Science.gov

Sample records for active solar cooling

  1. Annual DOE Active Solar Heating and Cooling Contractors Review meeting

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Ninety three project summaries dicussing the following aspects of active solar heating and cooling are presented: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology.

  2. Preliminary design activities for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information on the development of solar heating and cooling systems is presented. The major emphasis is placed on program organization, system size definition, site identification, system approaches, heat pump and equipment design, collector procurement, and other preliminary design activities.

  3. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    SciTech Connect

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  4. Active solar heating and cooling information user study

    SciTech Connect

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-01-01

    The results of a series of telephone interviews with groups of users of information on active solar heating and cooling (SHAC). An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from 19 SHAC groups respondents are analyzed in this report: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Manufacturers (4 groups), Distributors, Installers, Architects, Builders, Planners, Engineers (2 groups), Representatives of Utilities, Educators, Cooperative Extension Service County Agents, Building Owners/Managers, and Homeowners (2 groups). The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  5. Performance of active solar space-cooling systems: The 1980 cooling season

    NASA Astrophysics Data System (ADS)

    Blum, D.; Frock, S.; Logee, T.; Missal, D.; Wetzel, P.

    1980-12-01

    Solar cooling by an absorption chiller is not a cost effective method to use solar heat. This statement is substantiated by careful analysis of each subsystem and equipment component. Good designs and operating procedures are identified. The problems which reduce cost effectiveness are pointed out. There are specific suggestions for improvements. Finally, there is a comparison of solar cooling by absorption chilling and using photovoltaic cells.

  6. Development and testing of heat transport fluids for use in active solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    Parker, J. C.

    1981-01-01

    Work on heat transport fluids for use with active solar heating and cooling systems is described. Program objectives and how they were accomplished including problems encountered during testing are discussed.

  7. Cool Earth Solar

    ScienceCinema

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2014-02-26

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  8. Solar heating and cooling

    NASA Technical Reports Server (NTRS)

    Bartera, R. E.

    1978-01-01

    To emphasize energy conservation and low cost energy, the systems of solar heating and cooling are analyzed and compared with fossil fuel systems. The application of solar heating and cooling systems for industrial and domestic use are discussed. Topics of discussion include: solar collectors; space heating; pools and spas; domestic hot water; industrial heat less than 200 F; space cooling; industrial steam; and initial systems cost. A question and answer period is generated which closes out the discussion.

  9. Development and testing of thermal-energy-storage modules for use in active solar heating and cooling systems. Final report

    SciTech Connect

    Parker, J.C.

    1981-04-01

    Additional development work on thermal-energy-storage modules for use with active solar heating and cooling systems is summarized. Performance testing, problems, and recommendations are discussed. Installation, operation, and maintenance instructions are included. (MHR)

  10. Methodology to determine cost and performance goals for active solar cooling systems

    NASA Astrophysics Data System (ADS)

    Warren, M. L.; Wahlig, M.

    1981-11-01

    Systems analysis is used to calculate the 20 yr. present value of energy savings of solar cooling systems located in Texas, Arizona, Florida, and Washington, DC, and methods of solar system development to meet the cost goals of economic operation are outlined. Solar cooling systems are projected to begin commercial entry in 1986 and reach 20% of the total cooling market by the year 2000, producing 0.14 quads of displaced energy. A numerical simulation was carried out for both residential and commercial solar cooling units with consideration for system cost goals, cost goals per unit collector area, and the cost goals per ton of cooling. System size was targeted as a 3 ton residential chiller and a 25 ton commercial absorption cooling unit. The costs for volume production are provided, along with trends for an incrementally decreasing need for tax incentives, ending in about 1994

  11. Performance evaluation of an active solar cooling system utilizing low cost plastic collectors and an evaporatively-cooled absorption chiller

    NASA Astrophysics Data System (ADS)

    Lof, G. O.; Westhoff, M. A.; Karaki, S.

    1984-02-01

    During the summer of 1982, air conditioning in Solar House 3 at Colorado State University was provided by an evaporatively-cooled absorption chiller. The single-effect lithium bromide chiller is an experimental three-ton unit from which heat is rejected by direct evaporative cooling of the condenser and absorber walls, thereby eliminating the need for a separate cooling tower. Domestic hot water was also provided by use of a double-walled heat exchanger and 80-gal hot water tank. A schematic of the system is given. Objectives of the project were: (1) evaluation of system performance over the course of one cooling season in Fort Collins, Colorado; (2) optimization of system operation and control; (3) development of a TRNSYS compatible model of the chiller; and (4) determination of cooling system performance in several U.S. climates by use of the model.

  12. Upgrading the Solar-Stellar Connection: News about activity in Cool Stars

    NASA Astrophysics Data System (ADS)

    Gunther, H. M.; Poppenhaeger, K.; Testa, P.; Borgniet, S.; Brun, A. S.; Cegla, H. M.; Garraffo, C.; Kowalski, A.; Shapiro, A.; Shkolnik, E.; Spada, F.; Vidotto, A. A.

    2015-01-01

    In this splinter session, ten speakers presented results on solar and stellar activity and how the two fields are connected. This was followed by a lively discussion and supplemented by short, one-minute highlight talks. The talks presented new theoretical and observational results on mass accretion on the Sun, the activity rate of flare stars, the evolution of the stellar magnetic field on time scales of a single cycle and over the lifetime of a star, and two different approaches to model the radial-velocity jitter in cool stars that is due to the granulation on the surface. Talks and discussion showed how much the interpretation of stellar activity data relies on the sun and how the large number of objects available in stellar studies can extend the parameter range of activity models.

  13. Elemental abundances in atmospheres of cool dwarfs with solar-like activity

    NASA Astrophysics Data System (ADS)

    Antipova, L. I.; Boyarchuk, A. A.

    2016-01-01

    The elemental abundances in the atmosphere of the red dwarf HD 32147, which belongs to the HR 1614 moving groups, are analyzed. The atmospheric parameters determined from spectroscopic data (the condition of equal abundances for neutral and ionized atoms of a given element) differ considerably from those derived from photometry and parallax data. The abundances of several elements are also anomalous, with the anomaly increasing with decreasing ionization potential. It is concluded that this star is a red dwarf displaying solar-like activity; i.e., having dark (cool) spots on its surface, which may sometimes be considerable in size. Modeling synthetic spectra of stars with cool spots on their surfaces, with the spectral lines consisting of two components formed in media with different temperatures, indicate that the spectroscopic atmospheric parameters derived in such cases are incorrect; this can also explain the observed dependence of the elemental abundances on the corresponding ionization potentials. This leads to the conclusion thatHD32147 is indeed a star with solar-like activity. Several other such stars considered as examples display the same anomalies as those of HD 32147. These modeling results are also valid for Ap and Am stars, and are able to explain short-wavelength observations of the Sun and some stars (the FIP effect).

  14. Terrestrial cooling and solar variability

    NASA Technical Reports Server (NTRS)

    Agee, E. M.

    1982-01-01

    Observational evidence from surface temperature records is presented and discussed which suggests a significant cooling trend over the Northern Hemisphere from 1940 to the present. This cooling trend is associated with an increase of the latitudinal gradient of temperature and the lapse rate, as predicted by climate models with decreased solar input and feedback mechanisms. Evidence suggests that four of these 80- to 100-year cycles of global surface temperature fluctuation may have occurred, and in succession, from 1600 to the present. Interpretation of sunspot activity were used to infer a direct thermal response of terrestrial temperature to solar variability on the time scale of the Gleissberg cycle (90 years, an amplitude of the 11-year cycles). A physical link between the sunspot activity and the solar parameter is hypothesized. Observations of sensible heat flux by stationary planetary waves and transient eddies, as well as general circulation modeling results of these processes, were examined from the viewpoint of the hypothesis of cooling due to reduced insolation.

  15. Solar Heating and Cooling

    ERIC Educational Resources Information Center

    Duffie, John A.; Beckman, William A.

    1976-01-01

    Describes recent research that has made solar energy economically competitive with other energy sources. Includes solar energy building architecture, storage systems, and economic production data. (MLH)

  16. Program plan for reliability and maintainability in active solar heating and cooling systems

    SciTech Connect

    Not Available

    1980-10-01

    This document presents a plan for the Department of Energy, Office of Solar Applications for Buildings program addressing reliability and maintainability (R and M) of active solar energy systems. The goal of the R and M program is to accelerate the removal of reliability and maintainability as major concerns impeding the widespread adoption of solar energy systems. Specific objectives that support that goal are as follows: (1) provide all groups that have solar R and M concerns with the information that is available to the program and that can assist in alleviating those concerns; (2) assist the solar energy industry in improving levels of R and M performance in state-of-the-art solar energy systems, components, and materials; (3) assist in the early development of a viable infrastructure for the design, manufacture, installation, and maintenance of reliable, maintainable, and durable solar energy systems; (4) assist in the development of appropriate standards, code provisions, and certification programs relating to the R and M performance of solar energy systems, components, and materials; and (5) develop the information required to support the other activities within the R and M program. These objectives correspond to five areas of action: regulations, research and development, technology transfer, solar industry infrastructure development, and data collection and analysis. (WHK)

  17. Experiences in solar cooling systems

    NASA Astrophysics Data System (ADS)

    Ward, D. S.

    The results of performance evaluations for nine solar cooling systems are presented, and reasons fow low or high net energy balances are discussed. Six of the nine systems are noted to have performed unfavorably compared to standard cooling systems due to thermal storage losses, excessive system electrical demands, inappropriate control strategies, poor system-to-load matching, and poor chiller performance. A reduction in heat losses in one residential unit increased the total system efficiency by 2.5%, while eliminating heat losses to the building interior increased the efficiency by 3.3%. The best system incorporated a lithium bromide absorption chiller and a Rankine cycle compression unit for a commercial application. Improvements in the cooling tower and fan configurations to increase the solar cooling system efficiency are indicated. Best performances are expected to occur in climates inducing high annual cooling loads.

  18. Solar-powered cooling system

    DOEpatents

    Farmer, Joseph C

    2013-12-24

    A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

  19. Spectroscopic study of a dark lane and a cool loop in a solar limb active region by Hinode/EIS

    SciTech Connect

    Lee, Kyoung-Sun; Imada, S.; Moon, Y.-J.; Lee, Jin-Yi

    2014-01-10

    We investigated a cool loop and a dark lane over a limb active region on 2007 March 14 using the Hinode/EUV Imaging Spectrometer. The cool loop is clearly seen in the spectral lines formed at the transition region temperature. The dark lane is characterized by an elongated faint structure in the coronal spectral lines and is rooted on a bright point. We examined their electron densities, Doppler velocities, and nonthermal velocities as a function of distance from the limb. We derived electron densities using the density sensitive line pairs of Mg VII, Si X, Fe XII, Fe XIII, and Fe XIV spectra. We also compared the observed density scale heights with the calculated scale heights from each peak formation temperatures of the spectral lines under the hydrostatic equilibrium. We noted that the observed density scale heights of the cool loop are consistent with the calculated heights, with the exception of one observed cooler temperature; we also found that the observed scale heights of the dark lane are much lower than their calculated scale heights. The nonthermal velocity in the cool loop slightly decreases along the loop, while nonthermal velocity in the dark lane sharply falls off with height. Such a decrease in the nonthermal velocity may be explained by wave damping near the solar surface or by turbulence due to magnetic reconnection near the bright point.

  20. Large-Scale Coronal Heating from "Cool" Activity in the Solar Magnetic Network

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.

    1999-01-01

    In Fe XII images from SOHO/EIT, the quiet solar corona shows structure on scales ranging from sub-supergranular (i.e., bright points and coronal network) to multi-supergranular (large-scale corona). In Falconer et al 1998 (Ap.J., 501, 386) we suppressed the large-scale background and found that the network-scale features are predominantly rooted in the magnetic network lanes at the boundaries of the supergranules. Taken together, the coronal network emission and bright point emission are only about 5% of the entire quiet solar coronal Fe XII emission. Here we investigate the relationship between the large-scale corona and the network as seen in three different EIT filters (He II, Fe IX-X, and Fe XII). Using the median-brightness contour, we divide the large-scale Fe XII corona into dim and bright halves, and find that the bright-half/dim half brightness ratio is about 1.5. We also find that the bright half relative to the dim half has 10 times greater total bright point Fe XII emission, 3 times greater Fe XII network emission, 2 times greater Fe IX-X network emission, 1.3 times greater He II network emission, and has 1.5 times more magnetic flux. Also, the cooler network (He II) radiates an order of magnitude more energy than the hotter coronal network (Fe IX-X, and Fe XII). From these results we infer that: 1) The heating of the network and the heating of the large-scale corona each increase roughly linearly with the underlying magnetic flux. 2) The production of network coronal bright points and heating of the coronal network each increase nonlinearly with the magnetic flux. 3) The heating of the large-scale corona is driven by widespread cooler network activity rather than by the exceptional network activity that produces the network coronal bright points and the coronal network. 4) The large-scale corona is heated by a nonthermal process since the driver of its heating is cooler than it is. This work was funded by the Solar Physics Branch of NASA's office of

  1. Early developments in solar cooling equipment

    NASA Technical Reports Server (NTRS)

    Price, J. M.

    1978-01-01

    A brief description of a development program to design, fabricate and field test a series of solar operated or driven cooling devices, undertaken by the Marshall Space Flight Center in the context of the Solar Heating and Cooling Demonstration Act of 1974, is presented. Attention is given to two basic design concepts: the Rankine cycle principle and the use of a dessicant for cooling.

  2. Solar heating and cooling buildings

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Sunshine is available in differing amounts everywhere in the world and the easiest method of capturing it is by absorption in the form of thermal energy (heat). Therefore, it is logical to utilize it directly in the heating and cooling of buildings and avoid losses that would occur by conversion to some other form. It may be emphasized that of the total energy consumed annually in the U.S., about 25% is used for heating and cooling in buildings. It is generally agreed that of all the possible widespread uses of solar energy, this application has the highest probability of success in the near term. Although there are significant uncertainties associated with some technological and economic aspects, they do not loom as large as those associated with other potentially significant applications, such as electrical power generation. It may, however, be noted that solar electrical power generation at the building site, or at a centralized station is an excellent long term prospect. Approximately 25 experimental solar heated structures have been built in various parts of the world.

  3. Solar-powered cooling system

    SciTech Connect

    Farmer, Joseph C.

    2015-07-28

    A solar-powered adsorption-desorption refrigeration and air conditioning system that uses nanostructural materials such as aerogels, zeolites, and sol gels as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material while the material is at a relatively low temperature, perhaps at night. During daylight hours, when the nanostructural materials is heated by the sun, the refrigerant are thermally desorbed from the surface of the aerogel, thereby creating a pressurized gas phase in the vessel that contains the aerogel. This solar-driven pressurization forces the heated gaseous refrigerant through a condenser, followed by an expansion valve. In the condenser, heat is removed from the refrigerant, first by circulating air or water. Eventually, the cooled gaseous refrigerant expands isenthalpically through a throttle valve into an evaporator, in a fashion similar to that in more conventional vapor recompression systems.

  4. Advances in Solar Heating and Cooling Systems

    ERIC Educational Resources Information Center

    Ward, Dan S.

    1976-01-01

    Reports on technological advancements in the fields of solar collectors, thermal storage systems, and solar heating and cooling systems. Diagrams aid in the understanding of the thermodynamics of the systems. (CP)

  5. Solar Assisted Adsorptive Desiccant Cooling System

    NASA Astrophysics Data System (ADS)

    Ohkura, Masashi; Kodama, Akio

    Desiccant cooling processes can supply dry air by using lower temperature heat energy such as waste heat or solar heat. Especially, solar heat is useful heat source for the desiccant cooling since solar heat in summer tends to be surplus. This paper discusses the hourly cooling performance of the solar assisted desiccant cooling system, which consists of a desiccant wheel, a thermal wheel, two evaporative coolers, a cooling coil and flat plate solar water heater, assuming that the cooling system is applied to an office room of 250m3 in volume. The estimation indicated that the surface area needed to satisfy the dehumidifying performance in a sunny day was at least 30m2. Furthermore, surface area of 40m2 or larger provided a surplus dehumidifying performance causing a sensible cooling effect in evaporative cooler. Surface area of 30 m2 did not satisfy the dehumidifying performance required for high humidity condition, over 18.0g/kg(DA). The cooling demand of the cooling coil increased in such humidity condition due to the decrease in the sensible cooling effect of evaporative cooler. Auxiliary heater was required in a cloudy day since the temperature of water supplied from solar water heater of 40m2 did not reach sufficient level.

  6. Solar heating and cooling technical data and systems analysis

    NASA Technical Reports Server (NTRS)

    Christensen, D. L.

    1977-01-01

    The research activities described herein were concentrated on the areas of economics, heating and cooling systems, architectural design, materials characteristics, climatic conditions, educational information packages, and evaluation of solar energy systems and components.

  7. Preliminary design package for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Summarized preliminary design information on activities associated with the development, delivery and support of solar heating and cooling systems is given. These systems are for single family dwellings and commercial applications. The heating/cooling system use a reversible vapor compression heat pump that is driven in the cooling mode by a Rankine power loop, and in the heating mode by a variable speed electric motor. The heating/cooling systems differ from the heating-only systems in the arrangement of the heat pump subsystem and the addition of a cooling tower to provide the heat sink for cooling mode operation.

  8. The economics of solar powered absorption cooling

    NASA Technical Reports Server (NTRS)

    Bartlett, J. C.

    1978-01-01

    Analytic procedure evaluates cost of combining absorption-cycle chiller with solar-energy system in residential or commercial application. Procedure assumes that solar-energy system already exists to heat building and that cooling system must be added. Decision is whether to cool building with conventional vapor-compression-cycle chiller or to use solar-energy system to provide heat input to absorption chiller.

  9. Solar heating and cooling of buildings

    NASA Technical Reports Server (NTRS)

    Bourke, R. D.; Davis, E. S.

    1975-01-01

    Solar energy has been used for space heating and water heating for many years. A less common application, although technically feasible, is solar cooling. This paper describes the techniques employed in the heating and cooling of buildings, and in water heating. The potential for solar energy to displace conventional energy sources is discussed. Water heating for new apartments appears to have some features which could make it a place to begin the resurgence of solar energy applications in the United States. A project to investigate apartment solar water heating, currently in the pilot plant construction phase, is described.

  10. Prototype solar heating and cooling systems, including potable hot water

    NASA Technical Reports Server (NTRS)

    Bloomquist, D.; Oonk, R. L.

    1977-01-01

    Progress made in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water is reported. The system consists of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition. A comparison of the proposed Solaron Heat Pump and Solar Desiccant Heating and Cooling Systems, installation drawings, data on the Akron House at Akron, Ohio, and other program activities are included.

  11. Rankine-cycle solar-cooling systems

    NASA Technical Reports Server (NTRS)

    Weathers, H. M.

    1979-01-01

    Report reviews progress made by three contractors to Marshall Space Flight Center and Department of Energy in developing Rankine-cycle machines for solar cooling and testing of commercially available equipment involved.

  12. Prototype solar heating and cooling systems including potable hot water

    NASA Technical Reports Server (NTRS)

    1978-01-01

    These combined quarterly reports summarize the activities from November 1977 through September 1978, and over the progress made in the development, delivery and support of two prototype solar heating and cooling systems including potable hot water. The system consists of the following subsystems: solar collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  13. Solar Heating and Cooling Development Program

    NASA Technical Reports Server (NTRS)

    Aaen, R.; Gossler, A.

    1984-01-01

    Heating is practical now, but cooling needs more development. Report describes program for design and development of solar heating and cooling systems having high performance, low cost and modular application. Describes main technical features of each of systems. Presents summary of performance and costs.

  14. Solar Heating and Cooling: An Economic Assessment.

    ERIC Educational Resources Information Center

    McGarity, Arthur E.

    This study serves as an introduction to the important economic considerations that are necessary for an assessment of the potential for solar heating and cooling in the United States. The first chapter introduces the technology that is used to tap solar energy for residential and commercial applications and illustrates the potential significance…

  15. Preliminary design package for prototype solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A summary is given of the preliminary analysis and design activity on solar heating and cooling systems. The analysis was made without site specific data other than weather; therefore, the results indicate performance expected under these special conditions. Major items include a market analysis, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test. Two heating and six heating and cooling units will be delivered for Single Family Residences, Multiple-family Residences and commercial applications.

  16. Solar heating and cooling: Technical data and systems analysis

    NASA Technical Reports Server (NTRS)

    Christensen, D. L.

    1975-01-01

    The solar energy research is reported including climatic data, architectural data, heating and cooling equipment, thermal loads, and economic data. Lists of data sources presented include: selected data sources for solar energy heating and cooling; bibliography of solar energy, and other energy sources; sources for manufacturing and sales, solar energy collectors; and solar energy heating and cooling projects.

  17. Solar absorption cooling plant in Seville

    SciTech Connect

    Bermejo, Pablo; Pino, Francisco Javier; Rosa, Felipe

    2010-08-15

    A solar/gas cooling plant at the Engineering School of Seville (Spain) was tested during the period 2008-2009. The system is composed of a double-effect LiBr + water absorption chiller of 174 kW nominal cooling capacity, powered by: (1) a pressurized hot water flow delivered by mean of a 352 m{sup 2} solar field of a linear concentrating Fresnel collector and (2) a direct-fired natural gas burner. The objective of the project is to indentify design improvements for future plants and to serve as a guideline. We focused our attention on the solar collector size and dirtiness, climatology, piping heat losses, operation control and coupling between solar collector and chiller. The daily average Fresnel collector efficiency was 0.35 with a maximum of 0.4. The absorption chiller operated with a daily average coefficient of performance of 1.1-1.25, where the solar energy represented the 75% of generator's total heat input, and the solar cooling ratio (quotient between useful cooling and insolation incident on the solar field) was 0.44. (author)

  18. Solar Heating and Cooling of Buildings: Activities of the Private Sector of the Building Community and Its Perceived Needs Relative to Increased Activity.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Committee on Solar Energy in the Heating and Cooling of Buildings.

    This report is essentially a collection of information gathered from a broad cross-section of the building community that provides a description of the state of affairs existing mid-1974 through mid-1975 in the private sector of the building community with regard to solar heating and cooling of buildings. The report additionally contains…

  19. Colorado State University program for developing, testing, evaluating and optimizing solar heating and cooling systems

    NASA Astrophysics Data System (ADS)

    1990-09-01

    This paper is a progress report for the period of July 1, 1990 to 31 August 1990 on activities at Colorado State University in a program for developing, testing, evaluating and optimizing solar heating and cooling systems. Topics covered are: solar heating with isothermal collectors; solid cooling with solid desiccant; liquid desiccant cooling systems; solar heating systems; solar water heaters; fields tests; and program management.

  20. Solar cooling in Madrid: Available solar energy

    SciTech Connect

    Izquierdo, M.; Hernandez, F.; Martin, E. )

    1994-11-01

    This paper analyzes the behaviour of an absorption chiller lithium bromide installation fed by a field of flat-plate solar collectors and condensed by swimming pool water. A method of calculation in a variable regime is developed in terms of the obtained experimental results. Starting from the meteorological variables of a clear summer day and from the project data (collector normalization curve, collector and installation mass), the minimum solar radiation level necessary to initiate the process, I[sub min], and the instantaneous available solar energy, Q[sub u] + W[sub 1] is determined. The solar radiation threshold, I[sub min], necessary to obtain the process temperature, t[sub ave], in each instant, is obtained by adding to the corrected Klein radiation threshold, I[sub k,c], the heat capacity effects of the collector, HCE[sub CO], and of the installation, HCE[sub ins], as well as the losses of heat of the pipes to the surroundings, Q[sub 1]. The instantaneous available solar energy, available useful heat, in addition to the wind collector losses to the surroundings, Q[sub u] + W[sub 1], is the difference, in each instant, between the radiation, I[sub g1T], and the radiation threshold, I[sub min].The integration during the day of the instantaneous available solar energy allows us to calculate the daily available function, H[sub T]. The value of H[sub T], measured in the swimming-pool water condensation installation reached 6.92 MJ/(m[sup 2] day ). The calculated values of H[sub T] for a conventional installation condensed by tower water, or air, have been 6.35 and 0.56 MJ/(m[sup 2] day). respectively.

  1. Residential solar-heating/cooling system

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Report documents progress of residential solar-heating and cooling system development program at 5-month mark of anticipated 17-month program. System design has been completed, and development and component testing has been initiated. Report includes diagrams, operation overview, optimization studies of subcomponents, and marketing plans for system.

  2. Prototype solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A collection of monthly status reports on the development of eight prototype solar heating and cooling systems is presented. The effort calls for the development, manufacture, test, system installation, maintenance, problem resolution, and performance evaluation. The systems are 3, 25, and 75 ton size units.

  3. Prototype solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A collection of monthly status reports are given on the development of eight prototype solar heating and cooling systems. This effort calls for the development, manufacturing, test, system installation, maintenance, problem resolution, and performance evaluation. The systems are 3-, 25-, and 75-ton size units.

  4. Public policy for solar heating and cooling

    NASA Technical Reports Server (NTRS)

    Hirshberg, A. S.

    1976-01-01

    Recent analyses indicated that solar heating and cooling systems for residential buildings are nearly economically competitive with conventional fossil fuel or electric systems, the former having higher initial cost but a lower operating cost than the latter. The paper examines obstacles to the widespread acceptance and use of solar space conditioning systems and explores some general policies which could help to overcome them. The discussion covers such institutional barriers limiting the adoption of solar technologies as existing building codes, financing constraints, and organizational structure of the building industry. The potential impact of financial incentives is analyzed. It is noted that a tax incentive of 25% could speed the use of solar energy by 7 to 8 years and produce an 8% reduction in fossil fuel use by 1990. A preliminary incentive package which could be helpful in promoting solar energy both at federal and state levels is proposed, and the necessary incentive level is analysed.

  5. Solar air-conditioning-active, hybrid and passive

    SciTech Connect

    Yellott, J. I.

    1981-04-01

    After a discussion of summer air conditioning requirements in the United States, active, hybrid, and passive cooling systems are defined. Active processes and systems include absorption, Rankine cycle, and a small variety of miscellaneous systems. The hybrid solar cooling and dehumidification technology of desiccation is covered as well as evaporative cooling. The passive solar cooling processes covered include convective, radiative and evaporative cooling. Federal and state involvement in solar cooling is then discussed. (LEW)

  6. Solar-Cooled Hotel in the Virgin Islands

    NASA Technical Reports Server (NTRS)

    Harber, H.

    1982-01-01

    Performance of solar cooling system is described in 21-page report. System provides cooling for public areas including ball rooms, restaurant, lounge, lobby and shops. Chilled water from solar-cooling system is also used to cool hot water from hotel's desalinization plant.

  7. Solar Assisted Adsorptive Desiccant Cooling System

    NASA Astrophysics Data System (ADS)

    Ohkura, Masashi; Kodama, Akio

    Solar assisted desiccant coo1ing process is an effective means to reduce a latent heat load of the ventilation air. This paper describes the influences of ambient humidity and sensible heat factor (SHF) of the indoor room on the performance and scale of the desiccant cooling system. Two process configurations termed “ambient air mode” and “mixed air mode” were assumed. At “ambient air mode”, only ambient air is dehumidified and cooled in the desiccant process. The dehumidified air stream is mixed with return air and further cooled in the cooling coil. At “mixed air mode”, ambient air is mixed with return air and this mixed air stream is dehumidified in the desiccant process and cooled at the cooling coil. At “ambient air mode”, ambient air humidity had a significant impact on required amount of dehumidification since humid ambient air entered the desiccant process directly. In this case, higher temperature level and quantity, which is impossible to be supplied from commonly commercialized flat panel solar collectors, was required. At “mixed air mode”, the influence of increase of ambient humidity was not significant since humidity of the air entering the desiccant process became low by mixing with return air. At this mode, it was expected that 70°C of the circulating water and 37m2 of surface area of solar collector could produce a sufficient dehumidifying performance even in high latent heat condition. The contributing ratio of the desiccant wheel was also estimated. The ratio increased in higher latent heat condition due to increase of required amount of dehumidification. The contributing ratio of the thermal wheel became lower due to increase of saturated air temperature in the evaporative cooler.

  8. Adiabatic cooling of solar wind electrons

    NASA Technical Reports Server (NTRS)

    Sandbaek, Ornulf; Leer, Egil

    1992-01-01

    In thermally driven winds emanating from regions in the solar corona with base electron densities of n0 not less than 10 exp 8/cu cm, a substantial fraction of the heat conductive flux from the base is transfered into flow energy by the pressure gradient force. The adiabatic cooling of the electrons causes the electron temperature profile to fall off more rapidly than in heat conduction dominated flows. Alfven waves of solar origin, accelerating the basically thermally driven solar wind, lead to an increased mass flux and enhanced adiabatic cooling. The reduction in electron temperature may be significant also in the subsonic region of the flow and lead to a moderate increase of solar wind mass flux with increasing Alfven wave amplitude. In the solar wind model presented here the Alfven wave energy flux per unit mass is larger than that in models where the temperature in the subsonic flow is not reduced by the wave, and consequently the asymptotic flow speed is higher.

  9. Market assessment for active solar heating and cooling products. Category B: a survey of decision-makers in the HVAC marketplace. Final report

    SciTech Connect

    1980-09-01

    A comprehensive evaluation of the market for solar heating and cooling products for new and retrofit markets is reported. The emphasis is on the analysis of solar knowledge among HVAC decision makers and a comprehensive evaluation of their solar attitudes and behavior. The data from each of the following sectors are described and analyzed: residential consumers, organizational and manufacturing buildings, HVAC engineers and architects, builders/developers, and commercial/institutional segments. (MHR)

  10. Market potential for solar heating and cooling in buildings

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The use of solar heating and cooling for buildings as a method of conserving fossil fuels is discussed. The residential and commercial end use consumption of energy is tabulated. A survey to project the energy requirements for home and industry heating and cooling is developed. The survey indicates that there is a market potential for solar heating and cooling of buildings. A prediction of three to five billion dollars per year as the potential for solar heating and cooling is made.

  11. The development of a solar residential heating and cooling system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The MSFC solar heating and cooling facility was assembled to demonstrate the engineering feasibility of utilizing solar energy for heating and cooling buildings, to provide an engineering evaluation of the total system and the key subsystems, and to investigate areas of possible improvement in design and efficiency. The basic solar heating and cooling system utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating, and an absorption cycle air conditioner for space cooling. A complete description of all systems is given. Development activities for this test system included assembly, checkout, operation, modification, and data analysis, all of which are discussed. Selected data analyses for the first 15 weeks of testing are included, findings associated with energy storage and the energy storage system are outlined, and conclusions resulting from test findings are provided. An evaluation of the data for summer operation indicates that the current system is capable of supplying an average of 50 percent of the thermal energy required to drive the air conditioner. Preliminary evaluation of data collected for operation in the heating mode during the winter indicates that nearly 100 percent of the thermal energy required for heating can be supplied by the system.

  12. Solar thermal heating and cooling. A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    Arenson, M.

    1979-01-01

    This bibliographic series cites and abstracts the literature and technical papers on the heating and cooling of buildings with solar thermal energy. Over 650 citations are arranged in the following categories: space heating and cooling systems; space heating and cooling models; building energy conservation; architectural considerations, thermal load computations; thermal load measurements, domestic hot water, solar and atmospheric radiation, swimming pools; and economics.

  13. Solar Spots - Activities to Introduce Solar Energy into the K-8 Curricula.

    ERIC Educational Resources Information Center

    Longe, Karen M.; McClelland, Michael J.

    Following an introduction to solar technology which reviews solar heating and cooling, passive solar systems (direct gain systems, thermal storage walls, sun spaces, roof ponds, and convection loops), active solar systems, solar electricity (photovoltaic and solar thermal conversion systems), wind energy, and biomass, activities to introduce solar…

  14. Potential of solar cooling systems for peak demand reduction

    SciTech Connect

    Pesaran, A A; Neymark, J

    1994-11-01

    We investigated the technical feasibility of solar cooling for peak demand reduction using a building energy simulation program (DOE2.1D). The system studied was an absorption cooling system with a thermal coefficient of performance of 0.8 driven by a solar collector system with an efficiency of 50% with no thermal storage. The analysis for three different climates showed that, on the day with peak cooling load, about 17% of the peak load could be met satisfactorily with the solar-assisted cooling system without any thermal storage. A performance availability analysis indicated that the solar cooling system should be designed for lower amounts of available solar resources that coincide with the hours during which peak demand reduction is required. The analysis indicated that in dry climates, direct-normal concentrating collectors work well for solar cooling; however, in humid climates, collectors that absorb diffuse radiation work better.

  15. Solar heating and cooling systems design and development

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The development and delivery of eight prototype solar heating and cooling systems for installation and operational test was reported. Two heating and six heating and cooling units will be delivered for single family residences, multiple family residences and commercial applications.

  16. Liquid cooled, linear focus solar cell receiver

    DOEpatents

    Kirpich, Aaron S.

    1985-01-01

    Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

  17. Liquid cooled, linear focus solar cell receiver

    DOEpatents

    Kirpich, A.S.

    1983-12-08

    Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

  18. Influence of solar variability on the infrared radiative cooling of the thermosphere from 2002 to 2014

    PubMed Central

    Mlynczak, Martin G; Hunt, Linda A; Mertens, Christopher J; Thomas Marshall, B; Russell, James M; Woods, Thomas; Earl Thompson, R; Gordley, Larry L

    2014-01-01

    Infrared radiative cooling of the thermosphere by carbon dioxide (CO2, 15 µm) and by nitric oxide (NO, 5.3 µm) has been observed for 12 years by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics satellite. For the first time we present a record of the two most important thermospheric infrared cooling agents over a complete solar cycle. SABER has documented dramatic variability in the radiative cooling on time scales ranging from days to the 11 year solar cycle. Deep minima in global mean vertical profiles of radiative cooling are observed in 2008–2009. Current solar maximum conditions, evidenced in the rates of radiative cooling, are substantially weaker than prior maximum conditions in 2002–2003. The observed changes in thermospheric cooling correlate well with changes in solar ultraviolet irradiance and geomagnetic activity during the prior maximum conditions. NO and CO2 combine to emit 7 × 1018 more Joules annually at solar maximum than at solar minimum. Key Points First record of thermospheric IR cooling rates over a complete solar cycleIR cooling in current solar maximum conditions much weaker than prior maximumVariability in thermospheric IR cooling observed on scale of days to 11 years PMID:26074647

  19. Market assessment for active solar heating and cooling products. Category B: A survey of decision makers in the HVAC market place. Survey instruments

    SciTech Connect

    Lilien, G. L.; Johnston, P. E.

    1980-09-01

    Telephone screener questionnaires and mail-out questionnaires for marketing surveys for solar heating and cooling equipment are presented. Questionnaires are included for the residential segment, industrial segment, HVAC professionals segment, builder/developer segment, and the commercial segment. No results are reported. (WHK)

  20. Solar heating and cooling system design and development

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The progress made in the manufacture, test, evaluation, installation, problem resolution, performance evaluation, and development of eight prototype solar heating and combined heating and cooling systems is described.

  1. Prototype solar heating and combined heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Eight prototype solar heating and combined heating and cooling systems are being developed. The effort includes development, manufacture, test, installation, maintenance, problem resolution, and performance evaluation.

  2. Prototype solar heating and combined heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Eight prototype solar heating and combined heating and cooling systems are considered. This effort includes development, manufacture, test, installation, maintenance, problem resolution, and performance evaluation.

  3. Desiccant cooling using unglazed transpired solar collectors

    NASA Astrophysics Data System (ADS)

    Pesaran, A. A.; Wipke, K.

    1992-05-01

    The use of unglazed solar collectors for desiccant regeneration in a solid desiccant cooling cycle was investigated because these collectors are lower in cost than conventional glazed flat-plate collectors. Using computer models, the performance of a desiccant cooling ventilation cycle integrated with either unglazed transpired collectors or conventional glazed flat-plate collectors was obtained. We found that the thermal performance of the unglazed system was lower than the thermal performance of the glazed system because the unglazed system could not take advantage of the heat of adsorption released during the dehumidification process. For a 3-ton cooling system, although the area required for the unglazed collector was 69 percent more than that required for the glazed collector, the cost of the unglazed collector array was 44 percent less than the cost of the glazed collector array. The simple payback period of the unglazed system was half of the payback period of the glazed collector when compared to an equivalent gas-fired system. Although the use of unglazed transpired collectors makes economic sense, some practical considerations may limit their use in desiccant regeneration.

  4. Solar heating and cooling systems design and development

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Solar heating and heating/cooling systems were designed for single family, multifamily, and commercial applications. Subsystems considered included solar collectors, heat storage systems, auxiliary energy sources, working fluids, and supplementary controls, piping, and pumps.

