hermann-Georg; Kuhn, Hartmut

    2007-08-14

    Cells contain numerous enzymes that use molecular oxygen for their reactions. Often, their active sites are buried deeply inside the protein, which raises the question whether there are specific access channels guiding oxygen to the site of catalysis. Choosing 12/15-lipoxygenase as a typical example for such oxygen-dependent enzymes, we determined the oxygen distribution within the protein and defined potential routes for oxygen access. For this purpose, we have applied an integrated strategy of structural modeling, molecular dynamics simulations, site-directed mutagenesis, and kinetic measurements. First, we computed the 3D free-energy distribution for oxygen, which led to identification of four oxygen channels in the protein. All channels connect the protein surface with a region of high oxygen affinity at the active site. This region is localized opposite to the nonheme iron providing a structural explanation for the reaction specificity of this lipoxygenase isoform. The catalytically most relevant path can be obstructed by L367F exchange, which leads to a strongly increased Michaelis constant for oxygen. The blocking mechanism is explained in detail by reordering the hydrogen-bonding network of water molecules. Our results provide strong evidence that the main route for oxygen access to the active site of the enzyme follows a channel formed by transiently interconnected cavities whereby the opening and closure are governed by side chain dynamics. PMID:17675410

  5. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site.

    PubMed

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-04-20

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2 domains reveal that the (HhH)2 domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2 domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2 domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2 domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide. PMID:26908655

  6. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site

    PubMed Central

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-01-01

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2 domains reveal that the (HhH)2 domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2 domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2 domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2 domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide. PMID:26908655

  7. Characterizing Active Site Conformational Heterogeneity along the Trajectory of an Enzymatic Phosphoryl Transfer Reaction

    PubMed Central

    Zeymer, Cathleen; Werbeck, Nicolas D.; Zimmermann, Sabine

    2016-01-01

    Abstract States along the phosphoryl transfer reaction catalyzed by the nucleoside monophosphate kinase UmpK were captured and changes in the conformational heterogeneity of conserved active site arginine side‐chains were quantified by NMR spin‐relaxation methods. In addition to apo and ligand‐bound UmpK, a transition state analog (TSA) complex was utilized to evaluate the extent to which active site conformational entropy contributes to the transition state free energy. The catalytically essential arginine side‐chain guanidino groups were found to be remarkably rigid in the TSA complex, indicating that the enzyme has evolved to restrict the conformational freedom along its reaction path over the energy landscape, which in turn allows the phosphoryl transfer to occur selectively by avoiding side reactions. PMID:27534930

  8. Arias intensity assessment of liquefaction test sites on the east side of San Francisco Bay affected by the Loma Prieta, California, earthquake of 17 October 1989

    USGS Publications Warehouse

    Kayen, R.E.

    1997-01-01

    Abstract. Uncompacted artificial-fill deposits on the east side of San Francisco Bay suffered severe levels of soil liquefaction during the Loma Prieta earthquake of 17 October 1989. Damaged areas included maritime-port facilities, office buildings, and shoreline transportation arteries, ranging from 65 to 85 km from the north end of the Loma Prieta rupture zone. Typical of all these sites, which represent occurrences of liquefaction-induced damage farthest from the rupture zone, are low cone penetration test and Standard Penetration Test resistances in zones of cohesionless silty and sandy hydraulic fill, and underlying soft cohesive Holocene and Pleistocene sediment that strongly amplified ground motions. Postearthquake investigations at five study sites using standard penetration tests and cone penetration tests provide a basis for evaluation of the Arias intensity-based methodology for assessment of liquefaction susceptibility. ?? 1997 Kluwer Academic Publishers.

  9. Functional role of residue 193 (chymotrypsin numbering) in serine proteases: influence of side chain length and beta-branching on the catalytic activity of blood coagulation factor XIa.

    PubMed

    Schmidt, Amy E; Sun, Mao-fu; Ogawa, Taketoshi; Bajaj, S Paul; Gailani, David

    2008-02-01

    In serine proteases, Gly193 (chymotrypsin numbering) is conserved with rare exception. Mutants of blood coagulation proteases have been reported with Glu, Ala, Arg or Val substitutions for Gly193. To further understand the role of Gly193 in protease activity, we replaced it with Ala or Val in coagulation factor XIa (FXIa). For comparison to the reported FXIa Glu193 mutant, we prepared FXIa with Asp (short side chain) or Lys (opposite charge) substitutions. Binding of p-aminobenzamidine (pAB) and diisopropylfluorphosphate (DFP) were impaired 1.6-36-fold and 35-478-fold, respectively, indicating distortion of, or altered accessibility to, the S1 and oxyanion-binding sites. Val or Asp substitutions caused the most impairment. Salt bridge formation between the amino terminus of the mature protease moiety at Ile16 and Asp194, essential for catalysis, was impaired 1.4-4-fold. Mutations reduced catalytic efficiency of tripeptide substrate hydrolysis 6-280-fold, with Val or Asp causing the most impairment. Further studies were directed toward macromolecular interactions with the FXIa mutants. kcat for factor IX activation was reduced 8-fold for Ala and 400-1100-fold for other mutants, while binding of the inhibitors antithrombin and amyloid beta-precursor protein Kunitz domain (APPI) was impaired 13-2300-fold and 22-27000-fold, respectively. The data indicate that beta-branching of the side chain of residue 193 is deleterious for interactions with pAB, DFP and amidolytic substrates, situations where no S2'-P2' interactions are involved. When an S2'-P2' interaction is involved (factor IX, antithrombin, APPI), beta-branching and increased side chain length are detrimental. Molecular models indicate that the mutants have impaired S2' binding sites and that beta-branching causes steric conflicts with the FXIa 140-loop, which could perturb the local tertiary structure of the protease domain. In conclusion, enzyme activity is impaired in FXIa when Gly193 is replaced by a non

  10. Active Sites Environmental Monitoring Program: Mid-FY 1991 report

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1991-10-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1990 through March 1991. The ASEMP was established in 1989 by Solid Waste Operations and the Environmental Sciences Division to provide early detection and performance monitoring at active low-level radioactive waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. Monitoring results continue to demonstrate the no LLW is being leached from the storage vaults on the tumulus pads. Loading of vaults on Tumulus II began during this reporting period and 115 vaults had been loaded by the end of March 1991.

  11. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    PubMed

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined.

  12. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    PubMed

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined. PMID:27243042

  13. Studies on the active site of pig plasma amine oxidase.

    PubMed Central

    Collison, D; Knowles, P F; Mabbs, F E; Rius, F X; Singh, I; Dooley, D M; Cote, C E; McGuirl, M

    1989-01-01

    Amine oxidase from pig plasma (PPAO) has two bound Cu2+ ions and at least one pyrroloquinoline quinone (PQQ) moiety as cofactors. It is shown that recovery of activity by copper-depleted PPAO is linear with respect to added Cu2+ ions. Recovery of e.s.r. and optical spectral characteristics of active-site copper parallel the recovery of catalytic activity. These results are consistent with both Cu2+ ions contributing to catalysis. Further e.s.r. studies indicate that the two copper sites in PPAO, unlike those in amine oxidases from other sources, are chemically distinct. These comparative studies establish that non-identity of the Cu2+ ions in PPAO is not a requirement for amine oxidase activity. It is shown through the use of a new assay procedure that there are two molecules of PQQ bound per molecule of protein in PPAO; only the more reactive of these PQQ moieties is required for activity. PMID:2559715

  14. Roles of s3 site residues of nattokinase on its activity and substrate specificity.

    PubMed

    Wu, Shuming; Feng, Chi; Zhong, Jin; Huan, Liandong

    2007-09-01

    Nattokinase (Subtilisin NAT, NK) is a bacterial serine protease with high fibrinolytic activity. To probe their roles on protease activity and substrate specificity, three residues of S3 site (Gly(100), Ser(101) and Leu(126)) were mutated by site-directed mutagenesis. Kinetics parameters of 20 mutants were measured using tetrapeptides as substrates, and their fibrinolytic activities were determined by fibrin plate method. Results of mutation analysis showed that Gly(100) and Ser(101) had reverse steric and electrostatic effects. Residues with bulky or positively charged side chains at position 100 decreased the substrate binding and catalytic activity drastically, while residues with the same characters at position 101 could obviously enhance protease and fibrinolytic activity of NK. Mutation of Leu(126) might impair the structure of the active cleft and drastically decreased the activity of NK. Kinetics studies of the mutants showed that S3 residues were crucial to keep protease activity while they moderately affected substrate specificity of NK. The present study provided some original insight into the P3-S3 interaction in NK and other subtilisins, as well as showed successful protein engineering cases to improve NK as a potential therapeutic agent.

  15. Active site proton delivery and the lyase activity of human CYP17A1

    SciTech Connect

    Khatri, Yogan; Gregory, Michael C.; Grinkova, Yelena V.; Denisov, Ilia G.; Sligar, Stephen G.

    2014-01-03

    Highlights: •The disruption of PREG/PROG hydroxylation activity by T306A showed the participation of Cpd I. •T306A supports the involvement of a nucleophilic peroxo-anion during lyase activity. •The presence of cytochrome b{sub 5} augments C–C lyase activity. •Δ5-Steroids are preferred substrates for CYP17 catalysis. -- Abstract: Cytochrome P450 CYP17A1 catalyzes a series of reactions that lie at the intersection of corticoid and androgen biosynthesis and thus occupies an essential role in steroid hormone metabolism. This multifunctional enzyme catalyzes the 17α-hydroxylation of Δ4- and Δ5-steroids progesterone and pregnenolone to form the corresponding 17α-hydroxy products through its hydroxylase activity, and a subsequent 17,20-carbon–carbon scission of pregnene-side chain produce the androgens androstenedione (AD) and dehydroepiandrosterone (DHEA). While the former hydroxylation reaction is believed to proceed through a conventional “Compound I” rebound mechanism, it has been suggested that the latter carbon cleavage is initiated by an iron-peroxy intermediate. We report on the role of Thr306 in CYP17 catalysis. Thr306 is a member of the conserved acid/alcohol pair thought to be essential for the efficient delivery of protons required for hydroperoxoanion heterolysis and formation of Compound I in the cytochromes P450. Wild type and T306A CYP17A1 self-assembled in Nanodiscs were used to quantitate turnover and coupling efficiencies of CYP17’s physiological Δ4- and Δ5-substrates. We observed that T306A co-incorporated in Nanodiscs with its redox partner cytochrome P450 oxidoreductase, coupled NADPH only by 0.9% and 0.7% compared to the wild type (97% and 22%) during the conversion of pregnenolone and progesterone, respectively, to the corresponding 17-OH products. Despite increased oxidation of pyridine nucleotide, hydroxylase activity was drastically diminished in the T306A mutant, suggesting a high degree of uncoupling in which reducing

  16. Amphiphilic Surface Active Triblock Copolymers with Mixed Hydrophobic and Hydrophilic Side Chains for Tuned Marine Fouling-Release Properties

    SciTech Connect

    Park, D.; Weinman, C; Finlay, J; Fletcher, B; Paik, M; Sundaram, H; Dimitriou, M; Sohn, K; Callow, M; et al.

    2010-01-01

    Two series of amphiphilic triblock surface active block copolymers (SABCs) were prepared through chemical modification of two polystyrene-block-poly(ethylene-ran-butylene)-block-polyisoprene ABC triblock copolymer precursors. The methyl ether of poly(ethylene glycol) [M{sub n} {approx} 550 g/mol (PEG550)] and a semifluorinated alcohol (CF{sub 3}(CF{sub 2}){sub 9}(CH{sub 2}){sub 10}OH) [F10H10] were attached at different molar ratios to impart both hydrophobic and hydrophilic groups to the isoprene segment. Coatings on glass slides consisting of a thin layer of the amphiphilic SABC deposited on a thicker layer of an ABA polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene thermoplastic elastomer were prepared for biofouling assays with algae. Dynamic water contact angle analysis, X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) measurements were utilized to characterize the surfaces. Clear differences in surface structure were realized as the composition of attached side chains was varied. In biofouling assays, the settlement (attachment) of zoospores of the green alga Ulva was higher for surfaces incorporating a large proportion of the hydrophobic F10H10 side chains, while surfaces with a large proportion of the PEG550 side chains inhibited settlement. The trend in attachment strength of sporelings (young plants) of Ulva did not show such an obvious pattern. However, amphiphilic SABCs incorporating a mixture of PEG550 and F10H10 side chains performed the best. The number of cells of the diatom Navicula attached after exposure to flow decreased as the content of PEG550 to F10H10 side chains increased.

  17. Computer simulation of the active site of human serum cholinesterase

    SciTech Connect

    Kefang Jiao; Song Li; Zhengzheng Lu

    1996-12-31

    The first 3D-structure of acetylchelinesterase from Torpedo California electric organ (T.AChE) was published by JL. Sussman in 1991. We have simulated 3D-structure of human serum cholinesterase (H.BuChE) and the active site of H.BuChE. It is discovered by experiment that the residue of H.BuChE is still active site after a part of H.BuChE is cut. For example, the part of 21KD + 20KD is active site of H.BuChE. The 20KD as it is. Studies on these peptides by Hemelogy indicate that two active peptides have same negative electrostatic potential maps diagram. These negative electrostatic areas attached by acetyl choline with positive electrostatic potency. We predict that 147...236 peptide of AChE could be active site because it was as 20KD as with negative electrostatic potential maps. We look forward to proving from other ones.

  18. High performance flexible double-sided micro-supercapacitors with an organic gel electrolyte containing a redox-active additive.

    PubMed

    Kim, Doyeon; Lee, Geumbee; Kim, Daeil; Yun, Junyeong; Lee, Sang-Soo; Ha, Jeong Sook

    2016-08-25

    In this study, we report the fabrication of a high performance flexible micro-supercapacitor (MSC) with an organic gel electrolyte containing a redox-active additive, referred to as poly(methyl methacrylate)-propylene carbonate-lithium perchlorate-hydroquinone (PMMA-PC-LiClO4-HQ). Hexagonal MSCs fabricated on thin polyethylene terephthalate (PET) films had interdigitated electrodes made of spray-coated multi-walled carbon nanotubes (MWNTs) on Au. The addition of HQ as a redox-active additive enhanced not only the specific capacitance but also the energy density of the MSCs dramatically, which is approximately 35 times higher than that of MSCs without the HQ additive. In addition, both areal capacitance and areal energy density could be doubled by fabrication of double-sided MSCs, where two MSCs are connected in parallel. The double-sided MSCs exhibited stable electrochemical performance during repeated deformation by bending. By dry-transferring the double-sided MSCs based on PMMA-PC-LiClO4-HQ on a deformable polymer substrate, we fabricated a stretchable MSC array, which also retained its electrochemical performance during a uniaxial strain of 40%. Furthermore, a wearable energy storage bracelet made of such an MSC array could operate a μ-LED on the wrist. PMID:27511060

  19. Resonant active sites in catalytic ammonia synthesis: A structural model

    NASA Astrophysics Data System (ADS)

    Cholach, Alexander R.; Bryliakova, Anna A.; Matveev, Andrey V.; Bulgakov, Nikolai N.

    2016-03-01

    Adsorption sites Mn consisted of n adjacent atoms M, each bound to the adsorbed species, are considered within a realistic model. The sum of bonds Σ lost by atoms in a site in comparison with the bulk atoms was used for evaluation of the local surface imperfection, while the reaction enthalpy at that site was used as a measure of activity. The comparative study of Mn sites (n = 1-5) at basal planes of Pt, Rh, Ir, Fe, Re and Ru with respect to heat of N2 dissociative adsorption QN and heat of Nad + Had → NHad reaction QNH was performed using semi-empirical calculations. Linear QN(Σ) increase and QNH(Σ) decrease allowed to specify the resonant Σ for each surface in catalytic ammonia synthesis at equilibrium Nad coverage. Optimal Σ are realizable for Ru2, Re2 and Ir4 only, whereas other centers meet steric inhibition or unreal crystal structure. Relative activity of the most active sites in proportion 5.0 × 10- 5: 4.5 × 10- 3: 1: 2.5: 3.0: 1080: 2270 for a sequence of Pt4, Rh4, Fe4(fcc), Ir4, Fe2-5(bcc), Ru2, Re2, respectively, is in agreement with relevant experimental data. Similar approach can be applied to other adsorption or catalytic processes exhibiting structure sensitivity.

  20. Conformational Change in the Active Site of Streptococcal Unsaturated Glucuronyl Hydrolase Through Site-Directed Mutagenesis at Asp-115.

    PubMed

    Nakamichi, Yusuke; Oiki, Sayoko; Mikami, Bunzo; Murata, Kousaku; Hashimoto, Wataru

    2016-08-01

    Bacterial unsaturated glucuronyl hydrolase (UGL) degrades unsaturated disaccharides generated from mammalian extracellular matrices, glycosaminoglycans, by polysaccharide lyases. Two Asp residues, Asp-115 and Asp-175 of Streptococcus agalactiae UGL (SagUGL), are completely conserved in other bacterial UGLs, one of which (Asp-175 of SagUGL) acts as a general acid and base catalyst. The other Asp (Asp-115 of SagUGL) also affects the enzyme activity, although its role in the enzyme reaction has not been well understood. Here, we show substitution of Asp-115 in SagUGL with Asn caused a conformational change in the active site. Tertiary structures of SagUGL mutants D115N and D115N/K370S with negligible enzyme activity were determined at 2.00 and 1.79 Å resolution, respectively, by X-ray crystallography. The side chain of Asn-115 is drastically shifted in both mutants owing to the interaction with several residues, including Asp-175, by formation of hydrogen bonds. This interaction between Asn-115 and Asp-175 probably prevents the mutants from triggering the enzyme reaction using Asp-175 as an acid catalyst.

  1. Multi-site Phosphorylation Regulates Bim Stability and Apoptotic Activity

    PubMed Central

    Hübner, Anette; Barrett, Tamera; Flavell, Richard A.; Davis, Roger J.

    2008-01-01

    The pro-apoptotic BH3-only protein Bim is established to be an important mediator of signaling pathways that induce cell death. Multi-site phosphorylation of Bim by several members of the MAP kinase group is implicated as a regulatory mechanism that controls the apoptotic activity of Bim. To test the role of Bim phosphorylation in vivo, we constructed mice with a series of mutant alleles that express phosphorylation-defective Bim proteins. We show that mutation of the phosphorylation site Thr-112 causes decreased binding of Bim to the anti-apoptotic protein Bcl2 and can increase cell survival. In contrast, mutation of the phosphorylation sites Ser-55, Ser-65, and Ser-73 can cause increased apoptosis because of reduced proteasomal degradation of Bim. Together, these data indicate that phosphorylation can regulate Bim by multiple mechanisms and that the phosphorylation of Bim on different sites can contribute to the sensitivity of cellular apoptotic responses. PMID:18498746

  2. Probing Binding Sites and Mechanisms of Action of an IKs Activator by Computations and Experiments

    PubMed Central

    Xu, Yu; Wang, Yuhong; Zhang, Mei; Jiang, Min; Rosenhouse-Dantsker, Avia; Wassenaar, Tsjerk; Tseng, Gea-Ny

    2015-01-01

    The slow delayed rectifier (IKs) channel is composed of the KCNQ1 channel and KCNE1 auxiliary subunit, and functions to repolarize action potentials in the human heart. IKs activators may provide therapeutic efficacy for treating long QT syndromes. Here, we show that a new KCNQ1 activator, ML277, can enhance IKs amplitude in adult guinea pig and canine ventricular myocytes. We probe its binding site and mechanism of action by computational analysis based on our recently reported KCNQ1 and KCNQ1/KCNE1 3D models, followed by experimental validation. Results from a pocket analysis and docking exercise suggest that ML277 binds to a side pocket in KCNQ1 and the KCNE1-free side pocket of KCNQ1/KCNE1. Molecular-dynamics (MD) simulations based on the most favorable channel/ML277 docking configurations reveal a well-defined ML277 binding space surrounded by the S2-S3 loop and S4-S5 helix on the intracellular side, and by S4–S6 transmembrane helices on the lateral sides. A detailed analysis of MD trajectories suggests two mechanisms of ML277 action. First, ML277 restricts the conformational dynamics of the KCNQ1 pore, optimizing K+ ion coordination in the selectivity filter and increasing current amplitudes. Second, ML277 binding induces global motions in the channel, including regions critical for KCNQ1 gating transitions. We conclude that ML277 activates IKs by binding to an intersubunit space and allosterically influencing pore conductance and gating transitions. KCNE1 association protects KCNQ1 from an arrhythmogenic (constitutive current-inducing) effect of ML277, but does not preclude its current-enhancing effect. PMID:25564853

  3. Water in the Active Site of Ketosteroid Isomerase

    PubMed Central

    Hanoian, Philip; Hammes-Schiffer, Sharon

    2011-01-01

    Classical molecular dynamics simulations were utilized to investigate the structural and dynamical properties of water in the active site of ketosteroid isomerase (KSI) to provide insight into the role of these water molecules in the enzyme-catalyzed reaction. This reaction is thought to proceed via a dienolate intermediate that is stabilized by hydrogen bonding with residues Tyr16 and Asp103. A comparative study was performed for the wild-type (WT) KSI and the Y16F, Y16S, and Y16F/Y32F/Y57F (FFF) mutants. These systems were studied with three different bound ligands: equilenin, which is an intermediate analog, and the intermediate states of two steroid substrates. Several distinct water occupation sites were identified in the active site of KSI for the WT and mutant systems. Three additional sites were identified in the Y16S mutant that were not occupied in WT KSI or the other mutants studied. The number of water molecules directly hydrogen bonded to the ligand oxygen was approximately two waters in the Y16S mutant, one water in the Y16F and FFF mutants, and intermittent hydrogen bonding of one water molecule in WT KSI. The molecular dynamics trajectories of the Y16F and FFF mutants reproduced the small conformational changes of residue 16 observed in the crystal structures of these two mutants. Quantum mechanical/molecular mechanical calculations of 1H NMR chemical shifts of the protons in the active site hydrogen-bonding network suggest that the presence of water in the active site does not prevent the formation of short hydrogen bonds with far-downfield chemical shifts. The molecular dynamics simulations indicate that the active site water molecules exchange much more frequently for WT KSI and the FFF mutant than for the Y16F and Y16S mutants. This difference is most likely due to the hydrogen-bonding interaction between Tyr57 and an active site water molecule that is persistent in the Y16F and Y16S mutants but absent in the FFF mutant and significantly less

  4. Activation of phenylalanine hydroxylase by phenylalanine does not require binding in the active site.

    PubMed

    Roberts, Kenneth M; Khan, Crystal A; Hinck, Cynthia S; Fitzpatrick, Paul F

    2014-12-16

    Phenylalanine hydroxylase (PheH), a liver enzyme that catalyzes the hydroxylation of excess phenylalanine in the diet to tyrosine, is activated by phenylalanine. The lack of activity at low levels of phenylalanine has been attributed to the N-terminus of the protein's regulatory domain acting as an inhibitory peptide by blocking substrate access to the active site. The location of the site at which phenylalanine binds to activate the enzyme is unknown, and both the active site in the catalytic domain and a separate site in the N-terminal regulatory domain have been proposed. Binding of catecholamines to the active-site iron was used to probe the accessibility of the active site. Removal of the regulatory domain increases the rate constants for association of several catecholamines with the wild-type enzyme by ∼2-fold. Binding of phenylalanine in the active site is effectively abolished by mutating the active-site residue Arg270 to lysine. The k(cat)/K(phe) value is down 10⁴ for the mutant enzyme, and the K(m) value for phenylalanine for the mutant enzyme is >0.5 M. Incubation of the R270K enzyme with phenylalanine also results in a 2-fold increase in the rate constants for catecholamine binding. The change in the tryptophan fluorescence emission spectrum seen in the wild-type enzyme upon activation by phenylalanine is also seen with the R270K mutant enzyme in the presence of phenylalanine. Both results establish that activation of PheH by phenylalanine does not require binding of the amino acid in the active site. This is consistent with a separate allosteric site, likely in the regulatory domain.

  5. Chemical Modification of Papain and Subtilisin: An Active Site Comparison

    ERIC Educational Resources Information Center

    St-Vincent, Mireille; Dickman, Michael

    2004-01-01

    An experiment using methyle methanethiosulfonate (MMTS) and phenylmethylsulfonyl flouride (PMSF) to specifically modify the cysteine and serine residues in the active sites of papain and subtilism respectively is demonstrated. The covalent modification of these enzymes and subsequent rescue of papain shows the beginning biochemist that proteins…

  6. Energy transfer at the active sites of heme proteins

    SciTech Connect

    Dlott, D.D.; Hill, J.R.

    1995-12-31

    Experiments using a picosecond pump-probe apparatus at the Picosecond Free-electron Laser Center at Stanford University, were performed to investigate the relaxation of carbon monoxide bound to the active sites of heme proteins. The significance of these experiments is two-fold: (1) they provide detailed information about molecular dynamics occurring at the active sites of proteins; and (2) they provide insight into the nature of vibrational relaxation processes in condensed matter. Molecular engineering is used to construct various molecular systems which are studied with the FEL. We have studied native proteins, mainly myoglobin obtained from different species, mutant proteins produced by genetic engineering using recombinant DNA techniques, and a variety of model systems which mimic the structures of the active sites of native proteins, which are produced using molecular synthesis. Use of these different systems permits us to investigate how specific molecular structural changes affect dynamical processes occurring at the active sites. This research provides insight into the problems of how different species needs are fulfilled by heme proteins which have greatly different functionality, which is induced by rather small structural changes.

  7. Functional significance of Glu-77 and Tyr-137 within the active site of isoaspartyl dipeptidase.

    PubMed

    Martí-Arbona, Ricardo; Thoden, James B; Holden, Hazel M; Raushel, Frank M

    2005-12-01

    Isoaspartyl dipeptidase (IAD) is a binuclear metalloenzyme and a member of the amidohydrolase superfamily. This enzyme catalyzes the hydrolytic cleavage of beta-aspartyl dipeptides. The pH-rate profiles for the hydrolysis of beta-Asp-Leu indicates that catalysis is dependent on the ionization of two groups; one that ionizes at a pH approximately 6 and the other approximately 9. The group that must be ionized for catalysis is directly dependent on the identity of the metal ion bound to the active site. This result is consistent with the ionization of the hydroxide that bridges the two divalent cations. In addition to the residues that interact directly with the divalent cations there are two other residues that are highly conserved and found within the active site: Glu-77 and Tyr-137. Mutation of Tyr-137 to phenylalanine reduced the rate of catalysis by three orders of magnitude. The three dimensional X-ray structure of the Y137F mutant did not show any significant conformation changes relative to the three dimensional structure of the wild-type enzyme. The positioning of the side-chain phenolic group of Tyr-137 in the active site of IAD is consistent with the stabilization of the tetrahedral adduct concomitant with nucleophilic attack by the hydroxide that bridges the two divalent cations. Mutation of Glu-77 resulted in the reduction of catalytic activity by five orders of magnitude. The three dimensional structure of the E77Q mutant did not show any significant conformational changes in the mutant relative to the three dimensional structure of the wild-type enzyme. The positioning of the side-chain carboxylate of Glu-77 is consistent with the formation of an ion pair interaction with the free alpha-amino group of the substrate.

  8. Changes in active site histidine hydrogen bonding trigger cryptochrome activation.

    PubMed

    Ganguly, Abir; Manahan, Craig C; Top, Deniz; Yee, Estella F; Lin, Changfan; Young, Michael W; Thiel, Walter; Crane, Brian R

    2016-09-01

    Cryptochrome (CRY) is the principal light sensor of the insect circadian clock. Photoreduction of the Drosophila CRY (dCRY) flavin cofactor to the anionic semiquinone (ASQ) restructures a C-terminal tail helix (CTT) that otherwise inhibits interactions with targets that include the clock protein Timeless (TIM). All-atom molecular dynamics (MD) simulations indicate that flavin reduction destabilizes the CTT, which undergoes large-scale conformational changes (the CTT release) on short (25 ns) timescales. The CTT release correlates with the conformation and protonation state of conserved His378, which resides between the CTT and the flavin cofactor. Poisson-Boltzmann calculations indicate that flavin reduction substantially increases the His378 pKa Consistent with coupling between ASQ formation and His378 protonation, dCRY displays reduced photoreduction rates with increasing pH; however, His378Asn/Arg variants show no such pH dependence. Replica-exchange MD simulations also support CTT release mediated by changes in His378 hydrogen bonding and verify other responsive regions of the protein previously identified by proteolytic sensitivity assays. His378 dCRY variants show varying abilities to light-activate TIM and undergo self-degradation in cellular assays. Surprisingly, His378Arg/Lys variants do not degrade in light despite maintaining reactivity toward TIM, thereby implicating different conformational responses in these two functions. Thus, the dCRY photosensory mechanism involves flavin photoreduction coupled to protonation of His378, whose perturbed hydrogen-bonding pattern alters the CTT and surrounding regions. PMID:27551082

  9. Conformational Transitions in Human AP Endonuclease 1 and Its Active Site Mutant during Abasic Site Repair†

    PubMed Central

    Kanazhevskaya, Lyubov Yu.; Koval, Vladimir V.; Zharkov, Dmitry O.; Strauss, Phyllis R.; Fedorova, Olga S.

    2010-01-01

    AP endonuclease 1 (APE 1) is a crucial enzyme of the base excision repair pathway (BER) in human cells. APE1 recognizes apurinic/apyrimidinic (AP) sites and makes a nick in the phosphodiester backbone 5′ to them. The conformational dynamics and presteady-state kinetics of wild-type APE1 and its active site mutant, Y171F-P173L-N174K, have been studied. To observe conformational transitions occurring in the APE1 molecule during the catalytic cycle, we detected intrinsic tryptophan fluorescence of the enzyme under single turnover conditions. DNA duplexes containing a natural AP site, its tetrahydrofuran analogue, or a 2′-deoxyguanosine residue in the same position were used as specific substrates or ligands. The stopped-flow experiments have revealed high flexibility of the APE1 molecule and the complexity of the catalytic process. The fluorescent traces indicate that wild-type APE1 undergoes at least four conformational transitions during the processing of abasic sites in DNA. In contrast, nonspecific interactions of APE1 with undamaged DNA can be described by a two-step kinetic scheme. Rate and equilibrium constants were extracted from the stopped-flow and fluorescence titration data for all substrates, ligands, and products. A replacement of three residues at the enzymatic active site including the replacement of tyrosine 171 with phenylalanine in the enzyme active site resulted in a 2 × 104-fold decrease in the reaction rate and reduced binding affinity. Our data indicate the important role of conformational changes in APE1 for substrate recognition and catalysis. PMID:20575528

  10. Active site-directed plasmin inhibitors: Extension on the P2 residue.

    PubMed

    Hidaka, Koushi; Gohda, Keigo; Teno, Naoki; Wanaka, Keiko; Tsuda, Yuko

    2016-02-15

    Based on the structure of YO-2 [N-(trans-4-aminomethylcyclohexanecarbonyl)-l-Tyr(O-picolyl)-NH-octyl], active site-directed plasmin (Plm) inhibitors were explored. The picolyl moiety in the Tyr(O-picolyl) residue (namely, the P2 residue) was replaced with smaller or larger groups, such as hydrogen, tert-butyl, benzyl, (2-naphthyl)methyl, and (quinolin-2-yl)methyl. Those efforts produced compound 17 {N-(trans-4-aminomethylcyclohexanecarbonyl)-l-Tyr[O-(quinolin-2-yl)methyl]-NH-octyl} [IC50=0.22 and 77μM for Plm and urokinase (UK), respectively], which showed not only 2.4-fold greater Plm inhibition than YO-2, but also an improvement in selectivity (Plm/UK) by 35-fold. The docking experiments of the Plm-17 complexes disclosed that the amino group of the tranexamyl moiety interacted with the side-chain of Asp753 which formed S1 site.

  11. N-methyl-D-aspartate recognition site ligands modulate activity at the coupled glycine recognition site.

    PubMed

    Hood, W F; Compton, R P; Monahan, J B

    1990-03-01

    In synaptic plasma membranes from rat forebrain, the potencies of glycine recognition site agonists and antagonists for modulating [3H]1-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP) binding and for displacing strychnine-insensitive [3H]glycine binding are altered in the presence of N-methyl-D-aspartate (NMDA) recognition site ligands. The NMDA competitive antagonist, cis-4-phosphonomethyl-2-piperidine carboxylate (CGS 19755), reduces [3H]glycine binding, and the reduction can be fully reversed by the NMDA recognition site agonist, L-glutamate. Scatchard analysis of [3H]glycine binding shows that in the presence of CGS 19755 there is no change in Bmax (8.81 vs. 8.79 pmol/mg of protein), but rather a decrease in the affinity of glycine (KD of 0.202 microM vs. 0.129 microM). Similar decreases in affinity are observed for the glycine site agonists, D-serine and 1-aminocyclopropane-1-carboxylate, in the presence of CGS 19755. In contrast, the affinity of glycine antagonists, 1-hydroxy-3-amino-2-pyrrolidone and 1-aminocyclobutane-1-carboxylate, at this [3H]glycine recognition site increases in the presence of CGS 19755. The functional consequence of this change in affinity was addressed using the modulation of [3H]TCP binding. In the presence of L-glutamate, the potency of glycine agonists for the stimulation of [3H]TCP binding increases, whereas the potency of glycine antagonists decreases. These data are consistent with NMDA recognition site ligands, through their interactions at the NMDA recognition site, modulating activity at the associated glycine recognition site.

  12. Site-specific protonation kinetics of acidic side chains in proteins determined by pH-dependent carboxyl (13)C NMR relaxation.

    PubMed

    Wallerstein, Johan; Weininger, Ulrich; Khan, M Ashhar I; Linse, Sara; Akke, Mikael

    2015-03-01

    Proton-transfer dynamics plays a critical role in many biochemical processes, such as proton pumping across membranes and enzyme catalysis. The large majority of enzymes utilize acid-base catalysis and proton-transfer mechanisms, where the rates of proton transfer can be rate limiting for the overall reaction. However, measurement of proton-exchange kinetics for individual side-chain carboxyl groups in proteins has been achieved in only a handful of cases, which typically have involved comparative analysis of mutant proteins in the context of reaction network modeling. Here we describe an approach to determine site-specific protonation and deprotonation rate constants (kon and koff, respectively) of carboxyl side chains, based on (13)C NMR relaxation measurements as a function of pH. We validated the method using an extensively studied model system, the B1 domain of protein G, for which we measured rate constants koff in the range (0.1-3) × 10(6) s(-1) and kon in the range (0.6-300) × 10(9) M(-1) s(-1), which correspond to acid-base equilibrium dissociation constants (Ka) in excellent agreement with previous results determined by chemical shift titrations. Our results further reveal a linear free-energy relationship between log kon and pKa, which provides information on the free-energy landscape of the protonation reaction, showing that the variability among residues in these parameters arises primarily from the extent of charge stabilization of the deprotonated state by the protein environment. We find that side-chain carboxyls with extreme values of koff or kon are involved in hydrogen bonding, thus providing a mechanistic explanation for the observed stabilization of the protonated or deprotonated state.

  13. Enthalpic Breakdown of Water Structure on Protein Active-Site Surfaces.

    PubMed

    Haider, Kamran; Wickstrom, Lauren; Ramsey, Steven; Gilson, Michael K; Kurtzman, Tom

    2016-09-01

    The principles underlying water reorganization around simple nonpolar solutes are well understood and provide the framework for the classical hydrophobic effect, whereby water molecules structure themselves around solutes so that they maintain favorable energetic contacts with both the solute and the other water molecules. However, for certain solute surface topographies, water molecules, due to their geometry and size, are unable to simultaneously maintain favorable energetic contacts with both the surface and neighboring water molecules. In this study, we analyze the solvation of ligand-binding sites for six structurally diverse proteins using hydration site analysis and measures of local water structure, in order to identify surfaces at which water molecules are unable to structure themselves in a way that maintains favorable enthalpy relative to bulk water. These surfaces are characterized by a high degree of enclosure, weak solute-water interactions, and surface constraints that induce unfavorable pair interactions between neighboring water molecules. Additionally, we find that the solvation of charged side chains in an active site generally results in favorable enthalpy but can also lead to pair interactions between neighboring water molecules that are significantly unfavorable relative to bulk water. We find that frustrated local structure can occur not only in apolar and weakly polar pockets, where overall enthalpy tends to be unfavorable, but also in charged pockets, where overall water enthalpy tends to be favorable. The characterization of local water structure in these terms may prove useful for evaluating the displacement of water from diverse protein active-site environments.

  14. Control of active sites in selective flocculation: I -- Mathematical model

    SciTech Connect

    Behl, S.; Moudgil, B.M.; Prakash, T.S. . Dept. of Materials Science and Engineering)

    1993-12-01

    Heteroflocculation has been determined to be another major reason for loss in selectivity for flocculation process. In a mathematical model developed earlier, conditions for controlling heteroflocculation were discussed. Blocking active sites to control selective adsorption of a flocculant oil a desirable solid surface is discussed. It has been demonstrated that the lower molecular weight fraction of a flocculant which is incapable of flocculating the particles is an efficient site blocking agent. The major application of selective flocculation has been in mineral processing but many potential uses exist in biological and other colloidal systems. These include purification of ceramic powders, separating hazardous solids from chemical waste, and removal of deleterious components from paper pulp.

  15. Variation of the net charge, lipophilicity, and side chain flexibility in Dmt(1)-DALDA: Effect on Opioid Activity and Biodistribution.

    PubMed

    Novoa, Alexandre; Van Dorpe, Sylvia; Wynendaele, Evelien; Spetea, Mariana; Bracke, Nathalie; Stalmans, Sofie; Betti, Cecilia; Chung, Nga N; Lemieux, Carole; Zuegg, Johannes; Cooper, Matthew A; Tourwé, Dirk; De Spiegeleer, Bart; Schiller, Peter W; Ballet, Steven

    2012-11-26

    The influence of the side chain charges of the second and fourth amino acid residues in the peptidic μ opioid lead agonist Dmt-d-Arg-Phe-Lys-NH(2) ([Dmt(1)]-DALDA) was examined. Additionally, to increase the overall lipophilicity of [Dmt(1)]-DALDA and to investigate the Phe(3) side chain flexibility, the final amide bond was N-methylated and Phe(3) was replaced by a constrained aminobenzazepine analogue. The in vitro receptor binding and activity of the peptides, as well as their in vivo transport (brain in- and efflux and tissue biodistribution) and antinociceptive properties after peripheral administration (ip and sc) in mice were determined. The structural modifications result in significant shifts of receptor binding, activity, and transport properties. Strikingly, while [Dmt(1)]-DALDA and its N-methyl analogue, Dmt-d-Arg-Phe-NMeLys-NH(2), showed a long-lasting antinociceptive effect (>7 h), the peptides with d-Cit(2) generate potent antinociception more rapidly (maximal effect at 1h postinjection) but also lose their analgesic activity faster when compared to [Dmt(1)]-DALDA and [Dmt(1),NMeLys(4)]-DALDA.

  16. Variation of the net charge, lipophilicity and side chain flexibility in Dmt1-DALDA: effect on opioid activity and biodistribution

    PubMed Central

    Novoa, Alexandre; Van Dorpe, Sylvia; Wynendaele, Evelien; Spetea, Mariana; Bracke, Nathalie; Stalmans, Sofie; Betti, Cecilia; Chung, Nga N.; Lemieux, Carole; Zuegg, Johannes; Cooper, Matthew A.; Tourwé, Dirk; De Spiegeleer, Bart; Schiller, Peter W.; Ballet, Steven

    2012-01-01

    The influence of the side chain charges of the second and fourth amino acid residues in the peptidic μ opioid lead agonist Dmt-D-Arg-Phe-Lys-NH2 ([Dmt1]-DALDA) was examined. Additionally, to increase the overall lipophilicity of [Dmt1]-DALDA and to investigate the Phe3 side chain flexibility, the final amide bond was N-methylated and Phe3 was replaced by a constrained aminobenzazepine analogue. The in vitro receptor binding and activity of the peptides, as well as their in vivo transport (brain in- and efflux and tissue biodistribution) and antinociceptive properties after peripheral administration (i.p. and s.c.) in mice were determined. The structural modifications result in significant shifts of receptor binding, activity and transport properties. Strikingly, while [Dmt1]-DALDA and its N-methyl analogue, Dmt-D-Arg-Phe-NMeLys-NH2, showed a long-lasting antinociceptive effect (>7h), the peptides with D-Cit2 generate potent antinociception more rapidly (maximal effect at 1h post-injection) but also lose their analgesic activity faster, when compared to [Dmt1]-DALDA and [Dmt1,NMeLys4]-DALDA. PMID:23102273

  17. Controlling activation site density by low-energy far-field stimulation in cardiac tissue.

    PubMed

    Hörning, Marcel; Takagi, Seiji; Yoshikawa, Kenichi

    2012-06-01

    Tachycardia and fibrillation are potentially fatal arrhythmias associated with the formation of rotating spiral waves in the heart. Presently, the termination of these types of arrhythmia is achieved by use of antitachycardia pacing or cardioversion. However, these techniques have serious drawbacks, in that they either have limited application or produce undesirable side effects. Low-energy far-field stimulation has recently been proposed as a superior therapy. This proposed therapeutic method would exploit the phenomenon in which the application of low-energy far-field shocks induces a large number of activation sites ("virtual electrodes") in tissue. It has been found that the formation of such sites can lead to the termination of undesired states in the heart and the restoration of normal beating. In this study we investigate a particular aspect of this method. Here we seek to determine how the activation site density depends on the applied electric field through in vitro experiments carried out on neonatal rat cardiac tissue cultures. The results indicate that the activation site density increases exponentially as a function of the intracellular conductivity and the level of cell isotropy. Additionally, we report numerical results obtained from bidomain simulations of the Beeler-Reuter model that are quantitatively consistent with our experimental results. Also, we derive an intuitive analytical framework that describes the activation site density and provides useful information for determining the ratio of longitudinal to transverse conductivity in a cardiac tissue culture. The results obtained here should be useful in the development of an actual therapeutic method based on low-energy far-field pacing. In addition, they provide a deeper understanding of the intrinsic properties of cardiac cells.

  18. Controlling activation site density by low-energy far-field stimulation in cardiac tissue

    NASA Astrophysics Data System (ADS)

    Hörning, Marcel; Takagi, Seiji; Yoshikawa, Kenichi

    2012-06-01

    Tachycardia and fibrillation are potentially fatal arrhythmias associated with the formation of rotating spiral waves in the heart. Presently, the termination of these types of arrhythmia is achieved by use of antitachycardia pacing or cardioversion. However, these techniques have serious drawbacks, in that they either have limited application or produce undesirable side effects. Low-energy far-field stimulation has recently been proposed as a superior therapy. This proposed therapeutic method would exploit the phenomenon in which the application of low-energy far-field shocks induces a large number of activation sites (“virtual electrodes”) in tissue. It has been found that the formation of such sites can lead to the termination of undesired states in the heart and the restoration of normal beating. In this study we investigate a particular aspect of this method. Here we seek to determine how the activation site density depends on the applied electric field through in vitro experiments carried out on neonatal rat cardiac tissue cultures. The results indicate that the activation site density increases exponentially as a function of the intracellular conductivity and the level of cell isotropy. Additionally, we report numerical results obtained from bidomain simulations of the Beeler-Reuter model that are quantitatively consistent with our experimental results. Also, we derive an intuitive analytical framework that describes the activation site density and provides useful information for determining the ratio of longitudinal to transverse conductivity in a cardiac tissue culture. The results obtained here should be useful in the development of an actual therapeutic method based on low-energy far-field pacing. In addition, they provide a deeper understanding of the intrinsic properties of cardiac cells.

  19. The Prodrug 4-Chlorokynurenine Causes Ketamine-Like Antidepressant Effects, but Not Side Effects, by NMDA/GlycineB-Site Inhibition

    PubMed Central

    Zanos, Panos; Piantadosi, Sean C.; Wu, Hui-Qiu; Pribut, Heather J.; Dell, Matthew J.; Can, Adem; Snodgrass, H. Ralph; Zarate, Carlos A.; Schwarcz, Robert

    2015-01-01

    Currently approved antidepressant drug treatment typically takes several weeks to be effective. The noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist ketamine has shown efficacy as a rapid-acting treatment of depression, but its use is associated with significant side effects. We assessed effects following blockade of the glycineB co-agonist site of the NMDA receptor, located on the GluN1 subunit, by the selective full antagonist 7-chloro-kynurenic acid (7-Cl-KYNA), delivered by systemic administration of its brain-penetrant prodrug 4-chlorokynurenine (4-Cl-KYN) in mice. Following administration of 4-Cl-KYN, 7-Cl-KYNA was promptly recovered extracellularly in hippocampal microdialysate of freely moving animals. The behavioral responses of the animals were assessed using measures of ketamine-sensitive antidepressant efficacy (including the 24-hour forced swim test, learned helplessness test, and novelty-suppressed feeding test). In these tests, distinct from fluoxetine, and similar to ketamine, 4-Cl-KYN administration resulted in rapid, dose-dependent and persistent antidepressant-like effects following a single treatment. The antidepressant effects of 4-Cl-KYN were prevented by pretreatment with glycine or the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX). 4-Cl-KYN administration was not associated with the rewarding and psychotomimetic effects of ketamine, and did not induce locomotor sensitization or stereotypic behaviors. Our results provide further support for antagonism of the glycineB site for the rapid treatment of treatment-resistant depression without the negative side effects seen with ketamine or other channel-blocking NMDA receptor antagonists. PMID:26265321

  20. Active-Site-Accessible, Porphyrinic Metal;#8722;Organic Framework Materials

    SciTech Connect

    Farha, Omar K.; Shultz, Abraham M.; Sarjeant, Amy A.; Nguyen, SonBinh T.; Hupp, Joseph T.

    2012-02-06

    On account of their structural similarity to cofactors found in many metallo-enzymes, metalloporphyrins are obvious potential building blocks for catalytically active, metal-organic framework (MOF) materials. While numerous porphyrin-based MOFs have already been described, versions featuring highly accessible active sites and permanent microporosity are remarkably scarce. Indeed, of the more than 70 previously reported porphyrinic MOFs, only one has been shown to be both permanently microporous and contain internally accessible active sites for chemical catalysis. Attempts to generalize the design approach used in this single successful case have failed. Reported here, however, is the synthesis of an extended family of MOFs that directly incorporate a variety of metalloporphyrins (specifically Al{sup 3+}, Zn{sup 2+}, Pd{sup 2+}, Mn{sup 3+}, and Fe{sup 3+} complexes). These robust porphyrinic materials (RPMs) feature large channels and readily accessible active sites. As an illustrative example, one of the manganese-containing RPMs is shown to be catalytically competent for the oxidation of alkenes and alkanes.

  1. Functional constituents of the active site of human neutrophil collagenase.

    PubMed

    Mookhtiar, K A; Wang, F; Van Wart, H E

    1986-05-01

    A series of chemical modification reactions has been carried out to identify functional constituents of the active site of human neutrophil collagenase. The enzyme is reversibly inhibited by the transition metal chelating agent 1,10-phenanthroline, and inhibition is fully reversed by zinc. Removal of weakly bound metal ions by gel filtration inactivates collagenase, and activity is fully restored on immediate readdition of calcium. The enzyme is unaffected by reagents that modify serine, cysteine, and arginine residues. However, reaction with the carboxyl reagents cyclohexylmorpholinocarbodiimide and Woodward's Reagent K lowers the activity of the enzyme substantially. Acetylimidazole inactivates the enzyme, but activity is completely restored on addition of hydroxylamine. The enzyme is also inactivated by tetranitromethane, indicating that it contains an essential tyrosine residue. Acylation of collagenase with diethyl pyrocarbonate, diketene, acetic anhydride, or trinitrobenzenesulfonate inactivates the enzyme, and activity is not restored on addition of hydroxylamine, indicating the presence of an essential lysine residue.

  2. Free energy simulations of active-site mutants of dihydrofolate reductase.

    PubMed

    Doron, Dvir; Stojković, Vanja; Gakhar, Lokesh; Vardi-Kilshtain, Alexandra; Kohen, Amnon; Major, Dan Thomas

    2015-01-22

    This study employs hybrid quantum mechanics-molecular mechanics (QM/MM) simulations to investigate the effect of mutations of the active-site residue I14 of E. coli dihydrofolate reductase (DHFR) on the hydride transfer. Recent kinetic measurements of the I14X mutants (X = V, A, and G) indicated slower hydride transfer rates and increasingly temperature-dependent kinetic isotope effects (KIEs) with systematic reduction of the I14 side chain. The QM/MM simulations show that when the original isoleucine residue is substituted in silico by valine, alanine, or glycine (I14V, I14A, and I14G DHFR, respectively), the free energy barrier height of the hydride transfer reaction increases relative to the wild-type enzyme. These trends are in line with the single-turnover rate measurements reported for these systems. In addition, extended dynamics simulations of the reactive Michaelis complex reveal enhanced flexibility in the mutants, and in particular for the I14G mutant, including considerable fluctuations of the donor-acceptor distance (DAD) and the active-site hydrogen bonding network compared with those detected in the native enzyme. These observations suggest that the perturbations induced by the mutations partly impair the active-site environment in the reactant state. On the other hand, the average DADs at the transition state of all DHFR variants are similar. Crystal structures of I14 mutants (V, A, and G) confirmed the trend of increased flexibility of the M20 and other loops. PMID:25382260

  3. Mutations in the β-tubulin binding site for peloruside A confer resistance by targeting a cleft significant in side chain binding

    PubMed Central

    Begaye, Adrian; Trostel, Shana; Zhao, Zhiming; Taylor, Richard E; Schriemer, David C

    2011-01-01

    Peloruside A is a microtubule-stabilizing macrolide that binds to β-tubulin at a site distinct from the taxol site. The site was previously identified by H-D exchange mapping and molecular docking as a region close to the outer surface of the microtubule and confined in a cavity surrounded by a continuous loop of protein folded so as to center on Y340. We have isolated a series of peloruside A-resistant lines of the human ovarian carcinoma cell line A2780(1A9) to better characterize this binding site and the consequences of altering residues in it. Four resistant lines (Pel A-D) are described with single-base mutations in class I β-tubulin that result in the following substitutions: R306H, Y340S, N337D and A296S in various combinations. The mutations are localized to peptides previously identified by Hydrogen-Deuterium exchange mapping, and center on a cleft in which the drug side chain appears to dock. The Pel lines are 10–15-fold resistant to peloruside A and show cross resistance to laulimalide but not to any other microtubule stabilizers. They show no cross-sensitivity to any microtubule destabilizers, nor to two drugs with targets unrelated to microtubules. Peloruside A induces G2/M arrest in the Pel cell lines at concentrations 10–15 times that required in the parental line. The cells show notable changes in morphology compared with the parental line. PMID:21926482

  4. Nest predation increases with parental activity: Separating nest site and parental activity effects

    USGS Publications Warehouse

    Martin, T.E.; Scott, J.; Menge, C.

    2000-01-01

    Alexander Skutch hypothesized that increased parental activity can increase the risk of nest predation. We tested this hypothesis using ten open-nesting bird species in Arizona, USA. Parental activity was greater during the nestling than incubation stage because parents visited the nest frequently to feed their young during the nestling stage. However, nest predation did not generally increase with parental activity between nesting stages across the ten study species. Previous investigators have found similar results. We tested whether nest site effects might yield higher predation during incubation because the most obvious sites are depredated most rapidly. We conducted experiments using nest sites from the previous year to remove parental activity. Our results showed that nest sites have highly repeatable effects on nest predation risk; poor nest sites incurred rapid predation and caused predation rates to be greater during the incubation than nestling stage. This pattern also was exhibited in a bird species with similar (i.e. controlled) parental activity between nesting stages. Once nest site effects are taken into account, nest predation shows a strong proximate increase with parental activity during the nestling stage within and across species. Parental activity and nest sites exert antagonistic influences on current estimates of nest predation between nesting stages and both must be considered in order to understand current patterns of nest predation, which is an important source of natural selection.

  5. A Hydrophobic Pocket in the Active Site of Glycolytic Aldolase Mediates Interactions with Wiskott-Aldrich Syndrome Protein

    SciTech Connect

    St-Jean,M.; Izard, T.; Sygusch, J.

    2007-01-01

    Aldolase plays essential catalytic roles in glycolysis and gluconeogenesis. However, aldolase is a highly abundant protein that is remarkably promiscuous in its interactions with other cellular proteins. In particular, aldolase binds to highly acidic amino acid sequences, including the C-terminus of the Wiskott-Aldrich syndrome protein, an actin nucleation promoting factor. Here we report the crystal structure of tetrameric rabbit muscle aldolase in complex with a C-terminal peptide of Wiskott-Aldrich syndrome protein. Aldolase recognizes a short, 4-residue DEWD motif (residues 498-501), which adopts a loose hairpin turn that folds about the central aromatic residue, enabling its tryptophan side chain to fit into a hydrophobic pocket in the active site of aldolase. The flanking acidic residues in this binding motif provide further interactions with conserved aldolase active site residues, Arg-42 and Arg-303, aligning their side chains and forming the sides of the hydrophobic pocket. The binding of Wiskott-Aldrich syndrome protein to aldolase precludes intramolecular interactions of its C-terminus with its active site, and is competitive with substrate as well as with binding by actin and cortactin. Finally, based on this structure a novel naphthol phosphate-based inhibitor of aldolase was identified and its structure in complex with aldolase demonstrated mimicry of the Wiskott-Aldrich syndrome protein-aldolase interaction. The data support a model whereby aldolase exists in distinct forms that regulate glycolysis or actin dynamics.

  6. How to make a sexy snake: estrogen activation of female sex pheromone in male red-sided garter snakes.

    PubMed

    Parker, M Rockwell; Mason, Robert T

    2012-03-01

    Vertebrates indicate their genetic sex to conspecifics using secondary sexual signals, and signal expression is often activated by sex hormones. Among vertebrate signaling modalities, the least is known about how hormones influence chemical signaling. Our study species, the red-sided garter snake (Thamnophis sirtalis parietalis), is a model vertebrate for studying hormonal control of chemical signals because males completely rely on the female sex pheromone to identify potential mates among thousands of individuals. How sex hormones can influence the expression of this crucial sexual signal is largely unknown. We created two groups of experimental males for the first experiment: Sham (blank implants) and E2 (17β-estradiol implants). E2 males were vigorously courted by wild males in outdoor bioassays, and in a Y-maze E2 pheromone trails were chosen by wild males over those of small females and were indistinguishable from large female trails. Biochemically, the E2 pheromone blend was similar to that of large females, and it differed significantly from Shams. For the second experiment, we implanted males with 17β-estradiol in 2007 but removed the implants the following year (2008; Removal). That same year, we implanted a new group of males with estrogen implants (Implant). Removal males were courted by wild males in 2008 (implant intact) but not in 2009 (removed). Total pheromone quantity and quality increased following estrogen treatment, and estrogen removal re-established male-typical pheromone blends. Thus, we have shown that estrogen activates the production of female pheromone in adult red-sided garter snakes. This is the first known study to quantify both behavioral and biochemical responses in chemical signaling following sex steroid treatment of reptiles in the activation/organization context. We propose that the homogametic sex (ZZ, male) may possess the same targets for activation of sexual signal production, and the absence of the activator (17

  7. How to make a sexy snake: estrogen activation of female sex pheromone in male red-sided garter snakes.

    PubMed

    Parker, M Rockwell; Mason, Robert T

    2012-03-01

    Vertebrates indicate their genetic sex to conspecifics using secondary sexual signals, and signal expression is often activated by sex hormones. Among vertebrate signaling modalities, the least is known about how hormones influence chemical signaling. Our study species, the red-sided garter snake (Thamnophis sirtalis parietalis), is a model vertebrate for studying hormonal control of chemical signals because males completely rely on the female sex pheromone to identify potential mates among thousands of individuals. How sex hormones can influence the expression of this crucial sexual signal is largely unknown. We created two groups of experimental males for the first experiment: Sham (blank implants) and E2 (17β-estradiol implants). E2 males were vigorously courted by wild males in outdoor bioassays, and in a Y-maze E2 pheromone trails were chosen by wild males over those of small females and were indistinguishable from large female trails. Biochemically, the E2 pheromone blend was similar to that of large females, and it differed significantly from Shams. For the second experiment, we implanted males with 17β-estradiol in 2007 but removed the implants the following year (2008; Removal). That same year, we implanted a new group of males with estrogen implants (Implant). Removal males were courted by wild males in 2008 (implant intact) but not in 2009 (removed). Total pheromone quantity and quality increased following estrogen treatment, and estrogen removal re-established male-typical pheromone blends. Thus, we have shown that estrogen activates the production of female pheromone in adult red-sided garter snakes. This is the first known study to quantify both behavioral and biochemical responses in chemical signaling following sex steroid treatment of reptiles in the activation/organization context. We propose that the homogametic sex (ZZ, male) may possess the same targets for activation of sexual signal production, and the absence of the activator (17

  8. Tales from the Dark Side: Teacher Professional Development , Support , Activities, Student Research & Presentations

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Pompea, S. M.

    2013-12-01

    In a partnership last Spring with Arizona Public Service, the National Optical Astronomy Observatory (NOAO) created the 'Dark-Skies Energy Education Program: Energy Awareness for a Sustainable Future'. In this program, experienced science and technology education specialists from NOAO led 2 one-day professional development workshops for thirteen 6th grade teachers on dark skies and energy education. The workshops focused on three foundational, scaffolding activities and a final student research project. This in turn culminated in a Family Science Night where students presented their projects. In between these events, our NOAO team provided support for teachers through real-time video conferencing using FaceTime. In addition to the professional development, each teacher received a kit full of resource materials to perform the activities and research project. The kit was at no cost to the teacher, school, or district. Each kit contained the latest version of a tablet, which was used to facilitate communication and support for the teachers, as well as provide all the program's written teaching materials. The activities are in accordance with state, Common Core and Next Generation Science Standards. Our NOAO instructors gave firsthand experiences on how best to use these materials in a classroom or public setting. They also discussed opportunities on how they can incorporate, adapt and expand upon the activities and research projects in the classroom. Evaluation reports from the program's independent evaluator showed that the students enjoyed learning from the three foundational activities and research projects. The project presentations by the Yuma students were outstanding in their creativity, level of effort, and scientific accuracy. To summarize the evaluations, significant changes in knowledge and attitude were made with the teachers and students (from one-on-one interviews and surveys), but behavioral changes (albeit only over a semester) seemed minimal. The AGU

  9. Active sites in char gasification: Final technical report

    SciTech Connect

    Wojtowicz, M.; Lilly, W.D.; Perkins, M.T.; Hradil, G.; Calo, J.M.; Suuberg, E.M.

