Science.gov

Sample records for active smoothened mutants

  1. Cellular Cholesterol Directly Activates Smoothened in Hedgehog Signaling.

    PubMed

    Huang, Pengxiang; Nedelcu, Daniel; Watanabe, Miyako; Jao, Cindy; Kim, Youngchang; Liu, Jing; Salic, Adrian

    2016-08-25

    In vertebrates, sterols are necessary for Hedgehog signaling, a pathway critical in embryogenesis and cancer. Sterols activate the membrane protein Smoothened by binding its extracellular, cysteine-rich domain (CRD). Major unanswered questions concern the nature of the endogenous, activating sterol and the mechanism by which it regulates Smoothened. We report crystal structures of CRD complexed with sterols and alone, revealing that sterols induce a dramatic conformational change of the binding site, which is sufficient for Smoothened activation and is unique among CRD-containing receptors. We demonstrate that Hedgehog signaling requires sterol binding to Smoothened and define key residues for sterol recognition and activity. We also show that cholesterol itself binds and activates Smoothened. Furthermore, the effect of oxysterols is abolished in Smoothened mutants that retain activation by cholesterol and Hedgehog. We propose that the endogenous Smoothened activator is cholesterol, not oxysterols, and that vertebrate Hedgehog signaling controls Smoothened by regulating its access to cholesterol. PMID:27545348

  2. Novel small molecules targeting ciliary transport of Smoothened and oncogenic Hedgehog pathway activation

    PubMed Central

    Jung, Bomi; Messias, Ana C.; Schorpp, Kenji; Geerlof, Arie; Schneider, Günter; Saur, Dieter; Hadian, Kamyar; Sattler, Michael; Wanker, Erich E.; Hasenöder, Stefan; Lickert, Heiko

    2016-01-01

    Trafficking of the G protein-coupled receptor (GPCR) Smoothened (Smo) to the primary cilium (PC) is a potential target to inhibit oncogenic Hh pathway activation in a large number of tumors. One drawback is the appearance of Smo mutations that resist drug treatment, which is a common reason for cancer treatment failure. Here, we undertook a high content screen with compounds in preclinical or clinical development and identified ten small molecules that prevent constitutive active mutant SmoM2 transport into PC for subsequent Hh pathway activation. Eight of the ten small molecules act through direct interference with the G protein-coupled receptor associated sorting protein 2 (Gprasp2)-SmoM2 ciliary targeting complex, whereas one antagonist of ionotropic receptors prevents intracellular trafficking of Smo to the PC. Together, these findings identify several compounds with the potential to treat drug-resistant SmoM2-driven cancer forms, but also reveal off-target effects of established drugs in the clinics. PMID:26931153

  3. Pancreatic fibroblasts smoothen their activities via AKT-GLI2-TGFα.

    PubMed

    Rustgi, Anil K

    2016-09-01

    Pancreatic stromal fibroblasts provide structural support. Activated fibroblasts are critical in the tumor microenvironment. In this issue of Genes & Development, Liu and colleagues (pp. 1943-1955) unravel the finding that depletion of Smoothened (Smo) in pancreatic stromal fibroblasts results in AKT activation and noncanonical GLI2 activation with subsequent TGFα secretion, activation of EGFR in pancreatic epithelial cells, and augmentation of acinar-ductal metaplasia. Additionally, Smo-mediated signaling has proproliferative effects on pancreatic tumor cells. PMID:27664234

  4. Pitchfork and Gprasp2 Target Smoothened to the Primary Cilium for Hedgehog Pathway Activation

    PubMed Central

    Jung, Bomi; Padula, Daniela; Burtscher, Ingo; Landerer, Cedric; Lutter, Dominik; Theis, Fabian; Messias, Ana C.; Geerlof, Arie; Sattler, Michael; Kremmer, Elisabeth; Boldt, Karsten; Ueffing, Marius; Lickert, Heiko

    2016-01-01

    The seven-transmembrane receptor Smoothened (Smo) activates all Hedgehog (Hh) signaling by translocation into the primary cilia (PC), but how this is regulated is not well understood. Here we show that Pitchfork (Pifo) and the G protein-coupled receptor associated sorting protein 2 (Gprasp2) are essential components of an Hh induced ciliary targeting complex able to regulate Smo translocation to the PC. Depletion of Pifo or Gprasp2 leads to failure of Smo translocation to the PC and lack of Hh target gene activation. Together, our results identify a novel protein complex that is regulated by Hh signaling and required for Smo ciliary trafficking and Hh pathway activation. PMID:26901434

  5. Pitchfork and Gprasp2 Target Smoothened to the Primary Cilium for Hedgehog Pathway Activation.

    PubMed

    Jung, Bomi; Padula, Daniela; Burtscher, Ingo; Landerer, Cedric; Lutter, Dominik; Theis, Fabian; Messias, Ana C; Geerlof, Arie; Sattler, Michael; Kremmer, Elisabeth; Boldt, Karsten; Ueffing, Marius; Lickert, Heiko

    2016-01-01

    The seven-transmembrane receptor Smoothened (Smo) activates all Hedgehog (Hh) signaling by translocation into the primary cilia (PC), but how this is regulated is not well understood. Here we show that Pitchfork (Pifo) and the G protein-coupled receptor associated sorting protein 2 (Gprasp2) are essential components of an Hh induced ciliary targeting complex able to regulate Smo translocation to the PC. Depletion of Pifo or Gprasp2 leads to failure of Smo translocation to the PC and lack of Hh target gene activation. Together, our results identify a novel protein complex that is regulated by Hh signaling and required for Smo ciliary trafficking and Hh pathway activation. PMID:26901434

  6. Activation of Smurf E3 Ligase Promoted by Smoothened Regulates Hedgehog Signaling through Targeting Patched Turnover

    PubMed Central

    Zheng, Xiudeng; Chen, Zhenping; Sun, Liwei; Wang, Hailong; Zhu, Yuanxiang; Zhang, Jing; Yang, Shuyan; Lu, Yi; Sun, Qinmiao; Tao, Yi; Liu, Feng; Zhao, Yun; Chen, Dahua

    2013-01-01

    Hedgehog signaling plays conserved roles in controlling embryonic development; its dysregulation has been implicated in many human diseases including cancers. Hedgehog signaling has an unusual reception system consisting of two transmembrane proteins, Patched receptor and Smoothened signal transducer. Although activation of Smoothened and its downstream signal transduction have been intensively studied, less is known about how Patched receptor is regulated, and particularly how this regulation contributes to appropriate Hedgehog signal transduction. Here we identified a novel role of Smurf E3 ligase in regulating Hedgehog signaling by controlling Patched ubiquitination and turnover. Moreover, we showed that Smurf-mediated Patched ubiquitination depends on Smo activity in wing discs. Mechanistically, we found that Smo interacts with Smurf and promotes it to mediate Patched ubiquitination by targeting the K1261 site in Ptc. The further mathematic modeling analysis reveals that a bidirectional control of activation of Smo involving Smurf and Patched is important for signal-receiving cells to precisely interpret external signals, thereby maintaining Hedgehog signaling reliability. Finally, our data revealed an evolutionarily conserved role of Smurf proteins in controlling Hh signaling by targeting Ptc during development. PMID:24302888

  7. Identification of Novel Smoothened Ligands Using Structure-Based Docking

    PubMed Central

    Torosyan, Hayarpi; Parathaman, Pranavan; Irwin, John J.; Shoichet, Brian K.

    2016-01-01

    The seven transmembrane protein Smoothened is required for Hedgehog signaling during embryonic development and adult tissue homeostasis. Inappropriate activation of the Hedgehog signalling pathway leads to cancers such as basal cell carcinoma and medulloblastoma, and Smoothened inhibitors are now available clinically to treat these diseases. However, resistance to these inhibitors rapidly develops thereby limiting their efficacy. The determination of Smoothened crystal structures enables structure-based discovery of new ligands with new chemotypes that will be critical to combat resistance. In this study, we docked 3.2 million available, lead-like molecules against Smoothened, looking for those with high physical complementarity to its structure; this represents the first such campaign against the class Frizzled G-protein coupled receptor family. Twenty-one high-ranking compounds were selected for experimental testing, and four, representing three different chemotypes, were identified to antagonize Smoothened with IC50 values better than 50 μM. A screen for analogs revealed another six molecules, with IC50 values in the low micromolar range. Importantly, one of the most active of the new antagonists continued to be efficacious at the D473H mutant of Smoothened, which confers clinical resistance to the antagonist vismodegib in cancer treatment. PMID:27490099

  8. Identification of Novel Smoothened Ligands Using Structure-Based Docking.

    PubMed

    Lacroix, Celine; Fish, Inbar; Torosyan, Hayarpi; Parathaman, Pranavan; Irwin, John J; Shoichet, Brian K; Angers, Stephane

    2016-01-01

    The seven transmembrane protein Smoothened is required for Hedgehog signaling during embryonic development and adult tissue homeostasis. Inappropriate activation of the Hedgehog signalling pathway leads to cancers such as basal cell carcinoma and medulloblastoma, and Smoothened inhibitors are now available clinically to treat these diseases. However, resistance to these inhibitors rapidly develops thereby limiting their efficacy. The determination of Smoothened crystal structures enables structure-based discovery of new ligands with new chemotypes that will be critical to combat resistance. In this study, we docked 3.2 million available, lead-like molecules against Smoothened, looking for those with high physical complementarity to its structure; this represents the first such campaign against the class Frizzled G-protein coupled receptor family. Twenty-one high-ranking compounds were selected for experimental testing, and four, representing three different chemotypes, were identified to antagonize Smoothened with IC50 values better than 50 μM. A screen for analogs revealed another six molecules, with IC50 values in the low micromolar range. Importantly, one of the most active of the new antagonists continued to be efficacious at the D473H mutant of Smoothened, which confers clinical resistance to the antagonist vismodegib in cancer treatment. PMID:27490099

  9. FOXC1 Activates Smoothened-Independent Hedgehog Signaling in Basal-like Breast Cancer

    PubMed Central

    Han, Bingchen; Qu, Ying; Jin, Yanli; Yu, Yi; Deng, Nan; Wawrowsky, Kolja; Zhang, Xiao; Li, Na; Bose, Shikha; Wang, Qiang; Sakkiah, Sugunadevi; Abrol, Ravinder; Jensen, Tor W.; Berman, Benjamin; Tanaka, Hisashi; Johnson, Jeffrey; Gao, Bowen; Hao, Jijun; Liu, Zhenqiu; Buttyan, Ralph; Ray, Partha S.; Hung, Mien-Chie; Giuliano, Armando E.; Cui, Xiaojiang

    2015-01-01

    Summary The mesoderm- and epithelial-mesenchymal transition-associated transcription factor FOXC1 is specifically overexpressed in basal-like breast cancer (BLBC), but its biochemical function is not understood. Here we demonstrate that FOXC1 controls cancer stem cell (CSC) properties enriched in BLBC cells via activation of Smoothened (SMO)-independent Hedgehog (Hh) signaling. This non-canonical activation of Hh is specifically mediated by Gli2. We further show that the N-terminal domain of FOXC1 (aa 1–68) binds directly to an internal region (aa 898–1168) of Gli2, enhancing the DNA-binding and transcription-activating capacity of Gli2. FOXC1 expression correlates with that of Gli2 and its targets in human breast cancers. Moreover, FOXC1 overexpression reduces sensitivity to anti-Hedgehog (Hh) inhibitors in BLBC cells and xenograft tumors. Together, these findings reveal FOXC1-mediated non-canonical Hh signaling that determines the BLBC stem-like phenotype and anti-Hh sensitivity, supporting inhibition of FOXC1 pathways as potential approaches for improving BLBC treatment. PMID:26565916

  10. Reduced cholesterol levels impair Smoothened activation in Smith-Lemli-Opitz syndrome.

    PubMed

    Blassberg, Robert; Macrae, James I; Briscoe, James; Jacob, John

    2016-02-15

    Smith-Lemli-Opitz syndrome (SLOS) is a common autosomal-recessive disorder that results from mutations in the gene encoding the cholesterol biosynthetic enzyme 7-dehydrocholesterol reductase (DHCR7). Impaired DHCR7 function is associated with a spectrum of congenital malformations, intellectual impairment, epileptiform activity and autism spectrum disorder. Biochemically, there is a deficit in cholesterol and an accumulation of its metabolic precursor 7-dehydrocholesterol (7DHC) in developing tissues. Morphological abnormalities in SLOS resemble those seen in congenital Sonic Hedgehog (SHH)-deficient conditions, leading to the proposal that the pathogenesis of SLOS is mediated by aberrant SHH signalling. SHH signalling is transduced through the transmembrane protein Smoothened (SMO), which localizes to the primary cilium of a cell on activation and is both positively and negatively regulated by sterol molecules derived from cholesterol biosynthesis. One proposed mechanism of SLOS involves SMO dysregulation by altered sterol levels, but the salient sterol species has not been identified. Here, we clarify the relationship between disrupted cholesterol metabolism and reduced SHH signalling in SLOS by modelling the disorder in vitro. Our results indicate that a deficit in cholesterol, as opposed to an accumulation of 7DHC, impairs SMO activation and its localization to the primary cilium.

  11. Reduced cholesterol levels impair Smoothened activation in Smith–Lemli–Opitz syndrome

    PubMed Central

    Blassberg, Robert; Macrae, James I.; Briscoe, James; Jacob, John

    2016-01-01

    Smith–Lemli–Opitz syndrome (SLOS) is a common autosomal-recessive disorder that results from mutations in the gene encoding the cholesterol biosynthetic enzyme 7-dehydrocholesterol reductase (DHCR7). Impaired DHCR7 function is associated with a spectrum of congenital malformations, intellectual impairment, epileptiform activity and autism spectrum disorder. Biochemically, there is a deficit in cholesterol and an accumulation of its metabolic precursor 7-dehydrocholesterol (7DHC) in developing tissues. Morphological abnormalities in SLOS resemble those seen in congenital Sonic Hedgehog (SHH)-deficient conditions, leading to the proposal that the pathogenesis of SLOS is mediated by aberrant SHH signalling. SHH signalling is transduced through the transmembrane protein Smoothened (SMO), which localizes to the primary cilium of a cell on activation and is both positively and negatively regulated by sterol molecules derived from cholesterol biosynthesis. One proposed mechanism of SLOS involves SMO dysregulation by altered sterol levels, but the salient sterol species has not been identified. Here, we clarify the relationship between disrupted cholesterol metabolism and reduced SHH signalling in SLOS by modelling the disorder in vitro. Our results indicate that a deficit in cholesterol, as opposed to an accumulation of 7DHC, impairs SMO activation and its localization to the primary cilium. PMID:26685159

  12. Segmental basal cell naevus syndrome caused by an activating mutation in smoothened.

    PubMed

    Khamaysi, Z; Bochner, R; Indelman, M; Magal, L; Avitan-Hersh, E; Sarig, O; Sprecher, E; Bergman, R

    2016-07-01

    Aberrant sonic hedgehog signalling, mostly due to PTCH1 mutations, has been shown to play a central role in the pathogenesis of basal cell carcinoma (BCC), as well as in basal cell naevus syndrome (BCNS). Mutations in smoothened (SMO) encoding a receptor for sonic hedgehog have been reported in sporadic BCCs but not in BCNS. We report a case with multiple BCCs, pits and comedones in a segmental distribution over the upper part of the body, along with other findings compatible with BCNS. Histopathologically, there were different types of BCC. A heterozygous mutation (c.1234C>T, p.L412F) in SMO was detected in three BCCs but not in peripheral blood lymphocytes or the uninvolved skin. These were compatible with the type 1 mosaic form of BCNS. The p.L412F mutation was found experimentally to result in increased SMO transactivating activity, and the patient responded to vismodegib therapy. Activating mutations in SMO may cause BCNS. The identification of a gain-of-function mutation in SMO causing a type 1 mosaic form of BCNS further expands our understanding of the pathogenesis of BCC, with implications for the treatment of these tumours, whether sporadic or inherited. PMID:26822128

  13. Regulation of Smoothened Phosphorylation and High-Level Hedgehog Signaling Activity by a Plasma Membrane Associated Kinase.

    PubMed

    Li, Shuangxi; Li, Shuang; Han, Yuhong; Tong, Chao; Wang, Bing; Chen, Yongbin; Jiang, Jin

    2016-06-01

    Hedgehog (Hh) signaling controls embryonic development and adult tissue homeostasis through the G protein coupled receptor (GPCR)-family protein Smoothened (Smo). Upon stimulation, Smo accumulates on the cell surface in Drosophila or primary cilia in vertebrates, which is thought to be essential for its activation and function, but the underlying mechanisms remain poorly understood. Here we show that Hh stimulates the binding of Smo to a plasma membrane-associated kinase Gilgamesh (Gish)/CK1γ and that Gish fine-tunes Hh pathway activity by phosphorylating a Ser/Thr cluster (CL-II) in the juxtamembrane region of Smo carboxyl-terminal intracellular tail (C-tail). We find that CL-II phosphorylation is promoted by protein kinase A (PKA)-mediated phosphorylation of Smo C-tail and depends on cell surface localization of both Gish and Smo. Consistent with CL-II being critical for high-threshold Hh target gene expression, its phosphorylation appears to require higher levels of Hh or longer exposure to the same level of Hh than PKA-site phosphorylation on Smo. Furthermore, we find that vertebrate CK1γ is localized at the primary cilium to promote Smo phosphorylation and Sonic hedgehog (Shh) pathway activation. Our study reveals a conserved mechanism whereby Hh induces a change in Smo subcellular localization to promote its association with and activation by a plasma membrane localized kinase, and provides new insight into how Hh morphogen progressively activates Smo. PMID:27280464

  14. Regulation of Smoothened Phosphorylation and High-Level Hedgehog Signaling Activity by a Plasma Membrane Associated Kinase

    PubMed Central

    Tong, Chao; Wang, Bing; Chen, Yongbin; Jiang, Jin

    2016-01-01

    Hedgehog (Hh) signaling controls embryonic development and adult tissue homeostasis through the G protein coupled receptor (GPCR)-family protein Smoothened (Smo). Upon stimulation, Smo accumulates on the cell surface in Drosophila or primary cilia in vertebrates, which is thought to be essential for its activation and function, but the underlying mechanisms remain poorly understood. Here we show that Hh stimulates the binding of Smo to a plasma membrane-associated kinase Gilgamesh (Gish)/CK1γ and that Gish fine-tunes Hh pathway activity by phosphorylating a Ser/Thr cluster (CL-II) in the juxtamembrane region of Smo carboxyl-terminal intracellular tail (C-tail). We find that CL-II phosphorylation is promoted by protein kinase A (PKA)-mediated phosphorylation of Smo C-tail and depends on cell surface localization of both Gish and Smo. Consistent with CL-II being critical for high-threshold Hh target gene expression, its phosphorylation appears to require higher levels of Hh or longer exposure to the same level of Hh than PKA-site phosphorylation on Smo. Furthermore, we find that vertebrate CK1γ is localized at the primary cilium to promote Smo phosphorylation and Sonic hedgehog (Shh) pathway activation. Our study reveals a conserved mechanism whereby Hh induces a change in Smo subcellular localization to promote its association with and activation by a plasma membrane localized kinase, and provides new insight into how Hh morphogen progressively activates Smo. PMID:27280464

  15. Clobetasol and Halcinonide Act as Smoothened Agonists to Promote Myelin Gene Expression and RxRγ Receptor Activation.

    PubMed

    Porcu, Giampiero; Serone, Eliseo; De Nardis, Velia; Di Giandomenico, Daniele; Lucisano, Giuseppe; Scardapane, Marco; Poma, Anna; Ragnini-Wilson, Antonella

    2015-01-01

    One of the causes of permanent disability in chronic multiple sclerosis patients is the inability of oligodendrocyte progenitor cells (OPCs) to terminate their maturation program at lesions. To identify key regulators of myelin gene expression acting at the last stages of OPC maturation we developed a drug repositioning strategy based on the mouse immortalized oligodendrocyte (OL) cell line Oli-neu brought to the premyelination stage by stably expressing a key factor regulating the last stages of OL maturation. The Prestwick Chemical Library of 1,200 FDA-approved compound(s) was repositioned at three dosages based on the induction of Myelin Basic Protein (MBP) expression. Drug hits were further validated using dosage-dependent reproducibility tests and biochemical assays. The glucocorticoid class of compounds was the most highly represented and we found that they can be divided in three groups according to their efficacy on MBP up-regulation. Since target identification is crucial before bringing compounds to the clinic, we searched for common targets of the primary screen hits based on their known chemical-target interactomes, and the pathways predicted by top ranking compounds were validated using specific inhibitors. Two of the top ranking compounds, Halcinonide and Clobetasol, act as Smoothened (Smo) agonists to up-regulate myelin gene expression in the Oli-neuM cell line. Further, RxRγ activation is required for MBP expression upon Halcinonide and Clobetasol treatment. These data indicate Clobetasol and Halcinonide as potential promyelinating drugs and also provide a mechanistic understanding of their mode of action in the pathway leading to myelination in OPCs. Furthermore, our classification of glucocorticoids with respect to MBP expression provides important novel insights into their effects in the CNS and a rational criteria for their choice in combinatorial therapies in de-myelinating diseases. PMID:26658258

  16. Clobetasol and Halcinonide Act as Smoothened Agonists to Promote Myelin Gene Expression and RxRγ Receptor Activation

    PubMed Central

    De Nardis, Velia; Di Giandomenico, Daniele; Lucisano, Giuseppe; Scardapane, Marco; Poma, Anna; Ragnini-Wilson, Antonella

    2015-01-01

    One of the causes of permanent disability in chronic multiple sclerosis patients is the inability of oligodendrocyte progenitor cells (OPCs) to terminate their maturation program at lesions. To identify key regulators of myelin gene expression acting at the last stages of OPC maturation we developed a drug repositioning strategy based on the mouse immortalized oligodendrocyte (OL) cell line Oli-neu brought to the premyelination stage by stably expressing a key factor regulating the last stages of OL maturation. The Prestwick Chemical Library® of 1,200 FDA-approved compound(s) was repositioned at three dosages based on the induction of Myelin Basic Protein (MBP) expression. Drug hits were further validated using dosage-dependent reproducibility tests and biochemical assays. The glucocorticoid class of compounds was the most highly represented and we found that they can be divided in three groups according to their efficacy on MBP up-regulation. Since target identification is crucial before bringing compounds to the clinic, we searched for common targets of the primary screen hits based on their known chemical-target interactomes, and the pathways predicted by top ranking compounds were validated using specific inhibitors. Two of the top ranking compounds, Halcinonide and Clobetasol, act as Smoothened (Smo) agonists to up-regulate myelin gene expression in the Oli-neuM cell line. Further, RxRγ activation is required for MBP expression upon Halcinonide and Clobetasol treatment. These data indicate Clobetasol and Halcinonide as potential promyelinating drugs and also provide a mechanistic understanding of their mode of action in the pathway leading to myelination in OPCs. Furthermore, our classification of glucocorticoids with respect to MBP expression provides important novel insights into their effects in the CNS and a rational criteria for their choice in combinatorial therapies in de-myelinating diseases. PMID:26658258

  17. Clobetasol and Halcinonide Act as Smoothened Agonists to Promote Myelin Gene Expression and RxRγ Receptor Activation.

    PubMed

    Porcu, Giampiero; Serone, Eliseo; De Nardis, Velia; Di Giandomenico, Daniele; Lucisano, Giuseppe; Scardapane, Marco; Poma, Anna; Ragnini-Wilson, Antonella

    2015-01-01

    One of the causes of permanent disability in chronic multiple sclerosis patients is the inability of oligodendrocyte progenitor cells (OPCs) to terminate their maturation program at lesions. To identify key regulators of myelin gene expression acting at the last stages of OPC maturation we developed a drug repositioning strategy based on the mouse immortalized oligodendrocyte (OL) cell line Oli-neu brought to the premyelination stage by stably expressing a key factor regulating the last stages of OL maturation. The Prestwick Chemical Library of 1,200 FDA-approved compound(s) was repositioned at three dosages based on the induction of Myelin Basic Protein (MBP) expression. Drug hits were further validated using dosage-dependent reproducibility tests and biochemical assays. The glucocorticoid class of compounds was the most highly represented and we found that they can be divided in three groups according to their efficacy on MBP up-regulation. Since target identification is crucial before bringing compounds to the clinic, we searched for common targets of the primary screen hits based on their known chemical-target interactomes, and the pathways predicted by top ranking compounds were validated using specific inhibitors. Two of the top ranking compounds, Halcinonide and Clobetasol, act as Smoothened (Smo) agonists to up-regulate myelin gene expression in the Oli-neuM cell line. Further, RxRγ activation is required for MBP expression upon Halcinonide and Clobetasol treatment. These data indicate Clobetasol and Halcinonide as potential promyelinating drugs and also provide a mechanistic understanding of their mode of action in the pathway leading to myelination in OPCs. Furthermore, our classification of glucocorticoids with respect to MBP expression provides important novel insights into their effects in the CNS and a rational criteria for their choice in combinatorial therapies in de-myelinating diseases.

  18. Structural basis of Smoothened regulation by its extracellular domains

    NASA Astrophysics Data System (ADS)

    Byrne, Eamon F. X.; Sircar, Ria; Miller, Paul S.; Hedger, George; Luchetti, Giovanni; Nachtergaele, Sigrid; Tully, Mark D.; Mydock-McGrane, Laurel; Covey, Douglas F.; Rambo, Robert P.; Sansom, Mark S. P.; Newstead, Simon; Rohatgi, Rajat; Siebold, Christian

    2016-07-01

    Developmental signals of the Hedgehog (Hh) and Wnt families are transduced across the membrane by Frizzled-class G-protein-coupled receptors (GPCRs) composed of both a heptahelical transmembrane domain (TMD) and an extracellular cysteine-rich domain (CRD). How the large extracellular domains of GPCRs regulate signalling by the TMD is unknown. We present crystal structures of the Hh signal transducer and oncoprotein Smoothened, a GPCR that contains two distinct ligand-binding sites: one in its TMD and one in the CRD. The CRD is stacked atop the TMD, separated by an intervening wedge-like linker domain. Structure-guided mutations show that the interface between the CRD, linker domain and TMD stabilizes the inactive state of Smoothened. Unexpectedly, we find a cholesterol molecule bound to Smoothened in the CRD binding site. Mutations predicted to prevent cholesterol binding impair the ability of Smoothened to transmit native Hh signals. Binding of a clinically used antagonist, vismodegib, to the TMD induces a conformational change that is propagated to the CRD, resulting in loss of cholesterol from the CRD-linker domain-TMD interface. Our results clarify the structural mechanism by which the activity of a GPCR is controlled by ligand-regulated interactions between its extracellular and transmembrane domains.

  19. Structural basis of Smoothened regulation by its extracellular domains

    NASA Astrophysics Data System (ADS)

    Byrne, Eamon F. X.; Sircar, Ria; Miller, Paul S.; Hedger, George; Luchetti, Giovanni; Nachtergaele, Sigrid; Tully, Mark D.; Mydock-McGrane, Laurel; Covey, Douglas F.; Rambo, Robert P.; Sansom, Mark S. P.; Newstead, Simon; Rohatgi, Rajat; Siebold, Christian

    2016-07-01

    Developmental signals of the Hedgehog (Hh) and Wnt families are transduced across the membrane by Frizzled-class G-protein-coupled receptors (GPCRs) composed of both a heptahelical transmembrane domain (TMD) and an extracellular cysteine-rich domain (CRD). How the large extracellular domains of GPCRs regulate signalling by the TMD is unknown. We present crystal structures of the Hh signal transducer and oncoprotein Smoothened, a GPCR that contains two distinct ligand-binding sites: one in its TMD and one in the CRD. The CRD is stacked atop the TMD, separated by an intervening wedge-like linker domain. Structure-guided mutations show that the interface between the CRD, linker domain and TMD stabilizes the inactive state of Smoothened. Unexpectedly, we find a cholesterol molecule bound to Smoothened in the CRD binding site. Mutations predicted to prevent cholesterol binding impair the ability of Smoothened to transmit native Hh signals. Binding of a clinically used antagonist, vismodegib, to the TMD induces a conformational change that is propagated to the CRD, resulting in loss of cholesterol from the CRD–linker domain–TMD interface. Our results clarify the structural mechanism by which the activity of a GPCR is controlled by ligand-regulated interactions between its extracellular and transmembrane domains.

  20. Structural basis of Smoothened regulation by its extracellular domains.

    PubMed

    Byrne, Eamon F X; Sircar, Ria; Miller, Paul S; Hedger, George; Luchetti, Giovanni; Nachtergaele, Sigrid; Tully, Mark D; Mydock-McGrane, Laurel; Covey, Douglas F; Rambo, Robert P; Sansom, Mark S P; Newstead, Simon; Rohatgi, Rajat

    2016-07-28

    Developmental signals of the Hedgehog (Hh) and Wnt families are transduced across the membrane by Frizzledclass G-protein-coupled receptors (GPCRs) composed of both a heptahelical transmembrane domain (TMD) and an extracellular cysteine-rich domain (CRD). How the large extracellular domains of GPCRs regulate signalling by the TMD is unknown. We present crystal structures of the Hh signal transducer and oncoprotein Smoothened, a GPCR that contains two distinct ligand-binding sites: one in its TMD and one in the CRD. The CRD is stacked a top the TMD, separated by an intervening wedge-like linker domain. Structure-guided mutations show that the interface between the CRD, linker domain and TMD stabilizes the inactive state of Smoothened. Unexpectedly, we find a cholesterol molecule bound to Smoothened in the CRD binding site. Mutations predicted to prevent cholesterol binding impair the ability of Smoothened to transmit native Hh signals. Binding of a clinically used antagonist, vismodegib, to the TMD induces a conformational change that is propagated to the CRD, resulting in loss of cholesterol from the CRD-linker domain-TMD interface. Our results clarify the structural mechanism by which the activity of a GPCR is controlled by ligand-regulated interactions between its extracellular and transmembrane domains. PMID:27437577

  1. Phanerochaete mutants with enhanced ligninolytic activity

    SciTech Connect

    Kakar, S.N.; Perez, A.; Gonzales, J.

    1993-06-01

    In addition to lignin, the white rot fungus Phanerochaete chrysosporium has the ability to degrade a wide spectrum of recalcitrant organopollutants in soils and aqueous media. Although some of the organic compounds are degraded under nonligninolytic conditions, most are degraded under ligninolytic conditions with the involvement of the extracellular enzymes, lignin peroxidases, and manganese-dependent peroxidases, which are produced as secondary metabolites triggered by conditions of nutrient starvation (e.g., nitrogen limitation). The fungus and its enzymes can thus provide alternative technologies for bioremediation, biopulping, biobleaching, and other industrial applications. The efficiency and effectiveness of the fungus can be enhanced by increasing production and secretion of the important enzymes in large quantities and as primary metabolites under enriched conditions. One way this can be achieved is through isolation of mutants that are deregulated or are hyperproducers or supersecretors of key enzymes under enriched conditions. Through ultraviolet-light and gamma-rays mutagenesis we have isolated a variety of mutants, some of which produce key enzymes of the ligninolytic system under high-nitrogen growth conditions. One of the mutants produced 272 units (U) of lignin peroxidases enzyme activity per liter after nine days under high nitrogen. The mutant and the parent strains produced up to 54 U/L and 62 U/L, respectively, of the enzyme activity under low-nitrogen growth conditions during this period. In some experiments the mutant showed 281 U/L of enzyme activity under high nitrogen after 17 days.

  2. Smoothened regulation in response to Hedgehog stimulation

    PubMed Central

    Jiang, Kai; Jia, Jianhang

    2016-01-01

    The Hedgehog (Hh) signaling pathway play critical roles in embryonic development and adult tissue homeostasis. A critical step in Hh signal transduction is how Hh receptor Patched (Ptc) inhibits the atypical G protein-coupled receptor Smoothened (Smo) in the absence of Hh and how this inhibition is release by Hh stimulation. It is unlikely that Ptc inhibits Smo by direct interaction. Here we discuss how Hh regulates the phosphorylation and ubiquitination of Smo, leading to cell surface and ciliary accumulation of Smo in Drosophila and vertebrate cells, respectively. In addition, we discuss how PI(4)P phospholipid acts in between Ptc and Smo to regulate Smo phosphorylation and activation in response to Hh stimulation. PMID:26973699

  3. A Smoothened-Evc2 complex transduces the Hedgehog signal at primary cilia.

    PubMed

    Dorn, Karolin V; Hughes, Casey E; Rohatgi, Rajat

    2012-10-16

    Vertebrate Hedgehog (Hh) signaling is initiated at primary cilia by the ligand-triggered accumulation of Smoothened (Smo) in the ciliary membrane. The underlying biochemical mechanisms remain unknown. We find that Hh agonists promote the association between Smo and Evc2, a ciliary protein that is defective in two human ciliopathies. The formation of the Smo-Evc2 complex is under strict spatial control, being restricted to a distinct ciliary compartment, the EvC zone. Mutant Evc2 proteins that localize in cilia but are displaced from the EvC zone are dominant inhibitors of Hh signaling. Disabling Evc2 function blocks Hh signaling at a specific step between Smo and the downstream regulators protein kinase A and Suppressor of Fused, preventing activation of the Gli transcription factors. Our data suggest that the Smo-Evc2 signaling complex at the EvC zone is required for Hh signal transmission and elucidate the molecular basis of two human ciliopathies.

  4. Zebrafish smoothened functions in ventral neural tube specification and axon tract formation.

    PubMed

    Varga, Z M; Amores, A; Lewis, K E; Yan, Y L; Postlethwait, J H; Eisen, J S; Westerfield, M

    2001-09-01

    Sonic hedgehog (Shh) signaling patterns many vertebrate tissues. shh mutations dramatically affect mouse ventral forebrain and floor plate but produce minor defects in zebrafish. Zebrafish have two mammalian Shh orthologs, sonic hedgehog and tiggy-winkle hedgehog, and another gene, echidna hedgehog, that could have overlapping functions. To examine the role of Hedgehog signaling in zebrafish, we have characterized slow muscle omitted (smu) mutants. We show that smu encodes a zebrafish ortholog of Smoothened that transduces Hedgehog signals. Zebrafish smoothened is expressed maternally and zygotically and supports specification of motoneurons, pituitary cells and ventral forebrain. We propose that smoothened is required for induction of lateral floor plate and a subpopulation of hypothalamic cells and for maintenance of medial floor plate and hypothalamic cells.

  5. A role for smoothened during murine lens and cornea development.

    PubMed

    Choi, Janet J Y; Ting, Chao-Tung; Trogrlic, Lidia; Milevski, Stefan V; Familari, Mary; Martinez, Gemma; de Iongh, Robb U

    2014-01-01

    Various studies suggest that Hedgehog (Hh) signalling plays roles in human and zebrafish ocular development. Recent studies (Kerr et al., Invest Ophthalmol Vis Sci. 2012; 53, 3316-30) showed that conditionally activating Hh signals promotes murine lens epithelial cell proliferation and disrupts fibre differentiation. In this study we examined the expression of the Hh pathway and the requirement for the Smoothened gene in murine lens development. Expression of Hh pathway components in developing lens was examined by RT-PCR, immunofluorescence and in situ hybridisation. The requirement of Smo in lens development was determined by conditional loss-of-function mutations, using LeCre and MLR10 Cre transgenic mice. The phenotype of mutant mice was examined by immunofluorescence for various markers of cell cycle, lens and cornea differentiation. Hh pathway components (Ptch1, Smo, Gli2, Gli3) were detected in lens epithelium from E12.5. Gli2 was particularly localised to mitotic nuclei and, at E13.5, Gli3 exhibited a shift from cytosol to nucleus, suggesting distinct roles for these transcription factors. Conditional deletion of Smo, from ∼E12.5 (MLR10 Cre) did not affect ocular development, whereas deletion from ∼E9.5 (LeCre) resulted in lens and corneal defects from E14.5. Mutant lenses were smaller and showed normal expression of p57Kip2, c-Maf, E-cadherin and Pax6, reduced expression of FoxE3 and Ptch1 and decreased nuclear Hes1. There was normal G1-S phase but decreased G2-M phase transition at E16.5 and epithelial cell death from E14.5-E16.5. Mutant corneas were thicker due to aberrant migration of Nrp2+ cells from the extraocular mesenchyme, resulting in delayed corneal endothelial but normal epithelial differentiation. These results indicate the Hh pathway is required during a discrete period (E9.5-E12.5) in lens development to regulate lens epithelial cell proliferation, survival and FoxE3 expression. Defective corneal development occurs secondary to defects

  6. A Role for Smoothened during Murine Lens and Cornea Development

    PubMed Central

    Trogrlic, Lidia; Milevski, Stefan V.; Familari, Mary; Martinez, Gemma; de Iongh, Robb U

    2014-01-01

    Various studies suggest that Hedgehog (Hh) signalling plays roles in human and zebrafish ocular development. Recent studies (Kerr et al., Invest Ophthalmol Vis Sci. 2012; 53, 3316–30) showed that conditionally activating Hh signals promotes murine lens epithelial cell proliferation and disrupts fibre differentiation. In this study we examined the expression of the Hh pathway and the requirement for the Smoothened gene in murine lens development. Expression of Hh pathway components in developing lens was examined by RT-PCR, immunofluorescence and in situ hybridisation. The requirement of Smo in lens development was determined by conditional loss-of-function mutations, using LeCre and MLR10 Cre transgenic mice. The phenotype of mutant mice was examined by immunofluorescence for various markers of cell cycle, lens and cornea differentiation. Hh pathway components (Ptch1, Smo, Gli2, Gli3) were detected in lens epithelium from E12.5. Gli2 was particularly localised to mitotic nuclei and, at E13.5, Gli3 exhibited a shift from cytosol to nucleus, suggesting distinct roles for these transcription factors. Conditional deletion of Smo, from ∼E12.5 (MLR10 Cre) did not affect ocular development, whereas deletion from ∼E9.5 (LeCre) resulted in lens and corneal defects from E14.5. Mutant lenses were smaller and showed normal expression of p57Kip2, c-Maf, E-cadherin and Pax6, reduced expression of FoxE3 and Ptch1 and decreased nuclear Hes1. There was normal G1-S phase but decreased G2-M phase transition at E16.5 and epithelial cell death from E14.5-E16.5. Mutant corneas were thicker due to aberrant migration of Nrp2+ cells from the extraocular mesenchyme, resulting in delayed corneal endothelial but normal epithelial differentiation. These results indicate the Hh pathway is required during a discrete period (E9.5–E12.5) in lens development to regulate lens epithelial cell proliferation, survival and FoxE3 expression. Defective corneal development occurs secondary to

  7. An essential role for Grk2 in Hedgehog signalling downstream of Smoothened.

    PubMed

    Zhao, Zhonghua; Lee, Raymond Teck Ho; Pusapati, Ganesh V; Iyu, Audrey; Rohatgi, Rajat; Ingham, Philip W

    2016-05-01

    The G-protein-coupled receptor kinase 2 (adrbk2/GRK2) has been implicated in vertebrate Hedgehog (Hh) signalling based on the effects of its transient knock-down in mammalian cells and zebrafish embryos. Here, we show that the response to Hh signalling is effectively abolished in the absence of Grk2 activity. Zebrafish embryos lacking all Grk2 activity are refractory to both Sonic hedgehog (Shh) and oncogenic Smoothened (Smo) activity, but remain responsive to inhibition of cAMP-dependent protein kinase (PKA) activity. Mutation of the kinase domain abrogates the rescuing activity of grk2 mRNA, suggesting that Grk2 acts in a kinase-dependent manner to regulate the response to Hh. Previous studies have suggested that Grk2 potentiates Smo activity by phosphorylating its C-terminal tail (CTT). In the zebrafish embryo, however, phosphomimetic Smo does not display constitutive activity, whereas phospho-null mutants retain activity, implying phosphorylation is neither sufficient nor necessary for Smo function. Since Grk2 rescuing activity requires the integrity of domains essential for its interaction with GPCRs, we speculate that Grk2 may regulate Hh pathway activity by downregulation of a GPCR. PMID:27113758

  8. Sonidegib, a novel smoothened inhibitor for the treatment of advanced basal cell carcinoma

    PubMed Central

    Doan, Hung Q; Silapunt, Sirunya; Migden, Michael R

    2016-01-01

    Basal cell carcinoma (BCC) is the most common nonmelanoma skin cancer. If left untreated, BCCs can become locally aggressive or even metastasize. Currently available treatments include local destruction, surgery, and radiation. Systemic options for advanced disease are limited. The Hedgehog (Hh) pathway is aberrantly activated in a majority of BCCs and in other cancers. Hh pathway inhibitors are targeted agents that inhibit the aberrant activation of the Hh pathway, with smoothened being a targeted component. Sonidegib is a novel smoothened inhibitor that was recently approved by the US Food and Drug Administration. This review focuses on BCC pathogenesis and the clinical efficacy of sonidegib for the treatment of advanced BCC. PMID:27695345

  9. Sonidegib, a novel smoothened inhibitor for the treatment of advanced basal cell carcinoma

    PubMed Central

    Doan, Hung Q; Silapunt, Sirunya; Migden, Michael R

    2016-01-01

    Basal cell carcinoma (BCC) is the most common nonmelanoma skin cancer. If left untreated, BCCs can become locally aggressive or even metastasize. Currently available treatments include local destruction, surgery, and radiation. Systemic options for advanced disease are limited. The Hedgehog (Hh) pathway is aberrantly activated in a majority of BCCs and in other cancers. Hh pathway inhibitors are targeted agents that inhibit the aberrant activation of the Hh pathway, with smoothened being a targeted component. Sonidegib is a novel smoothened inhibitor that was recently approved by the US Food and Drug Administration. This review focuses on BCC pathogenesis and the clinical efficacy of sonidegib for the treatment of advanced BCC.

  10. Structure and function of the Smoothened extracellular domain in vertebrate Hedgehog signaling

    PubMed Central

    Nachtergaele, Sigrid; Whalen, Daniel M; Mydock, Laurel K; Zhao, Zhonghua; Malinauskas, Tomas; Krishnan, Kathiresan; Ingham, Philip W; Covey, Douglas F; Siebold, Christian; Rohatgi, Rajat

    2013-01-01

    The Hedgehog (Hh) signal is transduced across the membrane by the heptahelical protein Smoothened (Smo), a developmental regulator, oncoprotein and drug target in oncology. We present the 2.3 Å crystal structure of the extracellular cysteine rich domain (CRD) of vertebrate Smo and show that it binds to oxysterols, endogenous lipids that activate Hh signaling. The oxysterol-binding groove in the Smo CRD is analogous to that used by Frizzled 8 to bind to the palmitoleyl group of Wnt ligands and to similar pockets used by other Frizzled-like CRDs to bind hydrophobic ligands. The CRD is required for signaling in response to native Hh ligands, showing that it is an important regulatory module for Smo activation. Indeed, targeting of the Smo CRD by oxysterol-inspired small molecules can block signaling by all known classes of Hh activators and by clinically relevant Smo mutants. DOI: http://dx.doi.org/10.7554/eLife.01340.001 PMID:24171105

  11. [Pigment composition and photosynthetic activity of pea chlorophyll mutants].

    PubMed

    Ladygin, V G

    2003-01-01

    Pea chlorophyll mutants chlorotica 2004 and 2014 have been studied. The mutants differ from the initial form (pea cultivar Torsdag) in stem and leaf color (light green in the mutant 2004 and yellow-green in the mutant 2014), relative chlorophyll content (approximately 80 and 50%, respectively), and the composition of carotenoids: the mutant 2004 contains a significantly smaller amount of carotene but accumulates more lutein and violaxanthine; in the mutant 2014, the contents of all carotenoids are decreased proportionally to the decrease in chlorophyll content. It is shown that the rates of CO2 assimilation and oxygen production in the mutant chlorotica 2004 and 2014 plants are reduced. The quantum efficiency of photosynthesis in the mutants is 29-30% lower than in the control plants; in their hybrids, however, it is 1.5-2 higher. It is proposed that both the greater role of dark respiration in gas exchange and the reduced photosynthetic activity in chlorotica mutants are responsible for the decreased phytomass increment in these plants. On the basis of these results, the conclusion is drawn that the mutations chlorotica 2004 and 2014 affect the genes controlling the formation and functioning of various components of the photosynthetic apparatus.

  12. Analysis of p53 mutants for transcriptional activity.

    PubMed Central

    Raycroft, L; Schmidt, J R; Yoas, K; Hao, M M; Lozano, G

    1991-01-01

    The wild-type p53 protein functions to suppress transformation, but numerous mutant p53 proteins are transformation competent. To examine the role of p53 as a transcription factor, we made fusion proteins containing human or mouse p53 sequences fused to the DNA binding domain of a known transcription factor, GAL4. Human and mouse wild-type p53/GAL4 specifically transactivated expression of a chloramphenicol acetyltransferase reporter in HeLa, CHO, and NIH 3T3 cells. Several mutant p53 proteins, including a mouse p53 mutant which is temperature sensitive for suppression, were also analyzed. A p53/GAL4 fusion protein with this mutation was also transcriptionally active only at the permissive temperature. Another mutant p53/GAL4 fusion protein analyzed mimics the mutation inherited in Li-Fraumeni patients. This fusion protein was as active as wild-type p53/GAL4 in our assay. Two human p53 mutants that arose from alterations of the p53 gene in colorectal carcinomas were 30- to 40-fold less effective at activating transcription than wild-type p53/GAL4 fusion proteins. Thus, functional wild-type p53/GAL4 fusion proteins activate transcription, while several transformation competent mutants do so poorly or not at all. Only one mutant p53/GAL4 fusion protein remained transcriptionally active. Images PMID:1944276

  13. Smoothening in thin-film deposition on rough substrates.

    PubMed

    de Assis, T A; Reis, F D A Aarão

    2015-11-01

    The evolution of the surface roughness W of a thin film deposited on a rough substrate is studied with a model of temperature-activated adatom diffusion, irreversible lateral aggregation, and no step energy barrier, in which the main parameter is the ratio R of diffusion and deposition rates. At sufficiently low temperatures (R≲10), the average number of adatom steps after adsorption is very small, thus W monotonically increases with time t due to an approximately uncorrelated deposition at short times. If the temperature is not very low (R∼10(3) or larger), smoothening occurs at short times and the Villain-Lai-Das Sarma (VLDS) growth equation governs the long time roughening, which is attained after a crossover time t(c) that increases with the correlation length ξ(i) of the substrate. Scaling arguments predict the dependence of t(c) on temperature and on the substrate production time and the scaling relation for the difference between the roughness of films deposited on rough and flat substrates, in good agreement with numerical results. The effect of temperature is not a direct extension of previous results on flat substrates because the short wavelength fluctuations delay the formation of terraces. For this reason, the effective energy obtained from the dependence of t(c) on R is 40% of the energy of activated adatom diffusion. A scaling law for the initial smoothening is proposed as W/W(i)=Ψ(t/t(c1)), with a crossover time t(c1)≡R(-θ)ξ(i)(z), where W(i) is the substrate roughness, θ≈0.4, and z is the VLDS dynamical exponent. It provides good data collapse if W is not very small and is suggested to be tested experimentally. PMID:26651710

  14. Dataset for phenotypic classification of genetic modifiers of smoothened and Hedgehog.

    PubMed

    Marada, Suresh; Truong, Ashley; Ogden, Stacey K

    2016-06-01

    This data article includes supporting information for the research article entitled "The Small GTPase Rap1 is a Modulator of Hedgehog Signaling" [1]. Drosophila wing phenotypes induced by expression of a dominant negative Smoothened (Smo) mutant were cataloged into five distinct classes. Class distributions observed following expression of dominant negative Smo in control and sensitized backgrounds were quantified to serve as references for strength of phenotypic modification. Shifts in class distribution of Hedgehog (Hh) wing phenotypes resulting from introduction of loss-of-function alleles of select Ras family G protein genes and the Hh pathway regulators Fused and Suppressor of Fused are shown. PMID:27014736

  15. Insulator dysfunction and oncogene activation in IDH mutant gliomas

    PubMed Central

    Flavahan, William A.; Drier, Yotam; Liau, Brian B.; Gillespie, Shawn M.; Venteicher, Andrew S.; Stemmer-Rachamimov, Anat O.; Suvà, Mario L.; Bernstein, Bradley E.

    2015-01-01

    Gain-of-function IDH mutations are initiating events that define major clinical and prognostic classes of gliomas1,2. Mutant IDH protein produces a novel onco-metabolite, 2-hydroxyglutarate (2-HG), that interferes with iron-dependent hydroxylases, including the TET family of 5′-methylcytosine hydroxylases3–7. TET enzymes catalyze a key step in the removal of DNA methylation8,9. IDH mutant gliomas thus manifest a CpG island methylator phenotype (G-CIMP)10,11, though the functional significance of this altered epigenetic state remains unclear. Here we show that IDH mutant gliomas exhibit hyper-methylation at CTCF binding sites, compromising binding of this methylation-sensitive insulator protein. Reduced CTCF binding is associated with loss of insulation between topological domains and aberrant gene activation. We specifically demonstrate that loss of CTCF at a domain boundary permits a constitutive enhancer to aberrantly interact with the receptor tyrosine kinase gene PDGFRA, a prominent glioma oncogene. Treatment of IDH mutant gliomaspheres with demethylating agent partially restores insulator function and down-regulates PDGFRA. Conversely, CRISPR-mediated disruption of the CTCF motif in IDH wildtype gliomaspheres up-regulates PDGFRA and increases proliferation. Our study suggests that IDH mutations promote gliomagenesis by disrupting chromosomal topology and allowing aberrant regulatory interactions that induce oncogene expression. PMID:26700815

  16. Abnormal grooming activity in Dab1(scm) (scrambler) mutant mice.

    PubMed

    Strazielle, C; Lefevre, A; Jacquelin, C; Lalonde, R

    2012-07-15

    Dab1(scm) mutant mice, characterized by cell ectopias and degeneration in cerebellum, hippocampus, and neocortex, were compared to non-ataxic controls for different facets of grooming caused by brief water immersions, as well as some non-grooming behaviors. Dab1(scm) mutants were strongly affected in their quantitative functional parameters, exhibiting higher starting latencies before grooming relative to non-ataxic littermates of the A/A strain, fewer grooming bouts, and grooming components of shorter duration, with an unequal regional distribution targeting almost totally the rostral part (head washing and forelimb licking) of the animal. Only bouts of a single grooming element were preserved. The cephalocaudal order of grooming elements appeared less disorganized, mutant and control mice initiating the grooming with head washing and forelimb licking prior to licking posterior parts. However, mutants differed from controls in that all their bouts were incomplete but uninterrupted, although intergroup difference for percentage of the incorrect transitions was not significant. In contrast to grooming, Dab1(scm) mice ambulated for a longer time. During walking episodes, they exhibited more body scratching than controls, possibly to compensate for the lack of licking different body parts. In conjunction with studies with other ataxic mice, these results indicate that the cerebellar cortex affects grooming activity and is consequently involved in executing various components, but not in its sequential organization, which requires other brain regions such as cerebral cortices or basal ganglia.

  17. TBP mutants defective in activated transcription in vivo.

    PubMed Central

    Arndt, K M; Ricupero-Hovasse, S; Winston, F

    1995-01-01

    The TATA box binding protein (TBP) plays a central and essential role in transcription initiation. At TATA box-containing genes transcribed by RNA polymerase II, TBP binds to the promoter and initiates the assembly of a multiprotein preinitiation complex. Several studies have suggested that binding of TBP to the TATA box is an important regulatory step in transcription initiation in vitro. To determine whether TBP is a target of regulatory factors in vivo, we performed a genetic screen in yeast for TBP mutants defective in activated transcription. One class of TBP mutants identified in this screen comprises inositol auxotrophs that are also defective in using galactose as a carbon source. These phenotypes are due to promoter-specific defects in transcription initiation that are governed by the upstream activating sequence (UAS) and apparently not by the sequence of the TATA element. The finding that these TBP mutants are severely impaired in DNA binding in vitro suggests that transcription initiation at certain genes is regulated at the level of TATA box binding by TBP in vivo. Images PMID:7729424

  18. Transgene expression study of CXCR4 active mutants

    PubMed Central

    Sharma, Menka; Afrin, Farhat; Tripathi, Rajendra P; Gangenahalli, Gurudutta

    2014-01-01

    Homing and engraftment, a determining factor in hematopoietic stem cell transplantation success is defined as a process through which hematopoietic stem/progenitor cells (HSPCs) lodge recipient bone marrow. SDF-1/CXCR4 axis acts as a principle regulator in homing and engraftment, however, CXCR4 signaling is dependent upon expression of CXCR4 and its ligand SDF-1, which is highly dynamic. Hence, present investigation was aimed to explore the potential of CXCR4 constitutive active mutants (CXCR4-CAMs) in overcoming the limitation of CXCR4 signaling and up-modulate its efficiency in homing and engraftment. Regulated transgene expression study of these mutants revealed their significantly enhanced cell adhesion efficiency to endothelium and extracellular matrix protein. This altogether indicates promising prospects of CXCR4-CAMs in research aimed to improve HSPCs engraftment efficiency. PMID:25482641

  19. Removing Ocular Movement Artefacts by a Joint Smoothened Subspace Estimator

    PubMed Central

    Phlypo, Ronald; Boon, Paul; D'Asseler, Yves; Lemahieu, Ignace

    2007-01-01

    To cope with the severe masking of background cerebral activity in the electroencephalogram (EEG) by ocular movement artefacts, we present a method which combines lower-order, short-term and higher-order, long-term statistics. The joint smoothened subspace estimator (JSSE) calculates the joint information in both statistical models, subject to the constraint that the resulting estimated source should be sufficiently smooth in the time domain (i.e., has a large autocorrelation or self predictive power). It is shown that the JSSE is able to estimate a component from simulated data that is superior with respect to methodological artefact suppression to those of FastICA, SOBI, pSVD, or JADE/COM1 algorithms used for blind source separation (BSS). Interference and distortion suppression are of comparable order when compared with the above-mentioned methods. Results on patient data demonstrate that the method is able to suppress blinking and saccade artefacts in a fully automated way. PMID:18288258

  20. Bacillus pumilus Cyanide Dihydratase Mutants with Higher Catalytic Activity

    PubMed Central

    Crum, Mary A.; Sewell, B. Trevor; Benedik, Michael J.

    2016-01-01

    Cyanide degrading nitrilases are noted for their potential to detoxify industrial wastewater contaminated with cyanide. However, such application would benefit from an improvement to characteristics such as their catalytic activity and stability. Following error-prone PCR for random mutagenesis, several cyanide dihydratase mutants from Bacillus pumilus were isolated based on improved catalysis. Four point mutations, K93R, D172N, A202T, and E327K were characterized and their effects on kinetics, thermostability and pH tolerance were studied. K93R and D172N increased the enzyme’s thermostability whereas E327K mutation had a less pronounced effect on stability. The D172N mutation also increased the affinity of the enzyme for its substrate at pH 7.7 but lowered its kcat. However, the A202T mutation, located in the dimerization or the A surface, destabilized the protein and abolished its activity. No significant effect on activity at alkaline pH was observed for any of the purified mutants. These mutations help confirm the model of CynD and are discussed in the context of the protein–protein interfaces leading to the protein quaternary structure. PMID:27570524

  1. Bacillus pumilus Cyanide Dihydratase Mutants with Higher Catalytic Activity.

    PubMed

    Crum, Mary A; Sewell, B Trevor; Benedik, Michael J

    2016-01-01

    Cyanide degrading nitrilases are noted for their potential to detoxify industrial wastewater contaminated with cyanide. However, such application would benefit from an improvement to characteristics such as their catalytic activity and stability. Following error-prone PCR for random mutagenesis, several cyanide dihydratase mutants from Bacillus pumilus were isolated based on improved catalysis. Four point mutations, K93R, D172N, A202T, and E327K were characterized and their effects on kinetics, thermostability and pH tolerance were studied. K93R and D172N increased the enzyme's thermostability whereas E327K mutation had a less pronounced effect on stability. The D172N mutation also increased the affinity of the enzyme for its substrate at pH 7.7 but lowered its k cat. However, the A202T mutation, located in the dimerization or the A surface, destabilized the protein and abolished its activity. No significant effect on activity at alkaline pH was observed for any of the purified mutants. These mutations help confirm the model of CynD and are discussed in the context of the protein-protein interfaces leading to the protein quaternary structure. PMID:27570524

  2. Smoothened Signaling in Vertebrates Is Facilitated by a G Protein-coupled Receptor Kinase

    PubMed Central

    Philipp, Melanie; Fralish, Gregory B.; Meloni, Alison R.; Chen, Wei; MacInnes, Alyson W.; Barak, Lawrence S.

    2008-01-01

    Smoothened, a heptahelical membrane protein, functions as the transducer of Hedgehog signaling. The kinases that modulate Smoothened have been thoroughly analyzed in flies. However, little is known about how phosphorylation affects Smoothened in vertebrates, mainly, because the residues, where Smoothened is phosphorylated are not conserved from Drosophila to vertebrates. Given its molecular architecture, Smoothened signaling is likely to be regulated in a manner analogous to G protein–coupled receptors (GPCRs). Previously, it has been shown, that arrestins and GPCR kinases, (GRKs) not only desensitize G protein–dependent receptor signaling but also function as triggers for GPCR trafficking and formation of signaling complexes. Here we describe that a GRK contributes to Smoothened-mediated signaling in vertebrates. Knockdown of the zebrafish homolog of mammalian GRK2/3 results in lowered Hedgehog transcriptional responses, impaired muscle development, and neural patterning. Results obtained in zebrafish are corroborated both in cell culture, where zGRK2/3 phosphorylates Smoothened and promotes Smoothened signal transduction and in mice where deletion of GRK2 interferes with neural tube patterning. Together, these data suggest that a GRK functions as a vertebrate kinase for Smoothened, promoting Hedgehog signal transduction during early development. PMID:18815277

  3. Mutant strains of Tetrahymena thermophila defective in thymidine kinase activity: Biochemical and genetic characterization

    SciTech Connect

    Cornish, K.V.; Pearlman, R.E.

    1982-08-01

    Three mutant strains, one conditional, of Tetrahymena thermophila were defective in thymidine phosphorylating activity in vivo and in thymidine kinase activity in vitro. Nucleoside phosphotransferase activity in mutant cell extracts approached wild-type levels, suggesting that thymidine kinase is responsible for most, if not all, thymidine phosphorylation in vivo. Thymidine kinase activity in extracts of the conditional mutant strain was deficient when the cells were grown or assayed or both at the permissive temperature, implying a structural enzyme defect. Analysis of the reaction products from in vitro assays with partially purified enzymes showed that phosphorylation by thymidine kinase and nucleoside phosphotransferase occurred at the 5' position. Genetic analyses showed that the mutant phenotype was recessive and that mutations in each of the three mutant strains did not complement, suggesting allelism.

  4. Single continuous lumen formation in the zebrafish gut is mediated by smoothened-dependent tissue remodeling.

    PubMed

    Alvers, Ashley L; Ryan, Sean; Scherz, Paul J; Huisken, Jan; Bagnat, Michel

    2014-03-01

    The formation of a single lumen during tubulogenesis is crucial for the development and function of many organs. Although 3D cell culture models have identified molecular mechanisms controlling lumen formation in vitro, their function during vertebrate organogenesis is poorly understood. Using light sheet microscopy and genetic approaches we have investigated single lumen formation in the zebrafish gut. Here we show that during gut development multiple lumens open and enlarge to generate a distinct intermediate, which consists of two adjacent unfused lumens separated by basolateral contacts. We observed that these lumens arise independently from each other along the length of the gut and do not share a continuous apical surface. Resolution of this intermediate into a single, continuous lumen requires the remodeling of contacts between adjacent lumens and subsequent lumen fusion. We show that lumen resolution, but not lumen opening, is impaired in smoothened (smo) mutants, indicating that fluid-driven lumen enlargement and resolution are two distinct processes. Furthermore, we show that smo mutants exhibit perturbations in the Rab11 trafficking pathway and demonstrate that Rab11-mediated trafficking is necessary for single lumen formation. Thus, lumen resolution is a distinct genetically controlled process crucial for single, continuous lumen formation in the zebrafish gut.

  5. Increased riboflavin production from activated bleaching earth by a mutant strain of Ashbya gossypii.

    PubMed

    Tajima, Satoshi; Itoh, Yoko; Sugimoto, Takashi; Kato, Tatsuya; Park, Enoch Y

    2009-10-01

    The production of riboflavin from vegetable oil was increased using a mutant strain of Ashbya gossypii. This mutant was generated by treating the wild-type strain with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Riboflavin production was 10-fold higher in the mutant compared to the wild-type strain. The specific intracellular catalase activity after 3 d of culture was 6-fold higher in the mutant than in the wild-type strain. For the mutant, riboflavin production in the presence of 40 mM hydrogen peroxide was 16% less than that in the absence of hydrogen peroxide, whereas it was 56% less for the wild-type strain. The isocitrate lyase (ICL) activity of the mutant was 0.26 mU/mg of protein during the active riboflavin production phase, which was 2.6-fold higher than the wild-type strain. These data indicate that the mutant utilizes the carbon flux from the TCA cycle to the glyoxylate cycle more efficiently than the wild-type strain, resulting in enhanced riboflavin production. This novel mutant has the potential to be of use for industrial-scale riboflavin production from waste-activated bleaching earth (ABE), thereby transforming a useless material into a valuable bioproduct. PMID:19716523

  6. Schwann cells expressing dismutase active mutant SOD1 unexpectedly slow disease progression in ALS mice

    PubMed Central

    Lobsiger, Christian S.; Boillee, Severine; McAlonis-Downes, Melissa; Khan, Amir M.; Feltri, M. Laura; Yamanaka, Koji; Cleveland, Don W.

    2009-01-01

    Neurodegeneration in an inherited form of ALS is non-cell-autonomous, with ALS-causing mutant SOD1 damage developed within multiple cell types. Selective inactivation within motor neurons of an ubiquitously expressed mutant SOD1 gene has demonstrated that mutant damage within motor neurons is a determinant of disease initiation, whereas mutant synthesis within neighboring astrocytes or microglia accelerates disease progression. We now report the surprising finding that diminished synthesis (by 70%) within Schwann cells of a fully dismutase active ALS-linked mutant (SOD1G37R) significantly accelerates disease progression, accompanied by reduction of insulin-like growth factor 1 (IGF-1) in nerves. Coupled with shorter disease duration in mouse models caused by dismutase inactive versus dismutase active SOD1 mutants, our findings implicate an oxidative cascade during disease progression that is triggered within axon ensheathing Schwann cells and that can be ameliorated by elevated dismutase activity. Thus, therapeutic down-regulation of dismutase active mutant SOD1 in familial forms of ALS should be targeted away from Schwann cells. PMID:19251638

  7. Characterization and RNA-seq analysis of underperformer, an activation-tagged potato mutant.

    PubMed

    Aulakh, Sukhwinder S; Veilleux, Richard E; Dickerman, Allan W; Tang, Guozhu; Flinn, Barry S

    2014-04-01

    The potato cv. Bintje and a Bintje activation-tagged mutant, underperformer (up) were compared. Mutant up plants grown in vitro were dwarf, with abundant axillary shoot growth, greater tuber yield, altered tuber traits and early senescence compared to wild type. Under in vivo conditions, the dwarf and early senescence phenotypes of the mutant remained, but the up plants exhibited a lower tuber yield and fewer axillary shoots compared to wild type. Southern blot analyses indicated a single T-DNA insertion in the mutant, located on chromosome 10. Initial PCR-based gene expression studies indicated transcriptional activation/repression of several genes in the mutant flanking the insertion. The gene immediately flanking the right border of the T-DNA insertion, which encoded an uncharacterized Broad complex, Tramtrac, Bric-a-brac; also known as Pox virus and Zinc finger (BTB/POZ) domain-containing protein (StBTB/POZ1) containing an Armadillo repeat region, was up-regulated in the mutant. Global gene expression comparisons between Bintje and up using RNA-seq on leaves from 60 day-old plants revealed a dataset of over 1,600 differentially expressed genes. Gene expression analyses suggested a variety of biological processes and pathways were modified in the mutant, including carbohydrate and lipid metabolism, cell division and cell cycle activity, biotic and abiotic stress responses, and proteolysis.

  8. Analysis of crystal structure of Arabidopsis MPK6 and generation of its mutants with higher activity

    PubMed Central

    Wang, Bo; Qin, Xinghua; Wu, Juan; Deng, Hongying; Li, Yuan; Yang, Hailian; Chen, Zhongzhou; Liu, Guoqin; Ren, Dongtao

    2016-01-01

    Mitogen-activated protein kinase (MAPK) cascades, which are the highly conserved signalling modules in eukaryotic organisms, have been shown to play important roles in regulating growth, development, and stress responses. The structures of various MAPKs from yeast and animal have been solved, and structure-based mutants were generated for their function analyses, however, the structures of plant MAPKs remain unsolved. Here, we report the crystal structure of Arabidopsis MPK6 at a 3.0 Å resolution. Although MPK6 is topologically similar to ERK2 and p38, the structures of the glycine-rich loop, MAPK insert, substrate binding sites, and L16 loop in MPK6 show notable differences from those of ERK2 and p38. Based on the structural comparison, we constructed MPK6 mutants and analyzed their kinase activity both in vitro and in planta. MPK6F364L and MPK6F368L mutants, in which Phe364 and Phe368 in the L16 loop were changed to Leu, respectively, acquired higher intrinsic kinase activity and retained the normal MAPKK activation property. The expression of MPK6 mutants with basal activity is sufficient to induce camalexin biosynthesis; however, to induce ethylene and leaf senescence, the expression of MPK6 mutants with higher activity is required. The results suggest that these mutants can be used to analyze the specific biological functions of MPK6. PMID:27160427

  9. Mutants with enhanced nitrogenase activity in hydroponic Azospirillum brasilense-wheat associations.

    PubMed

    Pereg Gerk, L; Gilchrist, K; Kennedy, I R

    2000-05-01

    The effect of a mutation affecting flocculation, differentiation into cyst-like forms, and root colonization on nitrogenase expression by Azospirillum brasilense is described. The gene flcA of strain Sp7 restored these phenotypes in spontaneous mutants of both strains Sp7 and Sp245. Employing both constitutive pLA-lacZ and nifH-lacZ reporter fusions expressed in situ, the colony morphology, colonization pattern, and potential for nitrogenase activity of spontaneous mutants and flcA Tn5-induced mutants were established. The results of this study show that the ability of Sp7 and Sp245 mutant strains to remain in a vegetative form improved their ability to express nitrogenase activity in association with wheat in a hydroponic system. Restoring the cyst formation and colonization pattern to the spontaneous mutant Sp7-S reduced nitrogenase activity rates in association with plants to that of the wild-type Sp7. Although Tn5-induced flcA mutants showed higher potentials for nitrogenase expression than Sp7, their potentials were lower than that of Sp7-S, indicating that other factors in this strain contribute to its exceptional nitrogenase activity rates on plants. The lack of lateral flagella is not one of these factors, as Sp7-PM23, a spontaneous mutant impaired in swarming and lateral-flagellum production but not in flocculation, showed wild-type nitrogenase activity and expression. The results also suggest factors of importance in evolving an effective symbiosis between Azospirillum and wheat, such as increasing the availability of microaerobic niches along the root, increased supply of carbon sources by the plant, and the retention of the bacterial cells in vegetative form for faster metabolism.

  10. Mutants with Enhanced Nitrogenase Activity in Hydroponic Azospirillum brasilense-Wheat Associations

    PubMed Central

    Pereg Gerk, Lily; Gilchrist, Kate; Kennedy, Ivan R.

    2000-01-01

    The effect of a mutation affecting flocculation, differentiation into cyst-like forms, and root colonization on nitrogenase expression by Azospirillum brasilense is described. The gene flcA of strain Sp7 restored these phenotypes in spontaneous mutants of both strains Sp7 and Sp245. Employing both constitutive pLA-lacZ and nifH-lacZ reporter fusions expressed in situ, the colony morphology, colonization pattern, and potential for nitrogenase activity of spontaneous mutants and flcA Tn5-induced mutants were established. The results of this study show that the ability of Sp7 and Sp245 mutant strains to remain in a vegetative form improved their ability to express nitrogenase activity in association with wheat in a hydroponic system. Restoring the cyst formation and colonization pattern to the spontaneous mutant Sp7-S reduced nitrogenase activity rates in association with plants to that of the wild-type Sp7. Although Tn5-induced flcA mutants showed higher potentials for nitrogenase expression than Sp7, their potentials were lower than that of Sp7-S, indicating that other factors in this strain contribute to its exceptional nitrogenase activity rates on plants. The lack of lateral flagella is not one of these factors, as Sp7-PM23, a spontaneous mutant impaired in swarming and lateral-flagellum production but not in flocculation, showed wild-type nitrogenase activity and expression. The results also suggest factors of importance in evolving an effective symbiosis between Azospirillum and wheat, such as increasing the availability of microaerobic niches along the root, increased supply of carbon sources by the plant, and the retention of the bacterial cells in vegetative form for faster metabolism. PMID:10788397

  11. Unglycosylated recombinant human glutathione peroxidase 3 mutant from Escherichia coli is active as a monomer.

    PubMed

    Song, Jian; Yu, Yang; Xing, Ruiqing; Guo, Xiao; Liu, Dali; Wei, Jingyan; Song, Hongwei

    2014-01-01

    Glutathione peroxidase 3 (GPx3) is a glycosylated member of GPx family and can catalyze the reaction of different types of peroxides with GSH to form their corresponding alcohols in vitro. The active center of GPx3 is selenocysteine (Sec), which is incorporated into proteins by a specific mechanism. In this study, we prepared a recombinant human GPx3 (rhGPx3) mutant with all Cys changed to Ser from a Cys auxotrophic strain of E. coli, BL21(DE3)cys. Although lacking post-translational modification, rhGPx3 mutant still retained the ability to reduce H2O2 and PLPC-OOH. Study on the quaternary structure suggested that rhGPx3 mutant existed as a monomer in solution, which is different from native tetrameric GPx3. Loss of the catalytic activity was considered to be attributed to both the absence of glycosylation and the failure of the tetramer. Further analysis was performed to compare the structures of rhGPx3 and GPx4 mutant, which were quite similar except for oligomerization loop. The differences of amino acid composition and electrostatic potentials on the oligomerization loop may affect the binding of large substrates to rhGPx3 mutant. This research provides an important foundation for biosynthesis of functionally selenium-containing GPx3 mutant in E.coli. PMID:25331785

  12. Enhanced dimerization drives ligand-independent activity of mutant epidermal growth factor receptor in lung cancer

    PubMed Central

    Valley, Christopher C.; Arndt-Jovin, Donna J.; Karedla, Narain; Steinkamp, Mara P.; Chizhik, Alexey I.; Hlavacek, William S.; Wilson, Bridget S.; Lidke, Keith A.; Lidke, Diane S.

    2015-01-01

    Mutations within the epidermal growth factor receptor (EGFR/erbB1/Her1) are often associated with tumorigenesis. In particular, a number of EGFR mutants that demonstrate ligand-independent signaling are common in non–small cell lung cancer (NSCLC), including kinase domain mutations L858R (also called L834R) and exon 19 deletions (e.g., ΔL747-P753insS), which collectively make up nearly 90% of mutations in NSCLC. The molecular mechanisms by which these mutations confer constitutive activity remain unresolved. Using multiple subdiffraction-limit imaging modalities, we reveal the altered receptor structure and interaction kinetics of NSCLC-associated EGFR mutants. We applied two-color single quantum dot tracking to quantify receptor dimerization kinetics on living cells and show that, in contrast to wild-type EGFR, mutants are capable of forming stable, ligand-independent dimers. Two-color superresolution localization microscopy confirmed ligand-independent aggregation of EGFR mutants. Live-cell Förster resonance energy transfer measurements revealed that the L858R kinase mutation alters ectodomain structure such that unliganded mutant EGFR adopts an extended, dimerization-competent conformation. Finally, mutation of the putative dimerization arm confirmed a critical role for ectodomain engagement in ligand-independent signaling. These data support a model in which dysregulated activity of NSCLC-associated kinase mutants is driven by coordinated interactions involving both the kinase and extracellular domains that lead to enhanced dimerization. PMID:26337388

  13. Engineered epidermal growth factor mutants with faster binding on-rates correlate with enhanced receptor activation

    PubMed Central

    Lahti, Jennifer L.; Lui, Bertrand H.; Beck, Stayce E.; Lee, Stephen S.; Ly, Daphne P.; Longaker, Michael T.; Yang, George P.; Cochran, Jennifer R.

    2011-01-01

    Receptor tyrosine kinases (RTKs) regulate critical cell signaling pathways, yet the properties of their cognate ligands that influence receptor activation are not fully understood. There is great interest in parsing these complex ligand-receptor relationships using engineered proteins with altered binding properties. Here we focus on the interaction between two engineered epidermal growth factor (EGF) mutants and the EGF receptor (EGFR), a model member of the RTK superfamily. We found that EGF mutants with faster kinetic on-rates stimulate increased EGFR activation compared to wild-type EGF. These findings support previous predictions that faster association rates correlate with enhanced receptor activity. PMID:21439278

  14. Functional domains and sub-cellular distribution of the Hedgehog transducing protein Smoothened in Drosophila.

    PubMed

    Nakano, Y; Nystedt, S; Shivdasani, A A; Strutt, H; Thomas, C; Ingham, P W

    2004-06-01

    The Hedgehog signalling pathway is deployed repeatedly during normal animal development and its inappropriate activity is associated with various tumours in human. The serpentine protein Smoothened (Smo) is essential for cells to respond to the Hedeghog (Hh) signal; oncogenic forms of Smo have been isolated from human basal cell carcinomas. Despite similarities with ligand binding G-protein coupled receptors, the molecular basis of Smo activity and its regulation remains unclear. In non-responding cells, Smo is suppressed by the activity of another multipass membrane spanning protein Ptc, which acts as the Hh receptor. In Drosophila, binding of Hh to Ptc has been shown to cause an accumulation of phosphorylated Smo protein and a concomitant stabilisation of the activated form of the Ci transcription factor. Here, we identify domains essential for Smo activity and investigate the sub-cellular distribution of the wild type protein in vivo. We find that deletion of the amino terminus and the juxtamembrane region of the carboxy terminus of the protein result in the loss of normal Smo activity. Using Green Fluorescent Protein (GFP) and horseradish peroxidase fusion proteins we show that Smo accumulates in the plasma membrane of cells in which Ptc activity is abrogated by Hh but is targeted to the degradative pathway in cells where Ptc is active. We further demonstrate that Smo accumulation is likely to be a cause, rather than a consequence, of Hh signal transduction.

  15. Isolation and characterization of pediocin AcH chimeric protein mutants with altered bactericidal activity.

    PubMed

    Miller, K W; Schamber, R; Osmanagaoglu, O; Ray, B

    1998-06-01

    A collection of pediocin AcH amino acid substitution mutants was generated by PCR random mutagenesis of DNA encoding the bacteriocin. Mutants were isolated by cloning mutagenized DNA into an Escherichia coli malE plasmid that directs the secretion of maltose binding protein-pediocin AcH chimeric proteins and by screening transformant colonies for bactericidal activity against Lactobacillus plantarum NCDO955 (K. W. Miller, R. Schamber, Y. Chen, and B. Ray, 1998. Appl. Environ. Microbiol. 64:14-20, 1998). In all, 17 substitution mutants were isolated at 14 of the 44 amino acids of pediocin AcH. Seven mutants (N5K, C9R, C14S, C14Y, G37E, G37R, and C44W) were completely inactive against the pediocin AcH-sensitive strains L. plantarum NCDO955, Listeria innocua Lin11, Enterococcus faecalis M1, Pediococcus acidilactici LB42, and Leuconostoc mesenteroides Ly. A C24S substitution mutant constructed by other means also was inactive against these bacteria. Nine other mutants (K1N, W18R, I26T, M31T, A34D, N41K, H42L, K43N, and K43E) retained from <1% to approximately 60% of wild-type activity when assayed against L. innocua Lin11. One mutant, K11E, displayed approximately 2. 8-fold-higher activity against this indicator. About one half of the mutations mapped to amino acids that are conserved in the pediocin-like family of bacteriocins. All four cysteines were found to be required for activity, although only C9 and C14 are conserved among pediocin-like bacteriocins. Several basic amino acids as well as nonpolar amino acids located within the hydrophobic C-terminal region also were found to be important. The mutations are discussed in the context of structural models that have been proposed for the bacteriocin.

  16. Smoothened determines β-arrestin-mediated removal of the G protein-coupled receptor Gpr161 from the primary cilium.

    PubMed

    Pal, Kasturi; Hwang, Sun-Hee; Somatilaka, Bandarigoda; Badgandi, Hemant; Jackson, Peter K; DeFea, Kathryn; Mukhopadhyay, Saikat

    2016-03-28

    Dynamic changes in membrane protein composition of the primary cilium are central to development and homeostasis, but we know little about mechanisms regulating membrane protein flux. Stimulation of the sonic hedgehog (Shh) pathway in vertebrates results in accumulation and activation of the effector Smoothened within cilia and concomitant disappearance of a negative regulator, the orphan G protein-coupled receptor (GPCR), Gpr161. Here, we describe a two-step process determining removal of Gpr161 from cilia. The first step involves β-arrestin recruitment by the signaling competent receptor, which is facilitated by the GPCR kinase Grk2. An essential factor here is the ciliary trafficking and activation of Smoothened, which by increasing Gpr161-β-arrestin binding promotes Gpr161 removal, both during resting conditions and upon Shh pathway activation. The second step involves clathrin-mediated endocytosis, which functions outside of the ciliary compartment in coordinating Gpr161 removal. Mechanisms determining dynamic compartmentalization of Gpr161 in cilia define a new paradigm for down-regulation of GPCRs during developmental signaling from a specialized subcellular compartment. PMID:27002170

  17. Smoothened determines β-arrestin–mediated removal of the G protein–coupled receptor Gpr161 from the primary cilium

    PubMed Central

    Pal, Kasturi; Hwang, Sun-hee; Somatilaka, Bandarigoda; Badgandi, Hemant; Jackson, Peter K.; DeFea, Kathryn

    2016-01-01

    Dynamic changes in membrane protein composition of the primary cilium are central to development and homeostasis, but we know little about mechanisms regulating membrane protein flux. Stimulation of the sonic hedgehog (Shh) pathway in vertebrates results in accumulation and activation of the effector Smoothened within cilia and concomitant disappearance of a negative regulator, the orphan G protein–coupled receptor (GPCR), Gpr161. Here, we describe a two-step process determining removal of Gpr161 from cilia. The first step involves β-arrestin recruitment by the signaling competent receptor, which is facilitated by the GPCR kinase Grk2. An essential factor here is the ciliary trafficking and activation of Smoothened, which by increasing Gpr161–β-arrestin binding promotes Gpr161 removal, both during resting conditions and upon Shh pathway activation. The second step involves clathrin-mediated endocytosis, which functions outside of the ciliary compartment in coordinating Gpr161 removal. Mechanisms determining dynamic compartmentalization of Gpr161 in cilia define a new paradigm for down-regulation of GPCRs during developmental signaling from a specialized subcellular compartment. PMID:27002170

  18. Smoothened transduces Hedgehog signal by forming a complex with Evc/Evc2.

    PubMed

    Yang, Cuiping; Chen, Wenlin; Chen, Yongbin; Jiang, Jin

    2012-11-01

    Hedgehog (Hh) signaling plays pivotal roles in embryonic development and adult tissue homeostasis in species ranging from Drosophila to mammals. The Hh signal is transduced by Smoothened (Smo), a seven-transmembrane protein related to G protein coupled receptors. Despite a conserved mechanism by which Hh activates Smo in Drosophila and mammals, how mammalian Hh signal is transduced from Smo to the Gli transcription factors is poorly understood. Here, we provide evidence that two ciliary proteins, Evc and Evc2, the products of human disease genes responsible for the Ellis-van Creveld syndrome, act downstream of Smo to transduce the Hh signal. We found that loss of Evc/Evc2 does not affect Sonic Hedgehog-induced Smo phosphorylation and ciliary localization but impedes Hh pathway activation mediated by constitutively active forms of Smo. Evc/Evc2 are dispensable for the constitutive Gli activity in Sufu(-/-) cells, suggesting that Evc/Evc2 act upstream of Sufu to promote Gli activation. Furthermore, we demonstrated that Hh stimulates binding of Evc/Evc2 to Smo depending on phosphorylation of the Smo C-terminal intracellular tail and that the binding is abolished in Kif3a(-/-) cilium-deficient cells. We propose that Hh activates Smo by inducing its phosphorylation, which recruits Evc/Evc2 to activate Gli proteins by antagonizing Sufu in the primary cilia.

  19. A Recurrent Mosaic Mutation in SMO, Encoding the Hedgehog Signal Transducer Smoothened, Is the Major Cause of Curry-Jones Syndrome.

    PubMed

    Twigg, Stephen R F; Hufnagel, Robert B; Miller, Kerry A; Zhou, Yan; McGowan, Simon J; Taylor, John; Craft, Jude; Taylor, Jenny C; Santoro, Stephanie L; Huang, Taosheng; Hopkin, Robert J; Brady, Angela F; Clayton-Smith, Jill; Clericuzio, Carol L; Grange, Dorothy K; Groesser, Leopold; Hafner, Christian; Horn, Denise; Temple, I Karen; Dobyns, William B; Curry, Cynthia J; Jones, Marilyn C; Wilkie, Andrew O M

    2016-06-01

    Curry-Jones syndrome (CJS) is a multisystem disorder characterized by patchy skin lesions, polysyndactyly, diverse cerebral malformations, unicoronal craniosynostosis, iris colobomas, microphthalmia, and intestinal malrotation with myofibromas or hamartomas. Cerebellar medulloblastoma has been described in a single affected individual; in another, biopsy of skin lesions showed features of trichoblastoma. The combination of asymmetric clinical features, patchy skin manifestations, and neoplastic association previously led to the suggestion that this could be a mosaic condition, possibly involving hedgehog (Hh) signaling. Here, we show that CJS is caused by recurrent somatic mosaicism for a nonsynonymous variant in SMO (c.1234C>T [p.Leu412Phe]), encoding smoothened (SMO), a G-protein-coupled receptor that transduces Hh signaling. We identified eight mutation-positive individuals (two of whom had not been reported previously) with highly similar phenotypes and demonstrated varying amounts of the mutant allele in different tissues. We present detailed findings from brain MRI in three mutation-positive individuals. Somatic SMO mutations that result in constitutive activation have been described in several tumors, including medulloblastoma, ameloblastoma, and basal cell carcinoma. Strikingly, the most common of these mutations is the identical nonsynonymous variant encoding p.Leu412Phe. Furthermore, this substitution has been shown to activate SMO in the absence of Hh signaling, providing an explanation for tumor development in CJS. This raises therapeutic possibilities for using recently generated Hh-pathway inhibitors. In summary, our work uncovers the major genetic cause of CJS and illustrates strategies for gene discovery in the context of low-level tissue-specific somatic mosaicism. PMID:27236920

  20. Reduced enzyme activity and starch level in an induced mutant of chloroplast phosphoglucose isomerase

    SciTech Connect

    Jones, T.W.; Gottlieb, L.D.; Pichersky, E.

    1986-06-01

    Ethyl methane sulfonate treatment was used to induce a mutation in the nuclear gene encoding the chloroplast isozyme of phosphoglucose isomerase in Clarkia xantiana. The mutation, which proved allelic to wild type activity, was backcrossed to wild type for five generations so that the two could be compared in a near isogenic background. An immunological analysis showed that the mutant, when homozygous, reduced the activity of the isozyme by about 50%. In contrast to wild type, the mutant showed little change in leaf starch level over a diurnal period or following a 72-hour continuous light treatment. By the end of the diurnal light period, the mutant accumulated only about 60% as much starch as wild type. However, mutant leaves had an increased sucrose level presumably because photosynthate was directly exported from the chloroplasts. The mutant also exhibited reduced leaf weight. These changes in metabolism and growth suggest that the wild type level of plastid phosphoglucose isomerase activity is necessary to achieve wild type carbohydrate status.

  1. Isolation and characterization of a starchless mutant of Arabidopsis thaliana (L. ) Heynh lacking ADPglucose pyrophosphorylase activity

    SciTech Connect

    Lin, Tsanpiao; Caspar, T.; Somerville, C.; Preiss, J. )

    1988-04-01

    A mutant of Arabidopsis thaliana lacking ADPglucose pyrophosphorylase activity (EC 2.7.7.27) was isolated (from a mutagenized population of plants) by screening for the absence of leaf starch. The mutant grows as vigorously as the wild type in continuous light but more slowly than the wild type in a 12 hours light/12 hours dark photoperiod. Genetic analysis showed that the deficiency of both starch and ADPglucose pyrophosphorylase activity were attributable to a single, nuclear, recessive mutation at a locus designated adg1. The absence of starch in the mutant demonstrates that starch synthesis in the chloroplast is entirely dependent on a pathway involving ADPglucose pyrophosphorylase. Analysis of leaf extracts by two-dimensional polyacrylamide gel electrophoresis followed by Western blotting experiments using antibodies specific for spinach ADPglucose pyrophosphorylase showed that two proteins, present in the wild type, were absent from the mutant. The heterozygous F{sub 1} progeny of a cross between the mutant and wild type had a specific activity of ADP-glucose pyrophosphorylase indistinguishable from the wild type. These observations suggest that the mutation in the adg1 gene in TL25 might affect a regulatory locus.

  2. Ribosome display for selection of active dihydrofolate reductase mutants using immobilized methotrexate on agarose beads.

    PubMed

    Takahashi, Fumio; Ebihara, Takashi; Mie, Masayasu; Yanagida, Yasuko; Endo, Yaeta; Kobatake, Eiry; Aizawa, Masuo

    2002-03-01

    Ribosome display was applied to the selection of an enzyme. As a model, we selected and amplified the dihydrofolate reductase (DHFR) gene by ribosome display utilizing a wheat germ cell-free protein synthesis system based on binding affinity to its substrate analog, methotrexate, immobilized on agarose beads. After three rounds of selection, the DHFR gene could be effectively selected and preferentially amplified from a small proportion in a mixture also containing competitive genes. Active enzymes were expressed and amplified and by sequence analysis, four mutants of DHFR were identified. These mutants showed as much activity as the wild-type enzyme.