  5. Cooling performance of solar cell-driven, thermoelectric cooling prototype headgear

    SciTech Connect

    Hara, T.; Obora, H.; Sato, S.

    1998-07-01

    Cooling performance of solar cell driven, thermoelectric cooling prototype headgear was examined experimentally. Three types of prototype headgear were made and examined. They were cooled by thermoelectric elements and driven by solar cells. The authors are always able to be cooled anytime and anywhere inside the house in hot season. However, they were not able to be cooled when they worked outside the house. Especially, a personal air-conditioning system is required for the people working outside. Some cooling caps with an electric fan driven by solar cells can be often seen now. However, the fan only blows hot air to the face. They cannot cool down the face below the ambient temperature. The authors tried to cool down the face to the lower temperature below the ambient by a refrigeration system. A thermoelectric element was set at the front of a headgear such as baseball cap or straw hat to cool a forehead. Some pieces of solar cells were mounted on the top and the brim of the headgear to work the thermoelectric element. Hot side of thermoelectric element was cooled by a plate fin an electric fan. The electric fan was also driven by a solar cell. Two types of baseball caps with solar cells and a thermoelectric element and a type of straw hat with them were made and tested. Solar cells were connected to optimize the electric power for the thermoelectric element. An electric fan and its power input were selected to cool maximum the thermoelectric element. Cooling performance and thermal comfort of the headgear were examined by testers in case of sitting, walking and bicycling. The temperature difference between ambient and cooling temperature was required only about 4 degree Celsius. Required power by solar cells was up to about 1.5 watt for a personal cooling.

  6. Modern solar maximum forced late twentieth century Greenland cooling

    NASA Astrophysics Data System (ADS)

    Kobashi, T.; Box, J. E.; Vinther, B. M.; Goto-Azuma, K.; Blunier, T.; White, J. W. C.; Nakaegawa, T.; Andresen, C. S.

    2015-07-01

    The abrupt Northern Hemispheric warming at the end of the twentieth century has been attributed to an enhanced greenhouse effect. Yet Greenland and surrounding subpolar North Atlantic remained anomalously cold in 1970s to early 1990s. Here we reconstructed robust Greenland temperature records (North Greenland Ice Core Project and Greenland Ice Sheet Project 2) over the past 2100 years using argon and nitrogen isotopes in air trapped within ice cores and show that this cold anomaly was part of a recursive pattern of antiphase Greenland temperature responses to solar variability with a possible multidecadal lag. We hypothesize that high solar activity during the modern solar maximum (approximately 1950s-1980s) resulted in a cooling over Greenland and surrounding subpolar North Atlantic through the slowdown of Atlantic Meridional Overturning Circulation with atmospheric feedback processes.

  7. Prototype solar heating and combined heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Schedules and technical progress in the development of eight prototype solar heating and combined solar heating and cooling systems are reported. Particular emphasis is given to the analysis and preliminary design for the cooling subsystem, and the setup and testing of a horizontal thermal energy storage tank configuration and collector shroud evaluation.

  8. Solar heating and cooling system design and development

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The development of eight prototype solar heating and combined heating and cooling systems is reported. Manufacture, test, installation, maintenance, problem resolution, and monitoring the operation of prototype systems is included. Heating and cooling equipment for single family residential and commercial applications and eight operational test sites (four heating and four heating and cooling) is described.

  9. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    NASA Astrophysics Data System (ADS)

    Widyolar, Bennett K.

    A solar thermal cooling system using novel non-tracking External Compound Parabolic Concentrators (XCPC) has been built at the University of California, Merced and operated for two cooling seasons. Its performance in providing power for space cooling has been analyzed. This solar cooling system is comprised of 53.3 m2 of XCPC trough collectors which are used to power a 23 kW double effect (LiBr) absorption chiller. This is the first system that combines both XCPC and absorption chilling technologies. Performance of the system was measured in both sunny and cloudy conditions, with both clean and dirty collectors. It was found that these collectors are well suited at providing thermal power to drive absorption cooling systems and that both the coinciding of available thermal power with cooling demand and the simplicity of the XCPC collectors compared to other solar thermal collectors makes them a highly attractive candidate for cooling projects.

  10. Air cooled absorption chillers for solar cooling applications

    NASA Astrophysics Data System (ADS)

    Biermann, W. J.; Reimann, R. C.

    1982-03-01

    The chemical composition of a 'best' absorption refrigerant system is identified, and those properties of the system necessary to design hot water operated, air cooled chilling equipment are determined. Air cooled chillers from single family residential sizes into the commercial rooftop size range are designed and operated.

  11. Distant Futures of Solar Activity

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas

    1997-07-01

    We will explore possible future fates of solar magnetic activity through high-S/N ultraviolet spectra of the ancient Sun analog, Arcturus {K2 III}. The fundamental mechanisms that drive the hot {T>10^6 K} coronae of cool stars remain elusive. Solving the mystery is a central theme of the ``solar-stellar connection;'' whose importance extends beyond astronomy to areas ranging from basic plasma physics to solar-terrestrial relations. A significant property of the activity is that it subsides with age: G dwarfs in young clusters are intense coronal sources, whereas old low mass K giants are so feable in soft X-rays that most are below current detection limits. For that reason, historical studies of activity have been biased towards the younger stars. Now HST/STIS easily can record faint coronal proxies {like Si IV and C IV} in nearby cool subgiants and giants, thereby mitigating the de facto age discrimination. In the solar neighborhood the brightest single star of advanced age {9-11 Gyr} is Alpha Bootis {K2 III}. Previous studies have placed the archetype red giant firmly in the ``coronal graveyard.'' Our project focuses on understanding the ``basal'' chromosphere; molecular cooling catastrophes and the structure of the passive ``COmosphere;'' the dynamics and energy balance of the residual subcoronal gas; and mass loss mechanisms. {This program is a carryover from a failed Cycle 5 GHRS observation.}

  12. Survey and evaluation of available thermal insulation materials for use on solar heating and cooling systems

    SciTech Connect

    Not Available

    1980-03-01

    This is the final report of a survey and evaluation of insulation materials for use with components of solar heating and cooling systems. The survey was performed by mailing questionnaires to manufacturers of insulation materials and by conducting an extensive literature search to obtain data on relevant properties of various types of insulation materials. The study evaluated insulation materials for active and passive solar heating and cooling systems and for multifunction applications. Primary and secondary considerations for selecting insulation materials for various components of solar heating and cooling systems are presented.

  13. Solar Activity and Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.

    2006-01-01

    Our Sun is a dynamic, ever-changing star. In general, its atmosphere displays major variation on an 11-year cycle. Throughout the cycle, the atmosphere occasionally exhibits large, sudden outbursts of energy. These "solar eruptions" manifest themselves in the form of solar flares, filament eruptions, coronal mass ejections (CMEs), and energetic particle releases. They are of high interest to scientists both because they represent fundamental processes that occur in various astrophysical context, and because, if directed toward Earth, they can disrupt Earth-based systems and satellites. Research over the last few decades has shown that the source of the eruptions is localized regions of energy-storing magnetic field on the Sun that become destabilized, leading to a release of the stored energy. Solar scientists have (probably) unraveled the basic outline of what happens in these eruptions, but many details are still not understood. In recent years we have been studying what triggers these magnetic eruptions, using ground-based and satellite-based solar observations in combination with predictions from various theoretical models. We will present an overview of solar activity and solar eruptions, give results from some of our own research, and discuss questions that remain to be explored.

  14. Water cooled absorption chillers for solar cooling applications

    NASA Astrophysics Data System (ADS)

    Biermann, W. J.; Reimann, R. C.

    1982-03-01

    A broad line of absorption chillers designed to operate with hot fluids at as low a temperature as practical while rejecting heat to a stream of water was developed. A packaging concept for solar application in which controls, pumps, valves and other system components could be factor assembled into a unitary solar module was investigated.

  15. Solar heating and cooling diode module

    DOEpatents

    Maloney, Timothy J.

    1986-01-01

    A high efficiency solar heating system comprising a plurality of hollow modular units each for receiving a thermal storage mass, the units being arranged in stacked relation in the exterior frame of a building, each of the units including a port for filling the unit with the mass, a collector region and a storage region, each region having inner and outer walls, the outer wall of the collector region being oriented for exposure to sunlight for heating the thermal storage mass; the storage region having an opening therein and the collector region having a corresponding opening, the openings being joined for communicating the thermal storage mass between the storage and collector regions by thermosiphoning; the collector region being disposed substantially below and in parallel relation to the storage region in the modular unit; and the inner wall of the collector region of each successive modular unit in the stacked relation extending over the outer wall of the storage region of the next lower modular unit in the stacked relation for reducing heat loss from the system. Various modifications and alternatives are disclosed for both heating and cooling applications.

  16. Evaluation of thermal-storage concepts for solar cooling applications

    NASA Astrophysics Data System (ADS)

    Hughes, P. J.; Morehouse, J. H.; Choi, M. K.; White, N. M.; Scholten, W. B.

    1981-10-01

    Various configuration concepts for utilizing thermal energy storage to improve the thermal and economic performance of solar cooling systems for buildings were analyzed. The storge concepts evaluated provide short-term thermal storge via the bulk containment of water or salt hydrates. The evaluations were made for both residential-size cooling systems (3-ton) and small commercial-size cooling systems (25-ton). The residential analysis considers energy requirements for space heating, space cooling and water heating, while the commercial building analysis is based only on energy requirements for space cooling. The commercial building analysis considered a total of 10 different thermal storage/solar systems, 5 each for absorption and Rankine chiller concepts. The residential analysis considered 4 thermal storage/solar systems, all utilizing an absorption chiller. The trade-offs considered include: cold-side versus hot-side storage, single vs multiple stage storage, and phase-change vs sensible heat storage.

  17. POTENTIAL ENVIRONMENTAL IMPACTS OF SOLAR HEATING AND COOLING SYSTEMS

    EPA Science Inventory

    This report discusses potential environmental consequences of solar energy utilization for heating and cooling buildings. It identifies the areas in which both positive and negative impacts are possible, summarizes the national research and development program directed toward sol...

  18. Prototype solar heating and combined heating cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The design and development of eight prototype solar heating and combined heating and cooling systems is discussed. The program management and systems engineering are reported, and operational test sites are identified.

  19. Solar heating and cooling systems design and development

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Progress in the development of prototype solar heating/cooling systems is reported. Results obtained from refinement/improvement of the single family, multifamily, and commercial systems configurations and generalized studies on several of the subsystems are presented.

  20. Modelling an actively-cooled CPV system

    NASA Astrophysics Data System (ADS)

    Buonomano, A.; Mittelman, G.; Faiman, D.; Biryukov, S.; Melnichak, V.; Bukobza, D.; Kabalo, S.

    2012-10-01

    We have constructed a 7-node, 1-dimensional model of the heat flow in a water-cooled CPV receiver. The model is validated against data from a module exposed to solar irradiance at various concentrations up to 1,000X at the PETAL solar dish facility at Sede Boqer.

  1. Solar residential heating and cooling system development test program

    NASA Technical Reports Server (NTRS)

    Humphries, W. R.; Melton, D. E.

    1974-01-01

    A solar heating and cooling system is described, which was installed in a simulated home at Marshall Space Flight Center. Performance data are provided for the checkout and initial operational phase for key subsystems and for the total system. Valuable information was obtained with regard to operation of a solar cooling system during the first summer of operation. Areas where improvements and modifications are required to optimize such a system are discussed.

  2. Solar-energy absorber: Active infrared (IR) trap

    NASA Technical Reports Server (NTRS)

    Brantley, L. W., Jr.

    1974-01-01

    Efficiency of solar-energy absorbers may be improved to 95% by actively cooling their intermediate glass plates. This approach may be of interest to manufacturers of solar absorbers and to engineers and scientists developing new sources of energy.

  3. Developing, testing, evaluating, and optimizing solar heating and cooling systems

    NASA Astrophysics Data System (ADS)

    1992-01-01

    The objective is to develop and test various integrated solar heating, cooling and domestic hot water systems, and to evaluate their performance. Systems composed of new, as well as previously tested, components are carefully integrated so that effects of new components on system performance can be clearly delineated. The SEAL-DOE program includes six tasks which have received funding for the 1991 to 92 fifteen-month period. These include: (1) a project employing isothermal operation of air and liquid solar space heating systems; (2) a project to build and test several generic solar water heaters; (3) a project that will evaluate advanced solar domestic hot water components and concepts and integrate them into solar domestic hot water systems; (4) a liquid desiccant cooling system development project; (5) a project that will perform system modeling and analysis work on solid desiccant cooling systems research; and (6) a management task. The objectives and progress in each task are described in this report.

  4. Developing, testing, evaluating and optimizing solar heating and cooling systems

    SciTech Connect

    Not Available

    1992-01-24

    The objective is to develop and test various integrated solar heating, cooling and domestic hot water systems, and to evaluate their performance. Systems composed of new, as well as previously tested, components are carefully integrated so that effects of new components on system performance can be clearly delineated. The SEAL-DOE program includes six tasks which have received funding for the 1991--92 fifteen-month period. These include: (1) a project employing isothermal operation of air and liquid solar space heating systems; (2) a project to build and test several generic solar water heaters; (3) a project that will evaluate advanced solar domestic hot water components and concepts and integrate them into solar domestic hot water systems; (4) a liquid desiccant cooling system development project; (5) a project that will perform system modeling and analysis work on solid desiccant cooling systems research; and (6) a management task. The objectives and progress in each task are described in this report.

  5. Solar heating and cooling systems design and development. [prototype development

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The development of twelve prototype solar heating/cooling systems, six heating and six heating and cooling systems, two each for single family, multi-family, and commercial applications, is reported. Schedules and technical discussions, along with illustrations on the progress made from April 1, 1977 through June 30, 1977 are detailed.

  6. Passive cooling with solar updraft and evaporative downdraft chimneys

    SciTech Connect

    Mignon, G.V.; Cunningham, W.A.; Thompson, T.L.

    1985-01-01

    Computer models have been developed to describe the operation of both solar updraft and evaporative downdraft chimneys. Design studies are being conducted at the present time to use the towers for cooling an experimental, well instrumented, structure to study passive cooling in residential buildings. (MHR)

  7. Passive thermosyphon solar heating and cooling module with supplementary heating

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A collection of three quarterly reports from Sigma Research, Inc., covering progress and status from January through September 1977 are presented. Three heat exchangers are developed for use in a solar heating and cooling system for installation into single-family dwellings. Each exchanger consists of one heating and cooling module and one submerged electric water heating element.

  8. How to solve materials and design problems in solar heating and cooling. Energy technology review No. 77

    SciTech Connect

    Ward, D.S.; Oberoi, H.S.; Weinstein, S.D.

    1982-01-01

    A broad range of difficulties encountered in active and passive solar space heating systems and active solar space cooling systems is covered. The problems include design errors, installation mistakes, inadequate durability of materials, unacceptable reliability of components, and wide variations in performance and operation of different solar systems. Feedback from designers and manufacturers involved in the solar market is summarized. The designers' experiences with and criticisms of solar components are presented, followed by the manufacturers' replies to the various problems encountered. Information is presented on the performance and operation of solar heating and cooling systems so as to enable future designs to maximize performance and eliminate costly errors. (LEW)

  9. Convective Array Cooling for a Solar Powered Aircraft

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Dolce, James (Technical Monitor)

    2003-01-01

    A general characteristic of photovoltaics is that they increase in efficiency as their operating temperature decreases. Based on this principal, the ability to increase a solar aircraft's performance by cooling the solar cells was examined. The solar cells were cooled by channeling some air underneath the cells and providing a convective cooling path to the back side of the array. A full energy balance and flow analysis of the air within the cooling passage was performed. The analysis was first performed on a preliminary level to estimate the benefits of the cooling passage. This analysis established a clear benefit to the cooling passage. Based on these results a more detailed analysis was performed. From this cell temperatures were calculated and array output power throughout a day period were determined with and without the cooling passage. The results showed that if the flow through the cooling passage remained laminar then the benefit in increased output power more than offset the drag induced by the cooling passage.

  10. Solar heating and cooling system design and development

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The design and development of marketable solar heating and cooling systems for single family and commercial applications is described. The delivery, installation, and monitoring of the prototype systems are discussed. Seven operational test sites are discussed in terms of system performance. Problems encountered with equipment and installation were usually due to lack of skills required for solar system installation.

  11. Inhibitor analysis for a solar heating and cooling system

    NASA Technical Reports Server (NTRS)

    Tabony, J. H.

    1977-01-01

    A study of potential corrosion inhibitors for the NASA solar heating and cooling system which uses aluminum solar panels is provided. Research consisted of testing using a dynamic corrosion system, along with an economic analysis of proposed corrosion inhibitors. Very good progress was made in finding a suitable inhibitor for the system.

  12. Problems encountered in solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    Cash, M.

    1979-01-01

    Report discussing various experiences of workers at Marshall Space Flight Center in developing solar heating and cooling systems is presented. Presents compilation of problems and their resolutions which can assist designers of solar-energy systems and prevent repetition of errors.

  13. Solar cooling system performance, Frenchman's Reef Hotel, Virgin Islands

    NASA Technical Reports Server (NTRS)

    Harber, H.

    1981-01-01

    The operational and thermal performance of a variety of solar systems are described. The Solar Cooling System was installed in a hotel at St. Thomas, U. S. Virgin Islands. The system consists of the evacuated glass tube collectors, two 2500 gallon tanks, pumps, computerized controller, a large solar optimized industrial sized lithium bromide absorption chiller, and associated plumbing. Solar heated water is pumped through the system to the designed public areas such as lobby, lounges, restaurant and hallways. Auxiliary heat is provided by steam and a heat exchanger to supplement the solar heat.

  14. Solar cooling system performance, Frenchman's Reef Hotel, Virgin Islands

    NASA Astrophysics Data System (ADS)

    Harber, H.

    1981-09-01

    The operational and thermal performance of a variety of solar systems are described. The Solar Cooling System was installed in a hotel at St. Thomas, U. S. Virgin Islands. The system consists of the evacuated glass tube collectors, two 2500 gallon tanks, pumps, computerized controller, a large solar optimized industrial sized lithium bromide absorption chiller, and associated plumbing. Solar heated water is pumped through the system to the designed public areas such as lobby, lounges, restaurant and hallways. Auxiliary heat is provided by steam and a heat exchanger to supplement the solar heat.

  15. Solar heating and cooling technical data and systems analysis

    NASA Technical Reports Server (NTRS)

    Christensen, D. L.

    1976-01-01

    The accomplishments of a project to study solar heating and air conditioning are outlined. Presentation materials (data packages, slides, charts, and visual aids) were developed. Bibliographies and source materials on materials and coatings, solar water heaters, systems analysis computer models, solar collectors and solar projects were developed. Detailed MIRADS computer formats for primary data parameters were developed and updated. The following data were included: climatic, architectural, topography, heating and cooling equipment, thermal loads, and economics. Data sources in each of these areas were identified as well as solar radiation data stations and instruments.

  16. Gap between active and passive solar heating

    SciTech Connect

    Balcomb, J.D.

    1985-01-01

    The gap between active and passive solar could hardly be wider. The reasons for this are discussed and advantages to narrowing the gap are analyzed. Ten years of experience in both active and passive systems are reviewed, including costs, frequent problems, performance prediction, performance modeling, monitoring, and cooling concerns. Trends are analyzed, both for solar space heating and for service water heating. A tendency for the active and passive technologies to be converging is observed. Several recommendations for narrowing the gap are presented.

  17. Integrated Modeling of Building Energy Requirements IncorporatingSolar Assisted Cooling

    SciTech Connect

    Firestone, Ryan; Marnay, Chris; Wang, Juan

    2005-08-10

    This paper expands on prior Berkeley Lab work on integrated simulation of building energy systems by the addition of active solar thermal collecting devices, technology options not previously considered (Siddiqui et al 2005). Collectors can be used as an alternative or additional source of hot water to heat recovery from reciprocating engines or microturbines. An example study is presented that evaluates the operation of solar assisted cooling at a large mail sorting facility in southern California with negligible heat loads and year-round cooling loads. Under current conditions solar thermal energy collection proves an unattractive option, but is a viable carbon emission control strategy.

  18. An approach for cooling by solar energy

    NASA Astrophysics Data System (ADS)

    Rabeih, S. M.; Wahhab, M. A.; Asfour, H. M.

    The present investigation is concerned with the possibility to base the operation of a household refrigerator on solar energy instead of gas fuel. The currently employed heating system is to be replaced by a solar collector with an absorption area of two sq m. Attention is given to the required changes in the generator design, the solar parameters at the location of refrigerator installation, the mathematical approach for the thermal analysis of the solar collector, the development of a computer program for the evaluation of the important parameters, the experimental test rig, and the measurement of the experimental parameters. A description is given of the obtained optimum operating conditions for the considered system.

  19. Solar Induced Climate Changes and Cooling of the Earth

    NASA Astrophysics Data System (ADS)

    Yousef, Shahinaz M.

    2011-06-01

    Evidences are given for the cooling effect induced by solar weak cycles. It is forecasted that the coming solar cycle number 24, which has started on January 2008, would be very weak. This cycle would be followed by several weak cycles. Its very start on January 2008 have induced a climate change that forced global cooling, Indeed all global temperature monitors have shown temperature drops. The GISS monitor showed a 0.75°C drop between January 2007 and January 2008. This sharp temperature drop characterizes cooling induced by weak cycles as was evident by historical temperature records. It also happened in the right exact timing of the start of cycle 24. This cooling is real and could last for some time. The cooling well width is location dependant. Last January cooling left many countries in deep freeze. Cooling is very serious and can destroy crops and cause famines. This cooling is instrumentally recorded. This is an appeal to scientists to consider the present cooling seriously, after all the truth ought to be followed. Alert is also given to the reaponsible authorities to work promptly to choose the proper crops that can tolerate the cold otherwise it would be a disaster worldwide.

  20. Solar-heating and cooling demonstration project

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Florida Solar Energy Center has retrofitted office building, approximately 5,000 square feet of area, with solar heating and air-conditioning. Information on operation, installation, controls, and hardware for system is contained in 164 page report. Document includes manufacturer's product literature and detailed drawings.

  1. Observational and Modeling Study of Pickup Ion Cooling Behavior in Solar Wind Compression and Rarefaction Regions

    NASA Astrophysics Data System (ADS)

    Chen, J.; Moebius, E.; Schwadron, N.; Klecker, B.; Bzowski, M.; Galvin, A. B.; Isenberg, P. A.; Sokol, J. M.; Gorby, M.; Bochsler, P. A.

    2013-12-01

    In many previous studies, the velocity distribution function of interstellar pickup ions (PUIs), which are produced by ionization of interstellar neutral atoms in the solar wind, were described as evolving through fast pitch angle scattering followed by adiabatic cooling during radial transport with in the reference frame of the solar wind [e.g., Vasyliunas & Siscoe, 1976 VS76 hereafter]. In the VS76 model, the slope of the velocity distributions is controlled by the combination of the ionization rate and the cooling process. Recently, Chen et al. [2013] have shown that the related adiabatic cooling index varies with solar activity between ~1 and 2, compared with 1.5 predicted by the VS76 model. Contributors to the observed variations include solar wind compression and rarefaction regions. Here, we performed a statistical study of the PUI cooling behavior in solar wind compression and rarefaction regions based on STEREO-A PLASTIC data sets using a set of events from the co-rotating interaction region (CIR) list (http://www-scc.igpp.ucla.edu/forms/stereo/stereo_level_3.html). We found that PUIs undergo stronger cooling in rarefaction regions and weaker cooling in compression regions. In order to analyze the PUI cooling behavior under these conditions, we modeled the PUI velocity distributions in CIRs using the Energetic Particle Radiation Environment Module (EPREM) [Schwadron et al., 2010]. For this analysis, we adopted a magneto-hydrodynamic CIR model proposed by [Giacalone et al., 2002]. The resulting PUI distributions exhibit a flatter slope in the compression region and are steeper in the rarefaction region compared with those in the undisturbed solar wind, in accordance with STEREO observations. These results indicate that gradients in the solar wind speed, as observed in CIRs, have substantial effects on the PUI cooling process.

  2. Solar activities and Climate change hazards

    NASA Astrophysics Data System (ADS)

    Hady, A. A., II

    2014-12-01

    Throughout the geological history of Earth, climate change is one of the recurrent natural hazards. In recent history, the impact of man brought about additional climatic change. Solar activities have had notable effect on palaeoclimatic changes. Contemporary, both solar activities and building-up of green-house gases effect added to the climatic changes. This paper discusses if the global worming caused by the green-house gases effect will be equal or less than the global cooling resulting from the solar activities. In this respect, we refer to the Modern Dalton Minimum (MDM) which stated that starting from year 2005 for the next 40 years; the earth's surface temperature will become cooler than nowadays. However the degree of cooling, previously mentioned in old Dalton Minimum (c. 210 y ago), will be minimized by building-up of green-house gases effect during MDM period. Regarding to the periodicities of solar activities, it is clear that now we have a new solar cycle of around 210 years. Keywords: Solar activities; solar cycles; palaeoclimatic changes; Global cooling; Modern Dalton Minimum.

  3. Solar heating and cooling system installed at Leavenworth, Kansas

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A solar heating and cooling is described which is designed to furnish 90 percent of the overall heating load, 70 percent of the cooling load and 100 percent of the domestic hot water load. The building has two floors with a total of 12,000 square feet gross area. The system has 120 flat-plate liquid solar panels with a net area of 2,200 square feet. Five 3 ton Arkla solar assisted absorption units provide the cooling, in conjunction with a 3,000 gallon chilled water storage tank. Two 3,000 gallon storage tanks are provided with one designated for summer use, whereas both tanks are utilized during winter.

  4. Solar heating and cooling system installed at Leavenworth, Kansas

    NASA Astrophysics Data System (ADS)

    1980-06-01

    A solar heating and cooling is described which is designed to furnish 90 percent of the overall heating load, 70 percent of the cooling load and 100 percent of the domestic hot water load. The building has two floors with a total of 12,000 square feet gross area. The system has 120 flat-plate liquid solar panels with a net area of 2,200 square feet. Five 3 ton Arkla solar assisted absorption units provide the cooling, in conjunction with a 3,000 gallon chilled water storage tank. Two 3,000 gallon storage tanks are provided with one designated for summer use, whereas both tanks are utilized during winter.

  5. Low cost solar energy collection for cooling applications

    NASA Astrophysics Data System (ADS)

    Wilhelm, W. G.

    1981-06-01

    Solar energy collector designs utilizing thin-film polymeric materials in the absorber and glazing are investigated. The main objective is dramatic cost reduction consistent with acceptable performance and life. These collectors now appear capable of high temperature applications including desiccant and absorption cooling (1500 to 2000 F). The performance and economics of the thin-film collector are compared with those of conventional flat-plate designs in cooling applications.

  6. Experimental investigation of a solar desiccant cooling installation

    SciTech Connect

    Bourdoukan, P.; Wurtz, E.; Joubert, P.

    2009-11-15

    Desiccant cooling is a technique based on evaporative cooling and air dehumidification using desiccant regenerated by thermal energy. It is particularly interesting when it is driven by waste or solar heat making this technique environmentally friendly. In this paper, an experimental investigation is carried on a desiccant air handling unit powered by vacuum-tube solar collectors. First, the components are studied under various operating conditions. Then overall performance of the installation is evaluated over a day for a moderately humid climate with regeneration solely by solar energy. In these conditions the overall efficiency of the solar installation is 0.55 while the thermodynamic coefficient of performance is 0.45 and the performance indicator based on the electrical consumption is 4.5. Finally, the impact of outside and regeneration conditions on the performance indicators is studied. (author)

  7. Application of solar ponds to district heating and cooling

    NASA Astrophysics Data System (ADS)

    Leboeuf, C. M.

    1981-04-01

    A preliminary investigation is reported of the feasibility of incorporating solar ponds into subdivisions to provide district heating, domestic hot water (DHW), and district cooling. Two locations were chosen for analysis: Fort Worth, Texas and Washington, D.C. Solar ponds were sized to meet space heating, cooling, and DHW loads in each location for differing community sizes. Parameters such as storage layer temperature, pond geometry, and storage depth vs surface area were varied to determine the most effective approach to solar pond utilization. A distribution system for the district heating system was designed, including sizing of heat exchangers, piping, and pumps. Cost estimates for the pond and distribution system were formulated by using data generated in pond sizing, as well as associated system costs (e.g., salt costs and distribution system costs). Finally, solar ponds were found to be competitive with residential flat plate collector systems, with delivered energy costs as low as $16.00/GJ.

  8. Comparative study of different solar cooling systems for buildings in subtropical city

    SciTech Connect

    Fong, K.F.; Chow, T.T.; Lee, C.K.; Lin, Z.; Chan, L.S.

    2010-02-15

    In recent years, more and more attention has been paid on the application potential of solar cooling for buildings. Due to the fact that the efficiency of solar collectors is generally low at the time being, the effectiveness of solar cooling would be closely related to the availability of solar irradiation, climatic conditions and geographical location of a place. In this paper, five types of solar cooling systems were involved in a comparative study for subtropical city, which is commonly featured with long hot and humid summer. The solar cooling systems included the solar electric compression refrigeration, solar mechanical compression refrigeration, solar absorption refrigeration, solar adsorption refrigeration and solar solid desiccant cooling. Component-based simulation models of these systems were developed, and their performances were evaluated throughout a year. The key performance indicators are solar fraction, coefficient of performance, solar thermal gain, and primary energy consumption. In addition, different installation strategies and types of solar collectors were compared for each kind of solar cooling system. Through this comparative study, it was found that solar electric compression refrigeration and solar absorption refrigeration had the highest energy saving potential in the subtropical Hong Kong. The former is to make use of the solar electric gain, while the latter is to adopt the solar thermal gain. These two solar cooling systems would have even better performances through the continual advancement of the solar collectors. It will provide a promising application potential of solar cooling for buildings in the subtropical region. (author)

  9. Solar heating and cooling technical data and systems analysis

    NASA Technical Reports Server (NTRS)

    Christensen, D. L.

    1976-01-01

    The acquisition and processing of selected parametric data for inclusion in a computerized Data Base using the Marshall Information Retrieval and Data System (MIRADS) developed by NASA-MSFC is discussed. This data base provides extensive technical and socioeconomic information related to solar energy heating and cooling on a national scale. A broadly based research approach was used to assist in the support of program management and the application of a cost-effective program for solar energy development and demonstration.

  10. On carbon monoxide cooling in the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Mauas, Pablo J.; Avrett, Eugene H.; Loeser, Rudolf

    1990-01-01

    The CO cooling rate for models of the solar atmosphere using the detailed line-by-line CO opacity in the fundamental band, and carrying out a full radiative transfer calculation for each line is computed. The importance of the different assumptions that have been made to obtain the CO cooling rate and find that when detailed optical depth effects are taken into account, the calculated CO cooling rate at line optical depths near unity can be smaller than optically thin estimates by more than an order of magnitude is studied. It is found that CO cooling does not account for the missing source of radiative cooling in the temperature minimum region of the quiet sun.

  11. Activities for Teaching Solar Energy.

    ERIC Educational Resources Information Center

    Mason, Jack Lee; Cantrell, Joseph S.

    1980-01-01

    Plans and activities are suggested for teaching elementary children about solar energy. Directions are included for constructing a flat plate collector and a solar oven. Activities for a solar field day are given. (SA)

  12. Colorado State University program for developing, testing, evaluation and optimizing solar heating and cooling systems. Project status report, August--September 1993

    SciTech Connect

    Not Available

    1993-09-01

    This report describes activities of the Colorado State University program on solar heating and cooling systems for the months of August and September 1993. The topics include: rating and certification of domestic water heating systems, unique solar system components, advanced residential solar domestic hot water systems, and desiccant cooling of buildings.

  13. Solar technology assessment project. Volume 4: Solar air conditioning: Active, hybrid and passive

    NASA Astrophysics Data System (ADS)

    Yellott, J. I.

    1981-04-01

    The status of absorption cycle solar air conditioning and the Rankine cycle solar cooling system is reviewed. Vapor jet ejector chillers, solar pond based cooling, and photovoltaic compression air conditioning are also briefly discussed. Hybrid solar cooling by direct and indirect evaporative cooling, and dehumidification by desiccation are described and discussed. Passive solar cooling by convective and radiative processes, evaporative cooling by passive processes, and cooling with roof ponds and movable insulation are reviewed. Federal and state involvement in solar cooling is discussed.

  14. Keeping Cool With Solar-Powered Refrigeration

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In the midst of developing battery-free, solar-powered refrigeration and air conditioning systems for habitats in space, David Bergeron, the team leader for NASA's Advanced Refrigerator Technology Team at Johnson Space Center, acknowledged the need for a comparable solar refrigerator that could operate in conjunction with the simple lighting systems already in place on Earth. Bergeron, a 20-year veteran in the aerospace industry, founded the company Solus Refrigeration, Inc., in 1999 to take the patented advanced refrigeration technology he co-developed with his teammate, Johnson engineer Michael Ewert, to commercial markets. Now known as SunDanzer Refrigeration, Inc., Bergeron's company is producing battery-free, photovoltaic (PV) refrigeration systems under license to NASA, and selling them globally.

  15. Solar--heated and cooled office building--Dalton, Georgia

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Modern energy efficient building is heated and cooled by five rows of flat plate solar collectors; its domestic hot water needs are also met. Final report includes detailed drawings and photographs, manufacturer's literature, performance specifications, acceptance test data, and performance verification statements. Operation and maintenance manual is also attached.

  16. Solar Heating and Cooling of Residential Buildings: Design of Systems.

    ERIC Educational Resources Information Center

    Colorado State Univ., Ft. Collins. Solar Energy Applications Lab.

    This is the second of two training courses designed to develop the capability of practitioners in the home building industry to design solar heating and cooling systems. The course is organized in 23 modules to separate selected topics and to facilitate learning. Although a compact schedule of one week is shown, a variety of formats can be…

  17. Prototype solar heating and cooling systems including potable hot water

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Progress is reviewed in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water. The system consisted of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  18. Corrosion inhibitors for solar-heating and cooling

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.

    1979-01-01

    Report describes results of tests conducted to evaluate abilities of 12 candidate corrosion inhibitors to protect aluminum, steel, copper, or stainless steel at typical conditions encountered in solar heating and cooling systems. Inhibitors are based on sodium salts including nitrates, borates, silicates, and phosphates.

  19. Solar-Heated and Cooled Office Building--Columbus, Ohio

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Final report documents solar-energy system installed in office building to provide space heating, space cooling and domestic hot water. Collectors mounted on roof track Sun and concentrate rays on fluid-circulating tubes. Collected energy is distributed to hot-water-fired absorption chiller and space-heating and domestic-hot-water preheating systems.

  20. International Energy Agency Solar Heating and Cooling Program

    NASA Astrophysics Data System (ADS)

    Brooks, A. J.

    This trip was undertaken to participate in and represent the United States Industry at the International Energy Agency (IEA) Solar Heating and Cooling Program (SHCP) Task 14 Workshop. The meeting took place at the A1 Bani Hotel in Rome Italy.

  1. Advanced solar/gas desiccant cooling system

    NASA Astrophysics Data System (ADS)

    Huskey, B.; Sharp, J.; Venero, A.; Yen, M.

    1982-02-01

    A desiccant cooling system with significantly higher thermal efficiency than current state of the art desiccant systems is studied. The findings and data are based on extensive computer modeling and actual operating test results of an experimental breadboard unit employing an approach developed for the separation of moisture from an airstream using solid desiccants (silica gel). The results confirmed the theoretical concept of efficiency improvement over desiccant concepts and validated the computer model used for sizing and simulating the desiccant process. The results also identified specific components and areas of the system needing improvements such as air seals, wheel drive mechanisms, air distribution and materials.

  2. Solar space heating and cooling by selective use of the components of a desiccant cooling system

    NASA Astrophysics Data System (ADS)

    Abbud, Ihsan Aladdin

    The economic advantages of by-passing various components of a desiccant cooling system under conditions not requiring their use are estimated by evaluating the annual costs of heating and cooling a commercial building in three representative U.S. cities. Life-cycle costs of systems employing solar heat for space heating and desiccant regeneration are compared with those using electric heat. The costs of purchasing and operating heating and desiccant cooling systems, with and without solar heat supply, are compared with those employing conventional heating and vapor compression cooling. The conditions under which commercial buildings can be cooled with desiccant systems at costs competitive with conventional systems are identified. A commercially available vapor compression air conditioner is used as a standard of comparison for energy consumption and room comfort. Heating and cooling requirements of the building are determined by use of the BLAST computer model in a simulation of long term system operation. Performance of the desiccant cooling system and life cycle savings obtained by its use are determined by simulation employing the TRNSYS computer model. TRNSYS compatible subroutines are developed to simulate operation of the desiccant equipment, the building, and the controllers that operate and monitor the system components. The results are presented in tabular and graphical form. This study shows that in the widely different climates represented in Los Angeles, New York, and Miami, by-passing various components in the desiccant cooling system when they are not needed is economically advantageous. Operation cost of the complete system decreased by 47.3% in Los Angeles, by 30.9% in New York City, and by 23.9% in Miami by not operating the desiccant wheel and other elements. The ventilation desiccant cooling system has major economic advantage over conventional systems under conditions of moderate humidity, as in Los Angeles and New York City. In Miami, however

  3. Materials-research recommendations to improve the performance and durability of solar heating and cooling systems

    SciTech Connect

    Herzenberg, S.; Silberglitt, R.