    1987-09-01

    Among the key variables in the design of gasifiers and combustors is the reactivity of the chars which must be gasified or combusted. Significant loss of unburned char is unacceptable in virtually any process; the provision of sufficient residence time for complete conversion is essential. A very wide range of reactivities are observed, depending upon the nature of the char in a process. The current work focuses on furthering the understanding of gasification reactivities of chars. It has been well established that the reactivity of char to gasification generally depends upon three principal factors: (1) the concentration of ''active sites'' in the char; (2) mass transfer within the char; and (3) the type and concentration of catalytic impurities in the char. The present study primarily addresses the first factor. The subject of this research is the origin, nature, and fate of active sites in chars derived from parent hydrocarbons with coal-like structure. The nature and number of the active sites and their reactivity towards oxygen are examined in ''model'' chars derived from phenol-formaldehyde type resins. How the active sites are lost by the process of thermal annealing during heat treatment of chars are studied, and actual rate for the annealing process is derived. Since intrinsic char reactivities are of primary interest in the present study, a fair amount of attention was given to the model char synthesis and handling so that the effect of catalytic impurities and oxygen-containing functional groups in the chemical structure of the material were minimized, if not completely eliminated. The project would not be considered complete without comparing characteristic features of synthetic chars with kinetic behavior exhibited by natural chars, including coal chars.

  10. Experimental and Metabolic Modeling Evidence for a Folate-Cleaving Side-Activity of Ketopantoate Hydroxymethyltransferase (PanB)

    PubMed Central

    Thiaville, Jennifer J.; Frelin, Océane; García-Salinas, Carolina; Harrison, Katherine; Hasnain, Ghulam; Horenstein, Nicole A.; Díaz de la Garza, Rocio I.; Henry, Christopher S.; Hanson, Andrew D.; de Crécy-Lagard, Valérie

    2016-01-01

    Tetrahydrofolate (THF) and its one-carbon derivatives, collectively termed folates, are essential cofactors, but are inherently unstable. While it is clear that chemical oxidation can cleave folates or damage their pterin precursors, very little is known about enzymatic damage to these molecules or about whether the folate biosynthesis pathway responds adaptively to damage to its end-products. The presence of a duplication of the gene encoding the folate biosynthesis enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (FolK) in many sequenced bacterial genomes combined with a strong chromosomal clustering of the folK gene with panB, encoding the 5,10-methylene-THF-dependent enzyme ketopantoate hydroxymethyltransferase, led us to infer that PanB has a side activity that cleaves 5,10-methylene-THF, yielding a pterin product that is recycled by FolK. Genetic and metabolic analyses of Escherichia coli strains showed that overexpression of PanB leads to accumulation of the likely folate cleavage product 6-hydroxymethylpterin and other pterins in cells and medium, and—unexpectedly—to a 46% increase in total folate content. In silico modeling of the folate biosynthesis pathway showed that these observations are consistent with the in vivo cleavage of 5,10-methylene-THF by a side-activity of PanB, with FolK-mediated recycling of the pterin cleavage product, and with regulation of folate biosynthesis by folates or their damage products. PMID:27065985

  11. Local anti-inflammatory activity and systemic side effects of NM-135, a new prodrug glucocorticoid, in an experimental inflammatory rat model.

    PubMed

    Ishii, T; Kibushi, N; Nakajima, T; Kakuta, T; Tanaka, N; Sato, C; Sugai, K; Kijima-Suda, I; Kai, H; Miyata, T

    1998-12-01

    The local anti-inflammatory activity and systemic side effects of NM-135 (6alpha,9-difluoro-11beta-hydroxy-16alpha-methyl-21[[2 ,3,4,6-tetrakis-O-(4-methylbenzoyl)-beta-D-glucopyranosyl]oxy]-pregna-1, 4-diene-3,20-dione) in croton oil-induced granuloma pouches and ear edema in rats were studied. The local anti-inflammatory activity of NM-135 was stronger than that of betamethasone 17-valerate (BV). As to systemic side effects, BV and diflucortolon valerate (DFV) caused thymolysis at the doses required for the anti-inflammatory activity. In contrast, no clear systemic side effect was observed in rats administered NM-135 at the dose producing the anti-inflammatory activity. These results suggest that NM-135 is a drug exhibiting a high degree of dissociation between the local anti-inflammatory activity and systemic side effects. PMID:9920209

  12. Brownian aggregation rate of colloid particles with several active sites

    SciTech Connect

    Nekrasov, Vyacheslav M.; Yurkin, Maxim A.; Chernyshev, Andrei V.; Polshchitsin, Alexey A.; Yakovleva, Galina E.; Maltsev, Valeri P.

    2014-08-14

    We theoretically analyze the aggregation kinetics of colloid particles with several active sites. Such particles (so-called “patchy particles”) are well known as chemically anisotropic reactants, but the corresponding rate constant of their aggregation has not yet been established in a convenient analytical form. Using kinematic approximation for the diffusion problem, we derived an analytical formula for the diffusion-controlled reaction rate constant between two colloid particles (or clusters) with several small active sites under the following assumptions: the relative translational motion is Brownian diffusion, and the isotropic stochastic reorientation of each particle is Markovian and arbitrarily correlated. This formula was shown to produce accurate results in comparison with more sophisticated approaches. Also, to account for the case of a low number of active sites per particle we used Monte Carlo stochastic algorithm based on Gillespie method. Simulations showed that such discrete model is required when this number is less than 10. Finally, we applied the developed approach to the simulation of immunoagglutination, assuming that the formed clusters have fractal structure.

  13. Active Sites Environmental Monitoring Program: FY 1991 report

    SciTech Connect

    Ashwood, T.L.; Hicks, D.S.; Morrissey, C.M.

    1992-11-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from April 1991 through September 1991. The ASEMP was established in 1989 by Solid Waste Operations (SWO) and the Environmental Sciences Division, both of Oak Ridge National Laboratory, to provide early detection and performance monitoring at active low-level (radioactive) waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. A new set of action levels was developed on the basis of a statistical analysis of background contamination. These new action levels have been used to evaluate results in this report. Results of ASEMP monitoring continue to demonstrate that no LLW (except [sup 3]H) is being leached from the storage vaults on the tumulus pads. Loading of vaults on Tumulus II, which began in early FY 1991, was >90% complete at the end of September 1991. Results of sampling of groundwater and surface waters is presented.

  14. Inhibition and active-site modelling of prolidase.

    PubMed

    King, G F; Crossley, M J; Kuchel, P W

    1989-03-15

    Consideration of the active-site model of prolidase led us to examine azetidine, pyrrolidine and piperidine substrate analogs as potential in vivo inhibitors of the enzyme. One of these, N-benzyloxycarbonyl-L-proline, was shown to be a potent competitive inhibitor of porcine kidney prolidase (Ki = 90 microM); its rapid protein-mediated permeation of human and sheep erythrocytes suggests that it may be effective in vivo. The higher homolog, N-benzyloxycarbonyl-L-pipecolic acid, was also a potent inhibitor of the enzyme while the antihypertensive drugs, captopril and enalaprilat, were shown to have mild and no inhibitory effects, respectively. Analysis of inhibitor action and consideration of X-ray crystallographic data of relevant Mn2+ complexes allowed the active-site model of prolidase to be further refined; a new model is presented in which the substrate acts as a bidentate ligand towards the active-site manganous ion. Various aspects of the new model help to explain why Mn2+ has been 'chosen' by the enzyme in preference to other biologically available metal ions. PMID:2924773

  15. Effect of feed starvation on side-stream anammox activity and key microbial populations.

    PubMed

    Reeve, Petra J; Mouilleron, Irina; Chuang, Hui-Ping; Thwaites, Ben; Hyde, Kylie; Dinesh, Nirmala; Krampe, Joerg; Lin, Tsair-Fuh; van den Akker, Ben

    2016-04-15

    The anaerobic ammonium oxidation (anammox) process is widely acknowledged to be susceptible to a wide range of environmental factors given the slow growth rate of the anammox bacteria. Surprisingly there is limited experimental data regarding the susceptibility of the anammox process to feed starvations which may be encountered in full-scale applications. Therefore, a study was established to investigate the impact of feed starvations on nitritation and anammox activity in a demonstration-scale sequencing batch reactor. Three starvation periods were trialled, lasting one fortnight (15 d), one month (33 d) and two months (62 d). Regardless of the duration of the starvation period, assessment of the ammonia removal performance demonstrated nitritation and anammox activity were reinstated within one day of recovery operation. Characterisation of the community structure using 16S rRNA and functional genes specific for nitrogen-related microbes showed there was no clear impact or shift in the microbial populations between starvation and recovery phases. PMID:26861222

  16. The bright side of plasmonic gold nanoparticles; activation of Nrf2, the cellular protective pathway

    NASA Astrophysics Data System (ADS)

    Goldstein, Alona; Soroka, Yoram; Frušić-Zlotkin, Marina; Lewis, Aaron; Kohen, Ron

    2016-06-01

    Plasmonic gold nanoparticles (AuNPs) are widely investigated for cancer therapy, due to their ability to strongly absorb light and convert it to heat and thus selectively destroy tumor cells. In this study we shed light on a new aspect of AuNPs and their plasmonic excitation, wherein they can provide anti-oxidant and anti-inflammatory protection by stimulating the cellular protective Nrf2 pathway. Our study was carried out on cells of the immune system, macrophages, and on skin cells, keratinocytes. A different response to AuNPs was noted in the two types of cells, explained by their distinct uptake profiles. In keratinocytes, the exposure to AuNPs, even at low concentrations, was sufficient to activate the Nrf2 pathway, without any irradiation, due to the presence of free AuNPs inside the cytosol. In contrast, in macrophages, the plasmonic excitation of the AuNPs by a low, non-lethal irradiation dose was required for their release from the constraining vesicles. The mechanism by which AuNPs activate the Nrf2 pathway was studied. Direct and indirect activation were suggested, based on the inherent ability of the AuNPs to react with thiol groups and to generate reactive oxygen species, in particular, under plasmonic excitation. The ability of AuNPs to directly activate the Nrf2 pathway renders them good candidates for treatment of disorders in which the up-regulation of Nrf2 is beneficial, specifically for topical treatment of inflammatory skin diseases.

  17. Analysis of Hydrogen Tunneling in an Enzyme Active Site using von Neumann Measurements

    PubMed Central

    Sumner, Isaiah; Iyengar, Srinivasan S.

    2010-01-01

    We build on our earlier quantum wavepacket study of hydrogen transfer in the biological enzyme, soybean lipoxygenase-1, by using von Neumann quantum measurement theory to gain qualitative insights into the transfer event. We treat the enzyme active site as a measurement device which acts on the tunneling hydrogen nucleus via the potential it exerts at each configuration. A series of changing active site geometries during the tunneling process effects a sequential projection of the initial, reactant state onto the final, product state. We study this process using several different kinds of von Neumann measurements and show how a discrete sequence of such measurements not only progressively increases the projection of the hydrogen nuclear wavepacket onto the product side but also favors proton over deuteron transfer. Several qualitative features of the hydrogen tunneling problem found in wavepacket dynamics studies are also recovered here. These include the shift in the “transition state” towards the reactant as a result of nuclear quantization, greater participation of excited states in the case of deuterium, and presence of critical points along the reaction coordinate that facilitate hydrogen and deuterium transfer and coincide with surface crossings. To further “tailor” the dynamics, we construct a perturbation to the sequence of measurements, that is a perturbation to the dynamical sequence of active site geometry evolution, which leads us to insight on the existence of sensitive regions of the reaction profile where subtle changes to the dynamics of the active site can have an effect on the hydrogen and deuterium transfer process. PMID:22933858

  18. Crystal structures of human tissue kallikrein 4: activity modulation by a specific zinc binding site.

    PubMed

    Debela, Mekdes; Magdolen, Viktor; Grimminger, Valerie; Sommerhoff, Christian; Messerschmidt, Albrecht; Huber, Robert; Friedrich, Rainer; Bode, Wolfram; Goettig, Peter

    2006-10-01

    Human tissue kallikrein 4 (hK4) belongs to a 15-member family of closely related serine proteinases. hK4 is predominantly expressed in prostate, activates hK3/PSA, and is up-regulated in prostate and ovarian cancer. We have identified active monomers of recombinant hK4 besides inactive oligomers in solution. hK4 crystallised in the presence of zinc, nickel, and cobalt ions in three crystal forms containing cyclic tetramers and octamers. These structures display a novel metal site between His25 and Glu77 that links the 70-80 loop with the N-terminal segment. Micromolar zinc as present in prostatic fluid inhibits the enzymatic activity of hK4 against fluorogenic substrates. In our measurements, wild-type hK4 exhibited a zinc inhibition constant (IC50) of 16 microM including a permanent residual activity, in contrast to the zinc-independent mutants H25A and E77A. Since the Ile16 N terminus of wild-type hK4 becomes more accessible for acetylating agents in the presence of zinc, we propose that zinc affects the hK4 active site via the salt-bridge formed between the N terminus and Asp194 required for a functional active site. hK4 possesses an unusual 99-loop that creates a groove-like acidic S2 subsite. These findings explain the observed specificity of hK4 for the P1 to P4 substrate residues. Moreover, hK4 shows a negatively charged surface patch, which may represent an exosite for prime-side substrate recognition. PMID:16950394

  19. Mutational Analysis of Substrate Interactions with the Active Site of Dialkylglycine Decarboxylase

    PubMed Central

    Fogle, Emily J.; Toney, Michael D.

    2010-01-01

    Pyridoxal phosphate (PLP) dependent enzymes catalyze many different types of reactions at the α-, β-, and γ-carbons of amine and amino acid substrates. Dialkylglycine decarboxylase (DGD) is an unusual PLP dependent enzyme that catalyzes two reaction types, decarboxylation and transamination, in the same active site. A structurally-based, functional model has been proposed for the DGD active site, which maintains that R406 is important in determining substrate specificity through interactions with the substrate carboxylate while W138 provides specificity for short-chain alkyl groups. The mechanistic roles of R406 and W138 were investigated using site directed mutagenesis, alternate substrates, and analysis of steady-state and half-reaction kinetics. Experiments on the R406M and R406K mutants confirm the importance of R406 in substrate binding. Surprisingly, this work also shows that the positive charge of R406 facilitates catalysis of decarboxylation. The W138F mutant demonstrates that W138 indeed acts to limit the size of the subsite C binding pocket, determining specificity for 2,2-dialkylglycines with small side chains as predicted by the model. Finally, work with the double mutant W138F/M141R shows that these mutations expand substrate specificity to include L-glutamate and lead to an increase in specificity for L-glutamate over 2-aminoisobutyrate of approximately eight orders of magnitude compared to WT DGD. PMID:20540501

  20. Probing the active site tryptophan of Staphylococcus aureus thioredoxin with an analog

    PubMed Central

    Englert, Markus; Nakamura, Akiyoshi; Wang, Yane-Shih; Eiler, Daniel; Söll, Dieter; Guo, Li-Tao

    2015-01-01

    Genetically encoded non-canonical amino acids are powerful tools of protein research and engineering; in particular they allow substitution of individual chemical groups or atoms in a protein of interest. One such amino acid is the tryptophan (Trp) analog 3-benzothienyl-l-alanine (Bta) with an imino-to-sulfur substitution in the five-membered ring. Unlike Trp, Bta is not capable of forming a hydrogen bond, but preserves other properties of a Trp residue. Here we present a pyrrolysyl-tRNA synthetase-derived, engineered enzyme BtaRS that enables efficient and site-specific Bta incorporation into proteins of interest in vivo. Furthermore, we report a 2.1 Å-resolution crystal structure of a BtaRS•Bta complex to show how BtaRS discriminates Bta from canonical amino acids, including Trp. To show utility in protein mutagenesis, we used BtaRS to introduce Bta to replace the Trp28 residue in the active site of Staphylococcus aureus thioredoxin. This experiment showed that not the hydrogen bond between residues Trp28 and Asp58, but the bulky aromatic side chain of Trp28 is important for active site maintenance. Collectively, our study provides a new and robust tool for checking the function of Trp in proteins. PMID:26582921

  1. Druggability analysis and classification of protein tyrosine phosphatase active sites

    PubMed Central

    Ghattas, Mohammad A; Raslan, Noor; Sadeq, Asil; Al Sorkhy, Mohammad; Atatreh, Noor

    2016-01-01

    Protein tyrosine phosphatases (PTP) play important roles in the pathogenesis of many diseases. The fact that no PTP inhibitors have reached the market so far has raised many questions about their druggability. In this study, the active sites of 17 PTPs were characterized and assessed for its ability to bind drug-like molecules. Consequently, PTPs were classified according to their druggability scores into four main categories. Only four members showed intermediate to very druggable pocket; interestingly, the rest of them exhibited poor druggability. Particularly focusing on PTP1B, we also demonstrated the influence of several factors on the druggability of PTP active site. For instance, the open conformation showed better druggability than the closed conformation, while the tight-bound water molecules appeared to have minimal effect on the PTP1B druggability. Finally, the allosteric site of PTP1B was found to exhibit superior druggability compared to the catalytic pocket. This analysis can prove useful in the discovery of new PTP inhibitors by assisting researchers in predicting hit rates from high throughput or virtual screening and saving unnecessary cost, time, and efforts via prioritizing PTP targets according to their predicted druggability. PMID:27757011

  2. Activation of the complement system during immunotherapy with recombinant IL-2. Relation to the development of side effects.

    PubMed

    Thijs, L G; Hack, C E; Strack van Schijndel, R J; Nuijens, J H; Wolbink, G J; Eerenberg-Belmer, A J; Van der Vall, H; Wagstaff, J

    1990-03-15

    Therapy with high doses of rIL-2 is complicated by the occurrence of hypotensive reactions and the development of a vascular leakage syndrome (VLS). In four patients, who together received seven cycles of high doses of IL-2 (up to 12 x 10(6) U per m2 per day), and who developed these side effects, we observed an unexpected increase in plasma levels of C3a, indicating activation of the complement system. C3a levels markedly increased during IL-2 therapy from 4 nmol/liter (mean level) before therapy to 23 nmol/liter at the end of the cycle. Activation of C3 occurred via the classical pathway inasmuch as C4a levels also increased during therapy. Mean daily C3a levels correlated with signs of the VLS, such as daily weight gain (p less than 0.001) and albumin levels (inverse correlation, p less than 0.001). In five additional patients, who together received seven cycles of lower doses of IL-2 (2 x 10(6) U per m2 per day) and who did not develop a VLS, only moderate increases in C3a levels (up to 13 nmol/liter) were observed. The highest levels at the first day of the regimen (mean: 7 nmol/liter) occurred 8 h after the IL-2 infusion. Thus, administration of IL-2 induces a dose-dependent activation of the complement system in vivo, which appeared to be related to the development of side effects of this therapy, such as the VLS.

  3. Current activities handbook: formerly utilized sites remedial action program

    SciTech Connect

    1981-02-27

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the activities each of the thirteen state legislatures potentially affected by the Formerly Utilized Sites Remedial Action Program. It contains a description of the state legislative procedural rules and a schedule of each legislative session; a summary of pending relevant legislation; the name and telephone number of legislative and state agency contacts; and the full text of all bills identified.

  4. Site-specific protein backbone and side-chain NMR chemical shift and relaxation analysis of human vinexin SH3 domain using a genetically encoded {sup 15}N/{sup 19}F-labeled unnatural amino acid

    SciTech Connect

    Shi, Pan; Xi, Zhaoyong; Wang, Hu; Shi, Chaowei; Xiong, Ying; Tian, Changlin

    2010-11-19

    Research highlights: {yields} Chemical synthesis of {sup 15}N/{sup 19}F-trifluomethyl phenylalanine. {yields} Site-specific incorporation of {sup 15}N/{sup 19}F-trifluomethyl phenylalanine to SH3. {yields} Site-specific backbone and side chain chemical shift and relaxation analysis. {yields} Different internal motions at different sites of SH3 domain upon ligand binding. -- Abstract: SH3 is a ubiquitous domain mediating protein-protein interactions. Recent solution NMR structural studies have shown that a proline-rich peptide is capable of binding to the human vinexin SH3 domain. Here, an orthogonal amber tRNA/tRNA synthetase pair for {sup 15}N/{sup 19}F-trifluoromethyl-phenylalanine ({sup 15}N/{sup 19}F-tfmF) has been applied to achieve site-specific labeling of SH3 at three different sites. One-dimensional solution NMR spectra of backbone amide ({sup 15}N){sup 1}H and side-chain {sup 19}F were obtained for SH3 with three different site-specific labels. Site-specific backbone amide ({sup 15}N){sup 1}H and side-chain {sup 19}F chemical shift and relaxation analysis of SH3 in the absence or presence of a peptide ligand demonstrated different internal motions upon ligand binding at the three different sites. This site-specific NMR analysis might be very useful for studying large-sized proteins or protein complexes.

  5. Activity of 3-Ketosteroid 9α-Hydroxylase (KshAB) Indicates Cholesterol Side Chain and Ring Degradation Occur Simultaneously in Mycobacterium tuberculosis*

    PubMed Central

    Capyk, Jenna K.; Casabon, Israël; Gruninger, Robert; Strynadka, Natalie C.; Eltis, Lindsay D.

    2011-01-01

    Mycobacterium tuberculosis (Mtb), a significant global pathogen, contains a cholesterol catabolic pathway. Although the precise role of cholesterol catabolism in Mtb remains unclear, the Rieske monooxygenase in this pathway, 3-ketosteroid 9α-hydroxylase (KshAB), has been identified as a virulence factor. To investigate the physiological substrate of KshAB, a rhodococcal acyl-CoA synthetase was used to produce the coenzyme A thioesters of two cholesterol derivatives: 3-oxo-23,24-bisnorchol-4-en-22-oic acid (forming 4-BNC-CoA) and 3-oxo-23,24-bisnorchola-1,4-dien-22-oic acid (forming 1,4-BNC-CoA). The apparent specificity constant (kcat/Km) of KshAB for the CoA thioester substrates was 20–30 times that for the corresponding 17-keto compounds previously proposed as physiological substrates. The apparent KmO2 was 90 ± 10 μm in the presence of 1,4-BNC-CoA, consistent with the value for two other cholesterol catabolic oxygenases. The Δ1 ketosteroid dehydrogenase KstD acted with KshAB to cleave steroid ring B with a specific activity eight times greater for a CoA thioester than the corresponding ketone. Finally, modeling 1,4-BNC-CoA into the KshA crystal structure suggested that the CoA moiety binds in a pocket at the mouth of the active site channel and could contribute to substrate specificity. These results indicate that the physiological substrates of KshAB are CoA thioester intermediates of cholesterol side chain degradation and that side chain and ring degradation occur concurrently in Mtb. This finding has implications for steroid metabolites potentially released by the pathogen during infection and for the design of inhibitors for cholesterol-degrading enzymes. The methodologies and rhodococcal enzymes used to generate thioesters will facilitate the further study of cholesterol catabolism. PMID:21987574

  6. Self-reports of medication side effects and pain-related activity interference in patients with chronic pain: a longitudinal cohort study.

    PubMed

    Martel, Marc O; Finan, Patrick H; Dolman, Andrew J; Subramanian, Subu; Edwards, Robert R; Wasan, Ajay D; Jamison, Robert N

    2015-06-01

    The primary purpose of this study was to examine the association between self-reports of medication side effects and pain-related activity interference in patients with chronic pain. The potential moderators of the association between reports of side effects and pain-related activity interference were also examined. A total of 111 patients with chronic musculoskeletal pain were asked to provide, once a month for a period of 6 months, self-reports of medication use and the presence of any perceived side effects (eg, nausea, dizziness, headaches) associated with their medications. At each of these time points, patients were also asked to provide self-reports of pain intensity, negative affect, and pain-related activity interference. Multilevel modeling analyses revealed that month-to-month increases in perceived medication side effects were associated with heightened pain-related activity interference (P < 0.05). Importantly, multilevel models revealed that perceived medication side effects were associated with heightened pain-related activity interference even after controlling for the influence of patient demographics, pain intensity, and negative affect. This study provides preliminary evidence that reports of medication side effects are associated with heightened pain-related activity interference in patients with chronic pain beyond the influence of other pain-relevant variables. The implications of our findings for clinical practice and the management of patients with chronic pain conditions are discussed.

  7. Biological activity of novel progesterone derivatives having a bulky ester side chains at C-3.

    PubMed

    Cabeza, Marisa; Bratoeff, Eugene; Ramírez, Elena; Heuze, Ivonne; Recillas, Sergio; Berrios, Hilda; Cruz, Angel; Cabrera, Olmo; Perez, Victor

    2008-09-01

    Antiandrogens are widely used agents for the treatment of androgen dependent diseases as inhibitors of androgen receptors (AR) action. Although the precise mechanism of antiandrogen action is not yet elucidated, recent studies indicate the involvement of the structure of the ligand in relation with the nuclear co-repressors. In the present study, we investigated the relationship between logP (the partition coefficient) of four pregnane derivatives 9a-9d and their biological activity. For this purpose, we determined the relative binding affinity (RBA) of steroids 9a-9d to androgen receptor (AR) obtained from rat prostate cytosol, using labeled mibolerone (MIB) as ligand. The IC(50) value of each compound was calculated according to the plots of concentration versus percentage of binding. The in vivo effect of 9a-9d was determined on the weight of the prostate and seminal vesicles from castrated hamsters treated with dihydrotestosterone. The four compounds bind to the androgen receptor with different relative binding affinity (RBA). Compound 9d having a logP of 4.17 showed the highest RBA>100% as compared to compound 9a having a logP of 2.92 which exhibited a RBA of only 2.85%. These data show a very good correlation between the lipophilicity of these compounds represented by logP and the percentage of RBA. The in vivo experiments showed that all new compound 9a-9d reduced the weight of the prostate gland as well as the seminal vesicles. Steroids 9c and 9d having a logP of 3.75 and 4.17, respectively, showed the highest antiandrogenic effect. PMID:18472120

  8. Structural Insights into the Protease-like Antigen Plasmodium falciparum SERA5 and Its Noncanonical Active-Site Serine

    SciTech Connect

    Hodder, Anthony N.; Malby, Robyn L.; Clarke, Oliver B.; Fairlie, W. Douglas; Colman, Peter M.; Crabb, Brendan S.; Smith, Brian J.

    2009-08-28

    The sera genes of the malaria-causing parasite Plasmodium encode a family of unique proteins that are maximally expressed at the time of egress of parasites from infected red blood cells. These multi-domain proteins are unique, containing a central papain-like cysteine-protease fragment enclosed between the disulfide-linked N- and C-terminal domains. However, the central fragment of several members of this family, including serine repeat antigen 5 (SERA5), contains a serine (S596) in place of the active-site cysteine. Here we report the crystal structure of the central protease-like domain of Plasmodium falciparum SERA5, revealing a number of anomalies in addition to the putative nucleophilic serine: (1) the structure of the putative active site is not conducive to binding substrate in the canonical cysteine-protease manner; (2) the side chain of D594 restricts access of substrate to the putative active site; and (3) the S{sub 2} specificity pocket is occupied by the side chain of Y735, reducing this site to a small depression on the protein surface. Attempts to determine the structure in complex with known inhibitors were not successful. Thus, despite having revealed its structure, the function of the catalytic domain of SERA5 remains an enigma.

  9. Innovative Soft-Sided Waste Packaging System Implementation at a Small Department of Energy Environmental Restoration/Waste Management (ER/WM) Site

    SciTech Connect

    Wolf, J.

    2002-02-28

    Weiss Associates (WA) performs a broad range of environmental restoration/waste management (ER/WM) activities for the U.S. Department of Energy (DOE) at the former Laboratory for Energy-Related Health Research (LEHR), University of California, Davis (UC Davis). Over the last three years, the LEHR ER/WM program transitioned from a baseline packaging system of steel, 2.7 cubic meter (3.5-cubic yard) B-25 boxes to a 7.0 cubic meter (9.1-cubic yard) soft-sided container (Lift Liner) system. The transition increased efficiencies in processing, packaging, and storage, and when combined with decreased procurement costs, achieved a $402,000 cost savings (Table I). Additional disposal costs between $128,600 and $182,600 were avoided by minimizing void space. Future cost savings by the end of fiscal year 2003 are projected between $250,640 and $1,003,360.

  10. Electrostatic fields in the active sites of lysozymes.

    PubMed

    Sun, D P; Liao, D I; Remington, S J

    1989-07-01

    Considerable experimental evidence is in support of several aspects of the mechanism that has been proposed for the catalytic activity of lysozyme. However, the enzymatically catalyzed hydrolysis of polysaccharides proceeds over 5 orders of magnitude faster than that of model compounds that mimic the configuration of the substrate in the active site of the enzyme. Although several possible explanations for this rate enhancement have been discussed elsewhere, a definitive mechanism has not emerged. Here we report striking results obtained by classical electrodynamics, which suggest that bond breakage and the consequent separation of charge in lysozyme is promoted by a large electrostatic field across the active site cleft, produced in part by a very asymmetric distribution of charged residues on the enzyme surface. Lysozymes unrelated in amino acid sequence have similar distributions of charged residues and electric fields. The results reported here suggest that the electrostatic component of the rate enhancement is greater than 9 kcal.mol-1. Thus, electrostatic interactions may play a more important role in the enzymatic mechanism than has generally been appreciated.

  11. Histidine at the active site of Neurospora tyrosinase.

    PubMed

    Pfiffner, E; Lerch, K

    1981-10-13

    The involvement of histidyl residues as potential ligands to the binuclear active-site copper of Neurospora tyrosinase was explored by dye-sensitized photooxidation. The enzymatic activity of the holoenzyme was shown to be unaffected by exposure to light in the presence of methylene blue; however, irradiation of the apoenzyme under the same conditions led to a progressive loss of its ability to be reactivated with Cu2+. This photoinactivation was paralleled by a decrease in the histidine content whereas the number of histidyl residues in the holoenzyme remained constant. Copper measurements of photooxidized, reconstituted apoenzyme demonstrated the loss of binding of one copper atom per mole of enzyme as a consequence of photosensitized oxidation of three out of nine histidine residues. Their sequence positions were determined by a comparison of the relative yields of the histidine containing peptides of photooxidized holo- and apotyrosinases. The data obtained show the preferential modification of histidyl residues 188, 193, and 289 and suggest that they constitute metal ligands to one of the two active-site copper atoms. Substitution of copper by cobalt was found to afford complete protection of the histidyl residues from being modified by dye-sensitized photooxidation. PMID:6458322

  12. Synthesis and evaluation of M. tuberculosis salicylate synthase (MbtI) inhibitors designed to probe plasticity in the active site.

    PubMed

    Manos-Turvey, Alexandra; Cergol, Katie M; Salam, Noeris K; Bulloch, Esther M M; Chi, Gamma; Pang, Angel; Britton, Warwick J; West, Nicholas P; Baker, Edward N; Lott, J Shaun; Payne, Richard J

    2012-12-14

    Mycobacterium tuberculosis salicylate synthase (MbtI) catalyses the first committed step in the biosynthesis of mycobactin T, an iron-chelating siderophore essential for the virulence and survival of M. tuberculosis. Co-crystal structures of MbtI with members of a first generation inhibitor library revealed large inhibitor-induced rearrangements within the active site of the enzyme. This plasticity of the MbtI active site was probed via the preparation of a library of inhibitors based on a 2,3-dihydroxybenzoate scaffold with a range of substituted phenylacrylate side chains appended to the C3 position. Most compounds exhibited moderate inhibitory activity against the enzyme, with inhibition constants in the micromolar range, while several dimethyl ester variants possessed promising anti-tubercular activity in vitro. PMID:23108268

  13. Determination of pKa values of the histidine side chains of phosphatidylinositol-specific phospholipase C from Bacillus cereus by NMR spectroscopy and site-directed mutagenesis.

    PubMed Central

    Liu, T.; Ryan, M.; Dahlquist, F. W.; Griffith, O. H.

    1997-01-01

    Two active site histidine residues have been implicated in the catalysis of phosphatidylinositol-specific phospholipase C (PI-PLC). In this report, we present the first study of the pKa values of histidines of a PI-PLC. All six histidines of Bacillus cereus PI-PLC were studied by 2D NMR spectroscopy and site-directed mutagenesis. The protein was selectively labeled with 13C epsilon 1-histidine. A series of 1H-13C HSQC NMR spectra were acquired over a pH range of 4.0-9.0. Five of the six histidines have been individually substituted with alanine to aid the resonance assignments in the NMR spectra. Overall, the remaining histidines in the mutants show little chemical shift changes in the 1H-13C HSQC spectra, indicating that the alanine substitution has no effect on the tertiary structure of the protein. H32A and H82A mutants are inactive enzymes, while H92A and H61A are fully active, and H81A retains about 15% of the wild-type activity. The active site histidines, His32 and His82, display pKa values of 7.6 and 6.9, respectively. His92 and His227 exhibit pKa values of 5.4 and 6.9. His61 and His81 do not titrate over the pH range studied. These values are consistent with the crystal structure data, which shows that His92 and His227 are on the surface of the protein, whereas His61 and His81 are buried. The pKa value of 6.9 corroborates the hypothesis of His82 acting as a general acid in the catalysis. His32 is essential to enzyme activity, but its putative role as the general base is in question due to its relatively high pKa. PMID:9300493

  14. Trichodiene synthase. Identification of active site residues by site-directed mutagenesis.

    PubMed

    Cane, D E; Shim, J H; Xue, Q; Fitzsimons, B C; Hohn, T M

    1995-02-28

    Derivatization of 5,5'-dithiobis(2-nitrobenzoic acid)-treated trichodiene synthase with [methyl-14C]methyl methanethiosulfonate and analysis of the derived tryptic peptides suggested the presence of two cysteine residues at the active site. The corresponding C146A and C190A mutants were constructed by site-directed mutagenesis. The C190A mutant displayed partial but significantly reduced activity, with a reduction in kcat/Km of 3000 compared to the wild-type trichodiene synthase, while the C146A mutant was essentially inactive. A hybrid trichodiene synthase, constructed from amino acids 1-309 of the Fusarium sporotrichioides enzyme and amino acids 310-383 of the Gibberella pulicaris cyclase, had steady state kinetic parameters nearly identical to those of the wild-type F. sporotrichioides enzyme. From this parent hybrid, a series of mutants was constructed by site-directed mutagenesis in which the amino acids in the base-rich region, 302-306 (DRRYR), were systematically modified. Three of these mutants were overexpressed and purified to homogeneity. The importance of Arg304 for catalysis was established by the observation that the R304K mutant showed a more than 25-fold increase in Km, as well as a 200-fold reduction in kcat. In addition, analysis of the incubation products of the R304K mutant by gas chromatography-mass spectrometry (GC-MS) indicated that farnesyl diphosphate was converted not only to trichodiene but to at least two additional C15H24 hydrocarbons, mle 204. Replacement of the Tyr305 residue of trichodiene synthase with Phe had little effect on kcat, while increasing the Km by a factor of ca. 7-8.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7873527

  15. Activation of muscarinic acetylcholine receptors via their allosteric binding sites.

    PubMed Central

    Jakubík, J; Bacáková, L; Lisá, V; el-Fakahany, E E; Tucek, S

    1996-01-01

    Ligands that bind to the allosteric-binding sites on muscarinic acetylcholine receptors alter the conformation of the classical-binding sites of these receptors and either diminish or increase their affinity for muscarinic agonists and classical antagonists. It is not known whether the resulting conformational change also affects the interaction between the receptors and the G proteins. We have now found that the muscarinic receptor allosteric modulators alcuronium, gallamine, and strychnine (acting in the absence of an agonist) alter the synthesis of cAMP in Chinese hamster ovary (CHO) cells expressing the M2 or the M4 subtype of muscarinic receptors in the same direction as the agonist carbachol. In addition, most of their effects on the production of inositol phosphates in CHO cells expressing the M1 or the M3 muscarinic receptor subtypes are also similar to (although much weaker than) those of carbachol. The agonist-like effects of the allosteric modulators are not observed in CHO cells that have not been transfected with the gene for any of the subtypes of muscarinic receptors. The effects of alcuronium on the formation of cAMP and inositol phosphates are not prevented by the classical muscarinic antagonist quinuclidinyl benzilate. These observations demonstrate for the first time that the G protein-mediated functional responses of muscarinic receptors can be evoked not only from their classical, but also from their allosteric, binding sites. This represents a new mechanism of receptor activation. PMID:8710935

  16. Side-chain interactions in the regulatory domain of human glutamate dehydrogenase determine basal activity and regulation.

    PubMed

    Mastorodemos, Vasileios; Kanavouras, Konstantinos; Sundaram, Shobana; Providaki, Maria; Petraki, Zoe; Kokkinidis, Michael; Zaganas, Ioannis; Logothetis, Diomedes E; Plaitakis, Andreas

    2015-04-01

    Glutamate Dehydrogenase (GDH) is central to the metabolism of glutamate, a major excitatory transmitter in mammalian central nervous system (CNS). hGDH1 is activated by ADP and L-leucine and powerfully inhibited by GTP. Besides this housekeeping hGDH1, duplication led to an hGDH2 isoform that is expressed in the human brain dissociating its function from GTP control. The novel enzyme has reduced basal activity (4-6% of capacity) while remaining remarkably responsive to ADP/L-leucine activation. While the molecular basis of this evolutionary adaptation remains unclear, substitution of Ser for Arg443 in hGDH1 is shown to diminish basal activity (< 2% of capacity) and abrogate L-leucine activation. To explore whether the Arg443Ser mutation disrupts hydrogen bonding between Arg443 and Ser409 of adjacent monomers in the regulatory domain ('antenna'), we replaced Ser409 by Arg or Asp in hGDH1. The Ser409Arg-1 change essentially replicated the Arg443Ser-1 mutation effects. Molecular dynamics simulation predicted that Ser409 and Arg443 of neighboring monomers come in close proximity in the open conformation and that introduction of Ser443-1 or Arg409-1 causes them to separate with the swap mutation (Arg409/Ser443) reinstating their proximity. A swapped Ser409Arg/Arg443Ser-1 mutant protein, obtained in recombinant form, regained most of the wild-type hGDH1 properties. Also, when Ser443 was replaced by Arg443 in hGDH2 (as occurs in hGDH1), the Ser443Arg-2 mutant acquired most of the hGDH1 properties. Hence, side-chain interactions between 409 and 443 positions in the 'antenna' region of hGDHs are crucial for basal catalytic activity, allosteric regulation, and relative resistance to thermal inactivation. PMID:25620628

  17. Radiation inactivation study of aminopeptidase: probing the active site

    NASA Astrophysics Data System (ADS)

    Jamadar, V. K.; Jamdar, S. N.; Mohan, Hari; Dandekar, S. P.; Harikumar, P.

    2004-04-01

    Ionizing radiation inactivated purified chicken intestinal aminopeptidase in media saturated with gases in the order N 2O>N 2>air. The D 37 values in the above conditions were 281, 210 and 198 Gy, respectively. OH radical scavengers such as t-butanol and isopropanol effectively nullified the radiation-induced damage in N 2O. The radicals (SCN) 2•-, Br 2•- and I 2•- inactivated the enzyme, pointing to the involvement of aromatic amino acids and cysteine in its catalytic activity. The enzyme exhibited fluorescence emission at 340 nm which is characteristic of tryptophan. The radiation-induced loss of activity was accompanied by a decrease in the fluorescence of the enzyme suggesting a predominant influence on tryptophan residues. The enzyme inhibition was associated with a marked increase in the Km and a decrease in the Vmax and kcat values, suggesting an irreversible alteration in the catalytic site. The above observations were confirmed by pulse radiolysis studies.

  18. Mimicking enzymatic active sites on surfaces for energy conversion chemistry.

    PubMed

    Gutzler, Rico; Stepanow, Sebastian; Grumelli, Doris; Lingenfelder, Magalí; Kern, Klaus

    2015-07-21

    Metal-organic supramolecular chemistry on surfaces has matured to a point where its underlying growth mechanisms are well understood and structures of defined coordination environments of metal atoms can be synthesized in a controlled and reproducible procedure. With surface-confined molecular self-assembly, scientists have a tool box at hand which can be used to prepare structures with desired properties, as for example a defined oxidation number and spin state of the transition metal atoms within the organic matrix. From a structural point of view, these coordination sites in the supramolecular structure resemble the catalytically active sites of metallo-enzymes, both characterized by metal centers coordinated to organic ligands. Several chemical reactions take place at these embedded metal ions in enzymes and the question arises whether these reactions also take place using metal-organic networks as catalysts. Mimicking the active site of metal atoms and organic ligands of enzymes in artificial systems is the key to understanding the selectivity and efficiency of enzymatic reactions. Their catalytic activity depends on various parameters including the charge and spin configuration in the metal ion, but also on the organic environment, which can stabilize intermediate reaction products, inhibits catalytic deactivation, and serves mostly as a transport channel for the reactants and products and therefore ensures the selectivity of the enzyme. Charge and spin on the transition metal in enzymes depend on the one hand on the specific metal element, and on the other hand on its organic coordination environment. These two parameters can carefully be adjusted in surface confined metal-organic networks, which can be synthesized by virtue of combinatorial mixing of building synthons. Different organic ligands with varying functional groups can be combined with several transition metals and spontaneously assemble into ordered networks. The catalytically active metal

  19. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer

    NASA Astrophysics Data System (ADS)

    Dinpajooh, Mohammadhasan; Martin, Daniel R.; Matyushov, Dmitry V.

    2016-06-01

    Enzymes in biology’s energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work.

  20. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer

    PubMed Central

    Dinpajooh, Mohammadhasan; Martin, Daniel R.; Matyushov, Dmitry V.

    2016-01-01

    Enzymes in biology’s energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work. PMID:27306204

  1. Structural Characterization of Human 8-Oxoguanine DNA Glycosylase Variants Bearing Active Site Mutations

    SciTech Connect

    Radom,C.; Banerjee, A.; Verdine, G.

    2007-01-01

    The human 8-oxoguanine DNA glycosylase (hOGG1) protein is responsible for initiating base excision DNA repair of the endogenous mutagen 8-oxoguanine. Like nearly all DNA glycosylases, hOGG1 extrudes its substrate from the DNA helix and inserts it into an extrahelical enzyme active site pocket lined with residues that participate in lesion recognition and catalysis. Structural analysis has been performed on mutant versions of hOGG1 having changes in catalytic residues but not on variants having altered 7,8-dihydro-8-oxoguanine (oxoG) contact residues. Here we report high resolution structural analysis of such recognition variants. We found that Ala substitution at residues that contact the phosphate 5 to the lesion (H270A mutation) and its Watson-Crick face (Q315A mutation) simply removed key functionality from the contact interface but otherwise had no effect on structure. Ala substitution at the only residue making an oxoG-specific contact (G42A mutation) introduced torsional stress into the DNA contact surface of hOGG1, but this was overcome by local interactions within the folded protein, indicating that this oxoG recognition motif is 'hardwired'. Introduction of a side chain intended to sterically obstruct the active site pocket (Q315F mutation) led to two different structures, one of which (Q315F{sup *149}) has the oxoG lesion in an exosite flanking the active site and the other of which (Q315F{sup *292}) has the oxoG inserted nearly completely into the lesion recognition pocket. The latter structure offers a view of the latest stage in the base extrusion pathway yet observed, and its lack of catalytic activity demonstrates that the transition state for displacement of the lesion base is geometrically demanding.

  2. Thermal regime of active layer at two lithologically contrasting sites on James Ross Island, Antarctic Peninsula.

    NASA Astrophysics Data System (ADS)

    Hrbáček, Filip; Nývlt, Daniel; Láska, Kamil

    2016-04-01

    Antarctic Peninsula region (AP) represents one of the most rapidly warming parts of our planet in the last 50 years. Despite increasing research activities along both western and eastern sides of AP in last decades, there is still a lot of gaps in our knowledge relating to permafrost, active layer and its thermal and physical properties. This study brings new results of active layer monitoring on James Ross Island, which is the largest island in northern AP. Its northern part, Ulu Peninsula, is the largest ice-free area (more than 200 km2) in the region. Due its large area, we focused this study on sites located in different lithologies, which would affect local thermal regime of active layer. Study site (1) at Abernethy Flats area (41 m a.s.l.) lies ~7 km from northern coast. Lithologically is formed by disintegrated Cretaceous calcareous sandstones and siltstones of the Santa Marta Formation. Study site (2) is located at the northern slopes of Berry Hill (56 m a.s.l.), about 0.4 km from northern coastline. Lithology is composed of muddy to intermediate diamictites, tuffaceous siltstones to fine grained sandstones of the Mendel Formation. Data of air temperature at 2 meters above ground and the active layer temperatures at 75 cm deep profiles were obtained from both sites in period 1 January 2012 to 31 December 2014. Small differences were found when comparing mean air temperatures and active temperatures at 5 and 75 cm depth in the period 2012-2014. While the mean air temperatures varied between -7.7 °C and -7.0 °C, the mean ground temperatures fluctuated between -6.6 °C and -6.1 °C at 5 cm and -6.9 °C and -6.0 °C at 75 cm at Abernethy Flats and Berry Hill slopes respectively. Even though ground temperature differences along the profiles weren't pronounced during thawing seasons, the maximum active layer thickness was significantly larger at Berry Hill slopes (80 to 82 cm) than at Abernethy Flats (52 to 64 cm). We assume this differences are affected by

  3. Spectroscopic Definition of the Ferroxidase Site in M Ferritin: Comparison of Binuclear Substrate vs. Cofactor Active Sites

    PubMed Central

    Schwartz, Jennifer K.; Liu, Xiaofeng S.; Tosha, Takehiko; Theil, Elizabeth C.; Solomon, Edward I.

    2008-01-01

    Maxi ferritins, 24 subunit protein nanocages, are essential in humans, plants, bacteria, and other animals for the concentration and storage of iron as hydrated ferric oxide, while minimizing free radical generation or use by pathogens. Formation of the precursors to these ferric oxides is catalyzed at a non-heme biferrous substrate site, which has some parallels with the cofactor sites in other biferrous enzymes. A combination of circular dichroism (CD), magnetic circular dichroism (MCD), and variable-temperature, variable-field MCD (VTVH MCD) has been used to probe Fe(II) binding to the substrate active site in frog M ferritin. These data determined that the active site within each subunit consists of two inequivalent five-coordinate (5C) ferrous centers that are weakly anti-ferromagnetically coupled, consistent with a μ-1,3 carboxylate bridge. The active site ligand set is unusual and likely includes a terminal water bound to each Fe(II) center. The Fe(II) ions bind to the active sites in a concerted manner, and cooperativity among the sites in each subunit is observed, potentially providing a mechanism for the control of ferritin iron loading. Differences in geometric and electronic structure – including a weak ligand field, availability of two water ligands at the biferrous substrate site, and the single carboxylate bridge in ferritin – coincide with the divergent reaction pathways observed between this substrate site and the previously studied cofactor active sites. PMID:18576633

  4. An active-site lysine in avian liver phosphoenolpyruvate carboxykinase

    SciTech Connect

    Guidinger, P.F.; Nowak, T. )

    1991-09-10

    The participation of lysine in the catalysis by avian liver phosphoenolpyruvate carboxykinase was studied by chemical modification and by a characterization of the modified enzyme. The rate of inactivation by 2,4-pentanedione is pseudo-first-order and linearly dependent on reagent concentration with a second-order rate constant of 0.36 {plus minus} 0.025 M{sup {minus}1} min{sup {minus}1}. Inactivation by pyridoxal 5{prime}-phosphate of the reversible reaction catalyzed by phosphoenolpyruvate carboxykinase follows bimolecular kinetics with a second-order rate constant of 7,700 {plus minus} 860 m{sup {minus}1} min{sup {minus}1}. Treatment of the enzyme or one lysine residue modified concomitant with 100% loss in activity. A stoichiometry of 1:1 is observed when either the reversible or the irreversible reactions catalyzed by the enzyme are monitored. A study of k{sub obs} vs pH suggests this active-site lysine has a pK{sub a} of 8.1 and a pH-independent rate constant of inactivation of 47,700 m{sup {minus}1} min{sup {minus}1}. Proton relaxation rate measurements suggest that pyridoxal 5{prime}-phosphate modification alters binding of the phosphate-containing substrates. {sup 31}P NMR relaxation rate measurements show altered binding of the substrates in the ternary enzyme {center dot}Mn{sup 2+}{center dot}substrate complex. Circular dichroism studies show little change in secondary structure of pyridoxal 5{prime}-phosphate modified phosphoenolpyruvate carboxykinase. These results indicate that avian liver phosphoenolpyruvate carboxykinase has one reactive lysine at the active site and it is involved in the binding and activation of the phosphate-containing substrates.

  5. Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues.

    PubMed

    Youngblut, Matthew D; Tsai, Chi-Lin; Clark, Iain C; Carlson, Hans K; Maglaqui, Adrian P; Gau-Pan, Phonchien S; Redford, Steven A; Wong, Alan; Tainer, John A; Coates, John D

    2016-04-22

    Perchlorate is an important ion on both Earth and Mars. Perchlorate reductase (PcrAB), a specialized member of the dimethylsulfoxide reductase superfamily, catalyzes the first step of microbial perchlorate respiration, but little is known about the biochemistry, specificity, structure, and mechanism of PcrAB. Here we characterize the biophysics and phylogeny of this enzyme and report the 1.86-Å resolution PcrAB complex crystal structure. Biochemical analysis revealed a relatively high perchlorate affinity (Km = 6 μm) and a characteristic substrate inhibition compared with the highly similar respiratory nitrate reductase NarGHI, which has a relatively much lower affinity for perchlorate (Km = 1.1 mm) and no substrate inhibition. Structural analysis of oxidized and reduced PcrAB with and without the substrate analog SeO3 (2-) bound to the active site identified key residues in the positively charged and funnel-shaped substrate access tunnel that gated substrate entrance and product release while trapping transiently produced chlorate. The structures suggest gating was associated with shifts of a Phe residue between open and closed conformations plus an Asp residue carboxylate shift between monodentate and bidentate coordination to the active site molybdenum atom. Taken together, structural and mutational analyses of gate residues suggest key roles of these gate residues for substrate entrance and product release. Our combined results provide the first detailed structural insight into the mechanism of biological perchlorate reduction, a critical component of the chlorine redox cycle on Earth.

  6. Eel calcitonin binding site distribution and antinociceptive activity in rats

    SciTech Connect

    Guidobono, F.; Netti, C.; Sibilia, V.; Villa, I.; Zamboni, A.; Pecile, A.

    1986-03-01

    The distribution of binding site for (/sup 125/I)-eel-calcitonin (ECT) to rat central nervous system, studied by an autoradiographic technique, showed concentrations of binding in the diencephalon, the brain stem and the spinal cord. Large accumulations of grains were seen in the hypothalamus, the amygdala, in the fasciculus medialis prosencephali, in the fasciculus longitudinalis medialis, in the ventrolateral part of the periventricular gray matter, in the lemniscus medialis and in the raphe nuclei. The density of grains in the reticular formation and in the nucleus tractus spinalis nervi trigemini was more moderate. In the spinal cord, grains were scattered throughout the dorsal horns. Binding of the ligand was displaced equally by cold ECT and by salmon CT(sCT), indicating that both peptides bind to the same receptors. Human CT was much weaker than sCT in displacing (/sup 125/I)-ECT binding. The administration of ECT into the brain ventricles of rats dose-dependently induced a significant and long-lasting enhancement of hot-plate latencies comparable with that obtained with sCT. The antinociceptive activity induced by ECT is compatible with the topographical distribution of binding sites for the peptide and is a further indication that fish CTs are active in the mammalian brain.

  7. Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues.

    PubMed

    Youngblut, Matthew D; Tsai, Chi-Lin; Clark, Iain C; Carlson, Hans K; Maglaqui, Adrian P; Gau-Pan, Phonchien S; Redford, Steven A; Wong, Alan; Tainer, John A; Coates, John D

    2016-04-22

    Perchlorate is an important ion on both Earth and Mars. Perchlorate reductase (PcrAB), a specialized member of the dimethylsulfoxide reductase superfamily, catalyzes the first step of microbial perchlorate respiration, but little is known about the biochemistry, specificity, structure, and mechanism of PcrAB. Here we characterize the biophysics and phylogeny of this enzyme and report the 1.86-Å resolution PcrAB complex crystal structure. Biochemical analysis revealed a relatively high perchlorate affinity (Km = 6 μm) and a characteristic substrate inhibition compared with the highly similar respiratory nitrate reductase NarGHI, which has a relatively much lower affinity for perchlorate (Km = 1.1 mm) and no substrate inhibition. Structural analysis of oxidized and reduced PcrAB with and without the substrate analog SeO3 (2-) bound to the active site identified key residues in the positively charged and funnel-shaped substrate access tunnel that gated substrate entrance and product release while trapping transiently produced chlorate. The structures suggest gating was associated with shifts of a Phe residue between open and closed conformations plus an Asp residue carboxylate shift between monodentate and bidentate coordination to the active site molybdenum atom. Taken together, structural and mutational analyses of gate residues suggest key roles of these gate residues for substrate entrance and product release. Our combined results provide the first detailed structural insight into the mechanism of biological perchlorate reduction, a critical component of the chlorine redox cycle on Earth. PMID:26940877

  8. Normal faulting along the western side of the Matese Mountains: Implications for active tectonics in the Central Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Boncio, Paolo; Dichiarante, Anna Maria; Auciello, Eugenio; Saroli, Michele; Stoppa, Francesco

    2016-01-01

    We provide new field data from geologic mapping and bedrock structural geology along the western side of the Matese Mts in central Italy, a region of high seismicity, strain rates among the highest of the entire Apennines (4-5 mm/yr GPS-determined extension), and poorly constrained active faults. The existing knowledge on the Aquae Iuliae normal fault (AIF) was implemented with geometric and kinematic data that better constrain its total length (16.5 km), the minimum long-term throw rate (0.3-0.4 mm/yr, post-late glacial maximum, LGM), and the segmentation. For the first time, we provide evidence of post-350 ka and possibly late Quaternary activity of the Ailano - Piedimonte Matese normal fault (APMF). The APMF is 18 km long. It is composed of a main 11 km-long segment striking NW-SE and progressively bending to the E-W in its southern part, and a 7 km-long segment striking E-W to ENE-WSW with very poor evidence of recent activity. The available data suggest a possible post-LGM throw rate of the main segment of ≳0.15 mm/yr. There is no evidence of active linkage in the step-over zone between the AIF and APMF (Prata Sannita step-over). An original tectonic model is proposed by comparing structural and geodetic data. The AIF and APMF belong to two major, nearly parallel fault systems. One system runs at the core of the Matese Mts and is formed by the AIF and the faults of the Gallo-Letino-Matese Lake system. The other system runs along the western side of the Matese Mts and is formed by the APMF, linked to the SE with the Piedimonte Matese - Gioia Sannitica fault. The finite extension of the APMF might be transferred to the NW towards the San Pietro Infine fault. The nearly 2-3 mm/yr GPS-determined extension rate is probably partitioned between the two systems, with a ratio that is difficult to establish due to poor GPS coverage. The proposed model, though incomplete (several faults/transfer zones need further investigations), aids in the seismotectonic

  9. Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation

    SciTech Connect

    Boudreaux, David A.; Maiti, Tushar K.; Davies, Christopher W.; Das, Chittaranjan

    2010-07-06

    Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a Parkinson disease-associated, putative cysteine protease found abundantly and selectively expressed in neurons. The crystal structure of apo UCHL1 showed that the active-site residues are not aligned in a canonical form, with the nucleophilic cysteine being 7.7 {angstrom} from the general base histidine, an arrangement consistent with an inactive form of the enzyme. Here we report the crystal structures of the wild type and two Parkinson disease-associated variants of the enzyme, S18Y and I93M, bound to a ubiquitin-based suicide substrate, ubiquitin vinyl methyl ester. These structures reveal that ubiquitin vinyl methyl ester binds primarily at two sites on the enzyme, with its carboxy terminus at the active site and with its amino-terminal {beta}-hairpin at the distal site - a surface-exposed hydrophobic crevice 17 {angstrom} away from the active site. Binding at the distal site initiates a cascade of side-chain movements in the enzyme that starts at a highly conserved, surface-exposed phenylalanine and is relayed to the active site resulting in the reorientation and proximal placement of the general base within 4 {angstrom} of the catalytic cysteine, an arrangement found in productive cysteine proteases. Mutation of the distal-site, surface-exposed phenylalanine to alanine reduces ubiquitin binding and severely impairs the catalytic activity of the enzyme. These results suggest that the activity of UCHL1 may be regulated by its own substrate.

  10. A comparative structure-function analysis of active-site inhibitors of Vibrio cholerae cholix toxin.

    PubMed

    Lugo, Miguel R; Merrill, A Rod

    2015-09-01

    Cholix toxin from Vibrio cholerae is a novel mono-ADP-ribosyltransferase (mART) toxin that shares structural and functional properties with Pseudomonas aeruginosa exotoxin A and Corynebacterium diphtheriae diphtheria toxin. Herein, we have used the high-resolution X-ray structure of full-length cholix toxin in the apo form, NAD(+) bound, and 10 structures of the cholix catalytic domain (C-domain) complexed with several strong inhibitors of toxin enzyme activity (NAP, PJ34, and the P-series) to study the binding mode of the ligands. A pharmacophore model based on the active pose of NAD(+) was compared with the active conformation of the inhibitors, which revealed a cationic feature in the side chain of the inhibitors that may determine the active pose. Moreover, a conformational search was conducted for the missing coordinates of one of the main active-site loops (R-loop). The resulting structural models were used to evaluate the interaction energies and for 3D-QSAR modeling. Implications for a rational drug design approach for mART toxins were derived.

  11. An Active Site Water Network in the Plasminogen Activator Pla from Yersinia pestis

    SciTech Connect

    Eren, Elif; Murphy, Megan; Goguen, Jon; van den Berg, Bert

    2010-08-13

    The plasminogen activator Pla from Yersinia pestis is an outer membrane protease (omptin) that is important for the virulence of plague. Here, we present the high-resolution crystal structure of wild-type, enzymatically active Pla at 1.9 {angstrom}. The structure shows a water molecule located between active site residues D84 and H208, which likely corresponds to the nucleophilic water. A number of other water molecules are present in the active site, linking residues important for enzymatic activity. The R211 sidechain in loop L4 is close to the nucleophilic water and possibly involved in the stabilization of the oxyanion intermediate. Subtle conformational changes of H208 result from the binding of lipopolysaccharide to the outside of the barrel, explaining the unusual dependence of omptins on lipopolysaccharide for activity. The Pla structure suggests a model for the interaction with plasminogen substrate and provides a more detailed understanding of the catalytic mechanism of omptin proteases.

  12. Metal active site elasticity linked to activation of homocysteine in methionine synthases

    SciTech Connect

    Koutmos, Markos; Pejchal, Robert; Bomer, Theresa M.; Matthews, Rowena G.; Smith, Janet L.; Ludwig, Martha L.

    2008-04-02

    Enzymes possessing catalytic zinc centers perform a variety of fundamental processes in nature, including methyl transfer to thiols. Cobalamin-independent (MetE) and cobalamin-dependent (MetH) methionine synthases are two such enzyme families. Although they perform the same net reaction, transfer of a methyl group from methyltetrahydrofolate to homocysteine (Hcy) to form methionine, they display markedly different catalytic strategies, modular organization, and active site zinc centers. Here we report crystal structures of zinc-replete MetE and MetH, both in the presence and absence of Hcy. Structural investigation of the catalytic zinc sites of these two methyltransferases reveals an unexpected inversion of zinc geometry upon binding of Hcy and displacement of an endogenous ligand in both enzymes. In both cases a significant movement of the zinc relative to the protein scaffold accompanies inversion. These structures provide new information on the activation of thiols by zinc-containing enzymes and have led us to propose a paradigm for the mechanism of action of the catalytic zinc sites in these and related methyltransferases. Specifically, zinc is mobile in the active sites of MetE and MetH, and its dynamic nature helps facilitate the active site conformational changes necessary for thiol activation and methyl transfer.