  3. Photoproduction of Hydrogen by Sulfur-Deprived Chlamydomonas reinhardtii Mutants with Impaired Photosystem II Photochemical Activity

    SciTech Connect

    Makarova, V. V.; Kosourov, S.; Krendeleva, T. E.; Semin, B. K.; Kukarskikh, G. P.; Rubin, A. B.; Sayre, R. T.; Ghirardi, M. L.; Seibert, M.

    2007-01-01

    Photoproduction of H2 was examined in a series of sulfur-deprived Chlamydomonas reinhardtii D1-R323 mutants with progressively impaired PSII photochemical activity. In the R323H, R323D, and R323E D1 mutants, replacement of arginine affects photosystem II (PSII) function, as demonstrated by progressive decreases in O2-evolving activity and loss of PSII photochemical activity. Significant changes in PSII activity were found when the arginine residue was replaced by negatively charged amino acid residues (R323D and R323E). However, the R323H (positively charged or neutral, depending on the ambient pH) mutant had minimal changes in PSII activity. The R323H, R323D, and R323E mutants and the pseudo-wild-type (pWt) with restored PSII function were used to study the effects of sulfur deprivation on H2-production activity. All of these mutants exhibited significant changes in the normal parameters associated with the H2-photoproduction process, such as a shorter aerobic phase, lower accumulation of starch, a prolonged anaerobic phase observed before the onset of H2-production, a shorter duration of H2-production, lower H2 yields compared to the pWt control, and slightly higher production of dark fermentation products such as acetate and formate. The more compromised the PSII photochemical activity, the more dramatic was the effect of sulfur deprivation on the H2-production process, which depends both on the presence of residual PSII activity and the amount of stored starch.

  4. Photoproduction of hydrogen by sulfur-deprived C. reinhardtii mutants with impaired photosystem II photochemical activity.

    PubMed

    Makarova, Valeria V; Kosourov, Sergey; Krendeleva, Tatiana E; Semin, Boris K; Kukarskikh, Galina P; Rubin, Andrei B; Sayre, Richard T; Ghirardi, Maria L; Seibert, Michael

    2007-10-01

    Photoproduction of H2 was examined in a series of sulfur-deprived Chlamydomonas reinhardtii D1-R323 mutants with progressively impaired PSII photochemical activity. In the R323H, R323D, and R323E D1 mutants, replacement of arginine affects photosystem II (PSII) function, as demonstrated by progressive decreases in O2-evolving activity and loss of PSII photochemical activity. Significant changes in PSII activity were found when the arginine residue was replaced by negatively charged amino acid residues (R323D and R323E). However, the R323H (positively charged or neutral, depending on the ambient pH) mutant had minimal changes in PSII activity. The R323H, R323D, and R323E mutants and the pseudo-wild-type (pWt) with restored PSII function were used to study the effects of sulfur deprivation on H2-production activity. All of these mutants exhibited significant changes in the normal parameters associated with the H2-photoproduction process, such as a shorter aerobic phase, lower accumulation of starch, a prolonged anaerobic phase observed before the onset of H2-production, a shorter duration of H2-production, lower H2 yields compared to the pWt control, and slightly higher production of dark fermentation products such as acetate and formate. The more compromised the PSII photochemical activity, the more dramatic was the effect of sulfur deprivation on the H2-production process, which depends both on the presence of residual PSII activity and the amount of stored starch. PMID:17701084

  5. Temperature-sensitive retinoid isomerase activity of RPE65 mutants associated with Leber Congenital Amaurosis

    PubMed Central

    Li, Songhua; Hu, Jane; Jin, Robin J.; Aiyar, Ashok; Jacobson, Samuel G.; Bok, Dean; Jin, Minghao

    2015-01-01

    RPE65 is a membrane-associated retinoid isomerase involved in the visual cycle responsible for sustaining vision. Many mutations in the human RPE65 gene are associated with distinct forms of retinal degenerative diseases. The pathogenic mechanisms for most of these mutations remain poorly understood. Here, we show that three Leber congenital amaurosis -associated RPE65 mutants (R91W, Y249C and R515W) undergo rapid proteasomal degradation mediated by the 26 S proteasome non-ATPase regulatory subunit 13 (PSMD13) in cultured human retinal pigment epithelium (RPE) cells. These mutant proteins formed cytosolic inclusion bodies or high molecular weight complexes via disulfide bonds. The mutations are mapped on non-active sites but severely reduced isomerase activity of RPE65. At 30°C, however, the enzymatic function and membrane-association of the mutant RPE65s are significantly rescued possibly due to proper folding. In addition, PSMD13 displayed a drastically decreased effect on degradation of the mutant proteins in the cells grown at 30°C. These results suggest that PSMD13 plays a critical role in regulating pathogenicity of the mutations and the molecular basis for the PSMD13-mediated rapid degradation and loss of function of the mutants is misfolding of RPE65. PMID:25752820

  6. Constitutive asymmetric dimerization drives oncogenic activation of epidermal growth factor receptor carboxyl-terminal deletion mutants

    PubMed Central

    Park, Angela K.J.; Francis, Joshua M.; Park, Woong-Yang; Park, Joon-Oh; Cho, Jeonghee

    2015-01-01

    Genomic alterations targeting the Epidermal Growth Factor Receptor (EGFR) gene have been strongly associated with cancer pathogenesis. The clinical effectiveness of EGFR targeted therapies, including small molecules directed against the kinase domain such as gefitinib, erlotinib and afatinib, have been proven successful in treating non-small cell lung cancer patients with tumors harboring EGFR kinase domain mutations. Recent large-scale genomic studies in glioblastoma and lung cancer have identified an additional class of oncogenic mutations caused by the intragenic deletion of carboxy-terminal coding regions. Here, we report that combinations of exonic deletions of exon 25 to 28 lead to the oncogenic activation of EGF receptor in the absence of ligand and consequent cellular transformation, indicating a significant role of C-terminal domain in modulating EGFR activation. Furthermore, we show that the oncogenic activity of the resulting C-terminal deletion mutants are efficiently inhibited by EGFR-targeted drugs including erlotinib, afatinib, dacomitinib as well as cetuximab, expanding the therapeutic rationale of cancer genome-based EGFR targeted approaches. Finally, in vivo and in vitro preclinical studies demonstrate that constitutive asymmetric dimerization in mutant EGFR is a key mechanism for oncogenic activation and tumorigenesis by C-terminal deletion mutants. Therefore, our data provide compelling evidence for oncogenic activation of C-terminal deletion mutants at the molecular level and we propose that C-terminal deletion status of EGFR can be considered as a potential genomic marker for EGFR-targeted therapy. PMID:25826094

  7. Olesoxime suppresses calpain activation and mutant huntingtin fragmentation in the BACHD rat.

    PubMed

    Clemens, Laura E; Weber, Jonasz J; Wlodkowski, Tanja T; Yu-Taeger, Libo; Michaud, Magali; Calaminus, Carsten; Eckert, Schamim H; Gaca, Janett; Weiss, Andreas; Magg, Janine C D; Jansson, Erik K H; Eckert, Gunter P; Pichler, Bernd J; Bordet, Thierry; Pruss, Rebecca M; Riess, Olaf; Nguyen, Huu P

    2015-12-01

    Huntington's disease is a fatal human neurodegenerative disorder caused by a CAG repeat expansion in the HTT gene, which translates into a mutant huntingtin protein. A key event in the molecular pathogenesis of Huntington's disease is the proteolytic cleavage of mutant huntingtin, leading to the accumulation of toxic protein fragments. Mutant huntingtin cleavage has been linked to the overactivation of proteases due to mitochondrial dysfunction and calcium derangements. Here, we investigated the therapeutic potential of olesoxime, a mitochondria-targeting, neuroprotective compound, in the BACHD rat model of Huntington's disease. BACHD rats were treated with olesoxime via the food for 12 months. In vivo analysis covered motor impairments, cognitive deficits, mood disturbances and brain atrophy. Ex vivo analyses addressed olesoxime's effect on mutant huntingtin aggregation and cleavage, as well as brain mitochondria function. Olesoxime improved cognitive and psychiatric phenotypes, and ameliorated cortical thinning in the BACHD rat. The treatment reduced cerebral mutant huntingtin aggregates and nuclear accumulation. Further analysis revealed a cortex-specific overactivation of calpain in untreated BACHD rats. Treated BACHD rats instead showed significantly reduced levels of mutant huntingtin fragments due to the suppression of calpain-mediated cleavage. In addition, olesoxime reduced the amount of mutant huntingtin fragments associated with mitochondria, restored a respiration deficit, and enhanced the expression of fusion and outer-membrane transport proteins. In conclusion, we discovered the calpain proteolytic system, a key player in Huntington's disease and other neurodegenerative disorders, as a target of olesoxime. Our findings suggest that olesoxime exerts its beneficial effects by improving mitochondrial function, which results in reduced calpain activation. The observed alleviation of behavioural and neuropathological phenotypes encourages further

  8. Mechanism of the Anticoagulant Activity of Thrombin Mutant W215A/E217A

    SciTech Connect

    Gandhi, Prafull S.; Page, Michael J.; Chen, Zhiwei; Bush-Pelc, Leslie; Di Cera, Enrico

    2009-09-15

    The thrombin mutant W215A/E217A (WE) is a potent anticoagulant both in vitro and in vivo. Previous x-ray structural studies have shown that WE assumes a partially collapsed conformation that is similar to the inactive E* form, which explains its drastically reduced activity toward substrate. Whether this collapsed conformation is genuine, rather than the result of crystal packing or the mutation introduced in the critical 215-217 {beta}-strand, and whether binding of thrombomodulin to exosite I can allosterically shift the E* form to the active E form to restore activity toward protein C are issues of considerable mechanistic importance to improve the design of an anticoagulant thrombin mutant for therapeutic applications. Here we present four crystal structures of WE in the human and murine forms that confirm the collapsed conformation reported previously under different experimental conditions and crystal packing. We also present structures of human and murine WE bound to exosite I with a fragment of the platelet receptor PAR1, which is unable to shift WE to the E form. These structural findings, along with kinetic and calorimetry data, indicate that WE is strongly stabilized in the E* form and explain why binding of ligands to exosite I has only a modest effect on the E*-E equilibrium for this mutant. The E* {yields} E transition requires the combined binding of thrombomodulin and protein C and restores activity of the mutant WE in the anticoagulant pathway.

  9. A cytochrome c mutant with high electron transfer and antioxidant activities but devoid of apoptogenic effect.

    PubMed Central

    Abdullaev, Ziedulla Kh; Bodrova, Marina E; Chernyak, Boris V; Dolgikh, Dmitry A; Kluck, Ruth M; Pereverzev, Mikhail O; Arseniev, Alexander S; Efremov, Roman G; Kirpichnikov, Mikhail P; Mokhova, Elena N; Newmeyer, Donald D; Roder, Heinrich; Skulachev, Vladimir P

    2002-01-01

    A cytochrome c mutant lacking apoptogenic function but competent in electron transfer and antioxidant activities has been constructed. To this end, mutant species of horse and yeast cytochromes c with substitutions in the N-terminal alpha-helix or position 72 were obtained. It was found that yeast cytochrome c was much less effective than the horse protein in activating respiration of rat liver mitoplasts deficient in endogenous cytochrome c as well as in inhibition of H(2)O(2) production by the initial segment of the respiratory chain of intact rat heart mitochondria. The major role in the difference between the horse and yeast proteins was shown to be played by the amino acid residue in position 4 (glutamate in horse, and lysine in yeast; horse protein numbering). A mutant of the yeast cytochrome c containing K4E and some other "horse" modifications in the N-terminal alpha-helix, proved to be (i) much more active in electron transfer and antioxidant activity than the wild-type yeast cytochrome c and (ii), like the yeast cytochrome c, inactive in caspase stimulation, even if added in 400-fold excess compared with the horse protein. Thus this mutant seems to be a good candidate for knock-in studies of the role of cytochrome c-mediated apoptosis, in contrast with the horse K72R, K72G, K72L and K72A mutant cytochromes that at low concentrations were less active in apoptosis than the wild-type, but were quite active when the concentrations were increased by a factor of 2-12. PMID:11879204

  10. Autolysis of Microbial Cells: Salt Activation of Autolytic Enzymes in a Mutant of Staphylococcus aureus

    PubMed Central

    Gilpin, Richard W.; Chatterjee, Anadi N.; Young, Frank E.

    1972-01-01

    The effect of various salts on the autolysis of cell wall of a ribitol teichoic acid-deficient mutant of Staphylococcus aureus H (strain 52A5 carrying tar-1) was compared with the parent strain. In the presence of high concentrations of certain salts such as 1.0 m NaCl, the mutant undergoes autolysis with the release of osmotically sensitive spheroplasts. The parent strain is not affected by these conditions. The stimulation of lysis is related to an activation of N-acylmuramyl-l-alanine amidase. Images PMID:4591480

  11. Understanding protein lids: kinetic analysis of active hinge mutants in triosephosphate isomerase.

    PubMed

    Sun, J; Sampson, N S

    1999-08-31

    In previous work we tested what three amino acid sequences could serve as a protein hinge in triosephosphate isomerase [Sun, J., and Sampson, N. S. (1998) Protein Sci. 7, 1495-1505]. We generated a genetic library encoding all 8000 possible 3 amino acid combinations at the C-terminal hinge and selected for those combinations of amino acids that formed active mutants. These mutants were classified into six phylogenetic families. Two families resembled wild-type hinges, and four families represented new types of hinges. In this work, the kinetic characteristics and thermal stabilities of mutants representing each of these families were determined in order to understand what properties make an efficient protein hinge, and why all of the families are not observed in nature. From a steady-state kinetic analysis of our mutants, it is clear that the partitioning between protonation of intermediate to form product and intermediate release from the enzyme surface to form methylglyoxal (a decomposition product) is not affected. The two most impaired mutants undergo a change in rate-limiting step from enediol formation to dihydroxyacetone phosphate binding. Thus, it appears that k(cat)/K(m)'s are reduced relative to wild type as a result of slower Michaelis complex formation and dissociation, rather than increased loop opening speed.

  12. Genetic ablation of Smoothened in pancreatic fibroblasts increases acinar-ductal metaplasia.

    PubMed

    Liu, Xin; Pitarresi, Jason R; Cuitiño, Maria C; Kladney, Raleigh D; Woelke, Sarah A; Sizemore, Gina M; Nayak, Sunayana G; Egriboz, Onur; Schweickert, Patrick G; Yu, Lianbo; Trela, Stefan; Schilling, Daniel J; Halloran, Shannon K; Li, Maokun; Dutta, Shourik; Fernandez, Soledad A; Rosol, Thomas J; Lesinski, Gregory B; Shakya, Reena; Ludwig, Thomas; Konieczny, Stephen F; Leone, Gustavo; Wu, Jinghai; Ostrowski, Michael C

    2016-09-01

    The contribution of the microenvironment to pancreatic acinar-to-ductal metaplasia (ADM), a preneoplastic transition in oncogenic Kras-driven pancreatic cancer progression, is currently unclear. Here we show that disruption of paracrine Hedgehog signaling via genetic ablation of Smoothened (Smo) in stromal fibroblasts in a Kras(G12D) mouse model increased ADM. Smo-deleted fibroblasts had higher expression of transforming growth factor-α (Tgfa) mRNA and secreted higher levels of TGFα, leading to activation of EGFR signaling in acinar cells and increased ADM. The mechanism involved activation of AKT and noncanonical activation of the GLI family transcription factor GLI2. GLI2 was phosphorylated at Ser230 in an AKT-dependent fashion and directly regulated Tgfa expression in fibroblasts lacking Smo Additionally, Smo-deleted fibroblasts stimulated the growth of Kras(G12D)/Tp53(R172H) pancreatic tumor cells in vivo and in vitro. These results define a non-cell-autonomous mechanism modulating Kras(G12D)-driven ADM that is balanced by cross-talk between Hedgehog/SMO and AKT/GLI2 pathways in stromal fibroblasts. PMID:27633013

  13. Flexibility in Anaerobic Metabolism as Revealed in a Mutant of Chlamydomonas reinhardtii Lacking Hydrogenase Activity

    SciTech Connect

    Dubini, A.; Mus, F.; Seibert, M.; Grossman, A. R.; Posewitz, M. C.

    2009-03-13

    The green alga Chlamydomonas reinhardtii has a network of fermentation pathways that become active when cells acclimate to anoxia. Hydrogenase activity is an important component of this metabolism, and we have compared metabolic and regulatory responses that accompany anaerobiosis in wild-type C. reinhardtii cells and a null mutant strain for the HYDEF gene (hydEF-1 mutant), which encodes an [FeFe] hydrogenase maturation protein. This mutant has no hydrogenase activity and exhibits elevated accumulation of succinate and diminished production of CO2 relative to the parental strain during dark, anaerobic metabolism. In the absence of hydrogenase activity, increased succinate accumulation suggests that the cells activate alternative pathways for pyruvate metabolism, which contribute to NAD(P)H reoxidation, and continued glycolysis and fermentation in the absence of O2. Fermentative succinate production potentially proceeds via the formation of malate, and increases in the abundance of mRNAs encoding two malateforming enzymes, pyruvate carboxylase and malic enzyme, are observed in the mutant relative to the parental strain following transfer of cells from oxic to anoxic conditions. Although C. reinhardtii has a single gene encoding pyruvate carboxylase, it has six genes encoding putative malic enzymes. Only one of the malic enzyme genes, MME4, shows a dramatic increase in expression (mRNA abundance) in the hydEF-1 mutant during anaerobiosis. Furthermore, there are marked increases in transcripts encoding fumarase and fumarate reductase, enzymes putatively required to convert malate to succinate. These results illustrate the marked metabolic flexibility of C. reinhardtii and contribute to the development of an informed model of anaerobic metabolism in this and potentially other algae.

  14. Characterization of Bacillus licheniformis 6346 Mutants Which Have Altered Lytic Enzyme Activities

    PubMed Central

    Forsberg, C. W.; Rogers, H. J.

    1974-01-01

    Two groups of mutants altered in lytic enzyme activities have been isolated from Bacillus licheniformis 6346 MH-1 by screening clones for halo production in agar plates containing cell wall conjugated with Procion brilliant red. In the first group which produced halos during colony formation, two were shown to contain three- and eightfold more muramyl-l-alanine amidase than the parent. These strains liberated amidase and intracellular α-glucosidase into the culture medium during exponential growth in liquid medium. Isolated walls had a normal qualitative composition and in autolysing liberated N-terminal amino acids and reducing groups. Wall preparations from the second group of mutants which did not produce halos lysed very poorly at pH 9.5, the optimal pH for amidase activity, and poorly at pH 5.5 even though they had similar endo-N-acetylglucosaminidase activities to the parent. Two of these strains that were also deficient in phosphoglucomutase had only 3 to 5% of the membrane-bound amidase activity compared with that in the parent. Cell walls of the phosphoglucomutase-deficient mutants treated with sodium dodecyl sulfate to inactivate endogenous lytic enzymes were dissolved at 10% of the rate of those from the parent by added amidase, but their sensitivities to lysozyme were similar. Those from one mutant had 10 to 20% of the amidase-binding capacity of parent walls, whereas its isolated mucopeptide was essentially inactive in this respect. The failure of these phosphoglucomutase-deficient mutants to autolyse is likely to be due to the combined effects of both low amidase activity and resistant walls. As a result, daughter cells are unable to separate and long chains are formed during exponential growth. PMID:4828303

  15. Combination therapy for KIT-mutant mast cells: targeting constitutive NFAT and KIT activity.

    PubMed

    Macleod, Alison C; Klug, Lillian R; Patterson, Janice; Griffith, Diana J; Beadling, Carol; Town, Ajia; Heinrich, Michael C

    2014-12-01

    Resistant KIT mutations have hindered the development of KIT kinase inhibitors for treatment of patients with systemic mastocytosis. The goal of this research was to characterize the synergistic effects of a novel combination therapy involving inhibition of KIT and calcineurin phosphatase, a nuclear factor of activated T cells (NFAT) regulator, using a panel of KIT-mutant mast cell lines. The effects of monotherapy or combination therapy on the cellular viability/survival of KIT-mutant mast cells were evaluated. In addition, NFAT-dependent transcriptional activity was monitored in a representative cell line to evaluate the mechanisms responsible for the efficacy of combination therapy. Finally, shRNA was used to stably knockdown calcineurin expression to confirm the role of calcineurin in the observed synergy. The combination of a KIT inhibitor and a calcineurin phosphatase inhibitor (CNPI) synergized to reduce cell viability and induce apoptosis in six distinct KIT-mutant mast cell lines. Both KIT inhibitors and CNPIs were found to decrease NFAT-dependent transcriptional activity. NFAT-specific inhibitors induced similar synergistic apoptosis induction as CNPIs when combined with a KIT inhibitor. Notably, NFAT was constitutively active in each KIT-mutant cell line tested. Knockdown of calcineurin subunit PPP3R1 sensitized cells to KIT inhibition and increased NFAT phosphorylation and cytoplasmic localization. Constitutive activation of NFAT appears to represent a novel and targetable characteristic of KIT-mutant mast cell disease. Our studies suggest that combining KIT inhibition with NFAT inhibition might represent a new treatment strategy for mast cell disease.

  16. Bacteriorhodopsin mutants containing single substitutions of serine or threonine residues are all active in proton translocation

    SciTech Connect

    Marti, T.; Otto, H.; Mogi, T.; Roesselet, S.J.H.; Heyn, M.P.; Khorana, H.G. )

    1991-04-15

    To study their role in proton translocation by bacteriorhodopsin, 22 serine and threonine residues presumed to be located within and near the border of the transmembrane segments have been individually replaced by alanine or valine, respectively. Thr-89 was substituted by alanine, valine, and aspartic acid, and Ser-141 by alanine and cysteine. Most of the mutants showed essentially wild-type phenotype with regard to chromophore regeneration and absorption spectrum. However, replacement of Thr-89 by Val and of Ser-141 by Cys caused striking blue shifts of the chromophore by 100 and 80 nm, respectively. All substitutions of Thr-89 regenerated the chromophore at least 10-fold faster with 13-cis retinal than with all-trans retinal. The substitutions at positions 89, 90, and 141 also showed abnormal dark-light adaptation, suggesting interactions between these residues and the retinylidene chromophore. Proton pumping measurements revealed 60-75% activity for mutants of Thr-46, -89, -90, -205, and Ser-226, and about 20% for Ser-141----Cys, whereas the remaining mutants showed normal pumping. Kinetic studies of the photocycle and of proton release and uptake for mutants in which proton pumping was reduced revealed generally little alterations. The reduced activity in several of these mutants is most likely due to a lower percentage of all-trans retinal in the light-adapted state. In the mutants Thr-46----Val and Ser-226----Ala the decay of the photointer-mediate M was significantly accelerated, indicating an interaction between these residues and Asp-96 which reprotonates the Schiff base. Our results show that no single serine or threonine residue is obligatory for proton pumping.

  17. Free energy simulations of active-site mutants of dihydrofolate reductase.

    PubMed

    Doron, Dvir; Stojković, Vanja; Gakhar, Lokesh; Vardi-Kilshtain, Alexandra; Kohen, Amnon; Major, Dan Thomas

    2015-01-22

    This study employs hybrid quantum mechanics-molecular mechanics (QM/MM) simulations to investigate the effect of mutations of the active-site residue I14 of E. coli dihydrofolate reductase (DHFR) on the hydride transfer. Recent kinetic measurements of the I14X mutants (X = V, A, and G) indicated slower hydride transfer rates and increasingly temperature-dependent kinetic isotope effects (KIEs) with systematic reduction of the I14 side chain. The QM/MM simulations show that when the original isoleucine residue is substituted in silico by valine, alanine, or glycine (I14V, I14A, and I14G DHFR, respectively), the free energy barrier height of the hydride transfer reaction increases relative to the wild-type enzyme. These trends are in line with the single-turnover rate measurements reported for these systems. In addition, extended dynamics simulations of the reactive Michaelis complex reveal enhanced flexibility in the mutants, and in particular for the I14G mutant, including considerable fluctuations of the donor-acceptor distance (DAD) and the active-site hydrogen bonding network compared with those detected in the native enzyme. These observations suggest that the perturbations induced by the mutations partly impair the active-site environment in the reactant state. On the other hand, the average DADs at the transition state of all DHFR variants are similar. Crystal structures of I14 mutants (V, A, and G) confirmed the trend of increased flexibility of the M20 and other loops. PMID:25382260

  18. Single-molecule imaging of Hedgehog pathway protein Smoothened in primary cilia reveals binding events regulated by Patched1

    PubMed Central

    Milenkovic, Ljiljana; Weiss, Lucien E.; Yoon, Joshua; Roth, Theodore L.; Su, YouRong S.; Sahl, Steffen J.; Scott, Matthew P.; Moerner, W. E.

    2015-01-01

    Accumulation of the signaling protein Smoothened (Smo) in the membrane of primary cilia is an essential step in Hedgehog (Hh) signal transduction, yet the molecular mechanisms of Smo movement and localization are poorly understood. Using ultrasensitive single-molecule tracking with high spatial/temporal precision (30 nm/10 ms), we discovered that binding events disrupt the primarily diffusive movement of Smo in cilia at an array of sites near the base. The affinity of Smo for these binding sites was modulated by the Hh pathway activation state. Activation, by either a ligand or genetic loss of the negatively acting Hh receptor Patched-1 (Ptch), reduced the affinity and frequency of Smo binding at the base. Our findings quantify activation-dependent changes in Smo dynamics in cilia and highlight a previously unknown step in Hh pathway activation. PMID:26100903

  19. USP8 Promotes Smoothened Signaling by Preventing Its Ubiquitination and Changing Its Subcellular Localization

    PubMed Central

    Xia, Ruohan; Jia, Hongge; Fan, Junkai; Liu, Yajuan; Jia, Jianhang

    2012-01-01

    The seven transmembrane protein Smoothened (Smo) is a critical component of the Hedgehog (Hh) signaling pathway and is regulated by phosphorylation, dimerization, and cell-surface accumulation upon Hh stimulation. However, it is not clear how Hh regulates Smo accumulation on the cell surface or how Hh regulates the intracellular trafficking of Smo. In addition, little is known about whether ubiquitination is involved in Smo regulation. In this study, we demonstrate that Smo is multi-monoubiquitinated and that Smo ubiquitination is inhibited by Hh and by phosphorylation. Using an in vivo RNAi screen, we identified ubiquitin-specific protease 8 (USP8) as a deubiquitinase that down-regulates Smo ubiquitination. Inactivation of USP8 increases Smo ubiquitination and attenuates Hh-induced Smo accumulation, leading to decreased Hh signaling activity. Moreover, overexpression of USP8 prevents Smo ubiquitination and elevates Smo accumulation, leading to increased Hh signaling activity. Mechanistically, we show that Hh promotes the interaction of USP8 with Smo aa625–753, which covers the three PKA and CK1 phosphorylation clusters. Finally, USP8 promotes the accumulation of Smo at the cell surface and prevents localization to the early endosomes, presumably by deubiquitinating Smo. Our studies identify USP8 as a positive regulator in Hh signaling by down-regulating Smo ubiquitination and thereby mediating Smo intracellular trafficking. PMID:22253573

  20. Targeting the Sonic Hedgehog Signaling Pathway: Review of Smoothened and GLI Inhibitors

    PubMed Central

    Rimkus, Tadas K.; Carpenter, Richard L.; Qasem, Shadi; Chan, Michael; Lo, Hui-Wen

    2016-01-01

    The sonic hedgehog (Shh) signaling pathway is a major regulator of cell differentiation, cell proliferation, and tissue polarity. Aberrant activation of the Shh pathway has been shown in a variety of human cancers, including, basal cell carcinoma, malignant gliomas, medulloblastoma, leukemias, and cancers of the breast, lung, pancreas, and prostate. Tumorigenesis, tumor progression and therapeutic response have all been shown to be impacted by the Shh signaling pathway. Downstream effectors of the Shh pathway include smoothened (SMO) and glioma-associated oncogene homolog (GLI) family of zinc finger transcription factors. Both are regarded as important targets for cancer therapeutics. While most efforts have been devoted towards pharmacologically targeting SMO, developing GLI-targeted approach has its merit because of the fact that GLI proteins can be activated by both Shh ligand-dependent and -independent mechanisms. To date, two SMO inhibitors (LDE225/Sonidegib and GDC-0449/Vismodegib) have received FDA approval for treating basal cell carcinoma while many clinical trials are being conducted to evaluate the efficacy of this exciting class of targeted therapy in a variety of cancers. In this review, we provide an overview of the biology of the Shh pathway and then detail the current landscape of the Shh-SMO-GLI pathway inhibitors including those in preclinical studies and clinical trials. PMID:26891329

  1. [Studies on construction of artificial mutants of Cucumber mosaic virus satellite RNA and their biological activity].

    PubMed

    Jin, Bo; Chen, Ji-Shuang; Zhang, Hua-Rong

    2005-08-01

    Based on the full length cDNA clone of a Cucumber mosaic virus satellite RNA, which was 369nt in size, artificial mutants were developed by the method of error-prone PCR and DNA shuffling. The new satellite cDNAs were transcribed in vitro into ssRNA and pseudo-recombined with a helper Cucumber mosaic virus, which contains no satellite RNA. Sequence analysis showed that A to T/G or G to A replacement all the four mutants, named MS1, MS5, MS6 and MS11 respectively, and there is no C to G or G to C replacement, but amongst, only the mutants MS11 could replicated when recombined with the helper virus strain. No satellite RNA could be detected by RT-PCR amplification and double-stranded RNA analysis for those pseudo-recombination constitution of Cucumber mosaic virus strain with mutants MS1, MS5 and MS6.Sequence homological comparison showed that the single replacement of mutants MS1, MS5 and MS6 occurred in the highly conservative regions and the T to A replacement of mutant MS11 was located in the normal-variation region. This is the first artificial mutation of satellite RNA of plant RNA viruses. The results indicated that single base in the region of satellite RNA maybe important to maintaining the biological activity of satellite RNA for its replication and stability. The variation and evolution of satellite RNA could be hopefully studied through combination directed evolution by DNA shuffling with pseudo-recombination in vitro.

  2. Patched1 and Patched2 inhibit Smoothened non-cell autonomously.

    PubMed

    Roberts, Brock; Casillas, Catalina; Alfaro, Astrid C; Jägers, Carina; Roelink, Henk

    2016-01-01

    Smoothened (Smo) inhibition by Patched (Ptch) is central to Hedgehog (Hh) signaling. Ptch, a proton driven antiporter, is required for Smo inhibition via an unknown mechanism. Hh ligand binding to Ptch reverses this inhibition and activated Smo initiates the Hh response. To determine whether Ptch inhibits Smo strictly in the same cell or also mediates non-cell-autonomous Smo inhibition, we generated genetically mosaic neuralized embryoid bodies (nEBs) from mouse embryonic stem cells (mESCs). These experiments utilized novel mESC lines in which Ptch1, Ptch2, Smo, Shh and 7dhcr were inactivated via gene editing in multiple combinations, allowing us to measure non-cell autonomous interactions between cells with differing Ptch1/2 status. In several independent assays, the Hh response was repressed by Ptch1/2 in nearby cells. When 7dhcr was targeted, cells displayed elevated non-cell autonomous inhibition. These findings support a model in which Ptch1/2 mediate secretion of a Smo-inhibitory cholesterol precursor. PMID:27552050

  3. A Novel Synthetic Smoothened Antagonist Transiently Inhibits Pancreatic Adenocarcinoma Xenografts in a Mouse Model

    PubMed Central

    Strand, Martin F.; Wilson, Steven R.; Dembinski, Jennifer L.; Holsworth, Daniel D.; Khvat, Alexander; Okun, Ilya; Petersen, Dirk; Krauss, Stefan

    2011-01-01

    Background Hedgehog (Hh) signaling is over-activated in several solid tumors where it plays a central role in cell growth, stroma recruitment and tumor progression. In the Hh signaling pathway, the Smoothened (SMO) receptor comprises a primary drug target with experimental small molecule SMO antagonists currently being evaluated in clinical trials. Principal Findings Using Shh-Light II (Shh-L2) and alkaline phosphatase (AP) based screening formats on a “focused diversity” library we identified a novel small molecule inhibitor of the Hh pathway, MS-0022 (2-bromo-N-(4-(8-methylimidazo[1,2-a]pyridin-2-yl)phenyl)benzamide). MS-0022 showed effective Hh signaling pathway inhibition at the level of SMO in the low nM range, and Hh pathway inhibition downstream of Suppressor of fused (SUFU) in the low µM range. MS-0022 reduced growth in the tumor cell lines PANC-1, SUIT-2, PC-3 and FEMX in vitro. MS-0022 treatment led to a transient delay of tumor growth that correlated with a reduction of stromal Gli1 levels in SUIT-2 xenografts in vivo. Significance We document the in vitro and in vivo efficacy and bioavailability of a novel small molecule SMO antagonist, MS-0022. Although MS-0022 primarily interferes with Hh signaling at the level of SMO, it also has a downstream inhibitory effect and leads to a stronger reduction of growth in several tumor cell lines when compared to related SMO antagonists. PMID:21698280

  4. Patched1 and Patched2 inhibit Smoothened non-cell autonomously

    PubMed Central

    Roberts, Brock; Casillas, Catalina; Alfaro, Astrid C; Jägers, Carina; Roelink, Henk

    2016-01-01

    Smoothened (Smo) inhibition by Patched (Ptch) is central to Hedgehog (Hh) signaling. Ptch, a proton driven antiporter, is required for Smo inhibition via an unknown mechanism. Hh ligand binding to Ptch reverses this inhibition and activated Smo initiates the Hh response. To determine whether Ptch inhibits Smo strictly in the same cell or also mediates non-cell-autonomous Smo inhibition, we generated genetically mosaic neuralized embryoid bodies (nEBs) from mouse embryonic stem cells (mESCs). These experiments utilized novel mESC lines in which Ptch1, Ptch2, Smo, Shh and 7dhcr were inactivated via gene editing in multiple combinations, allowing us to measure non-cell autonomous interactions between cells with differing Ptch1/2 status. In several independent assays, the Hh response was repressed by Ptch1/2 in nearby cells. When 7dhcr was targeted, cells displayed elevated non-cell autonomous inhibition. These findings support a model in which Ptch1/2 mediate secretion of a Smo-inhibitory cholesterol precursor. DOI: http://dx.doi.org/10.7554/eLife.17634.001 PMID:27552050

  5. Lactose metabolism in Streptococcus lactis: studies with a mutant lacking glucokinase and mannose-phosphotransferase activities

    SciTech Connect

    Thompson, J.; Chassy, B.M.; Egan, W.

    1985-04-01

    A mutant of Streptococcus lactis 133 has been isolated that lacks both glucokinase and phosphoenolpyruvate-dependent mannose- phosphotransferase (mannose-PTS) activities. The double mutant S. lactis 133 mannose-PTSd GK- is unable to utilize either exogenously supplied or intracellularly generated glucose for growth. Fluorographic analyses of metabolites formed during the metabolism of (/sup 14/C)lactose labeled specifically in the glucose or galactosyl moiety established that the cells were unable to phosphorylate intracellular glucose. However, cells of S. lactis 133 mannose-PTSd GK- readily metabolized intracellular glucose 6-phosphate, and the growth rates and cell yield of the mutant and parental strains on sucrose were the same. During growth on lactose, S. lactis 133 mannose-PTSd GK- fermented only the galactose moiety of the disaccharide, and 1 mol of glucose was generated per mol of lactose consumed. For an equivalent concentration of lactose, the cell yield of the mutant was 50% that of the wild type. The specific rate of lactose utilization by growing cells of S. lactis 133 mannose-PTSd GK- was ca. 50% greater than that of the wild type, but the cell doubling times were 70 and 47 min, respectively. High-resolution /sup 31/P nuclear magnetic resonance studies of lactose transport by starved cells of S. lactis 133 and S. lactis 133 mannose-PTSd GK- showed that the latter cells contained elevated lactose-PTS activity. Throughout exponential growth on lactose, the mutant maintained an intracellular steady-state glucose concentration of 100 mM.

  6. Abelson murine leukemia virus transformation-defective mutants with impaired P120-associated protein kinase activity.

    PubMed Central

    Reynolds, F H; Van de Ven, W J; Stephenson, J R

    1980-01-01

    Several transformation-defective (td) mutants of Abelson murine leukemia virus (AbLV) are described. Cells nonproductively infected with such mutants exhibited a high degree of growth contact inhibition, failed to form colonies in soft agar, lacked rescuable transforming virus, and were as susceptible as uninfected control cells to transformation by wild-type (wt) AbLV pseudotype virus. In addition, each of several td AbLV nonproductively infected cell clones analyzed was found to be nontumorigenic in vivo. Biochemical analysis of td mutant AbLV-infected clones revealed levels of expression of the major AbLV translational product, P120, and a highly related 80,000-Mr AbLV-encoded protein, P80, at concentrations analogous to those in wt AbLV-transformed cells. Although the AbLV-specific 120,000-Mr polyproteins expressed in td mutant AbLV-infected clones were indistinguishable from those in wt AbLV-transformed lines with respect to molecular weight and [35S]methionine tryptic peptide composition, they each differed from wt AbLV P120 in their patterns of post-translational phosphorylation. A previously described AbLV-associated protein kinase activity is shown to recognize as substrate a major tyrosine-specific acceptor site(s) contained within a single well-resolved tryptic peptide common to both AbLV P120 and P80. In vitro [gamma-32P]ATP-mediated labeling of this phosphorylation site was reduced to below detectable levels in td mutant nonproductively infected cell clones. These findings establish that the AbLV-encoded polyprotein P120 and its associated protein kinase activity are involved in AbLV tumorigenesis. Images PMID:6253663

  7. Altered motor activity, exploration and anxiety in heterozygous neuregulin 1 mutant mice: implications for understanding schizophrenia.

    PubMed

    Karl, T; Duffy, L; Scimone, A; Harvey, R P; Schofield, P R

    2007-10-01

    Human genetic studies have shown that neuregulin 1 (NRG1) is a potential susceptibility gene for schizophrenia. Nrg1 influences various neurodevelopmental processes, which are potentially related to schizophrenia. The neurodevelopmental theory of schizophrenia suggests that interactions between genetic and environmental factors are responsible for biochemical alterations leading to schizophrenia. To investigate these interactions and to match experimental design with the pathophysiology of schizophrenia, we applied a comprehensive behavioural phenotyping strategy for motor activity, exploration and anxiety in a heterozygous Nrg1 transmembrane domain mutant mouse model (Nrg1 HET) using different housing conditions and age groups. We observed a locomotion- and exploration-related hyperactive phenotype in Nrg1 HETs. Increased age had a locomotion- and exploration-inhibiting effect, which was significantly attenuated in mutant mice. Environmental enrichment (EE) had a stimulating influence on locomotion and exploration. The impact of EE was more pronounced in Nrg1 hypomorphs. Our study also showed a moderate task-specific anxiolytic-like phenotype for Nrg1 HETs, which was influenced by external factors. The behavioural phenotype detected in heterozygous Nrg1 mutant mice is not specific to schizophrenia per se, but the increased sensitivity of mutant mice to exogenous factors is consistent with the pathophysiology of schizophrenia and the neurodevelopmental theory. Our findings reinforce the importance of carefully controlling experimental designs for external factors and of comprehensive, integrative phenotyping strategies. Thus, Nrg1 HETs may, in combination with other genetic and drug models, help to clarify pathophysiological mechanisms behind schizophrenia.

  8. Functional determinants of ras interference 1 mutants required for their inhbitory activity on endocytosis

    SciTech Connect

    Galvis, Adriana; Giambini, Hugo; Villasana, Zoilmar; Barbieri, M. Alejandro

    2009-03-10

    In this study, we initiated experiments to address the structure-function relationship of Rin1. A total of ten substitute mutations were created, and their effects on Rin1 function were examined. Of the ten mutants, four of them (P541A, E574A, Y577F, T580A) were defective in Rab5 binding, while two other Rin1 mutants (D537A, Y561F) partially interacted with Rab5. Mutations in several other residues (Y506F, Y523F, T572A, Y578F) resulted in partial loss of Rab5 function. Biochemical studies showed that six of them (D537A, P541A, Y561F, E574A, Y577F, T580A) were unable to activate Rab5 in an in vitro assay. In addition, Rin1: D537A and Rin1: Y561F mutants showed dominant inhibition of Rab5 function. Consistent with the biochemical studies, we observed that these two Rin1 mutants have lost their ability to stimulate the endocytosis of EGF, form enlarged Rab5-positive endosomes, or support in vitro endosome fusion. Based on these data, our results showed that mutations in the Vps9 domain of Rin1 lead to a loss-of-function phenotype, indicating a specific structure-function relationship between Rab5 and Rin1.

  9. Hepatitis B virus X protein mutants exhibit distinct biological activities in hepatoma Huh7 cells

    SciTech Connect

    Liu Xiaohong; Zhang Shuhui; Lin Jing; Zhang Shunmin; Feitelson, Mark A.; Gao Hengjun; Zhu Minghua

    2008-09-05

    The role of the hepatitis B virus X protein (HBx) in hepatocarcinogenesis remains controversial. To investigate the biological impact of hepatitis B virus x gene (HBx) mutation on hepatoma cells, plasmids expressing the full-length HBx or HBx deletion mutants were constructed. The biological activities in these transfectants were analyzed by a series of assays. Results showed that HBx3'-20 and HBx3'-40 amino acid deletion mutants exhibited an increase in cellular proliferation, focus formation, tumorigenicity, and invasive growth and metastasis through promotion of the cell cycle from G0/G1 to the S phase, when compared with the full-length HBx. In contrast, HBx3'-30 amino acid deletion mutant repressed cell proliferation by blocking in G1 phase. The expression of P53, p21{sup WAF1}, p14{sup ARF}, and MDM2 proteins was regulated by expression of HBx mutants. In conclusions, HBx variants showed different effects and functions on cell proliferation and invasion by regulation of the cell cycle progression and its associated proteins expression.

  10. Effects of decreased muscle activity on developing axial musculature in nicb107 mutant zebrafish (Danio rerio).

    PubMed

    van der Meulen, T; Schipper, H; van Leeuwen, J L; Kranenbarg, S

    2005-10-01

    The present paper discusses the effects of decreased muscle activity (DMA) on embryonic development in the zebrafish. Wild-type zebrafish embryos become mobile around 18 h post-fertilisation, long before the axial musculature is fully differentiated. As a model for DMA, the nic(b107) mutant was used. In nic(b107) mutant embryos, muscle fibres are mechanically intact and able to contract, but neuronal signalling is defective and the fibres are not activated, rendering the embryos immobile. Despite the immobility, distinguished slow and fast muscle fibres developed at the correct location in the axial muscles, helical muscle fibre arrangements were detected and sarcomere architecture was generated. However, in nic(b107) mutant embryos the notochord is flatter and the cross-sectional body shape more rounded, also affecting muscle fibre orientation. The stacking of sarcomeres and myofibril arrangement show a less regular pattern. Finally, expression levels of several genes were changed. Together, these changes in expression indicate that muscle growth is not impeded and energy metabolism is not changed by the decrease in muscle activity but that the composition of muscle is altered. In addition, skin stiffness is affected. In conclusion, the lack of muscle fibre activity did not prevent the basal muscle components developing but influenced further organisation and differentiation of these components. PMID:16169945

  11. Activation of chitin synthetase in permeabilized cells of a Saccharomyces cerevisiae mutant lacking proteinase B.

    PubMed Central

    Fernandez, M P; Correa, J U; Cabib, E

    1982-01-01

    Digitonin treatment at 30 degrees C of a Saccharomyces cerevisiae mutant lacking proteinase B permeabilized the cells and caused rapid and extensive activation of chitin synthetase in situ. The same result was obtained with a mutant generally defective in vacuolar proteases. By lowering the temperature and using different permeabilization procedures, we showed that increases in permeability and activation are distinct processes. Activation was inhibited by the protease inhibitors antipain and leupeptin, but by pepstatin or chymostatin. Metal chelators were also inhibitory, and their effect was reversed by the addition of Ca2+ but not by Mg2+. Antipain added together with Ca2+ after incubation of the cells in the presence of a chelating agent prevented reversal of inhibition, a result that was interpreted as indicating that antipain acts either on the same step affected by Ca2+ or on a subsequent step. Efforts to obtain activation in cell-free extracts were unsuccessful, but it was possible to extract the synthetase, once activated, by breaking permeabilized cells with glass beads. Treatment of the cell-free extracts with trypsin led not only to increased activity of chitin synthetase, but also to a change in the pH-activity curve and a diminished requirement by the enzyme for free N-acetylglucosamine. These observations suggest that the modification undergone by the synthetase during endogenous activation is different from that brought about by trypsin treatment. Images PMID:6216245

  12. Nordihydroguaiaretic Acid Inhibits an Activated FGFR3 Mutant, and Blocks Downstream Signaling in Multiple Myeloma Cells

    PubMed Central

    Meyer, April N.; McAndrew, Christopher W.; Donoghue, Daniel J.

    2008-01-01

    Activating mutations within Fibroblast Growth Factor Receptor 3 (FGFR3), a receptor tyrosine kinase, are responsible for human skeletal dysplasias including achondroplasia and the neonatal lethal syndromes, Thanatophoric Dysplasia (TD) type I and II. Several of these same FGFR3 mutations have also been identified somatically in human cancers, including multiple myeloma, bladder carcinoma and cervical cancer. Based on reports that strongly activated mutants of FGFR3 such as the TDII (K650E) mutant signal preferentially from within the secretory pathway, the inhibitory properties of nordihydroguaiaretic acid (NDGA), which blocks protein transport through the Golgi, were investigated. NDGA was able to inhibit FGFR3 autophosphorylation both in vitro and in vivo. In addition, signaling molecules downstream of FGFR3 activation such as STAT1, STAT3 and MAPK were inhibited by NDGA treatment. Using HEK293 cells expressing activated FGFR3-TDII, together with several multiple myeloma cell lines expressing activated forms of FGFR3, NDGA generally resulted in a decrease in MAPK activation by 1 hour, and resulted in increased apoptosis over 24 hours. The effects of NDGA on activated FGFR3 derivatives targeted either to the plasma membrane or the cytoplasm were also examined. These results suggest that inhibitory small molecules such as NDGA that target a specific subcellular compartment may be beneficial in the inhibition of activated receptors such as FGFR3 that signal from the same compartment. PMID:18794123

  13. Human Defensin 5 Disulfide Array Mutants: Disulfide Bond Deletion Attenuates Antibacterial Activity Against Staphylococcus aureus

    PubMed Central

    Wanniarachchi, Yoshitha A.; Kaczmarek, Piotr; Wan, Andrea; Nolan, Elizabeth M.

    2011-01-01

    Human α-defensin 5 (HD5, HD5ox to specify the oxidized and disulfide linked form) is a 32-residue cysteine-rich host-defense peptide, expressed and released by small intestinal Paneth cells, that exhibits antibacterial activity against a number of Gram-negative and –positive bacterial strains. To ascertain the contributions of its disulfide array to structure, antimicrobial activity, and proteolytic stability, a series of HD5 double mutant peptides where pairs of cysteine residues corresponding to native disulfide linkages (Cys3—Cys31, Cys5—Cys20, Cys10—Cys30) were mutated to Ser or Ala residues were overexpressed in E. coli, purified and characterized. A hexa mutant peptide, HD5[Serhexa], where all six native Cys residues are replaced by Ser residues was also evaluated. Removal of a single native S—S linkage influences oxidative folding and regioisomerization, antibacterial activity, Gram-negative bacterial membrane permeabilization, and proteolytic stability. Whereas the majority of the HD5 mutant peptides show low-micromolar activity against Gram-negative E. coli ATCC 25922 in colony counting assays, the wild-type disulfide array is essential for low-micromolar activity against Gram-positive S. aureus ATCC 25923. Removal of a single disulfide bond attenuates the activity observed for HD5ox against this Gram-positive bacterial strain. This observation supports the notion that the HD5ox mechanism of antibacterial action differs for Gram-negative and Gram-positive species (Wei, G.; de Leeuw, E., Pazgier, M., Yuan, W., Zou, G., Wang, J., Ericksen, B., Lu, W.-Y.; Lehrer, R. I.; Lu, W. (2009) J. Biol. Chem. 284, 29180-29192), and that the native disulfide array is a requirement for its activity against S. aureus. PMID:21861459

  14. Secretion and activation of the Serratia marcescens hemolysin by structurally defined ShlB mutants.

    PubMed

    Pramanik, Avijit; Könninger, Ulrich; Selvam, Arun; Braun, Volkmar

    2014-05-01

    The ShlA hemolysin of Serratia marcescens is secreted across the outer membrane by the ShlB protein; ShlB belongs to the two-partner secretion system (type Vb), a subfamily of the Omp85 outer membrane protein assembly and secretion superfamily. During secretion, ShlA is converted from an inactive non-hemolytic form into an active hemolytic form. The structure of ShlB is predicted to consist of the N-terminal α-helix H1, followed by the two polypeptide-transport-associated domains POTRA P1 and P2, and the β-barrel of 16 β-strands. H1 is inserted into the pore of the β-barrel in the outer membrane; P1 and P2 are located in the periplasm. To obtain insights into the secretion and activation of ShlA by ShlB, we isolated ShlB mutants impaired in secretion and/or activation. The triple H1 P1 P2 mutant did not secrete ShlA. The P1 and P2 deletion derivatives secreted reduced amounts of ShlA, of which P1 showed some hemolysis, whereas P2 was inactive. Deletion of loop 6 (L6), which is conserved among exporters of the Omp85 family, compromised activation but retained low secretion. Secretion-negative mutants generated by random mutagenesis were located in loop 6. The inactive secreted ShlA derivatives were complemented in vitro to active ShlA by an N-terminal ShlA fragment (ShlA242) secreted by ShlB. Deletion of H1 did not impair secretion of hemolytic ShlA. The study defines domains of ShlB which are important for ShlA secretion and activation.

  15. A fluorescence-activated cell sorting-based strategy for rapid isolation of high-lipid Chlamydomonas mutants.

    PubMed

    Terashima, Mia; Freeman, Elizabeth S; Jinkerson, Robert E; Jonikas, Martin C

    2015-01-01

    There is significant interest in farming algae for the direct production of biofuels and valuable lipids. Chlamydomonas reinhardtii is the leading model system for studying lipid metabolism in green algae, but current methods for isolating mutants of this organism with a perturbed lipid content are slow and tedious. Here, we present the Chlamydomonas high-lipid sorting (CHiLiS) strategy, which enables enrichment of high-lipid mutants by fluorescence-activated cell sorting (FACS) of pooled mutants stained with the lipid-sensitive dye Nile Red. This method only takes 5 weeks from mutagenesis to mutant isolation. We developed a staining protocol that allows quantification of lipid content while preserving cell viability. We improved separation of high-lipid mutants from the wild type by using each cell's chlorophyll fluorescence as an internal control. We initially demonstrated 20-fold enrichment of the known high-lipid mutant sta1 from a mixture of sta1 and wild-type cells. We then applied CHiLiS to sort thousands of high-lipid cells from a pool of about 60,000 mutants. Flow cytometry analysis of 24 individual mutants isolated by this approach revealed that about 50% showed a reproducible high-lipid phenotype. We further characterized nine of the mutants with the highest lipid content by flame ionization detection and mass spectrometry lipidomics. All mutants analyzed had a higher triacylglycerol content and perturbed whole-cell fatty acid composition. One arbitrarily chosen mutant was evaluated by microscopy, revealing larger lipid droplets than the wild type. The unprecedented throughput of CHiLiS opens the door to a systems-level understanding of green algal lipid biology by enabling genome-saturating isolation of mutants in key genes.

  16. A fluorescence-activated cell sorting-based strategy for rapid isolation of high-lipid Chlamydomonas mutants

    PubMed Central

    Terashima, Mia; Freeman, Elizabeth S; Jinkerson, Robert E; Jonikas, Martin C

    2015-01-01

    There is significant interest in farming algae for the direct production of biofuels and valuable lipids. Chlamydomonas reinhardtii is the leading model system for studying lipid metabolism in green algae, but current methods for isolating mutants of this organism with a perturbed lipid content are slow and tedious. Here, we present the Chlamydomonas high-lipid sorting (CHiLiS) strategy, which enables enrichment of high-lipid mutants by fluorescence-activated cell sorting (FACS) of pooled mutants stained with the lipid-sensitive dye Nile Red. This method only takes 5 weeks from mutagenesis to mutant isolation. We developed a staining protocol that allows quantification of lipid content while preserving cell viability. We improved separation of high-lipid mutants from the wild type by using each cell's chlorophyll fluorescence as an internal control. We initially demonstrated 20-fold enrichment of the known high-lipid mutant sta1 from a mixture of sta1 and wild-type cells. We then applied CHiLiS to sort thousands of high-lipid cells from a pool of about 60 000 mutants. Flow cytometry analysis of 24 individual mutants isolated by this approach revealed that about 50% showed a reproducible high-lipid phenotype. We further characterized nine of the mutants with the highest lipid content by flame ionization detection and mass spectrometry lipidomics. All mutants analyzed had a higher triacylglycerol content and perturbed whole-cell fatty acid composition. One arbitrarily chosen mutant was evaluated by microscopy, revealing larger lipid droplets than the wild type. The unprecedented throughput of CHiLiS opens the door to a systems-level understanding of green algal lipid biology by enabling genome-saturating isolation of mutants in key genes. PMID:25267488

  17. A fluorescence-activated cell sorting-based strategy for rapid isolation of high-lipid Chlamydomonas mutants.

    PubMed

    Terashima, Mia; Freeman, Elizabeth S; Jinkerson, Robert E; Jonikas, Martin C

    2015-01-01

    There is significant interest in farming algae for the direct production of biofuels and valuable lipids. Chlamydomonas reinhardtii is the leading model system for studying lipid metabolism in green algae, but current methods for isolating mutants of this organism with a perturbed lipid content are slow and tedious. Here, we present the Chlamydomonas high-lipid sorting (CHiLiS) strategy, which enables enrichment of high-lipid mutants by fluorescence-activated cell sorting (FACS) of pooled mutants stained with the lipid-sensitive dye Nile Red. This method only takes 5 weeks from mutagenesis to mutant isolation. We developed a staining protocol that allows quantification of lipid content while preserving cell viability. We improved separation of high-lipid mutants from the wild type by using each cell's chlorophyll fluorescence as an internal control. We initially demonstrated 20-fold enrichment of the known high-lipid mutant sta1 from a mixture of sta1 and wild-type cells. We then applied CHiLiS to sort thousands of high-lipid cells from a pool of about 60,000 mutants. Flow cytometry analysis of 24 individual mutants isolated by this approach revealed that about 50% showed a reproducible high-lipid phenotype. We further characterized nine of the mutants with the highest lipid content by flame ionization detection and mass spectrometry lipidomics. All mutants analyzed had a higher triacylglycerol content and perturbed whole-cell fatty acid composition. One arbitrarily chosen mutant was evaluated by microscopy, revealing larger lipid droplets than the wild type. The unprecedented throughput of CHiLiS opens the door to a systems-level understanding of green algal lipid biology by enabling genome-saturating isolation of mutants in key genes. PMID:25267488

  18. Smoothened (SMO) receptor mutations dictate resistance to vismodegib in basal cell carcinoma.

    PubMed

    Pricl, Sabrina; Cortelazzi, Barbara; Dal Col, Valentina; Marson, Domenico; Laurini, Erik; Fermeglia, Maurizio; Licitra, Lisa; Pilotti, Silvana; Bossi, Paolo; Perrone, Federica

    2015-02-01

    Basal cell carcinomas (BCCs) and a subset of medulloblastomas are characterized by loss-of-function mutations in the tumor suppressor gene, PTCH1. PTCH1 normally functions by repressing the activity of the Smoothened (SMO) receptor. Inactivating PTCH1 mutations result in constitutive Hedgehog pathway activity through uncontrolled SMO signaling. Targeting this pathway with vismodegib, a novel SMO inhibitor, results in impressive tumor regression in patients harboring genetic defects in this pathway. However, a secondary mutation in SMO has been reported in medulloblastoma patients following relapse on vismodegib to date. This mutation preserves pathway activity, but appears to confer resistance by interfering with drug binding. Here we report for the first time on the molecular mechanisms of resistance to vismodegib in two BCC cases. The first case, showing progression after 2 months of continuous vismodegib (primary resistance), exhibited the new SMO G497W mutation. The second case, showing a complete clinical response after 5 months of treatment and a subsequent progression after 11 months on vismodegib (secondary resistance), exhibited a PTCH1 nonsense mutation in both the pre- and the post-treatment specimens, and the SMO D473Y mutation in the post-treatment specimens only. In silico analysis demonstrated that SMO(G497W) undergoes a conformational rearrangement resulting in a partial obstruction of the protein drug entry site, whereas the SMO D473Y mutation induces a direct effect on the binding site geometry leading to a total disruption of a stabilizing hydrogen bond network. Thus, the G497W and D473Y SMO mutations may represent two different mechanisms leading to primary and secondary resistance to vismodegib, respectively. PMID:25306392

  19. Gramicidin A Mutants with Antibiotic Activity against Both Gram-Positive and Gram-Negative Bacteria.

    PubMed

    Zerfas, Breanna L; Joo, Yechaan; Gao, Jianmin

    2016-03-17

    Antimicrobial peptides (AMPs) have shown potential as alternatives to traditional antibiotics for fighting infections caused by antibiotic-resistant bacteria. One promising example of this is gramicidin A (gA). In its wild-type sequence, gA is active by permeating the plasma membrane of Gram-positive bacteria. However, gA is toxic to human red blood cells at similar concentrations to those required for it to exert its antimicrobial effects. Installing cationic side chains into gA has been shown to lower its hemolytic activity while maintaining the antimicrobial potency. In this study, we present the synthesis and the antibiotic activity of a new series of gA mutants that display cationic side chains. Specifically, by synthesizing alkylated lysine derivatives through reductive amination, we were able to create a broad selection of structures with varied activities towards Staphylococcus aureus and methicillin-resistant S. aureus (MRSA). Importantly, some of the new mutants were observed to have an unprecedented activity towards important Gram-negative pathogens, including Escherichia coli, Klebsiella pneumoniae and Psuedomonas aeruginosa. PMID:26918268

  20. Gramicidin A Mutants with Antibiotic Activity against Both Gram-Positive and Gram-Negative Bacteria.

    PubMed

    Zerfas, Breanna L; Joo, Yechaan; Gao, Jianmin

    2016-03-17

    Antimicrobial peptides (AMPs) have shown potential as alternatives to traditional antibiotics for fighting infections caused by antibiotic-resistant bacteria. One promising example of this is gramicidin A (gA). In its wild-type sequence, gA is active by permeating the plasma membrane of Gram-positive bacteria. However, gA is toxic to human red blood cells at similar concentrations to those required for it to exert its antimicrobial effects. Installing cationic side chains into gA has been shown to lower its hemolytic activity while maintaining the antimicrobial potency. In this study, we present the synthesis and the antibiotic activity of a new series of gA mutants that display cationic side chains. Specifically, by synthesizing alkylated lysine derivatives through reductive amination, we were able to create a broad selection of structures with varied activities towards Staphylococcus aureus and methicillin-resistant S. aureus (MRSA). Importantly, some of the new mutants were observed to have an unprecedented activity towards important Gram-negative pathogens, including Escherichia coli, Klebsiella pneumoniae and Psuedomonas aeruginosa.

  1. Suppressor Mutations for Presenilin 1 Familial Alzheimer Disease Mutants Modulate γ-Secretase Activities.

    PubMed

    Futai, Eugene; Osawa, Satoko; Cai, Tetsuo; Fujisawa, Tomoya; Ishiura, Shoichi; Tomita, Taisuke

    2016-01-01

    γ-Secretase is a multisubunit membrane protein complex containing presenilin (PS1) as a catalytic subunit. Familial Alzheimer disease (FAD) mutations within PS1 were analyzed in yeast cells artificially expressing membrane-bound substrate, amyloid precursor protein, or Notch fused to Gal4 transcriptional activator. The FAD mutations, L166P and G384A (Leu-166 to Pro and Gly-384 to Ala substitution, respectively), were loss-of-function in yeast. We identified five amino acid substitutions that suppress the FAD mutations. The cleavage of amyloid precursor protein or Notch was recovered by the secondary mutations. We also found that secondary mutations alone activated the γ-secretase activity. FAD mutants with suppressor mutations, L432M or S438P within TMD9 together with a missense mutation in the second or sixth loops, regained γ-secretase activity when introduced into presenilin null mouse fibroblasts. Notably, the cells with suppressor mutants produced a decreased amount of Aβ42, which is responsible for Alzheimer disease. These results indicate that the yeast system is useful to screen for mutations and chemicals that modulate γ-secretase activity.

  2. [hHO-1 structure prediction and its mutant construct, expression, purification and activity analysis].

    PubMed

    Xia, Zhen Wei; Cui, Wen Jun; Zhou, Wen Pu; Zhang, Xue Hong; Shen, Qing Xiang; Li, Yun Zhu; Yu, Shan Chang

    2004-10-01

    Human Heme Oxygenase-1 (hHO-1) is the rate-limiting enzyme in the catabolism reaction of heme, which directly regulates the concentration of bilirubin in human body. The mutant structure was simulated by Swiss-pdbviewer procedure, which showed that the structure of active pocket was changed distinctly after Ala25 substituted for His25 in active domain, but the mutated enzyme still binded with heme. On the basis of the results, the expression vectors, pBHO-1 and pBHO-1(M), were constructed, induced by IPTG and expressed in E. coli DH5alpha strain. The expression products were purified with 30%-60% saturation (NH4)2SO4 and Q-Sepharose Fast Flow column chromatography. The concentration of hHO-1 in 30%-60% saturation (NH4)2SO4 components and in fractions through twice column chromatography was 3.6-fold and 30-fold higher than that in initial product, respectively. The activity of wild hHO-1 (whHO-1) and mutant hHO-1 (deltahHO-1) showed that the activity of deltahHO-1 was reduced 91.21% compared with that of whHO-1. The study shows that His25 is of importance for the mechanism of hHO-1, and provides the possibility for effectively regulating the activity to exert biological function.

  3. Identification and characterization of barley mutants lacking glycine decarboxylase and carboxyl esterase activities

    SciTech Connect

    Blackwell, R.; Lewis, K.; Lea, P. )

    1990-05-01

    A barley mutant has been isolated, from a selection of fifty air-sensitive seed-lines, using a standard gel stain technique which lacks carboxyl esterase activity, but has normal levels of carbonic anhydrase. In addition, two barley mutants lacking the ability to convert glycine to serine in the mitochondria, have been characterized. Both plants accumulate glycine in air and are unable to metabolize ({sup 14}C)glycine in the short-term. When ({sup 14}C)glycine was supplied over 2h LaPr 85/55 metabolized 90%, whereas the second mutant (LaPr 87/30) metabolized 10%. Results indicate that the mutation in LaPr 85/55 is almost certainly in the glycine transporter into the mitochondrion. The mutation in LaPr 87/30 has been shown, using western blotting, to be in both the P and H proteins, two of four proteins which comprise glycine decarboxylase (P, H, T and L).

  4. Increased cell surface hydrophobicity of a Serratia marcescens NS 38 mutant lacking wetting activity.

    PubMed

    Bar-Ness, R; Avrahamy, N; Matsuyama, T; Rosenberg, M

    1988-09-01

    The cell surface hydrophobicity of Serratia marcescens appears to be an important factor in its adhesion to and colonization of various interfaces. The cell surface components responsible for mediating the hydrophobicity of S. marcescens have not been completely elucidated, but may include prodigiosin and other factors. In the present report we have investigated the potential role of serratamolide, an amphipathic aminolipid present on the surfaces of certain S. marcescens strains, in modulating cell surface hydrophobicity. The hydrophobic properties of a serratamolide-producing strain (NS 38) were compared with those of a serratamolide-deficient mutant (NS 38-9) by monitoring the kinetics of adhesion to hexadecane. Serratamolide production was monitored by thin-layer chromatography and the wetting activity of washed-cell suspensions on polystyrene. Wild-type NS 38 cells were far less hydrophobic than the serratamolide-deficient mutant cells were; the removal coefficients were 48 min-1 for the mutant, as compared with only 18 min-1 for the wild type. The data suggest that the presence of serratamolide on S. marcescens cells results in a reduction in hydrophobicity, presumably by blocking hydrophobic sites on the cell surface.

  5. Protein expression, characterization and activity comparisons of wild type and mutant DUSP5 proteins

    SciTech Connect

    Nayak, Jaladhi; Gastonguay, Adam J.; Talipov, Marat R.; Vakeel, Padmanabhan; Span, Elise A.; Kalous, Kelsey S.; Kutty, Raman G.; Jensen, Davin R.; Pokkuluri, Phani Raj; Sem, Daniel S.; Rathore, Rajendra; Ramchandran, Ramani

    2014-12-18

    Background: The mitogen-activated protein kinases (MAPKs) pathway is critical for cellular signaling, and proteins such as phosphatases that regulate this pathway are important for normal tissue development. Based on our previous work on dual specificity phosphatase-5 (DUSP5), and its role in embryonic vascular development and disease, we hypothesized that mutations in DUSP5 will affect its function. Results: In this study, we tested this hypothesis by generating full-length glutathione-S-transferase-tagged DUSP5 and serine 147 proline mutant (S147P) proteins from bacteria. Light scattering analysis, circular dichroism, enzymatic assays and molecular modeling approaches have been performed to extensively characterize the protein form and function. We demonstrate that both proteins are active and, interestingly, the S147P protein is hypoactive as compared to the DUSP5 WT protein in two distinct biochemical substrate assays. Furthermore, due to the novel positioning of the S147P mutation, we utilize computational modeling to reconstruct full-length DUSP5 and S147P to predict a possible mechanism for the reduced activity of S147P. Conclusion: Taken together, this is the first evidence of the generation and characterization of an active, full-length, mutant DUSP5 protein which will facilitate future structure-function and drug development-based studies.

  6. Protein expression, characterization and activity comparisons of wild type and mutant DUSP5 proteins

    DOE PAGES

    Nayak, Jaladhi; Gastonguay, Adam J.; Talipov, Marat R.; Vakeel, Padmanabhan; Span, Elise A.; Kalous, Kelsey S.; Kutty, Raman G.; Jensen, Davin R.; Pokkuluri, Phani Raj; Sem, Daniel S.; et al

    2014-12-18

    Background: The mitogen-activated protein kinases (MAPKs) pathway is critical for cellular signaling, and proteins such as phosphatases that regulate this pathway are important for normal tissue development. Based on our previous work on dual specificity phosphatase-5 (DUSP5), and its role in embryonic vascular development and disease, we hypothesized that mutations in DUSP5 will affect its function. Results: In this study, we tested this hypothesis by generating full-length glutathione-S-transferase-tagged DUSP5 and serine 147 proline mutant (S147P) proteins from bacteria. Light scattering analysis, circular dichroism, enzymatic assays and molecular modeling approaches have been performed to extensively characterize the protein form and function.more » We demonstrate that both proteins are active and, interestingly, the S147P protein is hypoactive as compared to the DUSP5 WT protein in two distinct biochemical substrate assays. Furthermore, due to the novel positioning of the S147P mutation, we utilize computational modeling to reconstruct full-length DUSP5 and S147P to predict a possible mechanism for the reduced activity of S147P. Conclusion: Taken together, this is the first evidence of the generation and characterization of an active, full-length, mutant DUSP5 protein which will facilitate future structure-function and drug development-based studies.« less

  7. Activation of Src and transformation by an RPTPα splice mutant found in human tumours

    PubMed Central

    Huang, Jian; Yao, Ling; Xu, Rongting; Wu, Huacheng; Wang, Min; White, Brian S; Shalloway, David; Zheng, Xinmin

    2011-01-01

    Receptor protein tyrosine phosphatase α (RPTPα)-mediated Src activation is required for survival of tested human colon and oestrogen receptor-negative breast cancer cell lines. To explore whether mutated RPTPα participates in human carcinogenesis, we sequenced RPTPα cDNAs from five types of human tumours and found splice mutants in ∼30% of colon, breast, and liver tumours. RPTPα245, a mutant expressed in all three tumour types, was studied further. Although it lacks any catalytic domain, RPTPα245 expression in the tumours correlated with Src tyrosine dephosphorylation, and its expression in rodent fibroblasts activated Src by a novel mechanism. This involved RPTPα245 binding to endogenous RPTPα (eRPTPα), which decreased eRPTPα–Grb2 binding and increased eRPTPα dephosphorylation of Src without increasing non-specific eRPTPα activity. RPTPα245–eRPTPα binding was blocked by Pro210 → Leu/Pro211 → Leu mutation, consistent with the involvement of the structural ‘wedge' that contributes to eRPTPα homodimerization. RPTPα245-induced fibroblast transformation was blocked by either Src or eRPTPα RNAi, indicating that this required the dephosphorylation of Src by eRPTPα. The transformed cells were tumourigenic in nude mice, suggesting that RPTPα245-induced activation of Src in the human tumours may have contributed to carcinogenesis. PMID:21725282

  8. N-(2-alkylaminoethyl)-4-(1,2,4-oxadiazol-5-yl)piperazine-1-carboxamides as highly potent smoothened antagonists.

    PubMed

    Muraglia, Ester; Ontoria, Jesus M; Branca, Danila; Dessole, Gabriella; Bresciani, Alberto; Fonsi, Massimiliano; Giuliano, Claudio; Llauger Bufi, Laura; Monteagudo, Edith; Palumbi, Maria Cecilia; Torrisi, Caterina; Rowley, Michael; Steinkühler, Christian; Jones, Philip

    2011-09-15

    Smoothened (Smo) antagonists are emerging as new therapies for the treatment of neoplasias with aberrantly reactivated hedgehog (Hh) signaling pathway. A novel series of 4-[3-(quinolin-2-yl)-1,2,4-oxadiazol-5-yl]piperazinyl ureas as smoothened antagonists was recently described, herein the series has been further optimized through the incorporation of a basic amine into the urea. This development resulted in identification of some exceptionally potent smoothened antagonists with low serum shifts, however, reductive ring opening on the 1,2,4-oxadiazole in rats limits the applicability of these compounds in in vivo studies.

  9. Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma

    PubMed Central

    Lissanu Deribe, Yonathan; Shi, Yanxia; Rai, Kunal; Nezi, Luigi; Amin, Samir B.; Wu, Chia-Chin; Akdemir, Kadir C.; Mahdavi, Mozhdeh; Peng, Qian; Chang, Qing Edward; Hornigold, Kirsti; Arold, Stefan T.; Welch, Heidi C. E.; Garraway, Levi A.; Chin, Lynda

    2016-01-01

    PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By generating an inducible transgenic mouse model we showed an oncogenic role for a truncating PREX2 mutation (PREX2E824*) in vivo in the context of mutant NRAS. Using integrative cross-species gene expression analysis, we identified deregulated cell cycle and cytoskeleton organization as significantly perturbed biological pathways in PREX2 mutant tumors. Mechanistically, truncation of PREX2 activated its Rac1 guanine nucleotide exchange factor activity, abolished binding to PTEN and activated the PI3K (phosphatidyl inositol 3 kinase)/Akt signaling pathway. We further showed that PREX2 truncating mutations or PTEN deletion induces down-regulation of the tumor suppressor and cell cycle regulator CDKN1C (also known as p57KIP2). This down-regulation occurs, at least partially, through DNA hypomethylation of a differentially methylated region in chromosome 11 that is a known regulatory region for expression of the CDKN1C gene. Together, these findings identify PREX2 as a mediator of NRAS-mutant melanoma development that acts through the PI3K/PTEN/Akt pathway to regulate gene expression of a cell cycle regulator. PMID:26884185

  10. Mutants of lymphotoxin-α with augmented cytotoxic activity via TNFR1 for use in cancer therapy.

    PubMed

    Morishige, Tomohiro; Yoshioka, Yasuo; Narimatsu, Shogo; Ikemizu, Shinji; Tsunoda, Shin-ichi; Tsutsumi, Yasuo; Mukai, Yohei; Okada, Naoki; Nakagawa, Shinsaku

    2013-02-01

    The cytokine lymphotoxin-α (LTα) is a promising candidate for use in cancer therapy. However, the instability of LTαin vivo and the insufficient levels of tumor necrosis factor receptor 1 (TNFR1)-mediated bioactivity of LTα limit its therapeutic potential. Here, we created LTα mutants with increased TNFR1-mediated bioactivity by using a phage display technique. We constructed a phage library displaying lysine-deficient structural variants of LTα with randomized amino acid residues. After affinity panning, we screened three clones of lysine-deficient LTα mutant, and identified a LTα mutant with TNFR1-mediated bioactivity that was 32 times that of the wild-type LTα (wtLTα). When compared with wtLTα, the selected clone showed augmented affinity to TNFR1 due to slow dissociation rather than rapid association. In contrast, the mutant showed only 4 times the TNFR2-mediated activity of wtLTα. In addition, the LTα mutant strongly and rapidly activated caspases that induce TNFR1-mediated cell death, whereas the mutant and wtLTα activated nuclear factor-kappa B to a similar extent. Our data suggest that the kinetics of LTα binding to TNFR1 play an important role in signal transduction patterns, and a TNFR1-selective LTα mutant with augmented bioactivity would be a superior candidate for cancer therapy. PMID:23246116

  11. [Pigment accumulation and functional activity of chloroplasts in common Pisum sativum L. mutants with low chlorophyll level (chlorotica)].

    PubMed

    Ladygin, V G

    2003-01-01

    Pea mutants chlorotica 2004 and 2014 with a low content of chlorophyll were studied. The mutant 2004 has light green leaves and stem, and the mutant 2014 has yellow green leaves and stem. They accumulate approximately 80 and 50% chlorophylls of the parent form of pea Torsdag cv. The content of carotene in carotenoids of the mutant 2004 was much lower, and the accumulation of lutein and violaxanthine was increased. The accumulation of all carotenoids in the mutant 2014 decreased almost proportionally to a decrease in the chlorophyll content. The rate of CO2 evolution in mutant chlorotica 2004 and 2014 was established to be lower. The quantum efficiency of photosynthesis in the mutants was 29-30% lower as compared to the control, and in hybrid plants it was 1.5-2-fold higher. It is assumed that the increase in the activity of the night-time respiration in gas exchange of chlorotica mutants and the drop of photosynthesis lead to a decrease in biomass increment. The results obtained allow us to conclude that the mutation of chlorotica 2004 and 2014 affects the genes controlling the formation and functioning of different components of the photosynthetic apparatus.

  12. Expression and characterization of glycogen synthase kinase-3 mutants and their effect on glycogen synthase activity in intact cells.

    PubMed Central

    Eldar-Finkelman, H; Argast, G M; Foord, O; Fischer, E H; Krebs, E G

    1996-01-01

    In these studies we expressed and characterized wild-type (WT) GSK-3 (glycogen synthase kinase-3) and its mutants, and examined their physiological effect on glycogen synthase activity. The GSK-3 mutants included mutation at serine-9 either to alanine (S9A) or glutamic acid (S9E) and an inactive mutant, K85,86MA. Expression of WT and the various mutants in a cell-free system indicated that S9A and S9E exhibit increased kinase activity as compared with WT. Subsequently, 293 cells were transiently transfected with WT GSK-3 and mutants. Cells expressing the S9A mutant exhibited higher kinase activity (2.6-fold of control cells) as compared with cells expressing WT and S9E (1.8- and 2.0-fold, respectively, of control cells). Combined, these results suggest serine-9 as a key regulatory site of GSK-3 inactivation, and indicate that glutamic acid cannot mimic the function of the phosphorylated residue. The GSK-3-expressing cell system enabled us to examine whether GSK-3 can induce changes in the endogenous glycogen synthase activity. A decrease in glycogen synthase activity (50%) was observed in cells expressing the S9A mutant. Similarly, glycogen synthase activity was suppressed in cells expressing WT and the S9E mutant (20-30%, respectively). These studies indicate that activation of GSK-3 is sufficient to inhibit glycogen synthase in intact cells, and provide evidence supporting a physiological role for GSK-3 in regulating glycogen synthase and glycogen metabolism. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8816781

  13. Functional Divergence in the Role of N-Linked Glycosylation in Smoothened Signaling

    PubMed Central

    Marada, Suresh; Navarro, Gemma; Truong, Ashley; Stewart, Daniel P.; Arensdorf, Angela M.; Nachtergaele, Sigrid; Angelats, Edgar; Opferman, Joseph T.; Rohatgi, Rajat; McCormick, Peter J.; Ogden, Stacey K.

    2015-01-01

    The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice. PMID:26291458

  14. Kinetic Characterization of High-Activity Mutants of Human Butyrylcholinesterase for Cocaine Metabolite Norcocaine

    PubMed Central

    Zhan, Max; Hou, Shurong; Zhan, Chang-Guo; Zheng, Fang

    2015-01-01

    It has been known that cocaine produces the toxic and physiological effects through not only cocaine itself but also norcocaine formed from cocaine oxidation catalyzed by microsomal cytochrome P450 3A4 in the human liver. The catalytic parameters (kcat and KM) of human butyrylcholinesterase (BChE) and its three mutants (i.e. the A199S/S287G/A328W/Y332G, A199S/F227A/S287G/A328W/E441D, and A199S/F227A/S287G/A328W/Y332G mutants) for norcocaine have been characterized in the present study, for the first time, in comparison with those for cocaine. Based on the obtained kinetic data, wild-type human BChE has a significantly lower catalytic activity for norcocaine (kcat = 2.8 min−1, KM = 15 μM, and kcat/KM = 1.87 × 105 M−1 min−1) compared to its catalytic activity for (−)-cocaine. The BChE mutants examined in this study have considerably improved catalytic activities against both cocaine and norcocaine compared to the wild-type enzyme. Within the enzymes examined in this study, the A199S/F227A/S287G/A328W/Y332G mutant (CocH3) is identified as the most efficient enzyme for hydrolyzing both cocaine and norcocaine. CocH3 has a 1080-fold improved catalytic efficiency for norcocaine (kcat = 2610 min−1, KM = 13 μM, and kcat/KM = 2.01 × 108 M−1 min−1) and a 2020-fold improved catalytic efficiency for cocaine. It has been demonstrated that CocH3 as an exogenous enzyme can rapidly metabolize norcocaine, in addition to cocaine, in rats. Further kinetic modeling has suggested that CocH3 with an identical concentration as that of the endogenous BChE in human plasma can effectively eliminate both cocaine and norcocaine in a simplified kinetic model of cocaine abuse. PMID:24125115

  15. Approximated maximum adsorption of His-tagged enzyme/mutants on Ni2+-NTA for comparison of specific activities.

    PubMed

    Li, Yuanli; Long, Gaobo; Yang, Xiaolan; Hu, Xiaolei; Feng, Yiran; Tan, Deng; Xie, Yanling; Pu, Jun; Liao, Fei

    2015-03-01

    By approximating maximum activities of six-histidine (6His)-tagged enzyme/mutants adsorbed on Ni2+-NTA-magnetic-submicron-particle (Ni2+-NTA-MSP), a facile approach was tested for comparing enzyme specific activities in cell lysates. On a fixed quantity of Ni2+-NTA-MSP, the activity of an adsorbed 6His-tagged enzyme/mutant was measured via spectrophotometry; the activity after saturation adsorption (Vs) was predicted from response curve with quantities of total proteins from the same lysate as the predictor; Vs was equivalent of specific activity for comparison. This approach required abundance of a 6His-tagged enzyme/mutant over 3% among total proteins in lysate, an accurate series of quantities of total proteins from the same lysate, the largest activity generated by enzyme occupying over 85% binding sites on Ni2+-NTA-MSP and the minimum activity as absorbance change rates of 0.003 min(-1) for analysis. The prediction of Vs tolerated errors in concentrations of total proteins in lysates and was effective to 6His-tagged alkaline phosphatase and its 6His-tagged mutant in lysates. Notably, of those two 6His-tagged enzymes, Vs was effectively approximated with just one optimized quantity of lysates. Hence, this approach with Ni2+-NTA-MSP worked for comparison of specific activities of 6His-tagged enzyme/mutants in lysates when they had sufficient abundance among proteins and activities of adsorbed enzymes were measurable.

  16. Further studies on O sub 2 -resistant photosynthesis and photorespiration in a tobacco mutant with enhanced catalase activity

    SciTech Connect

    Zelitch, I. )

    1990-02-01

    The increase in net photosynthesis in M{sub 4} progeny of an O{sub 2}-resistant tobacco (Nicotiana tabacum) mutant relative to wild-type plants at 21 and 42% O{sub 2} has been confirmed and further investigated. Self-pollination of an M{sub 3} mutant produced M{sub 4} progeny segregating high catalase phenotypes (average 40% greater than wild type) at a frequency of about 60%. The high catalase phenotype cosegregated precisely with O{sub 2}-resistant photosynthesis. About 25% of the F{sub 1} progeny of reciprocal crosses between the same M{sub 3} mutant and wild type had high catalase activity, whether the mutant was used as the maternal or paternal parent, indicating nuclear inheritance. In high-catalase mutants the activity of NADH-hydroxypyruvate reductase, another peroxisomal enzyme, was the same as wild type. The mutants released 15% less photorespiratory CO{sub 2} as a percent of net photosynthesis in CO{sub 2}-free 21% O{sub 2} and 36% less in CO{sub 2}-free 42% O{sub 2} compared with wild type. The mutant leaf tissue also released less {sup 14}CO{sub 2} per (1-{sup 14}C)glycolate metabolized than wild type in normal air, consistent with less photorespiration in the mutant. The O{sub 2}-resistant photosynthesis appears to be caused by a decrease in photorespiration especially under conditions of high O{sub 2} where the stoichiometry of CO{sub 2} release per glycolate metabolized is expected to be enhanced. The higher catalase activity in the mutant may decrease the nonenzymatic peroxidation of keto-acids such as hydroxypyruvate and glyoxylate by photorespiratory H{sub 2}O{sub 2}.

  17. Dynamical Network of HIV-1 Protease Mutants Reveals the Mechanism of Drug Resistance and Unhindered Activity.

    PubMed

    Appadurai, Rajeswari; Senapati, Sanjib

    2016-03-15

    HIV-1 protease variants resist drugs by active and non-active-site mutations. The active-site mutations, which are the primary or first set of mutations, hamper the stability of the enzyme and resist the drugs minimally. As a result, secondary mutations that not only increase protein stability for unhindered catalytic activity but also resist drugs very effectively arise. While the mechanism of drug resistance of the active-site mutations is through modulating the active-site pocket volume, the mechanism of drug resistance of the non-active-site mutations is unclear. Moreover, how these allosteric mutations, which are 8-21 Å distant, communicate to the active site for drug efflux is completely unexplored. Results from molecular dynamics simulations suggest that the primary mechanism of drug resistance of the secondary mutations involves opening of the flexible protease flaps. Results from both residue- and community-based network analyses reveal that this precise action of protease is accomplished by the presence of robust communication paths between the mutational sites and the functionally relevant regions: active site and flaps. While the communication is more direct in the wild type, it traverses across multiple intermediate residues in mutants, leading to weak signaling and unregulated motions of flaps. The global integrity of the protease network is, however, maintained through the neighboring residues, which exhibit high degrees of conservation, consistent with clinical data and mutagenesis studies. PMID:26892689

  18. RNase-sensitive DNA polymerase activity in cell fractions and mutants of Neurospora crassa

    SciTech Connect

    Dutta, S.K.; Mukhopadhyay, D.K.; Bhattachryya, J.

    1980-01-01

    RNase-sensitive DNA polymerase activity was tested in different cell fractions of Neurospora crassa cell types and its morphological mutants. This RSDP was found localized in the microsomal pellet fraction and absent in the purified nuclear pellets isolated from different N. crassa cell types: conidia, germinated conidia, and mycelia. This enzyme is capable of synthesizing a DNA product only in the presence of all four deoxyribonucleoside-5'-triphosphates and Mg/sup 2 +/. Removal of RNA from the pellet fraction by RNase strongly inhibited the DNA synthesis. The endogenous synthesis of DNA in the microsomal pellet fraction was associated with the formation of an RNA:DNA hybrid as analyzed by Cs/sub 2/SO/sub 4/ equilibrium density gradient centrifugation. The DNA product after alkali hydrolysis hybridizes with the RNA isolated from the same pellet fraction, as analyzed by elution from hydroxylapatite column at 60 C. This DNA product did not hybridize with poly(A). A few mutants tested showed this RNase-sensitive DNA polymerase activity.

  19. Activation of dormant bacterial genes by Nonomuraea sp. strain ATCC 39727 mutant-type RNA polymerase.

    PubMed

    Talà, Adelfia; Wang, Guojun; Zemanova, Martina; Okamoto, Susumu; Ochi, Kozo; Alifano, Pietro

    2009-02-01

    There is accumulating evidence that the ability of actinomycetes to produce antibiotics and other bioactive secondary metabolites has been underestimated due to the presence of cryptic gene clusters. The activation of dormant genes is therefore one of the most important areas of experimental research for the discovery of drugs in these organisms. The recent observation that several actinomycetes possess two RNA polymerase beta-chain genes (rpoB) has opened up the possibility, explored in this study, of developing a new strategy to activate dormant gene expression in bacteria. Two rpoB paralogs, rpoB(S) and rpoB(R), provide Nonomuraea sp. strain ATCC 39727 with two functionally distinct and developmentally regulated RNA polymerases. The product of rpoB(R), the expression of which increases after transition to stationary phase, is characterized by five amino acid substitutions located within or close to the so-called rifampin resistance clusters that play a key role in fundamental activities of RNA polymerase. Here, we report that rpoB(R) markedly activated antibiotic biosynthesis in the wild-type Streptomyces lividans strain 1326 and also in strain KO-421, a relaxed (rel) mutant unable to produce ppGpp. Site-directed mutagenesis demonstrated that the rpoB(R)-specific missense H426N mutation was essential for the activation of secondary metabolism. Our observations also indicated that mutant-type or duplicated, rpoB often exists in nature among rare actinomycetes and will thus provide a basis for further basic and applied research.