    1981-09-11

    The type of materials research most likely to improve the durability and efficiency of future active and passive solar heating and cooling systems is analyzed. Research needs are compared with ongoing solar materials research, and the extent to which present research efforts are addressing the critical flat plate collector needs is assessed. Areas most in need of additional attention are identified. Research recommendations are made for glazing materials, selective absorbers, and heat transfer fluids. (LEW)

  4. Enhancing photovoltaic efficiency through radiative cooling of solar cells below ambient temperature

    NASA Astrophysics Data System (ADS)

    Safi, Taqiyyah; Munday, Jeremy

    Sunlight heats up solar cells and the resulting elevated solar cell temperature adversely effects the photovoltaic efficiency and the reliability of the cell. Currently, a variety of active and passive cooling strategies are used to lower the operating temperature of the solar cell. Passive radiative cooling requires no energy input, and is ideal for solar cells; however, previously demonstrated devices still operate above the ambient, leading to a lower efficiency as compared to the ideal Shockley-Queisser limit, which is defined for a cell in contact with an ideal heat sink at ambient temperature (300 K). In this talk, we will describe the use of radiative cooling techniques to lower the cell temperature below the ambient temperature. We show that by combining specifically designed radiative cooling structures with solar cells, efficiencies higher than the limiting efficiency achievable at 300 K can be obtained for solar cells in both terrestrial and extraterrestrial environments. We show that these structures yield an efficiency 0.87% higher than a typical PV module at operating temperatures in a terrestrial application. We also demonstrate an efficiency advantage of 0.4-2.6% for cells in an extraterrestrial environment in near-earth orbit.

  5. Developing, testing, evaluating and optimizing solar heating and cooling systems

    SciTech Connect

    Not Available

    1991-11-01

    The objective is to develop and test various integrated solar heating, cooling and domestic hot water systems, and to evaluate their performance. Systems composed of new, as well a previously tested, components are carefully integrated so that effects of new components on system performance can be clearly delineated. The SEAL-DOE program includes six tasks which have received funding for the 1991--1992 fifteen-month period. These include: (1) a project employing isothermal operation of air and liquid solar space hearing systems, (2) a project to build and test several generic solar water heaters, (3) a project that will evaluate advanced solar domestic hot water components and concepts and integrate them into solar domestic hot water systems, (4) a liquid desiccant cooling system development project, (5) a project that will perform system modeling and analysis work on solid desiccant cooling systems research, and (6) a management task. The objectives and progress in each task are described in this report. 6 figs., 2 tabs.

  6. Physics of solar activity

    NASA Technical Reports Server (NTRS)

    Sturrock, Peter A.

    1993-01-01

    The aim of the research activity was to increase our understanding of solar activity through data analysis, theoretical analysis, and computer modeling. Because the research subjects were diverse and many researchers were supported by this grant, a select few key areas of research are described in detail. Areas of research include: (1) energy storage and force-free magnetic field; (2) energy release and particle acceleration; (3) radiation by nonthermal electrons; (4) coronal loops; (5) flare classification; (6) longitude distributions of flares; (7) periodicities detected in the solar activity; (8) coronal heating and related problems; and (9) plasma processes.

  7. Solar-powered Rankine heat pump for heating and cooling

    NASA Technical Reports Server (NTRS)

    Rousseau, J.

    1978-01-01

    The design, operation and performance of a familyy of solar heating and cooling systems are discussed. The systems feature a reversible heat pump operating with R-11 as the working fluid and using a motor-driven centrifugal compressor. In the cooling mode, solar energy provides the heat source for a Rankine power loop. The system is operational with heat source temperatures ranging from 155 to 220 F; the estimated coefficient of performance is 0.7. In the heating mode, the vapor-cycle heat pump processes solar energy collected at low temperatures (40 to 80 F). The speed of the compressor can be adjusted so that the heat pump capacity matches the load, allowing a seasonal coefficient of performance of about 8 to be attained.

  8. Overview-absorption/Rankine solar cooling program

    NASA Astrophysics Data System (ADS)

    Wahlig, M.; Heitz, A.; Boyce, B.

    1980-03-01

    The tasks being performed in the absorption and Rankine program areas run the gamut from basic work on fluids to development of chillers and chiller components, to field and reliability testing of complete cooling systems. In the absorption program, there are six current and five essentially completed projects. In the Rankine program, there are five current projects directly supported by DOE, and three projects funded through and managed by NASA/MSFC (Manned Space Flight Center, Huntsville, Alabama). The basic features of these projects are discussed. The systems under development in five of these current projects were selected for field testing in the SOLERAS program, a joint US-Saudi Arabian enterprise. Some technical highlights of the program are presented.

  9. Evaluation of hybrid solar/fossil Rankine-cooling concept

    SciTech Connect

    Curran, H M

    1980-11-01

    The hybrid solar/fossil Rankine cycle is analyzed thermodynamically to determine fuel use and efficiency. The hybrid system is briefly compared with solar organic Rankine systems with a fossil fuel auxiliary mode, and with geothermal resources. The economic evaluation compares the present value of the superheater fuel cost over the system lifetime with the first cost reduction obtained by substituting a hybrid solar/fossil Rankine engine for an organic Rankine engine. The economics analysis indicates that even if the hybrid solar/fossil Rankine cooling system were developed to the point of being a commercial product with an economic advantage over an otherwise equivalent solar organic Rankine cooling system, it would gradually lose that advantage with rising fuel costs and decreasing collector costs. From the standpoint of national fossil fuel conservation, the hybrid concept would be preferable only in applications where the operating duration in the solar/fossil mode would be substantially greater than in the fossil fuel-only auxiliary mode. (LEW)

  10. Solar cell activation system

    SciTech Connect

    Apelian, L.

    1983-07-05

    A system for activating solar cells involves the use of phosphorescent paint, the light from which is amplified by a thin magnifying lens and used to activate solar cells. In a typical system, a member painted with phosphorescent paint is mounted adjacent a thin magnifying lens which focuses the light on a predetermined array of sensitive cells such as selenium, cadmium or silicon, mounted on a plastic board. A one-sided mirror is mounted adjacent the cells to reflect the light back onto said cells for purposes of further intensification. The cells may be coupled to rechargeable batteries or used to directly power a small radio or watch.

  11. Solar heating and cooling demonstration project at the Florida solar energy center

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The retrofitted solar heating and cooling system installed at the Florida Solar Energy Center is described. The system was designed to supply approximately 70 percent of the annual cooling and 100 percent of the heating load. The project provides unique high temperature, nonimaging, nontracking, evacuated tube collectors. The design of the system was kept simple and employs five hydronic loops. They are energy collection, chilled water production, space cooling, space heating and energy rejection. Information is provided on the system's acceptance test results operation, controls, hardware and installation, including detailed drawings.

  12. Solar heating and cooling system design and development

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The progress of the program during the sixth program quarter is reported. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test. The William O'Brien single-family heating system was installed and is operational. The New Castle single-family heating residence is under construction. The Kansas University (KU) system is in the final design stages. The 25 ton cooling subsystem for KU is the debugging stage. Pressure drops that were greater than anticipated were encountered. The 3 ton simulation work is being finalized and the design parameters for the Rankine system were determined from simulation output.

  13. Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, Lidia; Schrijver, Carolus J.; Klimchuk, James A.; Charbonneau, Paul; Fletcher, Lyndsay; Hasan, S. Sirajul; Hudson, Hugh S.; Kusano, Kanya; Mandrini, Cristina H.; Peter, Hardi; Vršnak, Bojan; Yan, Yihua

    2012-04-01

    Commission 10 of the International Astronomical Union has more than 650 members who study a wide range of activity phenomena produced by our nearest star, the Sun. Solar activity is intrinsically related to solar magnetic fields and encompasses events from the smallest energy releases (nano- or even picoflares) to the largest eruptions in the Solar System, coronal mass ejections (CMEs), which propagate into the Heliosphere reaching the Earth and beyond. Solar activity is manifested in the appearance of sunspot groups or active regions, which are the principal sources of activity phenomena from the emergence of their magnetic flux through their dispersion and decay. The period 2008-2009 saw an unanticipated extended solar cycle minimum and unprecedentedly weak polar-cap and heliospheric field. Associated with that was the 2009 historical maximum in galactic cosmic rays flux since measurements begun in the middle of the 20th Century. Since then Cycle 24 has re-started solar activity producing some spectacular eruptions observed with a fleet of spacecraft and ground-based facilities. In the last triennium major advances in our knowledge and understanding of solar activity were due to continuing success of space missions as SOHO, Hinode, RHESSI and the twin STEREO spacecraft, further enriched by the breathtaking images of the solar atmosphere produced by the Solar Dynamic Observatory (SDO) launched on 11 February 2010 in the framework of NASA's Living with a Star program. In August 2012, at the time of the IAU General Assembly in Beijing when the mandate of this Commission ends, we will be in the unique position to have for the first time a full 3-D view of the Sun and solar activity phenomena provided by the twin STEREO missions about 120 degrees behind and ahead of Earth and other spacecraft around the Earth and ground-based observatories. These new observational insights are continuously posing new questions, inspiring and advancing theoretical analysis and

  14. Prototype solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Eight prototype systems were developed. The systems are 3, 25, and 75-ton size units. The manufacture, test, installation, maintenance, problem resolution, and performance evaluation of the systems is described. Size activities for the various systems are included.

  15. Handbook of experiences in the design and installation of solar heating and cooling systems

    SciTech Connect

    Ward, D.S.; Oberoi, H.S.

    1980-07-01

    A large array of problems encountered are detailed, including design errors, installation mistakes, cases of inadequate durability of materials and unacceptable reliability of components, and wide variations in the performance and operation of different solar systems. Durability, reliability, and design problems are reviewed for solar collector subsystems, heat transfer fluids, thermal storage, passive solar components, piping/ducting, and reliability/operational problems. The following performance topics are covered: criteria for design and performance analysis, domestic hot water systems, passive space heating systems, active space heating systems, space cooling systems, analysis of systems performance, and performance evaluations. (MHR)

  16. Solar heating and cooling system installed at Columbus, Ohio

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Solar Energy System was installed as a part of a new construction of a college building. The building will house classrooms and laboratories, administrative offices and three lecture halls. The Solar Energy System consists of 4,096 square feet (128 panels) Owens/Illinois Evacuated Glass Tube Collector Subsystem, and a 5,000 gallon steel tank below ground storage system. Hot water is circulated between the collectors and storage tank, passing through a water/lithium bromide absorption chiller to cool the building.

  17. Solar heating and cooling system installed at Columbus, Ohio

    NASA Astrophysics Data System (ADS)

    1980-09-01

    The Solar Energy System was installed as a part of a new construction of a college building. The building will house classrooms and laboratories, administrative offices and three lecture halls. The Solar Energy System consists of 4,096 square feet (128 panels) Owens/Illinois Evacuated Glass Tube Collector Subsystem, and a 5,000 gallon steel tank below ground storage system. Hot water is circulated between the collectors and storage tank, passing through a water/lithium bromide absorption chiller to cool the building.

  18. Solar Cooling for Buildings. Workshop Proceedings (Los Angeles, California, February 6-8, 1974).

    ERIC Educational Resources Information Center

    de Winter, Francis, Ed.

    A consensus has developed among U.S. solar researchers that the solar-powered cooling of buildings is an important topic. Most solar heating systems are technically simpler, and more highly developed, than solar cooling devices are. The determination of the best design concept for any particular application is not a simple process. Significant…

  19. Prototype solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A combination of monthly progress reports are presented. It contains a summary of activities and progress made from November 1, 1978, to February 28, 1979. The effort calls for the development, manufacture, test, system installation, maintenance, problem resolution, and performance evaluation.

  20. Solar air conditioning with solid absorbents and earth cooling

    NASA Astrophysics Data System (ADS)

    Mayer, E.

    An experimental design is described for an efficient desiccant cooling system using natural cold sink to reduce the moisture content of the ambient air. Used in a warm, humid, tropical climate, the unit is shown to provide up to 0.77 ton of refrigeration under extreme conditions with an average daily coefficient of performance of 0.5. Solar heat is applied to regenerate the silica gel.

  1. Corrosion inhibitors for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Deramus, G. E., Jr.

    1977-01-01

    Problems dealing with corrosion and corrosion protection of solar heating and cooling systems are discussed. A test program was conducted to find suitable and effective corrosion inhibitors for systems employing either water or antifreeze solutions for heat transfer and storage. Aluminum-mild-steel-copper-stainless steel assemblies in electrical contact were used to simulate a multimetallic system which is the type most likely to be employed. Several inhibitors show promise for this application.

  2. Colorado State University program for developing, testing, evaluating, and optimizing solar heating and cooling systems

    NASA Astrophysics Data System (ADS)

    1991-01-01

    This report discusses the following tasks: (1) solar heating with isothermal collector operation and advanced control strategy; (2) solar cooling with solid desiccant; (3) liquid desiccant cooling system development; (4) solar house III -- development and improvement of solar heating systems employing boiling liquid collectors; (5) generic solar domestic water heating systems; (6) advanced residential solar domestic hot water (DHW) systems; (7) management and coordination of Colorado State/DOE program; and (8) the field monitoring workshop.

  3. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles: Active cooling system analysis

    NASA Technical Reports Server (NTRS)

    Stone, J. E.

    1975-01-01

    The effects of fuselage cross section and structural arrangement on the performance of actively cooled hypersonic cruise vehicles are investigated. An active cooling system which maintains the aircraft's entire surface area at temperatures below 394 K at Mach 6 is developed along with a hydrogen fuel tankage thermal protection system. Thermodynamic characteristics of the actively cooled thermal protection systems established are summarized. Design heat loads and coolant flowrate requirements are defined for each major structural section and for the total system. Cooling system weights are summarized at the major component level. Conclusions and recommendations are included.

  4. Solar Energy Project, Activities: General Solar Topics.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of activities which introduce students to concepts and issues relating to solar energy. Lessons frequently presented in the context of solar energy as it relates to contemporary energy problems. Each unit presents an introduction; objectives; necessary skills and knowledge; materials; method;…

  5. Summary of NASA Lewis Research Center solar heating and cooling and wind energy programs

    NASA Technical Reports Server (NTRS)

    Vernon, R. W.

    1975-01-01

    Plans for the construction and operation of a solar heating and cooling system in conjunction with a office building being constructed at Langley Research Center, are discussed. Supporting research and technology includes: testing of solar collectors with a solar simulator, outdoor testing of collectors, property measurements of selective and nonselective coatings for solar collectors, and a solar model-systems test loop. The areas of a wind energy program that are being conducted include: design and operation of a 100-kW experimental wind generator, industry-designed and user-operated wind generators in the range of 50 to 3000 kW, and supporting research and technology for large wind energy systems. An overview of these activities is provided.

  6. Solar Heating And Cooling (SHAC) simulation programs: Assessment and evaluation. Volume 1: Summary report

    NASA Astrophysics Data System (ADS)

    Merriam, R. L.

    1981-05-01

    Solar heating and cooling system simulation programs available to use by electric utilities was evaluated. A comprehensive reference manual describing the characteristics of computer programs and manual methods was developed. An analysis of the intended capabilities of 11 programs is carried out. The programs are described and ranked by application. Four programs (AXCESS, DEROB, EMPSS, TRNSYS) for three building types (residential, light commercial, and heavy commercial) and three heating and cooling system classes (conventional, active solar, passive solar are tested. The results are compared and related to the program analytical bases. The user experience encountered during the program testing is highlighted and the user related factors for the four programs are compared. The applicability of the 11 programs to utilities is explored. DOE

  7. Solar heating and cooling demonstration project at the Florida Solar Energy Center

    SciTech Connect

    Hankins, J.D.

    1980-02-01

    The retrofitted solar heating and cooling system installed at the Florida Solar Energy Center is described. Information is provided on the system's test, operation, controls, hardware and installation, including detailed drawings. The Center's office building, approximately 5000 square feet of space, with solar air conditioning and heating as a demonstration of the technical feasibility is located just north of Port Canaveral, Florida. The system was designed to supply approximately 70% of the annual cooling and 100% of the heating load. The project provides unique high-temperature, non-imaging, non-tracking, evacuated-tube collectors. The design of the system was kept simple and employs five hydronic loops. They are energy collection, chilled water production, space cooling, space heating and energy rejection.

  8. Chromospheric activity of cool giant stars

    NASA Technical Reports Server (NTRS)

    Steiman-Cameron, T. Y.

    1986-01-01

    During the seventh year of IUE twenty-six spectra of seventeen cool giant stars ranging in spectral type from K3 thru M6 were obtained. Together with spectra of fifteen stars observed during the sixth year of IUE, these low-resolution spectra have been used to: (1) examine chromospheric activity in the program stars and late type giants in general, and (2) evaluate the extent to which nonradiative heating affects the upper levels of cool giant photospheres. The stars observed in this study all have well determined TiO band strengths, angular diameters (determined from lunar occulations), bolometric fluxes, and effective temperatures. Chromospheric activity can therefore be related to effective temperatures providing a clearer picture of activity among cool giant stars than previously available. The stars observed are listed.

  9. Solar heating and cooling R and D program coordination support. Final report, October 1, 1980-September 30, 1983

    SciTech Connect

    Not Available

    1984-01-01

    The objective of the project was to support the US Department of Energy's international R and D activities in the solar heating and cooling area. The cooperative programs were of two types: bilateral (involving the US and one other country) and multilateral (involving the US and several other countries). The multilateral programs supported under this contract were: International Energy Agency Solar Heating and Cooling Program; and NATO/CCMS Solar Energy Pilot Study. Solar heating and cooling projects under the following bilateral programs were supported: US/Mexico; US/Israel; and US/Spain. The assistance to DOE's Office of Solar Heat Technologies, consisted primarily of program management and coordination support, plus a smaller amount of technical support. This final report summarizes the work performed during the three years of this contract and the accomplishments.

  10. Citywide Impacts of Cool Roof and Rooftop Solar Photovoltaic Deployment on Near-Surface Air Temperature and Cooling Energy Demand

    NASA Astrophysics Data System (ADS)

    Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Martilli, A.

    2016-04-01

    Assessment of mitigation strategies that combat global warming, urban heat islands (UHIs), and urban energy demand can be crucial for urban planners and energy providers, especially for hot, semi-arid urban environments where summertime cooling demands are excessive. Within this context, summertime regional impacts of cool roof and rooftop solar photovoltaic deployment on near-surface air temperature and cooling energy demand are examined for the two major USA cities of Arizona: Phoenix and Tucson. A detailed physics-based parametrization of solar photovoltaic panels is developed and implemented in a multilayer building energy model that is fully coupled to the Weather Research and Forecasting mesoscale numerical model. We conduct a suite of sensitivity experiments (with different coverage rates of cool roof and rooftop solar photovoltaic deployment) for a 10-day clear-sky extreme heat period over the Phoenix and Tucson metropolitan areas at high spatial resolution (1-km horizontal grid spacing). Results show that deployment of cool roofs and rooftop solar photovoltaic panels reduce near-surface air temperature across the diurnal cycle and decrease daily citywide cooling energy demand. During the day, cool roofs are more effective at cooling than rooftop solar photovoltaic systems, but during the night, solar panels are more efficient at reducing the UHI effect. For the maximum coverage rate deployment, cool roofs reduced daily citywide cooling energy demand by 13-14 %, while rooftop solar photovoltaic panels by 8-11 % (without considering the additional savings derived from their electricity production). The results presented here demonstrate that deployment of both roofing technologies have multiple benefits for the urban environment, while solar photovoltaic panels add additional value because they reduce the dependence on fossil fuel consumption for electricity generation.

  11. Multiphysics Simulation of Active Hypersonic Lip Cooling

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Wang, Wen-Ping

    1999-01-01

    This article describes the application of the Multidisciplinary Analysis (MDA) solver, Spectrum, in analyzing a hydrogen-cooled hypersonic cowl leading-edge structure. Spectrum, a multiphysics simulation code based on the finite element method, addresses compressible and incompressible fluid flow, structural, and thermal modeling, as well as the interactions between these disciplines. Fluid-solid-thermal interactions in a hydrogen impingement-cooled leading edge are predicted using Spectrum. Two- and semi-three-dimensional models are considered for a leading edge impingement coolant, concept under either specified external heat flux or aerothermodynamic heating from a Mach 5 external flow interaction. The solution accuracy is demonstrated from mesh refinement analysis. With active cooling, the leading edge surface temperature is drastically reduced from 1807 K of the adiabatic condition to 418 K. The internal coolant temperature profile exhibits a sharp gradient near channel/solid interface. Results from two different cooling channel configurations are also presented to illustrate the different behavior of alternative active cooling schemes.

  12. Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    Klimchuk, James A.; van Driel-Gesztelyi, Lidia; Schrijver, Carolus J.; Melrose, Donald B.; Fletcher, Lyndsay; Gopalswamy, Natchimuthuk; Harrison, Richard A.; Mandrini, Cristina H.; Peter, Hardi; Tsuneta, Saku; Vršnak, Bojan; Wang, Jing-Xiu

    Commission 10 deals with solar activity in all of its forms, ranging from the smallest nanoflares to the largest coronal mass ejections. This report reviews scientific progress over the roughly two-year period ending in the middle of 2008. This has been an exciting time in solar physics, highlighted by the launches of the Hinode and STEREO missions late in 2006. The report is reasonably comprehensive, though it is far from exhaustive. Limited space prevents the inclusion of many significant results. The report is divided into the following sections: Photosphere and chromosphere; Transition region; Corona and coronal heating; Coronal jets; flares; Coronal mass ejection initiation; Global coronal waves and shocks; Coronal dimming; The link between low coronal CME signatures and magnetic clouds; Coronal mass ejections in the heliosphere; and Coronal mass ejections and space weather. Primary authorship is indicated at the beginning of each section.

  13. Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition

    SciTech Connect

    1980-09-01

    This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

  14. The Solar Heating and Cooling Commercial Demonstration Program at Marshall Space Flight Center - Some problems and conclusions

    NASA Technical Reports Server (NTRS)

    Middleton, R. L.

    1978-01-01

    The origin and evolution of the Solar Heating and Cooling Commercial Demonstration Program by the Department of Energy and the Marshall Space Flight Center activities supporting this program from its conception are defined and discussed. Problems are summarized in the design and financial areas. It is concluded that the program has significantly assisted the creation of a viable solar testing and cooling industry. The cost effective procedures evolving from the program are expected to make a major contribution to reducing the effective life cycle cost of solar installation.

  15. The development and cooling of a solar limb-flare

    NASA Technical Reports Server (NTRS)

    Veck, N. J.; Strong, K. T.; Jordan, C.; Simnett, G. M.; Cargill, P. J.; Priest, E. R.

    1984-01-01

    Observations of a flare that began in soft X-rays at 20:37 UT on April 12, 1980 at the west limb of the sun are discussed. The observations of the flare and postflare loops are first described, and the Solar Maximum Mission data are interpreted in terms of the temperature, density, and geometry of the emitting regions. The observed postflare cooling time is compared with that expected from radiation, conduction, and enthalpy flux. The loop model is discussed, and the observed events are compared with other proposed models.

  16. Analysis of advanced solar hybrid desiccant cooling systems for buildings

    SciTech Connect

    Schlepp, D.; Schultz, K.

    1984-10-01

    This report describes an assessment of the energy savings possible from developing hybrid desiccant/vapor-compression air conditioning systems. Recent advances in dehumidifier design for solar desiccant cooling systems have resulted in a dehumidifier with a low pressure drop and high efficiency in heat and mass transfer. A recent study on hybrid desiccant/vapor compression systems showed a 30%-80% savings in resource energy when compared with the best conventional systems with vapor compression. A system consisting of a dehumidifier with vapor compression subsystems in series was found to be the simplest and best overall performer.

  17. Activation of solar flares

    SciTech Connect

    Cargill, P.J.; Migliuolo, S.; Hood, A.W.

    1984-11-01

    The physics of the activation of two-ribbon solar flares via the MHD instability of coronal arcades is presented. The destabilization of a preflare magnetic field is necessary for a rapid energy release, characteristic of the impulsive phase of the flare, to occur. The stability of a number of configurations are examined, and the physical consequences and relative importance of varying pressure profiles and different sets of boundary conditions (involving field-line tying) are discussed. Instability modes, driven unstable by pressure gradients, are candidates for instability. Shearless vs. sheared equilibria are also discussed. (ESA)

  18. Solar heating and cooling of residential buildings: design of systems, 1980 edition

    SciTech Connect

    1980-09-01

    This manual was prepared primarily for use in conducting a practical training course on the design of solar heating and cooling systems for residential and small office buildings, but may also be useful as a general reference text. The content level is appropriate for persons with different and varied backgrounds, although it is assumed that readers possess a basic understanding of heating, ventilating, and air-conditioning systems of conventional (non-solar) types. This edition is a revision of the manual with the same title, first printed and distributed by the US Government Printing Office in October 1977. The manual has been reorganized, new material has been added, and outdated information has been deleted. Only active solar systems are described. Liquid and air-heating solar systems for combined space and service water heating or service water heating are included. Furthermore, only systems with proven experience are discussed to any extent.

  19. Quantum-radiative cooling for solar cells with textured surface

    NASA Astrophysics Data System (ADS)

    Gilman, Boris; Ivanov, Igor

    2004-11-01

    Efficient technique of Quantum Radiative Cooling (QRC) of textured Solar Cells and Modules is described that is capable of Solar Module (SM) temperature reduction by 5-20C, resulting in 3-10% efficiency increase. Novel methods are based on the quantum assisted IR emission from the surface covered by either multi-layer coatings made of Si-nitride, SiO or Si oxy-nitride films or specifically designed insulating sun-transparent chamber (QRC zone) that contains Selective Emissive (SE) gas or gas mix. QRC zone is mounted on the top of Solar Module replacing existing lamination coatings. To enhance the efficiency of QRC some specific methods and fabrication procedures are proposed to form an electricly charged textured surface that provide a high Electric Field at the surface thus enhancing IR emissivity from the surface. Such procedure can be also used to form the field Induced Surface Barriers in the Si-based Solar Cells that can substitute the existing diffused Emitters resulting in significant reduction of the Cycle Time as well as prospective Fabrication Cost.

  20. Site-dependent factors affecting the economic feasibility of solar powered absorption cooling

    NASA Technical Reports Server (NTRS)

    Bartlett, J. C.

    1977-01-01

    A procedure has been developed which can be used to determine the economic feasibility of solar powered absorption cooling systems. This procedure has been used in a study to investigate the influence of the site-dependent parameters on the economic feasibility of solar absorption cooling. The purpose of this study was to make preliminary site selections for solar powered absorption cooling systems. This paper summarizes the results of that study.

  1. SOLERAS - Saudi University Solar Cooling Laboratories Project. Final report, project summary

    SciTech Connect

    Not Available

    1986-01-01

    Proposals for research on solar cooling are presented for four Saudi Arabian universities. The universities are the University of Petroleum and Minerals in Dhahran, King Saud University in Riyadh, King Abdulaziz University in Jeddah, and King Faisal University in Dammam. Topics researched include the Rankine cycle, passive solar cooling systems, a solar-powered lithium bromide-water absorption machine and a photovoltaic-powered thermoelectric cooling machine. (BCS)

  2. PCM Passive Cooling System Containing Active Subsystems

    NASA Technical Reports Server (NTRS)

    Blanding, David E.; Bass, David I.

    2005-01-01

    A multistage system has been proposed for cooling a circulating fluid that is subject to intermittent intense heating. The system would be both flexible and redundant in that it could operate in a basic passive mode, either sequentially or simultaneously with operation of a first, active cooling subsystem, and either sequentially or simultaneously with a second cooling subsystem that could be active, passive, or a combination of both. This flexibility and redundancy, in combination with the passive nature of at least one of the modes of operation, would make the system more reliable, relative to a conventional cooling system. The system would include a tube-in-shell heat exchanger, within which the space between the tubes would be filled with a phase-change material (PCM). The circulating hot fluid would flow along the tubes in the heat exchanger. In the basic passive mode of operation, heat would be conducted from the hot fluid into the PCM, wherein the heat would be stored temporarily by virtue of the phase change.

  3. Small Scale Solar Cooling Unit in Climate Conditions of Latvia: Environmental and Economical Aspects

    NASA Astrophysics Data System (ADS)

    Jaunzems, Dzintars; Veidenbergs, Ivars

    2010-01-01

    The paper contributes to the analyses from the environmental and economical point of view of small scale solar cooling system in climate conditions of Latvia. Cost analyses show that buildings with a higher cooling load and full load hours have lower costs. For high internal gains, cooling costs are around 1,7 €/kWh and 2,5 €/kWh for buildings with lower internal gains. Despite the fact that solar cooling systems have significant potential to reduce CO2 emissions due to a reduction of electricity consumption, the economic feasibility and attractiveness of solar cooling system is still low.

  4. Colorado State University program for developing, testing, evaluating and optimizing solar heating and cooling systems. Project status report, December 1994--January 1995

    SciTech Connect

    1995-03-01

    This progress report summarizes activities, experiments, and testing performed on a variety of solar heating and cooling systems in conjunction with four technical research tasks. Areas of focus include: Unique solar system components; Rating and certification of domestic water heating systems; and, Advanced residential solar domestic hot water systems.

  5. Summary of NASA-Lewis Research Center solar heating and cooling and wind energy programs

    NASA Technical Reports Server (NTRS)

    Vernon, R. W.

    1975-01-01

    NASA is planning to construct and operate a solar heating and cooling system in conjunction with a new office building being constructed at Langley Research Center. The technology support for this project will be provided by a solar energy program underway at NASA's Lewis Research Center. The solar program at Lewis includes: testing of solar collectors with a solar simulator, outdoor testing of collectors, property measurements of selective and nonselective coatings for solar collectors, and a solar model-systems test loop. NASA-Lewis has been assisting the National Science Foundation and now the Energy Research and Development Administration in planning and executing a national wind energy program. The areas of the wind energy program that are being conducted by Lewis include: design and operation of a 100 kW experimental wind generator, industry-designed and user-operated wind generators in the range of 50 to 3000 kW, and supporting research and technology for large wind energy systems. An overview of these activities is provided.

  6. Liquid flat plate collector and pump for solar heating and cooling systems: A collection of quarterly reports

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Progress in the development, fabrication, and delivery of solar subsystems consisting of a solar operated pump, and solar collectors which can be used in solar heating and cooling, or hot water, for single family, multifamily, or commercial applications is reported.

  7. Evidence for Solar Cycle Influence on the Infrared Energy Budget and Radiative Cooling of the Thermosphere

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin G.; Martin-Torres, F. Javier; Marshall, B. Thomas; Thompson, R. Earl; Williams, Joshua; Turpin, TImothy; Kratz, D. P.; Russell, James M.; Woods, Tom; Gordley, Larry L.

    2007-01-01

    We present direct observational evidence for solar cycle influence on the infrared energy budget and radiative cooling of the thermosphere. By analyzing nearly five years of data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, we show that the annual mean infrared power radiated by the nitric oxide (NO) molecule at 5.3 m has decreased by a factor of 2.9. This decrease is correlated (r = 0.96) with the decrease in the annual mean F10.7 solar index. Despite the sharp decrease in radiated power (which is equivalent to a decrease in the vertical integrated radiative cooling rate), the variability of the power as given in the standard deviation of the annual means remains approximately constant. A simple relationship is shown to exist between the infrared power radiated by NO and the F10.7 index, thus providing a fundamental relationship between solar activity and the thermospheric cooling rate for use in thermospheric models. The change in NO radiated power is also consistent with changes in absorbed ultraviolet radiation over the same time period.

  8. Observations and Modeling of the Pulse-driven Cool Plasma Ejecta in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Srivastava, Abhishek K.; Murawski, . Kris; Kayshap, Pradeep

    2012-07-01

    The cool plasma ejecta are ubiquitous in the solar atmosphere, and have significant implications on its mass and energy transport. We present two case studies of the SDO/AIA observations of (i) cool jet at north polar region, and (ii) the cool surge ejecta at the active region boundary. The common nature between these two different class of plasma dynamics is that both do not reveal any signature of strong heating during course of their life-times. The surge shows some evidence of heating at its footpoint, however, mostly not visible in the SDO/AIA filters sensitive to the higher coronal temperatures. Similarly, the polar jet is also only evident in the SDO/AIA 304 Å channel that is sensitive to the plasma maintained around 0.1 MK, and does not show any signature of heating. We model these cool jets by launching reconnection generated pulses in the VAL-III C model of the solar temperature as an initial condition. For the case of cool polar jet, we launch reconnection generated velocity pulse in the more realistic solar atmosphere, which steepens into a shock at higher altitudes and triggers plasma perturbations exhibiting the observed features of the jet. However, the footpoint of the surge shows small heating episode in the second case study, therefore, we consider the excitation of reconnection generated thermal pulse which triggers plasma perturbations approximately exhibiting the observed features of the surge, e.g., average velocity, height, width, life-time, and fine structures at its base. We also compare our new results with the existing models and observations of such jets, and plasma flows especially reported in the SDO era.

  9. Solar engineering - 1981; Proceedings of the Third Annual Conference on Systems Simulation, Economic Analysis/Solar Heating and Cooling Operational Results, Reno, NV, April 27-May 1, 1981

    NASA Astrophysics Data System (ADS)

    Reid, R. L.; Murphy, L. M.; Ward, D. S.

    Progress made toward the commercialization of solar energy technologies as of 1981 is assessed, and attention is given to the future uses and impacts of solar energy. Attention is given to the results of several years of monitoring and modifying solar heating and cooling on residential and commercial structures. Solar system simulation and analysis methods are reviewed, covering the performance and operations of passive and active systems, thermosyphon systems, heat pumps and phase change systems. Simulations of system components are discussed, as are means to validate existing computer simulation codes, particularly the TRNSYS program. Control systems and logic for collector systems are explored, including analyses of building loads and climates, and numerical models of the economics of solar heating systems are presented. Performance simulations and economic analyses are also outlined for wind and photovoltaic systems, and for industrial solar heating systems. Finally, fundamental studies of corrosion, steam flow, wind loading, and scaling in solar systems are described.

  10. Optimum hot water temperature for absorption solar cooling

    SciTech Connect

    Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R.; Zacarias, A.

    2009-10-15

    The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

  11. Solar Heating and Cooling of Residential Buildings: Sizing, Installation and Operation of Systems.

    ERIC Educational Resources Information Center

    Colorado State Univ., Ft. Collins. Solar Energy Applications Lab.

    This training course and a companion course titled "Design of Systems for Solar Heating and Cooling of Residential Buildings," are designed to train home designers and builders in the fundamentals of solar hydronic and air systems for space heating and cooling and domestic hot water heating for residential buildings. Each course, organized in 22…

  12. Solar Heating and Cooling of Buildings: Phase 0. Executive Summary. Final Report.

    ERIC Educational Resources Information Center

    Westinghouse Electric Corp., Baltimore, MD.

    After the Westinghouse Electric Corporation made a comprehensive analysis of the technical, economic, social, environmental, and institutional factors affecting the feasibility of utilizing solar energy for heating and cooling buildings, it determined that solar heating and cooling systems can become competitive in most regions of the country in…

  13. System design package for a solar heating and cooling system installed at Akron, Ohio

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Information used to evaluate the design of a solar heating, cooling, and domestic hot water system is given. A conventional heat pump provides summer cooling items as the design data brochure, system performance specification, system hazard analysis, spare parts list, and detailed design drawings. A solar system is installed in a single-family dwelling at Akron, Ohio, and at Duffield, Virginia.

  14. National Program Plan for Research and Development in Solar Heating and Cooling. Interim Report.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This report presents the Energy Research and Development Administration (ERDA) program plan for solar heating and cooling of buildings and for agricultural and industrial process applications. An overview of the program plan is followed by a description of the ten paths to the solar heating and cooling of buildings and a brief discussion of the…

  15. Testing and design of solar cooling systems employing liquid dessicants

    SciTech Connect

    Lenz, T.; Loef, G.O.G.; Flaherty, M.; Misra, S.; Patnaik, S.