  13. Active Sites Environmental Monitoring Program: Program plan. Revision 1

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  14. Active site specificity profiling of the matrix metalloproteinase family: Proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic peptide cleavage analyses.

    PubMed

    Eckhard, Ulrich; Huesgen, Pitter F; Schilling, Oliver; Bellac, Caroline L; Butler, Georgina S; Cox, Jennifer H; Dufour, Antoine; Goebeler, Verena; Kappelhoff, Reinhild; Keller, Ulrich Auf dem; Klein, Theo; Lange, Philipp F; Marino, Giada; Morrison, Charlotte J; Prudova, Anna; Rodriguez, David; Starr, Amanda E; Wang, Yili; Overall, Christopher M

    2016-01-01

    Secreted and membrane tethered matrix metalloproteinases (MMPs) are key homeostatic proteases regulating the extracellular signaling and structural matrix environment of cells and tissues. For drug targeting of proteases, selectivity for individual molecules is highly desired and can be met by high yield active site specificity profiling. Using the high throughput Proteomic Identification of protease Cleavage Sites (PICS) method to simultaneously profile both the prime and non-prime sides of the cleavage sites of nine human MMPs, we identified more than 4300 cleavages from P6 to P6' in biologically diverse human peptide libraries. MMP specificity and kinetic efficiency were mainly guided by aliphatic and aromatic residues in P1' (with a ~32-93% preference for leucine depending on the MMP), and basic and small residues in P2' and P3', respectively. A wide differential preference for the hallmark P3 proline was found between MMPs ranging from 15 to 46%, yet when combined in the same peptide with the universally preferred P1' leucine, an unexpected negative cooperativity emerged. This was not observed in previous studies, probably due to the paucity of approaches that profile both the prime and non-prime sides together, and the masking of subsite cooperativity effects by global heat maps and iceLogos. These caveats make it critical to check for these biologically highly important effects by fixing all 20 amino acids one-by-one in the respective subsites and thorough assessing of the inferred specificity logo changes. Indeed an analysis of bona fide MEROPS physiological substrate cleavage data revealed that of the 37 natural substrates with either a P3-Pro or a P1'-Leu only 5 shared both features, confirming the PICS data. Upon probing with several new quenched-fluorescent peptides, rationally designed on our specificity data, the negative cooperativity was explained by reduced non-prime side flexibility constraining accommodation of the rigidifying P3 proline with

  15. Active Site and Laminarin Binding in Glycoside Hydrolase Family 55*

    PubMed Central

    Bianchetti, Christopher M.; Takasuka, Taichi E.; Deutsch, Sam; Udell, Hannah S.; Yik, Eric J.; Bergeman, Lai F.; Fox, Brian G.

    2015-01-01

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100–10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. PMID:25752603

  16. Characterization of the Dielectric Constant in the Trichoderma reesei Cel7B Active Site.

    PubMed

    Song, Xiangfei; Wang, Yefei; Zhang, Shujun; Yan, Shihai; Li, Tong; Yao, Lishan

    2015-07-27

    An attempt is made to evaluate the dielectric constant of the Trichoderma reesei Cel7B active site. Through kinetic measurements, the pKa value of the catalytic acid E201 is determined. Mutations (away from E201) with net charge changes are introduced to perturb the E201 pKa. It is shown that the mutation with a +1 charge change (including G225R, G230R, and A335R) decreases the pKa of E201, whereas the mutation with a -1 charge change (including Q149E, A222D, G225D, and G230D) increases the pKa. This effect is consistent with the electrostatic interaction between the changed charge and the E201 side chain. The fitting of the experimental data yields an apparent dielectric constant of 25-80. Molecular dynamics simulations with explicit water molecules indicate that the high solvent accessibility of the active site contributes largely to the high dielectric constant. ONIOM calculations show that high dielectric constant benefits the catalysis through decreasing the energy of the transition state relative to that of the enzyme substrate complex. PMID:26114648

  17. Characterization of the Dielectric Constant in the Trichoderma reesei Cel7B Active Site.

    PubMed

    Song, Xiangfei; Wang, Yefei; Zhang, Shujun; Yan, Shihai; Li, Tong; Yao, Lishan

    2015-07-27

    An attempt is made to evaluate the dielectric constant of the Trichoderma reesei Cel7B active site. Through kinetic measurements, the pKa value of the catalytic acid E201 is determined. Mutations (away from E201) with net charge changes are introduced to perturb the E201 pKa. It is shown that the mutation with a +1 charge change (including G225R, G230R, and A335R) decreases the pKa of E201, whereas the mutation with a -1 charge change (including Q149E, A222D, G225D, and G230D) increases the pKa. This effect is consistent with the electrostatic interaction between the changed charge and the E201 side chain. The fitting of the experimental data yields an apparent dielectric constant of 25-80. Molecular dynamics simulations with explicit water molecules indicate that the high solvent accessibility of the active site contributes largely to the high dielectric constant. ONIOM calculations show that high dielectric constant benefits the catalysis through decreasing the energy of the transition state relative to that of the enzyme substrate complex.

  18. Active site loop conformation regulates promiscuous activity in a lactonase from Geobacillus kaustophilus HTA426.

    PubMed

    Zhang, Yu; An, Jiao; Yang, Guang-Yu; Bai, Aixi; Zheng, Baisong; Lou, Zhiyong; Wu, Geng; Ye, Wei; Chen, Hai-Feng; Feng, Yan; Manco, Giuseppe

    2015-01-01

    Enzyme promiscuity is a prerequisite for fast divergent evolution of biocatalysts. A phosphotriesterase-like lactonase (PLL) from Geobacillus kaustophilus HTA426 (GkaP) exhibits main lactonase and promiscuous phosphotriesterase activities. To understand its catalytic and evolutionary mechanisms, we investigated a "hot spot" in the active site by saturation mutagenesis as well as X-ray crystallographic analyses. We found that position 99 in the active site was involved in substrate discrimination. One mutant, Y99L, exhibited 11-fold improvement over wild-type in reactivity (kcat/Km) toward the phosphotriesterase substrate ethyl-paraoxon, but showed 15-fold decrease toward the lactonase substrate δ-decanolactone, resulting in a 157-fold inversion of the substrate specificity. Structural analysis of Y99L revealed that the mutation causes a ∼6.6 Å outward shift of adjacent loop 7, which may cause increased flexibility of the active site and facilitate accommodation and/or catalysis of organophosphate substrate. This study provides for the PLL family an example of how the evolutionary route from promiscuity to specificity can derive from very few mutations, which promotes alteration in the conformational adjustment of the active site loops, in turn draws the capacity of substrate binding and activity.

  19. Active Site Loop Conformation Regulates Promiscuous Activity in a Lactonase from Geobacillus kaustophilus HTA426

    PubMed Central

    Zhang, Yu; An, Jiao; Yang, Guang-Yu; Bai, Aixi; Zheng, Baisong; Lou, Zhiyong; Wu, Geng; Ye, Wei; Chen, Hai-Feng; Feng, Yan; Manco, Giuseppe

    2015-01-01

    Enzyme promiscuity is a prerequisite for fast divergent evolution of biocatalysts. A phosphotriesterase-like lactonase (PLL) from Geobacillus kaustophilus HTA426 (GkaP) exhibits main lactonase and promiscuous phosphotriesterase activities. To understand its catalytic and evolutionary mechanisms, we investigated a “hot spot” in the active site by saturation mutagenesis as well as X-ray crystallographic analyses. We found that position 99 in the active site was involved in substrate discrimination. One mutant, Y99L, exhibited 11-fold improvement over wild-type in reactivity (kcat/Km) toward the phosphotriesterase substrate ethyl-paraoxon, but showed 15-fold decrease toward the lactonase substrate δ-decanolactone, resulting in a 157-fold inversion of the substrate specificity. Structural analysis of Y99L revealed that the mutation causes a ∼6.6 Å outward shift of adjacent loop 7, which may cause increased flexibility of the active site and facilitate accommodation and/or catalysis of organophosphate substrate. This study provides for the PLL family an example of how the evolutionary route from promiscuity to specificity can derive from very few mutations, which promotes alteration in the conformational adjustment of the active site loops, in turn draws the capacity of substrate binding and activity. PMID:25706379

  20. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site.

    PubMed

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel

    2015-01-01

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called 'catalytic residues' are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes. PMID:25902402

  1. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site.

    PubMed

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel

    2015-01-01

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called 'catalytic residues' are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes.

  2. Metals in the active site of native protein phosphatase-1.

    PubMed

    Heroes, Ewald; Rip, Jens; Beullens, Monique; Van Meervelt, Luc; De Gendt, Stefan; Bollen, Mathieu

    2015-08-01

    Protein phosphatase-1 (PP1) is a major protein Ser/Thr phosphatase in eukaryotic cells. Its activity depends on two metal ions in the catalytic site, which were identified as manganese in the bacterially expressed phosphatase. However, the identity of the metal ions in native PP1 is unknown. In this study, total reflection X-ray fluorescence (TXRF) was used to detect iron and zinc in PP1 that was purified from rabbit skeletal muscle. Metal exchange experiments confirmed that the distinct substrate specificity of recombinant and native PP1 is determined by the nature of their associated metals. We also found that the iron level associated with native PP1 is decreased by incubation with inhibitor-2, consistent with a function of inhibitor-2 as a PP1 chaperone. PMID:25890482

  3. A comprehensive search for calcium binding sites critical for TMEM16A calcium-activated chloride channel activity.

    PubMed

    Tien, Jason; Peters, Christian J; Wong, Xiu Ming; Cheng, Tong; Jan, Yuh Nung; Jan, Lily Yeh; Yang, Huanghe

    2014-06-30

    TMEM16A forms calcium-activated chloride channels (CaCCs) that regulate physiological processes such as the secretions of airway epithelia and exocrine glands, the contraction of smooth muscles, and the excitability of neurons. Notwithstanding intense interest in the mechanism behind TMEM16A-CaCC calcium-dependent gating, comprehensive surveys to identify and characterize potential calcium sensors of this channel are still lacking. By aligning distantly related calcium-activated ion channels in the TMEM16 family and conducting systematic mutagenesis of all conserved acidic residues thought to be exposed to the cytoplasm, we identify four acidic amino acids as putative calcium-binding residues. Alterations of the charge, polarity, and size of amino acid side chains at these sites alter the ability of different divalent cations to activate the channel. Furthermore, TMEM16A mutant channels containing double cysteine substitutions at these residues are sensitive to the redox potential of the internal solution, providing evidence for their physical proximity and solvent accessibility.

  4. Metavanadate at the active site of the phosphatase VHZ.

    PubMed

    Kuznetsov, Vyacheslav I; Alexandrova, Anastassia N; Hengge, Alvan C

    2012-09-01

    Vanadate is a potent modulator of a number of biological processes and has been shown by crystal structures and NMR spectroscopy to interact with numerous enzymes. Although these effects often occur under conditions where oligomeric forms dominate, the crystal structures and NMR data suggest that the inhibitory form is usually monomeric orthovanadate, a particularly good inhibitor of phosphatases because of its ability to form stable trigonal-bipyramidal complexes. We performed a computational analysis of a 1.14 Å structure of the phosphatase VHZ in complex with an unusual metavanadate species and compared it with two classical trigonal-bipyramidal vanadate-phosphatase complexes. The results support extensive delocalized bonding to the apical ligands in the classical structures. In contrast, in the VHZ metavanadate complex, the central, planar VO(3)(-) moiety has only one apical ligand, the nucleophilic Cys95, and a gap in electron density between V and S. A computational analysis showed that the V-S interaction is primarily ionic. A mechanism is proposed to explain the formation of metavanadate in the active site from a dimeric vanadate species that previous crystallographic evidence has shown to be able to bind to the active sites of phosphatases related to VHZ. Together, the results show that the interaction of vanadate with biological systems is not solely reliant upon the prior formation of a particular inhibitory form in solution. The catalytic properties of an enzyme may act upon the oligomeric forms primarily present in solution to generate species such as the metavanadate ion observed in the VHZ structure. PMID:22876963

  5. Zymogen Activation and Subcellular Activity of Subtilisin Kexin Isozyme 1/Site 1 Protease*

    PubMed Central

    da Palma, Joel Ramos; Burri, Dominique Julien; Oppliger, Joël; Salamina, Marco; Cendron, Laura; de Laureto, Patrizia Polverino; Seidah, Nabil Georges; Kunz, Stefan; Pasquato, Antonella

    2014-01-01

    The proprotein convertase subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P) plays crucial roles in cellular homeostatic functions and is hijacked by pathogenic viruses for the processing of their envelope glycoproteins. Zymogen activation of SKI-1/S1P involves sequential autocatalytic processing of its N-terminal prodomain at sites B′/B followed by the herein newly identified C′/C sites. We found that SKI-1/S1P autoprocessing results in intermediates whose catalytic domain remains associated with prodomain fragments of different lengths. In contrast to other zymogen proprotein convertases, all incompletely matured intermediates of SKI-1/S1P showed full catalytic activity toward cellular substrates, whereas optimal cleavage of viral glycoproteins depended on B′/B processing. Incompletely matured forms of SKI-1/S1P further process cellular and viral substrates in distinct subcellular compartments. Using a cell-based sensor for SKI-1/S1P activity, we found that 9 amino acid residues at the cleavage site (P1–P8) and P1′ are necessary and sufficient to define the subcellular location of processing and to determine to what extent processing of a substrate depends on SKI-1/S1P maturation. In sum, our study reveals novel and unexpected features of SKI-1/S1P zymogen activation and subcellular specificity of activity toward cellular and pathogen-derived substrates. PMID:25378398

  6. Role of a cysteine residue in the active site of ERK and the MAPKK family

    SciTech Connect

    Ohori, Makoto; Kinoshita, Takayoshi; Yoshimura, Seiji; Warizaya, Masaichi; Nakajima, Hidenori . E-mail: hidenori.nakajima@jp.astellas.com; Miyake, Hiroshi

    2007-02-16

    Kinases of mitogen-activated protein kinase (MAPK) cascades, including extracellular signal-regulated protein kinase (ERK), represent likely targets for pharmacological intervention in proliferative diseases. Here, we report that FR148083 inhibits ERK2 enzyme activity and TGF{beta}-induced AP-1-dependent luciferase expression with respective IC{sub 50} values of 0.08 and 0.05 {mu}M. FR265083 (1'-2' dihydro form) and FR263574 (1'-2' and 7'-8' tetrahydro form) exhibited 5.5-fold less and no activity, respectively, indicating that both the {alpha},{beta}-unsaturated ketone and the conformation of the lactone ring contribute to this inhibitory activity. The X-ray crystal structure of the ERK2/FR148083 complex revealed that the compound binds to the ATP binding site of ERK2, involving a covalent bond to S{gamma} of ERK2 Cys166, hydrogen bonds with the backbone NH of Met108, N{zeta} of Lys114, backbone C=O of Ser153, N{delta}2 of Asn154, and hydrophobic interactions with the side chains of Ile31, Val39, Ala52, and Leu156. The covalent bond motif in the ERK2/FR148083 complex assures that the inhibitor has high activity for ERK2 and no activity for other MAPKs such as JNK1 and p38MAPK{alpha}/{beta}/{gamma}/{delta} which have leucine residues at the site corresponding to Cys166 in ERK2. On the other hand, MEK1 and MKK7, kinases of the MAPKK family which also can be inhibited by FR148083, contain a cysteine residue corresponding to Cys166 of ERK2. The covalent binding to the common cysteine residue in the ATP-binding site is therefore likely to play a crucial role in the inhibitory activity for these MAP kinases. These findings on the molecular recognition mechanisms of FR148083 for kinases with Cys166 should provide a novel strategy for the pharmacological intervention of MAPK cascades.

  7. ABC triblock surface active block copolymer with grafted ethoxylated fluoroalkyl amphiphilic side chains for marine antifouling/fouling-release applications.

    PubMed

    Weinman, Craig J; Finlay, John A; Park, Daewon; Paik, Marvin Y; Krishnan, Sitaraman; Sundaram, Harihara S; Dimitriou, Michael; Sohn, Karen E; Callow, Maureen E; Callow, James A; Handlin, Dale L; Willis, Carl L; Kramer, Edward J; Ober, Christopher K

    2009-10-20

    An amphiphilic triblock surface-active block copolymer (SABC) possessing ethoxylated fluoroalkyl side chains was synthesized through the chemical modification of a polystyrene-block-poly(ethylene-ran-butylene)-block-polyisoprene polymer precursor. Bilayer coatings on glass slides consisting of a thin layer of the amphiphilic SABC spray coated on a thick layer of a polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS) thermoplastic elastomer were prepared for biofouling assays with the green alga Ulva and the diatom Navicula. Dynamic water contact angle analysis and X-ray photoelectron spectroscopy (XPS) were used to characterize the surfaces. Additionally, the effect of the Young's modulus of the coating on the release properties of sporelings (young plants) of the green alga Ulva was examined through the use of two different SEBS thermoplastic elastomers possessing modulus values of an order of magnitude in difference. The amphiphilic SABC was found to reduce the settlement density of zoospores of Ulva as well as the strength of attachment of sporelings. The attachment strength of the sporelings was further reduced for the amphiphilic SABC on the "low"-modulus SEBS base layer. The weaker adhesion of diatoms, relative to a PDMS standard, further highlights the antifouling potential of this amphiphilic triblock hybrid copolymer.

  8. Site-specific PEGylation of lidamycin and its antitumor activity.

    PubMed

    Li, Liang; Shang, Boyang; Hu, Lei; Shao, Rongguang; Zhen, Yongsu

    2015-05-01

    In this study, N-terminal site-specific mono-PEGylation of the recombinant lidamycin apoprotein (rLDP) of lidamycin (LDM) was prepared using a polyethyleneglycol (PEG) derivative (M w 20 kDa) through a reactive terminal aldehyde group under weak acidic conditions (pH 5.5). The biochemical properties of mPEG-rLDP-AE, an enediyne-integrated conjugate, were analyzed by SDS-PAGE, RP-HPLC, SEC-HPLC and MALDI-TOF. Meanwhile, in vitro and in vivo antitumor activity of mPEG-rLDP-AE was evaluated by MTT assays and in xenograft model. The results indicated that mPEG-rLDP-AE showed significant antitumor activity both in vitro and in vivo. After PEGylation, mPEG-rLDP still retained the binding capability to the enediyne AE and presented the physicochemical characteristics similar to that of native LDP. It is of interest that the PEGylation did not diminish the antitumor efficacy of LDM, implying the possibility that this derivative may function as a payload to deliver novel tumor-targeted drugs. PMID:26579455

  9. Hybrid [FeFe]-hydrogenases with modified active sites show remarkable residual enzymatic activity.

    PubMed

    Siebel, Judith F; Adamska-Venkatesh, Agnieszka; Weber, Katharina; Rumpel, Sigrun; Reijerse, Edward; Lubitz, Wolfgang

    2015-02-24

    [FeFe]-hydrogenases are to date the only enzymes for which it has been demonstrated that the native inorganic binuclear cofactor of the active site Fe2(adt)(CO)3(CN)2 (adt = azadithiolate = [S-CH2-NH-CH2-S](2-)) can be synthesized on the laboratory bench and subsequently inserted into the unmaturated enzyme to yield fully functional holo-enzyme (Berggren, G. et al. (2013) Nature 499, 66-70; Esselborn, J. et al. (2013) Nat. Chem. Biol. 9, 607-610). In the current study, we exploit this procedure to introduce non-native cofactors into the enzyme. Mimics of the binuclear subcluster with a modified bridging dithiolate ligand (thiodithiolate, N-methylazadithiolate, dimethyl-azadithiolate) and three variants containing only one CN(-) ligand were inserted into the active site of the enzyme. We investigated the activity of these variants for hydrogen oxidation as well as proton reduction and their structural accommodation within the active site was analyzed using Fourier transform infrared spectroscopy. Interestingly, the monocyanide variant with the azadithiolate bridge showed ∼50% of the native enzyme activity. This would suggest that the CN(-) ligands are not essential for catalytic activity, but rather serve to anchor the binuclear subsite inside the protein pocket through hydrogen bonding. The inserted artificial cofactors with a propanedithiolate and an N-methylazadithiolate bridge as well as their monocyanide variants also showed residual activity. However, these activities were less than 1% of the native enzyme. Our findings indicate that even small changes in the dithiolate bridge of the binuclear subsite lead to a rather strong decrease of the catalytic activity. We conclude that both the Brønsted base function and the conformational flexibility of the native azadithiolate amine moiety are essential for the high catalytic activity of the native enzyme. PMID:25633077

  10. Conversed mutagenesis of an inactive peptide to ASIC3 inhibitor for active sites determination.

    PubMed

    Osmakov, Dmitry I; Koshelev, Sergey G; Andreev, Yaroslav A; Dyachenko, Igor A; Bondarenko, Dmitry A; Murashev, Arkadii N; Grishin, Eugene V; Kozlov, Sergey A

    2016-06-15

    Peptide Ugr9-1 from the venom of sea anemone Urticina grebelnyi selectively inhibits the ASIC3 channel and significantly reverses inflammatory and acid-induced pain in vivo. A close homolog peptide Ugr 9-2 does not have these features. To find the pharmacophore residues and explore structure-activity relationships of Ugr 9-1, we performed site-directed mutagenesis of Ugr 9-2 and replaced several positions by the corresponding residues from Ugr 9-1. Mutant peptides Ugr 9-2 T9F and Ugr 9-2 Y12H were able to inhibit currents of the ASIC3 channels 2.2 times and 1.3 times weaker than Ugr 9-1, respectively. Detailed analysis of the spatial models of Ugr 9-1, Ugr 9-2 and both mutant peptides revealed the presence of the basic-aromatic clusters on opposite sides of the molecule, each of which is responsible for the activity. Additionally, Ugr9-1 mutant with truncated N- and C-termini retained similar with the Ugr9-1 action in vitro and was equally potent in vivo model of thermal hypersensitivity. All together, these results are important for studying the structure-activity relationships of ligand-receptor interaction and for the future development of peptide drugs from animal toxins. PMID:26686983

  11. Structure-guided inhibitor design for human FAAH by interspecies active site conversion

    SciTech Connect

    Mileni, Mauro; Johnson, Douglas S.; Wang, Zhigang; Everdeen, Daniel S.; Liimatta, Marya; Pabst, Brandon; Bhattacharya, Keshab; Nugent, Richard A.; Kamtekar, Satwik; Cravatt, Benjamin F.; Ahn, Kay; Stevens, Raymond C.

    2008-11-24

    The integral membrane enzyme fatty acid amide hydrolase (FAAH) hydrolyzes the endocannabinoid anandamide and related amidated signaling lipids. Genetic or pharmacological inactivation of FAAH produces analgesic, anxiolytic, and antiinflammatory phenotypes but not the undesirable side effects of direct cannabinoid receptor agonists, indicating that FAAH may be a promising therapeutic target. Structure-based inhibitor design has, however, been hampered by difficulties in expressing the human FAAH enzyme. Here, we address this problem by interconverting the active sites of rat and human FAAH using site-directed mutagenesis. The resulting humanized rat (h/r) FAAH protein exhibits the inhibitor sensitivity profiles of human FAAH but maintains the high-expression yield of the rat enzyme. We report a 2.75-{angstrom} crystal structure of h/rFAAH complexed with an inhibitor, N-phenyl-4-(quinolin-3-ylmethyl)piperidine-1-carboxamide (PF-750), that shows strong preference for human FAAH. This structure offers compelling insights to explain the species selectivity of FAAH inhibitors, which should guide future drug design programs.

  12. A Conserved Surface Loop in Type I Dehydroquinate Dehydratases Positions an Active Site Arginine and Functions in Substrate Binding

    SciTech Connect

    Light, Samuel H.; Minasov, George; Shuvalova, Ludmilla; Peterson, Scott N.; Caffrey, Michael; Anderson, Wayne F.; Lavie, Arnon

    2012-04-18

    Dehydroquinate dehydratase (DHQD) catalyzes the third step in the biosynthetic shikimate pathway. We present three crystal structures of the Salmonella enterica type I DHQD that address the functionality of a surface loop that is observed to close over the active site following substrate binding. Two wild-type structures with differing loop conformations and kinetic and structural studies of a mutant provide evidence of both direct and indirect mechanisms of involvement of the loop in substrate binding. In addition to allowing amino acid side chains to establish a direct interaction with the substrate, closure of the loop necessitates a conformational change of a key active site arginine, which in turn positions the substrate productively. The absence of DHQD in humans and its essentiality in many pathogenic bacteria make the enzyme a target for the development of nontoxic antimicrobials. The structures and ligand binding insights presented here may inform the design of novel type I DHQD inhibiting molecules.

  13. Conserved Active Site Residues Limit Inhibition of a Copper-Containing Nitrite By Small Molecules

    SciTech Connect

    Tocheva, E.I.; Eltis, L.D.; Murphy, M.E.P.

    2009-05-26

    The interaction of copper-containing dissimilatory nitrite reductase from Alcaligenes faecalis S-6 ( AfNiR) with each of five small molecules was studied using crystallography and steady-state kinetics. Structural studies revealed that each small molecule interacted with the oxidized catalytic type 2 copper of AfNiR. Three small molecules (formate, acetate and nitrate) mimic the substrate by having at least two oxygen atoms for bidentate coordination to the type 2 copper atom. These three anions bound to the copper ion in the same asymmetric, bidentate manner as nitrite. Consistent with their weak inhibition of the enzyme ( K i >50 mM), the Cu-O distances in these AfNiR-inhibitor complexes were approximately 0.15 A longer than that observed in the AfNiR-nitrite complex. The binding mode of each inhibitor is determined in part by steric interactions with the side chain of active site residue Ile257. Moreover, the side chain of Asp98, a conserved residue that hydrogen bonds to type 2 copper-bound nitrite and nitric oxide, was either disordered or pointed away from the inhibitors. Acetate and formate inhibited AfNiR in a mixed fashion, consistent with the occurrence of second acetate binding site in the AfNiR-acetate complex that occludes access to the type 2 copper. A fourth small molecule, nitrous oxide, bound to the oxidized metal in a side-on fashion reminiscent of nitric oxide to the reduced copper. Nevertheless, nitrous oxide bound at a farther distance from the metal. The fifth small molecule, azide, inhibited the reduction of nitrite by AfNiR most strongly ( K ic = 2.0 +/- 0.1 mM). This ligand bound to the type 2 copper center end-on with a Cu-N c distance of approximately 2 A, and was the only inhibitor to form a hydrogen bond with Asp98. Overall, the data substantiate the roles of Asp98 and Ile257 in discriminating substrate from other small anions.

  14. Structural definition of the active site and catalytic mechanism of 3,4-dihydroxy-2-butanone 4-phosphate synthase

    SciTech Connect

    Liao, D.-I.; Zheng, Y.-J.; Viitanen, P.V.; Jordan, D.B.

    2010-03-08

    X-ray crystal structures of L-3,4-dihydroxy-2-butanone-4-phosphate synthase from Magnaporthe grisea are reported for the E-SO{sub 4}{sup 2-}, E-{sub 4}{sup 2-}-Mg{sup 2+}, E-SO{sub 4}{sup 2-}-Mn{sup 2+}, E-SO{sub 4}{sup 2-}-Mn{sup 2+}-glycerol, and E-SO{sub 4}{sup 2-}-Zn{sup 2+} complexes with resolutions that extend to 1.55, 0.98, 1.60, 1.16, and 1.00 {angstrom}, respectively. Active-site residues of the homodimer are fully defined. The structures were used to model the substrate ribulose 5-phosphate in the active site with the phosphate group anchored at the sulfate site and the placement of the ribulose group guided by the glycerol site. The model includes two Mg{sup 2+} cations that bind to the oxygen substituents of the C2, C3, C4, and phosphate groups of the substrate, the side chains of Glu37 and His153, and water molecules. The position of the metal cofactors and the substrate's phosphate group are further stabilized by an extensive hydrogen-bond and salt-bridge network. On the basis of their proximity to the substrate's reaction participants, the imidazole of an Asp99-His136 dyad from one subunit, the side chains of the Asp41, Cys66, and Glu174 residues from the other subunit, and Mg{sup 2+}-activated water molecules are proposed to serve specific roles in the catalytic cycle as general acid-base functionalities. The model suggests that during the 1,2-shift step of the reaction, the substrate's C3 and C4 hydroxyl groups are cis to each other. A cis transition state is calculated to have an activation barrier that is 2 kcal/mol greater than that of the trans transition state in the absence of the enzyme.

  15. The active site loop of S-adenosylmethionine synthetase modulates catalytic efficiency.

    PubMed

    Taylor, John C; Takusagawa, Fusao; Markham, George D

    2002-07-30

    Crystallographic studies of Escherichia coli S-adenosylmethionine synthetase (ATP:L-methionine S-adenosyltransferase, MAT) have defined a flexible polypeptide loop that can gate access to the active site without contacting the substrates. The influence of the length and sequence of this active site loop on catalytic efficiency has been characterized in a mutant in which the E. coli MAT sequence (DRADPLEQ) has been replaced with the distinct sequence of the corresponding region of the otherwise highly homologous rat liver enzyme (HDLRNEEDV). Four additional mutants in which the entire DRADPLEQ sequence was replaced by five, six, seven, or eight glycines have been studied to unveil the effects of loop length and the influence of side chains. In all of the mutants, the maximal rate of S-adenosylmethionine formation (k(cat)) is diminished by more than 200-fold whereas the rate of hydrolysis of the tripolyphosphate intermediate is decreased by less than 3-fold. Thus, the function of the loop is localized to the first step in the overall reaction. The K(m) for methionine increases in all of the oligoglycine mutants, whereas the K(m) values for ATP are not substantially different. The k(cat) for the wild-type enzyme is decreased by increases in solution microviscosity with 55% of the maximal dependence. Thus, a diffusional event is coupled to the chemical step of AdoMet formation, which is known to be rate-limiting. The results indicate that a conformational change, possibly loop closure, is associated with AdoMet synthesis. The data integrate a previously discovered conformational change associated with PPP(i) binding to the E x AdoMet complex into the reaction sequence, reflecting a difference in protein conformation in the E x AdoMet x PPP(i) complex whether it is formed from the E x ATP x methionine complex or from binding of exogenous PPP(i). The temperature dependence of the k(cat) for S-adenosylmethionine formation shows that the removal of the side chains in the

  16. Human uroporphyrinogen III synthase: NMR-based mapping of the active site.

    PubMed

    Cunha, Luis; Kuti, Miklos; Bishop, David F; Mezei, Mihaly; Zeng, Lei; Zhou, Ming-Ming; Desnick, Robert J

    2008-05-01

    Uroporphyrinogen III synthase (URO-synthase) catalyzes the cyclization and D-ring isomerization of hydroxymethylbilane (HMB) to uroporphyrinogen (URO'gen) III, the cyclic tetrapyrrole and physiologic precursor of heme, chlorophyl, and corrin. The deficient activity of human URO-synthase results in the autosomal recessive cutaneous disorder, congenital erythropoietic porphyria. Mapping of the structural determinants that specify catalysis and, potentially, protein-protein interactions is lacking. To map the active site and assess the enzyme's possible interaction in a complex with hydroxymethylbilane-synthase (HMB-synthase) and/or uroporphyrinogen-decarboxylase (URO-decarboxylase) by NMR, an efficient expression and purification procedure was developed for these cytosolic enzymes of heme biosynthesis that enabled preparation of special isotopically-labeled protein samples for NMR characterization. Using an 800 MHz instrument, assignment of the URO-synthase backbone (13)C(alpha) (100%), (1)H(alpha) (99.6%), and nonproline (1)H(N) and (15)N resonances (94%) was achieved as well as 85% of the side-chain (13)C and (1)H resonances. NMR analyses of URO-synthase titrated with competitive inhibitors N(D)-methyl-1-formylbilane (NMF-bilane) or URO'gen III, revealed resonance perturbations of specific residues lining the cleft between the two major domains of URO synthase that mapped the enzyme's active site. In silico docking of the URO-synthase crystal structure with NMF-bilane and URO'gen III was consistent with the perturbation results and provided a 3D model of the enzyme-inhibitor complex. The absence of chemical shift changes in the (15)N spectrum of URO-synthase mixed with the homogeneous HMB-synthase holoenzyme or URO-decarboxylase precluded occurrence of a stable cytosolic enzyme complex. PMID:18004775

  17. Characterization of the active site of chloroperoxidase using physical techniques

    SciTech Connect

    Hall, K.S.

    1986-01-01

    Chloroperoxidase (CPO) and Cytochrome P-450, two very different hemeproteins, have been shown to have similar active sites by several techniques. Recent work has demonstrated thiolate ligation from a cysteine residue to the iron in P-450. A major portion of this research has been devoted to obtaining direct evidence that CPO also has a thiolate 5th ligand from a cysteine residue. This information will provide the framework for a detailed analysis of the structure-function relationships between peroxidases, catalase and cytochrome P-450 hemeproteins. To determine whether the 5th ligand is a cysteine, methionine or a unique amino acid, specific isotope enrichment experiments were used. Preliminary /sup 1/H-NMR studies show that the carbon monoxide-CPO complex has a peak in the upfield region corresponding to alpha-protons of a thiolate amino acid. C. fumago was grown on 95% D/sub 2/O media with a small amount of /sup 1/H-cysteine added. Under these conditions C. fumago slows down the biosynthesis of cysteine by at least 50% and utilizes the exogenous cysteine in the media. GC-MS was able to show that the methylene protons next to the sulfur atom in cysteine are 80-90% protonated while these positions in methionine are approximately 73% deuterated. Comparison of the /sup 1/H-NMR spectra of CO-CPO and CO-CPO indicate the presence of a cysteine ligand in chloroperoxidase.

  18. N6-Methyldeoxyadenosine Marks Active Transcription Start Sites in Chlamydomonas

    PubMed Central

    Chen, Kai; Deng, Xin; Yu, Miao; Han, Dali; Hao, Ziyang; Liu, Jianzhao; Lu, Xingyu; Dore, Louis C; Weng, Xiaocheng; Ji, Quanjiang; Mets, Laurens; He, Chuan

    2015-01-01

    SUMMARY N6-methyldeoxyadenosine (6mA or m6A) is a DNA modification preserved in prokaryotes to eukaryotes. It is widespread in bacteria, and functions in DNA mismatch repair, chromosome segregation, and virulence regulation. In contrast, the distribution and function of 6mA in eukaryotes have been unclear. Here we present a comprehensive analysis of the 6mA landscape in the genome of Chlamydomonas using new sequencing approaches. We identified the 6mA modification in 84% of genes in Chlamydomonas. We found that 6mA mainly locates at ApT dinucleotides around transcription start sites (TSS) with a bimodal distribution, and appears to mark active genes. A periodic pattern of 6mA deposition was also observed at base resolution, which is associated with nucleosome distribution near the TSS, suggesting a possible role in nucleosome positioning. The new genome-wide mapping of 6mA and its unique distribution in the Chlamydomonas genome suggest potential regulatory roles of 6mA in gene expression in eukaryotic organisms. PMID:25936837

  19. Detection limit for activation measurements in ultralow background sites

    NASA Astrophysics Data System (ADS)

    Trache, Livius; Chesneanu, D.; Margineanu, R.; Pantelica, A.; Ghita, D. G.; Burducea, I.; Straticiuc, M.; Tang, X. D.

    2014-09-01

    We used 12C +13C fusion at the beam energies E = 6, 7 and 8 MeV to determine the sensitivity and the limits of activation method measurements in ultralow background sites. A 13C beam of 0.5 μA from the 3 MV Tandem accelerator of the Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH impinged on thick graphite targets. After about 24 hrs of irradiation targets were measured in two different laboratories: one with a heavy shielded Ge detector in the institute (at the surface) and one located underground in the microBequerel laboratory, in the salt mine of Slanic-Prahova, Romania. The 1369- and 2754 keV peaks from 24Na deactivation were clearly observed in the γ-ray spectra obtained for acquisitions lasting a few hours, or a few days. Determination of the detection limit in evaluating the cross sections for the target irradiated at Ec . m = 3 MeV indicates the fact that it is possible to measure gamma spectrum in underground laboratory down to Ec . m = 2 . 6 MeV. Cleaning the spectra with beta-gamma coincidences and increasing beam intensity 20 times will take as further down. The measurements are motivated by the study of the 12 C +12 C reaction at astrophysical energies.

  20. Disturbance opens recruitment sites for bacterial colonization in activated sludge.

    PubMed

    Vuono, David C; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E

    2016-01-01

    Little is known about the role of immigration in shaping bacterial communities or the factors that may dictate success or failure of colonization by bacteria from regional species pools. To address these knowledge gaps, the influence of bacterial colonization into an ecosystem (activated sludge bioreactor) was measured through a disturbance gradient (successive decreases in the parameter solids retention time) relative to stable operational conditions. Through a DNA sequencing approach, we show that the most abundant bacteria within the immigrant community have a greater probability of colonizing the receiving ecosystem, but mostly as low abundance community members. Only during the disturbance do some of these bacterial populations significantly increase in abundance beyond background levels and in few cases become dominant community members post-disturbance. Two mechanisms facilitate the enhanced enrichment of immigrant populations during disturbance: (i) the availability of resources left unconsumed by established species and (ii) the increased availability of niche space for colonizers to establish and displace resident populations. Thus, as a disturbance decreases local diversity, recruitment sites become available to promote colonization. This work advances our understanding of microbial resource management and diversity maintenance in complex ecosystems. PMID:25727891

  1. Active Site Characterization of Proteases Sequences from Different Species of Aspergillus.

    PubMed

    Morya, V K; Yadav, Virendra K; Yadav, Sangeeta; Yadav, Dinesh

    2016-09-01

    A total of 129 proteases sequences comprising 43 serine proteases, 36 aspartic proteases, 24 cysteine protease, 21 metalloproteases, and 05 neutral proteases from different Aspergillus species were analyzed for the catalytically active site residues using MEROPS database and various bioinformatics tools. Different proteases have predominance of variable active site residues. In case of 24 cysteine proteases of Aspergilli, the predominant active site residues observed were Gln193, Cys199, His364, Asn384 while for 43 serine proteases, the active site residues namely Asp164, His193, Asn284, Ser349 and Asp325, His357, Asn454, Ser519 were frequently observed. The analysis of 21 metalloproteases of Aspergilli revealed Glu298 and Glu388, Tyr476 as predominant active site residues. In general, Aspergilli species-specific active site residues were observed for different types of protease sequences analyzed. The phylogenetic analysis of these 129 proteases sequences revealed 14 different clans representing different types of proteases with diverse active site residues.

  2. A proposed definition of the 'activity' of surface sites on lactose carriers for dry powder inhalation.

    PubMed

    Grasmeijer, Floris; Frijlink, Henderik W; de Boer, Anne H

    2014-06-01

    A new definition of the activity of surface sites on lactose carriers for dry powder inhalation is proposed which relates to drug detachment during dispersion. The new definition is expected to improve the understanding of 'carrier surface site activity', which stimulates the unambiguous communication about this subject and may aid in the rational design and interpretation of future formulation studies. In contrast to the currently prevailing view on carrier surface site activity, it follows from the newly proposed definition that carrier surface site activity depends on more variables than just the physicochemical properties of the carrier surface. Because the term 'active sites' is ambiguous, it is recommended to use the term 'highly active sites' instead to denote carrier surface sites with a relatively high activity. PMID:24613490

  3. Mutagenesis and crystallographic studies of the catalytic residues of the papain family protease bleomycin hydrolase: new insights into active-site structure

    PubMed Central

    O'Farrell, Paul A.; Joshua-Tor, Leemor

    2006-01-01

    Bleomycin hydrolase (BH) is a hexameric papain family cysteine protease which is involved in preparing peptides for antigen presentation and has been implicated in tumour cell resistance to bleomycin chemotherapy. Structures of active-site mutants of yeast BH yielded unexpected results. Replacement of the active-site asparagine with alanine, valine or leucine results in the destabilization of the histidine side chain, demonstrating unambiguously the role of the asparagine residue in correctly positioning the histidine for catalysis. Replacement of the histidine with alanine or leucine destabilizes the asparagine position, indicating a delicate arrangement of the active-site residues. In all of the mutants, the C-terminus of the protein, which lies in the active site, protrudes further into the active site. All mutants were compromised in their catalytic activity. The structures also revealed the importance of a tightly bound water molecule which stabilizes a loop near the active site and which is conserved throughout the papain family. It is displaced in a number of the mutants, causing destabilization of this loop and a nearby loop, resulting in a large movement of the active-site cysteine. The results imply that this water molecule plays a key structural role in this family of enzymes. PMID:17007609

  4. Structural Diversity Within the Mononuclear and Binuclear Active Sites of N-Acetyl-D-Glucosamine-6-Phosphate Deacetylase

    SciTech Connect

    Hall,R.; Brown, S.; Fedorov, A.; Fedorov, E.; Xu, C.; Babbitt, P.; Almo, S.; Raushel, F.

    2007-01-01

    NagA catalyzes the hydrolysis of N-acetyl-D-glucosamine-6-phosphate to D-glucosamine-6-phosphate and acetate. X-ray crystal structures of NagA from Escherichia coli were determined to establish the number and ligation scheme for the binding of zinc to the active site and to elucidate the molecular interactions between the protein and substrate. The three-dimensional structures of the apo-NagA, Zn-NagA, and the D273N mutant enzyme in the presence of a tight-binding N-methylhydroxyphosphinyl-D-glucosamine-6-phosphate inhibitor were determined. The structure of the Zn-NagA confirms that this enzyme binds a single divalent cation at the beta-position in the active site via ligation to Glu-131, His-195, and His-216. A water molecule completes the ligation shell, which is also in position to be hydrogen bonded to Asp-273. In the structure of NagA bound to the tight binding inhibitor that mimics the tetrahedral intermediate, the methyl phosphonate moiety has displaced the hydrolytic water molecule and is directly coordinated to the zinc within the active site. The side chain of Asp-273 is positioned to activate the hydrolytic water molecule via general base catalysis and to deliver this proton to the amino group upon cleavage of the amide bond of the substrate. His-143 is positioned to help polarize the carbonyl group of the substrate in conjunction with Lewis acid catalysis by the bound zinc. The inhibitor is bound in the {alpha}-configuration at the anomeric carbon through a hydrogen bonding interaction of the hydroxyl group at C-1 with the side chain of His-251. The phosphate group of the inhibitor attached to the hydroxyl at C-6 is ion paired with Arg-227 from the adjacent subunit. NagA from Thermotoga maritima was shown to require a single divalent cation for full catalytic activity.

  5. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  6. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  7. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  8. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  9. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  10. Itraconazole Side Chain Analogues: Structure–Activity Relationship Studies for Inhibition of Endothelial Cell Proliferation, Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) Glycosylation, and Hedgehog Signaling

    PubMed Central

    Shi, Wei; Nacev, Benjamin A.; Aftab, Blake T.; Head, Sarah; Rudin, Charles M.; Liu, Jun O.

    2012-01-01

    Itraconazole is an antifungal drug that was recently found to possess potent antiangiogenic activity and anti-hedgehog (Hh) pathway activity. To search for analogues of itraconazole with greater potency and to understand the structure–activity relationship in both antiangiogenic and Hh targeting activity, 25 itraconazole side chain analogues were synthesized and assayed for inhibition of endothelial cell proliferation and Gli1 transcription in a medulloblastoma (MB) culture. Through this analysis, we have identified analogues with increased potency for inhibiting endothelial cell proliferation and the Hh pathway, as well as VEGFR2 glycosylation that was recently found to be inhibited by itraconazole. An SAR analysis of these activities revealed that potent activity of the analogues against VEGFR2 glycosylation was generally driven by side chains of at least four carbons in composition with branching at the α or β position. SAR trends for targeting the Hh pathway were divergent from those related to HUVEC proliferation or VEGFR2 glycosylation. These results also suggest that modification of the sec-butyl side chain can lead to enhancement of the biological activity of itraconazole. PMID:21936514

  11. Catch-and-Hold Activation of Muscle Acetylcholine Receptors Having Transmitter Binding Site Mutations

    PubMed Central

    Purohit, Prasad; Bruhova, Iva; Gupta, Shaweta; Auerbach, Anthony

    2014-01-01

    Agonists turn on receptors because their target sites have a higher affinity in the active versus resting conformation of the protein. We used single-channel electrophysiology to measure the lower-affinity (LA) and higher-affinity (HA) equilibrium dissociation constants for acetylcholine in adult-type muscle mouse nicotinic receptors (AChRs) having mutations of agonist binding site amino acids. For a series of agonists and for all mutations of αY93, αG147, αW149, αY190, αY198, εW55, and δW57, the change in LA binding energy was approximately half that in HA binding energy. The results were analyzed as a linear free energy relationship between LA and HA agonist binding, the slope of which (κ) gives the fraction of the overall binding chemical potential where the LA complex is established. The linear correlation between LA and HA binding energies suggests that the overall binding process is by an integrated mechanism (catch-and-hold). For the agonist and the above mutations, κ ∼ 0.5, but side-chain substitutions of two residues had a slope that was significantly higher (0.90; αG153) or lower (0.25; εP121). The results suggest that backbone rearrangements in loop B, loop C, and the non-α surface participate in both LA binding and the LA ↔ HA affinity switch. It appears that all of the intermediate steps in AChR activation comprise a single, energetically coupled process. PMID:24988344

  12. GAS HYDRATES AT TWO SITES OF AN ACTIVE CONTINENTAL MARGIN.

    USGS Publications Warehouse

    Kvenvolden, K.A.

    1985-01-01

    Sediment containing gas hydrates from two distant Deep Sea Drilling Project sites (565 and 568), located about 670 km apart on the landward flank of the Middle America Trench, was studied to determine the geochemical conditions that characterize the occurrence of gas hydrates. Site 565 was located in the Pacific Ocean offshore the Nicoya Peninsula of Costa Rica in 3,111 m of water. The depth of the hole at this site was 328 m, and gas hydrates were recovered from 285 and 319 m. Site 568 was located about 670 km to the northwest offshore Guatemala in 2,031 m of water. At this site the hole penetrated to 418 m, and gas hydrates were encountered at 404 m.

  13. Control of active sites in selective flocculation: III -- Mechanism of site blocking

    SciTech Connect

    Behl, S.; Moudgil, B.M. . Dept. of Materials Science and Engineering)

    1993-12-01

    It has been shown in Parts I and II of this paper that heteroflocculation can be controlled by poisoning the sites for flocculant adsorption using a site blocking agent (SBA). An efficient SBA was determined to be the lower molecular weight fraction of the flocculant. In this paper, the underlying mechanism of SBA action is described. Also, the mathematical model detailed in Part I is used to determine the effect of different SBAs on apatite-dolomite separation efficiency. It has been demonstrated that the depression in flocculation is directly related to the site blocking parameter ([bar [Phi

  14. Dynamically achieved active site precision in enzyme catalysis.

    PubMed

    Klinman, Judith P

    2015-02-17

    CONSPECTUS: The grand challenge in enzymology is to define and understand all of the parameters that contribute to enzymes' enormous rate accelerations. The property of hydrogen tunneling in enzyme reactions has moved the focus of research away from an exclusive focus on transition state stabilization toward the importance of the motions of the heavy atoms of the protein, a role for reduced barrier width in catalysis, and the sampling of a protein conformational landscape to achieve a family of protein substates that optimize enzyme-substrate interactions and beyond. This Account focuses on a thermophilic alcohol dehydrogenase for which the chemical step of hydride transfer is rate determining across a wide range of experimental conditions. The properties of the chemical coordinate have been probed using kinetic isotope effects, indicating a transition in behavior below 30 °C that distinguishes nonoptimal from optimal C-H activation. Further, the introduction of single site mutants has the impact of either enhancing or eliminating the temperature dependent transition in catalysis. Biophysical probes, which include time dependent hydrogen/deuterium exchange and fluorescent lifetimes and Stokes shifts, have also been pursued. These studies allow the correlation of spatially resolved transitions in protein motions with catalysis. It is now possible to define a long-range network of protein motions in ht-ADH that extends from a dimer interface to the substrate binding domain across to the cofactor binding domain, over a distance of ca. 30 Å. The ongoing challenge to obtaining spatial and temporal resolution of catalysis-linked protein motions is discussed.

  15. Lethal Factor Active-Site Mutations Affect Catalytic Activity In Vitro

    PubMed Central

    Hammond, S. E.; Hanna, P. C.

    1998-01-01

    The lethal factor (LF) protein of Bacillus anthracis lethal toxin contains the thermolysin-like active-site and zinc-binding consensus motif HEXXH (K. R. Klimpel, N. Arora, and S. H. Leppla, Mol. Microbiol. 13:1093–1100, 1994). LF is hypothesized to act as a Zn2+ metalloprotease in the cytoplasm of macrophages, but no proteolytic activities have been previously shown on any target substrate. Here, synthetic peptides are hydrolyzed by LF in vitro. Mass spectroscopy and peptide sequencing of isolated cleavage products separated by reverse-phase high-pressure liquid chromatography indicate that LF seems to prefer proline-containing substrates. Substitution mutations within the consensus active-site residues completely abolish all in vitro catalytic functions, as does addition of 1,10-phenanthroline, EDTA, and certain amino acid hydroxamates, including the novel zinc metalloprotease inhibitor ZINCOV. In contrast, the protease inhibitors bestatin and lysine CMK, previously shown to block LF activity on macrophages, did not block LF activity in vitro. These data provide the first direct evidence that LF may act as an endopeptidase. PMID:9573135

  16. Monoclonal antibody against the active site of caeruloplasmin and the ELISA system detecting active caeruloplasmin.

    PubMed

    Hiyamuta, S; Ito, K

    1994-04-01

    Serum caeruloplasmin deficiency is a characteristic biochemical abnormality found in patients with Wilson's disease, but the mechanism of this disease is unknown. Although the phenylenediamine oxidase activity of serum caeruloplasmin is markedly low in patients with Wilson's disease, mRNA of caeruloplasmin exists to some extent. To investigate the deficiency of caeruloplasmin oxidase activity in Wilson's disease, we generated 14 monoclonal antibodies (MAbs) and selected ID1, which had the strongest reactivity, and ID2, which had neutralizing ability. We also established a system to measure active caeruloplasmin specifically using these MAbs. These MAbs and the system will be useful tools in analyzing the active site of caeruloplasmin in patients with Wilson's disease.

  17. Robotics and Automation Activities at the Savannah River Site: A Site Report for SUBWOG 39F

    SciTech Connect

    Teese, G.D.

    1995-09-28

    The Savannah River Site has successfully used robots, teleoperators, and remote video to reduce exposure to ionizing radiation, improve worker safety, and improve the quality of operations. Previous reports have described the use of mobile teleoperators in coping with a high level liquid waste spill, the removal of highly contaminated equipment, and the inspection of nuclear reactor vessels. This report will cover recent applications at the Savannah River, as well as systems which SRS has delivered to other DOE site customers.

  18. Control of active sites in selective flocculation: II -- Role of site blocking agents

    SciTech Connect

    Behl, S.; Moudgil, B.M. . Dept. of Materials Science and Engineering)

    1993-12-01

    Control of heteroflocculation using a lower molecular weight fraction of the flocculant as a site blocking agent is demonstrated in the apatite-dolomite-polyethylene oxide system. The most effective SBA (site blocking agent) was determined to be the highest molecular weight fraction of the flocculant itself which was not capable of flocculating any of the components of the mixture. In the presence of the SBA, flocculant adsorption decreased significantly on apatite particles, thereby inhibiting coflocculation.

  19. Conceptual Design of a Simplified Skid-Mounted Caustic-Side Solvent Extraction Process for Removal of Cesium from Savannah Rive Site High-Level Waste

    SciTech Connect

    Birdwell, JR.J.F.

    2004-05-12

    This report presents the results of a conceptual design of a solvent extraction process for the selective removal of {sup 137}Cs from high-level radioactive waste currently stored in underground tanks at the U.S. Department of Energy's Savannah River Site (SRS). This study establishes the need for and feasibility of deploying a simplified version of the Caustic-Side Solvent Extraction (CSSX) process; cost/benefit ratios ranging from 33 to 55 strongly support the considered deployment. Based on projected compositions, 18 million gallons of dissolved salt cake waste has been identified as having {sup 137}Cs concentrations that are substantially lower than the worst-case design basis for the CSSX system that is to be deployed as part of the Salt Waste Processing Facility (SWPF) but that does not meet the waste acceptance criteria for immobilization as grout in the Saltstone Manufacturing and Disposal Facility at SRS. Absent deployment of an alternative cesium removal process, this material will require treatment in the SWPF CSSX system, even though the cesium decontamination factor required is far less than that provided by that system. A conceptual design of a CSSX processing system designed for rapid deployment and having reduced cesium decontamination factor capability has been performed. The proposed accelerated-deployment CSSX system (CSSX-A) has been designed to have a processing rate of 3 million gallons per year, assuming 90% availability. At a more conservative availability of 75% (reflecting the novelty of the process), the annual processing capacity is 2.5 million gallons. The primary component of the process is a 20-stage cascade of centrifugal solvent extraction contactors. The decontamination and concentration factors are 40 and 15, respectively. The solvent, scrub, strip, and wash solutions are to have the same compositions as those planned for the SWPF CSSX system. As in the SWPF CSSX system, the solvent and scrub flow rates are equal. The system is

  20. DEMONSTRATION OF THE ENVIRONMENTAL AND DEMAND-SIDE MANAGEMENT BENEFITS OF GRID-CONNECTED PHOTOVOLTAIC POWER SYSTEMS SITED ON MILITARY BASES

    EPA Science Inventory

    The report gives results of an investigation into the pollutant emission reduction and demand-side management potential of three photovoltaic (PV) systems installed at Ft. Huachuca, AZ, Ft. Dix, NJ, and Hickam Air Force Base, HI, which began operation between January and July 199...

  1. Efficient Fludarabine-Activating PNP From Archaea as a Guidance for Redesign the Active Site of E. Coli PNP.

    PubMed

    Cacciapuoti, Giovanna; Bagarolo, Maria Libera; Martino, Elisa; Scafuri, Bernardina; Marabotti, Anna; Porcelli, Marina

    2016-05-01

    The combination of the gene of purine nucleoside phosphorylase (PNP) from Escherichia coli and fludarabine represents one of the most promising systems in the gene therapy of solid tumors. The use of fludarabine in gene therapy is limited by the lack of an enzyme that is able to efficiently activate this prodrug which, consequently, has to be administered in high doses that cause serious side effects. In an attempt to identify enzymes with a better catalytic efficiency than E. coli PNP towards fludarabine to be used as a guidance on how to improve the activity of the bacterial enzyme, we have selected 5'-deoxy-5'-methylthioadenosine phosphorylase (SsMTAP) and 5'-deoxy-5'-methylthioadenosine phosphorylase II (SsMTAPII), two PNPs isolated from the hyperthermophilic archaeon Sulfolobus solfataricus. Substrate specificity and catalytic efficiency of SsMTAP and SsMTAPII for fludarabine were analyzed by kinetic studies and compared with E. coli PNP. SsMTAP and SsMTAPII share with E. coli PNP a comparable low affinity for the arabinonucleoside but are better catalysts of fludarabine cleavage with k(cat)/K(m) values that are 12.8-fold and 6-fold higher, respectively, than those reported for the bacterial enzyme. A computational analysis of the interactions of fludarabine in the active sites of E. coli PNP, SsMTAP, and SsMTAPII allowed to identify the crucial residues involved in the binding with this substrate, and provided structural information to improve the catalytic efficiency of E. coli PNP by enzyme redesign.

  2. In vivo characterization of the highly selective monoacylglycerol lipase inhibitor KML29: antinociceptive activity without cannabimimetic side effects

    PubMed Central

    Ignatowska-Jankowska, B M; Ghosh, S; Crowe, M S; Kinsey, S G; Niphakis, M J; Abdullah, R A; Tao, Q; O' Neal, S T; Walentiny, D M; Wiley, J L; Cravatt, B F; Lichtman, A H

    2014-01-01

    Background and PurposeSince monoacylglycerol lipase (MAGL) has been firmly established as the predominant catabolic enzyme of the endocannabinoid 2-arachidonoylglycerol (2-AG), a great need has emerged for the development of highly selective MAGL inhibitors. Here, we tested the in vivo effects of one such compound, KML29 (1,1,1,3,3,3-hexafluoropropan-2-yl 4-(bis(benzo[d][1,3]dioxol-5-yl)(hydroxy)methyl)piperidine-1-carboxylate). Experimental ApproachIn the present study, we tested KML29 in murine inflammatory (i.e. carrageenan) and sciatic nerve injury pain models, as well as the diclofenac-induced gastric haemorrhage model. KML29 was also evaluated for cannabimimetic effects, including measurements of locomotor activity, body temperature, catalepsy, and cannabinoid interoceptive effects in the drug discrimination paradigm. Key ResultsKML29 attenuated carrageenan-induced paw oedema and completely reversed carrageenan-induced mechanical allodynia. These effects underwent tolerance after repeated administration of high-dose KML29, which were accompanied by cannabinoid receptor 1 (CB1) receptor desensitization. Acute or repeated KML29 administration increased 2-AG levels and concomitantly reduced arachidonic acid levels, but without elevating anandamide (AEA) levels in the whole brain. Furthermore, KML29 partially reversed allodynia in the sciatic nerve injury model and completely prevented diclofenac-induced gastric haemorrhages. CB1 and CB2 receptors played differential roles in these pharmacological effects of KML29. In contrast, KML29 did not elicit cannabimimetic effects, including catalepsy, hypothermia and hypomotility. Although KML29 did not substitute for Δ9-tetrahydrocannabinol (THC) in C57BL/6J mice, it fully and dose-dependantly substituted for AEA in fatty acid amide hydrolase (FAAH) (−/−) mice, consistent with previous work showing that dual FAAH and MAGL inhibition produces THC-like subjective effects. Conclusions and ImplicationsThese results

  3. Demonstration of the Caustic-Side Solvent Extraction Process for the Removal of 137-Cs from Savannah River Site High Level Waste

    SciTech Connect

    Norato, M.A.

    2002-03-07

    This paper describes a demonstration of a solvent extraction process for removal of 137Cs from alkaline high level radioactive waste (HLW) solutions from the Savannah River Site (SRS) tank farm. The process employed a calix[4]arene-crown-6 extractant dissolved in an inert hydrocarbon matrix, along with an alkylphenoxy alcohol modifier, and an additional additive, trioctylamine, to improve stripping performance and mitigate the effects of organic anions present in the feed stream. Testing included washing and recycle of the solvent. Tests conducted with two non-radioactive simulants of SRS tank waste verified proper hydraulic operation prior to the radioactive experiments. An additional 12-hour demonstration used simulated SRS tank waste spiked with 137Cs to confirm proper hydraulic operation, decontamination and volume reduction factors following installation of the equipment in a shielded cell facility. Finally, a 48-hour demonstration was performed employing a composite waste from SRS tank farms. Approximately 106 liters of waste (1.5E+09 d/min/mL 137Cs activity) was processed through the test unit. Average 137Cs decontamination factors for the decontaminated waste streams in all tests exceeded the target value of 40,000. Concentration factors in the strip section agreed to within 5 percent of the target value of 15.