  20. Dynamics and Mechanism of Efficient DNA Repair Reviewed by Active-Site Mutants

    NASA Astrophysics Data System (ADS)

    Tan, Chuang; Liu, Zheyun; Li, Jiang; Guo, Xunmin; Wang, Lijuan; Zhong, Dongping

    2010-06-01

    Photolyases repair the UV-induced pyrimidine dimers in damage DNA via a photoreaction which includes a series of light-driven electron transfers between the two-electron-reduced flavin cofactor FADH^- and the dimer. We report here our systematic studies of the repair dynamics in E. coli photolyase with mutation of several active-site residues. With femtosecond resolution, we observed the significant change in the forward electron transfer from the excited FADH^- to the dimer and the back electron transfer from the repaired thymines by mutation of E274A, R226A, R342A, N378S and N378C. We also found that the mutation of E274A accelerates the bond-breaking of the thymine dimer. The dynamics changes are consistent with the quantum yield study of these mutants. These results suggest that the active-site residues play a significant role, structurally and chemically, in the DNA repair photocycle.

  1. Functional reconstitution and channel activity measurements of purified wildtype and mutant CFTR protein.

    PubMed

    Eckford, Paul D W; Li, Canhui; Bear, Christine E

    2015-03-09

    The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a unique channel-forming member of the ATP Binding Cassette (ABC) superfamily of transporters. The phosphorylation and nucleotide dependent chloride channel activity of CFTR has been frequently studied in whole cell systems and as single channels in excised membrane patches. Many Cystic Fibrosis-causing mutations have been shown to alter this activity. While a small number of purification protocols have been published, a fast reconstitution method that retains channel activity and a suitable method for studying population channel activity in a purified system have been lacking. Here rapid methods are described for purification and functional reconstitution of the full-length CFTR protein into proteoliposomes of defined lipid composition that retains activity as a regulated halide channel. This reconstitution method together with a novel flux-based assay of channel activity is a suitable system for studying the population channel properties of wild type CFTR and the disease-causing mutants F508del- and G551D-CFTR. Specifically, the method has utility in studying the direct effects of phosphorylation, nucleotides and small molecules such as potentiators and inhibitors on CFTR channel activity. The methods are also amenable to the study of other membrane channels/transporters for anionic substrates.

  2. The Activating Transcription Factor 3 Protein Suppresses the Oncogenic Function of Mutant p53 Proteins*

    PubMed Central

    Wei, Saisai; Wang, Hongbo; Lu, Chunwan; Malmut, Sarah; Zhang, Jianqiao; Ren, Shumei; Yu, Guohua; Wang, Wei; Tang, Dale D.; Yan, Chunhong

    2014-01-01

    Mutant p53 proteins (mutp53) often acquire oncogenic activities, conferring drug resistance and/or promoting cancer cell migration and invasion. Although it has been well established that such a gain of function is mainly achieved through interaction with transcriptional regulators, thereby modulating cancer-associated gene expression, how the mutp53 function is regulated remains elusive. Here we report that activating transcription factor 3 (ATF3) bound common mutp53 (e.g. R175H and R273H) and, subsequently, suppressed their oncogenic activities. ATF3 repressed mutp53-induced NFKB2 expression and sensitized R175H-expressing cancer cells to cisplatin and etoposide treatments. Moreover, ATF3 appeared to suppress R175H- and R273H-mediated cancer cell migration and invasion as a consequence of preventing the transcription factor p63 from inactivation by mutp53. Accordingly, ATF3 promoted the expression of the metastasis suppressor SHARP1 in mutp53-expressing cells. An ATF3 mutant devoid of the mutp53-binding domain failed to disrupt the mutp53-p63 binding and, thus, lost the activity to suppress mutp53-mediated migration, suggesting that ATF3 binds to mutp53 to suppress its oncogenic function. In line with these results, we found that down-regulation of ATF3 expression correlated with lymph node metastasis in TP53-mutated human lung cancer. We conclude that ATF3 can suppress mutp53 oncogenic function, thereby contributing to tumor suppression in TP53-mutated cancer. PMID:24554706

  3. Combined inhibition of MEK and Plk1 has synergistic anti-tumor activity in NRAS mutant melanoma

    PubMed Central

    Vujic, I; Sanlorenzo, M; Ma, J; Kim, ST; Kleffel, S; Schatton, T; Rappersberger, K; Gutteridge, R; Ahmad, N; Ortiz/Urda, S

    2015-01-01

    About one third of cancers harbor activating mutations in rat sarcoma viral oncogene homolog (RAS) oncogenes. In melanoma, aberrant neuroblastoma-RAS (NRAS) signaling fuels tumor progression in about 20% of patients. Current therapeutics for NRAS driven malignancies barely impact overall survival. To date, pathway interference downstream of mutant NRAS seems to be the most promising approach. In this study, data revealed that mutant NRAS induced Plk1 expression, and pharmacologic inhibition of Plk1 stabilized the size of NRAS mutant melanoma xenografts. The combination of MEK and Plk1 inhibitors resulted in a significant growth reduction of NRAS mutant melanoma cells in vitro, and regression of xenografted NRAS mutant melanoma in vivo. Independent cell cycle arrest and increased induction of apoptosis underlies the synergistic effect of this combination. Data further suggest that the p53 signaling pathway is of key importance to the observed therapeutic efficacy. This study provides in vitro, in vivo and first mechanistic data, that a MEK/Plk1 inhibitor combination might be a promising treatment approach for patients with NRAS driven melanoma. Since mutant NRAS signaling is similar across different malignancies, this inhibitor combination could also offer a previously unreported treatment modality for NRAS mutant tumors of other cell origins. PMID:26016894

  4. Selective Antitumor Activity of Ibrutinib in EGFR-Mutant Non–Small Cell Lung Cancer Cells

    PubMed Central

    Gao, Wen; Wang, Michael; Wang, Li; Lu, Haibo; Wu, Shuhong; Dai, Bingbing; Ou, Zhishuo; Zhang, Liang; Heymach, John V.; Gold, Kathryn A.; Minna, John; Roth, Jack A.; Hofstetter, Wayne L.; Swisher, Stephen G.

    2014-01-01

    Ibrutinib, which irreversibly inhibits Bruton tyrosine kinase, was evaluated for antitumor activity in a panel of non–small cell lung cancer (NSCLC) cell lines and found to selectively inhibit growth of NSCLC cells carrying mutations in the epidermal growth factor receptor (EGFR) gene, including T790M mutant and erlotinib-resistant H1975 cells. Ibrutinib induced dose-dependent inhibition of phosphor-EGFR at both Y1068 and Y1173 sites, suggesting ibrutinib functions as an EGFR inhibitor. Survival was analyzed by Kaplan–Meier estimation and log-rank test. All statistical tests were two-sided. In vivo study showed that ibrutinib statistically significantly suppressed H1975 tumor growth and prolonged survival of the tumor bearing mice (n = 5 per group). The mean survival times for solvent- and erlotinib-treated mice were both 17.8 days (95% confidence interval [CI] = 14.3 to 21.3 days), while the mean survival time for ibrutinib-treated mice was 29.8 days (95% CI = 26.0 to 33.6 days, P = .008). Our results indicate that ibrutinib could be a candidate drug for treatment of EGFR-mutant NSCLC, including erlotinib-resistant tumors. PMID:25214559

  5. Regulation of Nucleotide Metabolism by Mutant p53 Contributes to its Gain-of-Function Activities

    PubMed Central

    Kollareddy, Madhusudhan; Dimitrova, Elizabeth; Vallabhaneni, Krishna C.; Chan, Adriano; Le, Thuc; Chauhan, Krishna M.; Carrero, Zunamys I.; Ramakrishnan, Gopalakrishnan; Watabe, Kounosuke; Haupt, Ygal; Haupt, Sue; Pochampally, Radhika; Boss, Gerard R.; Romero, Damian G.; Radu, Caius G.; Martinez, Luis A.

    2015-01-01

    SUMMARY Mutant p53 (mtp53) is an oncogene that drives cancer cell proliferation. Here we report that mtp53 associates with the promoters of numerous nucleotide metabolism genes (NMG). Mtp53 knockdown reduces NMG expression and substantially depletes nucleotide pools, which attenuates GTP dependent protein (GTPase) activity and cell invasion. Addition of exogenous guanosine or GTP restores the invasiveness of mtp53 knockdown cells, suggesting that mtp53 promotes invasion by increasing GTP. Additionally, mtp53 creates a dependency on the nucleoside salvage pathway enzyme deoxycytidine kinase (dCK) for the maintenance of a proper balance in dNTP pools required for proliferation. These data indicate that mtp53 harboring cells have acquired a synthetic sick or lethal phenotype relationship with the nucleoside salvage pathway. Finally, elevated expression of NMG correlates with mutant p53 status and poor prognosis in breast cancer patients. Thus, mtp53’s control of nucleotide biosynthesis has both a driving and sustaining role in cancer development. PMID:26067754

  6. A Kluyveromyces marxianus 2-deoxyglucose-resistant mutant with enhanced activity of xylose utilization.

    PubMed

    Suprayogi, Suprayogi; Nguyen, Minh T; Lertwattanasakul, Noppon; Rodrussamee, Nadchanok; Limtong, Savitree; Kosaka, Tomoyuki; Yamada, Mamoru

    2015-12-01

    Thermotolerant ethanologenic yeast Kluyveromyces marxianus is capable of fermenting various sugars including xylose but glucose represses to hamper the utilization of other sugars. To acquire glucose repression-defective strains, 33 isolates as 2-deoxyglucose (2-DOG)-resistant mutants were acquired from about 100 colonies grown on plates containing 2-DOG, which were derived from an efficient strain DMKU 3-1042. According to the characteristics of sugar consumption abilities and cell growth and ethanol accumulation along with cultivation time, they were classified into three groups. The first group (3 isolates) utilized glucose and xylose in similar patterns along with cultivation to those of the parental strain, presumably due to reduction of the uptake of 2-DOG or enhancement of its export. The second group (29 isolates) showed greatly delayed utilization of glucose, presumably by reduction of the uptake or initial catabolism of glucose. The last group, only one isolate, showed enhanced utilization ability of xylose in the presence of glucose. Further analysis revealed that the isolate had a single nucleotide mutation to cause amino acid substitution (G270S) in RAG5 encoding hexokinase and exhibited very low activity of the enzyme. The possible mechanism of defectiveness of glucose repression in the mutant is discussed in this paper. [Int Microbiol 18(4):235-244 (2015)]. PMID:27611676

  7. Partial Agonist and Antagonist Activities of a Mutant Scorpion β-Toxin on Sodium Channels*

    PubMed Central

    Karbat, Izhar; Ilan, Nitza; Zhang, Joel Z.; Cohen, Lior; Kahn, Roy; Benveniste, Morris; Scheuer, Todd; Catterall, William A.; Gordon, Dalia; Gurevitz, Michael

    2010-01-01

    Scorpion β-toxin 4 from Centruroides suffusus suffusus (Css4) enhances the activation of voltage-gated sodium channels through a voltage sensor trapping mechanism by binding the activated state of the voltage sensor in domain II and stabilizing it in its activated conformation. Here we describe the antagonist and partial agonist properties of a mutant derivative of this toxin. Substitution of seven different amino acid residues for Glu15 in Css4 yielded toxin derivatives with both increased and decreased affinities for binding to neurotoxin receptor site 4 on sodium channels. Css4E15R is unique among this set of mutants in that it retained nearly normal binding affinity but lost its functional activity for modification of sodium channel gating in our standard electrophysiological assay for voltage sensor trapping. More detailed analysis of the functional effects of Css4E15R revealed weak voltage sensor trapping activity, which was very rapidly reversed upon repolarization and therefore was not observed in our standard assay of toxin effects. This partial agonist activity of Css4E15R is observed clearly in voltage sensor trapping assays with brief (5 ms) repolarization between the conditioning prepulse and the test pulse. The effects of Css4E15R are fit well by a three-step model of toxin action involving concentration-dependent toxin binding to its receptor site followed by depolarization-dependent activation of the voltage sensor and subsequent voltage sensor trapping. Because it is a partial agonist with much reduced efficacy for voltage sensor trapping, Css4E15R can antagonize the effects of wild-type Css4 on sodium channel activation and can prevent paralysis by Css4 when injected into mice. Our results define the first partial agonist and antagonist activities for scorpion toxins and open new avenues of research toward better understanding of the structure-function relationships for toxin action on sodium channel voltage sensors and toward potential toxin

  8. Nitrate reductase activity in heme-deficient mutants of Staphylococcus aureus.

    PubMed Central

    Burke, K A; Lascelles, J

    1976-01-01

    Mutants H-14 and H-18 of Staphylococcus aureus require hemin for growth on glycerol and other nonfermentable substrates. H-14 also responds to delta-aminolevulinate. Heme-deficient cells grown in the presence of nitrate do not have lactate-nitrate reductase activity but gain this activity when incubated with hemin in buffer and glucose. Lactate-nitrate reductase activity is also restored to the membrane fraction from such cells by incubation with hemin and dithiothreitol; addition of adenosine 5'-triphosphate has no effect upon the restoration. Cells grown with nitrate in the absence of hemin have two to five times more reduced benzyl viologen-nitrate reductase activity than do those grown with hemin. The activity increases throughout the growth period in the absence of hemin, but with hemin present enzyme formation ceases before the end of growth. There was no evidence of enzyme destruction. The distribution of nitrate reductase activity between membrane and cytoplasm was similar in cells grown with and without hemin; 70 to 90% was in the cytoplasm. It is concluded that heme-deficient staphylococci form apo-cytochrome b, which readily combines in vitro with its prosthetic group to restore normal function. The avaliability of the heme prosthetic group influences the formation of nitrate reductase. PMID:1262303

  9. Kinetic characterization of high-activity mutants of human butyrylcholinesterase for the cocaine metabolite norcocaine.

    PubMed

    Zhan, Max; Hou, Shurong; Zhan, Chang-Guo; Zheng, Fang

    2014-01-01

    It has been known that cocaine produces its toxic and physiological effects through not only cocaine itself, but also norcocaine formed from cocaine oxidation catalysed by microsomal CYP (cytochrome P450) 3A4 in the human liver. The catalytic parameters (kcat and Km) of human BChE (butyrylcholinesterase) and its three mutants (i.e. A199S/S287G/A328W/Y332G, A199S/F227A/S287G/A328W/E441D and A199S/F227A/S287G/A328W/Y332G) for norcocaine have been characterized in the present study for the first time and compared with those for cocaine. On the basis of the obtained kinetic data, wild-type human BChE has a significantly lower catalytic activity for norcocaine (kcat=2.8 min(-1), Km=15 μM and kcat/Km=1.87 × 10(5) M(-1)·min(-1)) compared with its catalytic activity for (-)-cocaine. The BChE mutants examined in the present study have considerably improved catalytic activities against both cocaine and norcocaine compared with the wild-type enzyme. Within the enzymes examined in the present study, the A199S/F227A/S287G/A328W/Y332G mutant (CocH3) is identified as the most efficient enzyme for hydrolysing both cocaine and norcocaine. CocH3 has a 1080-fold improved catalytic efficiency for norcocaine (kcat=2610 min(-1), Km=13 μM and kcat/Km=2.01 × 10(8) M(-1)·min(-1)) and a 2020-fold improved catalytic efficiency for cocaine. It has been demonstrated that CocH3 as an exogenous enzyme can rapidly metabolize norcocaine, in addition to cocaine, in rats. Further kinetic modelling has suggested that CocH3 with an identical concentration with that of the endogenous BChE in human plasma can effectively eliminate both cocaine and norcocaine in a simplified kinetic model of cocaine abuse.

  10. RAI1 Transcription Factor Activity Is Impaired in Mutants Associated with Smith-Magenis Syndrome

    PubMed Central

    Carmona-Mora, Paulina; Canales, Cesar P.; Cao, Lei; Perez, Irene C.; Srivastava, Anand K.; Young, Juan I.; Walz, Katherina

    2012-01-01

    Smith-Magenis Syndrome (SMS) is a complex genomic disorder mostly caused by the haploinsufficiency of the Retinoic Acid Induced 1 gene (RAI1), located in the chromosomal region 17p11.2. In a subset of SMS patients, heterozygous mutations in RAI1 are found. Here we investigate the molecular properties of these mutated forms and their relationship with the resulting phenotype. We compared the clinical phenotype of SMS patients carrying a mutation in RAI1 coding region either in the N-terminal or the C-terminal half of the protein and no significant differences were found. In order to study the molecular mechanism related to these two groups of RAI1 mutations first we analyzed those mutations that result in the truncated protein corresponding to the N-terminal half of RAI1 finding that they have cytoplasmic localization (in contrast to full length RAI1) and no ability to activate the transcription through an endogenous target: the BDNF enhancer. Similar results were found in lymphoblastoid cells derived from a SMS patient carrying RAI1 c.3103insC, where both mutant and wild type products of RAI1 were detected. The wild type form of RAI1 was found in the chromatin bound and nuclear matrix subcellular fractions while the mutant product was mainly cytoplasmic. In addition, missense mutations at the C-terminal half of RAI1 presented a correct nuclear localization but no activation of the endogenous target. Our results showed for the first time a correlation between RAI1 mutations and abnormal protein function plus they suggest that a reduction of total RAI1 transcription factor activity is at the heart of the SMS clinical presentation. PMID:23028815

  11. Arabidopsis lonely guy (LOG) multiple mutants reveal a central role of the LOG-dependent pathway in cytokinin activation.

    PubMed

    Tokunaga, Hiroki; Kojima, Mikiko; Kuroha, Takeshi; Ishida, Takashi; Sugimoto, Keiko; Kiba, Takatoshi; Sakakibara, Hitoshi

    2012-01-01

    Cytokinins are phytohormones that play key roles in the maintenance of stem cell activity in plants. Although alternative single-step and two-step activation pathways for cytokinin have been proposed, the significance of the single-step pathway which is catalyzed by LONELY GUY (LOG), is not fully understood. We analyzed the metabolic flow of cytokinin activation in Arabidopsis log multiple mutants using stable isotope-labeled tracers and characterized the mutants' morphological and developmental phenotypes. In tracer experiments, cytokinin activation was inhibited most pronouncedly by log7, while the other log mutations had cumulative effects. Although sextuple or lower-order mutants did not show drastic phenotypes in vegetative growth, the log1log2log3log4log5log7log8 septuple T-DNA insertion mutant in which the LOG-dependent pathway is impaired, displayed severe retardation of shoot and root growth with defects in the maintenance of the apical meristems. Detailed observation of the mutants showed that LOG7 was required for the maintenance of shoot apical meristem size. LOG7 was also suggested to play a role for normal primary root growth together with LOG3 and LOG4. These results suggest a dominant role of the single-step activation pathway mediated by LOGs for cytokinin production, and overlapping but differentiated functions of the members of the LOG gene family in growth and development.

  12. Mechanism of Epac activation: structural and functional analyses of Epac2 hinge mutants with constitutive and reduced activities.

    PubMed

    Tsalkova, Tamara; Blumenthal, Donald K; Mei, Fang C; White, Mark A; Cheng, Xiaodong

    2009-08-28

    Epac2 is a member of the family of exchange proteins directly activated by cAMP (Epac). Our previous studies suggest a model of Epac activation in which cAMP binding to the enzyme induces a localized "hinge" motion that reorients the regulatory lobe relative to the catalytic lobe without inducing large conformational changes within individual lobes. In this study, we identified the location of the major hinge in Epac2 by normal mode motion correlation and structural alignment analyses. Targeted mutagenesis was then performed to test the functional importance of hinge bending for Epac activation. We show that substitution of the conserved residue phenylalanine 435 with glycine (F435G) facilitates the hinge bending and leads to a constitutively active Epac2 capable of stimulating nucleotide exchange in the absence of cAMP. In contrast, substitution of the same residue with a bulkier side chain, tryptophan (F435W), impedes the hinge motion and results in a dramatic decrease in Epac2 catalytic activity. Structural parameters determined by small angle x-ray scattering further reveal that whereas the F435G mutant assumes a more extended conformation in the absence of cAMP, the F435W mutant is incapable of adopting the fully extended and active conformation in the presence of cAMP. These findings demonstrate the importance of hinge motion in Epac activation. Our study also suggests that phenylalanine at position 435 is the optimal size side chain to keep Epac closed and inactive in the absence of cAMP while still allowing the proper hinge motion for full Epac extension and activation in the presence of cAMP.

  13. Photosystem II Activity of Wild Type Synechocystis PCC 6803 and Its Mutants with Different Plastoquinone Pool Redox States.

    PubMed

    Voloshina, O V; Bolychevtseva, Y V; Kuzminov, F I; Gorbunov, M Y; Elanskaya, I V; Fadeev, V V

    2016-08-01

    To assess the role of redox state of photosystem II (PSII) acceptor side electron carriers in PSII photochemical activity, we studied sub-millisecond fluorescence kinetics of the wild type Synechocystis PCC 6803 and its mutants with natural variability in the redox state of the plastoquinone (PQ) pool. In cyanobacteria, dark adaptation tends to reduce PQ pool and induce a shift of the cyanobacterial photosynthetic apparatus to State 2, whereas illumination oxidizes PQ pool, leading to State 1 (Mullineaux, C. W., and Holzwarth, A. R. (1990) FEBS Lett., 260, 245-248). We show here that dark-adapted Ox(-) mutant with naturally reduced PQ is characterized by slower QA(-) reoxidation and O2 evolution rates, as well as lower quantum yield of PSII primary photochemical reactions (Fv/Fm) as compared to the wild type and SDH(-) mutant, in which the PQ pool remains oxidized in the dark. These results indicate a large portion of photochemically inactive PSII reaction centers in the Ox(-) mutant after dark adaptation. While light adaptation increases Fv/Fm in all tested strains, indicating PSII activation, by far the greatest increase in Fv/Fm and O2 evolution rates is observed in the Ox(-) mutant. Continuous illumination of Ox(-) mutant cells with low-intensity blue light, that accelerates QA(-) reoxidation, also increases Fv/Fm and PSII functional absorption cross-section (590 nm); this effect is almost absent in the wild type and SDH(-) mutant. We believe that these changes are caused by the reorganization of the photosynthetic apparatus during transition from State 2 to State 1. We propose that two processes affect the PSII activity during changes of light conditions: 1) reversible inactivation of PSII, which is associated with the reduction of electron carriers on the PSII acceptor side in the dark, and 2) PSII activation under low light related to the increase in functional absorption cross-section at 590 nm.

  14. Photosystem II Activity of Wild Type Synechocystis PCC 6803 and Its Mutants with Different Plastoquinone Pool Redox States.

    PubMed

    Voloshina, O V; Bolychevtseva, Y V; Kuzminov, F I; Gorbunov, M Y; Elanskaya, I V; Fadeev, V V

    2016-08-01

    To assess the role of redox state of photosystem II (PSII) acceptor side electron carriers in PSII photochemical activity, we studied sub-millisecond fluorescence kinetics of the wild type Synechocystis PCC 6803 and its mutants with natural variability in the redox state of the plastoquinone (PQ) pool. In cyanobacteria, dark adaptation tends to reduce PQ pool and induce a shift of the cyanobacterial photosynthetic apparatus to State 2, whereas illumination oxidizes PQ pool, leading to State 1 (Mullineaux, C. W., and Holzwarth, A. R. (1990) FEBS Lett., 260, 245-248). We show here that dark-adapted Ox(-) mutant with naturally reduced PQ is characterized by slower QA(-) reoxidation and O2 evolution rates, as well as lower quantum yield of PSII primary photochemical reactions (Fv/Fm) as compared to the wild type and SDH(-) mutant, in which the PQ pool remains oxidized in the dark. These results indicate a large portion of photochemically inactive PSII reaction centers in the Ox(-) mutant after dark adaptation. While light adaptation increases Fv/Fm in all tested strains, indicating PSII activation, by far the greatest increase in Fv/Fm and O2 evolution rates is observed in the Ox(-) mutant. Continuous illumination of Ox(-) mutant cells with low-intensity blue light, that accelerates QA(-) reoxidation, also increases Fv/Fm and PSII functional absorption cross-section (590 nm); this effect is almost absent in the wild type and SDH(-) mutant. We believe that these changes are caused by the reorganization of the photosynthetic apparatus during transition from State 2 to State 1. We propose that two processes affect the PSII activity during changes of light conditions: 1) reversible inactivation of PSII, which is associated with the reduction of electron carriers on the PSII acceptor side in the dark, and 2) PSII activation under low light related to the increase in functional absorption cross-section at 590 nm. PMID:27677553

  15. Enzymatic activity of poliovirus RNA polymerase mutants with single amino acid changes in the conserved YGDD amino acid motif.

    PubMed

    Jablonski, S A; Luo, M; Morrow, C D

    1991-09-01

    RNA-dependent RNA polymerases contain a highly conserved region of amino acids with a core segment composed of the amino acids YGDD which have been hypothesized to be at or near the catalytic active site of the molecule. Six mutations in this conserved YGDD region of the poliovirus RNA-dependent RNA polymerase were made by using oligonucleotide site-directed DNA mutagenesis of the poliovirus cDNA to substitute A, C, M, P, S, or V for the amino acid G. The mutant polymerase genes were expressed in Escherichia coli, and the purified RNA polymerases were tested for in vitro enzyme activity. Two of the mutant RNA polymerases (those in which the glycine residue was replaced with alanine or serine) exhibited in vitro enzymatic activity ranging from 5 to 20% of wild-type activity, while the remaining mutant RNA polymerases were inactive. Alterations in the in vitro reaction conditions by modification of temperature, metal ion concentration, or pH resulted in no significant differences in the activities of the mutant RNA polymerases relative to that of the wild-type enzyme. An antipeptide antibody directed against the wild-type core amino acid segment containing the YGDD region of the poliovirus polymerase reacted with the wild-type recombinant RNA polymerase and to a limited extent with the two enzymatically active mutant polymerases; the antipeptide antibody did not react with the mutant RNA polymerases which did not have in vitro enzyme activity. These results are discussed in the context of secondary-structure predictions for the core segment containing the conserved YGDD amino acids in the poliovirus RNA polymerase. PMID:1651402

  16. A cyclic AMP receptor protein mutant that constitutively activates an Escherichia coli promoter disrupted by an IS5 insertion.

    PubMed

    Podolny, V; Lin, E C; Hochschild, A

    1999-12-01

    Previously an Escherichia coli mutant that had acquired the ability to grow on propanediol as the sole carbon and energy source was isolated. This phenotype is the result of the constitutive expression of the fucO gene (in the fucAO operon), which encodes one of the enzymes in the fucose metabolic pathway. The mutant was found to bear an IS5 insertion in the intergenic regulatory region between the divergently oriented fucAO and fucPIK operons. Though expression of the fucAO operon was constitutive, the fucPIK operon became noninducible such that the mutant could no longer grow on fucose. A fucose-positive revertant which was found to contain a suppressor mutation in the crp gene was selected. Here we identify this crp mutation, which results in a single amino acid substitution (K52N) that has been proposed previously to uncover a cryptic activating region in the cyclic AMP receptor protein (CRP). We show that the mutant CRP constitutively activates transcription from both the IS5-disrupted and the wild-type fucPIK promoters, and we identify the CRP-binding site that is required for this activity. Our results show that the fucPIK promoter, a complex promoter which ordinarily depends on both CRP and the fucose-specific regulator FucR for its activation, can be activated in the absence of FucR by a mutant CRP that uses three, rather than two, activating regions to contact RNA polymerase. For the IS5-disrupted promoter, which retains a single CRP-binding site, the additional activating region of the mutant CRP evidently compensates for the lack of upstream regulatory sequences. PMID:10601201

  17. Telomerase reactivation in cancers: Mechanisms that govern transcriptional activation of the wild-type vs. mutant TERT promoters.

    PubMed

    Li, Yinghui; Tergaonkar, Vinay

    2016-03-14

    Transcriptional activation of telomerase reverse transcriptase (TERT) gene is a rate-limiting determinant in the reactivation of telomerase expression in cancers. TERT promoter mutations represent one of the fundamental mechanisms of TERT reactivation in cancer development. We review recent studies that elucidate the molecular mechanisms underscoring activation of mutant TERT promoters.

  18. Isolation and characterization of Clostridium acetobutylicum mutants with enhanced amylolytic activity

    SciTech Connect

    Annous, B.A.; Blascheck, H.P. )

    1991-09-01

    Several schemes have been proposed for the fermentative production of butanol from various low-cost substrates. One of these economically viable approaches depends on use of a stable, high-yielding strain of Clostridium acetobutylicum, low-cost corn substrate and an increased market for butanol. Results from various laboratories suggested that amylolytic enzyme biosynthesis in C. acetobutylicum is subject to catabolite repression by glucose and induction by starch. In this study Clostridium acetobutylicum mutants BA 101 (hyperamylolytic) and BA 105 (catabolite derepressed) were isolated by using N-methyl-N{prime}-nitro-N-nitrosoguanidine together with selective enrichment on the glucose analog 2-deoxyglucose. Amylolytic enzyme production by C. acetobutylicum BA 101 was 1.8- and 2.5-fold higher than that of the ATCC 824 strain grown in starch and glucose, respectively. C. acetobutylicum BA 105 produced 6.5-fold more amylolytic activity on glucose relative to that of the wild-type strain. The addition of glucose at time zero to starch-based P2 medium reduced the total amylolytic activities of C. acetobutylicum BA 101 and BA 105 and 82 and 25%, respectively, as compared with the activities of the same strains grown on starch alone. Localization studies demonstrated that the amylolytic activities of C. acetobutylicum BA 101 and BA 105 were primarily extracellular on all carbohydrates tested.

  19. Altered chloroplast structure and function in a mutant of Arabidopsis deficient in plastid glycerol-3-phosphate acyltransferase activity

    SciTech Connect

    Kunst, L.; Somerville, C. ); Browse, J. )

    1989-07-01

    Mutants of Arabidopsis thaliana deficient in plastid glycerol-3-phosphate acyltransferase activity have altered chloroplast membrane lipid composition. This caused an increase in the number of regions of appressed membrane per chloroplast and a decrease in the average number of thylakoid membranes in the appressed regions. The net effect was a significant decrease in the ratio of appressed to nonappressed membranes. A comparison of 77 K fluorescence emission spectra of thylakoid membranes from the mutant and wild type indicated that the ultrastructural changes were associated with an altered distribution of excitation energy transfer from antenna chlorophyll to photosystem II and photosystem I in the mutant. The changes in leaf lipid composition did not significantly affect growth or development of the mutant under standard conditions. However, at temperatures above 28{degree}C the mutant grew slightly more rapidly than the wild type, and measurements of temperature-induced fluorescence yield enhancement suggested an increased thermal stability of the photosynthetic apparatus of the mutant. These effects are consistent with other evidence suggesting that membrane lipid composition is an important determinant of chloroplast structure but has relatively minor direct effects on the function of the membrane proteins associated with photosynthetic electron transport.

  20. RhoGEF Specificity Mutants Implicate RhoA as a Target for Dbs Transforming Activity

    PubMed Central

    Cheng, Li; Rossman, Kent L.; Mahon, Gwendolyn M.; Worthylake, David K.; Korus, Malgorzata; Sondek, John; Whitehead, Ian P.

    2002-01-01

    Dbs is a Rho-specific guanine nucleotide exchange factor (RhoGEF) that exhibits transforming activity when overexpressed in NIH 3T3 mouse fibroblasts. Like many RhoGEFs, the in vitro catalytic activity of Dbs is not limited to a single substrate. It can catalyze the exchange of GDP for GTP on RhoA and Cdc42, both of which are expressed in most cell types. This lack of substrate specificity, which is relatively common among members of the RhoGEF family, complicates efforts to determine the molecular basis of their transforming activity. We have recently determined crystal structures of several RhoGEFs bound to their cognate GTPases and have used these complexes to predict structural determinants dictating the specificities of coupling between RhoGEFs and GTPases. Guided by this information, we mutated Dbs to alter significantly its relative exchange activity for RhoA versus Cdc42 and show that the transformation potential of Dbs correlates with exchange on RhoA but not Cdc42. Supporting this conclusion, oncogenic Dbs activates endogenous RhoA but not endogenous Cdc42 in NIH 3T3 cells. Similarly, a competitive inhibitor that blocks RhoA activation also blocks Dbs-mediated transformation. In conclusion, this study highlights the usefulness of specificity mutants of RhoGEFs as tools to genetically dissect the multiple signaling pathways potentially activated by overexpressed or oncogenic RhoGEFs. These ideas are exemplified for Dbs, which is strongly implicated in the transformation of NIH 3T3 cells via RhoA and not Cdc42. PMID:12215546

  1. SWI/SNF mutant cancers depend upon catalytic and non–catalytic activity of EZH2

    PubMed Central

    Kim, Kimberly H.; Kim, Woojin; Howard, Thomas P.; Vazquez, Francisca; Tsherniak, Aviad; Wu, Jennifer N.; Wang, Weishan; Haswell, Jeffrey R.; Walensky, Loren D.; Hahn, William C.; Orkin, Stuart H.; Roberts, Charles W. M.

    2016-01-01

    Human cancer genome sequencing has recently revealed that genes encoding subunits of SWI/SNF chromatin remodeling complexes are frequently mutated across a wide variety of cancers, and several subunits of the complex have been shown to have bona fide tumor suppressor activity1. However, whether mutations in SWI/SNF subunits result in shared dependencies is unknown. Here we show that EZH2, a catalytic subunit of the Polycomb repressive complex 2 (PRC2), is essential in all tested cancer cell lines and xenografts harboring mutations of the SWI/SNF subunits ARID1A, PBRM1, and SMARCA4, which are several of the most frequently mutated SWI/SNF subunits in human cancer but that co–occurrence of a Ras pathway mutation correlates with abrogation of this dependence. Surprisingly, we demonstrate that SWI/SNF mutant cancer cells are primarily dependent upon a non–catalytic role of EZH2 in stabilization of the PRC2 complex, and only partially dependent on EZH2 histone methyltransferase activity. These results not only reveal a shared dependency of cancers with genetic alterations in SWI/SNF subunits, but also suggest that EZH2 enzymatic inhibitors now in clinical development may not fully suppress the oncogenic activity of EZH2. PMID:26552009

  2. Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin

    PubMed Central

    Okamoto, Shu-ichi; Pouladi, Mahmoud A.; Talantova, Maria; Yao, Dongdong; Xia, Peng; Ehrnhoefer, Dagmar E.; Zaidi, Rameez; Clemente, Arjay; Kaul, Marcus; Graham, Rona K.; Zhang, Dongxian; Chen, H.-S. Vincent; Tong, Gary; Hayden, Michael R.; Lipton, Stuart A.

    2009-01-01

    The neurodegenerative disorder Huntington disease (HD) is caused by an expanded CAG repeat in the huntingtin gene, resulting in loss of striatal and cortical neurons. Although, the gene product is widely expressed, it remains unclear why neurons are selectively targeted. Here, we demonstrate the relationship between synaptic and extrasynaptic activity, inclusion formation of mutant huntingtin protein (mtHtt), and neuronal survival. Synaptic NMDA receptor (NMDAR) activity induces mtHtt inclusions via a TCP1 ring complex (TRiC)-dependent mechanism, rendering neurons more resistant to mtHtt-mediated cell death. In contrast, stimulation of extrasynaptic NMDARs increases vulnerability of mtHtt-neurons to cell death by impairing a neuroprotective CREB—PGC-1α cascade and increasing the small guanine nucleotide-binding protein Rhes, which is known to sumoylate and disaggregate mtHtt. Treatment of transgenic YAC128 HD mice with low-dose memantine blocks extrasynaptic (but not synaptic) NMDARs and ameliorates neuropathological and behavioral manifestations. By contrast, high-dose memantine also blocks synaptic NMDAR activity, decreases neuronal inclusions, and worsens these outcomes. Our findings offer a rational therapeutic approach for protecting susceptible neurons in HD. PMID:19915593

  3. SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2.

    PubMed

    Kim, Kimberly H; Kim, Woojin; Howard, Thomas P; Vazquez, Francisca; Tsherniak, Aviad; Wu, Jennifer N; Wang, Weishan; Haswell, Jeffrey R; Walensky, Loren D; Hahn, William C; Orkin, Stuart H; Roberts, Charles W M

    2015-12-01

    Human cancer genome sequencing has recently revealed that genes that encode subunits of SWI/SNF chromatin remodeling complexes are frequently mutated across a wide variety of cancers, and several subunits of the complex have been shown to have bona fide tumor suppressor activity. However, whether mutations in SWI/SNF subunits result in shared dependencies is unknown. Here we show that EZH2, a catalytic subunit of the polycomb repressive complex 2 (PRC2), is essential in all tested cancer cell lines and xenografts harboring mutations of the SWI/SNF subunits ARID1A, PBRM1, and SMARCA4, which are several of the most frequently mutated SWI/SNF subunits in human cancer, but that co-occurrence of a Ras pathway mutation is correlated with abrogation of this dependence. Notably, we demonstrate that SWI/SNF-mutant cancer cells are primarily dependent on a non-catalytic role of EZH2 in the stabilization of the PRC2 complex, and that they are only partially dependent on EZH2 histone methyltransferase activity. These results not only reveal a shared dependency of cancers with genetic alterations in SWI/SNF subunits, but also suggest that EZH2 enzymatic inhibitors now in clinical development may not fully suppress the oncogenic activity of EZH2.

  4. PI(4)P Promotes Phosphorylation and Conformational Change of Smoothened through Interaction with Its C-terminal Tail.

    PubMed

    Jiang, Kai; Liu, Yajuan; Fan, Junkai; Zhang, Jie; Li, Xiang-An; Evers, B Mark; Zhu, Haining; Jia, Jianhang

    2016-02-01

    In Hedgehog (Hh) signaling, binding of Hh to the Patched-Interference Hh (Ptc-Ihog) receptor complex relieves Ptc inhibition on Smoothened (Smo). A longstanding question is how Ptc inhibits Smo and how such inhibition is relieved by Hh stimulation. In this study, we found that Hh elevates production of phosphatidylinositol 4-phosphate (PI(4)P). Increased levels of PI(4)P promote, whereas decreased levels of PI(4)P inhibit, Hh signaling activity. We further found that PI(4)P directly binds Smo through an arginine motif, which then triggers Smo phosphorylation and activation. Moreover, we identified the pleckstrin homology (PH) domain of G protein-coupled receptor kinase 2 (Gprk2) as an essential component for enriching PI(4)P and facilitating Smo activation. PI(4)P also binds mouse Smo (mSmo) and promotes its phosphorylation and ciliary accumulation. Finally, Hh treatment increases the interaction between Smo and PI(4)P but decreases the interaction between Ptc and PI(4)P, indicating that, in addition to promoting PI(4)P production, Hh regulates the pool of PI(4)P associated with Ptc and Smo.

  5. PI(4)P Promotes Phosphorylation and Conformational Change of Smoothened through Interaction with Its C-terminal Tail.

    PubMed

    Jiang, Kai; Liu, Yajuan; Fan, Junkai; Zhang, Jie; Li, Xiang-An; Evers, B Mark; Zhu, Haining; Jia, Jianhang

    2016-02-01

    In Hedgehog (Hh) signaling, binding of Hh to the Patched-Interference Hh (Ptc-Ihog) receptor complex relieves Ptc inhibition on Smoothened (Smo). A longstanding question is how Ptc inhibits Smo and how such inhibition is relieved by Hh stimulation. In this study, we found that Hh elevates production of phosphatidylinositol 4-phosphate (PI(4)P). Increased levels of PI(4)P promote, whereas decreased levels of PI(4)P inhibit, Hh signaling activity. We further found that PI(4)P directly binds Smo through an arginine motif, which then triggers Smo phosphorylation and activation. Moreover, we identified the pleckstrin homology (PH) domain of G protein-coupled receptor kinase 2 (Gprk2) as an essential component for enriching PI(4)P and facilitating Smo activation. PI(4)P also binds mouse Smo (mSmo) and promotes its phosphorylation and ciliary accumulation. Finally, Hh treatment increases the interaction between Smo and PI(4)P but decreases the interaction between Ptc and PI(4)P, indicating that, in addition to promoting PI(4)P production, Hh regulates the pool of PI(4)P associated with Ptc and Smo. PMID:26863604

  6. PI(4)P Promotes Phosphorylation and Conformational Change of Smoothened through Interaction with Its C-terminal Tail

    PubMed Central

    Zhang, Jie; Li, Xiang-An; Evers, B. Mark; Zhu, Haining; Jia, Jianhang

    2016-01-01

    In Hedgehog (Hh) signaling, binding of Hh to the Patched-Interference Hh (Ptc-Ihog) receptor complex relieves Ptc inhibition on Smoothened (Smo). A longstanding question is how Ptc inhibits Smo and how such inhibition is relieved by Hh stimulation. In this study, we found that Hh elevates production of phosphatidylinositol 4-phosphate (PI(4)P). Increased levels of PI(4)P promote, whereas decreased levels of PI(4)P inhibit, Hh signaling activity. We further found that PI(4)P directly binds Smo through an arginine motif, which then triggers Smo phosphorylation and activation. Moreover, we identified the pleckstrin homology (PH) domain of G protein-coupled receptor kinase 2 (Gprk2) as an essential component for enriching PI(4)P and facilitating Smo activation. PI(4)P also binds mouse Smo (mSmo) and promotes its phosphorylation and ciliary accumulation. Finally, Hh treatment increases the interaction between Smo and PI(4)P but decreases the interaction between Ptc and PI(4)P, indicating that, in addition to promoting PI(4)P production, Hh regulates the pool of PI(4)P associated with Ptc and Smo. PMID:26863604

  7. Transcriptional activation by TFIIB mutants that are severely impaired in interaction with promoter DNA and acidic activation domains.

    PubMed Central

    Chou, S; Struhl, K

    1997-01-01

    Biochemical experiments indicate that the general transcription factor IIB (TFIIB) can interact directly with acidic activation domains and that activators can stimulate transcription by increasing recruitment of TFIIB to promoters. For promoters at which recruitment of TFIIB to promoters is limiting in vivo, one would predict that transcriptional activity should be particularly sensitive to TFIIB mutations that decrease the association of TFIIB with promoter DNA and/or with activation domains; i.e., such TFIIB mutations should exacerbate a limiting step that occurs in wild-type cells. Here, we describe mutations on the DNA-binding surface of TFIIB that severely affect both TATA-binding protein (TBP)-TFIIB-TATA complex formation and interaction with the VP16 activation domain in vitro. These TFIIB mutations affect the stability of the TBP-TFIIB-TATA complex in vivo because they are synthetically lethal in combination with TBP mutants impaired for TFIIB binding. Interestingly, these TFIIB derivatives support viability, and they efficiently respond to Gal4-VP16 and natural acidic activators in different promoter contexts. These results suggest that in vivo, recruitment of TFIIB is not generally a limiting step for acidic activators. However, one TFIIB derivative shows reduced transcription of GAL4, suggesting that TFIIB may be limiting at a subset of promoters in vivo. PMID:9372910

  8. Activated mutant of Galpha(12) enhances the hyperosmotic stress response of NIH3T3 cells.

    PubMed

    Dermott, J M; Wadsworth, S J; van Rossum, G D; Dhanasekaran, N

    2001-01-01

    Heterotrimeric G protein G12 stimulates diverse physiological responses including the activities of Na+/H+ exchangers and Jun kinases. We have observed that the expression of the constitutively activated, GTPase-deficient mutant of Galpha(12) (Galpha(12)QL) accelerates the hyperosmotic response of NIH3T3 cells as monitored by the hyperosmotic stress-stimulated activity of JNK1. The accelerated response appears to be partly due to the increased basal activity of JNK since cell lines-such as NIH3T3 cells expressing JNK1-in which JNK activity is elevated, show a similar response. NIH3T3 cells expressing Galpha(12)QL also display heightened sensitivity to hyperosmotic stress. This is in contrast to JNK1-NIH3T3 cells that failed to enhance sensitivity although they do exhibit an accelerated hyperosmotic response. Reasoning that the increased sensitivity seen in Galpha(12)QL cells is due to a signaling component other than JNK, the effect of dimethyamiloride, an inhibitor of Na+/H+ exchanger in this response, was assessed. Treatment of vector control NIH3T3 cells with 50 microM dimethylamiloride potently inhibited their hyperosmotic response whereas the response was only partially inhibited in Galpha(12)QL-NIH3T3 cells. These results, for the first time, identify that NHEs are upstream of the JNK module in the hyperosmotic stress-signaling pathway and that Galpha(12) can enhance this response by modulating either or both of these components namely, JNKs and NHEs in NIH3T3 cells. PMID:11180393

  9. Two types of RAS mutants that dominantly interfere with activators of RAS.

    PubMed Central

    Jung, V; Wei, W; Ballester, R; Camonis, J; Mi, S; Van Aelst, L; Wigler, M; Broek, D

    1994-01-01

    In the fission yeast Schizosaccharomyces pombe, ras1 regulates both sexual development (conjugation and sporulation) and cellular morphology. Two types of dominant interfering mutants were isolated in a genetic screen for ras1 mutants that blocked sexual development. The first type of mutation, at Ser-22, analogous to the H-rasAsn-17 mutant (L. A. Feig and G. M. Cooper, Mol. Cell. Biol. 8:3235-3243, 1988), blocked only conjugation, whereas a second type of mutation, at Asp-62, interfered with conjugation, sporulation, and cellular morphology. Analogous mutations at position 64 of Saccharomyces cerevisiae RAS2 or position 57 of human H-ras also resulted in dominant interfering mutants that interfered specifically and more profoundly than mutants of the first type with RAS-associated pathways in both S. pombe or S. cerevisiae. Genetic evidence indicating that both types of interfering mutants function upstream of RAS is provided. Biochemical evidence showing that the mutants are altered in their interaction with the CDC25 class of exchange factors is presented. We show that both H-rasAsn-17 and H-rasTyr-57, compared with wild-type H-ras, are defective in their guanine nucleotide-dependent release from human cdc25 and that this defect is more severe for the H-rasTyr-57 mutant. Such a defect would allow the interfering mutants to remain bound to, thereby sequestering RAS exchange factors. The more severe interference phenotype of this novel interfering mutant suggests that it functions by titrating out other positive regulators of RAS besides those encoded by ste6 and CDC25. Images PMID:8196614

  10. Choline Kinase β Mutant Mice Exhibit Reduced Phosphocholine, Elevated Osteoclast Activity, and Low Bone Mass*

    PubMed Central

    Kular, Jasreen; Tickner, Jennifer C.; Pavlos, Nathan J.; Viola, Helena M.; Abel, Tamara; Lim, Bay Sie; Yang, Xiaohong; Chen, Honghui; Cook, Robert; Hool, Livia C.; Zheng, Ming Hao; Xu, Jiake

    2015-01-01

    The maintenance of bone homeostasis requires tight coupling between bone-forming osteoblasts and bone-resorbing osteoclasts. However, the precise molecular mechanism(s) underlying the differentiation and activities of these specialized cells are still largely unknown. Here, we identify choline kinase β (CHKB), a kinase involved in the biosynthesis of phosphatidylcholine, as a novel regulator of bone homeostasis. Choline kinase β mutant mice (flp/flp) exhibit a systemic low bone mass phenotype. Consistently, osteoclast numbers and activity are elevated in flp/flp mice. Interestingly, osteoclasts derived from flp/flp mice exhibit reduced sensitivity to excessive levels of extracellular calcium, which could account for the increased bone resorption. Conversely, supplementation of cytidine 5′-diphosphocholine in vivo and in vitro, a regimen that bypasses CHKB deficiency, restores osteoclast numbers to physiological levels. Finally, we demonstrate that, in addition to modulating osteoclast formation and function, loss of CHKB corresponds with a reduction in bone formation by osteoblasts. Taken together, these data posit CHKB as a new modulator of bone homeostasis. PMID:25451916

  11. Smoothened Agonist Reduces Human Immunodeficiency Virus Type-1-Induced Blood-Brain Barrier Breakdown in Humanized Mice

    PubMed Central

    Singh, Vir B.; Singh, Meera V.; Gorantla, Santhi; Poluektova, Larisa Y.; Maggirwar, Sanjay B.

    2016-01-01

    Human Immunodeficiency Virus type-1 (HIV)-associated neurocognitive disorder is characterized by recruitment of activated/infected leukocytes into the CNS via disrupted Blood Brain Barrier (BBB) that contributes to persistent neuro-inflammation. In this report, humanized NOD/scid-IL2Rγcnull mice were used to establish that impaired Sonic hedgehog (Shh) signaling is associated with loss of BBB function and neurological damage, and that modulating Shh signaling can rescue these detrimental effects. Plasma viral load, p24 levels and CD4+ T cells were measured as markers of productive HIV infection. These mice also showed impaired exclusion of Evans blue dye from the brain, increased plasma levels of S100B, an astrocytic protein, and down-regulation of tight junction proteins Occludin and Claudin5, collectively indicating BBB dysfunction. Further, brain tissue from HIV+ mice indicated reduced synaptic density, neuronal atrophy, microglial activation, and astrocytosis. Importantly, reduced expression of Shh and Gli1 was also observed in these mice, demonstrating diminished Shh signaling. Administration of Shh mimetic, smoothened agonist (SAG) restored BBB integrity and also abated the neuropathology in infected mice. Together, our results suggest a neuroprotective role for Shh signaling in the context of HIV infection, underscoring the therapeutic potential of SAG in controlling HAND pathogenesis. PMID:27241024

  12. DYRK1B as therapeutic target in Hedgehog/GLI-dependent cancer cells with Smoothened inhibitor resistance

    PubMed Central

    Gruber, Wolfgang; Hutzinger, Martin; Elmer, Dominik Patrick; Parigger, Thomas; Sternberg, Christina; Cegielkowski, Lukasz; Zaja, Mirko; Leban, Johann; Michel, Susanne; Hamm, Svetlana; Vitt, Daniel; Aberger, Fritz

    2016-01-01

    A wide range of human malignancies displays aberrant activation of Hedgehog (HH)/GLI signaling, including cancers of the skin, brain, gastrointestinal tract and hematopoietic system. Targeting oncogenic HH/GLI signaling with small molecule inhibitors of the essential pathway effector Smoothened (SMO) has shown remarkable therapeutic effects in patients with advanced and metastatic basal cell carcinoma. However, acquired and de novo resistance to SMO inhibitors poses severe limitations to the use of SMO antagonists and urgently calls for the identification of novel targets and compounds. Here we report on the identification of the Dual-Specificity-Tyrosine-Phosphorylation-Regulated Kinase 1B (DYRK1B) as critical positive regulator of HH/GLI signaling downstream of SMO. Genetic and chemical inhibition of DYRK1B in human and mouse cancer cells resulted in marked repression of HH signaling and GLI1 expression, respectively. Importantly, DYRK1B inhibition profoundly impaired GLI1 expression in both SMO-inhibitor sensitive and resistant settings. We further introduce a novel small molecule DYRK1B inhibitor, DYRKi, with suitable pharmacologic properties to impair SMO-dependent and SMO-independent oncogenic GLI activity. The results support the use of DYRK1B antagonists for the treatment of HH/GLI-associated cancers where SMO inhibitors fail to demonstrate therapeutic efficacy. PMID:26784250

  13. miR-326 is downstream of Sonic hedgehog signaling and regulates the expression of Gli2 and smoothened.

    PubMed

    Jiang, Zhihua; Cushing, Leah; Ai, Xingbin; Lü, Jining

    2014-08-01

    Sonic hedgehog (Shh) is expressed and secreted from the embryonic lung epithelium and acts on the adjacent mesenchymal cells via its receptor Patched (Ptch)/Smoothened (Smo) and transcriptional effectors Gli proteins. Genetic studies showed that the Shh pathway plays critical roles in mouse lung development. However, little is known about microRNAs (miRNAs) downstream of Shh in embryonic lungs. Here we profiled miRNAs in embryonic lung cultures treated with cyclopamine, a specific Smo antagonist or with Smo agonist by next-generation of sequencing. We then performed functional screening to examine whether some of these miRNAs can modulate the induction of Gli-responsive luciferase by Shh treatment. These analyses revealed that expression of miR-326 and its host gene, Arrestin β1, is selectively enriched in embryonic lung mesenchymal cells and is specifically influenced by Shh activity. Furthermore, functional analyses showed that miR-326 acts as a negative modulator for Shh signaling by directly targeting Smo and Gli2. Together, these findings suggest a novel miR-326-negative feedback loop in regulating the activity of Shh signaling.

  14. Smoothened Agonist Reduces Human Immunodeficiency Virus Type-1-Induced Blood-Brain Barrier Breakdown in Humanized Mice.

    PubMed

    Singh, Vir B; Singh, Meera V; Gorantla, Santhi; Poluektova, Larisa Y; Maggirwar, Sanjay B

    2016-01-01

    Human Immunodeficiency Virus type-1 (HIV)-associated neurocognitive disorder is characterized by recruitment of activated/infected leukocytes into the CNS via disrupted Blood Brain Barrier (BBB) that contributes to persistent neuro-inflammation. In this report, humanized NOD/scid-IL2Rγc(null) mice were used to establish that impaired Sonic hedgehog (Shh) signaling is associated with loss of BBB function and neurological damage, and that modulating Shh signaling can rescue these detrimental effects. Plasma viral load, p24 levels and CD4(+) T cells were measured as markers of productive HIV infection. These mice also showed impaired exclusion of Evans blue dye from the brain, increased plasma levels of S100B, an astrocytic protein, and down-regulation of tight junction proteins Occludin and Claudin5, collectively indicating BBB dysfunction. Further, brain tissue from HIV(+) mice indicated reduced synaptic density, neuronal atrophy, microglial activation, and astrocytosis. Importantly, reduced expression of Shh and Gli1 was also observed in these mice, demonstrating diminished Shh signaling. Administration of Shh mimetic, smoothened agonist (SAG) restored BBB integrity and also abated the neuropathology in infected mice. Together, our results suggest a neuroprotective role for Shh signaling in the context of HIV infection, underscoring the therapeutic potential of SAG in controlling HAND pathogenesis. PMID:27241024

  15. Modification of Lipid A Biosynthesis in Neisseria meningitidis lpxL Mutants: Influence on Lipopolysaccharide Structure, Toxicity, and Adjuvant Activity

    PubMed Central

    van der Ley, Peter; Steeghs, Liana; Hamstra, Hendrik Jan; ten Hove, Jan; Zomer, Bert; van Alphen, Loek

    2001-01-01

    Two genes homologous to lpxL and lpxM from Escherichia coli and other gram-negative bacteria, which are involved in lipid A acyloxyacylation, were identified in Neisseria meningitidis strain H44/76 and insertionally inactivated. Analysis by tandem mass spectrometry showed that one of the resulting mutants, termed lpxL1, makes lipopolysaccharide (LPS) with penta- instead of hexa-acylated lipid A, in which the secondary lauroyl chain is specifically missing from the nonreducing end of the GlcN disaccharide. Insertional inactivation of the other (lpxL2) gene was not possible in wild-type strain H44/76 expressing full-length immunotype L3 lipopolysaccharide (LPS) but could be readily achieved in a galE mutant expressing a truncated oligosaccharide chain. Structural analysis of lpxL2 mutant lipid A showed a major tetra-acylated species lacking both secondary lauroyl chains and a minor penta-acylated species. The lpxL1 mutant LPS has retained adjuvant activity similar to wild-type meningococcal LPS when used for immunization of mice in combination with LPS-deficient outer membrane complexes from N. meningitidis but has reduced toxicity as measured in a tumor necrosis factor alpha induction assay with whole bacteria. In contrast, both adjuvant activity and toxicity of the lpxL2 mutant LPS are strongly reduced. As the combination of reduced toxicity and retained adjuvant activity has not been reported before for either lpxL or lpxM mutants from other bacterial species, our results demonstrate that modification of meningococcal lipid A biosynthesis can lead to novel LPS species more suitable for inclusion in human vaccines. PMID:11553534

  16. Compensatory premotor activity during affective face processing in subclinical carriers of a single mutant Parkin allele

    PubMed Central

    Sack, Benjamin; Pohl, Anna; Münte, Thomas; Pramstaller, Peter; Klein, Christine; Binkofski, Ferdinand

    2012-01-01

    Patients with Parkinson's disease suffer from significant motor impairments and accompanying cognitive and affective dysfunction due to progressive disturbances of basal ganglia–cortical gating loops. Parkinson's disease has a long presymptomatic stage, which indicates a substantial capacity of the human brain to compensate for dopaminergic nerve degeneration before clinical manifestation of the disease. Neuroimaging studies provide evidence that increased motor-related cortical activity can compensate for progressive dopaminergic nerve degeneration in carriers of a single mutant Parkin or PINK1 gene, who show a mild but significant reduction of dopamine metabolism in the basal ganglia in the complete absence of clinical motor signs. However, it is currently unknown whether similar compensatory mechanisms are effective in non-motor basal ganglia–cortical gating loops. Here, we ask whether asymptomatic Parkin mutation carriers show altered patterns of brain activity during processing of facial gestures, and whether this might compensate for latent facial emotion recognition deficits. Current theories in social neuroscience assume that execution and perception of facial gestures are linked by a special class of visuomotor neurons (‘mirror neurons’) in the ventrolateral premotor cortex/pars opercularis of the inferior frontal gyrus (Brodmann area 44/6). We hypothesized that asymptomatic Parkin mutation carriers would show increased activity in this area during processing of affective facial gestures, replicating the compensatory motor effects that have previously been observed in these individuals. Additionally, Parkin mutation carriers might show altered activity in other basal ganglia–cortical gating loops. Eight asymptomatic heterozygous Parkin mutation carriers and eight matched controls underwent functional magnetic resonance imaging and a subsequent facial emotion recognition task. As predicted, Parkin mutation carriers showed significantly stronger

  17. Altered calmodulin activity in fluphenazine-resistant mutant strains. Pleiotropic effect on development and cellular organization in Volvox carteri.

    PubMed

    Kurn, N; Sela, B A

    1981-12-01

    Genetically altered calmodulin activity in spontaneously derived mutant strains, which were selected for resistance to the toxic effect of a specific inhibitor, the phenothiazine drug fluphenazine, is demonstrated. Partially purified calmodulin preparations from wild-type and fluphenazine-resistant strains of the multicellular alga Volvox carteri, were tested for the ability to activate Ca2+-ATPase of the erythrocyte membranes, and the inhibition of this stimulatory activity by fluphenazine. Unlike the preparation obtained from wild-type cells, mutant calmodulin is shown to be insensitive to fluphenazine inhibition, in one case, and calmodulin from another strain was found to be inactive in vitro, i.e. it did not activate Ca2+-ATPase. The pleiotropic phenotype of the spontaneously derived mutant strains involved aberrant multicellular organization and hormone-independent commitment of the multipotent asexual reproductive cells, gonodia, to sexual development. These results clearly implicate calmodulin in the control of development and morphogenesis in this simple multicellular eukaryote. In addition, intracellular inhibition of calmodulin in wild-type cells is shown to block the morphogenic process of embryo inversion and to arrest motility. The availability of mutant calmodulin will facilitate further investigation of the role of this ubiquitous regulatory protein in the control of development and differentiation in multicellular eukarytes, as well as the fine structure/function relationship with regard to calmodulin modulation of a wide variety of cellular processes. PMID:6459931

  18. Inhibition of Cancer-Associated Mutant Isocitrate Dehydrogenases: Synthesis, Structure–Activity Relationship, and Selective Antitumor Activity

    PubMed Central

    2015-01-01

    Mutations of isocitrate dehydrogenase 1 (IDH1) are frequently found in certain cancers such as glioma. Different from the wild-type (WT) IDH1, the mutant enzymes catalyze the reduction of α-ketoglutaric acid to d-2-hydroxyglutaric acid (D2HG), leading to cancer initiation. Several 1-hydroxypyridin-2-one compounds were identified to be inhibitors of IDH1(R132H). A total of 61 derivatives were synthesized, and their structure–activity relationships were investigated. Potent IDH1(R132H) inhibitors were identified with Ki values as low as 140 nM, while they possess weak or no activity against WT IDH1. Activities of selected compounds against IDH1(R132C) were found to be correlated with their inhibitory activities against IDH1(R132H), as well as cellular production of D2HG, with R2 of 0.83 and 0.73, respectively. Several inhibitors were found to be permeable through the blood–brain barrier in a cell-based model assay and exhibit potent and selective activity (EC50 = 0.26–1.8 μM) against glioma cells with the IDH1 R132H mutation. PMID:25271760

  19. Allele-Specific Reduction of the Mutant Huntingtin Allele Using Transcription Activator-Like Effectors in Human Huntington's Disease Fibroblasts.

    PubMed

    Fink, Kyle D; Deng, Peter; Gutierrez, Josh; Anderson, Joseph S; Torrest, Audrey; Komarla, Anvita; Kalomoiris, Stefanos; Cary, Whitney; Anderson, Johnathon D; Gruenloh, William; Duffy, Alexandra; Tempkin, Teresa; Annett, Geralyn; Wheelock, Vicki; Segal, David J; Nolta, Jan A

    2016-01-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an abnormal expansion of CAG repeats. Although pathogenesis has been attributed to this polyglutamine expansion, the underlying mechanisms through which the huntingtin protein functions have yet to be elucidated. It has been suggested that postnatal reduction of mutant huntingtin through protein interference or conditional gene knockout could prove to be an effective therapy for patients suffering from HD. For allele-specific targeting, transcription activator-like effectors (TALE) were designed to target single-nucleotide polymorphisms (SNP) in the mutant allele and packaged into a vector backbone containing KRAB to promote transcriptional repression of the disease-associated allele. Additional TALEs were packaged into a vector backbone containing heterodimeric FokI and were designed to be used as nucleases (TALEN) to cause a CAG-collapse in the mutant allele. Human HD fibroblasts were treated with each TALE-SNP or TALEN. Allele-expression was measured using a SNP-genotyping assay and mutant protein aggregation was quantified with Western blots for anti-ubiquitin. The TALE-SNP and TALEN significantly reduced mutant allele expression (p < 0.05) when compared to control transfections while not affecting expression of the nondisease allele. This study demonstrates the potential of allele-specific gene modification using TALE proteins, and provides a foundation for targeted treatment for individuals suffering from Huntington's or other genetically linked diseases. PMID:26850319

  20. Conformational Transitions in Human AP Endonuclease 1 and Its Active Site Mutant during Abasic Site Repair†

    PubMed Central

    Kanazhevskaya, Lyubov Yu.; Koval, Vladimir V.; Zharkov, Dmitry O.; Strauss, Phyllis R.; Fedorova, Olga S.

    2010-01-01

    AP endonuclease 1 (APE 1) is a crucial enzyme of the base excision repair pathway (BER) in human cells. APE1 recognizes apurinic/apyrimidinic (AP) sites and makes a nick in the phosphodiester backbone 5′ to them. The conformational dynamics and presteady-state kinetics of wild-type APE1 and its active site mutant, Y171F-P173L-N174K, have been studied. To observe conformational transitions occurring in the APE1 molecule during the catalytic cycle, we detected intrinsic tryptophan fluorescence of the enzyme under single turnover conditions. DNA duplexes containing a natural AP site, its tetrahydrofuran analogue, or a 2′-deoxyguanosine residue in the same position were used as specific substrates or ligands. The stopped-flow experiments have revealed high flexibility of the APE1 molecule and the complexity of the catalytic process. The fluorescent traces indicate that wild-type APE1 undergoes at least four conformational transitions during the processing of abasic sites in DNA. In contrast, nonspecific interactions of APE1 with undamaged DNA can be described by a two-step kinetic scheme. Rate and equilibrium constants were extracted from the stopped-flow and fluorescence titration data for all substrates, ligands, and products. A replacement of three residues at the enzymatic active site including the replacement of tyrosine 171 with phenylalanine in the enzyme active site resulted in a 2 × 104-fold decrease in the reaction rate and reduced binding affinity. Our data indicate the important role of conformational changes in APE1 for substrate recognition and catalysis. PMID:20575528

  1. Novel DNA Motif Binding Activity Observed In Vivo With an Estrogen Receptor α Mutant Mouse

    PubMed Central

    Li, Leping; Grimm, Sara A.; Winuthayanon, Wipawee; Hamilton, Katherine J.; Pockette, Brianna; Rubel, Cory A.; Pedersen, Lars C.; Fargo, David; Lanz, Rainer B.; DeMayo, Francesco J.; Schütz, Günther; Korach, Kenneth S.

    2014-01-01

    Estrogen receptor α (ERα) interacts with DNA directly or indirectly via other transcription factors, referred to as “tethering.” Evidence for tethering is based on in vitro studies and a widely used “KIKO” mouse model containing mutations that prevent direct estrogen response element DNA- binding. KIKO mice are infertile, due in part to the inability of estradiol (E2) to induce uterine epithelial proliferation. To elucidate the molecular events that prevent KIKO uterine growth, regulation of the pro-proliferative E2 target gene Klf4 and of Klf15, a progesterone (P4) target gene that opposes the pro-proliferative activity of KLF4, was evaluated. Klf4 induction was impaired in KIKO uteri; however, Klf15 was induced by E2 rather than by P4. Whole uterine chromatin immunoprecipitation-sequencing revealed enrichment of KIKO ERα binding to hormone response elements (HREs) motifs. KIKO binding to HRE motifs was verified using reporter gene and DNA-binding assays. Because the KIKO ERα has HRE DNA-binding activity, we evaluated the “EAAE” ERα, which has more severe DNA-binding domain mutations, and demonstrated a lack of estrogen response element or HRE reporter gene induction or DNA-binding. The EAAE mouse has an ERα null–like phenotype, with impaired uterine growth and transcriptional activity. Our findings demonstrate that the KIKO mouse model, which has been used by numerous investigators, cannot be used to establish biological functions for ERα tethering, because KIKO ERα effectively stimulates transcription using HRE motifs. The EAAE-ERα DNA-binding domain mutant mouse demonstrates that ERα DNA-binding is crucial for biological and transcriptional processes in reproductive tissues and that ERα tethering may not contribute to estrogen responsiveness in vivo. PMID:24713037

  2. The Activity of Nodules of the Supernodulating Mutant Mtsunn Is not Limited by Photosynthesis under Optimal Growth Conditions

    PubMed Central

    Cabeza, Ricardo A.; Lingner, Annika; Liese, Rebecca; Sulieman, Saad; Senbayram, Mehmet; Tränkner, Merle; Dittert, Klaus; Schulze, Joachim

    2014-01-01

    Legumes match the nodule number to the N demand of the plant. When a mutation in the regulatory mechanism deprives the plant of that ability, an excessive number of nodules are formed. These mutants show low productivity in the fields, mainly due to the high carbon burden caused through the necessity to supply numerous nodules. The objective of this study was to clarify whether through optimal conditions for growth and CO2 assimilation a higher nodule activity of a supernodulating mutant of Medicago truncatula (M. truncatula) can be induced. Several experimental approaches reveal that under the conditions of our experiments, the nitrogen fixation of the supernodulating mutant, designated as sunn (super numeric nodules), was not limited by photosynthesis. Higher specific nitrogen fixation activity could not be induced through short- or long-term increases in CO2 assimilation around shoots. Furthermore, a whole plant P depletion induced a decline in nitrogen fixation, however this decline did not occur significantly earlier in sunn plants, nor was it more intense compared to the wild-type. However, a distinctly different pattern of nitrogen fixation during the day/night cycles of the experiment indicates that the control of N2 fixing activity of the large number of nodules is an additional problem for the productivity of supernodulating mutants. PMID:24727372

  3. The activity of nodules of the supernodulating mutant Mtsunn is not limited by photosynthesis under optimal growth conditions.

    PubMed

    Cabeza, Ricardo A; Lingner, Annika; Liese, Rebecca; Sulieman, Saad; Senbayram, Mehmet; Tränkner, Merle; Dittert, Klaus; Schulze, Joachim

    2014-04-10

    Legumes match the nodule number to the N demand of the plant. When a mutation in the regulatory mechanism deprives the plant of that ability, an excessive number of nodules are formed. These mutants show low productivity in the fields, mainly due to the high carbon burden caused through the necessity to supply numerous nodules. The objective of this study was to clarify whether through optimal conditions for growth and CO2 assimilation a higher nodule activity of a supernodulating mutant of Medicago truncatula (M. truncatula) can be induced. Several experimental approaches reveal that under the conditions of our experiments, the nitrogen fixation of the supernodulating mutant, designated as sunn (super numeric nodules), was not limited by photosynthesis. Higher specific nitrogen fixation activity could not be induced through short- or long-term increases in CO2 assimilation around shoots. Furthermore, a whole plant P depletion induced a decline in nitrogen fixation, however this decline did not occur significantly earlier in sunn plants, nor was it more intense compared to the wild-type. However, a distinctly different pattern of nitrogen fixation during the day/night cycles of the experiment indicates that the control of N2 fixing activity of the large number of nodules is an additional problem for the productivity of supernodulating mutants.

  4. Francisella tularensis live vaccine strain folate metabolism and pseudouridine synthase gene mutants modulate macrophage caspase-1 activation.

    PubMed

    Ulland, Tyler K; Janowski, Ann M; Buchan, Blake W; Faron, Matthew; Cassel, Suzanne L; Jones, Bradley D; Sutterwala, Fayyaz S

    2013-01-01

    Francisella tularensis is a Gram-negative bacterium and the causative agent of the disease tularemia. Escape of F. tularensis from the phagosome into the cytosol of the macrophage triggers the activation of the AIM2 inflammasome through a mechanism that is not well understood. Activation of the AIM2 inflammasome results in autocatalytic cleavage of caspase-1, resulting in the processing and secretion of interleukin-1β (IL-1β) and IL-18, which play a crucial role in innate immune responses to F. tularensis. We have identified the 5-formyltetrahydrofolate cycloligase gene (FTL_0724) as being important for F. tularensis live vaccine strain (LVS) virulence. Infection of mice in vivo with a F. tularensis LVS FTL_0724 mutant resulted in diminished mortality compared to infection of mice with wild-type LVS. The FTL_0724 mutant also induced increased inflammasome-dependent IL-1β and IL-18 secretion and cytotoxicity in macrophages in vitro. In contrast, infection of macrophages with a F. tularensis LVS rluD pseudouridine synthase (FTL_0699) mutant resulted in diminished IL-1β and IL-18 secretion from macrophages in vitro compared to infection of macrophages with wild-type LVS. In addition, the FTL_0699 mutant was not attenuated in vivo. These findings further illustrate that F. tularensis LVS possesses numerous genes that influence its ability to activate the inflammasome, which is a key host strategy to control infection with this pathogen in vivo.

  5. Francisella tularensis Live Vaccine Strain Folate Metabolism and Pseudouridine Synthase Gene Mutants Modulate Macrophage Caspase-1 Activation

    PubMed Central

    Ulland, Tyler K.; Janowski, Ann M.; Buchan, Blake W.; Faron, Matthew; Cassel, Suzanne L.; Jones, Bradley D.

    2013-01-01

    Francisella tularensis is a Gram-negative bacterium and the causative agent of the disease tularemia. Escape of F. tularensis from the phagosome into the cytosol of the macrophage triggers the activation of the AIM2 inflammasome through a mechanism that is not well understood. Activation of the AIM2 inflammasome results in autocatalytic cleavage of caspase-1, resulting in the processing and secretion of interleukin-1β (IL-1β) and IL-18, which play a crucial role in innate immune responses to F. tularensis. We have identified the 5-formyltetrahydrofolate cycloligase gene (FTL_0724) as being important for F. tularensis live vaccine strain (LVS) virulence. Infection of mice in vivo with a F. tularensis LVS FTL_0724 mutant resulted in diminished mortality compared to infection of mice with wild-type LVS. The FTL_0724 mutant also induced increased inflammasome-dependent IL-1β and IL-18 secretion and cytotoxicity in macrophages in vitro. In contrast, infection of macrophages with a F. tularensis LVS rluD pseudouridine synthase (FTL_0699) mutant resulted in diminished IL-1β and IL-18 secretion from macrophages in vitro compared to infection of macrophages with wild-type LVS. In addition, the FTL_0699 mutant was not attenuated in vivo. These findings further illustrate that F. tularensis LVS possesses numerous genes that influence its ability to activate the inflammasome, which is a key host strategy to control infection with this pathogen in vivo. PMID:23115038

  6. Deregulated hedgehog pathway signaling is inhibited by the smoothened antagonist LDE225 (Sonidegib) in chronic phase chronic myeloid leukaemia.

    PubMed

    Irvine, David A; Zhang, Bin; Kinstrie, Ross; Tarafdar, Anuradha; Morrison, Heather; Campbell, Victoria L; Moka, Hothri A; Ho, Yinwei; Nixon, Colin; Manley, Paul W; Wheadon, Helen; Goodlad, John R; Holyoake, Tessa L; Bhatia, Ravi; Copland, Mhairi

    2016-01-01

    Targeting the Hedgehog (Hh) pathway represents a potential leukaemia stem cell (LSC)-directed therapy which may compliment tyrosine kinase inhibitors (TKIs) to eradicate LSC in chronic phase (CP) chronic myeloid leukaemia (CML). We set out to elucidate the role of Hh signaling in CP-CML and determine if inhibition of Hh signaling, through inhibition of smoothened (SMO), was an effective strategy to target CP-CML LSC. Assessment of Hh pathway gene and protein expression demonstrated that the Hh pathway is activated in CD34(+) CP-CML stem/progenitor cells. LDE225 (Sonidegib), a small molecule, clinically investigated SMO inhibitor, used alone and in combination with nilotinib, inhibited the Hh pathway in CD34(+) CP-CML cells, reducing the number and self-renewal capacity of CML LSC in vitro. The combination had no effect on normal haemopoietic stem cells. When combined, LDE225 + nilotinib reduced CD34(+) CP-CML cell engraftment in NSG mice and, upon administration to EGFP(+) /SCLtTA/TRE-BCR-ABL mice, the combination enhanced survival with reduced leukaemia development in secondary transplant recipients. In conclusion, the Hh pathway is deregulated in CML stem and progenitor cells. We identify Hh pathway inhibition, in combination with nilotinib, as a potentially effective therapeutic strategy to improve responses in CP-CML by targeting both stem and progenitor cells. PMID:27157927

  7. Deregulated hedgehog pathway signaling is inhibited by the smoothened antagonist LDE225 (Sonidegib) in chronic phase chronic myeloid leukaemia

    PubMed Central

    Irvine, David A.; Zhang, Bin; Kinstrie, Ross; Tarafdar, Anuradha; Morrison, Heather; Campbell, Victoria L.; Moka, Hothri A.; Ho, Yinwei; Nixon, Colin; Manley, Paul W.; Wheadon, Helen; Goodlad, John R.; Holyoake, Tessa L.; Bhatia, Ravi; Copland, Mhairi

    2016-01-01

    Targeting the Hedgehog (Hh) pathway represents a potential leukaemia stem cell (LSC)-directed therapy which may compliment tyrosine kinase inhibitors (TKIs) to eradicate LSC in chronic phase (CP) chronic myeloid leukaemia (CML). We set out to elucidate the role of Hh signaling in CP-CML and determine if inhibition of Hh signaling, through inhibition of smoothened (SMO), was an effective strategy to target CP-CML LSC. Assessment of Hh pathway gene and protein expression demonstrated that the Hh pathway is activated in CD34+ CP-CML stem/progenitor cells. LDE225 (Sonidegib), a small molecule, clinically investigated SMO inhibitor, used alone and in combination with nilotinib, inhibited the Hh pathway in CD34+ CP-CML cells, reducing the number and self-renewal capacity of CML LSC in vitro. The combination had no effect on normal haemopoietic stem cells. When combined, LDE225 + nilotinib reduced CD34+ CP-CML cell engraftment in NSG mice and, upon administration to EGFP+ /SCLtTA/TRE-BCR-ABL mice, the combination enhanced survival with reduced leukaemia development in secondary transplant recipients. In conclusion, the Hh pathway is deregulated in CML stem and progenitor cells. We identify Hh pathway inhibition, in combination with nilotinib, as a potentially effective therapeutic strategy to improve responses in CP-CML by targeting both stem and progenitor cells. PMID:27157927

  8. Analysis of Polygenic Mutants Suggests a Role for Mediator in Regulating Transcriptional Activation Distance in Saccharomyces cerevisiae

    PubMed Central

    Reavey, Caitlin T.; Hickman, Mark J.; Dobi, Krista C.; Botstein, David; Winston, Fred

    2015-01-01

    Studies of natural populations of many organisms have shown that traits are often complex, caused by contributions of mutations in multiple genes. In contrast, genetic studies in the laboratory primarily focus on studying the phenotypes caused by mutations in a single gene. However, the single mutation approach may be limited with respect to the breadth and degree of new phenotypes that can be found. We have taken the approach of isolating complex, or polygenic mutants in the lab to study the regulation of transcriptional activation distance in yeast. While most aspects of eukaryotic transcription are conserved from yeast to human, transcriptional activation distance is not. In Saccharomyces cerevisiae, the upstream activating sequence (UAS) is generally found within 450 base pairs of the transcription start site (TSS) and when the UAS is moved too far away, activation no longer occurs. In contrast, metazoan enhancers can activate from as far as several hundred kilobases from the TSS. Previously, we identified single mutations that allow transcription activation to occur at a greater-than-normal distance from the GAL1 UAS. As the single mutant phenotypes were weak, we have now isolated polygenic mutants that possess strong long-distance phenotypes. By identification of the causative mutations we have accounted for most of the heritability of the phenotype in each strain and have provided evidence that the Mediator coactivator complex plays both positive and negative roles in the regulation of transcription activation distance. PMID:26281848

  9. Analysis of Polygenic Mutants Suggests a Role for Mediator in Regulating Transcriptional Activation Distance in Saccharomyces cerevisiae.

    PubMed

    Reavey, Caitlin T; Hickman, Mark J; Dobi, Krista C; Botstein, David; Winston, Fred

    2015-10-01

    Studies of natural populations of many organisms have shown that traits are often complex, caused by contributions of mutations in multiple genes. In contrast, genetic studies in the laboratory primarily focus on studying the phenotypes caused by mutations in a single gene. However, the single mutation approach may be limited with respect to the breadth and degree of new phenotypes that can be found. We have taken the approach of isolating complex, or polygenic mutants in the lab to study the regulation of transcriptional activation distance in yeast. While most aspects of eukaryotic transcription are conserved from yeast to human, transcriptional activation distance is not. In Saccharomyces cerevisiae, the upstream activating sequence (UAS) is generally found within 450 base pairs of the transcription start site (TSS) and when the UAS is moved too far away, activation no longer occurs. In contrast, metazoan enhancers can activate from as far as several hundred kilobases from the TSS. Previously, we identified single mutations that allow transcription activation to occur at a greater-than-normal distance from the GAL1 UAS. As the single mutant phenotypes were weak, we have now isolated polygenic mutants that possess strong long-distance phenotypes. By identification of the causative mutations we have accounted for most of the heritability of the phenotype in each strain and have provided evidence that the Mediator coactivator complex plays both positive and negative roles in the regulation of transcription activation distance.

  10. Prenatal interaction of mutant DISC1 and immune activation produces adult psychopathology

    PubMed Central

    Abazyan, B.; Nomura, J.; Kannan, G.; Ishizuka, K.; Tamashiro, K. L. K.; Nucifora, F.; Pogorelov, V.; Ladenheim, B.; Yang, C.; Krasnova, I. N.; Cadet, J. L.; Pardo, C.; Mori, S.; Kamiya, A.; Vogel, M.; Sawa, A.; Ross, C. A.; Pletnikov, M. V.

    2010-01-01

    Background Gene-environment interactions (GEI) are involved in the pathogenesis of mental diseases. We evaluated interaction between mutant human Disrupted-In-Schizophrenia-1 (mhDISC1) and maternal immune activation implicated in schizophrenia and mood disorders. Methods Pregnant mice were treated with saline or polyinosinic:polycytidylic acid (Poly I:C) at gestation day 9. Levels of inflammatory cytokines were measured in fetal and adult brains, expression of mhDISC1, endogenous DISC1, LIS1, NDEL1, gp130, Grb2, and GSK-3β were assessed in cortical samples of newborn mice. Tissue content of monoamines, volumetric brain abnormalities, dendritic spine density in the hippocampus and various domains of the mouse behavior repertoire were evaluated in adult male mice. Results Prenatal interaction produced anxiety, depression-like responses, and altered pattern of social behavior. These behaviors were accompanied by decreased reactivity of the HPA axis, attenuated 5-HT neurotransmission in the hippocampus, reduced enlargement of lateral ventricles, decreased volumes of amygdala and periaqueductal gray matter and density of spines on dendrites of granule cells of the hippocampus. Prenatal interaction modulated secretion of inflammatory cytokines in fetal brains, levels of mhDISC1, endogenous mouse DISC1, and GSK-3β. The behavioral effects of GEI were observed only if mhDISC1 was expressed throughout the life span. Conclusions Prenatal immune activation interacted with mhDISC1 to produce the neurobehavioral phenotypes that were not seen in untreated mhDISC1 mice and that resemble aspects of major mental illnesses, including mood disorders. We propose that our DISC1 mouse model is a valuable system to study the molecular pathways underlying GEI relevant to mental illnesses. PMID:21130225

  11. Cytotoxicity of lawsone and cytoprotective activity of antioxidants in catalase mutant Escherichia coli.

    PubMed

    Sauriasari, Rani; Wang, Da-Hong; Takemura, Yoko; Tsutsui, Ken; Masuoka, Noriyoshi; Sano, Kuniaki; Horita, Masako; Wang, Bing-Ling; Ogino, Keiki

    2007-06-01

    Lawsone is an active naphthoquinone derivative isolated from henna (Lawsonia inermis L.), a widely used hair dye. Previous study on the toxicity of lawsone remains unclear since the involvement of oxidative stress and the kind of ROS (reactive oxygen species) involved have not been fully resolved yet. This present study reports the cytotoxic effects of lawsone and henna. We carried out CAT assay (a zone of inhibition test of bacterial growth and colony-forming efficiency test of transformant Escherichia coli strains that express mammalian catalase gene derived from normal catalase mice (Cs(a)) and catalase-deficient mutant mice (Cs(b))), Ames mutagenicity assay and H(2)O(2) generation assay. Lawsone generated H(2)O(2) slightly in phosphate buffer system and was not mutagenic in Ames assay using TA 98, TA 100 and TA 102, both in the absence and presence of metabolic activation. Lawsone exposure inhibited the growth of both Cs(a) and Cs(b) strains in a dose-dependent manner. Mean zone diameter for Cs(a) was 9.75+/-0.96 mm and 12.75+/-1.5 mm for Cs(b). Natural henna leaves did not show toxic effects, whereas two out of four samples of marketed henna products were shown toxicity effects. Catalase abolished zone of inhibition (ZOI) of marketed henna products, eliminated ZOI of lawsone in a dose-dependent manner and low concentration of exogenous MnSOD and Cu/ZnSOD eliminated the toxicity. Histidine and DTPA, the metal chelator; BHA and low concentration of capsaicin, the inducer of NADH-quinone reductase, effectively protected Cs(a) and Cs(b) against lawsone in this study. We suggest that lawsone cytotoxicity is probably mediated, at least in part, by the release of O(2)(-), H(2)O(2) and OH(-). PMID:17442476

  12. Metabolism of hydroxypyruvate in a mutant of barley lacking NADH-dependent hydroxypyruvate reductase, an important photorespiratory enzyme activity

    SciTech Connect

    Murray, A.J.S.; Blackwell, R.D.; Lea, P.J. )

    1989-09-01

    A mutant of barley (Hordeum vulgare L.), LaPr 88/29, deficient in NADH-dependent hydroxypyruvate reductase (HPR) activity has been isolated. The activities of both NADH (5%) and NADPH-dependent (19%) HPR were severely reduced in this mutant compared to the wild type. Although lacking an enzyme in the main carbon pathway of photorespiration, this mutant was capable of CO{sub 2} fixation rates equivalent to 75% of that of the wild type, in normal atmospheres and 50% O{sub 2}. There also appeared to be little disruption to the photorespiratory metabolism as ammonia release, CO{sub 2} efflux and {sup 14}CO{sub 2} release from L-(U-{sup 14}C)serine feeding were similar in both mutant and wild-type leaves. When leaves of LaPr 88/29 were fed either ({sup 14}C)serine or {sup 14}CO{sub 2}, the accumulation of radioactivity was in serine and not in hydroxypyruvate, although the mutant was still able to metabolize over 25% of the supplied ({sup 14}C)serine into sucrose. After 3 hours in air the soluble amino acid pool was almost totally dominated by serine and glycine. LaPr 88/29 has also been used to show that NADH-glyoxylate reductase and NADH-HPR are probably not catalyzed by the same enzyme in barley and that over 80% of the NADPH-dependent HPR activity is due to the NADH-dependent enzyme. We also suggest that the alternative NADPH activity can metabolize a proportion, but not all, of the hydroxypyruvate produced during photorespiration and may thus form a useful backup to the NADH-dependent enzyme under conditions of maximal photorespiration.