    1989-05-01

    An open cycle liquid desiccant cooling system with cooling capacity of 3 tons (10.5 kW) a subject of research at Colorado State University. The system comprises two main units: the dehumidifier and the regenerator. Lithium bromide is the desiccant solution that dehumidifies the air stream during a counter-current, liquid-gas contacting in the packed tower. The regenerator concentrates the lithium bromide solution during a similar gas-liquid contacting using solar heated air with the only difference being that the direction of heat and mass transfer are reversed in this unit. The earlier studies conducted on the dehumidifier revealed significant departures from an energy balance closure. An attempt has been made to provide a realistic energy balance closure to the dehumidifier side. This has resulted in substantial re-calibration of the major instruments involved. Performance data of the entire system with the regenerator and dehumidifier operated in coupled mode have been presented. An optimization scheme to predict operating conditions suited for best performance of the two units, for varying ambient temperature and humidity to the dehumidifier, has been devised. 15 refs., 20 figs., 8 tabs.

  16. UV Observations of Prominence Activation and Cool Loop Dynamics

    NASA Technical Reports Server (NTRS)

    Kucera, Therese A.; Landi, Enrico

    2006-01-01

    In this paper we investigate the thermal and dynamic properties of dynamic structures in and around a prominence channel observed on the limb on 17 April 2003. Observations were taken with the Solar and Heliospheric Observatory's Solar Ultraviolet Measurements of Emitted Radiation (SOHO/SUMER) in lines formed at temperatures from 80,000 to 1.6 MK. The instrument was pointed to a single location and took a series of 90 s exposures. Two-dimensional context was provided by the Transition Region and Coronal Explorer (TRACE) in the UV and EUV and the Kanzelhohe Solar Observatory in H-alpha. Two dynamic features were studied in depth: an activated prominence and repeated motions in a loop near the prominence. We calculated three-dimensional geometries and trajectories, differential emission measure, and limits on the mass, pressure, average density, and kinetic and thermal energies. These observations provide important tests for models of dynamics in prominences and cool (approx. 10(exp 5) K)loops, which will ultimately lead to a better understanding the mechanism(s) leading to energy and mass flow in these solar features.

  17. Establish feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys

    SciTech Connect

    Cunningham, W.A.; Mignon, G.V.; Thompson, T.L.

    1987-01-01

    Natural draft towers can be used for cooling and ventilating structures. From an operational perspective, the downdraft evaporatively cooled tower is preferred for a dry climate. Solar chimneys, when used alone, tend to require an excessively large solar collector area when appreciable quantities of air must be moved. When used in combination with a downdraft tower, the roof and attic of buildings may assist the solar chimney and their use becomes more attractive. Both a frame building and a greenhouse were successfully cooled during this program. The economics of the downdraft tower compare favorably with conventional evaporative cooling for some application.

  18. Establish feasibility for providing passive cooling with solar updraft and evaporate downdraft chimneys

    SciTech Connect

    Cunningham, W.A.; Mignon, G.V.; Thompson, T.L.

    1987-01-01

    Natural draft towers can be used for cooling and ventilating structures. From an operational perspective, the downdraft evaporatively cooled tower is preferred for a dry climate. Solar chimneys, when used alone, tend to require an excessively large solar collector area when appreciable quantities of air must be moved. When used in combination with a downdraft tower, the roof and attic of buildings may assist the solar chimney and their use becomes more attractive. Both a frame building and a greenhouse were successfully cooled during this program. The economics of the downdraft tower compare favorably with conventional evaporative cooling for some applications.

  19. Solar energy to heat and cool a new NASA Langley office building

    NASA Technical Reports Server (NTRS)

    Maag, W. L.

    1974-01-01

    A solar heating and cooling system will be installed at a new NASA office building. The objective of this project is to establish a full-scale working test-bed facility to investigate solar energy for heating and cooling buildings. The energy collected will provide between 80 and 100 percent of the heating and cooling requirements during the cool months and between one-half and two-thirds of the cooling requirements in the summer. Thermal energy storage will be provided to bridge the gap between cloudy and clear days.

  20. Performance of evacuated tubular solar collectors in a residential heating and cooling system

    NASA Astrophysics Data System (ADS)

    Duff, W. S.; Loef, G. O. G.

    1981-03-01

    Operation of CSU Solar House I during the heating season of 1978-1979 and during the 1979 cooling season is discussed. The systems comprised an experimental evacuated tubular solar collector, a nonfreezing aqueous collection medium, heat exchange to an insulated conventional vertical cylindrical storage tank and to a built up rectangular insulated storage tank, heating of circulating air by solar heated water and by electric auxiliary in an off peak heat storage unit, space cooling by lithium bromide absorption chiller, and service water heating by solar exchange and electric auxiliary. The system is compared with CSU Solar Houses I, II and III. The experimental collector provides solar heating and cooling with minimum operational problems. Improved performance, particularly for cooling, resulted from the use of a very well insulated heat storage tank. Day time electric auxiliary heating is avoided by use of off peak electric heat storage.

  1. Solar activity secular cycles

    NASA Astrophysics Data System (ADS)

    Kramynin, A. P.; Mordvinov, A. V.

    2013-12-01

    Long-term variations in solar activity secular cycles have been studied using a method for the expansion of reconstructed sunspot number series Sn( t) for 11400 years in terms of natural orthogonal functions. It has been established that three expansion components describe more than 98% of all Sn( t) variations. In this case, the contribution of the first expansion component is about 92%. The averaged form of the 88year secular cycle has been determined based on the form of the first expansion coordinate function. The quasi-periodicities modulating the secular cycle have been revealed based on the time function conjugate to the first function. The quasi-periodicities modulating the secular cycle coincide with those observed in the Sn( t) series spectrum. A change in the secular cycle form and the time variations in this form are described by the second and third expansion components, the contributions of which are about 4 and 2%, respectively. The variations in the steepness of the secular cycle branches are more pronounced in the 200-year cycle, and the secular cycle amplitude varies more evidently in the 2300-year cycle.

  2. Solar heating and cooling system installed at RKL Controls Company, Lumberton, New Jersey. Final report

    SciTech Connect

    1981-03-01

    Solar heating and cooling of a 40,000 square foot manufacturing building, sales offices and the solar computer control center/display room are described. Information on system description, test data, major problems and resolutions, performance, operation and maintenance manual, manufacturer's literature and as-built drawings are provided also. The solar system is composed of 6000 square feet of Sunworks double glazed flat plate collectors, external above ground storage subsystem, controls, ARKLA absorption chiller, heat recovery and a cooling tower.

  3. Solar activity and the weather

    NASA Technical Reports Server (NTRS)

    Wilcox, J. M.

    1975-01-01

    The attempts during the past century to establish a connection between solar activity and the weather are discussed; some critical remarks about the quality of much of the literature in this field are given. Several recent investigations are summarized. Use of the solar/interplanetary magnetic sector structure in future investigations is suggested to add an element of cohesiveness and interaction to these investigations.

  4. Solar activity and myocardial infarction.

    PubMed

    Szczeklik, E; Mergentaler, J; Kotlarek-Haus, S; Kuliszkiewicz-Janus, M; Kucharczyk, J; Janus, W

    1983-01-01

    The correlation between the incidence of myocardial infarction, sudden cardiac death, the solar activity and geomagnetism in the period 1969-1976 was studied, basing on Wrocław hospitals material registered according to WHO standards; sudden death was assumed when a person died within 24 hours after the onset of the disease. The highest number of infarctions and sudden deaths was detected for 1975, which coincided with the lowest solar activity, and the lowest one for the years 1969-1970 coinciding with the highest solar activity. Such an inverse, statistically significant correlation was not found to exist between the studied biological phenomena and geomagnetism. PMID:6851574

  5. Simulation of an active cooling system for photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Abdelhakim, Lotfi

    2016-06-01

    Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water also acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.

  6. Solar heating and cooling demonstration project at Radian Corporation, Austin, Texas

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar heating and cooling system located at the Radian Corporation, Austin, Texas, is discussed. A technical description of the solar system is presented. The costs of the major components and the cost of installing the system are described. Flow diagrams and photographs of the solar system are provided.

  7. Analysis of the Solar Radiation Impact on Cooling Performance of the Absorption Chiller

    NASA Astrophysics Data System (ADS)

    Fedorčák, Pavol; Košičanová, Danica; Nagy, Richard; Mlynár, Peter

    2014-11-01

    Absorption cooling at low power is a new technology which has not yet been applied to current conditioning elements. This paper analyzes the various elements of solar absorption cooling. Individual states were simulated in which working conditions were set for the capability of solar absorption cooling to balance heat loads in the room. The research is based on an experimental device (absorption units with a performance of 10kW) developed at the STU in Bratislava (currently inputs and outputs of cold sources are being measured). Outputs in this paper are processed so that they connect the entire scheme of the solar absorption cooling system (i.e. the relationship between the solar systems hot and cold storage and the absorption unit). To determine the size of the storage required, calculated cooling for summer months is considered by the ramp rate of the absorption unit and required flow rate of the collectors.

  8. Solar chimney design: Investigating natural ventilation and cooling in offices with the aid of computer simulation

    NASA Astrophysics Data System (ADS)

    Angelis, Nikolaos

    Solar chimney design is investigated as a means of improving natural ventilation and passive cooling in office buildings. Existing scientific research and built precedents are generally limited literature review findings on various features of solar chimneys were categorised and used to develop a building simulation strategy. Using UK climatic data, simulations were performed on several computer models in order to investigate solar chimney performance during a single day period and an entire cooling season. Passive cooling with a solar chimney is possible but actual reduction in temperatures in most cases examined could be negligible. Cooling potential is increased on still, warm days, while the prospects for night cooling are further improved. A solar chimney may help reduce considerably the occurrence of resultant temperatures at or above the 25 C and 28 C thresholds. Solar chimney width, height, apertures and integral use of thermal mass are the most significant parameters for cooling. Simulation results showed that a solar chimney can increase significantly natural ventilation rates. Total ventilation rates may be increased by at least 22%. During still days a solar chimney can enhance ventilation rates by 36% or more. Stack ventilation through a solar chimney is typically 20% of cross ventilation during night time this may increase to at least 40-45% and on still days it may reach 100% of typical cross ventilation rates. Solar chimney induced stack ventilation and cross ventilation are interrelated. Resultant air flow patterns may have an important effect on convective heat transfers and thermal comfort. Climate and microclimate conditions should be an integral part of solar chimney design. Key aspects and recommendations regarding solar chimneys, passive cooling and natural ventilation are provided for design guidance and feedback in further research.

  9. Solar activity over different timescales

    NASA Astrophysics Data System (ADS)

    Obridko, Vladimir; Nagovitsyn, Yuri

    The report deals with the “General History of the Sun” (multi-scale description of the long-term behavior of solar activity): the possibility of reconstruction. Time scales: • 100-150 years - the Solar Service. • 400 - instrumental observations. • 1000-2000 years - indirect data (polar auroras, sunspots seen with the naked eye). • Over-millennial scale (Holocene) -14С (10Be) Overview and comparison of data sets. General approaches to the problem of reconstruction of solar activity indices on a large timescale. North-South asymmetry of the sunspot formation activity. 200-year cycle over the “evolution timescales”.The relative contribution of the large-scale and low-latitude. components of the solar magnetic field to the general geomagnetic activity. “Large-scale” and low-latitude sources of geomagnetic disturbances.

  10. Diagnostics for the NBETF actively cooled beamdump

    SciTech Connect

    Theil, E.; Jacobson, V.

    1984-09-01

    Lawrence Berkeley Laboratory's Neutral Beam Engineering Test Facility is currently testing multi-megawatt beams with pulse durations of up to 30 seconds. For this purpose, an actively cooled beam dump composed of heat-absorbing panels tht dissipate the beam energy via high speed water flow has been installed and tested. The panels are mounted in a complex assembly necessary to accommodate the variety of ion sources to be tested. The beam dump required new diagnostics of two kinds: beam diagnostics that provide graphic and quantitative information about the beam, as inferred from energy transferred to the water, and panel diagnostics that provide graphic and quantitative information about the beam dump itself. In this paper we describe our response to these requirements, including new algorithms for beam profiles, and we compare this work to our earlier results for inertial beam dumps. Principal differences are that the power densities on the water-cooled panels can be only indirectly inferred from measurements of the transferred beam energy, and that the acquisition and preparation of raw data is much more complex.

  11. Deciphering Solar Magnetic Activity: On Grand Minima in Solar Activity

    NASA Astrophysics Data System (ADS)

    Mcintosh, Scott; Leamon, Robert

    2015-07-01

    The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well understood. There has been tremendous progress in the century since the discovery of solar magnetism - magnetism that ultimately drives the electromagnetic, particulate and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magnetism, perhaps even indicators of a significant downward trend, over recent decades. Are we entering a minimum in solar activity that is deeper and longer than a typical solar minimum, a "grand minimum"? How could we tell if we are? What is a grand minimum and how does the Sun recover? These are very pertinent questions for modern civilization. In this paper we present a hypothetical demonstration of entry and exit from grand minimum conditions based on a recent analysis of solar features over the past 20 years and their possible connection to the origins of the 11(-ish) year solar activity cycle.

  12. Subsystem design package for Mod 2 site data acquisition system: Solar heating and cooling

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Mod II Site Data Acquisition Subsystem (SDAS) is designed to collect data from sensors located on residential or commercial buildings using a solar heating and/or cooling system. The SDAS takes the data obtained from sensors located on the solar heating and/or cooling system, processes the data into a suitable format, stores the data for a period of time, and provides the capability for both telephone retrieval by the Central Data Processing System (CDPS) and manual retrieval of the data for transfer to the central site. The unit is designed so it will not degrade the operation of the solar heating/cooling system which it is monitoring.

  13. The NASA-Lewis/ERDA solar heating and cooling technology program. [project planning/energy policy

    NASA Technical Reports Server (NTRS)

    Couch, J. P.; Bloomfield, H. S.

    1975-01-01

    Plans by NASA to carry out a major role in a solar heating and cooling program are presented. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is discussed, and will be accomplished principally by contract with industry to develop advanced components and subsystems. Advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.

  14. The development of a solar-powered residential heating and cooling system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Efforts to demonstrate the engineering feasibility of utilizing solar power for residential heating and cooling are described. These efforts were concentrated on the analysis, design, and test of a full-scale demonstration system which is currently under construction at the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville, Alabama. The basic solar heating and cooling system under development utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating and water heating, and an absorption cycle air conditioner for space cooling.

  15. Site dependent factors affecting the economic feasibility of solar powered absorption cooling

    NASA Technical Reports Server (NTRS)

    Bartlett, J. C.

    1978-01-01

    A procedure was developed to evaluate the cost effectiveness of combining an absorption cycle chiller with a solar energy system. A basic assumption of the procedure is that a solar energy system exists for meeting the heating load of the building, and that the building must be cooled. The decision to be made is to either cool the building with a conventional vapor compression cycle chiller or to use the existing solar energy system to provide a heat input to the absorption chiller. Two methods of meeting the cooling load not supplied by solar energy were considered. In the first method, heat is supplied to the absorption chiller by a boiler using fossil fuel. In the second method, the load not met by solar energy is net by a conventional vapor compression chiller. In addition, the procedure can consider waste heat as another form of auxiliary energy. Commercial applications of solar cooling with an absorption chiller were found to be more cost effective than the residential applications. In general, it was found that the larger the chiller, the more economically feasible it would be. Also, it was found that a conventional vapor compression chiller is a viable alternative for the auxiliary cooling source, especially for the larger chillers. The results of the analysis gives a relative rating of the sites considered as to their economic feasibility of solar cooling.

  16. Initial operation of a solar heating and cooling system in a full-scale solar building test facility

    NASA Technical Reports Server (NTRS)

    Knoll, R. H.; Miao, D.; Hamlet, I. L.; Jensen, R. N.

    1976-01-01

    The Solar Building Test Facility (SBTF) located at Hampton, Virginia became operational in early summer of 1976. This facility is a joint effort by NASA-Lewis and NASA-Langley to advance the technology for heating and cooling of office buildings with solar energy. Its purposes are to (1) test system components which include high-performing collectors, (2) test performance of complete solar heating and cooling system, (3) investigate component interactions and (4) investigate durability, maintenance and reliability of components. The SBTF consists of a 50,000 square foot office building modified to accept solar heated water for operation of an absorption air conditioner and for the baseboard heating system. A 12,666 square foot solar collector field with a 30,000 gallon storage tank provides the solar heated water. A description of the system and the collectors selected is given here, along with the objectives, test approach, expected system performance and some preliminary results.

  17. Initial operation of a solar heating and cooling system in a full-scale solar building test facility

    NASA Technical Reports Server (NTRS)

    Knoll, R. H.; Miao, D.; Hamlet, I. L.; Jensen, R. N.

    1976-01-01

    The Solar Building Test Facility (SBTF) was constructed to advance the technology for heating and cooling of office buildings with solar energy. Its purposes are to (1) test system components which include high-performing collectors, (2) test the performance of a complete solar heating and cooling system, (3) investigate component interactions, and (4) investigate durability, maintenance and reliability of components. The SBTF consists of a 50,000 square foot office building modified to accept solar heated water for operation of an absorption air conditioner and for the baseboard heating system. A 12,666 square foot solar collector field with a 30,000 gallon storage tank provides the solar heated water. A description of the system and the collectors selected is printed along with the objectives, test approach, expected system performance, and some preliminary results.

  18. Characterization of selected application of biomass energy technologies and a solar district heating and cooling system

    SciTech Connect

    D'Alessio, Dr., Gregory J.; Blaunstein, Robert P.

    1980-09-01

    The following systems are discussed: energy self-sufficient farms, wood gasification, energy from high-yield silviculture farms, and solar district heating and cooling. System descriptions and environmental data are included for each one. (MHR)

  19. Instructor's Manual for Teaching and Practical Courses on Design of Systems and Sizing, Installation and Operation of Systems for Solar Heating and Cooling of Residential Buildings.

    ERIC Educational Resources Information Center

    Colorado State Univ., Ft. Collins. Solar Energy Applications Lab.

    Presented are guidelines for instructors of two courses in the design, installation, and operation of solar heating and cooling systems. These courses are: (1) Design of Systems, and (2) Sizing, Installation, and Operation of Systems. Limited in scope to active solar systems for residential buildings, these courses place primary emphasis upon…

  20. Actively controlling coolant-cooled cold plate configuration

    DOEpatents

    Chainer, Timothy J.; Parida, Pritish R.

    2016-04-26

    Cooling apparatuses are provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The cooling apparatus includes the cold plate and a controller. The cold plate couples to one or more electronic components to be cooled, and includes an adjustable physical configuration. The controller dynamically varies the adjustable physical configuration of the cold plate based on a monitored variable associated with the cold plate or the electronic component(s) being cooled by the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the electronic component(s), and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the cold plate, the positioning of which may be adjusted based on the monitored variable.

  1. Passive solar space heating and cooling. (Latest citations from the NTIS Bibliographic database). NewSearch

    SciTech Connect

    Not Available

    1994-10-01

    The bibliography contains citations concerning the passive use of solar energy for space heating and cooling in buildings, houses, and homes. Citations discuss the design, performance, models, and economic analysis of heating and cooling systems. Topics include solar architecture, energy consumption analysis, energy conservation, and heat recovery. Also included are thermal comfort, quality of life, and housing for the elderly. (Contains a minimum of 209 citations and includes a subject term index and title list.)

  2. ERDA/NASA-MSFC solar heating and cooling development and demonstration program

    NASA Technical Reports Server (NTRS)

    Price, J. M.

    1977-01-01

    The role of the Manned Space Flight Center (MSFC) in the National Solar Heating and Cooling program is evaluated. The responsibilities of the MSFC within this program are (1) to manage the development and testing of solar heating and cooling systems leading to marketable products, (2) to develop data acquisition equipment supporting a national data program, and (3) to manage and collect data from commercial demonstration sites. MSFC test facilities and demonstration sites are described.

  3. Colorado State University program for developing, testing, evaluating and optimizing solar heating, and cooling systems

    NASA Astrophysics Data System (ADS)

    1991-10-01

    The objective is to develop and test various integrated solar heating, cooling and domestic hot water systems, and to evaluate their performance. Systems composed of new, as well as previously tested, components are carefully integrated so that effects of new components on system performance can be clearly delineated. The SEAL-DOE program includes six tasks which have received funding for the 1991 to 1992 fifteen month period. These include: (1) a project employing isothermal operation of air and liquid solar space heating systems; (2) a project to build and test several generic solar water heaters; (3) a project that will evaluate advanced solar domestic hot water components and concepts and integrate them into solar domestic hot water systems; (4) a liquid desiccant cooling system development project; (5) a project that will perform system modeling and analysis work on solid desiccant cooling systems research; and (6) a management task. The objectives and progress in each task are described in this report.

  4. A Field-Test of Solar Assisted Adsorptive Desiccant Cooling System

    NASA Astrophysics Data System (ADS)

    Ohkura, Masashi; Kodama, Akio; Hirose, Tsutomu

    A field-test of solar assisted desiccant evaporative cooling process has been carried out, which is a quite attractive cooling / dehumidification process considering various environmental problems caused by conventional electricity driven air conditioners. The process performance has been examined by means of temperature drop between outside air and supply air and COPs (COP value based on solar irradiation). This cooling performance was strongly influenced by solar irradiation and ambient air condition. Stable irradiation produced a higher regeneration temperature resulting higher dehumidifying performance. At one day with as table solar irradiation, the cooling process could produce cool supply air of 18.7°C against the ambient air of 30.1°C and averaged COP, was 0.41. On the other hand, unstable irradiation due to some clouds made the dehumidifying performance lower. However, decrease in the cooling performance was small compared to that obtained at the stable irradiation condition. This is due to buffering by thermal storage of the water circulating in solar collectors. Influence of ambient humidity on the cooling performance was rather serious. At higher humidity condition, the amount of dehumidified water became larger due to increase of effective adsorption capacity of the desiccant rotor. However, the temperature drop was decreased to 6.9°C. This behavior was mainly due to simultaneous increase of humidity and temperature in the dehumidified air. In this situation, an effective evaporation in the following water spray evaporative cooler did not occur.

  5. Plate coil thermal test bench for the Daniel K. Inouye Solar Telescope (DKIST) carousel cooling system

    NASA Astrophysics Data System (ADS)

    Phelps, LeEllen; Murga, Gaizka; Montijo, Guillermo; Hauth, David

    2014-08-01

    Analyses have shown that even a white-painted enclosure requires active exterior skin-cooling systems to mitigate dome seeing which is driven by thermal nonuniformities that change the refractive index of the air. For the Daniel K. Inouye Solar Telescope (DKIST) Enclosure, this active surface temperature control will take the form of a system of water cooled plate coils integrated into the enclosure cladding system. The main objective of this system is to maintain the surface temperature of the enclosure as close as possible to, but always below, local ambient temperature in order to mitigate this effect. The results of analyses using a multi-layer cladding temperature model were applied to predict the behavior of the plate coil cladding system and ultimately, with safety margins incorporated into the resulting design thermal loads, the detailed designs. Construction drawings and specifications have been produced. Based on these designs and prior to procurement of the system components, a test system was constructed in order to measure actual system behavior. The data collected during seasonal test runs at the DKIST construction site on Haleakalā are used to validate and/or refine the design models and construction documents as appropriate. The test fixture was also used to compare competing hardware, software, components, control strategies, and configurations. This paper outlines the design, construction, test protocols, and results obtained of the plate coil thermal test bench for the DKIST carousel cooling system.

  6. Solar Heating and Cooling of Buildings (Phase O). Volume 1: Executive Summary.

    ERIC Educational Resources Information Center

    TRW Systems Group, Redondo Beach, CA.

    The purpose of this study was to establish the technical and economic feasibility of using solar energy for the heating and cooling of buildings. Five selected building types in 14 selected cities were used to determine loads for space heating, space cooling and dehumidification, and domestic service hot water heating. Relying on existing and…

  7. Cooling-load implications for residential passive-solar-heating systems

    SciTech Connect

    Jones, R.W.; McFarland, R.D.

    1983-01-01

    Ongoing research on quantifying the cooling loads in residential buildings, particularly buildings with passive solar heating systems, is described, along with the computer simulation model used for calculating cooling loads. A sample of interim results is also presented. The objective of the research is to develop a simple analysis method, useful early in design, to estimate the annual cooling energy requirement of a given building.

  8. Recommended requirements to code officials for solar heating, cooling, and hot water systems. Model document for code officials on solar heating and cooling of buildings

    SciTech Connect

    1980-06-01

    These recommended requirements include provisions for electrical, building, mechanical, and plumbing installations for active and passive solar energy systems used for space or process heating and cooling, and domestic water heating. The provisions in these recommended requirements are intended to be used in conjunction with the existing building codes in each jurisdiction. Where a solar relevant provision is adequately covered in an existing model code, the section is referenced in the Appendix. Where a provision has been drafted because there is no counterpart in the existing model code, it is found in the body of these recommended requirements. Commentaries are included in the text explaining the coverage and intent of present model code requirements and suggesting alternatives that may, at the discretion of the building official, be considered as providing reasonable protection to the public health and safety. Also included is an Appendix which is divided into a model code cross reference section and a reference standards section. The model code cross references are a compilation of the sections in the text and their equivalent requirements in the applicable model codes. (MHR)

  9. Solar collector manufacturing activity, 1988

    NASA Astrophysics Data System (ADS)

    1989-11-01

    This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy in cooperation with the Office of Conservation and Renewable Energy. The report presents data on producer shipments and end uses obtained from manufacturers and importers of solar thermal collectors and photovoltaic modules. It provides annual data necessary for the Department of Energy to execute its responsibility to: (1) monitor activities and trends in the solar collector manufacturing industry, (2) prepare the national energy strategy, and (3) provide information on the size and status of the industry to interested groups such as the U.S. Congress, government agencies, the Solar Energy Research institute, solar energy specialists, manufacturers, and the general public.

  10. Heat-activated cooling devices: A guidebook for general audiences

    SciTech Connect

    Wiltsee, G.

    1994-02-01

    Heat-activated cooling is refrigeration or air conditioning driven by heat instead of electricity. A mill or processing facility can us its waste fuel to air condition its offices or plant; using waste fuel in this way can save money. The four basic types of heat-activated cooling systems available today are absorption cycle, desiccant system, steam jet ejector, and steam turbine drive. Each is discussed, along with cool storage and biomass boilers. Steps in determining the feasibility of heat-activated cooling are discussed, as are biomass conversion, system cost and integration, permits, and contractor selection. Case studies are given.

  11. Cooling of solar flares plasmas. 1: Theoretical considerations

    NASA Technical Reports Server (NTRS)

    Cargill, Peter J.; Mariska, John T.; Antiochos, Spiro K.

    1995-01-01

    Theoretical models of the cooling of flare plasma are reexamined. By assuming that the cooling occurs in two separate phase where conduction and radiation, respectively, dominate, a simple analytic formula for the cooling time of a flare plasma is derived. Unlike earlier order-of-magnitude scalings, this result accounts for the effect of the evolution of the loop plasma parameters on the cooling time. When the conductive cooling leads to an 'evaporation' of chromospheric material, the cooling time scales L(exp 5/6)/p(exp 1/6), where the coronal phase (defined as the time maximum temperature). When the conductive cooling is static, the cooling time scales as L(exp 3/4)n(exp 1/4). In deriving these results, use was made of an important scaling law (T proportional to n(exp 2)) during the radiative cooling phase that was forst noted in one-dimensional hydrodynamic numerical simulations (Serio et al. 1991; Jakimiec et al. 1992). Our own simulations show that this result is restricted to approximately the radiative loss function of Rosner, Tucker, & Vaiana (1978). for different radiative loss functions, other scaling result, with T and n scaling almost linearly when the radiative loss falls off as T(exp -2). It is shown that these scaling laws are part of a class of analytic solutions developed by Antiocos (1980).

  12. Tests of a reduced-scale experimental model of a building solar heating-cooling system

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1976-01-01

    An experimental solar heating and cooling system model has been built and operated, combining elements that are programmable (e.g., heating and cooling load of a building and collected solar energy) with experimental equipment. The experimental system model was based on the loads and components used in the Solar Building Test Facility (SBTF), which includes a 1394 sq m solar collector field at NASA Langley. These tests covered 5 continuous days under summer conditions. For the system model up to 55 percent of the simulated collected solar energy was used for the building load. This amount of solar energy supplied 35 percent of the building cooling load. Heat loss was significant. If tank heat loss were eliminated, which would make it similar to the actual SBTF, 75 percent of the collected solar energy would be used. This amount would supply approximately 50 percent of the building cooling load. A higher fraction of solar energy is possible with a more performance-optimized system.

  13. Timonium Elementary School Solar Energy Heating and Cooling Augmentation Experiment. Final Engineering Report. Executive Summary.

    ERIC Educational Resources Information Center

    AAI Corp., Baltimore, MD.

    This report covers a two-year and seven-month solar space heating and cooling experiment conducted at the Timonium Elementary School, Timonium, Maryland. The system was designed to provide a minimum of 50 percent of the energy required during the heating season and to determine the feasibility of using solar energy to power absorption-type…

  14. Solar Heating and Cooling Experiment for a School in Atlanta. Performance Report.

    ERIC Educational Resources Information Center

    Westinghouse Electric Corp., Falls Church, VA.

    This report documents the performance and conclusions of a 13-month period of monitoring the performance of the experimental solar heating and cooling system installed in the George A. Towns Elementary School, Atlanta, Georgia. The objectives of the project were to (1) make a significant contribution to solar design, technology, and acceptability;…

  15. Operations manual: On Site Monitor (OSM), solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The on-site monitor is a portable device which, when connected to a solar system site data acquisition subsystem; allows readouts of clock and sensor data in voltage or engineering units at instrumented solar heating and cooling sites. The unit is described and procedures for its proper operation are presented.

  16. Solar activities observed with the New Vacuum Solar Telescope

    NASA Astrophysics Data System (ADS)

    Yang, Shuhong

    2015-08-01

    The New Vacuum Solar Telescope is the most important facility of the Fuxian Solar Observatory in China. Based on the high spatial and temporal resolution NVST observations, we investigate the solar activities in the chromosphere and obtain some new results. (1) Observations of a flux rope tracked by filament activation (Yang et al. 2014a). The filament material is initially located at one end of the flux rope and fills in a section of the rope. Then the filament is activated and the material flows along helical threads, tracking the twisted flux rope structure. The flux rope can be detected in both low temperature and high temperature lines, and there exists a striking anti-correlation between the Hα and EUV lines, which could imply some mild heating of cool filament material to coronal temperatures during the filament activation. (2) Fine structures and overlying loops of homologous confined solar flares (Yang et al. 2014b). At the pre-flare stage, there exists a reconnection between small loops. During the flare processes, the overlying loops, some of which are tracked by activated dark materials, do not break out. These direct observations may illustrate the physical mechanism of confined flares, i.e., magnetic reconnection between the emerging loops and the pre-existing loops triggers flares and the overlying loops prevent the flares from being eruptive. (3) Magnetic reconnection between small-scale loops (Yang et al. 2015). We report the solid observational evidence of magnetic reconnection between two sets of small-scale loops. The observed signatures are consistent with the predictions by reconnection models. The thickness and length of the current sheet are determined to be about 420 km and 1.4 Mm, respectively. The reconnection process contains a slow step and a rapid step. We suggest that the successive slow reconnection changes the conditions around the reconnection site and disrupts the instability, thus leading to the rapid approach of the anti

  17. Heat-stop structure design with high cooling efficiency for large ground-based solar telescope.

    PubMed

    Liu, Yangyi; Gu, Naiting; Rao, Changhui; Li, Cheng

    2015-07-20

    A heat-stop is one of the most important thermal control devices for a large ground-based solar telescope. For controlling the internal seeing effect, the temperature difference between the heat-stop and the ambient environment needs to be reduced, and a heat-stop with high cooling efficiency is required. In this paper, a novel design concept for the heat-stop, in which a multichannel loop cooling system is utilized to obtain higher cooling efficiency, is proposed. To validate the design, we analyze and compare the cooling efficiency for the multichannel and existing single-channel loop cooling system under the same conditions. Comparative results show that the new design obviously enhances the cooling efficiency of the heat-stop, and the novel design based on the multichannel loop cooling system is obviously better than the existing design by increasing the thermal transfer coefficient. PMID:26367826

  18. Actively controlling coolant-cooled cold plate configuration

    SciTech Connect

    Chainer, Timothy J.; Parida, Pritish R.

    2015-07-28

    A method is provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The method includes: monitoring a variable associated with at least one of the coolant-cooled cold plate or one or more electronic components being cooled by the cold plate; and dynamically varying, based on the monitored variable, a physical configuration of the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the one or more electronic components, and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the coolant-cooled cold plate, the positioning of which may be adjusted based on the monitored variable.

  19. System design package for the solar heating and cooling central data processing system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The central data processing system provides the resources required to assess the performance of solar heating and cooling systems installed at remote sites. These sites consist of residential, commercial, government, and educational types of buildings, and the solar heating and cooling systems can be hot-water, space heating, cooling, and combinations of these. The instrumentation data associated with these systems will vary according to the application and must be collected, processed, and presented in a form which supports continuity of performance evaluation across all applications. Overall software system requirements were established for use in the central integration facility which transforms raw data collected at remote sites into performance evaluation information for assessing the performance of solar heating and cooling systems.

  20. System design package for solar heating and cooling site data acquisition subsystem

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Site Data Acquisition Subsystem (SDAS) designed to collect data from sensors located on residential or commercial buildings using a solar heating and/or cooling system is described. It takes the data obtained from sensors located on the solar system, processes the data into suitable format, stores the data for a period of time, and provides the capability for either telephone retrieval by the central data processing system or manual retrieval of the data for transfer to a central site. The SDAS is also designed so that it will not degrade the operation of the solar heating/cooling system which it is monitoring.

  1. Design and operation of a solar heating and cooling system for a residential size building

    NASA Technical Reports Server (NTRS)

    Littles, J. W.; Humphries, W. R.; Cody, J. C.

    1978-01-01

    The first year of operation of solar house is discussed. Selected design information, together with a brief system description is included. The house was equipped with an integrated solar heating and cooling system which uses fully automated state-of-the art. Evaluation of the data indicate that the solar house heating and cooling system is capable of supplying nearly 100 percent of the thermal energy required for heating and approximately 50 percent of the thermal energy required to operate the absorption cycle air conditioner.

  2. Solar Energy Project, Activities: Biology.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of biology experiments. Each unit presents an introduction; objectives; skills and knowledge needed; materials; methods; questions; recommendations for further work; and a teacher information sheet. The teacher information…

  3. Comparison of solar panel cooling system by using dc brushless fan and dc water

    NASA Astrophysics Data System (ADS)

    Irwan, Y. M.; Leow, W. Z.; Irwanto, M.; M, Fareq; Hassan, S. I. S.; Safwati, I.; Amelia, A. R.

    2015-06-01

    The purpose of this article is to discuss comparison of solar panel cooling system by using DC brushless fan and DC water pump. Solar photovoltaic (PV) power generation is an interesting technique to reduce non-renewable energy consumption and as a renewable energy. The temperature of PV modules increases when it absorbs solar radiation, causing a decrease in efficiency. A solar cooling system is design, construct and experimentally researched within this work. To make an effort to cool the PV module, Direct Current (DC) brushless fan and DC water pump with inlet/outlet manifold are designed for constant air movement and water flow circulation at the back side and front side of PV module representatively. Temperature sensors were installed on the PV module to detect temperature of PV. PIC microcontroller was used to control the DC brushless fan and water pump for switch ON or OFF depend on the temperature of PV module automatically. The performance with and without cooling system are shown in this experiment. The PV module with DC water pump cooling system increase 3.52%, 36.27%, 38.98%in term of output voltage, output current, output power respectively. It decrease 6.36 °C compare than to PV module without DC water pump cooling system. While DC brushless fan cooling system increase 3.47%, 29.55%, 32.23%in term of output voltage, output current, and output power respectively. It decrease 6.1 °C compare than to PV module without DC brushless fan cooling system. The efficiency of PV module with cooling system was increasing compared to PV module without cooling system; this is because the ambient temperature dropped significantly. The higher efficiency of PV cell, the payback period of the system can be shorted and the lifespan of PV module can also be longer.

  4. Active feedback cooling of massive electromechanical quartz resonators

    SciTech Connect

    Jahng, Junghoon; Lee, Manhee; Stambaugh, Corey; Bak, Wan; Jhe, Wonho

    2011-08-15

    We present a general active feedback cooling scheme for massive electromechanical quartz resonators. We cool down two kinds of macrosized quartz tuning forks and find several characteristic constants for this massive quartz-resonator feedback cooling, in good agreement with theoretical calculations. When combined with conventional cryogenic techniques and low-noise devices, one may reach the quantum sensitivity for macroscopic sensors. This may be useful for high sensitivity measurements and for quantum information studies.