  4. Torsional eye movement responses to monaural and binaural galvanic vestibular stimulation: side-to-side asymmetries.

    PubMed

    Jahn, Klaus; Naessl, Andrea; Strupp, Michael; Schneider, Erich; Brandt, Thomas; Dieterich, Marianne

    2003-10-01

    Vestibular stimulation by head accelerations always involves multisensory activation of the vestibular, somatosensory, and visual systems. Over the past few years, galvanic vestibular stimulation (GVS) has become increasingly popular for testing vestibular function for clinical and research purposes. Although GVS provides a nonphysiological stimulation, it is more selective than natural head accelerations and is thus an attractive tool for such tests. Eye movement responses elicited by GVS mainly consist of torsional and horizontal components, as first described by Hitzig in 1871. Animal experiments have shown that GVS increases the vestibular afferent spike frequency at the cathodal site and decreases it at the anodal site of stimulation. As a continuation of a study on age-dependency of eye movement responses to GVS, we analyzed side-to-side asymmetries in healthy subjects. It is necessary to know the normal range of asymmetry between left- and right-sided stimulation to interpret GVS responses in patients with vestibular diseases.

  5. Dynamics of an Active-Site Flap Contributes to Catalysis in a JAMM Family Metallo Deubiquitinase.

    PubMed

    Bueno, Amy N; Shrestha, Rashmi K; Ronau, Judith A; Babar, Aditya; Sheedlo, Michael J; Fuchs, Julian E; Paul, Lake N; Das, Chittaranjan

    2015-10-01

    The endosome-associated deubiquitinase (DUB) AMSH is a member of the JAMM family of zinc-dependent metallo isopeptidases with high selectivity for Lys63-linked polyubiquitin chains, which play a key role in endosomal-lysosomal sorting of activated cell surface receptors. The catalytic domain of the enzyme features a flexible flap near the active site that opens and closes during its catalytic cycle. Structural analysis of its homologues, AMSH-LP (AMSH-like protein) and the fission yeast counterpart, Sst2, suggests that a conserved Phe residue in the flap may be critical for substrate binding and/or catalysis. To gain insight into the contribution of this flap in substrate recognition and catalysis, we generated mutants of Sst2 and characterized them using a combination of enzyme kinetics, X-ray crystallography, molecular dynamics simulations, and isothermal titration calorimetry (ITC). Our analysis shows that the Phe residue in the flap contributes key interactions during the rate-limiting step but not to substrate binding, since mutants of Phe403 exhibit a defect only in kcat but not in KM. Moreover, ITC studies show Phe403 mutants have similar KD for ubiquitin compared to the wild-type enzyme. The X-ray structures of both Phe403Ala and the Phe403Trp, in both the free and ubiquitin bound form, reveal no appreciable structural change that might impair substrate or alter product binding. We observed that the side chain of the Trp residue is oriented identically with respect to the isopeptide moiety of the substrate as the Phe residue in the wild-type enzyme, so the loss of activity seen in this mutant cannot be explained by the absence of a group with the ability to provide van der Waals interactions that facilitate the hyrdolysis of the Lys63-linked diubiquitin. Molecular dynamics simulations indicate that the flap in the Trp mutant is quite flexible, allowing almost free rotation of the indole side chain. Therefore, it is possible that these different dynamic

  6. Ring flips revisited: (13)C relaxation dispersion measurements of aromatic side chain dynamics and activation barriers in basic pancreatic trypsin inhibitor.

    PubMed

    Weininger, Ulrich; Modig, Kristofer; Akke, Mikael

    2014-07-22

    Intramolecular motions of proteins are critical for biological function. Transient structural fluctuations underlie a wide range of processes, including enzyme catalysis, ligand binding to buried sites, and generic protein motions, such as 180° rotation of aromatic side chains in the protein interior, but remain poorly understood. Understanding the dynamics and molecular nature of concerted motions requires characterization of their rates and energy barriers. Here we use recently developed (13)C transverse relaxation dispersion methods to improve our current understanding of aromatic ring flips in basic pancreatic trypsin inhibitor (BPTI). We validate these methods by benchmarking ring-flip rates against the three previously characterized cases in BPTI, namely, Y23, Y35, and F45. Further, we measure conformational exchange for one additional aromatic ring, F22, which can be interpreted in terms of a flip rate of 666 s(-1) at 5 °C. Upon inclusion of our previously reported result that Y21 also flips slowly [Weininger, U., et al. (2013) J. Phys. Chem. B 117, 9241-9247], the (13)C relaxation dispersion experiments thus reveal relatively slow ring-flip rates for five of eight aromatic residues in BPTI. These results are in contrast with previous reports, which have estimated that all rings, except Y23, Y35, and F45, flip with a high rate at ambient temperature. The (13)C relaxation dispersion data result in an updated rank order of ring-flip rates in BPTI, which agrees considerably better with that estimated from a recent 1 ms molecular dynamics trajectory than do previously published NMR data. However, significant quantitative differences remain between experiment and simulation, in that the latter yields flip rates that are in many cases too fast by 1-2 orders of magnitude. By measuring flip rates across a temperature range of 5-65 °C, we determined the activation barriers of ring flips for Y23, Y35, and F45. Y23 and F45 have identical activation parameters

  7. The transient catalytically competent coenzyme allocation into the active site of Anabaena ferredoxin NADP+ -reductase.

    PubMed

    Peregrina, José Ramón; Lans, Isaías; Medina, Milagros

    2012-01-01

    Ferredoxin-NADP(+) reductase (FNR) catalyses the electron transfer from ferredoxin to NADP(+) via its flavin FAD cofactor. A molecular dynamics theoretical approach is applied here to visualise the transient catalytically competent interaction of Anabaena FNR with its coenzyme, NADP(+). The particular role of some of the residues identified as key in binding and accommodating the 2'P-AMP moiety of the coenzyme is confirmed in molecular terms. Simulations also indicate that the architecture of the active site precisely contributes to the orientation of the N5 of the FAD isoalloxazine ring and the C4 of the coenzyme nicotinamide ring in the conformation of the catalytically competent hydride transfer complex and, therefore, contributes to the efficiency of the process. In particular, the side chain of the C-terminal Y303 in Anabaena FNR appears key to providing the optimum geometry by reducing the stacking probability between the isoalloxazine and nicotinamide rings, thus providing the required co-linearity and distance among the N5 of the flavin cofactor, the C4 of the coenzyme nicotinamide and the hydride that has to be transferred between them. All these factors are highly related to the reaction efficiency, mechanism and reversibility of the process.

  8. Mutation at a Strictly Conserved, Active Site Tyrosine in the Copper Amine Oxidase Leads to Uncontrolled Oxygenase Activity

    SciTech Connect

    Chen, Zhi-wei; Datta, Saumen; DuBois, Jennifer L.; Klinman, Judith P.; Mathews, F. Scott

    2010-09-07

    The copper amine oxidases carry out two copper-dependent processes: production of their own redox-active cofactor (2,4,5-trihydroxyphenylalanine quinone, TPQ) and the subsequent oxidative deamination of substrate amines. Because the same active site pocket must facilitate both reactions, individual active site residues may serve multiple roles. We have examined the roles of a strictly conserved active site tyrosine Y305 in the copper amine oxidase from Hansenula polymorpha kinetically, spetroscopically (Dubois and Klinman (2006) Biochemistry 45, 3178), and, in the present work, structurally. While the Y305A enzyme is almost identical to the wild type, a novel, highly oxygenated species replaces TPQ in the Y305F active sites. This new structure not only provides the first direct detection of peroxy intermediates in cofactor biogenesis but also indicates the critical control of oxidation chemistry that can be conferred by a single active site residue.

  9. Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations

    PubMed Central

    Steinkellner, Georg; Gruber, Christian C.; Pavkov-Keller, Tea; Binter, Alexandra; Steiner, Kerstin; Winkler, Christoph; Łyskowski, Andrzej; Schwamberger, Orsolya; Oberer, Monika; Schwab, Helmut; Faber, Kurt; Macheroux, Peter; Gruber, Karl

    2014-01-01

    The exploitation of catalytic promiscuity and the application of de novo design have recently opened the access to novel, non-natural enzymatic activities. Here we describe a structural bioinformatic method for predicting catalytic activities of enzymes based on three-dimensional constellations of functional groups in active sites (‘catalophores’). As a proof-of-concept we identify two enzymes with predicted promiscuous ene-reductase activity (reduction of activated C–C double bonds) and compare them with known ene-reductases, that is, members of the Old Yellow Enzyme family. Despite completely different amino acid sequences, overall structures and protein folds, high-resolution crystal structures reveal equivalent binding modes of typical Old Yellow Enzyme substrates and ligands. Biochemical and biocatalytic data show that the two enzymes indeed possess ene-reductase activity and reveal an inverted stereopreference compared with Old Yellow Enzymes for some substrates. This method could thus be a tool for the identification of viable starting points for the development and engineering of novel biocatalysts. PMID:24954722

  10. Protein engineering of alcohol dehydrogenase--1. Effects of two amino acid changes in the active site of yeast ADH-1.

    PubMed

    Murali, C; Creaser, E H

    1986-01-01

    One of the promises held out by protein engineering is the ability to alter predictably the properties of an enzyme to enable it to find new substrates or catalyse existing substrates more efficiently, such manipulations being of interest both enzymologically and, potentially, industrially. It has been postulated that in yeast alcohol dehydrogenase (YADH-1) certain amino acids such as Trp 93 and Thr 48 constrict the active site due to their bulky side chains and thus impede catalysis of molecules larger than ethanol. To study effects of enlarging the active site we have made two changes into YADH-1, replacing Trp 93 with Phe and Thr 48 with Ser. Kinetic experiments showed that this enzyme had marked increases in reaction velocity for the n-alcohols propanol, butanol, pentanol, hexanol, heptanol, octanol and cinnamyl alcohol compared to the parent, agreeing with the prediction that expanding the active site should facilitate the oxidation of larger alcohols. The substrate affinities were slightly reduced in the altered enzyme, possibly due to its having reduced hydrophobicity at Phe 93.

  11. An ionizable active-site tryptophan imparts catalase activity to a peroxidase core.

    PubMed

    Loewen, Peter C; Carpena, Xavi; Vidossich, Pietro; Fita, Ignacio; Rovira, Carme

    2014-05-21

    Catalase peroxidases (KatG's) are bifunctional heme proteins that can disproportionate hydrogen peroxide (catalatic reaction) despite their structural dissimilarity with monofunctional catalases. Using X-ray crystallography and QM/MM calculations, we demonstrate that the catalatic reaction of KatG's involves deprotonation of the active-site Trp, which plays a role similar to that of the distal His in monofunctional catalases. The interaction of a nearby mobile arginine with the distal Met-Tyr-Trp essential adduct (in/out) acts as an electronic switch, triggering deprotonation of the adduct Trp.

  12. Nuclear Site Security in the Event of Terrorist Activity

    SciTech Connect

    Thomson, M.L.; Sims, J.

    2008-07-01

    This paper, presented as a poster, identifies why ballistic protection should now be considered at nuclear sites to counter terrorist threats. A proven and flexible form of multi purpose protection is described in detail with identification of trial results that show its suitability for this role. (authors)

  13. Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory

    SciTech Connect

    Taylor, D.D.; Hoskinson, R.L.; Kingsford, C.O.; Ball, L.W.

    1994-09-01

    The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria.

  14. Active Layer and Moisture Measurements for Intensive Site 0 and 1, Barrow, Alaska

    DOE Data Explorer

    John Peterson

    2015-04-17

    These are measurements of Active Layer Thickness collected along several lines beginning in September, 2011 to the present. The data were collected at several time periods along the Site0 L2 Line, the Site1 AB Line, and an ERT Monitoring Line near Area A in Site1.

  15. Structural mechanism of RuBisCO activation by carbamylation of the active site lysine

    PubMed Central

    Stec, Boguslaw

    2012-01-01

    Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is a crucial enzyme in carbon fixation and the most abundant protein on earth. It has been studied extensively by biochemical and structural methods; however, the most essential activation step has not yet been described. Here, we describe the mechanistic details of Lys carbamylation that leads to RuBisCO activation by atmospheric CO2. We report two crystal structures of nitrosylated RuBisCO from the red algae Galdieria sulphuraria with O2 and CO2 bound at the active site. G. sulphuraria RuBisCO is inhibited by cysteine nitrosylation that results in trapping of these gaseous ligands. The structure with CO2 defines an elusive, preactivation complex that contains a metal cation Mg2+ surrounded by three H2O/OH molecules. Both structures suggest the mechanism for discriminating gaseous ligands by their quadrupole electric moments. We describe conformational changes that allow for intermittent binding of the metal ion required for activation. On the basis of these structures we propose the individual steps of the activation mechanism. Knowledge of all these elements is indispensable for engineering RuBisCO into a more efficient enzyme for crop enhancement or as a remedy to global warming. PMID:23112176

  16. Delineation of the clotrimazole/TRAM-34 binding site on the intermediate conductance calcium-activated potassium channel, IKCa1.

    PubMed

    Wulff, H; Gutman, G A; Cahalan, M D; Chandy, K G

    2001-08-24

    Selective and potent triarylmethane blockers of the intermediate conductance calcium-activated potassium channel, IKCa1, have therapeutic use in sickle cell disease and secretory diarrhea and as immunosuppressants. Clotrimazole, a membrane-permeant triarylmethane, blocked IKCa1 with equal affinity when applied externally or internally, whereas a membrane-impermeant derivative TRAM-30 blocked the channel only when applied to the cytoplasmic side, indicating an internal drug-binding site. Introduction of the S5-P-S6 region of the triarylmethane-insensitive small conductance calcium-activated potassium channel SKCa3 into IKCa1 rendered the channel resistant to triarylmethanes. Replacement of Thr(250) or Val(275) in IKCa1 with the corresponding SKCa3 residues selectively abolished triarylmethane sensitivity without affecting the affinity of the channel for tetraethylammonium, charybdotoxin, and nifedipine. Introduction of these two residues into SKCa3 rendered the channel sensitive to triarylmethanes. In a molecular model of IKCa1, Thr(250) and Val(275) line a water-filled cavity just below the selectivity filter. Structure-activity studies suggest that the side chain methyl groups of Thr(250) and Val(275) may lock the triarylmethanes in place via hydrophobic interactions with the pi-electron clouds of the phenyl rings. The heterocyclic moiety may project into the selectivity filter and obstruct the ion-conducting pathway from the inside.

  17. Using catalytic atom maps to predict the catalytic functions present in enzyme active sites.

    PubMed

    Nosrati, Geoffrey R; Houk, K N

    2012-09-18

    Catalytic atom maps (CAMs) are minimal models of enzyme active sites. The structures in the Protein Data Bank (PDB) were examined to determine if proteins with CAM-like geometries in their active sites all share the same catalytic function. We combined the CAM-based search protocol with a filter based on the weighted contact number (WCN) of the catalytic residues, a measure of the "crowdedness" of the microenvironment around a protein residue. Using this technique, a CAM based on the Ser-His-Asp catalytic triad of trypsin was able to correctly identify catalytic triads in other enzymes within 0.5 Å rmsd of the CAM with 96% accuracy. A CAM based on the Cys-Arg-(Asp/Glu) active site residues from the tyrosine phosphatase active site achieved 89% accuracy in identifying this type of catalytic functionality. Both of these CAMs were able to identify active sites across different fold types. Finally, the PDB was searched to locate proteins with catalytic functionality similar to that present in the active site of orotidine 5'-monophosphate decarboxylase (ODCase), whose mechanism is not known with certainty. A CAM, based on the conserved Lys-Asp-Lys-Asp tetrad in the ODCase active site, was used to search the PDB for enzymes with similar active sites. The ODCase active site has a geometry similar to that of Schiff base-forming Class I aldolases, with lowest aldolase rmsd to the ODCase CAM at 0.48 Å. The similarity between this CAM and the aldolase active site suggests that ODCase has the correct catalytic functionality present in its active site for the generation of a nucleophilic lysine. PMID:22909276

  18. Using Catalytic Atom Maps to Predict the Catalytic Functions Present in Enzyme Active Sites

    PubMed Central

    Nosrati, Geoffrey R.; Houk, K. N.

    2012-01-01

    Catalytic Atom Maps (CAMs) are minimal models of enzyme active sites. The structures in the Protein Data Bank (PDB) were examined to determine if proteins with CAM-like geometries in their active sites all share the same catalytic function. We combined the CAM-based search protocol with a filter based on the weighted contact number (WCN) of the catalytic residues, a measure of the “crowdedness” of the microenvironment around a protein residue. Using this technique, a CAM based on the Ser-His-Asp catalytic triad of trypsin was able to correctly identify catalytic triads in other enzymes within 0.5 Å RMSD of the Catalytic Atom Map with 96% accuracy. A CAM based on the Cys-Arg-(Asp/Glu) active site residues from the tyrosine phosphatase active site achieved 89% accuracy in identifying this type of catalytic functionality. Both of these Catalytic Atom Maps were able to identify active sites across different fold types. Finally, the PDB was searched to locate proteins with catalytic functionality similar to that present in the active site of orotidine 5′-monophosphate decarboxylase (ODCase), whose mechanism is not known with certainty. A CAM, based on the conserved Lys-Asp-Lys-Asp tetrad in the ODCase active site, was used to search the PDB for enzymes with similar active sites. The ODCase active site has a geometry similar to that of Schiff base-forming Class I aldolases, with lowest aldolase RMSD to the ODCase CAM at 0.48 Å. The similarity between this CAM and the aldolase active site suggests that ODCase has the correct catalytic functionality present in its active site for the generation of a nucleophilic lysine. PMID:22909276

  19. Active-Site Hydration and Water Diffusion in Cytochrome P450cam: A Highly Dynamic Process

    SciTech Connect

    Miao, Yinglong; Baudry, Jerome Y

    2011-01-01

    Long-timescale molecular dynamics simulations (300 ns) are performed on both the apo- (i.e., camphor-free) and camphor-bound cytochrome P450cam (CYP101). Water diffusion into and out of the protein active site is observed without biased sampling methods. During the course of the molecular dynamics simulation, an average of 6.4 water molecules is observed in the camphor-binding site of the apo form, compared to zero water molecules in the binding site of the substrate-bound form, in agreement with the number of water molecules observed in crystal structures of the same species. However, as many as 12 water molecules can be present at a given time in the camphor-binding region of the active site in the case of apo-P450cam, revealing a highly dynamic process for hydration of the protein active site, with water molecules exchanging rapidly with the bulk solvent. Water molecules are also found to exchange locations frequently inside the active site, preferentially clustering in regions surrounding the water molecules observed in the crystal structure. Potential-of-mean-force calculations identify thermodynamically favored trans-protein pathways for the diffusion of water molecules between the protein active site and the bulk solvent. Binding of camphor in the active site modifies the free-energy landscape of P450cam channels toward favoring the diffusion of water molecules out of the protein active site.

  20. L-Asparaginase as potent anti-leukemic agent and its significance of having reduced glutaminase side activity for better treatment of acute lymphoblastic leukaemia.

    PubMed

    Ramya, L N; Doble, Mukesh; Rekha, V P B; Pulicherla, K K

    2012-08-01

    Acute lymphoblastic leukaemia (ALL) is one of the leading types of malignant disorder seen in children. Viral infections, genetic factors and exposure to chemical carcinogens are some of the factors responsible for causing ALL. Treatment strategies followed for curing ALL include chemotherapy or radiation therapy, wherein, chemotherapy involves the use of the enzymatic drug L-Asparaginase. The enzyme can be produced from various plants, animals, bacterial and fungal sources but, among them, bacterial sources are widely used for production of this enzyme. The enzyme is non-human in origin having certain bottle necks with L-Asparaginase therapy in the form of side effects such as pancreatitis, thrombosis which are mainly due to glutaminase side activity. Hence, present-day research is mainly focussed on minimizing or completely eliminating the glutaminase activity of the enzyme L-Asparaginase. This review is focussed on the complications associated with glutaminase side activity and use of glutaminase free enzymatic drug L-Asparaginase in treating ALL and the other developments related to the modification of the drug for quality treatment. PMID:22684410

  1. Parameterization of an Active Thermal Erosion Site, Caribou Creek, Alaska

    NASA Astrophysics Data System (ADS)

    Busey, R.; Bolton, W. R.; Cherry, J. E.; Hinzman, L. D.

    2012-12-01

    Thermokarst features are thought to be an important mechanism for landscape change in permafrost-dominated cold regions, but few such features have been incorporated into full featured landscape models. The root of this shortcoming is that historic observations are not detailed enough to parameterize a model, and the models typically do not include the relevant processes for thermal erosion. A new, dynamic thermokarst feature has been identified at the Caribou-Poker Creek Research Watershed (CPCRW) in the boreal forest of Interior Alaska. Located adjacent to a traditional use trail, this feature terminates directly in Caribou Creek. Erosion within the feature is driven predominantly by fluvial interflow. CPCRW is a Long-Term Ecological Research site underlain by varying degrees of relatively warm, discontinuous permafrost. This poster will describe the suite of measurements that have been undertaken to parameterize the ERODE model for this site, including thorough surveys, time lapse- and aerial photography, and 3-D structure from motion algorithms.

  2. [Psychoanalysis and Side Effect].

    PubMed

    Shirahase, Joichiro

    2015-01-01

    A study of psychoanalysis from the perspective of side effects reveals that its history was a succession of measures to deal with its own side effects. This, however, does not merely suggest that, as a treatment method, psychoanalysis is incomplete and weak: rather, its history is a record of the growth and development of psychoanalysis that discovered therapeutic significance from phenomena that were initially regarded as side effects, made use of these discoveries, and elaborated them as a treatment method. The approach of research seen during the course of these developments is linked to the basic therapeutic approach of psychoanalysis. A therapist therefore does not draw conclusions about a patient's words and behaviors from a single aspect, but continues to make efforts to actively discover a variety of meanings and values from them, and to make the patient's life richer and more productive. This therapeutic approach is undoubtedly one of the unique aspects of psychoanalysis. I discuss the issue of psychoanalysis and side effects with the aim of clarifying this unique characteristic of psychoanalysis. The phenomenon called resistance inevitably emerges during the process of psychoanalytic treatment. Resistance can not only obstruct the progress of therapy; it also carries the risk of causing a variety of disadvantages to the patient. It can therefore be seen as an adverse effect. However, if we re-examine this phenomenon from the perspective of transference, we find that resistance is in fact a crucial tool in psychoanalysis, and included in its main effect, rather than a side effect. From the perspective of minimizing the character of resistance as a side effect and maximizing its character as a main effect, I have reviewed logical organization, dynamic evaluation, the structuring of treatment, the therapist's attitudes, and the training of therapists. I conclude by stating that psychoanalysis has aspects that do not match the perspective known as a side

  3. [Psychoanalysis and Side Effect].

    PubMed

    Shirahase, Joichiro

    2015-01-01

    A study of psychoanalysis from the perspective of side effects reveals that its history was a succession of measures to deal with its own side effects. This, however, does not merely suggest that, as a treatment method, psychoanalysis is incomplete and weak: rather, its history is a record of the growth and development of psychoanalysis that discovered therapeutic significance from phenomena that were initially regarded as side effects, made use of these discoveries, and elaborated them as a treatment method. The approach of research seen during the course of these developments is linked to the basic therapeutic approach of psychoanalysis. A therapist therefore does not draw conclusions about a patient's words and behaviors from a single aspect, but continues to make efforts to actively discover a variety of meanings and values from them, and to make the patient's life richer and more productive. This therapeutic approach is undoubtedly one of the unique aspects of psychoanalysis. I discuss the issue of psychoanalysis and side effects with the aim of clarifying this unique characteristic of psychoanalysis. The phenomenon called resistance inevitably emerges during the process of psychoanalytic treatment. Resistance can not only obstruct the progress of therapy; it also carries the risk of causing a variety of disadvantages to the patient. It can therefore be seen as an adverse effect. However, if we re-examine this phenomenon from the perspective of transference, we find that resistance is in fact a crucial tool in psychoanalysis, and included in its main effect, rather than a side effect. From the perspective of minimizing the character of resistance as a side effect and maximizing its character as a main effect, I have reviewed logical organization, dynamic evaluation, the structuring of treatment, the therapist's attitudes, and the training of therapists. I conclude by stating that psychoanalysis has aspects that do not match the perspective known as a side

  4. Structural Analysis of the Active Site Geometry of N[superscript 5]-Carboxyaminoimidazole Ribonucleotide Synthetase from Escherichia coli

    SciTech Connect

    Thoden, James B.; Holden, Hazel M.; Firestine, Steven M.

    2009-09-11

    N{sub 5}-Carboxyaminoimidazole ribonucleotide synthetase (N{sub 5}-CAIR synthetase) converts 5-aminoimidazole ribonucleotide (AIR), MgATP, and bicarbonate into N{sub 5}-CAIR, MgADP, and P{sub i}. The enzyme is required for de novo purine biosynthesis in microbes yet is not found in humans suggesting that it represents an ideal and unexplored target for antimicrobial drug design. Here we report the X-ray structures of N{sub 5}-CAIR synthetase from Escherichia coli with either MgATP or MgADP/P{sub i} bound in the active site cleft. These structures, determined to 1.6-{angstrom} resolution, provide detailed information regarding the active site geometry before and after ATP hydrolysis. In both structures, two magnesium ions are observed. Each of these is octahedrally coordinated, and the carboxylate side chain of Glu238 bridges them. For the structure of the MgADP/P{sub i} complex, crystals were grown in the presence of AIR and MgATP. No electron density was observed for AIR, and the electron density corresponding to the nucleotide clearly revealed the presence of ADP and P{sub i} rather than ATP. The bound P{sub i} shifts by approximately 3 {angstrom} relative to the {gamma}-phosphoryl group of ATP and forms electrostatic interactions with the side chains of Arg242 and His244. Since the reaction mechanism of N{sub 5}-CAIR synthetase is believed to proceed via a carboxyphosphate intermediate, we propose that the location of the inorganic phosphate represents the binding site for stabilization of this reactive species. Using the information derived from the two structures reported here, coupled with molecular modeling, we propose a catalytic mechanism for N{sub 5}-CAIR synthetase.

  5. Blogs and Social Network Sites as Activity Systems: Exploring Adult Informal Learning Process through Activity Theory Framework

    ERIC Educational Resources Information Center

    Heo, Gyeong Mi; Lee, Romee

    2013-01-01

    This paper uses an Activity Theory framework to explore adult user activities and informal learning processes as reflected in their blogs and social network sites (SNS). Using the assumption that a web-based space is an activity system in which learning occurs, typical features of the components were investigated and each activity system then…

  6. Pi-interaction tuning of the active site properties of metalloproteins.

    PubMed

    Yanagisawa, Sachiko; Crowley, Peter B; Firbank, Susan J; Lawler, Anne T; Hunter, David M; McFarlane, William; Li, Chan; Kohzuma, Takamitsu; Banfield, Mark J; Dennison, Christopher

    2008-11-19

    The influence of pi-interactions with a His ligand have been investigated in a family of copper-containing redox metalloproteins. The Met16Phe and Met16Trp pseudoazurin, and Leu12Phe spinach and Leu14Phe Phormidium laminosum plastocyanin variants possess active-site pi-contacts between the introduced residue and His81 and His87/92 respectively. The striking overlap of the side chain of Phe16 in the Met16Phe variant and that of Met16 in wild type pseudoazurin identifies that this position provides an important second coordination sphere interaction in both cases. His-ligand protonation and dissociation from Cu(I) occurs in the wild type proteins resulting in diminished redox activity, providing a [H(+)]-driven switch for regulating electron transfer. The introduced pi-interaction has opposing effects on the pKa for the His ligand in pseudoazurin and plastocyanin due to subtle differences in the pi-contact, stabilizing the coordinated form of pseudoazurin whereas in plastocyanin protonation and dissociation is favored. Replacement of Pro36, a residue that has been suggested to facilitate structural changes upon His ligand protonation, with a Gly, has little effect on the pKa of His87 in spinach plastocyanin. The mutations at Met16 have a significant influence on the reduction potential of pseudoazurin. Electron self-exchange is enhanced, whereas association with the physiological partner, nitrite reductase, is only affected by the Met16Phe mutation, but kcat is halved in both the Met16Phe and Met16Trp variants. Protonation of the His ligand is the feature most affected by the introduction of a pi-interaction.

  7. Early Site Permit Demonstration Program: Recommendations for communication activities and public participation in the Early Site Permit Demonstration Program

    SciTech Connect

    Not Available

    1993-01-27

    On October 24, 1992, President Bush signed into law the National Energy Policy Act of 1992. The bill is a sweeping, comprehensive overhaul of the Nation`s energy laws, the first in more than a decade. Among other provisions, the National Energy Policy Act reforms the licensing process for new nuclear power plants by adopting a new approach developed by the US Nuclear Regulatory Commission (NRC) in 1989, and upheld in court in 1992. The NRC 10 CFR Part 52 rule is a three-step process that guarantees public participation at each step. The steps are: early site permit approval; standard design certifications; and, combined construction/operating licenses for nuclear power reactors. Licensing reform increases an organization`s ability to respond to future baseload electricity generation needs with less financial risk for ratepayers and the organization. Costly delays can be avoided because design, safety and siting issues will be resolved before a company starts to build a plant. Specifically, early site permit approval allows for site suitability and acceptability issues to be addressed prior to an organization`s commitment to build a plant. Responsibility for site-specific activities, including communications and public participation, rests with those organizations selected to try out early site approval. This plan has been prepared to assist those companies (referred to as sponsoring organizations) in planning their communications and public involvement programs. It provides research findings, information and recommendations to be used by organizations as a resource and starting point in developing their own plans.

  8. Active Site Structure and Peroxidase Activity of Oxidatively Modified Cytochrome c Species in Complexes with Cardiolipin.

    PubMed

    Capdevila, Daiana A; Oviedo Rouco, Santiago; Tomasina, Florencia; Tortora, Verónica; Demicheli, Verónica; Radi, Rafael; Murgida, Daniel H

    2015-12-29

    We report a resonance Raman and UV-vis characterization of the active site structure of oxidatively modified forms of cytochrome c (Cyt-c) free in solution and in complexes with cardiolipin (CL). The studied post-translational modifications of Cyt-c include methionine sulfoxidation and tyrosine nitration, which lead to altered heme axial ligation and increased peroxidase activity with respect to those of the wild-type protein. In spite of the structural and activity differences between the protein variants free in solution, binding to CL liposomes induces in all cases the formation of a spectroscopically identical bis-His axial coordination conformer that more efficiently promotes lipid peroxidation. The spectroscopic results indicate that the bis-His form is in equilibrium with small amounts of high-spin species, thus suggesting a labile distal His ligand as the basis for the CL-induced increase in enzymatic activity observed for all protein variants. For Cyt-c nitrated at Tyr74 and sulfoxidized at Met80, the measured apparent binding affinities for CL are ∼4 times larger than for wild-type Cyt-c. On the basis of these results, we propose that these post-translational modifications may amplify the pro-apoptotic signal of Cyt-c under oxidative stress conditions at CL concentrations lower than for the unmodified protein.

  9. Identification of ice nucleation active sites on feldspar dust particles.

    PubMed

    Zolles, Tobias; Burkart, Julia; Häusler, Thomas; Pummer, Bernhard; Hitzenberger, Regina; Grothe, Hinrich

    2015-03-19

    Mineral dusts originating from Earth's crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts. Here we investigated in closer detail the reasons for its activity and the difference in the activity of the different feldspars. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. K-feldspar showed by far the highest ice nucleation activity. Finally, we give a potential explanation of this effect, finding alkali-metal ions having different hydration shells and thus an influence on the ice nucleation activity of feldspar surfaces. PMID:25584435

  10. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles

    PubMed Central

    2015-01-01

    Mineral dusts originating from Earth’s crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts. Here we investigated in closer detail the reasons for its activity and the difference in the activity of the different feldspars. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. K-feldspar showed by far the highest ice nucleation activity. Finally, we give a potential explanation of this effect, finding alkali-metal ions having different hydration shells and thus an influence on the ice nucleation activity of feldspar surfaces. PMID:25584435

  11. Active site densities, oxygen activation and adsorbed reactive oxygen in alcohol activation on npAu catalysts.

    PubMed

    Wang, Lu-Cun; Friend, C M; Fushimi, Rebecca; Madix, Robert J

    2016-07-01

    The activation of molecular O2 as well as the reactivity of adsorbed oxygen species is of central importance in aerobic selective oxidation chemistry on Au-based catalysts. Herein, we address the issue of O2 activation on unsupported nanoporous gold (npAu) catalysts by applying a transient pressure technique, a temporal analysis of products (TAP) reactor, to measure the saturation coverage of atomic oxygen, its collisional dissociation probability, the activation barrier for O2 dissociation, and the facility with which adsorbed O species activate methanol, the initial step in the catalytic cycle of esterification. The results from these experiments indicate that molecular O2 dissociation is associated with surface silver, that the density of reactive sites is quite low, that adsorbed oxygen atoms do not spill over from the sites of activation onto the surrounding surface, and that methanol reacts quite facilely with the adsorbed oxygen atoms. In addition, the O species from O2 dissociation exhibits reactivity for the selective oxidation of methanol but not for CO. The TAP experiments also revealed that the surface of the npAu catalyst is saturated with adsorbed O under steady state reaction conditions, at least for the pulse reaction. PMID:27376884

  12. ATPase active-site electrostatic interactions control the global conformation of the 100 kDa SecA translocase.

    PubMed

    Kim, Dorothy M; Zheng, Haiyan; Huang, Yuanpeng J; Montelione, Gaetano T; Hunt, John F

    2013-02-27

    SecA is an intensively studied mechanoenzyme that uses ATP hydrolysis to drive processive extrusion of secreted proteins through a protein-conducting channel in the cytoplasmic membrane of eubacteria. The ATPase motor of SecA is strongly homologous to that in DEAD-box RNA helicases. It remains unclear how local chemical events in its ATPase active site control the overall conformation of an ~100 kDa multidomain enzyme and drive protein transport. In this paper, we use biophysical methods to establish that a single electrostatic charge in the ATPase active site controls the global conformation of SecA. The enzyme undergoes an ATP-modulated endothermic conformational transition (ECT) believed to involve similar structural mechanics to the protein transport reaction. We have characterized the effects of an isosteric glutamate-to-glutamine mutation in the catalytic base, a mutation which mimics the immediate electrostatic consequences of ATP hydrolysis in the active site. Calorimetric studies demonstrate that this mutation facilitates the ECT in Escherichia coli SecA and triggers it completely in Bacillus subtilis SecA. Consistent with the substantial increase in entropy observed in the course of the ECT, hydrogen-deuterium exchange mass spectrometry demonstrates that it increases protein backbone dynamics in domain-domain interfaces at remote locations from the ATPase active site. The catalytic glutamate is one of ~250 charged amino acids in SecA, and yet neutralization of its side chain charge is sufficient to trigger a global order-disorder transition in this 100 kDa enzyme. The intricate network of structural interactions mediating this effect couples local electrostatic changes during ATP hydrolysis to global conformational and dynamic changes in SecA. This network forms the foundation of the allosteric mechanochemistry that efficiently harnesses the chemical energy stored in ATP to drive complex mechanical processes. PMID:23167435

  13. Development and Validation of the Total HUman Model for Safety (THUMS) Version 5 Containing Multiple 1D Muscles for Estimating Occupant Motions with Muscle Activation During Side Impacts.

    PubMed

    Iwamoto, Masami; Nakahira, Yuko

    2015-11-01

    Accurate prediction of occupant head kinematics is critical for better understanding of head/face injury mechanisms in side impacts, especially far-side occupants. In light of the fact that researchers have demonstrated that muscle activations, especially in neck muscles, can affect occupant head kinematics, a human body finite element (FE) model that considers muscle activation is useful for predicting occupant head kinematics in real-world automotive accidents. In this study, we developed a human body FE model called the THUMS (Total HUman Model for Safety) Version 5 that contains 262 one-dimensional (1D) Hill-type muscle models over the entire body. The THUMS was validated against 36 series of PMHS (Post Mortem Human Surrogate) and volunteer test data in this study, and 16 series of PMHS and volunteer test data on side impacts are presented. Validation results with force-time curves were also evaluated quantitatively using the CORA (CORrelation and Analysis) method. The validation results suggest that the THUMS has good biofidelity in the responses of the regional or full body for side impacts, but relatively poor biofidelity in its local level of responses such as brain displacements. Occupant kinematics predicted by the THUMS with a muscle controller using 22 PID (Proportional-Integral- Derivative) controllers were compared with those of volunteer test data on low-speed lateral impacts. The THUMS with muscle controller reproduced the head kinematics of the volunteer data more accurately than that without muscle activation, although further studies on validation of torso kinematics are needed for more accurate predictions of occupant head kinematics.

  14. Development and Validation of the Total HUman Model for Safety (THUMS) Version 5 Containing Multiple 1D Muscles for Estimating Occupant Motions with Muscle Activation During Side Impacts.

    PubMed

    Iwamoto, Masami; Nakahira, Yuko

    2015-11-01

    Accurate prediction of occupant head kinematics is critical for better understanding of head/face injury mechanisms in side impacts, especially far-side occupants. In light of the fact that researchers have demonstrated that muscle activations, especially in neck muscles, can affect occupant head kinematics, a human body finite element (FE) model that considers muscle activation is useful for predicting occupant head kinematics in real-world automotive accidents. In this study, we developed a human body FE model called the THUMS (Total HUman Model for Safety) Version 5 that contains 262 one-dimensional (1D) Hill-type muscle models over the entire body. The THUMS was validated against 36 series of PMHS (Post Mortem Human Surrogate) and volunteer test data in this study, and 16 series of PMHS and volunteer test data on side impacts are presented. Validation results with force-time curves were also evaluated quantitatively using the CORA (CORrelation and Analysis) method. The validation results suggest that the THUMS has good biofidelity in the responses of the regional or full body for side impacts, but relatively poor biofidelity in its local level of responses such as brain displacements. Occupant kinematics predicted by the THUMS with a muscle controller using 22 PID (Proportional-Integral- Derivative) controllers were compared with those of volunteer test data on low-speed lateral impacts. The THUMS with muscle controller reproduced the head kinematics of the volunteer data more accurately than that without muscle activation, although further studies on validation of torso kinematics are needed for more accurate predictions of occupant head kinematics. PMID:26660740

  15. Double-side active TiO2-modified nanofiltration membranes in continuous flow photocatalytic reactors for effective water purification.

    PubMed

    Romanos, G Em; Athanasekou, C P; Katsaros, F K; Kanellopoulos, N K; Dionysiou, D D; Likodimos, V; Falaras, P

    2012-04-15

    A chemical vapour deposition (CVD) based innovative approach was applied with the purpose to develop composite TiO(2) photocatalytic nanofiltration (NF) membranes. The method involved pyrolytic decomposition of titanium tetraisopropoxide (TTIP) vapor and formation of TiO(2) nanoparticles through homogeneous gas phase reactions and aggregation of the produced intermediate species. The grown nanoparticles diffused and deposited on the surface of γ-alumina NF membrane tubes. The CVD reactor allowed for online monitoring of the carrier gas permeability during the treatment, providing a first insight on the pore efficiency and thickness of the formed photocatalytic layers. In addition, the thin TiO(2) deposits were developed on both membrane sides without sacrificing the high yield rates. Important innovation was also introduced in what concerns the photocatalytic performance evaluation. The membrane efficiency to photo degrade typical water pollutants, was evaluated in a continuous flow water purification device, applying UV irradiation on both membrane sides. The developed composite NF membranes were highly efficient in the decomposition of methyl orange exhibiting low adsorption-fouling tendency and high water permeability. PMID:21999989

  16. Evaluation of local site effect in the western side of the Suez Canal area by applying H/V and MASW techniques

    NASA Astrophysics Data System (ADS)

    Mohamed, Emad K.; Shokry, M. M. F.; Hassoup, Awad; Helal, A. M. A.

    2016-11-01

    The soft sediments are one of the most important factors responsible for the amplification of the seismic ground motion in an area of study. Three components, single-station microtremor measurements were performed at 61 sites along the Suez Canal to estimate the fundamental frequencies of the soil and corresponding H/V amplitude ratios by using the horizontal-to-vertical spectral ratio (HVSR) method. We have applied the investigations of the shear wave velocity for supplementing the existing seismic microzonation of the Suez Canal. The multichannel analysis of surface wave (MASW) tests were done along the Suez Canal in the three cities, Suez, Ismailia, and Port Said using 24 channels digital engineering seismograph with 4.5 Hz geophones from September 2014 to January 2015 to get the shear wave velocity VS30. The SeisImager/SW software was used for analyzing the data, and 1D-shear wave velocity model have achieved for each site. The HVSR curves show that the fundamental frequency values are ranging from 0.57 to 1.08 Hz, and H/V amplitude ratios are ranging from 4.05 to 6.46. The average values of VS30 are (548, 301), (241, 319), (194, 110, 238) for Suez, Ismailia, and Port Said respectively. The average of shear wave velocity up to 30 m depth is estimated and used for site classification based on the National Earthquake Hazard Reduction Program (NEHRP) classification. The majority of the sites was classified as Class D (stiff soil) except one site at Port Said city is classified as Class E (soft soils), and another site in the Suez city is classified as Class C (hard rock).

  17. Active site mutants of Escherichia coli dethiobiotin synthetase: effects of mutations on enzyme catalytic and structural properties.

    PubMed

    Yang, G; Sandalova, T; Lohman, K; Lindqvist, Y; Rendina, A R

    1997-04-22

    Five active site residues, Thr11, Glu12, Lys15, Lys37, and Ser41, implicated by the protein crystal structure studies of Escherichia coli DTBS, were mutated to determine their function in catalysis and substrate binding. Nine mutant enzymes, T11V, E12A, E12D, K15Q, K37L, K37Q, K37R, S41A, and S41C, were overproduced in an E. coli strain lacking a functional endogenous DTBS gene and purified to homogeneity. Replacement of Thr11 with valine resulted in a 24,000-fold increase in the Km(ATP) with little or no change in the Kd(ATP), KM(DAPA) and DTBS k(cat), suggesting an essential role for this residue in the steady-state affinity for ATP. The two Glu12 mutants showed essentially wild-type DTBS activity (slightly elevated k(cat)'s). Unlike wild-type DTBS, E12A had the same apparent KM(DAPA) at subsaturating and saturating ATP concentrations, indicating a possible role for Glu12 in the binding synergy between DAPA and ATP. The mutations in Lys15 and Lys37 resulted in loss of catalytic activity (0.01% and <0.9% of wild-type DTBS k(cat) for K15Q and the Lys37 mutant enzymes, respectively) and higher KM's for both DAPA (40-fold and >100-fold higher than wild-type for the K15Q and Lys37 mutant enzymes, respectively) and ATP (1800-fold and >10-fold higher than wild-type for K15Q and the K37 mutant enzymes, respectively). These results strongly suggest that Lys15 and Lys37 are crucial to both catalysis and substrate binding. S41A and S41C had essentially the same k(cat) as wild-type and had moderate increases in the DAPA and ATP KM and Kd (ATP) values. Replacement of Ser41 with cysteine resulted in larger effects than replacement with alanine. These data suggest that the H-bond between N7 of DAPA and the Ser41 side chain is not very important for catalysis. The catalytic behavior of these mutant enzymes was also studied by pulse-chase experiments which produced results consistent with the steady-state kinetic analyses. X-ray crystallographic studies of four mutant enzymes, S

  18. In-vitro and in-vivo antimicrobial activities of a novel cephalosporin derivative, CP6162, possessing a dihydroxypyridone moiety at the C-3 side chain.

    PubMed

    Orikasa, Y; Hara, T; Miyata, A; Tamura, A; Kawaharajo, K; Matsumoto, T; Komiya, I; Iwamatsu, K; Shibahara, S; Inouye, S

    1991-01-01

    The antibacterial activity of a novel cephalosporin derivative, CP6162, possessing a dihydroxypyridone moiety at the C-3 side chain, was evaluated in vitro and in vivo, with ceftazidime, aztreonam and cefoperazone as the reference antibiotics. CP6162 showed weak or little activity against Gram-positive bacteria, but potent activity against clinical isolates of the Gram-negative species including strains of Pseudomonas aeruginosa, Ps. cepacia, Acinetobacter sp., Xanthomonas maltophilia, Serratia marcescens, Enterobacter cloacae and Citrobacter freundii, which were resistant to the reference antibiotics. The MICs of CP6162 were only slightly affected by the high producers of beta-lactamases except for cephalosporinase-producing C. freundii. It was, however, affected by the presence of ferric ion. CP6162 showed in-vivo activity paralleling the in-vitro activity, and also showed pharmacokinetic parameters similar to those of ceftazidime in mice and rats.

  19. Possible active site of the sweet-tasting protein thaumatin.

    PubMed

    Slootstra, J W; De Geus, P; Haas, H; Verrips, C T; Meloen, R H

    1995-10-01

    Epitopes on thaumatin and monellin were studied using the PEPSCAN-technology. The antibodies used were raised against thaumatin. Only antibodies that, in an ELISA, both recognized thaumatin and monellin were used in the PEPSCAN-analyses. On thaumatin two major overlapping epitopes were identified. On monellin no epitopes could be identified. The identified epitope region on thaumatin shares structural features with various peptide and protein sweeteners. It contains an aspartame-like site which is formed by Asp21 and Phe80, tips of the two extruding loops KGDAALDAGGR19-29 and CKRFGRPP77-84, which are spatially positioned next to each other. Furthermore, sub-sequences of the KGDAALDAGGR19-29 loop are similar to peptide-sweeteners such as L-Asp-D-Ala-L-Ala-methyl ester and L-Asp-D-Ala-Gly-methyl ester. Since the aspartame-like Asp21-Phe80 site and the peptide-sweetener-like sequences are also not present in non-sweet thaumatin-like proteins it is postulated that the KGDAALDAGGR19-29- and CKRFGRPP77-84 loop contain important sweet-taste determinants. This region has previously not been implicated as a sweet-taste determinant of thaumatin.

  20. Analyzing sites of OH radical attack (ring vs. side chain) in oxidation of substituted benzenes via dual stable isotope analysis (δ(13)C and δ(2)H).

    PubMed

    Zhang, Ning; Geronimo, Inacrist; Paneth, Piotr; Schindelka, Janine; Schaefer, Thomas; Herrmann, Hartmut; Vogt, Carsten; Richnow, Hans H

    2016-01-15

    OH radicals generated by the photolysis of H2O2 can degrade aromatic contaminants by either attacking the aromatic ring to form phenolic products or oxidizing the substituent. We characterized these competing pathways by analyzing the carbon and hydrogen isotope fractionation (εC and εH) of various substituted benzenes. For benzene and halobenzenes that only undergo ring addition, low values of εC (-0.7‰ to -1.0‰) were observed compared with theoretical values (-7.2‰ to -8‰), possibly owing to masking effect caused by pre-equilibrium between the substrate and OH radical preceding the rate-limiting step. In contrast, the addition of OH radicals to nitrobenzene ring showed a higher εC (-3.9‰), probably due to the lower reactivity. Xylene isomers, anisole, aniline, N,N-dimethylaniline, and benzonitrile yielded normal εH values (-2.8‰ to -29‰) indicating the occurrence of side-chain reactions, in contrast to the inverse εH (11.7‰ to 30‰) observed for ring addition due to an sp(2) to sp(3) hybridization change at the reacting carbon. Inverse εH values for toluene (14‰) and ethylbenzene (30‰) were observed despite the formation of side-chain oxidation products, suggesting that ring addition has a larger contribution to isotope fractionation. Dual element isotope slopes (∆δ(2)H/∆δ(13)C) therefore allow identification of significant degradation pathways of aromatic compounds by photochemically induced OH radicals. Issues that should be addressed in future studies include quantitative determination of the contribution of each competing pathway to the observed isotope fractionation and characterization of physical processes preceding the reaction that could affect isotope fractionation.

  1. A New Orally Active, Aminothiol Radioprotector-Free of Nausea and Hypotension Side Effects at Its Highest Radioprotective Doses

    SciTech Connect

    Soref, Cheryl M.; Hacker, Timothy A.; Fahl, William E.

    2012-04-01

    Purpose: A new aminothiol, PrC-210, was tested for orally conferred radioprotection (rats, mice; 9.0 Gy whole-body, which was otherwise lethal to 100% of the animals) and presence of the debilitating side effects (nausea/vomiting, hypotension/fainting) that restrict use of the current aminothiol, amifostine (Ethyol, WR-2721). Methods and Materials: PrC-210 in water was administered to rats and mice at times before irradiation, and percent-survival was recorded for 60 days. Subcutaneous (SC) amifostine (positive control) or SC PrC-210 was administered to ferrets (Mustela putorius furo) and retching/emesis responses were recorded. Intraperitoneal amifostine (positive control) or PrC-210 was administered to arterial cannulated rats to score drug-induced hypotension. Results: Oral PrC-210 conferred 100% survival in rat and mouse models against an otherwise 100% lethal whole-body radiation dose (9.0 Gy). Oral PrC-210, administered by gavage 30-90 min before irradiation, conferred a broad window of radioprotection. The comparison of PrC-210 and amifostine side effects was striking because there was no retching or emesis in 10 ferrets treated with PrC-210 and no induced hypotension in arterial cannulated rats treated with PrC-210. The tested PrC-210 doses were the ferret and rat equivalent doses of the 0.5 maximum tolerated dose (MTD) PrC-210 dose in mice. The human equivalent of this mouse 0.5 MTD PrC-210 dose would likely be the highest PrC-210 dose used in humans. By comparison, the mouse 0.5 MTD amifostine dose, 400 {mu}g/g body weight (equivalent to the human amifostine dose of 910 mg/m{sup 2}), when tested at equivalent ferret and rat doses in the above models produced 100% retching/vomiting in ferrets and 100% incidence of significant, progressive hypotension in rats. Conclusions: The PrC-210 aminothiol, with no detectable nausea/vomiting or hypotension side effects in these preclinical models, is a logical candidate for human drug development to use in healthy

  2. The calcium-sensor guanylate cyclase activating protein type 2 specific site in rod outer segment membrane guanylate cyclase type 1.

    PubMed

    Duda, Teresa; Fik-Rymarkiewicz, Ewa; Venkataraman, Venkateswar; Krishnan, Ramalingam; Koch, Karl-Wilhelm; Sharma, Rameshwar K

    2005-05-17

    The rod outer segment membrane guanylate cyclase type 1 (ROS-GC1), originally identified in the photoreceptor outer segments, is a member of the subfamily of Ca(2+)-modulated membrane guanylate cyclases. In phototransduction, its activity is tightly regulated by its two Ca(2+)-sensor protein parts, GCAP1 and GCAP2. This study maps the GCAP2-modulatory site in ROS-GC1 through the use of multiple techniques involving surface plasmon resonance binding studies with soluble ROS-GC1 constructs, coimmunoprecipitation, functional reconstitution experiments with deletion mutants, and peptide competition assays. The findings show that the sequence motif of the core GCAP2-modulatory site is Y965-N981 of ROS-GC1. The site is distinct from the GCAP1-modulatory site. It, however, partially overlaps with the S100B-regulatory site. This indicates that the Y965-N981 motif tightly controls the Ca(2+)-dependent specificity of ROS-GC1. Identification of the site demonstrates an intriguing topographical feature of ROS-GC1. This is that the GCAP2 module transmits the Ca(2+) signals to the catalytic domain from its C-terminal side and the GCAP1 module from the distant N-terminal side.

  3. Assessment of activation products in the Savannah River Site environment

    SciTech Connect

    Carlton, W.H.; Denham, M.

    1996-07-01

    This document assesses the impact of radioactive activation products released from SRS facilities since the first reactor became operational late in 1953. The isotopes reported here are those whose release resulted in the highest dose to people living near SRS: {sup 32}P, {sup 51}Cr, {sup 60}C, and {sup 65}Zn. Release pathways, emission control features, and annual releases to the aqueous and atmospheric environments are discussed. No single incident has resulted in a major acute release of activation products to the environment. The releases were the result of normal operations of the reactors and separations facilities. Releases declined over the years as better controls were established and production was reduced. The overall radiological impact of SRS activation product atmospheric releases from 1954 through 1994 on the offsite maximally exposed individual can be characterized by a total dose of 0.76 mrem. During the same period, such an individual received a total dose of 14,400 mrem from non-SRS sources of ionizing radiation present in the environment. SRS activation product aqueous releases between 1954 and 1994 resulted in a total dose of 54 mrem to the offsite maximally exposed individual. The impact of SRS activation product releases on offsite populations also has been evaluated.

  4. Endoluminal norepinephrine inhibits smooth muscle activity of the pig pyeloureter by stimulation of beta-adrenoceptors without side effects.

    PubMed

    Mortensen, Jens; Holst, Uffe; Jakobsen, Jørn Skibsted; Andreasen, Frederik

    2008-11-01

    It has been demonstrated in pigs that endoluminal administration of norepinephrine reduces the increase in renal pelvic pressure during perfusion. The purposes were to describe concentration-response relationship and receptor mechanism of the effect of norepinephrine on muscle function of pyeloureter and to reveal possible side effects on cardiovascular and renal functions. Renal pelvis was perfused, while pelvic pressure, cardiovascular and renal functional parameters were recorded. In group A, a pelvic pressure increase was examined during pressure flow studies with norepinephrine solutions (0, 1, 5, 50 and 100 microg/ml). In group B, pelvis was perfused with 6 ml/min. norepinephrine solutions (0, 0.001, 0.01, 0.1 and 1 microg/ml). In group C, pelvis was perfused with 6 ml/min. norepinephrine, norepinephrine + sotalol 10(-) (6) mol/l and norepinephrine + phentolamine 10(-) (6) mol/l. Norepinephrine solutions of 0, 10(-) (8), 10(-) (7), 10(-) (6), 10(-) (5) and 10(-) (4) mol/l were used. In group A, all norepinephrine solutions lowered the pelvic pressure increase significantly. Large increases in plasma and urine norepinephrine occurred with 50 and 100 microg/ml, but cardiovascular and renal functions remained unchanged. In group B, a significant diminishing pelvic pressure increase with all solutions was seen with a significant difference between all solutions. In group C, norepinephrine demonstrated a concentration-response curve with EC(50) between 10(-) (8) and 10(-) (7) mol/l (10(-) (7.27+/-0.40)). Sotalol had a smooth muscle inhibitory effect on the pyeloureter and inhibited the effect of norepinephrine increasing EC(50) by about a factor 10 (10(-) (6.40+/-1.17)). No convincing effect of phentolamine was observed. Endoluminal norepinephrine probably stimulates beta-adrenoceptors and inhibits a renal pelvis pressure increase to perfusion in a dose-related way without side effects. Endoluminal norepinephrine is safe in pigs and may be useful under endoscopy

  5. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts

    PubMed Central

    Sahraie, Nastaran Ranjbar; Kramm, Ulrike I.; Steinberg, Julian; Zhang, Yuanjian; Thomas, Arne; Reier, Tobias; Paraknowitsch, Jens-Peter; Strasser, Peter

    2015-01-01

    Carbon materials doped with transition metal and nitrogen are highly active, non-precious metal catalysts for the electrochemical conversion of molecular oxygen in fuel cells, metal air batteries, and electrolytic processes. However, accurate measurement of their intrinsic turn-over frequency and active-site density based on metal centres in bulk and surface has remained difficult to date, which has hampered a more rational catalyst design. Here we report a successful quantification of bulk and surface-based active-site density and associated turn-over frequency values of mono- and bimetallic Fe/N-doped carbons using a combination of chemisorption, desorption and 57Fe Mössbauer spectroscopy techniques. Our general approach yields an experimental descriptor for the intrinsic activity and the active-site utilization, aiding in the catalyst development process and enabling a previously unachieved level of understanding of reactivity trends owing to a deconvolution of site density and intrinsic activity. PMID:26486465

  6. Characterization of an Active Thermal Erosion Site, Caribou Creek, Alaska

    NASA Astrophysics Data System (ADS)

    Busey, R.; Bolton, W. R.; Cherry, J. E.; Hinzman, L. D.

    2013-12-01

    The goal of this project is to estimate volume loss of soil over time from this site, provide parameterizations on erodibility of ice rich permafrost and serve as a baseline for future landscape evolution simulations. Located in the zone of discontinuous permafrost, the interior region of Alaska (USA) is home to a large quantity of warm, unstable permafrost that is both high in ice content and has soil temperatures near the freezing point. Much of this permafrost maintains a frozen state despite the general warming air temperature trend in the region due to the presence of a thick insulating organic mat and a dense root network in the upper sub-surface of the soil column. At a rapidly evolving thermo-erosion site, located within the Caribou-Poker Creeks Research Watershed (part of the Bonanza Creek LTER) near Chatanika, Alaska (N65.140, W147.570), the protective organic layer and associated plants were disturbed by an adjacent traditional use trail and the shifting of a groundwater spring. These triggers have led to rapid geomorphological change on the landscape as the soil thaws and sediment is transported into the creek at the valley bottom. Since 2006 (approximately the time of initiation), the thermal erosion has grown to 170 meters length, 3 meters max depth, and 15 meters maximum width. This research combines several data sets: DGPS survey, imagery from an extremely low altitude pole-based remote sensing (3 to 5 meters above ground level), and imagery from an Unmanned Aerial System (UAS) at about 60m altitude.

  7. Active Site Metal Occupancy and Cyclic Di-GMP Phosphodiesterase Activity of Thermotoga maritima HD-GYP.

    PubMed

    Miner, Kyle D; Kurtz, Donald M

    2016-02-16

    HD-GYPs make up a subclass of the metal-dependent HD phosphohydrolase superfamily and catalyze conversion of cyclic di(3',5')-guanosine monophosphate (c-di-GMP) to 5'-phosphoguanylyl-(3'→5')-guanosine (pGpG) and GMP. Until now, the only reported crystal structure of an HD-GYP that also exhibits c-di-GMP phosphodiesterase activity contains a His/carboxylate ligated triiron active site. However, other structural and phylogenetic correlations indicate that some HD-GYPs contain dimetal active sites. Here we provide evidence that an HD-GYP c-di-GMP phosphodiesterase, TM0186, from Thermotoga maritima can accommodate both di- and trimetal active sites. We show that an as-isolated iron-containing TM0186 has an oxo/carboxylato-bridged diferric site, and that the reduced (diferrous) form is necessary and sufficient to catalyze conversion of c-di-GMP to pGpG, but that conversion of pGpG to GMP requires more than two metals per active site. Similar c-di-GMP phosphodiesterase activities were obtained with divalent iron or manganese. On the basis of activity correlations with several putative metal ligand residue variants and molecular dynamics simulations, we propose that TM0186 can accommodate both di- and trimetal active sites. Our results also suggest that a Glu residue conserved in a subset of HD-GYPs is required for formation of the trimetal site and can also serve as a labile ligand to the dimetal site. Given the anaerobic growth requirement of T. maritima, we suggest that this HD-GYP can function in vivo with either divalent iron or manganese occupying di- and trimetal sites.

  8. A rapid and direct method for the determination of active site accessibility in proteins based on ESI-MS and active site titrations.