  13. Lack of enzyme activity in GBA2 mutants associated with hereditary spastic paraplegia/cerebellar ataxia (SPG46).

    PubMed

    Sultana, Saki; Reichbauer, Jennifer; Schüle, Rebecca; Mochel, Fanny; Synofzik, Matthis; van der Spoel, Aarnoud C

    2015-09-11

    Glucosylceramide is a membrane glycolipid made up of the sphingolipid ceramide and glucose, and has a wide intracellular distribution. Glucosylceramide is degraded to ceramide and glucose by distinct, non-homologous enzymes, including glucocerebrosidase (GBA), localized in the endolysosomal pathway, and β-glucosidase 2 (GBA2), which is associated with the plasma membrane and/or the endoplasmic reticulum. It is well established that mutations in the GBA gene result in endolysosomal glucosylceramide accumulation, which triggers Gaucher disease. In contrast, the biological significance of GBA2 is less well understood. GBA2-deficient mice present with male infertility, but humans carrying mutations in the GBA2 gene are affected with a combination of cerebellar ataxia and spastic paraplegia, as well as with thin corpus callosum and cognitive impairment (SPastic Gait locus #46, SPG46). To improve our understanding of the biochemical consequences of the GBA2 mutations, we have evaluated five nonsense and five missense GBA2 mutants for their enzyme activity. In transfected cells, the mutant forms of GBA2 were present in widely different amounts, ranging from overabundant to very minor, compared to the wild type enzyme. Nevertheless, none of the GBA2 mutant cDNAs raised the enzyme activity in transfected cells, in contrast to the wild-type enzyme. These results suggest that SPG46 patients have a severe deficit in GBA2 activity, because the GBA2 mutants are intrinsically inactive and/or reduced in amount. This assessment of the expression levels and enzyme activities of mutant forms of GBA2 offers a first insight in the biochemical basis of the complex pathologies seen in SPG46.

  14. [Role of RNA-polymerase in gene activity regulation of E. coli RNA-polymerase mutants with a pleiotropic effect. I. Physiological and biochemical studies].

    PubMed

    Kamzolova, S G; Arutiunian, A V; Ozolin', O N; Oganesian, M G

    1979-01-01

    Four Rifr-mutants of E. coli B/r (rpo B401, rpo B402, rpo B403, rpo B409) which differ from the wild strain in one or more phenotypic properties besides rifampicin resistance were obtained. Transfer of the mutant Rifr-alleles into the parent strain gives the latter all the properties of the mutant. This indicates that the new properties are due to the pleiotropic effect of Rifr-mutations. Biochemical studies of the properties of RNA-polymerases from the mutants and the parent showed that some new properties of the mutants could not be explained by the appearance of analogous properties in the mutant RNA-polymerase itself. They seem to be caused by alteration in functional activity of the mutant enzyme, particulary, alteration of its control properties during transcription. The function of the beta-subunit in genetic transcription is discussed.

  15. Inhibition of HSP90 by AUY922 Preferentially Kills Mutant KRAS Colon Cancer Cells by Activating Bim through ER Stress.

    PubMed

    Wang, Chun Yan; Guo, Su Tang; Wang, Jia Yu; Liu, Fen; Zhang, Yuan Yuan; Yari, Hamed; Yan, Xu Guang; Jin, Lei; Zhang, Xu Dong; Jiang, Chen Chen

    2016-03-01

    Oncogenic mutations of KRAS pose a great challenge in the treatment of colorectal cancer. Here we report that mutant KRAS colon cancer cells are nevertheless more susceptible to apoptosis induced by the HSP90 inhibitor AUY922 than those carrying wild-type KRAS. Although AUY922 inhibited HSP90 activity with comparable potency in colon cancer cells irrespective of their KRAS mutational statuses, those with mutant KRAS were markedly more sensitive to AUY922-induced apoptosis. This was associated with upregulation of the BH3-only proteins Bim, Bik, and PUMA. However, only Bim appeared essential, in that knockdown of Bim abolished, whereas knockdown of Bik or PUMA only moderately attenuated apoptosis induced by AUY922. Mechanistic investigations revealed that endoplasmic reticulum (ER) stress was responsible for AUY922-induced upregulation of Bim, which was inhibited by a chemical chaperone or overexpression of GRP78. Conversely, siRNA knockdown of GRP78 or XBP-1 enhanced AUY922-induced apoptosis. Remarkably, AUY922 inhibited the growth of mutant KRAS colon cancer xenografts through activation of Bim that was similarly associated with ER stress. Taken together, these results suggest that AUY922 is a promising drug in the treatment of mutant KRAS colon cancers, and the agents that enhance the apoptosis-inducing potential of Bim may be useful to improve the therapeutic efficacy.

  16. Characterization of Arabidopsis fluoroacetate-resistant mutants reveals the principal mechanism of acetate activation for entry into the glyoxylate cycle.

    PubMed

    Turner, James E; Greville, Karen; Murphy, Elaine C; Hooks, Mark A

    2005-01-28

    The toxic acetate analogue monofluoroacetic acid was employed to isolate Arabidopsis tDNA-tagged plants deficient in their ability to utilize or sense acetate. Several tDNA-tagged lines were isolated, including two that were determined to be allelic to an EMS-mutagenized line denoted acn1 for ac non-utilizing. Following conventions, the tDNA-tagged mutants were designated acn1-2 and acn1-3. Both mutants displayed identical behavior to acn1-1 on a variety of fluorinated and nonfluorinated organic acids, indicating that resistance was specific to fluoroacetate. Thermal asymmetric interlaced PCR identified the sites of tDNA insertion in both mutants to be within different exons in a gene, which encoded a protein containing an AMP-binding motif. Reverse transcription-PCR confirmed that the gene was not expressed in the mutants, and quantitative reverse transcription-PCR showed that the gene is expressed in imbibed seeds and increases in amount during establishment. The wild type AMP-binding protein cDNA was cloned and expressed in Escherichia coli, and the expressed protein was purified by nickel chelate chromatography. The enzyme was identified as an acyl-CoA synthetase that was more active with acetate than butyrate and was not active with fatty acids longer than C-4. The enzyme was localized to peroxisomes by enzymatic analysis of organellar fractions isolated by sucrose density gradient centrifugation. Labeling studies with [(14)C]acetate showed that acn1 seedlings, like those of the isocitrate lyase mutant icl-1 (isocitrate lyase), are compromised in carbohydrate synthesis, indicating that this enzyme is responsible for activating exogenous acetate to the coenzyme A form for entry into the glyoxylate cycle.

  17. Mutant activin-like kinase 2 in fibrodysplasia ossificans progressiva are activated via T203 by BMP type II receptors.

    PubMed

    Fujimoto, Mai; Ohte, Satoshi; Osawa, Kenji; Miyamoto, Arei; Tsukamoto, Sho; Mizuta, Takato; Kokabu, Shoichiro; Suda, Naoto; Katagiri, Takenobu

    2015-01-01

    Fibrodysplasia ossificans progressiva (FOP) is a genetic disorder characterized by progressive heterotopic ossification in soft tissues, such as the skeletal muscles. FOP has been shown to be caused by gain-of-function mutations in activin receptor-like kinase (ALK)-2, which is a type I receptor for bone morphogenetic proteins (BMPs). In the present study, we examined the molecular mechanisms that underlie the activation of intracellular signaling by mutant ALK2. Mutant ALK2 from FOP patients enhanced the activation of intracellular signaling by type II BMP receptors, such as BMPR-II and activin receptor, type II B, whereas that from heart disease patients did not. This enhancement was dependent on the kinase activity of the type II receptors. Substitution mutations at all nine serine and threonine residues in the ALK2 glycine- and serine-rich domain simultaneously inhibited this enhancement by the type II receptors. Of the nine serine and threonine residues in ALK2, T203 was found to be critical for the enhancement by type II receptors. The T203 residue was conserved in all of the BMP type I receptors, and these residues were essential for intracellular signal transduction in response to ligand stimulation. The phosphorylation levels of the mutant ALK2 related to FOP were higher than those of wild-type ALK2 and were further increased by the presence of type II receptors. The phosphorylation levels of ALK2 were greatly reduced in mutants carrying a mutation at T203, even in the presence of type II receptors. These findings suggest that the mutant ALK2 related to FOP is enhanced by BMP type II receptors via the T203-regulated phosphorylation of ALK2.

  18. Development of photochemical activity in relation to pigment and membrane protein accumulation in chloroplasts of barley and its virescens mutant.

    PubMed

    Kyle, D J; Zalik, S

    1982-06-01

    The development of photochemical activity in relation to pigment and membrane protein accumulation in chloroplasts of greening wild-type barley (Hordeum vulgare L. cv. Gateway) and its virescens mutant were studied. The rate of chlorophyll accumulation per plastid was faster in the wild-type than in the mutant seedlings upon illumination after 6 days of etiolation, but was not different after 8 days. Although the protein content per plastid did not vary during greening, there was a change in the sodium dodecyl sulfate-polyacrylamide gel polypeptide profiles. High molecular weight proteins of 96,000 and 66,000 decreased whereas those at 34,000, 27,000 and 22,000 increased in relative quantity as a function of greening. The fully greened mutant seedlings were not deficient in the light-harvesting chlorophyll protein complex (LHC) or the reaction centers of photosystem I and photosystem II. Photosystem I-associated photochemical activities appeared within the first hour of plastid development and photosystem II associated activities and O(2) evolution within the next 6 hours. In all cases, the developmental rates per unit protein were slower in the mutant following 6 days of etiolation, but no differences between the two genotypes could be seen after 8 days due to a decrease in the developmental rate of the wild-type chloroplasts. An increase in photosynthetic unit size associated with plastid morphogenesis was faster in the wild-type seedlings after 6 days, but again the difference was negligible after 8 days. It was concluded that no single measured photochemical parameter is affected by this mutation, but rather, all aspects of chloroplast development are affected similarly by an overall reduction in the rate of chloroplast morphogenesis. This mutant, therefore, undergoes the normal pattern of proplastid to chloroplast development, but at a markedly reduced rate.

  19. Bacteriorhodopsin mutants containing single tyrosine to phenylalanine substitutions are all active in proton translocation.

    PubMed Central

    Mogi, T; Stern, L J; Hackett, N R; Khorana, H G

    1987-01-01

    To study the possible role of the tyrosine residues in proton translocation by bacteriorhodopsin, we have replaced these residues individually by phenylalanine. The required codon changes were introduced in the bacterioopsin gene by replacement of appropriate restriction fragments by synthetic counterparts containing the desired nucleotide changes. The denatured opsin polypeptides obtained by expression of the mutant genes in Escherichia coli were purified and treated with a mixture of detergents, phospholipids, and retinal in a previously established renaturation procedure. All of the mutant proteins folded to regenerate bacteriorhodopsin-like chromophores. Three mutants with tyrosine to phenylalanine substitutions at positions 57, 83, and 185 regenerated the chromophore more slowly than the wild-type protein, and two of these mutants, Phe-57 and -83, showed slightly blue-shifted chromophores. When reconstituted into liposomes all of the mutant proteins with single Tyr----Phe substitutions pumped protons at rates and levels comparable to those of the wild-type bacteriorhodopsin. We conclude that single substitutions of tyrosine by phenylalanine do not affect folding, retinal binding, or light-dependent proton pumping in bacteriorhodopsin. PMID:3039495

  20. Detailed conformation dynamics and activation process of wild type c-Abl and T315I mutant

    NASA Astrophysics Data System (ADS)

    Yang, Li-Jun; Zhao, Wen-Hua; Liu, Qian

    2014-10-01

    Bcr-Abl is an important target for therapy against chronic myelogenous leukemia (CML) and acute lymphocytic leukemia (ALL). The synergistic effect between myristyl pocket and the ATP pocket has been found. But its detailed information based on molecular level still has not been achieved. In this study, conventional molecular dynamics (CMD) and target molecular dynamics (TMD) simulations were performed to explore the effect of T315I mutation on dynamics and activation process of Abl containing the N-terminal cap (Ncap). The CMD simulation results reveal the increasing flexibility of ATP pocket in kinase domain (KD) after T315I mutation which confirms the disability of ATP-pocket inhibitors to the Abl-T315I mutant. On the contrary, the T315I mutation decreased the flexibility of remote helix αI which suggests the synergistic effect between them. The mobility of farther regions containing Ncap, SH3, SH2 and SH2-KD linker were not affected by T315I mutation. The TMD simulation results show that the activation process of wild type Abl and Abl-T315I mutant experienced global conformation change. Their differences were elucidated by the activation motion of subsegments including A-loop, P-loop and Ncap. Besides, the T315I mutation caused decreasing energy barrier and increasing intermediate number in activation process, which results easier activation process. The TMD and CMD results indicate that a drug targeting only the ATP pocket is not enough to inhibit the Abl-T315I mutant. An effective way to inhibit the abnormal activity of Abl-T315I mutant is to combine the ATP-pocket inhibitors with inhibitors binding at non-ATP pockets mainly related to Ncap, SH2-KD linker and myristyl pocket.

  1. Flight and seizure motor patterns in Drosophila mutants: simultaneous acoustic and electrophysiological recordings of wing beats and flight muscle activity.

    PubMed

    Iyengar, Atulya; Wu, Chun-Fang

    2014-01-01

    Abstract Tethered flies allow studies of biomechanics and electrophysiology of flight control. We performed microelectrode recordings of spikes in an indirect flight muscle (the dorsal longitudinal muscle, DLMa) coupled with acoustic analysis of wing beat frequency (WBF) via microphone signals. Simultaneous electrophysiological recording of direct and indirect flight muscles has been technically challenging; however, the WBF is thought to reflect in a one-to-one relationship with spiking activity in a subset of direct flight muscles, including muscle m1b. Therefore, our approach enables systematic mutational analysis for changes in temporal features of electrical activity of motor neurons innervating subsets of direct and indirect flight muscles. Here, we report the consequences of specific ion channel disruptions on the spiking activity of myogenic DLMs (firing at ∼5 Hz) and the corresponding WBF (∼200 Hz). We examined mutants of the genes enconding: 1) voltage-gated Ca(2+) channels (cacophony, cac), 2) Ca(2+)-activated K(+) channels (slowpoke, slo), and 3) voltage-gated K(+) channels (Shaker, Sh) and their auxiliary subunits (Hyperkinetic, Hk and quiver, qvr). We found flight initiation in response to an air puff was severely disrupted in both cac and slo mutants. However, once initiated, slo flight was largely unaltered, whereas cac displayed disrupted DLM firing rates and WBF. Sh, Hk, and qvr mutants were able to maintain normal DLM firing rates, despite increased WBF. Notably, defects in the auxiliary subunits encoded by Hk and qvr could lead to distinct consequences, that is, disrupted DLM firing rhythmicity, not observed in Sh. Our mutant analysis of direct and indirect flight muscle activities indicates that the two motor activity patterns may be independently modified by specific ion channel mutations, and that this approach can be extended to other dipteran species and additional motor programs, such as electroconvulsive stimulation-induced seizures.

  2. Active site mutants of Escherichia coli dethiobiotin synthetase: effects of mutations on enzyme catalytic and structural properties.

    PubMed

    Yang, G; Sandalova, T; Lohman, K; Lindqvist, Y; Rendina, A R

    1997-04-22

    Five active site residues, Thr11, Glu12, Lys15, Lys37, and Ser41, implicated by the protein crystal structure studies of Escherichia coli DTBS, were mutated to determine their function in catalysis and substrate binding. Nine mutant enzymes, T11V, E12A, E12D, K15Q, K37L, K37Q, K37R, S41A, and S41C, were overproduced in an E. coli strain lacking a functional endogenous DTBS gene and purified to homogeneity. Replacement of Thr11 with valine resulted in a 24,000-fold increase in the Km(ATP) with little or no change in the Kd(ATP), KM(DAPA) and DTBS k(cat), suggesting an essential role for this residue in the steady-state affinity for ATP. The two Glu12 mutants showed essentially wild-type DTBS activity (slightly elevated k(cat)'s). Unlike wild-type DTBS, E12A had the same apparent KM(DAPA) at subsaturating and saturating ATP concentrations, indicating a possible role for Glu12 in the binding synergy between DAPA and ATP. The mutations in Lys15 and Lys37 resulted in loss of catalytic activity (0.01% and <0.9% of wild-type DTBS k(cat) for K15Q and the Lys37 mutant enzymes, respectively) and higher KM's for both DAPA (40-fold and >100-fold higher than wild-type for the K15Q and Lys37 mutant enzymes, respectively) and ATP (1800-fold and >10-fold higher than wild-type for K15Q and the K37 mutant enzymes, respectively). These results strongly suggest that Lys15 and Lys37 are crucial to both catalysis and substrate binding. S41A and S41C had essentially the same k(cat) as wild-type and had moderate increases in the DAPA and ATP KM and Kd (ATP) values. Replacement of Ser41 with cysteine resulted in larger effects than replacement with alanine. These data suggest that the H-bond between N7 of DAPA and the Ser41 side chain is not very important for catalysis. The catalytic behavior of these mutant enzymes was also studied by pulse-chase experiments which produced results consistent with the steady-state kinetic analyses. X-ray crystallographic studies of four mutant enzymes, S

  3. Structure and function of chicken interleukin-1 beta mutants: uncoupling of receptor binding and in vivo biological activity

    PubMed Central

    Chen, Wen-Ting; Huang, Wen-Yang; Chen, Ting; Salawu, Emmanuel Oluwatobi; Wang, Dongli; Lee, Yi-Zong; Chang, Yuan-Yu; Yang, Lee-Wei; Sue, Shih-Che; Wang, Xinquan; Yin, Hsien-Sheng

    2016-01-01

    Receptor-binding and subsequent signal-activation of interleukin-1 beta (IL-1β) are essential to immune and proinflammatory responses. We mutated 12 residues to identify sites important for biological activity and/or receptor binding. Four of these mutants with mutations in loop 9 (T117A, E118K, E118A, E118R) displayed significantly reduced biological activity. Neither T117A nor E118K mutants substantially affected receptor binding, whereas both mutants lack the IL-1β signaling in vitro but can antagonize wild-type (WT) IL-1β. Crystal structures of T117A, E118A, and E118K revealed that the secondary structure or surface charge of loop 9 is dramatically altered compared with that of wild-type chicken IL-1β. Molecular dynamics simulations of IL-1β bound to its receptor (IL-1RI) and receptor accessory protein (IL-1RAcP) revealed that loop 9 lies in a pocket that is formed at the IL-1RI/IL-1RAcP interface. This pocket is also observed in the human ternary structure. The conformations of above mutants in loop 9 may disrupt structural packing and therefore the stability in a chicken IL-1β/IL-1RI/IL-1RAcP signaling complex. We identify the hot spots in IL-1β that are essential to immune responses and elucidate a mechanism by which IL-1β activity can be inhibited. These findings should aid in the development of new therapeutics that neutralize IL-1 activity. PMID:27278931

  4. Role of ELA region in auto-activation of mutant KIT receptor: a molecular dynamics simulation insight.

    PubMed

    Purohit, Rituraj

    2014-01-01

    KIT receptor is the prime target in gastrointestinal stromal tumor (GISTs) therapy. Second generation inhibitor, Sunitinib, binds to an inactivated conformation of KIT receptor and stabilizes it in order to prevent tumor formation. Here, we investigated the dynamic behavior of wild type and mutant D816H KIT receptor, and emphasized the extended A-loop (EAL) region (805-850) by conducting molecular dynamics simulation (∼100 ns). We analyzed different properties such as root mean square cutoff or deviation, root mean square fluctuation, radius of gyration, solvent-accessible surface area, hydrogen bonding network analysis, and essential dynamics. Apart from this, clustering and cross-correlation matrix approach was used to explore the conformational space of the wild type and mutant EAL region of KIT receptor. Molecular dynamics analysis indicated that mutation (D816H) was able to alter intramolecular hydrogen bonding pattern and affected the structural flexibility of EAL region. Moreover, flexible secondary elements, specially, coil and turns were dominated in EAL region of mutant KIT receptor during simulation. This phenomenon increased the movement of EAL region which in turn helped in shifting the equilibrium towards the active kinase conformation. Our atomic investigation of mutant KIT receptor which emphasized on EAL region provided a better insight into the understanding of Sunitinib resistance mechanism of KIT receptor and would help to discover new therapeutics for KIT-based resistant tumor cells in GIST therapy.

  5. Membrane Composition and Physiological Activity of Plastids from an Oenothera Plastome Mutator-Induced Chloroplast Mutant 1

    PubMed Central

    Johnson, Ellen M.; Sears, Barbara B.

    1990-01-01

    Plastids were isolated from a plastome mutator-induced mutant (pm7) of Oenothera hookeri and were analyzed for various physiological and biochemical attributes. No photosynthetic electron transport activity was detected in the mutant plastids. This is consistent with previous ultrastructural analysis showing the absence of thylakoid membranes in the pm7 plastids and with the observation of aberrant processing and accumulation of chloroplast proteins in the mutant. In comparison to wild type, the mutant tissue lacks chlorophyll, and has significant differences in levels of four fatty acids. The analyses did not reveal any differences in carotenoid levels nor in the synthesis of several chloroplast lipids. The consequences of the altered composition of the chloroplast membrane are discussed in terms of their relation to the aberrant protein processing of the pm7 plastids. The pigment, fatty acid, and lipid measurements were also performed on two distinct nuclear genotypes (A/A and A/C) which differ in their compatibility with the plastid genome (type I) contained in these lines. In these cases, only chlorophyll concentrations differed significantly. PMID:16667256

  6. [Study of the transcriptional and transpositional activities of the Tirant retrotransposon in Drosophila melanogaster strains mutant for the flamenco locus].

    PubMed

    Nefedova, L N; Urusov, F A; Romanova, N I; Shmel'kova, A O; Kim, A I

    2012-11-01

    Transpositions of the gypsy retrotransposon in the Drosophila melanogaster genome are controlled by the flamenco locus, which is represented as an accumulation of defective copies of transposable elements. In the present work, genetic control by the flamenco locus of the transcriptional and transpositional activities of the Tirant retrotransposon from the gypsy group was studied. Tissue-specific expression of Tirant was detected in the tissues of ovaries in a strain mutant for the flamenco locus. Tirant was found to be transpositionally active in isogenic D. melanogaster strains mutant for the flamenco locus. The sites of two new insertions have been localized by the method of subtractive hybridization. It has been concluded from the results obtained that the flamenco locus is involved in the genetic control of Tirant transpositions. PMID:23297482

  7. Characterization of an activation-tagged mutant uncovers a role of GLABRA2 in anthocyanin biosynthesis in Arabidopsis.

    PubMed

    Wang, Xiaoyu; Wang, Xianling; Hu, Qingnan; Dai, Xuemei; Tian, Hainan; Zheng, Kaijie; Wang, Xiaoping; Mao, Tonglin; Chen, Jin-Gui; Wang, Shucai

    2015-07-01

    In Arabidopsis, anthocyanin biosynthesis is controlled by a MYB-bHLH-WD40 (MBW) transcriptional activator complex. The MBW complex activates the transcription of late biosynthesis genes in the flavonoid pathway, leading to the production of anthocyanins. A similar MBW complex regulates epidermal cell fate by activating the transcription of GLABRA2 (GL2), a homeodomain transcription factor required for trichome formation in shoots and non-hair cell formation in roots. Here we provide experimental evidence to show that GL2 also plays a role in regulating anthocyanin biosynthesis in Arabidopsis. From an activation-tagged mutagenized population of Arabidopsis plants, we isolated a dominant, gain-of-function mutant with reduced anthocyanins. Molecular cloning revealed that this phenotype is caused by an elevated expression of GL2, thus the mutant was named gl2-1D. Consistent with the view that GL2 acts as a negative regulator of anthocyanin biosynthesis, gl2-1D seedlings accumulated less whereas gl2-3 seedlings accumulated more anthocyanins in response to sucrose. Gene expression analysis indicated that expression of late, but not early, biosynthesis genes in the flavonoid pathway was dramatically reduced in gl2-1D but elevated in gl2-3 mutants. Further analysis showed that expression of some MBW component genes involved in the regulation of late biosynthesis genes was reduced in gl2-1D but elevated in gl2-3 mutants, and chromatin immunoprecipitation results indicated that some MBW component genes are targets of GL2. We also showed that GL2 functions as a transcriptional repressor. Taken together, these results indicate that GL2 negatively regulates anthocyanin biosynthesis in Arabidopsis by directly repressing the expression of some MBW component genes. PMID:26017690

  8. Relationship between in vitro enhanced nitrogenase activity of an Azospirillum brasilense Sp7 mutant and its growth-promoting activities in situ.

    PubMed

    de Campos, Samanta Bolzan; Roesch, Luiz Fernando Wurdig; Zanettini, Maria Helena Bodanese; Passaglia, Luciane Maria Pereira

    2006-07-01

    In this work, we further analyzed an Azospirillum brasilense Sp7 mutant (Sp7::Tn5-33) showing a pleiotrophic phenotype due to a Tn5 insertion into an open reading frame of 840 bp (orf280). The deduced amino acid sequence of this region has high similarity to a family of universal stress proteins. Because the most interesting property exhibited by the Sp7::Tn5-33 mutant was an enhanced in vitro nitrogen fixation activity, we addressed the question of whether it could benefit the host plant. We found that the increased nitrogenase activity at the free-living state of the mutant bacterium was correlated with an increased production of the nitrogenase reductase protein (NifH), in amounts approximately 1.5 times higher than the wild type. The mutant strain exhibited the same level of auxin production and the same colonization pattern of wheat roots as the wild type. We also observed that Sp7::Tn5-33 increased the total plant dry weight, although the N content did not differ significantly between wheat plants inoculated with mutant or wild-type strains.

  9. Activation of two mutant androgen receptors from human prostatic carcinoma by adrenal androgens and metabolic derivatives of testosterone.

    PubMed

    Culig, Z; Stober, J; Gast, A; Peterziel, H; Hobisch, A; Radmayr, C; Hittmair, A; Bartsch, G; Cato, A C; Klocker, H

    1996-01-01

    The androgen receptor (AR) plays a central regulatory role in prostatic carcinoma and is a target of androgen ablation therapy. Recent detection of mutant receptors in tumor specimens suggest a contribution of AR alterations to progression towards androgen independence. In a specimen derived from metastatic prostate cancer we have reported a point mutation in the AR gene that leads to a single amino acid exchange in the ligand binding domain of the receptor. Another amino acid exchange resulting from a point mutation was also identified 15 amino acids away from our mutation. This mutation was detected in the AR gene isolated from an organ-confined prostatic tumor. Here we report the functional characterization of the two mutant receptors in the presence of adrenal androgens and testosterone metabolites. These studies were performed by cotransfecting androgen-responsive reporter genes and either the wild-type or mutant AR expression vectors into receptor negative DU-145 and CV-1 cells. The indicator genes used consisted of the promoter of the androgen-inducible prostate-specific antigen gene or the C' Delta9 enhancer fragment from the promoter of the mouse sex-limited protein driving the expression of the bacterial chloramphenicol acetyl transferase gene. Cotransfection-transactivation assays revealed that the adrenal androgen androstenedione and two products of testosterone metabolism, androsterone and androstandiol, induced reporter gene activity more efficiently in the presence of the mutant receptors than in the presence of the wild-type receptor. No difference between wild-type and mutant receptors was observed in the presence of the metabolite androstandione. The interaction of receptor-hormone complexes with target DNA was studied in vitro by electrophoretic mobility shift assays (EMSA). Dihydrotestosterone and the synthetic androgen mibolerone induced a faster migrating complex with all receptors, whereas the androgen metabolite androstandione induced this

  10. Allele-specific silencing of mutant p53 attenuates dominant-negative and gain-of-function activities

    PubMed Central

    Iyer, Swathi V.; Parrales, Alejandro; Begani, Priya; Narkar, Akshay; Adhikari, Amit S.; Martinez, Luis A.; Iwakuma, Tomoo

    2016-01-01

    Many p53 hotspot mutants not only lose the transcriptional activity, but also show dominant-negative (DN) and oncogenic gain-of-function (GOF) activities. Increasing evidence indicates that knockdown of mutant p53 (mutp53) in cancer cells reduces their aggressive properties, suggesting that survival and proliferation of cancer cells are, at least partially, dependent on the presence of mutp53. However, these p53 siRNAs can downregulate both wild-type p53 (wtp53) and mutp53, which limits their therapeutic applications. In order to specifically deplete mutp53, we have developed allele-specific siRNAs against p53 hotspot mutants and validated their biological effects in the absence or presence of wtp53. First, the mutp53-specific siRNAs selectively reduced protein levels of matched p53 mutants with minimal reduction in wtp53 levels. Second, downregulation of mutp53 in cancer cells expressing a mutp53 alone (p53mut) resulted in significantly decreased cell proliferation and migration. Third, transfection of mutp53-specific siRNAs in cancer cells expressing both wtp53 and mutp53 also reduced cell proliferation and migration with increased transcripts of p53 downstream target genes, which became further profound when cells were treated with an MDM2 inhibitor Nutlin-3a or a chemotherapeutic agent doxorubicin. These results indicate that depletion of mutp53 by its specific siRNA restored endogenous wtp53 activity in cells expressing both wtp53 and mutp53. This is the first study demonstrating biological effects and therapeutic potential of allele-specific silencing of mutp53 by mutp53-specific siRNAs in cancer cells expressing both wtp53 and mutp53, thus providing a novel strategy towards targeted cancer therapies. PMID:26700961

  11. Computational characterization for catalytic activities of human CD38's wild type, E226 and E146 mutants.

    PubMed

    Nguyen, My H; Dang, Van U; Luu, Boi V

    2010-06-01

    A series of the complexes of human CD38's wild type, E226 and E146 mutants as well have been simulated. The biosoftwares well simulate the penetration of nicotinamide-adenine-dinucleotide (NAD) into the active site. The nicotinamide end of NAD penetrates deep into the active site consistent with cleavage of the nicotinamide-glycosidic bond which is the first step of catalysis creating a Michaelis complex regarded as the intermediate product of NAD cyclase and hydrolysis reaction. The breaking down hydrogen bond between 2'-3' OH ribosyl and the residues replaced Glu(226) makes NAD to be less constrained in active site and nicotinamide (NA) becomes more difficult to be cleaved and eliminates the mutant catalytic activities. The large majority of the substrate NAD is hydrolyzed to ADPR while the conversion of NAD to cADPR is not the dominant reaction catalyzed by wild-type human CD38. The more strongly kept ribosyl group by hydrogen bonds the more NADase and the less cyclase activity. Breaking hydrogen bonds of ribosyl 2'- and 3'-OH by mutation will loosen it to promote the cyclase. The cyclic adenosine diphosphate-ribose (cADPR) could also penetrate deeply into active site to make some hydrogen bonds with Glu(146) and Glu(226); however, its docking poses are affected by a residue located at the entrance of the catalytic pocket (Lys(129)). These results are in good agreement with the previous crystallographic analysis and the experiments quantified the catalytic activities of human CD38 and its mutants.

  12. Molecular determinants for the high constitutive activity of the human histamine H4 receptor: functional studies on orthologues and mutants

    PubMed Central

    Wifling, D; Löffel, K; Nordemann, U; Strasser, A; Bernhardt, G; Dove, S; Seifert, R; Buschauer, A

    2015-01-01

    Background and Purpose Some histamine H4 receptor ligands act as inverse agonists at the human H4 receptor (hH4R), a receptor with exceptionally high constitutive activity, but as neutral antagonists or partial agonists at the constitutively inactive mouse H4 receptor (mH4R) and rat H4 receptor (rH4R). To study molecular determinants of constitutive activity, H4 receptor reciprocal mutants were constructed: single mutants: hH4R-F169V, mH4R-V171F, hH4R-S179A, hH4R-S179M; double mutants: hH4R-F169V+S179A, hH4R-F169V+S179M and mH4R-V171F+M181S. Experimental Approach Site-directed mutagenesis with pVL1392 plasmids containing hH4 or mH4 receptors were performed. Wild-type or mutant receptors were co-expressed with Gαi2 and Gβ1γ2 in Sf9 cells. Membranes were studied in saturation and competition binding assays ([3H]-histamine), and in functional [35S]-GTPγS assays with inverse, partial and full agonists of the hH4 receptor. Key Results Constitutive activity decreased from the hH4 receptor via the hH4R-F169V mutant to the hH4R-F169V+S179A and hH4R-F169V+S179M double mutants. F169 alone or in concert with S179 plays a major role in stabilizing a ligand-free active state of the hH4 receptor. Partial inverse hH4 receptor agonists like JNJ7777120 behaved as neutral antagonists or partial agonists at species orthologues with lower or no constitutive activity. Some partial and full hH4 receptor agonists showed decreased maximal effects and potencies at hH4R-F169V and double mutants. However, the mutation of S179 in the hH4 receptor to M as in mH4 receptor or A as in rH4 receptor did not significantly reduce constitutive activity. Conclusions and Implications F169 and S179 are key amino acids for the high constitutive activity of hH4 receptors and may also be of relevance for other constitutively active GPCRs. Linked Articles This article is part of a themed issue on Histamine Pharmacology Update published in volume 170 issue 1. To view the other articles in this issue visit

  13. Pharmacological evaluation of a series of smoothened antagonists in signaling pathways and after topical application in a depilated mouse model.

    PubMed

    Lauressergues, Emilie; Heusler, Peter; Lestienne, Fabrice; Troulier, David; Rauly-Lestienne, Isabelle; Tourette, Amélie; Ailhaud, Marie-Christine; Cathala, Claudie; Tardif, Stéphanie; Denais-Laliève, Delphine; Calmettes, Marie-Thérèse; Degryse, Anne-Dominique; Dumoulin, Antoine; De Vries, Luc; Cussac, Didier

    2016-04-01

    The Hedgehog (HH) pathway has been linked to the formation of basal cell carcinoma (BCC), medulloblastoma, and other cancers. The recently approved orally active drugs vismodegib (GDC-0449) and sonidegib (LDE-225) were not only efficacious for the treatment of advanced or metastatic BCC by antagonizing the smoothened (SMO) receptor, but also produced important side effects, limiting their use for less invasive BCC. Herein, we compared a large series of SMO antagonists, including GDC-0449 and LDE-225, the clinically tested BMS-833923, CUR-61414, cyclopamine, IPI-926 (saridegib), itraconazole, LEQ-506, LY-2940680 (taladegib), PF-04449913 (glasdegib), and TAK-441 as well as preclinical candidates (PF-5274857, MRT-83) in two SMO-dependent cellular assays and for G-protein activation. We report marked differences in inhibitor potencies between compounds as well as a notable disparity between the G-protein assay and the cellular tests, suggesting that classification of drugs is assay dependent. Furthermore, we explored topical efficacies of SMO antagonists on depilated mice using Gli1 and Ptch1 mRNA quantification in skin as biomarkers of the HH signaling inhibition. This topical model rapidly discriminated drugs in terms of efficacies and potencies for inhibition of both biomarkers. SMO antagonists showed also a large variation in their blood and skin partition, suggesting that some drugs are more favorable for topical application. Overall, our data suggested that in vitro and in vivo efficacious drugs such as LEQ-506 and TAK-441 may be of interest for topical treatment of less invasive BCC with minimal side effects.

  14. Pharmacological evaluation of a series of smoothened antagonists in signaling pathways and after topical application in a depilated mouse model.

    PubMed

    Lauressergues, Emilie; Heusler, Peter; Lestienne, Fabrice; Troulier, David; Rauly-Lestienne, Isabelle; Tourette, Amélie; Ailhaud, Marie-Christine; Cathala, Claudie; Tardif, Stéphanie; Denais-Laliève, Delphine; Calmettes, Marie-Thérèse; Degryse, Anne-Dominique; Dumoulin, Antoine; De Vries, Luc; Cussac, Didier

    2016-04-01

    The Hedgehog (HH) pathway has been linked to the formation of basal cell carcinoma (BCC), medulloblastoma, and other cancers. The recently approved orally active drugs vismodegib (GDC-0449) and sonidegib (LDE-225) were not only efficacious for the treatment of advanced or metastatic BCC by antagonizing the smoothened (SMO) receptor, but also produced important side effects, limiting their use for less invasive BCC. Herein, we compared a large series of SMO antagonists, including GDC-0449 and LDE-225, the clinically tested BMS-833923, CUR-61414, cyclopamine, IPI-926 (saridegib), itraconazole, LEQ-506, LY-2940680 (taladegib), PF-04449913 (glasdegib), and TAK-441 as well as preclinical candidates (PF-5274857, MRT-83) in two SMO-dependent cellular assays and for G-protein activation. We report marked differences in inhibitor potencies between compounds as well as a notable disparity between the G-protein assay and the cellular tests, suggesting that classification of drugs is assay dependent. Furthermore, we explored topical efficacies of SMO antagonists on depilated mice using Gli1 and Ptch1 mRNA quantification in skin as biomarkers of the HH signaling inhibition. This topical model rapidly discriminated drugs in terms of efficacies and potencies for inhibition of both biomarkers. SMO antagonists showed also a large variation in their blood and skin partition, suggesting that some drugs are more favorable for topical application. Overall, our data suggested that in vitro and in vivo efficacious drugs such as LEQ-506 and TAK-441 may be of interest for topical treatment of less invasive BCC with minimal side effects. PMID:27069629

  15. Activation of the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress in high-osmolarity glycogen pathway mutants.

    PubMed

    Davenport, K D; Williams, K E; Ullmann, B D; Gustin, M C

    1999-11-01

    Mitogen-activated protein kinase (MAPK) cascades are frequently used signal transduction mechanisms in eukaryotes. Of the five MAPK cascades in Saccharomyces cerevisiae, the high-osmolarity glycerol response (HOG) pathway functions to sense and respond to hypertonic stress. We utilized a partial loss-of-function mutant in the HOG pathway, pbs2-3, in a high-copy suppressor screen to identify proteins that modulate growth on high-osmolarity media. Three high-copy suppressors of pbs2-3 osmosensitivity were identified: MSG5, CAK1, and TRX1. Msg5p is a dual-specificity phosphatase that was previously demonstrated to dephosphorylate MAPKs in yeast. Deletions of the putative MAPK targets of Msg5p revealed that kss1delta could suppress the osmosensitivity of pbs2-3. Kss1p is phosphorylated in response to hyperosmotic shock in a pbs2-3 strain, but not in a wild-type strain nor in a pbs2-3 strain overexpressing MSG5. Both TEC1 and FRE::lacZ expressions are activated in strains lacking a functional HOG pathway during osmotic stress in a filamentation/invasion-pathway-dependent manner. Additionally, the cellular projections formed by a pbs2-3 mutant on high osmolarity are absent in strains lacking KSS1 or STE7. These data suggest that the loss of filamentation/invasion pathway repression contributes to the HOG mutant phenotype.

  16. Mutant SPTLC1 dominantly inhibits serine palmitoyltransferase activity in vivo and confers an age-dependent neuropathy.

    PubMed

    McCampbell, Alexander; Truong, David; Broom, Daniel C; Allchorne, Andrew; Gable, Ken; Cutler, Roy G; Mattson, Mark P; Woolf, Clifford J; Frosch, Matthew P; Harmon, Jeffrey M; Dunn, Teresa M; Brown, Robert H

    2005-11-15

    Mutations in enzymes involved in sphingolipid metabolism and trafficking cause a variety of neurological disorders, but details of the molecular pathophysiology remain obscure. SPTLC1 encodes one subunit of serine palmitoyltransferase (SPT), the rate-limiting enzyme in sphingolipid synthesis. Mutations in SPTLC1 cause hereditary sensory and autonomic neuropathy (type I) (HSAN1), an adult onset, autosomal dominant neuropathy. HSAN1 patients have reduced SPT activity. Expression of mutant SPTLC1 in yeast and mammalian cell cultures dominantly inhibits SPT activity. We created transgenic mouse lines that ubiquitously overexpress either wild-type (SPTLC1(WT)) or mutant SPTLC1 (SPTLC1(C133W)). We report here that SPTLC1(C133W) mice develop age-dependent weight loss and mild sensory and motor impairments. Aged SPTLC1(C133W) mice lose large myelinated axons in the ventral root of the spinal cord and demonstrate myelin thinning. There is also a loss of large myelinated axons in the dorsal roots, although the unmyelinated fibers are preserved. In the dorsal root ganglia, IB4 staining is diminished, whereas expression of the injury-induced transcription factor ATF3 is increased. These mice represent a novel mouse model of peripheral neuropathy and confirm the link between mutant SPT and neuronal dysfunction. PMID:16210380

  17. DICER-LIKE3 activity in Physcomitrella patens DICER-LIKE4 mutants causes severe developmental dysfunction and sterility.

    PubMed

    Arif, M Asif; Fattash, Isam; Ma, Zhaorong; Cho, Sung Hyun; Beike, Anna K; Reski, Ralf; Axtell, Michael J; Frank, Wolfgang

    2012-11-01

    Trans-acting small interfering RNAs (ta-siRNAs) are plant-specific siRNAs released from TAS precursor transcripts after microRNA-dependent cleavage, conversion into double-stranded RNA, and Dicer-dependent phased processing. Like microRNAs (miRNAs), ta-siRNAs direct site-specific cleavage of target RNAs at sites of extensive complementarity. Here, we show that the DICER-LIKE 4 protein of Physcomitrella patens (PpDCL4) is essential for the biogenesis of 21 nucleotide (nt) ta-siRNAs. In ΔPpDCL4 mutants, off-sized 23 and 24-nt ta-siRNAs accumulated as the result of PpDCL3 activity. ΔPpDCL4 mutants display severe abnormalities throughout Physcomitrella development, including sterility, that were fully reversed in ΔPpDCL3/ΔPpDCL4 double-mutant plants. Therefore, PpDCL3 activity, not loss of PpDCL4 function per se, is the cause of the ΔPpDCL4 phenotypes. Additionally, we describe several new Physcomitrella trans-acting siRNA loci, three of which belong to a new family, TAS6. TAS6 loci are typified by sliced miR156 and miR529 target sites and are in close proximity to PpTAS3 loci.

  18. Activation of the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress in high-osmolarity glycogen pathway mutants

    NASA Technical Reports Server (NTRS)

    Davenport, K. D.; Williams, K. E.; Ullmann, B. D.; Gustin, M. C.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    Mitogen-activated protein kinase (MAPK) cascades are frequently used signal transduction mechanisms in eukaryotes. Of the five MAPK cascades in Saccharomyces cerevisiae, the high-osmolarity glycerol response (HOG) pathway functions to sense and respond to hypertonic stress. We utilized a partial loss-of-function mutant in the HOG pathway, pbs2-3, in a high-copy suppressor screen to identify proteins that modulate growth on high-osmolarity media. Three high-copy suppressors of pbs2-3 osmosensitivity were identified: MSG5, CAK1, and TRX1. Msg5p is a dual-specificity phosphatase that was previously demonstrated to dephosphorylate MAPKs in yeast. Deletions of the putative MAPK targets of Msg5p revealed that kss1delta could suppress the osmosensitivity of pbs2-3. Kss1p is phosphorylated in response to hyperosmotic shock in a pbs2-3 strain, but not in a wild-type strain nor in a pbs2-3 strain overexpressing MSG5. Both TEC1 and FRE::lacZ expressions are activated in strains lacking a functional HOG pathway during osmotic stress in a filamentation/invasion-pathway-dependent manner. Additionally, the cellular projections formed by a pbs2-3 mutant on high osmolarity are absent in strains lacking KSS1 or STE7. These data suggest that the loss of filamentation/invasion pathway repression contributes to the HOG mutant phenotype.

  19. Activation of mitogen-activated protein kinase is necessary but not sufficient for proliferation of human thyroid epithelial cells induced by mutant Ras.

    PubMed

    Gire, V; Marshall, C J; Wynford-Thomas, D

    1999-08-26

    Given the high frequency of ras oncogene activation in several common human cancers, its signal pathways are an important target for novel therapy. For practical reasons, however, these have been studied mainly in the context of transformation of established fibroblast cell lines, whereas ras acts at an earlier stage in human tumorigenesis and predominantly on epithelial cells. Here we have developed a more directly relevant model - human primary thyroid epithelial cells - which are a major target of naturally-occurring Ras mutation, and in which expression of mutant Ras in culture induces clonal expansion without morphological transformation, closely reproducing the phenotype of the corresponding tumour in vivo. Transient or stable expression of mutant H-ras (by scrapeloading or retroviral infection) at levels which stimulated proliferation induced sustained activation and translocation of MAP kinase (MAPK) in these cells. Inhibition of the MAPK pathway at the level of MAPKK, by expression of a dominant-negative mutant or by the pharmacological inhibitor PD98059, efficiently blocked the proliferative response. Conversely, selective activation of MAPK by a constitutively-active MAPKK1 mutant failed to mimic the action of Ras and, although this was achievable with activated Raf, micro-injection of anti-ras antibodies showed that this still required endogenous wild-type Ras function. In contrast to recent results obtained with a rodent thyroid cell line (WRT), therefore, activation of the MAPK pathway is necessary, but not sufficient, for the proliferogenic action of mutant Ras on primary human thyroid cells. These data emphasize the unreliability of extrapolation from cell lines and establish the feasibility of using a more representative human epithelial model for Ras signalling studies.

  20. The diageotropica mutant of tomato lacks high specific activity auxin binding sites

    NASA Technical Reports Server (NTRS)

    Hicks, G. R.; Rayle, D. L.; Lomax, T. L.

    1989-01-01

    Tomato plants homozygous for the diageotropica (dgt) mutation exhibit morphological and physiological abnormalities which suggest that they are unable to respond to the plant growth hormone auxin (indole-3-acetic acid). The photoaffinity auxin analog [3H]5N3-IAA specifically labels a polypeptide doublet of 40 and 42 kilodaltons in membrane preparations from stems of the parental variety, VFN8, but not from stems of plants containing the dgt mutation. In roots of the mutant plants, however, labeling is indistinguishable from that in VFN8. These data suggest that the two polypeptides are part of a physiologically important auxin receptor system, which is altered in a tissue-specific manner in the mutant.

  1. Comparative mutant prevention concentration and antibacterial activity of fluoroquinolones against Escherichia coli in diarrheic buffalo calves.

    PubMed

    Beri, Supriya; Sidhu, Pritam K; Kaur, Gurpreet; Chandra, Mudit; Rampal, Satyavan

    2015-10-01

    Owing to emerging threat of antimicrobial resistance, mutant prevention concentration (MPC) is considered as an important parameter to evaluate the antimicrobials for their capacity to restrict/allow the emergence of resistant mutants. Therefore, MPCs of ciprofloxacin, enrofloxacin, levofloxacin, moxifloxacin, and norfloxacin were determined against Escherichia coli isolates of diarrheic buffalo calves. The minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were also established. The MICs of ciprofloxacin, enrofloxacin, levofloxacin, moxifloxacin and norfloxacin were 0·009, 0·022, 0·024, 0·028, and 0·036 μg/ml, respectively. The MBCs obtained were very close to the MICs of respective drugs that suggested a bactericidal mode of action of antimicrobials. The MPCs (μg/ml) of ciprofloxacin (4·2×MIC), moxifloxacin (4·8×MIC), and norfloxacin (5·1×MIC) were approximately equal but slightly lower than enrofloxacin (7·6×MIC) and levofloxacin (8·5×MIC) against clinical isolates of E. coli. The MPC data suggested that enrofloxacin has the potential for restricting the selection of E. coli mutants during treatment at appropriate dosing.

  2. A baker's yeast mutant (fil1) with a specific, partially inactivating mutation in adenylate cyclase maintains a high stress resistance during active fermentation and growth.

    PubMed

    Van Dijck, P; Ma, P; Versele, M; Gorwa, M F; Colombo, S; Lemaire, K; Bossi, D; Loïez, A; Thevelein, J M

    2000-10-01

    The initiation of fermentation in the yeast Saccharomyces cerevisiae is associated with a rapid drop in stress resistance. This is disadvantageous for several biotechnological applications, e.g. the preparation of freeze doughs. We have isolated mutants in a laboratory strain which are deficient in fermentation-induced loss of stress resistance ('fil' mutants) using a heat shock selection protocol. We show that the fil1 mutant contains a mutation in the CYR1 gene which encodes adenylate cyclase. It causes a change at position 1682 of glutamate into lysine and results in a tenfold drop in adenylate cyclase activity. The fil1 mutant displays a reduction in the glucose-induced cAMP increase, trehalase activation and loss of heat resistance. Interestingly, the fil1 mutant shows the same growth and fermentation rate as the wild type strain, as opposed to other mutants with reduced activity of the cAMP pathway. Introduction of the fil1 mutation in the vigorous Y55 strain and cultivation of the mutant under pilot scale conditions resulted in a yeast that displayed a higher freeze and drought resistance during active fermentation compared to the wild type Y55 strain. These results show that high stress resistance and high fermentation activity are compatible biological properties. Isolation of fil-type mutations appears a promising avenue for development of industrial yeast strains with improved stress resistance during active fermentation.

  3. A baker's yeast mutant (fil1) with a specific, partially inactivating mutation in adenylate cyclase maintains a high stress resistance during active fermentation and growth.

    PubMed

    Van Dijck, P; Ma, P; Versele, M; Gorwa, M F; Colombo, S; Lemaire, K; Bossi, D; Loïez, A; Thevelein, J M

    2000-10-01

    The initiation of fermentation in the yeast Saccharomyces cerevisiae is associated with a rapid drop in stress resistance. This is disadvantageous for several biotechnological applications, e.g. the preparation of freeze doughs. We have isolated mutants in a laboratory strain which are deficient in fermentation-induced loss of stress resistance ('fil' mutants) using a heat shock selection protocol. We show that the fil1 mutant contains a mutation in the CYR1 gene which encodes adenylate cyclase. It causes a change at position 1682 of glutamate into lysine and results in a tenfold drop in adenylate cyclase activity. The fil1 mutant displays a reduction in the glucose-induced cAMP increase, trehalase activation and loss of heat resistance. Interestingly, the fil1 mutant shows the same growth and fermentation rate as the wild type strain, as opposed to other mutants with reduced activity of the cAMP pathway. Introduction of the fil1 mutation in the vigorous Y55 strain and cultivation of the mutant under pilot scale conditions resulted in a yeast that displayed a higher freeze and drought resistance during active fermentation compared to the wild type Y55 strain. These results show that high stress resistance and high fermentation activity are compatible biological properties. Isolation of fil-type mutations appears a promising avenue for development of industrial yeast strains with improved stress resistance during active fermentation. PMID:11075928

  4. Improvement of erythrose reductase activity, deletion of by-products and statistical media optimization for enhanced erythritol production from Yarrowia lipolytica mutant 49.

    PubMed

    Ghezelbash, Gholam Reza; Nahvi, Iraj; Emamzadeh, Rahman

    2014-08-01

    The purpose of the present investigation was to produce erythritol by Yarrowia lipolytica mutant without any by-products. Mutants of Y. lipolytica were generated by ultra-violet for enhancing erythrose reductase (ER) activity and erythritol production. The mutants showing the highest ER activity were screened by triphenyl tetrazolium chloride agar plate assay. Productivity of samples was analyzed by thin-layer chromatography and high-performance liquid chromatography equipped with the refractive index detector. One of the mutants named as mutant 49 gave maximum erythritol production without any other by-products (particularly glycerol). Erythritol production and specific ER activity in mutant 49 increased to 1.65 and 1.47 times, respectively, in comparison with wild-type strain. The ER gene of wild and mutant strains was sequenced and analyzed. A general comparison of wild and mutant gene sequences showed the replacement of Asp(270) with Glu(270) in ER protein. In order to enhance erythritol production, we used a three component-three level-one response Box-Behnken of response surface methodology model. The optimum medium composition for erythritol production was found to be (g/l) glucose 279.49, ammonium sulfate 9.28, and pH 5.41 with 39.76 erythritol production.

  5. The Anti-Methicillin-Resistant Staphylococcus aureus Quinolone WCK 771 Has Potent Activity against Sequentially Selected Mutants, Has a Narrow Mutant Selection Window against Quinolone-Resistant Staphylococcus aureus, and Preferentially Targets DNA Gyrase▿ †

    PubMed Central

    Bhagwat, Sachin S.; Mundkur, Lakshmi A.; Gupte, Shrikant V.; Patel, Mahesh V.; Khorakiwala, Habil F.

    2006-01-01

    WCK 771 is a broad-spectrum fluoroquinolone with enhanced activity against quinolone-resistant staphylococci. To understand the impact of the target-level interactions of WCK 771 on its antistaphylococcal pharmacodynamic properties, we determined the MICs for genetically defined mutants and studied the mutant prevention concentrations (MPCs), the frequency of mutation, and the cidality against the wild type and double mutants. There was a twofold increase in the MICs of WCK 771 for single gyrA mutants, indicating that DNA gyrase is its primary target. All first- and second-step mutants selected by WCK 771 revealed gyrA and grlA mutations, respectively. The MICs of WCK 771 and clinafloxacin were found to be superior to those of other quinolones against strains with double and triple mutations. WCK 771 was also cidal for high-density double mutants at low concentrations. WCK 771 and clinafloxacin showed narrow mutant selection windows compared to those of the other quinolones. Against a panel of 50 high-level quinolone-resistant clinical isolates of staphylococci (ciprofloxacin MIC ≥ 16 μg/ml), the WCK 771 MPCs were ≤2 μg/ml for 68% of the strains and ≤4 μg/ml for 28% of the strains. Our results demonstrate that gyrA is the primary target of WCK 771 and that it has pharmacodynamic properties remarkably different from those of quinolones with dual targets (garenoxacin and moxifloxacin) and topoisomerase IV-specific quinolones (trovafloxacin). WCK 771 displayed an activity profile comparable to that of clinafloxacin, a dual-acting quinolone with a high affinity to DNA gyrase. Overall, the findings signify the key role of DNA gyrase in determining the optimal antistaphylococcal features of quinolones. PMID:16940059

  6. Novel Acylguanidine Derivatives Targeting Smoothened Induce Antiproliferative and Pro-Apoptotic Effects in Chronic Myeloid Leukemia Cells.

    PubMed

    Chiarenza, Alessandra; Manetti, Fabrizio; Petricci, Elena; Ruat, Martial; Naldini, Antonella; Taddei, Maurizio; Carraro, Fabio

    2016-01-01

    The most relevant therapeutic approaches to treat CML rely on the administration of tyrosine kinase inhibitors (TKIs) like Imatinib, which are able to counteract the activity of Bcr-Abl protein increasing patient's life expectancy and survival. Unfortunately, there are some issues TKIs are not able to address; first of all TKIs are not so effective in increasing survival of patients in blast crisis, second they are not able to eradicate leukemic stem cells (LSC) which represent the major cause of disease relapse, and third patients often develop resistance to TKIs due to mutations in the drug binding site. For all these reasons it's of primary interest to find alternative strategies to treat CML. Literature shows that Hedgehog signaling pathway is involved in LSC maintenance, and pharmacological inhibition of Smoothened (SMO), one of the key molecules of the pathway, has been demonstrated to reduce Bcr-Abl positive bone marrow cells and LSC. Consequently, targeting SMO could be a promising way to develop a new treatment strategy for CML overcoming the limitations of current therapies. In our work we have tested some compounds able to inhibit SMO, and among them MRT92 appears to be a very potent SMO antagonist. We found that almost all our compounds were able to reduce Gli1 protein levels in K-562 and in KU-812 CML cell lines. Furthermore, they were also able to increase Gli1 and SMO RNA levels, and to reduce cell proliferation and induce apoptosis/autophagy in both the tested cell lines. Finally, we demonstrated that our compounds were able to modulate the expression of some miRNAs related to Hedgehog pathway such as miR-324-5p and miR-326. Being Hedgehog pathway deeply implicated in the mechanisms of CML we may conclude that it could be a good therapeutic target for CML and our compounds seem to be promising antagonists of such pathway. PMID:26934052

  7. Novel Acylguanidine Derivatives Targeting Smoothened Induce Antiproliferative and Pro-Apoptotic Effects in Chronic Myeloid Leukemia Cells

    PubMed Central

    Chiarenza, Alessandra; Manetti, Fabrizio; Petricci, Elena; Ruat, Martial; Naldini, Antonella; Taddei, Maurizio; Carraro, Fabio

    2016-01-01

    The most relevant therapeutic approaches to treat CML rely on the administration of tyrosine kinase inhibitors (TKIs) like Imatinib, which are able to counteract the activity of Bcr-Abl protein increasing patient’s life expectancy and survival. Unfortunately, there are some issues TKIs are not able to address; first of all TKIs are not so effective in increasing survival of patients in blast crisis, second they are not able to eradicate leukemic stem cells (LSC) which represent the major cause of disease relapse, and third patients often develop resistance to TKIs due to mutations in the drug binding site. For all these reasons it’s of primary interest to find alternative strategies to treat CML. Literature shows that Hedgehog signaling pathway is involved in LSC maintenance, and pharmacological inhibition of Smoothened (SMO), one of the key molecules of the pathway, has been demonstrated to reduce Bcr-Abl positive bone marrow cells and LSC. Consequently, targeting SMO could be a promising way to develop a new treatment strategy for CML overcoming the limitations of current therapies. In our work we have tested some compounds able to inhibit SMO, and among them MRT92 appears to be a very potent SMO antagonist. We found that almost all our compounds were able to reduce Gli1 protein levels in K-562 and in KU-812 CML cell lines. Furthermore, they were also able to increase Gli1 and SMO RNA levels, and to reduce cell proliferation and induce apoptosis/autophagy in both the tested cell lines. Finally, we demonstrated that our compounds were able to modulate the expression of some miRNAs related to Hedgehog pathway such as miR-324-5p and miR-326. Being Hedgehog pathway deeply implicated in the mechanisms of CML we may conclude that it could be a good therapeutic target for CML and our compounds seem to be promising antagonists of such pathway. PMID:26934052

  8. Reduced mutant yield at high doses in the Salmonella/activation assay: the cause is not always toxicity.

    PubMed

    McGregor, D; Prentice, R D; McConville, M; Lee, Y J; Caspary, W J

    1984-01-01

    In the Salmonella/activation assay developed by Ames et al [1973, 1975] toxicity is not measured, though it is recognized by the loss of a cloudy appearance on the plate. One approach to the measurement of toxicity is described here and uses a microscope-linked automated colony counter to estimate the number of microcolonies formed by histidine auxotrophs that stop growing after the depletion of histidine. This technique was used to evaluate the effect of toxicity on the revertant count for 16 mutagens, most of which were chosen because, from previous experience, their dose-response curves manifested a maximum at an intermediate dose tested. One of the sixteen, 2-nitrofluorene, was not toxic up to the maximum dose tested. The relationship between mutation and toxicity for the remaining fifteen allowed them to be grouped into two categories: (1) compounds that induced decreases in survival at the same dose at which the number of mutants decreased, and (2) compounds that induced toxicity, but survival was reduced at dose levels higher than those required to reduce the number of mutants. Possible explanations for this reduction of mutant counts occurring with little apparent concomitant increase in toxicity are examined. These results may be significant for attempts to estimate mutagenic potency and, to a lesser extent, construct mathematical models of the Ames test. PMID:6381041

  9. Increased tolerance to salt stress in OPDA-deficient rice ALLENE OXIDE CYCLASE mutants is linked to an increased ROS-scavenging activity

    PubMed Central

    Hazman, Mohamed; Hause, Bettina; Eiche, Elisabeth; Nick, Peter; Riemann, Michael

    2015-01-01

    Salinity stress represents a global constraint for rice, the most important staple food worldwide. Therefore the role of the central stress signal jasmonate for the salt response was analysed in rice comparing the responses to salt stress for two jasmonic acid (JA) biosynthesis rice mutants (cpm2 and hebiba) impaired in the function of ALLENE OXIDE CYCLASE (AOC) and their wild type. The aoc mutants were less sensitive to salt stress. Interestingly, both mutants accumulated smaller amounts of Na+ ions in their leaves, and showed better scavenging of reactive oxygen species (ROS) under salt stress. Leaves of the wild type and JA mutants accumulated similar levels of abscisic acid (ABA) under stress conditions, and the levels of JA and its amino acid conjugate, JA–isoleucine (JA-Ile), showed only subtle alterations in the wild type. In contrast, the wild type responded to salt stress by strong induction of the JA precursor 12-oxophytodienoic acid (OPDA), which was not observed in the mutants. Transcript levels of representative salinity-induced genes were induced less in the JA mutants. The absence of 12-OPDA in the mutants correlated not only with a generally increased ROS-scavenging activity, but also with the higher activity of specific enzymes in the antioxidative pathway, such as glutathione S-transferase, and fewer symptoms of damage as, for example, indicated by lower levels of malondialdehyde. The data are interpreted in a model where the absence of OPDA enhanced the antioxidative power in mutant leaves. PMID:25873666

  10. Inactivation of PNKP by mutant ATXN3 triggers apoptosis by activating the DNA damage-response pathway in SCA3.

    PubMed

    Gao, Rui; Liu, Yongping; Silva-Fernandes, Anabela; Fang, Xiang; Paulucci-Holthauzen, Adriana; Chatterjee, Arpita; Zhang, Hang L; Matsuura, Tohru; Choudhary, Sanjeev; Ashizawa, Tetsuo; Koeppen, Arnulf H; Maciel, Patricia; Hazra, Tapas K; Sarkar, Partha S

    2015-01-01

    Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is an untreatable autosomal dominant neurodegenerative disease, and the most common such inherited ataxia worldwide. The mutation in SCA3 is the expansion of a polymorphic CAG tri-nucleotide repeat sequence in the C-terminal coding region of the ATXN3 gene at chromosomal locus 14q32.1. The mutant ATXN3 protein encoding expanded glutamine (polyQ) sequences interacts with multiple proteins in vivo, and is deposited as aggregates in the SCA3 brain. A large body of literature suggests that the loss of function of the native ATNX3-interacting proteins that are deposited in the polyQ aggregates contributes to cellular toxicity, systemic neurodegeneration and the pathogenic mechanism in SCA3. Nonetheless, a significant understanding of the disease etiology of SCA3, the molecular mechanism by which the polyQ expansions in the mutant ATXN3 induce neurodegeneration in SCA3 has remained elusive. In the present study, we show that the essential DNA strand break repair enzyme PNKP (polynucleotide kinase 3'-phosphatase) interacts with, and is inactivated by, the mutant ATXN3, resulting in inefficient DNA repair, persistent accumulation of DNA damage/strand breaks, and subsequent chronic activation of the DNA damage-response ataxia telangiectasia-mutated (ATM) signaling pathway in SCA3. We report that persistent accumulation of DNA damage/strand breaks and chronic activation of the serine/threonine kinase ATM and the downstream p53 and protein kinase C-δ pro-apoptotic pathways trigger neuronal dysfunction and eventually neuronal death in SCA3. Either PNKP overexpression or pharmacological inhibition of ATM dramatically blocked mutant ATXN3-mediated cell death. Discovery of the mechanism by which mutant ATXN3 induces DNA damage and amplifies the pro-death signaling pathways provides a molecular basis for neurodegeneration due to PNKP inactivation in SCA3, and for the first time offers a possible

  11. Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens.

    PubMed

    Barahona, Emma; Navazo, Ana; Martínez-Granero, Francisco; Zea-Bonilla, Teresa; Pérez-Jiménez, Rosa María; Martín, Marta; Rivilla, Rafael

    2011-08-01

    Motility is one of the most important traits for efficient rhizosphere colonization by Pseudomonas fluorescens F113rif (F113). In this bacterium, motility is a polygenic trait that is repressed by at least three independent pathways, including the Gac posttranscriptional system, the Wsp chemotaxis-like pathway, and the SadB pathway. Here we show that the kinB gene, which encodes a signal transduction protein that together with AlgB has been implicated in alginate production, participates in swimming motility repression through the Gac pathway, acting downstream of the GacAS two-component system. Gac mutants are impaired in secondary metabolite production and are unsuitable as biocontrol agents. However, the kinB mutant and a triple mutant affected in kinB, sadB, and wspR (KSW) possess a wild-type phenotype for secondary metabolism. The KSW strain is hypermotile and more competitive for rhizosphere colonization than the wild-type strain. We have compared the biocontrol activity of KSW with those of the wild-type strain and a phenotypic variant (F113v35 [V35]) which is hypermotile and hypercompetitive but is affected in secondary metabolism since it harbors a gacS mutation. Biocontrol experiments in the Fusarium oxysporum f. sp. radicis-lycopersici/Lycopersicum esculentum (tomato) and Phytophthora cactorum/Fragaria vesca (strawberry) pathosystems have shown that the three strains possess biocontrol activity. Biocontrol activity was consistently lower for V35, indicating that the production of secondary metabolites was the most important trait for biocontrol. Strain KSW showed improved biocontrol compared with the wild-type strain, indicating that an increase in competitive colonization ability resulted in improved biocontrol and that the rational design of biocontrol agents by mutation is feasible. PMID:21685161

  12. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination.

    PubMed

    Rowley, Paul A; Kachroo, Aashiq H; Ma, Chien-Hui; Maciaszek, Anna D; Guga, Piotr; Jayaram, Makkuni

    2015-07-13

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5' to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions. PMID:25999343

  13. SET7/9 Catalytic Mutants Reveal the Role of Active Site Water Molecules in Lysine Multiple Methylation*

    PubMed Central

    Del Rizzo, Paul A.; Couture, Jean-François; Dirk, Lynnette M. A.; Strunk, Bethany S.; Roiko, Marijo S.; Brunzelle, Joseph S.; Houtz, Robert L.; Trievel, Raymond C.

    2010-01-01

    SET domain lysine methyltransferases (KMTs) methylate specific lysine residues in histone and non-histone substrates. These enzymes also display product specificity by catalyzing distinct degrees of methylation of the lysine ϵ-amino group. To elucidate the molecular mechanism underlying this specificity, we have characterized the Y245A and Y305F mutants of the human KMT SET7/9 (also known as KMT7) that alter its product specificity from a monomethyltransferase to a di- and a trimethyltransferase, respectively. Crystal structures of these mutants in complex with peptides bearing unmodified, mono-, di-, and trimethylated lysines illustrate the roles of active site water molecules in aligning the lysine ϵ-amino group for methyl transfer with S-adenosylmethionine. Displacement or dissociation of these solvent molecules enlarges the diameter of the active site, accommodating the increasing size of the methylated ϵ-amino group during successive methyl transfer reactions. Together, these results furnish new insights into the roles of active site water molecules in modulating lysine multiple methylation by SET domain KMTs and provide the first molecular snapshots of the mono-, di-, and trimethyl transfer reactions catalyzed by these enzymes. PMID:20675860

  14. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination.

    PubMed

    Rowley, Paul A; Kachroo, Aashiq H; Ma, Chien-Hui; Maciaszek, Anna D; Guga, Piotr; Jayaram, Makkuni

    2015-07-13

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5' to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions.

  15. Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum.

    PubMed

    Thatcher, Louise F; Cevik, Volkan; Grant, Murray; Zhai, Bing; Jones, Jonathan D G; Manners, John M; Kazan, Kemal

    2016-04-01

    In Arabidopsis, jasmonate (JA)-signaling plays a key role in mediating Fusarium oxysporum disease outcome. However, the roles of JASMONATE ZIM-domain (JAZ) proteins that repress JA-signaling have not been characterized in host resistance or susceptibility to this pathogen. Here, we found most JAZ genes are induced following F. oxysporum challenge, and screening T-DNA insertion lines in Arabidopsis JAZ family members identified a highly disease-susceptible JAZ7 mutant (jaz7-1D). This mutant exhibited constitutive JAZ7 expression and conferred increased JA-sensitivity, suggesting activation of JA-signaling. Unlike jaz7 loss-of-function alleles, jaz7-1D also had enhanced JA-responsive gene expression, altered development and increased susceptibility to the bacterial pathogen PstDC3000 that also disrupts host JA-responses. We also demonstrate that JAZ7 interacts with transcription factors functioning as activators (MYC3, MYC4) or repressors (JAM1) of JA-signaling and contains a functional EAR repressor motif mediating transcriptional repression via the co-repressor TOPLESS (TPL). We propose through direct TPL recruitment, in wild-type plants JAZ7 functions as a repressor within the JA-response network and that in jaz7-1D plants, misregulated ectopic JAZ7 expression hyper-activates JA-signaling in part by disturbing finely-tuned COI1-JAZ-TPL-TF complexes.

  16. Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum

    PubMed Central

    Thatcher, Louise F.; Cevik, Volkan; Grant, Murray; Zhai, Bing; Jones, Jonathan D.G.; Manners, John M.; Kazan, Kemal

    2016-01-01

    In Arabidopsis, jasmonate (JA)-signaling plays a key role in mediating Fusarium oxysporum disease outcome. However, the roles of JASMONATE ZIM-domain (JAZ) proteins that repress JA-signaling have not been characterized in host resistance or susceptibility to this pathogen. Here, we found most JAZ genes are induced following F. oxysporum challenge, and screening T-DNA insertion lines in Arabidopsis JAZ family members identified a highly disease-susceptible JAZ7 mutant (jaz7-1D). This mutant exhibited constitutive JAZ7 expression and conferred increased JA-sensitivity, suggesting activation of JA-signaling. Unlike jaz7 loss-of-function alleles, jaz7-1D also had enhanced JA-responsive gene expression, altered development and increased susceptibility to the bacterial pathogen Pst DC3000 that also disrupts host JA-responses. We also demonstrate that JAZ7 interacts with transcription factors functioning as activators (MYC3, MYC4) or repressors (JAM1) of JA-signaling and contains a functional EAR repressor motif mediating transcriptional repression via the co-repressor TOPLESS (TPL). We propose through direct TPL recruitment, in wild-type plants JAZ7 functions as a repressor within the JA-response network and that in jaz7-1D plants, misregulated ectopic JAZ7 expression hyper-activates JA-signaling in part by disturbing finely-tuned COI1-JAZ-TPL-TF complexes. PMID:26896849

  17. Tlr4-mutant mice are resistant to acute alcohol-induced sterol-regulatory element binding protein activation and hepatic lipid accumulation.

    PubMed

    Zhang, Zhi-Hui; Liu, Xiao-Qian; Zhang, Cheng; He, Wei; Wang, Hua; Chen, Yuan-Hua; Liu, Xiao-Jing; Chen, Xi; Xu, De-Xiang

    2016-01-01

    Previous studies demonstrated that acute alcohol intoxication caused hepatic lipid accumulation. The present study showed that acute alcohol intoxication caused hepatic lipid accumulation in Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic sterol-regulatory element binding protein (SREBP)-1, a transcription factor regulating fatty acid and triglyceride (TG) synthesis, was activated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic Fas, Acc, Scd-1 and Dgat-2, the key genes for fatty acid and TG synthesis, were up-regulated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Additional experiment showed that hepatic MyD88 was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic NF-κB was activated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Moreover, hepatic GSH content was reduced and hepatic MDA level was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic CYP2E1 was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic p67phox and gp91phox, two NADPH oxidase subunits, were up-regulated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Alpha-phenyl-N-t-butylnitrone (PBN), a free radical spin-trapping agent, protected against alcohol-induced hepatic SREBP-1 activation and hepatic lipid accumulation. In conclusion, Tlr4-mutant mice are resistant to acute alcohol-induced hepatic SREBP-1 activation and hepatic lipid accumulation. PMID:27627966

  18. Tlr4-mutant mice are resistant to acute alcohol-induced sterol-regulatory element binding protein activation and hepatic lipid accumulation

    PubMed Central

    Zhang, Zhi-Hui; Liu, Xiao-Qian; Zhang, Cheng; He, Wei; Wang, Hua; Chen, Yuan-Hua; Liu, Xiao-Jing; Chen, Xi; Xu, De-Xiang

    2016-01-01

    Previous studies demonstrated that acute alcohol intoxication caused hepatic lipid accumulation. The present study showed that acute alcohol intoxication caused hepatic lipid accumulation in Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic sterol-regulatory element binding protein (SREBP)-1, a transcription factor regulating fatty acid and triglyceride (TG) synthesis, was activated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic Fas, Acc, Scd-1 and Dgat-2, the key genes for fatty acid and TG synthesis, were up-regulated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Additional experiment showed that hepatic MyD88 was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic NF-κB was activated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Moreover, hepatic GSH content was reduced and hepatic MDA level was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic CYP2E1 was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic p67phox and gp91phox, two NADPH oxidase subunits, were up-regulated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Alpha-phenyl-N-t-butylnitrone (PBN), a free radical spin-trapping agent, protected against alcohol-induced hepatic SREBP-1 activation and hepatic lipid accumulation. In conclusion, Tlr4-mutant mice are resistant to acute alcohol-induced hepatic SREBP-1 activation and hepatic lipid accumulation. PMID:27627966

  19. Photosystem activity and state transitions of the photosynthetic apparatus in cyanobacterium Synechocystis PCC 6803 mutants with different redox state of the plastoquinone pool.

    PubMed

    Bolychevtseva, Y V; Kuzminov, F I; Elanskaya, I V; Gorbunov, M Y; Karapetyan, N V

    2015-01-01

    To better understand how photosystem (PS) activity is regulated during state transitions in cyanobacteria, we studied photosynthetic parameters of photosystem II (PSII) and photosystem I (PSI) in Synechocystis PCC 6803 wild type (WT) and its mutants deficient in oxidases (Ox(-)) or succinate dehydrogenase (SDH(-)). Dark-adapted Ox(-) mutant, lacking the oxidation agents, is expected to have a reduced PQ pool, while in SDH(-) mutant the PQ pool after dark adaptation will be more oxidized due to partial inhibition of the respiratory chain electron carriers. In this work, we tested the hypothesis that control of balance between linear and cyclic electron transport by the redox state of the PQ pool will affect PSII photosynthetic activity during state transition. We found that the PQ pool was reduced in Ox(-) mutant, but oxidized in SDH(-) mutant after prolonged dark adaptation, indicating different states of the photosynthetic apparatus in these mutants. Analysis of variable fluorescence and 77K fluorescence spectra revealed that the WT and SDH(-) mutant were in State 1 after dark adaptation, while the Ox(-) mutant was in State 2. State 2 was characterized by ~1.5 time lower photochemical activity of PSII, as well as high rate of P700 reduction and the low level of P700 oxidation, indicating high activity of cyclic electron transfer around PSI. Illumination with continuous light 1 (440 nm) along with flashes of light 2 (620 nm) allowed oxidation of the PQ pool in the Ox(-) mutant, thus promoting it to State 1, but it did not affect PSII activity in dark adapted WT and SDH(-) mutant. State 1 in the Ox(-) mutant was characterized by high variable fluorescence and P700(+) levels typical for WT and the SDH(-) mutant, indicating acceleration of linear electron transport. Thus, we show that PSII of cyanobacteria has a higher photosynthetic activity in State 1, while it is partially inactivated in State 2. This process is controlled by the redox state of PQ in

  20. Activation of Jun kinase/stress-activated protein kinase by GTPase-deficient mutants of G alpha 12 and G alpha 13.

    PubMed

    Prasad, M V; Dermott, J M; Heasley, L E; Johnson, G L; Dhanasekaran, N

    1995-08-01

    Signal transduction pathways regulated by G12 and G13 heterotrimeric G proteins are largely unknown. Expression of activated, GTPase-deficient mutants of alpha 12 and alpha 13 alter physiological responses such as Na+/H+ exchanger activity, but the effector pathways controlling these responses have not been defined. We have found that the expression of GTPase-deficient mutants of alpha 12 (alpha 12Q229L) or alpha 13 (alpha 13Q226L) leads to robust activation of the Jun kinase/stress-activated protein kinase (JNK/SAPK) pathway. Inducible alpha 12Q229L and alpha 13Q226L expression vectors stably transfected in NIH 3T3 cells demonstrated JNK/SAPK activation but not extracellular response/mitogen-activated protein kinase activation. Transient transfection of alpha 12Q229L and alpha 13Q226L also activated the JNK/SAPK pathway in COS-1 cells. Expression of the GTPase-deficient mutant of alpha q (alpha qQ209L) but not alpha i (alpha iQ205L) or alpha s (alpha sQ227L) was also able to activate the JNK/SAPK pathway. Functional Ras signaling was required for alpha 12Q229L and alpha 13Q226L activation of the JNK/SAPK pathway; expression of competitive inhibitory N17Ras inhibited JNK/SAPK activation in response to both alpha 12Q229L and alpha 13Q226L. The results describe for the first time a Ras-dependent signal transduction pathway involving JNK/SAPK regulated by alpha 12 and alpha 13. PMID:7629196

  1. A pure chloride channel mutant of CLC-5 causes Dent's disease via insufficient V-ATPase activation.

    PubMed

    Satoh, Nobuhiko; Yamada, Hideomi; Yamazaki, Osamu; Suzuki, Masashi; Nakamura, Motonobu; Suzuki, Atsushi; Ashida, Akira; Yamamoto, Daisuke; Kaku, Yoshitsugu; Sekine, Takashi; Seki, George; Horita, Shoko

    2016-07-01

    Dent's disease is characterized by defective endocytosis in renal proximal tubules (PTs) and caused by mutations in the 2Cl(-)/H(+) exchanger, CLC-5. However, the pathological role of endosomal acidification in endocytosis has recently come into question. To clarify the mechanism of pathogenesis for Dent's disease, we examined the effects of a novel gating glutamate mutation, E211Q, on CLC-5 functions and endosomal acidification. In Xenopus oocytes, wild-type (WT) CLC-5 showed outward-rectifying currents that were inhibited by extracellular acidosis, but E211Q and an artificial pure Cl(-) channel mutant, E211A, showed linear currents that were insensitive to extracellular acidosis. Moreover, depolarizing pulse trains induced a robust reduction in the surface pH of oocytes expressing WT CLC-5 but not E211Q or E211A, indicating that the E211Q mutant functions as a pure Cl(-) channel similar to E211A. In HEK293 cells, E211A and E211Q stimulated endosomal acidification and hypotonicity-inducible vacuolar-type H(+)-ATPase (V-ATPase) activation at the plasma membrane. However, the stimulatory effects of these mutants were reduced compared with WT CLC-5. Furthermore, gene silencing experiments confirmed the functional coupling between V-ATPase and CLC-5 at the plasma membrane of isolated mouse PTs. These results reveal for the first time that the conversion of CLC-5 from a 2Cl(-)/H(+) exchanger into a Cl(-) channel induces Dent's disease in humans. In addition, defective endosomal acidification as a result of insufficient V-ATPase activation may still be important in the pathogenesis of Dent's disease.

  2. The diageotropica mutant of tomato lacks high specific activity auxin sites

    SciTech Connect

    Hicks, G.R.; Lomax, T.L. ); Rayle, D.L. )

    1989-04-01

    Tomato (Lycopersicum esculentum, Mill) plants homozygous for the single gene diageotropica (dgt) mutation have reduced shoot growth, abnormal vascular tissue, altered leaf morphology, and lack of lateral root branching. These and other morphological and physiological abnormalities suggest that dgt plants are unable to respond to the plant growth hormone auxin (indole-3-acetic acid, IAA). The photoaffinity auxin analogue {sup 3}H-5N{sub 3}-IAA specifically labels a polypeptide doublet of 40 ad 42 kD in membrane preparations from stems of the parental variety VFN8, but not from stems of dgt. In elongation tests, excised dgt roots respond in the same manner to IAA an VFN8 roots. These data suggest that the two polypeptides are part of a physiologically important auxin receptor system which is altered in a tissue-specific manner in the mutant.

  3. A constitutively activated mutant of human soluble guanylyl cyclase (sGC): implication for the mechanism of sGC activation

    NASA Technical Reports Server (NTRS)

    Martin, Emil; Sharina, Iraida; Kots, Alexander; Murad, Ferid

    2003-01-01

    Heterodimeric alphabeta soluble guanylyl cyclase (sGC) is a recognized receptor for nitric oxide (NO) and mediates many of its physiological functions. Although it has been clear that the heme moiety coordinated by His-105 of the beta subunit is crucial for mediating the activation of the enzyme by NO, it is not understood whether the heme moiety plays any role in the function of the enzyme in the absence of NO. Here we analyze the effects of biochemical and genetic removal of heme and its reconstitution on the activity of the enzyme. Detergent-induced loss of heme from the wild-type alphabeta enzyme resulted in several-fold activation of the enzyme. This activation was inhibited after hemin reconstitution. A heme-deficient mutant alphabetaCys-105 with Cys substituted for His-105 was constitutively active with specific activity approaching the activity of the wild-type enzyme activated by NO. However, reconstitution of mutant enzyme with heme and/or DTT treatment significantly inhibited the enzyme. Mutant enzyme reconstituted with ferrous heme was activated by NO and CO alone and showed additive effects between gaseous effectors and the allosteric activator 5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-pyrim idin-4-ylamine. We propose that the heme moiety through its coordination with His-105 of the beta subunit acts as an endogenous inhibitor of sGC. Disruption of the heme-coordinating bond induced by binding of NO releases the restrictions imposed by this bond and allows the formation of an optimally organized catalytic center in the heterodimer.

  4. The immune phenotype of AhR null mouse mutants: not a simple mirror of xenobiotic receptor over-activation.

    PubMed

    Esser, Charlotte

    2009-02-15

    Intrinsic and induced cell differentiation and the cellular response to endogenous and exogenous signals are hallmarks of the immune system. Specific and common signalling cascades ensure a highly flexible and adapted response. Increasing evidence suggests that gene modulation by the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, is an important part of these processes. For decades the AhR has been studied mainly for its toxic effects after artificial activation by man-made chemical pollutants such as dioxins. These studies gave important, albeit to some extent skewed, evidence for a mechanistic link between the AhR and the immune system. AhR null mutants and other mutants of the AhR signalling pathway have been generated and used to analyse the physiological function of the AhR, including for the developing and antigen-responding immune system. In this review I look at the natural immunological function(s) of the AhR.

  5. Crystallization and preliminary crystallographic studies of an active-site mutant hydantoin racemase from Sinorhizobium meliloti CECT4114

    SciTech Connect

    Martínez-Rodríguez, Sergio; González-Ramírez, Luis Antonio; Clemente-Jiménez, Josefa María; Rodríguez-Vico, Felipe; Las Heras-Vázquez, Francisco Javier; Gavira, Jose Antonio García-Ruiz, Juan Ma.

    2008-01-01

    Crystals of an active-site mutated hydantoin racemase from S. meliloti have been obtained in the presence and absence of d,l-5-isopropyl-hydantoin and characterized by X-ray diffraction. A recombinant active-site mutant of hydantoin racemase (C76A) from Sinorhizobium meliloti CECT 4114 (SmeHyuA) has been crystallized in the presence and absence of the substrate d,l-5-isopropyl hydantoin. Crystals of the SmeHyuA mutant suitable for data collection and structure determination were grown using the counter-diffusion method. X-ray data were collected to resolutions of 2.17 and 1.85 Å for the free and bound enzymes, respectively. Both crystals belong to space group R3 and contain two molecules of SmeHyuA per asymmetric unit. The crystals of the free and complexed SmeHyuA have unit-cell parameters a = b = 85.43, c = 152.37 Å and a = b = 85.69, c = 154.38 Å, crystal volumes per protein weight (V{sub M}) of 1.94 and 1.98 Å{sup 3} Da{sup −1} and solvent contents of 36.7 and 37.9%, respectively.

  6. Mutagenesis of the potato ADPglucose pyrophosphorylase and characterization of an allosteric mutant defective in 3-phosphoglycerate activation

    SciTech Connect

    Greene, T.W.; Chantler, S.E.; Kahn, M.L.

    1996-02-20

    ADPglucose pyrophosphorylase (glucose-1-phosphate adenylytransferase; AD P:{alpha}-D-glucose-1-phosphate adenylyltransferase, EC 2.7.7.27) catalyzes a key regulatory step in {alpha}-glucan synthesis in bacteria and higher plants. We have previously shown that the expression of the cDNA sequences of the potato tuber large (LS) and small (SS) subunits yielded a functional heterotetrameric enzyme capable of complementing a mutation in the single AGP (glgC) structural gene of Escherichia coli. This heterologous complementation provides a powerful genetic approach to obtain biochemical information on the specific roles of LS and SS in enzyme function. By mutagenizing the LS cDNA with hydroxylamine and then coexpressing with wild-type SS in an E. coli glgC{sup {minus}} strain, >350 mutant colonies were identified that were impaired in glycogen production. One mutant exhibited enzymatic and antigen levels comparable to the wild-type recombinant enzyme but required 45-fold greater levels of the activator 3-phosphoglycerate for maximum activity. Sequence analysis identified a single nucleotide change that resulted in the change of Pro-52 to Leu. This heterologous genetic system provides and efficient means to identify residues important for catalysis and allosteric functioning and should lead to novel approaches to increase plant productivity. 31 refs., 4 figs., 1 tab.

  7. Mutant LRRK2 toxicity in neurons depends on LRRK2 levels and synuclein but not kinase activity or inclusion bodies.

    PubMed

    Skibinski, Gaia; Nakamura, Ken; Cookson, Mark R; Finkbeiner, Steven

    2014-01-01

    By combining experimental neuron models and mathematical tools, we developed a "systems" approach to deconvolve cellular mechanisms of neurodegeneration underlying the most common known cause of Parkinson's disease (PD), mutations in leucine-rich repeat kinase 2 (LRRK2). Neurons ectopically expressing mutant LRRK2 formed inclusion bodies (IBs), retracted neurites, accumulated synuclein, and died prematurely, recapitulating key features of PD. Degeneration was predicted from the levels of diffuse mutant LRRK2 that each neuron contained, but IB formation was neither necessary nor sufficient for death. Genetic or pharmacological blockade of its kinase activity destabilized LRRK2 and lowered its levels enough to account for the moderate reduction in LRRK2 toxicity that ensued. By contrast, targeting synuclein, including neurons made from PD patient-derived induced pluripotent cells, dramatically reduced LRRK2-dependent neurodegeneration and LRRK2 levels. These findings suggest that LRRK2 levels are more important than kinase activity per se in predicting toxicity and implicate synuclein as a major mediator of LRRK2-induced neurodegeneration.