  5. Study of active cooling for supersonic transports

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.

    1975-01-01

    The potential benefits of using the fuel heat sink of hydrogen fueled supersonic transports for cooling large portions of the aircraft wing and fuselage are examined. The heat transfer would be accomplished by using an intermediate fluid such as an ethylene glycol-water solution. Some of the advantages of the system are: (1) reduced costs by using aluminum in place of titanium, (2) reduced cabin heat loads, and (3) more favorable environmental conditions for the aircraft systems. A liquid hydrogen fueled, Mach 2.7 supersonic transport aircraft design was used for the reference uncooled vehicle. The cooled aircraft designs were analyzed to determine their heat sink capability, the extent and location of feasible cooled surfaces, and the coolant passage size and spacing.

  6. Active cooling from the sixties to NASP

    NASA Technical Reports Server (NTRS)

    Kelly, H. Neale; Blosser, Max L.

    1992-01-01

    Vehicles, such as the X-15 or National Aero-Space Plane, traveling at hypersonic speeds through the earth's atmosphere experience aerodynamic heating. The heating can be severe enough that a thermal protection system is required to limit the temperature of the vehicle structure. Although several categories of thermal protection systems are mentioned briefly, the majority of this paper describes convectively cooled structures for large areas. Convective cooling is a method of limiting structural temperatures by circulating a coolant through the vehicle structure. Efforts to develop convectively cooled structures during the past 30 years--from early engine structures, which were intended to be tested on the X-15, to structural--are described. Many of the lessons learned from these research efforts are presented.

  7. Active cooling from the sixties to NASP

    NASA Technical Reports Server (NTRS)

    Kelly, H. Neale; Blosser, Max L.

    1994-01-01

    Vehicles, such as the X-15 or the National Aerospace Plane (NASP), traveling at hypersonic speeds through the earth's atmosphere experience aerodynamic heating. The heating can be severe enough that a thermal protection system is required to limit the temperature of the vehicle structure. Although several categories of thermal protection systems are mentioned briefly, the majority of the present paper describes convectively cooled structures for large areas. Convective cooling is a method of limiting structural temperatures by circulating a coolant through the vehicle structure. Efforts to develop convectively cooled structures during the past 30 years, from early engine structures which were intended to be tested on the X-15 to structural panels fabricated and tested under the NASP program, are described. Many of the lessons learned from these research efforts are presented.

  8. Prominences: The Key to Understanding Solar Activity

    NASA Technical Reports Server (NTRS)

    Karpen, Judy T.

    2011-01-01

    Prominences are spectacular manifestations of both quiescent and eruptive solar activity. The largest examples can be seen with the naked eye during eclipses, making prominences among the first solar features to be described and catalogued. Steady improvements in temporal and spatial resolution from both ground- and space-based instruments have led us to recognize how complex and dynamic these majestic structures really are. Their distinguishing characteristics - cool knots and threads suspended in the hot corona, alignment along inversion lines in the photospheric magnetic field within highly sheared filament channels, and a tendency to disappear through eruption - offer vital clues as to their origin and dynamic evolution. Interpreting these clues has proven to be contentious, however, leading to fundamentally different models that address the basic questions: What is the magnetic structure supporting prominences, and how does so much cool, dense plasma appear in the corona? Despite centuries of increasingly detailed observations, the magnetic and plasma structures in prominences are poorly known. Routine measurements of the vector magnetic field in and around prominences have become possible only recently, while long-term monitoring of the underlying filament-channel formation process also remains scarce. The process responsible for prominence mass is equally difficult to establish, although we have long known that the chromosphere is the only plausible source. As I will discuss, however, the motions and locations of prominence material can be used to trace the coronal field, thus defining the magnetic origins of solar eruptions. A combination of observations, theory, and numerical modeling must be used to determine whether any of the competing theories accurately represents the physics of prominences. I will discuss the criteria for a successful prominence model, compare the leading models, and present in detail one promising, comprehensive scenario for

  9. Cool Active Binaries Recently Studied in the CAAM Stellar Program

    NASA Astrophysics Data System (ADS)

    Ciçek, C.; Erdem, A.; Soydugan, F.; Doǧru, D.; Özkardeş, B.; Erkan, N.; Budding, E.; Demircan, O.

    2010-12-01

    We summarize recent work on cool active stars in our programme. We carried out photometry at the Çanakkale Onsekiz Mart University (COMU) observatory, and high-resolution spectroscopy at Mt John University Observatory, as well as collecting data from other facilties. A combination of analysis methods, including our information limit optimization technique (ILOT) with physically realistic fitting functions, as well as other public-domain software packages, have been used to find reliable parameters. Stars in our recent programme include V1430 Aql, V1034 Her, V340 Gem, SAO 62042, FI Cnc, V2075 Cyg, FG UMa and BM CVn. Light variations, sometimes over numerous consecutive cycles, were analysed. For AB Dor and CF Tuc, we compared broadband (B and V) maculation effects with emission features in the Ca II K and Hα lines. Broadband light curves typically show one or two outstanding maculae. These appear correlated with the main chromospheric activity sites (‘faculae’), that occur at similar latitudes and with comparable size to the photometric umbrae, but sometimes with significant displacements in longitude. The possibility of large-scale bipolar surface structure is considered, keeping in mind solar analogies. Such optical work forms part of broader multiwavelength studies, involving X-ray and microwave observations, also mentioned.

  10. C-SiC Composite Structures for Active Cooling

    NASA Technical Reports Server (NTRS)

    Marshall, D. B.; Cox, B. N.; Berbon, M. Z.; Porter, J. R.

    2003-01-01

    This viewgraph presentation provides an overview of research being conducted on the use of C-SiC composite structures for actively cooling rocket nozzles. Potential payoffs and design constraints are discussed. Other topics covered include: testing parameters, material selection, thermal analysis of joined tube structure, pressure containment, H2O2 combustion testing, and cooled re-entry.

  11. Modeling a Transient Pressurization with Active Cooling Sizing Tool

    NASA Technical Reports Server (NTRS)

    Guzik, Monica C.; Plachta, David W.; Elchert, Justin P.

    2011-01-01

    As interest in the area of in-space zero boil-off cryogenic propellant storage develops, the need to visualize and quantify cryogen behavior during ventless tank self-pressurization and subsequent cool-down with active thermal control has become apparent. During the course of a mission, such as the launch ascent phase, there are periods that power to the active cooling system will be unavailable. In addition, because it is not feasible to install vacuum jackets on large propellant tanks, as is typically done for in-space cryogenic applications for science payloads, instances like the launch ascent heating phase are important to study. Numerous efforts have been made to characterize cryogenic tank pressurization during ventless cryogen storage without active cooling, but few tools exist to model this behavior in a user-friendly environment for general use, and none exist that quantify the marginal active cooling system size needed for power down periods to manage tank pressure response once active cooling is resumed. This paper describes the Transient pressurization with Active Cooling Tool (TACT), which is based on a ventless three-lump homogeneous thermodynamic self-pressurization model1 coupled with an active cooling system estimator. TACT has been designed to estimate the pressurization of a heated but unvented cryogenic tank, assuming an unavailable power period followed by a given cryocooler heat removal rate. By receiving input data on the tank material and geometry, propellant initial conditions, and passive and transient heating rates, a pressurization and recovery profile can be found, which establishes the time needed to return to a designated pressure. This provides the ability to understand the effect that launch ascent and unpowered mission segments have on the size of an active cooling system. A sample of the trends found show that an active cooling system sized for twice the steady state heating rate would results in a reasonable time for tank

  12. Subcontracted activities related to TES for building heating and cooling

    NASA Technical Reports Server (NTRS)

    Martin, J.

    1980-01-01

    The subcontract program elements related to thermal energy storage for building heating and cooling systems are outlined. The following factors are included: subcontracts in the utility load management application area; life and stability testing of packaged low cost energy storage materials; and development of thermal energy storage systems for residential space cooling. Resistance storage heater component development, demonstration of storage heater systems for residential applications, and simulation and evaluation of latent heat thermal energy storage (heat pump systems) are also discussed. Application of thermal energy storage for solar application and twin cities district heating are covered including an application analysis and technology assessment of thermal energy storage.

  13. Hardware problems encountered in solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    Cash, M.

    1978-01-01

    Numerous problems in the design, production, installation, and operation of solar energy systems are discussed. Described are hardware problems, which range from simple to obscure and complex, and their resolution.

  14. CSU Solar Housee III solar heating and cooling system performance. Annual report: technical summary, 1 October 1978-30 September 1979

    SciTech Connect

    Ward, D.S.; Ward, J.C.; Oberoi, H.S.

    1980-10-01

    The objective of this study was to test and evaluate the practicality of an integrated flat-plate state-of-the-art liquid-heating solar collector and absorption cooling system installed on Colorado State University (CSU) Solar House III. This objective was accomplished by designing and installing a complete solar heating and cooling system (including appropriate data acquisition equipment and instrumentation), performing a detailed analysis and evaluation of all aspects of the solar system, and comparing the seasonal performance of the system with two other solar heating and cooling systems installed in adjacent buildings with virtually identical thermal characteristics.

  15. Solar-heating and cooling system design package

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Package of information includes design data, performance specifications, drawings, hazard analysis, and spare parts list for commercially produced system installed in single-family dwelling in Akron, Ohio. System uses air flat-plate collectors, 12000 kg rock storage and backup heat pump. Solar portion requires 0.7 kW, and provides 35% of average total heating load including hot water. Information aids persons considering installing solar home-heating systems.

  16. Twelve solar-heating/cooling systems: Design and development

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Two quarterly reports describe first 6 months of development on single family, multifamily, and commercial installations in Minneapolis area. Reports discuss basic requirements, and reasons for selecting specific configurations. Systems consist of liquid cooled flat plate collectors, two fluid loops, and gas-fired forced-air auxiliary heat source.

  17. RS-600 programmable controller: Solar heating and cooling

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Three identical microprocessor control subsystems were developed which can be used in heating, heating and cooling, and/or hot water systems for single family, multifamily, or commercial applications. The controller incorporates a low cost, highly reliable (all solid state) microprocessor which can be easily reprogrammed.

  18. Study of parameters affecting the performance of solar desiccant cooling systems

    NASA Astrophysics Data System (ADS)

    Pesaran, A. A.; Hoo, E. A.

    1993-01-01

    The performance of a solar desiccant cooling system depends on the performance of its components, particularly the desiccant dehumidifier and solar collectors. The desiccant dehumidifier performance is affected by the properties of the desiccant, particularly the shape of the isotherm and the regeneration temperature. The performance of a solar collector, as one would expect, depends on its operating temperature, which is very close to the desiccant regeneration temperature. The purpose of this study was to identify the desiccant isotherm shape (characterized by separation factor) that would result in the optimum performance - based on thermal coefficient of performance and cooling capacity - of a desiccant cooling cycle operating in ventilation mode. Different regeneration temperatures ranging from 65 to 160 C were investigated to identify the corresponding optimum isotherm shape at each. Thermal COP dictates the required area of the solar collectors, and the cooling capacity is an indication of the size and cost of the cooling equipment. Staged and no-staged regeneration methods were studied.

  19. Impact of Hybrid Wet/Dry Cooling on Concentrating Solar Power Plant Performance

    SciTech Connect

    Wagner, M. J.; Kutscher, C.

    2010-01-01

    This paper examines the sensitivity of Rankine cycle plant performance to dry cooling and hybrid (parallel) wet/dry cooling combinations with the traditional wet-cooled model as a baseline. Plants with a lower temperature thermal resource are more sensitive to fluctuations in cooling conditions, and so the lower temperature parabolic trough plant is analyzed to assess the maximum impact of alternative cooling configurations. While low water-use heat rejection designs are applicable to any technology that utilizes a Rankine steam cycle for power generation, they are of special interest to concentrating solar power (CSP) technologies that are located in arid regions with limited water availability. System performance is evaluated using hourly simulations over the course of a year at Daggett, CA. The scope of the analysis in this paper is limited to the power block and the heat rejection system, excluding the solar field and thermal storage. As such, water used in mirror washing, maintenance, etc., is not included. Thermal energy produced by the solar field is modeled using NREL's Solar Advisor Model (SAM).

  20. Colorado State University program for developing, testing, evaluating and optimizing solar heating and cooling systems

    NASA Astrophysics Data System (ADS)

    1993-01-01

    This program includes six tasks. The tasks are as follows: (1) a project measuring the performance of unique solar system components; (2) a project to develop a methodology for determining annual performance ratings of solar domestic hot water systems; (3) a project that will identify, analyze, design, build, and experimentally evaluate SDHW systems incorporating advanced concepts and components; (4) a liquid desiccant cooling system development project; (5) a project that will perform TRNSYS simulations to determine potential energy savings for desiccant cooling systems, especially in humid climates; and (6) a management task. The objectives and progress in each task are described.

  1. Solar heating and cooling system installed at RKL Controls Company, Lumberton, New Jersey

    NASA Astrophysics Data System (ADS)

    1981-03-01

    The final results of the design and operation of a computer controlled solar heated and cooled 40,000 square foot manufacturing building, sales office, and computer control center/display room are summarized. The system description, test data, major problems and resolutions, performance, operation and maintenance manual, equipment manufacturers' literature, and as-built drawings are presented. The solar system is composed of 6,000 square feet of flat plate collectors, external above ground storage subsystem, controls, absorption chiller, heat recovery, and a cooling tower.

  2. Solar heating and cooling with the CaCl2-CH3OH chemical heat pump

    NASA Astrophysics Data System (ADS)

    Offenhartz, P. O.

    1982-03-01

    A chemical heat pump based on the reaction of calcium chloride and methanol is being designed and optimized for solar heating and air conditioning, primarily for the residential and light commercial market. The performance requirements for this application are quite stringent. For example, to minimize maintenance, a cooling tower should not be used, and the solar collectors should be fixed rooftop flat plates or evacuated tubes. The chiller should be capable of reaching 45 F on a 95 F day in order to provide effective dehumidification. Energy storage for late afternoon and early evening cooling, as well as night time winter heating, must be provided.

  3. Establishing feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys

    SciTech Connect

    Cunningham, W.A.; Mignon, G.V.

    1986-01-01

    At the present time all experimental towers (chimneys) are completed and operating. This consists of both a solar updraft and a natural-evaporative downdraft tower retrofitted to an existing residence structure and a greenhouse. The residential, experimental, natural-draft cooling system was completed in May, 1985, and five months of summer data on a Hewlet Packard 85 data acquisition computer with a digital voltmeter were acquired. The cooling tower and solar chimney on the experimental greenhouse became operational in September of 1985. A conceptual drawing of both the greenhouse and the residence natural-draft towers is included in the appendix along with the September 85 progress report.

  4. Solar heating and cooling system installed at RKL Controls Company, Lumberton, New Jersey

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The final results of the design and operation of a computer controlled solar heated and cooled 40,000 square foot manufacturing building, sales office, and computer control center/display room are summarized. The system description, test data, major problems and resolutions, performance, operation and maintenance manual, equipment manufacturers' literature, and as-built drawings are presented. The solar system is composed of 6,000 square feet of flat plate collectors, external above ground storage subsystem, controls, absorption chiller, heat recovery, and a cooling tower.

  5. Colorado State University program for developing, testing, evaluating and optimizing solar heating and cooling systems

    SciTech Connect

    Not Available

    1993-01-07

    This program includes six tasks, including (1) a project measuring the performance of unique solar system components, (2) a project to develop a methodology for determining annual performance ratings of solar domestic hot water systems, (3) a project that will identify, analyze, design, build, and experimentally evaluate SDHW systems incorporating advanced concepts and components, (4) a liquid desiccant cooling system development project, (5) a project that will perform TRNSYS simulations to determine potential energy savings for desiccant cooling systems, especially in humid climates, and (6) a management task. The objectives and progress in each task are described.

  6. Solar heating, cooling, and hot water systems installed at Richland, Washington

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The project described is part of the U. S. Department of Energy's solar demonstration program, and became operational in April 1978. The solar system uses 6,000 square feet of flat-plate liquid collectors in a closed loop to deliver solar energy through a liquid-liquid heat exchanger to the building heat-pump duct work or 9,000-gallon thermal energy storage tank. A 25-ton Arkla solar-driven absorption chiller provides the cooling, in conjunction with a 2,000 gallon chilled water storage tank and reflective ponds on three sides of the building surplus heat. A near-by building is essentially identical except for having conventional heat-pump heating and cooling, and can serve as an experimental control. An on-going public relations program was provided from the beginning of the program, and resulted in numerous visitors and tour groups.

  7. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody.

    PubMed

    Zhu, Linxiao; Raman, Aaswath P; Fan, Shanhui

    2015-10-01

    A solar absorber, under the sun, is heated up by sunlight. In many applications, including solar cells and outdoor structures, the absorption of sunlight is intrinsic for either operational or aesthetic considerations, but the resulting heating is undesirable. Because a solar absorber by necessity faces the sky, it also naturally has radiative access to the coldness of the universe. Therefore, in these applications it would be very attractive to directly use the sky as a heat sink while preserving solar absorption properties. Here we experimentally demonstrate a visibly transparent thermal blackbody, based on a silica photonic crystal. When placed on a silicon absorber under sunlight, such a blackbody preserves or even slightly enhances sunlight absorption, but reduces the temperature of the underlying silicon absorber by as much as 13 °C due to radiative cooling. Our work shows that the concept of radiative cooling can be used in combination with the utilization of sunlight, enabling new technological capabilities. PMID:26392542

  8. Monitoring of the performance of a solar heated and cooled apartment building

    NASA Astrophysics Data System (ADS)

    Vliet, G. C.; Srubar, R. L.

    1980-03-01

    An all electric apartment building in Texas was retrofitted for solar heating and cooling and hot water. The system consisted of an array of 1280 square feet of Northrup concentrating tracking collectors, a 5000 gallon hot water storage vessel, a 500 gallon chilled water storage vessel, a 25 ton Arkla Industries absorption chiller, and a two pipe hydronic air conditioning system. The solar air conditioning equipment was installed in parallel with the existing conventional electric heating and cooling system, and the solar domestic water heating served as preheat to the existing electric water heaters. The system was fully instrumented for monitoring. Detailed descriptions of the solar system, the performance monitoring system, and the data reduction processes are given.

  9. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody

    PubMed Central

    Zhu, Linxiao; Raman, Aaswath P.; Fan, Shanhui

    2015-01-01

    A solar absorber, under the sun, is heated up by sunlight. In many applications, including solar cells and outdoor structures, the absorption of sunlight is intrinsic for either operational or aesthetic considerations, but the resulting heating is undesirable. Because a solar absorber by necessity faces the sky, it also naturally has radiative access to the coldness of the universe. Therefore, in these applications it would be very attractive to directly use the sky as a heat sink while preserving solar absorption properties. Here we experimentally demonstrate a visibly transparent thermal blackbody, based on a silica photonic crystal. When placed on a silicon absorber under sunlight, such a blackbody preserves or even slightly enhances sunlight absorption, but reduces the temperature of the underlying silicon absorber by as much as 13 °C due to radiative cooling. Our work shows that the concept of radiative cooling can be used in combination with the utilization of sunlight, enabling new technological capabilities. PMID:26392542

  10. Optimum dry-cooling sub-systems for a solar air conditioner

    NASA Technical Reports Server (NTRS)

    Chen, J. L. S.; Namkoong, D.

    1978-01-01

    Dry-cooling sub-systems for residential solar powered Rankine compression air conditioners were economically optimized and compared with the cost of a wet cooling tower. Results in terms of yearly incremental busbar cost due to the use of dry-cooling were presented for Philadelphia and Miami. With input data corresponding to local weather, energy rate and capital costs, condenser surface designs and performance, the computerized optimization program yields design specifications of the sub-system which has the lowest annual incremental cost.

  11. Solar heating and cooling system for an office building at Reedy Creek Utilities

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The solar energy system installed in a two story office building at a utilities company, which provides utility service to Walt Disney World, is described. The solar energy system application is 100 percent heating, 80 percent cooling, and 100 percent hot water. The storage medium is water with a capacity of 10,000 gallons hot and 10,000 gallons chilled water. Performance to date has equaled or exceeded design criteria.

  12. Solar heating and cooling system design and development

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Application surveys and performance studies were conducted to determine a solar heating and hot water configuration that could be used in a variety of applications, and to identify subsystem modules that could be utilized in a building block fashion to adapt hardware items to single and multi-family residential and commercial systems. Topics discussed include: subsystem development for the solar collectors, controls, other components, energy management module, and the heating system configuration test. Operational tests conducted at an Illinois farmhouse, and a YWCA in Spokane, Washington are discussed.

  13. The performance of a solar-regenerated open-cycle desiccant bed grain cooling system

    SciTech Connect

    Ismail, M.Z.; Angus, D.E. ); Thorpe, G.R. )

    1991-01-01

    The cooling of stored food grains suppresses the growth of populations of insect pests, inhibits spoilage by fungi and helps to preserve grain quality. In temperate and subtropical climates, grains may be effectively cooled by ventilating them with ambient air. In tropical climates, the enthalpy of the air must be reduced before it can be used for cooling grain. One method of achieving this is to isothermally reduce the humidity of the air. This paper describes experiments carried out on a simple-to-build solar-regenerated open-cycle grain cooling system. The device consists of a 5.85 m{sup 2} collector coupled with two beds of silica gel. Results from a series of experiments suggest that the device may be used to cool up to 200 tons of grain. The electrical power consumption of the device is of the order of 0.3 watt per ton of grain cooled, and the total electrical energy consumption is of the order of 0.7 kWh per ton of grain stored for a six-month period. The effectiveness of the device is a function of air flow rate and the enthalpy of ambient air, and results presented in this paper suggest that the solar cooling device is particularly effective in tropical climates.

  14. Corrosion inhibitors for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    Tabony, J. H.

    1978-01-01

    Candidate materials were tested for their ability to limit corrosion under conditions that approximate those found in typical solar-energy system. In addition to presentation of data, report also includes discussion of different forms of corrosion and recommendations for future work.

  15. Corrosion inhibitors for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.

    1978-01-01

    Inhibitors which appeared promising in previous tests and additional inhibitors including several proprietary products were evaluated. Evaluation of the inhibitors was based on corrosion protection afforded an aluminum-mild steel-copper-stainless steel assembly in a hot corrosive water. Of the inhibitors tested two were found to be effective and show promise for protecting multimetallic solar heating systems.

  16. Guide to effective solar heating and cooling practice

    SciTech Connect

    Powell, P.C.; Fostel, H.F.; Cody, E.P.

    1981-10-01

    A detaled and systematic inventory of technical experiences at residential and commercial solar demonstration sites across the nation is provided, and design approaches are described which have been shown to dramatically improve system performance. A review has been made of nearly one hundred sites which have been instrumented and feeding data continuously into the National Solar Data Network. It is found that the success of individual systems in meeting or exceeding their design targets depends on effectively controlled design, installation, operation and maintenance. However, numerous reported problems have also been due to poor communication between the various parties involved, and additionally due to failure to identify problems as the develop. Overall, such factors appear to have contributed greatly to the general underperformance seen at the sites. It is found that solar systems must be designed to operate efficiently during periods of minimum as well as peak loads. Solar coth the conversion, distribution, and end use of ethanol are all amenable to control or mitigation through andstone (Kfh), and the Hell Creek formation (Khc). Anomaly No. 31 is over an area underlain by Recent alluvium (Qal).

  17. Flow tube used to cool solar-pumped laser

    NASA Technical Reports Server (NTRS)

    1968-01-01

    A flow tube has been designed and constructed to provide two major functions in the application of a laser beam for transmission of both sound and video. It maintains the YAG laser at the proper operating temperature of 300 degrees K under solar pumping conditions, and it serves as a pump cavity for the laser crystal.

  18. Review of state-of-the-art of solar collector corrosion processes. Task 1 of solar collector studies for solar heating and cooling applications. Final technical progress report

    SciTech Connect

    Clifford, J E; Diegle, R B

    1980-04-11

    The state-of-the-art of solar collector corrosion processes is reviewed, and Task 1 of a current research program on use of aqueous heat transfer fluids for solar heating and cooling is summarized. The review of available published literature has indicated that lack of quantitative information exists relative to collector corrosion at the present time, particularly for the higher temperature applications of solar heating and cooling compared to domestic water heating. Solar collector systems are reviewed from the corrosion/service life viewpoint, with emphasis on various applications, collector design, heat transfer fluids, and freeze protection methods. Available information (mostly qualitative) on collector corrosion technology is reviewed to indicate potential corrosion problem areas and corrosion prevention practices. Sources of limited quantitative data that are reviewed are current solar applications, research programs on collector corrosion, and pertinent experience in related applications of automotive cooling and non-solar heating and cooling. A data bank was developed to catalog corrosion information. Appendix A of this report is a bibliography of the data bank, with abstracts reproduced from presently available literature accessions (about 220). This report is presented as a descriptive summary of information that is contained in the data bank.

  19. Active cooling requirements for propellant storage

    NASA Technical Reports Server (NTRS)

    Klein, G. A.

    1984-01-01

    Recent NASA and DOD mission models have indicated future needs for orbital cryogenic storage and supply systems. Two thermal control systems which show the greatest promise for improving propellant storage life were evaluated. One system was an open cycle thermodynamic vent type with a refrigeration system for partial hydrogen reliquefaction located at the LH2 tank and a vapor cooled shield for integrated and non-integrated tank designs to reduce boiloff. The other was a closed system with direct refrigeration at the LH2 tank. A reversed Brayton cycle unit was baselined for the propellant processor. It is concluded that: (1) reliquefaction systems are not attractive for minimizing propellant boiloff; (2) open cycle systems may not be economically attractive for long term storage; (3) a number of refrigeration systems are available to assist in the long term storage of cryogenic propellants; and (4) shields can significantly improve the performance of mechanical coolers.

  20. Design, fabrication, testing, and delivery of a solar energy collector system for residential heating and cooling

    NASA Technical Reports Server (NTRS)

    Holland, T. H.; Borzoni, J. T.

    1976-01-01

    A low cost flat plate solar energy collector was designed for the heating and cooling of residential buildings. The system meets specified performance requirements, at the desired system operating levels, for a useful life of 15 to 20 years, at minimum cost and uses state-of-the-art materials and technology. The rationale for the design method was based on identifying possible material candidates for various collector components and then selecting the components which best meet the solar collector design requirements. The criteria used to eliminate certain materials were: performance and durability test results, cost analysis, and prior solar collector fabrication experience.

  1. Solar activity predicted with artificial intelligence

    NASA Astrophysics Data System (ADS)

    Lundstedt, Henrik

    The variability of solar activity has been described as a non-linear chaotic dynamic system. AI methods are therefore especially suitable for modelling and predicting solar activity. Many indicators of the solar activity have been used, such as sunspot numbers, F 10.7 cm solar radio flux, X-ray flux, and magnetic field data. Artificial neural networks have also been used by many authors to predict solar cycle activity. Such predictions will be discussed. A new attempt to predict the solar activity using SOHO/MDI high-time resolution solar magnetic field data is discussed. The purpose of this new attempt is to be able to predict episodic events and to predict occurrence of coronal mass ejections. These predictions will be a part of the Lund Space Weather Model.

  2. Design data brochure for the Owens-Illinois Sunpak (TM) air-cooled solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information necessary to evaluate the design and installation of the Owens-Illinois Sunpak TM Air-Cooled Solar Collector is presented. Information includes collector features, fluid flow, thermal performance, installation and system tips. The collector utilizes a highly selective wavelength coating in combination with vacuum insulation, which virtually eliminates conduction and convention losses.

  3. Subsystem design package for the on-site monitor at solar heating and cooling sites

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The on-site monitor is a portable device which can be easily connected to a Site Data Acquisition Subsystem to allow readouts of realtime sensor data in voltage or engineering units at instrumented solar heating and cooling sites. The design package consists of the performance specification, performance requirements cross reference, and the acceptance test procedure.

  4. Solar Heating/Cooling of Buildings: Current Building Community Projects. An Interim Report.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Building Research Advisory Board.

    Projects being carried out by the private sector involving the use of solar energy for heating and cooling buildings are profiled in this report. A substantial portion of the data were collected from a broad cross-section of the building community. Data collection efforts also involved the canvassing of the nearly 200 trade and professional…

  5. Interim Policy Options for Commercialization of Solar Heating and Cooling Systems.

    ERIC Educational Resources Information Center

    Bezdek, Roger

    This interim report reviews the major incentive policy options available to accelerate market penetration of solar heating and cooling (SHAC) systems. Feasible policy options designed to overcome existing barriers to commercial acceptance and market penetration are identified and evaluated. The report is divided into seven sections, each dealing…

  6. National Program for Solar Heating and Cooling of Buildings. Project Data Summaries. Vol. II: Demonstration Support.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    Brief abstracts of projects funded by the Energy Research and Development Administration (ERDA) and conducted under the National Program for Solar Heating and Cooling of Buildings are presented in three volumes. This, the second volume, identifies the major efforts currently underway in support of the national program. The National Aeronautics and…

  7. Solar Heating and Cooling for a Controls Manufacturing Plant Lumberton, New Jersey

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Comprehensive report documents computer-controlled system which has separate solar-collector and cooling-tower areas located away from building and is completely computer controlled. System description, test data, major problems and resolution, performance, operation and maintenance, manufacturer's literature and drawing comprise part of 257-page report.

  8. municipal recreation center is heated and cooled by solar energy

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Major fraction of energy requirements for community building is ksupplied by Sun. The 238 flat plate solar collectors are roof mounted on single story structure enclosing gymnasium, locker area, and health care clinic; heat exchanger transfers collected energy to 6,000 gallon storage tank. Final report chronicles project from inception to completion, documenting performance, costs, operating modes, and data acquisition system. Appendix contains manufacturers' product literature and engineering drawings.

  9. Passive-solar directional-radiating cooling system

    DOEpatents

    Hull, J.R.; Schertz, W.W.

    1985-06-27

    A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

  10. Passive-solar directional-radiating cooling system

    DOEpatents

    Hull, John R.; Schertz, William W.

    1986-01-01

    A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

  11. Passive-solar-cooling system concepts for small office buildings. Final report

    SciTech Connect

    Whiddon, W.I.; Hart, G.K.

    1983-02-01

    This report summarizes the efforts of a small group of building design professionals and energy analysis experts to develop passive solar cooling concepts including first cost estimates for small office buildings. Two design teams were brought together at each of two workshops held in the fall of 1982. Each team included an architect, mechanical engineer, structural engineer, and energy analysis expert. This report presents the passive cooling system concepts resulting from the workshops. It summarizes the design problems, solutions and first-cost estimates relating to each technology considered, and documents the research needs identified by the participants in attempting to implement the various technologies in an actual building design. Each design problem presented at the workshops was based on the reference (base case) small office building analyzed as part of LBL's Cooling Assessment. Chapter II summarizes the thermal performance, physical specifications and estimated first-costs of the base case design developed for this work. Chapters III - VI describe the passive cooling system concepts developed for each technology: beam daylighting; mass with night ventilation; evaporative cooling; and integrated passive cooling systems. The final Chapters, VII and VIII present the preliminary implications for economics of passive cooling technologies (based on review of the design concepts) and recommendations of workshop participants for future research in passive cooling for commercial buildings. Appendices provide backup information on each chapter as indicated.

  12. Modeling active galactic nucleus feedback in cool-core clusters: The balance between heating and cooling

    SciTech Connect

    Li, Yuan; Bryan, Greg L.

    2014-07-01

    We study the long-term evolution of an idealized cool-core galaxy cluster under the influence of momentum-driven active galactic nucleus (AGN) feedback using three-dimensional high-resolution (60 pc) adaptive mesh refinement simulations. The feedback is modeled with a pair of precessing jets whose power is calculated based on the accretion rate of the cold gas surrounding the supermassive black hole (SMBH). The intracluster medium first cools into clumps along the propagation direction of the jets. As the jet power increases, gas condensation occurs isotropically, forming spatially extended structures that resemble the observed Hα filaments in Perseus and many other cool-core clusters. Jet heating elevates the gas entropy, halting clump formation. The cold gas that is not accreted onto the SMBH settles into a rotating disk of ∼10{sup 11} M {sub ☉}. The hot gas cools directly onto the disk while the SMBH accretes from its innermost region, powering the AGN that maintains a thermally balanced state for a few Gyr. The mass cooling rate averaged over 7 Gyr is ∼30 M {sub ☉} yr{sup –1}, an order of magnitude lower than the classic cooling flow value. Medium resolution simulations produce similar results, while in low resolution runs, the cluster experiences cycles of gas condensation and AGN outbursts. Owing to its self-regulating mechanism, AGN feedback can successfully balance cooling with a wide range of model parameters. Our model also produces cold structures in early stages that are in good agreement with the observations. However, the long-lived massive cold disk is unrealistic, suggesting that additional physical processes are still needed.

  13. Solar heating and cooling system installed at Leavenworth, Kansas. Final report

    SciTech Connect

    Perkins, R. M.

    1980-06-01

    The solar heating and cooling system installed at the headquarters of Citizens Mutual Savings Association in Leavenworth, Kansas, is described in detail. The project is part of the U.S. Department of Energy's solar demonstration program and became operational in March, 1979. The designer was TEC, Inc. Consulting Engineers, Kansas City, Missouri and contractor was Norris Brothers, Inc., Lawrence, Kansas. The solar system is expected to furnish 90 percent of the overall heating load, 70 percent of the cooling load and 100 percent of the domestic hot water load. The building has two floors with a total of 12,000 square feet gross area. The system has 120 flat-plate liquid solar panels with a net area of 2200 square feet. Five, 3-ton Arkla solar assisted absorption units provide the cooling, in conjunction with a 3000 gallon chilled water storage tank. Two, 3000 gallon storage tanks are provided with one designated for summer use, whereas both tanks are utilized during winter.

  14. Colorado State University program for developing, testing, evaluating and optimizing solar heating and cooling systems

    SciTech Connect

    Not Available

    1991-10-28

    The objective is to develop and test various integrated solar heating, cooling and domestic hot water systems, and to evaluate their performance. Systems composed of new, as well as previously tested, components are carefully integrated so that effects of new components on system performance can be clearly delineated. The SEAL-DOE program includes six tasks which have received funding for the 1991--92 fifteen-month period. These include: (1) a project employing isothermal operation of air and liquid solar space heating systems; (2) a project to build and test several generic solar water heaters; (3) a project that will evaluate advanced solar domestic hot water components and concepts and integrate them into solar domestic hot water systems; (4) a liquid desiccant cooling system development project; (5) a project that will perform system modeling and analysis work on solid desiccant cooling systems research; and (6) a management task. The objectives and progress in each task are described in this report. 6 figs.

  15. Modelling the solar irradiance during the Maunder Minimum and the corresponding cooling

    SciTech Connect

    Garduno, R.; Mendoza, B.; Adem, J.

    1996-12-31

    Expressions to compute the solar irradiance as a function of the sun rotation rate, sunspot number and solar cycle length, are deduced. They yield a solar irradiance dimmed by about 0.5% during the Maunder Minimum (1660-1720). This parameter is put in the Adem thermodynamic model as an external forcing to simulate the corresponding climate change. Another forcing used is the preindustrial level of atmospheric CO{sub 2} which reinforces the cooling. The model generates three internal feedbacks: cryosphere, cloudiness and water vapor. The output is a cooling of about 0.5 to 1 C, with respect to present climate, depending on the forcings and feedbacks included. These results agree well with those from other authors and with the few historical records.

  16. Analysis of a solar heat pipe heating and absorption cooling system

    NASA Astrophysics Data System (ADS)

    Munje, S. R.

    A new concept which combines a flat-plate heat-pipe solar collector for daytime solar water heating by evaporation of a refrigerant and night-time water chilling by absorption refrigeration was analyzed. A comprehensive survey of literature was completed to establish the existing state of knowledge on intermittent absorption refrigeration, flat-plate solar heat collectors and night sky radiation cooling. The literature survey showed that the idea of using a passive device such as a heat pipe with the absorption refrigeration principle for both heating and cooling is relatively new. A mathematical model for the heat-pipe flat-plate collector and the absorption refrigeration process was developed. A cost-effectiveness study was also carried out to find the optimum thickness of the collector plate. The optimum plate thickness was used in the parametric study of the system.

  17. Cooling Panel Optimization for the Active Cooling System of a Hypersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Youn, B.; Mills, A. F.

    1995-01-01

    Optimization of cooling panels for an active cooling system of a hypersonic aircraft is explored. The flow passages are of rectangular cross section with one wall heated. An analytical fin-type model for incompressible flow in smooth-wall rectangular ducts with coupled wall conduction is proposed. Based on this model, the a flow rate of coolant to each design minimum mass flow rate or coolant for a single cooling panel is obtained by satisfying hydrodynamic, thermal, and Mach number constraints. Also, the sensitivity of the optimal mass flow rate of coolant to each design variable is investigated. In addition, numerical solutions for constant property flow in rectangular ducts, with one side rib-roughened and coupled wall conduction, are obtained using a k-epsilon and wall function turbulence model, these results are compared with predictions of the analytical model.