    PubMed

    O'Farrell, Norah; Kreiner, Michaela; Moore, Barry D; Parker, Marie-Claire

    2006-11-01

    We have developed an electrospray ionisation mass spectrometry (ESI-MS) technique that can be applied to rapidly determine the number of intact active sites in proteins. The methodology relies on inhibiting the protein with an active-site irreversible inhibitor and then using ESI-MS to determine the extent of inhibition. We have applied this methodology to a test system: a serine protease, subtilisin Carlsberg, and monitored the extent of inhibition by phenylmethylsulfonyl fluoride (PMSF), an irreversible serine hydrolase inhibitor as a function of the changes in immobilisation and hydration conditions. Two types of enzyme preparation were investigated, lyophilised enzymes and protein-coated microcrystals (PCMC).

  9. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand.

    PubMed

    Parashar, Abhinav; Venkatachalam, Avanthika; Gideon, Daniel Andrew; Manoj, Kelath Murali

    2014-12-12

    The toxicity of cyanide is hitherto attributed to its ability to bind to heme proteins' active site and thereby inhibit their activity. It is shown herein that the long-held interpretation is inadequate to explain several observations in heme-enzyme reaction systems. Generation of cyanide-based diffusible radicals in heme-enzyme reaction milieu could shunt electron transfers (by non-active site processes), and thus be detrimental to the efficiency of oxidative outcomes.

  10. Active Site Loop Dynamics of a Class IIa Fructose 1,6-Bisphosphate Aldolase from Mycobacterium tuberculosis

    SciTech Connect

    Pegan, Scott D.; Rukseree, Kamolchanok; Capodagli, Glenn C.; Baker, Erica A.; Krasnykh, Olga; Franzblau, Scott G.; Mesecar, Andrew D.

    2013-01-08

    The class II fructose 1,6-bisphosphate aldolases (FBAs, EC 4.1.2.13) comprises one of two families of aldolases. Instead of forming a Schiff base intermediate using an ε-amino group of a lysine side chain, class II FBAs utilize Zn(II) to stabilize a proposed hydroxyenolate intermediate (HEI) in the reversible cleavage of fructose 1,6-bisphosphate, forming glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (DHAP). As class II FBAs have been shown to be essential in pathogenic bacteria, focus has been placed on these enzymes as potential antibacterial targets. Although structural studies of class II FBAs from Mycobacterium tuberculosis (MtFBA), other bacteria, and protozoa have been reported, the structure of the active site loop responsible for catalyzing the protonation–deprotonation steps of the reaction for class II FBAs has not yet been observed. We therefore utilized the potent class II FBA inhibitor phosphoglycolohydroxamate (PGH) as a mimic of the HEI- and DHAP-bound form of the enzyme and determined the X-ray structure of the MtFBA–PGH complex to 1.58 Å. Remarkably, we are able to observe well-defined electron density for the previously elusive active site loop of MtFBA trapped in a catalytically competent orientation. Utilization of this structural information and site-directed mutagenesis and kinetic studies conducted on a series of residues within the active site loop revealed that E169 facilitates a water-mediated deprotonation–protonation step of the MtFBA reaction mechanism. Furthermore, solvent isotope effects on MtFBA and catalytically relevant mutants were used to probe the effect of loop flexibility on catalytic efficiency. Additionally, we also reveal the structure of MtFBA in its holoenzyme form.

  11. Active site loop dynamics of a class IIa fructose 1,6-bisphosphate aldolase from Mycobacterium tuberculosis.

    PubMed

    Pegan, Scott D; Rukseree, Kamolchanok; Capodagli, Glenn C; Baker, Erica A; Krasnykh, Olga; Franzblau, Scott G; Mesecar, Andrew D

    2013-02-01

    Class II fructose 1,6-bisphosphate aldolases (FBAs, EC 4.1.2.13) comprise one of two families of aldolases. Instead of forming a Schiff base intermediate using an ε-amino group of a lysine side chain, class II FBAs utilize Zn(II) to stabilize a proposed hydroxyenolate intermediate (HEI) in the reversible cleavage of fructose 1,6-bisphosphate, forming glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (DHAP). As class II FBAs have been shown to be essential in pathogenic bacteria, focus has been placed on these enzymes as potential antibacterial targets. Although structural studies of class II FBAs from Mycobacterium tuberculosis (MtFBA), other bacteria, and protozoa have been reported, the structure of the active site loop responsible for catalyzing the protonation-deprotonation steps of the reaction for class II FBAs has not yet been observed. We therefore utilized the potent class II FBA inhibitor phosphoglycolohydroxamate (PGH) as a mimic of the HEI- and DHAP-bound form of the enzyme and determined the X-ray structure of the MtFBA-PGH complex to 1.58 Å. Remarkably, we are able to observe well-defined electron density for the previously elusive active site loop of MtFBA trapped in a catalytically competent orientation. Utilization of this structural information and site-directed mutagenesis and kinetic studies conducted on a series of residues within the active site loop revealed that E169 facilitates a water-mediated deprotonation-protonation step of the MtFBA reaction mechanism. Also, solvent isotope effects on MtFBA and catalytically relevant mutants were used to probe the effect of loop flexibility on catalytic efficiency. Additionally, we also reveal the structure of MtFBA in its holoenzyme form.

  12. Marine Biology Field Trip Sites. Ocean Related Curriculum Activities.

    ERIC Educational Resources Information Center

    Pauls, John

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  13. Endolysosomes Are the Principal Intracellular Sites of Acid Hydrolase Activity.

    PubMed

    Bright, Nicholas A; Davis, Luther J; Luzio, J Paul

    2016-09-12

    The endocytic delivery of macromolecules from the mammalian cell surface for degradation by lysosomal acid hydrolases requires traffic through early endosomes to late endosomes followed by transient (kissing) or complete fusions between late endosomes and lysosomes. Transient or complete fusion results in the formation of endolysosomes, which are hybrid organelles from which lysosomes are re-formed. We have used synthetic membrane-permeable cathepsin substrates, which liberate fluorescent reporters upon proteolytic cleavage, as well as acid phosphatase cytochemistry to identify which endocytic compartments are acid hydrolase active. We found that endolysosomes are the principal organelles in which acid hydrolase substrates are cleaved. Endolysosomes also accumulated acidotropic probes and could be distinguished from terminal storage lysosomes, which were acid hydrolase inactive and did not accumulate acidotropic probes. Using live-cell microscopy, we have demonstrated that fusion events, which form endolysosomes, precede the onset of acid hydrolase activity. By means of sucrose and invertase uptake experiments, we have also shown that acid-hydrolase-active endolysosomes and acid-hydrolase-inactive, terminal storage lysosomes exist in dynamic equilibrium. We conclude that the terminal endocytic compartment is composed of acid-hydrolase-active, acidic endolysosomes and acid hydrolase-inactive, non-acidic, terminal storage lysosomes, which are linked and function in a lysosome regeneration cycle. PMID:27498570

  14. Outside-binding site mutations modify the active site's shapes in neuraminidase from influenza A H1N1.

    PubMed

    Tolentino-Lopez, Luis; Segura-Cabrera, Aldo; Reyes-Loyola, Paola; Zimic, Mirko; Quiliano, Miguel; Briz, Veronica; Muñoz-Fernández, Angeles; Rodríguez-Pérez, Mario; Ilizaliturri-Flores, Ian; Correa-Basurto, Jose

    2013-01-01

    The recent occurrence of 2009 influenza A (H1N1) pandemic as well as others has raised concern of a far more dangerous outcome should this virus becomes resistant to current drug therapies. The number of clinical cases that are resistant to oseltamivir (Tamiflu®) is larger than the limited number of neuraminidase (NA) mutations (H275Y, N295S, and I223R) that have been identified at the active site and that are associated to oseltamivir resistance. In this study, we have performed a comparative analysis between a set of NAs that have the most representative mutations located outside the active site. The recently crystallized NA-oseltamivir complex (PDB ID: 3NSS) was used as a wild-type structure. After selecting the target NA sequences, their three-dimensional (3D) structure was built using 3NSS as a template by homology modeling. The 3D NA models were refined by molecular dynamics (MD) simulations. The refined models were used to perform a docking study, using oseltamivir as a ligand. Furthermore, the docking results were refined by free-energy analysis using the MM-PBSA method. The analysis of the MD simulation results showed that the NA models reached convergence during the first 10 ns. Visual inspection and structural measures showed that the mutated NA active sites show structural variations. The docking and MM-PBSA results from the complexes showed different binding modes and free energy values. These results suggest that distant mutations located outside the active site of NA affect its structure and could be considered to be a new source of resistance to oseltamivir, which agrees with reports in the clinical literature.

  15. Identification of inhibitors against the potential ligandable sites in the active cholera toxin.

    PubMed

    Gangopadhyay, Aditi; Datta, Abhijit

    2015-04-01

    The active cholera toxin responsible for the massive loss of water and ions in cholera patients via its ADP ribosylation activity is a heterodimer of the A1 subunit of the bacterial holotoxin and the human cytosolic ARF6 (ADP Ribosylation Factor 6). The active toxin is a potential target for the design of inhibitors against cholera. In this study we identified the potential ligandable sites of the active cholera toxin which can serve as binding sites for drug-like molecules. By employing an energy-based approach to identify ligand binding sites, and comparison with the results of computational solvent mapping, we identified two potential ligandable sites in the active toxin which can be targeted during structure-based drug design against cholera. Based on the probe affinities of the identified ligandable regions, docking-based virtual screening was employed to identify probable inhibitors against these sites. Several indole-based alkaloids and phosphates showed strong interactions to the important residues of the ligandable region at the A1 active site. On the other hand, 26 top scoring hits were identified against the ligandable region at the A1 ARF6 interface which showed strong hydrogen bonding interactions, including guanidines, phosphates, Leucopterin and Aristolochic acid VIa. This study has important implications in the application of hybrid structure-based and ligand-based methods against the identified ligandable sites using the identified inhibitors as reference ligands, for drug design against the active cholera toxin.

  16. Encroachment of Human Activity on Sea Turtle Nesting Sites

    NASA Astrophysics Data System (ADS)

    Ziskin, D.; Aubrecht, C.; Elvidge, C.; Tuttle, B.; Baugh, K.; Ghosh, T.

    2008-12-01

    The encroachment of anthropogenic lighting on sea turtle nesting sites poses a serious threat to the survival of these animals [Nicholas, 2001]. This danger is quantified by combining two established data sets. The first is the Nighttime Lights data produced by the NOAA National Geophysical Data Center [Elvidge et al., 1997]. The second is the Marine Turtle Database produced by the World Conservation Monitoring Centre (WCMC). The technique used to quantify the threat of encroachment is an adaptation of the method described in Aubrecht et al. [2008], which analyzes the stress on coral reef systems by proximity to nighttime lights near the shore. Nighttime lights near beaches have both a direct impact on turtle reproductive success since they disorient hatchlings when they mistake land-based lights for the sky-lit surf [Lorne and Salmon, 2007] and the lights are also a proxy for other anthropogenic threats. The identification of turtle nesting sites with high rates of encroachment will hopefully steer conservation efforts to mitigate their effects [Witherington, 1999]. Aubrecht, C, CD Elvidge, T Longcore, C Rich, J Safran, A Strong, M Eakin, KE Baugh, BT Tuttle, AT Howard, EH Erwin, 2008, A global inventory of coral reef stressors based on satellite observed nighttime lights, Geocarto International, London, England: Taylor and Francis. In press. Elvidge, CD, KE Baugh, EA Kihn, HW Kroehl, ER Davis, 1997, Mapping City Lights with Nighttime Data from the DMSP Operational Linescan System, Photogrammatic Engineering and Remote Sensing, 63:6, pp. 727-734. Lorne, JK, M Salmon, 2007, Effects of exposure to artificial lighting on orientation of hatchling sea turtles on the beach and in the ocean, Endangered Species Research, Vol. 3: 23-30. Nicholas, M, 2001, Light Pollution and Marine Turtle Hatchlings: The Straw that Breaks the Camel's Back?, George Wright Forum, 18:4, p77-82. Witherington, BE, 1999, Reducing Threats To Nesting Habitat, Research and Management Techniques for

  17. Reduction of Urease Activity by Interaction with the Flap Covering the Active Site

    PubMed Central

    Macomber, Lee; Minkara, Mona S.; Hausinger, Robert P.; Merz, Kenneth M.

    2015-01-01

    With the increasing appreciation for the human microbiome coupled with the global rise of antibiotic resistant organisms, it is imperative that new methods be developed to specifically target pathogens. To that end, a novel computational approach was devised to identify compounds that reduce the activity of urease, a medically important enzyme of Helicobacter pylori, Proteus mirabilis, and many other microorganisms. Urease contains a flexible loop that covers its active site; Glide was used to identify small molecules predicted to lock this loop in an open conformation. These compounds were screened against the model urease from Klebsiella aerogenes and the natural products epigallocatechin and quercetin were shown to inhibit at low and high micromolar concentrations, respectively. These molecules exhibit a strong time-dependent inactivation of urease that was not due to their oxygen sensitivity. Rather, these compounds appear to inactivate urease by reacting with a specific Cys residue located on the flexible loop. Substitution of this cysteine by alanine in the C319A variant increased the urease resistance to both epigallocatechin and quercetin, as predicted by the computational studies. Protein dynamics are integral to the function of many enzymes; thus, identification of compounds that lock an enzyme into a single conformation presents a useful approach to define potential inhibitors. PMID:25594724

  18. The 3'-5' exonuclease of DNA polymerase I of Escherichia coli: contribution of each amino acid at the active site to the reaction.

    PubMed Central

    Derbyshire, V; Grindley, N D; Joyce, C M

    1991-01-01

    We have used site-directed mutagenesis to change amino acid side chains that have been shown crystallographically to be in close proximity to a DNA 3' terminus bound at the 3'-5' exonuclease active site of Klenow fragment. Exonuclease assays of the resulting mutant proteins indicate that the largest effects on exonuclease activity result from mutations in a group of carboxylate side chains (Asp355, Asp424 and Asp501) anchoring two divalent metal ions that are essential for exonuclease activity. Another carboxylate (Glu357) within this cluster seems to be less important as a metal ligand, but may play a separate role in catalysis of the exonuclease reaction. A second group of residues (Leu361, Phe473 and Tyr497), located around the terminal base and ribose positions, plays a secondary role, ensuring correct positioning of the substrate in the active site and perhaps also facilitating melting of a duplex DNA substrate by interacting with the frayed 3' terminus. The pH-dependence of the 3'-5' exonuclease reaction is consistent with a mechanism in which nucleophilic attack on the terminal phosphodiester bond is initiated by a hydroxide ion coordinated to one of the enzyme-bound metal ions. PMID:1989882

  19. The mitochondrial environment is required for activity of the cholesterol side-chain cleavage enzyme, cytochrome P450scc.

    PubMed Central

    Black, S M; Harikrishna, J A; Szklarz, G D; Miller, W L

    1994-01-01

    Steroidogenesis is initiated by the conversion of cholesterol to pregnenolone by mitochondrial cytochrome P450scc [cholesterol, reduced-adrenal-ferredoxin:oxygen oxidoreductase (side-chain-cleaving); EC 1.14.15.6]. Several subsequent steroidal conversions occur in the endoplasmic reticulum (ER), but the last step in the production of glucocorticoids and mineralocorticoids again occurs in the mitochondria. Although cellular compartmentalization of steroidogenic enzymes appears to be a feature of all steroidogenic pathways, some reports indicate that cholesterol can be converted to pregnenolone outside the mitochondria. To investigate whether P450scc can function outside the mitochondria, we constructed vectors producing P450scc and various fusion enzymes of P450scc with electron-transport proteins and directed their expression to either the ER or the mitochondria. Whether targeted to mitochondria or to the ER, plasmid vectors encoding P450scc and fusion proteins of P450scc with either mitochondrial or microsomal electron-transport proteins produced immunodetectable protein. When expressed in mitochondria, all of these constructions converted 22-hydroxycholesterol to pregnenolone, but when expressed in the ER none of them produced pregnenolone. These results show that P450scc can function only in the mitochondria. Furthermore, it appears to be the mitochondrial environment that is required, rather than the specific mitochondrial electron-transport intermediates. Images PMID:8041774

  20. Digital reconstruction on geographical environment of Neolithic human activities in the Lingjiatan site of Chaohu City, East China

    NASA Astrophysics Data System (ADS)

    Wang, Xinyuan; Zhang, Jie; Wu, Li; Zhou, Kunshu; Mo, Duowen

    2009-09-01

    The Chaohu Lake Basin is an important area for ancient human activities in East China. The Lingjiatan site, which is located at the southeast of Chaohu City, Anhui Province, and 35 km north to the Yangtze River and 5 km south to the Taihu Mountain, is the most representative Neolithic Age site with advanced jade-carving techniques in this area. The 14C date of Lingjiatan Site is about 5600~5300aBP, the same time as the Hongshan culture and earlier than the Liangzhu culture, which falls into the Mid-Holocene epoch. Based on mid-high resolution remote sensing images and former archaeological materials, combined with field investigations and sampling analysis of the archaeological site profile of Lingjiatan Site as well as core drillings in the Chaohu Lake, the paper reconstructs the climate environment of the Lingjiatan site and the environmental background of ancient human activities during Mid-Holocene. The research results show that: (1) The ancients in Lingjiatan lived in the Holocene Optimum, its culture development was during the interim phase when the climate transformed from warm and wet to cool and dry. (2) The ground surface deposited in the last phase of late Pleistocene epoch (OSL dating is 11.6 +/-1.0 ka BP) was the living ground for Lingjiatan ancient humans. The sedimentary discontinuous surface may be caused by strong fluvial erosion under the warm and humid climatic conditions of the Mid-Holocene. (3) Originally, paleo-geomorphic surface was a level shallow mesa foreside southern part of Taihu Mountain, but was cut by fluvial waters and the geomorphologic configuration formed "finger-like" features alternately with strip hillocks and rivers. These features can be seen on the Landsat ETM+ remote sensing image, especially the depression area. This depression is now cropland, and was interpreted as the palaeochannels. (4) Based on the remote sensing image interpretation, the site was in a "peninsula shape" environment which had rivers flowing around the

  1. Digital reconstruction on geographical environment of Neolithic human activities in the Lingjiatan site of Chaohu City, East China

    NASA Astrophysics Data System (ADS)

    Wang, Xinyuan; Zhang, Jie; Wu, Li; Zhou, Kunshu; Mo, Duowen

    2010-11-01

    The Chaohu Lake Basin is an important area for ancient human activities in East China. The Lingjiatan site, which is located at the southeast of Chaohu City, Anhui Province, and 35 km north to the Yangtze River and 5 km south to the Taihu Mountain, is the most representative Neolithic Age site with advanced jade-carving techniques in this area. The 14C date of Lingjiatan Site is about 5600~5300aBP, the same time as the Hongshan culture and earlier than the Liangzhu culture, which falls into the Mid-Holocene epoch. Based on mid-high resolution remote sensing images and former archaeological materials, combined with field investigations and sampling analysis of the archaeological site profile of Lingjiatan Site as well as core drillings in the Chaohu Lake, the paper reconstructs the climate environment of the Lingjiatan site and the environmental background of ancient human activities during Mid-Holocene. The research results show that: (1) The ancients in Lingjiatan lived in the Holocene Optimum, its culture development was during the interim phase when the climate transformed from warm and wet to cool and dry. (2) The ground surface deposited in the last phase of late Pleistocene epoch (OSL dating is 11.6 +/-1.0 ka BP) was the living ground for Lingjiatan ancient humans. The sedimentary discontinuous surface may be caused by strong fluvial erosion under the warm and humid climatic conditions of the Mid-Holocene. (3) Originally, paleo-geomorphic surface was a level shallow mesa foreside southern part of Taihu Mountain, but was cut by fluvial waters and the geomorphologic configuration formed "finger-like" features alternately with strip hillocks and rivers. These features can be seen on the Landsat ETM+ remote sensing image, especially the depression area. This depression is now cropland, and was interpreted as the palaeochannels. (4) Based on the remote sensing image interpretation, the site was in a "peninsula shape" environment which had rivers flowing around the

  2. Coulombic effects of remote subsites on the active site of ribonuclease A.

    PubMed

    Fisher, B M; Schultz, L W; Raines, R T

    1998-12-15

    The active-site cleft of bovine pancreatic ribonuclease A (RNase A) is lined with cationic residues that interact with a bound nucleic acid. Those residues interacting with the phosphoryl groups comprise the P0, P1, and P2 subsites, with the scissile P-O5' bond residing in the P1 subsite. Coulombic interactions between the P0 and P2 subsites and phosphoryl groups of the substrate were characterized previously [Fisher, B. M., Ha, J.-H., and Raines, R. T. (1998) Biochemistry 37, 12121-12132]. Here, the interactions between these subsites and the active-site residues His12 and His119 are described in detail. A protein variant in which the cationic residues in these subsites (Lys66 in the P0 subsite and Lys7 and Arg10 in the P2 subsite) were replaced with alanine was crystallized, both free and with bound 3'-uridine monophosphate (3'-UMP). Structures of K7A/R10A/K66A RNase A and the K7A/R10A/K66A RNase A.3'-UMP complex were determined by X-ray diffraction analysis to resolutions of 2.0 and 2.1 A, respectively. There is little observable change between these structures and that of wild-type RNase A, either free or with bound 3'-cytidine monophosphate. K7A/R10A/K66A RNase A was evaluated for its ability to cleave UpA, a dinucleotide substrate that does not span the P0 or the P2 subsites. In comparison to the wild-type enzyme, the value of kcat was decreased by 5-fold and that of kcat/Km was decreased 10-fold, suggesting that these remote subsites interact with the active site. These interactions were characterized by determining the pKa values of His12 and His119 at 0.018 and 0.142 M Na+, both in wild-type RNase A and the K7A/R10A/K66A variant. The side chains of Lys7, Arg10, and Lys66 depress the pKa values of these histidine residues, and this depression is sensitive to the salt concentration. In addition, the P0 and P2 subsites influence the interaction of His12 and His119 with each other, as demonstrated by changes in the cooperativity that gives rise to microscopic

  3. School Pharmacist/School Environmental Hygienic Activities at School Site.

    PubMed

    Muramatsu, Akiyoshi

    2016-01-01

    The "School Health and Safety Act" was enforced in April 2009 in Japan, and "school environmental health standards" were established by the Minister of Education, Culture, Sports, Science and Technology. In Article 24 of the Enforcement Regulations, the duties of the school pharmacist have been clarified; school pharmacists have charged with promoting health activities in schools and carrying out complete and regular checks based on the "school environmental health standards" in order to protect the health of students and staff. In supported of this, the school pharmacist group of Japan Pharmaceutical Association has created and distributed digital video discs (DVDs) on "check methods of school environmental health standards" as support material. We use the DVD to ensure the basic issues that school pharmacists deal with, such as objectives, criteria, and methods for each item to be checked, advice, and post-measures. We conduct various workshops and classes, and set up Q&A committees so that inquiries from members are answered with the help of such activities. In addition, school pharmacists try to improve the knowledge of the school staff on environmental hygiene during their in-service training. They also conduct "drug abuse prevention classes" at school and seek to improve knowledge and recognition of drugs, including "dangerous drugs". PMID:27252053

  4. Characteristics of sympathetic nerve activity in the rat sciatic nerve in response to microstimulation in a sympathetic fascicle in the contralateral side.

    PubMed

    Sato, Daisuke; Shiwaku, Yutaka; Nakamura, Ryoichi; Koizumi, Shuntaro; Feng, Zhonggang; Kusunoki, Masataka; Nakamura, Takao

    2013-01-01

    Microneurography is used for the monitor of various peripheral nerve activities. We recently reported that the electrical stimulation of peripheral sympathetic nerve fascicle via the microelectrode, i.e., microstimulation, temporarily reduced the blood glucose level in rats in case that the stimulation intensity was set high enough to induce small muscle contraction. However, the nature of microstimulation has little been clarified yet. Therefore, in the present study, we first detected sympathetic nerve signal microneurographically in the bilateral sciatic nerves of rats, and one of the microelectrodes was used for the microstimulation (0.25 ms-width pulse train at a rate of 1 Hz) while sympathetic nerve activity (SNA) was recorded in the contralateral side as a parameter of systemic sympathetic effects. The SNA, expressed as action potential rate, was transiently increased 150 ms after each stimulation pulse in case that the stimulation intensity was set not less than -0.1 V from the contraction threshold (around 0.32 V). To confirm that the increase was not caused by the activation of low threshold, thick fibers such as motor nerves in the vicinity of the microelectrode tip, next, a bipolar hook electrode, instead of the microelectrode, was then used in the stimulation side. As a result, the above-mentioned, transient increase in SNA was not observed any more in the contralateral side. These results suggest that systemic SNA could be enhanced with lower stimulation intensity than that inducing muscle contraction, and that thicker fibers may little affect the increase in the contralateral SNA. PMID:24111188

  5. Active site specificity profiling datasets of matrix metalloproteinases (MMPs) 1, 2, 3, 7, 8, 9, 12, 13 and 14

    PubMed Central

    Eckhard, Ulrich; Huesgen, Pitter F.; Schilling, Oliver; Bellac, Caroline L.; Butler, Georgina S.; Cox, Jennifer H.; Dufour, Antoine; Goebeler, Verena; Kappelhoff, Reinhild; auf dem Keller, Ulrich; Klein, Theo; Lange, Philipp F.; Marino, Giada; Morrison, Charlotte J.; Prudova, Anna; Rodriguez, David; Starr, Amanda E.; Wang, Yili; Overall, Christopher M.

    2016-01-01

    The data described provide a comprehensive resource for the family-wide active site specificity portrayal of the human matrix metalloproteinase family. We used the high-throughput proteomic technique PICS (Proteomic Identification of protease Cleavage Sites) to comprehensively assay 9 different MMPs. We identified more than 4300 peptide cleavage sites, spanning both the prime and non-prime sides of the scissile peptide bond allowing detailed subsite cooperativity analysis. The proteomic cleavage data were expanded by kinetic analysis using a set of 6 quenched-fluorescent peptide substrates designed using these results. These datasets represent one of the largest specificity profiling efforts with subsequent structural follow up for any protease family and put the spotlight on the specificity similarities and differences of the MMP family. A detailed analysis of this data may be found in Eckhard et al. (2015) [1]. The raw mass spectrometry data and the corresponding metadata have been deposited in PRIDE/ProteomeXchange with the accession number PXD002265. PMID:26981551

  6. On resin amino acid side chain attachment strategy for the head to tail synthesis of new glutamine containing gramicidin-S analogs and their antimicrobial activity.

    PubMed

    Derbal, Safa; Hensler, Mary; Fang, Weiqin; Nizet, Victor; Ghedira, Kamel; Nefzi, Adel

    2010-10-01

    The alarming increase in infections caused by multiple drug resistant bacteria including methicillin-resistant Staphylococcus aureus has prompted a desperate search for new antimicrobials. Augmenting the discoveries of completely new scaffolds with antimicrobial activity are efforts aimed at modifying existing molecules to optimize activity or reduce toxicity. We report herein the parallel solid-phase synthesis of analogues of the cationic antimicrobial peptide gramicidin S (GS) using amino acid side chain attachment strategy. The ornithine (Orn) residues were replaced by glutamine (Gln) and the aromatic D-phenylalanine (Phe) were replaced by different aromatic D-amino acids. Additional Gln containing GS analogues with all the possible combinations of the hydrophobic amino acids valine and leucine were also synthesized. In this work we also report the antibacterial activity of these analogs against several clinically-important drug-resistant Gram-positive and Gram-negative pathogens.

  7. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity.

    PubMed

    Matsubu, John C; Yang, Vanessa N; Christopher, Phillip

    2015-03-01

    CO2 reduction by H2 on heterogeneous catalysts is an important class of reactions that has been studied for decades. However, atomic scale details of structure-function relationships are still poorly understood. Particularly, it has been suggested that metal particle size plays a unique role in controlling the stability of CO2 hydrogenation catalysts and the distribution of active sites, which dictates reactivity and selectivity. These studies often have not considered the possible role of isolated metal active sites in the observed dependences. Here, we utilize probe molecule diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) with known site-specific extinction coefficients to quantify the fraction of Rh sites residing as atomically dispersed isolated sites (Rhiso), as well as Rh sites on the surface of Rh nanoparticles (RhNP) for a series of TiO2 supported Rh catalysts. Strong correlations were observed between the catalytic reverse water gas shift turn over frequency (TOF) and the fraction of Rhiso sites and between catalytic methanation TOF and the fraction of RhNP sites. Furthermore, it was observed that reaction condition-induced disintegration of Rh nanoparticles, forming Rhiso active sites, controls the changing reactivity with time on stream. This work demonstrates that isolated atoms and nanoparticles of the same metal on the same support can exhibit uniquely different catalytic selectivity in competing parallel reaction pathways and that disintegration of nanoparticles under reaction conditions can play a significant role in controlling stability.

  8. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity.

    PubMed

    Matsubu, John C; Yang, Vanessa N; Christopher, Phillip

    2015-03-01

    CO2 reduction by H2 on heterogeneous catalysts is an important class of reactions that has been studied for decades. However, atomic scale details of structure-function relationships are still poorly understood. Particularly, it has been suggested that metal particle size plays a unique role in controlling the stability of CO2 hydrogenation catalysts and the distribution of active sites, which dictates reactivity and selectivity. These studies often have not considered the possible role of isolated metal active sites in the observed dependences. Here, we utilize probe molecule diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) with known site-specific extinction coefficients to quantify the fraction of Rh sites residing as atomically dispersed isolated sites (Rhiso), as well as Rh sites on the surface of Rh nanoparticles (RhNP) for a series of TiO2 supported Rh catalysts. Strong correlations were observed between the catalytic reverse water gas shift turn over frequency (TOF) and the fraction of Rhiso sites and between catalytic methanation TOF and the fraction of RhNP sites. Furthermore, it was observed that reaction condition-induced disintegration of Rh nanoparticles, forming Rhiso active sites, controls the changing reactivity with time on stream. This work demonstrates that isolated atoms and nanoparticles of the same metal on the same support can exhibit uniquely different catalytic selectivity in competing parallel reaction pathways and that disintegration of nanoparticles under reaction conditions can play a significant role in controlling stability. PMID:25671686

  9. Site specific rationale for technical impracticability of active groundwater restoration at a former manufactured gas plant site

    SciTech Connect

    Logan, C.M.; Walden, R.H.; MacFarlane, I.D.

    1995-12-31

    The National Contingency Plan (40 CFR Part 300 ) requires that remedial strategies must, at minimum, protect human health and the environment and meet applicable and relevant or appropriate requirements (ARARs). Where groundwater is impacted, maximum contaminant levels (MCLs) and maximum contaminant level goals (MCLGs) set under the Safe Drinking Water Act are often used as ARARs, whether or not the aquifer is a reasonably anticipated future source of drinking water. The US Environmental Protection Agency now recognizes the difficulty of groundwater restoration at sites where dense nonaqueous phase liquids are present, particularly in certain complex hydrogeological settings (EPA 1993). However, demonstration of impracticability generally does not occur until active remediation (e.g., pump and treat) has been shown to be ineffective. A case study of a former manufactured gas plant (MGP) is used to demonstrate how physical and chemical properties of the aquifer and coal tar, the major waste product from MGP sites, influence the feasibility of active restoration. Field characterization investigations, laboratory studies, and groundwater modeling are integrated into a demonstration following EPA guidelines. Laboratory studies included microbiological characterization and natural biodegradation and suggest that intrinsic bioremediation is occurring at this site. This work will be useful as EPA continues to develop presumptive remedies for cleanup under Superfund.

  10. Backside calibration potentiometry: ion activity measurements with selective supported liquid membranes by calibrating from the inner side of the membrane.

    PubMed

    Malon, Adam; Bakker, Eric; Pretsch, Ernö

    2007-01-15

    In direct potentiometry, the magnitude of the measured potentials is used to determine the composition of the sample. While this places rather formidable demands on the required reproducibility of the associated potential measurements, typically on the order of microvolts, in vitro clinical analyses of blood samples are today successfully performed with direct potentiometry using ion-selective electrodes (ISEs). Unfortunately, most other analytical situations do not permit the sensor to be recalibrated every few minutes, as in environmental monitoring or in vivo measurements, and direct potentiometry is often bound to fail as an accurate method in these circumstances. This paper introduces a novel direction for potentiometric sensing, termed backside calibration potentiometry. Chemical asymmetries across thin supported liquid ISE membranes are assessed by determining the direction of potential drift upon changing the stirring rate on either side of the membrane. Disappearance of this drift indicates the disappearance of concentration gradients across the membrane and is used to determine the sample composition if the solution composition at the backside of the membrane and the interfering ion concentration in the sample are known. For practical determinations, the concentration of either the primary or the interfering ion is varied in the reference solution until the stirring effect disappears. The procedure is demonstrated with a Ca2+-selective membrane using Ba2+ as the dominant interfering ion. Another example includes the determination of Pb2+ in environmental samples where the pH is adjusted to a known level. At pH 4.0, H+ turns out to be the dominant interfering ion. The practical applicability of the method is shown with different environmental water samples, for which the results obtained with the novel method are compared with those obtained by traditional calibration using standard additions. The limitations of the novel method in terms of accuracy and

  11. Proton NMR investigation of the heme active site structure of an engineered cytochrome c peroxidase that mimics manganese peroxidase.

    PubMed

    Wang, X; Lu, Y

    1999-07-13

    The heme active site structure of an engineered cytochrome c peroxidase [MnCcP; see Yeung, B. K., et al. (1997) Chem. Biol. 4, 215-221] that closely mimics manganese peroxidase (MnP) has been characterized by both one- and two-dimensional NMR spectroscopy. All hyperfine-shifted resonances from the heme pocket as well as resonances from catalytically relevant amino acid residues in the congested diamagnetic envelope have been assigned. From the NMR spectral assignment and the line broadening pattern of specific protons in NOESY spectra of MnCcP, the location of the engineered Mn(II) center is firmly identified. Furthermore, we found that the creation of the Mn(II)-binding site in CcP resulted in no detectable structural changes on the distal heme pocket of the protein. However, notable structural changes are observed at the proximal side of the heme cavity. Both CepsilonH shift of the proximal histidine and (15)N shift of the bound C(15)N(-) suggest a weaker heme Fe(III)-N(His) bond in MnCcP compared to WtCcP. Our results indicate that the engineered Mn(II)-binding site in CcP resulted in not only a similar Mn(II)-binding affinity and improved MnP activity, but also weakened the Fe(III)-N(His) bond strength of the template protein CcP so that its bond strength is similar to that of the target protein MnP. The results presented here help elucidate the impact of designing a metal-binding site on both the local and global structure of the enzyme, and provide a structural basis for engineering the next generation of MnCcP that mimics MnP more closely. PMID:10413489

  12. The calculation of surface orbital energies for specific types of active sites on dispersed metal catalysts

    SciTech Connect

    Augustine, R.L.; Lahanas, K.M.; Cole, F.

    1992-11-01

    An angular overlap calculation has been used to determine the s, p, and d orbital energy levels of the different types of surface sites present on dispersed metal catalysts. These data can permit a Frontier Molecular Orbital treatment of specific site activities as long as the surface orbital availability for overlap with adsorbed substrates is considered along with its energy value and symmetry.

  13. The calculation of surface orbital energies for specific types of active sites on dispersed metal catalysts

    SciTech Connect

    Augustine, R.L.; Lahanas, K.M.; Cole, F.

    1992-01-01

    An angular overlap calculation has been used to determine the s, p, and d orbital energy levels of the different types of surface sites present on dispersed metal catalysts. These data can permit a Frontier Molecular Orbital treatment of specific site activities as long as the surface orbital availability for overlap with adsorbed substrates is considered along with its energy value and symmetry.

  14. Extending the Diffuse Layer Model of Surface Acidity Behavior: III. Estimating Bound Site Activity Coefficients

    EPA Science Inventory

    Although detailed thermodynamic analyses of the 2-pK diffuse layer surface complexation model generally specify bound site activity coefficients for the purpose of accounting for those non-ideal excess free energies contributing to bound site electrochemical potentials, in applic...

  15. Activity of site-specific endonucleases on complexes of plasmid DNA with multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Egorova, V. P.; Krylova, H. V.; Lipnevich, I. V.; Veligura, A. A.; Shulitsky, B. G.; Asayonok, A. A.; Vaskovtsev, E. V.

    2016-08-01

    We have synthesized and investigated structural and functional properties of plasmid DNA complexes with multi-walled carbon nanotubes (MWCNTs) for detection of changes in structural state of the plasmid DNA at its recognition by site-specific endonuclease. It has been also established that the site-specific endonuclease is functionally active on the surface of MWCNTs.

  16. 77 FR 5560 - Commercial Wind Lease Issuance and Site Assessment Activities on the Atlantic Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ... project proposals on those leases) in identified Wind Energy Areas (WEAs) on the OCS offshore New Jersey... Bureau of Ocean Energy Management Commercial Wind Lease Issuance and Site Assessment Activities on the... site assessment plans (SAPs) on those leases. BOEM may issue one or more commercial wind energy...

  17. The balance of flexibility and rigidity in the active site residues of hen egg white lysozyme

    NASA Astrophysics Data System (ADS)

    Qi, Jian-Xun; Jiang, Fan

    2011-05-01

    The crystallographic temperature factors (B factor) of individual atoms contain important information about the thermal motion of the atoms in a macromolecule. Previously the theory of flexibility of active site has been established based on the observation that the enzyme activity is sensitive to low concentration denaturing agents. It has been found that the loss of enzyme activity occurs well before the disruption of the three-dimensional structural scaffold of the enzyme. To test the theory of conformational flexibility of enzyme active site, crystal structures were perturbed by soaking in low concentration guanidine hydrochloride solutions. It was found that many lysozyme crystals tested could still diffract until the concentration of guanidine hydrochloride reached 3 M. It was also found that the B factors averaged over individually collected data sets were more accurate. Thus it suggested that accurate measurement of crystal temperature factors could be achieved for medium-high or even medium resolution crystals by averaging over multiple data sets. Furthermore, we found that the correctly predicted active sites included not only the more flexible residues, but also some more rigid residues. Both the flexible and the rigid residues in the active site played an important role in forming the active site residue network, covering the majority of the substrate binding residues. Therefore, this experimental prediction method may be useful for characterizing the binding site and the function of a protein, such as drug targeting.

  18. Chemical modification studies on arginine kinase: essential cysteine and arginine residues at the active site.

    PubMed

    Zhu, Wen-Jing; Li, Miao; Wang, Xiao-Yun

    2007-12-01

    Chemical modification was used to elucidate the essential amino acids in the catalytic activity of arginine kinase (AK) from Migratoria manilensis. Among six cysteine (Cys) residues only one Cys residue was determined to be essential in the active site by Tsou's method. Furthermore, the AK modified by DTNB can be fully reactivated by dithiothreitol (DTT) in a monophasic kinetic course. At the same time, this reactivation can be slowed down in the presence of ATP, suggesting that the essential Cys is located near the ATP binding site. The ionizing groups at the AK active site were studied and the standard dissociation enthalpy (DeltaH degrees ) was 12.38kcal/mol, showing that the dissociation group may be the guanidino of arginine (Arg). Using the specific chemical modifier phenylglyoxal (PG) demonstrated that only one Arg, located near the ATP binding site, is essential for the activity of AK. PMID:17765964

  19. 1993 annual report of hazardous waste activities for the Oak Ridge K-25 site

    SciTech Connect

    Not Available

    1994-02-01

    This report is a detailed listing of all of the Hazardous Waste activities occurring at Martin Marietta`s K-25 site. Contained herein are hazardous waste notification forms, waste stream reports, generator fee forms and various TSDR reports.

  20. Subsite-specific contributions of different aromatic residues in the active site architecture of glycoside hydrolase family 12

    PubMed Central

    Zhang, Xiaomei; Wang, Shuai; Wu, Xiuyun; Liu, Shijia; Li, Dandan; Xu, Hao; Gao, Peiji; Chen, Guanjun; Wang, Lushan

    2015-01-01

    The active site architecture of glycoside hydrolase (GH) is a contiguous subregion of the enzyme constituted by residues clustered in the three-dimensional space, recognizing the monomeric unit of ligand through hydrogen bonds and hydrophobic interactions. Mutations of the key residues in the active site architecture of the GH12 family exerted different impacts on catalytic efficiency. Binding affinities between the aromatic amino acids and carbohydrate rings were quantitatively determined by isothermal titration calorimetry (ITC) and the quantum mechanical (QM) method, showing that the binding capacity order of Tyr>Trp>His (and Phe) was determined by their side-chain properties. The results also revealed that the binding constant of a certain residue remained unchanged when altering its location, while the catalytic efficiency changed dramatically. Increased binding affinity at a relatively distant subsite, such as the mutant of W7Y at the −4 subsite, resulted in a marked increase in the intermediate product of cellotetraose and enhanced the reactivity of endoglucanase by 144%; while tighter binding near the catalytic center, i.e. W22Y at the −2 subsite, enabled the enzyme to bind and hydrolyze smaller oligosaccharides. Clarification of the specific roles of the aromatics at different subsites may pave the way for a more rational design of GHs. PMID:26670009

  1. Possible peroxidase active site environment in amyloidogenic proteins: Native monomer or misfolded-oligomer; which one is susceptible to the enzymatic activity, with contribution of heme?

    PubMed

    Khodarahmi, Reza; Ashrafi-Kooshk, Mohammad Reza; Khodarahmi, Sina; Ghadami, Seyyed Abolghasem; Mostafaie, Ali

    2015-09-01

    Amyloid states of many proteins complex with heme and exhibit significant non-specific peroxidase activity, compared to free heme. Neurotransmitter deficiency, generation of neurotoxins, altered activity/metabolism of key enzymes and cellular DNA damage are possible evidences highlighting the importance of the uncontrollable peroxidase activity in Alzheimer's disease (AD)-involved brain cells. Despite extensive experimental work was carried out on this field, discrepancy on chronological precedence of amyloid aggregation and oxidative reactions as well as the mechanism involved in the peroxidase-induced oxidative stress is still not completely understood. In this study, we highlight further that heme cofactor readily complexes with structural intermediates of amyloid aggregates of ovalbumin, lactoglobulin and crystallin and report the ability of "heme-amyloid aggregate/oligomer") to produce peroxidase-like active site. Histidine side chains are also proposed as both distal and proximal residues required for proper function of these peroxidase systems. Taking uncontrollable peroxidase activity of "Aβ-heme" complex into account, it appears that this process, as a new opened dimension in AD pathologic research, provides structural/mechanistic basis for more efficient therapeutic strategies against neurodegenerative diseases. PMID:26123814

  2. Anisotropic Covalency Contributions to Superexchange Pathways in Type One Copper Active Sites

    PubMed Central

    2015-01-01

    Type one (T1) Cu sites deliver electrons to catalytic Cu active sites: the mononuclear type two (T2) Cu site in nitrite reductases (NiRs) and the trinuclear Cu cluster in the multicopper oxidases (MCOs). The T1 Cu and the remote catalytic sites are connected via a Cys-His intramolecular electron-transfer (ET) bridge, which contains two potential ET pathways: P1 through the protein backbone and P2 through the H-bond between the Cys and the His. The high covalency of the T1 Cu–S(Cys) bond is shown here to activate the T1 Cu site for hole superexchange via occupied valence orbitals of the bridge. This covalency-activated electronic coupling (HDA) facilitates long-range ET through both pathways. These pathways can be selectively activated depending on the geometric and electronic structure of the T1 Cu site and thus the anisotropic covalency of the T1 Cu–S(Cys) bond. In NiRs, blue (π-type) T1 sites utilize P1 and green (σ-type) T1 sites utilize P2, with P2 being more efficient. Comparing the MCOs to NiRs, the second-sphere environment changes the conformation of the Cys-His pathway, which selectively activates HDA for superexchange by blue π sites for efficient turnover in catalysis. These studies show that a given protein bridge, here Cys-His, provides different superexchange pathways and electronic couplings depending on the anisotropic covalencies of the donor and acceptor metal sites. PMID:25310460

  3. Probing impact of active site residue mutations on stability and activity of Neisseria polysaccharea amylosucrase.

    PubMed

    Daudé, David; Topham, Christopher M; Remaud-Siméon, Magali; André, Isabelle

    2013-12-01

    The amylosucrase from Neisseria polysaccharea is a transglucosidase from the GH13 family of glycoside-hydrolases that naturally catalyzes the synthesis of α-glucans from the widely available donor sucrose. Interestingly, natural molecular evolution has modeled a dense hydrogen bond network at subsite -1 responsible for the specific recognition of sucrose and conversely, it has loosened interactions at the subsite +1 creating a highly promiscuous subsite +1. The residues forming these subsites are considered to be likely involved in the activity as well as the overall stability of the enzyme. To assess their role, a structure-based approach was followed to reshape the subsite -1. A strategy based on stability change predictions, using the FoldX algorithm, was considered to identify the best candidates for site-directed mutagenesis and guide the construction of a small targeted library. A miniaturized purification protocol was developed and both mutant stability and substrate promiscuity were explored. A range of 8 °C between extreme melting temperature values was observed and some variants were able to synthesize series of oligosaccharides with distributions differing from that of the parental enzyme. The crucial role of subsite -1 was thus highlighted and the biocatalysts generated can now be considered as starting points for further engineering purposes.

  4. Identification of the active site of human mitochondrial malonyl-coenzyme a decarboxylase: A combined computational study.

    PubMed

    Ling, Baoping; Liu, Yuxia; Li, Xiaoping; Wang, Zhiguo; Bi, Siwei

    2016-06-01

    Malonyl-CoA decarboxylase (MCD) can control the level of malonyl-CoA in cell through the decarboxylation of malonyl-CoA to acetyl-CoA, and plays an essential role in regulating fatty acid metabolism, thus it is a potential target for drug discovery. However, the interactions of MCD with CoA derivatives are not well understood owing to unavailable crystal structure with a complete occupancy in the active site. To identify the active site of MCD, molecular docking and molecular dynamics simulations were performed to explore the interactions of human mitochondrial MCD (HmMCD) and CoA derivatives. The findings reveal that the active site of HmMCD indeed resides in the prominent groove which resembles that of CurA. However, the binding modes are slightly different from the one observed in CurA due to the occupancy of the side chain of Lys183 from the N-terminal helical domain instead of the adenine ring of CoA. The residues 300 - 305 play an essential role in maintaining the stability of complex mainly through hydrogen bond interactions with the pyrophosphate moiety of acetyl-CoA. Principle component analysis elucidates the conformational distribution and dominant concerted motions of HmMCD. MM_PBSA calculations present the crucial residues and the major driving force responsible for the binding of acetyl-CoA. These results provide useful information for understanding the interactions of HmMCD with CoA derivatives. Proteins 2016; 84:792-802. © 2016 Wiley Periodicals, Inc. PMID:26948533

  5. Competences for Learning to Learn and Active Citizenship: Different Currencies or Two Sides of the Same Coin?

    ERIC Educational Resources Information Center

    Hoskins, Bryony; Crick, Ruth Deakin

    2010-01-01

    In the context of the European Union Framework of Key Competences and the need to develop indicators for European Union member states to measure progress made towards the "knowledge economy" and "greater social cohesion" both the learning to learn and the active citizenship competences have been highlighted. However, what have yet to be discussed…

  6. 'Unconventional' coordination chemistry by metal chelating fragments in a metalloprotein active site.

    PubMed

    Martin, David P; Blachly, Patrick G; Marts, Amy R; Woodruff, Tessa M; de Oliveira, César A F; McCammon, J Andrew; Tierney, David L; Cohen, Seth M

    2014-04-01

    The binding of three closely related chelators: 5-hydroxy-2-methyl-4H-pyran-4-thione (allothiomaltol, ATM), 3-hydroxy-2-methyl-4H-pyran-4-thione (thiomaltol, TM), and 3-hydroxy-4H-pyran-4-thione (thiopyromeconic acid, TPMA) to the active site of human carbonic anhydrase II (hCAII) has been investigated. Two of these ligands display a monodentate mode of coordination to the active site Zn(2+) ion in hCAII that is not recapitulated in model complexes of the enzyme active site. This unprecedented binding mode in the hCAII-thiomaltol complex has been characterized by both X-ray crystallography and X-ray spectroscopy. In addition, the steric restrictions of the active site force the ligands into a 'flattened' mode of coordination compared with inorganic model complexes. This change in geometry has been shown by density functional computations to significantly decrease the strength of the metal-ligand binding. Collectively, these data demonstrate that the mode of binding by small metal-binding groups can be significantly influenced by the protein active site. Diminishing the strength of the metal-ligand bond results in unconventional modes of metal coordination not found in typical coordination compounds or even carefully engineered active site models, and understanding these effects is critical to the rational design of inhibitors that target clinically relevant metalloproteins.

  7. Site-directed mutagenesis and high-resolution NMR spectroscopy of the active site of porphobilinogen deaminase

    SciTech Connect

    Scott, A.I.; Roessner, C.A.; Stolowich, N.J.; Karuso, P.; Williams, H.J.; Grant, S.K.; Gonzalez, M.D.; Hoshino, T. )

    1988-10-18

    The active site of porphobilinogen (PBG){sup 1} deaminase from Escherichia coli has been found to contain an unusual dipyrromethane derived from four molecules of 5-aminolevulinic acid (ALA) covalently linked to Cys-242, one of the two cysteine residues conserved in E. coli and human deaminase. By use of a hemA{sup {minus}} strain of E. coli the enzyme was enriched from (5-{sup 13}C)ALA and examined by {sup 1}H-detected multiple quantum coherence spectroscopy, which revealed all of the salient features of a dipyrromethane composed of two PBG units linked heat to tail and terminating in a CH{sub 2}-S bond to a cysteine residue. Site-specific mutagenesis of Cys-99 and Cys-242, respectively, has shown that substitution of Ser for Cys-99 does not affect the enzymatic activity, whereas substitution of Ser for Cys-242 removes essentially all of the catalytic activity as measured by the conversion of the substrate PBG to uro'gen I. The NMR spectrum of the covalent complex of deaminase with the suicide inhibitor 2-bromo-(2,11-{sup 13}C{sub 2})PBG reveals that the aminomethyl terminus of the inhibitor reacts with the enzyme's cofactor at the {alpha}-free pyrrole. NMR spectroscopy of the ES{sub 2} complex confirmed a PBG-derived head-to-tail dipyrromethane attached to the {alpha}-free pyrrole position of the enzyme. A mechanistic rationale for deaminase is presented.

  8. Nuclear waste: Status of DOE`s nuclear waste site characterization activities

    SciTech Connect

    1987-12-31

    Three potential nuclear waste repository sites have been selected to carry out characterization activities-the detailed geological testing to determine the suitability of each site as a repository. The sites are Hanford in south-central Washington State, Yucca Mountain in southern Nevada, and Deaf Smith in the Texas Panhandle. Two key issues affecting the total program are the estimations of the site characterization completion data and costs and DOE`s relationship with the Nuclear Regulatory Commission which has been limited and its relations with affected states and Indian tribes which continue to be difficult.

  9. XAFS Study of the Photo-Active Site of Mo/MCM-41

    NASA Astrophysics Data System (ADS)

    Miyamoto, Daisuke; Ichikuni, Nobuyuki; Shimazu, Shogo

    2007-02-01

    An Mo/MCM-41 catalyst was prepared and used for study of propene and 1-butene photo-metathesis reactions. XAFS analysis revealed that hydrogen reduction leads to a decreased role for the Mo=O site. The Mo-O site plays an important role for the olefin photo-metathesis reaction on the H2 reduced Mo/MCM-41. From EXAFS analysis, the active site of photo-metathesis reaction is the Mo=O part for oxidized Mo/MCM-41, whereas it is the Mo-O site for reduced Mo/MCM-41.

  10. How active site protonation state influences the reactivity and ligation of the heme in chlorite dismutase

    PubMed Central

    Streit, Bennett R.; Blanc, Béatrice; Lukat-Rodgers, Gudrun S.; Rodgers, Kenton R.; DuBois, Jennifer L.

    2010-01-01

    Chlorite dismutase catalyzes O2 release from chlorite with exquisite efficiency and specificity. The spectroscopic properties, ligand binding affinities, and steady state kinetics of chlorite dismutase from Dechloromonas aromatica were examined over pH 3–11.5 to gain insight into how the protonation state of the heme environment influences dioxygen formation. An acid/base transition was observed by UV/visible and resonance Raman spectroscopy with a pKa of 8.7, 2–3 pH units below analogous transitions observed in typical His-ligated peroxidases. This transition marks the conversion of a five coordinate high spin Fe(III) to a mixed high/low spin ferric-hydroxide, as confirmed by resonance Raman (rR) spectroscopy. The two Fe–OH stretching frequencies are quite low, consistent with a weak Fe–OH bond, despite the nearly neutral imidazole side chain of the proximal histidine ligand. The hydroxide is proposed to interact strongly with a distal H-bond donor, thereby weakening the Fe–OH bond. The rR spectra of Cld-CO as a function of pH reveal two forms of the complex, one in which there is minimal interaction of distal residues with the carbonyl oxygen and another, acidic form in which the oxygen is under the influence of positive charge. Recent crystallographic data reveal arginine 183 as the lone H-bond donating residue in the distal pocket. It is likely that this Arg is the strong, positively charged H-bond donor implicated by vibrational data to interact with exogenous axial heme ligands. The same Arg in its neutral (pKa ~ 6.5) form also appears to act as the active site base in binding reactions of protonated ligands, such as HCN, to ferric Cld. The steady state profile for the rate of chlorite decomposition is characterized by these same pKas. The 5 coordinate high spin acidic Cld is more active than the alkaline hydroxide-bound form. The acid form decomposes chlorite most efficiently when the distal Arg is protonated/cationic (maximum kcat = 2.0 (±0.6)

  11. The Three Mycobacterium tuberculosis Antigen 85 Isoforms Have Unique Substrates and Activities Determined by Non-active Site Regions*

    PubMed Central

    Backus, Keriann M.; Dolan, Michael A.; Barry, Conor S.; Joe, Maju; McPhie, Peter; Boshoff, Helena I. M.; Lowary, Todd L.; Davis, Benjamin G.; Barry, Clifton E.

    2014-01-01

    The three isoforms of antigen 85 (A, B, and C) are the most abundant secreted mycobacterial proteins and catalyze transesterification reactions that synthesize mycolated arabinogalactan, trehalose monomycolate (TMM), and trehalose dimycolate (TDM), important constituents of the outermost layer of the cellular envelope of Mycobacterium tuberculosis. These three enzymes are nearly identical at the active site and have therefore been postulated to exist to evade host immunity. Distal to the active site is a second putative carbohydrate-binding site of lower homology. Mutagenesis of the three isoforms at this second site affected both substrate selectivity and overall catalytic activity in vitro. Using synthetic and natural substrates, we show that these three enzymes exhibit unique selectivity; antigen 85A more efficiently mycolates TMM to form TDM, whereas C (and to a lesser extent B) has a higher rate of activity using free trehalose to form TMM. This difference in substrate selectivity extends to the hexasaccharide fragment of cell wall arabinan. Mutation of secondary site residues from the most active isoform (C) into those present in A or B partially interconverts this substrate selectivity. These experiments in combination with molecular dynamics simulations reveal that differences in the N-terminal helix α9, the adjacent Pro216–Phe228 loop, and helix α5 are the likely cause of changes in activity and substrate selectivity. These differences explain the existence of three isoforms and will allow for future work in developing inhibitors. PMID:25028517

  12. THE PRE-PERIHELION ACTIVITY OF DYNAMICALLY NEW COMET C/2013 A1 (SIDING SPRING) AND ITS CLOSE ENCOUNTER WITH MARS

    SciTech Connect

    Bodewits, Dennis; Kelley, Michael S. P.; Farnham, Tony L.; A’Hearn, Michael F.; Li, Jian-Yang E-mail: msk@astro.umd.edu E-mail: ma@astro.umd.edu

    2015-03-20

    We used the UltraViolet-Optical Telescope on board Swift to systematically follow the dynamically new comet C/2013 A1 (Siding Spring) on its approach to the Sun. The comet was observed from a heliocentric distance of 4.5 AU pre-perihelion to its perihelion at 1.4 AU. From our observations, we estimate that the water production rate during closest approach to Mars was 1.5 ± 0.3 × 10{sup 28} molecules s{sup −1}, that peak gas delivery rates where between 4.5 and 8.8 kg s{sup −1}, and that in total between 3.1 and 5.4 × 10{sup 4} kg cometary gas was delivered to the planet. Seasonal and evolutionary effects on the nucleus govern the pre-perihelion activity of comet Siding Spring. The sudden increase of its water production between 2.46 and 2.06 AU suggests the onset of the sublimation of icy grains in the coma, likely driven by CO{sub 2}. As the comet got closer to the Sun, the relative contribution of the nucleus’ water production increased, while CO{sub 2} production rates decreased. The changes in the comet’s activity can be explained by a depletion of CO{sub 2}, but the comet’s high mass loss rate suggests they may reflect primordial heterogeneities in the nucleus.

  13. RXR partial agonist produced by side chain repositioning of alkoxy RXR full agonist retains antitype 2 diabetes activity without the adverse effects.

    PubMed

    Kawata, Kohei; Morishita, Ken-ichi; Nakayama, Mariko; Yamada, Shoya; Kobayashi, Toshiki; Furusawa, Yuki; Arimoto-Kobayashi, Sakae; Oohashi, Toshitaka; Makishima, Makoto; Naitou, Hirotaka; Ishitsubo, Erika; Tokiwa, Hiroaki; Tai, Akihiro; Kakuta, Hiroki

    2015-01-22

    We previously reported RXR partial agonist CBt-PMN (1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)-1H-benzotriazole-5-carboxylic acid: 5, EC50 = 143 nM, Emax = 75%), which showed a potent glucose-lowering effect without causing serious adverse effects. However, it remains important to elucidate the structural requirements for RXR efficacy and the glucose-lowering effect because RXR-permissive heterodimers such as PPAR/RXR or LXR/RXR are reported to be activated differently depending upon the chemical structure of RXR agonists. In this work, we show that an RXR partial agonist, NEt-4IB (6-[ethyl-(4-isobutoxy-3-isopropylphenyl)amino]pyridine-3-carboxylic acid: 8b, EC50 = 169 nM, Emax = 55%), can be obtained simply by repositioning the side chains (interchanging the isobutoxy and isopropoxy groups) at the hydrophobic moiety of the RXR full agonist NEt-3IB (6-[ethyl-(3-isobutoxy-4-isopropylphenyl)amino]pyridine-3-carboxylic acid: 7b, EC50 = 19 nM). NEt-4IB (8b) showed antitype 2 diabetes activity without the above side effects upon repeated oral administration to mice at 10 mg/kg/day, similarly to 5. PMID:25486327

  14. The Pre-perihelion Activity of Dynamically New Comet C/2013 A1 (Siding Spring) and Its Close Encounter with Mars

    NASA Astrophysics Data System (ADS)

    Bodewits, Dennis; Kelley, Michael S. P.; Li, Jian-Yang; Farnham, Tony L.; A'Hearn, Michael F.