  8. Thioredoxin A Active-Site Mutants Form Mixed Disulfide Dimers That Resemble Enzyme–Substrate Reaction Intermediates

    PubMed Central

    Kouwen, Thijs R.H.M.; Andréll, Juni; Schrijver, Rianne; Dubois, Jean-Yves F.; Maher, Megan J.; Iwata, So; Carpenter, Elisabeth P.; van Dijl, Jan Maarten

    2008-01-01

    Thioredoxin functions in nearly all organisms as the major thiol–disulfide oxidoreductase within the cytosol. Its prime purpose is to maintain cysteine-containing proteins in the reduced state by converting intramolecular disulfide bonds into dithiols in a disulfide exchange reaction. Thioredoxin has been reported to contribute to a wide variety of physiological functions by interacting with specific sets of substrates in different cell types. To investigate the function of the essential thioredoxin A (TrxA) in the low-GC Gram-positive bacterium Bacillus subtilis, we purified wild-type TrxA and three mutant TrxA proteins that lack either one or both of the two cysteine residues in the CxxC active site. The pure proteins were used for substrate-binding studies known as “mixed disulfide fishing” in which covalent disulfide-bonded reaction intermediates can be visualized. An unprecedented finding is that both active-site cysteine residues can form mixed disulfides with substrate proteins when the other active-site cysteine is absent, but only the N-terminal active-site cysteine forms stable interactions. A second novelty is that both single-cysteine mutant TrxA proteins form stable homodimers due to thiol oxidation of the remaining active-site cysteine residue. To investigate whether these dimers resemble mixed enzyme–substrate disulfides, the structure of the most abundant dimer, C32S, was characterized by X-ray crystallography. This yielded a high-resolution (1.5Å) X-ray crystallographic structure of a thioredoxin homodimer from a low-GC Gram-positive bacterium. The C32S TrxA dimer can be regarded as a mixed disulfide reaction intermediate of thioredoxin, which reveals the diversity of thioredoxin/substrate-binding modes. PMID:18455736

  9. Mdm2 ligase dead mutants did not act in a dominant negative manner to re-activate p53, but promoted tumor cell growth.

    PubMed

    Swaroop, Manju; Sun, Yi

    2003-01-01

    Mdm2 (murine double minute 2) is an oncogene, first identified in BALB/c 3T3 cells. Over-expression and gene amplification of Mdm2 were found in a variety of human cancers. Recently, Mdm2 was found to be an E3 ubiquitin ligase that promotes degradation of p53, which contributes significantly to its oncogenic activity. In this study, we test a hypothesis that Mdm2 ligase dead mutants, which retained p53 binding activity but lost degradation activity, would act in a dominant negative manner to re-activate p53, especially upon stressed conditions. Five Mdm2 constructs expressing wild-type and E3 ligase-dead Mdm2 proteins were generated in a Tet-Off system and transfected into MCF-7 breast cancer cells (p53+/+ with Mdm2 overexpression) as well as MCF10A immortalized breast cells (p53+/+ without Mdm2 overexpression) as a normal control. We found that expression of Mdm2 mutants were tightly regulated by doxycycline. Withdrawal of doxycycline in culture medium triggered overexpression of Mdm2 mutants. However, expression of ligase dead mutants in MCF7 and MCF10A cells did not reactivate p53 as shown by a luciferase-reporter transcription assay and Western blot of p53 and its downstream target p21 under either unstressed condition or after exposure to DNA damaging agents. Biologically, over-expression of Mdm2 mutants had no effect on p53-induced apoptosis following DNA damage. Interestingly, over-expression of Mdm2 mutants promoted growth of MCF7 tumor cells probably via a p53-independent mechanism. Over-expression of Mdm2 mutants, however, had no effect on the growth of normal MCF10A cells and did not cause their transformation. Thus, ligase dead mutants of Mdm2 did not act in a dominant negative manner to reactivate p53 and they are not oncogenes in MCF10A cells.

  10. Comparison of the growth promoting activities and toxicities of various auxin analogs on cells derived from wild type and a nonrooting mutant of tobacco

    SciTech Connect

    Caboche, M.; Muller, J.F. ); Chanut, F. ); Aranda, G.; Cirakoglu, S. )

    1987-01-01

    A naphthaleneacetic acid tolerant mutant isolated from a mutagenized culture of tobacco mesophyll protoplasts and impaired in root morphogenesis has been previously characterized by genetic analysis. To understand the biochemical basis for naphthaleneacetic acid resistance, cells derived from this mutant and from wild-type tobacco were compared for their ability to respond to various growth regulators. The growth promoting abilities and cytotoxicities of auxin analogs were different for mutant and wild-type cells. These different activities were not correlated with increased rate of conjugation or breakdown of the auxins by mutant cells. These observations, as well as previous studies on the interaction of the mutant with Agrobacterium, suggest that mutant resistance to auxins is not a result of a specific modification of the process by which auxins induce cell killing, but to a more general alteration of the cellular response to auxin. A screening of auxin-related molecules which induce cell death in wild-type cells but not mutant cells without promoting growth in either was performed. p-Bromophenyleacetic acid was found to display these characteristics.

  11. Crystallization and preliminary crystallographic studies of an active-site mutant hydantoin racemase from Sinorhizobium meliloti CECT4114

    PubMed Central

    Martínez-Rodríguez, Sergio; González-Ramírez, Luis Antonio; Clemente-Jiménez, Josefa María; Rodríguez-Vico, Felipe; Las Heras-Vázquez, Francisco Javier; Gavira, Jose Antonio; García-Ruiz, Juan Ma.

    2008-01-01

    A recombinant active-site mutant of hydantoin racemase (C76A) from Sinorhizobium meliloti CECT 4114 (SmeHyuA) has been crystallized in the presence and absence of the substrate d,l-5-isopropyl hydantoin. Crystals of the SmeHyuA mutant suitable for data collection and structure determination were grown using the counter-diffusion method. X-ray data were collected to resolutions of 2.17 and 1.85 Å for the free and bound enzymes, respectively. Both crystals belong to space group R3 and contain two molecules of SmeHyuA per asymmetric unit. The crystals of the free and complexed SmeHyuA have unit-cell parameters a = b = 85.43, c = 152.37 Å and a = b = 85.69, c = 154.38 Å, crystal volumes per protein weight (V M) of 1.94 and 1.98 Å3 Da−1 and solvent contents of 36.7 and 37.9%, respectively. PMID:18097103

  12. Altered regulation of lipid biosynthesis in a mutant of Arabidopsis deficient in chloroplast glycerol-3-phosphate acyltransferase activity

    SciTech Connect

    Kunst, L.; Browse, J.; Somerville, C. )

    1988-06-01

    The leaf membrane lipids of many plant species, including Arabidopsis thaliana (L.) Heynh., are synthesized by two complementary pathways that are associated with the chloroplast and the endoplasmic reticulum. By screening directly for alterations in lipid acyl-group composition, the authors have identified several mutants of Arabidopsis that lack the plastid pathway because of a deficiency in activity of the first enzyme in the plastid pathway of glycerolipid synthesis, acyl-ACP:sn-glycerol-3-phosphate acyltransferase. The lesion results in an increased synthesis of lipids by the cytoplasmic pathway that largely compensates for the loss of the plastid pathway and provides nearly normal amounts of all the lipids required for chloroplast biogenesis. However, the fatty acid composition of the leaf membrane lipids of the mutants is altered because the acyltransferases associated with the two pathways normally exhibit different substrate specificities. The remarkable flexibility of the system provides an insight into the nature of the regulatory mechanisms that allocate lipids for membrane biogenesis.

  13. Determination of the catalytic activity of LEOPARD syndrome-associated SHP2 mutants toward parafibromin, a bona fide SHP2 substrate involved in Wnt signaling.

    PubMed

    Noda, Saori; Takahashi, Atsushi; Hayashi, Takeru; Tanuma, Sei-ichi; Hatakeyama, Masanori

    2016-01-22

    SHP2, encoded by the PTPN11 gene, is a protein tyrosine phosphatase that plays a key role in the proliferation of cells via RAS-ERK activation. SHP2 also promotes Wnt signaling by dephosphorylating parafibromin. Germline missense mutations of PTPN11 are found in more than half of patients with Noonan syndrome (NS) and LEOPARD syndrome (LS), both of which are congenital developmental disorders with multiple common symptoms. However, whereas NS-associated PTPN11 mutations give rise to gain-of-function SHP2 mutants, LS-associated SHP2 mutants are reportedly loss-of-function mutants. To determine the phosphatase activity of LS-associated SHP2 more appropriately, we performed an in vitro phosphatase assay using tyrosine-phosphorylated parafibromin, a biologically relevant substrate of SHP2 and the positive regulator of Wnt signaling that is activated through SHP2-mediated dephosphorylation. We found that LS-associated SHP2 mutants (Y279C, T468M, Q506P, and Q510E) exhibited a substantially reduced phosphatase activity toward parafibromin when compared with wild-type SHP2. Furthermore, each of the LS-associated mutants displayed a differential degree of decrease in phosphatase activity. Deviation of the SHP2 catalytic activity from a certain range, either too strong or too weak, may therefore lead to similar clinical outcomes in NS and LS, possibly through an imbalanced Wnt signal caused by inadequate dephosphorylation of parafibromin.

  14. A mutant crp allele that differentially activates the operons of the fuc regulon in Escherichia coli.

    PubMed

    Zhu, Y; Lin, E C

    1988-05-01

    L-Fucose is used by Escherichia coli through an inducible pathway mediated by a fucP-encoded permease, a fucI-encoded isomerase, a fucK-encoded kinase, and a fucA-encoded aldolase. The adolase catalyzes the formation of dihydroxyacetone phosphate and L-lactaldehyde. Anaerobically, lactaldehyde is converted by a fucO-encoded oxidoreductase to L-1,2-propanediol, which is excreted. The fuc genes belong to a regulon comprising four linked operons: fucO, fucA, fucPIK, and fucR. The positive regulator encoded by fucR responds to fuculose 1-phosphate as the effector. Mutants serially selected for aerobic growth on propanediol became constitutive in fucO and fucA [fucO(Con) fucA(Con)], but noninducible in fucPIK [fucPIK(Non)]. An external suppressor mutation that restored growth on fucose caused constitutive expression of fucPIK. Results from this study indicate that this suppressor mutation occurred in crp, which encodes the cyclic AMP-binding (or receptor) protein. When the suppressor allele (crp-201) was transduced into wild-type strains, the recipient became fucose negative and fucose sensitive (with glycerol as the carbon and energy source) because of impaired expression of fucA. The fucPIK operon became hyperinducible. The growth rate on maltose was significantly reduced, but growth on L-rhamnose, D-galactose, L-arabinose, glycerol, or glycerol 3-phosphate was close to normal. Lysogenization of fuc+ crp-201 cells by a lambda bacteriophage bearing crp+ restored normal growth ability on fucose. In contrast, lysogenization of [fucO(Con)fucA(Con)fucPIK(Non)crp-201] cells by the same phage retarded their growth on fucose. PMID:2834341

  15. Vismodegib: A smoothened inhibitor for the treatment of advanced basal cell carcinoma.

    PubMed

    Aditya, Suruchi; Rattan, Aditya

    2013-10-01

    Incidence of basal cell carcinoma (BCC), the most common skin cancer in humans, is rising. Surgery is the mainstay of treatment but there is no standard of care for locally advanced or metastatic disease. Hedgehog signaling proteins are critical for cell growth and differentiation during embryogenesis; Hh pathway is silenced in adults. Dysregulated or aberrant Hh signaling has been implicated in the pathogenesis of BCC. This hyperactive pathway can be inhibited by use of smoothened inhibitors such as vismodegib. Food and drug administration approved this oral, once-daily medication in 2012 to treat adults with metastatic BCC or locally advanced, recurrent BCC after surgery and also for patients with locally advanced BCC who are not candidates for surgery or radiation treatment. Clinical studies have shown it to be highly efficacious and the most common adverse effects include, muscle spasms, alopecia and dysgeusia. Use of targeted biologic modifiers, exemplified by Hh directed therapeutics offer a new hope to patients with high-surgical morbidity or inoperable tumors.

  16. Advanced basal cell carcinoma, the hedgehog pathway, and treatment options – role of smoothened inhibitors

    PubMed Central

    Fecher, Leslie A; Sharfman, William H

    2015-01-01

    Cutaneous basal cell carcinoma (BCC) is the most common human cancer and its incidence is rising worldwide. Ultraviolet radiation exposure, including tanning bed use, as well as host factors play a role in its development. The majority of cases are treated and cured with local therapies including surgery. Yet, the health care costs of diagnosis and treatment of BCCs in the US is substantial. In the United States, the cost of nonmelanoma skin cancer care in the Medicare population is estimated to be US$426 million per year. While rare, locally advanced BCCs that can no longer be controlled with surgery and/or radiation, and metastatic BCCs do occur and can be associated with significant morbidity and mortality. Vismodegib (GDC-0449), a smoothened inhibitor targeted at the hedgehog pathway, is the first US Food and Drug Association (FDA)-approved agent in the treatment of locally advanced, unresectable, and metastatic BCCs. This class of agents appears to be changing the survival rates in advanced BCC patients, but appropriate patient selection and monitoring are important. Multidisciplinary assessments are essential for the optimal care and management of these patients. For some patients with locally advanced BCC, treatment with a hedgehog inhibitor may eliminate the need for an excessively disfiguring or morbid surgery. PMID:26604681

  17. Systematic screening of glycosylation- and trafficking-associated gene knockouts in Saccharomyces cerevisiae identifies mutants with improved heterologous exocellulase activity and host secretion

    PubMed Central

    2013-01-01

    Background As a strong fermentator, Saccharomyces cerevisiae has the potential to be an excellent host for ethanol production by consolidated bioprocessing. For this purpose, it is necessary to transform cellulose genes into the yeast genome because it contains no cellulose genes. However, heterologous protein expression in S. cerevisiae often suffers from hyper-glycosylation and/or poor secretion. Thus, there is a need to genetically engineer the yeast to reduce its glycosylation strength and to increase its secretion ability. Results Saccharomyces cerevisiae gene-knockout strains were screened for improved extracellular activity of a recombinant exocellulase (PCX) from the cellulose digesting fungus Phanerochaete chrysosporium. Knockout mutants of 47 glycosylation-related genes and 10 protein-trafficking-related genes were transformed with a PCX expression construct and screened for extracellular cellulase activity. Twelve of the screened mutants were found to have a more than 2-fold increase in extracellular PCX activity in comparison with the wild type. The extracellular PCX activities in the glycosylation-related mnn10 and pmt5 null mutants were, respectively, 6 and 4 times higher than that of the wild type; and the extracellular PCX activities in 9 protein-trafficking-related mutants, especially in the chc1, clc1 and vps21 null mutants, were at least 1.5 times higher than the parental strains. Site-directed mutagenesis studies further revealed that the degree of N-glycosylation also plays an important role in heterologous cellulase activity in S. cerevisiae. Conclusions Systematic screening of knockout mutants of glycosylation- and protein trafficking-associated genes in S. cerevisiae revealed that: (1) blocking Golgi-to-endosome transport may force S. cerevisiae to export cellulases; and (2) both over- and under-glycosylation may alter the enzyme activity of cellulases. This systematic gene-knockout screening approach may serve as a convenient means for

  18. Evidence that Proteosome Inhibitors and Chemical Chaperones Can Rescue the Activity of Retinol Dehydrogenase 12 mutant T49M

    PubMed Central

    Lee, Seung-Ah; Belyaeva, Olga V.; Kedishvili, Natalia Y.

    2011-01-01

    Retinol dehydrogenase 12 (RDH12) is a microsomal enzyme that catalyzes the reduction of all-trans-retinaldehyde to all-trans-retinol when expressed in cells. Mutations in RDH12 cause severe retinal degeneration; however, some of the disease-associated RDH12 mutants retain significant catalytic activity. Our previous study (Lee et al., FEBS Lett. 2010 584:507–10) demonstrated that the catalytically active T49M and I51N variants of RDH12 undergo accelerated degradation through the ubiquitin-proteosome system, which results in reduced levels of these proteins in the cells. Here, we investigated whether stabilization of T49M or I51N RDH12 protein levels through inhibition of proteosome activity or improved folding could rescue their retinaldehyde reductase activity. For the T49M variant, inhibition of proteosome activity resulted in an increased level of T49M protein in the microsomal fraction. The higher level of the T49M variant in microsomes correlated with the higher microsomal retinaldehyde reductase activity. T49M-expressing living cells treated with inhibitors of proteosome activity or with dimethyl sulfoxide exhibited an increase in the conversion of retinaldehyde to retinol, consistent with recovery of functional RDH12 protein. On the other hand, accumulation of the I51N variant in the microsomes did not result in higher retinaldehyde reductase activity of the microsomes or cells. These results provide a proof of concept that, at least in the case of the T49M variant, prevention of accelerated degradation could lead to restoration of its function in the cells. This finding justifies further search for more efficient and clinically relevant compounds for stabilizing the T49M variant activity. PMID:21232531

  19. Enhanced Xylitol Production by Mutant Kluyveromyces marxianus 36907-FMEL1 Due to Improved Xylose Reductase Activity.

    PubMed

    Kim, Jin-Seong; Park, Jae-Bum; Jang, Seung-Won; Ha, Suk-Jin

    2015-08-01

    A directed evolution and random mutagenesis were carried out with thermotolerant yeast Kluyveromyces marxianus ATCC 36907 for efficient xylitol production. The final selected strain, K. marxianus 36907-FMEL1, exhibited 120 and 39 % improvements of xylitol concentration and xylitol yield, respectively, as compared to the parental strain, K. marxianus ATCC 36907. According to enzymatic assays for xylose reductase (XR) activities, XR activity from K. marxianus 36907-FMEL1 was around twofold higher than that from the parental strain. Interestingly, the ratios of NADH-linked and NADPH-linked XR activities were highly changed from 1.92 to 1.30 when K. marxianus ATCC 36907 and K. marxianus 36907-FMEL1 were compared. As results of KmXYL1 genes sequencing, it was found that cysteine was substituted to tyrosine at position 36 after strain development which might cause enhanced XR activity from K. marxianus 36907-FMEL1.

  20. γ-Band deficiency and abnormal thalamocortical activity in P/Q-type channel mutant mice

    PubMed Central

    Llinás, Rodolfo R.; Choi, Soonwook; Urbano, Francisco J.; Shin, Hee-Sup

    2007-01-01

    Thalamocortical in vivo and in vitro function was studied in mice lacking P/Q-type calcium channels (CaV2.1), in which N-type calcium channels (CaV2.2) supported central synaptic transmission. Unexpectedly, in vitro patch recordings from thalamic neurons demonstrated no γ-band subthreshold oscillation, and voltage-sensitive dye imaging demonstrated an absence of cortical γ-band-dependent columnar activation involving cortical inhibitory interneuron activity. In vivo electroencephalogram recordings showed persistent absence status and a dramatic reduction of γ-band activity. Pharmacological block of T-type calcium channels (CaV3), although not noticeably affecting normal control animals, left the knockout mice in a coma-like state. Hence, although N-type calcium channels can rescue P/Q-dependent synaptic transmission, P/Q calcium channels are essential in the generation of γ-band activity and resultant cognitive function. PMID:17968008

  1. Asymmetric processing of mutant factor X Arg386Cys reveals differences between intrinsic and extrinsic pathway activation.

    PubMed

    Baroni, M; Pavani, G; Pinotti, M; Branchini, A; Bernardi, F; Camire, R M

    2015-10-01

    Alterations in coagulation factor X (FX) activation, mediated by the extrinsic VIIa/tissue factor (FVIIa/TF) or the intrinsic factor IXa/factor VIIIa (FIXa/FVIIIa) complexes, can result in hemorrhagic/prothrombotic tendencies. However, the molecular determinants involved in substrate recognition by these enzymes are poorly defined. Here, we investigated the role of arginine 386 (chymotrypsin numbering c202), a surface-exposed residue on the FX catalytic domain. The naturally occurring FX386Cys mutant and FX386Ala variant were characterized. Despite the unpaired cysteine, recombinant (r)FX386Cys was efficiently secreted (88.6±21.3% of rFXwt) and possessed normal clearance in mice. rFX386Cys was also normally activated by FVIIa/TF and displayed intact amidolytic activity. In contrast, rFX386Cys activation by the FIXa/FVIIIa complex was 4.5-fold reduced, which was driven by a decrease in the kcat (1.6∗10(-4) s(-1) vs 5.8∗10(-4) s(-1), rFXwt). The virtually unaltered Km (70.6 nM vs 55.6nM, rFXwt) suggested no major alterations in the FX substrate exosite. Functional assays in plasma supplemented with rFX386Cys indicated a remarkable reduction in the thrombin generation rate and thus in coagulation efficiency. Consistently, the rFX386Ala variant displayed similar biochemical features suggesting that global changes at position 386 impact the intrinsic pathway activation. These data indicate that the FXArg386 is involved in FIXa/FVIIIa-mediated FX activation and help in elucidating the bleeding tendency associated with the FX386Cys in a rare FX deficiency case. Taking advantage of the unpaired cysteine, the rFX386Cys mutant may be efficiently targeted by thiol-specific ligands and represent a valuable tool to study FX structure-function relationships both in vitro and in vivo. PMID:26012870

  2. Synergistic inhibition of T-cell activation by a cell-permeable ZAP-70 mutant and ctCTLA-4

    SciTech Connect

    Kim, Kyun-Do; Choi, Je-Min; Chae, Wook-Jin; Lee, Sang-Kyou

    2009-04-10

    T-cell activation requires TcR-mediated and co-stimulatory signals. ZAP-70 participates in the initial step of TcR signal transduction, while a co-receptor, CTLA-4, inhibits T-cell activation. In previous studies, the overexpression of a ZAP-70 mutant (ZAP-70-Y319F) inhibited the TcR-induced activation of NFAT and IL-2 production, while Hph-1-ctCTLA-4 prevented allergic inflammation. To develop an effective immunosuppressive protein drug that blocks both TcR-mediated and co-stimulatory signaling pathways, a fusion protein of ZAP-70-Y319F and the Hph-1 protein transduction domain was generated. Hph-1-ZAP-70-Y319F inhibited the phosphorylation of ZAP-70-Tyr{sup 319}, LAT-Tyr{sup 191}, and p44/42 MAPK induced by TcR stimulation, NFAT- and AP-1-mediated gene transcription, and the induction of CD69 expression and IL-2 secretion. Hph-1-ZAP-70-Y319F and Hph-1-ctCTLA-4 synergistically inhibited signaling events during T-cell activation. This is the first report to demonstrate the synergistic inhibition of signals transmitted via TcR and its co-stimulatory receptor by cell-permeable forms of intracellular signal mediators.

  3. Increased longevity of some C. elegans mitochondrial mutants explained by activation of an alternative energy-producing pathway.

    PubMed

    Gallo, Marco; Park, Donha; Riddle, Donald L

    2011-10-01

    The Caenorhabditis elegans misc-1 gene encodes a mitochondrial carrier with a role in oxidative stress response. The knock-out mutant has no lifespan phenotype and fails to upregulate the gei-7-mediated glyoxylate shunt, an extra-mitochondrial pathway of energy production. We show that gei-7 is required for the longevity of the mitochondrial mutant clk-1. Our data suggest that only mitochondrial mutants that upregulate gei-7 can achieve longevity.

  4. Glycosynthase activity of Bacillus licheniformis 1,3-1,4-beta-glucanase mutants: specificity, kinetics, and mechanism.

    PubMed

    Faijes, Magda; Pérez, Xavi; Pérez, Odette; Planas, Antoni

    2003-11-18

    Glycosynthases are engineered retaining glycosidases devoid of hydrolase activity that efficiently catalyze transglycosylation reactions. The mechanism of the glycosynthase reaction is probed with the E134A mutant of Bacillus licheniformis 1,3-1,4-beta-glucanase. This endo-glycosynthase is regiospecific for formation of a beta-1,4-glycosidic bond with alpha-glycosyl fluoride donors (laminaribiosyl as the minimal donor) and oligosaccharide acceptors containing glucose or xylose on the nonreducing end (aryl monosaccharides or oligosaccharides). The pH dependence of the glycosynthase activity reflects general base catalysis with a kinetic pK(a) of 5.2 +/- 0.1. Kinetics of enzyme inactivation by a water-soluble carbodiimide (EDC) are consistent with modification of an active site carboxylate group with a pK(a) of 5.3 +/- 0.2. The general base is Glu138 (the residue acting as the general acid-base in the parental wild-type enzyme) as probed by preparing the double mutant E134A/E138A. It is devoid of glycosynthase activity, but use of sodium azide as an acceptor not requiring general base catalysis yielded a beta-glycosyl azide product. The pK(a) of Glu138 (kinetic pK(a) on k(cat)/K(M) and pK(a) of EDC inactivation) for the E134A glycosynthase has dropped 1.8 pH units compared to the pK(a) values of the wild type, enabling the same residue to act as a general base in the glycosynthase enzyme. Kinetic parameters of the E134A glycosynthase-catalyzed condensation between Glcbeta4Glcbeta3GlcalphaF (2) as a donor and Glcbeta4Glcbeta-pNP (15) as an acceptor are as follows: k(cat) = 1.7 s(-)(1), K(M)(acceptor) = 11 mM, and K(M)(donor) < 0.3 mM. Donor self-condensation and elongation reactions are kinetically evaluated to establish the conditions for preparative use of the glycosynthase reaction in oligosaccharide synthesis. Yields are 70-90% with aryl monosaccharide and cellobioside acceptors, but 25-55% with laminaribiosides, the lower yields (and lower initial rates) due to

  5. MiR-338* targeting smoothened to inhibit pulmonary fibrosis by epithelial-mesenchymal transition.

    PubMed

    Zhuang, Yi; Dai, Jinghong; Wang, Yongsheng; Zhang, Huan; Li, Xinxiu; Wang, Chunli; Cao, Mengshu; Liu, Yin; Ding, Jingjing; Cai, Hourong; Zhang, Deping; Wang, Yaping

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease involving pulmonary injury associated with tissue repair, dysfunction and fibrosis. Recent studies indicate that some microRNAs (miRNAs) may play critical roles in the pathogenesis of pulmonary fibrosis. In this study, we aim to investigate whether miR-338* (miR-338-5p), which has been found to be associated with tumor progression, is associated with pathological process of pulmonary fibrosis. Balb/c mice were treated with bleomycin (BLM) to establish IPF models. Targtscan was used to predict the downstream target of miR-338*. Morphological changes were observed with light microscope and epithelial to mesenchymal transition (EMT) markers were detected by western blot. The expression of miR-338* or downstream target SMO was analyzed by real-time quantitative RT-PCR, northern blot or western blot. MiR-338* was down-regulated in the lung tissue from mice with bleomycin-induced pulmonary fibrosis. The smoothened (SMO) is a direct target of miR-338*, and knocking-down the expression of SMO could partially rescue the fibrotic phenotype of TGF-β-induced NuLi-1 cells. Over-expression of SMO led to the fibrotic phenotype of NuLi-1 cells even without TGF-β treatment. These findings showed that the over-expression of SMO contributed to the fibrotic phenotype of NuLi-1 cells by affecting the epithelial-to-mesenchymal transition (EMT) procedure. Furthermore, in vivo, lentivirus-mediated over-expression of miR-338* can alleviate lung fibrosis induced by bleomycin in mice. In conclusion, our results suggest that miR-338* can target SMO to reduce the EMT procedure and thus postpone the development of pulmonary fibrosis. PMID:27508042

  6. MiR-338* targeting smoothened to inhibit pulmonary fibrosis by epithelial-mesenchymal transition

    PubMed Central

    Zhuang, Yi; Dai, Jinghong; Wang, Yongsheng; Zhang, Huan; Li, Xinxiu; Wang, Chunli; Cao, Mengshu; Liu, Yin; Ding, Jingjing; Cai, Hourong; Zhang, Deping; Wang, Yaping

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease involving pulmonary injury associated with tissue repair, dysfunction and fibrosis. Recent studies indicate that some microRNAs (miRNAs) may play critical roles in the pathogenesis of pulmonary fibrosis. In this study, we aim to investigate whether miR-338* (miR-338-5p), which has been found to be associated with tumor progression, is associated with pathological process of pulmonary fibrosis. Balb/c mice were treated with bleomycin (BLM) to establish IPF models. Targtscan was used to predict the downstream target of miR-338*. Morphological changes were observed with light microscope and epithelial to mesenchymal transition (EMT) markers were detected by western blot. The expression of miR-338* or downstream target SMO was analyzed by real-time quantitative RT-PCR, northern blot or western blot. MiR-338* was down-regulated in the lung tissue from mice with bleomycin-induced pulmonary fibrosis. The smoothened (SMO) is a direct target of miR-338*, and knocking-down the expression of SMO could partially rescue the fibrotic phenotype of TGF-β-induced NuLi-1 cells. Over-expression of SMO led to the fibrotic phenotype of NuLi-1 cells even without TGF-β treatment. These findings showed that the over-expression of SMO contributed to the fibrotic phenotype of NuLi-1 cells by affecting the epithelial-to-mesenchymal transition (EMT) procedure. Furthermore, in vivo, lentivirus-mediated over-expression of miR-338* can alleviate lung fibrosis induced by bleomycin in mice. In conclusion, our results suggest that miR-338* can target SMO to reduce the EMT procedure and thus postpone the development of pulmonary fibrosis. PMID:27508042

  7. Sharp inflaton potentials and bi-spectra: effects of smoothening the discontinuity

    SciTech Connect

    Martin, Jérôme; Sriramkumar, L.; Hazra, Dhiraj Kumar E-mail: sriram@physics.iitm.ac.in

    2014-09-01

    Sharp shapes in the inflaton potentials often lead to short departures from slow roll which, in turn, result in deviations from scale invariance in the scalar power spectrum. Typically, in such situations, the scalar power spectrum exhibits a burst of features associated with modes that leave the Hubble radius either immediately before or during the epoch of fast roll. Moreover, one also finds that the power spectrum turns scale invariant at smaller scales corresponding to modes that leave the Hubble radius at later stages, when slow roll has been restored. In other words, the imprints of brief departures from slow roll, arising out of sharp shapes in the inflaton potential, are usually of a finite width in the scalar power spectrum. Intuitively, one may imagine that the scalar bi-spectrum too may exhibit a similar behavior, i.e. a restoration of scale invariance at small scales, when slow roll has been reestablished. However, in the case of the Starobinsky model (viz. the model described by a linear inflaton potential with a sudden change in its slope) involving the canonical scalar field, it has been found that, a rather sharp, though short, departure from slow roll can leave a lasting and significant imprint on the bi-spectrum. The bi-spectrum in this case is found to grow linearly with the wavenumber at small scales, a behavior which is clearly unphysical. In this work, we study the effects of smoothening the discontinuity in the Starobinsky model on the scalar bi-spectrum. Focusing on the equilateral limit, we analytically show that, for smoother potentials, the bi-spectrum indeed turns scale invariant at suitably large wavenumbers. We also confirm the analytical results numerically using our newly developed code BINGO. We conclude with a few comments on certain related points.

  8. Correlation of Recombinant Integrase Activity and Functional Preintegration Complex Formation during Acute Infection by Replication-Defective Integrase Mutant Human Immunodeficiency Virus

    PubMed Central

    Li, Xiang; Koh, Yasuhiro

    2012-01-01

    Previous studies characterized two types of replication-defective human immunodeficiency virus type 1 (HIV-1) integrase mutants: class I, which are specifically blocked at the integration step, and class II, which harbor additional virion production and/or reverse transcription defects. Class I mutant enzymes supported little if any metal ion-dependent 3′-processing and DNA strand transfer activities in vitro, whereas class II enzymes displayed partial or full catalytic function in studies with simplified assay designs, suggesting that defective interaction(s) with heterologous integrase binding proteins might underlie the class II mutant viral phenotype. To address this hypothesis, class I and II mutant enzymes were interrogated under expanded sets of in vitro conditions. The majority failed to catalyze the concerted integration of two viral DNA ends into target DNA, highlighting defective integrase function as the root cause of most class II in addition to all class I mutant virus infection defects. One mutant protein, K264E, in contrast, could support the wild-type level of concerted integration activity. After accounting for its inherent reverse transcription defect, HIV-1K264E moreover formed preintegration complexes that supported the efficient integration of endogenous viral DNA in vitro and normal levels and sequences of 2-long terminal repeat-containing circle junctions during acute infection. K264E integrase furthermore efficiently interacted in vitro with two heterologous binding partners, LEDGF/p75 and reverse transcriptase. Our results underscore the physiological relevance of concerted integration assays for tests of integrase mutant function and suggest that the K264E mutation disrupts an interaction with an intranuclear integrase binding partner that is important for HIV-1 integration. PMID:22278243

  9. A starch deficient mutant of Arabidopsis thaliana with low ADPglucose pyrophosphorylase activity lacks one of the two subunits of the enzyme

    SciTech Connect

    Lin, Tsanpiao; Caspar, T.; Somerville, C.R.; Preiss, J. )

    1988-12-01

    A starch deficient mutant of Arabidopsis thaliana (L.) Heynh. has been isolated in which leaf extracts contain only about 5% as much activity of ADPglucose pyrophosphorylase (EC 2.7.7.27) as the wild type. A single, nuclear mutation at a previously undescribed locus designated adg2 is responsible for the mutant phenotype. Although the mutant contained only 5% as much ADPglucose pyrophosphorylase activity as the wild type, it accumulated 40% as much starch when grown in a 12 hour photoperiod. The mutant also contained about 40% as much starch as the wild type when grown in continuous light, suggesting that the rate of synthesis regulates its steady state accumulation. Immunological analysis of leaf extracts using antibodies against the spinach 54 and 51 kilodalton (kD) ADPglucose pyrophosphorylase subunits indicated that the mutant is deficient in a cross-reactive 54 kD polypeptide and has only about 4% as much as the wild type of a cross-reactive 51 kD polypeptide. This result and genetic studies suggested that adg2 is a structural gene which codes for the 54 kD polypeptide, and provides the first functional evidence that the 54 kD polypeptide is a required component of the native ADPglucose pyrophosphorylase enzyme.

  10. Membrane-Associated Proteins of a Lipopolysaccharide-Deficient Mutant of Neisseria meningitidis Activate the Inflammatory Response through Toll-Like Receptor 2

    PubMed Central

    Ingalls, Robin R.; Lien, Egil; Golenbock, Douglas T.

    2001-01-01

    The recent isolation of a lipopolysaccharide (LPS)-deficient mutant of Neisseria meningitidis has allowed us to explore the roles of other gram-negative cell wall components in the host response to infection. The experiments in this study were designed to examine the ability of this mutant strain to activate cells. Although it was clearly less potent than the parental strain, we found the LPS-deficient mutant to be a capable inducer of the inflammatory response in monocytic cells, inducing a response similar to that seen with Staphylococcus aureus. Cellular activation by the LPS mutant was related to expression of CD14, a high-affinity receptor for LPS and other microbial products, as well as Toll-like receptor 2, a member of the Toll family of receptors recently implicated in host responses to gram-positive bacteria. In contrast to the parental strain, the synthetic LPS antagonist E5564 did not inhibit the LPS-deficient mutant. We conclude that even in the absence of LPS, the gram-negative cell wall remains a potent inflammatory stimulant, utilizing signaling pathways independent of those involved in LPS signaling. PMID:11254578

  11. Conservative Tryptophan Mutants of the Protein Tyrosine Phosphatase YopH Exhibit Impaired WPD-Loop Function and Crystallize with Divanadate Esters in Their Active Sites

    PubMed Central

    Moise, Gwendolyn; Gallup, Nathan M.; Alexandrova, Anastassia N.; Hengge, Alvan C.; Johnson, Sean J.

    2016-01-01

    Catalysis in protein tyrosine phosphatases (PTPs) involves movement of a protein loop called the WPD loop that brings a conserved aspartic acid into the active site to function as a general acid. Mutation of the tryptophan in the WPD loop of the PTP YopH to any other residue with a planar, aromatic side chain (phenylalanine, tyrosine, or histidine) disables general acid catalysis. Crystal structures reveal these conservative mutations leave this critical loop in a catalytically unproductive, quasi-open position. Although the loop positions in crystal structures are similar for all three conservative mutants, the reasons inhibiting normal loop closure differ for each mutant. In the W354F and W354Y mutants, steric clashes result from six-membered rings occupying the position of the five-membered ring of the native indole side chain. The histidine mutant dysfunction results from new hydrogen bonds stabilizing the unproductive position. The results demonstrate how even modest modifications can disrupt catalytically important protein dynamics. Crystallization of all the catalytically compromised mutants in the presence of vanadate gave rise to vanadate dimers at the active site. In W354Y and W354H, a divanadate ester with glycerol is observed. Such species have precedence in solution and are known from the small molecule crystal database. Such species have not been observed in the active site of a phosphatase, as a functional phosphatase would rapidly catalyze their decomposition. The compromised functionality of the mutants allows the trapping of species that undoubtedly form in solution and are capable of binding at the active sites of PTPs, and, presumably, other phosphatases. In addition to monomeric vanadate, such higher-order vanadium-based molecules are likely involved in the interaction of vanadate with PTPs in solution. PMID:26445170

  12. Conservative tryptophan mutants of the protein tyrosine phosphatase YopH exhibit impaired WPD-loop function and crystallize with divanadate esters in their active sites.

    PubMed

    Moise, Gwendolyn; Gallup, Nathan M; Alexandrova, Anastassia N; Hengge, Alvan C; Johnson, Sean J

    2015-10-27

    Catalysis in protein tyrosine phosphatases (PTPs) involves movement of a protein loop called the WPD loop that brings a conserved aspartic acid into the active site to function as a general acid. Mutation of the tryptophan in the WPD loop of the PTP YopH to any other residue with a planar, aromatic side chain (phenylalanine, tyrosine, or histidine) disables general acid catalysis. Crystal structures reveal these conservative mutations leave this critical loop in a catalytically unproductive, quasi-open position. Although the loop positions in crystal structures are similar for all three conservative mutants, the reasons inhibiting normal loop closure differ for each mutant. In the W354F and W354Y mutants, steric clashes result from six-membered rings occupying the position of the five-membered ring of the native indole side chain. The histidine mutant dysfunction results from new hydrogen bonds stabilizing the unproductive position. The results demonstrate how even modest modifications can disrupt catalytically important protein dynamics. Crystallization of all the catalytically compromised mutants in the presence of vanadate gave rise to vanadate dimers at the active site. In W354Y and W354H, a divanadate ester with glycerol is observed. Such species have precedence in solution and are known from the small molecule crystal database. Such species have not been observed in the active site of a phosphatase, as a functional phosphatase would rapidly catalyze their decomposition. The compromised functionality of the mutants allows the trapping of species that undoubtedly form in solution and are capable of binding at the active sites of PTPs, and, presumably, other phosphatases. In addition to monomeric vanadate, such higher-order vanadium-based molecules are likely involved in the interaction of vanadate with PTPs in solution. PMID:26445170

  13. Crystal structures of a marginally active thymidylate synthase mutant, Arg 126-->Glu.

    PubMed Central

    Strop, P.; Changchien, L.; Maley, F.; Montfort, W. R.

    1997-01-01

    Thymidylate synthase (TS) is a long-standing target for anticancer drugs and is of interest for its rich mechanistic features. The enzyme catalyzes the conversion of dUMP to dTMP using the co-enzyme methylenetetrahydrofolate, and is perhaps the best studied of enzymes that catalyze carbon-carbon bond formation. Arg 126 is found in all TSs but forms only 1 of 13 hydrogen bonds to dUMP during catalysis, and just one of seven to the phosphate group alone. Despite this, when Arg 126 of TS from Escherichia coli was changed to glutamate (R126E), the resulting protein had kcat reduced 2000-fold and Km reduced 600-fold. The crystal structure of R126E was determined under two conditions--in the absence of bound ligand (2.4 A resolution), and with dUMP and the antifolate CB3717 (2.2 A resolution). The first crystals, which did not contain dUMP despite its presence in the crystallization drop, displayed Glu 126 in a position to sterically and electrostatically interfere with binding of the dUMP phosphate. The second crystals contained both dUMP and CB3717 in the active site, but Glu 126 formed three hydrogen bonds to nearby residues (two through water) and was in a position that partially overlapped with the normal phosphate binding site, resulting in a approximately 1 A shift in the phosphate group. Interestingly, the protein displayed the typical ligand-induced conformational change, and the covalent bond to Cys 146 was present in one of the protein's two active sites. PMID:9416600

  14. α2-Null mutant mice have altered levels of neuronal activity in restricted midbrain and limbic brain regions during nicotine withdrawal as demonstrated by cfos expression.

    PubMed

    Upton, Montana; Lotfipour, Shahrdad

    2015-10-15

    Neuronal nicotinic acetylcholine receptors (nAChRs) are the primary binding sites for nicotine within the brain. Using alpha(α)2 nAChR subunit-null mutant mice, the current study evaluates whether the absence of this gene product during mecamylamine-precipitated nicotine withdrawal eliminates neuronal activity within selective midbrain and limbic brain regions, as determined by the expression of the immediate early gene, cfos. Our results demonstrate that nicotine withdrawal enhances neuronal activity within the interpeduncular nucleus and dorsal hippocampus, which is absent in mice null for α2-containing nAChRs. In contrast, we observe that α2-null mutant mice exhibit a suppression of neuronal activity in the dentate gyrus in mice undergoing nicotine withdrawal. Interestingly, α2-null mutant mice display potentiated neuronal activity specifically within the stratum lacunosum moleculare layer of the hippocampus, independent of nicotine withdrawal. Overall, our findings demonstrate that α2-null mutant mice have altered cfos expression in distinct populations of neurons within selective midbrain and limbic brain structures that mediate baseline and nicotine withdrawal-induced neuronal activity.

  15. The M34A mutant of Connexin26 reveals active conductance states in pore-suspending membranes

    PubMed Central

    Gaßmann, Oliver; Kreir, Mohamed; Ambrosi, Cinzia; Pranskevich, Jennifer; Oshima, Atsunori; Röling, Christian; Sosinsky, Gina; Fertig, Niels; Steinem, Claudia

    2009-01-01

    Connexin26 (Cx26) is a member of the connexin family, the building blocks for gap junction intercellular channels. These dodecameric assemblies are involved in gap junction-mediated cell-cell communication allowing the passage of ions and small molecules between two neighboring cells. Mutations in Cx26 lead to the disruption of gap junction-mediated intercellular communication with consequences such as hearing loss and skin disorders. We show here that a mutant of Cx26, M34A, forms an active hemichannel in lipid bilayer experiments. A comparison with the Cx26 wild-type is presented. Two different techniques using micro/nano-structured substrates for the formation of pore-suspending lipid membranes are used. We reconstituted the Cx26 wild-type and Cx26M34A into artificial lipid bilayers and observed single channel activity for each technique, with conductance levels of around 35, 70 and 165 pS for the wildtype. The conductance levels of Cx26M34A were found at around 45 and 70 pS. PMID:19236918

  16. The Oncogenic Activity of RET Point Mutants for Follicular Thyroid Cells May Account for the Occurrence of Papillary Thyroid Carcinoma in Patients Affected by Familial Medullary Thyroid Carcinoma

    PubMed Central

    Melillo, Rosa Marina; Cirafici, Anna Maria; De Falco, Valentina; Bellantoni, Marie; Chiappetta, Gennaro; Fusco, Alfredo; Carlomagno, Francesca; Picascia, Antonella; Tramontano, Donatella; Tallini, Giovanni; Santoro, Massimo

    2004-01-01

    Activating germ-line point mutations in the RET receptor are responsible for multiple endocrine neoplasia type 2-associated medullary thyroid carcinoma (MTC), whereas somatic RET rearrangements are prevalent in papillary thyroid carcinomas (PTCs). Some rare kindreds, carrying point mutations in RET, are affected by both cancer types, suggesting that, under specific circumstances, point mutations in RET can drive the generation of PTC. Here we describe a family whose siblings, affected by both PTC and MTC, carried a germ-line point mutation in the RET extracellular domain, converting cysteine 634 into serine. We tested on thyroid follicular cells the transforming activity of RET(C634S), RET(K603Q), another mutant identified in a kindred with both PTC and MTC, RET(C634R) a commonly isolated allele in MEN2A, RET(M918T) responsible for MEN2B and also identified in kindreds with both PTC and MTC, and RET/PTC1 the rearranged oncogene that characterizes bona fide PTC in patients without MTC. We show that the various RET point mutants, but not wild-type RET, scored constitutive kinase activity and exerted mitogenic effects for thyroid PC Cl 3 cells, albeit at significantly lower levels compared to RET/PTC1. The low mitogenic activity of RET point mutants paralleled their reduced kinase activity compared to RET/PTC. Furthermore, RET point mutants maintained a protein domain, the intracellular juxtamembrane domain, that exerted negative effects on the mitogenic activity. In conclusion, RET point mutants can behave as dominant oncogenes for thyroid follicular cells. Their transforming activity, however, is rather modest, providing a possible explanation for the rare association of MTC with PTC. PMID:15277225

  17. Understanding protein lids: structural analysis of active hinge mutants in triosephosphate isomerase.

    PubMed

    Kursula, I; Salin, M; Sun, J; Norledge, B V; Haapalainen, A M; Sampson, N S; Wierenga, R K

    2004-04-01

    The conformational switch from open to closed of the flexible loop 6 of triosephosphate isomerase (TIM) is essential for the catalytic properties of TIM. Using a directed evolution approach, active variants of chicken TIM with a mutated C-terminal hinge tripeptide of loop 6 have been generated (Sun,J. and Sampson,N.S., Biochemistry, 1999, 38, 11474-11481). In chicken TIM, the wild-type C-terminal hinge tripeptide is KTA. Detailed enzymological characterization of six variants showed that some of these (LWA, NPN, YSL, KTK) have decreased catalytic efficiency, whereas others (KVA, NSS) are essentially identical with wild-type. The structural characterization of these six variants is reported. No significant structural differences compared with the wild-type are found for KVA, NSS and LWA, but substantial structural adaptations are seen for NPN, YSL and KTK. These structural differences can be understood from the buried position of the alanine side chain in the C-hinge position 3 in the open conformation of wild-type loop 6. Replacement of this alanine with a bulky side chain causes the closed conformation to be favored, which correlates with the decreased catalytic efficiency of these variants. The structural context of loop 6 and loop 7 and their sequence conservation in 133 wild-type sequences is also discussed. PMID:15166315

  18. Understanding protein lids: structural analysis of active hinge mutants in triosephosphate isomerase.

    PubMed

    Kursula, I; Salin, M; Sun, J; Norledge, B V; Haapalainen, A M; Sampson, N S; Wierenga, R K

    2004-04-01

    The conformational switch from open to closed of the flexible loop 6 of triosephosphate isomerase (TIM) is essential for the catalytic properties of TIM. Using a directed evolution approach, active variants of chicken TIM with a mutated C-terminal hinge tripeptide of loop 6 have been generated (Sun,J. and Sampson,N.S., Biochemistry, 1999, 38, 11474-11481). In chicken TIM, the wild-type C-terminal hinge tripeptide is KTA. Detailed enzymological characterization of six variants showed that some of these (LWA, NPN, YSL, KTK) have decreased catalytic efficiency, whereas others (KVA, NSS) are essentially identical with wild-type. The structural characterization of these six variants is reported. No significant structural differences compared with the wild-type are found for KVA, NSS and LWA, but substantial structural adaptations are seen for NPN, YSL and KTK. These structural differences can be understood from the buried position of the alanine side chain in the C-hinge position 3 in the open conformation of wild-type loop 6. Replacement of this alanine with a bulky side chain causes the closed conformation to be favored, which correlates with the decreased catalytic efficiency of these variants. The structural context of loop 6 and loop 7 and their sequence conservation in 133 wild-type sequences is also discussed.

  19. APE1/Ref-1 enhances DNA binding activity of mutant p53 in a redox-dependent manner.

    PubMed

    Cun, Yanping; Dai, Nan; Li, Mengxia; Xiong, Chengjie; Zhang, Qinhong; Sui, Jiangdong; Qian, Chengyuan; Wang, Dong

    2014-02-01

    Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a dual function protein; in addition to its DNA repair activity, it can stimulate DNA binding activity of numerous transcription factors as a reduction-oxidation (redox) factor. APE1/Ref-1 has been found to be a potent activator of wild-type p53 (wtp53) DNA binding in vitro and in vivo. Although p53 is mutated in most types of human cancer including hepatocellular carcinoma (HCC), little is known about whether APE1/Ref-1 can regulate mutant p53 (mutp53). Herein, we reported the increased APE1/Ref-1 protein and accumulation of mutp53 in HCC by immunohistochemistry. Of note, it was observed that APE1/Ref-1 high-expression and mutp53 expression were associated with carcinogenesis and progression of HCC. To determine whether APE1/Ref-1 regulates DNA binding of mutp53, we performed electromobility shift assays (EMSAs) and quantitative chromatin immunoprecipitation (ChIP) assays in HCC cell lines. In contrast to sequence-specific and DNA structure-dependent binding of wtp53, reduced mutp53 efficiently bound to nonlinear DNA, but not to linear DNA. Notably, overexpression of APE1/Ref-1 resulted in increased DNA binding activity of mutp53, while downregulation of APE1/Ref-1 caused a marked decrease of mutp53 DNA binding. In addition, APE1/Ref-1 could not potentiate the accumulation of p21 mRNA and protein in mutp53 cells. These data indicate that APE1/Ref-1 can stimulate mutp53 DNA binding in a redox-dependent manner.

  20. NMR structure of the noncytotoxic α-sarcin mutant Δ(7-22): The importance of the native conformation of peripheral loops for activity

    PubMed Central

    García-Mayoral, Ma Flor; García-Ortega, Lucia; Lillo, Ma Pilar; Santoro, Jorge; Martínez Del Pozo, Álvaro; Gavilanes, José G.; Rico, Manuel; Bruix, Marta

    2004-01-01

    The deletion mutant Δ(7-22) of α-sarcin, unlike its wild-type protein counterpart, lacks the specific ability to degrade rRNA in intact ribosomes and exhibits an increased unspecific ribonuclease activity and decreased interaction with lipid vesicles. In trying to shed light on these differences, we report here on the three-dimensional structure of the Δ(7-22) α-sarcin mutant using NMR methods. We also evaluated its dynamic properties on the basis of theoretical models and measured its correlation time (6.2 nsec) by time-resolved fluorescence anisotropy. The global fold characteristic of ribotoxins is preserved in the mutant. The most significant differences with respect to the α-sarcin structure are concentrated in (1) loop 2, (2) loop 3, which adopts a new orientation, and (3) loop 5, which shows multiple conformations and an altered dynamics. The interactions between loop 5 and the N-terminal hairpin are lost in the mutant, producing increased solvent accessibility of the active-site residues. The degree of solvent exposure of the catalytic His 137 is similar to that shown by His 92 in RNase T1. Additionally, the calculated order parameters of residues belonging to loop 5 in the mutant correspond to an internal dynamic behavior more similar to RNase T1 than α-sarcin. On the other hand, changes in the relative orientation of loop 3 move the lysine-rich region 111–114, crucial for substrate recognition, away from the active site. All of the structural and dynamic data presented here reveal that the mutant is a hybrid of ribotoxins and noncytotoxic ribonucleases, consistent with its biological properties. PMID:15044731

  1. NF-{kappa}B signaling is activated and confers resistance to apoptosis in three-dimensionally cultured EGFR-mutant lung adenocarcinoma cells

    SciTech Connect

    Sakuma, Yuji; Yamazaki, Yukiko; Nakamura, Yoshiyasu; Yoshihara, Mitsuyo; Matsukuma, Shoichi; Koizume, Shiro; Miyagi, Yohei

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer EGFR-mutant cells in 3D culture resist EGFR inhibition compared with suspended cells. Black-Right-Pointing-Pointer Degradation of I{kappa}B and activation of NF-{kappa}B are observed in 3D-cultured cells. Black-Right-Pointing-Pointer Inhibiting NF-{kappa}B enhances the efficacy of the EGFR inhibitor in 3D-cultured cells. -- Abstract: Epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells in suspension undergo apoptosis to a greater extent than adherent cells in a monolayer when EGFR autophosphorylation is inhibited by EGFR tyrosine kinase inhibitors (TKIs). This suggests that cell adhesion to a culture dish may activate an anti-apoptotic signaling pathway other than the EGFR pathway. Since the microenvironment of cells cultured in a monolayer are substantially different to that of cells existing in three-dimension (3D) in vivo, we assessed whether two EGFR-mutant lung adenocarcinoma cell lines, HCC827 and H1975, were more resistant to EGFR TKI-induced apoptosis when cultured in a 3D extracellular matrix (ECM) as compared with in suspension. The ECM-adherent EGFR-mutant cells in 3D were significantly less sensitive to treatment with WZ4002, an EGFR TKI, than the suspended cells. Further, a marked degradation of I{kappa}B{alpha}, the inhibitor of nuclear factor (NF)-{kappa}B, was observed only in the 3D-cultured cells, leading to an increase in the activation of NF-{kappa}B. Moreover, the inhibition of NF-{kappa}B with pharmacological inhibitors enhanced EGFR TKI-induced apoptosis in 3D-cultured EGFR-mutant cells. These results suggest that inhibition of NF-{kappa}B signaling would render ECM-adherent EGFR-mutant lung adenocarcinoma cells in vivo more susceptible to EGFR TKI-induced cell death.

  2. An active site mutant of Escherichia coli cyclopropane fatty acid synthase forms new non-natural fatty acids providing insights on the mechanism of the enzymatic reaction.

    PubMed

    E, Guangqi; Drujon, Thierry; Correia, Isabelle; Ploux, Olivier; Guianvarc'h, Dominique

    2013-12-01

    We have produced and purified an active site mutant of the Escherichia coli cyclopropane fatty acid synthase (CFAS) by replacing the strictly conserved G236 within cyclopropane synthases, by a glutamate residue, which corresponds to E146 of the homologous mycolic acid methyltransferase, Hma, producing hydroxymethyl mycolic acids. The G236E CFAS mutant had less than 1% of the in vitro activity of the wild type enzyme. We expressed the G236E CFAS mutant in an E. coli (DE3) strain in which the chromosomal cfa gene had been deleted. After extraction of phospholipids and conversion into the corresponding fatty acid methyl esters (FAMEs), we observed the formation of cyclopropanated FAMEs suggesting that the mutant retained some of the normal activity in vivo. However, we also observed the formation of new C17 methyl-branched unsaturated FAMEs whose structures were determined using GC/MS and NMR analyses. The double bond was located at different positions 8, 9 or 10, and the methyl group at position 10 or 9. Thus, this new FAMEs are likely arising from a 16:1 acyl chain of a phospholipid that had been transformed by the G236E CFAS mutant in vivo. The reaction catalyzed by this G236E CFAS mutant thus starts by the methylation of the unsaturated acyl chain at position 10 or 9 yielding a carbocation at position 9 or 10 respectively. It follows then two competing steps, a normal cyclopropanation or hydride shift/elimination events giving different combinations of alkenes. This study not only provides further evidence that cyclopropane synthases (CSs) form a carbocationic intermediate but also opens the way to CSs engineering for the synthesis of non-natural fatty acids.

  3. Mutant alpha-galactosidase A enzymes identified in Fabry disease patients with residual enzyme activity: biochemical characterization and restoration of normal intracellular processing by 1-deoxygalactonojirimycin.

    PubMed

    Ishii, Satoshi; Chang, Hui-Hwa; Kawasaki, Kunito; Yasuda, Kayo; Wu, Hui-Li; Garman, Scott C; Fan, Jian-Qiang

    2007-09-01

    Fabry disease is a lysosomal storage disorder caused by the deficiency of alpha-Gal A (alpha-galactosidase A) activity. In order to understand the molecular mechanism underlying alpha-Gal A deficiency in Fabry disease patients with residual enzyme activity, enzymes with different missense mutations were purified from transfected COS-7 cells and the biochemical properties were characterized. The mutant enzymes detected in variant patients (A20P, E66Q, M72V, I91T, R112H, F113L, N215S, Q279E, M296I, M296V and R301Q), and those found mostly in mild classic patients (A97V, A156V, L166V and R356W) appeared to have normal K(m) and V(max) values. The degradation of all mutants (except E59K) was partially inhibited by treatment with kifunensine, a selective inhibitor of ER (endoplasmic reticulum) alpha-mannosidase I. Metabolic labelling and subcellular fractionation studies in COS-7 cells expressing the L166V and R301Q alpha-Gal A mutants indicated that the mutant protein was retained in the ER and degraded without processing. Addition of DGJ (1-deoxygalactonojirimycin) to the culture medium of COS-7 cells transfected with a large set of missense mutant alpha-Gal A cDNAs effectively increased both enzyme activity and protein yield. DGJ was capable of normalizing intracellular processing of mutant alpha-Gal A found in both classic (L166V) and variant (R301Q) Fabry disease patients. In addition, the residual enzyme activity in fibroblasts or lymphoblasts from both classic and variant hemizygous Fabry disease patients carrying a variety of missense mutations could be substantially increased by cultivation of the cells with DGJ. These results indicate that a large proportion of mutant enzymes in patients with residual enzyme activity are kinetically active. Excessive degradation in the ER could be responsible for the deficiency of enzyme activity in vivo, and the DGJ approach may be broadly applicable to Fabry disease patients with missense mutations.

  4. Mutant α-galactosidase A enzymes identified in Fabry disease patients with residual enzyme activity: biochemical characterization and restoration of normal intracellular processing by 1-deoxygalactonojirimycin

    PubMed Central

    Ishii, Satoshi; Chang, Hui-Hwa; Kawasaki, Kunito; Yasuda, Kayo; Wu, Hui-Li; Garman, Scott C.; Fan, Jian-Qiang

    2007-01-01

    Fabry disease is a lysosomal storage disorder caused by the deficiency of α-Gal A (α-galactosidase A) activity. In order to understand the molecular mechanism underlying α-Gal A deficiency in Fabry disease patients with residual enzyme activity, enzymes with different missense mutations were purified from transfected COS-7 cells and the biochemical properties were characterized. The mutant enzymes detected in variant patients (A20P, E66Q, M72V, I91T, R112H, F113L, N215S, Q279E, M296I, M296V and R301Q), and those found mostly in mild classic patients (A97V, A156V, L166V and R356W) appeared to have normal Km and Vmax values. The degradation of all mutants (except E59K) was partially inhibited by treatment with kifunensine, a selective inhibitor of ER (endoplasmic reticulum) α-mannosidase I. Metabolic labelling and subcellular fractionation studies in COS-7 cells expressing the L166V and R301Q α-Gal A mutants indicated that the mutant protein was retained in the ER and degraded without processing. Addition of DGJ (1-deoxygalactonojirimycin) to the culture medium of COS-7 cells transfected with a large set of missense mutant α-Gal A cDNAs effectively increased both enzyme activity and protein yield. DGJ was capable of normalizing intracellular processing of mutant α-Gal A found in both classic (L166V) and variant (R301Q) Fabry disease patients. In addition, the residual enzyme activity in fibroblasts or lymphoblasts from both classic and variant hemizygous Fabry disease patients carrying a variety of missense mutations could be substantially increased by cultivation of the cells with DGJ. These results indicate that a large proportion of mutant enzymes in patients with residual enzyme activity are kinetically active. Excessive degradation in the ER could be responsible for the deficiency of enzyme activity in vivo, and the DGJ approach may be broadly applicable to Fabry disease patients with missense mutations. PMID:17555407

  5. Influence of low glycolytic activities in gcr1 and gcr2 mutants on the expression of other metabolic pathway genes in Saccharomyces cerevisiae.

    PubMed

    Sasaki, Hiromi; Uemura, Hiroshi

    2005-01-30

    A complex of the transcription factors Gcr1p and Gcr2p coordinately regulates the expression of glycolytic genes in Saccharomyces cerevisiae. To understand the effects of gcr mutations on other metabolic pathways, genome-wide gene expression profiles in gcr1 and gcr2 mutants were examined. The biggest effects of gcr1 and gcr2 mutations were observed on the glycolytic genes and the expressions of most of the glycolytic genes were substantially decreased compared to those in the wild-type strain in both glucose and glycerol+lactate growth conditions. On the other hand, the expressions of genes encoding the TCA cycle and respiration were increased in gcr mutants when the cells were grown in glucose. RT-PCR analyses revealed that the expression of SIP4 and HAP5, which are known to affect the expression of some of the gluconeogenic, TCA cycle and respiratory genes, were also increased under this condition. The growth of gcr mutants on glucose was impaired by adding respiration inhibitor antimycin A, whereas the growth of the wild-type strain was not. The conversion of glucose to biomass was higher and, to the contrary, ethanol yield was lower in the gcr2 mutant compared to those in the wild-type strain. These results suggest the possibility that the gcr mutants, in which glycolytic activities are low, changed their metabolic patterns under glucose growth condition to enhance the expression of TCA cycle and respiratory genes to produce more energy.

  6. Biosynthesis of membrane-derived oligosaccharides: characterization of mdoB mutants defective in phosphoglycerol transferase I activity.

    PubMed Central

    Jackson, B J; Bohin, J P; Kennedy, E P

    1984-01-01

    Phosphoglycerol transferase I, an enzyme of the inner, cytoplasmic membrane of Escherichia coli, catalyzes the in vitro transfer of phosphoglycerol residues from phosphatidylglycerol to membrane-derived oligosaccharides or to the model substrate arbutin (p-hydroxyphenyl-beta-D-glucoside). The products are a phosphoglycerol diester derivative of membrane-derived oligosaccharides or arbutin, respectively, and sn-1,2-diglyceride (B. J. Jackson and E. P. Kennedy, J. Biol. Chem. 258:2394-2398, 1983). Because this enzyme has its active site on the outer aspect of the inner membrane, it also catalyzes the transfer of phosphoglycerol residues to arbutin added to the medium (J.-P. Bohin and E. P. Kennedy, J. Biol. Chem. 259:8388-8393, 1984). When strains bearing the dgk mutation, which are defective in the enzyme diglyceride kinase, are grown in medium containing arbutin, they accumulate large amounts of sn-1,2-diglyceride, a product of the phosphoglycerol transferase I reaction. Growth is inhibited under these conditions. A further mutation in such a dgk strain, leading to the loss of phosphoglycerol transferase I activity, should result in the phenotype of arbutin resistance. We have exploited this fact to obtain strains with such mutations, designated mdoB, that map near min 99. Such mutants lack detectable phosphoglycerol transferase I activity, cannot transfer phosphoglycerol residues to arbutin in vivo, and synthesize membrane-derived oligosaccharides devoid of phosphoglycerol residues. These findings offer strong genetic support for the function of phosphoglycerol transferase I in membrane-derived oligosaccharide biosynthesis. PMID:6094515

  7. Shoot-to-Root Signal Transmission Regulates Root Fe(III) Reductase Activity in the dgl Mutant of Pea.

    PubMed

    Grusak, M. A.; Pezeshgi, S.

    1996-01-01

    To understand the root, shoot, and Fe-nutritional factors that regulate root Fe-acquisition processes in dicotyledonous plants, Fe(III) reduction and net proton efflux were quantified in root systems of an Fe-hyperaccumulating mutant (dgl) and a parental (cv Dippes Gelbe Viktoria [DGV]) genotype of pea (Pisum sativum). Plants were grown with (+Fe treated) or without (-Fe treated) added Fe(III)-N,N'-ethylenebis[2-(2-hydroxyphenyl)-glycine] (2 [mu]M); root Fe(III) reduction was measured in solutions containing growth nutrients, 0.1 mM Fe(III)-ethylenediaminetetraacetic acid, and 0.1 mM Na2-bathophenanthrolinedisulfonic acid. Daily measurements of Fe(III) reduction (d 10-20) revealed initially low rates in +Fe-treated and -Fe-treated dgl, followed by a nearly 5-fold stimulation in rates by d 15 for both growth types. In DGV, root Fe(III) reductase activity increased only minimally by d 20 in +Fe-treated plants and about 3-fold in -Fe-treated plants, beginning on d 15. Net proton efflux was enhanced in roots of -Fe-treated DGV and both dgl growth types, relative to +Fe-treated DGV. In dgl, the enhanced proton efflux occurred prior to the increase in root Fe(III) reductase activity. Reductase studies using plants with reciprocal shoot:root grafts demonstrated that shoot expression of the dgl gene leads to the generation of a transmissible signal that enhances Fe(III) reductase activity in roots. The dgl gene product may alter or interfere with a normal component of a signal transduction mechanism regulating Fe homeostasis in plants.

  8. IS256 abolishes gelatinase activity and biofilm formation in a mutant of the nosocomial pathogen Enterococcus faecalis V583.

    PubMed

    Perez, Marta; Calles-Enríquez, Marina; del Rio, Beatriz; Ladero, Victor; Martín, María Cruz; Fernández, María; Alvarez, Miguel A

    2015-07-01

    Enterococcus faecalis is one of the most controversial species of lactic acid bacteria. Some strains are used as probiotics, while others are associated with severe and life-threatening nosocomial infections. Their pathogenicity depends on the acquisition of multidrug resistance and virulence factors. Gelatinase, which is required in the first steps of biofilm formation, is an important virulence determinant involved in E. faecalis pathogenesis, including endocarditis and peritonitis. The gene that codes for gelatinase (gelE) is controlled by the Fsr quorum-sensing system, whose encoding genes (fsrA, fsrB, fsrC, and fsrD) are located immediately upstream of gelE. The integration of a DNA fragment into the fsr locus of a derived mutant of E. faecalis V583 suppressed the gelatinase activity and prevented biofilm formation. Sequence analysis indicated the presence of IS256 integrated into the fsrC gene at nucleotide position 321. Interestingly, IS256 is also associated with biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus. This is the first description of an insertion sequence that prevents biofilm formation in E. faecalis.

  9. Cell homeostasis in a Leishmania major mutant overexpressing the spliced leader RNA is maintained by an increased proteolytic activity.

    PubMed

    Toledo, Juliano S; Ferreira, Tiago R; Defina, Tânia P A; Dossin, Fernando de M; Beattie, Kenneth A; Lamont, Douglas J; Cloutier, Serge; Papadopoulou, Barbara; Schenkman, Sergio; Cruz, Angela K

    2010-10-01

    Although several stage-specific genes have been identified in Leishmania, the molecular mechanisms governing developmental gene regulation in this organism are still not well understood. We have previously reported an attenuation of virulence in Leishmania major and L. braziliensis carrying extra-copies of the spliced leader RNA gene. Here, we surveyed the major differences in proteome and transcript expression profiles between the spliced leader RNA overexpressor and control lines using two-dimensional gel electrophoresis and differential display reverse transcription PCR, respectively. Thirty-nine genes related to stress response, cytoskeleton, proteolysis, cell cycle control and proliferation, energy generation, gene transcription, RNA processing and post-transcriptional regulation have abnormal patterns of expression in the spliced leader RNA overexpressor line. The evaluation of proteolytic pathways in the mutant revealed a selective increase of cysteine protease activity and an exacerbated ubiquitin-labeled protein population. Polysome profile analysis and measurement of cellular protein aggregates showed that protein translation in the spliced leader RNA overexpressor line is increased when compared to the control line. We found that L. major promastigotes maintain homeostasis in culture when challenged with a metabolic imbalance generated by spliced leader RNA surplus through modulation of intracellular proteolysis. However, this might interfere with a fine-tuned gene expression control necessary for the amastigote multiplication in the mammalian host.

  10. A mutant leucine aminopeptidase from Streptomyces cinnamoneus with enhanced L-aspartyl L-amino acid methyl ester synthetic activity.

    PubMed

    Arima, Jiro; Kono, Mirai; Kita, Manami; Mori, Nobuhiro

    2012-06-01

    L-aspartyl L-amino acid methyl ester was synthesized using a mutant of a thermostable leucine aminopeptidase from Streptomyces cinnamoneus, D198 K SSAP, obtained in previously. A peptide of high-intensity sweetener, L-aspartyl-L-phenylalanine methyl ester, was selected as a model for demonstrating the synthesis of L-aspartyl L-amino acid methyl ester. The hydrolytic activities of D198 K SSAP toward L-aspartyl-L-phenylalanine and its methyl ester were, respectively, 74-fold and fourfold higher than those of wild type. Similarly, the initial rate of the enzyme for L-aspartyl-L-phenylalanine methyl ester synthesis was over fivefold higher than that of wild-type SSAP in 90% methanol (v/v) in a one-pot reaction. Furthermore, other L-aspartyl L-amino acid methyl esters were synthesized efficiently using D198 K SSAP. Results show that the substitution of Asp198 of SSAP with Lys is effective for synthesizing L-aspartyl L-amino acid methyl ester.

  11. Nonenzymatic Lipid Peroxidation Reprograms Gene Expression and Activates Defense Markers in Arabidopsis Tocopherol-Deficient Mutants[W

    PubMed Central

    Sattler, Scott E.; Mène-Saffrané, Laurent; Farmer, Edward E.; Krischke, Markus; Mueller, Martin J.; DellaPenna, Dean

    2006-01-01

    Tocopherols (vitamin E) are lipophilic antioxidants that are synthesized by all plants and are particularly abundant in seeds. Two tocopherol-deficient mutant loci in Arabidopsis thaliana were used to examine the functions of tocopherols in seedlings: vitamin e1 (vte1), which accumulates the pathway intermediate 2,3-dimethyl-5-phytyl-1,4-benzoquinone (DMPBQ); and vte2, which lacks all tocopherols and pathway intermediates. Only vte2 displayed severe seedling growth defects, which corresponded with massively increased levels of the major classes of nonenzymatic lipid peroxidation products: hydroxy fatty acids, malondialdehyde, and phytoprostanes. In the absence of pathogens, the phytoalexin camalexin accumulated in vte2 seedlings to levels 100-fold higher than in wild-type or vte1 seedlings. Similarly, gene expression profiling in wild-type, vte1, and vte2 seedlings indicated that increased levels of nonenzymatic lipid peroxidation in vte2 corresponded to increased expression of many defense-related genes, which were not induced in vte1. Both biochemical and transcriptional analyses of vte2 seedlings indicate that nonenzymatic lipid peroxidation plays a significant role in modulating plant defense responses. Together, these results establish that tocopherols in wild-type plants or DMPBQ in vte1 plants limit nonenzymatic lipid peroxidation during germination and early seedling development, thereby preventing the inappropriate activation of transcriptional and biochemical defense responses. PMID:17194769

  12. Cooperative activity of noggin and gremlin 1 in axial skeleton development.

    PubMed

    Stafford, David A; Brunet, Lisa J; Khokha, Mustafa K; Economides, Aris N; Harland, Richard M

    2011-03-01

    Inductive signals from adjacent tissues initiate differentiation within the somite. In this study, we used mouse embryos mutant for the BMP antagonists noggin (Nog) and gremlin 1 (Grem1) to characterize the effects of BMP signaling on the specification of the sclerotome. We confirmed reduction of Pax1 and Pax9 expression in Nog mutants, but found that Nog;Grem1 double mutants completely fail to initiate sclerotome development. Furthermore, Nog mutants that also lack one allele of Grem1 exhibit a dramatic reduction in axial skeleton relative to animals mutant for Nog alone. By contrast, Pax3, Myf5 and Lbx1 expression indicates that dermomyotome induction occurs in Nog;Grem1 double mutants. Neither conditional Bmpr1a mutation nor treatment with the BMP type I receptor inhibitor dorsomorphin expands sclerotome marker expression, suggesting that BMP antagonists do not have an instructive function in sclerotome specification. Instead, we hypothesize that Nog- and Grem1-mediated inhibition of BMP is permissive for hedgehog (Hh) signal-mediated sclerotome specification. In support of this model, we found that culturing Nog;Grem1 double-mutant embryos with dorsomorphin restores sclerotome, whereas Pax1 expression in smoothened (Smo) mutants is not rescued, suggesting that inhibition of BMP is insufficient to induce sclerotome in the absence of Hh signaling. Confirming the dominant inhibitory effect of BMP signaling, Pax1 expression cannot be rescued in Nog;Grem1 double mutants by forced activation of Smo. We conclude that Nog and Grem1 cooperate to maintain a BMP signaling-free zone that is a crucial prerequisite for Hh-mediated sclerotome induction.

  13. The Wnt Receptor Ryk Reduces Neuronal and Cell Survival Capacity by Repressing FOXO Activity During the Early Phases of Mutant Huntingtin Pathogenicity

    PubMed Central

    Tourette, Cendrine; Farina, Francesca; Vazquez-Manrique, Rafael P.; Orfila, Anne-Marie; Voisin, Jessica; Hernandez, Sonia; Offner, Nicolas; Parker, J. Alex; Menet, Sophie; Kim, Jinho; Lyu, Jungmok; Choi, Si Ho; Cormier, Kerry; Edgerly, Christina K.; Bordiuk, Olivia L.; Smith, Karen; Louise, Anne; Halford, Michael; Stacker, Steven; Vert, Jean-Philippe; Ferrante, Robert J.; Lu, Wange; Neri, Christian

    2014-01-01

    The Wnt receptor Ryk is an evolutionary-conserved protein important during neuronal differentiation through several mechanisms, including γ-secretase cleavage and nuclear translocation of its intracellular domain (Ryk-ICD). Although the Wnt pathway may be neuroprotective, the role of Ryk in neurodegenerative disease remains unknown. We found that Ryk is up-regulated in neurons expressing mutant huntingtin (HTT) in several models of Huntington's disease (HD). Further investigation in Caenorhabditis elegans and mouse striatal cell models of HD provided a model in which the early-stage increase of Ryk promotes neuronal dysfunction by repressing the neuroprotective activity of the longevity-promoting factor FOXO through a noncanonical mechanism that implicates the Ryk-ICD fragment and its binding to the FOXO co-factor β-catenin. The Ryk-ICD fragment suppressed neuroprotection by lin-18/Ryk loss-of-function in expanded-polyQ nematodes, repressed FOXO transcriptional activity, and abolished β-catenin protection of mutant htt striatal cells against cell death vulnerability. Additionally, Ryk-ICD was increased in the nucleus of mutant htt cells, and reducing γ-secretase PS1 levels compensated for the cytotoxicity of full-length Ryk in these cells. These findings reveal that the Ryk-ICD pathway may impair FOXO protective activity in mutant polyglutamine neurons, suggesting that neurons are unable to efficiently maintain function and resist disease from the earliest phases of the pathogenic process in HD. PMID:24960609

  14. The Wnt receptor Ryk reduces neuronal and cell survival capacity by repressing FOXO activity during the early phases of mutant huntingtin pathogenicity.

    PubMed

    Tourette, Cendrine; Farina, Francesca; Vazquez-Manrique, Rafael P; Orfila, Anne-Marie; Voisin, Jessica; Hernandez, Sonia; Offner, Nicolas; Parker, J Alex; Menet, Sophie; Kim, Jinho; Lyu, Jungmok; Choi, Si Ho; Cormier, Kerry; Edgerly, Christina K; Bordiuk, Olivia L; Smith, Karen; Louise, Anne; Halford, Michael; Stacker, Steven; Vert, Jean-Philippe; Ferrante, Robert J; Lu, Wange; Neri, Christian

    2014-06-01

    The Wnt receptor Ryk is an evolutionary-conserved protein important during neuronal differentiation through several mechanisms, including γ-secretase cleavage and nuclear translocation of its intracellular domain (Ryk-ICD). Although the Wnt pathway may be neuroprotective, the role of Ryk in neurodegenerative disease remains unknown. We found that Ryk is up-regulated in neurons expressing mutant huntingtin (HTT) in several models of Huntington's disease (HD). Further investigation in Caenorhabditis elegans and mouse striatal cell models of HD provided a model in which the early-stage increase of Ryk promotes neuronal dysfunction by repressing the neuroprotective activity of the longevity-promoting factor FOXO through a noncanonical mechanism that implicates the Ryk-ICD fragment and its binding to the FOXO co-factor β-catenin. The Ryk-ICD fragment suppressed neuroprotection by lin-18/Ryk loss-of-function in expanded-polyQ nematodes, repressed FOXO transcriptional activity, and abolished β-catenin protection of mutant htt striatal cells against cell death vulnerability. Additionally, Ryk-ICD was increased in the nucleus of mutant htt cells, and reducing γ-secretase PS1 levels compensated for the cytotoxicity of full-length Ryk in these cells. These findings reveal that the Ryk-ICD pathway may impair FOXO protective activity in mutant polyglutamine neurons, suggesting that neurons are unable to efficiently maintain function and resist disease from the earliest phases of the pathogenic process in HD.

  15. Staphylococcus aureus β-Toxin Mutants Are Defective in Biofilm Ligase and Sphingomyelinase Activity, and Causation of Infective Endocarditis and Sepsis.

    PubMed

    Herrera, Alfa; Vu, Bao G; Stach, Christopher S; Merriman, Joseph A; Horswill, Alexander R; Salgado-Pabón, Wilmara; Schlievert, Patrick M

    2016-05-01

    β-Toxin is an important virulence factor of Staphylococcus aureus, contributing to colonization and development of disease [Salgado-Pabon, W., et al. (2014) J. Infect. Dis. 210, 784-792; Huseby, M. J., et al. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 14407-14412; Katayama, Y., et al. (2013) J. Bacteriol. 195, 1194-1203]. This cytotoxin has two distinct mechanisms of action: sphingomyelinase activity and DNA biofilm ligase activity. However, the distinct mechanism that is most important for its role in infective endocarditis is unknown. We characterized the active site of β-toxin DNA biofilm ligase activity by examining deficiencies in site-directed mutants through in vitro DNA precipitation and biofilm formation assays. Possible conformational changes in mutant structure compared to that of wild-type toxin were assessed preliminarily by trypsin digestion analysis, retention of sphingomyelinase activity, and predicted structures based on the native toxin structure. We addressed the contribution of each mechanism of action to producing infective endocarditis and sepsis in vivo in a rabbit model. The H289N β-toxin mutant, lacking sphingomyelinase activity, exhibited lower sepsis lethality and infective endocarditis vegetation formation compared to those of the wild-type toxin. β-Toxin mutants with disrupted biofilm ligase activity did not exhibit decreased sepsis lethality but were deficient in infective endocarditis vegetation formation compared to the wild-type protein. Our study begins to characterize the DNA biofilm ligase active site of β-toxin and suggests β-toxin functions importantly in infective endocarditis through both of its mechanisms of action. PMID:27015018

  16. Staphylococcus aureus β-Toxin Mutants Are Defective in Biofilm Ligase and Sphingomyelinase Activity, and Causation of Infective Endocarditis and Sepsis.

    PubMed

    Herrera, Alfa; Vu, Bao G; Stach, Christopher S; Merriman, Joseph A; Horswill, Alexander R; Salgado-Pabón, Wilmara; Schlievert, Patrick M

    2016-05-01

    β-Toxin is an important virulence factor of Staphylococcus aureus, contributing to colonization and development of disease [Salgado-Pabon, W., et al. (2014) J. Infect. Dis. 210, 784-792; Huseby, M. J., et al. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 14407-14412; Katayama, Y., et al. (2013) J. Bacteriol. 195, 1194-1203]. This cytotoxin has two distinct mechanisms of action: sphingomyelinase activity and DNA biofilm ligase activity. However, the distinct mechanism that is most important for its role in infective endocarditis is unknown. We characterized the active site of β-toxin DNA biofilm ligase activity by examining deficiencies in site-directed mutants through in vitro DNA precipitation and biofilm formation assays. Possible conformational changes in mutant structure compared to that of wild-type toxin were assessed preliminarily by trypsin digestion analysis, retention of sphingomyelinase activity, and predicted structures based on the native toxin structure. We addressed the contribution of each mechanism of action to producing infective endocarditis and sepsis in vivo in a rabbit model. The H289N β-toxin mutant, lacking sphingomyelinase activity, exhibited lower sepsis lethality and infective endocarditis vegetation formation compared to those of the wild-type toxin. β-Toxin mutants with disrupted biofilm ligase activity did not exhibit decreased sepsis lethality but were deficient in infective endocarditis vegetation formation compared to the wild-type protein. Our study begins to characterize the DNA biofilm ligase active site of β-toxin and suggests β-toxin functions importantly in infective endocarditis through both of its mechanisms of action.

  17. Deep Sequencing of Random Mutant Libraries Reveals the Active Site of the Narrow Specificity CphA Metallo-β-Lactamase is Fragile to Mutations

    PubMed Central

    Sun, Zhizeng; Mehta, Shrenik C.; Adamski, Carolyn J.; Gibbs, Richard A.; Palzkill, Timothy

    2016-01-01

    CphA is a Zn2+-dependent metallo-β-lactamase that efficiently hydrolyzes only carbapenem antibiotics. To understand the sequence requirements for CphA function, single codon random mutant libraries were constructed for residues in and near the active site and mutants were selected for E. coli growth on increasing concentrations of imipenem, a carbapenem antibiotic. At high concentrations of imipenem that select for phenotypically wild-type mutants, the active-site residues exhibit stringent sequence requirements in that nearly all residues in positions that contact zinc, the substrate, or the catalytic water do not tolerate amino acid substitutions. In addition, at high imipenem concentrations a number of residues that do not directly contact zinc or substrate are also essential and do not tolerate substitutions. Biochemical analysis confirmed that amino acid substitutions at essential positions decreased the stability or catalytic activity of the CphA enzyme. Therefore, the CphA active - site is fragile to substitutions, suggesting active-site residues are optimized for imipenem hydrolysis. These results also suggest that resistance to inhibitors targeted to the CphA active site would be slow to develop because of the strong sequence constraints on function. PMID:27616327

  18. Deep Sequencing of Random Mutant Libraries Reveals the Active Site of the Narrow Specificity CphA Metallo-β-Lactamase is Fragile to Mutations.

    PubMed

    Sun, Zhizeng; Mehta, Shrenik C; Adamski, Carolyn J; Gibbs, Richard A; Palzkill, Timothy

    2016-01-01

    CphA is a Zn(2+)-dependent metallo-β-lactamase that efficiently hydrolyzes only carbapenem antibiotics. To understand the sequence requirements for CphA function, single codon random mutant libraries were constructed for residues in and near the active site and mutants were selected for E. coli growth on increasing concentrations of imipenem, a carbapenem antibiotic. At high concentrations of imipenem that select for phenotypically wild-type mutants, the active-site residues exhibit stringent sequence requirements in that nearly all residues in positions that contact zinc, the substrate, or the catalytic water do not tolerate amino acid substitutions. In addition, at high imipenem concentrations a number of residues that do not directly contact zinc or substrate are also essential and do not tolerate substitutions. Biochemical analysis confirmed that amino acid substitutions at essential positions decreased the stability or catalytic activity of the CphA enzyme. Therefore, the CphA active - site is fragile to substitutions, suggesting active-site residues are optimized for imipenem hydrolysis. These results also suggest that resistance to inhibitors targeted to the CphA active site would be slow to develop because of the strong sequence constraints on function. PMID:27616327

  19. Structures of the G81A mutant form of the active chimera of (S)-mandelate dehydrogenase and its complex with two of its substrates

    SciTech Connect

    Sukumar, Narayanasami; Dewanti, Asteriani; Merli, Angelo; Rossi, Gian Luigi; Mitra, Bharati; Mathews, F. Scott

    2009-06-12

    (S)-Mandelate dehydrogenase (MDH) from Pseudomonas putida, a membrane-associated flavoenzyme, catalyzes the oxidation of (S)-mandelate to benzoylformate. Previously, the structure of a catalytically similar chimera, MDH-GOX2, rendered soluble by the replacement of its membrane-binding segment with the corresponding segment of glycolate oxidase (GOX), was determined and found to be highly similar to that of GOX except within the substituted segments. Subsequent attempts to cocrystallize MDH-GOX2 with substrate proved unsuccessful. However, the G81A mutants of MDH and of MDH-GOX2 displayed {approx}100-fold lower reactivity with substrate and a modestly higher reactivity towards molecular oxygen. In order to understand the effect of the mutation and to identify the mode of substrate binding in MDH-GOX2, a crystallographic investigation of the G81A mutant of the MDH-GOX2 enzyme was initiated. The structures of ligand-free G81A mutant MDH-GOX2 and of its complexes with the substrates 2-hydroxyoctanoate and 2-hydroxy-3-indolelactate were determined at 1.6, 2.5 and 2.2 {angstrom} resolution, respectively. In the ligand-free G81A mutant protein, a sulfate anion previously found at the active site is displaced by the alanine side chain introduced by the mutation. 2-Hydroxyoctanoate binds in an apparently productive mode for subsequent reaction, while 2-hydroxy-3-indolelactate is bound to the enzyme in an apparently unproductive mode. The results of this investigation suggest that a lowering of the polarity of the flavin environment resulting from the displacement of nearby water molecules caused by the glycine-to-alanine mutation may account for the lowered catalytic activity of the mutant enzyme, which is consistent with the 30 mV lower flavin redox potential. Furthermore, the altered binding mode of the indolelactate substrate may account for its reduced activity compared with octanoate, as observed in the crystalline state.

  20. Suppression of ERK activation in urethral epithelial cells infected with Neisseria gonorrhoeae and its isogenic minD mutant contributes to anti-apoptosis.

    PubMed

    Liu, GuanQun L; Parti, Rajinder P; Dillon, Jo-Anne R

    2015-04-01

    In gonococci-infected transduced human urethral epithelial cells (THUEC), the role of ERK, a mitogen-activated protein kinase (MAPK), in apoptosis is unknown. We observed lowering of ERK activation in THUEC following infection with anti-apoptosis-inducing Neisseria gonorrhoeae strain CH811. An isogenic cell division mutant of this strain, Ng CJSD1 (minD deficient), which is large and abnormally shaped, reduced ERK phosphorylation levels even more than its parental strain in THUEC. This led to higher anti-apoptosis in mutant-infected cells as compared to the parental strain-infected cells. Our results suggest that N. gonorrhoeae infection reduces ERK activation in THUEC contributing to anti-apoptosis.

  1. A strategic study using mutant-strain entrapment in calcium alginate for the production of Saccharomyces cerevisiae cells with high invertase activity.

    PubMed

    Rossi-Alva, Juan Carlos; Rocha-Leão, Maria Helena Miguez

    2003-08-01

    Entrapped cells and entrapped cells grown inside of a calcium alginate matrix as well as free cells have been investigated using Saccharomyces cerevisiae mutant strains with regard to their pattern of growth and invertase activity. The repression of invertase by glucose and glucose-consumption ability were considered in the selection process of the mutants. Efficient sucrose bioconversion due to high invertase activity was obtained when entrapped mutant strain Q6R2 cells were grown within calcium alginate gel beads using sucrose plus glucose as the carbon source. Under these conditions, 1 mg (dry weight) of entrapped cells is able to produce 20 micromol of inverted sugar in 3 min (the maximum activity obtained was 20 units x mg(-1)). The experiments were carried out for 6 months without appreciable loss of either bead integrity or invertase activity. The biocatalyst was also stored at 4 degrees C for 6 months without appreciable loss of the invertase activity. This work shows that entrapped yeast cells with a weak ability to consume sugar may be used to produce inverted sugar.