  18. Structural active cooling applications for the Space Shuttle.

    NASA Technical Reports Server (NTRS)

    Masek, R. V.; Niblock, G. A.; Huneidi, F.

    1972-01-01

    Analytic and experimental studies have been conducted to evaluate a number of active cooling approaches to structural thermal protection for the Space Shuttle. The primary emphasis was directed toward the thermal protection system. Trade study results are presented for various heat shield material and TPS arrangements. Both metallic and reusable surface insulation (RSI) concepts were considered. Active systems heat sinks consisted of hydrogen, phase change materials, and expendable water. If consideration is given only to controlling the surface temperature, passive TPS was found to provide the most efficient system. Use of active cooling which incorporates some interior temperature control made the thermally less efficient RSI system more attractive.

  19. Natural/passive solar heating and cooling for poultry sheds

    SciTech Connect

    Abd El-Salam, E.M.

    1980-12-01

    Arid climates, as in Egypt and the Middle-East regions, are characterized by large durinal and seasonal temperature variation coupled with clear skies and ample sunshine duration. Partial stabilization of indoor thermal environment in habitation is of great comfort for human and have large effects on animals or birds productivities. In case of poultry or animal sheds, can have some economical turn over in terms of increased egg or animal productivity and reduction of mortality rates if their indoor thermal environment is favorably controlled. Poultry birds are sensitive to changes of ambient temperatures, humidity and other environmental variables. This investigation describes an unconventional method of maintaining moderate thermal environment within poultry sheds by using the roof for storage of heat and coolness in appropriate seasons. During winter, underground water is circulated through specially designed pipe matrix imbeded in the roof slab and through radiant wall panels.

  20. Recurrence of solar activity - Evidence for active longitudes

    NASA Technical Reports Server (NTRS)

    Bogart, R. S.

    1982-01-01

    It is pointed out that the autocorrelation coefficients of the daily Wolf sunspot numbers over a period of 128 years reveal a number of interesting features of the variability of solar activity. Besides establishing periodicities for the solar rotation, solar activity cycle, and, perhaps, the 'Gleissberg Cycle', they suggest that active longitudes do exist, but with much greater strength and persistence in some solar cycles than in others. Evidence is adduced for a variation in the solar rotation period, as measured by sunspot number, of as much as two days between different solar cycles.

  1. Supply problems in the solar heating and cooling industry. Final report

    SciTech Connect

    Not Available

    1981-08-01

    Future distribution channels and costs in the solar-heating-and-cooling industry are discussed and some of the external factors influencing the industry are examined such as public policy initiatives and competing technologies. The distribution channels through which solar equipment passes from manufacturer to consumer are examined; future industry evolution will most likely be towards a multiplicity of distribution networks, each serving a different market segment. The components of solar costs, including collector, other system components, indirect and marketing, and installation and O and M costs, are also reviewed. Costs for high quality solar collectors are projected to increase, however the rate of increase is uncertain. Solar costs could increase at: (a) construction industry cost escalation rates; (b) general economic inflation rates; or (c) lower than the general inflation rate. Nevertheless, the average price paid by consumers is expected to increase at slightly less than the rate of inflation because lower-quality, low-priced systems are expected to garner a larger share of future solar sales. Pertinent public policy initiatives are reviewed which may critically influence the development of solar energy, and the impact of competing energy sources on solar heating economics is considered. Consideration of the projections for the aforementioned supply characteristics suggests that product supply may have a significant constraining influence on the growth of the solar industry.

  2. Sources of the solar wind at solar activity maximum

    NASA Astrophysics Data System (ADS)

    Neugebauer, M.; Liewer, P. C.; Smith, E. J.; Skoug, R. M.; Zurbuchen, T. H.

    2002-12-01

    The photospheric sources of solar wind observed by the Ulysses and ACE spacecraft from 1998 to early 2001 are determined through a two-step mapping process. Solar wind speed measured at the spacecraft is used in a ballistic model to determine a foot point on a source surface at a solar distance of 2.5 solar radii. A potential-field source-surface model is then used to trace the field and flow from the source surface to the photosphere. Comparison of the polarity of the measured interplanetary field with the polarity of the photospheric source region shows good agreement for spacecraft latitudes equatorward of 60°. At higher southern latitudes, the mapping predicts that Ulysses should have observed only outward directed magnetic fields, whereas both polarities were observed. A detailed analysis is performed on four of the solar rotations for which the mapped and observed polarities were in generally good agreement. For those rotations, the solar wind mapped to both coronal holes and active regions. These findings for a period of high solar activity differ from the findings of a similar study of the solar wind in 1994-1995 when solar activity was very low. At solar minimum the fastest wind mapped to the interior of large polar coronal holes while slower wind mapped to the boundaries of those holes or to smaller low-latitude coronal holes. For the data examined in the present study, neither spacecraft detected wind from the small polar coronal holes when they existed and the speed was never as high as that observed by Ulysses at solar minimum. The principal difference between the solar wind from coronal holes and from active regions is that the O7+/O6+ ion ratio is lower for the coronal hole flow, but not as low as in the polar coronal hole flow at solar minimum. Furthermore, the active-region flows appear to be organized into several substreams unlike the more monolithic structure of flows from coronal holes. The boundaries between plasma flows from neighboring

  3. Economical solar-heating or cooling system with new solar-energy concentrators

    NASA Technical Reports Server (NTRS)

    Shimada, K.

    1975-01-01

    Economical solar energy collector, made from array of cylindrical Fresnel lenses, does not require tracking mechanism. As the sun changes position, lenses focus solar energy on different collector elements.

  4. Argonne Solar Energy Program annual report. Summary of solar program activities for fiscal year 1979

    SciTech Connect

    1980-06-01

    The R and D work done at Argonne National Laboratory on solar energy technologies during the period October 1, 1978 to September 30, 1979 is described. Technical areas included in the ANL solar program are solar energy collection, heating and cooling, thermal energy storage, ocean thermal energy conversion, photovoltaics, biomass conversion, satellite power systems, and solar liquid-metal MHD power systems.

  5. Use of PCM Boards for Solar Cell Cooling

    NASA Astrophysics Data System (ADS)

    Zmeškal, O.; Štefková, P.; Dohnalová, L.; Bařinka, R.

    2013-05-01

    This contribution explains the use of fractal theory to describe thermal properties of materials. The basic idea is rooted in the theory of fractal fields defined in E-dimensional Euclidian space. Generic equations describing heat distribution are then specialized to describe the changes in heat transfer as a response to step-wise increases in the amount of heat added to the system. This model was then applied to the study of properties of a systems consisting of solar cells attached on a phase-change material (PCM) back sheet board. The aim of this study is to evaluate the ability of PCM boards to decrease the working temperature of solar cells and thus to increase the efficiency of the cells. Regression of experimental data was used to obtain model parameters. The parameters obtained this way were the thermal diffusivity, thermal conductivity, and specific heat, as well as parameters of the heat source and parameters related to the heat losses of the system. The method was then verified against parameters of the system based on poly-methyl-methacrylate and then applied to a PCM with a phase-change temperature of 25 °C. The values of the thermal parameters were determined at temperatures where both components of the PCM composite (Micronal® and gypsum wall) were solid and below the phase-change temperature and then again at temperatures where one of the components (gypsum) was still solid, while the other one was already liquid (wax). The attempt to determine the parameters during the phase change was not made due the physicochemical processes taking place which would alter the measured data.

  6. Venus Mobile Explorer with RPS for Active Cooling: A Feasibility Study

    NASA Technical Reports Server (NTRS)

    Leifer, Stephanie D.; Green, Jacklyn R.; Balint, Tibor S.; Manvi, Ram

    2009-01-01

    We present our findings from a study to evaluate the feasibility of a radioisotope power system (RPS) combined with active cooling to enable a long-duration Venus surface mission. On-board power with active cooling technology featured prominently in both the National Research Council's Decadal Survey and in the 2006 NASA Solar System Exploration Roadmap as mission-enabling for the exploration of Venus. Power and cooling system options were reviewed and the most promising concepts modeled to develop an assessment tool for Venus mission planners considering a variety of future potential missions to Venus, including a Venus Mobile Explorer (either a balloon or rover concept), a long-lived Venus static lander, or a Venus Geophysical Network. The concepts modeled were based on the integration of General Purpose Heat Source (GPHS) modules with different types of Stirling cycle heat engines for power and cooling. Unlike prior investigations which reported on single point design concepts, this assessment tool allows the user to generate either a point design or parametric curves of approximate power and cooling system mass, power level, and number of GPHS modules needed for a "black box" payload housed in a spherical pressure vessel.

  7. Solar irradiance measurements - Minimum through maximum solar activity

    NASA Technical Reports Server (NTRS)

    Lee, R. B., III; Gibson, M. A.; Shivakumar, N.; Wilson, R.; Kyle, H. L.; Mecherikunnel, A. T.

    1991-01-01

    The Earth Radiation Budget Satellite (ERBS) and the NOAA-9 spacecraft solar monitors were used to measure the total solar irradiance during the period October 1984 to December 1989. Decreasing trends in the irradiance measurements were observed as sunspot activity decreased to minimum levels in 1986; after 1986, increasing trends were observed as sunspot activity increased. The magnitude of the irradiance variability was found to be approximately 0.1 percent between sunspot minimum and maximum (late 1989). When compared with the 1984 to 1989 indices of solar magnetic activity, the irradiance trends appear to be in phase with the 11-year sunspot cycle. Both irradiance series yielded 1,365/sq Wm as the mean value of the solar irradiance, normalized to the mean earth/sun distance. The monitors are electrical substitution, active-cavity radiometers with estimated measurement precisions and accuracies of less than 0.02 and 0.2 percent, respectively.

  8. Physiologic Responses Produced by Active and Passive Personal Cooling Vests

    NASA Technical Reports Server (NTRS)

    Ku, Yu-Tsuan E.; Lee, Hank C.; Montgomery, Leslie D.; Luna, Bernadette

    2000-01-01

    Personal thermoregulatory systems which provide chest cooling are used in the industrial and aerospace environments to alleviate thermal stress. However, little information is available regarding the physiologic and circulatory changes produced by routine operation of these systems. The objectives of this study were to document and compare the subjects' response to three cooling vests in their recommended configurations. The Life Enhancement Tech (LET) lightweight active cooling vest with cap, the MicroClimate Systems Change of Phase garment (MCS), and the Steele Vest were each used to cool the chest regions of 12 male and 8 female Healthy subjects (21 to 69 yr.) in this study. The subjects, seated in an upright position at normal room temperature (approx. 22 C), were tested for 60 min. with one of the cooling garments. The LET active garment had an initial coolant fluid inlet temperature of 60 F, and was ramped down to 50 F. Oral, right and left ear canal temperatures were logged manually every 5 min. Arm, leg, chest and rectal temperatures; heart rate; and respiration were recorded continuously on a U.F.I., Inc. Biolog ambulatory monitor. For men, all three vests had similar, significant cooling effects. Decreases in the average rectal temperature, oral temperature, and ear canal temperatures were approximately 0.2 C, 0.2 C and 0.1 C, respectively. In contrast to the men, the female subjects wearing the MCS and Steel vests had similar cooling responses in which the core temperature remained elevated and oral and ear canal temperatures did not drop. The LET active garment cooled most of the female subjects in this study; rectal, oral and ear temperature decreased about 0.2 C, 0.3 C and 0.3 C, respectively. These results show that the garment configurations tested do not elicit a similar thermal response in all subjects. A gender difference is evident. The LET active garment configuration was most effective in decreasing temperatures of the female subjects; the MCS

  9. Direct observations of plasma upflows and condensation in a catastrophically cooling solar transition region loop

    SciTech Connect

    Orange, N. B.; Chesny, D. L.; Oluseyi, H. M.; Hesterly, K.; Patel, M.; Champey, P.

    2013-12-01

    Minimal observational evidence exists for fast transition region (TR) upflows in the presence of cool loops. Observations of such occurrences challenge notions of standard solar atmospheric heating models as well as their description of bright TR emission. Using the EUV Imaging Spectrometer on board Hinode, we observe fast upflows (v {sub λ} ≤ –10 km s{sup –1}) over multiple TR temperatures (5.8 ≤log T ≤ 6.0) at the footpoint sites of a cool loop (log T ≤ 6.0). Prior to cool loop energizing, asymmetric flows of +5 km s{sup –1} and –60 km s{sup –1} are observed at footpoint sites. These flows, speeds, and patterns occur simultaneously with both magnetic flux cancellation (at the site of upflows only) derived from the Solar Dynamics Observatory's Helioseismic Magnetic Imager's line-of-sight magnetogram images, and a 30% mass influx at coronal heights. The incurred non-equilibrium structure of the cool loop leads to a catastrophic cooling event, with subsequent plasma evaporation indicating that the TR is the heating site. From the magnetic flux evolution, we conclude that magnetic reconnection between the footpoint and background field is responsible for the observed fast TR plasma upflows.

  10. Solar activity and oscillation frequency splittings

    NASA Technical Reports Server (NTRS)

    Woodard, M. F.; Libbrecht, K. G.

    1993-01-01

    Solar p-mode frequency splittings, parameterized by the coefficients through order N = 12 of a Legendre polynomial expansion of the mode frequencies as a function of m/L, were obtained from an analysis of helioseismology data taken at Big Bear Solar Observatory during the 4 years 1986 and 1988-1990 (approximately solar minimum to maximum). Inversion of the even-index splitting coefficients confirms that there is a significant contribution to the frequency splittings originating near the solar poles. The strength of the polar contribution is anti correlated with the overall level or solar activity in the active latitudes, suggesting a relation to polar faculae. From an analysis of the odd-index splitting coefficients we infer an uppor limit to changes in the solar equatorial near-surface rotatinal velocity of less than 1.9 m/s (3 sigma limit) between solar minimum and maximum.

  11. How active was solar cycle 22?

    NASA Technical Reports Server (NTRS)

    Hoegy, W. R.; Pesnell, W. D.; Woods, T. N.; Rottman, G. J.

    1993-01-01

    Solar EUV observations from the Langmuir probe on Pioneer Venus Orbiter suggest that at EUV wavelengths solar cycle 22 was more active than solar cycle 21. The Langmuir probe, acting as a photodiode, measured the integrated solar EUV flux over a 13 1/2 year period from January 1979 to June 1992, the longest continuous solar EUV measurement. The Ipe EUV flux correlated very well with the SME measurement of L-alpha during the lifetime of SME and with the UARS SOLSTICE L-alpha from October 1991 to June 1992 when the Ipe measurement ceased. Starting with the peak of solar cycle 21, there was good general agreement of Ipe EUV with the 10.7 cm, Ca K, and He 10830 solar indices, until the onset of solar cycle 22. From 1989 to the start of 1992, the 10.7 cm flux exhibited a broad maximum consisting of two peaks of nearly equal magnitude, whereas Ipe EUV exhibited a strong increase during this time period making the second peak significantly higher than the first. The only solar index that exhibits the same increase in solar activity as Ipe EUV and L-alpha during the cycle 22 peak is the total magnetic flux. The case for high activity during this peak is also supported by the presence of very high solar flare intensity.

  12. Effect of solar radiation on the performance of cross flow wet cooling tower in hot climate of Iran

    NASA Astrophysics Data System (ADS)

    Banooni, Salem; Chitsazan, Ali

    2016-01-01

    In some cities such as Ahvaz-Iran, the solar radiation is very high and the annual-mean-daily of the global solar radiation is about 17.33 MJ m2 d-1. Solar radiation as an external heat source seems to affect the thermal performance of the cooling towers. Usually, in modeling cooling tower, the effects of solar radiation are ignored. To investigate the effect of sunshade on the performance and modeling of the cooling tower, the experiments were conducted in two different states, cooling towers with and without sunshade. In this study, the Merkel's approach and finite difference technique are used to predict the thermal behavior of cross flow wet cooling tower without sunshade and the results are compared with the data obtained from the cooling towers with and without sunshade. Results showed that the sunshade is very efficient and it reduced the outlet water temperature, the approach and the water exergy of the cooling tower up to 1.2 °C, 15 and 1.1 %, respectively and increased the range and the efficiency of the cooling tower up to 29 and 37 %, respectively. Also, the sunshade decreased the error between the experimental data of the cooling tower with sunshade and the modeling results of the cooling tower without sunshade 1.85 % in average.

  13. Workshop on Solar Activity, Solar Wind, Terrestrial Effects, and Solar Acceleration

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A summary of the proceedings from the workshop are presented. The areas covered were solar activity, solar wind, terrestrial effects, and solar acceleration. Specific topics addressed include: (1) solar cycle manifestations, both large and small scale, as well as long-term and short-term changes, including transients such as flares; (2) sources of solar wind, as identified by interplanetary observations including coronal mass ejections (CME's) or x-ray bright points, and the theory for and evolution of large-scale and small-scale structures; (3) magnetosphere responses, as observed by spacecraft, to variable solar wind and transient energetic particle emissions; and (4) origin and propagation of solar cosmic rays as related to solar activity and terrestrial effects, and solar wind coronal-hole relationships and dynamics.

  14. Sustainable Buildings. Using Active Solar Power

    SciTech Connect

    Sharp, M. Keith; Barnett, Russell

    2015-04-20

    The objective of this project is to promote awareness and knowledge of active solar energy technologies by installing and monitoring the following demonstration systems in Kentucky: 1) Pool heating system, Churchill Park School, 2) Water heating and daylighting systems, Middletown and Aiken Road Elementary Schools, 3) Photovoltaic street light comparison, Louisville Metro, 4) up to 25 domestic water heating systems across Kentucky. These tasks will be supported by outreach activities, including a solar energy installer training workshop and a Kentucky Solar Energy Conference.

  15. Analysis of data user's needs for performance evaluation of solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    Christensen, D. L.

    1978-01-01

    In a successful data acquisition program, the information needs must be evaluated, the design and cost factors of the program must be determined, and a data management loop must be organized and operated in order to collect, process, and disseminate the needed information in useable formats. This paper describes each of these program elements in detail as an aid for the solar heating and cooling data manager and user to implement effective data acquisition and monitoring systems. Consideration is given to the development of evaluation techniques which will aid in the determination of solar energy systems performances.

  16. Temperature distribution of a hot water storage tank in a simulated solar heating and cooling system

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1976-01-01

    A 2,300-liter hot water storage tank was studied under conditions simulating a solar heating and cooling system. The initial condition of the tank, ranging from 37 C at the bottom to 94 C at the top, represented a condition midway through the start-up period of the system. During the five-day test period, the water in the tank gradually rose in temperature but in a manner that diminished its temperature stratification. Stratification was found not to be an important factor in the operation of the particular solar system studied.

  17. Solar heating and cooling system installed at Columbus, Ohio. Final report

    SciTech Connect

    Coy, R. G.; Braden, R. P.

    1980-09-01

    The Solar Energy System installed at Columbus Technical Institute, Columbus, Ohio was installed as a part of a new construction of a college building. The building will house classrooms and laboratories, administrative offices and three lecture halls. The Solar Energy System consists of 4096 square feet (128 panels) Owens/Illinois Evacuated Glass Tube Collector Subsystem, and a 5000 gallon steel tank below ground storage system, hot water is circulated between the collectors and storage tank, passing through a water/lithium bromide absorption chiller to cool the building. Extracts from the site files specification references, drawings, installation, operation and maintenance instructions are included.

  18. Dynamo theory prediction of solar activity

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1988-01-01

    The dynamo theory technique to predict decadal time scale solar activity variations is introduced. The technique was developed following puzzling correlations involved with geomagnetic precursors of solar activity. Based upon this, a dynamo theory method was developed to predict solar activity. The method was used successfully in solar cycle 21 by Schatten, Scherrer, Svalgaard, and Wilcox, after testing with 8 prior solar cycles. Schatten and Sofia used the technique to predict an exceptionally large cycle, peaking early (in 1990) with a sunspot value near 170, likely the second largest on record. Sunspot numbers are increasing, suggesting that: (1) a large cycle is developing, and (2) that the cycle may even surpass the largest cycle (19). A Sporer Butterfly method shows that the cycle can now be expected to peak in the latter half of 1989, consistent with an amplitude comparable to the value predicted near the last solar minimum.

  19. What are the relative roles of heating and cooling in generating solar wind temperature anisotropies?

    PubMed

    Maruca, B A; Kasper, J C; Bale, S D

    2011-11-11

    Temperature anisotropy in the solar wind results from a combination of mechanisms of anisotropic heating (e.g., cyclotron-resonant heating and dissipation of kinetic Alfvén waves) and cooling (e.g., Chew-Goldberger-Low double-adiabatic expansion). In contrast, anisotropy-driven instabilities such as the cyclotron, mirror, and firehose instabilities limit the allowable departure of the plasma from isotropy. This study used data from the Faraday cups on the Wind spacecraft to examine scalar temperature and temperature components of protons. Plasma unstable to the mirror or firehose instability was found to be about 3-4 times hotter than stable plasma. Since anisotropy-driven instabilities are not understood to heat the plasma, these results suggest that heating processes are more effective than cooling processes at creating and maintaining proton temperature anisotropy in the solar wind. PMID:22181718

  20. Performance criteria for solar heating and cooling systems in residential buildings

    NASA Astrophysics Data System (ADS)

    1982-09-01

    This performance criteria, developed for the Department of Housing and Urban Development, is a baseline document for criteria and standards for the design, development, technical evaluation, and procurement of solar heating and cooling systems for residential buildings in accordance with the requirements of Section 8 of Public Law 93-409, the Solar Heating and Cooling Demonstration Act of 1974. The document is intended to establish minimum levels of performance with regard to health and safety and the various aspects of technical performance. The criteria for health and safety put primary emphasis on compliance with existing codes and standards. The criteria on thermal and mechanical performance, durability/reliability and operation/servicing present performance requirements considered to be representative of acceptable levels.

  1. Prototype solar heating and combined heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    System analysis activities were directed toward refining the heating system parameters. Trade studies were performed to support hardware selections for all systems and for the heating only operational test sites in particular. The heating system qualification tests were supported by predicting qualification test component performance prior to conducting the test.

  2. System design and installation for RS600 programmable control system for solar heating and cooling

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Procedures for installing, operating, and maintaining a programmable control system which utilizes a F8 microprocessor to perform all timing, control, and calculation functions in order to customize system performance to meet individual requirements for solar heating, combined heating and cooling, and/or hot water systems are described. The manual discusses user configuration and options, displays, theory of operation, trouble-shooting procedures, and warranty and assistance. Wiring lists, parts lists, drawings, and diagrams are included.

  3. Preliminary design review package for the solar heating and cooling central data processing system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Central Data Processing System (CDPS) is designed to transform the raw data collected at remote sites into performance evaluation information for assessing the performance of solar heating and cooling systems. Software requirements for the CDPS are described. The programming standards to be used in development, documentation, and maintenance of the software are discussed along with the CDPS operations approach in support of daily data collection and processing.

  4. The Three-Dimenstional Solar Wind at Solar Activity Minimum

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.

    1998-01-01

    In late 1997, the Ulysses spacecraft completed its first orbit around the Sun, observing the properties of the heliosphere at all latitudes between 80 degrees South and 80 degrees North. Because the mission occurred during a period of near-minimum solar activity, the configuration of the solar wind and interplanetary magnetic field were particularly simple, thus allowing confident comparisons between the properties of the polar corona observed by instruments of the Spartan and SOHO spacecraft and the resulting properties of the solar wind.

  5. Solar neutrinos, solar flares, solar activity cycle and the proton decay

    NASA Technical Reports Server (NTRS)

    Raychaudhuri, P.

    1985-01-01

    It is shown that there may be a correlation between the galactic cosmic rays and the solar neutrino data, but it appears that the neutrino flux which may be generated during the large solar cosmic ray events cannot in any way effect the solar neutrino data in Davis experiment. Only initial stage of mixing between the solar core and solar outer layers after the sunspot maximum in the solar activity cycle can explain the higher (run number 27 and 71) of solar neutrino data in Davis experiment. But solar flare induced atmospheric neutrino flux may have effect in the nucleon decay detector on the underground. The neutrino flux from solar cosmic rays may be a useful guide to understand the background of nucleon decay, magnetic monopole search, and the detection of neutrino flux in sea water experiment.

  6. Actively Cooled SLMS(TM) Technology for HEL Applications

    NASA Technical Reports Server (NTRS)

    Jacoby, Marc T.; Goodman, William A.; Reily, Jack C.; Kegley, Jeffrey R.; Haight, Harlan J.; Tucker, John; Wright, Ernest R.; Hogue, William D.

    2005-01-01

    Mr. Jacoby is the Chief Scientist for Schafer's Lightweight Optical Systems business area with twenty four years experience in laser and optical systems for space and military applications. He and colleague Dr. Goodman conceived and developed Silicon Lightweight Mirrors (SLMS(TM)) technologies for space applications from the extreme UV to FAR IR wavelengths. Schafer has demonstrated two different methods for actively cooling our Silicon Lightweight Mirrors (SLMS(TM)) technology. Direct internal cooling was accomplished by flowing liquid nitrogen through the continuous open cell core of the SLMS(TM) mirror. Indirect external cooling was accomplished by flowing liquid nitrogen through a CTE matched Cesic square-tube manifold that was bonded to the back of the mirror in the center. Testing was done in the small 4-foot thermal/vacuum chamber located at the NASA/MSFC X-Ray Calibration Facility. Seven thermal diodes were located over the front side of the 5 inch diameter mirror and one was placed on the outlet side of the Cesic manifold. Results indicate that the mirror reaches steady state at 82K in less than four minutes for both cooling methods. The maximum temperature difference of the eight diodes was less than 200 mK when the mirror was internally cooled and covered with MLI to insulate it from the large 300 K aluminum plate that was used to mount it.

  7. The design of a solar energy collection system to augment heating and cooling for a commercial office building

    NASA Technical Reports Server (NTRS)

    Basford, R. C.

    1977-01-01

    Analytical studies supported by experimental testing indicate that solar energy can be utilized to heat and cool commercial buildings. In a 50,000 square foot one-story office building at the Langley Research Center, 15,000 square feet of solar collectors are designed to provide the energy required to supply 79 percent of the building heating needs and 52 percent of its cooling needs. The experience gained from the space program is providing the technology base for this project. Included are some of the analytical studies made to make the building design changes necessary to utilize solar energy, the basic solar collector design, collector efficiencies, and the integrated system design.

  8. Solar Activity Predictions Based on Solar Dynamo Theories

    NASA Astrophysics Data System (ADS)

    Schatten, Kenneth H.

    2009-05-01

    We review solar activity prediction methods, statistical, precursor, and recently the Dikpati and the Choudhury groups’ use of numerical flux-dynamo methods. Outlining various methods, we compare precursor techniques with weather forecasting. Precursors involve events prior to a solar cycle. First started by the Russian geomagnetician Ohl, and then Brown and Williams; the Earth's field variations near solar minimum was used to predict the next solar cycle, with a correlation of 0.95. From the standpoint of causality, as well as energetically, these relationships were somewhat bizarre. One index used was the "number of anomalous quiet days,” an antiquated, subjective index. Scientific progress cannot be made without some suspension of disbelief; otherwise old paradigms become tautologies. So, with youthful naïveté, Svalgaard, Scherrer, Wilcox and I viewed the results through rose-colored glasses and pressed ahead searching for understanding. We eventually fumbled our way to explaining how the Sun could broadcast the state of its internal dynamo to Earth. We noted one key aspect of the Babcock-Leighton Flux Dynamo theory: the polar field at the end of a cycle serves as a seed for the next cycle's growth. Near solar minimum this field usually bathes the Earth, and thereby affects geomagnetic indices then. We found support by examining 8 previous solar cycles. Using our solar precursor technique we successfully predicted cycles 21, 22 and 23 using WSO and MWSO data. Pesnell and I improved the method using a SODA (SOlar Dynamo Amplitude) Index. In 2005, nearing cycle 23's minimum, Svalgaard and I noted an unusually weak polar field, and forecasted a small cycle 24. We discuss future advances: the flux-dynamo methods. As far as future solar activity, I shall let the Sun decide; it will do so anyhow.

  9. Solar Heating and Cooling Demonstration Project at Radian Corporation, Austin, Texas. Final report

    SciTech Connect

    Not Available

    1980-05-01

    This document is the final technical report of the solar energy facility located at the Radian Corporation, Austin, Texas, 78766. This system has been operational since April 1977. Major components of this system include 36 Northrup collectors, a 1500 gallon fiberglass thermal storage tank, an ARKLA absorption cooling unit and cooling tower, a Servel heating coil, pumps, heat exchanger, and a conventional backup heating and air conditioning unit. System controls consist of a dual-stage thermostat, a control panel, a differential temperature controller, and three absolute temperature controllers. The system is designed to operate in several modes with evaluation of each mode. System performance monitoring is accomplished through 47 sensors which are sampled and recorded every five minutes by a data acquisition system. An on-site-monitor test set allows instantaneous testing and evaluation. This report also references Monthly Performance Reports, a Solar Energy System Performance Evaluation Report, a Solar Project Cost Report and a Solar Project Description Report for this site which are available through the National Technical Information Service.

  10. Transient analysis and energy optimization of solar heating and cooling systems in various configurations

    SciTech Connect

    Calise, F.; Dentice d'Accadia, M.; Palombo, A.

    2010-03-15

    In this paper, a transient simulation model of solar-assisted heating and cooling systems (SHC) is presented. A detailed case study is also discussed, in which three different configurations are considered. In all cases, the SHC system is based on the coupling of evacuated solar collectors with a single-stage LiBr-H{sub 2}O absorption chiller, and a gas-fired boiler is also included for auxiliary heating, only during the winter season. In the first configuration, the cooling capacity of the absorption chiller and the solar collector area are designed on the basis of the maximum cooling load, and an electric chiller is used as the auxiliary cooling system. The second layout is similar to the first one, but, in this case, the absorption chiller and the solar collector area are sized in order to balance only a fraction of the maximum cooling load. Finally, in the third configuration, there is no electric chiller, and the auxiliary gas-fired boiler is also used in summer to feed the absorption chiller, in case of scarce solar irradiation. The simulation model was developed using the TRNSYS software, and included the analysis of the dynamic behaviour of the building in which the SHC systems were supposed to be installed. The building was simulated using a single-lumped capacitance model. An economic model was also developed, in order to assess the operating and capital costs of the systems under analysis. Furthermore, a mixed heuristic-deterministic optimization algorithm was implemented, in order to determine the set of the synthesis/design variables that maximize the energy efficiency of each configuration under analysis. The results of the case study were analyzed on monthly and weekly basis, paying special attention to the energy and monetary flows of the standard and optimized configurations. The results are encouraging as for the potential of energy saving. On the contrary, the SHC systems appear still far from the economic profitability: however, this is

  11. Science Activities in Energy: Solar Energy II.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Included in this science activities energy package are 14 activities related to solar energy for secondary students. Each activity is outlined on a single card and is introduced by a question such as: (1) how much solar heat comes from the sun? or (2) how many times do you have to run water through a flat-plate collector to get a 10 degree rise in…

  12. The absorption chiller in large scale solar pond cooling design with condenser heat rejection in the upper convecting zone

    SciTech Connect

    Tsilingiris, P.T. )

    1992-07-01

    The possibility of using solar ponds as low-cost solar collectors combined with commercial absorption chillers in large scale solar cooling design is investigated. The analysis is based on the combination of a steady-state solar pond mathematical model with the operational characteristics of a commercial absorption chiller, assuming condenser heat rejection in the upper convecting zone (U.C.Z.). The numerical solution of the nonlinear equations involved leads to results which relate the chiller capacity with pond design and environmental parameters, which are also employed for the investigation of the optimum pond size for a minimum capital cost. The derived cost per cooling kW for a 350 kW chiller ranges from about 300 to 500 $/kW cooling. This is almost an order of magnitude lower than using a solar collector field of evacuated tube type.

  13. Developing, testing, evaluating and optimizing solar heating and cooling systems. Project status report, November--December 1991

    SciTech Connect

    Not Available

    1992-01-24

    The objective is to develop and test various integrated solar heating, cooling and domestic hot water systems, and to evaluate their performance. Systems composed of new, as well as previously tested, components are carefully integrated so that effects of new components on system performance can be clearly delineated. The SEAL-DOE program includes six tasks which have received funding for the 1991--92 fifteen-month period. These include: (1) a project employing isothermal operation of air and liquid solar space heating systems; (2) a project to build and test several generic solar water heaters; (3) a project that will evaluate advanced solar domestic hot water components and concepts and integrate them into solar domestic hot water systems; (4) a liquid desiccant cooling system development project; (5) a project that will perform system modeling and analysis work on solid desiccant cooling systems research; and (6) a management task. The objectives and progress in each task are described in this report.

  14. National Program for Solar Heating and Cooling of Buildings. Project Date Summaries. Vol. I: Commercial and Residential Demonstrations.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    Three volumes present brief abstracts of projects funded by the Energy Research and Development Administration (ERDA) and conducted under the National Program for Solar Heating and Cooling of Buildings through July 1976. The overall federal program includes demonstrations of heating and/or combined cooling for residential and commercial buildings…

  15. Passive cooling with solar updraft and evaporative downdraft chimneys. Interim report, June 15, 1984--March 1, 1985

    SciTech Connect

    Mignon, G.V.; Cunningham, W.A.; Thompson, T.L.

    1985-12-31

    Computer models have been developed to describe the operation of both solar updraft and evaporative downdraft chimneys. Design studies are being conducted at the present time to use the towers for cooling an experimental, well instrumented, structure to study passive cooling in residential buildings. (MHR)

  16. Solar collector manufacturing activity, 1992

    SciTech Connect

    Not Available

    1993-11-09

    This report presents data provided by US-based manufacturers and importers of solar collectors. Summary data on solar thermal collector shipments are presented for the years 1974 through 1992. Summary data on photovoltaic cell and module shipments are presented for the years 1982 through 1992. Detailed information for solar thermal collectors and photovoltaic cells and modules are presented for 1992. Appendix A describes the survey methodology. Appendix B contains the 1992 survey forms and instructions. Appendices C and D list the companies that responded to the 1992 surveys and granted permission for their names and addresses to appear in the report. Appendix E provides selected tables from this report with data shown in the International System of Units (SI) metric units. Appendix F provides an estimate of installed capacity and energy production from solar collectors for 1992.

  17. Experimental and numerical study of open-air active cooling

    NASA Astrophysics Data System (ADS)

    Al-Fifi, Salman Amsari

    The topic of my thesis is Experimental and Numerical Study of Open Air Active Cooling. The present research is intended to investigate experimentally and Numerically the effectiveness of cooling large open areas like stadiums, shopping malls, national gardens, amusement parks, zoos, transportation facilities and government facilities or even in buildings outdoor gardens and patios. Our cooling systems are simple cooling fans with different diameters and a mist system. This type of cooling systems has been chosen among the others to guarantee less energy consumption, which will make it the most favorable and applicable for cooling such places mentioned above. In the experiments, the main focus is to study the temperature domain as a function of different fan diameters aerodynamically similar in different heights till we come up with an empirical relationship that can determine the temperature domain for different fan diameters and for different heights of these fans. The experimental part has two stages. The first stage is devoted to investigate the maximum range of airspeed and profile for three different fan diameters and for different heights without mist, while the second stage is devoted to investigate the maximum range of temperature and profile for the three different diameter fans and for different heights with mist. The computational study is devoted to built an experimentally verified mathematical model to be used in the design and optimization of water mist cooling systems, and to compare the mathematical results to the experimental results and to get an insight of how to apply such evaporative mist cooling for different places for different conditions. In this study, numerical solution is presented based on experimental conditions, such dry bulb temperature, wet bulb temperature, relative humidity, operating pressure and fan airspeed. In the computational study, all experimental conditions are kept the same for the three fans except the fan airspeed

  18. Investigation of Absorption Cooling Application Powered by Solar Energy in the South Coast Region of Turkey

    NASA Astrophysics Data System (ADS)

    Babayigit, O.; Aksoy, M. H.; Ozgoren, M.; Solmaz, O.