    2015-03-01

    We used the UltraViolet-Optical Telescope on board Swift to systematically follow the dynamically new comet C/2013 A1 (Siding Spring) on its approach to the Sun. The comet was observed from a heliocentric distance of 4.5 AU pre-perihelion to its perihelion at 1.4 AU. From our observations, we estimate that the water production rate during closest approach to Mars was 1.5 ± 0.3 × 1028 molecules s-1, that peak gas delivery rates where between 4.5 and 8.8 kg s-1, and that in total between 3.1 and 5.4 × 104 kg cometary gas was delivered to the planet. Seasonal and evolutionary effects on the nucleus govern the pre-perihelion activity of comet Siding Spring. The sudden increase of its water production between 2.46 and 2.06 AU suggests the onset of the sublimation of icy grains in the coma, likely driven by CO2. As the comet got closer to the Sun, the relative contribution of the nucleus’ water production increased, while CO2 production rates decreased. The changes in the comet’s activity can be explained by a depletion of CO2, but the comet’s high mass loss rate suggests they may reflect primordial heterogeneities in the nucleus.

  15. Transcriptional activation through ETS domain binding sites in the cytochrome c oxidase subunit IV gene

    SciTech Connect

    Virbasius, J.V.; Scarpulla, R.C. )

    1991-11-01

    A mutational analysis of the rat cytochrome c oxidase subunit IV (RCO4) promoter region revealed the presence of a major control element consisting of a tandemly repeated pair of binding sites for a nuclear factor from HeLa cells. This factor was designated NRF-2 (nuclear respiratory factor 2) because a functional recognition site was also found in the human ATP synthase {beta}-subunit gene. Deletion or site-directed point mutations of the NRF-2 binding sites in the RCO4 promoter resulted in substantial loss of transcriptional activity, and synthetic oligomers of the NRF-2 binding sites from both genes stimulated a heterologous promoter when cloned in cis. NRF-2 binding a transcriptional activation required a purine-rich core sequence, GGAA. This motif is characteristic of the recognition site for a family of activators referred to as ETS domain proteins because of the similarity within their DNA-binding domains to the ets-1 proto-oncogene product. NRF-2 recognized an authentic Ets-1 site within the Moloney murine sarcoma virus long terminal repeat, and this site was able to compete for NRF-2 binding to the RCO4 promoter sequence. However, in contrast to Ets-1, which appears to be exclusive to lymphoid tissues, NRF-2 has the broad tissue distribution expected of a regulator of respiratory chain expression.

  16. Quantitative, directional measurement of electric field heterogeneity in the active site of ketosteroid isomerase.

    PubMed

    Fafarman, Aaron T; Sigala, Paul A; Schwans, Jason P; Fenn, Timothy D; Herschlag, Daniel; Boxer, Steven G

    2012-02-01

    Understanding the electrostatic forces and features within highly heterogeneous, anisotropic, and chemically complex enzyme active sites and their connection to biological catalysis remains a longstanding challenge, in part due to the paucity of incisive experimental probes of electrostatic properties within proteins. To quantitatively assess the landscape of electrostatic fields at discrete locations and orientations within an enzyme active site, we have incorporated site-specific thiocyanate vibrational probes into multiple positions within bacterial ketosteroid isomerase. A battery of X-ray crystallographic, vibrational Stark spectroscopy, and NMR studies revealed electrostatic field heterogeneity of 8 MV/cm between active site probe locations and widely differing sensitivities of discrete probes to common electrostatic perturbations from mutation, ligand binding, and pH changes. Electrostatic calculations based on active site ionization states assigned by literature precedent and computational pK(a) prediction were unable to quantitatively account for the observed vibrational band shifts. However, electrostatic models of the D40N mutant gave qualitative agreement with the observed vibrational effects when an unusual ionization of an active site tyrosine with a pK(a) near 7 was included. UV-absorbance and (13)C NMR experiments confirmed the presence of a tyrosinate in the active site, in agreement with electrostatic models. This work provides the most direct measure of the heterogeneous and anisotropic nature of the electrostatic environment within an enzyme active site, and these measurements provide incisive benchmarks for further developing accurate computational models and a foundation for future tests of electrostatics in enzymatic catalysis.

  17. Side-on end-on bound dinitrogen: an activated bonding mode that facilitates functionalizing molecular nitrogen.

    PubMed

    Fryzuk, Michael D

    2009-01-20

    Molecular nitrogen is the source of all of the nitrogen necessary to sustain life on this planet. How it is incorporated into the biosphere is complicated by its intrinsic inertness. For example, biological nitrogen fixation takes N(2) and converts it into ammonia using various nitrogenase enzymes, whereas industrial nitrogen fixation converts N(2) and H(2) to NH(3) using heterogeneous iron or ruthenium surfaces. In both cases, the processes are energy-intensive. Is it possible to discover a homogeneous catalyst that can convert molecular nitrogen into higher-value organonitrogen compounds using a less energy-intensive pathway? If this could be achieved, it would be considered a major breakthrough in this area. In contrast to carbon monoxide, which is reactive and an important feedstock in many homogeneous catalytic reactions, the isoelectronic but inert N(2) molecule is a very poor ligand and not a common industrial feedstock, except for the above-mentioned industrial production of NH(3). Because N(2) is readily available from the atmosphere and because nitrogen is an essential element for the biosphere, attempts to discover new processes involving this simple small molecule have occupied chemists for over a century. Since the first discovery of a dinitrogen complex in 1965, inorganic chemists have been key players in this area and have contributed much fundamental knowledge on structures, binding modes, and reactivity patterns. For the most part, the synthesis of dinitrogen complexes relies on the use of reducing agents to generate an electron-rich intermediate that can interact with this rather inert molecule. In this Account, a facile reaction of dinitrogen with a ditantalum tetrahydride species to generate the unusual side-on end-on bound N(2) moiety is described. This particular process is one of a growing number of new, milder ways to generate dinitrogen complexes. Furthermore, the resulting dinitrogen complex undergoes a number of reactions that expand the

  18. Molecular dynamics explorations of active site structure in designed and evolved enzymes.

    PubMed

    Osuna, Sílvia; Jiménez-Osés, Gonzalo; Noey, Elizabeth L; Houk, K N

    2015-04-21

    This Account describes the use of molecular dynamics (MD) simulations to reveal how mutations alter the structure and organization of enzyme active sites. As proposed by Pauling about 70 years ago and elaborated by many others since then, biocatalysis is efficient when functional groups in the active site of an enzyme are in optimal positions for transition state stabilization. Changes in mechanism and covalent interactions are often critical parts of enzyme catalysis. We describe our explorations of the dynamical preorganization of active sites using MD, studying the fluctuations between active and inactive conformations normally concealed to static crystallography. MD shows how the various arrangements of active site residues influence the free energy of the transition state and relates the populations of the catalytic conformational ensemble to the enzyme activity. This Account is organized around three case studies from our laboratory. We first describe the importance of dynamics in evaluating a series of computationally designed and experimentally evolved enzymes for the Kemp elimination, a popular subject in the enzyme design field. We find that the dynamics of the active site is influenced not only by the original sequence design and subsequent mutations but also by the nature of the ligand present in the active site. In the second example, we show how microsecond MD has been used to uncover the role of remote mutations in the active site dynamics and catalysis of a transesterase, LovD. This enzyme was evolved by Tang at UCLA and Codexis, Inc., and is a useful commercial catalyst for the production of the drug simvastatin. X-ray analysis of inactive and active mutants did not reveal differences in the active sites, but relatively long time scale MD in solution showed that the active site of the wild-type enzyme preorganizes only upon binding of the acyl carrier protein (ACP) that delivers the natural acyl group to the active site. In the absence of bound ACP

  19. Sequences flanking the core-binding site modulate glucocorticoid receptor structure and activity.

    PubMed

    Schöne, Stefanie; Jurk, Marcel; Helabad, Mahdi Bagherpoor; Dror, Iris; Lebars, Isabelle; Kieffer, Bruno; Imhof, Petra; Rohs, Remo; Vingron, Martin; Thomas-Chollier, Morgane; Meijsing, Sebastiaan H

    2016-09-01

    The glucocorticoid receptor (GR) binds as a homodimer to genomic response elements, which have particular sequence and shape characteristics. Here we show that the nucleotides directly flanking the core-binding site, differ depending on the strength of GR-dependent activation of nearby genes. Our study indicates that these flanking nucleotides change the three-dimensional structure of the DNA-binding site, the DNA-binding domain of GR and the quaternary structure of the dimeric complex. Functional studies in a defined genomic context show that sequence-induced changes in GR activity cannot be explained by differences in GR occupancy. Rather, mutating the dimerization interface mitigates DNA-induced changes in both activity and structure, arguing for a role of DNA-induced structural changes in modulating GR activity. Together, our study shows that DNA sequence identity of genomic binding sites modulates GR activity downstream of binding, which may play a role in achieving regulatory specificity towards individual target genes.

  20. Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site

    SciTech Connect

    Grossman, Moran; Born, Benjamin; Heyden, Matthias; Tworowski, Dmitry; Fields, Gregg B.; Sagi, Irit; Havenith, Martina

    2011-09-18

    Solvent dynamics can play a major role in enzyme activity, but obtaining an accurate, quantitative picture of solvent activity during catalysis is quite challenging. Here, we combine terahertz spectroscopy and X-ray absorption analyses to measure changes in the coupled water-protein motions during peptide hydrolysis by a zinc-dependent human metalloprotease. These changes were tightly correlated with rearrangements at the active site during the formation of productive enzyme-substrate intermediates and were different from those in an enzyme–inhibitor complex. Molecular dynamics simulations showed a steep gradient of fast-to-slow coupled protein-water motions around the protein, active site and substrate. Our results show that water retardation occurs before formation of the functional Michaelis complex. We propose that the observed gradient of coupled protein-water motions may assist enzyme-substrate interactions through water-polarizing mechanisms that are remotely mediated by the catalytic metal ion and the enzyme active site.

  1. An overlapping kinase and phosphatase docking site regulates activity of the retinoblastoma protein.

    PubMed

    Hirschi, Alexander; Cecchini, Matthew; Steinhardt, Rachel C; Schamber, Michael R; Dick, Frederick A; Rubin, Seth M

    2010-09-01

    The phosphorylation state and corresponding activity of the retinoblastoma tumor suppressor protein (Rb) are modulated by a balance of kinase and phosphatase activities. Here we characterize the association of Rb with the catalytic subunit of protein phosphatase 1 (PP1c). A crystal structure identifies an enzyme docking site in the Rb C-terminal domain that is required for efficient PP1c activity toward Rb. The phosphatase docking site overlaps with the known docking site for cyclin-dependent kinase (Cdk), and PP1 competition with Cdk-cyclins for Rb binding is sufficient to retain Rb activity and block cell-cycle advancement. These results provide the first detailed molecular insights into Rb activation and establish a novel mechanism for Rb regulation in which kinase and phosphatase compete for substrate docking. PMID:20694007

  2. Molecular recognition at the active site of subtilisin BPN': crystallographic studies using genetically engineered proteinaceous inhibitor SSI (Streptomyces subtilisin inhibitor).

    PubMed

    Takeuchi, Y; Noguchi, S; Satow, Y; Kojima, S; Kumagai, I; Miura, K; Nakamura, K T; Mitsui, Y

    1991-06-01

    Unlike trypsin-like serine proteases having only one conspicuous binding pocket in the active site, subtilisin BPN' has two such pockets, the S1 and S4 pockets, which accommodate the P1 and P4 residues of ligands (after Schechter and Berger notation) respectively. Using computer graphics, the geometrical nature of the two pockets was carefully examined and strategies for site-directed mutagenesis studies were set up against a protein SSI (Streptomyces subtilisin inhibitor), which is a strong proteinaceous inhibitor (or a substrate analogue) of subtilisin BPN'. It was decided to convert the P1 residue, methionine 73, into lysine (M73K) with or without additional conversion of the P4 residue, methionine 70, into glycine (M70G). The crystal structures of the two complexes of subtilisin BPN', one with the single mutant SSI (M73K) and the other with the double mutant SSI (M73K, M70G) were solved showing that (i) small 'electrostatic induced-fit movement' occurs in the S1 pocket upon introducing the terminal plus charge of the lysine side chain, and (ii) large 'mechanical induced-fit movement' occurs in the S4 pocket upon reducing the size of the P4 side chain from methionine to glycine. In both (i) and (ii), the induced-fit movement occurred in a concerted fashion involving both the enzyme and 'substrate' amino acid residues. The term 'substrate-assisted stabilization' was coined to stress the cooperative nature of the induced-fit movements. PMID:1891457

  3. Vasoactive side effects of intravenous immunoglobulin preparations in a rat model and their treatment with recombinant platelet-activating factor acetylhydrolase.

    PubMed

    Bleeker, W K; Teeling, J L; Verhoeven, A J; Rigter, G M; Agterberg, J; Tool, A T; Koenderman, A H; Kuijpers, T W; Hack, C E

    2000-03-01

    Previously, we observed in a rat model that intravenous administration of intramuscular immunoglobulin preparations induced a long-lasting hypotension, which appeared to be associated with the presence of IgG polymers and dimers in the preparations, but unrelated to complement activation. We found evidence that this hypotensive response is mediated by platelet-activating factor (PAF) produced by macrophages. In this study, we compared the vasoactive effects of 16 intravenous immunoglobulin (IVIG) products from 10 different manufacturers, in anesthetized rats. Eight of the IVIG preparations showed no hypotensive effects (less than 15% decrease), whereas the other 8 had relatively strong effects (15%-50% decrease). The hypotensive effects correlated with the IgG dimer content of the preparations. Pretreatment of the rats with recombinant PAF acetylhydrolase completely prevented the hypotensive reaction on IVIG infusion, and administration after the onset of hypotension resulted in normalization of the blood pressure. We also observed PAF production on in vitro incubation of human neutrophils with IVIG, which could be blocked by anti-Fcgamma receptor antibodies. This indicates that induction of PAF generation may also occur in a human system. Our findings support the hypothesis that the clinical side effects of IVIG in patients may be caused by macrophage and neutrophil activation through interaction of IgG dimers with Fcgamma receptors. Because phagocyte activation may also lead to the release of other inflammatory mediators, recombinant PAF acetylhydrolase (rPAF-AH) provides a useful tool to determine whether PAF plays a role in the clinical side effects of IVIG. If so, rPAF-AH can be used for the treatment of those adverse reactions. (Blood. 2000;95:1856-1861)

  4. Structural and Kinetic Analyses of Macrophage Migration Inhibitory Factor Active Site Interactions

    SciTech Connect

    Crichlow, G.; Lubetsky, J; Leng, L; Bucala, R; Lolis, E

    2009-01-01

    Macrophage migration inhibitory factor (MIF) is a secreted protein expressed in numerous cell types that counters the antiinflammatory effects of glucocorticoids and has been implicated in sepsis, cancer, and certain autoimmune diseases. Interestingly, the structure of MIF contains a catalytic site resembling the tautomerase/isomerase sites of microbial enzymes. While bona fide physiological substrates remain unknown, model substrates have been identified. Selected compounds that bind in the tautomerase active site also inhibit biological functions of MIF. It had previously been shown that the acetaminophen metabolite, N-acetyl-p-benzoquinone imine (NAPQI), covalently binds to the active site of MIF. In this study, kinetic data indicate that NAPQI inhibits MIF both covalently and noncovalently. The structure of MIF cocrystallized with NAPQI reveals that the NAPQI has undergone a chemical alteration forming an acetaminophen dimer (bi-APAP) and binds noncovalently to MIF at the mouth of the active site. We also find that the commonly used protease inhibitor, phenylmethylsulfonyl fluoride (PMSF), forms a covalent complex with MIF and inhibits the tautomerase activity. Crystallographic analysis reveals the formation of a stable, novel covalent bond for PMSF between the catalytic nitrogen of the N-terminal proline and the sulfur of PMSF with complete, well-defined electron density in all three active sites of the MIF homotrimer. Conclusions are drawn from the structures of these two MIF-inhibitor complexes regarding the design of novel compounds that may provide more potent reversible and irreversible inhibition of MIF.

  5. "Real-time" imaging of cortical and subcortical sites of cardiovascular control: concurrent recordings of sympathetic nerve activity and fMRI in awake subjects.

    PubMed

    Macefield, Vaughan G; Henderson, Luke A

    2016-09-01

    We review our approach to functionally identifying cortical and subcortical areas involved in the generation of spontaneous fluctuations in sympathetic outflow to muscle or skin. We record muscle sympathetic nerve activity (MSNA) or skin sympathetic nerve activity (SSNA), via a tungsten microelectrode inserted percutaneously into the common peroneal nerve, at the same time as performing functional magnetic resonance imaging (fMRI) of the brain. By taking advantage of the neurovascular coupling delay associated with BOLD (blood oxygen level dependent) fMRI, and the delay associated with conduction of a burst of sympathetic impulses to the peripheral recording site, we can identify structures in which BOLD signal intensity covaries with MSNA or SSNA. Using this approach, we found MSNA-coupled increases in BOLD signal intensity in the mid-insula and dorsomedial hypothalamus on the left side, and in dorsolateral prefrontal cortex, posterior cingulate cortex, precuneus, ventromedial hypothalamus and rostral ventrolateral medulla on both sides. Conversely, spontaneous bursts of SSNA were positively correlated with BOLD signal intensity in the ventromedial thalamus and posterior insula on the left side, and in the anterior insula, orbitofrontal cortex and frontal cortex on the right side, and in the mid-cingulate cortex and precuneus on both sides. Inverse relationships were observed between MSNA and BOLD signal intensity in the right ventral insula, nucleus tractus solitarius and caudal ventrolateral medulla, and between SSNA and signal intensity in the left orbitofrontal cortex. These results emphasize the contributions of cortical regions of the brain to sympathetic outflow in awake human subjects, and the extensive interactions between cortical and subcortical regions in the ongoing regulation of sympathetic nerve activity to muscle and skin in awake human subjects. PMID:27334958

  6. OL3, a novel low-absorbed TGR5 agonist with reduced side effects, lowered blood glucose via dual actions on TGR5 activation and DPP-4 inhibition

    PubMed Central

    Ma, Shan-yao; Ning, Meng-meng; Zou, Qing-an; Feng, Ying; Ye, Yang-liang; Shen, Jian-hua; Leng, Ying

    2016-01-01

    Aim: TGR5 agonists stimulate intestinal glucagon-like peptide-1 (GLP-1) release, but systemic exposure causes unwanted side effects, such as gallbladder filling. In the present study, linagliptin, a DPP-4 inhibitor with a large molecular weight and polarity, and MN6, a previously described TGR5 agonist, were linked to produce OL3, a novel low-absorbed TGR5 agonist with reduced side-effects and dual function in lowering blood glucose by activation of TGR5 and inhibition of DPP-4. Methods: TGR5 activation was assayed in HEK293 cells stably expressing human or mouse TGR5 and a CRE-driven luciferase gene. DPP-4 inhibition was assessed based on the rate of hydrolysis of a surrogate substrate. GLP-1 secretion was measured in human enteroendocrine NCI-H716 cells. OL3 permeability was tested in Caco-2 cells. Acute glucose-lowering effects of OL3 were evaluated in ICR and diabetic ob/ob mice. Results: OL3 activated human and mouse TGR5 with an EC50 of 86.24 and 17.36 nmol/L, respectively, and stimulated GLP-1 secretion in human enteroendocrine NCI-H716 cells (3–30 μmol/L). OL3 inhibited human and mouse DPP-4 with IC50 values of 18.44 and 69.98 μmol/L, respectively. Low permeability of OL3 was observed in Caco-2 cells. In ICR mice treated orally with OL3 (150 mg/kg), the serum OL3 concentration was 101.10 ng/mL at 1 h, and decreased to 13.38 ng/mL at 5.5 h post dose, confirming the low absorption of OL3 in vivo. In ICR mice and ob/ob mice, oral administration of OL3 significantly lowered the blood glucose levels, which was a synergic effect of activating TGR5 that stimulated GLP-1 secretion in the intestine and inhibiting DPP-4 that cleaved GLP-1 in the plasma. In ICR mice, oral administration of OL3 did not cause gallbladder filling. Conclusion: OL3 is a low-absorbed TGR5 agonist that lowers blood glucose without inducing gallbladder filling. This study presents a new strategy in the development of potent TGR5 agonists in treating type 2 diabetes, which target to the

  7. Enhanced Enzyme Kinetic Stability by Increasing Rigidity within the Active Site*

    PubMed Central

    Xie, Yuan; An, Jiao; Yang, Guangyu; Wu, Geng; Zhang, Yong; Cui, Li; Feng, Yan

    2014-01-01

    Enzyme stability is an important issue for protein engineers. Understanding how rigidity in the active site affects protein kinetic stability will provide new insight into enzyme stabilization. In this study, we demonstrated enhanced kinetic stability of Candida antarctica lipase B (CalB) by mutating the structurally flexible residues within the active site. Six residues within 10 Å of the catalytic Ser105 residue with a high B factor were selected for iterative saturation mutagenesis. After screening 2200 colonies, we obtained the D223G/L278M mutant, which exhibited a 13-fold increase in half-life at 48 °C and a 12 °C higher T5015, the temperature at which enzyme activity is reduced to 50% after a 15-min heat treatment. Further characterization showed that global unfolding resistance against both thermal and chemical denaturation also improved. Analysis of the crystal structures of wild-type CalB and the D223G/L278M mutant revealed that the latter formed an extra main chain hydrogen bond network with seven structurally coupled residues within the flexible α10 helix that are primarily involved in forming the active site. Further investigation of the relative B factor profile and molecular dynamics simulation confirmed that the enhanced rigidity decreased fluctuation of the active site residues at high temperature. These results indicate that enhancing the rigidity of the flexible segment within the active site may provide an efficient method for improving enzyme kinetic stability. PMID:24448805

  8. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes.

    PubMed

    Cockburn, Darrell; Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data. PMID:27504624

  9. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes

    PubMed Central

    Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data. PMID:27504624

  10. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (20″×14″) upright format signs specified in 29 CFR 1910.145(d)(4) and this paragraph; and (iii... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an...

  11. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (20″×14″) upright format signs specified in 29 CFR 1910.145(d)(4) and this paragraph; and (iii... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an...

  12. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (20″×14″) upright format signs specified in 29 CFR 1910.145(d)(4) and this paragraph; and (iii... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an...

  13. 77 FR 39508 - Commercial Wind Lease Issuance and Site Assessment Activities on the Atlantic Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ... specific project proposals on those leases) in an identified Wind Energy Area (WEA) on the OCS offshore... Bureau of Ocean Energy Management Commercial Wind Lease Issuance and Site Assessment Activities on the... Activities on the Atlantic OCS Offshore RI and MA'' to: Program Manager, Office of Renewable Energy...

  14. Effects of resource activities upon repository siting and waste containment with reference to bedded salt

    SciTech Connect

    Ashby, J.; Rowe, J.

    1980-02-01

    The primary consideration for the suitability of a nuclear waste repository site is the overall ability of the repository to safely contain radioactive waste. This report is a discussion of the past, present, and future effects of resource activities on waste containment. Past and present resource activities which provide release pathways (i.e., leaky boreholes, adjacent mines) will receive initial evaluation during the early stages of any repository site study. However, other resource activities which may have subtle effects on containment (e.g., long-term pumping causing increased groundwater gradients, invasion of saline water causing lower retardation) and all potential future resource activities must also be considered during the site evaluation process. Resource activities will affect both the siting and the designing of repositories. Ideally, sites should be located in areas of low resource activity and low potential for future activity, and repository design should seek to eliminate or minimize the adverse effects of any resource activity. Buffer zones should be created to provide areas in which resource activities that might adversely affect containment can be restricted or curtailed. This could mean removing large areas of land from resource development. The impact of these frozen assets should be assessed in terms of their economic value and of their effect upon resource reserves. This step could require a major effort in data acquisition and analysis followed by extensive numerical modeling of regional fluid flow and mass transport. Numerical models should be used to assess the effects of resource activity upon containment and should include the cumulative effects of different resource activities. Analysis by other methods is probably not possible except for relatively simple cases.

  15. Computational approaches to the determination of active site structures and reaction mechanisms in heterogeneous catalysts.

    PubMed

    Catlow, C R A; French, S A; Sokol, A A; Thomas, J M

    2005-04-15

    We apply quantum chemical methods to the study of active site structures and reaction mechanisms in mesoporous silica and metal oxide catalysts. Our approach is based on the use of both molecular cluster and embedded cluster (QM/MM) techniques, where the active site and molecular complex are described using density functional theory (DFT) and the embedding matrix simulated by shell model potentials. We consider three case studies: alkene epoxidation over the microporous TS-1 catalyst; methanol synthesis on ZnO and Cu/ZnO and C-H bond activation over Li-doped MgO.

  16. Computational approaches to the determination of active site structures and reaction mechanisms in heterogeneous catalysts.

    PubMed

    Catlow, C R A; French, S A; Sokol, A A; Thomas, J M

    2005-04-15

    We apply quantum chemical methods to the study of active site structures and reaction mechanisms in mesoporous silica and metal oxide catalysts. Our approach is based on the use of both molecular cluster and embedded cluster (QM/MM) techniques, where the active site and molecular complex are described using density functional theory (DFT) and the embedding matrix simulated by shell model potentials. We consider three case studies: alkene epoxidation over the microporous TS-1 catalyst; methanol synthesis on ZnO and Cu/ZnO and C-H bond activation over Li-doped MgO. PMID:15901543

  17. Rapid binding of a cationic active site inhibitor to wild type and mutant mouse acetylcholinesterase: Brownian dynamics simulation including diffusion in the active site gorge.

    PubMed

    Tara, S; Elcock, A H; Kirchhoff, P D; Briggs, J M; Radic, Z; Taylor, P; McCammon, J A

    1998-12-01

    It is known that anionic surface residues play a role in the long-range electrostatic attraction between acetylcholinesterase and cationic ligands. In our current investigation, we show that anionic residues also play an important role in the behavior of the ligand within the active site gorge of acetylcholinesterase. Negatively charged residues near the gorge opening not only attract positively charged ligands from solution to the enzyme, but can also restrict the motion of the ligand once it is inside of the gorge. We use Brownian dynamics techniques to calculate the rate constant kon, for wild type and mutant acetylcholinesterase with a positively charged ligand. These calculations are performed by allowing the ligand to diffuse within the active site gorge. This is an extension of previously reported work in which a ligand was allowed to diffuse only to the enzyme surface. By setting the reaction criteria for the ligand closer to the active site, better agreement with experimental data is obtained. Although a number of residues influence the movement of the ligand within the gorge, Asp74 is shown to play a particularly important role in this function. Asp74 traps the ligand within the gorge, and in this way helps to ensure a reaction.

  18. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand

    SciTech Connect

    Parashar, Abhinav; Venkatachalam, Avanthika; Gideon, Daniel Andrew; Manoj, Kelath Murali

    2014-12-12

    Highlights: • Cyanide (CN) is a well-studied toxic principle, known to inhibit heme-enzymes. • Inhibition is supposed to result from CN binding at the active site as a ligand. • Diverse heme enzymes’ CN inhibition profiles challenge prevailing mechanism. • Poor binding efficiency of CN at low enzyme concentrations and ligand pressures. • CN-based diffusible radicals cause ‘non-productive electron transfers’ (inhibition). - Abstract: The toxicity of cyanide is hitherto attributed to its ability to bind to heme proteins’ active site and thereby inhibit their activity. It is shown herein that the long-held interpretation is inadequate to explain several observations in heme-enzyme reaction systems. Generation of cyanide-based diffusible radicals in heme-enzyme reaction milieu could shunt electron transfers (by non-active site processes), and thus be detrimental to the efficiency of oxidative outcomes.

  19. Denaturation studies of active-site labeled papain using electron paramagnetic resonance and fluorescence spectroscopy.

    PubMed Central

    Ping, Z A; Butterfiel, D A

    1991-01-01

    A spin-labeled p-chloromercuribenzoate (SL-PMB) and a fluorescence probe, 6-acryloyl-2-dimethylaminonaphthalene (Acrylodan), both of which bind to the single SH group located in the active site of papain, were used to investigate the interaction of papain (EC 3.4.22.2) with two protein denaturants. It was found that the active site of papain was highly stable in urea solution, but underwent a large conformational change in guanidine hydrochloride solution. Electron paramagnetic resonance and fluorescence results were in agreement and both paralleled enzymatic activity of papain with respect to both the variation in pH and denaturation. These results strongly suggest that SL-PMB and Acrylodan labels can be used to characterize the physical state of the active site of the enzyme. PMID:1657229

  20. Molecular structures and antiproliferative activity of side-chain saturated and homologated analogs of 2-chloro-3-(n-alkylamino)-1,4-napthoquinone

    NASA Astrophysics Data System (ADS)

    Pal, Sanjima; Jadhav, Mahesh; Weyhermüller, Thomas; Patil, Yogesh; Nethaji, M.; Kasabe, Umesh; Kathawate, Laxmi; Konkimalla, V. Badireenath; Salunke-Gawali, Sunita

    2013-10-01

    Side chain homologated derivatives of 2-chloro-3-(n-alkylamino)-1,4-naphthoquinone {n-alkyl: pentyl; L-5, hexyl; L-6, heptyl; L-7 and octyl; L-8} have been synthesized and characterized by elemental analysis, FT-IR, 1H NMR, UV-visible spectroscopy and LC-MS. Compounds, L-4, {n-alkyl: butyl; L-4}, L-6 and L-8 have been characterized by single crystal X-ray diffraction studies. The single crystal X-ray structures reveal that L-4 and L-8 crystallizes in P21 space group, while L-6 in P21/c space group. Molecules of L-4 and L-8 from polymeric chains through Csbnd H⋯O and Nsbnd H⋯O close contacts. L-6 is a dimer formed by Nsbnd H⋯O interaction. Slipped π-π stacking interactions are observed between quinonoid and benzenoid rings of L-4 and L-8. Orientations of alkyl group in L-4 and L-8 is on same side of the chain and polymeric chains run opposite to one another to form zip like structure to the alkyl groups. Antiproliferative activities of L-1 to L-8{n-alkyl: methyl; L-1, ethyl; L-2, propyl; L-3 and butyl; L-4} were studied in cancer cells of colon (COLO205), brain (U87MG) and pancreas (MIAPaCa2) where L-1, L-2 and L-3 were active in MIAPaCa2 (L-1 = L-2 > L-3) and COLO205 (L-2 = L-3 > L-1) and inactive in U87MG. From antiproliferative studies with compounds L-1 to L-8 it can be concluded that homologation of 2-chloro-3-(n-alkylamino)-1,4-napthoquinone with saturated methyl groups yielded tissue specific compounds such as L-2 (for MIAPaCa2) and L-3 (for COLO205) with optimal activity.

  1. Catalysis-dependent selenium incorporation and migration in the nitrogenase active site iron-molybdenum cofactor

    PubMed Central

    Spatzal, Thomas; Perez, Kathryn A; Howard, James B; Rees, Douglas C

    2015-01-01

    Dinitrogen reduction in the biological nitrogen cycle is catalyzed by nitrogenase, a two-component metalloenzyme. Understanding of the transformation of the inert resting state of the active site FeMo-cofactor into an activated state capable of reducing dinitrogen remains elusive. Here we report the catalysis dependent, site-selective incorporation of selenium into the FeMo-cofactor from selenocyanate as a newly identified substrate and inhibitor. The 1.60 Å resolution structure reveals selenium occupying the S2B site of FeMo-cofactor in the Azotobacter vinelandii MoFe-protein, a position that was recently identified as the CO-binding site. The Se2B-labeled enzyme retains substrate reduction activity and marks the starting point for a crystallographic pulse-chase experiment of the active site during turnover. Through a series of crystal structures obtained at resolutions of 1.32–1.66 Å, including the CO-inhibited form of Av1-Se2B, the exchangeability of all three belt-sulfur sites is demonstrated, providing direct insights into unforeseen rearrangements of the metal center during catalysis. DOI: http://dx.doi.org/10.7554/eLife.11620.001 PMID:26673079

  2. Catalysis-dependent selenium incorporation and migration in the nitrogenase active site iron-molybdenum cofactor.

    PubMed

    Spatzal, Thomas; Perez, Kathryn A; Howard, James B; Rees, Douglas C

    2015-12-16

    Dinitrogen reduction in the biological nitrogen cycle is catalyzed by nitrogenase, a two-component metalloenzyme. Understanding of the transformation of the inert resting state of the active site FeMo-cofactor into an activated state capable of reducing dinitrogen remains elusive. Here we report the catalysis dependent, site-selective incorporation of selenium into the FeMo-cofactor from selenocyanate as a newly identified substrate and inhibitor. The 1.60 Å resolution structure reveals selenium occupying the S2B site of FeMo-cofactor in the Azotobacter vinelandii MoFe-protein, a position that was recently identified as the CO-binding site. The Se2B-labeled enzyme retains substrate reduction activity and marks the starting point for a crystallographic pulse-chase experiment of the active site during turnover. Through a series of crystal structures obtained at resolutions of 1.32-1.66 Å, including the CO-inhibited form of Av1-Se2B, the exchangeability of all three belt-sulfur sites is demonstrated, providing direct insights into unforeseen rearrangements of the metal center during catalysis.

  3. High resolution crystal structures of triosephosphate isomerase complexed with its suicide inhibitors: The conformational flexibility of the catalytic glutamate in its closed, liganded active site

    PubMed Central

    Venkatesan, Rajaram; Alahuhta, Markus; Pihko, Petri M; Wierenga, Rik K

    2011-01-01

    The key residue of the active site of triosephosphate isomerase (TIM) is the catalytic glutamate, which is proposed to be important (i) as a catalytic base, for initiating the reaction, as well as (ii) for the subsequent proton shuttling steps. The structural properties of this glutamate in the liganded complex have been investigated by studying the high resolution crystal structures of typanosomal TIM, complexed with three suicide inhibitors: (S)-glycidol phosphate ((S)-GOP, at 0.99 Å resolution), (R)-glycidol phosphate, ((R)-GOP, at 1.08 Å resolution), and bromohydroxyacetone phosphate (BHAP, at 1.97 Å resolution). The structures show that in the (S)-GOP active site this catalytic glutamate is in the well characterized, competent conformation. However, an unusual side chain conformation is observed in the (R)-GOP and BHAP complexes. In addition, Glu97, salt bridged to the catalytic lysine in the competent active site, adopts an unusual side chain conformation in these two latter complexes. The higher chemical reactivity of (S)-GOP compared with (R)-GOP, as known from solution studies, can be understood: the structures indicate that in the case of (S)-GOP, Glu167 can attack the terminal carbon of the epoxide in a stereoelectronically favored, nearly linear O–C–O arrangement, but this is not possible for the (R)-GOP isomer. These structures confirm the previously proposed conformational flexibility of the catalytic glutamate in its closed, liganded state. The importance of this conformational flexibility for the proton shuttling steps in the TIM catalytic cycle, which is apparently achieved by a sliding motion of the side chain carboxylate group above the enediolate plane, is also discussed. PMID:21633986

  4. Reversible competitive α-ketoheterocycle inhibitors of fatty acid amide hydrolase containing additional conformational constraints in the acyl side chain: orally active, long-acting analgesics.

    PubMed

    Ezzili, Cyrine; Mileni, Mauro; McGlinchey, Nicholas; Long, Jonathan Z; Kinsey, Steven G; Hochstatter, Dustin G; Stevens, Raymond C; Lichtman, Aron H; Cravatt, Benjamin F; Bilsky, Edward J; Boger, Dale L

    2011-04-28

    A series of α-ketooxazoles containing conformational constraints in the C2 acyl side chain of 2 (OL-135) were examined as inhibitors of fatty acid amide hydrolase (FAAH). Only one of the two possible enantiomers displayed potent FAAH inhibition (S vs R enantiomer), and their potency is comparable or improved relative to 2, indicating that the conformational restriction in the C2 acyl side chain is achievable. A cocrystal X-ray structure of the α-ketoheterocycle 12 bound to a humanized variant of rat FAAH revealed its binding details, confirmed that the (S)-enantiomer is the bound active inhibitor, shed light on the origin of the enantiomeric selectivity, and confirmed that the catalytic Ser241 is covalently bound to the electrophilic carbonyl as a deprotonated hemiketal. Preliminary in vivo characterization of the inhibitors 12 and 14 is reported demonstrating that they raise brain anandamide levels following either intraperitoneal (ip) or oral (po) administration indicative of effective in vivo FAAH inhibition. Significantly, the oral administration of 12 caused dramatic accumulation of anandamide in the brain, with peak levels achieved between 1.5 and 3 h, and these elevations were maintained over 9 h. Additional studies of these two representative members of the series (12 and 14) in models of thermal hyperalgesia and neuropathic pain are reported, including the demonstration that 12 administered orally significantly attenuated mechanical (>6 h) and cold (>9 h) allodynia for sustained periods consistent with its long-acting effects in raising the endogenous concentration of anandamide.

  5. The dark side of self-focus: brain activity during self-focus in low and high brooders.

    PubMed

    Freton, Maxime; Lemogne, Cédric; Delaveau, Pauline; Guionnet, Sophie; Wright, Emily; Wiernik, Emmanuel; Bertasi, Eric; Fossati, Philippe

    2014-11-01

    There are two distinct modes of self-focus: analytical self-focus is abstract, general and evaluative whereas experiential self-focus is concrete, specific and non-evaluative. Using functional magnetic resonance imaging (fMRI), we investigated the neural bases of these two modes of self-focus in relation with brooding, the maladaptive form of rumination. Forty-one French-speaking right-handed healthy young adults (10 men, mean age ± s.d.: 21.8 ± 2.3 years) engaged in analytical and experiential self-focus triggered by verbal stimuli during fMRI. Brooding was measured with the 22-item Rumination Response Style scale. Individuals with lower brooding scores showed greater activation of the posterior cingulate cortex/precuneus during analytical than experiential self-focus, whereas individuals with higher brooding scores did not. This is consistent with the hypothesis that brooding is associated with less control over the nature of the self-focus engaged. These findings may help to refine our understanding of how rumination promotes depression through maladaptive self-focus.

  6. A Rearrangement of the Guanosine-Binding Site Establishes an Extended Network of Functional Interactions in the Tetrahymena Group I Ribozyme Active Site†

    PubMed Central

    Forconi, Marcello; Sengupta, Raghuvir N.; Piccirilli, Joseph A.; Herschlag, Daniel

    2010-01-01

    Protein enzymes appear to use extensive packing and hydrogen-bonding interactions to precisely position catalytic groups within active sites. Due to their inherent backbone flexibility and limited side chain repertoire, RNA enzymes face additional challenges relative to proteins in precisely positioning substrates and catalytic groups. Here, we use the group I ribozyme to probe the existence, establishment, and functional consequences of an extended network of interactions in an RNA active site. The group I ribozyme catalyzes a site-specific attack of guanosine on an oligonucleotide substrate. We previously determined that the hydrogen bond between the exocyclic amino group of guanosine and the 2′-hydroxyl group at position A261 of the Tetrahymena group I ribozyme contributes to overall catalysis. We now use functional data, aided by double-mutant cycles, to probe this hydrogen bond in the individual reaction steps of the catalytic cycle. Our results indicate that this hydrogen bond is not formed upon guanosine binding to the ribozyme but instead forms at a later stage of the catalytic cycle. Formation of this hydrogen bond is correlated to other structural rearrangements in the ribozyme's active site that are promoted by docking of the oligonucleotide substrate into the ribozyme's active site, and disruption of this interaction has deleterious consequences for the chemical transformation within the ternary complex. These results, combined with earlier results, provide insight into the nature of the multiple conformational steps used by the Tetrahymena group I ribozyme to achieve its active structure and reveal an intricate, extended network of interactions that is used to establish catalytic interactions within this RNA's active site. PMID:20175542

  7. Crystal structure of an avian influenza polymerase PA[subscript N] reveals an endonuclease active site

    SciTech Connect

    Yuan, Puwei; Bartlam, Mark; Lou, Zhiyong; Chen, Shoudeng; Zhou, Jie; He, Xiaojing; Lv, Zongyang; Ge, Ruowen; Li, Xuemei; Deng, Tao; Fodor, Ervin; Rao, Zihe; Liu, Yingfang

    2009-11-10

    The heterotrimeric influenza virus polymerase, containing the PA, PB1 and PB2 proteins, catalyses viral RNA replication and transcription in the nucleus of infected cells. PB1 holds the polymerase active site and reportedly harbours endonuclease activity, whereas PB2 is responsible for cap binding. The PA amino terminus is understood to be the major functional part of the PA protein and has been implicated in several roles, including endonuclease and protease activities as well as viral RNA/complementary RNA promoter binding. Here we report the 2.2 angstrom (A) crystal structure of the N-terminal 197 residues of PA, termed PA(N), from an avian influenza H5N1 virus. The PA(N) structure has an alpha/beta architecture and reveals a bound magnesium ion coordinated by a motif similar to the (P)DX(N)(D/E)XK motif characteristic of many endonucleases. Structural comparisons and mutagenesis analysis of the motif identified in PA(N) provide further evidence that PA(N) holds an endonuclease active site. Furthermore, functional analysis with in vivo ribonucleoprotein reconstitution and direct in vitro endonuclease assays strongly suggest that PA(N) holds the endonuclease active site and has critical roles in endonuclease activity of the influenza virus polymerase, rather than PB1. The high conservation of this endonuclease active site among influenza strains indicates that PA(N) is an important target for the design of new anti-influenza therapeutics.

  8. Evaluation of physical activity web sites for use of behavior change theories.

    PubMed

    Doshi, Amol; Patrick, Kevin; Sallis, James F; Calfas, Karen

    2003-01-01

    Physical activity (PA) Web sites were assessed for their use of behavior change theories, including constructs of the health belief model, Transtheoretical Model, social cognitive theory, and the theory of reasoned action and planned behavior. An evaluation template for assessing PA Web sites was developed, and content validity and interrater reliability were demonstrated. Two independent raters evaluated 24 PA Web sites. Web sites varied widely in application of theory-based constructs, ranging from 5 to 48 on a 100-point scale. The most common intervention strategies were general information, social support, and realistic goal areas. Coverage of theory-based strategies was low, varying from 26% for social cognitive theory to 39% for health belief model. Overall, PA Web sites provided little assessment, feedback, or individually tailored assistance for users. They were unable to substantially tailor the on-line experience for users at different stages of change or different demographic characteristics.

  9. Conservative Tryptophan Mutants of the Protein Tyrosine Phosphatase YopH Exhibit Impaired WPD-Loop Function and Crystallize with Divanadate Esters in Their Active Sites

    PubMed Central

    Moise, Gwendolyn; Gallup, Nathan M.; Alexandrova, Anastassia N.; Hengge, Alvan C.; Johnson, Sean J.

    2016-01-01

    Catalysis in protein tyrosine phosphatases (PTPs) involves movement of a protein loop called the WPD loop that brings a conserved aspartic acid into the active site to function as a general acid. Mutation of the tryptophan in the WPD loop of the PTP YopH to any other residue with a planar, aromatic side chain (phenylalanine, tyrosine, or histidine) disables general acid catalysis. Crystal structures reveal these conservative mutations leave this critical loop in a catalytically unproductive, quasi-open position. Although the loop positions in crystal structures are similar for all three conservative mutants, the reasons inhibiting normal loop closure differ for each mutant. In the W354F and W354Y mutants, steric clashes result from six-membered rings occupying the position of the five-membered ring of the native indole side chain. The histidine mutant dysfunction results from new hydrogen bonds stabilizing the unproductive position. The results demonstrate how even modest modifications can disrupt catalytically important protein dynamics. Crystallization of all the catalytically compromised mutants in the presence of vanadate gave rise to vanadate dimers at the active site. In W354Y and W354H, a divanadate ester with glycerol is observed. Such species have precedence in solution and are known from the small molecule crystal database. Such species have not been observed in the active site of a phosphatase, as a functional phosphatase would rapidly catalyze their decomposition. The compromised functionality of the mutants allows the trapping of species that undoubtedly form in solution and are capable of binding at the active sites of PTPs, and, presumably, other phosphatases. In addition to monomeric vanadate, such higher-order vanadium-based molecules are likely involved in the interaction of vanadate with PTPs in solution. PMID:26445170

  10. Conservative tryptophan mutants of the protein tyrosine phosphatase YopH exhibit impaired WPD-loop function and crystallize with divanadate esters in their active sites.

    PubMed

    Moise, Gwendolyn; Gallup, Nathan M; Alexandrova, Anastassia N; Hengge, Alvan C; Johnson, Sean J

    2015-10-27

    Catalysis in protein tyrosine phosphatases (PTPs) involves movement of a protein loop called the WPD loop that brings a conserved aspartic acid into the active site to function as a general acid. Mutation of the tryptophan in the WPD loop of the PTP YopH to any other residue with a planar, aromatic side chain (phenylalanine, tyrosine, or histidine) disables general acid catalysis. Crystal structures reveal these conservative mutations leave this critical loop in a catalytically unproductive, quasi-open position. Although the loop positions in crystal structures are similar for all three conservative mutants, the reasons inhibiting normal loop closure differ for each mutant. In the W354F and W354Y mutants, steric clashes result from six-membered rings occupying the position of the five-membered ring of the native indole side chain. The histidine mutant dysfunction results from new hydrogen bonds stabilizing the unproductive position. The results demonstrate how even modest modifications can disrupt catalytically important protein dynamics. Crystallization of all the catalytically compromised mutants in the presence of vanadate gave rise to vanadate dimers at the active site. In W354Y and W354H, a divanadate ester with glycerol is observed. Such species have precedence in solution and are known from the small molecule crystal database. Such species have not been observed in the active site of a phosphatase, as a functional phosphatase would rapidly catalyze their decomposition. The compromised functionality of the mutants allows the trapping of species that undoubtedly form in solution and are capable of binding at the active sites of PTPs, and, presumably, other phosphatases. In addition to monomeric vanadate, such higher-order vanadium-based molecules are likely involved in the interaction of vanadate with PTPs in solution. PMID:26445170

  11. Activation of R235A mutant orotidine 5'-monophosphate decarboxylase by the guanidinium cation: effective molarity of the cationic side chain of Arg-235.

    PubMed

    Barnett, Shonoi A; Amyes, Tina L; Wood, B McKay; Gerlt, John A; Richard, John P

    2010-02-01

    The R235A mutation at yeast orotidine 5'-monophosphate decarboxylase (OMPDC) results in a 1300-fold increase in K(m) and a 14-fold decrease in k(cat) for decarboxylation of orotidine 5'-monophosphate, corresponding to a 5.8 kcal/mol destabilization of the transition state. There is strong activation of this mutant enzyme by added guanidinium cation (Gua(+)): 1 M Gua(+) stabilizes the transition state by ca. 3 kcal/mol. This stabilization is due to the binding of Gua(+) to the binary E(mut) x OMP complex, with a K(d) of 50 mM, to form the 9-fold more reactive ternary E(mut) x OMP x Gua(+) complex. The "effective molarity" of the cationic side chain of Arg-235 at the wild-type enzyme is calculated to be 160 M.

  12. Active-site mutations of diphtheria toxin: effects of replacing glutamic acid-148 with aspartic acid, glutamine, or serine.

    PubMed

    Wilson, B A; Reich, K A; Weinstein, B R; Collier, R J

    1990-09-18

    Glutamic acid-148, an active-site residue of diphtheria toxin identified by photoaffinity labeling with NAD, was replaced with aspartic acid, glutamine, or serine by directed mutagenesis of the F2 fragment of the toxin gene. Wild-type and mutant F2 proteins were synthesized in Escherichia coli, and the corresponding enzymic fragment A moieties (DTA) were derived, purified, and characterized. The Glu----Asp (E148D), Glu----Gln (E148Q), and Glu----Ser (E148S) mutations caused reductions in NAD:EF-2 ADP-ribosyltransferase activity of ca. 100-, 250-, and 300-fold, respectively, while causing only minimal changes in substrate affinity. The effects of the mutations on NAD-glycohydrolase activity were considerably different; only a 10-fold reduction in activity was observed for E148S, and the E148D and E148Q mutants actually exhibited a small but reproducible increase in NAD-glycohydrolytic activity. Photolabeling by nicotinamide-radiolabeled NAD was diminished ca. 8-fold in the E148D mutant and was undetectable in the other mutants. The results confirm that Glu-148 plays a crucial role in the ADP-ribosylation of EF-2 and imply an important function for the side-chain carboxyl group in catalysis. The carboxyl group is also important for photochemical labeling by NAD but not for NAD-glycohydrolase activity. The pH dependence of the catalytic parameters for the ADP-ribosyltransferase reaction revealed a group in DTA-wt that titrates with an apparent pKa of 6.2-6.3 and is in the protonated state in the rate-determining step.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Counting Active Sites on Titanium Oxide-Silica Catalysts for Hydrogen Peroxide Activation through In Situ Poisoning with Phenylphosphonic Acid

    SciTech Connect

    Eaton, Todd R.; Boston, Andrew M.; Thompson, Anthony B.; Gray, Kimberly A.; Notestein, Justin M.

    2015-06-04

    Quantifying specific active sites in supported catalysts improves our understanding and assists in rational design. Supported oxides can undergo significant structural changes as surface densities increase from site-isolated cations to monolayers and crystallites, which changes the number of kinetically relevant sites. Herein, TiOx domains are titrated on TiOx–SiO2 selectively with phenylphosphonic acid (PPA). An ex situ method quantifies all fluid-accessible TiOx, whereas an in situ titration during cis-cyclooctene epoxidation provides previously unavailable values for the number of tetrahedral Ti sites on which H2O2 activation occurs. We use this method to determine the active site densities of 22 different catalysts with different synthesis methods, loadings, and characteristic spectra and find a single intrinsic turnover frequency for cis-cyclooctene epoxidation of (40±7) h-1. This simple method gives molecular-level insight into catalyst structure that is otherwise hidden when bulk techniques are used.

  14. Active site of tripeptidyl peptidase II from human erythrocytes is of the subtilisin type.

    PubMed Central

    Tomkinson, B; Wernstedt, C; Hellman, U; Zetterqvist, O

    1987-01-01

    The present report presents evidence that the amino acid sequence around the serine of the active site of human tripeptidyl peptidase II is of the subtilisin type. The enzyme from human erythrocytes was covalently labeled at its active site with [3H]diisopropyl fluorophosphate, and the protein was subsequently reduced, alkylated, and digested with trypsin. The labeled tryptic peptides were purified by gel filtration and repeated reversed-phase HPLC, and their amino-terminal sequences were determined. Residue 9 contained the radioactive label and was, therefore, considered to be the active serine residue. The primary structure of the part of the active site (residues 1-10) containing this residue was concluded to be Xaa-Thr-Gln-Leu-Met-Asx-Gly-Thr-Ser-Met. This amino acid sequence is homologous to the sequence surrounding the active serine of the microbial peptidases subtilisin and thermitase. These data demonstrate that human tripeptidyl peptidase II represents a potentially distinct class of human peptidases and raise the question of an evolutionary relationship between the active site of a mammalian peptidase and that of the subtilisin family of serine peptidases. PMID:3313395

  15. Evolution of anatase surface active sites probed by in situ sum-frequency phonon spectroscopy

    PubMed Central

    Cao, Yue; Chen, Shiyou; Li, Yadong; Gao, Yi; Yang, Deheng; Shen, Yuen Ron; Liu, Wei-Tao

    2016-01-01

    Surface active sites of crystals often govern their relevant surface chemistry, yet to monitor them in situ in real atmosphere remains a challenge. Using surface-specific sum-frequency spectroscopy, we identified the surface phonon mode associated with the active sites of undercoordinated titanium ions and conjoint oxygen vacancies, and used it to monitor them on anatase (TiO2) (101) under ambient conditions. In conjunction with theory, we determined related surface structure around the active sites and tracked the evolution of oxygen vacancies under ultraviolet irradiation. We further found that unlike in vacuum, the surface oxygen vacancies, which dominate the surface reactivity, are strongly regulated by ambient gas molecules, including methanol and water, as well as weakly associated species, such as nitrogen and hydrogen. The result revealed a rich interplay between prevailing ambient species and surface reactivity, which can be omnipresent in environmental and catalytic applications of titanium dioxides. PMID:27704049

  16. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase.

    PubMed

    Fenwick, Michael K; Mehta, Angad P; Zhang, Yang; Abdelwahed, Sameh H; Begley, Tadhg P; Ealick, Steven E

    2015-03-27

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active site metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.

  17. Solvent Tuning of Electrochemical Potentials in the Active Sites of HiPIP Versus Ferredoxin

    SciTech Connect

    Dey, A.; Francis, E.J.; Adams, M.W.W.; Babini, E.; Takahashi, Y.; Fukuyama, K.; Hodgson, K.O.; Hedman, B.; Solomon, E.I.; /Stanford U., Chem. Dept. /Georgia U. /Bologna U. /Osaka U. /SLAC, SSRL

    2009-04-29

    A persistent puzzle in the field of biological electron transfer is the conserved iron-sulfur cluster motif in both high potential iron-sulfur protein (HiPIP) and ferredoxin (Fd) active sites. Despite this structural similarity, HiPIPs react oxidatively at physiological potentials, whereas Fds are reduced. Sulfur K-edge x-ray absorption spectroscopy uncovers the substantial influence of hydration on this variation in reactivity. Fe-S covalency is much lower in natively hydrated Fd active sites than in HiPIPs but increases upon water removal; similarly, HiPIP covalency decreases when unfolding exposes an otherwise hydrophobically shielded active site to water. Studies on model compounds and accompanying density functional theory calculations support a correlation of Fe-S covalency with ease of oxidation and therefore suggest that hydration accounts for most of the difference between Fd and HiPIP reduction potentials.

  18. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase

    SciTech Connect

    Fenwick, Michael K.; Mehta, Angad P.; Zhang, Yang; Abdelwahed, Sameh H.; Begley, Tadhg P.; Ealick, Steven E.

    2015-03-27

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active site metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.

  19. Wasp recruitment to the T cell:APC contact site occurs independently of Cdc42 activation.

    PubMed

    Cannon, J L; Labno, C M; Bosco, G; Seth, A; McGavin, M H; Siminovitch, K A; Rosen, M K; Burkhardt, J K

    2001-08-01

    Cdc42 and WASP are critical regulators of actin polymerization whose function during T cell signaling is poorly understood. Using a novel reagent that specifically detects Cdc42-GTP in fixed cells, we found that activated Cdc42 localizes to the T cell:APC contact site in an antigen-dependent manner. TCR signaling alone was sufficient to induce localization of Cdc42-GTP, and functional Lck and Zap-70 kinases were required. WASP also localized to the T cell:APC contact site in an antigen-dependent manner. Surprisingly, WASP localization was independent of the Cdc42 binding domain but required the proline-rich domain. Our results indicate that localized WASP activation requires the integration of multiple signals: WASP is recruited via interaction with SH3 domain-containing proteins and is activated by Cdc42-GTP concentrated at the same site. PMID:11520460

  20. Geochemical evaluation of the land use and human activities at a Medieval harbor site, Masuda city, Shimane Prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Dalai, Banzragch; Ishiga, Hiroaki

    2014-05-01

    , F, I, TS, CaO, MnO and P2O5 in the building pillar area, probably due to the deposition of residential wastes. High level of As, Pb, Zn, Cu, V, Sc, MnO and Fe2O3 are found in the blacksmith area. These enrichments seem related to ancient anthropogenic effects, such as metallurgical activity at the harbor site. Iron melting, including slag, has been identified in the bottom of a furnace (bowl shape slag) in the eastern part of the southern area. A group of elements (Ni, Y, Nb, Zr, Th and TiO2) do not reflect the anthropogenic history. However, these elements and their ratios can be used to identify element sources, as well as to establish baseline concentrations of other elements which are influenced by anthropogenic and detrital inputs. The northern area of the harbor site contains sandy soils, and is bordered by sand dunes on its seaward side. This area mainly contains post holes from building pillars and ceramic fragments, and can be recognized as a living area for residents. Soils in the northern area are characterized by high Zr contents and relatively low abundances of most other elements (excluding Cr and TS). This enrichment is mainly due to textural differences in the soils, and is probably due to their sandy character.

  1. Mutations Closer to the Active Site Improve the Promiscuous Aldolase Activity of 4-Oxalocrotonate Tautomerase More Effectively than Distant Mutations.

    PubMed

    Rahimi, Mehran; van der Meer, Jan-Ytzen; Geertsema, Edzard M; Poddar, Harshwardhan; Baas, Bert-Jan; Poelarends, Gerrit J

    2016-07-01

    The enzyme 4-oxalocrotonate tautomerase (4-OT), which catalyzes enol-keto tautomerization as part of a degradative pathway for aromatic hydrocarbons, promiscuously catalyzes various carbon-carbon bond-forming reactions. These include the aldol condensation of acetaldehyde with benzaldehyde to yield cinnamaldehyde. Here, we demonstrate that 4-OT can be engineered into a more efficient aldolase for this condensation reaction, with a >5000-fold improvement in catalytic efficiency (kcat /Km ) and a >10(7) -fold change in reaction specificity, by exploring small libraries in which only "hotspots" are varied. The hotspots were identified by systematic mutagenesis (covering each residue), followed by a screen for single mutations that give a strong improvement in the desired aldolase activity. All beneficial mutations were near the active site of 4-OT, thus underpinning the notion that new catalytic activities of a promiscuous enzyme are more effectively enhanced by mutations close to the active site. PMID:27238293

  2. Testing the applicability of rapid on-site enzymatic activity detection for surface water monitoring

    NASA Astrophysics Data System (ADS)

    Stadler, Philipp; Vogl, Wolfgang; Juri, Koschelnik; Markus, Epp; Maximilian, Lackner; Markus, Oismüller; Monika, Kumpan; Peter, Strauss; Regina, Sommer; Gabriela, Ryzinska-Paier; Farnleitner Andreas, H.; Matthias, Zessner

    2015-04-01

    On-site detection of enzymatic activities has been suggested as a rapid surrogate for microbiological pollution monitoring of water resources (e.g. using glucuronidases, galactosidases, esterases). Due to the possible short measuring intervals enzymatic methods have high potential as near-real time water quality monitoring tools. This presentation describes results from a long termed field test. For twelve months, two ColiMinder devices (Vienna Water Monitoring, Austria) for on-site determination of enzymatic activity were tested for stream water monitoring at the experimental catchment HOAL (Hydrological Open Air Laboratory, Center for Water Resource Systems, Vienna University of Technology). The devices were overall able to follow and reflect the diverse hydrological and microbiological conditions of the monitored stream during the test period. Continuous data in high temporal resolution captured the course of enzymatic activity in stream water during diverse rainfall events. The method also proofed sensitive enough to determine diurnal fluctuations of enzymatic activity in stream water during dry periods. The method was able to capture a seasonal trend of enzymatic activity in stream water that matches the results gained from Colilert18 analysis for E. coli and coliform bacteria of monthly grab samples. Furthermore the comparison of ColiMinder data with measurements gained at the same test site with devices using the same method but having different construction design (BACTcontrol, microLAN) showed consistent measuring results. Comparative analysis showed significant differences between measured enzymatic activity (modified fishman units and pmol/min/100ml) and cultivation based analyses (most probable number, colony forming unit). Methods of enzymatic activity measures are capable to detect ideally the enzymatic activity caused by all active target bacteria members, including VBNC (viable but nonculturable) while cultivation based methods cannot detect VBNC

  3. Threatened and endangered wildlife species of the Hanford Site related to CERCLA characterization activities

    SciTech Connect

    Fitzner, R.E.; Weiss, S.G.; Stegen, J.A.