  2. Structure of a Highly Active Cephalopod S-crystallin Mutant: New Molecular Evidence for Evolution from an Active Enzyme into Lens-Refractive Protein

    PubMed Central

    Tan, Wei-Hung; Cheng, Shu-Chun; Liu, Yu-Tung; Wu, Cheng-Guo; Lin, Min-Han; Chen, Chiao-Che; Lin, Chao-Hsiung; Chou, Chi-Yuan

    2016-01-01

    Crystallins are found widely in animal lenses and have important functions due to their refractive properties. In the coleoid cephalopods, a lens with a graded refractive index provides good vision and is required for survival. Cephalopod S-crystallin is thought to have evolved from glutathione S-transferase (GST) with various homologs differentially expressed in the lens. However, there is no direct structural information that helps to delineate the mechanisms by which S-crystallin could have evolved. Here we report the structural and biochemical characterization of novel S-crystallin-glutathione complex. The 2.35-Å crystal structure of a S-crystallin mutant from Octopus vulgaris reveals an active-site architecture that is different from that of GST. S-crystallin has a preference for glutathione binding, although almost lost its GST enzymatic activity. We’ve also identified four historical mutations that are able to produce a “GST-like” S-crystallin that has regained activity. This protein recapitulates the evolution of S-crystallin from GST. Protein stability studies suggest that S-crystallin is stabilized by glutathione binding to prevent its aggregation; this contrasts with GST-σ, which do not possess this protection. We suggest that a tradeoff between enzyme activity and the stability of the lens protein might have been one of the major driving force behind lens evolution. PMID:27499004

  3. Structure of a Highly Active Cephalopod S-crystallin Mutant: New Molecular Evidence for Evolution from an Active Enzyme into Lens-Refractive Protein.

    PubMed

    Tan, Wei-Hung; Cheng, Shu-Chun; Liu, Yu-Tung; Wu, Cheng-Guo; Lin, Min-Han; Chen, Chiao-Che; Lin, Chao-Hsiung; Chou, Chi-Yuan

    2016-01-01

    Crystallins are found widely in animal lenses and have important functions due to their refractive properties. In the coleoid cephalopods, a lens with a graded refractive index provides good vision and is required for survival. Cephalopod S-crystallin is thought to have evolved from glutathione S-transferase (GST) with various homologs differentially expressed in the lens. However, there is no direct structural information that helps to delineate the mechanisms by which S-crystallin could have evolved. Here we report the structural and biochemical characterization of novel S-crystallin-glutathione complex. The 2.35-Å crystal structure of a S-crystallin mutant from Octopus vulgaris reveals an active-site architecture that is different from that of GST. S-crystallin has a preference for glutathione binding, although almost lost its GST enzymatic activity. We've also identified four historical mutations that are able to produce a "GST-like" S-crystallin that has regained activity. This protein recapitulates the evolution of S-crystallin from GST. Protein stability studies suggest that S-crystallin is stabilized by glutathione binding to prevent its aggregation; this contrasts with GST-σ, which do not possess this protection. We suggest that a tradeoff between enzyme activity and the stability of the lens protein might have been one of the major driving force behind lens evolution. PMID:27499004

  4. Activity of the response regulator CiaR in mutants of Streptococcus pneumoniae R6 altered in acetyl phosphate production

    PubMed Central

    Marx, Patrick; Meiers, Marina; Brückner, Reinhold

    2015-01-01

    The two-component regulatory system (TCS) CiaRH of Streptococcus pneumoniae is implicated in competence, ß-lactam resistance, maintenance of cell integrity, bacteriocin production, host colonization, and virulence. Depending on the growth conditions, CiaR can be highly active in the absence of its cognate kinase CiaH, although phosphorylation of CiaR is required for DNA binding and gene regulation. To test the possibility that acetyl phosphate (AcP) could be the alternative phosphodonor, genes involved in pyruvate metabolism were disrupted to alter cellular levels of acetyl phosphate. Inactivating the genes of pyruvate oxidase SpxB, phosphotransacetylase Pta, and acetate kinase AckA, resulted in very low AcP levels and in strongly reduced CiaR-mediated gene expression in CiaH-deficient strains. Therefore, alternative phosphorylation of CiaR appears to proceed via AcP. The AcP effect on CiaR is not detected in strains with CiaH. Attempts to obtain elevated AcP by preventing its degradation by acetate kinase AckA, were not successful in CiaH-deficient strains with a functional SpxB, the most important enzyme for AcP production in S. pneumoniae. The ciaH-spxB-ackA mutant producing intermediate amounts of AcP could be constructed and showed a promoter activation, which was much higher than expected. Since activation was dependent on AcP, it can apparently be used more efficiently for CiaR phosphorylation in the absence of AckA. Therefore, high AcP levels in the absence of CiaH and AckA may cause extreme overexpression of the CiaR regulon leading to synthetic lethality. AckA is also involved in a regulatory response, which is mediated by CiaH. Addition of acetate to the growth medium switch CiaH from kinase to phosphatase. This switch is lost in the absence of AckA indicating metabolism of acetate is required, which starts with the production of AcP by AckA. Therefore, AckA plays a special regulatory role in the control of the CiaRH TCS. PMID:25642214

  5. Host range and cell cycle activation properties of polyomavirus large T-antigen mutants defective in pRB binding

    SciTech Connect

    Freund, R.; Bauer, P.H.; Benjamin, T.L.; Crissman, H.A.; Bradbury, E.M. |

    1994-11-01

    The authors have examined the growth properties of polyomavirus large T-antigen mutants that ar unable to bind pRB, the product of the retinoblastoma tumor suppressor gene. These mutants grow poorly on primary mouse cells yet grow well on NIH 3T3 and other established mouse cell lines. Preinfection of primary baby mouse kidney (BMK) epithelial cells with wild-type simian virus 40 renders these cells permissive to growth of pRB-binding polyomavirus mutants. Conversely, NIH 3T3 cells transfected by and expressing wild-type human pRB become nonpermissive. Primary fibroblasts for mouse embryos that carry a homozygous knockout of the RB gene are permissive, while those from normal littermates are nonpermissive. The host range of polyomavirus pRB-binding mutants is thus determined by expression or lack of expression of functional pRB by the host. These results demonstrate the importance of pRB binding by large T antigen for productive viral infection in primary cells. Failure of pRB-binding mutants to grow well in BMK cells correlates with their failure to induce progression from G{sub 0} or G{sub 1} through the S phase of the cell cycle. Time course studies show delayed synthesis and lower levels of accumulation of large T antigen, viral DNA, and VP1 in mutant compared with wild-type virus-infected BMK cells. These results support a model in which productive infection by polyomavirus in normal mouse cells is tightly coupled to the induction and progression of the cell cycle. 48 refs., 6 figs., 5 tabs.

  6. Antimicrobial Activity of Fosfomycin-Tobramycin Combination against Pseudomonas aeruginosa Isolates Assessed by Time-Kill Assays and Mutant Prevention Concentrations

    PubMed Central

    Díez-Aguilar, María; Tedim, Ana P.; Rodríguez, Irene; Aktaş, Zerrin; Cantón, Rafael

    2015-01-01

    The antibacterial activity of fosfomycin-tobramycin combination was studied by time-kill assay in eight Pseudomonas aeruginosa clinical isolates belonging to the fosfomycin wild-type population (MIC = 64 μg/ml) but with different tobramycin susceptibilities (MIC range, 1 to 64 μg/ml). The mutant prevention concentration (MPC) and mutant selection window (MSW) were determined in five of these strains (tobramycin MIC range, 1 to 64 μg/ml) in aerobic and anaerobic conditions simulating environments that are present in biofilm-mediated infections. Fosfomycin-tobramycin was synergistic and bactericidal for the isolates with mutations in the mexZ repressor gene, with a tobramycin MIC of 4 μg/ml. This effect was not observed in strains displaying tobramycin MICs of 1 to 2 μg/ml due to the strong bactericidal effect of tobramycin alone. Fosfomycin presented higher MPC values (range, 2,048 to >2,048 μg/ml) in aerobic and anaerobic conditions than did tobramycin (range, 16 to 256 μg/ml). Interestingly, the association rendered narrow or even null MSWs in the two conditions. However, for isolates with high-level tobramycin resistance that harbored aminoglycoside nucleotidyltransferases, time-kill assays showed no synergy, with wide MSWs in the two environments. glpT gene mutations responsible for fosfomycin resistance in P. aeruginosa were determined in fosfomycin-susceptible wild-type strains and mutant derivatives recovered from MPC studies. All mutant derivatives had changes in the GlpT amino acid sequence, which resulted in a truncated permease responsible for fosfomycin resistance. These results suggest that fosfomycin-tobramycin can be an alternative for infections due to P. aeruginosa since it has demonstrated synergistic and bactericidal activity in susceptible isolates and those with low-level tobramycin resistance. It also prevents the emergence of resistant mutants in either aerobic or anaerobic environments. PMID:26195514

  7. Antimicrobial Activity of Fosfomycin-Tobramycin Combination against Pseudomonas aeruginosa Isolates Assessed by Time-Kill Assays and Mutant Prevention Concentrations.

    PubMed

    Díez-Aguilar, María; Morosini, María Isabel; Tedim, Ana P; Rodríguez, Irene; Aktaş, Zerrin; Cantón, Rafael

    2015-10-01

    The antibacterial activity of fosfomycin-tobramycin combination was studied by time-kill assay in eight Pseudomonas aeruginosa clinical isolates belonging to the fosfomycin wild-type population (MIC = 64 μg/ml) but with different tobramycin susceptibilities (MIC range, 1 to 64 μg/ml). The mutant prevention concentration (MPC) and mutant selection window (MSW) were determined in five of these strains (tobramycin MIC range, 1 to 64 μg/ml) in aerobic and anaerobic conditions simulating environments that are present in biofilm-mediated infections. Fosfomycin-tobramycin was synergistic and bactericidal for the isolates with mutations in the mexZ repressor gene, with a tobramycin MIC of 4 μg/ml. This effect was not observed in strains displaying tobramycin MICs of 1 to 2 μg/ml due to the strong bactericidal effect of tobramycin alone. Fosfomycin presented higher MPC values (range, 2,048 to >2,048 μg/ml) in aerobic and anaerobic conditions than did tobramycin (range, 16 to 256 μg/ml). Interestingly, the association rendered narrow or even null MSWs in the two conditions. However, for isolates with high-level tobramycin resistance that harbored aminoglycoside nucleotidyltransferases, time-kill assays showed no synergy, with wide MSWs in the two environments. glpT gene mutations responsible for fosfomycin resistance in P. aeruginosa were determined in fosfomycin-susceptible wild-type strains and mutant derivatives recovered from MPC studies. All mutant derivatives had changes in the GlpT amino acid sequence, which resulted in a truncated permease responsible for fosfomycin resistance. These results suggest that fosfomycin-tobramycin can be an alternative for infections due to P. aeruginosa since it has demonstrated synergistic and bactericidal activity in susceptible isolates and those with low-level tobramycin resistance. It also prevents the emergence of resistant mutants in either aerobic or anaerobic environments.

  8. Modulation of endotoxicity of Shigella generalized modules for membrane antigens (GMMA) by genetic lipid A modifications: relative activation of TLR4 and TLR2 pathways in different mutants.

    PubMed

    Rossi, Omar; Pesce, Isabella; Giannelli, Carlo; Aprea, Susanna; Caboni, Mariaelena; Citiulo, Francesco; Valentini, Sara; Ferlenghi, Ilaria; MacLennan, Calman Alexander; D'Oro, Ugo; Saul, Allan; Gerke, Christiane

    2014-09-01

    Outer membrane particles from Gram-negative bacteria are attractive vaccine candidates as they present surface antigens in their natural context. We previously developed a high yield production process for genetically derived particles, called generalized modules for membrane antigens (GMMA), from Shigella. As GMMA are derived from the outer membrane, they contain immunostimulatory components, especially lipopolysaccharide (LPS). We examined ways of reducing their reactogenicity by modifying lipid A, the endotoxic part of LPS, through deletion of late acyltransferase genes, msbB or htrB, in GMMA-producing Shigella sonnei and Shigella flexneri strains. GMMA with resulting penta-acylated lipid A from the msbB mutants showed a 600-fold reduced ability, and GMMA from the S. sonnei ΔhtrB mutant showed a 60,000-fold reduced ability compared with GMMA with wild-type lipid A to stimulate human Toll-like receptor 4 (TLR4) in a reporter cell line. In human peripheral blood mononuclear cells, GMMA with penta-acylated lipid A showed a marked reduction in induction of inflammatory cytokines (S. sonnei ΔhtrB, 800-fold; ΔmsbB mutants, 300-fold). We found that the residual activity of these GMMA is largely due to non-lipid A-related TLR2 activation. In contrast, in the S. flexneri ΔhtrB mutant, a compensatory lipid A palmitoleoylation resulted in GMMA with hexa-acylated lipid A with ∼10-fold higher activity to stimulate peripheral blood mononuclear cells than GMMA with penta-acylated lipid A, mostly due to retained TLR4 activity. Thus, for use as vaccines, GMMA will likely require lipid A penta-acylation. The results identify the relative contributions of TLR4 and TLR2 activation by GMMA, which need to be taken into consideration for GMMA vaccine development.

  9. Rapid binding of a cationic active site inhibitor to wild type and mutant mouse acetylcholinesterase: Brownian dynamics simulation including diffusion in the active site gorge.

    PubMed

    Tara, S; Elcock, A H; Kirchhoff, P D; Briggs, J M; Radic, Z; Taylor, P; McCammon, J A

    1998-12-01

    It is known that anionic surface residues play a role in the long-range electrostatic attraction between acetylcholinesterase and cationic ligands. In our current investigation, we show that anionic residues also play an important role in the behavior of the ligand within the active site gorge of acetylcholinesterase. Negatively charged residues near the gorge opening not only attract positively charged ligands from solution to the enzyme, but can also restrict the motion of the ligand once it is inside of the gorge. We use Brownian dynamics techniques to calculate the rate constant kon, for wild type and mutant acetylcholinesterase with a positively charged ligand. These calculations are performed by allowing the ligand to diffuse within the active site gorge. This is an extension of previously reported work in which a ligand was allowed to diffuse only to the enzyme surface. By setting the reaction criteria for the ligand closer to the active site, better agreement with experimental data is obtained. Although a number of residues influence the movement of the ligand within the gorge, Asp74 is shown to play a particularly important role in this function. Asp74 traps the ligand within the gorge, and in this way helps to ensure a reaction.

  10. Design, characterization, and structure of a biologically active single-chain mutant of human IFN-gamma.

    PubMed

    Landar, A; Curry, B; Parker, M H; DiGiacomo, R; Indelicato, S R; Nagabhushan, T L; Rizzi, G; Walter, M R

    2000-05-26

    A mutant form of human interferon-gamma (IFN-gamma SC1) that binds one IFN-gamma receptor alpha chain (IFN-gamma R alpha) has been designed and characterized. IFN-gamma SC1 was derived by linking the two peptide chains of the IFN-gamma dimer by a seven-residue linker and changing His111 in the first chain to an aspartic acid residue. Isothermal titration calorimetry shows that IFN-gamma SC1 forms a 1:1 complex with its high-affinity receptor (IFN-gamma R alpha) with an affinity of 27(+/- 9) nM. The crystal structure of IFN-gamma SC1 has been determined at 2.9 A resolution from crystals grown in 1.4 M citrate solutions at pH 7.6. Comparison of the wild-type receptor-binding domain and the Asp111-containing domain of IFN-gamma SC1 show that they are structurally equivalent but have very different electrostatic surface potentials. As a result, surface charge rather than structural changes is likely responsible for the inability of the His111-->Asp domain of to bind IFN-gamma R alpha. The AB loops of IFN-gamma SC1 adopt conformations similar to the ordered loops of IFN-gamma observed in the crystal structure of the IFN-gamma/IFN-gamma R alpha complex. Thus, IFN-gamma R alpha binding does not result in a large conformational change in the AB loop as previously suggested. The structure also reveals the final six C-terminal amino acid residues of IFN-gamma SC1 (residues 253-258) that have not been observed in any other reported IFN-gamma structures. Despite binding to only one IFN-gamma R alpha, IFN-gamma SC1 is biologically active in cell proliferation, MHC class I induction, and anti-viral assays. This suggests that one domain of IFN-gamma is sufficient to recruit IFN-gamma R alpha and IFN-gamma R beta into a complex competent for eliciting biological activity. The current data are consistent with the main role of the IFN-gamma dimer being to decrease the dissociation constant of IFN-gamma for its cellular receptors.

  11. Steady state fluorescence studies of wild type recombinant cinnamoyl CoA reductase (Ll-CCRH1) and its active site mutants.

    PubMed

    Sonawane, Prashant; Vishwakarma, Rishi Kishore; Singh, Somesh; Gaikwad, Sushama; Khan, Bashir M

    2014-05-01

    Fluorescence quenching and time resolved fluorescence studies of wild type recombinant cinnamoyl CoA reductase (Ll-CCRH1), a multitryptophan protein from Leucaena leucocephala and 10 different active site mutants were carried out to investigate tryptophan environment. The enzyme showed highest affinity for feruloyl CoA (K(a)  = 3.72 × 10(5) M(-1)) over other CoA esters and cinnamaldehydes, as determined by fluorescence spectroscopy. Quenching of the fluorescence by acrylamide for wild type and active site mutants was collisional with almost 100% of the tryptophan fluorescence accessible under native condition and remained same after denaturation of protein with 6 M GdnHCl. In wild type Ll-CCRH1, the extent of quenching achieved with iodide (f(a) = 1.0) was significantly higher than cesium ions (f(a) = 0.33) suggesting more density of positive charge around surface of trp conformers under native conditions. Denaturation of wild type protein with 6 M GdnHCl led to significant increase in the quenching with cesium (f(a) = 0.54), whereas quenching with iodide ion was decreased (f(a) = 0.78), indicating reorientation of charge density around trp from positive to negative and heterogeneity in trp environment. The Stern-Volmer plots for wild type and mutants Ll-CCRH1 under native and denatured conditions, with cesium ion yielded biphasic quenching profiles. The extent of quenching for cesium and iodide ions under native and denatured conditions observed in active site mutants was significantly different from wild type Ll-CCRH1 under the same conditions. Thus, single substitution type mutations of active site residues showed heterogeneity in tryptophan microenvironment and differential degree of conformation of protein under native or denatured conditions. PMID:24322526

  12. Acquisition of pro-oxidant activity of fALS-linked SOD1 mutants as revealed using circular dichroism and UV-resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Fujimaki, Nobuhiro; Nishiya, Ken; Miura, Takashi; Nakabayashi, Takakazu

    2016-11-01

    The acquisition of pro-oxidant activity of the mutated form of human Cu, Zn-superoxide dismutase (SOD1) has been investigated to clarify the relationship between mutations in SOD1 and the pathogenesis of amyotrophic lateral sclerosis (ALS). Ala4 → Val (A4V) and Gly93 → Ala (G93A) mutants, which are representative ALS-linked SOD1 mutants, have been found to exhibit both the denaturation and the gain of pro-oxidant activity after incubation in the apo-form at a physiological condition of 37 °C and pH 7.4 and the rebinding of Cu2+. These characteristics are similar to those previously reported for the His43 → Arg (H43R) mutant. UV-resonance Raman spectra indicated that the coordination structure of the Cu-binding site catalyzing the oxidation reaction is the same among the denatured A4V, G93A, and H43R. Since wild-type SOD1 does not exhibit the denaturation in its apo-form at 37 °C and pH 7.4, the instability of the protein structure due to mutation can be considered as a significant factor that induces the denaturation and the subsequent pro-oxidant activity.

  13. H11-H12 loop retinoic acid receptor mutants exhibit distinct trans-activating and trans-repressing activities in the presence of natural or synthetic retinoids.

    PubMed

    Lefebvre, B; Mouchon, A; Formstecher, P; Lefebvre, P

    1998-06-30

    Retinoids, such as the naturally occurring all-trans-retinoic acid (atRA) and synthetic ligand CD367 modulate ligand-dependent transcription through retinoic acid receptors (RARs). Retinoid binding to RAR is believed to trigger structural transitions in the ligand-binding domain (LBD), leading to helix H1 and helix H12 repositioning and coactivator recruitment and corepressor release. Here, we carried out a detailed mutagenesis analysis of the H11-H12 loop (designated the L box) to study its contribution to hRARalpha activation process. Point mutations that reduced transactivation by atRA also reduced atRA-induced transrepression of AP1 transcription, correlating ligand-induced activation and repression. However, a correlation was not observed with these mutations when tested with another ligand CD367, a synthetic agonist with binding properties identical to those of atRA. Transcription was strongly inhibited in the presence of CD367 for some mutants, thus leading to an inverse agonist activity of this ligand. None of these mutations significantly altered binding affinity for either ligand, indicating that altered transcription was not caused by altered ligand binding by these mutations. Although simple correlations with transcriptional activities were not found, these mutations were also characterized by altered ligand-induced structural transitions, which were distinct for the atRA-hRARalpha or CD367-hRARalpha complexes. These results indicate that amino acids in the L box are involved in specifying trans-repressive and trans-activating properties of the hRARalpha, and support the notion that different agonists induce distinct conformations in the LBD of the receptor.

  14. Structures of the G81A mutant form of the active chimera of (S)-mandelate dehydrogenase and its complex with two of its substrates

    SciTech Connect

    Sukumar, Narayanasami; Dewanti, Asteriani; Merli, Angelo; Rossi, Gian Luigi; Mitra, Bharati; Mathews, F. Scott

    2009-06-01

    The crystal structure of the G81A mutant form of the chimera of (S)-mandelate dehydrogenase and of its complexes with two of its substrates reveal productive and non-productive modes of binding for the catalytic reaction. The structure also indicates the role of G81A in lowering the redox potential of the flavin co-factor leading to an ∼200-fold slower catalytic rate of substrate oxidation. (S)-Mandelate dehydrogenase (MDH) from Pseudomonas putida, a membrane-associated flavoenzyme, catalyzes the oxidation of (S)-mandelate to benzoylformate. Previously, the structure of a catalytically similar chimera, MDH-GOX2, rendered soluble by the replacement of its membrane-binding segment with the corresponding segment of glycolate oxidase (GOX), was determined and found to be highly similar to that of GOX except within the substituted segments. Subsequent attempts to cocrystallize MDH-GOX2 with substrate proved unsuccessful. However, the G81A mutants of MDH and of MDH-GOX2 displayed ∼100-fold lower reactivity with substrate and a modestly higher reactivity towards molecular oxygen. In order to understand the effect of the mutation and to identify the mode of substrate binding in MDH-GOX2, a crystallographic investigation of the G81A mutant of the MDH-GOX2 enzyme was initiated. The structures of ligand-free G81A mutant MDH-GOX2 and of its complexes with the substrates 2-hydroxyoctanoate and 2-hydroxy-3-indolelactate were determined at 1.6, 2.5 and 2.2 Å resolution, respectively. In the ligand-free G81A mutant protein, a sulfate anion previously found at the active site is displaced by the alanine side chain introduced by the mutation. 2-Hydroxyoctanoate binds in an apparently productive mode for subsequent reaction, while 2-hydroxy-3-indolelactate is bound to the enzyme in an apparently unproductive mode. The results of this investigation suggest that a lowering of the polarity of the flavin environment resulting from the displacement of nearby water molecules caused by

  15. Prenylation of a Rab1B mutant with altered GTPase activity is impaired in cell-free systems but not in intact mammalian cells.

    PubMed

    Wilson, A L; Sheridan, K M; Erdman, R A; Maltese, W A

    1996-09-15

    Previous studies have reached differing conclusions as to whether or not guanine-nucleotide-dependent conformational changes affect the ability of Rab proteins to undergo post-translational modification by Rab:geranylgeranyltransferase (Rab-GGTase). We now show that the ability of a Rab1B mutant [Q67L (Gln-67-->Leu)] with reduced intrinsic GTPase activity to undergo geranylgeranylation in cell-free assays depends on the guanine nucleotide composition of the system. When GTP is the predominant nucleotide in the assay, Rab1BQ67L is a poor substrate. However, when GDP is present and GTP is omitted, prenylation of the Q67L mutant is comparable with that of the wild-type (WT) protein. These studies, coupled with the poor prenylation of Rab1BWT in the presence of the non-hydrolysable GTP analogue guanosine 5'-[gamma-thio]triphosphate, support the notion that Rab-GGTase prefers substrates in the GDP conformation. When the abilities of Rab1BQ67L and Rab1BWT to undergo prenylation were compared by metabolic labelling of transiently expressed proteins in cultured human 293 cells, we did not observe a decline in prenylation of the mutant protein as predicted on the basis of the cell-free assays. Moreover, the Q67L mutant was comparable with the wild-type Rab1B in its ability to associate with co-expressed Rab GDP dissociation inhibitors in 293 cells. These findings raise the possibility that unidentified proteins present in intact cells may compensate for the reduced intrinsic GTPase activity of the Q67L mutant, allowing a significant proportion of the nascent Rab1BQ67L to assume a GDP conformation. The differential prenylation of Rab1BQ67L in cell-free systems versus intact cells underscores the importance of evaluating the post-translational modification of specific Rab mutants in vivo, where poorly characterized regulatory proteins may have a significant effect on GTPase activity or nucleotide exchange rates.

  16. Mutant fatty acid desaturase

    DOEpatents

    Shanklin, John; Cahoon, Edgar B.

    2004-02-03

    The present invention relates to a method for producing mutants of a fatty acid desaturase having a substantially increased activity towards fatty acid substrates with chains containing fewer than 18 carbons relative to an unmutagenized precursor desaturase having an 18 carbon atom chain length substrate specificity. The method involves inducing one or more mutations in the nucleic acid sequence encoding the precursor desaturase, transforming the mutated sequence into an unsaturated fatty acid auxotroph cell such as MH13 E. coli, culturing the cells in the absence of supplemental unsaturated fatty acids, thereby selecting for recipient cells which have received and which express a mutant fatty acid desaturase with an elevated specificity for fatty acid substrates having chain lengths of less than 18 carbon atoms. A variety of mutants having 16 or fewer carbon atom chain length substrate specificities are produced by this method. Mutant desaturases produced by this method can be introduced via expression vectors into prokaryotic and eukaryotic cells and can also be used in the production of transgenic plants which may be used to produce specific fatty acid products.

  17. Over-expression of an inactive mutant cathepsin D increases endogenous alpha-synuclein and cathepsin B activity in SH-SY5Y cells.

    PubMed

    Crabtree, Donna; Dodson, Matthew; Ouyang, Xiaosen; Boyer-Guittaut, Michaël; Liang, Qiuli; Ballestas, Mary E; Fineberg, Naomi; Zhang, Jianhua

    2014-03-01

    Parkinson's disease is a neurodegenerative movement disorder. The histopathology of Parkinson's disease comprises proteinaceous inclusions known as Lewy bodies, which contains aggregated α-synuclein. Cathepsin D (CD) is a lysosomal protease previously demonstrated to cleave α-synuclein and decrease its toxicity in both cell lines and mouse brains in vivo. Here, we show that pharmacological inhibition of CD, or introduction of catalytically inactive mutant CD, resulted in decreased CD activity and increased cathepsin B activity, suggesting a possible compensatory response to inhibition of CD activity. However, this increased cathepsin B activity was not sufficient to maintain α-synuclein degradation, as evidenced by the accumulation of endogenous α-synuclein. Interestingly, the levels of LC3, LAMP1, and LAMP2, proteins involved in autophagy-lysosomal activities, as well as total lysosomal mass as assessed by LysoTracker flow cytometry, were unchanged. Neither autophagic flux nor proteasomal activities differs between cells over-expressing wild-type versus mutant CD. These observations point to a critical regulatory role for that endogenous CD activity in dopaminergic cells in α-synuclein homeostasis which cannot be compensated for by increased Cathepsin B. These data support the potential need to enhance CD function in order to attenuate α-synuclein accumulation as a therapeutic strategy against development of synucleinopathy.

  18. Thiopurine S-methyltransferase deficiency: two nucleotide transitions define the most prevalent mutant allele associated with loss of catalytic activity in Caucasians.

    PubMed Central

    Tai, H. L.; Krynetski, E. Y.; Yates, C. R.; Loennechen, T.; Fessing, M. Y.; Krynetskaia, N. F.; Evans, W. E.

    1996-01-01

    The autosomal recessive trait of thiopurine S-methytransferase (TPMT) deficiency is associated with severe hematopoietic toxicity when patients are treated with standard doses of mercaptopurine, azathioprine, or thioguanine. To define the molecular mechanism of this genetic polymorphism, we cloned and characterized the cDNA of a TPMT-deficient patient, which revealed a novel mutant allele (TPMT*3) containing two nucleotide transitions (G460-->A and A719-->G) producing amino acid changes at codons 154 (Ala-->Thr) and 240 (Tyr--> Cys), differing from the rare mutant TPMT allele we previously identified (i.e., TPMT*2 with only G238-->C). Site-directed mutagenesis and heterologous expression established that either TPMT*3 mutation alone leads to a reduction in catalytic activity (G460-->A, ninefold reduction; A719-->G, 1.4-fold reduction), while the presence of both mutations leads to complete loss of activity. Using mutation specific PCR-RFLP analysis, the TPMT*3 allele was detected in genomic DNA from approximately 75 percent of unrelated white subjects with heterozygous phenotypes, indicating that TPMT*3 is the most prevalent mutant allele associated with TPMT-deficiency in Caucasians. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:8644731

  19. Isolation of a highly active photosystem II preparation from Synechocystis 6803 using a histidine-tagged mutant of CP 47.

    PubMed

    Bricker, T M; Morvant, J; Masri, N; Sutton, H M; Frankel, L K

    1998-11-01

    Site-directed mutagenesis was used to produce a Synechocystis mutant containing a histidine tag at the C terminus of the CP 47 protein of Photosystem II. This mutant cell line, designated HT-3, exhibited slightly above normal rates of oxygen evolution and appeared to accumulate somewhat more Photosystem II reaction centers than a control strain. A rapidly isolatable (<7 h) oxygen-evolving Photosystem II preparation was prepared from HT-3 using dodecyl-beta-d-maltoside solubilization and Co2+ metal affinity chromatography. This histidine-tagged Photosystem II preparation stably evolved oxygen at a high rate (2440 micromol O2 (mg chl)-1 h-1), exhibited an alpha-band absorption maximum at 674 nm, and was highly enriched in a number of Photosystem II components including cytochrome c550. Fluorescence yield analysis using water or hydroxylamine as an electron donor to the Photosystem II preparation indicated that virtually all of the Photosystem II reaction centers were capable of evolving oxygen. Proteins associated with Photosystem II were highly enriched in this preparation. 3,3',5, 5'-Tetramethylbenzidine staining indicated that the histidine-tagged preparation was enriched in cytochromes c550 and b559 and depleted of cytochrome f. This result was confirmed by optical difference spectroscopy. This histidine-tagged Photosystem II preparation may be very useful for the isolation of Photosystem II preparations from mutants containing lesions in other Photosystem II proteins. PMID:9804889

  20. Structure of solvation water around the active and inactive regions of a type III antifreeze protein and its mutants of lowered activity

    NASA Astrophysics Data System (ADS)

    Grabowska, Joanna; Kuffel, Anna; Zielkiewicz, Jan

    2016-08-01

    Water molecules from the solvation shell of the ice-binding surface are considered important for the antifreeze proteins to perform their function properly. Herein, we discuss the problem whether the extent of changes of the mean properties of solvation water can be connected with the antifreeze activity of the protein. To this aim, the structure of solvation water of a type III antifreeze protein from Macrozoarces americanus (eel pout) is investigated. A wild type of the protein is used, along with its three mutants, with antifreeze activities equal to 54% or 10% of the activity of the native form. The solvation water of the ice-binding surface and the rest of the protein are analyzed separately. To characterize the structure of solvation shell, parameters describing radial and angular characteristics of the mutual arrangement of the molecules were employed. They take into account short-distance (first hydration shell) or long-distance (two solvation shells) effects. The obtained results and the comparison with the results obtained previously for a hyperactive antifreeze protein from Choristoneura fumiferana lead to the conclusion that the structure and amino acid composition of the active region of the protein evolved to achieve two goals. The first one is the modification of the properties of the solvation water. The second one is the geometrical adjustment of the protein surface to the specific crystallographic plane of ice. Both of these goals have to be achieved simultaneously in order for the protein to perform its function properly. However, they seem to be independent from one another in a sense that very small antifreeze activity does not imply that properties of water become different from the ones observed for the wild type. The proteins with significantly lower activity still modify the mean properties of solvation water in a right direction, in spite of the fact that the accuracy of the geometrical match with the ice lattice is lost because of the

  1. Structure of solvation water around the active and inactive regions of a type III antifreeze protein and its mutants of lowered activity.

    PubMed

    Grabowska, Joanna; Kuffel, Anna; Zielkiewicz, Jan

    2016-08-21

    Water molecules from the solvation shell of the ice-binding surface are considered important for the antifreeze proteins to perform their function properly. Herein, we discuss the problem whether the extent of changes of the mean properties of solvation water can be connected with the antifreeze activity of the protein. To this aim, the structure of solvation water of a type III antifreeze protein from Macrozoarces americanus (eel pout) is investigated. A wild type of the protein is used, along with its three mutants, with antifreeze activities equal to 54% or 10% of the activity of the native form. The solvation water of the ice-binding surface and the rest of the protein are analyzed separately. To characterize the structure of solvation shell, parameters describing radial and angular characteristics of the mutual arrangement of the molecules were employed. They take into account short-distance (first hydration shell) or long-distance (two solvation shells) effects. The obtained results and the comparison with the results obtained previously for a hyperactive antifreeze protein from Choristoneura fumiferana lead to the conclusion that the structure and amino acid composition of the active region of the protein evolved to achieve two goals. The first one is the modification of the properties of the solvation water. The second one is the geometrical adjustment of the protein surface to the specific crystallographic plane of ice. Both of these goals have to be achieved simultaneously in order for the protein to perform its function properly. However, they seem to be independent from one another in a sense that very small antifreeze activity does not imply that properties of water become different from the ones observed for the wild type. The proteins with significantly lower activity still modify the mean properties of solvation water in a right direction, in spite of the fact that the accuracy of the geometrical match with the ice lattice is lost because of the

  2. Acceleration of amyloidogenesis and memory impairment by estrogen deficiency through NF-κB dependent beta-secretase activation in presenilin 2 mutant mice.

    PubMed

    Hwang, Chul Ju; Park, Mi Hee; Choi, Min Ki; Choi, Jung Soon; Oh, Ki Wan; Hwang, Dae Yeon; Han, Sang Bae; Hong, Jin Tae

    2016-03-01

    Nearly 7-10 million people are living with Alzheimer's disease (AD) worldwide. Senile plaques composed of β-amyloid (Aβ) are a pathological hallmark of Alzheimer's disease. Presenilin 2 (PS2) mutations increase Aβ generation in the brains of AD patients. The Aβ is generated through the sequential cleavage of amyloid precursor protein by β- and γ-secretases. Additionally, increasing evidences suggest that estrogen can reduce the development of AD via regulation of β-secretases activity and beta-site APP-cleaving enzyme (BACE1) expression. But the underlying correlation mechanism of Aβ generation by PS2 mutations and estrogen remains to be clarified. To investigate the anti-amyloidogenesis effect of estrogen in a PS2 mutative condition, we examined memory impairment in ovariectomized PS2 mutation (N141I) mice in which cognitive function was assessed by the Morris water maze test and passive avoidance test. In addition, Western blot analysis, immunostaining, immunofluorescence staining, ELISA and enzyme activity assays were used to examine the degree of Aβ deposition in the brains. In the present study, Aβ accumulated more in the ovariectomized PS2 mutant mice brain, and greatly worsened memory impairment and glial activation as well as neurogenic inflammation. In parallel with increased memory impairment, activity of β-secretase and expression of the BACE1 increased inovariectomized PS2 mutant mice. Much higher activity of NF-κB was observed by EMSA in ovariectomized PS2 mutant mice. In addition, the Aβ level was decreased by treatment of β-estradiol through inhibiting BACE1 expression in PS2 transfacted PC12 cells. These results suggest that mutation of PS2 can lead to NF-κB mediate amyloidogensis, and this effect can be amplified by the absence of estrogen.

  3. A theoretical study of the active sites of papain and S195C rat trypsin: implications for the low reactivity of mutant serine proteinases.

    PubMed Central

    Beveridge, A. J.

    1996-01-01

    The serine and cysteine proteinases represent two important classes of enzymes that use a catalytic triad to hydrolyze peptides and esters. The active site of the serine proteinases consists of three key residues, Asp...His...Ser. The hydroxyl group of serine functions as a nucleophile and the imidazole ring of histidine functions as a general acid/general base during catalysis. Similarly, the active site of the cysteine proteinases also involves three key residues: Asn, His, and Cys. The active site of the cysteine proteinases is generally believed to exist as a zwitterion (Asn...His+...Cys-) with the thiolate anion of the cysteine functioning as a nucleophile during the initial stages of catalysis. Curiously, the mutant serine proteinases, thiol subtilisin and thiol trypsin, which have the hybrid Asp...His...Cys triad, are almost catalytically inert. In this study, ab initio Hartree-Fock calculations have been performed on the active sites of papain and the mutant serine proteinase S195C rat trypsin. These calculations predict that the active site of papain exists predominately as a zwitterion (Cys-...His+...Asn). However, similar calculations on S195C rat trypsin demonstrate that the thiol mutant is unable to form a reactive thiolate anion prior to catalysis. Furthermore, structural comparisons between native papain and S195C rat trypsin have demonstrated that the spatial juxtapositions of the triad residues have been inverted in the serine and cysteine proteinases and, on this basis, I argue that it is impossible to convert a serine proteinase to a cysteine proteinase by site-directed mutagenesis. PMID:8819168

  4. PsbQ (Sll1638) in Synechocystis sp. PCC 6803 is required for photosystem II activity in specific mutants and in nutrient-limiting conditions.

    PubMed

    Summerfield, Tina C; Shand, Jackie A; Bentley, Fiona K; Eaton-Rye, Julian J

    2005-01-18

    A PsbQ homologue has been found associated with photosystem II complexes in Synechocystis sp. PCC 6803 where it is involved in optimal photoautotrophic growth and water splitting under CaCl(2)-depleted conditions [Thornton, L. E., Ohkawa, H., Roose, J. L., Kashino, Y., Keren, N., and Pakrasi, H. B. (2004) Plant Cell 16, 2164-2175]. By inactivating psbQ in strains carrying photosystem II-specific mutations, we have identified stringent requirements for PsbQ in vivo. Whereas under nutrient-replete conditions the DeltaPsbQ mutant was similar to wild type, a strain lacking PsbQ and PsbV was not photoautotrophic, exhibiting decreased oxygen evolution and decreased photosystem II assembly compared to the DeltaPsbV mutant. Combining the removal of PsbU and PsbQ introduced an altered requirement for Ca(2+) and Cl(-), and photoautotrophic growth of the DeltaPsbQ strain was prevented in nutrient-limiting media depleted in Ca(2+), Cl(-), and iron. Unlike other photosystem II extrinsic proteins PsbQ did not participate in the acquisition of thermotolerance; however, photoautotrophic growth at elevated temperatures was impaired in this mutant. Growth of the DeltaPsbV:DeltaPsbQ mutant was restored at pH 10.0: in contrast, an additional deletion between Arg-384 and Val-392 in the CP47 protein of photosystem II prevented recovery at alkaline pH. When conditions prevented photoautotrophy in strains lacking PsbQ, photoheterotrophic growth was indistinguishable to wild type, indicating that photosystem II had been inactivated. These data substantiate a role for PsbQ in optimizing photosystem II activity in Synechocystis sp. PCC 6803 and establish an absolute requirement for the subunit under specific biochemical and physiological conditions. PMID:15641809

  5. Molecular dynamics of the Bacillus subtilis expansin EXLX1: interaction with substrates and structural basis of the lack of activity of mutants.

    PubMed

    Silveira, Rodrigo L; Skaf, Munir S

    2016-02-01

    Expansins are disruptive proteins that loosen growing plant cell walls and can enhance the enzymatic hydrolysis of cellulose. The canonical expansin structure consists of one domain responsible for substrate binding (D2) and another domain (D1) of unknown function, but essential for activity. Although the effects of expansins on cell walls and cellulose fibrils are known, the molecular mechanism underlying their biophysical function is poorly understood. Here, we use molecular dynamics simulations to gain insights into the mechanism of action of the Bacillus subtilis expansin BsEXLX1. We show that BsEXLX1 can slide on the hydrophobic surface of crystalline cellulose via the flat aromatic surface of its binding domain D2, comprised mainly of residues Trp125 and Trp126. Also, we observe that BsEXLX1 can hydrogen bond a free glucan chain in a twisted conformation and that the twisting is chiefly induced by means of residue Asp82 located on D1, which has been shown to be essential for expansin activity. These results suggest that BsEXLX1 could move on the surface of cellulose and disrupt hydrogen bonds by twisting glucan chains. Simulations of the inactive BsEXLX1 mutants Asp82Asn and Tyr73Ala indicate structural alterations around the twisting center in the domain D1, which suggest a molecular basis for the lack of activity of these mutants and corroborate the idea that BsEXLX1 works by inducing twists on glucan chains. Moreover, simulations of the double mutant Asp82Asn/Tyr73Leu predict the recovery of the lost activity of BsEXLX1-Asp82Asn. Our results provide a dynamical view of the expansin-substrate interactions at the molecular scale and help shed light on the expansin mechanism.

  6. Structure–Activity Relationship of 3,5-Diaryl-2-aminopyridine ALK2 Inhibitors Reveals Unaltered Binding Affinity for Fibrodysplasia Ossificans Progressiva Causing Mutants

    PubMed Central

    2015-01-01

    There are currently no effective therapies for fibrodysplasia ossificans progressiva (FOP), a debilitating and progressive heterotopic ossification disease caused by activating mutations of ACVR1 encoding the BMP type I receptor kinase ALK2. Recently, a subset of these same mutations of ACVR1 have been identified in diffuse intrinsic pontine glioma (DIPG) tumors. Here we describe the structure–activity relationship for a series of novel ALK2 inhibitors based on the 2-aminopyridine compound K02288. Several modifications increased potency in kinase, thermal shift, or cell-based assays of BMP signaling and transcription, as well as selectivity for ALK2 versus closely related BMP and TGF-β type I receptor kinases. Compounds in this series exhibited a wide range of in vitro cytotoxicity that was not correlated with potency or selectivity, suggesting mechanisms independent of BMP or TGF-β inhibition. The study also highlights a potent 2-methylpyridine derivative 10 (LDN-214117) with a high degree of selectivity for ALK2 and low cytotoxicity that could provide a template for preclinical development. Contrary to the notion that activating mutations of ALK2 might alter inhibitor efficacy due to potential conformational changes in the ATP-binding site, the compounds demonstrated consistent binding to a panel of mutant and wild-type ALK2 proteins. Thus, BMP inhibitors identified via activity against wild-type ALK2 signaling are likely to be of clinical relevance for the diverse ALK2 mutant proteins associated with FOP and DIPG. PMID:25101911

  7. Structure-activity relationship of 3,5-diaryl-2-aminopyridine ALK2 inhibitors reveals unaltered binding affinity for fibrodysplasia ossificans progressiva causing mutants.

    PubMed

    Mohedas, Agustin H; Wang, You; Sanvitale, Caroline E; Canning, Peter; Choi, Sungwoon; Xing, Xuechao; Bullock, Alex N; Cuny, Gregory D; Yu, Paul B

    2014-10-01

    There are currently no effective therapies for fibrodysplasia ossificans progressiva (FOP), a debilitating and progressive heterotopic ossification disease caused by activating mutations of ACVR1 encoding the BMP type I receptor kinase ALK2. Recently, a subset of these same mutations of ACVR1 have been identified in diffuse intrinsic pontine glioma (DIPG) tumors. Here we describe the structure-activity relationship for a series of novel ALK2 inhibitors based on the 2-aminopyridine compound K02288. Several modifications increased potency in kinase, thermal shift, or cell-based assays of BMP signaling and transcription, as well as selectivity for ALK2 versus closely related BMP and TGF-β type I receptor kinases. Compounds in this series exhibited a wide range of in vitro cytotoxicity that was not correlated with potency or selectivity, suggesting mechanisms independent of BMP or TGF-β inhibition. The study also highlights a potent 2-methylpyridine derivative 10 (LDN-214117) with a high degree of selectivity for ALK2 and low cytotoxicity that could provide a template for preclinical development. Contrary to the notion that activating mutations of ALK2 might alter inhibitor efficacy due to potential conformational changes in the ATP-binding site, the compounds demonstrated consistent binding to a panel of mutant and wild-type ALK2 proteins. Thus, BMP inhibitors identified via activity against wild-type ALK2 signaling are likely to be of clinical relevance for the diverse ALK2 mutant proteins associated with FOP and DIPG.

  8. Autoinducer-independent mutants of the LuxR transcriptional activator exhibit differential effects on the two lux promoters of Vibrio fischeri.

    PubMed

    Sitnikov, D M; Shadel, G S; Baldwin, T O

    1996-10-16

    The LuxR protein is a transcriptional activator which, together with a diffusible small molecule termed the autoinducer [N-(3-oxohexanoyl)-L-homo-serine lactone], represents the primary level of regulation of the bioluminescence genes in Vibrio fischeri. LuxR, in the presence of autoinducer, activates transcription of the luxICDABEG gene cluster and both positively and negatively autoregulates transcription of the divergently oriented luxR gene, activating transcription at low levels of autoinducer, and repressing synthesis at high autoinducer concentration. Seven LuxR point mutants which activate V. fischeri lux transcription in the absence of autoinducer (LuxR*) have been characterized. The LuxR* proteins activated transcription of the bioluminescence genes to levels 1.5-40 times that achieved by wild-type LuxR without autoinducer. All of the LuxR* mutants retained responsiveness to autoinducer. However, in each case the degree of stimulation in response to autoinducer was lower than that observed for wild-type LuxR. The LuxR* proteins retained the requirement for autoinducer for autoregulation of the luxR gene. We propose that the LuxR protein exists in two conformations, an inactive form, and an active form which predominates in the presence of autoinducer. The LuxR* mutations appear to shift the equilibrium distribution of these two forms so as to increase the amount of the active form in the absence of autoinducer, while autoinducer can still convert inactive to active species. The differential effects of the LuxR* proteins at the two lux promoters suggest that LuxR stimulates PluxR transcription by a different mechanism to that used at the PluxI promoter, implying that binding of LuxR to its binding site, known to be necessary for transcriptional activation, may not be sufficient.

  9. Allele-specific silencing of EEC p63 mutant R304W restores p63 transcriptional activity

    PubMed Central

    Novelli, F; Lena, A M; Panatta, E; Nasser, W; Shalom-Feuerstein, R; Candi, E; Melino, G

    2016-01-01

    EEC (ectrodactily-ectodermal dysplasia and cleft lip/palate) syndrome is a rare genetic disease, autosomal dominant inherited. It is part of the ectodermal dysplasia disorders caused by heterozygous mutations in TP63 gene. EEC patients present limb malformations, orofacial clefting, skin and skin's appendages defects, ocular abnormalities. The transcription factor p63, encoded by TP63, is a master gene for the commitment of ectodermal-derived tissues, being expressed in the apical ectodermal ridge is critical for vertebrate limb formation and, at a later stage, for skin and skin's appendages development. The ΔNp63α isoform is predominantly expressed in epithelial cells and it is indispensable for preserving the self-renewal capacity of adult stem cells and to engage specific epithelial differentiation programs. Small interfering RNA (siRNA) offers a potential therapy approach for EEC patients by selectively silencing the mutant allele. Here, using a systemic screening based on a dual-luciferase reported gene assay, we have successfully identified specific siRNAs for repressing the EEC-causing p63 mutant, R304W. Upon siRNA treatment, we were able to restore ΔNp63-WT allele transcriptional function in induced pluripotent stem cells that were derived from EEC patient biopsy. This study demonstrates that siRNAs approach is promising and, may pave the way for curing/delaying major symptoms, such as cornea degeneration and skin erosions in young EEC patients. PMID:27195674

  10. Molecular dynamics investigation on the poor sensitivity of A171T mutant NEDD8-activating enzyme (NAE) for MLN4924.

    PubMed

    Verma, Sharad; Singh, Amit; Mishra, Abha

    2014-01-01

    MLN4924 is an adenosine sulfamate analog that generates the inhibitory NEDD8-MLN4924 covalent complex. A single nucleotide transition that changes alanine 171 to threonine (A171T) of the NAE subunit UBA3 reduces the enzyme's sensitivity for MLN4924. Our molecular dynamics simulation study revealed that A171T transition brought remarkable conformational changes in enzyme structure (open ATP binding pocket), which reduced the interaction between MLN4924 and ATP binding pocket while wild form completely covered the MLN4924. A total difference of -49.75 kJ/mol was noticed in interaction energy (electrostatic and van der Waals) during simulation between mutant and wild form with MLN4924. Superimposition of final 20 ns mutant structure with reference structure showed significant change in native binding position as compared to wild form. Results were found in coherence with the recently reported in vitro studies which states that A171T transition leads to change in ATP binding pocket structure. PMID:23782099

  11. Starch mutants of Chlamydomonas

    SciTech Connect

    Berry-Lowe, S.L.; Schmidt, G.W. )

    1990-05-01

    Wild type Chlamydomonas accumulates starch and triglycerides when grown under nitrogen limiting conditions. Toward elucidation of the mechanisms for control of starch biosynthesis, we isolated mutants impaired int he accumulation of storage carbohydrates. Chlamydomonas reinhardtii (strain ya-12) was mutagenized by UV irradiation and colonies were screened by iodine staining after growth in darkness. Mutants, denoted ais for altered in iodine staining, have been characterized by electron microscopy and assays for starch synthease, ADPG-pyrophosphorylase, phosphoglucose isomerase (PGI), phosphoglucomutase and fructose 1,6-bisphosphatase, and amylase activities. Transcript analysis of wild type and mutant RNAs with PGI, ADPG-pyrophosphorylase, and waxy probes have also been carried out. No deficiencies of any of these components have been detected. Furthermore, long-term cultures of ya-12 and ais-1d in nitrogen-limited chemostats have been studied; starch also does not accumulate in ais-1d under these conditions. Thus, the lesion affects an essential factor of unknown identity that is required for starch synthesis.

  12. Global and local perturbation of the tomato microRNA pathway by a trans-activated DICER-LIKE 1 mutant

    PubMed Central

    Arazi, Tzahi

    2014-01-01

    DICER-like 1 (DCL1) is a major player in microRNA (miRNA) biogenesis and accordingly, its few known loss-of-function mutants are either lethal or display arrested development. Consequently, generation of dcl1 mutants by reverse genetics and functional analysis of DCL1 in late-developing organs are challenging. Here, these challenges were resolved through the unique use of trans-activated RNA interference. Global, as well as organ-specific tomato DCL1 (SlDCL1) silencing was induced by crossing the generated responder line (OP:SlDCL1IR) with the appropriate driver line. Constitutive trans-activation knocked down SlDCL1 levels by ~95%, resulting in severe abnormalities including post-germination growth arrest accompanied by decreased miRNA and 21-nucleotide small RNA levels, but prominently elevated levels of 22-nucleotide small RNAs. The increase in the 22-nucleotide small RNAs was correlated with specific up-regulation of SlDCL2b and SlDCL2d, which are probably involved in their biogenesis. Leaf- and flower-specific OP:SlDCL1IR trans-activation inhibited blade outgrowth, induced premature bud senescence and produced pale petals, respectively, emphasizing the importance of SlDCL1-dependent small RNAs in these processes. Together, these results establish OP:SlDCL1IR as an efficient tool for analysing processes regulated by SlDCL1-mediated gene regulation in tomato. PMID:24376253

  13. Aberrant epilepsy-associated mutant Nav1.6 sodium channel activity can be targeted with cannabidiol.

    PubMed

    Patel, Reesha R; Barbosa, Cindy; Brustovetsky, Tatiana; Brustovetsky, Nickolay; Cummins, Theodore R

    2016-08-01

    Mutations in brain isoforms of voltage-gated sodium channels have been identified in patients with distinct epileptic phenotypes. Clinically, these patients often do not respond well to classic anti-epileptics and many remain refractory to treatment. Exogenous as well as endogenous cannabinoids have been shown to target voltage-gated sodium channels and cannabidiol has recently received attention for its potential efficacy in the treatment of childhood epilepsies. In this study, we further investigated the ability of cannabinoids to modulate sodium currents from wild-type and epilepsy-associated mutant voltage-gated sodium channels. We first determined the biophysical consequences of epilepsy-associated missense mutations in both Nav1.1 (arginine 1648 to histidine and asparagine 1788 to lysine) and Nav1.6 (asparagine 1768 to aspartic acid and leucine 1331 to valine) by obtaining whole-cell patch clamp recordings in human embryonic kidney 293T cells with 200 μM Navβ4 peptide in the pipette solution to induce resurgent sodium currents. Resurgent sodium current is an atypical near threshold current predicted to increase neuronal excitability and has been implicated in multiple disorders of excitability. We found that both mutations in Nav1.6 dramatically increased resurgent currents while mutations in Nav1.1 did not. We then examined the effects of anandamide and cannabidiol on peak transient and resurgent currents from wild-type and mutant channels. Interestingly, we found that cannabidiol can preferentially target resurgent sodium currents over peak transient currents generated by wild-type Nav1.6 as well as the aberrant resurgent and persistent current generated by Nav1.6 mutant channels. To further validate our findings, we examined the effects of cannabidiol on endogenous sodium currents from striatal neurons, and similarly we found an inhibition of resurgent and persistent current by cannabidiol. Moreover, current clamp recordings show that cannabidiol reduces

  14. Ras-mutant cancer cells display B-Raf binding to Ras that activates extracellular signal-regulated kinase and is inhibited by protein kinase A phosphorylation.

    PubMed

    Li, Yanping; Takahashi, Maho; Stork, Philip J S

    2013-09-20

    The small G protein Ras regulates proliferation through activation of the mitogen-activated protein (MAP) kinase (ERK) cascade. The first step of Ras-dependent activation of ERK signaling is Ras binding to members of the Raf family of MAP kinase kinase kinases, C-Raf and B-Raf. Recently, it has been reported that in melanoma cells harboring oncogenic Ras mutations, B-Raf does not bind to Ras and does not contribute to basal ERK activation. For other types of Ras-mutant tumors, the relative contributions of C-Raf and B-Raf are not known. We examined non-melanoma cancer cell lines containing oncogenic Ras mutations and express both C-Raf and B-Raf isoforms, including the lung cancer cell line H1299 cells. Both B-Raf and C-Raf were constitutively bound to oncogenic Ras and contributed to Ras-dependent ERK activation. Ras binding to B-Raf and C-Raf were both subject to inhibition by the cAMP-dependent protein kinase PKA. cAMP inhibited the growth of H1299 cells and Ras-dependent ERK activation via PKA. PKA inhibited the binding of Ras to both C-Raf and B-Raf through phosphorylations of C-Raf at Ser-259 and B-Raf at Ser-365, respectively. These studies demonstrate that in non-melanocytic Ras-mutant cancer cells, Ras signaling to B-Raf is a significant contributor to ERK activation and that the B-Raf pathway, like that of C-Raf, is a target for inhibition by PKA. We suggest that cAMP and hormones coupled to cAMP may prove useful in dampening the effects of oncogenic Ras in non-melanocytic cancer cells through PKA-dependent actions on B-Raf as well as C-Raf.

  15. The vhs1 mutant form of herpes simplex virus virion host shutoff protein retains significant internal ribosome entry site-directed RNA cleavage activity.

    PubMed

    Lu, P; Saffran, H A; Smiley, J R

    2001-01-01

    The virion host shutoff (vhs) protein of herpes simplex virus (HSV) triggers global shutoff of host protein synthesis and accelerated turnover of host and viral mRNAs during HSV infection. As well, it induces endoribonucleolytic cleavage of RNA substrates when produced in a rabbit reticulocyte lysate (RRL) in vitro translation system. The vhs1 point mutation (Thr 214-->Ile) eliminates vhs function during virus infection and in transiently transfected mammalian cells and was therefore previously considered to abolish vhs activity. Here we demonstrate that the vhs1 mutant protein induces readily detectable endoribonuclease activity on RNA substrates bearing the internal ribosome entry site of encephalomyocarditis virus in the RRL assay system. These data document that the vhs1 mutation does not eliminate catalytic activity and raise the possibility that the vhs-dependent endoribonuclease employs more than one mode of substrate recognition.

  16. Novel pyrazolo[3,4-d]pyrimidines as dual Src-Abl inhibitors active against mutant form of Abl and the leukemia K-562 cell line.

    PubMed

    El-Moghazy, Samir M; George, Riham F; Osman, Essam Eldin A; Elbatrawy, Ahmed A; Kissova, Miroslava; Colombo, Ambra; Crespan, Emmanuele; Maga, Giovanni

    2016-11-10

    Some novel 6-substituted pyrazolo[3,4-d]pyrimidines 4, 5, 6a-d, 7a-c, 8 and pyrazolo[4,3-e][1,2,4]triazolo[4,3-a]pyrimidines 9a-c, 10a-c, 11, 12a,b, 13a-c and 14 were synthesized and characterized by spectral and elemental analyses. They were screened for their biological activity in vitro against Abl and Src kinases. Compounds 7a and 7b revealed the highest activity against both wild and mutant Abl kinases as well as the Src kinase and the leukemia K-562 cell line. They can be considered as new hits for further structural optimization to obtain better activity.

  17. Subtle structural changes in the Asp251Gly/Gln307His P450 BM3 mutant responsible for new activity toward diclofenac, tolbutamide and ibuprofen.

    PubMed

    Di Nardo, Giovanna; Dell'Angelo, Valentina; Catucci, Gianluca; Sadeghi, Sheila J; Gilardi, Gianfranco

    2016-07-15

    This paper reports the structure of the double mutant Asp251Gly/Gln307His (named A2) generated by random mutagenesis, able to produce 4'-hydroxydiclofenac, 2-hydroxyibuprofen and 4-hydroxytolbutamide from diclofenac, ibuprofen and tolbutamide, respectively. The 3D structure of the substrate-free mutant shows a conformation similar to the closed one found in the substrate-bound wild type enzyme, but with a higher degree of disorder in the region of the G-helix and F-G loop. This is due to the mutation Asp251Gly that breaks the salt bridge between Aps251 on I-helix and Lys224 on G-helix, allowing the G-helix to move away from I-helix and conferring a higher degree of flexibility to this element. This subtle structural change is accompanied by long-range structural rearrangements of the active site with the rotation of Phe87 and a reorganization of catalytically important water molecules. The impact of these structural features on thermal stability, reduction potential and electron transfer is investigated. The data demonstrate that a single mutation far from the active site triggers an increase in protein flexibility in a key region, shifting the conformational equilibrium toward the closed form that is ready to accept electrons and enter the P450 catalytic cycle as soon as a substrate is accepted. PMID:26718083

  18. Alterations in grooming activity and syntax in heterozygous SERT and BDNF knockout mice: the utility of behavior-recognition tools to characterize mutant mouse phenotypes.

    PubMed

    Kyzar, Evan J; Pham, Mimi; Roth, Andrew; Cachat, Jonathan; Green, Jeremy; Gaikwad, Siddharth; Kalueff, Allan V

    2012-12-01

    Serotonin transporter (SERT) and brain-derived neurotrophic factor (BDNF) are key modulators of molecular signaling, cognition and behavior. Although SERT and BDNF mutant mouse phenotypes have been extensively characterized, little is known about their self-grooming behavior. Grooming represents an important behavioral domain sensitive to environmental stimuli and is increasingly used as a model for repetitive behavioral syndromes, such as autism and attention deficit/hyperactivity disorder. The present study used heterozygous ((+/-)) SERT and BDNF male mutant mice on a C57BL/6J background and assessed their spontaneous self-grooming behavior applying both manual and automated techniques. Overall, SERT(+/-) mice displayed a general increase in grooming behavior, as indicated by more grooming bouts and more transitions between specific grooming stages. SERT(+/-) mice also aborted more grooming bouts, but showed generally unaltered activity levels in the observation chamber. In contrast, BDNF(+/-) mice displayed a global reduction in grooming activity, with fewer bouts and transitions between specific grooming stages, altered grooming syntax, as well as hypolocomotion and increased turning behavior. Finally, grooming data collected by manual and automated methods (HomeCageScan) significantly correlated in our experiments, confirming the utility of automated high-throughput quantification of grooming behaviors in various genetic mouse models with increased or decreased grooming phenotypes. Taken together, these findings indicate that mouse self-grooming behavior is a reliable behavioral biomarker of genetic deficits in SERT and BDNF pathways, and can be reliably measured using automated behavior-recognition technology.

  19. A Truncated NLR Protein, TIR-NBS2, Is Required for Activated Defense Responses in the exo70B1 Mutant

    PubMed Central

    Nishimura, Marc T.; Vogel, John P.; Liu, Na; Liu, Simu; Zhao, Yaofei; Dangl, Jeffery L.; Tang, Dingzhong

    2015-01-01

    During exocytosis, the evolutionarily conserved exocyst complex tethers Golgi-derived vesicles to the target plasma membrane, a critical function for secretory pathways. Here we show that exo70B1 loss-of-function mutants express activated defense responses upon infection and express enhanced resistance to fungal, oomycete and bacterial pathogens. In a screen for mutants that suppress exo70B1 resistance, we identified nine alleles of TIR-NBS2 (TN2), suggesting that loss-of-function of EXO70B1 leads to activation of this nucleotide binding domain and leucine-rich repeat-containing (NLR)-like disease resistance protein. This NLR-like protein is atypical because it lacks the LRR domain common in typical NLR receptors. In addition, we show that TN2 interacts with EXO70B1 in yeast and in planta. Our study thus provides a link between the exocyst complex and the function of a ‘TIR-NBS only’ immune receptor like protein. Our data are consistent with a speculative model wherein pathogen effectors could evolve to target EXO70B1 to manipulate plant secretion machinery. TN2 could monitor EXO70B1 integrity as part of an immune receptor complex. PMID:25617755

  20. Target cell death triggered by cytotoxic T lymphocytes: a target cell mutant distinguishes passive pore formation and active cell suicide mechanisms.

    PubMed Central

    Ucker, D S; Wilson, J D; Hebshi, L D

    1994-01-01

    The role of the target cell in its own death mediated by cytotoxic T lymphocytes (CTL) has been controversial. The ability of the pore-forming granule components of CTL to induce target cell death directly has been taken to suggest an essentially passive role for the target. This view of CTL-mediated killing ascribes to the target the single role of providing an antigenic stimulus to the CTL; this signal results in the vectoral degranulation and secretion of pore-forming elements onto the target. On the other hand, by a number of criteria, target cell death triggered by CTL appears fundamentally different from death resulting from membrane damage and osmotic lysis. CTL-triggered target cell death involves primary internal lesions of the target cell that reflect a physiological cell death process. Orderly nuclear disintegration, including lamin phosphorylation and solubilization, chromatin condensation, and genome digestion, are among the earliest events, preceding the loss of plasma membrane integrity. We have tested directly the involvement of the target cell in its own death by examining whether we could isolate mutants of target cells that have retained the ability to be recognized by and provide an antigenic stimulus to CTL while having lost the capacity to respond by dying. Here, we describe one such mutant, BW87. We have used this CTL-resistant mutant to analyze the mechanisms of CTL-triggered target cell death under a variety of conditions. The identification of a mutable target cell element essential for the cell death response to CTL provides genetic evidence that target cell death reflects an active cell suicide process similar to other physiological cell deaths. PMID:8264610

  1. Angelman syndrome-associated ubiquitin ligase UBE3A/E6AP mutants interfere with the proteolytic activity of the proteasome.

    PubMed

    Tomaić, V; Banks, L

    2015-01-01

    Angelman syndrome, a severe neurodevelopmental disease, occurs primarily due to genetic defects, which cause lack of expression or mutations in the wild-type E6AP/UBE3A protein. A proportion of the Angelman syndrome patients bear UBE3A point mutations, which do not interfere with the expression of the full-length protein, however, these individuals still develop physiological conditions of the disease. Interestingly, most of these mutations are catalytically defective, thereby indicating the importance of UBE3A enzymatic activity role in the Angelman syndrome pathology. In this study, we show that Angelman syndrome-associated mutants interact strongly with the proteasome via the S5a proteasomal subunit, resulting in an overall inhibitory effect on the proteolytic activity of the proteasome. Our results suggest that mutated catalytically inactive forms of UBE3A may cause defects in overall proteasome function, which could have an important role in the Angelman syndrome pathology. PMID:25633294

  2. High-Resolution Crystal Structures of Villin Headpiece nad Mutants with Reduced F-Actin Binding Activity

    SciTech Connect

    Meng,J.; Vardar, D.; Wang, Y.; Guo, H.; Head, J.; McKnight, C.

    2005-01-01

    Villin-type headpiece domains are approximately 70 amino acid modular motifs found at the C terminus of a variety of actin cytoskeleton-associated proteins. The headpiece domain of villin, a protein found in the actin bundles of the brush border epithelium, is of interest both as a compact F-actin binding domain and as a model folded protein. We have determined the high-resolution crystal structures of chicken villin headpiece (HP67) at 1.4 Angstrom resolution as well as two mutants, R37A and W64Y, at 1.45 and 1.5 Angstrom resolution, respectively. Replacement of R37 causes a 5-fold reduction in F-actin binding affinity in sedimentation assays. Replacement of W64 results in a much more drastic reduction in F-actin binding affinity without significant changes in headpiece structure or stability. The detailed comparison of these crystal structures with each other and to our previously determined NMR structures of HP67 and the 35-residue autonomously folding subdomain in villin headpiece, HP35, provides the details of the headpiece fold and further defines the F-actin binding site of villin-type headpiece domains.

  3. Suppression of Erk activation and in vivo growth in esophageal cancer cells by the dominant negative Ras mutant, N116Y.

    PubMed

    Senmaru, N; Shichinohe, T; Takeuchi, M; Miyamoto, M; Sazawa, A; Ogiso, Y; Takahashi, T; Okushiba, S; Takimoto, M; Kato, H; Kuzumaki, N

    1998-10-29

    Our previous studies demonstrated that introduction of a dominant negative H-ras mutant, N116Y, inhibits the growth of various types of cancer cells in vitro. In this study, we tested the efficacy of N116Y in blocking the growth of esophageal cancer cells using an adenoviral vector. Infection with N116Y adenovirus, (AdCMV-N116Y), in which N116Y expression is driven by the cytomegalovirus promoter, significantly reduced the in vitro growth of all esophageal cancer cell lines studied. Esophageal cancer cells that contained wild-type K-ras and H-ras (TE8, SGF3, SGF7) were more sensitive to AdCMV-N116Y than HEC46 cells that expressed mutant K-ras protein. Most importantly, direct injection of AdCMV-N116Y into TE8- or SGF3-induced tumors in nude mice suppressed their growth significantly. To examine the suppressive mechanism of N116Y, cell cycle profile and the activation of extracellular signal-regulated kinase 2 (Erk2) were examined by flow cytometry and Western blot analysis, respectively. In TE8 cells, progression into S phase was clearly blocked after infection with AdCMV-N116Y. Infection with AdCMV-N116Y did not strongly suppress the activation of Erk2 after EGF stimulation in serum-starved HEC46 cells, whereas it completely suppressed activation in TE8, SGF3 and SGF7 cells. Our observations suggest that N116Y reduces growth of human esophageal cancer cells and suppresses the activation of Erk2; they also indicate that N116Y is a potential candidate gene for human esophageal cancer gene therapy.

  4. Mutant p97 exhibits species-specific changes of its ATPase activity and compromises the UBXD9-mediated monomerisation of p97 hexamers.

    PubMed

    Rijal, Ramesh; Arhzaouy, Khalid; Strucksberg, Karl-Heinz; Cross, Megan; Hofmann, Andreas; Schröder, Rolf; Clemen, Christoph S; Eichinger, Ludwig

    2016-01-01

    p97 (VCP) is a homo-hexameric triple-A ATPase that exerts a plethora of cellular processes. Heterozygous missense mutations of p97 cause at least five human neurodegenerative disorders. However, the specific molecular consequences of p97 mutations are hitherto widely unknown. Our in silico structural models of human and Dictyostelium p97 showed that the disease-causing human R93C, R155H, and R155C as well as Dictyostelium R154C, E219K, R154C/E219K p97 mutations constitute variations in surface-exposed locations. In-gel ATPase activity measurements of p97 monomers and hexamers revealed significant mutation- and species-specific differences. While all human p97 mutations led to an increase in ATPase activity, no changes could be detected for the Dictyostelium R154C mutant, which is orthologous to human R155C. The E219K mutation led to an almost complete loss of activity, which was partially recuperated in the R154C/E219K double-mutant indicating p97 inter-domain communication. By means of co-immunoprecipitation experiments we identified an UBX-domain containing Dictyostelium protein as a novel p97 interaction partner. We categorized all UBX-domain containing Dictyostelium proteins and named the interaction partner UBXD9. Pull-down assays and surface plasmon resonance analyses of Dictyostelium UBXD9 or the human orthologue TUG/ASPL/UBXD9 demonstrated direct interactions with p97 as well as species-, mutation- and ATP-dependent differences in the binding affinities. Sucrose density gradient assays revealed that both human and Dictyostelium UBXD9 proteins very efficiently disassembled wild-type, but to a lesser extent mutant p97 hexamers into monomers. Our results are consistent with a scenario in which p97 point mutations lead to differences in enzymatic activities and molecular interactions, which in the long-term result in a late-onset and progressive multisystem disease. PMID:27132113

  5. Activation of an EDS1-mediated R-gene pathway in the snc1 mutant leads to constitutive, NPR1-independent pathogen resistance.

    PubMed

    Li, X; Clarke, J D; Zhang, Y; Dong, X

    2001-10-01

    The Arabidopsis NPR1 protein is an essential regulatory component of systemic acquired resistance (SAR). Mutations in the NPR1 gene completely block the induction of SAR by signals such as salicylic acid (SA). An Arabidopsis mutant, snc1 (suppressor of npr1-1, constitutive 1), was isolated in a screen for suppressors of npr1-1. In the npr1-1 background, the snc1 mutation resulted in constitutive resistance to Pseudomonas syringae maculicola ES4326 and Peronospora parasitica Noco2. High levels of SA were detected in the mutant and shown to be required for manifestation of the snc1 phenotype. The snc1 mutation was mapped to the RPP5 resistance (R) gene cluster and the eds1 mutation that blocks RPP5-mediated resistance suppressed snc1. These data suggest that a RPP5-related resistance pathway is activated constitutively in snc1. This pathway does not employ NPR1 but requires the signal molecule SA and the function of EDS1. Moreover, in snc1, constitutive resistance is conferred in the absence of cell death, which is often associated with R-gene mediated resistance.

  6. Structural design, solid-phase synthesis and activity of membrane-anchored β-secretase inhibitors on Aβ generation from wild-type and Swedish-mutant APP.

    PubMed

    Schieb, Heinke; Weidlich, Sebastian; Schlechtingen, Georg; Linning, Philipp; Jennings, Gary; Gruner, Margit; Wiltfang, Jens; Klafki, Hans-Wolfgang; Knölker, Hans-Joachim

    2010-12-27

    Covalent coupling of β-secretase inhibitors to a raftophilic lipid anchor via a suitable spacer by using solid-phase peptide synthesis leads to tripartite structures displaying substantially improved inhibition of cellular secretion of the β-amyloid peptide (Aβ). Herein, we describe a series of novel tripartite structures, their full characterization by NMR spectroscopy and mass spectrometry, and the analysis of their biological activity in cell-based assays. The tripartite structure concept is applicable to different pharmacophores, and the potency in terms of β-secretase inhibition can be optimized by adjusting the spacer length to achieve an optimal distance of the inhibitor from the lipid bilayer. A tripartite structure containing a transition-state mimic inhibitor was found to be less potent on Aβ generation from Swedish-mutant amyloid precursor protein (APP) than from the wild-type protein. Moreover, our observations suggest that specific variants of Aβ are generated from wild-type APP but not from Swedish-mutant APP and are resistant to β-secretase inhibition. Efficient inhibition of Aβ secretion by tripartite structures in the absence of appreciable neurotoxicity was confirmed in a primary neuronal cell culture, thus further supporting the concept. PMID:21132705

  7. Activated expression of AtEDT1/HDG11 promotes lateral root formation in Arabidopsis mutant edt1 by upregulating jasmonate biosynthesis.

    PubMed

    Cai, Xiao-Teng; Xu, Ping; Wang, Yao; Xiang, Cheng-Bin

    2015-12-01

    Root architecture is crucial for plants to absorb water and nutrients. We previously reported edt1 (edt1D) mutant with altered root architecture that contributes significantly to drought resistance. However, the underlying molecular mechanisms are not well understood. Here we report one of the mechanisms underlying EDT1/HDG11-conferred altered root architecture. Root transcriptome comparison between the wild type and edt1D revealed that the upregulated genes involved in jasmonate biosynthesis and signaling pathway were enriched in edt1D root, which were confirmed by quantitative RT-PCR. Further analysis showed that EDT1/HDG11, as a transcription factor, bound directly to the HD binding sites in the promoters of AOS, AOC3, OPR3, and OPCL1, which encode four key enzymes in JA biosynthesis. We found that the jasmonic acid level was significantly elevated in edt1D root compared with that in the wild type subsequently. In addition, more auxin accumulation was observed in the lateral root primordium of edt1D compared with that of wild type. Genetic analysis of edt1D opcl1 double mutant also showed that HDG11 was partially dependent on JA in regulating LR formation. Taken together, overexpression of EDT1/HDG11 increases JA level in the root of edt1D by directly upregulating the expressions of several genes encoding JA biosynthesis enzymes to activate auxin signaling and promote lateral root formation. PMID:25752924

  8. Paradoxical activation of MEK/ERK signaling induced by B-Raf inhibition enhances DR5 expression and DR5 activation-induced apoptosis in Ras-mutant cancer cells.

    PubMed

    Oh, You-Take; Deng, Jiusheng; Yue, Ping; Sun, Shi-Yong

    2016-01-01

    B-Raf inhibitors have been used for the treatment of some B-Raf-mutated cancers. They effectively inhibit B-Raf/MEK/ERK signaling in cancers harboring mutant B-Raf, but paradoxically activates MEK/ERK in Ras-mutated cancers. Death receptor 5 (DR5), a cell surface pro-apoptotic protein, triggers apoptosis upon ligation with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or aggregation. This study focused on determining the effects of B-Raf inhibition on DR5 expression and DR5 activation-induced apoptosis in Ras-mutant cancer cells. Using chemical and genetic approaches, we have demonstrated that the B-Raf inhibitor PLX4032 induces DR5 upregulation exclusively in Ras-mutant cancer cells; this effect is dependent on Ras/c-Raf/MEK/ERK signaling activation. PLX4032 induces DR5 expression at transcriptional levels, largely due to enhancing CHOP/Elk1-mediated DR5 transcription. Pre-exposure of Ras-mutated cancer cells to PLX4032 sensitizes them to TRAIL-induced apoptosis; this is also a c-Raf/MEK/ERK-dependent event. Collectively, our findings highlight a previously undiscovered effect of B-Raf inhibition on the induction of DR5 expression and the enhancement of DR5 activation-induced apoptosis in Ras-mutant cancer cells and hence may suggest a novel therapeutic strategy against Ras-mutated cancer cells by driving their death due to DR5-dependent apoptosis through B-Raf inhibition.

  9. Activation of phosphorothionate pesticides based on a cytochrome P450 BM-3 (CYP102 A1) mutant for expanded neurotoxin detection in food using acetylcholinesterase biosensors.

    PubMed

    Schulze, Holger; Schmid, Rolf D; Bachmann, Till T

    2004-03-15

    A novel enzymatic in vitro activation method for phosphorothionates has been developed to allow their detection with acetylcholinesterase (AChE) biosensors. Activation is necessary because this group of insecticides shows nearly no inhibitory effect toward AChE in their pure nonmetabolized form. In contrast, they exert a strong inhibitory effect on AChE after oxidation as it takes place by metabolic activation in higher organisms. Standard chemical methods to oxidize phosphorothionates showed inherent disadvantages that impede their direct use in food analysis. In contrast, a genetically engineered triple mutant of P450 BM-3 (CYP102 A1) could convert the two frequently used insecticides parathion and chlorpyrifos into their oxo variants as was confirmed by GC/MS measurements. The wild-type protein was unable to do so. In the case of chlorpyrifos, the enzymatic activation was as good as the chemical oxidation. In the case of parathion, the P450 activation was more efficient than the oxidation by NBS but neither activation method yielded an AChE inhibition that was as high as with paraoxon. The application of the method to infant food in combination with a disposable AChE biosensor enabled detection of chlorpyrifos and parathion at concentrations down to 20 microg/kg within an overall assay time of 95 min. PMID:15018574

  10. Normal Activation of Discoidin Domain Receptor 1 Mutants with Disulfide Cross-links, Insertions, or Deletions in the Extracellular Juxtamembrane Region

    PubMed Central

    Xu, Huifang; Abe, Takemoto; Liu, Justin K. H.; Zalivina, Irina; Hohenester, Erhard; Leitinger, Birgit

    2014-01-01

    The discoidin domain receptors, DDR1 and DDR2, are receptor tyrosine kinases that are activated by collagen. DDR activation does not appear to occur by the common mechanism of ligand-induced receptor dimerization: the DDRs form stable noncovalent dimers in the absence of ligand, and ligand-induced autophosphorylation of cytoplasmic tyrosines is unusually slow and sustained. Here we sought to identify functionally important dimer contacts within the extracellular region of DDR1 by using cysteine-scanning mutagenesis. Cysteine substitutions close to the transmembrane domain resulted in receptors that formed covalent dimers with high efficiency, both in the absence and presence of collagen. Enforced covalent dimerization did not result in constitutive activation and did not affect the ability of collagen to induce receptor autophosphorylation. Cysteines farther away from the transmembrane domain were also cross-linked with high efficiency, but some of these mutants could no longer be activated. Furthermore, the extracellular juxtamembrane region of DDR1 tolerated large deletions as well as insertions of flexible segments, with no adverse effect on activation. These findings indicate that the extracellular juxtamembrane region of DDR1 is exceptionally flexible and does not constrain the basal or ligand-activated state of the receptor. DDR1 transmembrane signaling thus appears to occur without conformational coupling through the juxtamembrane region, but requires specific receptor interactions farther away from the cell membrane. A plausible mechanism to explain these findings is signaling by DDR1 clusters. PMID:24671415

  11. Transactivation of the p21 promoter by BRCA1 splice variants in mammary epithelial cells: evidence for both common and distinct activities of wildtype and mutant forms.

    PubMed

    Lu, M; Arrick, B A

    2000-12-14

    We have evaluated the transcriptional activation of a human p21 promoter reporter construct by transfection of BRCA1 expression constructs into tumorigenic and nontumorigenic human breast cell lines. Two cell lines with wildtype p53 (MCF-7 and MCF10A) demonstrated transcriptional activation of the p21 promoter by full-length BRCA1 (BRCA1L) as well as by two splice variants that lack most of exon 11 (BRCA1S and BRCA1S-9,10). In contrast, two cell lines with mutant p53 (MDA-231 and HCC1937) were inactive. Co-transfection of BRCA1L with BRCA1S or BRCA1S-9,10 exhibited synergistic p21 promoter activation, due to augmented expression of the cytomegalovirus promoter-based BRCA1 expression constructs. We examined the transcriptional activity of two known sequence alterations in BRCA1, one that results in a carboxy-terminal truncation of BRCA1 and is clearly pathogenic, and the other a missense mutation that is suspected of predisposing to cancer. Although both mutations have been shown to be defective in some assays of transactivation, we observed both mutations to be fully active in activation of the p21 promoter when incorporated in the full-length BRCA1L. In contrast, these mutations rendered BRCA1S inactive. These observations indicate that such transcriptional assays cannot serve as the basis for a functional appraisal of BRCA1 sequence alterations encountered in the course of genetic testing.

  12. Use of DNA sequence and mutant analyses and antisense oligodeoxynucleotides to examine the molecular basis of nonmuscle myosin light chain kinase autoinhibition, calmodulin recognition, and activity

    PubMed Central

    1990-01-01

    The first primary structure for a nonmuscle myosin light chain kinase (nmMLCK) has been determined by elucidation of the cDNA sequence encoding the protein kinase from chicken embryo fibroblasts, and insight into the molecular mechanism of calmodulin (CaM) recognition and activation has been obtained by the use of site-specific mutagenesis and suppressor mutant analysis. Treatment of chicken and mouse fibroblasts with antisense oligodeoxynucleotides based on the cDNA sequence results in an apparent decrease in MLCK levels, an altered morphology reminiscent of that seen in v-src-transformed cells, and a possible effect on cell proliferation. nmMLCK is distinct from and larger than smooth muscle MLCK (smMLCK), although their extended DNA sequence identity is suggestive of a close genetic relationship not found with skeletal muscle MLCK. The analysis of 20 mutant MLCKs indicates that the autoinhibitory and CaM recognition activities are centered in distinct but functionally coupled amino acid sequences (residues 1,068-1,080 and 1,082-1,101, respectively). Analysis of enzyme chimeras, random mutations, inverted sequences, and point mutations in the 1,082-1,101 region demonstrates its functional importance for CaM recognition but not autoinhibition. In contrast, certain mutations in the 1,068-1,080 region result in a constitutively active MLCK that still binds CaM. These results suggest that CaM/protein kinase complexes use similar structural themes to transduce calcium signals into selective biological responses, demonstrate a direct link between nmMLCK and non-muscle cell function, and provide a firm basis for genetic studies and analyses of how nmMLCK is involved in development and cell proliferation. PMID:2202734

  13. Structure of the Constitutively Active Double Mutant CheY[superscript D13K Y106W] Alone and in Complex with a FliM Peptide

    SciTech Connect

    Dyer, Collin M.; Quillin, Michael L.; Campos, Andres; Lu, Justine; McEvoy, Megan M.; Hausrath, Andrew C.; Westbrook, Edwin M.; Matsumura, Philip; Matthews, Brian W.; Dahlquist, Frederick W.

    2010-11-16

    CheY is a member of the response regulator protein superfamily that controls the chemotactic swimming response of motile bacteria. The CheY double mutant D13K Y106W (CheY**) is resistant to phosphorylation, yet is a highly effective mimic of phosphorylated CheY in vivo and in vitro. The conformational attributes of this protein that enable it to signal in a phosphorylation-independent manner are unknown. We have solved the crystal structure of selenomethionine-substituted CheY** in the presence of its target, a peptide (FliM{sub 16}) derived from the flagellar motor switch, FliM, to 1.5 {angstrom} resolution with an R-factor of 19.6%. The asymmetric unit contains four CheY** molecules, two with FliM{sub 16} bound, and two without. The two CheY** molecules in the asymmetric unit that are bound to FliM{sub 16} adopt a conformation similar to BeF{sub 3}{sup -}-activated wild-type CheY, and also bind FliM{sub 16} in a nearly identical manner. The CheY** molecules that do not bind FliM{sub 16} are found in a conformation similar to unphosphorylated wild-type CheY, suggesting that the active phenotype of this mutant is enabled by a facile interconversion between the active and inactive conformations. Finally, we propose a ligand-binding model for CheY and CheY**, in which Ile95 changes conformation in a Tyr/Trp106-dependent manner to accommodate FliM.

  14. Changes of alternative oxidase activity, capacity and protein content in leaves of Cucumis sativus wild-type and MSC16 mutant grown under different light intensities.

    PubMed

    Florez-Sarasa, Igor; Ostaszewska, Monika; Galle, Alexander; Flexas, Jaume; Rychter, Anna M; Ribas-Carbo, Miquel

    2009-12-01

    In vitro studies demonstrated that alternative oxidase (AOX) is biochemically regulated by a sulfhydryl-disulfide system, interaction with alpha-ketoacids, ubiquinone pool redox state and protein content among others. However, there is still scarce information about the in vivo regulation of the AOX. Cucumis sativus wild-type (WT) and MSC16 mutant plants were grown under two different light intensities and were used to analyze the relationship between the amount of leaf AOX protein and its in vivo capacity and activity at night and day periods. WT and MSC16 plants presented lower total respiration (V(t)), cytochrome oxidase pathway (COP) activity (v(cyt)) and alternative oxidase pathway (AOP) activity (v(alt)) when grown at low light (LL), although growth light intensity did not change the amount of cytochrome oxidase (COX) nor AOX protein. Changes of v(cyt) related to growing light conditions suggested a substrate availability and energy demand control. On the other hand, the total amount of AOX protein present in the tissue does not play a role in the regulation neither of the capacity nor of the activity of the AOP in vivo. Soluble carbohydrates were directly related to the activity of the AOP. However, although differences in soluble sugar contents mostly regulate the capacity of the AOP at different growth light intensities, additional regulatory mechanisms are necessary to fully explain the observed results.

  15. Tumor-Priming Smoothened Inhibitor Enhances Deposition and Efficacy of Cytotoxic Nanoparticles in a Pancreatic Cancer Model.