    2013-04-01

    In this study, an absorption system using ammonia-water (NH3-H2O) solution has been theoretically examined in order to meet the cooling need of a detached building having 150 m2 floor area for Antalya, Mersin and Mugla provinces in Turkey. Hourly dynamic cooling load capacities of the building were determined by using Radiant Time Series (RTS) method in the chosen cities. For the analysis, hourly average meteorological data such as atmospheric air temperature and solar radiation belonging to the years 1998-2008 are used for performance prediction of the proposed system. Thermodynamic relations for each component of absorption cooling system is explained and coefficients of performance of the system are calculated. The maximum daily total radiation data were calculated as 7173 W/m2day on July 15, 7277 W/m2 day on July 19 and 7231 W/m2day on July 19 for Mersin, Antalya and Mugla, respectively on the 23° toward to south oriented panels from horizontal surface. The generator operating temperatures are considered between 90-130°C and the best result for 110°C is found the optimum degree for maximum coefficient of performance (COP) values at the highest solar radiation occurred time during the considered days for each province. The COP values varies between 0.521 and 0.530 for the provinces. In addition, absorber and condenser capacities and thermal efficiency for the absorption cooling system were calculated. The necessary evacuated tube collector area for the different provinces were found in the range of 45 m2 to 47 m2. It is shown that although the initial investment cost is higher for the proposed absorption cooling system, it is economically feasible because of its lower annual operation costs and can successfully be operated for the considered provinces.

  19. High quality actively cooled plasma facing components for fusion

    SciTech Connect

    Nygren, R.

    1993-12-31

    This paper interweaves some suggestions for developing actively-cooled PFCs (plasma facing components) for future fusion devices with supporting examples taken from the design, fabrication and operation of Tore Supra`s Phase III Outboard Pump Limiter (OPL). This actively-cooled midplane limiter, designed for heat and particle removal during long pulse operation, has been operated in essentially thermally steady state conditions. From experience with testing to identify braze flaws in the OPL, recommendations are made to analyze the impact of joining flaws on thermal-hydraulic performance of PFCs and to validate a method of inspection for such flaws early in the design development. Capability for extensive in-service monitoring of future PFCs is also recommended and the extensive calorimetry and IR thermography used to confirm and update safe operating limits for power handling of the OPL are reviewed.

  20. Actively cooled plate fin sandwich structural panels for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Smith, L. M.; Beuyukian, C. S.

    1979-01-01

    An unshielded actively cooled structural panel was designed for application to a hypersonic aircraft. The design was an all aluminum stringer-stiffened platefin sandwich structure which used a 60/40 mixture of ethylene glycol/water as the coolant. Eight small test specimens of the basic platefin sandwich concept and three fatigue specimens from critical areas of the panel design was fabricated and tested (at room temperature). A test panel representative of all features of the panel design was fabricated and tested to determine the combined thermal/mechanical performance and structural integrity of the system. The overall findings are that; (1) the stringer-stiffened platefin sandwich actively cooling concept results in a low mass design that is an excellent contender for application to a hypersonic vehicle, and (2) the fabrication processes are state of the art but new or modified facilities are required to support full scale panel fabrication.

  1. Science Activities in Energy: Solar Energy.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 12 activities relating to solar energy. Activities are simple, concrete experiments for fourth, fifth, and sixth grades, which illustrate principles and problems relating to energy. Each activity is outlined on a single card which is introduced by a question. A teacher's supplement…

  2. Sources of solar wind over the solar activity cycle.

    PubMed

    Poletto, Giannina

    2013-05-01

    Fast solar wind has been recognized, about 40 years ago, to originate in polar coronal holes (CHs), that, since then, have been identified with sources of recurrent high speed wind streams. As of today, however, there is no general consensus about whether there are, within CHs, preferential locations where the solar wind is accelerated. Knowledge of slow wind sources is far from complete as well. Slow wind observed in situ can be traced back to its solar source by backward extrapolation of magnetic fields whose field lines are streamlines of the outflowing plasma. However, this technique often has not the necessary precision for an indisputable identification of the region where wind originates. As the Sun progresses through its activity cycle, different wind sources prevail and contribute to filling the heliosphere. Our present knowledge of different wind sources is here summarized. Also, a Section addresses the problem of wind acceleration in the low corona, as inferred from an analysis of UV data, and illustrates changes between fast and slow wind profiles and possible signatures of changes along the solar cycle. A brief reference to recent work about the deep roots of solar wind and their changes over different solar cycles concludes the review. PMID:25685421

  3. Hinode Captures Images of Solar Active Region

    NASA Video Gallery

    In these images, Hinode's Solar Optical Telescope (SOT) zoomed in on AR 11263 on August 4, 2011, five days before the active region produced the largest flare of this cycle, an X6.9. We show images...

  4. A History of Solar Activity over Millennia

    NASA Astrophysics Data System (ADS)

    Usoskin, Ilya G.

    2013-03-01

    Presented here is a review of present knowledge of the long-term behavior of solar activity on a multi-millennial timescale, as reconstructed using the indirect proxy method. The concept of solar activity is discussed along with an overview of the special indices used to quantify different aspects of variable solar activity, with special emphasis upon sunspot number. Over long timescales, quantitative information about past solar activity can only be obtained using a method based upon indirect proxies, such as the cosmogenic isotopes 14C and 10Be in natural stratified archives (e.g., tree rings or ice cores). We give an historical overview of the development of the proxy-based method for past solar-activity reconstruction over millennia, as well as a description of the modern state. Special attention is paid to the verification and cross-calibration of reconstructions. It is argued that this method of cosmogenic isotopes makes a solid basis for studies of solar variability in the past on a long timescale (centuries to millennia) during the Holocene. A separate section is devoted to reconstructions of strong solar energetic-particle (SEP) events in the past, that suggest that the present-day average SEP flux is broadly consistent with estimates on longer timescales, and that the occurrence of extra-strong events is unlikely. Finally, the main features of the long-term evolution of solar magnetic activity, including the statistics of grand minima and maxima occurrence, are summarized and their possible implications, especially for solar/stellar dynamo theory, are discussed.

  5. A solar thermal cooling and heating system for a building: Experimental and model based performance analysis and design

    SciTech Connect

    Qu, Ming; Yin, Hongxi; Archer, David H.

    2010-02-15

    A solar thermal cooling and heating system at Carnegie Mellon University was studied through its design, installation, modeling, and evaluation to deal with the question of how solar energy might most effectively be used in supplying energy for the operation of a building. This solar cooling and heating system incorporates 52 m{sup 2} of linear parabolic trough solar collectors; a 16 kW double effect, water-lithium bromide (LiBr) absorption chiller, and a heat recovery heat exchanger with their circulation pumps and control valves. It generates chilled and heated water, dependent on the season, for space cooling and heating. This system is the smallest high temperature solar cooling system in the world. Till now, only this system of the kind has been successfully operated for more than one year. Performance of the system has been tested and the measured data were used to verify system performance models developed in the TRaNsient SYstem Simulation program (TRNSYS). On the basis of the installed solar system, base case performance models were programmed; and then they were modified and extended to investigate measures for improving system performance. The measures included changes in the area and orientation of the solar collectors, the inclusion of thermal storage in the system, changes in the pipe diameter and length, and various system operational control strategies. It was found that this solar thermal system could potentially supply 39% of cooling and 20% of heating energy for this building space in Pittsburgh, PA, if it included a properly sized storage tank and short, low diameter connecting pipes. Guidelines for the design and operation of an efficient and effective solar cooling and heating system for a given building space have been provided. (author)

  6. Low Latitude Aurora: Index of Solar Activity

    NASA Astrophysics Data System (ADS)

    Bekli, M. R.; Aissani, D.; Chadou, I.

    2010-10-01

    Observations of aurora borealis at low latitudes are rare, and are clearly associated with high solar activity. In this paper, we analyze some details of the solar activity during the years 1769-1792. Moreover, we describe in detail three low latitude auroras. The first event was reported by ash-Shalati and observed in North Africa (1770 AD). The second and third events were reported by l'Abbé Mann and observed in Europe (1770 and 1777 AD).

  7. Relationships between solar activity and climate change

    NASA Technical Reports Server (NTRS)

    Roberts, W. O.

    1975-01-01

    The relationship between recurrent droughts in the High Plains of the United States and the double sunspot cycle is discussed in detail. It is suggested that high solar activity is generally related to an increase in meridional circulation and blocking patterns at high and intermediate latitudes, especially in winter, and the effect is related to the sudden formation of cirrus clouds during strong geomagnetic activity that originates in the solar corpuscular emission.

  8. New NSO Solar Surface Activity Maps

    NASA Astrophysics Data System (ADS)

    Henney, C. J.; Harvey, J. W.

    2001-05-01

    Using NSO-Kitt Peak Vacuum Telescope (KPVT) synoptic data, we present several new solar surface activity maps. The motivation is to test conventional wisdom about conditions that are likely to produce solar activity such as flares, coronal mass ejections and high speed solar wind streams. The ultimate goal is to improve real-time, observation-based models for the purpose of predicting solar activity. A large number of maps will eventually be produced based on the wide range of ideas and models of the conditions thought to lead to solar activity events. When data from the new SOLIS instruments becomes available, the range of possible models that can be tested will be greatly expanded. At present, the daily maps include ones that show magnetic field complexity, emerging flux and high speed solar wind sources. As a proxy for local magnetic potential energy, each element of the magnetic complexity map is the distance-weighted rms of the opposing ambient magnetic field. The flux emergence map is the difference between the two most recent absolute magnetic flux images. The solar wind source map is produced from coronal hole area data. The new maps are available on the NSO-Kitt Peak World Wide Web page. This research was supported in part by the Office of Navel Research Grant N00014-91-J-1040. The NSO-Kitt Peak data used here are produced cooperatively by NSF/AURA, NASA/GSFC, and NOAA/SEC.

  9. Advanced phase change materials and systems for solar passive heating and cooling of residential buildings

    SciTech Connect

    Salyer, I.O.; Sircar, A.K.; Dantiki, S.

    1988-01-01

    During the last three years under the sponsorship of the DOE Solar Passive Division, the University of Dayton Research Institute (UDRI) has investigated four phase change material (PCM) systems for utility in thermal energy storage for solar passive heating and cooling applications. From this research on the basis of cost, performance, containment, and environmental acceptability, we have selected as our current and most promising series of candidate phase change materials, C-15 to C-24 linear crystalline alkyl hydrocarbons. The major part of the research during this contract period was directed toward the following three objectives. Find, test, and develop low-cost effective phase change materials (PCM) that melt and freeze sharply in the comfort temperature range of 73--77{degree}F for use in solar passive heating and cooling of buildings. Define practical materials and processes for fire retarding plasterboard/PCM building products. Develop cost-effective methods for incorporating PCM into building construction materials (concrete, plasterboard, etc.) which will lead to the commercial manufacture and sale of PCM-containing products resulting in significant energy conservation.

  10. Volcanic eruptions and solar activity

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1989-01-01

    The historical record of large volcanic eruptions from 1500 to 1980 is subjected to detailed time series analysis. In two weak but probably statistically significant periodicities of about 11 and 80 yr, the frequency of volcanic eruptions increases (decreases) slightly around the times of solar minimum (maximum). Time series analysis of the volcanogenic acidities in a deep ice core from Greenland reveals several very long periods ranging from about 80 to about 350 yr which are similar to the very slow solar cycles previously detected in auroral and C-14 records. Solar flares may cause changes in atmospheric circulation patterns that abruptly alter the earth's spin. The resulting jolt probably triggers small earthquakes which affect volcanism.

  11. 11 -year planetary index of solar activity

    NASA Astrophysics Data System (ADS)

    Okhlopkov, Victor

    In papers [1,2] introduced me parameter - the average difference between the heliocentric longitudes of planets ( ADL ) , which was used for comparison with solar activity. The best connection of solar activity ( Wolf numbers used ) was obtained for the three planets - Venus, Earth and Jupiter. In [1,2] has been allocated envelope curve of the minimum values ADL which has a main periodicity for 22 years and describes well the alternating series of solar activity , which also has a major periodicity of 22. It was shown that the minimum values of the envelope curve extremes ADL planets Venus, Earth and Jupiter are well matched with the 11- year solar activity cycle In these extremes observed linear configuration of the planets Venus, Earth and Jupiter both in their location on one side of the Sun ( conjunctions ) and at the location on the opposite side of the Sun ( three configurations ) This work is a continuation of the above-mentioned , and here for minimum ADL ( planets are in conjunction ) , as well as on the minimum deviation of the planets from a line drawn through them and Sun at the location of the planets on opposite sides of the Sun , compiled index (denoted for brevity as JEV ) that uniquely describes the 11- year solar cycle A comparison of the index JEV with solar activity during the time interval from 1000 to 2013 conducted. For the period from 1000 to 1699 used the Schove series of solar activity and the number of Wolf (1700 - 2013 ) During the time interval from 1000 to 2013 and the main periodicity of the solar activity and the index ADL is 11.07 years. 1. Okhlopkov V.P. Cycles of Solar Activity and the Configurations of Planets // Moscow University Physics Bulletin, 2012 , Vol. 67 , No. 4 , pp. 377-383 http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.3103/S0027134912040108. 2 Okhlopkov VP, Relationship of Solar Activity Cycles to Planetary Configurations // Bulletin of the Russian Academy of Sciences. Physics, 2013 , Vol. 77 , No. 5

  12. Multi-criteria decision analysis of concentrated solar power with thermal energy storage and dry cooling.

    PubMed

    Klein, Sharon J W

    2013-12-17

    Decisions about energy backup and cooling options for parabolic trough (PT) concentrated solar power have technical, economic, and environmental implications. Although PT development has increased rapidly in recent years, energy policies do not address backup or cooling option requirements, and very few studies directly compare the diverse implications of these options. This is the first study to compare the annual capacity factor, levelized cost of energy (LCOE), water consumption, land use, and life cycle greenhouse gas (GHG) emissions of PT with different backup options (minimal backup (MB), thermal energy storage (TES), and fossil fuel backup (FF)) and different cooling options (wet (WC) and dry (DC). Multicriteria decision analysis was used with five preference scenarios to identify the highest-scoring energy backup-cooling combination for each preference scenario. MB-WC had the highest score in the Economic and Climate Change-Economy scenarios, while FF-DC and FF-WC had the highest scores in the Equal and Availability scenarios, respectively. TES-DC had the highest score for the Environmental scenario. DC was ranked 1-3 in all preference scenarios. Direct comparisons between GHG emissions and LCOE and between GHG emissions and land use suggest a preference for TES if backup is require for PT plants to compete with baseload generators. PMID:24245524

  13. High performance solar desiccant cooling system: Performance evaluation and research recommendations

    NASA Astrophysics Data System (ADS)

    Schlepp, D. R.; Schultz, K. J.

    1984-09-01

    The current status of solar desiccant cooling was assessed and recommendations were made for continued research to develop high performance systems competitive with conventional cooling systems. Solid desiccant, liquid desiccant, and hybrid systems combining desiccant dehumidifiers with vapor compressor units are considered. Currently, all desiccant systems fall somewhat short of being competitive with conventional systems. Hybrid systems appear to have the greatest potential in the short term. Solid systems are close to meeting performance goals. Development of high performance solid desiccant dehumidifiers based on parallel passage designs should be pursued. Liquid system collector/generators and efficient absorbers should receive attention. Model development is also indicated. Continued development by hybrid systems is directly tied to the above work.

  14. Large Eddy Simulation of complex sidearms subject to solar radiation and surface cooling.

    PubMed

    Dittko, Karl A; Kirkpatrick, Michael P; Armfield, Steven W

    2013-09-15

    Large Eddy Simulation (LES) is used to model two lake sidearms subject to heating from solar radiation and cooling from a surface flux. The sidearms are part of Lake Audrey, NJ, USA and Lake Alexandrina, SA, Australia. The simulation domains are created using bathymetry data and the boundary is modelled with an Immersed Boundary Method. We investigate the cooling and heating phases with separate quasi-steady state simulations. Differential heating occurs in the cavity due to the changing depth. The resulting temperature gradients drive lateral flows. These flows are the dominant transport process in the absence of wind. Study in this area is important in water quality management as the lateral circulation can carry particles and various pollutants, transporting them to and mixing them with the main lake body. PMID:23863384

  15. Hot carrier solar cell absorbers: investigation of carrier cooling properties of candidate materials

    NASA Astrophysics Data System (ADS)

    Conibeer, G.; Shrestha, Santosh; Huang, Shujuan; Patterson, Robert; Xia, Hongze; Feng, Yu; Zhang, Pengfei; Gupta, Neeti; Smyth, Suntrana; Liao, Yuanxun; Lin, Shu; Wang, Pei; Dai, Xi; Chung, Simon; Yang, Jianfeng; Zhang, Yi

    2015-09-01

    The hot carrier cell aims to extract the electrical energy from photo-generated carriers before they thermalize to the band edges. Hence it can potentially achieve a high current and a high voltage and hence very high efficiencies up to 65% under 1 sun and 86% under maximum concentration. To slow the rate of carrier thermalisation is very challenging, but modification of the phonon energies and the use of nanostructures are both promising ways to achieve some of the required slowing of carrier cooling. A number of materials and structures are being investigated with these properties and test structures are being fabricated. Initial measurements indicate slowed carrier cooling in III-Vs with large phonon band gaps and in multiple quantum wells. It is expected that soon proof of concept of hot carrier devices will pave the way for their development to fully functioning high efficiency solar cells.

  16. Is Solar Activity Once More Fainting?

    NASA Astrophysics Data System (ADS)

    Mares Aguilar, C. E.; Schröder, K.-P.; Song, G.

    2013-04-01

    After an anomalously long and deep minimum, will the Sun now once again reach a period of weaker activity cycles, which would affect northern hemisphere winter climate? We here discuss the current state and outlook of solar activity, and we propose to monitor the solar Ca II K line emission “as a star”, as part of the regular observing schedule of the Hamburg robotic telescope, which is bound to move to Guanajuato this year (2012). In fact, the chromospheric Ca II K line emission is a good proxy for the solar far-ultraviolet flux, as both are generated at about the same plasma temperatures (12-15,000 K) and both originate from the same active regions (plages). The solar ultraviolet flux, in turn, warms the stratosphere by photo dissociation of ozone and other molecules and, consequently, affects the strength of the North Atlantic Oscillation (NOA).

  17. Statistical Properties of Extreme Solar Activity Intervals

    NASA Astrophysics Data System (ADS)

    Lioznova, A. V.; Blinov, A. V.

    2014-01-01

    A study of long-term solar variability reflected in indirect indices of past solar activity leads to stimulating results. We compare the statistics of intervals of very low and very high solar activity derived from two cosmogenic radionuclide records and look for consistency in their timing and physical interpretation. According to the applied criteria, the numbers of minima and of maxima are 61 and 68, respectively, from the 10Be record, and 42 and 46 from the 14C record. The difference between the enhanced and depressed states of solar activity becomes apparent in the difference in their statistical distributions. We find no correlation between the level or type (minimum or maximum) of an extremum and the level or type of the predecessor. The hypothesis of solar activity as a periodic process on the millennial time scale is not supported by the existing proxies. A new homogeneous series of 10Be measurements in polar ice covering the Holocene would be of great value for eliminating the existing discrepancy in the available solar activity reconstructions.

  18. Central Data Processing System (CDPS) user's manual: Solar heating and cooling program

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The software and data base management system required to assess the performance of solar heating and cooling systems installed at multiple sites is presented. The instrumentation data associated with these systems is collected, processed, and presented in a form which supported continuity of performance evaluation across all applications. The CDPS consisted of three major elements: communication interface computer, central data processing computer, and performance evaluation data base. Users of the performance data base were identified, and procedures for operation, and guidelines for software maintenance were outlined. The manual also defined the output capabilities of the CDPS in support of external users of the system.

  19. Assessment of the solar heating and cooling in residential building demonstration program

    NASA Astrophysics Data System (ADS)

    Wolff, D. C.

    1980-08-01

    The Solar Heating and Cooling in Residential Building Demonstration of 1974 is assessed. The program's goals and the Government Accounting Office's (GAO) evaluation of the program's success are stated. The program is analyzed with regard to objectives, results, data, and the GAO's conclusions. The differing approaches of the GAO and the Department of Housing and Urban Development to the program are analyzed and compared, showing weaknesses in each. Conclusions on the relative success of the program are drawn, and recommendations are made regarding any future programs of this type.

  20. Solar-powered/fuel-assisted Rankine cycle power and cooling system - Sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Lior, N.; Koai, K.

    1984-11-01

    The subject of this analysis is a solar power/cooling system based on a novel hybrid steam Rankine cycle. Steam is generated by the use of solar energy collected at about 100 C, and it is then superheated to about 600 C in a fossil-fuel-fired superheater. The addition of about 20-26 percent of energy as fuel doubles the power cycle's efficiency as compared to organic fluid Rankine cycles operating at similar collector temperatures. A sensitivity analysis of the system's performance to the size and type of its components was performed by a transient (hourly) computer simulation over the month of August in two representative climatic regions (Washington, D.C. and Phoenix, Ariz.), and led to the description of a system configuration which provides optimal energy performance. The newly designed turbine's predicted efficiency is seen to be essentially invariant with system configuration, and has a monthly average value of about 73 percent.

  1. Global water cycle and solar activity variations

    NASA Astrophysics Data System (ADS)

    Al-Tameemi, Muthanna A.; Chukin, Vladimir V.

    2016-05-01

    The water cycle is the most active and most important component in the circulation of global mass and energy in the Earth system. Furthermore, water cycle parameters such as evaporation, precipitation, and precipitable water vapour play a major role in global climate change. In this work, we attempt to determine the impact of solar activity on the global water cycle by analyzing the global monthly values of precipitable water vapour, precipitation, and the Solar Modulation Potential in 1983-2008. The first object of this study was to calculate global evaporation for the period 1983-2008. For this purpose, we determined the water cycle rate from satellite data, and precipitation/evaporation relationship from 10 years of Planet Simulator model data. The second object of our study was to investigate the relationship between the Solar Modulation Potential (solar activity index) and the evaporation for the period 1983-2008. The results showed that there is a relationship between the solar modulation potential and the evaporation values for the period of study. Therefore, we can assume that the solar activity has an impact on the global water cycle.

  2. Characterization of AN Actively Cooled Metal Foil Thermal Radiation Shield

    NASA Astrophysics Data System (ADS)

    Feller, J. R.; Kashani, A.; Helvensteijn, B. P. M.; Salerno, L. J.

    2010-04-01

    Zero boil-off (ZBO) or reduced boil-off (RBO) systems that involve active cooling of large cryogenic propellant tanks will most likely be required for future space exploration missions. For liquid oxygen or methane, such systems could be implemented using existing high technology readiness level (TRL) cryocoolers. However, for liquid hydrogen temperatures (˜20 K) no such coolers exist. In order to partially circumvent this technology gap, the concept of broad area cooling (BAC) has been developed, whereby a low mass thermal radiation shield could be maintained at temperatures around 100 K by steady circulation of cold pressurized gas through a network of narrow tubes. By this method it is possible to dramatically reduce the radiative heat leak to the 20 K tank. A series of experiments, designed to investigate the heat transfer capabilities of BAC systems, have been conducted at NASA Ames Research Center (ARC). Results of the final experiment in this series, investigating heat transfer from a metal foil film to a distributed cooling line, are presented here.

  3. CHARACTERIZATION OF AN ACTIVELY COOLED METAL FOIL THERMAL RADIATION SHIELD

    SciTech Connect

    Feller, J. R.; Salerno, L. J.; Kashani, A.; Helvensteijn, B. P. M.

    2010-04-09

    Zero boil-off (ZBO) or reduced boil-off (RBO) systems that involve active cooling of large cryogenic propellant tanks will most likely be required for future space exploration missions. For liquid oxygen or methane, such systems could be implemented using existing high technology readiness level (TRL) cryocoolers. However, for liquid hydrogen temperatures (approx20 K) no such coolers exist. In order to partially circumvent this technology gap, the concept of broad area cooling (BAC) has been developed, whereby a low mass thermal radiation shield could be maintained at temperatures around 100 K by steady circulation of cold pressurized gas through a network of narrow tubes. By this method it is possible to dramatically reduce the radiative heat leak to the 20 K tank. A series of experiments, designed to investigate the heat transfer capabilities of BAC systems, have been conducted at NASA Ames Research Center (ARC). Results of the final experiment in this series, investigating heat transfer from a metal foil film to a distributed cooling line, are presented here.

  4. The solar activity measurements experiments (SAMEX) for improved scientific understanding of solar activity

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Solar Activity Measurements Experiments (SAMEX) mission is described. It is designed to provide a look at the interactions of magnetic fields and plasmas that create flares and other explosive events on the sun in an effort to understand solar activity and the nature of the solar magnetic field. The need for this mission, the instruments to be used, and the expected benefits of SAMEX are discussed.

  5. Temporal offsets among solar activity indicators

    NASA Astrophysics Data System (ADS)

    Ramesh, K. B.; Vasantharaju, N.

    2014-04-01

    Temporal offsets between the time series of solar activity indicators provide important clues regarding the physical processes responsible for the cyclic variability in the solar atmosphere. Hysteresis patterns generated between any two indicators were popularly used to study their morphological features and further to understand their inter relationships. We use time series of different solar indicators to understand the possible cause-and-effect criteria between their respective source regions. Sensitivity of the upper atmosphere to the activity underneath might play an important role in introducing different evolutionary patterns in the profiles of solar indicators and in turn cause temporal offsets between them. Limitations in the observations may also cause relative shifts in the time series.

  6. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas

    NASA Astrophysics Data System (ADS)

    1980-11-01

    The building has approximately 5600 square feet of conditioned space. Solar energy was used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system had an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water was the transfer medium that delivered solar energy to a tube-in-shell heat exchanger that in turn delivered solar heated water to a 1100 gallon pressurized hot water storage tank. When solar energy was insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provided auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are presented.

  7. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The building has approximately 5600 square feet of conditioned space. Solar energy was used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system had an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water was the transfer medium that delivered solar energy to a tube-in-shell heat exchanger that in turn delivered solar heated water to a 1100 gallon pressurized hot water storage tank. When solar energy was insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provided auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are presented.

  8. Energy-conserving passive solar multi-family retrofit projects. Cycle 5, category 1: HUD Solar Heating and Cooling Demonstration Program

    NASA Astrophysics Data System (ADS)

    1981-10-01

    A total of 14 passive solar retrofit buildings are described. The concept of passive solar energy and the various types of passive systems found in the Cycle 5 projects are discussed. Each of the 14 solar designs is described, and some of the key points raised in the discussion of passive concepts are illustrated. Each project description cites the location of the passive solar home and presents the following information: grantee/builder, designer, solar designer, price, number of units, net heated area, heat load, degree days, solar fraction of the total heat load, and auxiliary heat required. Project descriptions also include data on recognition factors (the five passive elements necessary for a complete passive system), the type of auxiliary heating system used in the building, the solar water heating system (if any), and the passive cooling techniques used (if any).

  9. Solar activity and Perseid meteor heights

    NASA Astrophysics Data System (ADS)

    Buček, M.; Porubčan, V.; Zigo, P.

    2012-04-01

    Photographic meteor heights of the Perseid meteoroid stream compiled in the IAU Meteor Data Center catalogue observed in 1939-1992, covering five solar activity cycles, are analyzed and their potential variation within a solar activity cycle is investigated and discussed. Of the 673 Perseids selected from the catalogue, the variations of the heights for three independent sets: 524 Perseids with known information on both heights, 397 with known brightness and 279 with the geocentric velocity within a one sigma limit, were investigated. The observed beginning and endpoint heights of the Perseids, normalized for the geocentric velocity and the absolute photographic magnitude correlated with the solar activity represented by the relative sunspot number R, do not exhibit a variation consistent with the solar activity cycle. The result, confirmed also by the correlation analysis, is derived for the mass ranges of larger meteoroids observed by photographic techniques. However, a possible variation of meteor heights controlled by solar activity for smaller meteoroids detected by television and radio techniques remains still open and has to be verified.

  10. Causality principles in solar activity -climate relations.

    NASA Astrophysics Data System (ADS)

    Stauning, Peter

    The relations between solar activity and the terrestrial climate have quite often been inves-tigated. In most cases the analyses have been based on comparisons between time series of solar activity parameters, for instance sunspot numbers, and terrestrial climate parameters, for instance global temperatures. However, many of the reported close relations are based on skilfully manipulated data and neglect of basic causality principles. For cause-effect relations to be reliably established, the variations in the causative function must obviously happen prior to the related effects. Thus it is problematic to use, for instance, running averages of parameters, if the result depends too much on posterior elements of the causative time series or precursory elements of the effects. Even more neglected are the causality principles for cause-effect rela-tions with a strongly varying source function, like for instance the 11 year solar activity cycle. In such cases damping of source variations by smoothing data series, introduces additional im-plied delays, which should be considered in the judgement of apparent correlations between the processed time series of cause and effect parameters. The presentation shall illustrate causal-ity relations between solar activity and terrestrial climate parameters and discuss examples of frequently quoted solar activity-climate relations, which violate basic causality principles.

  11. An innovative system for heating and cooling a gymnasium using integrated photovoltaic-thermal solar collectors

    SciTech Connect

    Fanchiotti, A.; Herkel, S.; Laukamp, H.; Priolo, C.

    1996-11-01

    The paper describes a new solar energy based system to heat and cool a gymnasium and to generate electricity in the city of Palermo, Italy. The gymnasium will be built in 1996 as part of the structures that will host the Universiadi Games in 1997. Main objectives of the project are: (a) to grant better environmental conditions in the area occupied by the public, with limited use of fossil energy; (b) to reduce the temperature of the photovoltaic elements, thus increasing their efficiency. The system consists of an array of 203 m{sup 2} integrated photovoltaic-thermal solar air collectors. In the winter mode of operation, the heated air is passed through the concrete benches where the public is seated. In the summer mode of operation outside air is evaporatively cooled, passed through the benches, then exhausted to the outside after passing through the collectors. The paper presents some of the results obtained by simulating the system at the design stage for winter conditions.

  12. Integrated energy, economic, and environmental assessment for the optimal solar absorption cooling and heating system

    NASA Astrophysics Data System (ADS)

    Hang, Yin

    Buildings in the United States are responsible for 41% of the primary energy use and 30% of carbon dioxide emissions. Due to mounting concerns about climate change and resource depletion, meeting building heating and cooling demand with renewable energy has attracted increasing attention in the energy system design of green buildings. One of these approaches, the solar absorption cooling and heating (SACH) technology can be a key solution to addressing the energy and environmental challenges. SACH system is an integration of solar thermal heating system and solar thermal driven absorption cooling system. So far, SACH systems still remain at the demonstration and testing stage due to not only its high cost but also complicated system characteristics. This research aims to develop a methodology to evaluate the life cycle energy, economic and environmental performance of SACH systems by high-fidelity simulations validated by experimental data. The developed methodology can be used to assist the system design. In order to achieve this goal, the study includes four objectives as follows: * Objective 1: Develop the evaluation model for the SACH system. The model includes three aspects: energy, economy, and environment from a life cycle point of view. * Objective 2: Validate the energy system model by solar experiments performance data. * Objective 3: Develop a fast and effective multi-objective optimization methodology to find the optimal system configuration which achieves the maximum system benefits on energy, economy and environment. Statistic techniques are explored to reveal the relations between the system key parameters and the three evaluation targets. The Pareto front is generated by solving this multi-objective optimization problem. * Objective 4: Apply the developed assessment methodology to different building types and locations. Furthermore, this study considered the influence of the input uncertainties on the overall system performance. The sensitivity

  13. Solar collector studies for solar heating and cooling applications. Final technical report

    SciTech Connect

    Anderson, J. H.; Jensen, S. O.; Kovacic, J. E.

    1980-01-01

    A summary of the literature, especially patent teachings pertaining to black fluid solar collectors is given. Laboratory tests to determine the suspension stability of various carbon types in water/Propylene glycol are reported. The suspensions were aged at 160/sup 0/F for 3600 hours and at -15/sup 0/F for 1100 hours. It is suggested that the suspending agent interacts with electrical charges on the carbon particles to prevent agglomeration. The liquid was tested for its operating characteristics with several collector design variables using glass tubes as the containment system. The collectors were installed in a house previously operated on a black liquid system, and observed for a six month period with the weather ranging from -12/sup 0/F to 94/sup 0/F with no major problems occurring with either the liquid or the collectors.

  14. Solar Energy Education. Home economics: student activities. Field test edition

    SciTech Connect

    Not Available

    1981-03-01

    A view of solar energy from the standpoint of home economics is taken in this book of activities. Students are provided information on solar energy resources while performing these classroom activities. Instructions for the construction of a solar food dryer and a solar cooker are provided. Topics for study include window treatments, clothing, the history of solar energy, vitamins from the sun, and how to choose the correct solar home. (BCS)

  15. Simultaneous Solar Maximum Mission (SMM) and Very Large Array (VLA) observations of solar active regions

    NASA Technical Reports Server (NTRS)

    Willson, Robert F.

    1991-01-01

    Very Large Array observations at 20 cm wavelength can detect the hot coronal plasma previously observed at soft x ray wavelengths. Thermal cyclotron line emission was detected at the apex of coronal loops where the magnetic field strength is relatively constant. Detailed comparison of simultaneous Solar Maximum Mission (SMM) Satellite and VLA data indicate that physical parameters such as electron temperature, electron density, and magnetic field strength can be obtained, but that some coronal loops remain invisible in either spectral domain. The unprecedent spatial resolution of the VLA at 20 cm wavelength showed that the precursor, impulsive, and post-flare components of solar bursts originate in nearby, but separate loops or systems of loops.. In some cases preburst heating and magnetic changes are observed from loops tens of minutes prior to the impulsive phase. Comparisons with soft x ray images and spectra and with hard x ray data specify the magnetic field strength and emission mechanism of flaring coronal loops. At the longer 91 cm wavelength, the VLA detected extensive emission interpreted as a hot 10(exp 5) K interface between cool, dense H alpha filaments and the surrounding hotter, rarefield corona. Observations at 91 cm also provide evidence for time-correlated bursts in active regions on opposite sides of the solar equator; they are attributed to flare triggering by relativistic particles that move along large-scale, otherwise-invisible, magnetic conduits that link active regions in opposite hemispheres of the Sun.

  16. Solar activity and the mean global temperature

    NASA Astrophysics Data System (ADS)

    Erlykin, A. D.; Sloan, T.; Wolfendale, A. W.

    2009-01-01

    The variation with time from 1956 to 2002 of the globally averaged rate of ionization produced by cosmic rays in the atmosphere is deduced and shown to have a cyclic component of period roughly twice the 11 year solar cycle period. Long term variations in the global average surface temperature as a function of time since 1956 are found to have a similar cyclic component. The cyclic variations are also observed in the solar irradiance and in the mean daily sun spot number. The cyclic variation in the cosmic ray rate is observed to be delayed by 2-4 years relative to the temperature, the solar irradiance and daily sun spot variations suggesting that the origin of the correlation is more likely to be direct solar activity than cosmic rays. Assuming that the correlation is caused by such solar activity, we deduce that the maximum recent increase in the mean surface temperature of the Earth which can be ascribed to this activity is {\\lesssim }14% of the observed global warming.

  17. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    NASA Astrophysics Data System (ADS)

    1980-11-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  18. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  19. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report

    SciTech Connect

    1980-11-01

    The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

  20. Fluid flow and heat convection studies for actively cooled airframes

    NASA Technical Reports Server (NTRS)

    Mills, A. F.

    1993-01-01

    This report details progress made on the jet impingement - liquid crystal - digital imaging experiment. With the design phase complete, the experiment is currently in the construction phase. In order to reach this phase two design related issues were resolved. The first issue was to determine NASP leading edge active cooling design parameters. Meetings were arranged with personnel at SAIC International, Torrance, CA in order to obtain recent publications that characterized expected leading edge heat fluxes as well as other details of NASP operating conditions. The information in these publications was used to estimate minimum and maximum jet Reynolds numbers needed to accomplish the required leading edge cooling, and to determine the parameters of the experiment. The details of this analysis are shown in Appendix A. One of the concerns for the NASP design is that of thermal stress due to large surface temperature gradients. Using a series of circular jets to cool the leading edge will cause a non-uniform temperature distribution and potentially large thermal stresses. Therefore it was decided to explore the feasibility of using a slot jet to cool the leading edge. The literature contains many investigations into circular jet heat transfer but few investigations of slot jet heat transfer. The first experiments will be done on circular jets impinging on a fiat plate and results compared to previously published data to establish the accuracy of the method. Subsequent experiments will be slot jets impinging on full scale models of the NASP leading edge. Table 1 shows the range of parameters to be explored. Next a preliminary design of the experiment was done. Previous papers which used a similar experimental technique were studied and elements of those experiments adapted to the jet impingement study. Trade-off studies were conducted to determine which design was the least expensive, easy to construct, and easy to use. Once the final design was settled, vendors were

  1. Seismic Holography of Solar Activity

    NASA Technical Reports Server (NTRS)

    Lindsey, Charles

    2000-01-01

    The basic goal of the project was to extend holographic seismic imaging techniques developed under a previous NASA contract, and to incorporate phase diagnostics. Phase-sensitive imaging gives us a powerful probe of local thermal and Doppler perturbations in active region subphotospheres, allowing us to map thermal structure and flows associated with "acoustic moats" and "acoustic glories". These remarkable features were discovered during our work, by applying simple acoustic power holography to active regions. Included in the original project statement was an effort to obtain the first seismic images of active regions on the Sun's far surface.