    1994-06-01

    The US Department of Energy`s (DOE) Hanford Site has been placed on the National Priorities List, which requires that it be remediated under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) or Superfund. Potentially contaminated areas of the Hanford Site were grouped into operable units, and detailed characterization and investigation plans were formulated. The DOE Richland Operations Office requested Westinghouse Hanford Company (WHC) to conduct a biological assessment of the potential impact of these characterization activities on the threatened, endangered, and sensitive wildlife species of the Hanford Site. Additional direction for WHC compliances with wildlife protection can be found in the Environmental Compliance Manual. This document is intended to meet these requirements, in part, for the CERCLA characterization activities, as well as for other work comparable in scope. This report documents the biological assessment and describes the pertinent components of the Hanford Site as well as the planned characterization activities. Also provided are accounts of endangered, threatened, and federal candidate wildlife species on the Hanford Site and information as to how human disturbances can affect these species. Potential effects of the characterization activities are described with recommendations for mitigation measures.

  4. The active site of low-temperature methane hydroxylation in iron-containing zeolites.

    PubMed

    Snyder, Benjamin E R; Vanelderen, Pieter; Bols, Max L; Hallaert, Simon D; Böttger, Lars H; Ungur, Liviu; Pierloot, Kristine; Schoonheydt, Robert A; Sels, Bert F; Solomon, Edward I

    2016-08-18

    An efficient catalytic process for converting methane into methanol could have far-reaching economic implications. Iron-containing zeolites (microporous aluminosilicate minerals) are noteworthy in this regard, having an outstanding ability to hydroxylate methane rapidly at room temperature to form methanol. Reactivity occurs at an extra-lattice active site called α-Fe(ii), which is activated by nitrous oxide to form the reactive intermediate α-O; however, despite nearly three decades of research, the nature of the active site and the factors determining its exceptional reactivity are unclear. The main difficulty is that the reactive species-α-Fe(ii) and α-O-are challenging to probe spectroscopically: data from bulk techniques such as X-ray absorption spectroscopy and magnetic susceptibility are complicated by contributions from inactive 'spectator' iron. Here we show that a site-selective spectroscopic method regularly used in bioinorganic chemistry can overcome this problem. Magnetic circular dichroism reveals α-Fe(ii) to be a mononuclear, high-spin, square planar Fe(ii) site, while the reactive intermediate, α-O, is a mononuclear, high-spin Fe(iv)=O species, whose exceptional reactivity derives from a constrained coordination geometry enforced by the zeolite lattice. These findings illustrate the value of our approach to exploring active sites in heterogeneous systems. The results also suggest that using matrix constraints to activate metal sites for function-producing what is known in the context of metalloenzymes as an 'entatic' state-might be a useful way to tune the activity of heterogeneous catalysts. PMID:27535535

  5. The active site of low-temperature methane hydroxylation in iron-containing zeolites

    NASA Astrophysics Data System (ADS)

    Snyder, Benjamin E. R.; Vanelderen, Pieter; Bols, Max L.; Hallaert, Simon D.; Böttger, Lars H.; Ungur, Liviu; Pierloot, Kristine; Schoonheydt, Robert A.; Sels, Bert F.; Solomon, Edward I.

    2016-08-01

    An efficient catalytic process for converting methane into methanol could have far-reaching economic implications. Iron-containing zeolites (microporous aluminosilicate minerals) are noteworthy in this regard, having an outstanding ability to hydroxylate methane rapidly at room temperature to form methanol. Reactivity occurs at an extra-lattice active site called α-Fe(II), which is activated by nitrous oxide to form the reactive intermediate α-O; however, despite nearly three decades of research, the nature of the active site and the factors determining its exceptional reactivity are unclear. The main difficulty is that the reactive species—α-Fe(II) and α-O—are challenging to probe spectroscopically: data from bulk techniques such as X-ray absorption spectroscopy and magnetic susceptibility are complicated by contributions from inactive ‘spectator’ iron. Here we show that a site-selective spectroscopic method regularly used in bioinorganic chemistry can overcome this problem. Magnetic circular dichroism reveals α-Fe(II) to be a mononuclear, high-spin, square planar Fe(II) site, while the reactive intermediate, α-O, is a mononuclear, high-spin Fe(IV)=O species, whose exceptional reactivity derives from a constrained coordination geometry enforced by the zeolite lattice. These findings illustrate the value of our approach to exploring active sites in heterogeneous systems. The results also suggest that using matrix constraints to activate metal sites for function—producing what is known in the context of metalloenzymes as an ‘entatic’ state—might be a useful way to tune the activity of heterogeneous catalysts.

  6. A Tale of Two Isomerases: Compact versus Extended Active Sites in Ketosteroid Isomerase and Phosphoglucose Isomerase

    SciTech Connect

    Somarowthu, Srinivas; Brodkin, Heather R.; D’Aquino, J. Alejandro; Ringe, Dagmar; Ondrechen, Mary Jo; Beuning, Penny J.

    2012-07-11

    Understanding the catalytic efficiency and specificity of enzymes is a fundamental question of major practical and conceptual importance in biochemistry. Although progress in biochemical and structural studies has enriched our knowledge of enzymes, the role in enzyme catalysis of residues that are not nearest neighbors of the reacting substrate molecule is largely unexplored experimentally. Here computational active site predictors, THEMATICS and POOL, were employed to identify functionally important residues that are not in direct contact with the reacting substrate molecule. These predictions then guided experiments to explore the active sites of two isomerases, Pseudomonas putida ketosteroid isomerase (KSI) and human phosphoglucose isomerase (PGI), as prototypes for very different types of predicted active sites. Both KSI and PGI are members of EC 5.3 and catalyze similar reactions, but they represent significantly different degrees of remote residue participation, as predicted by THEMATICS and POOL. For KSI, a compact active site of mostly first-shell residues is predicted, but for PGI, an extended active site in which residues in the first, second, and third layers around the reacting substrate are predicted. Predicted residues that have not been previously tested experimentally were investigated by site-directed mutagenesis and kinetic analysis. In human PGI, single-point mutations of the predicted second- and third-shell residues K362, H100, E495, D511, H396, and Q388 show significant decreases in catalytic activity relative to that of the wild type. The results of these experiments demonstrate that, as predicted, remote residues are very important in PGI catalysis but make only small contributions to catalysis in KSI.

  7. SABER: A computational method for identifying active sites for new reactions

    PubMed Central

    Nosrati, Geoffrey R; Houk, K N

    2012-01-01

    A software suite, SABER (Selection of Active/Binding sites for Enzyme Redesign), has been developed for the analysis of atomic geometries in protein structures, using a geometric hashing algorithm (Barker and Thornton, Bioinformatics 2003;19:1644–1649). SABER is used to explore the Protein Data Bank (PDB) to locate proteins with a specific 3D arrangement of catalytic groups to identify active sites that might be redesigned to catalyze new reactions. As a proof-of-principle test, SABER was used to identify enzymes that have the same catalytic group arrangement present in o-succinyl benzoate synthase (OSBS). Among the highest-scoring scaffolds identified by the SABER search for enzymes with the same catalytic group arrangement as OSBS were l-Ala d/l-Glu epimerase (AEE) and muconate lactonizing enzyme II (MLE), both of which have been redesigned to become effective OSBS catalysts, demonstrated by experiments. Next, we used SABER to search for naturally existing active sites in the PDB with catalytic groups similar to those present in the designed Kemp elimination enzyme KE07. From over 2000 geometric matches to the KE07 active site, SABER identified 23 matches that corresponded to residues from known active sites. The best of these matches, with a 0.28 Å catalytic atom RMSD to KE07, was then redesigned to be compatible with the Kemp elimination using RosettaDesign. We also used SABER to search for potential Kemp eliminases using a theozyme predicted to provide a greater rate acceleration than the active site of KE07, and used Rosetta to create a design based on the proteins identified. PMID:22492397

  8. SABER: a computational method for identifying active sites for new reactions.

    PubMed

    Nosrati, Geoffrey R; Houk, K N

    2012-05-01

    A software suite, SABER (Selection of Active/Binding sites for Enzyme Redesign), has been developed for the analysis of atomic geometries in protein structures, using a geometric hashing algorithm (Barker and Thornton, Bioinformatics 2003;19:1644-1649). SABER is used to explore the Protein Data Bank (PDB) to locate proteins with a specific 3D arrangement of catalytic groups to identify active sites that might be redesigned to catalyze new reactions. As a proof-of-principle test, SABER was used to identify enzymes that have the same catalytic group arrangement present in o-succinyl benzoate synthase (OSBS). Among the highest-scoring scaffolds identified by the SABER search for enzymes with the same catalytic group arrangement as OSBS were L-Ala D/L-Glu epimerase (AEE) and muconate lactonizing enzyme II (MLE), both of which have been redesigned to become effective OSBS catalysts, demonstrated by experiments. Next, we used SABER to search for naturally existing active sites in the PDB with catalytic groups similar to those present in the designed Kemp elimination enzyme KE07. From over 2000 geometric matches to the KE07 active site, SABER identified 23 matches that corresponded to residues from known active sites. The best of these matches, with a 0.28 Å catalytic atom RMSD to KE07, was then redesigned to be compatible with the Kemp elimination using RosettaDesign. We also used SABER to search for potential Kemp eliminases using a theozyme predicted to provide a greater rate acceleration than the active site of KE07, and used Rosetta to create a design based on the proteins identified. PMID:22492397

  9. Preliminary examination of the impacts of repository site characterization activities and facility construction and operation activities on Hanford air quality

    SciTech Connect

    Glantz, C.S.; Ramsdell, J.V.

    1986-04-01

    Air quality impacts that would result from site characterization activities and from the construction and operation of a high-level nuclear wste repository at Hanford are estimated using two simple atmospheric dispersion models, HANCHI and CHISHORT. Model results indicate that pollutant concentrations would not exceed ambient air quality standards at any point outside the Hanford fenceline or at any publicly accessible location within the Hanford Site. The increase in pollutant concentrations in nearby communities due to site activities would be minimal. HANCHI and CHISHORT are documented in the appendices of this document. Further study of the repository's impact on air quality will be conducted when more detailed project plans and work schedules are available.

  10. Conserved phosphorylation sites in the activation loop of the Arabidopsis phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity.

    PubMed

    Hartmann, Jens; Linke, Dennis; Bönniger, Christine; Tholey, Andreas; Sauter, Margret

    2015-12-15

    PSK (phytosulfokine) is a plant peptide hormone perceived by a leucine-rich repeat receptor kinase. Phosphosite mapping of epitope-tagged PSKR1 (phytosulfokine receptor 1) from Arabidopsis thaliana plants identified Ser(696) and Ser(698) in the JM (juxtamembrane) region and probably Ser(886) and/or Ser(893) in the AL (activation loop) as in planta phosphorylation sites. In vitro-expressed kinase was autophosphorylated at Ser(717) in the JM, and at Ser(733), Thr(752), Ser(783), Ser(864), Ser(911), Ser(958) and Thr(998) in the kinase domain. The LC-ESI-MS/MS spectra provided support that up to three sites (Thr(890), Ser(893) and Thr(894)) in the AL were likely to be phosphorylated in vitro. These sites are evolutionarily highly conserved in PSK receptors, indicative of a conserved function. Site-directed mutagenesis of the four conserved residues in the activation segment, Thr(890), Ser(893), Thr(894) and Thr(899), differentially altered kinase activity in vitro and growth-promoting activity in planta. The T899A and the quadruple-mutated TSTT-A (T890A/S893A/T894A/T899A) mutants were both kinase-inactive, but PSKR1(T899A) retained growth-promoting activity. The T890A and S893A/T894A substitutions diminished kinase activity and growth promotion. We hypothesize that phosphorylation within the AL activates kinase activity and receptor function in a gradual and distinctive manner that may be a means to modulate the PSK response.

  11. Conserved phosphorylation sites in the activation loop of the Arabidopsis phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity

    PubMed Central

    Hartmann, Jens; Linke, Dennis; Bönniger, Christine; Tholey, Andreas; Sauter, Margret

    2015-01-01

    PSK (phytosulfokine) is a plant peptide hormone perceived by a leucine-rich repeat receptor kinase. Phosphosite mapping of epitope-tagged PSKR1 (phytosulfokine receptor 1) from Arabidopsis thaliana plants identified Ser696 and Ser698 in the JM (juxtamembrane) region and probably Ser886 and/or Ser893 in the AL (activation loop) as in planta phosphorylation sites. In vitro-expressed kinase was autophosphorylated at Ser717 in the JM, and at Ser733, Thr752, Ser783, Ser864, Ser911, Ser958 and Thr998 in the kinase domain. The LC–ESI–MS/MS spectra provided support that up to three sites (Thr890, Ser893 and Thr894) in the AL were likely to be phosphorylated in vitro. These sites are evolutionarily highly conserved in PSK receptors, indicative of a conserved function. Site-directed mutagenesis of the four conserved residues in the activation segment, Thr890, Ser893, Thr894 and Thr899, differentially altered kinase activity in vitro and growth-promoting activity in planta. The T899A and the quadruple-mutated TSTT-A (T890A/S893A/T894A/T899A) mutants were both kinase-inactive, but PSKR1(T899A) retained growth-promoting activity. The T890A and S893A/T894A substitutions diminished kinase activity and growth promotion. We hypothesize that phosphorylation within the AL activates kinase activity and receptor function in a gradual and distinctive manner that may be a means to modulate the PSK response. PMID:26472115

  12. Active site remodeling accompanies thioester bond formation in the SUMO E1

    PubMed Central

    Olsen, Shaun K.; Capili, Allan D.; Lu, Xuequan; Tan, Derek S.; Lima, Christopher D.

    2009-01-01

    E1 enzymes activate ubiquitin (Ub) and ubiquitin-like (Ubl) proteins in two steps by carboxy-terminal adenylation and thioester bond formation to a conserved catalytic cysteine in the E1 Cys domain. The structural basis for these intermediates remains unknown. Here we report crystal structures for human SUMO E1 in complex with SUMO adenylate and tetrahedral intermediate analogs at 2.45 Å and 2.6 Å, respectively. These structures show that side chain contacts to ATP·Mg are released after adenylation to facilitate a 130 degree rotation of the Cys domain during thioester bond formation that is accompanied by remodeling of key structural elements including the helix that contains the E1 catalytic cysteine, the cross-over and re-entry loops, and refolding of two helices that are required for adenylation. These changes displace side chains required for adenylation with side chains required for thioester bond formation. Mutational and biochemical analyses suggest these mechanisms are conserved in other E1s. PMID:20164921

  13. Active site remodelling accompanies thioester bond formation in the SUMO E1

    SciTech Connect

    Olsen, Shaun K.; Capili, Allan D.; Lu, Xuequan; Tan, Derek S.; Lima, Christopher D.

    2010-03-30

    E1 enzymes activate ubiquitin (Ub) and ubiquitin-like (Ubl) proteins in two steps by carboxy-terminal adenylation and thioester bond formation to a conserved catalytic cysteine in the E1 Cys domain. The structural basis for these intermediates remains unknown. Here we report crystal structures for human SUMO E1 in complex with SUMO adenylate and tetrahedral intermediate analogues at 2.45 and 2.6 {angstrom}, respectively. These structures show that side chain contacts to ATP-Mg are released after adenylation to facilitate a 130 degree rotation of the Cys domain during thioester bond formation that is accompanied by remodelling of key structural elements including the helix that contains the E1 catalytic cysteine, the crossover and re-entry loops, and refolding of two helices that are required for adenylation. These changes displace side chains required for adenylation with side chains required for thioester bond formation. Mutational and biochemical analyses indicate these mechanisms are conserved in other E1s.

  14. Influence of the Length and Positioning of the Antiestrogenic Side Chain of Endoxifen and 4-Hydroxytamoxifen on Gene Activation and Growth of Estrogen Receptor Positive Cancer Cells

    PubMed Central

    2015-01-01

    Tamoxifen has biologically active metabolites: 4-hydroxytamoxifen (4OHT) and endoxifen. The E-isomers are not stable in solution as Z-isomerization occurs. We have synthesized fixed ring (FR) analogues of 4OHT and endoxifen as well as FR E and Z isomers with methoxy and ethoxy side chains. Pharmacologic properties were documented in the MCF-7 cell line, and prolactin synthesis was assessed in GH3 rat pituitary tumor cells. The FR Z-isomers of 4OHT and endoxifen were equivalent to 4OHT and endoxifen. Other test compounds used possessed partial estrogenic activity. The E-isomers of FR 4OHT and endoxifen had no estrogenic activity at therapeutic serum concentrations. None of the newly synthesized compounds were able to down-regulate ER levels. Molecular modeling demonstrated that some compounds would each create a best fit with a novel agonist conformation of the ER. The results demonstrate modulation by the ER complex of cell replication or gene transcription in cancer. PMID:24805199

  15. Wobble Pairs of the HDV Ribozyme Play Specific Roles in Stabilization of Active Site Dynamics

    PubMed Central

    Sripathi, Kamali N.; Banáš, Pavel; Reblova, Kamila; Šponer, Jiři; Otyepka, Michal

    2015-01-01

    The hepatitis delta virus (HDV) is the only known human pathogen whose genome contains a catalytic RNA motif (ribozyme). The overall architecture of the HDV ribozyme is that of a double-nested pseudoknot, with two GU pairs flanking the active site. Although extensive studies have shown that mutation of either wobble results in decreased catalytic activity, little work has focused on linking these mutations to specific structural effects on catalytic fitness. Here we use molecular dynamics simulations based on an activated structure to probe the active site dynamics as a result of wobble pair mutations. In both wild-type and mutant ribozymes, the in-line fitness of the active site (as a measure of catalytic proficiency) strongly depends on the presence of a C75(N3H3+)N1(O5′) hydrogen bond, which positions C75 as the general acid for the reaction. Our mutational analyses show that each GU wobble supports catalytically fit conformations in distinct ways; the reverse G25U20 wobble promotes high in-line fitness, high occupancy of the C75(N3H3+)G1(O5′) general-acid hydrogen bond and stabilization of the G1U37 wobble, while the G1U37 wobble acts more locally by stabilizing high in-line fitness and the C75(N3H3+)G1(O5′) hydrogen bond. We also find that stable type I A-minor and P1.1 hydrogen bonding above and below the active site, respectively, prevent local structural disorder from spreading and disrupting global conformation. Taken together, our results define specific, often redundant architectural roles for several structural motifs of the HDV ribozyme active site, expanding the known roles of these motifs within all HDV-like ribozymes and other structured RNAs. PMID:25631765

  16. Tuned by metals: the TET peptidase activity is controlled by 3 metal binding sites

    PubMed Central

    Colombo, Matteo; Girard, Eric; Franzetti, Bruno

    2016-01-01

    TET aminopeptidases are dodecameric particles shared in the three life domains involved in various biological processes, from carbon source provider in archaea to eye-pressure regulation in humans. Each subunit contains a dinuclear metal site (M1 and M2) responsible for the enzyme catalytic activity. However, the role of each metal ion is still uncharacterized. Noteworthy, while mesophilic TETs are activated by Mn2+, hyperthermophilic TETs prefers Co2+. Here, by means of anomalous x-ray crystallography and enzyme kinetics measurements of the TET3 aminopeptidase from the hyperthermophilic organism Pyrococcus furiosus (PfTET3), we show that M2 hosts the catalytic activity of the enzyme, while M1 stabilizes the TET3 quaternary structure and controls the active site flexibility in a temperature dependent manner. A new third metal site (M3) was found in the substrate binding pocket, modulating the PfTET3 substrate preferences. These data show that TET activity is tuned by the molecular interplay among three metal sites. PMID:26853450

  17. Human Activities in Natura 2000 Sites: A Highly Diversified Conservation Network

    NASA Astrophysics Data System (ADS)

    Tsiafouli, Maria A.; Apostolopoulou, Evangelia; Mazaris, Antonios D.; Kallimanis, Athanasios S.; Drakou, Evangelia G.; Pantis, John D.

    2013-05-01

    The Natura 2000 network was established across the European Union's (EU) Member States with the aim to conserve biodiversity, while ensuring the sustainability of human activities. However, to what kind and to what extent Natura 2000 sites are subject to human activities and how this varies across Member States remains unspecified. Here, we analyzed 111,269 human activity records from 14,727 protected sites in 20 Member States. The frequency of occurrence of activities differs among countries, with more than 86 % of all sites being subjected to agriculture or forestry. Activities like hunting, fishing, urbanization, transportation, and tourism are more frequently recorded in south European sites than in northern or eastern ones. The observed variations indicate that Natura 2000 networks are highly heterogeneous among EU Member States. Our analysis highlights the importance of agriculture in European landscapes and indicates possible targets for policy interventions at national, European, or "sub-European" level. The strong human presence in the Natura 2000 network throughout Member States, shows that conservation initiatives could succeed only by combining social and ecological sustainability and by ensuring the integration of policies affecting biodiversity.

  18. Active-Site Monovalent Cations Revealed in a 1.55 Å Resolution Hammerhead Ribozyme Structure

    PubMed Central

    Anderson, Michael; Schultz, Eric P.; Martick, Monika; Scott, William G.

    2013-01-01

    We have obtained a 1.55 Å crystal structure of a hammerhead ribozyme derived from Schistosoma mansoni in conditions that permit detailed observations of Na+ ion binding in the ribozyme's active site. At least two such Na+ ions are observed. The first Na+ ion binds to the N7 of G10.1 and the adjacent A9 phosphate in a manner identical to that previously observed for divalent cations. A second Na+ ion binds to the Hoogsteen face of G12, the general base in the hammerhead cleavage reaction, thereby potentially dissipating the negative charge of the catalytically active enolate form of the nucleotide base. A potential but more ambiguous third site bridges the A9 and scissile phosphates in a manner consistent with previous predictions. Hammerhead ribozymes have been observed to be active in the presence of high concentrations of monovalent cations, including Na+, but the mechanism by which monovalent cations substitute for divalent cations in hammerhead catalysis remains unclear. Our results enable us to suggest that Na+ directly and specifically substitutes for divalent cations in the hammerhead active site. The detailed geometry of the pre-catalytic active site complex is also revealed with a new level of precision, thanks to the quality of the electron density maps obtained from what is currently the highest resolution ribozyme structure in the protein data bank. PMID:23711504

  19. Lunar Far Side Regolith Depth

    NASA Astrophysics Data System (ADS)

    Bart, G. D.; Melosh, H. J.

    2005-08-01

    The lunar far side contains the South Pole Aitken Basin, which is the largest known impact basin in the solar system, and is enhanced in titanium and iron compared to the rest of the lunar highlands. Although we have known of this enigmatic basin since the 60's, most lunar photography and science covered the equatorial near side where the Apollo spacecraft landed. With NASA's renewed interest in the Moon, the South Pole Aitken Basin is a likely target for future exploration. The regolith depth is a crucial measurement for understanding the source of the surface material in the Basin. On the southern far side of the Moon (20 S, 180 W), near the north edge of the Basin, we determined the regolith depth by examining 11 flat-floored craters about 200 m in diameter. We measured the ratio of the diameter of the flat floor to the diameter of the crater, and used it to calculate the regolith thickness using the method of Quaide and Oberbeck (1968). We used Apollo 15 panoramic images --- still the highest resolution images available for this region of the Moon. We found the regolith depth at that location to be about 40 m. This value is significantly greater than values for the lunar near side: 3 m (Oceanus Procellarum), 16 m (Hipparchus), and 1-10 m at the Surveyor landing sites. The thicker value obtained for the far side regolith is consistent with the older age of the far side. It also suggests that samples returned from the far side may have originated from deeper beneath the surface than their near side counterparts.

  20. Structure of inorganic pyrophosphatase from Staphylococcus aureus reveals conformational flexibility of the active site.

    PubMed

    Gajadeera, Chathurada S; Zhang, Xinyi; Wei, Yinan; Tsodikov, Oleg V

    2015-02-01

    Cytoplasmic inorganic pyrophosphatase (PPiase) is an enzyme essential for survival of organisms, from bacteria to human. PPiases are divided into two structurally distinct families: family I PPiases are Mg(2+)-dependent and present in most archaea, eukaryotes and prokaryotes, whereas the relatively less understood family II PPiases are Mn(2+)-dependent and present only in some archaea, bacteria and primitive eukaryotes. Staphylococcus aureus (SA), a dangerous pathogen and a frequent cause of hospital infections, contains a family II PPiase (PpaC), which is an attractive potential target for development of novel antibacterial agents. We determined a crystal structure of SA PpaC in complex with catalytic Mn(2+) at 2.1Å resolution. The active site contains two catalytic Mn(2+) binding sites, each half-occupied, reconciling the previously observed 1:1 Mn(2+):enzyme stoichiometry with the presence of two divalent metal ion sites in the apo-enzyme. Unexpectedly, despite the absence of the substrate or products in the active site, the two domains of SA PpaC form a closed active site, a conformation observed in structures of other family II PPiases only in complex with substrate or product mimics. A region spanning residues 295-298, which contains a conserved substrate binding RKK motif, is flipped out of the active site, an unprecedented conformation for a PPiase. Because the mutant of Arg295 to an alanine is devoid of activity, this loop likely undergoes an induced-fit conformational change upon substrate binding and product dissociation. This closed conformation of SA PPiase may serve as an attractive target for rational design of inhibitors of this enzyme. PMID:25576794

  1. Analysis of active site residues of the antiviral protein from summer leaves from Phytolacca americana by site-directed mutagenesis.

    PubMed

    Poyet, J L; Hoeveler, A; Jongeneel, C V

    1998-12-30

    The summer leaf isoform of the pokeweed (Phytolacca americana) antiviral protein, PAP II, was produced in high yields from inclusion bodies in recombinant E. coli. On the basis of its sequence similarity with the spring leaf isoform (PAP I) and with the A chain of ricin, a three-dimensional model of the protein was constructed as an aid in the design of active site mutants. PAP II variants mutated in residues Asp 88 (D88N), Tyr 117 (Y117S), Glu 172 (E172Q), Arg 175 (R175H) and a combination of Asp 88 and Arg 175 (D88N/R175H) were produced in E. coli and assayed for their ability to inhibit protein synthesis in a rabbit reticulocyte lysate. All of these mutations had effects deleterious to the enzymatic activity of PAP II. The results were interpreted in the light of three reaction mechanisms proposed for ribosome-inactivating proteins (RIPs). We conclude that none of the proposed mechanisms is entirely consistent with the data presented here.

  2. NMR structure of the active conformation of the Varkud satellite ribozyme cleavage site

    PubMed Central

    Hoffmann, Bernd; Mitchell, G. Thomas; Gendron, Patrick; Major, François; Andersen, Angela A.; Collins, Richard A.; Legault, Pascale

    2003-01-01

    Substrate cleavage by the Neurospora Varkud satellite (VS) ribozyme involves a structural change in the stem-loop I substrate from an inactive to an active conformation. We have determined the NMR solution structure of a mutant stem-loop I that mimics the active conformation of the cleavage site internal loop. This structure shares many similarities, but also significant differences, with the previously determined structures of the inactive internal loop. The active internal loop displays different base-pairing interactions and forms a novel RNA fold composed exclusively of sheared G-A base pairs. From chemical-shift mapping we identified two Mg2+ binding sites in the active internal loop. One of the Mg2+ binding sites forms in the active but not the inactive conformation of the internal loop and is likely important for catalysis. Using the structure comparison program mc-search, we identified the active internal loop fold in other RNA structures. In Thermus thermophilus 16S rRNA, this RNA fold is directly involved in a long-range tertiary interaction. An analogous tertiary interaction may form between the active internal loop of the substrate and the catalytic domain of the VS ribozyme. The combination of NMR and bioinformatic approaches presented here has identified a novel RNA fold and provides insights into the structural basis of catalytic function in the Neurospora VS ribozyme. PMID:12782785

  3. Maintenance of plastid RNA editing activities independently of their target sites

    PubMed Central

    Tillich, Michael; Poltnigg, Peter; Kushnir, Sergei; Schmitz-Linneweber, Christian

    2006-01-01

    RNA editing in plant organelles is mediated by site-specific, nuclear-encoded factors. Previous data suggested that the maintenance of these factors depends on the presence of their rapidly evolving cognate sites. The surprising ability of allotetraploid Nicotiana tabacum (tobacco) to edit a foreign site in the chloroplast ndhA messenger RNA was thought to be inherited from its diploid male ancestor, Nicotiana tomentosiformis. Here, we show that the same ndhA editing activity is also present in Nicotiana sylvestris, which is the female diploid progenitor of tobacco and which lacks the ndhA site. Hence, heterologous editing is not simply a result of tobacco's allopolyploid genome organization. Analyses of other editing sites after sexual or somatic transfer between land plants showed that heterologous editing occurs at a surprisingly high frequency. This suggests that the corresponding editing activities are conserved despite the absence of their target sites, potentially because they serve other functions in the plant cell. PMID:16415790

  4. Distinct Roles of the Active-site Mg2+ Ligands, Asp882 and Asp705, of DNA Polymerase I (Klenow Fragment) during the Prechemistry Conformational Transitions*

    PubMed Central

    Bermek, Oya; Grindley, Nigel D. F.; Joyce, Catherine M.

    2011-01-01

    DNA polymerases catalyze the incorporation of deoxynucleoside triphosphates into a growing DNA chain using a pair of Mg2+ ions, coordinated at the active site by two invariant aspartates, whose removal by mutation typically reduces the polymerase activity to barely detectable levels. Using two stopped-flow fluorescence assays that we developed previously, we have investigated the role of the carboxylate ligands, Asp705 and Asp882, of DNA polymerase I (Klenow fragment) in the early prechemistry steps that prepare the active site for catalysis. We find that neither carboxylate is required for an early conformational transition, reported by a 2-aminopurine probe, that takes place in the open ternary complex after binding of the complementary dNTP. However, the subsequent fingers-closing step requires Asp882; this step converts the open ternary complex into the closed conformation, creating the active-site geometry required for catalysis. Crystal structures indicate that the Asp882 position changes very little during fingers-closing; this side chain may therefore serve as an anchor point to receive the dNTP-associated metal ion as the nucleotide is delivered into the active site. The Asp705 carboxylate is not required until after the fingers-closing step, and we suggest that its role is to facilitate the entry of the second Mg2+ into the active site. The two early prechemistry steps that we have studied take place normally at very low Mg2+ concentrations, although higher concentrations are needed for covalent nucleotide addition, consistent with the second metal ion entering the ternary complex after fingers-closing. PMID:21084297

  5. A facile reflux procedure to increase active surface sites form highly active and durable supported palladium@platinum bimetallic nanodendrites

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Li, Yingjun; Liu, Baocang; Xu, Guangran; Zhang, Geng; Zhao, Qi; Zhang, Jun

    2015-11-01

    A series of well-dispersed bimetallic Pd@Pt nanodendrites uniformly supported on XC-72 carbon black are fabricated by using different capping agents. These capping agents are essential for the branched morphology control. However, the surfactant adsorbed on the nanodendrites surface blocks the access of reactant molecules to the active surface sites, and the catalytic activities of these bimetallic nanodendrites are significantly restricted. Herein, a facile reflux procedure to effectively remove the capping agent molecules without significantly affecting their sizes is reported for activating supported nanocatalysts. More significantly, the structure and morphology of the nanodendrites can also be retained, enhancing the numbers of active surface sites, catalytic activity and stability toward methanol and ethanol electro-oxidation reactions. The as-obtained hot water reflux-treated Pd@Pt/C catalyst manifests superior catalytic activity and stability both in terms of surface and mass specific activities, as compared to the untreated catalysts and the commercial Pt/C and Pd/C catalysts. We anticipate that this effective and facile removal method has more general applicability to highly active nanocatalysts prepared with various surfactants, and should lead to improvements in environmental protection and energy production.

  6. Active site diversification of P450cam with indole generates catalysts for benzylic oxidation reactions

    PubMed Central

    Herter, Susanne; Kranz, David C; Turner, Nicholas J

    2015-01-01

    Summary Cytochrome P450 monooxygenases are useful biocatalysts for C–H activation, and there is a need to expand the range of these enzymes beyond what is naturally available. A panel of 93 variants of active self-sufficient P450cam[Tyr96Phe]-RhFRed fusion enzymes with a broad diversity in active site amino acids was developed by screening a large mutant library of 16,500 clones using a simple, highly sensitive colony-based colorimetric screen against indole. These mutants showed distinct fingerprints of activity not only when screened in oxidations of substituted indoles but also for unrelated oxidations such as benzylic hydroxylations. PMID:26664590

  7. Active site diversification of P450cam with indole generates catalysts for benzylic oxidation reactions.

    PubMed

    Kelly, Paul P; Eichler, Anja; Herter, Susanne; Kranz, David C; Turner, Nicholas J; Flitsch, Sabine L

    2015-01-01

    Cytochrome P450 monooxygenases are useful biocatalysts for C-H activation, and there is a need to expand the range of these enzymes beyond what is naturally available. A panel of 93 variants of active self-sufficient P450cam[Tyr96Phe]-RhFRed fusion enzymes with a broad diversity in active site amino acids was developed by screening a large mutant library of 16,500 clones using a simple, highly sensitive colony-based colorimetric screen against indole. These mutants showed distinct fingerprints of activity not only when screened in oxidations of substituted indoles but also for unrelated oxidations such as benzylic hydroxylations.

  8. Active site diversification of P450cam with indole generates catalysts for benzylic oxidation reactions.

    PubMed

    Kelly, Paul P; Eichler, Anja; Herter, Susanne; Kranz, David C; Turner, Nicholas J; Flitsch, Sabine L

    2015-01-01

    Cytochrome P450 monooxygenases are useful biocatalysts for C-H activation, and there is a need to expand the range of these enzymes beyond what is naturally available. A panel of 93 variants of active self-sufficient P450cam[Tyr96Phe]-RhFRed fusion enzymes with a broad diversity in active site amino acids was developed by screening a large mutant library of 16,500 clones using a simple, highly sensitive colony-based colorimetric screen against indole. These mutants showed distinct fingerprints of activity not only when screened in oxidations of substituted indoles but also for unrelated oxidations such as benzylic hydroxylations. PMID:26664590

  9. CO Oxidation on Au/TiO2: Condition-Dependent Active Sites and Mechanistic Pathways.

    PubMed

    Wang, Yang-Gang; Cantu, David C; Lee, Mal-Soon; Li, Jun; Glezakou, Vassiliki-Alexandra; Rousseau, Roger

    2016-08-24

    We present results of ab initio electronic structure and molecular dynamics simulations (AIMD), as well as a microkinetic model of CO oxidation catalyzed by TiO2 supported Au nanocatalysts. A coverage-dependent microkinetic analysis, based on energetics obtained with density functional methods, shows that the dominant kinetic pathway, activated oxygen species, and catalytic active sites are all strongly depended on both temperature and oxygen partial pressure. Under oxidizing conditions and T < 400 K, the prevalent pathway involves a dynamic single atom catalytic mechanism. This reaction is catalyzed by a transient Au-CO species that migrates from the Au-cluster onto a surface oxygen adatom. It subsequently reacts with the TiO2 support via a Mars van Krevelen mechanism to form CO2 and finally the Au atom reintegrates back into the gold cluster to complete the catalytic cycle. At 300 ≤ T ≤ 600 K, oxygen-bound single Oad-Au(+)-CO sites and the perimeter Au-sites of the nanoparticle work in tandem to optimally catalyze the reaction. Above 600 K, a variety of alternate pathways associated with both single-atom and the perimeter sites of the Au nanoparticle are found to be active. Under low oxygen pressures, Oad-Au(+)-CO species can be a source of catalyst deactivation and the dominant pathway involves only Au-perimeter sites. A detailed comparison of the current model and the existing literature resolves many apparent inconsistencies in the mechanistic interpretations. PMID:27480512

  10. A unique DNase activity shares the active site with ATPase activity of the RecA/Rad51 homologue (Pk-REC) from a hyperthermophilic archaeon.

    PubMed

    Rashid, N; Morikawa, M; Kanaya, S; Atomi, H; Imanaka, T

    1999-02-19

    A RecA/Rad51 homologue from Pyrococcus kodakaraensis KOD1 (Pk-REC) is the smallest protein among various RecA/Rad51 homologues. Nevertheless, Pk-Rec is a super multifunctional protein and shows a deoxyribonuclease activity. This deoxyribonuclease activity was inhibited by 3 mM or more ATP, suggesting that the catalytic centers of the ATPase and deoxyribonuclease activities are overlapped. To examine whether these two enzymatic activities share the same active site, a number of site-directed mutations were introduced into Pk-REC and the ATPase and deoxyribonuclease activities of the mutant proteins were determined. The mutant enzyme in which double mutations Lys-33 to Ala and Thr-34 to Ala were introduced, fully lost both of these activities, indicating that Lys-33 and/or Thr-34 are important for both ATPase and deoxyribonuclease activities. The mutation of Asp-112 to Ala slightly and almost equally reduced both ATPase and deoxyribonuclease activities. In addition, the mutation of Glu-54 to Gln did not seriously affect the ATPase, deoxyribonuclease, and UV tolerant activities. These results strongly suggest that the active sites of the ATPase and deoxyribonuclease activities of Pk-REC are common. It is noted that unlike Glu-96 in Escherichia coli RecA, which has been proposed to be a catalytic residue for the ATPase activity, the corresponding residual Glu-54 in Pk-REC is not involved in the catalytic function of the protein.

  11. Docking and molecular dynamics studies at trypanothione reductase and glutathione reductase active sites.

    PubMed

    Iribarne, Federico; Paulino, Margot; Aguilera, Sara; Murphy, Miguel; Tapia, Orlando

    2002-05-01

    A theoretical docking study on the active sites of trypanothione reductase (TR) and glutathione reductase (GR) with the corresponding natural substrates, trypanothione disulfide (T[S]2) and glutathione disulfide (GSSG), is reported. Molecular dynamics simulations were carried out in order to check the robustness of the docking results. The energetic results are in agreement with previous experimental findings and show the crossed complexes have lower stabilization energies than the natural ones. To test DOCK3.5, four nitro furanic compounds, previously designed as potentially active anti-chagasic molecules, were docked at the GR and TR active sites with the DOCK3.5 procedure. A good correlation was found between differential inhibitory activity and relative interaction energy (affinity). The results provide a validation test for the use of DOCK3.5 in connection with the design of anti-chagasic drugs.

  12. Active sites and mechanisms for direct oxidation of benzene to phenol over carbon catalysts.

    PubMed

    Wen, Guodong; Wu, Shuchang; Li, Bo; Dai, Chunli; Su, Dang Sheng

    2015-03-23

    The direct oxidation of benzene to phenol with H2 O2 as the oxidizer, which is regarded as an environmentally friendly process, can be efficiently catalyzed by carbon catalysts. However, the detailed roles of carbon catalysts, especially what is the active site, are still a topic of debate controversy. Herein, we present a fundamental consideration of possible mechanisms for this oxidation reaction by using small molecular model catalysts, Raman spectra, static secondary ion mass spectroscopy (SIMS), DFT calculations, quasi in situ ATR-IR and UV spectra. Our study indicates that the defects, being favorable for the formation of active oxygen species, are the active sites for this oxidation reaction. Furthermore, one type of active defect, namely the armchair configuration defect was successfully identified.

  13. Sphingosine-1-phosphate receptor 1 reporter mice reveal receptor activation sites in vivo

    PubMed Central

    Kono, Mari; Tucker, Ana E.; Tran, Jennifer; Bergner, Jennifer B.; Turner, Ewa M.; Proia, Richard L.

    2014-01-01

    Activation of the GPCR sphingosine-1-phosphate receptor 1 (S1P1) by sphingosine-1-phosphate (S1P) regulates key physiological processes. S1P1 activation also has been implicated in pathologic processes, including autoimmunity and inflammation; however, the in vivo sites of S1P1 activation under normal and disease conditions are unclear. Here, we describe the development of a mouse model that allows in vivo evaluation of S1P1 activation. These mice, known as S1P1 GFP signaling mice, produce a S1P1 fusion protein containing a transcription factor linked by a protease cleavage site at the C terminus as well as a β-arrestin/protease fusion protein. Activated S1P1 recruits the β-arrestin/protease, resulting in the release of the transcription factor, which stimulates the expression of a GFP reporter gene. Under normal conditions, S1P1 was activated in endothelial cells of lymphoid tissues and in cells in the marginal zone of the spleen, while administration of an S1P1 agonist promoted S1P1 activation in endothelial cells and hepatocytes. In S1P1 GFP signaling mice, LPS-mediated systemic inflammation activated S1P1 in endothelial cells and hepatocytes via hematopoietically derived S1P. These data demonstrate that S1P1 GFP signaling mice can be used to evaluate S1P1 activation and S1P1-active compounds in vivo. Furthermore, this strategy could be potentially applied to any GPCR to identify sites of receptor activation during normal physiology and disease. PMID:24667638

  14. Calorimetric studies of the interactions of metalloenzyme active site mimetics with zinc-binding inhibitors.

    PubMed

    Robinson, Sophia G; Burns, Philip T; Miceli, Amanda M; Grice, Kyle A; Karver, Caitlin E; Jin, Lihua

    2016-07-19

    The binding of drugs to metalloenzymes is an intricate process that involves several interactions, including binding of the drug to the enzyme active site metal, as well as multiple interactions between the drug and the enzyme residues. In order to determine the free energy contribution of Zn(2+) binding by known metalloenzyme inhibitors without the other interactions, valid active site zinc structural mimetics must be formed and binding studies need to be performed in biologically relevant conditions. The potential of each of five ligands to form a structural mimetic with Zn(2+) was investigated in buffer using Isothermal Titration Calorimetry (ITC). All five ligands formed strong 1 : 1 (ligand : Zn(2+)) binary complexes. The complexes were used in further ITC experiments to study their interaction with 8-hydroxyquinoline (8-HQ) and/or acetohydroxamic acid (AHA), two bidentate anionic zinc-chelating enzyme inhibitors. It was found that tetradentate ligands were not suitable for creating zinc structural mimetics for inhibitor binding in solution due to insufficient coordination sites remaining on Zn(2+). A stable binary complex, [Zn(BPA)](2+), which was formed by a tridentate ligand, bis(2-pyridylmethyl)amine (BPA), was found to bind one AHA in buffer or a methanol : buffer mixture (60 : 40 by volume) at pH 7.25 or one 8-HQ in the methanol : buffer mixture at pH 6.80, making it an effective structural mimetic for the active site of zinc metalloenzymes. These results are consistent with the observation that metalloenzyme active site zinc ions have three residues coordinated to them, leaving one or two sites open for inhibitors to bind. Our findings indicate that Zn(BPA)X2 can be used as an active site structural mimetic for zinc metalloenzymes for estimating the free energy contribution of zinc binding to the overall inhibitor active site interactions. Such use will help aid in the rational design of inhibitors to a variety of zinc metalloenzymes

  15. Identification of active sites in gold-catalyzed hydrogenation of acrolein.

    PubMed

    Mohr, Christian; Hofmeister, Herbert; Radnik, Jörg; Claus, Peter

    2003-02-19

    The active sites of supported gold catalysts, favoring the adsorption of C=O groups of acrolein and subsequent reaction to allyl alcohol, have been identified as edges of gold nanoparticles. After our recent finding that this reaction preferentially occurs on single crystalline particles rather than multiply twinned ones, this paper reports on a new approach to distinguish different features of the gold particle morphology. Elucidation of the active site issue cannot be simply done by varying the size of gold particles, since the effects of faceting and multiply twinned particles may interfere. Therefore, modification of the gold particle surface by indium has been used to vary the active site characteristics of a suitable catalyst, and a selective decoration of gold particle faces has been observed, leaving edges free. This is in contradiction to theoretical predictions, suggesting a preferred occupation of the low-coordinated edges of the gold particles. On the bimetallic catalyst, the desired allyl alcohol is the main product (selectivity 63%; temperature 593 K, total pressure p(total) = 2 MPa). From the experimentally proven correlation between surface structure and catalytic behavior, the edges of single crystalline gold particles have been identified as active sites for the preferred C=O hydrogenation. PMID:12580618

  16. Evidence for surface Ag + complexes as the SERS-active sites on Ag electrodes

    NASA Astrophysics Data System (ADS)

    Watanabe, T.; Kawanami, O.; Honda, K.; Pettinger, B.

    1983-12-01

    Evidence is given that SERS-active sites at Ag electrodes are associated with Ag + ions, forming sparingly soluble surface complexes with ligands such as pyridine molecules and halide ions. Such surface Ag + complexes contribute a factor of >800 to the overall (10 7-fold) enhancement, possibly via a resonance Raman effect.

  17. Strategies and Activities for Using Local Communities as Environmental Education Sites.

    ERIC Educational Resources Information Center

    Roth, Charles E.; Lockwood, Linda G.

    Presented are over 100 environmental education activities which use the local community for a learning site and resource. These lessons are grouped under seven topical headings: (1) biological neighbors, (2) physical environs, (3) built environs, (4) social environs, (5) understanding ourselves, (6) influencing change, and (7) improvement and…

  18. 78 FR 18576 - Agency Information Collection Activities; Comment Request; Experimental Sites Data Collection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... Agency Information Collection Activities; Comment Request; Experimental Sites Data Collection Instrument... information collection requirements and provide the requested data in the desired format. ED is soliciting... collection instrument will be used to collect specific information/performance data for analysis of...

  19. Penicillin Use in Meningococcal Disease Management: Active Bacterial Core Surveillance Sites, 2009

    PubMed Central

    Blain, Amy E.; Mandal, Sema; Wu, Henry; MacNeil, Jessica R.; Harrison, Lee H.; Farley, Monica M.; Lynfield, Ruth; Miller, Lisa; Nichols, Megin; Petit, Sue; Reingold, Arthur; Schaffner, William; Thomas, Ann; Zansky, Shelley M.; Anderson, Raydel; Harcourt, Brian H.; Mayer, Leonard W.; Clark, Thomas A.; Cohn, Amanda C.

    2016-01-01

    In 2009, in the Active Bacterial Core surveillance sites, penicillin was not commonly used to treat meningococcal disease. This is likely because of inconsistent availability of antimicrobial susceptibility testing and ease of use of third-generation cephalosporins. Consideration of current practices may inform future meningococcal disease management guidelines. PMID:27704009

  20. The Thumbs Up Ecology Curriculum: A Fun Group of School Site Activities for Sixth Graders.

    ERIC Educational Resources Information Center

    Smith, John; And Others

    This guide is a collection of "fun" school site activities for sixth graders. Some of the topics covered are: animals, trees, energy and lifestyle, land use and you, energy conservation, and car-pooling. Each section offers both introductory information about the topic as well as questions to ponder such as what, so what, now what, and another way…

  1. 78 FR 33908 - Commercial Wind Lease Issuance and Site Assessment Activities on the Atlantic Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... identified Wind Energy Area (WEA) on the OCS offshore Rhode Island (RI) and Massachusetts (MA). The revised... Bureau of Ocean Energy Management Commercial Wind Lease Issuance and Site Assessment Activities on the.... BOEM may issue one or more commercial wind energy leases in the WEA. The competitive lease process...

  2. 77 FR 3460 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-24

    ... published a final rule under 10 CFR Part 765 in the Federal Register on May 23, 1994, (59 FR 26714) to carry... for reimbursement. DOE amended the final rule on June 3, 2003, (68 FR 32955) to adopt several... Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites AGENCY: Department...

  3. 75 FR 71677 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... published a final rule under 10 CFR Part 765 in the Federal Register on May 23, 1994, (59 FR 26714) to carry... for reimbursement. DOE amended the final rule on June 3, 2003, (68 FR 32955) to adopt several... Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites AGENCY: Department...

  4. Archaeological Activity Report: Post-Review Discoveries Within 45BN431 at Solid Waste Site 128-F-2

    SciTech Connect

    T. E. Marceau; J. J. Sharpe

    2006-12-21

    During monitoring of remedial activities at Solid Waste Site 128-F-2 on August 19, 2005, a concentration of mussel shell was discovered in the west wall of a trench in the northen section of the waste site.

  5. Rearrangement mutations on the 5' side of the qa-2 gene of Neurospora implicate two regions of qa-1F activator-protein interaction.

    PubMed Central

    Geever, R F; Murayama, T; Case, M E; Giles, N H

    1986-01-01

    Transcriptional activation of the Neurospora crassa qa genes normally requires the positive regulatory gene, qa-1F+, whose function is controlled by the inducer quinic acid and by the product of the negative regulatory gene, qa-1S+. The properties of qa-1F+ activator have been examined in transcriptional mutations of the qa-2 structural gene, in which activator-independent transcription of qa-2 (qa-2ai mutants) occurs in strains having a qa-1F- gene. Seven qa-2ai mutants with DNA rearrangements in different 5' regions of qa-2 were analyzed in qa-1F+ strains. In five with rearrangements at position -190 or further upstream, expression of the qa-2 gene was inducible, and induction was accompanied by a change in the initiation site for transcription from position -45, characteristic of constitutive initiation in qa-2ai mutants to position +1, characteristic of the induced wild type. In two mutants with breakpoints at positions -86 and -53, qa-2 transcription initiated from upstream sequences within the rearrangements but not at the +1 site, and qa-2 expression was noninducible. The results indicate that (i) sequences between positions -190 and -86 are required for positive control of initiation at position +1, and (ii) negative control does not require sequences downstream of position -86. Additional evidence suggests that the product of the qa-1F+ gene in the noninduced state may also interact with distal upstream sequences positioned midway between divergently transcribed qa genes. Images PMID:2940595

  6. Side Effects (Management)

    MedlinePlus

    ... Cancer is Treated Side Effects Dating, Sex, and Reproduction Advanced Cancer For Children For Teens For Young ... Cancer is Treated Side Effects Dating, Sex, and Reproduction Advanced Cancer For Children For Teens For Young ...

  7. Conformational dynamics of the active site loop of S-adenosylmethionine synthetase illuminated by site-directed spin labeling.

    PubMed

    Taylor, John C; Markham, George D

    2003-07-15

    S-adenosylmethionine synthetase (ATP: L-methionine S-adenosyltransferase, methionine adenosyltransferase, a.k.a. MAT) is one of numerous enzymes that have a flexible polypeptide loop that moves to gate access to the active site in a motion that is closely coupled to catalysis. Crystallographic studies of this tetrameric enzyme have shown that the loop is closed in the absence of bound substrates. However, the loop must open to allow substrate binding and a variety of data indicate that the loop is closed during the catalytic steps. Previous kinetic studies indicate that during turnover loop motion occurs on a time scale of 10(-2)s, ca. 10-fold faster than chemical transformations and turnover. Site-directed spin labeling has been used to introduce nitroxide groups at two positions in the loop to illuminate how the motion of the loop is affected by substrate binding. The two loop mutants constructed, G105C and D107C, retain wild type levels of MAT activity; attachment of a methanethiosulfonate spin label to convert the cysteine to the "R1" residue reduced the k(cat) only for the labeled D107R1 form (7-fold). The K(m) value for methionine increased 2- to 4-fold for the cysteine mutants and 2- to 7-fold for the labeled proteins, whereas the K(m) for ATP was changed by at most 2-fold. EPR spectra for both labeled proteins are nearly identical and show the presence of two major spin label environments with rotational diffusion rates differing by approximately 10-fold; the slower rate is ca. 4-fold faster than the estimated protein rotational rate. The spectra are not altered by addition of substrates or products. At both positions the less mobile conformation constitutes ca. 65% of the total species, indicating an equilibrium that only slightly favors one form, that in which the label is more immobilized. The equilibrium constant that relates the two forms is comparable to the equilibrium constant of 1.5 for a conformational change that was previously deduced from the

  8. Homology model of human retinoic acid metabolising enzyme cytochrome P450 26A1 (CYP26A1): active site architecture and ligand binding.

    PubMed

    Gomaa, Mohamed Sayed; Yee, Sook Wah; Milbourne, Ceri Elizabeth; Barbera, Maria Chiara; Simons, Claire; Brancale, Andrea

    2006-08-01

    Homology models of cytochrome P450 RA1 (CYP26A1) were constructed using three human P450 structures, CYP2C8, CYP2C9 and CYP3A4 as templates for the model building. Using MOE software the lowest energy CYP26A1 model was then assessed for stereochemical quality and side chain environment. Further active site optimisation of the CYP26A1 model built using the CYP3A4 template was performed by molecular dynamics to generate a final CYP26A1 model. The natural substrate, all-trans-retinoic acid (atRA), and inhibitor R 15866, were docked into the model allowing further validation of the active site architecture. Using the docking studies structurally and functionally important residues were identified with subsequent characterisation of secondary structure. Multiple hydrophobic interactions, including the side chains of TRP112, PHE299, PHE222, PHE84, PHE374 and PRO371, are important for binding of atRA and R115866. Additional hydrogen bonding interactions were noted as follows: atRA-- C==O of the atRA carboxylate group and ARG86; R115866--benzothiazole nitrogen and the backbone NH of SER115.

  9. Macrocyclic Pyridyl Polyoxazoles: Structure-Activity Studies of the Aminoalkyl Side-Chain on G-Quadruplex Stabilization and Cytotoxic Activity

    PubMed Central

    Blankson, Gifty; Rzuczek, Suzanne G.; Bishop, Cody; Pilch, Daniel S.; Liu, Angela; Liu, Leroy; LaVoie, Edmond J.; Rice, Joseph E.

    2014-01-01

    Pyridyl polyoxazoles are 24-membered macrocyclic lactams comprised of a pyridine, four oxazoles and a phenyl ring. A derivative having a 2-(dimethylamino)ethyl chain attached to the 5-position of the phenyl ring was recently identified as a selective G-quadruplex stabilizer with excellent cytotoxic activity, and good in vivo anticancer activity against a human breast cancer xenograft in mice. Here we detail the synthesis of eight new dimethylamino-substituted pyridyl polyoxazoles in which the point of attachment to the macrocycle, as well as the distance between the amine and the macrocycle are varied. Each compound was evaluated for selective G-quadruplex stabilization and cytotoxic activity. The more active analogs have the amine either directly attached to, or separated from the phenyl ring by two methylene groups. There is a correlation between those macrocycles that are effective ligands for the stabilization of G-quadruplex DNA (ΔTtran 15.5–24.6 °C) and cytotoxicity as observed in the human tumor cell lines, RPMI 8402 (IC50 0.06–0.50 µM) and KB3-1 (IC50 0.03–0.07 µM). These are highly selective G-quadruplex stabilizers, which should prove especially useful for evaluating both in vitro and in vivo mechanism(s) of biological activity associated with G-quaqdruplex ligands. PMID:24077174

  10. Spectroscopic studies of single and double variants of M ferritin: lack of conversion of a biferrous substrate site into a cofactor site for O2 activation.

    PubMed

    Kwak, Yeonju; Schwartz, Jennifer K; Haldar, Suranjana; Behera, Rabindra K; Tosha, Takehiko; Theil, Elizabeth C; Solomon, Edward I

    2014-01-28

    Ferritin has a binuclear non-heme iron active site that functions to oxidize iron as a substrate for formation of an iron mineral core. Other enzymes of this class have tightly bound diiron cofactor sites that activate O2 to react with substrate. Ferritin has an active site ligand set with 1-His/4-carboxylate/1-Gln rather than the 2-His/4-carboxylate set of the cofactor site. This ligand variation has been thought to make a major contribution to this biferrous substrate rather than cofactor site reactivity. However, the Q137E/D140H double variant of M ferritin, has a ligand set that is equivalent to most of the diiron cofactor sites, yet did not rapidly react with O2 or generate the peroxy intermediate observed in the cofactor sites. Therefore, in this study, a combined spectroscopic methodology of circular dichroism (CD)/magnetic CD (MCD)/variable temperature, variable field (VTVH) MCD has been applied to evaluate the factors required for the rapid O2 activation observed in cofactor sites. This methodology defines the coordination environment of each iron and the bridging ligation of the biferrous active sites in the double and corresponding single variants of frog M ferritin. Based on spectral changes, the D140H single variant has the new His ligand binding, and the Q137E variant has the new carboxylate forming a μ-1,3 bridge. The spectra for the Q137E/D140H double variant, which has the cofactor ligand set, however, reflects a site that is more coordinately saturated than the cofactor sites in other enzymes including ribonucleotide reductase, indicating the presence of additional water ligation. Correlation of this double variant and the cofactor sites to their O2 reactivities indicates that electrostatic and steric changes in the active site and, in particular, the hydrophobic nature of a cofactor site associated with its second sphere protein environment, make important contributions to the activation of O2 by the binuclear non-heme iron enzymes.

  11. Characterization of the active site properties of CYP4F12.

    PubMed

    Eksterowicz, John; Rock, Dan A; Rock, Brooke M; Wienkers, Larry C; Foti, Robert S

    2014-10-01

    Cytochrome P450 4F12 is a drug-metabolizing enzyme that is primarily expressed in the liver, kidney, colon, small intestine, and heart. The properties of CYP4F12 that may impart an increased catalytic selectivity (decreased promiscuity) were explored through in vitro metabolite elucidation, kinetic isotope effect experiments, and computational modeling of the CYP4F12 active site. By using astemizole as a probe substrate for CYP4F12 and CYP3A4, it was observed that although CYP4F12 favored astemizole O-demethylation as the primary route of metabolism, CYP3A4 was capable of metabolizing astemizole at multiple sites on the molecule. Deuteration of astemizole at the site of O-demethylation resulted in an isotope effect of 7.1 as well as an 8.3-fold decrease in the rate of clearance for astemizole by CYP4F12. Conversely, although an isotope effect of 3.8 was observed for the formation of the O-desmethyl metabolite when deuterated astemizole was metabolized by CYP3A4, there was no decrease in the clearance of astemizole. Development of a homology model of CYP4F12 based on the crystal structure of cytochrome P450 BM3 predicted an active site volume for CYP4F12 that was approximately 76% of the active site volume of CYP3A4. As predicted, multiple favorable binding orientations were available for astemizole docked into the active site of CYP3A4, but only a single binding orientation with the site of O-demethylation oriented toward the heme was identified for CYP4F12. Overall, it appears that although CYP4F12 may be capable of binding similar ligands to other cytochrome P450 enzymes such as CYP3A4, the ability to achieve catalytically favorable orientations may be inherently more difficult because of the increased steric constraints of the CYP4F12 active site. PMID:25074871

  12. A modular treatment of molecular traffic through the active site of cholinesterase

    PubMed Central

    Botti, SA; Felder, CE; Lifson, S; Sussman, JL; Silman, I

    1999-01-01

    We present a model for the molecular traffic of ligands, substrates, and products through the active site of cholinesterases (ChEs). First, we describe a common treatment of the diffusion to a buried active site of cationic and neutral species. We then explain the specificity of ChEs for cationic ligands and substrates by introducing two additional components to this common treatment. The first module is a surface trap for cationic species at the entrance to the active-site gorge that operates through local, short-range electrostatic interactions and is independent of ionic strength. The second module is an ionic-strength-dependent steering mechanism generated by long-range electrostatic interactions arising from the overall distribution of charges in ChEs. Our calculations show that diffusion of charged ligands relative to neutral isosteric analogs is enhanced approximately 10-fold by the surface trap, while electrostatic steering contributes only a 1.5- to 2-fold rate enhancement at physiological salt concentration. We model clearance of cationic products from the active-site gorge as analogous to the escape of a particle from a one-dimensional well in the presence of a linear electrostatic potential. We evaluate the potential inside the gorge and provide evidence that while contributing to the steering of cationic species toward the active site, it does not appreciably retard their clearance. This optimal fine-tuning of global and local electrostatic interactions endows ChEs with maximum catalytic efficiency and specificity for a positively charged substrate, while at the same time not hindering clearance of the positively charged products. PMID:10545346

  13. Characterization and sequencing of the active site of 1-aminocyclopropane-1-carboxylate synthase

    SciTech Connect

    Yip, Wing-Kin; Dong, Jian-Guo; Yang, S.F. ); Kenny, J.W.; Thompson, G.A. )

    1990-10-01

    The pyridoxal phosphate (PLP)-dependent 1-aminocyclopropane-1-carboxylic acid (ACC) synthase the key enzyme in ethylene biosynthesis, is inactivated by its substrate S-adenosylmethionine (AdoMet). Apple ACC synthase was purified with an immunoaffinity gel, and its active site was probed with NaB{sup 3}H{sub 4} or Ado({sup 14}C)Met. Peptide sequencing of both {sup 3}H- and {sup 14}C-labeled peptides revealed a common dodecapeptide of Ser-Leu-Ser-Xaa-Asp-Leu-Gly-Leu-Pro-Gly-Phe-Arg, where Xaa was the modified, radioactive residue in each case. Acid hydrolysis of the {sup 3}H-labeled enzyme released radioactive N-pyridoxyllysine, indicating that the active-site peptide contained lysine at position 4. Mass spectrometry of the {sup 14}C-labeled peptide indicated a protonated molecular ion at m/z 1390.6, from which the mass of Xaa was calculated to be 229, a number that is equivalent to the mass of a lysine residue alkylated by the 2-aminobutyrate portion of AdoMet, as we previously proposed. These results indicate that the same active-site lysine binds the PLP and convalently links to the 2-aminobutyrate portion of AdoMet during inactivation. The active site of tomato ACC synthase was probed in the same manner with Ado ({sup 14}C)Met. Sequencing of the tomato active-site peptide revealed two highly conserved dodecapeptides; the minor peptide possessed a sequence identical to that of the apple enzyme, whereas the major peptide differed from the minor peptide in that methionine replaced leucine at position 6.