    PubMed

    Roy Chaudhuri, Tista; Straubinger, Ninfa L; Pitoniak, Rosemarie F; Hylander, Bonnie L; Repasky, Elizabeth A; Ma, Wen Wee; Straubinger, Robert M

    2016-01-01

    Most pancreatic adenocarcinoma patients present with unresectable disease and benefit little from chemotherapy. Poor tumor perfusion and vascular permeability limit drug deposition. Previous work showed that Smoothened inhibitors of hedgehog signaling (sHHI) promote neovascularization in spontaneous mouse models of pancreatic cancer (PaCA) and enhance tumor permeability to low-molecular weight compounds. Here, we tested the hypothesis that sHHI can enhance tumor deposition and efficacy of drug-containing nanoparticles consisting of 80 to 100 nm sterically-stabilized liposomes (SSL) containing doxorubicin (SSL-DXR). SCID mice bearing low-passage patient-derived PaCA xenografts (PDX) were pretreated p.o. for 10 days with 40 mg/kg/d NVP-LDE225 (erismodegib), followed by i.v. SSL-DXR. Microvessel density, permeability, perfusion, and morphology were compared with untreated controls, as was SSL deposition and therapeutic efficacy. The sHHI alone affected tumor growth minimally, but markedly increased extravasation of nanoparticles into adenocarcinoma cell-enriched regions of the tumor. Immunostaining showed that sHHI treatment decreased pericyte coverage (α-SMA(+)) of CD31(+) vascular endothelium structures, and increased the abundance of endothelium-poor (CD31(-)) basement membrane structures (collagen IV(+)), suggesting increased immature microvessels. SSL-DXR (15 mg/kg) administered after sHHI pretreatment arrested tumor volume progression and decreased tumor perfusion/permeability, suggesting an initial vascular pruning response. Compared with controls, one cycle of 10-day sHHI pretreatment followed by 6 mg/kg SSL-DXR doubled median tumor progression time. Three cycles of treatment with sHHI and SSL-DXR, with a 10-day between-cycle drug holiday, nearly tripled median tumor progression time. Based upon these data, short-term sHHI treatment sequenced with nanoparticulate drug carriers constitutes a potential strategy to enhance efficacy of pancreatic cancer therapy

  16. Tumor-Priming Smoothened Inhibitor Enhances Deposition and Efficacy of Cytotoxic Nanoparticles in a Pancreatic Cancer Model.

    PubMed

    Roy Chaudhuri, Tista; Straubinger, Ninfa L; Pitoniak, Rosemarie F; Hylander, Bonnie L; Repasky, Elizabeth A; Ma, Wen Wee; Straubinger, Robert M

    2016-01-01

    Most pancreatic adenocarcinoma patients present with unresectable disease and benefit little from chemotherapy. Poor tumor perfusion and vascular permeability limit drug deposition. Previous work showed that Smoothened inhibitors of hedgehog signaling (sHHI) promote neovascularization in spontaneous mouse models of pancreatic cancer (PaCA) and enhance tumor permeability to low-molecular weight compounds. Here, we tested the hypothesis that sHHI can enhance tumor deposition and efficacy of drug-containing nanoparticles consisting of 80 to 100 nm sterically-stabilized liposomes (SSL) containing doxorubicin (SSL-DXR). SCID mice bearing low-passage patient-derived PaCA xenografts (PDX) were pretreated p.o. for 10 days with 40 mg/kg/d NVP-LDE225 (erismodegib), followed by i.v. SSL-DXR. Microvessel density, permeability, perfusion, and morphology were compared with untreated controls, as was SSL deposition and therapeutic efficacy. The sHHI alone affected tumor growth minimally, but markedly increased extravasation of nanoparticles into adenocarcinoma cell-enriched regions of the tumor. Immunostaining showed that sHHI treatment decreased pericyte coverage (α-SMA(+)) of CD31(+) vascular endothelium structures, and increased the abundance of endothelium-poor (CD31(-)) basement membrane structures (collagen IV(+)), suggesting increased immature microvessels. SSL-DXR (15 mg/kg) administered after sHHI pretreatment arrested tumor volume progression and decreased tumor perfusion/permeability, suggesting an initial vascular pruning response. Compared with controls, one cycle of 10-day sHHI pretreatment followed by 6 mg/kg SSL-DXR doubled median tumor progression time. Three cycles of treatment with sHHI and SSL-DXR, with a 10-day between-cycle drug holiday, nearly tripled median tumor progression time. Based upon these data, short-term sHHI treatment sequenced with nanoparticulate drug carriers constitutes a potential strategy to enhance efficacy of pancreatic cancer therapy.

  17. Activation of R235A mutant orotidine 5'-monophosphate decarboxylase by the guanidinium cation: effective molarity of the cationic side chain of Arg-235.

    PubMed

    Barnett, Shonoi A; Amyes, Tina L; Wood, B McKay; Gerlt, John A; Richard, John P

    2010-02-01

    The R235A mutation at yeast orotidine 5'-monophosphate decarboxylase (OMPDC) results in a 1300-fold increase in K(m) and a 14-fold decrease in k(cat) for decarboxylation of orotidine 5'-monophosphate, corresponding to a 5.8 kcal/mol destabilization of the transition state. There is strong activation of this mutant enzyme by added guanidinium cation (Gua(+)): 1 M Gua(+) stabilizes the transition state by ca. 3 kcal/mol. This stabilization is due to the binding of Gua(+) to the binary E(mut) x OMP complex, with a K(d) of 50 mM, to form the 9-fold more reactive ternary E(mut) x OMP x Gua(+) complex. The "effective molarity" of the cationic side chain of Arg-235 at the wild-type enzyme is calculated to be 160 M.

  18. A Friend virus mutant that overcomes Fv-2rr host resistance encodes a small glycoprotein that dimerizes, is processed to cell surfaces, and specifically activates erythropoietin receptors.

    PubMed Central

    Kozak, S L; Hoatlin, M E; Ferro, F E; Majumdar, M K; Geib, R W; Fox, M T; Kabat, D

    1993-01-01

    The env gene of Friend spleen focus-forming virus (SFFV) encodes a membrane glycoprotein (gp55) that is inefficiently (3 to 5%) processed from the rough endoplasmic reticulum to form a larger dimeric plasma membrane derivative (gp55p). Moreover, the SFFV env glycoprotein associates with erythropoietin receptors (EpoR) to cause proliferation of infected erythroblasts [J.-P. Li, A. D. D'Andrea, H. F. Lodish, and D. Baltimore, Nature (London) 343:762-764, 1990]. Interestingly, the mitogenic effect of SFFV is blocked in mice homozygous for the Fv-2r resistance gene, but mutant SFFVs can overcome this resistance. Recent evidence suggested that these mutants contain partial env deletions that truncate the membrane-proximal extracellular domain of the encoded glycoproteins (M. H. Majumdar, C.-L. Cho, M. T. Fox, K. L. Eckner, S. Kozak, D. Kabat, and R. W. Geib, J. Virol. 66:3652-3660, 1992). Mutant BB6, which encodes a gp42 glycoprotein that has a large deletion in this domain, causes erythroblastosis in DBA/2 (Fv-2s) as well as in congenic D2.R (Fv-2r) mice. Analogous to gp55, gp42 is processed inefficiently as a disulfide-bonded dimer to form cell surface gp42p. Retroviral vectors with SFFV and BB6 env genes have no effect on interleukin 3-dependent BaF3 hematopoietic cells, but they cause growth factor independency of BaF3/EpoR cells, a derivative that contains recombinant EpoR. After binding 125I-Epo to surface EpoR on these factor-independent cells and adding the covalent cross-linking reagent disuccinimidyl suberate, complexes that had immunological properties and sizes demonstrating that they consisted of 125I-Epo-gp55p and 125I-Epo-gp42p were isolated from cell lysates. Contrary to a previous report, SFFV or BB6 env glycoproteins did not promiscuously activate other members of the EpoR superfamily. Although the related env glycoproteins encoded by dualtropic murine leukemia viruses formed detectable complexes with EpoR, strong mitogenic signalling did not ensue

  19. Activity of second-generation ALK inhibitors against crizotinib-resistant mutants in an NPM-ALK model compared to EML4-ALK.

    PubMed

    Fontana, Diletta; Ceccon, Monica; Gambacorti-Passerini, Carlo; Mologni, Luca

    2015-07-01

    Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor involved in both solid and hematological tumors. About 80% of ALK-positive anaplastic large-cell lymphoma (ALCL) cases are characterized by the t(2;5)(p23;q35) translocation, encoding for the aberrant fusion protein nucleophosmin (NPM)-ALK, whereas 5% of non-small-cell lung cancer (NSCLC) patients carry the inv(2)(p21;p23) rearrangement, encoding for the echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusion. The ALK/c-MET/ROS inhibitor crizotinib successfully improved the treatment of ALK-driven diseases. However, several cases of resistance appeared in NSCLC patients, and ALK amino acid substitutions were identified as a leading cause of resistance to crizotinib. Second-generation ALK inhibitors have been developed in order to overcome crizotinib resistance. In this work, we profiled in vitro the activity of crizotinib, AP26113, ASP3026, alectinib, and ceritinib against six mutated forms of ALK associated with clinical resistance to crizotinib (C1156Y, L1196M, L1152R, G1202R, G1269A, and S1206Y) and provide a classification of mutants according to their level of sensitivity/resistance to the drugs. Since the biological activity of ALK mutations extends beyond the specific type of fusion, both NPM-ALK- and EML4-ALK-positive cellular models were used. Our data revealed that most mutants may be targeted by using different inhibitors. One relevant exception is represented by the G1202R substitution, which was highly resistant to all drugs (>10-fold increased IC50 compared to wild type) and may represent the most challenging mutation to overcome. These results provide a prediction of cross-resistance of known crizotinib-resistant mutations against all second-generation tyrosine kinase inhibitors (TKIs) clinically available, and therefore could be a useful tool to help clinicians in the management of crizotinib-resistance cases.

  20. Cortical Efferents Lacking Mutant huntingtin Improve Striatal Neuronal Activity and Behavior in a Conditional Mouse Model of Huntington's Disease

    PubMed Central

    Estrada-Sánchez, Ana María; Burroughs, Courtney L.; Cavaliere, Stephen; Barton, Scott J.; Chen, Shirley; Yang, X. William

    2015-01-01

    Abnormal electrophysiological activity in the striatum, which receives dense innervation from the cerebral cortex, is believed to set the stage for the behavioral phenotype observed in Huntington's disease (HD), a neurodegenerative condition caused by mutation of the huntingtin (mhtt) protein. However, cortical involvement is far from clear. To determine whether abnormal striatal processing can be explained by mhtt alone (cell-autonomous model) or by mhtt in the corticostriatal projection cell–cell interaction model, we used BACHD/Emx1–Cre (BE) mice, a conditional HD model in which full-length mhtt is genetically reduced in cortical output neurons, including those that project to the striatum. Animals were assessed beginning at 20 weeks of age for at least the next 40 weeks, a range over which presymptomatic BACHD mice become symptomatic. Both open-field and nest-building behavior deteriorated progressively in BACHD mice relative to both BE and wild-type (WT) mice. Neuronal activity patterns in the dorsal striatum, which receives input from the primary motor cortex (M1), followed a similar age progression because BACHD activity changed more rapidly than either BE or WT mice. However, in the M1, BE neuronal activity differed significantly from both WT and BACHD. Although abnormal cortical activity in BE mice likely reflects input from mhtt-expressing afferents, including cortical interneurons, improvements in BE striatal activity and behavior suggest a critical role for mhtt in cortical output neurons in shaping the onset and progression of striatal dysfunction. PMID:25762686

  1. Citrate Accumulation-Related Gene Expression and/or Enzyme Activity Analysis Combined With Metabolomics Provide a Novel Insight for an Orange Mutant

    PubMed Central

    Guo, Ling-Xia; Shi, Cai-Yun; Liu, Xiao; Ning, Dong-Yuan; Jing, Long-Fei; Yang, Huan; Liu, Yong-Zhong

    2016-01-01

    ‘Hong Anliu’ (HAL, Citrus sinensis cv. Hong Anliu) is a bud mutant of ‘Anliu’ (AL), characterized by a comprehensive metabolite alteration, such as lower accumulation of citrate, high accumulation of lycopene and soluble sugars in fruit juice sacs. Due to carboxylic acid metabolism connects other metabolite biosynthesis and/or catabolism networks, we therefore focused analyzing citrate accumulation-related gene expression profiles and/or enzyme activities, along with metabolic fingerprinting between ‘HAL’ and ‘AL’. Compared with ‘AL’, the transcript levels of citrate biosynthesis- and utilization-related genes and/or the activities of their respective enzymes such as citrate synthase, cytosol aconitase and ATP-citrate lyase were significantly higher in ‘HAL’. Nevertheless, the mitochondrial aconitase activity, the gene transcript levels of proton pumps, including vacuolar H+-ATPase, vacuolar H+-PPase, and the juice sac-predominant p-type proton pump gene (CsPH8) were significantly lower in ‘HAL’. These results implied that ‘HAL’ has higher abilities for citrate biosynthesis and utilization, but lower ability for the citrate uptake into vacuole compared with ‘AL’. Combined with the metabolites-analyzing results, a model was then established and suggested that the reduction in proton pump activity is the key factor for the low citrate accumulation and the comprehensive metabolite alterations as well in ‘HAL’. PMID:27385485

  2. Hepatitis B virus PreS2-mutant large surface antigen activates store-operated calcium entry and promotes chromosome instability

    PubMed Central

    Yen, Tim Ting-Chung; Yang, Anderson; Chiu, Wen-Tai; Li, Tian-Neng; Wang, Lyu-Han; Wu, Yi-Hsuan; Wang, Hui-Chen; Chen, Linyi; Wang, Wen-Ching; Huang, Wenya; Chang, Chien-Wen; Chang, Margaret Dah-Tsyr; Shen, Meng-Ru; Su, Ih-Jen; Wang, Lily Hui-Ching

    2016-01-01

    Hepatitis B virus (HBV) is a driver of hepatocellular carcinoma, and two viral products, X and large surface antigen (LHBS), are viral oncoproteins. During chronic viral infection, immune-escape mutants on the preS2 region of LHBS (preS2-LHBS) are gain-of-function mutations that are linked to preneoplastic ground glass hepatocytes (GGHs) and early disease onset of hepatocellular carcinoma. Here, we show that preS2-LHBS provoked calcium release from the endoplasmic reticulum (ER) and triggered stored-operated calcium entry (SOCE). The activation of SOCE increased ER and plasma membrane (PM) connections, which was linked by ER- resident stromal interaction molecule-1 (STIM1) protein and PM-resident calcium release- activated calcium modulator 1 (Orai1). Persistent activation of SOCE induced centrosome overduplication, aberrant multipolar division, chromosome aneuploidy, anchorage-independent growth, and xenograft tumorigenesis in hepatocytes expressing preS2- LHBS. Chemical inhibitions of SOCE machinery and silencing of STIM1 significantly reduced centrosome numbers, multipolar division, and xenograft tumorigenesis induced by preS2-LHBS. These results provide the first mechanistic link between calcium homeostasis and chromosome instability in hepatocytes carrying preS2-LHBS. Therefore, persistent activation of SOCE represents a novel pathological mechanism in HBV-mediated hepatocarcinogenesis. PMID:26992221

  3. The pharmacological chaperone isofagomine increases the activity of the Gaucher disease L444P mutant form of beta-glucosidase.

    PubMed

    Khanna, Richie; Benjamin, Elfrida R; Pellegrino, Lee; Schilling, Adriane; Rigat, Brigitte A; Soska, Rebecca; Nafar, Hadis; Ranes, Brian E; Feng, Jessie; Lun, Yi; Powe, Allan C; Palling, David J; Wustman, Brandon A; Schiffmann, Raphael; Mahuran, Don J; Lockhart, David J; Valenzano, Kenneth J

    2010-04-01

    Gaucher disease is caused by mutations in the gene that encodes the lysosomal enzyme acid beta-glucosidase (GCase). We have shown previously that the small molecule pharmacological chaperone isofagomine (IFG) binds and stabilizes N370S GCase, resulting in increased lysosomal trafficking and cellular activity. In this study, we investigated the effect of IFG on L444P GCase. Incubation of Gaucher patient-derived lymphoblastoid cell lines (LCLs) or fibroblasts with IFG led to approximately 3.5- and 1.3-fold increases in L444P GCase activity, respectively, as measured in cell lysates. The effect in fibroblasts was increased approximately 2-fold using glycoprotein-enrichment, GCase-immunocapture, or by incubating cells overnight in IFG-free media prior to assay, methods designed to maximize GCase activity by reducing IFG carryover and inhibition in the enzymatic assay. IFG incubation also increased the lysosomal trafficking and in situ activity of L444P GCase in intact cells, as measured by reduction in endogenous glucosylceramide levels. Importantly, this reduction was seen only following three-day incubation in IFG-free media, underscoring the importance of IFG removal to restore lysosomal GCase activity. In mice expressing murine L444P GCase, oral administration of IFG resulted in significant increases (2- to 5-fold) in GCase activity in disease-relevant tissues, including brain. Additionally, eight-week IFG administration significantly lowered plasma chitin III and IgG levels, and 24-week administration significantly reduced spleen and liver weights. Taken together, these data suggest that IFG can increase the lysosomal activity of L444P GCase in cells and tissues. Moreover, IFG is orally available and distributes into multiple tissues, including brain, and may thus merit therapeutic evaluation for patients with neuronopathic and non-neuronopathic Gaucher disease.

  4. trans-dominant mutants of E1A provide genetic evidence that the zinc finger of the trans-activating domain binds a transcription factor.

    PubMed Central

    Webster, L C; Ricciardi, R P

    1991-01-01

    The 289R E1A protein of adenovirus stimulates transcription of early viral and certain cellular genes. trans-Activation requires residues 140 to 188, which encompass a zinc finger. Several studies have indicated that trans-activation by E1A is mediated through cellular transcription factors. In particular, the ability of the trans-dominant E1A point mutant hr5 (Ser-185 to Asn) to inhibit wild-type E1A trans-activation was proposed to result from the sequestration of a cellular factor. Using site-directed mutagenesis, we individually replaced every residue within and flanking the trans-activating domain with a conservative amino acid, revealing 16 critical residues. Six of the individual substitutions lying in a contiguous stretch C terminal to the zinc finger (carboxyl region183-188) imparted a trans-dominant phenotype. trans-Dominance was even produced by deletion of the entire carboxyl region183-188. Conversely, an intact finger region147-177 was absolutely required for trans-dominance, since second-site substitution of every critical residue in this region abrogated the trans-dominant phenotype of the hr5 protein. These data indicate that the finger region147-177 bind a limiting cellular transcription factor and that the carboxyl region183-188 provides a separate and essential function. In addition, we show that four negatively charged residues within the trans-activating domain do not comprise a distinct acidic activating region. We present a model in which the trans-activating domain of E1A binds to two different cellular protein targets through the finger and carboxyl regions. Images PMID:1831535

  5. Allosteric mutants show that PrfA activation is dispensable for vacuole escape but required for efficient spread and Listeria survival in vivo

    PubMed Central

    Deshayes, Caroline; Bielecka, Magdalena K; Cain, Robert J; Scortti, Mariela; de las Heras, Aitor; Pietras, Zbigniew; Luisi, Ben F; Núñez Miguel, Ricardo; Vázquez-Boland, José A

    2012-01-01

    The transcriptional regulator PrfA controls key virulence determinants of the facultative intracellular pathogen Listeria monocytogenes. PrfA-dependent gene expression is strongly induced within host cells. While the basis of this activation is unknown, the structural homology of PrfA with the cAMP receptor protein (Crp) and the finding of constitutively activated PrfA* mutants suggests it may involve ligand-induced allostery. Here, we report the identification of a solvent-accessible cavity within the PrfA N-terminal domain that may accommodate an activating ligand. The pocket occupies a similar position to the cAMP binding site in Crp but lacks the cyclic nucleotide-anchoring motif and has its entrance on the opposite side of the β-barrel. Site-directed mutations in this pocket impaired intracellular PrfA-dependent gene activation without causing extensive structural/functional alterations to PrfA. Two substitutions, L48F and Y63W, almost completely abolished intracellular virulence gene induction and thus displayed the expected phenotype for allosteric activation-deficient PrfA mutations. Neither PrfAallo substitution affected vacuole escape and initial intracellular growth of L. monocytogenes in epithelial cells and macrophages but caused defective cell-to-cell spread and strong attenuation in mice. Our data support the hypothesis that PrfA is allosterically activated during intracellular infection and identify the probable binding site for the effector ligand. They also indicate that PrfA allosteric activation is not required for early intracellular survival but is essential for full Listeria virulence and colonization of host tissues. PMID:22646689

  6. Interactions of C4 subtype metabolic activities and transport in maize are revealed through the characterization of DCT2 mutants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    C4 photosynthesis is an elaborate set of metabolic pathways that utilize specialized anatomical and biochemical adaptations to concentrate CO2 around RuBisCO. The activities of the C4 pathways are coordinated between two specialized leaf cell types, mesophyll (M) and bundle sheath (BS), and rely hea...

  7. Impact of membrane-associated hydrogenases on the F₀F₁-ATPase in Escherichia coli during glycerol and mixed carbon fermentation: ATPase activity and its inhibition by N,N'-dicyclohexylcarbodiimide in the mutants lacking hydrogenases.

    PubMed

    Blbulyan, Syuzanna; Trchounian, Armen

    2015-08-01

    Escherichia coli is able to ferment glycerol and to produce molecular hydrogen (H2) by four membrane-associated hydrogenases (Hyd) changing activity in response to different conditions. In this study, overall ATPase activity of glycerol alone and mixed carbon sources (glucose and glycerol) fermented E. coli wild type and different Hyd mutants and its inhibition by N,N'-dicyclohexylcarbodiimide (DCCD) were first investigated. ATPase activity was higher in glycerol fermented wild type cells at pH 7.5 compared to pH 6.5 and pH 5.5; DCCD inhibited markedly ATPase activity at pH 7.5. The ATPase activity at pH 7.5, compared with wild type, was lower in selC and less in hypF single mutants, suppressed in hyaB hybC selC triple mutant. Moreover, total ATPase activity of mixed carbon fermented wild type cells was maximal at pH 7.5 and lowered at pH 5.5. The ATPase activities of hypF and hyaB hybC selC mutants were higher at pH 5.5, compared with wild type; DCCD inhibited markedly ATPase activity of hypF mutant. These results demonstrate that in E. coli during glycerol fermentation the membrane proton-translocating FOF1-ATPase has major input in overall ATPase activity and alkaline pH is more optimal for the FOF1-ATPase operation. Hyd-1 and Hyd-2 are required for the FOF1-ATPase activity upon anaerobic fermentation of glycerol. The impact of Hyd-1 and Hyd-2 on the FOF1-ATPase is more obvious during mixed carbon fermentation at slightly acidic pH.

  8. Constitutive activation of stress-inducible genes in a brassinosteroid-insensitive 1 (bri1) mutant results in higher tolerance to cold.

    PubMed

    Kim, Sun Young; Kim, Beg Hab; Lim, Chan Ju; Lim, Chae Oh; Nam, Kyoung Hee

    2010-02-01

    Many plant hormones are involved in coordinating the growth responses of plants under stress. However, not many mechanistic studies have explored how plants maintain the balance between growth and stress responses. Brassinosteroids (BRs), plant-specific steroid hormones, affect many aspects of plant growth and development over a plant's lifetime. In this study we determined that exogenous treatment of BR helped the plant overcome the cold condition only when pretreated with less than 1 nM, and the brassinosteroid-insensitive 1 (bri1) mutation, which results in defective BR signaling and subsequent dwarfism, generates an increased tolerance to cold. In contrast, BRI1-overexpressing plants were more sensitive to the same stress than wild-type. We found that the bri1 mutant and BRI1-overexpressing transgenic plants contain higher basal level of expression of CBFs/DREB1s than wild-type. However, representative cold stress-related genes were regulated with the same pattern to cold in wild-type, bri1-9 and BRI1 overexpressing plants. To examine the global gene expression and compare the genes that show differential expression pattern in bri1-9 and BRI1-GFP plants other than CBFs/DREB1s, we analyzed differential mRNA expression using the cDNA microarray analysis in the absence of stress. Endogenous expression of both stress-inducible genes as well as genes encoding transcription factors that drive the expression of stress-inducible genes were maintained at higher levels in bri1-9 than either in wild-type or in BRI1 overexpressing plants. This suggests that the bri1-9 mutant could always be alert to stresses that might be exerted at any times by constitutive activation of subsets of defense. PMID:20053182

  9. cAMP-specific phosphodiesterase HSPDE4D3 mutants which mimic activation and changes in rolipram inhibition triggered by protein kinase A phosphorylation of Ser-54: generation of a molecular model.

    PubMed Central

    Hoffmann, R; Wilkinson, I R; McCallum, J F; Engels, P; Houslay, M D

    1998-01-01

    Ser-13 and Ser-54 were shown to provide the sole sites for the protein kinase A (PKA)-mediated phosphorylation of the human cAMP-specific phosphodiesterase isoform HSPDE4D3. The ability of PKA to phosphorylate and activate HSPDE4D3 was mimicked by replacing Ser-54 with either of the negatively charged amino acids, aspartate or glutamate, within the consensus motif of RRES54. The PDE4 selective inhibitor rolipram ¿4-[3-(cyclopentoxy)-4-methoxyphenyl]-2-pyrrolidone¿ inhibited both PKA-phosphorylated HSPDE4D3 and the Ser-54-->Asp mutant, with an IC50 value that was approximately 8-fold lower than that seen for the non-PKA-phosphorylated enzyme. Lower IC50 values for inhibition by rolipram were seen for a wide range of non-activated residue 54 mutants, except for those which had side-chains able to serve as hydrogen-bond donors, namely the Ser-54-->Thr, Ser-54-->Tyr and Ser-54-->Cys mutants. The Glu-53-->Ala mutant exhibited an activity comparable with that of the PKA phosphorylated native enzyme and the Ser-54-->Asp mutant but, in contrast to the native enzyme, was insensitive to activation by PKA, despite being more rapidly phosphorylated by this protein kinase. The activated Glu-53-->Ala mutant exhibited a sensitivity to inhibition by rolipram which was unchanged from that of the native enzyme. The double mutant, Arg-51-->Ala/Arg-52-->Ala, showed no change in either enzyme activity or rolipram inhibition from the native enzyme and was incapable of providing a substrate for PKA phosphorylation at Ser-54. No difference in inhibition by dipyridamole was seen for the native enzyme and the Ser-54-->Asp and Ser-54-->Ala mutants. A model is proposed which envisages that phosphorylation by PKA triggers at least two distinct conformational changes in HSPDE4D3; one of these gives rise to enzyme activation and another enhances sensitivity to inhibition by rolipram. Activation of HSPDE4D3 by PKA-mediated phosphorylation is suggested to involve disruption of an ion

  10. Activation of the Rcs Signal Transduction System Is Responsible for the Thermosensitive Growth Defect of an Escherichia coli Mutant Lacking Phosphatidylglycerol and Cardiolipin

    PubMed Central

    Shiba, Yasuhiro; Yokoyama, Yasuko; Aono, Yoshiko; Kiuchi, Takashi; Kusaka, Jin; Matsumoto, Kouji; Hara, Hiroshi

    2004-01-01

    The lethal effect of an Escherichia coli pgsA null mutation, which causes a complete lack of the major acidic phospholipids, phosphatidylglycerol and cardiolipin, is alleviated by a lack of the major outer membrane lipoprotein encoded by the lpp gene, but an lpp pgsA strain shows a thermosensitive growth defect. Using transposon mutagenesis, we found that this thermosensitivity was suppressed by disruption of the rcsC, rcsF, and yojN genes, which code for a sensor kinase, accessory positive factor, and phosphotransmitter, respectively, of the Rcs phosphorelay signal transduction system initially identified as regulating the capsular polysaccharide synthesis (cps) genes. Disruption of the rcsB gene coding for the response regulator of the system also suppressed the thermosensitivity, whereas disruption of cpsE did not. By monitoring the expression of a cpsB′-lac fusion, we showed that the Rcs system is activated in the pgsA mutant and is reverted to a wild-type level by the rcs mutations. These results indicate that envelope stress due to an acidic phospholipid deficiency activates the Rcs phosphorelay system and thereby causes the thermosensitive growth defect independent of the activation of capsule synthesis. PMID:15375134

  11. HMG CoA Lyase (HL): Mutation detection and development of a bacterial expression system for screening the activity of mutant alleles from HL-deficient patients

    SciTech Connect

    Robert, M.F.; Ashmarina, L.; Poitier, E.

    1994-09-01

    HL catalyzes the last step of ketogenesis, and autosomal recessive HL deficiency in humans can cause episodes of hypoglycemia and coma. Structurally, HL is a dimer of identical 325-residue peptides which requires a reducing environment to maintain activity. We cloned the human and mouse HL cDNAs and genes and have performed mutation analysis on cells from 30 HL-deficient probands. Using SSCP and also genomic Southern analysis we have identified putative mutations on 53/60 alleles of these patients (88%). To date, we have found 20 mutations: 3 large deletions, 4 termination mutations, 5 frameshift mutations, and 8 missense mutations which we suspect to be pathogenic based on evolutionary conservation and/or our previous studies on purified HL protein. We have also identified 3 polymorphic variants. In order to directly test the activity of the missense mutations, we established a pGEX-based system, using a glutathione S transferase (GST)-HL fusion protein. Expressed wild-type GST-HL was insoluble. We previously located a reactive Cys at the C-terminus of chicken HL which is conserved in human HL. We produced a mutant HL peptide, C323S, which replaced Cys323 with Ser. Purified C323S is soluble and has similar kinetics to wild-type HL. C323S-containing GST-HL is soluble and enzymatically active. We are cloning and expressing the 8 missense mutations.

  12. Synergic prodegradative activity of Bicalutamide and trehalose on the mutant androgen receptor responsible for spinal and bulbar muscular atrophy

    PubMed Central

    Giorgetti, Elisa; Rusmini, Paola; Crippa, Valeria; Cristofani, Riccardo; Boncoraglio, Alessandra; Cicardi, Maria E.; Galbiati, Mariarita; Poletti, Angelo

    2015-01-01

    Spinal and bulbar muscular atrophy (SBMA) is an X-linked motoneuron disease due to a CAG triplet-repeat expansion in the androgen receptor (AR) gene, which is translated into an elongated polyglutamine (polyQ) tract in AR protein (ARpolyQ). ARpolyQ toxicity is activated by the AR ligand testosterone (or dihydrotestosterone), and the polyQ triggers ARpolyQ misfolding and aggregation in spinal cord motoneurons and muscle cells. In motoneurons, testosterone triggers nuclear toxicity by inducing AR nuclear translocation. Thus, (i) prevention of ARpolyQ nuclear localization, combined with (ii) an increased ARpolyQ cytoplasmic clearance, should reduce its detrimental activity. Using the antiandrogen Bicalutamide (Casodex®), which slows down AR activation and nuclear translocation, and the disaccharide trehalose, an autophagy activator, we found that, in motoneurons, the two compounds together reduced ARpolyQ insoluble forms with higher efficiency than that obtained with single treatments. The ARpolyQ clearance was mediated by trehalose-induced autophagy combined with the longer cytoplasmic retention of ARpolyQ bound to Bicalutamide. This allows an increased recognition of misfolded species by the autophagic system prior to their migration into the nucleus. Interestingly, the combinatory use of trehalose and Bicalutamide was also efficient in the removal of insoluble species of AR with a very long polyQ (Q112) tract, which typically aggregates into the cell nuclei. Collectively, these data suggest that the combinatory use of Bicalutamide and trehalose is a novel approach to facilitate ARpolyQ clearance that has to be tested in other cell types target of SBMA (i.e. muscle cells) and in vivo in animal models of SBMA. PMID:25122660

  13. Synergic prodegradative activity of Bicalutamide and trehalose on the mutant androgen receptor responsible for spinal and bulbar muscular atrophy.

    PubMed

    Giorgetti, Elisa; Rusmini, Paola; Crippa, Valeria; Cristofani, Riccardo; Boncoraglio, Alessandra; Cicardi, Maria E; Galbiati, Mariarita; Poletti, Angelo

    2015-01-01

    Spinal and bulbar muscular atrophy (SBMA) is an X-linked motoneuron disease due to a CAG triplet-repeat expansion in the androgen receptor (AR) gene, which is translated into an elongated polyglutamine (polyQ) tract in AR protein (ARpolyQ). ARpolyQ toxicity is activated by the AR ligand testosterone (or dihydrotestosterone), and the polyQ triggers ARpolyQ misfolding and aggregation in spinal cord motoneurons and muscle cells. In motoneurons, testosterone triggers nuclear toxicity by inducing AR nuclear translocation. Thus, (i) prevention of ARpolyQ nuclear localization, combined with (ii) an increased ARpolyQ cytoplasmic clearance, should reduce its detrimental activity. Using the antiandrogen Bicalutamide (Casodex(®)), which slows down AR activation and nuclear translocation, and the disaccharide trehalose, an autophagy activator, we found that, in motoneurons, the two compounds together reduced ARpolyQ insoluble forms with higher efficiency than that obtained with single treatments. The ARpolyQ clearance was mediated by trehalose-induced autophagy combined with the longer cytoplasmic retention of ARpolyQ bound to Bicalutamide. This allows an increased recognition of misfolded species by the autophagic system prior to their migration into the nucleus. Interestingly, the combinatory use of trehalose and Bicalutamide was also efficient in the removal of insoluble species of AR with a very long polyQ (Q112) tract, which typically aggregates into the cell nuclei. Collectively, these data suggest that the combinatory use of Bicalutamide and trehalose is a novel approach to facilitate ARpolyQ clearance that has to be tested in other cell types target of SBMA (i.e. muscle cells) and in vivo in animal models of SBMA.

  14. Secretory pathway retention of mutant prion protein induces p38-MAPK activation and lethal disease in mice

    PubMed Central

    Puig, Berta; Altmeppen, Hermann C.; Ulbrich, Sarah; Linsenmeier, Luise; Krasemann, Susanne; Chakroun, Karima; Acevedo-Morantes, Claudia Y.; Wille, Holger; Tatzelt, Jörg; Glatzel, Markus

    2016-01-01

    Misfolding of proteins in the biosynthetic pathway in neurons may cause disturbed protein homeostasis and neurodegeneration. The prion protein (PrPC) is a GPI-anchored protein that resides at the plasma membrane and may be misfolded to PrPSc leading to prion diseases. We show that a deletion in the C-terminal domain of PrPC (PrPΔ214–229) leads to partial retention in the secretory pathway causing a fatal neurodegenerative disease in mice that is partially rescued by co-expression of PrPC. Transgenic (Tg(PrPΔ214–229)) mice show extensive neuronal loss in hippocampus and cerebellum and activation of p38-MAPK. In cell culture under stress conditions, PrPΔ214–229 accumulates in the Golgi apparatus possibly representing transit to the Rapid ER Stress-induced ExporT (RESET) pathway together with p38-MAPK activation. Here we describe a novel pathway linking retention of a GPI-anchored protein in the early secretory pathway to p38-MAPK activation and a neurodegenerative phenotype in transgenic mice. PMID:27117504

  15. Inability to activate Rac1-dependent forgetting contributes to behavioral inflexibility in mutants of multiple autism-risk genes.

    PubMed

    Dong, Tao; He, Jing; Wang, Shiqing; Wang, Lianzhang; Cheng, Yuqi; Zhong, Yi

    2016-07-01

    The etiology of autism is so complicated because it involves the effects of variants of several hundred risk genes along with the contribution of environmental factors. Therefore, it has been challenging to identify the causal paths that lead to the core autistic symptoms such as social deficit, repetitive behaviors, and behavioral inflexibility. As an alternative approach, extensive efforts have been devoted to identifying the convergence of the targets and functions of the autism-risk genes to facilitate mapping out causal paths. In this study, we used a reversal-learning task to measure behavioral flexibility in Drosophila and determined the effects of loss-of-function mutations in multiple autism-risk gene homologs in flies. Mutations of five autism-risk genes with diversified molecular functions all led to a similar phenotype of behavioral inflexibility indicated by impaired reversal-learning. These reversal-learning defects resulted from the inability to forget or rather, specifically, to activate Rac1 (Ras-related C3 botulinum toxin substrate 1)-dependent forgetting. Thus, behavior-evoked activation of Rac1-dependent forgetting has a converging function for autism-risk genes. PMID:27335463

  16. Crystal structures of the wild-type, P1A mutant, and inactivated malonate semialdehyde decarboxylase: a structural basis for the decarboxylase and hydratase activities.

    PubMed

    Almrud, Jeffrey J; Poelarends, Gerrit J; Johnson, William H; Serrano, Hector; Hackert, Marvin L; Whitman, Christian P

    2005-11-15

    Malonate semialdehyde decarboxylase (MSAD) from Pseudomonas pavonaceae 170 is a tautomerase superfamily member that converts malonate semialdehyde to acetaldehyde by a mechanism utilizing Pro-1 and Arg-75. Pro-1 and Arg-75 have also been implicated in the hydratase activity of MSAD in which 2-oxo-3-pentynoate is processed to acetopyruvate. Crystal structures of MSAD (1.8 A resolution), the P1A mutant of MSAD (2.7 A resolution), and MSAD inactivated by 3-chloropropiolate (1.6 A resolution), a mechanism-based inhibitor activated by the hydratase activity of MSAD, have been determined. A comparison of the P1A-MSAD and MSAD structures reveals little geometric alteration, indicating that Pro-1 plays an important catalytic role but not a critical structural role. The structures of wild-type MSAD and MSAD covalently modified at Pro-1 by 3-oxopropanoate, the adduct resulting from the incubation of MSAD and 3-chloropropiolate, implicate Asp-37 as the residue that activates a water molecule for attack at C-3 of 3-chloropropiolate to initiate a Michael addition of water. The interactions of Arg-73 and Arg-75 with the C-1 carboxylate group of the adduct suggest these residues polarize the alpha,beta-unsaturated acid and facilitate the addition of water. On the basis of these structures, a mechanism for the inactivation of MSAD by 3-chloropropiolate can be formulated along with mechanisms for the decarboxylase and hydratase activities. The results also provide additional evidence supporting the hypothesis that MSAD and trans-3-chloroacrylic acid dehalogenase, a tautomerase superfamily member preceding MSAD in the trans-1,3-dichloropropene degradation pathway, diverged from a common ancestor but retained the key elements for the conjugate addition of water.

  17. Effects of Bio-Au Nanoparticles on Electrochemical Activity of Shewanella oneidensis Wild Type and ΔomcA/mtrC Mutant

    NASA Astrophysics Data System (ADS)

    Wu, Ranran; Cui, Li; Chen, Lixiang; Wang, Chao; Cao, Changli; Sheng, Guoping; Yu, Hanqing; Zhao, Feng

    2013-11-01

    Both Shewanella oneidensis MR-1 wild type and its mutant ΔomcA/mtrC are capable of transforming AuIII into Au nanoparticles (AuNPs). Cyclic voltammetry reveals a decrease in redox current after the wild type is exposed to AuIII but an increase in oxidation current for the mutant. The peak current of the wild type is much higher than that of the mutant before the exposure of AuIII, but lower than that of the mutant after the formation of AuNPs. This suggests that damage to the electron transfer chain in the mutant could be repaired by AuNPs to a certain extent. Spectroscopy and SDS-PAGE analysis indicate a decrease in cell protein content after the formation of AuNPs, which provides a convenient way to detect intracellular information on cells.

  18. Effects of bio-Au nanoparticles on electrochemical activity of Shewanella oneidensis wild type and ΔomcA/mtrC mutant.

    PubMed

    Wu, Ranran; Cui, Li; Chen, Lixiang; Wang, Chao; Cao, Changli; Sheng, Guoping; Yu, Hanqing; Zhao, Feng

    2013-11-22

    Both Shewanella oneidensis MR-1 wild type and its mutant ΔomcA/mtrC are capable of transforming Au(III) into Au nanoparticles (AuNPs). Cyclic voltammetry reveals a decrease in redox current after the wild type is exposed to Au(III) but an increase in oxidation current for the mutant. The peak current of the wild type is much higher than that of the mutant before the exposure of Au(III), but lower than that of the mutant after the formation of AuNPs. This suggests that damage to the electron transfer chain in the mutant could be repaired by AuNPs to a certain extent. Spectroscopy and SDS-PAGE analysis indicate a decrease in cell protein content after the formation of AuNPs, which provides a convenient way to detect intracellular information on cells.

  19. Gap-junctional channel and hemichannel activity of two recently identified connexin 26 mutants associated with deafness.

    PubMed

    Dalamon, Viviana; Fiori, Mariana C; Figueroa, Vania A; Oliva, Carolina A; Del Rio, Rodrigo; Gonzalez, Wendy; Canan, Jonathan; Elgoyhen, Ana B; Altenberg, Guillermo A; Retamal, Mauricio A

    2016-05-01

    Gap-junction channels (GJCs) are formed by head-to-head association of two hemichannels (HCs, connexin hexamers). HCs and GJCs are permeable to ions and hydrophilic molecules of up to Mr ~1 kDa. Hearing impairment of genetic origin is common, and mutations of connexin 26 (Cx26) are its major cause. We recently identified two novel Cx26 mutations in hearing-impaired subjects, L10P and G109V. L10P forms functional GJCs with slightly altered voltage dependence and HCs with decrease ATP/cationic dye selectivity. G109V does not form functional GJCs, but forms functional HCs with enhanced extracellular Ca(2+) sensitivity and subtle alterations in voltage dependence and ATP/cationic dye selectivity. Deafness associated with G109V could result from decreased GJCs activity, whereas deafness associated to L10P may have a more complex mechanism that involves changes in HC permeability. PMID:26769242

  20. Gap-junctional channel and hemichannel activity of two recently identified connexin 26 mutants associated with deafness.

    PubMed

    Dalamon, Viviana; Fiori, Mariana C; Figueroa, Vania A; Oliva, Carolina A; Del Rio, Rodrigo; Gonzalez, Wendy; Canan, Jonathan; Elgoyhen, Ana B; Altenberg, Guillermo A; Retamal, Mauricio A

    2016-05-01

    Gap-junction channels (GJCs) are formed by head-to-head association of two hemichannels (HCs, connexin hexamers). HCs and GJCs are permeable to ions and hydrophilic molecules of up to Mr ~1 kDa. Hearing impairment of genetic origin is common, and mutations of connexin 26 (Cx26) are its major cause. We recently identified two novel Cx26 mutations in hearing-impaired subjects, L10P and G109V. L10P forms functional GJCs with slightly altered voltage dependence and HCs with decrease ATP/cationic dye selectivity. G109V does not form functional GJCs, but forms functional HCs with enhanced extracellular Ca(2+) sensitivity and subtle alterations in voltage dependence and ATP/cationic dye selectivity. Deafness associated with G109V could result from decreased GJCs activity, whereas deafness associated to L10P may have a more complex mechanism that involves changes in HC permeability.

  1. Activation of mutant protein kinase C{gamma} leads to aberrant sequestration and impairment of its cellular function

    SciTech Connect

    Doran, Graeme; Davies, Kay E.; Talbot, Kevin

    2008-08-01

    Mutations in protein kinase C{gamma} (PKC{gamma}) cause the neurodegenerative disease spinocerebellar ataxia type 14 (SCA14). In this study, expression of an extensive panel of known SCA14-associated PKC{gamma} mutations as fusion proteins in cell culture led to the consistent formation of cytoplasmic aggregates in response to purinoceptor stimulation. Aggregates co-stained with antibodies to phosphorylated PKC{gamma} and the early endosome marker EEA1 but failed to redistribute to the cell membrane under conditions of oxidative stress. These studies suggest that Purkinje cell damage in SCA14 may result from a reduction of PKC{gamma} activity due its aberrant sequestration in the early endosome compartment.

  2. Active site structure in cytochrome c peroxidase and myoglobin mutants: effects of altered hydrogen bonding to the proximal histidine.

    PubMed

    Sinclair, R; Hallam, S; Chen, M; Chance, B; Powers, L

    1996-11-26

    The globins and peroxidases, while performing completely different chemistry, share features of the iron heme active site: a protoporphyrin IX prosthetic group is linked to the protein by the proximal histidine residue. X-ray absorption spectroscopy provides a method to determine the local structure of iron heme active sites in proteins. Our previous studies using X-ray absorption spectroscopy revealed a significant difference in the Fe-N epsilon bond length between the peroxidases and the globins [for a review, see Powers, L. (1994) Molecular Electronics and Molecular Electronic Devices, Vol. 3, p 211 CRC Press Inc., Boca Raton, FL]. Globins typically have an Fe-N epsilon distance close to 2.1 A while the Fe-N epsilon distance in the peroxidases is closer to 1.9 A. We have proposed [Sinclair, R., Powers, L., Bumpus, J., Albo, A., & Brock, B. (1992) Biochemistry 31, 4892] that strong hydrogen bonding to the proximal histidine is responsible for the shorter bond length in the peroxidases. Here we use site-specific mutagenesis to eliminate the strong proximal hydrogen bonding in cytochrome c peroxidase and to introduce strong proximal hydrogen bonding in myoglobin. Consistent with our hypothesis, elimination of the Asp235-His175 hydrogen bond in CcP results in elongation of Fe-N epsilon from approximately 1.9 to approximately 2.1 A. Conversely, introduction of a similar strong proximal hydrogen bond in myoglobin shortens Fe-N epsilon from approximately 2.1 to approximately 1.9 A. These results correlate well with other biochemical data.

  3. Interactions of C4 Subtype Metabolic Activities and Transport in Maize Are Revealed through the Characterization of DCT2 Mutants[OPEN

    PubMed Central

    Berg, Howard; Shao, Ying

    2016-01-01

    C4 photosynthesis in grasses requires the coordinated movement of metabolites through two specialized leaf cell types, mesophyll (M) and bundle sheath (BS), to concentrate CO2 around Rubisco. Despite the importance of transporters in this process, few have been identified or rigorously characterized. In maize (Zea mays), DCT2 has been proposed to function as a plastid-localized malate transporter and is preferentially expressed in BS cells. Here, we characterized the role of DCT2 in maize leaves using Activator-tagged mutant alleles. Our results indicate that DCT2 enables the transport of malate into the BS chloroplast. Isotopic labeling experiments show that the loss of DCT2 results in markedly different metabolic network operation and dramatically reduced biomass production. In the absence of a functioning malate shuttle, dct2 lines survive through the enhanced use of the phosphoenolpyruvate carboxykinase carbon shuttle pathway that in wild-type maize accounts for ∼25% of the photosynthetic activity. The results emphasize the importance of malate transport during C4 photosynthesis, define the role of a primary malate transporter in BS cells, and support a model for carbon exchange between BS and M cells in maize. PMID:26813621

  4. Differential activities of 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine derivatives against different human immunodeficiency virus type 1 mutant strains.

    PubMed Central

    Balzarini, J; Baba, M; De Clercq, E

    1995-01-01

    A series of 23 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine derivatives that were highly potent inhibitors of wild-type human immunodeficiency virus type 1 strain IIIB (HIV-1/IIIB) replication in CEM cells were evaluated against a panel of HIV-1 mutant strains containing the replacement of leucine by isoleucine at position 100 (100-Leu-->Ile), 103-Lys-->Asn, 106-Val-->Ala, 138-Glu-->Lys, 181-Tyr-->Cys, 181-Tyr-->Ile, or 188-Tyr-->His in their reverse transcriptase (RT). A different structure-antiviral activity relationship was found, depending on the nature of the mutated amino acid in the HIV-1 RT. The results show that 5-ethyl-1-ethoxymethyl-6-(3,5-dimethylbenzyl)uracil, 5-ethyl-1-ethoxymethyl-6-(3,5-dimethylphenylthio)uracil, and 5-ethyl-1-ethoxymethyl-6-(3,5-dimethylphenylthio)-2-thiouracil remain active against the majority of viruses containing single mutations which confer resistance to nonnucleoside RT inhibitors. PMID:7540384

  5. Mutant p53 is a transcriptional co-factor that binds to G-rich regulatory regions of active genes and generates transcriptional plasticity

    PubMed Central

    Quante, Timo; Otto, Benjamin; Brázdová, Marie; Kejnovská, Iva; Deppert, Wolfgang; Tolstonog, Genrich V.

    2012-01-01

    The molecular mechanisms underlying mutant p53 (mutp53) “gain-of-function” (GOF) are still insufficiently understood, but there is evidence that mutp53 is a transcriptional regulator that is recruited by specialized transcription factors. Here we analyzed the binding sites of mutp53 and the epigenetic status of mutp53-regulated genes that had been identified by global expression profiling upon depletion of endogenous mutp53 (R273H) expression in U251 glioblastoma cells. We found that mutp53 preferentially and autonomously binds to G/C-rich DNA around transcription start sites (TSS) of many genes characterized by active chromatin marks (H3K4me3) and frequently associated with transcription-competent RNA polymerase II. Mutp53-bound regions overlap predominantly with CpG islands and are enriched in G4-motifs that are prone to form G-quadruplex structures. In line, mutp53 binds and stabilizes a well-characterized G-quadruplex structure in vitro. Hence, we assume that binding of mutp53 to G/C-rich DNA regions associated with a large set of cancer-relevant genes is an initial step in their regulation by mutp53. Using GAS1 and HTR2A as model genes, we show that mutp53 affects several parameters of active transcription. Finally, we discuss a dual mode model of mutp53 GOF, which includes both stochastic and deterministic components. PMID:22894900

  6. Comparison of the Exposure Time Dependence of the Activities of Synthetic Ozonide Antimalarials and Dihydroartemisinin against K13 Wild-Type and Mutant Plasmodium falciparum Strains.

    PubMed

    Yang, Tuo; Xie, Stanley C; Cao, Pengxing; Giannangelo, Carlo; McCaw, James; Creek, Darren J; Charman, Susan A; Klonis, Nectarios; Tilley, Leann

    2016-08-01

    Fully synthetic endoperoxide antimalarials, namely, OZ277 (RBx11160; also known as arterolane) and OZ439 (artefenomel), have been approved for marketing or are currently in clinical development. We undertook an analysis of the kinetics of the in vitro responses of Plasmodium falciparum to the new ozonide antimalarials. For these studies we used a K13 mutant (artemisinin resistant) isolate from a region in Cambodia and a genetically matched (artemisinin sensitive) K13 revertant. We used a pulsed-exposure assay format to interrogate the time dependence of the response. Because the ozonides have physicochemical properties different from those of the artemisinins, assay optimization was required to ensure that the drugs were completely removed following the pulsed exposure. Like that of artemisinins, ozonide activity requires active hemoglobin degradation. Short pulses of the ozonides were less effective than short pulses of dihydroartemisinin; however, when early-ring-stage parasites were exposed to drugs for periods relevant to their in vivo exposure, the ozonide antimalarials were markedly more effective. PMID:27161632

  7. A splice site mutant of maize activates cryptic splice sites, elicits intron inclusion and exon exclusion, and permits branch point elucidation.

    PubMed

    Lal, S; Choi, J H; Shaw, J R; Hannah, L C

    1999-10-01

    DNA sequence analysis of the bt2-7503 mutant allele of the maize brittle-2 gene revealed a point mutation in the 5' terminal sequence of intron 3 changing GT to AT. This lesion completely abolishes use of this splice site, activates two cryptic splice sites, and alters the splicing pattern from extant splice sites. One activated donor site, located nine nt 5' to the normal splice donor site, begins with the dinucleotide GC. While non-consensus, this sequence still permits both trans-esterification reactions of pre-mRNA splicing. A second cryptic site located 23 nt 5' to the normal splice site and beginning with GA, undergoes the first trans-esterification reaction leading to lariat formation, but lacks the ability to participate in the second reaction. Accumulation of this splicing intermediate and use of an innovative reverse transcriptase-polymerase chain reaction technique (J. Vogel, R.H. Wolfgang, T. Borner [1997] Nucleic Acids Res 25: 2030-2031) led to the identification of 3' intron sequences needed for lariat formation. In most splicing reactions, neither cryptic site is recognized. Most mature transcripts include intron 3, while the second most frequent class lacks exon 3. Traditionally, the former class of transcripts is taken as evidence for the intron definition of splicing, while the latter class has given credence to the exon definition of splicing. PMID:10517832

  8. Comparison of the Exposure Time Dependence of the Activities of Synthetic Ozonide Antimalarials and Dihydroartemisinin against K13 Wild-Type and Mutant Plasmodium falciparum Strains

    PubMed Central

    Yang, Tuo; Xie, Stanley C.; Cao, Pengxing; Giannangelo, Carlo; McCaw, James; Creek, Darren J.; Charman, Susan A.; Klonis, Nectarios

    2016-01-01

    Fully synthetic endoperoxide antimalarials, namely, OZ277 (RBx11160; also known as arterolane) and OZ439 (artefenomel), have been approved for marketing or are currently in clinical development. We undertook an analysis of the kinetics of the in vitro responses of Plasmodium falciparum to the new ozonide antimalarials. For these studies we used a K13 mutant (artemisinin resistant) isolate from a region in Cambodia and a genetically matched (artemisinin sensitive) K13 revertant. We used a pulsed-exposure assay format to interrogate the time dependence of the response. Because the ozonides have physicochemical properties different from those of the artemisinins, assay optimization was required to ensure that the drugs were completely removed following the pulsed exposure. Like that of artemisinins, ozonide activity requires active hemoglobin degradation. Short pulses of the ozonides were less effective than short pulses of dihydroartemisinin; however, when early-ring-stage parasites were exposed to drugs for periods relevant to their in vivo exposure, the ozonide antimalarials were markedly more effective. PMID:27161632

  9. Pharmacological Chaperones and Coenzyme Q10 Treatment Improves Mutant β-Glucocerebrosidase Activity and Mitochondrial Function in Neuronopathic Forms of Gaucher Disease.

    PubMed

    de la Mata, Mario; Cotán, David; Oropesa-Ávila, Manuel; Garrido-Maraver, Juan; Cordero, Mario D; Villanueva Paz, Marina; Delgado Pavón, Ana; Alcocer-Gómez, Elizabet; de Lavera, Isabel; Ybot-González, Patricia; Paula Zaderenko, Ana; Ortiz Mellet, Carmen; García Fernández, José M; Sánchez-Alcázar, José A

    2015-06-05

    Gaucher disease (GD) is caused by mutations in the GBA1 gene, which encodes lysosomal β-glucocerebrosidase. Homozygosity for the L444P mutation in GBA1 is associated with high risk of neurological manifestations which are not improved by enzyme replacement therapy. Alternatively, pharmacological chaperones (PCs) capable of restoring the correct folding and trafficking of the mutant enzyme represent promising alternative therapies.Here, we report on how the L444P mutation affects mitochondrial function in primary fibroblast derived from GD patients. Mitochondrial dysfunction was associated with reduced mitochondrial membrane potential, increased reactive oxygen species (ROS), mitophagy activation and impaired autophagic flux.Both abnormalities, mitochondrial dysfunction and deficient β-glucocerebrosidase activity, were partially restored by supplementation with coenzyme Q10 (CoQ) or a L-idonojirimycin derivative, N-[N'-(4-adamantan-1-ylcarboxamidobutyl)thiocarbamoyl]-1,6-anhydro-L-idonojirimycin (NAdBT-AIJ), and more markedly by the combination of both treatments. These data suggest that targeting both mitochondria function by CoQ and protein misfolding by PCs can be promising therapies in neurological forms of GD.

  10. Pharmacological Chaperones and Coenzyme Q10 Treatment Improves Mutant β-Glucocerebrosidase Activity and Mitochondrial Function in Neuronopathic Forms of Gaucher Disease

    PubMed Central

    de la Mata, Mario; Cotán, David; Oropesa-Ávila, Manuel; Garrido-Maraver, Juan; Cordero, Mario D.; Villanueva Paz, Marina; Delgado Pavón, Ana; Alcocer-Gómez, Elizabet; de Lavera, Isabel; Ybot-González, Patricia; Paula Zaderenko, Ana; Ortiz Mellet, Carmen; Fernández, José M. García; Sánchez-Alcázar, José A.

    2015-01-01

    Gaucher disease (GD) is caused by mutations in the GBA1 gene, which encodes lysosomal β-glucocerebrosidase. Homozygosity for the L444P mutation in GBA1 is associated with high risk of neurological manifestations which are not improved by enzyme replacement therapy. Alternatively, pharmacological chaperones (PCs) capable of restoring the correct folding and trafficking of the mutant enzyme represent promising alternative therapies.Here, we report on how the L444P mutation affects mitochondrial function in primary fibroblast derived from GD patients. Mitochondrial dysfunction was associated with reduced mitochondrial membrane potential, increased reactive oxygen species (ROS), mitophagy activation and impaired autophagic flux.Both abnormalities, mitochondrial dysfunction and deficient β-glucocerebrosidase activity, were partially restored by supplementation with coenzyme Q10 (CoQ) or a L-idonojirimycin derivative, N-[N’-(4-adamantan-1-ylcarboxamidobutyl)thiocarbamoyl]-1,6-anhydro-L-idonojirimycin (NAdBT-AIJ), and more markedly by the combination of both treatments. These data suggest that targeting both mitochondria function by CoQ and protein misfolding by PCs can be promising therapies in neurological forms of GD. PMID:26045184

  11. Mutant Fusion Proteins with Enhanced Fusion Activity Promote Measles Virus Spread in Human Neuronal Cells and Brains of Suckling Hamsters

    PubMed Central

    Shirogane, Yuta; Suzuki, Satoshi O.; Ikegame, Satoshi; Koga, Ritsuko

    2013-01-01

    Subacute sclerosing panencephalitis (SSPE) is a fatal degenerative disease caused by persistent measles virus (MV) infection in the central nervous system (CNS). From the genetic study of MV isolates obtained from SSPE patients, it is thought that defects of the matrix (M) protein play a crucial role in MV pathogenicity in the CNS. In this study, we report several notable mutations in the extracellular domain of the MV fusion (F) protein, including those found in multiple SSPE strains. The F proteins with these mutations induced syncytium formation in cells lacking SLAM and nectin 4 (receptors used by wild-type MV), including human neuronal cell lines, when expressed together with the attachment protein hemagglutinin. Moreover, recombinant viruses with these mutations exhibited neurovirulence in suckling hamsters, unlike the parental wild-type MV, and the mortality correlated with their fusion activity. In contrast, the recombinant MV lacking the M protein did not induce syncytia in cells lacking SLAM and nectin 4, although it formed larger syncytia in cells with either of the receptors. Since human neuronal cells are mainly SLAM and nectin 4 negative, fusion-enhancing mutations in the extracellular domain of the F protein may greatly contribute to MV spread via cell-to-cell fusion in the CNS, regardless of defects of the M protein. PMID:23255801

  12. Molecular dynamics simulation on the low sensitivity of mutants of NEDD-8 activating enzyme for MLN4924 inhibitor as a cancer drug.

    PubMed

    Rashidieh, Behnam; Valizadeh, Mohharam; Assadollahi, Vahideh; Ranjbar, Mohammad Mehdi

    2015-01-01

    MLN4924 is an experimental cancer drug known as inhibitor of NEDD8-activating enzyme (NAE). This anti-tumor candidate is a selective small-molecule inhibitor of NAE which is conjugated to cullin protein on Cullin-RING ligases (CRLs). This covalent modification actives cullin complex to recruit an ubiquitin-charged E2 and leads to downstream target protein polyubiquitination and proteasomal degradation. MLN4924, which can form a covalent adduct with NEDD8, and block NAE at the first step in this pathway, has shown anti-tumor activity in many kinds of cancer cell lines and also xenograft models, including lung cancer, colon cancer, melanoma and lymphoma. The anti-tumor activity of MLN4924 results from inactivation of CLRs, which causes DNA re-replication and inhibition of nuclear factor (NF)-κB signaling, thus leading to cancer cell death. A mutation can reduce the enzyme's sensitivity to MLN4924. Verma et al. in 2013 studied on molecular dynamics simulation of a mutant A171T and consequently found out that this mutation reduce MLN4924 interaction with DNA Binding site of enzyme as a result of reduction of enzyme affinity to ATP. One year later, in 2014, Wei Xu et al. carried out a research on inhibitor resistant cell lines and revealed that a couple of mutations so called Y352H and I310N leads to enzyme resistance to MLN4924 inhibitor, interestingly, the cause reported was the increase of enzyme affinity to ATP. As in Wei Xu et al. experiment the molecular dynamics simulation was not considered, present study is conducted to identify enzyme mutation mechanism by molecular dynamics approach using advantages of Gromacs software version 4.5.6. PMID:26807320

  13. Mutant p53: One, No One, and One Hundred Thousand

    PubMed Central

    Walerych, Dawid; Lisek, Kamil; Del Sal, Giannino

    2015-01-01

    Encoded by the mutated variants of the TP53 tumor suppressor gene, mutant p53 proteins are getting an increased experimental support as active oncoproteins promoting tumor growth and metastasis. p53 missense mutant proteins are losing their wild-type tumor suppressor activity and acquire oncogenic potential, possessing diverse transforming abilities in cell and mouse models. Whether various mutant p53s differ in their oncogenic potential has been a matter of debate. Recent discoveries are starting to uncover the existence of mutant p53 downstream programs that are common to different mutant p53 variants. In this review, we discuss a number of studies on mutant p53, underlining the advantages and disadvantages of alternative experimental approaches that have been used to describe the numerous mutant p53 gain-of-function activities. Therapeutic possibilities are also discussed, taking into account targeting either individual or multiple mutant p53 proteins in human cancer. PMID:26734571

  14. Immuno-Stimulatory Activity of Escherichia coli Mutants Producing Kdo2-Monophosphoryl-Lipid A or Kdo2-Pentaacyl-Monophosphoryl-Lipid A

    PubMed Central

    Wang, Biwen; Han, Yaning; Li, Ye; Li, Yanyan; Wang, Xiaoyuan

    2015-01-01

    Lipid A is the active center of lipopolysaccharide which also known as endotoxin. Monophosphoryl-lipid A (MPLA) has less toxicity but retains potent immunoadjuvant activity; therefore, it can be developed as adjuvant for improving the strength and duration of the immune response to antigens. However, MPLA cannot be chemically synthesized and can only be obtained by hydrolyzing lipopolysaccharide (LPS) purified from Gram-negative bacteria. Purifying LPS is difficult and time-consuming and can damage the structure of MPLA. In this study, Escherichia coli mutant strains HWB01 and HWB02 were constructed by deleting several genes and integrating Francisella novicida gene lpxE into the chromosome of E. coli wild type strain W3110. Compared with W3110, HWB01 and HWB02 synthesized very short LPS, Kdo2-monophosphoryl-lipid A (Kdo2-MPLA) and Kdo2-pentaacyl-monophosphoryl-lipid A (Kdo2-pentaacyl-MPLA), respectively. Structural changes of LPS in the outer membranes of HWB01 and HWB02 increased their membrane permeability, surface hydrophobicity, auto-aggregation ability and sensitivity to some antibiotics, but the abilities of these strains to activate the TLR4/MD-2 receptor of HKE-Blue hTLR4 cells were deceased. Importantly, purified Kdo2-MPLA and Kdo2-pentaacyl-MPLA differed from wild type LPS in their ability to stimulate the mammalian cell lines THP-1 and RAW264.7. The purification of Kdo2-MPLA and Kdo2-pentaacyl-MPLA from HWB01 and HWB02, respectively, is much easier than the purification of LPS from W3110, and these lipid A derivatives could be important tools for developing future vaccine adjuvants. PMID:26710252

  15. A proteoliposome containing apolipoprotein A-I mutant (V156K) enhances rapid tumor regression activity of human origin oncolytic adenovirus in tumor-bearing zebrafish and mice.

    PubMed

    Seo, Juyi; Yun, Chae-Ok; Kwon, Oh-Joon; Choi, Eun-Jin; Song, Jae-Young; Choi, Inho; Cho, Kyung-Hyun

    2012-08-01

    We recently reported that the efficiency of adenoviral gene delivery and virus stability are significantly enhanced when a proteoliposome (PL) containing apolipoprotein (apo) A-I is used in an animal model. In the current study, we tested tumor removal activity of oncolytic adenovirus (Ad) using PL-containing wildtype (WT) or V156K. Oncolytic Ad with or without PL was injected into tumors of zebrafish and nude mice as a Hep3B tumor xenograft model. The V156K-PL-Ad-injected zebrafish, group showed the lowest tumor tissue volume and nucleic acids in the tumor area, whereas injection of Ad alone did not result in adequate removal of tumor activity. Reactive oxygen species (ROS) contents increased two-fold in tumor-bearing zebrafish; however, the V156K-PL-Ad injected group showed a 40% decrease in ROS levels compared to that in normal zebrafish. After reducing the tumor volume with the V156K-PL-Ad injection, the swimming pattern of the zebrafish changed to be more active and energetic. The oncolytic effect of PL-Ad containing either V156K or WT was about two-fold more enhanced in mice than that of Ad alone 34 days after the injection. Immunohistochemical analysis revealed that the PL-Ad-injected groups showed enhanced efficiency of viral delivery with elevated Ad-E1A staining and a diminished number of proliferating tumor cells. Thus, the antitumor effect of oncolytic Ad was strongly enhanced by a PL-containing apoA-I and its mutant (V156K) without causing side effects in mice and zebrafish models. PMID:22851220

  16. Structure-Function Analysis of Friedreich's Ataxia Mutants Reveals Determinants of Frataxin Binding and Activation of the Fe-S Assembly Complex

    SciTech Connect

    Bridwell-Rabb, Jennifer; Winn, Andrew M; Barondeau, David P

    2012-08-01

    Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease associated with the loss of function of the protein frataxin (FXN) that results from low FXN levels due to a GAA triplet repeat expansion or, occasionally, from missense mutations in the FXN gene. Here biochemical and structural properties of FXN variants, including three FRDA missense mutations (N146K, Q148R, and R165C) and three related mutants (N146A, Q148G, and Q153A), were determined in an effort to understand the structural basis for the loss of function. In vitro assays revealed that although the three FRDA missense mutations exhibited similar losses of cysteine desulfurase and Fe-S cluster assembly activities, the causes for these activation defects were distinct. The R165C variant exhibited a kcat/KM higher than that of native FXN but weak binding to the NFS1, ISD11, and ISCU2 (SDU) complex, whereas the Q148R variant exhibited the lowest kcat/KM of the six tested FXN variants and only a modest binding deficiency. The order of the FXN binding affinities for the SDU Fe-S assembly complex was as follows: FXN > Q148R > N146A > Q148G > N146K > Q153A > R165C. Four different classes of FXN variants were identified on the basis of their biochemical properties. Together, these structure-function studies reveal determinants for the binding and allosteric activation of the Fe-S assembly complex and provide insight into how FRDA missense mutations are functionally compromised.

  17. Visualization analysis of the vacuole-targeting fungicidal activity of amphotericin B against the parent strain and an ergosterol-less mutant of Saccharomyces cerevisiae.

    PubMed

    Kang, Chang-Kyung; Yamada, Keiichi; Usuki, Yoshinosuke; Ogita, Akira; Fujita, Ken-ichi; Tanaka, Toshio

    2013-05-01

    Here, we sought to investigate the vacuole-targeting fungicidal activity of amphotericin B (AmB) in the parent strain and AmB-resistant mutant of Saccharomyces cerevisiae and elucidate the mechanisms involved in this process. Our data demonstrated that the vacuole-targeting fungicidal activity of AmB was markedly enhanced by N-methyl-N″-dodecylguanidine (MC12), a synthetic analogue of the alkyl side chain in niphimycin, as represented by the synergy in their antifungal activities against parent cells of S. cerevisiae. Indifference was observed only with Δerg3 cells, indicating that the replacement of ergosterol with episterol facilitated their resistance to the combined lethal actions of AmB and MC12. Dansyl-labelled amphotericin B (AmB-Ds) was concentrated into normal rounded vacuoles when parent cells were treated with AmB-Ds alone, even at a non-lethal concentration. The additional supplementation of MC12 resulted in a marked loss of cell viability and vacuole disruption, as judged by the fluorescence from AmB-Ds scattered throughout the cytoplasm. In Δerg3 cells, AmB-Ds was scarcely detected in the cytoplasm, even with the addition of MC12, reflecting its failure to normally incorporate across the plasma membrane into the vacuole. Thus, this study supported the hypothesis that ergosterol is involved in the mobilization of AmB into the vacuolar membrane so that AmB-dependent vacuole disruption can be fully enhanced by cotreatment with MC12.

  18. Improved production of isoamyl acetate by a sake yeast mutant resistant to an isoprenoid analog and its dependence on alcohol acetyltransferase activity, but not on isoamyl alcohol production.

    PubMed

    Hirooka, Kiyoo; Yamamoto, Yoshihiro; Tsutsui, Nobuo; Tanaka, Toshio

    2005-02-01

    1-Farnesylpyridinium (FPy), an analog of isoprenoid farnesol, strongly inhibited the growth of sake yeast at 120 microM in YPD medium, whereas at 30 microM it reduced cellular production of isoamyl acetate to 20% of the control level despite the absence of inhibitory effect on CO2 evolution. The FPy-resistant mutant A1 was characterized by the high production of flavor compounds represented by a nearly threefold increase in the level of isoamyl acetate in YPD medium in which the level of isoamyl alcohol as its precursor remained almost unchanged. The FPy resistance phenotype of strain A1 was not accompanied by cellular resistance to either the L-leucine analog or L-canavanine, which alters yeast amino acid metabolism in favor of isoamyl alcohol production. Alcohol acetyltransferase (AATase) activity was high in strain A1, which further increased in response to isoamyl alcohol accumulation in medium. Flavor compound production in sake brewing could be improved using strain A1, resulting in a 1.4-fold increase in isoamyl acetate production in spite of a limited production of isoamyl alcohol. PMID:16233768

  19. Purification and analysis of proteinase-resistant mutants of recombinant platelet-derived growth factor-BB exhibiting improved biological activity.

    PubMed Central

    Cook, A L; Kirwin, P M; Craig, S; Bawden, L J; Green, D R; Price, M J; Richardson, S J; Fallon, A; Drummond, A H; Edwards, R M

    1992-01-01

    Recombinant platelet-derived growth factor (PDGF)-BB was expressed and secreted from yeast in order to study the structure-function relationships of this mitogen. A simple purification scheme has been developed which yields greater than 95% pure PDGF-BB. Analysis of this recombinant PDGF-BB shows partial proteolysis after arginine-32. Substitution of this arginine residue, or arginine-28 [a potential KEX2 (lysine-arginine endopeptidase) cleavage site], prevents or reduces cleavage of PDGF-BB respectively. These mutations result in a 5-fold increase in expression levels of PDGF-BB, and the resulting mutant proteins show higher activity in a number of biological assays than the cleaved wildtype PDGF-BB. These data are in accord with previous work by Giese, LaRochelle, May-Siroff, Robbins & Aaronson [(1990) Mol. Cell Biol. 10, 5496-5501] suggesting that the region isoleucine-25-phenylalanine-37 is involved in PDGF-receptor binding. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:1731768

  20. The inhibition of human farnesyl pyrophosphate synthase by nitrogen-containing bisphosphonates. Elucidating the role of active site threonine 201 and tyrosine 204 residues using enzyme mutants.

    PubMed

    Tsoumpra, Maria K; Muniz, Joao R; Barnett, Bobby L; Kwaasi, Aaron A; Pilka, Ewa S; Kavanagh, Kathryn L; Evdokimov, Artem; Walter, Richard L; Von Delft, Frank; Ebetino, Frank H; Oppermann, Udo; Russell, R Graham G; Dunford, James E

    2015-12-01

    Farnesyl pyrophosphate synthase (FPPS) is the major molecular target of nitrogen-containing bisphosphonates (N-BPs), used clinically as bone resorption inhibitors. We investigated the role of threonine 201 (Thr201) and tyrosine 204 (Tyr204) residues in substrate binding, catalysis and inhibition by N-BPs, employing kinetic and crystallographic studies of mutated FPPS proteins. Mutants of Thr201 illustrated the importance of the methyl group in aiding the formation of the Isopentenyl pyrophosphate (IPP) binding site, while Tyr204 mutations revealed the unknown role of this residue in both catalysis and IPP binding. The interaction between Thr201 and the side chain nitrogen of N-BP was shown to be important for tight binding inhibition by zoledronate (ZOL) and risedronate (RIS), although RIS was also still capable of interacting with the main-chain carbonyl of Lys200. The interaction of RIS with the phenyl ring of Tyr204 proved essential for the maintenance of the isomerized enzyme-inhibitor complex. Studies with conformationally restricted analogues of RIS reaffirmed the importance of Thr201 in the formation of hydrogen bonds with N-BPs. In conclusion we have identified new features of FPPS inhibition by N-BPs and revealed unknown roles of the active site residues in catalysis and substrate binding. PMID:26318908

  1. Growth, ethanol production, and inulinase activity on various inulin substrates by mutant Kluyveromyces marxianus strains NRRL Y-50798 and NRRL Y-50799.

    PubMed

    Galindo-Leva, Luz Ángela; Hughes, Stephen R; López-Núñez, Juan Carlos; Jarodsky, Joshua M; Erickson, Adam; Lindquist, Mitchell R; Cox, Elby J; Bischoff, Kenneth M; Hoecker, Eric C; Liu, Siqing; Qureshi, Nasib; Jones, Marjorie A

    2016-07-01

    Economically important plants contain large amounts of inulin. Disposal of waste resulting from their processing presents environmental issues. Finding microorganisms capable of converting inulin waste to biofuel and valuable co-products at the processing site would have significant economic and environmental impact. We evaluated the ability of two mutant strains of Kluyveromyces marxianus (Km7 and Km8) to utilize inulin for ethanol production. In glucose medium, both strains consumed all glucose and produced 0.40 g ethanol/g glucose at 24 h. In inulin medium, Km7 exhibited maximum colony forming units (CFU)/mL and produced 0.35 g ethanol/g inulin at 24 h, while Km8 showed maximum CFU/mL and produced 0.02 g ethanol/g inulin at 96 h. At 24 h in inulin + glucose medium, Km7 produced 0.40 g ethanol/g (inulin + glucose) and Km8 produced 0.20 g ethanol/g (inulin + glucose) with maximum CFU/mL for Km8 at 72 h, 40 % of that for Km7 at 36 h. Extracellular inulinase activity at 6 h for both Km7 and Km8 was 3.7 International Units (IU)/mL. PMID:27130462

  2. Growth, ethanol production, and inulinase activity on various inulin substrates by mutant Kluyveromyces marxianus strains NRRL Y-50798 and NRRL Y-50799.

    PubMed

    Galindo-Leva, Luz Ángela; Hughes, Stephen R; López-Núñez, Juan Carlos; Jarodsky, Joshua M; Erickson, Adam; Lindquist, Mitchell R; Cox, Elby J; Bischoff, Kenneth M; Hoecker, Eric C; Liu, Siqing; Qureshi, Nasib; Jones, Marjorie A

    2016-07-01

    Economically important plants contain large amounts of inulin. Disposal of waste resulting from their processing presents environmental issues. Finding microorganisms capable of converting inulin waste to biofuel and valuable co-products at the processing site would have significant economic and environmental impact. We evaluated the ability of two mutant strains of Kluyveromyces marxianus (Km7 and Km8) to utilize inulin for ethanol production. In glucose medium, both strains consumed all glucose and produced 0.40 g ethanol/g glucose at 24 h. In inulin medium, Km7 exhibited maximum colony forming units (CFU)/mL and produced 0.35 g ethanol/g inulin at 24 h, while Km8 showed maximum CFU/mL and produced 0.02 g ethanol/g inulin at 96 h. At 24 h in inulin + glucose medium, Km7 produced 0.40 g ethanol/g (inulin + glucose) and Km8 produced 0.20 g ethanol/g (inulin + glucose) with maximum CFU/mL for Km8 at 72 h, 40 % of that for Km7 at 36 h. Extracellular inulinase activity at 6 h for both Km7 and Km8 was 3.7 International Units (IU)/mL.

  3. Non-canonical NF-κB signalling and ETS1/2 cooperatively drive C250T mutant TERT promoter activation

    PubMed Central

    Li, Yinghui; Zhou, Qi-Ling; Sun, Wenjie; Chandrasekharan, Prashant; Cheng, Hui Shan; Ying, Zhe; Lakshmanan, Manikandan; Raju, Anandhkumar; Tenen, Daniel G.; Cheng, Shi-Yuan; Chuang, Kai-Hsiang; Li, Jun; Prabhakar, Shyam; Li, Mengfeng; Tergaonkar, Vinay

    2016-01-01

    Transcriptional reactivation of TERT, the catalytic subunit of telomerase, is necessary for cancer progression in about 90% of human cancers. The recent discovery of two prevalent somatic mutations—C250T and C228T—in the TERT promoter in various cancers has provided insight into a plausible mechanism of TERT reactivation. Although the two hotspot mutations create a similar binding motif for E-twenty-six (ETS) transcription factors, we show that they are functionally distinct, in that the C250T unlike the C228T TERT promoter is driven by non-canonical NF-κB signalling. We demonstrate that binding of ETS to the mutant TERT promoter is insufficient in driving its transcription but this process requires non-canonical NF-κB signalling for stimulus responsiveness, sustained telomerase activity and hence cancer progression. Our findings highlight a previously unrecognized role of non-canonical NF-κB signalling in tumorigenesis and elucidate a fundamental mechanism for TERT reactivation in cancers, which if targeted could have immense therapeutic implications. PMID:26389665

  4. Versatile members of the DNAJ family show Hsp70 dependent anti-aggregation activity on RING1 mutant parkin C289G

    PubMed Central

    Kakkar, Vaishali; Kuiper, E. F. Elsiena; Pandey, Abhinav; Braakman, Ineke; Kampinga, Harm H.

    2016-01-01

    Parkinson’s disease is one of the most common neurodegenerative disorders and several mutations in different genes have been identified to contribute to the disease. A loss of function parkin RING1 domain mutant (C289G) is associated with autosomal-recessive juvenile-onset Parkinsonism (AR-JP) and displays altered solubility and sequesters into aggregates. Single overexpression of almost each individual member of the Hsp40 (DNAJ) family of chaperones efficiently reduces parkin C289G aggregation and requires interaction with and activity of endogenously expressed Hsp70 s. For DNAJB6 and DNAJB8, potent suppressors of aggregation of polyglutamine proteins for which they rely mainly on an S/T-rich region, it was found that the S/T-rich region was dispensable for suppression of parkin C289G aggregation. Our data implies that different disease-causing proteins pose different challenges to the protein homeostasis system and that DNAJB6 and DNAJB8 are highly versatile members of the DNAJ protein family with multiple partially non-overlapping modes of action with respect to handling disease-causing proteins, making them interesting potential therapeutic targets. PMID:27713507

  5. Structure-activity studies of the inhibition of FabI, the enoyl reductase from Escherichia coli, by triclosan: kinetic analysis of mutant FabIs.

    PubMed

    Sivaraman, Sharada; Zwahlen, Jacque; Bell, Alasdair F; Hedstrom, Lizbeth; Tonge, Peter J

    2003-04-22

    Triclosan, a common antibacterial additive used in consumer products, is an inhibitor of FabI, the enoyl reductase enzyme from type II bacterial fatty acid biosynthesis. In agreement with previous studies [Ward, W. H., Holdgate, G. A., Rowsell, S., McLean, E. G., Pauptit, R. A., Clayton, E., Nichols, W. W., Colls, J. G., Minshull, C. A., Jude, D. A., Mistry, A., Timms, D., Camble, R., Hales, N. J., Britton, C. J., and Taylor, I. W. (1999) Biochemistry 38, 12514-12525], we report here that triclosan is a slow, reversible, tight binding inhibitor of the FabI from Escherichia coli. Triclosan binds preferentially to the E.NAD(+) form of the wild-type enzyme with a K(1) value of 23 pM. In agreement with genetic selection experiments [McMurry, L. M., Oethinger, M., and Levy, S. B. (1998) Nature 394, 531-532], the affinity of triclosan for the FabI mutants G93V, M159T, and F203L is substantially reduced, binding preferentially to the E.NAD(+) forms of G93V, M159T, and F203L with K(1) values of 0.2 microM, 4 nM, and 0.9 nM, respectively. Triclosan binding to the E.NADH form of F203L can also be detected and is defined by a K(2) value of 51 nM. We have also characterized the Y156F and A197M mutants to compare and contrast the binding of triclosan to InhA, the homologous enoyl reductase from Mycobacterium tuberculosis. As observed for InhA, Y156F FabI has a decreased affinity for triclosan and the inhibitor binds to both E.NAD(+) and E.NADH forms of the enzyme with K(1) and K(2) values of 3 and 30 nM, respectively. The replacement of A197 with Met has no impact on triclosan affinity, indicating that differences in the sequence of the conserved active site loop cannot explain the 10000-fold difference in affinities of FabI and InhA for triclosan.

  6. Structure-activity studies of the inhibition of FabI, the enoyl reductase from Escherichia coli, by triclosan: kinetic analysis of mutant FabIs.

    PubMed

    Sivaraman, Sharada; Zwahlen, Jacque; Bell, Alasdair F; Hedstrom, Lizbeth; Tonge, Peter J

    2003-04-22

    Triclosan, a common antibacterial additive used in consumer products, is an inhibitor of FabI, the enoyl reductase enzyme from type II bacterial fatty acid biosynthesis. In agreement with previous studies [Ward, W. H., Holdgate, G. A., Rowsell, S., McLean, E. G., Pauptit, R. A., Clayton, E., Nichols, W. W., Colls, J. G., Minshull, C. A., Jude, D. A., Mistry, A., Timms, D., Camble, R., Hales, N. J., Britton, C. J., and Taylor, I. W. (1999) Biochemistry 38, 12514-12525], we report here that triclosan is a slow, reversible, tight binding inhibitor of the FabI from Escherichia coli. Triclosan binds preferentially to the E.NAD(+) form of the wild-type enzyme with a K(1) value of 23 pM. In agreement with genetic selection experiments [McMurry, L. M., Oethinger, M., and Levy, S. B. (1998) Nature 394, 531-532], the affinity of triclosan for the FabI mutants G93V, M159T, and F203L is substantially reduced, binding preferentially to the E.NAD(+) forms of G93V, M159T, and F203L with K(1) values of 0.2 microM, 4 nM, and 0.9 nM, respectively. Triclosan binding to the E.NADH form of F203L can also be detected and is defined by a K(2) value of 51 nM. We have also characterized the Y156F and A197M mutants to compare and contrast the binding of triclosan to InhA, the homologous enoyl reductase from Mycobacterium tuberculosis. As observed for InhA, Y156F FabI has a decreased affinity for triclosan and the inhibitor binds to both E.NAD(+) and E.NADH forms of the enzyme with K(1) and K(2) values of 3 and 30 nM, respectively. The replacement of A197 with Met has no impact on triclosan affinity, indicating that differences in the sequence of the conserved active site loop cannot explain the 10000-fold difference in affinities of FabI and InhA for triclosan. PMID:12693936

  7. Mutants of Lactobacillus plantarum ML11-11 deficient in co-aggregation with yeast exhibited reduced activities of mixed-species biofilm formation.

    PubMed

    Furukawa, Soichi; Nojima, Natsumi; Nozaka, Soma; Hirayama, Satoru; Satoh, Ayumi; Ogihara, Hirokazu; Morinaga, Yasushi

    2012-01-01

    Lactic acid bacteria (LAB) mutants deficient in inter-species co-aggregation with yeast were spontaneously derived from Lactobacillus plantarum ML11-11, a significant mixed-species biofilm former in static co-cultures with budding yeasts. These non-co-aggregative mutants also showed significant decreases in mixed-species biofilm formation. These results suggest the important role of co-aggregation between LAB and yeast in mixed-species biofilm formation. Cell surface proteins obtained by 5 M LiCl extraction from the wild-type cells and non-co-aggregative mutant cells were analyzed by SDS-PAGE. There was an obvious difference in protein profiles. The protein band at 30 kDa was present abundantly in the wild-type cell surface fraction but was significantly decreased in the mutant cells. This band assuredly corresponded to the LAB surface factors that contribute to co-aggregation with yeasts. PMID:22313775

  8. Structural and Biochemical Evidence That a TEM-1 [beta]-Lactamase N170G Active Site Mutant Acts via Substrate-assisted Catalysis

    SciTech Connect

    Brown, Nicholas G.; Shanker, Sreejesh; Prasad, B.V. Venkataram; Palzkill, Timothy

    2010-03-12

    TEM-1 {beta}-lactamase is the most common plasmid-encoded {beta}-lactamase in Gram-negative bacteria and is a model class A enzyme. The active site of class A {beta}-lactamases share several conserved residues including Ser{sup 70}, Glu{sup 166}, and Asn{sub 170} that coordinate a hydrolytic water involved in deacylation. Unlike Ser{sup 70} and Glu{sup 166}, the functional significance of residue Asn{sup 170} is not well understood even though it forms hydrogen bonds with both Glu{sup 166} and the hydrolytic water. The goal of this study was to examine the importance of Asn{sup 170} for catalysis and substrate specificity of {beta}-lactam antibiotic hydrolysis. The codon for position 170 was randomized to create a library containing all 20 possible amino acids. The random library was introduced into Escherichia coli, and functional clones were selected on agar plates containing ampicillin. DNA sequencing of the functional clones revealed that only asparagine (wild type) and glycine at this position are consistent with wild-type function. The determination of kinetic parameters for several substrates revealed that the N170G mutant is very efficient at hydrolyzing substrates that contain a primary amine in the antibiotic R-group that would be close to the Asn{sup 170} side chain in the acyl-intermediate. In addition, the x-ray structure of the N170G enzyme indicated that the position of an active site water important for deacylation is altered compared with the wild-type enzyme. Taken together, the results suggest the N170G TEM-1 enzyme hydrolyzes ampicillin efficiently because of substrate-assisted catalysis where the primary amine of the ampicillin R-group positions the hydrolytic water and allows for efficient deacylation.

  9. Structural and biochemical evidence that a TEM-1 beta-lactamase N170G active site mutant acts via substrate-assisted catalysis.