  14. Lymphokine-activated killer (LAK) cells can be focused at sites of tumor growth by products of macrophage activation

    SciTech Connect

    Migliori, R.J.; Gruber, S.A.; Sawyer, M.D.; Hoffman, R.; Ochoa, A.; Bach, F.H.; Simmons, R.L.

    1987-08-01

    Successful adoptive cancer immunotherapy presumably depends on the accumulation of tumoricidal leukocytes at the sites of tumor growth. Large numbers of lymphokine-activated killer (LAK) cells can be generated in vitro by growth in high concentrations of interleukin-2 (IL-2), but relatively few arrive at the tumor site after intravenous injection. We hypothesize that the delivery of LAK cells to tumor sites may be augmented by previously demonstrated lymphocyte-recruiting factors, including activated macrophage products such as interleukin-1 (IL-1) and tumor necrosis factor. /sup 111/Indium-labeled LAK cells were injected intravenously into syngeneic mice bearing the macrophage activator endotoxin (LPS) in one hind footpad, and saline solution was injected into the contralateral footpad. Significantly more activity was recovered from the LPS-bearing footpad at all times during a 96-hour period. Recombinant IL-1 also attracted more LAK cells after injection into tumor-free hind footpads. Furthermore, LAK cells preferentially homed to hind footpads that were bearing 3-day established sarcomas after intralesional injections of LPS, IL-1, or tumor necrosis factor when compared with contralateral tumor-bearing footpads injected with saline solution alone. In preliminary experiments, mice with hind-footpad tumors appeared to survive longer after combined systemic IL-2 and LAK therapy if intralesional LPS was administered. These studies demonstrate that macrophage activation factors that have been shown capable of attracting circulating normal lymphocytes can also effectively attract LAK cells from the circulation. By the stimulation of macrophages at the sites of tumor growth, more LAK cells can be attracted. It is hoped that by focusing the migration of LAK cells to tumors, LAK cells and IL-2 would effect tumor regression more efficiently and with less toxicity.

  15. Threshold occupancy and specific cation binding modes in the hammerhead ribozyme active site are required for active conformation

    PubMed Central

    Lee, Tai-Sung; Giambaşu, George M.; Sosa, Carlos P.; Martick, Monika; Scott, William G.; York, Darrin M.

    2009-01-01

    The relationship between formation of active in-line attack conformations and monovalent (Na+) and divalent (Mg2+) metal ion binding in the hammerhead ribozyme has been explored with molecular dynamics simulations. To stabilize repulsions between negatively charged groups, different requirements of threshold occupancy of metal ions were observed in the reactant and activated precursor states both in the presence or absence of a Mg2+ in the active site. Specific bridging coordination patterns of the ions are correlated with the formation of active in-line attack conformations and can be accommodated in both cases. Furthermore, simulation results suggest that the hammerhead ribozyme folds to form an electronegative recruiting pocket that attracts high local concentrations of positive charge. The present simulations help to reconcile experiments that probe the metal ion sensitivity of hammerhead ribozyme catalysis and support the supposition that Mg2+, in addition to stabilizing active conformations, plays a specific chemical role in catalysis. PMID:19265710

  16. Locomotor activity influences muscle architecture and bone growth but not muscle attachment site morphology

    PubMed Central

    Rabey, Karyne N.; Green, David J.; Taylor, Andrea B.; Begun, David R.; Richmond, Brian G.; McFarlin, Shannon C.

    2014-01-01

    The ability to make behavioural inferences from skeletal remains is critical to understanding the lifestyles and activities of past human populations and extinct animals. Muscle attachment site (enthesis) morphology has long been assumed to reflect muscle strength and activity during life, but little experimental evidence exists to directly link activity patterns with muscle development and the morphology of their attachments to the skeleton. We used a mouse model to experimentally test how the level and type of activity influences forelimb muscle architecture of spinodeltoideus, acromiodeltoideus, and superficial pectoralis, bone growth rate and gross morphology of their insertion sites. Over an 11-week period, we collected data on activity levels in one control group and two experimental activity groups (running, climbing) of female wild-type mice. Our results show that both activity type and level increased bone growth rates influenced muscle architecture, including differences in potential muscular excursion (fibre length) and potential force production (physiological cross-sectional area). However, despite significant influences on muscle architecture and bone development, activity had no observable effect on enthesis morphology. These results suggest that the gross morphology of entheses is less reliable than internal bone structure for making inferences about an individual’s past behaviour. PMID:25467113

  17. Asymmetry of the active site loop conformation between subunits of glutamate-1-semialdehyde aminomutase in solution.

    PubMed

    Campanini, Barbara; Bettati, Stefano; di Salvo, Martino Luigi; Mozzarelli, Andrea; Contestabile, Roberto

    2013-01-01

    Glutamate-1-semialdehyde aminomutase (GSAM) is a dimeric, pyridoxal 5'-phosphate (PLP)- dependent enzyme catalysing in plants and some bacteria the isomerization of L-glutamate-1-semialdehyde to 5-aminolevulinate, a common precursor of chlorophyll, haem, coenzyme B12, and other tetrapyrrolic compounds. During the catalytic cycle, the coenzyme undergoes conversion from pyridoxamine 5'-phosphate (PMP) to PLP. The entrance of the catalytic site is protected by a loop that is believed to switch from an open to a closed conformation during catalysis. Crystallographic studies indicated that the structure of the mobile loop is related to the form of the cofactor bound to the active site, allowing for asymmetry within the dimer. Since no information on structural and functional asymmetry of the enzyme in solution is available in the literature, we investigated the active site accessibility by determining the cofactor fluorescence quenching of PMP- and PLP-GSAM forms. PLP-GSAM is partially quenched by potassium iodide, suggesting that at least one catalytic site is accessible to the anionic quencher and therefore confirming the asymmetry observed in the crystal structure. Iodide induces release of the cofactor from PMP-GSAM, apparently from only one catalytic site, therefore suggesting an asymmetry also in this form of the enzyme in solution, in contrast with the crystallographic data.

  18. Sequences flanking the core-binding site modulate glucocorticoid receptor structure and activity

    PubMed Central

    Schöne, Stefanie; Jurk, Marcel; Helabad, Mahdi Bagherpoor; Dror, Iris; Lebars, Isabelle; Kieffer, Bruno; Imhof, Petra; Rohs, Remo; Vingron, Martin; Thomas-Chollier, Morgane; Meijsing, Sebastiaan H.

    2016-01-01

    The glucocorticoid receptor (GR) binds as a homodimer to genomic response elements, which have particular sequence and shape characteristics. Here we show that the nucleotides directly flanking the core-binding site, differ depending on the strength of GR-dependent activation of nearby genes. Our study indicates that these flanking nucleotides change the three-dimensional structure of the DNA-binding site, the DNA-binding domain of GR and the quaternary structure of the dimeric complex. Functional studies in a defined genomic context show that sequence-induced changes in GR activity cannot be explained by differences in GR occupancy. Rather, mutating the dimerization interface mitigates DNA-induced changes in both activity and structure, arguing for a role of DNA-induced structural changes in modulating GR activity. Together, our study shows that DNA sequence identity of genomic binding sites modulates GR activity downstream of binding, which may play a role in achieving regulatory specificity towards individual target genes. PMID:27581526

  19. Alkyl isocyanates as active site-directed inactivators of guinea pig liver transglutaminase.

    PubMed

    Gross, M; Whetzel, N K; Folk, J E

    1975-10-10

    Alkyl isocyanates are effective inactivators of guinea pig liver transglutaminase. Based on the specificity of the reaction the protection against inactivation by glutamine substrate, and the essential nature of calcium for the inactivation reaction, it is concluded that these reagents act as amide substrate analogs and, thus function in an active site-specific manner. Support for the contention that inactivation results from alkyl thiocarbamate ester formation through the single active site sulfhydryl group of the enzyme is (a) the loss of one free--SH group and the incorporation of 1 mol of reagent/mol of enzyme in the reaction, (b) similarity in chemical properties of the inactive enzyme derivative formed to those previously reported for another alkyl thiocarbamoylenzyme and an alkyl thiocarbamoylcysteine derivative, and (c) the finding that labeled peptides from digests of [methyl-14C]thiocarbamoyltransglutaminase and those from digests of iodoacetamide-inactivated enzyme occupy similar positions on peptide maps. Transglutaminase was found to be inactivated neither by urethan anlogs of its active ester substrates nor by urea analogs of its amide substrates. It is concluded on the basis of these findings that inactive carbamoylenzyme derivatives are formed only by direct addition of the transglutaminase active--SH group to the isocyanate C--N double bond, and not, like several serine active site enzymes, by nucleophilic displacement with urethan analogs of substrate, or by nucleophilic displacement with urea analogs of substrate. PMID:240837

  20. Sequences flanking the core-binding site modulate glucocorticoid receptor structure and activity.

    PubMed

    Schöne, Stefanie; Jurk, Marcel; Helabad, Mahdi Bagherpoor; Dror, Iris; Lebars, Isabelle; Kieffer, Bruno; Imhof, Petra; Rohs, Remo; Vingron, Martin; Thomas-Chollier, Morgane; Meijsing, Sebastiaan H

    2016-01-01

    The glucocorticoid receptor (GR) binds as a homodimer to genomic response elements, which have particular sequence and shape characteristics. Here we show that the nucleotides directly flanking the core-binding site, differ depending on the strength of GR-dependent activation of nearby genes. Our study indicates that these flanking nucleotides change the three-dimensional structure of the DNA-binding site, the DNA-binding domain of GR and the quaternary structure of the dimeric complex. Functional studies in a defined genomic context show that sequence-induced changes in GR activity cannot be explained by differences in GR occupancy. Rather, mutating the dimerization interface mitigates DNA-induced changes in both activity and structure, arguing for a role of DNA-induced structural changes in modulating GR activity. Together, our study shows that DNA sequence identity of genomic binding sites modulates GR activity downstream of binding, which may play a role in achieving regulatory specificity towards individual target genes. PMID:27581526

  1. In vivo exposure of young adult male rats to methoxychlor reduces serum testosterone levels and ex vivo Leydig cell testosterone formation and cholesterol side-chain cleavage activity.

    PubMed

    Murono, Eisuke P; Derk, Raymond C; Akgul, Yucel

    2006-02-01

    Methoxychlor (MC) was developed as a replacement for the banned pesticide DDT. After in vivo administration, it is metabolized in the liver to 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE), which is proposed to be the active agent. Both MC and HPTE have been shown to exhibit weak estrogenic and antiandrogenic activities, and they are thought to exert their effects through estrogen and androgen receptors, respectively. Although in vitro studies using cultured rat Leydig cells have reported that HPTE inhibits both basal and hCG-stimulated testosterone formation, the response of circulating testosterone levels to in vivo MC has been more variable. Therefore, the current studies evaluated whether the daily in vivo administration of MC (0, 5, 40 and 200 mg/kg body weight) for a short duration (days 54-60 of age) by gavage altered serum testosterone levels and ex vivo Leydig cell testosterone formation in young adult male rats. These results demonstrate that both fluid-retained and fluid-expressed seminal vesicle weights declined to 44 and 60% of control, respectively, in the 200 mg/kg MC-exposed animals. Similarly, serum testosterone and dehydroepiandrosterone levels declined to 41 and 45% of control, respectively, in the 200 mg/kg MC-exposed animals; however, serum LH and FSH levels were unaffected. Ex vivo Leydig cell basal testosterone formation over 4h declined to 49% of control in animals exposed to 200 mg/kg MC, and ex vivo Leydig cell P450 cholesterol side-chain cleavage activity declined to 79 and 50% of control in animals exposed to 40 and 200 mg/kg of MC, respectively, supporting previous in vitro studies which demonstrated the sensitivity of this step to MC.

  2. Alternative poly(A) site utilization during adenovirus infection coincides with a decrease in the activity of a poly(A) site processing factor.

    PubMed Central

    Mann, K P; Weiss, E A; Nevins, J R

    1993-01-01

    The recognition and processing of a pre-mRNA to create a poly(A) addition site, a necessary step in mRNA biogenesis, can also be a regulatory event in instances in which the frequency of use of a poly(A) site varies. One such case is found during the course of an adenovirus infection. Five poly(A) sites are utilized within the major late transcription unit to produce more than 20 distinct mRNAs during the late phase of infection. The proximal half of the major late transcription unit is also expressed during the early phase of a viral infection. During this early phase of expression, the L1 poly(A) site is used three times more frequently than the L3 poly(A) site. In contrast, the L3 site is used three times more frequently than the L1 site during the late phase of infection. Recent experiments have suggested that the recognition of the poly(A) site GU-rich downstream element by the CF1 processing factor may be a rate-determining step in poly(A) site selection. We demonstrate that the interaction of CF1 with the L1 poly(A) site is less stable than the interaction of CF1 with the L3 poly(A) site. We also find that there is a substantial decrease in the level of CF1 activity when an adenovirus infection proceeds to the late phase. We suggest that this reduction in CF1 activity, coupled with the relative instability of the interaction with the L1 poly(A) site, contributes to the reduced use of the L1 poly(A) site during the late stage of an adenovirus infection. Images PMID:8384308

  3. Fibromodulin Interacts with Collagen Cross-linking Sites and Activates Lysyl Oxidase*

    PubMed Central

    Bihan, Dominique; Bonna, Arkadiusz; Rubin, Kristofer; Farndale, Richard W.

    2016-01-01

    The hallmark of fibrotic disorders is a highly cross-linked and dense collagen matrix, a property driven by the oxidative action of lysyl oxidase. Other fibrosis-associated proteins also contribute to the final collagen matrix properties, one of which is fibromodulin. Its interactions with collagen affect collagen cross-linking, packing, and fibril diameter. We investigated the possibility that a specific relationship exists between fibromodulin and lysyl oxidase, potentially imparting a specific collagen matrix phenotype. We mapped the fibromodulin-collagen interaction sites using the collagen II and III Toolkit peptide libraries. Fibromodulin interacted with the peptides containing the known collagen cross-linking sites and the MMP-1 cleavage site in collagens I and II. Interestingly, the interaction sites are closely aligned within the quarter-staggered collagen fibril, suggesting a multivalent interaction between fibromodulin and several collagen helices. Furthermore, we detected an interaction between fibromodulin and lysyl oxidase (a major collagen cross-linking enzyme) and mapped the interaction site to 12 N-terminal amino acids on fibromodulin. This interaction also increases the activity of lysyl oxidase. Together, the data suggest a fibromodulin-modulated collagen cross-linking mechanism where fibromodulin binds to a specific part of the collagen domain and also forms a complex with lysyl oxidase, targeting the enzyme toward specific cross-linking sites. PMID:26893379

  4. Fibromodulin Interacts with Collagen Cross-linking Sites and Activates Lysyl Oxidase.

    PubMed

    Kalamajski, Sebastian; Bihan, Dominique; Bonna, Arkadiusz; Rubin, Kristofer; Farndale, Richard W

    2016-04-01

    The hallmark of fibrotic disorders is a highly cross-linked and dense collagen matrix, a property driven by the oxidative action of lysyl oxidase. Other fibrosis-associated proteins also contribute to the final collagen matrix properties, one of which is fibromodulin. Its interactions with collagen affect collagen cross-linking, packing, and fibril diameter. We investigated the possibility that a specific relationship exists between fibromodulin and lysyl oxidase, potentially imparting a specific collagen matrix phenotype. We mapped the fibromodulin-collagen interaction sites using the collagen II and III Toolkit peptide libraries. Fibromodulin interacted with the peptides containing the known collagen cross-linking sites and the MMP-1 cleavage site in collagens I and II. Interestingly, the interaction sites are closely aligned within the quarter-staggered collagen fibril, suggesting a multivalent interaction between fibromodulin and several collagen helices. Furthermore, we detected an interaction between fibromodulin and lysyl oxidase (a major collagen cross-linking enzyme) and mapped the interaction site to 12 N-terminal amino acids on fibromodulin. This interaction also increases the activity of lysyl oxidase. Together, the data suggest a fibromodulin-modulated collagen cross-linking mechanism where fibromodulin binds to a specific part of the collagen domain and also forms a complex with lysyl oxidase, targeting the enzyme toward specific cross-linking sites.

  5. Communication: Active space decomposition with multiple sites: Density matrix renormalization group algorithm

    SciTech Connect

    Parker, Shane M.; Shiozaki, Toru

    2014-12-07

    We extend the active space decomposition method, recently developed by us, to more than two active sites using the density matrix renormalization group algorithm. The fragment wave functions are described by complete or restricted active-space wave functions. Numerical results are shown on a benzene pentamer and a perylene diimide trimer. It is found that the truncation errors in our method decrease almost exponentially with respect to the number of renormalization states M, allowing for numerically exact calculations (to a few μE{sub h} or less) with M = 128 in both cases. This rapid convergence is because the renormalization steps are used only for the interfragment electron correlation.

  6. A Frontier Molecular Orbital determination of the active sites on dispersed metal catalysts

    SciTech Connect

    Augustine, R.L.; Lahanas, K.M.

    1992-11-01

    An angular overlap calculation has been used to determine the s, p and d orbital energy levels of the different types of surface sites present on a dispersed metal catalysts. The basis for these calculations is the reported finding that a large number of catalyzed reactions take place on single atom active sites on the metal surface. Thus, these sites can be considered as surface complexes made up of the central active atom surrounded by near-neighbor metal atom ``ligands`` with localized surface orbitals perturbed only by these ``ligands``. These ``complexes`` are based on a twelve coordinate species with the ``ligands`` attached to the t{sub 2g} orbitals and the coordinate axes coincident with the direction of the e{sub g} orbitals on the central atom. These data can permit a Frontier Molecular Orbital treatment of specific site activities as long as the surface orbital availability for overlap with adsorbed substrates is considered along with its energy value and symmetry.

  7. A Frontier Molecular Orbital determination of the active sites on dispersed metal catalysts

    SciTech Connect

    Augustine, R.L.; Lahanas, K.M.

    1992-01-01

    An angular overlap calculation has been used to determine the s, p and d orbital energy levels of the different types of surface sites present on a dispersed metal catalysts. The basis for these calculations is the reported finding that a large number of catalyzed reactions take place on single atom active sites on the metal surface. Thus, these sites can be considered as surface complexes made up of the central active atom surrounded by near-neighbor metal atom ligands'' with localized surface orbitals perturbed only by these ligands''. These complexes'' are based on a twelve coordinate species with the ligands'' attached to the t{sub 2g} orbitals and the coordinate axes coincident with the direction of the e{sub g} orbitals on the central atom. These data can permit a Frontier Molecular Orbital treatment of specific site activities as long as the surface orbital availability for overlap with adsorbed substrates is considered along with its energy value and symmetry.

  8. Mapping Topoisomerase IV Binding and Activity Sites on the E. coli Genome

    PubMed Central

    Lebailly, Elise; Pages, Carine; Cornet, Francois; Cosentino Lagomarsino, Marco

    2016-01-01

    Catenation links between sister chromatids are formed progressively during DNA replication and are involved in the establishment of sister chromatid cohesion. Topo IV is a bacterial type II topoisomerase involved in the removal of catenation links both behind replication forks and after replication during the final separation of sister chromosomes. We have investigated the global DNA-binding and catalytic activity of Topo IV in E. coli using genomic and molecular biology approaches. ChIP-seq revealed that Topo IV interaction with the E. coli chromosome is controlled by DNA replication. During replication, Topo IV has access to most of the genome but only selects a few hundred specific sites for its activity. Local chromatin and gene expression context influence site selection. Moreover strong DNA-binding and catalytic activities are found at the chromosome dimer resolution site, dif, located opposite the origin of replication. We reveal a physical and functional interaction between Topo IV and the XerCD recombinases acting at the dif site. This interaction is modulated by MatP, a protein involved in the organization of the Ter macrodomain. These results show that Topo IV, XerCD/dif and MatP are part of a network dedicated to the final step of chromosome management during the cell cycle. PMID:27171414

  9. Functional mimicry of the active site of glutathione peroxidase by glutathione imprinted selenium-containing protein.

    PubMed

    Liu, Lei; Mao, Shi-zhong; Liu, Xiao-man; Huang, Xin; Xu, Jia-yun; Liu, Jun-qiu; Luo, Gui-min; Shen, Jia-cong

    2008-01-01

    For imitating the active site of antioxidant selenoenzyme glutathione peroxidase (GPx), an artificial enzyme selenosubtilisin was employed as a scaffold for reconstructing substrate glutathione (GSH) specific binding sites by a bioimprinting strategy. GSH was first covalently linked to selenosubtilisin to form a covalent complex GSH-selenosubtilisin through a Se-S bond, then the GSH molecule was used as a template to cast a complementary binding site for substrate GSH recognition. The bioimprinting procedure consists of unfolding the conformation of selenosubtilisin and fixing the new conformation of the complex GSH-selenosubtilisin. Thus a new specificity for naturally occurring GPx substrate GSH was obtained. This bioimprinting procedure facilitates the catalytic selenium moiety of the imprinted selenosubtilisin to match the reactive thiol group of GSH in the GSH binding site, which contributes to acceleration of the intramolecular catalysis. These imprinted selenium-containing proteins exhibited remarkable rate enhancement for the reduction of H2O2 by GSH. The average GPx activity was found to be 462 U/micromol, and it was approximately 100 times that for unimprinted selenosubtilisin. Compared with ebselen, a well-known GPx mimic, an activity enhancement of 500-fold was observed. Detailed steady-state kinetic studies demonstrated that the novel selenoenzyme followed a ping-pong mechanism similar to the naturally occurring GPx. PMID:18163571

  10. Evidence for Oxygen Binding at the Active Site of Particulate Methane Monooxygenase

    PubMed Central

    Culpepper, Megen A.; Cutsail, George E.; Hoffman, Brian M.; Rosenzweig, Amy C.

    2012-01-01

    Particulate methane monooxygenase (pMMO) is an integral membrane metalloenzyme that converts methane to methanol in methanotrophic bacteria. The enzyme consists of three subunits, pmoB, pmoA, and pmoC, organized in an α3β3γ3 trimer. Studies of intact pMMO and a recombinant soluble fragment of the pmoB subunit, denoted spmoB, indicate that the active site is located within the soluble region of pmoB at the site of a crystallographically modeled dicopper center. In this work, we have investigated the reactivity of pMMO and spmoB with oxidants. Upon reduction and treatment of spmoB with O2 and H2O2 or pMMO with H2O2, an absorbance feature at 345 nm is generated. The energy and intensity of this band are similar to that of the μ-η2:η2-peroxo CuII 2 species formed in several dicopper enzymes and model compounds. The feature is not observed in inactive spmoB variants in which the dicopper center is disrupted, consistent with O2 binding to the proposed active site. Reaction of the 345 nm species with CH4 results in disappearance of the spectroscopic feature, suggesting that this O2 intermediate is mechanistically relevant. Taken together, these observations provide strong new support for the identity and location of the pMMO active site. PMID:22540911

  11. The ribotoxin restrictocin recognizes its RNA substrate by selective engagement of active site residues.

    PubMed

    Plantinga, Matthew J; Korennykh, Alexei V; Piccirilli, Joseph A; Correll, Carl C

    2011-04-12

    Restrictocin and related fungal endoribonucleases from the α-sarcin family site-specifically cleave the sarcin/ricin loop (SRL) on the ribosome to inhibit translation and ultimately trigger cell death. Previous studies showed that the SRL folds into a bulged-G motif and tetraloop, with restrictocin achieving a specificity of ∼1000-fold by recognizing both motifs only after the initial binding step. Here, we identify contacts within the protein-RNA interface and determine the extent to which each one contributes to enzyme specificity by examining the effect of protein mutations on the cleavage of the SRL substrate compared to a variety of other RNA substrates. As with other biomolecular interfaces, only a subset of contacts contributes to specificity. One contact of this subset is critical, with the H49A mutation resulting in quantitative loss of specificity. Maximum catalytic activity occurs when both motifs of the SRL are present, with the major contribution involving the bulged-G motif recognized by three lysine residues located adjacent to the active site: K110, K111, and K113. Our findings support a kinetic proofreading mechanism in which the active site residues H49 and, to a lesser extent, Y47 make greater catalytic contributions to SRL cleavage than to suboptimal substrates. This systematic and quantitative analysis begins to elucidate the principles governing RNA recognition by a site-specific endonuclease and may thus serve as a mechanistic model for investigating other RNA modifying enzymes. PMID:21417210

  12. Activation of human 5-hydroxytryptamine type 3 receptors via an allosteric transmembrane site.

    PubMed

    Lansdell, Stuart J; Sathyaprakash, Chaitra; Doward, Anne; Millar, Neil S

    2015-01-01

    In common with other members of the Cys-loop family of pentameric ligand-gated ion channels, 5-hydroxytryptamine type 3 receptors (5-HT3Rs) are activated by the binding of a neurotransmitter to an extracellular orthosteric site, located at the interface of two adjacent receptor subunits. In addition, a variety of compounds have been identified that modulate agonist-evoked responses of 5-HT3Rs, and other Cys-loop receptors, by binding to distinct allosteric sites. In this study, we examined the pharmacological effects of a group of monoterpene compounds on recombinant 5-HT3Rs expressed in Xenopus oocytes. Two phenolic monoterpenes (carvacrol and thymol) display allosteric agonist activity on human homomeric 5-HT3ARs (64 ± 7% and 80 ± 4% of the maximum response evoked by the endogenous orthosteric agonist 5-HT, respectively). In addition, at lower concentrations, where agonist effects are less apparent, carvacrol and thymol act as potentiators of responses evoked by submaximal concentrations of 5-HT. By contrast, carvacrol and thymol have no agonist or potentiating activity on the closely related mouse 5-HT3ARs. Using subunit chimeras containing regions of the human and mouse 5-HT3A subunits, and by use of site-directed mutagenesis, we have identified transmembrane amino acids that either abolish the agonist activity of carvacrol and thymol on human 5-HT3ARs or are able to confer this property on mouse 5-HT3ARs. By contrast, these mutations have no significant effect on orthosteric activation of 5-HT3ARs by 5-HT. We conclude that 5-HT3ARs can be activated by the binding of ligands to an allosteric transmembrane site, a conclusion that is supported by computer docking studies. PMID:25338672

  13. Final Report - Independent Verification Survey Activities at the Seperations Process Research Unit Sites, Niskayuna, New York

    SciTech Connect

    Evan Harpenau

    2011-03-15

    The Separations Process Research Unit (SPRU) complex located on the Knolls Atomic Power Laboratory (KAPL) site in Niskayuna, New York, was constructed in the late 1940s to research the chemical separation of plutonium and uranium (Figure A-1). SPRU operated as a laboratory scale research facility between February 1950 and October 1953. The research activities ceased following the successful development of the reduction oxidation and plutonium/uranium extraction processes. The oxidation and extraction processes were subsequently developed for large scale use by the Hanford and Savannah River sites (aRc 2008a). Decommissioning of the SPRU facilities began in October 1953 and continued through the 1990s.

  14. Technical basis for classification of low-activity waste fraction from Hanford site tanks

    SciTech Connect

    Petersen, C.A.

    1996-09-20

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level waste, for disposal is a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  15. Technical basis for classification of low-activity waste fraction from Hanford site tanks

    SciTech Connect

    Petersen, C.A., Westinghouse Hanford

    1996-07-17

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level wastes, for disposal in a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  16. Probing Oxygen Activation Sites in Two Flavoprotein Oxidases Using Chloride as an Oxygen Surrogate

    SciTech Connect

    Kommoju, Phaneeswara-Rao; Chen, Zhi-wei; Bruckner, Robert C.; Mathews, F. Scott; Jorns, Marilyn Schuman

    2011-08-16

    A single basic residue above the si-face of the flavin ring is the site of oxygen activation in glucose oxidase (GOX) (His516) and monomeric sarcosine oxidase (MSOX) (Lys265). Crystal structures of both flavoenzymes exhibit a small pocket at the oxygen activation site that might provide a preorganized binding site for superoxide anion, an obligatory intermediate in the two-electron reduction of oxygen. Chloride binds at these polar oxygen activation sites, as judged by solution and structural studies. First, chloride forms spectrally detectable complexes with GOX and MSOX. The protonated form of His516 is required for tight binding of chloride to oxidized GOX and for rapid reaction of reduced GOX with oxygen. Formation of a binary MSOX-chloride complex requires Lys265 and is not observed with Lys265Met. Binding of chloride to MSOX does not affect the binding of a sarcosine analogue (MTA, methylthioactetate) above the re-face of the flavin ring. Definitive evidence is provided by crystal structures determined for a binary MSOX-chloride complex and a ternary MSOX-chloride-MTA complex. Chloride binds in the small pocket at a position otherwise occupied by a water molecule and forms hydrogen bonds to four ligands that are arranged in approximate tetrahedral geometry: Lys265:NZ, Arg49:NH1, and two water molecules, one of which is hydrogen bonded to FAD:N5. The results show that chloride (i) acts as an oxygen surrogate, (ii) is an effective probe of polar oxygen activation sites, and (iii) provides a valuable complementary tool to the xenon gas method that is used to map nonpolar oxygen-binding cavities.

  17. Single Active Site Mutation Causes Serious Resistance of HIV Reverse Transcriptase to Lamivudine: Insight from Multiple Molecular Dynamics Simulations.

    PubMed

    Moonsamy, Suri; Bhakat, Soumendranath; Walker, Ross C; Soliman, Mahmoud E S

    2016-03-01

    Molecular dynamics simulations, binding free energy calculations, principle component analysis (PCA), and residue interaction network analysis were employed in order to investigate the molecular mechanism of M184I single mutation which played pivotal role in making the HIV-1 reverse transcriptase (RT) totally resistant to lamivudine. Results showed that single mutations at residue 184 of RT caused (1) distortion of the orientation of lamivudine in the active site due to the steric conflict between the oxathiolane ring of lamivudine and the side chain of beta-branched amino acids Ile at position 184 which, in turn, perturbs inhibitor binding, (2) decrease in the binding affinity by (~8 kcal/mol) when compared to the wild-type, (3) variation in the overall enzyme motion as evident from the PCA for both systems, and (4) distortion of the hydrogen bonding network and atomic interactions with the inhibitor. The comprehensive analysis presented in this report can provide useful information for understanding the drug resistance mechanism against lamivudine. The results can also provide some potential clues for further design of novel inhibitors that are less susceptible to drug resistance. PMID:26972300

  18. Impact of single-site axonal GABAergic synaptic events on cerebellar interneuron activity.

    PubMed

    de San Martin, Javier Zorrilla; Jalil, Abdelali; Trigo, Federico F

    2015-12-01

    Axonal ionotropic receptors are present in a variety of neuronal types, and their function has largely been associated with the modulation of axonal activity and synaptic release. It is usually assumed that activation of axonal GABA(A)Rs comes from spillover, but in cerebellar molecular layer interneurons (MLIs) the GABA source is different: in these cells, GABA release activates presynaptic GABA(A) autoreceptors (autoRs) together with postsynaptic targets, producing an autoR-mediated synaptic event. The frequency of presynaptic, autoR-mediated miniature currents is twice that of their somatodendritic counterparts, suggesting that autoR-mediated responses have an important effect on interneuron activity. Here, we used local Ca(2+) photolysis in MLI axons of juvenile rats to evoke GABA release from individual varicosities to study the activation of axonal autoRs in single release sites. Our data show that single-site autoR conductances are similar to postsynaptic dendritic conductances. In conditions of high [Cl(-)](i), autoR-mediated conductances range from 1 to 5 nS; this corresponds to ∼30-150 GABA(A) channels per presynaptic varicosity, a value close to the number of channels in postsynaptic densities. Voltage responses produced by the activation of autoRs in single varicosities are amplified by a Na(v)-dependent mechanism and propagate along the axon with a length constant of 91 µm. Immunolabeling determination of synapse location shows that on average, one third of the synapses produce autoR-mediated signals that are large enough to reach the axon initial segment. Finally, we show that single-site activation of presynaptic GABA(A) autoRs leads to an increase in MLI excitability and thus conveys a strong feedback signal that contributes to spiking activity.

  19. Function of the active site lysine autoacetylation in Tip60 catalysis.

    PubMed

    Yang, Chao; Wu, Jiang; Zheng, Y George

    2012-01-01

    The 60-kDa HIV-Tat interactive protein (Tip60) is a key member of the MYST family of histone acetyltransferases (HATs) that plays critical roles in multiple cellular processes. We report here that Tip60 undergoes autoacetylation at several lysine residues, including a key lysine residue (i.e. Lys-327) in the active site of the MYST domain. The mutation of K327 to arginine led to loss of both the autoacetylation activity and the cognate HAT activity. Interestingly, deacetylated Tip60 still kept a substantial degree of HAT activity. We also investigated the effect of cysteine 369 and glutamate 403 in Tip60 autoacetylation in order to understand the molecular pathway of the autoacetylation at K327. Together, we conclude that the acetylation of K327 which is located in the active site of Tip60 regulates but is not obligatory for the catalytic activity of Tip60. Since acetylation at this key residue appears to be evolutionarily conserved amongst all MYST proteins, our findings provide an interesting insight into the regulatory mechanism of MYST activities. PMID:22470428

  20. Effects of surface-active block copolymers with oxyethylene and fluoroalkyl side chains on the antifouling performance of silicone-based films.

    PubMed

    Martinelli, Elisa; Gunes, Deniz; Wenning, Brandon M; Ober, Christopher K; Finlay, John A; Callow, Maureen E; Callow, James A; Di Fino, Alessio; Clare, Anthony S; Galli, Giancarlo

    2016-01-01

    Block copolymers made from a poly(dimethyl siloxane) (Si) and a poly(meth)acrylate carrying oxyethylene (EG) or fluoroalkyl (AF) side chains were synthesized and incorporated as surface-active components into a silicone matrix to produce cross-linked films with different surface hydrophilicity/phobicity. Near-edge X-ray absorption fine structure (NEXAFS) studies showed that film surfaces containing Si-EG were largely populated by the siloxane, with the oxyethylene chains present only to a minor extent. In contrast, the fluorinated block was selectively segregated to the polymer-air interface in films containing Si-AF as probed by NEXAFS and X-ray photoelectron spectroscopy (XPS) analyses. Such differences in surface composition were reflected in the biological performance of the coatings. While the films with Si-EG showed a higher removal of both Ulva linza sporelings and Balanus amphitrite juveniles than the silicone control, those with Si-AF exhibited excellent antifouling properties, preventing the settlement of cyprids of B. amphitrite.

  1. Role of the 7 alpha-methoxy and side-chain carboxyl of moxalactam in beta-lactamase stability and antibacterial activity.

    PubMed Central

    Murakami, K; Yoshida, T

    1981-01-01

    The effects of the alpha-carboxyl of the phenylmalonyl side chain and the 7 alpha-methoxy group in moxalactam (6059-S) (7 beta-[2-carboxy-2-(4-hydroxyphenyl) acetamido]-7 alpha-methoxy-3[[(1-methyl-1H-tetrazol-5-y])thio] methyl]-1-oxa-1-dethia-3-cephem-4-carboxylic acid) and in the 1-sulfur congener on the stability to beta-lactamase were investigated by spectrophotometric and microbiological assays. The 7 alpha-methoxy substituent stabilized the compounds against penicillinase hydrolysis, and the alpha-carboxyl group stabilized them against cephalosporinase. An exception is the beta-lactamase produced by Proteus vulgaris, an inducible cephalosporinase, which hydrolyzed compounds having the alpha-carboxyl group but not those having the 7 alpha-methoxy group. Both substituents exerted their stabilizing effects independently, and compounds with both substituents, e.g., moxalactam (6059-S) and its 1-sulfur congener, were resistant to both penicillinases and cephalosporinases. The stabilization of the compounds to beta-lactamase hydrolysis improved their antibacterial activity against beta-lactamase-producing strains. PMID:6454378

  2. Effects of surface-active block copolymers with oxyethylene and fluoroalkyl side chains on the antifouling performance of silicone-based films.

    PubMed

    Martinelli, Elisa; Gunes, Deniz; Wenning, Brandon M; Ober, Christopher K; Finlay, John A; Callow, Maureen E; Callow, James A; Di Fino, Alessio; Clare, Anthony S; Galli, Giancarlo

    2016-01-01

    Block copolymers made from a poly(dimethyl siloxane) (Si) and a poly(meth)acrylate carrying oxyethylene (EG) or fluoroalkyl (AF) side chains were synthesized and incorporated as surface-active components into a silicone matrix to produce cross-linked films with different surface hydrophilicity/phobicity. Near-edge X-ray absorption fine structure (NEXAFS) studies showed that film surfaces containing Si-EG were largely populated by the siloxane, with the oxyethylene chains present only to a minor extent. In contrast, the fluorinated block was selectively segregated to the polymer-air interface in films containing Si-AF as probed by NEXAFS and X-ray photoelectron spectroscopy (XPS) analyses. Such differences in surface composition were reflected in the biological performance of the coatings. While the films with Si-EG showed a higher removal of both Ulva linza sporelings and Balanus amphitrite juveniles than the silicone control, those with Si-AF exhibited excellent antifouling properties, preventing the settlement of cyprids of B. amphitrite. PMID:26769148

  3. Side Effects of Hormone Therapy

    MedlinePlus

    ... Men Living with Prostate Cancer Side Effects of Hormone Therapy Side Effects Urinary Dysfunction Bowel Dysfunction Erectile Dysfunction Loss of Fertility Side Effects of Hormone Therapy Side Effects of Chemotherapy Side Effects: When ...

  4. Mutagenesis of Zinc Ligand Residue Cys221 Reveals Plasticity in the IMP-1 Metallo-β-Lactamase Active Site

    PubMed Central

    Horton, Lori B.; Shanker, Sreejesh; Mikulski, Rose; Brown, Nicholas G.; Phillips, Kevin J.; Lykissa, Ernest; Venkataram Prasad, B. V.

    2012-01-01

    Metallo-β-lactamases catalyze the hydrolysis of a broad range of β-lactam antibiotics and are a concern for the spread of drug resistance. To analyze the determinants of enzyme structure and function, the sequence requirements for the subclass B1 IMP-1 β-lactamase zinc binding residue Cys221 were tested by saturation mutagenesis and evaluated for protein expression, as well as hydrolysis of β-lactam substrates. The results indicated that most substitutions at position 221 destabilized the enzyme. Only the enzymes containing C221D and C221G substitutions were expressed well in Escherichia coli and exhibited catalytic activity toward β-lactam antibiotics. Despite the lack of a metal-chelating group at position 221, the C221G enzyme exhibited high levels of catalytic activity in the presence of exogenous zinc. Molecular modeling suggests the glycine substitution is unique among substitutions in that the complete removal of the cysteine side chain allows space for a water molecule to replace the thiol and coordinate zinc at the Zn2 zinc binding site to restore function. Multiple methods were used to estimate the C221G Zn2 binding constant to be 17 to 43 μM. Studies of enzyme function in vivo in E. coli grown on minimal medium showed that both IMP-1 and the C221G mutant exhibited compromised activity when zinc availability was low. Finally, substitutions at residue 121, which is the IMP-1 equivalent of the subclass B3 zinc-chelating position, failed to rescue C221G function, suggesting the coordination schemes of subclasses B1 and B3 are not interchangeable. PMID:22908171

  5. The two active sites in human branched-chain alpha-keto acid dehydrogenase operate independently without an obligatory alternating-site mechanism.

    PubMed

    Li, Jun; Machius, Mischa; Chuang, Jacinta L; Wynn, R Max; Chuang, David T

    2007-04-20

    A long standing controversy is whether an alternating activesite mechanism occurs during catalysis in thiamine diphosphate (ThDP)-dependent enzymes. We address this question by investigating the ThDP-dependent decarboxylase/dehydrogenase (E1b) component of the mitochondrial branched-chain alpha-keto acid dehydrogenase complex (BCKDC). Our crystal structure reveals that conformations of the two active sites in the human E1b heterotetramer harboring the reaction intermediate are identical. Acidic residues in the core of the E1b heterotetramer, which align with the proton-wire residues proposed to participate in active-site communication in the related pyruvate dehydrogenase from Bacillus stearothermophilus, are mutated. Enzyme kinetic data show that, except in a few cases because of protein misfolding, these alterations are largely without effect on overall activity of BCKDC, ruling out the requirement of a proton-relay mechanism in E1b. BCKDC overall activity is nullified at 50% phosphorylation of E1b, but it is restored to nearly half of the pre-phosphorylation level after dissociation and reconstitution of BCKDC with the same phosphorylated E1b. The results suggest that the abolition of overall activity likely results from the specific geometry of the half-phosphorylated E1b in the BCKDC assembly and not due to a disruption of the alternating active-site mechanism. Finally, we show that a mutant E1b containing only one functional active site exhibits half of the wild-type BCKDC activity, which directly argues against the obligatory communication between active sites. The above results provide evidence that the two active sites in the E1b heterotetramer operate independently during the ThDP-dependent decarboxylation reaction. PMID:17329260

  6. A conserved active site tyrosine residue of proline dehydrogenase helps enforce the preference for proline over hydroxyproline as the substrate.

    PubMed

    Ostrander, Elizabeth L; Larson, John D; Schuermann, Jonathan P; Tanner, John J

    2009-02-10

    Proline dehydrogenase (PRODH) catalyzes the oxidation of l-proline to Delta-1-pyrroline-5-carboxylate. PRODHs exhibit a pronounced preference for proline over hydroxyproline (trans-4-hydroxy-l-proline) as the substrate, but the basis for specificity is unknown. The goal of this study, therefore, is to gain insight into the structural determinants of substrate specificity of this class of enzyme, with a focus on understanding how PRODHs discriminate between the two closely related molecules, proline and hydroxyproline. Two site-directed mutants of the PRODH domain of Escherichia coli PutA were created: Y540A and Y540S. Kinetics measurements were performed with both mutants. Crystal structures of Y540S complexed with hydroxyproline, proline, and the proline analogue l-tetrahydro-2-furoic acid were determined at resolutions of 1.75, 1.90, and 1.85 A, respectively. Mutation of Tyr540 increases the catalytic efficiency for hydroxyproline 3-fold and decreases the specificity for proline by factors of 20 (Y540S) and 50 (Y540A). The structures show that removal of the large phenol side chain increases the volume of the substrate-binding pocket, allowing sufficient room for the 4-hydroxyl of hydroxyproline. Furthermore, the introduced serine residue participates in recognition of hydroxyproline by forming a hydrogen bond with the 4-hydroxyl. This result has implications for understanding the substrate specificity of the related enzyme human hydroxyproline dehydrogenase, which has serine in place of tyrosine at this key active site position. The kinetic and structural results suggest that Tyr540 is an important determinant of specificity. Structurally, it serves as a negative filter for hydroxyproline by clashing with the 4-hydroxyl group of this potential substrate.

  7. A Conserved Active Site Tyrosine Residue of Proline Dehydrogenase Helps Enforce the Preference for Proline over Hydroxyproline as the Substrate

    SciTech Connect

    Ostrander, E.L.; Larson, J.D.; Schuermann, J.P.; Tanner, J.J.

    2009-03-02

    Proline dehydrogenase (PRODH) catalyzes the oxidation of L-proline to {Delta}-1-pyrroline-5-carboxylate. PRODHs exhibit a pronounced preference for proline over hydroxyproline (trans-4-hydroxy-L-proline) as the substrate, but the basis for specificity is unknown. The goal of this study, therefore, is to gain insight into the structural determinants of substrate specificity of this class of enzyme, with a focus on understanding how PRODHs discriminate between the two closely related molecules, proline and hydroxyproline. Two site-directed mutants of the PRODH domain of Escherichia coli PutA were created: Y540A and Y540S. Kinetics measurements were performed with both mutants. Crystal structures of Y540S complexed with hydroxyproline, proline, and the proline analogue L-tetrahydro-2-furoic acid were determined at resolutions of 1.75, 1.90, and 1.85 {angstrom}, respectively. Mutation of Tyr540 increases the catalytic efficiency for hydroxyproline 3-fold and decreases the specificity for proline by factors of 20 (Y540S) and 50 (Y540A). The structures show that removal of the large phenol side chain increases the volume of the substrate-binding pocket, allowing sufficient room for the 4-hydroxyl of hydroxyproline. Furthermore, the introduced serine residue participates in recognition of hydroxyproline by forming a hydrogen bond with the 4-hydroxyl. This result has implications for understanding the substrate specificity of the related enzyme human hydroxyproline dehydrogenase, which has serine in place of tyrosine at this key active site position. The kinetic and structural results suggest that Tyr540 is an important determinant of specificity. Structurally, it serves as a negative filter for hydroxyproline by clashing with the 4-hydroxyl group of this potential substrate.

  8. Linde FUSRAP Site Remediation: Engineering Challenges and Solutions of Remedial Activities on an Active Industrial Facility - 13506

    SciTech Connect

    Beres, Christopher M.; Fort, E. Joseph; Boyle, James D.

    2013-07-01

    The Linde FUSRAP Site (Linde) is located in Tonawanda, New York at a major research and development facility for Praxair, Inc. (Praxair). Successful remediation activities at Linde combines meeting cleanup objectives of radiological contamination while minimizing impacts to Praxair business operations. The unique use of Praxair's property coupled with an array of active and abandoned utilities poses many engineering and operational challenges; each of which has been overcome during the remedial action at Linde. The U.S. Army Corps of Engineers - Buffalo District (USACE) and CABRERA SERVICES, INC. (CABRERA) have successfully faced engineering challenges such as relocation of an aboveground structure, structural protection of an active water line, and installation of active mechanical, electrical, and communication utilities to perform remediation. As remediation nears completion, continued success of engineering challenges is critical as remaining activities exist in the vicinity of infrastructure essential to business operations; an electrical substation and duct bank providing power throughout the Praxair facility. Emphasis on engineering and operations through final remediation and into site restoration will allow for the safe and successful completion of the project. (authors)

  9. Crystallographic Analysis of Active Site Contributions to Regiospecificity in the Diiron Enzyme Toluene 4-Monooxygenase

    SciTech Connect

    Bailey, Lucas J.; Acheson, Justin F.; McCoy, Jason G.; Elsen, Nathaniel L.; Phillips, Jr., George N.; Fox, Brian G.

    2014-10-02

    Crystal structures of toluene 4-monooxygenase hydroxylase in complex with reaction products and effector protein reveal active site interactions leading to regiospecificity. Complexes with phenolic products yield an asymmetric {mu}-phenoxo-bridged diiron center and a shift of diiron ligand E231 into a hydrogen bonding position with conserved T201. In contrast, complexes with inhibitors p-NH{sub 2}-benzoate and p-Br-benzoate showed a {mu}-1,1 coordination of carboxylate oxygen between the iron atoms and only a partial shift in the position of E231. Among active site residues, F176 trapped the aromatic ring of products against a surface of the active site cavity formed by G103, E104 and A107, while F196 positioned the aromatic ring against this surface via a {pi}-stacking interaction. The proximity of G103 and F176 to the para substituent of the substrate aromatic ring and the structure of G103L T4moHD suggest how changes in regiospecificity arise from mutations at G103. Although effector protein binding produced significant shifts in the positions of residues along the outer portion of the active site (T201, N202, and Q228) and in some iron ligands (E231 and E197), surprisingly minor shifts (<1 {angstrom}) were produced in F176, F196, and other interior residues of the active site. Likewise, products bound to the diiron center in either the presence or absence of effector protein did not significantly shift the position of the interior residues, suggesting that positioning of the cognate substrates will not be strongly influenced by effector protein binding. Thus, changes in product distributions in the absence of the effector protein are proposed to arise from differences in rates of chemical steps of the reaction relative to motion of substrates within the active site channel of the uncomplexed, less efficient enzyme, while structural changes in diiron ligand geometry associated with cycling between diferrous and diferric states are discussed for their potential

  10. Novel multi-sided, microelectrode arrays for implantable neural applications

    PubMed Central

    Seymour, John P.; Langhals, Nick B.; Anderson, David J.; Kipke, Daryl R.

    2014-01-01

    A new parylene-based microfabrication process is presented for neural recording and drug delivery applications. We introduce a large design space for electrode placement and structural flexibility with a six mask process. By using chemical mechanical polishing, electrode sites may be created top-side, back-side, or on the edge of the device having three exposed sides. Added surface area was achieved on the exposed edge through electroplating. Poly(3,4-ethylenedioxythiophene) (PEDOT) modified edge electrodes having an 85-μm2 footprint resulted in an impedance of 200 kΩ at 1 kHz. Edge electrodes were able to successfully record single unit activity in acute animal studies. A finite element model of planar and edge electrodes relative to neuron position reveals that edge electrodes should be beneficial for increasing the volume of tissue being sampled in recording applications. PMID:21301965

  11. Active Site Dependent Reaction Mechanism over Ru/CeO2 Catalyst toward CO2 Methanation.

    PubMed

    Wang, Fei; He, Shan; Chen, Hao; Wang, Bin; Zheng, Lirong; Wei, Min; Evans, David G; Duan, Xue

    2016-05-18

    Oxygen vacancy on the surface of metal oxides is one of the most important defects which acts as the reactive site in a variety of catalytic reactions. In this work, operando spectroscopy methodology was employed to study the CO2 methanation reaction catalyzed by Ru/CeO2 (with oxygen vacancy in CeO2) and Ru/α-Al2O3 (without oxygen vacancy), respectively, so as to give a thorough understanding on active site dependent reaction mechanism. In Ru/CeO2 catalyst, operando XANES, IR, and Raman were used to reveal the generation process of Ce(3+), surface hydroxyl, and oxygen vacancy as well as their structural evolvements under practical reaction conditions. The steady-state isotope transient kinetic analysis (SSITKA)-type in situ DRIFT infrared spectroscopy undoubtedly substantiates that CO2 methanation undergoes formate route over Ru/CeO2 catalyst, and the formate dissociation to methanol catalyzed by oxygen vacancy is the rate-determining step. In contrast, CO2 methanation undergoes CO route over Ru surface in Ru/α-Al2O3 with the absence of oxygen vacancy, demonstrating active site dependent catalytic mechanism toward CO2 methanation. In addition, the catalytic activity evaluation and the oscillating reaction over Ru/CeO2 catalyst further prove that the oxygen vacancy catalyzes the rate-determining step with a much lower activation temperature compared with Ru surface in Ru/α-Al2O3 (125 vs 250 °C).

  12. Progress report on decommissioning activities at the Fernald Environmental Management Project (FEMP) site

    SciTech Connect

    1998-07-01

    The Fernald Environmental Management Project (FEMP), is located about 18 miles northwest of Cincinnati, Ohio. Between 1953 and 1989, the facility, then called the Feed Material Production Center or FMPC, produced uranium metal products used in the eventual production of weapons grade material for use by other US Department of Energy (DOE) sites. In 1989, FMPC`s production was suspended by the federal government in order to focus resources on environmental restoration versus defense production. In 1992, Fluor Daniel Fernald assumed responsibility for managing all cleanup activities at the FEMP under contract to the DOE. In 1990, as part of the remediation effort, the site was divided into five operable units based on physical proximity of contaminated areas, similar amounts of types of contamination, or the potential for a similar technology to be used in cleanup activities. This report continues the outline of the decontamination and decommissioning (D and D) activities at the FEMP site Operable Unit 3 (OU3) and provides an update on the status of the decommissioning activities. OU3, the Facilities Closure and Demolition Project, involves the remediation of more than 200 uranium processing facilities. The mission of the project is to remove nuclear materials stored in these buildings, then perform the clean out of the buildings and equipment, and decontaminate and dismantle the facilities.

  13. Identification of essential histidine residues in the active site of Escherichia coli xylose (glucose) isomerase.

    PubMed

    Batt, C A; Jamieson, A C; Vandeyar, M A

    1990-01-01

    Two conserved histidine residues (His-101 and His-271) appear to be essential components in the active site of the enzyme xylose (glucose) isomerase (EC 5.3.1.5). These amino acid residues were targeted for mutagenesis on the basis of sequence homology among xylose isomerases isolated from Escherichia coli, Bacillus subtilis, Ampullariella sp. strain 3876, and Streptomyces violaceus-niger. Each residue was selectively replaced by site-directed mutagenesis and shown to be essential for activity. No measurable activity was observed for any mutations replacing either His-101 or His-271. Circular dichroism measurements revealed no significant change in the overall conformation of the mutant enzymes, and all formed dimers similar to the wild-type enzyme. Mutations at His-271 could be distinguished from those at His-101, since the former resulted in a thermolabile protein whereas no significant change in heat stability was observed for the latter. Based upon these results and structural data recently reported, we speculate that His-101 is the catalytic base mediating the reaction. Replacement of His-271 may render the enzyme thermolabile, since this residue appears to be a ligand for one of the metal ions in the active site of the enzyme. PMID:2405386

  14. Structural basis for the active site inhibition mechanism of human kidney-type glutaminase (KGA).

    PubMed

    Thangavelu, K; Chong, Qing Yun; Low, Boon Chuan; Sivaraman, J

    2014-01-01

    Glutaminase is a metabolic enzyme responsible for glutaminolysis, a process harnessed by cancer cells to feed their accelerated growth and proliferation. Among the glutaminase isoforms, human kidney-type glutaminase (KGA) is often upregulated in cancer and is thus touted as an attractive drug target. Here we report the active site inhibition mechanism of KGA through the crystal structure of the catalytic domain of KGA (cKGA) in complex with 6-diazo-5-oxo-L-norleucine (DON), a substrate analogue of glutamine. DON covalently binds with the active site Ser286 and interacts with residues such as Tyr249, Asn335, Glu381, Asn388, Tyr414, Tyr466 and Val484. The nucleophilic attack of Ser286 sidechain on DON releases the diazo group (N2) from the inhibitor and results in the formation of an enzyme-inhibitor complex. Mutational studies confirmed the key role of these residues in the activity of KGA. This study will be important in the development of KGA active site inhibitors for therapeutic interventions.

  15. Structural Basis for the Active Site Inhibition Mechanism of Human Kidney-Type Glutaminase (KGA)

    PubMed Central

    Thangavelu, K.; Chong, Qing Yun; Low, Boon Chuan; Sivaraman, J.

    2014-01-01

    Glutaminase is a metabolic enzyme responsible for glutaminolysis, a process harnessed by cancer cells to feed their accelerated growth and proliferation. Among the glutaminase isoforms, human kidney-type glutaminase (KGA) is often upregulated in cancer and is thus touted as an attractive drug target. Here we report the active site inhibition mechanism of KGA through the crystal structure of the catalytic domain of KGA (cKGA) in complex with 6-diazo-5-oxo-L-norleucine (DON), a substrate analogue of glutamine. DON covalently binds with the active site Ser286 and interacts with residues such as Tyr249, Asn335, Glu381, Asn388, Tyr414, Tyr466 and Val484. The nucleophilic attack of Ser286 sidechain on DON releases the diazo group (N2) from the inhibitor and results in the formation of an enzyme-inhibitor complex. Mutational studies confirmed the key role of these residues in the activity of KGA. This study will be important in the development of KGA active site inhibitors for therapeutic interventions. PMID:24451979

  16. Site-dependent catalytic activity of graphene oxides towards oxidative dehydrogenation of propane.

    PubMed

    Tang, Shaobin; Cao, Zexing

    2012-12-28

    Graphene oxides (GOs) may offer extraordinary potential in the design of novel catalytic systems due to the presence of various oxygen functional groups and their unique electronic and structural properties. Using first-principles calculations, we explore the plausible mechanisms for the oxidative dehydrogenation (ODH) of propane to propene by GOs and the diffusion of the surface oxygen-containing groups under an external electric field. The present results show that GOs with modified oxygen-containing groups may afford high catalytic activity for the ODH of propane to propene. The presence of hydroxyl groups around the active sites provided by epoxides can remarkably enhance the C-H bond activation of propane and the activity enhancement exhibits strong site dependence. The sites of oxygen functional groups on the GO surface can be easily tuned by the diffusion of these groups under an external electric field, which increases the reactivity of GOs towards ODH of propane. The chemically modified GOs are thus quite promising in the design of metal-free catalysis. PMID:22801590

  17. How Force Might Activate Talin's Vinculin Binding Sites: SMD Reveals a Structural Mechanism

    PubMed Central

    Hytönen, Vesa P; Vogel, Viola

    2008-01-01

    Upon cell adhesion, talin physically couples the cytoskeleton via integrins to the extracellular matrix, and subsequent vinculin recruitment is enhanced by locally applied tensile force. Since the vinculin binding (VB) sites are buried in the talin rod under equilibrium conditions, the structural mechanism of how vinculin binding to talin is force-activated remains unknown. Taken together with experimental data, a biphasic vinculin binding model, as derived from steered molecular dynamics, provides high resolution structural insights how tensile mechanical force applied to the talin rod fragment (residues 486–889 constituting helices H1–H12) might activate the VB sites. Fragmentation of the rod into three helix subbundles is prerequisite to the sequential exposure of VB helices to water. Finally, unfolding of a VB helix into a completely stretched polypeptide might inhibit further binding of vinculi