    PubMed

    Brown, Nicholas G; Shanker, Sreejesh; Prasad, B V Venkataram; Palzkill, Timothy

    2009-11-27

    TEM-1 beta-lactamase is the most common plasmid-encoded beta-lactamase in Gram-negative bacteria and is a model class A enzyme. The active site of class A beta-lactamases share several conserved residues including Ser(70), Glu(166), and Asn(170) that coordinate a hydrolytic water involved in deacylation. Unlike Ser(70) and Glu(166), the functional significance of residue Asn(170) is not well understood even though it forms hydrogen bonds with both Glu(166) and the hydrolytic water. The goal of this study was to examine the importance of Asn(170) for catalysis and substrate specificity of beta-lactam antibiotic hydrolysis. The codon for position 170 was randomized to create a library containing all 20 possible amino acids. The random library was introduced into Escherichia coli, and functional clones were selected on agar plates containing ampicillin. DNA sequencing of the functional clones revealed that only asparagine (wild type) and glycine at this position are consistent with wild-type function. The determination of kinetic parameters for several substrates revealed that the N170G mutant is very efficient at hydrolyzing substrates that contain a primary amine in the antibiotic R-group that would be close to the Asn(170) side chain in the acyl-intermediate. In addition, the x-ray structure of the N170G enzyme indicated that the position of an active site water important for deacylation is altered compared with the wild-type enzyme. Taken together, the results suggest the N170G TEM-1 enzyme hydrolyzes ampicillin efficiently because of substrate-assisted catalysis where the primary amine of the ampicillin R-group positions the hydrolytic water and allows for efficient deacylation.

  10. O2 activation by non-heme diiron proteins: identification of a symmetric mu-1,2-peroxide in a mutant of ribonucleotide reductase.

    PubMed

    Moënne-Loccoz, P; Baldwin, J; Ley, B A; Loehr, T M; Bollinger, J M

    1998-10-20

    Non-heme diiron clusters occur in a number of enzymes (e.g., ribonucleotide reductase, methane monooxygenase, and Delta9-stearoyl-ACP desaturase) that activate O2 for chemically difficult oxidation reactions. In each case, a kinetically labile peroxo intermediate is believed to form when O2 reacts with the diferrous enzyme, followed by O-O bond cleavage and the formation of high-valent iron intermediates [formally Fe(IV)] that are thought to be the reactive oxidants. Greater kinetic stability of a peroxodiiron(III) intermediate in protein R2 of ribonucleotide reductase was achieved by the iron-ligand mutation Asp84 --> Glu and the surface mutation Trp48 --> Phe. Here, we present the first definitive evidence for a bridging, symmetrical peroxo adduct from vibrational spectroscopic studies of the freeze-trapped intermediate of this mutant R2. Isotope-sensitive bands are observed at 870, 499, and 458 cm-1 that are assigned to the intraligand peroxo stretching frequency and the asymmetric and symmetric Fe-O2-Fe stretching frequencies, respectively. Similar results have been obtained in the resonance Raman spectroscopic study of a peroxodiferric species of Delta9-stearoyl-ACP desaturase [Broadwater, J. A., Ai, J., Loehr, T. M., Sanders-Loehr, J., and Fox, B. G. (1998) Biochemistry 37, 14664-14671]. Similarities among these adducts and transient species detected during O2 activation by methane monooxygenase hydroxylase, ferritin, and wild-type protein R2 suggest the symmetrical peroxo adduct as a common intermediate in the diverse oxidation reactions mediated by members of this class.

  11. Production of aggregation prone human interferon gamma and its mutant in highly soluble and biologically active form by SUMO fusion technology.

    PubMed

    Tileva, M; Krachmarova, E; Ivanov, I; Maskos, K; Nacheva, G

    2016-01-01

    The Escherichia coli expression system is a preferable choice for production of recombinant proteins. A disadvantage of this system is the target protein aggregation in "inclusion bodies" (IBs) that further requires solubilisation and refolding, which is crucial for the properties and the yield of the final product. In order to prevent aggregation, SUMO fusion tag technology has been successfully applied for expression of eukaryotic proteins, including human interferon gamma (hIFNγ) that was reported, however, with no satisfactory biological activity. We modified this methodology for expression and purification of both the wild type hIFNγ and an extremely prone to aggregation mutant hIFNγ-K88Q, whose recovery from IBs showed to be ineffective upon numerous conditions. By expression of the N-terminal His-SUMO fusion proteins in the E. coli strain BL21(DE3)pG-KJE8, co-expressing two chaperone systems, at 24 °C a significant increase in solubility of both target proteins (1.5-fold for hIFNγ and 8-fold for K88Q) was achieved. Two-step chromatography (affinity and ion-exchange) with on-dialysis His-SUMO-tag cleavage was applied for protein purification that yielded 6.0-7.0mg/g wet biomass for both proteins with >95% purity and native N-termini. The optimised protocol led to increased yields from 5.5 times for hIFNγ up to 100 times for K88Q in comparison to their isolation from IBs. Purified hIFNγ showed preserved thermal stability and antiproliferative activity corresponding to that of the native reference sample (3 × 10(7)IU/mg). The developed methodology represents an optimised procedure that can be successfully applied for large scale expression and purification of aggregation-prone proteins in soluble native form.

  12. Arabidopsis Sucrose Transporter AtSUC9. High-Affinity Transport Activity, Intragenic Control of Expression, and Early Flowering Mutant Phenotype1[OA

    PubMed Central

    Sivitz, Alicia B.; Reinders, Anke; Johnson, Meghan E.; Krentz, Anthony D.; Grof, Christopher P.L.; Perroux, Jai M.; Ward, John M.

    2007-01-01

    AtSUC9 (At5g06170), a sucrose (Suc) transporter from Arabidopsis (Arabidopsis thaliana) L. Heynh., was expressed in Xenopus (Xenopus laevis) oocytes, and transport activity was analyzed. Compared to all other Suc transporters, AtSUC9 had an ultrahigh affinity for Suc (K0.5 = 0.066 ± 0.025 mm). AtSUC9 showed low substrate specificity, similar to AtSUC2 (At1g22710), and transported a wide range of glucosides, including helicin, salicin, arbutin, maltose, fraxin, esculin, turanose, and α-methyl-d-glucose. The ability of AtSUC9 to transport 10 glucosides was compared directly with that of AtSUC2, HvSUT1 (from barley [Hordeum vulgare]), and ShSUT1 (from sugarcane [Saccharum hybrid]), and results indicate that type I and type II Suc transporters have different substrate specificities. AtSUC9 protein was localized to the plasma membrane by transient expression in onion (Allium cepa) epidermis. Using a whole-gene translational fusion to β-glucuronidase, AtSUC9 expression was found in sink tissues throughout the shoots and in flowers. AtSUC9 expression in Arabidopsis was dependent on intragenic sequence, and this was found to also be true for AtSUC1 (At1g71880) but not AtSUC2. Plants containing mutations in Suc transporter gene AtSUC9 were found to have an early flowering phenotype under short-day conditions. The transport properties of AtSUC9 indicate that it is uniquely suited to provide cellular uptake of Suc at very low extracellular Suc concentrations. The mutant phenotype of atsuc9 alleles indicates that AtSUC9 activity leads to a delay in floral transition. PMID:17098854

  13. Arabidopsis sucrose transporter AtSUC9. High-affinity transport activity, intragenic control of expression, and early flowering mutant phenotype.

    PubMed

    Sivitz, Alicia B; Reinders, Anke; Johnson, Meghan E; Krentz, Anthony D; Grof, Christopher P L; Perroux, Jai M; Ward, John M

    2007-01-01

    AtSUC9 (At5g06170), a sucrose (Suc) transporter from Arabidopsis (Arabidopsis thaliana) L. Heynh., was expressed in Xenopus (Xenopus laevis) oocytes, and transport activity was analyzed. Compared to all other Suc transporters, AtSUC9 had an ultrahigh affinity for Suc (K(0.5) = 0.066 +/- 0.025 mm). AtSUC9 showed low substrate specificity, similar to AtSUC2 (At1g22710), and transported a wide range of glucosides, including helicin, salicin, arbutin, maltose, fraxin, esculin, turanose, and alpha-methyl-d-glucose. The ability of AtSUC9 to transport 10 glucosides was compared directly with that of AtSUC2, HvSUT1 (from barley [Hordeum vulgare]), and ShSUT1 (from sugarcane [Saccharum hybrid]), and results indicate that type I and type II Suc transporters have different substrate specificities. AtSUC9 protein was localized to the plasma membrane by transient expression in onion (Allium cepa) epidermis. Using a whole-gene translational fusion to beta-glucuronidase, AtSUC9 expression was found in sink tissues throughout the shoots and in flowers. AtSUC9 expression in Arabidopsis was dependent on intragenic sequence, and this was found to also be true for AtSUC1 (At1g71880) but not AtSUC2. Plants containing mutations in Suc transporter gene AtSUC9 were found to have an early flowering phenotype under short-day conditions. The transport properties of AtSUC9 indicate that it is uniquely suited to provide cellular uptake of Suc at very low extracellular Suc concentrations. The mutant phenotype of atsuc9 alleles indicates that AtSUC9 activity leads to a delay in floral transition.

  14. Targeting Oncogenic Mutant p53 for Cancer Therapy

    PubMed Central

    Parrales, Alejandro; Iwakuma, Tomoo

    2015-01-01

    Among genetic alterations in human cancers, mutations in the tumor suppressor p53 gene are the most common, occurring in over 50% of human cancers. The majority of p53 mutations are missense mutations and result in the accumulation of dysfunctional p53 protein in tumors. These mutants frequently have oncogenic gain-of-function activities and exacerbate malignant properties of cancer cells, such as metastasis and drug resistance. Increasing evidence reveals that stabilization of mutant p53 in tumors is crucial for its oncogenic activities, while depletion of mutant p53 attenuates malignant properties of cancer cells. Thus, mutant p53 is an attractive druggable target for cancer therapy. Different approaches have been taken to develop small-molecule compounds that specifically target mutant p53. These include compounds that restore wild-type conformation and transcriptional activity of mutant p53, induce depletion of mutant p53, inhibit downstream pathways of oncogenic mutant p53, and induce synthetic lethality to mutant p53. In this review article, we comprehensively discuss the current strategies targeting oncogenic mutant p53 in cancers, with special focus on compounds that restore wild-type p53 transcriptional activity of mutant p53 and those reducing mutant p53 levels. PMID:26732534

  15. Inhibition of RAF Isoforms and Active Dimers by LY3009120 Leads to Anti-tumor Activities in RAS or BRAF Mutant Cancers.

    PubMed

    Peng, Sheng-Bin; Henry, James R; Kaufman, Michael D; Lu, Wei-Ping; Smith, Bryan D; Vogeti, Subha; Rutkoski, Thomas J; Wise, Scott; Chun, Lawrence; Zhang, Youyan; Van Horn, Robert D; Yin, Tinggui; Zhang, Xiaoyi; Yadav, Vipin; Chen, Shih-Hsun; Gong, Xueqian; Ma, Xiwen; Webster, Yue; Buchanan, Sean; Mochalkin, Igor; Huber, Lysiane; Kays, Lisa; Donoho, Gregory P; Walgren, Jennie; McCann, Denis; Patel, Phenil; Conti, Ilaria; Plowman, Gregory D; Starling, James J; Flynn, Daniel L

    2015-09-14

    LY3009120 is a pan-RAF and RAF dimer inhibitor that inhibits all RAF isoforms and occupies both protomers in RAF dimers. Biochemical and cellular analyses revealed that LY3009120 inhibits ARAF, BRAF, and CRAF isoforms with similar affinity, while vemurafenib or dabrafenib have little or modest CRAF activity compared to their BRAF activities. LY3009120 induces BRAF-CRAF dimerization but inhibits the phosphorylation of downstream MEK and ERK, suggesting that it effectively inhibits the kinase activity of BRAF-CRAF heterodimers. Further analyses demonstrated that LY3009120 also inhibits various forms of RAF dimers including BRAF or CRAF homodimers. Due to these unique properties, LY3009120 demonstrates minimal paradoxical activation, inhibits MEK1/2 phosphorylation, and exhibits anti-tumor activities across multiple models carrying KRAS, NRAS, or BRAF mutation. PMID:26343583

  16. Inhibition of RAF Isoforms and Active Dimers by LY3009120 Leads to Anti-tumor Activities in RAS or BRAF Mutant Cancers.

    PubMed

    Peng, Sheng-Bin; Henry, James R; Kaufman, Michael D; Lu, Wei-Ping; Smith, Bryan D; Vogeti, Subha; Rutkoski, Thomas J; Wise, Scott; Chun, Lawrence; Zhang, Youyan; Van Horn, Robert D; Yin, Tinggui; Zhang, Xiaoyi; Yadav, Vipin; Chen, Shih-Hsun; Gong, Xueqian; Ma, Xiwen; Webster, Yue; Buchanan, Sean; Mochalkin, Igor; Huber, Lysiane; Kays, Lisa; Donoho, Gregory P; Walgren, Jennie; McCann, Denis; Patel, Phenil; Conti, Ilaria; Plowman, Gregory D; Starling, James J; Flynn, Daniel L

    2015-09-14

    LY3009120 is a pan-RAF and RAF dimer inhibitor that inhibits all RAF isoforms and occupies both protomers in RAF dimers. Biochemical and cellular analyses revealed that LY3009120 inhibits ARAF, BRAF, and CRAF isoforms with similar affinity, while vemurafenib or dabrafenib have little or modest CRAF activity compared to their BRAF activities. LY3009120 induces BRAF-CRAF dimerization but inhibits the phosphorylation of downstream MEK and ERK, suggesting that it effectively inhibits the kinase activity of BRAF-CRAF heterodimers. Further analyses demonstrated that LY3009120 also inhibits various forms of RAF dimers including BRAF or CRAF homodimers. Due to these unique properties, LY3009120 demonstrates minimal paradoxical activation, inhibits MEK1/2 phosphorylation, and exhibits anti-tumor activities across multiple models carrying KRAS, NRAS, or BRAF mutation.

  17. Motor neuron cell death in wobbler mutant mice follows overexpression of the G-protein-coupled, protease-activated receptor for thrombin.

    PubMed Central

    Festoff, B. W.; D'Andrea, M. R.; Citron, B. A.; Salcedo, R. M.; Smirnova, I. V.; Andrade-Gordon, P.

    2000-01-01

    BACKGROUND: Mechanisms underlying neurodegeneration are actively sought for new therapeutic strategies. Transgenic, knockout and genetic mouse models greatly aid our understanding of the mechanisms for neuronal cell death. A naturally occurring, autosomal recessive mutant, known as wobbler, and mice transgenic for familial amyotrophic lateral sclerosis (FALS) superoxide dismutase (SOD)1 mutations are available, but the molecular mechanisms remain equally unknown. Both phenotypes are detectable after birth. Wobbler is detectable in the third week of life, when homozygotes (wr/wr) exhibit prominent gliosis and significant motor neuron loss in the cervical, but not in lumbar, spinal cord segments. To address molecular mechanisms, we evaluated "death signals" associated with the multifunctional serine protease, thrombin, which leads to apoptotic motor neuronal cell death in culture by cleavage of a G-protein coupled, protease-activated receptor 1 (PAR-1). MATERIALS AND METHODS: Thrombin activities were determined with chromogenic substrate assays, Western immunoblots and immunohistochemistry were performed with anti-PAR-1 to observe localizations of the receptor and anti-GFAP staining was used to monitor astrocytosis. PAR-1 mRNA levels and locations were determined by reverse transcription polymerase chain reaction (qRT-PCR) and in situ hybridizations. Cell death was monitored with in situ DNA fragmentation assays. RESULTS: In preliminary studies we found a 5-fold increase in PAR-1 mRNA in cervical spinal cords from wr/wr, compared with wild-type (wt) littermates. Our current studies suggested that reactive astrocytosis and motor neuron cell death were causally linked with alterations in thrombin signaling. PAR-1 protein expression was increased, as demonstrated by immunocytochemistry and confirmed with in situ hybridization, in phenotypic wr/wr motor neurons, compared with wt, but not in astrocytes. This increase was much greater in cervical, compared with lumbar

  18. Activation of the IGF1R pathway potentially mediates acquired resistance to mutant-selective 3rd-generation EGF receptor tyrosine kinase inhibitors in advanced non-small cell lung cancer

    PubMed Central

    Park, Ji Hyun; Choi, Yun Jung; Kim, Seon Ye; Lee, Jung-Eun; Sung, Ki Jung; Park, Sojung; Kim, Woo Sung; Song, Joon Seon; Choi, Chang-Min; Sung, Young Hoon; Rho, Jin Kyung; Lee, Jae Cheol

    2016-01-01

    Mutant-selective, 3rd-generation EGFR-TKIs were recently developed to control lung cancer cells harboring T790M-mediated resistance. However, the development of resistance to these novel drugs seems inevitable. Thus, we investigated the mechanism of acquired resistance to the mutant-selective EGFR-TKI WZ4002. We established five WZ4002-resistant cells, derived from cells harboring both EGFR and T790M mutations by long-term exposure to increasing doses of WZ4002. Compared with the parental cells, all resistant cells showed 10–100-folds higher resistance to WZ4002, as well as cross-resistance to other mutant-selective inhibitors. Among them, three resistant cells (HCC827/WR, PC-9/WR and H1975/WR) showed dependency on EGFR signaling, but two other cells (PC-9/GR/WR and PC-9/ER/WR) were not. Notably, insulin-like growth factor-1 receptor (IGF1R) was aberrantly activated in PC-9/GR/WR cells in phospho-receptor tyrosine kinase array, consistently accompanied by loss of IGF binding protein-3 (IGFBP3). Down-regulation of IGF1R by shRNA, as well as inhibition of IGF1R activity either by AG-1024 (a small molecule IGF1R inhibitor) or BI 836845 (a monoclonal anti-IGF1/2 blocking antibody), restored the sensitivity to WZ4002 both in vitro and xenograft. Taken together, these results suggest that activation of the IGF1R pathway associated with IGFBP3 loss can induce an acquired resistance to the mutant-selective EGFR-TKI, WZ4002. Therefore, a combined therapy of IGF1R inhibitors and mutant-selective EGFR-TKIs might be a viable treatment strategy for overcoming acquired resistance. PMID:26980747

  19. The Structures of the C185S and C185A Mutants of Sulfite Oxidase Reveal Rearrangement of the Active Site

    SciTech Connect

    Qiu, James A.; Wilson, Heather L.; Pushie, M. Jake; Kisker, Caroline; George, Graham N.; Rajagopalan, K.V.

    2010-11-03

    Sulfite oxidase (SO) catalyzes the physiologically critical conversion of sulfite to sulfate. Enzymatic activity is dependent on the presence of the metal molybdenum complexed with a pyranopterin-dithiolene cofactor termed molybdopterin. Comparison of the amino acid sequences of SOs from a variety of sources has identified a single conserved Cys residue essential for catalytic activity. The crystal structure of chicken liver sulfite oxidase indicated that this residue, Cys185 in chicken SO, coordinates the Mo atom in the active site. To improve our understanding of the role of this residue in the catalytic mechanism of sulfite oxidase, serine and alanine variants at position 185 of recombinant chicken SO were generated. Spectroscopic and kinetic studies indicate that neither variant is capable of sulfite oxidation. The crystal structure of the C185S variant was determined to 1.9 {angstrom} resolution and to 2.4 {angstrom} resolution in the presence of sulfite, and the C185A variant to 2.8 {angstrom} resolution. The structures of the C185S and C185A variants revealed that neither the Ser or Ala side chains appeared to closely interact with the Mo atom and that a third oxo group replaced the usual cysteine sulfur ligand at the Mo center, confirming earlier extended X-ray absorption fine structure spectroscopy (EXAFS) work on the human C207S mutant. An unexpected result was that in the C185S variant, in the absence of sulfite, the active site residue Tyr322 became disordered as did the loop region flanking it. In the C185S variant crystallized in the presence of sulfite, the Tyr322 residue relocalized to the active site. The C185A variant structure also indicated the presence of a third oxygen ligand; however, Tyr322 remained in the active site. EXAFS studies of the Mo coordination environment indicate the Mo atom is in the oxidized Mo{sup VI} state in both the C185S and C185A variants of chicken SO and show the expected trioxodithiolene active site. Density

  20. Disrupted in schizophrenia 1 (DISC1) L100P mutants have impaired activity-dependent plasticity in vivo and in vitro

    PubMed Central

    Tropea, D; Molinos, I; Petit, E; Bellini, S; Nagakura, I; O'Tuathaigh, C; Schorova, L; Mitchell, K J; Waddington, J; Sur, M; Gill, M; Corvin, A P

    2016-01-01

    Major neuropsychiatric disorders are genetically complex but share overlapping etiology. Mice mutant for rare, highly penetrant risk variants can be useful in dissecting the molecular mechanisms involved. The gene disrupted in schizophrenia 1 (DISC1) has been associated with increased risk for neuropsychiatric conditions. Mice mutant for Disc1 display morphological, functional and behavioral deficits that are consistent with impairments observed across these disorders. Here we report that Disc1 L100P mutants are less able to reorganize cortical circuitry in response to stimulation in vivo. Molecular analysis reveals that the mutants have a reduced expression of PSD95 and pCREB in visual cortex and fail to adjust expression of such markers in response to altered stimulation. In vitro analysis shows that mutants have impaired functional reorganization of cortical neurons in response to selected forms of neuronal stimulation, but there is no altered basal expression of synaptic markers. These findings suggest that DISC1 has a critical role in the reorganization of cortical plasticity and that this phenotype becomes evident only under challenge, even at early postnatal stages. This result may represent an important etiological mechanism in the emergence of neuropsychiatric disorders. PMID:26756905

  1. Active photosynthesis in cyanobacterial mutants with directed modifications in the ligands for two iron-sulfur clusters on the PsaC protein of photosystem I.

    PubMed Central

    Mannan, R M; He, W Z; Metzger, S U; Whitmarsh, J; Malkin, R; Pakrasi, H B

    1996-01-01

    The PsaC protein of the Photosystem I (PSI) complex in thylakoid membranes coordinates two [4Fe-4S] clusters, FA and FB. Although it is known that PsaC participates in electron transfer to ferredoxin, the pathway of electrons through this protein is unknown. To elucidate the roles of FA and FB, we created two site-directed mutant strains of the cyanobacterium Anabaena variabilis ATCC 29413. In one mutant, cysteine 13, a ligand for FB was replaced by an aspartic acid (C13D); in the other mutant, cysteine 50, a ligand for FA was modified similarly (C50D). Low-temperature electron paramagnetic resonance studies demonstrated that the C50D mutant has a normal FB center and a modified FA center. In contrast, the C13D strain has normal FA, but failed to reveal any signal from FB. Room-temperature optical studies showed that C13D has only one functional electron acceptor in PsaC, whereas two such acceptors are functional in the C50D and wild-type strains. Although both mutants grow under photoautotrophic conditions, the rate of PSI-mediated electron transfer in C13D under low light levels is about half that of C50D or wild type. These data show that (i) FB is not essential for the assembly of the PsaC protein in PSI and (ii) FB is not absolutely required for electron transfer from the PSI reaction center to ferredoxin. PMID:8617228

  2. Hepatitis C Virus Deletion Mutants Are Found in Individuals Chronically Infected with Genotype 1 Hepatitis C Virus in Association with Age, High Viral Load and Liver Inflammatory Activity.

    PubMed

    Cheroni, Cristina; Donnici, Lorena; Aghemo, Alessio; Balistreri, Francesca; Bianco, Annalisa; Zanoni, Valeria; Pagani, Massimiliano; Soffredini, Roberta; D'Ambrosio, Roberta; Rumi, Maria Grazia; Colombo, Massimo; Abrignani, Sergio; Neddermann, Petra; De Francesco, Raffaele

    2015-01-01

    Hepatitis C virus (HCV) variants characterized by genomic deletions in the structural protein region have been sporadically detected in liver and serum of hepatitis C patients. These defective genomes are capable of autonomous RNA replication and are packaged into infectious viral particles in cells co-infected with the wild-type virus. The prevalence of such forms in the chronically HCV-infected population and the impact on the severity of liver disease or treatment outcome are currently unknown. In order to determine the prevalence of HCV defective variants and to study their association with clinical characteristics, a screening campaign was performed on pre-therapy serum samples from a well-characterized cohort of previously untreated genotype 1 HCV-infected patients who received treatment with PEG-IFNα and RBV. 132 subjects were successfully analyzed for the presence of defective species exploiting a long-distance nested PCR assay. HCV forms with deletions predominantly affecting E1, E2 and p7 proteins were found in a surprising high fraction of the subjects (25/132, 19%). Their presence was associated with patient older age, higher viral load and increased necroinflammatory activity in the liver. While the presence of circulating HCV carrying deletions in the E1-p7 region did not appear to significantly influence sustained virological response rates to PEG-IFNα/RBV, our study indicates that the presence of these subgenomic HCV mutants could be associated with virological relapse in patients who did not have detectable viremia at the end of the treatment.

  3. Filament-producing mutants of influenza A/Puerto Rico/8/1934 (H1N1) virus have higher neuraminidase activities than the spherical wild-type.

    PubMed

    Seladi-Schulman, Jill; Campbell, Patricia J; Suppiah, Suganthi; Steel, John; Lowen, Anice C

    2014-01-01

    Influenza virus exhibits two morphologies - spherical and filamentous. Strains that have been grown extensively in laboratory substrates are comprised predominantly of spherical virions while clinical or low passage isolates produce a mixture of spheres and filamentous virions of varying lengths. The filamentous morphology can be lost upon continued passage in embryonated chicken eggs, a common laboratory substrate for influenza viruses. The fact that the filamentous morphology is maintained in nature but lost in favor of a spherical morphology in ovo suggests that filaments confer a selective advantage within the infected host that is not necessary for growth in laboratory substrates. Indeed, we have recently shown that filament-producing variant viruses are selected upon passage of the spherical laboratory strain A/Puerto Rico/8/1934 (H1N1) [PR8] in guinea pigs. Toward determining the nature of the selective advantage conferred by filaments, we sought to identify functional differences between spherical and filamentous particles. We compared the wild-type PR8 virus to two previously characterized recombinant PR8 viruses in which single point mutations within M1 confer a filamentous morphology. Our results indicate that these filamentous PR8 mutants have higher neuraminidase activities than the spherical PR8 virus. Conversely, no differences were observed in HAU:PFU or HAU:RNA ratios, binding avidity, sensitivity to immune serum in hemagglutination inhibition assays, or virion stability at elevated temperatures. Based on these results, we propose that the pleomorphic nature of influenza virus particles is important for the optimization of neuraminidase functions in vivo.

  4. Filament-Producing Mutants of Influenza A/Puerto Rico/8/1934 (H1N1) Virus Have Higher Neuraminidase Activities than the Spherical Wild-Type

    PubMed Central

    Seladi-Schulman, Jill; Campbell, Patricia J.; Suppiah, Suganthi; Steel, John; Lowen, Anice C.

    2014-01-01

    Influenza virus exhibits two morphologies – spherical and filamentous. Strains that have been grown extensively in laboratory substrates are comprised predominantly of spherical virions while clinical or low passage isolates produce a mixture of spheres and filamentous virions of varying lengths. The filamentous morphology can be lost upon continued passage in embryonated chicken eggs, a common laboratory substrate for influenza viruses. The fact that the filamentous morphology is maintained in nature but lost in favor of a spherical morphology in ovo suggests that filaments confer a selective advantage within the infected host that is not necessary for growth in laboratory substrates. Indeed, we have recently shown that filament-producing variant viruses are selected upon passage of the spherical laboratory strain A/Puerto Rico/8/1934 (H1N1) [PR8] in guinea pigs. Toward determining the nature of the selective advantage conferred by filaments, we sought to identify functional differences between spherical and filamentous particles. We compared the wild-type PR8 virus to two previously characterized recombinant PR8 viruses in which single point mutations within M1 confer a filamentous morphology. Our results indicate that these filamentous PR8 mutants have higher neuraminidase activities than the spherical PR8 virus. Conversely, no differences were observed in HAU:PFU or HAU:RNA ratios, binding avidity, sensitivity to immune serum in hemagglutination inhibition assays, or virion stability at elevated temperatures. Based on these results, we propose that the pleomorphic nature of influenza virus particles is important for the optimization of neuraminidase functions in vivo. PMID:25383873

  5. Ligand stimulation of ErbB4 and a constitutively-active ErbB4 mutant result in different biological responses in human pancreatic tumor cell lines

    SciTech Connect

    Mill, Christopher P.; Gettinger, Kathleen L.; Riese, David J.

    2011-02-15

    Pancreatic cancer is the fourth leading cause of cancer death in the United States. Indeed, it has been estimated that 37,000 Americans will die from this disease in 2010. Late diagnosis, chemoresistance, and radioresistance of these tumors are major reasons for poor patient outcome, spurring the search for pancreatic cancer early diagnostic and therapeutic targets. ErbB4 (HER4) is a member of the ErbB family of receptor tyrosine kinases (RTKs), a family that also includes the Epidermal Growth Factor Receptor (EGFR/ErbB1/HER1), Neu/ErbB2/HER2, and ErbB3/HER3. These RTKs play central roles in many human malignancies by regulating cell proliferation, survival, differentiation, invasiveness, motility, and apoptosis. In this report we demonstrate that human pancreatic tumor cell lines exhibit minimal ErbB4 expression; in contrast, these cell lines exhibit varied and in some cases abundant expression and basal tyrosine phosphorylation of EGFR, ErbB2, and ErbB3. Expression of a constitutively-dimerized and -active ErbB4 mutant inhibits clonogenic proliferation of CaPan-1, HPAC, MIA PaCa-2, and PANC-1 pancreatic tumor cell lines. In contrast, expression of wild-type ErbB4 in pancreatic tumor cell lines potentiates stimulation of anchorage-independent colony formation by the ErbB4 ligand Neuregulin 1{beta}. These results illustrate the multiple roles that ErbB4 may be playing in pancreatic tumorigenesis and tumor progression.

  6. Hepatitis C Virus Deletion Mutants Are Found in Individuals Chronically Infected with Genotype 1 Hepatitis C Virus in Association with Age, High Viral Load and Liver Inflammatory Activity

    PubMed Central

    Aghemo, Alessio; Balistreri, Francesca; Bianco, Annalisa; Zanoni, Valeria; Pagani, Massimiliano; Soffredini, Roberta; D’Ambrosio, Roberta; Rumi, Maria Grazia; Colombo, Massimo; Abrignani, Sergio; Neddermann, Petra; De Francesco, Raffaele

    2015-01-01

    Hepatitis C virus (HCV) variants characterized by genomic deletions in the structural protein region have been sporadically detected in liver and serum of hepatitis C patients. These defective genomes are capable of autonomous RNA replication and are packaged into infectious viral particles in cells co-infected with the wild-type virus. The prevalence of such forms in the chronically HCV-infected population and the impact on the severity of liver disease or treatment outcome are currently unknown. In order to determine the prevalence of HCV defective variants and to study their association with clinical characteristics, a screening campaign was performed on pre-therapy serum samples from a well-characterized cohort of previously untreated genotype 1 HCV-infected patients who received treatment with PEG-IFNα and RBV. 132 subjects were successfully analyzed for the presence of defective species exploiting a long-distance nested PCR assay. HCV forms with deletions predominantly affecting E1, E2 and p7 proteins were found in a surprising high fraction of the subjects (25/132, 19%). Their presence was associated with patient older age, higher viral load and increased necroinflammatory activity in the liver. While the presence of circulating HCV carrying deletions in the E1-p7 region did not appear to significantly influence sustained virological response rates to PEG-IFNα/RBV, our study indicates that the presence of these subgenomic HCV mutants could be associated with virological relapse in patients who did not have detectable viremia at the end of the treatment. PMID:26405760

  7. Brain activity mapping in Mecp2 mutant mice reveals functional deficits in forebrain circuits, including key nodes in the default mode network, that are reversed with ketamine treatment.

    PubMed

    Kron, Miriam; Howell, C James; Adams, Ian T; Ransbottom, Michael; Christian, Diana; Ogier, Michael; Katz, David M

    2012-10-01

    Excitatory-inhibitory imbalance has been identified within specific brain microcircuits in models of Rett syndrome (RTT) and other autism spectrum disorders (ASDs). However, macrocircuit dysfunction across the RTT brain as a whole has not been defined. To approach this issue, we mapped expression of the activity-dependent, immediate-early gene product Fos in the brains of wild-type (Wt) and methyl-CpG-binding protein 2 (Mecp2)-null (Null) mice, a model of RTT, before and after the appearance of overt symptoms (3 and 6 weeks of age, respectively). At 6 weeks, Null mice exhibit significantly less Fos labeling than Wt in limbic cortices and subcortical structures, including key nodes in the default mode network. In contrast, Null mice exhibit significantly more Fos labeling than Wt in the hindbrain, most notably in cardiorespiratory regions of the nucleus tractus solitarius (nTS). Using nTS as a model, whole-cell recordings demonstrated that increased Fos expression in Nulls at 6 weeks of age is associated with synaptic hyperexcitability, including increased frequency of spontaneous and miniature EPSCs and increased amplitude of evoked EPSCs in Nulls. No such effect of genotype on Fos or synaptic function was seen at 3 weeks. In the mutant forebrain, reduced Fos expression, as well as abnormal sensorimotor function, were reversed by the NMDA receptor antagonist ketamine. In light of recent findings that the default mode network is hypoactive in autism, our data raise the possibility that hypofunction within this meta-circuit is a shared feature of RTT and other ASDs and is reversible. PMID:23035095

  8. A Mutant S3 RNase of Petunia inflata Lacking RNase Activity Has an Allele-Specific Dominant Negative Effect on Self-Incompatibility Interactions.

    PubMed Central

    McCubbin, A. G.; Chung, Y. Y.; Kao, Th.

    1997-01-01

    Gametophytic self-incompatibility in the Solanaceae is controlled by a multiallelic locus called the S locus. Growth of pollen tubes in the pistil is inhibited when the pollen has one of the two S alleles carried by the pistil. The products of a number of pistil S alleles[mdash]S proteins or S RNases[mdash]have been identified, and their role in controlling the pistil's ability to reject self-pollen has been positively established. In contrast, the existence of pollen S allele products has so far been inferred entirely from genetic evidence. Here, we introduced a modified S3 gene of Petunia inflata encoding an S3 RNase lacking RNase activity into P. inflata plants of the S2S3 genotype to determine whether the production of the mutant protein, designated S3(H93R), would have any effect on the ability of the transgenic plants to reject S2 and S3 pollen. Analysis of the self-incompatibility behavior of 49 primary transgenic plants and the progeny of three plants (H30, H37, and H40) that produced S3(H93R) in addition to producing wild-type levels of endogenous S2 and S3 RNases revealed that S3(H93R) had a dominant negative effect on the function of the S3 RNase in rejecting self-pollen; however, it had no effect on the function of the S2 RNase. One likely explanation of the results is that S3(H93R) competes with the S3 RNase for binding to a common molecule, which is presumably the product of the pollen S3 allele. PMID:12237345

  9. Agonistic induction of a covalent dimer in a mutant of natriuretic peptide receptor-A documents a juxtamembrane interaction that accompanies receptor activation.

    PubMed

    Labrecque, J; Deschênes, J; McNicoll, N; De Léan, A

    2001-03-16

    The natriuretic peptide receptor-A (NPR-A) is composed of an extracellular domain with a ligand binding site, a transmembrane-spanning domain, a kinase homology domain, and a guanylyl cyclase domain. In response to agonists (atrial natriuretic peptide (ANP) and brain natriuretic peptide), the kinase homology domain-mediated guanylate cyclase repression is removed, which allows the production of cyclic GMP. Previous work from our laboratory strongly indicated that agonists are exerting their effects through the induction of a juxtamembrane dimeric contact. However, a direct demonstration of this mechanism remains to be provided. As a tool, we are now using the properties of a new mutation, D435C. It introduces a cysteine at a position in NPR-A corresponding to a supplementary cysteine found in NPR-C6, another receptor of this family (a disulfide-linked dimer). Although this D435C mutation only leads to trace levels of NPR-A disulfide-linked dimer at basal state, covalent dimerization can be induced by a treatment with rat ANP or with other agonists. The NPR-A(D435C) mutant has not been subjected to significant structural alterations, since it shares with the wild type receptor a similar dose-response pattern of cellular guanylyl cyclase activation. However, a persistent activation accompanies NPR-A(D435C) dimer formation after the removal of the inducer agonist. On the other hand, a construction where the intracellular domain of NPR-A(D435C) has been truncated (DeltaKC(D435C)) displays a spontaneous and complete covalent dimerization. In addition, the elimination of the intracellular domain in wild type DeltaKC and DeltaKC(D435C) is associated with an increase of agonist binding affinity, this effect being more pronounced with the weak agonist pBNP. Also, a D435C secreted extracellular domain remains unlinked even after incubation with rat ANP. In summary, these results demonstrate, in a dynamic fashion, the agonistic induction of a dimeric contact in the

  10. Agonistic induction of a covalent dimer in a mutant of natriuretic peptide receptor-A documents a juxtamembrane interaction that accompanies receptor activation.

    PubMed

    Labrecque, J; Deschênes, J; McNicoll, N; De Léan, A

    2001-03-16

    The natriuretic peptide receptor-A (NPR-A) is composed of an extracellular domain with a ligand binding site, a transmembrane-spanning domain, a kinase homology domain, and a guanylyl cyclase domain. In response to agonists (atrial natriuretic peptide (ANP) and brain natriuretic peptide), the kinase homology domain-mediated guanylate cyclase repression is removed, which allows the production of cyclic GMP. Previous work from our laboratory strongly indicated that agonists are exerting their effects through the induction of a juxtamembrane dimeric contact. However, a direct demonstration of this mechanism remains to be provided. As a tool, we are now using the properties of a new mutation, D435C. It introduces a cysteine at a position in NPR-A corresponding to a supplementary cysteine found in NPR-C6, another receptor of this family (a disulfide-linked dimer). Although this D435C mutation only leads to trace levels of NPR-A disulfide-linked dimer at basal state, covalent dimerization can be induced by a treatment with rat ANP or with other agonists. The NPR-A(D435C) mutant has not been subjected to significant structural alterations, since it shares with the wild type receptor a similar dose-response pattern of cellular guanylyl cyclase activation. However, a persistent activation accompanies NPR-A(D435C) dimer formation after the removal of the inducer agonist. On the other hand, a construction where the intracellular domain of NPR-A(D435C) has been truncated (DeltaKC(D435C)) displays a spontaneous and complete covalent dimerization. In addition, the elimination of the intracellular domain in wild type DeltaKC and DeltaKC(D435C) is associated with an increase of agonist binding affinity, this effect being more pronounced with the weak agonist pBNP. Also, a D435C secreted extracellular domain remains unlinked even after incubation with rat ANP. In summary, these results demonstrate, in a dynamic fashion, the agonistic induction of a dimeric contact in the

  11. 4-Phenylbutyric acid reduces mutant-TGFBIp levels and ER stress through activation of ERAD pathway in corneal fibroblasts of granular corneal dystrophy type 2.

    PubMed

    Choi, Seung-Il; Lee, Eunhee; Jeong, Jang Bin; Akuzum, Begum; Maeng, Yong-Sun; Kim, Tae-Im; Kim, Eung Kweon

    2016-09-01

    Granular corneal dystrophy type 2 (GCD2) is caused by a point mutation (R124H) in the transforming growth factor β-induced (TGFBI) gene. In GCD2 corneal fibroblasts, secretion of the accumulated mutant TGFBI-encoded protein (TGFBIp) is delayed via the endoplasmic reticulum (ER)/Golgi-dependent secretory pathway. However, ER stress as the pathogenic mechanism underlying GCD2 has not been fully characterized. The aim of this study was to confirm whether ER stress is linked to GCD2 pathogenesis and whether the chemical chaperone, 4-phenylbutyric acid (4-PBA), could be exploited as a therapy for GCD2. We found that the ER chaperone binding immunoglobulin protein (BiP) and the protein disulfide isomerase (PDI) were elevated in GCD2. Western bolt analysis also showed a significant increase in both the protein levels and the phosphorylation of the key ER stress kinases, inositol-requiring enzyme 1α (IRE1α) and double stranded RNA activated protein kinase (PKR)-like ER kinase, as well as in levels of their downstream targets, X box-binding protein 1 (XBP1) and activating transcription factor 4, respectively, in GCD2 corneal fibroblasts. GCD2 cells were found to be more susceptible to ER stress-induced cell death than were wild-type corneal fibroblasts. Treatment with 4-PBA considerably reduced the levels of BiP, IRE1α, and XBP1 in GCD2 cells; notably, 4-PBA treatment significantly reduced the levels of TGFBIp without change in TGFBI mRNA levels. In addition, TGFBIp levels were significantly reduced under ER stress and this reduction was considerably suppressed by the ubiquitin proteasome inhibitor MG132, indicating TGFBIp degradation via the ER-associated degradation pathway. Treatment with 4-PBA not only protected against the GCD2 cell death induced by ER stress but also significantly suppressed the MG132-mediated increase in TGFBIp levels under ER stress. Together, these results suggest that ER stress might comprise an important factor in GCD2 pathophysiology and

  12. Concurrent cooperativity and substrate inhibition in the epoxidation of carbamazepine by cytochrome P450 3A4 active site mutants inspired by molecular dynamics simulations.

    PubMed

    Müller, Christian S; Knehans, Tim; Davydov, Dmitri R; Bounds, Patricia L; von Mandach, Ursula; Halpert, James R; Caflisch, Amedeo; Koppenol, Willem H

    2015-01-27

    Cytochrome P450 3A4 (CYP3A4) is the major human P450 responsible for the metabolism of carbamazepine (CBZ). To explore the mechanisms of interactions of CYP3A4 with this anticonvulsive drug, we carried out multiple molecular dynamics (MD) simulations, starting with the complex of CYP3A4 manually docked with CBZ. On the basis of these simulations, we engineered CYP3A4 mutants I369F, I369L, A370V, and A370L, in which the productive binding orientation was expected to be stabilized, thus leading to increased turnover of CBZ to the 10,11-epoxide product. In addition, we generated CYP3A4 mutant S119A as a control construct with putative destabilization of the productive binding pose. Evaluation of the kinetics profiles of CBZ epoxidation demonstrate that CYP3A4-containing bacterial membranes (bactosomes) as well as purified CYP3A4 (wild-type and mutants I369L/F) exhibit substrate inhibition in reconstituted systems. In contrast, mutants S119A and A370V/L exhibit S-shaped profiles that are indicative of homotropic cooperativity. MD simulations with two to four CBZ molecules provide evidence that the substrate-binding pocket of CYP3A4 can accommodate more than one molecule of CBZ. Analysis of the kinetics profiles of CBZ metabolism with a model that combines the formalism of the Hill equation with an allowance for substrate inhibition demonstrates that the mechanism of interactions of CBZ with CYP3A4 involves multiple substrate-binding events (most likely three). Despite the retention of the multisite binding mechanism in the mutants, functional manifestations reveal an exquisite sensitivity to even minor structural changes in the binding pocket that are introduced by conservative substitutions such as I369F, I369L, and A370V.

  13. Kinetic and crystallographic studies on the active site Arg289Lys mutant of flavocytochrome b2 (yeast L-lactate dehydrogenase).

    PubMed

    Mowat, C G; Beaudoin, I; Durley, R C; Barton, J D; Pike, A D; Chen, Z W; Reid, G A; Chapman, S K; Mathews, F S; Lederer, F

    2000-03-28

    Flavocytochrome b(2) from Saccharomyces cerevisiae couples L-lactate dehydrogenation to cytochrome c reduction. The crystal structure of the native yeast enzyme has been determined [Xia, Z.-X., and Mathews, F. S. (1990) J. Mol. Biol. 212, 837-863] as well as that of the sulfite adduct of the recombinant enzyme produced in Escherichia coli [Tegoni, M., and Cambillau, C. (1994) Protein Sci. 3, 303-313]; several key active site residues were identified. In the sulfite adduct crystal structure, Arg289 adopts two alternative conformations. In one of them, its side chain is stacked against that of Arg376, which interacts with the substrate; in the second orientation, the R289 side chain points toward the active site. This residue has now been mutated to lysine and the mutant enzyme, R289K-b(2), characterized kinetically. Under steady-state conditions, kinetic parameters (including the deuterium kinetic isotope effect) indicate the mutation affects k(cat) by a factor of about 10 and k(cat)/K(M) by up to nearly 10(2). Pre-steady-state kinetic analysis of flavin and heme reduction by lactate demonstrates that the latter is entirely limited by flavin reduction. Inhibition studies on R289K-b(2) with a range of compounds show a general rise in K(i) values relative to that of wild-type enzyme, in line with the elevation of the K(M) for L-lactate in R289K-b(2); they also show a change in the pattern of inhibition by pyruvate and oxalate, as well as a loss of the inhibition by excess substrate. Altogether, the kinetic studies indicate that the mutation has altered the first step of the catalytic cycle, namely, flavin reduction; they suggest that R289 plays a role both in Michaelis complex and transition-state stabilization, as well as in ligand binding to the active site when the flavin is in the semiquinone state. In addition, it appears that the mutation has not affected electron transfer from fully reduced flavin to heme, but may have slowed the second intramolecular ET step

  14. Lesion mimic mutants

    PubMed Central

    Moeder, Wolfgang

    2008-01-01

    Over the last decade a substantial number of lesion mimic mutants (LMM) have been isolated and a growing number of the genes have been cloned. It is now becoming clear that these mutants are valuable tools to dissect various aspects of programmed cell death (PCD) and pathogen resistance pathways in plants. Together with other forward genetics approaches LMMs shed light on the PCD machinery in plant cells and revealed important roles for sphingolipids, Ca2+ and chloroplast-derived porphyrin-metabolites during cell death development. PMID:19513227

  15. Reduction of cellular stress by TolC-dependent efflux pumps in Escherichia coli indicated by BaeSR and CpxARP activation of spy in efflux mutants.

    PubMed

    Rosner, Judah L; Martin, Robert G

    2013-03-01

    Escherichia coli has nine inner membrane efflux pumps which complex with the outer membrane protein TolC and cognate membrane fusion proteins to form tripartite transperiplasmic pumps with diverse functions, including the expulsion of antibiotics. We recently observed that tolC mutants have elevated activities for three stress response regulators, MarA, SoxS, and Rob, and we suggested that TolC-dependent efflux is required to prevent the accumulation of stressful cellular metabolites. Here, we used spy::lacZ fusions to show that two systems for sensing/repairing extracytoplasmic stress, BaeRS and CpxARP, are activated in the absence of TolC-dependent efflux. In either tolC mutants or bacteria with mutations in the genes for four TolC-dependent efflux pumps, spy expression was increased 6- to 8-fold. spy encodes a periplasmic chaperone regulated by the BaeRS and CpxARP stress response systems. The overexpression of spy in tolC or multiple efflux pump mutants also depended on these systems. spy overexpression was not due to acetate, ethanol, or indole accumulation, since external acetate had only a minor effect on wild-type cells, ethanol had a large effect that was not CpxA dependent, and a tolC tnaA mutant which cannot accumulate internal indole overexpressed spy. We propose that, unless TolC-dependent pumps excrete certain metabolites, the metabolites accumulate and activate at least five different stress response systems.

  16. A pro-inflammatory signalome is constitutively activated by C33Y mutant TNF receptor 1 in TNF receptor-associated periodic syndrome (TRAPS)

    PubMed Central

    Negm, Ola H; Mannsperger, Heiko A; McDermott, Elizabeth M; Drewe, Elizabeth; Powell, Richard J; Todd, Ian; Fairclough, Lucy C; Tighe, Patrick J

    2014-01-01

    Mutations in TNFRSF1A encoding TNF receptor 1 (TNFR1) cause the autosomal dominant TNF receptor-associated periodic syndrome (TRAPS): a systemic autoinflammatory disorder. Misfolding, intracellular aggregation, and ligand-independent signaling by mutant TNFR1 are central to disease pathophysiology. Our aim was to understand the extent of signaling pathway perturbation in TRAPS. A prototypic mutant TNFR1 (C33Y), and wild-type TNFR1 (WT), were expressed at near physiological levels in an SK-Hep-1 cell model. TNFR1-associated signaling pathway intermediates were examined in this model, and in PBMCs from C33Y TRAPS patients and healthy controls. In C33Y-TNFR1-expressing SK-Hep-1 cells and TRAPS patients’ PBMCs, a subtle, constitutive upregulation of a wide spectrum of signaling intermediates and their phosphorylated forms was observed; these were associated with a proinflammatory/antiapoptotic phenotype. In TRAPS patients’ PBMCs, this upregulation of proinflammatory signaling pathways was observed irrespective of concurrent treatment with glucocorticoids, anakinra or etanercept, and the absence of overt clinical symptoms at the time that the blood samples were taken. This study reveals the pleiotropic effect of a TRAPS-associated mutant form of TNFR1 on inflammatory signaling pathways (a proinflammatory signalome), which is consistent with the variable and limited efficacy of cytokine-blocking therapies in TRAPS. It highlights new potential target pathways for therapeutic intervention. PMID:24668260

  17. Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana

    DOEpatents

    Zhu, Jian-Kang; Quintero-Toscano, Francisco Javier; Pardo-Prieto, Jose Manuel; Qiu, Quansheng; Schumaker, Karen Sue; Ohta, Masaru; Zhang, Changqing; Guo, Yan

    2007-09-04

    The present invention provides a method of increasing salt tolerance in a plant by overexpressing a gene encoding a mutant SOS2 protein in at least one cell type in the plant. The present invention also provides for transgenic plants expressing the mutant SOS2 proteins.

  18. The clinical development candidate CCT245737 is an orally active CHK1 inhibitor with preclinical activity in RAS mutant NSCLC and Eμ-MYC driven B-cell lymphoma

    PubMed Central

    Walton, Mike I.; Eve, Paul D.; Hayes, Angela; Henley, Alan T.; Valenti, Melanie R.; De Haven Brandon, Alexis K.; Box, Gary; Boxall, Kathy J.; Tall, Matthew; Swales, Karen; Matthews, Thomas P.; McHardy, Tatiana; Lainchbury, Michael; Osborne, James; Hunter, Jill E.; Perkins, Neil D.; Aherne, G. Wynne; Reader, John C.; Raynaud, Florence I.; Eccles, Suzanne A.; Collins, Ian; Garrett, Michelle D.

    2016-01-01

    CCT245737 is the first orally active, clinical development candidate CHK1 inhibitor to be described. The IC50 was 1.4nM against CHK1 enzyme and it exhibited>1,000-fold selectivity against CHK2 and CDK1. CCT245737 potently inhibited cellular CHK1 activity (IC50 30-220nM) and enhanced gemcitabine and SN38 cytotoxicity in multiple human tumor cell lines and human tumor xenograft models. Mouse oral bioavailability was complete (100%) with extensive tumor exposure. Genotoxic-induced CHK1 activity (pS296 CHK1) and cell cycle arrest (pY15 CDK1) were inhibited both in vitro and in human tumor xenografts by CCT245737, causing increased DNA damage and apoptosis. Uniquely, we show CCT245737 enhanced gemcitabine antitumor activity to a greater degree than for higher doses of either agent alone, without increasing toxicity, indicating a true therapeutic advantage for this combination. Furthermore, development of a novel ELISA assay for pS296 CHK1 autophosphorylation, allowed the quantitative measurement of target inhibition in a RAS mutant human tumor xenograft of NSCLC at efficacious doses of CCT245737. Finally, CCT245737 also showed significant single-agent activity against a MYC-driven mouse model of B-cell lymphoma. In conclusion, CCT245737 is a new CHK1 inhibitor clinical development candidate scheduled for a first in man Phase I clinical trial, that will use the novel pS296 CHK1 ELISA to monitor target inhibition. PMID:26295308

  19. The clinical development candidate CCT245737 is an orally active CHK1 inhibitor with preclinical activity in RAS mutant NSCLC and Eµ-MYC driven B-cell lymphoma.

    PubMed

    Walton, Mike I; Eve, Paul D; Hayes, Angela; Henley, Alan T; Valenti, Melanie R; De Haven Brandon, Alexis K; Box, Gary; Boxall, Kathy J; Tall, Matthew; Swales, Karen; Matthews, Thomas P; McHardy, Tatiana; Lainchbury, Michael; Osborne, James; Hunter, Jill E; Perkins, Neil D; Aherne, G Wynne; Reader, John C; Raynaud, Florence I; Eccles, Suzanne A; Collins, Ian; Garrett, Michelle D

    2016-01-19

    CCT245737 is the first orally active, clinical development candidate CHK1 inhibitor to be described. The IC50 was 1.4 nM against CHK1 enzyme and it exhibited>1,000-fold selectivity against CHK2 and CDK1. CCT245737 potently inhibited cellular CHK1 activity (IC50 30-220 nM) and enhanced gemcitabine and SN38 cytotoxicity in multiple human tumor cell lines and human tumor xenograft models. Mouse oral bioavailability was complete (100%) with extensive tumor exposure. Genotoxic-induced CHK1 activity (pS296 CHK1) and cell cycle arrest (pY15 CDK1) were inhibited both in vitro and in human tumor xenografts by CCT245737, causing increased DNA damage and apoptosis. Uniquely, we show CCT245737 enhanced gemcitabine antitumor activity to a greater degree than for higher doses of either agent alone, without increasing toxicity, indicating a true therapeutic advantage for this combination. Furthermore, development of a novel ELISA assay for pS296 CHK1 autophosphorylation, allowed the quantitative measurement of target inhibition in a RAS mutant human tumor xenograft of NSCLC at efficacious doses of CCT245737. Finally, CCT245737 also showed significant single-agent activity against a MYC-driven mouse model of B-cell lymphoma. In conclusion, CCT245737 is a new CHK1 inhibitor clinical development candidate scheduled for a first in man Phase I clinical trial, that will use the novel pS296 CHK1 ELISA to monitor target inhibition. PMID:26295308

  20. Notch pathway is activated in cell culture and mouse models of mutant SOD1-related familial amyotrophic lateral sclerosis, with suppression of its activation as an additional mechanism of neuroprotection for lithium and valproate.

    PubMed

    Wang, S-Y; Ren, M; Jiang, H-Z; Wang, J; Jiang, H-Q; Yin, X; Qi, Y; Wang, X-D; Dong, G-T; Wang, T-H; Yang, Y-Q; Feng, H-L

    2015-08-20

    Amyotrophic lateral sclerosis (ALS) is an idiopathic and lethal neurodegenerative disease that currently has no effective treatment. A recent study found that the Notch signaling pathway was up-regulated in a TAR DNA-binding protein-43 (TDP-43) Drosophila model of ALS. Notch signaling acts as a master regulator in the central nervous system. However, the mechanisms by which Notch participates in the pathogenesis of ALS have not been completely elucidated. Recent studies have shown that the mood stabilizers lithium and valproic acid (VPA) are able to regulate Notch signaling. Our study sought to confirm the relationship between the Notch pathway and ALS and whether the Notch pathway contributes to the neuroprotective effects of lithium and VPA in ALS. We found that the Notch pathway was activated in in vitro and in vivo models of ALS, and suppression of Notch activation with a Notch signaling inhibitor, N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT) and Notch1 siRNA significantly reduced neuronal apoptotic signaling, as evidenced by the up-regulation of Bcl-2 as well as the down-regulation of Bax and cytochrome c. We also found that lithium and VPA suppressed the Notch activation associated with the superoxide dismutase-1 (SOD1) mutation, and the combination of lithium and VPA produced a more robust effect than either agent alone. Our findings indicate that the Notch pathway plays a critical role in ALS, and the neuroprotective effects of lithium and VPA against mutant SOD1-mediated neuronal damage are at least partially dependent on their suppression of Notch activation.

  1. Mutant LV(476-7)AA of A-subunit of Enterococcus hirae V1-ATPase: High affinity of A3B3 complex to DF axis and low ATPase activity.

    PubMed

    Alam, Jahangir; Yamato, Ichiro; Arai, Satoshi; Saijo, Shinya; Mizutani, Kenji; Ishizuka-Katsura, Yoshiko; Ohsawa, Noboru; Terada, Takaho; Shirouzu, Mikako; Yokoyama, Shigeyuki; Iwata, So; Kakinuma, Yoshimi; Murata, Takeshi

    2013-01-01

    Vacuolar ATPase (V-ATPase) of Enterococcus hirae is composed of a soluble functional domain V1 (A3B3DF) and an integral membrane domain Vo (ac), where V1 and Vo domains are connected by a central stalk, composed of D-, F-, and d-subunits; and two peripheral stalks (E- and G-subunits). We identified 120 interacting residues of A3B3 heterohexamer with D-subunit in DF heterodimer in the crystal structures of A3B3 and A3B3DF. In our previous study, we reported 10 mutants of E. hirae V1-ATPase, which showed lower binding affinities of DF with A3B3 complex leading to higher initial specific ATPase activities compared to the wild-type. In this study, we identified a mutation of A-subunit (LV(476-7)AA) at its C-terminal domain resulting in the A3B3 complex with higher binding affinities for wild-type or mutant DF heterodimers and lower initial ATPase activities compared to the wild-type A3B3 complex, consistent with our previous proposal of reciprocal relationship between the ATPase activity and the protein-protein binding affinity of DF axis to the A3B3 catalytic domain of E. hirae V-ATPase. These observations suggest that the binding of DF axis at the contact region of A3B3 rotary ring is relevant to its rotation activity. PMID:24404436

  2. Engineering and Directed Evolution of a Ca2+ Binding Site A-Deficient AprE Mutant Reveal an Essential Contribution of the Loop Leu75–Leu82 to Enzyme Activity

    PubMed Central

    Romero-García, Eliel R.; Téllez-Valencia, Alfredo; Trujillo, María F.; Sampedro, José G.; Nájera, Hugo; Rojo-Domínguez, Arturo; García-Soto, Jesús; Pedraza-Reyes, Mario

    2009-01-01

    An aprE mutant from B. subtilis 168 lacking the connecting loop Leu75–Leu82 which is predicted to encode a Ca2+ binding site was constructed. Expression of the mutant gene (aprEΔLeu75–Leu82) produced B. subtilis colonies lacking protease activity. Intrinsic fluorescence analysis revealed spectral differences between wild-type AprE and AprEΔL75–L82. An AprEΔL75–L82 variant with reestablished enzyme activity was selected by directed evolution. The novel mutations Thr66Met/Gly102Asp located in positions which are predicted to be important for catalytic activity were identified in this variant. Although these mutations restored hydrolysis, they had no effect with respect to thermal inactivation of AprEΔL75–L82 T66M G102D. These results support the proposal that in addition to function as a calcium binding site, the loop that connects β-sheet e3 with α-helix c plays a structural role on enzyme activity of AprE from B. subtilis 168. PMID:19710937

  3. Selective disruption of disulphide bonds lowered activation energy and improved catalytic efficiency in TALipB from Trichosporon asahii MSR54: MD simulations revealed flexible lid and extended substrate binding area in the mutant.

    PubMed

    Singh, Yogesh; Gupta, Namita; Verma, Ved Vrat; Goel, Manisha; Gupta, Rani

    2016-03-25

    TALipB (33 kDa) is a solvent stable, enantioselective lipase from Trichosporon asahii MSR54. It is cysteine-rich and shows activation in presence of thiol reducing agents. DIANNA server predicted three disulphide bridges C53-C195 (S1), C89-C228 (S2) and C164-C254 (S3) in the enzyme. Selective disruption of disulphide bonds by cysteine to alanine mutations at Cys53 and Cys89 of S1 and S2 bonds resulted in enzyme activation. Mutant mTALipB (S1+S2) showed increase in specific activity by ∼4-fold (834 mM/mg) and improved Vmax of 6.27 μmol/ml/min at 40 °Con pNP caprate. Temperature optima of mTALipB shifted from 50 to 40 °C and activation energy decreased by 0.7 kcal mol(-1). However, the mutant was less thermostable with a t1/2 of 18 min at 60 °C as compared to t1/2 of 38 min for the native enzyme. Mutant also displayed an improved activity on all pNP esters and higher enantiomeric excess (61%) during esterification of (±) 1-phenylethanol. Far-UV CD analysis showed significant changes in secondary structure after S-S bridge disruption with 7.16% decrease in α-helices and 1.31% increase in β-sheets. In silico analysis predicted two lids (α5 and α9) in TALipB. Molecular dynamic simulations at 40 °C and 50 °C revealed that in the mTALipB, both the lids opened at 40 °C with clockwise and anticlockwise rotations in Lid1 and Lid2, respectively. In the native protein, however, the lid was only partially open even at 50 °C. Concomitant to lid flexibility, there was an extension of accessible catalytic triad surface area resulting in improved catalytic efficiency of the mutant enzyme.

  4. Enhanced cellulase production in mutants of Thermomonospora

    SciTech Connect

    Fennington, G.; Lupo, D.; Stutzenberger, F.

    1982-01-01

    Thermomonospora curvata, a thermophilic actinomycete, secretes multiple forms of endo-beta, 1-4-glucanase (EG) when grown on cellulose-mineral salts liquid medium. The EG activity (measured as carboxymethyl cellulose hydrolysis) was separated by ion exchange chromatography into three distinct components which differed in their kinetic properties. Exposure of T. curvata to ultraviolet light, N-nitrosoguanidine, or ethane methyl sulfonate produced mutants with enhanced EG production. Selection of colonies which cleared cellulose agar plants containing 2-deoxyglucose or glycerol yielded mutants having 1.5 to 2.6 times the extracellular EG and saccharifying activity (measured by filter-paper and cotton-fiber hydrolysis). The secretion of extracellular protein was increased proportionally in mutant cultures. (Refs. 40).

  5. A Porphyromonas gingivalis Mutant Defective in a Putative Glycosyltransferase Exhibits Defective Biosynthesis of the Polysaccharide Portions of Lipopolysaccharide, Decreased Gingipain Activities, Strong Autoaggregation, and Increased Biofilm Formation▿ †

    PubMed Central

    Yamaguchi, Mikiyo; Sato, Keiko; Yukitake, Hideharu; Noiri, Yuichiro; Ebisu, Shigeyuki; Nakayama, Koji

    2010-01-01

    The Gram-negative anaerobic bacterium Porphyromonas gingivalis is a major pathogen in periodontal disease, one of the biofilm-caused infectious diseases. The bacterium possesses potential virulence factors, including fimbriae, proteinases, hemagglutinin, lipopolysaccharide (LPS), and outer membrane vesicles, and some of these factors are associated with biofilm formation; however, the precise mechanism of biofilm formation is still unknown. Colonial pigmentation of the bacterium on blood agar plates is related to its virulence. In this study, we isolated a nonpigmented mutant that had an insertion mutation within the new gene PGN_1251 (gtfB) by screening a transposon insertion library. The gene shares homology with genes encoding glycosyltransferase 1 of several bacteria. The gtfB mutant was defective in biosynthesis of both LPSs containing O side chain polysaccharide (O-LPS) and anionic polysaccharide (A-LPS). The defect in the gene resulted in a complete loss of surface-associated gingipain proteinases, strong autoaggregation, and a marked increase in biofilm formation, suggesting that polysaccharide portions of LPSs influence attachment of gingipain proteinases to the cell surface, autoaggregation, and biofilm formation of P. gingivalis. PMID:20624909

  6. The Arabidopsis nox Mutant Lacking Carotene Hydroxylase Activity Reveals a Critical Role for Xanthophylls in Photosystem I Biogenesis[C][W

    PubMed Central

    Dall’Osto, Luca; Piques, Maria; Ronzani, Michela; Molesini, Barbara; Alboresi, Alessandro; Cazzaniga, Stefano; Bassi, Roberto

    2013-01-01

    Carotenes, and their oxygenated derivatives xanthophylls, are essential components of the photosynthetic apparatus. They contribute to the assembly of photosynthetic complexes and participate in light absorption and chloroplast photoprotection. Here, we studied the role of xanthophylls, as distinct from that of carotenes, by characterizing a no xanthophylls (nox) mutant of Arabidopsis thaliana, which was obtained by combining mutations targeting the four carotenoid hydroxylase genes. nox plants retained α- and β-carotenes but were devoid in xanthophylls. The phenotype included depletion of light-harvesting complex (LHC) subunits and impairment of nonphotochemical quenching, two effects consistent with the location of xanthophylls in photosystem II antenna, but also a decreased efficiency of photosynthetic electron transfer, photosensitivity, and lethality in soil. Biochemical analysis revealed that the nox mutant was specifically depleted in photosystem I function due to a severe deficiency in PsaA/B subunits. While the stationary level of psaA/B transcripts showed no major differences between genotypes, the stability of newly synthesized PsaA/B proteins was decreased and translation of psaA/B mRNA was impaired in nox with respect to wild-type plants. We conclude that xanthophylls, besides their role in photoprotection and LHC assembly, are also needed for photosystem I core translation and stability, thus making these compounds indispensable for autotrophic growth. PMID:23396829

  7. Drosophila mutants of the autism candidate gene neurobeachin (rugose) exhibit neuro-developmental disorders, aberrant synaptic properties, altered locomotion, impaired adult social behavior and activity patterns

    PubMed Central

    Wise, Alexandra; Tenezaca, Luis; Fernandez, Robert W.; Schatoff, Emma; Flores, Julian; Ueda, Atsushi; Zhong, Xiaotian; Wu, Chun-Fang; Simon, Anne F.; Venkatesh, Tadmiri

    2016-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder in humans characterized by complex behavioral deficits, including intellectual disability, impaired social interactions and hyperactivity. ASD exhibits a strong genetic component with underlying multi-gene interactions. Candidate gene studies have shown that the neurobeachin gene is disrupted in human patients with idiopathic autism (Castermans et al., 2003). The gene for neurobeachin (NBEA) spans the common fragile site FRA 13A and encodes a signal scaffold protein (Savelyeva et al., 2006). In mice, NBEA has been shown to be involved in the trafficking and function of a specific subset of synaptic vesicles. (Medrihan et al., 2009; Savelyeva, Sagulenko, Schmitt, & Schwab, 2006). rugose (rg) is the Drosophila homologue of the mammalian and human neurobeachin. Our previous genetic and molecular analyses have shown that rg encodes an A kinase anchor protein (DAKAP 550), which interacts with components of the EGFR and Notch mediated signaling pathways, facilitating cross-talk between these and other pathways (Shamloula et al., 2002). We now present functional data from studies on the larval neuromuscular junction that reveal abnormal synaptic architecture and physiology. In addition, adult rg loss-of-function mutants exhibit defective social interactions, impaired habituation, aberrant locomotion and hyperactivity. These results demonstrate that Drosophila neurobeachin (rugose) mutants exhibit phenotypic characteristics reminiscent of human ASD and thus could serve as a genetic model for studying autism spectrum disorders. PMID:26100104

  8. The zebrafish early arrest mutants.

    PubMed

    Kane, D A; Maischein, H M; Brand, M; van Eeden, F J; Furutani-Seiki, M; Granato, M; Haffter, P; Hammerschmidt, M; Heisenberg, C P; Jiang, Y J; Kelsh, R N; Mullins, M C; Odenthal, J; Warga, R M; Nüsslein-Volhard, C

    1996-12-01

    This report describes mutants of the zebrafish having phenotypes causing a general arrest in early morphogenesis. These mutants identify a group of loci making up about 20% of the loci identified by mutants with visible morphological phenotypes within the first day of development. There are 12 Class I mutants, which fall into 5 complementation groups and have cells that lyse before morphological defects are observed. Mutants at three loci, speed bump, ogre and zombie, display abnormal nuclei. The 8 Class II mutants, which fall into 6 complementation groups, arrest development before cell lysis is observed. These mutants seemingly stop development in the late segmentation stages, and maintain a body shape similar to a 20 hour embryo. Mutations in speed bump, ogre, zombie, specter, poltergeist and troll were tested for cell lethality by transplanting mutant cells into wild-type hosts. With poltergeist, transplanted mutant cells all survive. The remainder of the mutants tested were autonomously but conditionally lethal: mutant cells, most of which lyse, sometimes survive to become notochord, muscles, or, in rare cases, large neurons, all cell types which become postmitotic in the gastrula. Some of the genes of the early arrest group may be necessary for progression though the cell cycle; if so, the survival of early differentiating cells may be based on having their terminal mitosis before the zygotic requirement for these genes. PMID:9007229

  9. Novel mutation of the CYP17 gene in two unrelated patients with combined 17alpha-hydroxylase/17,20-lyase deficiency: demonstration of absent enzyme activity by expressing the mutant CYP17 gene and by three-dimensional modeling.

    PubMed

    Patocs, Attila; Liko, István; Varga, Ibolya; Gergics, Peter; Boros, Andras; Futo, Laszlo; Kun, Imre; Bertalan, Rita; Toth, Szilvia; Pazmany, Tamas; Toth, Miklós; Szücs, Nikolette; Horanyi, Janos; Glaz, Edit; Racz, Karoly

    2005-11-01

    The CYP17 gene, located on chromosome 10q24-q25, encodes the cytochrome P450c17 enzyme. Mutations of this gene cause the 17alpha-hydroxylase/17,20-lyase deficiency, which is a rare, autosomal recessive form of congenital adrenal hyperplasia. Approximately 50 different mutations of the CYP17 gene have been described, of which some mutations have been identified in certain ethnic groups. In this study, we present the clinical history, hormonal findings and mutational analysis of two patients from unrelated families, who were evaluated for hypertension, hypokalemia and sexual infantilism. In the first patient, who was a 37-year-old female, additional studies showed a large myelolipoma in the left adrenal gland, and a smaller tumor in the right adrenal gland. In the second patient, who was a 31-year-old phenotypic female, clinical work-up revealed a 46,XY kariotype, absence of ovaries and presence of testes located in the inner opening of both inguinal canals. Analysis of the CYP17 gene by polymerase chain reaction amplification and direct sequencing demonstrated a novel homozygous mutation of codon 440 from CGC (Arg) to TGC (Cys) in both patients. The effect of this novel mutation on 17alpha-hydroxylase/17,20-lyase activity was assessed by in vitro studies on the mutant and wild-type P450c17 generated by site-directed mutagenesis and transfected in nonsteroidogenic COS-1 cells. These studies showed that the mutant P450c17 protein was produced in transfected COS-1 cells, but it had negligible 17alpha-hydroxylase and 17,20-lyase activities. In addition, three-dimensional computerized modeling of the heme-binding site of the P450c17 enzyme indicated that replacement of Arg by Cys at amino acid position 440 predicts a loss of the catalytic activity of the enzyme, as the mutant enzyme containing Cys440 fails to form a hydrogen bond with the propionate group of heme, which renders the mutant enzyme unable to stabilize the proper position of heme. Based on these findings we

  10. ⁵¹V NMR Crystallography of Vanadium Chloroperoxidase and Its Directed Evolution P395D/L241V/T343A Mutant: Protonation Environments of the Active Site.

    PubMed

    Gupta, Rupal; Hou, Guangjin; Renirie, Rokus; Wever, Ron; Polenova, Tatyana

    2015-04-29

    Vanadium-dependent haloperoxidases (VHPOs) perform two-electron oxidation of halides using hydrogen peroxide. Their mechanism, including the factors determining the substrate specificity and the pH-dependence of the catalytic rates, is poorly understood. The vanadate cofactor in the active site of VHPOs contains "spectroscopically silent" V(V), which does not change oxidation state during the reaction. We employed an NMR crystallography approach based on (51)V magic angle spinning NMR spectroscopy and Density Functional Theory, to gain insights into the structure and coordination environment of the cofactor in the resting state of vanadium-dependent chloroperoxidases (VCPO). The cofactor environments in the wild-type VCPO and its P395D/L241V/T343A mutant exhibiting 5-100-fold improved catalytic activity are examined at various pH values. Optimal sensitivity attained due to the fast MAS probe technologies enabled the assignment of the location and number of protons on the vanadate as a function of pH. The vanadate cofactor changes its protonation from quadruply protonated at pH 6.3 to triply protonated at pH 7.3 to doubly protonated at pH 8.3. In contrast, in the mutant, the vanadate protonation is the same at pH 5.0 and 8.3, and the cofactor is doubly protonated. This methodology to identify the distinct protonation environments of the cofactor, which are also pH-dependent, could help explain the different reactivities of the wild-type and mutant VCPO and their pH-dependence. This study demonstrates that (51)V-based NMR crystallography can be used to derive the detailed coordination environments of vanadium centers in large biological molecules.

  11. Decreased-activity mutants of phosphoglucose isomerase in the cytosol and chloroplast of Clarkia xantiana. Impact on mass-action ratios and fluxes to sucrose and starch, and estimation of Flux Control Coefficients and Elasticity Coefficients.

    PubMed Central

    Kruckeberg, A L; Neuhaus, H E; Feil, R; Gottlieb, L D; Stitt, M

    1989-01-01

    1. Subcellular-compartment-specific decreased-activity mutants of phosphoglucose isomerase in Clarkia xantiana were used to analyse the control of sucrose and starch synthesis during photosynthesis. Mutants were available in which the plastid phosphoglucose isomerase complement is decreased to 75% or 50% of the wild-type level, and the cytosol complement to 64%, 36% or 18% of the wild-type level. 2. The effects on the [product]/[substrate] ratio and on fluxes to sucrose or starch and the rate of photosynthesis were studied with the use of saturating or limiting light intensity to impose a high or low flux through these pathways. 3. Removal of a small fraction of either phosphoglucose isomerase leads to a significant shift of the [product]/[substrate] ratio away, from equilibrium. We conclude that there is no 'excess' of enzyme over that needed to maintain its reactants reasonably close to equilibrium. 4. Decreased phosphoglucose isomerase activity can also alter the fluxes to starch or sucrose. However, the effect on flux does not correlate with the extent of disequilibrium, and also varies depending on the subcellular compartment and on the conditions. 5. The results were used to estimate Flux Control Coefficients for the chloroplast and cytosolic phosphoglucose isomerases. The chloroplast isoenzyme exerts control on the rate of starch synthesis and on photosynthesis in saturating light intensity and CO2, but not at low light intensity. The cytosolic enzyme only exerts significant control when its complement is decreased 3-5-fold, and differs from the plastid isoenzyme in exerting more control in low light intensity. It has a positive Control Coefficient for sucrose synthesis, and a negative Control Coefficient for starch synthesis. 6. The Elasticity Coefficients in vivo of the cytosolic phosphoglucose isomerase were estimated to lie between 5 and 8 in the wild-type. They decrease in mutants with a lowered complement of cytosolic phosphoglucose isomerase. 7. The

  12. Repeated Administration of a Mutant Cocaine Esterase: Effects on Plasma Cocaine Levels, Cocaine-Induced Cardiovascular Activity, and Immune Responses in Rhesus Monkeys

    PubMed Central

    Collins, Gregory T.; Brim, Remy L.; Noon, Kathleen R.; Narasimhan, Diwahar; Lukacs, Nicholas W.; Sunahara, Roger K.; Woods, James H.

    2012-01-01

    Previous studies have demonstrated the capacity of a long-acting mutant form of a naturally occurring bacterial double mutant cocaine esterase (DM CocE) to antagonize the reinforcing, discriminative, convulsant, and lethal effects of cocaine in rodents and reverse the increases in mean arterial pressure (MAP) and heart rate (HR) produced by cocaine in rhesus monkeys. This study was aimed at characterizing the immunologic responses to repeated dosing with DM CocE and determining whether the development of anti-CocE antibodies altered the capacity of DM CocE to reduce plasma cocaine levels and ameliorate the cardiovascular effects of cocaine in rhesus monkeys. Under control conditions, intravenous administration of cocaine (3 mg/kg) resulted in a rapid increase in the plasma concentration of cocaine (n = 2) and long-lasting increases in MAP and HR (n = 3). Administration of DM CocE (0.32 mg/kg i.v.) 10 min after cocaine resulted in a rapid hydrolysis of cocaine with plasma levels below detection limits within 5 to 8 min. Elevations in MAP and HR were significantly reduced within 25 and 50 min of DM CocE administration, respectively. Although slight (10-fold) increases in anti-CocE antibodies were observed after the fourth administration of DM CocE, these antibodies did not alter the capacity of DM CocE to reduce plasma cocaine levels or ameliorate cocaine's cardiovascular effects. Anti-CocE titers were transient and generally dissipated within 8 weeks. Together, these results suggest that highly efficient cocaine esterases, such as DM CocE, may provide a novel and effective therapeutic for the treatment of acute cocaine intoxication in humans. PMID:22518021

  13. [Study on a human tissue-type plasminogen activator mutant cDNA knocked-in the beta-casein gene site of murine ES cells].

    PubMed

    Lin, Fu-Yu; Yang, Xiao; Deng, Ji-Xian; Chen, Hong-Xing; Huang, Pei-Tango

    2004-06-01

    A murine beta-casein gene targeting vector was constructed using the cloned genomic sequence. The short arm was 2.7 kb including mouse beta-casein gene 5' flanking sequence, exon1, intron1 and partial exon2. The long arm is a 3.4 kb fragment including partial intron2, exon3 approximately 7, intron3 approximately 6 and partial intron7. The human t-PA mutant cDNA was subcloned in the exon2 and fused with the mice beta-casein signal peptide sequence. The positive selective marker neo was placed in the middle of intron2. A tk negative selective marker was just outside the short arm. TC-1 ES cells were cultured and amplified on G418 resistant feeder layer. The linearized targeting construct DNAs of 45 microg were introduced into 2 x 10(7) ES cells by electroporation. Totally 192 ES clones were picked up after cultured in G418 and Gancyclovir for 7 days. The colonies were amplified and subjected to genomic DNA preparation. The genomic DNAs were digested with EcoR I and used for Southern blot analysis. A probe inside the 5' homologous arm was used for hybridization. A 9.8 kb band was found in wild type, but the band was shift down from 9.8 kb to 6.6 kb in the beta-casein gene targeted allele because a new EcoR I site was introduced into the exon2 along with the human t-PA mutant gene. There were 9.8 kb and 6.6 kb bands in targeted ES cells. One clone of targeted ES cells with correct homologous recombination events was obtained among 78 analyzed clones. It lays foundation for gene targeted mice making.

  14. Repeated administration of a mutant cocaine esterase: effects on plasma cocaine levels, cocaine-induced cardiovascular activity, and immune responses in rhesus monkeys.

    PubMed

    Collins, Gregory T; Brim, Remy L; Noon, Kathleen R; Narasimhan, Diwahar; Lukacs, Nicholas W; Sunahara, Roger K; Woods, James H; Ko, Mei-Chuan

    2012-07-01

    Previous studies have demonstrated the capacity of a long-acting mutant form of a naturally occurring bacterial double mutant cocaine esterase (DM CocE) to antagonize the reinforcing, discriminative, convulsant, and lethal effects of cocaine in rodents and reverse the increases in mean arterial pressure (MAP) and heart rate (HR) produced by cocaine in rhesus monkeys. This study was aimed at characterizing the immunologic responses to repeated dosing with DM CocE and determining whether the development of anti-CocE antibodies altered the capacity of DM CocE to reduce plasma cocaine levels and ameliorate the cardiovascular effects of cocaine in rhesus monkeys. Under control conditions, intravenous administration of cocaine (3 mg/kg) resulted in a rapid increase in the plasma concentration of cocaine (n = 2) and long-lasting increases in MAP and HR (n = 3). Administration of DM CocE (0.32 mg/kg i.v.) 10 min after cocaine resulted in a rapid hydrolysis of cocaine with plasma levels below detection limits within 5 to 8 min. Elevations in MAP and HR were significantly reduced within 25 and 50 min of DM CocE administration, respectively. Although slight (10-fold) increases in anti-CocE antibodies were observed after the fourth administration of DM CocE, these antibodies did not alter the capacity of DM CocE to reduce plasma cocaine levels or ameliorate cocaine's cardiovascular effects. Anti-CocE titers were transient and generally dissipated within 8 weeks. Together, these results suggest that highly efficient cocaine esterases, such as DM CocE, may provide a novel and effective therapeutic for the treatment of acute cocaine intoxication in humans. PMID:22518021

  15. Ethanol production using engineered mutant E. coli

    DOEpatents

    Ingram, Lonnie O.; Clark, David P.

    1991-01-01

    The subject invention concerns novel means and materials for producing ethanol as a fermentation product. Mutant E. coli are transformed with a gene coding for pyruvate decarboxylase activity. The resulting system is capable of producing relatively large amounts of ethanol from a variety of biomass sources.

  16. Mutants of Downy Mildew Resistance in Lactuca Sativa (Lettuce)

    PubMed Central

    Okubara, P. A.; Anderson, P. A.; Ochoa, O. E.; Michelmore, R. W.

    1994-01-01

    As part of our investigation of disease resistance in lettuce, we generated mutants that have lost resistance to Bremia lactucae, the casual fungus of downy mildew. Using a rapid and reliable screen, we identified 16 distinct mutants of Latuca sativa that have lost activity of one of four different downy mildew resistance genes (Dm). In all mutants, only a single Dm specificity was affected. Genetic analysis indicated that the lesions segregated as single, recessive mutations at the Dm loci. Dm3 was inactivated in nine of the mutants. One of five Dm1 mutants was selected from a population of untreated seeds and therefore carried a spontaneous mutation. All other Dm1, Dm3, Dm5/8 and Dm7 mutants were derived from γ- or fast neutron-irradiated seed. In two separate Dm1 mutants and in each of the eight Dm3 mutants analyzed, at least one closely linked molecular marker was absent. Also, high molecular weight genomic DNA fragments that hybridized to a tightly linked molecular marker in wild type were either missing entirely or were truncated in two of the Dm3 mutants, providing additional evidence that deletions had occurred in these mutants. Absence of mutations at loci epistatic to the Dm genes suggested that such loci were either members of multigene families, were critical for plant survival, or encoded components of duplicated pathways for resistance; alternatively, the genes determining downy mildew resistance might be limited to the Dm loci. PMID:8088530

  17. Interleukin 1 (IL-1) type I receptors mediate activation of rat hypothalamus-pituitary-adrenal axis and interleukin 6 production as shown by receptor type selective deletion mutants of IL-1beta.

    PubMed

    Van Dam, A M; Malinowsky, D; Lenczowski, M J; Bartfai, T; Tilders, F J

    1998-06-01

    The cytokine interleukin 1 (IL-1) plays an important role in the activation of the hypothalamus-pituary-adrenal (HPA)-axis and interleukin 6 (IL-6) production during infection or inflammation. Which of the interleukin-1 receptor types mediates these effects is not known. To investigate this issue a pharmacological approach was chosen by using recently developed IL-1 receptor type selective ligands. Rats were given one of various doses of recombinant human IL-1beta (rhIL-1beta; 1 and 10 microg/kg) and of several IL-1beta mutants (DeltaSND, DeltaQGE and DeltaI; 1, 10 and 100 microg/kg), that differ in their affinities for the IL-1 type I receptor but have similar affinities for the IL-1 type II receptor. One hour after intravenous administration of rhIL-1beta or IL-1beta mutants, plasma levels of ACTH, corticosterone (cort) and IL-6 were measured. Doses of 1 and 10 microg/kg rhIL-1beta markedly elevated plasma levels of ACTH, cort and IL-6. However, 10-100-fold higher doses of IL-1beta mutants DeltaSND and DeltaQGE and at least 100-fold higher doses of DeltaI have to be administered to increase plasma levels of ACTH, cort and IL-6. The potency differences correlate with their respective affinity for the type I receptor but not with that of the IL-1 type II receptor. It is concluded that IL-1beta induced ACTH, cort and IL-6 production is mediated by interleukin 1 type I receptors.

  18. Transcriptional Profiling of ParA and ParB Mutants in Actively Dividing Cells of an Opportunistic Human Pathogen Pseudomonas aeruginosa

    PubMed Central

    Bartosik, Aneta A.; Glabski, Krzysztof; Jecz, Paulina; Mikulska, Sylwia; Fogtman, Anna; Koblowska, Marta; Jagura-Burdzy, Grazyna

    2014-01-01

    Accurate chromosome segregation to progeny cells is a fundamental process ensuring proper inheritance of genetic material. In bacteria with simple cell cycle, chromosome segregation follows replication initiation since duplicated oriC domains start segregating to opposite halves of the cell soon after they are made. ParA and ParB proteins together with specific DNA sequences are parts of the segregation machinery. ParA and ParB proteins in Pseudomonas aeruginosa are important for optimal growth, nucleoid segregation, cell division and motility. Comparative transcriptome analysis of parAnull and parBnull mutants versus parental P. aeruginosa PAO1161 strain demonstrated global changes in gene expression pattern in logarithmically growing planktonic cultures. The set of genes similarly affected in both mutant strains is designated Par regulon and comprises 536 genes. The Par regulon includes genes controlled by two sigma factors (RpoN and PvdS) as well as known and putative transcriptional regulators. In the absence of Par proteins, a large number of genes from RpoS regulon is induced, reflecting the need for slowing down the cell growth rate and decelerating the metabolic processes. Changes in the expression profiles of genes involved in c-di-GMP turnover point out the role of this effector in such signal transmission. Microarray data for chosen genes were confirmed by RT-qPCR analysis. The promoter regions of selected genes were cloned upstream of the promoter-less lacZ gene and analyzed in the heterologous host E. coliΔlac. Regulation by ParA and ParB of P. aeruginosa was confirmed for some of the tested promoters. Our data demonstrate that ParA and ParB besides their role in accurate chromosome segregation may act as modulators of genes expression. Directly or indirectly, Par proteins are part of the wider regulatory network in P. aeruginosa linking the process of chromosome segregation with the cell growth, division and motility. PMID:24498062

  19. Sn-mediated Ge/Ge(001) growth by low-temperature molecular-beam epitaxy: Surface smoothening and enhanced epitaxial thickness

    SciTech Connect

    Bratland, K.A.; Foo, Y.L.; Spila, T.; Seo, H.-S.; Haasch, R.T.; Desjardins, P.; Greene, J.E.

    2005-02-15

    Fully strained single-crystal metastable Ge{sub 1-x}Sn{sub x} layers were grown on Ge(001) in order to probe the role of Sn dopant and alloy concentrations (C{sub Sn}=1x10{sup 18} cm{sup -3} to 6.1 at. %) on surface roughening pathways leading to epitaxial breakdown during low-temperature (155 deg. C) molecular-beam epitaxy of compressively strained films. The addition of Sn was found to mediate Ge(001) surface morphological evolution through two competing pathways. At very low Sn concentrations (x < or approx. 0.02), the dominant effect is a Sn-induced enhancement in both the Ge surface diffusivity and the probability of interlayer mass transport. This, in turn, results in more efficient filling of interisland trenches, an