  2. Solar Energy Project, Activities: Chemistry & Physics.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of chemistry and physics experiments. Each unit presents an introduction to the unit; objectives; required skills and knowledge; materials; method; questions; recommendations for further work; and a teacher information sheet.…

  3. Solar Energy Project, Activities: Junior High Science.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of the junior high science curriculum. Each unit presents an introduction; objectives; skills and knowledge needed; materials; methods; questions; recommendations for further work; and a teacher information sheet. The teacher…

  4. Solar Energy Project, Activities: Earth Science.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of earth science experiments. Each unit presents an introduction; objectives; skills and knowledge needed; materials; method; questions; recommendations for further study; and a teacher information sheet. The teacher…

  5. EVIDENCE FOR WIDESPREAD COOLING IN AN ACTIVE REGION OBSERVED WITH THE SDO ATMOSPHERIC IMAGING ASSEMBLY

    SciTech Connect

    Viall, Nicholeen M.; Klimchuk, James A.

    2012-07-01

    A well-known behavior of EUV light curves of discrete coronal loops is that the peak intensities of cooler channels or spectral lines are reached at progressively later times than hotter channels. This time lag is understood to be the result of hot coronal loop plasma cooling through these lower respective temperatures. However, loops typically comprise only a minority of the total emission in active regions (ARs). Is this cooling pattern a common property of AR coronal plasma, or does it only occur in unique circumstances, locations, and times? The new Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) data provide a wonderful opportunity to answer this question systematically for an entire AR. We measure the time lag between pairs of SDO/AIA EUV channels using 24 hr of images of AR 11082 observed on 2010 June 19. We find that there is a time-lag signal consistent with cooling plasma, just as is usually found for loops, throughout the AR including the diffuse emission between loops for the entire 24 hr duration. The pattern persists consistently for all channel pairs and choice of window length within the 24 hr time period, giving us confidence that the plasma is cooling from temperatures of greater than 3 MK, and sometimes exceeding 7 MK, down to temperatures lower than {approx}0.8 MK. This suggests that the bulk of the emitting coronal plasma in this AR is not steady; rather, it is dynamic and constantly evolving. These measurements provide crucial constraints on any model which seeks to describe coronal heating.

  6. Incorporation of Solar Noble Gases from a Nebula-Derived Atmosphere During Magma Ocean Cooling

    NASA Technical Reports Server (NTRS)

    Woolum, D. S.; Cassen, P.; Wasserburg, G. J.; Porcelli, D.; DeVincenzi, Donald (Technical Monitor)

    1998-01-01

    The presence of solar noble gases in the deep interior of the Earth is inferred from the Ne isotopic compositions of MORB (Mid-ocean Ridge Basalts) and OIB (Oceanic Island Basalt); Ar data may also consistent with a solar component in the deep mantle. Models of the transport and distribution of noble gases in the earth's mantle allow for the presence of solar Ar/Ne and Xe/Ne ratios and permit the calculation of lower mantle noble gas concentrations. These mantle data and models also indicate that the Earth suffered early (0.7 to 2 x 10(exp 8) yr) and large (greater than 99 percent) losses of noble gases from the interior, a result previously concluded for atmospheric Xe. We have pursued the suggestion that solar noble gases were incorporated in the forming Earth from a massive, nebula-derived atmosphere which promoted large-scale melting, so that gases from this atmosphere dissolved in the magma ocean and were mixed downward. Models of a primitive atmosphere captured from the solar nebula and supported by accretion luminosity indicate that pressures at the Earth's surface were adequate (and largely more than the required 100 Atm) to dissolve sufficient gases. We have calculated the coupled evolution of the magma ocean and the overlying atmosphere under conditions corresponding to the cessation (or severe attenuation) of the sustaining accretion luminosity, prior to the complete removal of the solar nebula. Such a condition was likely to obtain, for instance, when most of the unaccumulated mass resided in large bodies which were only sporadically accreted. The luminosity supporting the atmosphere is then that provided by the cooling Earth, consideration of which sets a lower limit to the time required to solidify the mantle and terminate the incorporation of atmospheric gases within it. In our initial calculations, we have fixed the nebula temperature at To = 300K, a value likely to be appropriate for nebular temperatures at lAU in the early planet-building epoch

  7. Forced- and natural-convection studies on solar collectors for heating and cooling applications

    NASA Astrophysics Data System (ADS)

    Pearson, J. T.

    1983-03-01

    Convection in air heating solar collectors for heating and cooling applications was studied. It was determined that improvement in the overall conductance between the absorber and the flowing air was an area that needed much improvement. Studies were performed to obtain several absorber convector configurations which have superior heat transfer performance, modest drop penalties, and a high potential for economical manufacturing. Four surfaces which may be fabricated from aluminum or steel are recommended. Three utilize corrugated sheets bonded to the backplate and/or the back side of the absorber. These three surfaces are recommended for applications where airflow behind the absorber is appropriate. For those applications where airflow above the absorber is appropriate, a louvered surface which can be fabricated from metal or plastic is recommended.

  8. Final draft: IEA Task 1. Report on Subtask D, optimization of solar heating and cooling systems

    SciTech Connect

    Freeman, T.L.

    1981-03-01

    A review of general techniques and specific methods useful in the optimization of solar heating and cooling systems is undertaken. A discussion of the state-of-the-art and the principal problems in both the simplified thermal performance analysis and economic analysis portions of the optimization problem are presented. Sample economic analyses are performed using several widely used economic criteria. The predicted thermal results of one typical, widely used simplified method is compared to detailed simulation results. A methodology for and the results of a sensitivity study of key economic parameters in the life cycle cost method are presented. Finally, a simple graphical optimization technique based on the life cycle cost method is proposed.

  9. Active cooling for downhole instrumentation: Preliminary analysis and system selection

    SciTech Connect

    Bennett, G.A.

    1988-03-01

    A feasibility study and a series of preliminary designs and analyses were done to identify candidate processes or cycles for use in active cooling systems for downhole electronic instruments. A matrix of energy types and their possible combinations was developed and the energy conversion process for each pari was identified. The feasibility study revealed conventional as well as unconventional processes and possible refrigerants and identified parameters needing further clarifications. A conceptual design or series od oesigns for each system was formulated and a preliminary analysis of each design was completed. The resulting coefficient of performance for each system was compared with the Carnot COP and all systems were ranked by decreasing COP. The system showing the best combination of COP, exchangeability to other operating conditions, failure mode, and system serviceability is chosen for use as a downhole refrigerator. 85 refs., 48 figs., 33 tabs.

  10. A low-cost-solar liquid desiccant system for residential cooling

    NASA Astrophysics Data System (ADS)

    Ware, Joel D., III

    The use of liquid desiccants for dehumidification of heating, ventilation, and air conditioning (HVAC) process air is becoming a more promising concept as the drive for energy conservation continues to grow. Recently, liquid desiccant systems have been implemented on the commercial level in conjunction with evaporative coolers and have recorded energy savings upwards of 50%. The aim of this research is to test the potential liquid desiccant systems have on the residential level when paired with a conventional vapor compression cycle and to construct a system that would overcome some of its barriers to the residential market. A complete low-cost-solar liquid desiccant system was designed, constructed, and tested in the Off-Grid Zero Emissions Building (OGZEB) at the Florida State University. Key design characteristics include turbulent process air flow through the conditioner and airside heating in the regenerator. The system was tested in the two following ways: (1) for the energy savings while maintaining a constant temperature over a twenty four hour period and (2) for the energy savings over a single cooling cycle. The liquid desiccant system achieved a maximum energy savings of 38% over a complete day and 52% over a single cooling cycle. It was projected that the system has the potential to save 1064 kWh over the course of a year. When combined with a renewable source of heat for regeneration, liquid desiccant systems become very cost effective. The levelized cost of energy for the combination of the liquid desiccant system and solar thermal collectors was calculated to be 7.06 C/kWh with a payback period of 4.4 years. This research provides evidence of the technology's potential on the residential sector and suggests ways for it to become competitive in the market.

  11. Division II: Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, Lidia; Scrijver, Karel J.; Klimchuk, James A.; Charbonneau, Paul; Fletcher, Lyndsay; Hasan, S. Sirajul; Hudson, Hugh S.; Kusano, Kanya; Mandrini, Cristina H.; Peter, Hardi; Vršnak, Bojan; Yan, Yihua

    2015-08-01

    The Business Meeting of Commission 10 was held as part of the Business Meeting of Division II (Sun and Heliosphere), chaired by Valentin Martínez-Pillet, the President of the Division. The President of Commission 10 (C10; Solar activity), Lidia van Driel-Gesztelyi, took the chair for the business meeting of C10. She summarised the activities of C10 over the triennium and the election of the incoming OC.

  12. DIRECT EVIDENCE FOR CONDENSATION IN THE EARLY SOLAR SYSTEM AND IMPLICATIONS FOR NEBULAR COOLING RATES

    SciTech Connect

    Berg, T.; Maul, J.; Schoenhense, G.; Marosits, E.; Hoppe, P.; Ott, U.; Palme, H.

    2009-09-10

    We have identified in an acid resistant residue of the carbonaceous chondrite Murchison a large number (458) of highly refractory metal nuggets (RMNs) that once were most likely hosted by Ca,Al-rich inclusions (CAIs). While osmium isotopic ratios of two randomly selected particles rule out a presolar origin, the bulk chemistry of 88 particles with sizes in the submicron range determined by energy dispersive X-ray (EDX) spectroscopy shows striking agreement with predictions of single-phase equilibrium condensation calculations. Both chemical composition and morphology strongly favor a condensation origin. Particularly important is the presence of structurally incompatible elements in particles with a single-crystal structure, which also suggests the absence of secondary alteration. The metal particles represent the most pristine early solar system material found so far and allow estimation of the cooling rate of the gaseous environment from which the first solids formed by condensation. The resulting value of 0.5 K yr{sup -1} is at least 4 orders of magnitude lower than the cooling rate of molten CAIs. It is thus possible, for the first time, to see through the complex structure of most CAIs and infer the thermal history of the gaseous reservoir from which their components formed by condensation.

  13. Establish feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys. Final report, June 15, 1984--December 31, 1987

    SciTech Connect

    Cunningham, W.A.; Mignon, G.V.; Thompson, T.L.

    1987-12-31

    Natural draft towers can be used for cooling and ventilating structures. From an operational perspective, the downdraft evaporatively cooled tower is preferred for a dry climate. Solar chimneys, when used alone, tend to require an excessively large solar collector area when appreciable quantities of air must be moved. When used in combination with a downdraft tower, the roof and attic of buildings may assist the solar chimney and their use becomes more attractive. Both a frame building and a greenhouse were successfully cooled during this program. The economics of the downdraft tower compare favorably with conventional evaporative cooling for some application.

  14. Establish feasibility for providing passive cooling with solar updraft and evaporate downdraft chimneys. Final report, June 15, 1984--December 31, 1987

    SciTech Connect

    Cunningham, W.A.; Mignon, G.V.; Thompson, T.L.

    1987-12-31

    Natural draft towers can be used for cooling and ventilating structures. From an operational perspective, the downdraft evaporatively cooled tower is preferred for a dry climate. Solar chimneys, when used alone, tend to require an excessively large solar collector area when appreciable quantities of air must be moved. When used in combination with a downdraft tower, the roof and attic of buildings may assist the solar chimney and their use becomes more attractive. Both a frame building and a greenhouse were successfully cooled during this program. The economics of the downdraft tower compare favorably with conventional evaporative cooling for some applications.

  15. Influence of solar activity on climate change

    NASA Astrophysics Data System (ADS)

    Kirichenko, Kirill; Kovalenko, Vladimir

    The questions of primary importance for understanding the nature of climate changes in the XX century and main physical processes responsible for these changes are discussed. A physical model of the influence of solar activity on climate characteristics is presented. A key concept of this model is the influence of heliogeophysical disturbances on the Earth's climate system parameters controlling the long-wave radiation flux going out into space in high-latitude regions. A change in the Earth's radiation balance of high-latitude regions induces restructuring of the tropospheric thermobaric field, changes in the meridional temperature gradient responsible for meridional heat transfer. This causes changes in the heat content of the Earth's climate system and global climate. We present and discuss results of analysis of regularities and peculiarities of tropospheric and sea surface temperature (SST) responses both to separate heliogeophysical disturbances and to long-term changes of solar and geomagnetic activity. It is established that the climatic response in the tropospheric and sea surface temperature to the effect of solar and geomagnetic activity is characterised by a significant space-time irregularity and is local. A distinguishing feature of these distributions is the presence of regions of both positive and negative correlations. The exception is the epoch (1910-1940) when the SST response to geomagnetic activity was positive in virtually all regions, i. e. was global. This epoch coincides with the longest period of increase in geomagnetic activity during the period considered at the end of which annual averages of geomagnetic activity exceeded maximum values at the beginning of the epoch. Key words: climate, ocean, troposphere, solar activity.

  16. Introduction to Solar Heating and Cooling Systems. D.O.T. 637.281 and .381. Instructor's Guide.

    ERIC Educational Resources Information Center

    Grimes, L. A., Jr.

    This instructor's guide on solar heating and cooling is part of a series of individualized instructional materials. The guide is provided to help the instructor make certain that each student gets the most benefit possible from both the student's manual and what he/she does on the job. Notes for the instructor contain suggestions on how the…

  17. Introduction to Solar Heating and Cooling Systems. D.O.T. 637.281 and .381. Student's Manual.

    ERIC Educational Resources Information Center

    Grimes, L. A., Jr.

    This manual on solar heating and cooling systems is one of a series of individualized instructional materials for students. The manual is self-paced, but is designed to be used under the supervision of a coordinator or an instructor. The manual contains 15 assignments, each with all the information needed, a list of objectives that should be met,…

  18. Thermodynamic optimization of a solar system for cogeneration of water heating/purification and absorption cooling

    NASA Astrophysics Data System (ADS)

    Hovsapian, Zohrob O.

    This dissertation presents a contribution to understanding the behavior of solar powered air conditioning and refrigeration systems with a view to determining the manner in which refrigeration rate; mass flows, heat transfer areas, and internal architecture are related. A cogeneration system consisting of a solar concentrator, a cavity-type receiver, a gas burner, and a thermal storage reservoir is devised to simultaneously produce water heating/purification and cooling (absorption refrigerator system). A simplified mathematical model, which combines fundamental and empirical correlations, and principles of classical thermodynamics, mass and heat transfer, is developed. An experimental setup was built to adjust and validate the numerical results obtained with the mathematical model. The proposed model is then utilized to simulate numerically the system transient and steady state response under different operating and design conditions. A system global optimization for maximum performance (or minimum exergy destruction) in the search for minimum pull-down and pull-up times, and maximum system second law efficiency is performed with low computational time. Appropriate dimensionless groups are identified and the results presented in normalized charts for general application. The numerical results show that the three way maximized system second law efficiency, etaII,max,max,max, occurs when three system characteristic mass flow rates are optimally selected in general terms as dimensionless heat capacity rates, i.e., (Psisps , Psiwxwx, PsiHs)opt ≅ (1.43, 0.17, 0.19). The minimum pull-down and pull-up times, and maximum second law efficiencies found with respect to the optimized operating parameters are sharp and, therefore important to be considered in actual design. As a result, the model is expected to be a useful tool for simulation, design, and optimization of solar energy systems in the context of distributed power generation.

  19. Forecasts of solar and geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Joselyn, Joann

    1987-01-01

    Forecasts of solar and geomagnetic activity are critical since these quantities are such important inputs to the thermospheric density models. At this time in the history of solar science there is no way to make such a forecast from first principles. Physical theory applied to the Sun is developing rapidly, but is still primitive. Techniques used for forecasting depend upon the observations over about 130 years, which is only twelve solar cycles. It has been noted that even-numbered cycles systematically tend to be smaller than the odd-numbered ones by about 20 percent. Another observation is that for the last 12 cycle pairs, an even-numbered sunspot cycle looks rather like the next odd-numbered cycle, but with the top cut off. These observations are examples of approximate periodicities that forecasters try to use to achieve some insight into the nature of an upcoming cycle. Another new and useful forecasting aid is a correlation that has been noted between geomagnetic indices and the size of the next solar cycle. Some best estimates are given concerning both activities.

  20. The Heliosphere Through the Solar Activity Cycle

    NASA Technical Reports Server (NTRS)

    Balogh, A.; Lanzerotti, L. J.; Suess, S. T.

    2006-01-01

    Understanding how the Sun changes though its 11-year sunspot cycle and how these changes affect the vast space around the Sun the heliosphere has been one of the principal objectives of space research since the advent of the space age. This book presents the evolution of the heliosphere through an entire solar activity cycle. The last solar cycle (cycle 23) has been the best observed from both the Earth and from a fleet of spacecraft. Of these, the joint ESA-NASA Ulysses probe has provided continuous observations of the state of the heliosphere since 1990 from a unique vantage point, that of a nearly polar orbit around the Sun. Ulysses results affect our understanding of the heliosphere from the interior of the Sun to the interstellar medium - beyond the outer boundary of the heliosphere. Written by scientists closely associated with the Ulysses mission, the book describes and explains the many different aspects of changes in the heliosphere in response to solar activity. In particular, the authors describe the rise in solar ESA and NASA have now unamiously agreed a third extension to operate the highly successful Ulysses spacecraft until March 2008 and, in 2007 and 2008, the European-built space probe will fly over the poles of the Sun for a third time. This will enable Ulysses to add an important chapter to its survey of the high-latitude heliosphere and this additional material would be included in a 2nd edition of this book.

  1. Coronal Activity and Extended Solar Cycles

    NASA Astrophysics Data System (ADS)

    Altrock, R. C.

    2012-12-01

    Wilson et al. (1988, Nature 333, 748) discussed a number of solar parameters, which appear at high latitudes and gradually migrate towards the equator, merging with the sunspot "butterfly diagram". They found that this concept had been identified by earlier investigators extending back to 1957. They named this process the "Extended Solar Cycle" (ESC). Altrock (1997, Solar Phys. 170, 411) found that this process continued in Fe XIV 530.3 nm emission features. In cycles 21 - 23 solar maximum occurred when the number of Fe XIV emission regions per day > 0.19 (averaged over 365 days and both hemispheres) first reached latitudes 18°, 21° and 21°, for an average of 20° ± 1.7°. Other recent studies have shown that Torsional Oscillation (TO) negative-shear zones are co-located with the ESC from at least 50° down to the equator and also in the zones where the Rush to the Poles occur. These phenomena indicate that coronal activity occurring up to 50° and higher latitudes is related to TO shear zones, another indicator that the ESC is an important solar process. Another high-latitude process, which appears to be connected with the ESC, is the "Rush to the Poles" ("Rush") of polar crown prominences and their associated coronal emission, including Fe XIV. The Rush is is a harbinger of solar maximum (cf. Altrock, 2003, Solar Phys. 216, 343). Solar maximum in cycles 21 - 23 occurred when the center line of the Rush reached a critical latitude. These latitudes were 76°, 74° and 78°, respectively, for an average of 76° ± 2°. Applying the above conclusions to Cycle 24 is difficult due to the unusual nature of this cycle. Cycle 24 displays an intermittent "Rush" that is only well-defined in the northern hemisphere. In 2009 an initial slope of 4.6°/yr was found in the north, compared to an average of 9.4 ± 1.7 °/yr in the previous three cycles. This early fit to the Rush would have reached 76° at 2014.6. However, in 2010 the slope increased to 7.5°/yr (an increase

  2. Investigation of x ray variability in highly active cool stars

    NASA Technical Reports Server (NTRS)

    Stern, Robert A.

    1989-01-01

    Ginga x ray observations of highly active cool star coronae were obtained and analyzed in an effort to better understand the nature of their time variability. The possible types of variability studied included x ray occultations via eclipses in a binary system, rotational modulation of x ray emission, flares, and a search for microflaring. Observation of both sigma(sup 2) CrB and Algol were performed successfully by Ginga. The sigma(sup 2) CrB observations occurred on 27 to 30 June 1988, and the Algol observations on 12 to 14 January 1989. In the sigma(sup 2) CrB observation, simultaneous IUE and Very Large Array (VLA) observations were obtained during part of the Ginga observation. Flaring activity was detected on sigma(sup 2) CrB in the Ginga 1.7 to 11 KeV band and in the IUE microwave region. A large flare on Algol which lasted well over 12 hours was detected, began with a maximum temperature of 65 MK which gradually decayed to 36 MK, and evidence was shown of highly ionized Fe line emission.

  3. Division E Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Fletcher, Lyndsay; van Driel-Gesztelyi, Lidia; Asai, Ayumi; Cally, Paul S.; Charbonneau, Paul; Gibson, Sarah E.; Gomez, Daniel; Hasan, Siraj S.; Veronig, Astrid M.; Yan, Yihua

    2016-04-01

    After more than half a century of community support related to the science of ``solar activity'', IAU's Commission 10 was formally discontinued in 2015, to be succeeded by C.E2 with the same area of responsibility. On this occasion, we look back at the growth of the scientific disciplines involved around the world over almost a full century. Solar activity and fields of research looking into the related physics of the heliosphere continue to be vibrant and growing, with currently over 2,000 refereed publications appearing per year from over 4,000 unique authors, publishing in dozens of distinct journals and meeting in dozens of workshops and conferences each year. The size of the rapidly growing community and of the observational and computational data volumes, along with the multitude of connections into other branches of astrophysics, pose significant challenges; aspects of these challenges are beginning to be addressed through, among others, the development of new systems of literature reviews, machine-searchable archives for data and publications, and virtual observatories. As customary in these reports, we highlight some of the research topics that have seen particular interest over the most recent triennium, specifically active-region magnetic fields, coronal thermal structure, coronal seismology, flares and eruptions, and the variability of solar activity on long time scales. We close with a collection of developments, discoveries, and surprises that illustrate the range and dynamics of the discipline.

  4. Temperatures Achieved in Human and Canine Neocortex During Intraoperative Passive or Active Focal Cooling

    PubMed Central

    Han, Rowland H.; Yarbrough, Chester K.; Patterson, Edward E.; Yang, Xiao-Feng; Miller, John W.; Rothman, Steven M.; D'Ambrosio, Raimondo

    2015-01-01

    Focal cortical cooling inhibits seizures and prevents acquired epileptogenesis in rodents. To investigate the potential clinical utility of this treatment modality, we examined the thermal characteristics of canine and human brain undergoing active and passive surface cooling in intraoperative settings. Four patients with intractable epilepsy were treated in a standard manner. Before the resection of a neocortical epileptogenic focus, multiple intraoperative studies of active (custom-made cooled irrigation-perfused grid) and passive (stainless steel probe) cooling were performed. We also actively cooled the neocortices of two dogs with perfused grids implanted for 2 hours. Focal surface cooling of the human brain causes predictable depth-dependent cooling of the underlying brain tissue. Cooling of 0.6–2°C was achieved both actively and passively to a depth of 10–15 mm from the cortical surface. The perfused grid permitted comparable and persistent cooling of canine neocortex when the craniotomy was closed. Thus, the human cortex can easily be cooled with the use of simple devices such as a cooling grid or a small passive probe. These techniques provide pilot data for the design of a permanently implantable device to control intractable epilepsy. PMID:25902001

  5. Temperatures achieved in human and canine neocortex during intraoperative passive or active focal cooling.

    PubMed

    Smyth, Matthew D; Han, Rowland H; Yarbrough, Chester K; Patterson, Edward E; Yang, Xiao-Feng; Miller, John W; Rothman, Steven M; D'Ambrosio, Raimondo

    2015-06-01

    Focal cortical cooling inhibits seizures and prevents acquired epileptogenesis in rodents. To investigate the potential clinical utility of this treatment modality, we examined the thermal characteristics of canine and human brain undergoing active and passive surface cooling in intraoperative settings. Four patients with intractable epilepsy were treated in a standard manner. Before the resection of a neocortical epileptogenic focus, multiple intraoperative studies of active (custom-made cooled irrigation-perfused grid) and passive (stainless steel probe) cooling were performed. We also actively cooled the neocortices of two dogs with perfused grids implanted for 2 hours. Focal surface cooling of the human brain causes predictable depth-dependent cooling of the underlying brain tissue. Cooling of 0.6-2°C was achieved both actively and passively to a depth of 10-15 mm from the cortical surface. The perfused grid permitted comparable and persistent cooling of canine neocortex when the craniotomy was closed. Thus, the human cortex can easily be cooled with the use of simple devices such as a cooling grid or a small passive probe. These techniques provide pilot data for the design of a permanently implantable device to control intractable epilepsy. PMID:25902001

  6. Energy-Storage Modules for Active Solar Heating and Cooling

    NASA Technical Reports Server (NTRS)

    Parker, J. C.

    1982-01-01

    34 page report describes a melting salt hydrate that stores 12 times as much heat as rocks and other heavy materials. Energy is stored mostly as latent heat; that is, heat that can be stored and recovered without any significant change in temperature. Report also describes development, evaluation and testing of permanently sealed modules containing salt hydrate mixture.

  7. Design, evaluation and recommedation effort relating to the modification of a residential 3-ton absorption cycle cooling unit for operation with solar energy

    NASA Technical Reports Server (NTRS)

    Merrick, R. H.; Anderson, P. P.

    1973-01-01

    The possible use of solar energy powered absorption units to provide cooling and heating of residential buildings is studied. Both, the ammonia-water and the water-lithium bromide cycles, are considered. It is shown that the air cooled ammonia water unit does not meet the criteria for COP and pump power on the cooling cycle and the heat obtained from it acting as a heat pump is at too low a temperature. If the ammonia machine is water cooled it will meet the design criteria for cooling but can not supply the heating needs. The water cooled lithium bromide unit meets the specified performance for cooling with appreciably lower generator temperatures and without a mechanical solution pump. It is recommeded that in the demonstration project a direct expansion lithium bromide unit be used for cooling and an auxiliary duct coil using the solar heated water be employed for heating.

  8. Cosmic rays, solar activity and the climate

    NASA Astrophysics Data System (ADS)

    Sloan, T.; Wolfendale, A. W.

    2013-12-01

    Although it is generally believed that the increase in the mean global surface temperature since industrialization is caused by the increase in green house gases in the atmosphere, some people cite solar activity, either directly or through its effect on cosmic rays, as an underestimated contributor to such global warming. In this letter a simplified version of the standard picture of the role of greenhouse gases in causing the global warming since industrialization is described. The conditions necessary for this picture to be wholly or partially wrong are then introduced. Evidence is presented from which the contributions of either cosmic rays or solar activity to this warming is deduced. The contribution is shown to be less than 10% of the warming seen in the twentieth century.

  9. Solar activities at Sandia National Laboratories

    SciTech Connect

    Klimas, P.C.; Hasti, D.E.

    1994-03-01

    The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earth`s present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing and deploying many of these technologies over the last two decades. A common but special aspect of all of these activities is that they are all conducted in cooperation with various types of partners. Some of these partners have an interest in seeing these systems grow in the marketplace, while others are primarily concerned with economic benefits that can come from immediate use of these renewable energy systems. This paper describes solar thermal and photovoltaic technology activities at Sandia that are intended to accelerate the commercialization of these solar systems.

  10. Cosmic Rays, Solar Activity and the Climate

    NASA Astrophysics Data System (ADS)

    Sloan, T.

    2013-02-01

    Although it is generally believed that the increase in the mean global surface temperature since industrialisation is caused by the increase in green house gases in the atmosphere, some people cite solar activity, either directly or through its effect on cosmic rays, as an underestimated contributor to such global warming. In this paper a simplified version of the standard picture of the role of greenhouse gases in causing the global warming since industrialisation is described. The conditions necessary for this picture to be wholly or partially wrong are then introduced. Evidence is presented from which the contributions of either cosmic rays or solar activity to this warming is deduced. The contribution is shown to be less than 10% of the warming seen in the twentieth century.

  11. Solar activities at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Klimas, Paul C.; Hasti, David E.

    The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earth's present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing and deploying many of these technologies over the last two decades. A common but special aspect of all of these activities is that they are all conducted in cooperation with various types of partners. Some of these partners have an interest in seeing these systems grow in the marketplace, while others are primarily concerned with economic benefits that can come from immediate use of these renewable energy systems. This paper describes solar thermal and photovoltaic technology activities at Sandia that are intended to accelerate the commercialization of these solar systems.

  12. Geomagnetic responses to the solar wind and the solar activity

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1975-01-01

    Following some historical notes, the formation of the magnetosphere and the magnetospheric tail is discussed. The importance of electric fields is stressed and the magnetospheric convection of plasma and magnetic field lines under the influence of large-scale magnetospheric electric fields is outlined. Ionospheric electric fields and currents are intimately related to electric fields and currents in the magnetosphere and the strong coupling between the two regions is discussed. The energy input of the solar wind to the magnetosphere and upper atmosphere is discussed in terms of the reconnection model where interplanetary magnetic field lines merge or connect with the terrestrial field on the sunward side of the magnetosphere. The merged field lines are then stretched behind earth to form the magnetotail so that kinetic energy from the solar wind is converted into magnetic energy in the field lines in the tail. Localized collapses of the crosstail current, which is driven by the large-scale dawn/dusk electric field in the magnetosphere, divert part of this current along geomagnetic field lines to the ionosphere, causing substorms with auroral activity and magnetic disturbances. The collapses also inject plasma into the radiation belts and build up a ring current. Frequent collapses in rapid succession constitute the geomagnetic storm.

  13. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate

    PubMed Central

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-01-01

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion. PMID:27113558

  14. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate

    NASA Astrophysics Data System (ADS)

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-04-01

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.

  15. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate.

    PubMed

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-01-01

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion. PMID:27113558

  16. The Magnetic Origins of Solar Activity

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.

    2012-01-01

    The defining physical property of the Sun's corona is that the magnetic field dominates the plasma. This property is the genesis for all solar activity ranging from quasi-steady coronal loops to the giant magnetic explosions observed as coronal mass ejections/eruptive flares. The coronal magnetic field is also the fundamental driver of all space weather; consequently, understanding the structure and dynamics of the field, especially its free energy, has long been a central objective in Heliophysics. The main obstacle to achieving this understanding has been the lack of accurate direct measurements of the coronal field. Most attempts to determine the magnetic free energy have relied on extrapolation of photospheric measurements, a notoriously unreliable procedure. In this presentation I will discuss what measurements of the coronal field would be most effective for understanding solar activity. Not surprisingly, the key process for driving solar activity is magnetic reconnection. I will discuss, therefore, how next-generation measurements of the coronal field will allow us to understand not only the origins of space weather, but also one of the most important fundamental processes in cosmic and laboratory plasmas.

  17. Solar irradiance variations due to active regions

    SciTech Connect

    Oster, L.; Schatten, K.H.; Sofia, S.

    1982-05-15

    We have been able to reproduce the variations of the solar irradiance observed by ACRIM to an accuracy of better than +- 0.4 W m/sup -2/, assuming that during the 6 month observation period in 1980 the solar luminosity was constant. The improvement over previous attempts is primarily due to the inclusion of faculae. The reproduction scheme uses simple geometrical data on spot and facula areas, and conventional parameters for the respective fluxes and angular dependencies. The quality of reproduction is not very sensitive to most of the details of these parameters; nevertheless, there conventional parameters cannot be very different from their actual values in the solar atmosphere. It is interesting that the time average of the integrated excess emission (over directions) of the faculae cancels out the integrated deficit produced by the spots, within an accuracy of about 10%. If this behavior were maintained over longer periods of time, say, on the order of an activity cycle, active regions could be viewed as a kind of lighthouse where the energy deficit near the normal direction, associated with the spots, is primarily reemitted close to the tangential directions by the faculae. The currently available data suggest that energy ''storage'' associated with the redirection of flux near active regions on the Sun is comparable to the lifetime of the faculae.

  18. Solar Eruptions Initiated in Sigmoidal Active Regions

    NASA Astrophysics Data System (ADS)

    Savcheva, Antonia

    2016-07-01

    active regions that have been shown to possess high probability for eruption. They present a direct evidence of the existence of flux ropes in the corona prior to the impulsive phase of eruptions. In order to gain insight into their eruptive behavior and how they get destabilized we need to know their 3D magnetic field structure. First, we review some recent observations and modeling of sigmoidal active regions as the primary hosts of solar eruptions, which can also be used as useful laboratories for studying these phenomena. Then, we concentrate on the analysis of observations and highly data-constrained non-linear force-free field (NLFFF) models over the lifetime of several sigmoidal active regions, where we have captured their magnetic field structure around the times of major flares. We present the topology analysis of a couple of sigmoidal regions pointing us to the probable sites of reconnection. A scenario for eruption is put forward by this analysis. We demonstrate the use of this topology analysis to reconcile the observed eruption features with the standard flare model. Finally, we show a glimpse of how such a NLFFF model of an erupting region can be used to initiate a CME in a global MHD code in an unprecedented realistic manner. Such simulations can show the effects of solar transients on the near-Earth environment and solar system space weather.

  19. Colorado State University Program for developing, testing, evaluating and optimizing solar heating and cooling systems. Project status report, October--November 1993

    SciTech Connect

    Not Available

    1993-12-01

    Progress is reported in the areas of: Rating and certification of domestic water heating systems, unique solar system components, advanced residential solar domestic hot water systems, analysis of advanced desiccant solar cooling systems, and management and coordination of Colorado State/DOE program.

  20. Performance of evacuated tubular solar collectors in a residential heating and cooling system. Final report, 1 October 1978-30 September 1979

    SciTech Connect

    Duff, W.S.; Loef, G.O.G.

    1981-03-01

    Operation of CSU Solar House I during the heating season of 1978-1979 and during the 1979 cooling season was based on the use of systems comprising an experimental evacuated tubular solar collector, a non-freezing aqueous collection medium, heat exchange to an insulated conventional vertical cylindrical storage tank and to a built-up rectangular insulated storage tank, heating of circulating air by solar heated water and by electric auxiliary in an off-peak heat storage unit, space cooling by lithium bromide absorption chiller, and service water heating by solar exchange and electric auxiliary. Automatic system control and automatic data acquisition and computation are provided. This system is compared with others evaluated in CSU Solar Houses I, II and III, and with computer predictions based on mathematical models. Of the 69,513 MJ total energy requirement for space heating and hot water during a record cold winter, solar provided 33,281 MJ equivalent to 48 percent. Thirty percent of the incident solar energy was collected and 29 percent was delivered and used for heating and hot water. Of 33,320 MJ required for cooling and hot water during the summer, 79 percent or 26,202 MJ were supplied by solar. Thirty-five percent of the incident solar energy was collected and 26 percent was used for hot water and cooling in the summer. Although not as efficient as the Corning evacuated tube collector previously used, the Philips experimental collector provides solar heating and cooling with minimum operational problems. Improved performance, particularly for cooling, resulted from the use of a very well-insulated heat storage tank. Day time (on-peak) electric auxiliary heating was completely avoided by use of off-peak electric heat storage. A well-designed and operated solar heating and cooling system provided 56 percent of the total energy requirements for heating, cooling, and hot water.

  1. Design and evaluation of active cooling systems for Mach 6 cruise vehicle wings

    NASA Technical Reports Server (NTRS)

    Mcconarty, W. A.; Anthony, F. M.

    1971-01-01

    Active cooling systems, which included transpiration, film, and convective cooling concepts, are examined. Coolants included hydrogen, helium, air, and water. Heat shields, radiation barriers, and thermal insulation are considered to reduce heat flow to the cooling systems. Wing sweep angles are varied from 0 deg to 75 deg and wing leading edge radii of 0.05 inch and 2.0 inches are examined. Structural temperatures are varied to allow comparison of aluminum alloy, titanium alloy, and superalloy structural materials. Cooled wing concepts are compared among themselves, and with the uncooled concept on the basis of structural weight, cooling system weight, and coolant weight.

  2. Passive solar heating and natural cooling of an earth-integrated design

    SciTech Connect

    Barnes, P.R.; Shapira, H.B.

    1980-01-01

    The Joint Institute for Heavy Ion Research is being designed with innovative features that will greatly reduce its energy consumption for heating, cooling, and lighting. A reference design has been studied and the effects of extending the overhang during summer and fall, varying glazing area, employing RIB, and reducing internal heat by natural lighting have been considered. The use of RIB and the extendable overhang increases the optimum window glazing area and the solar heating fraction. A mass-storage wall which will likely be included in the final design has also been considered. A figure of merit for commercial buildings is the total annual energy consumption per unit area of floor space. A highly efficient office building in the Oak Ridge area typically uses 120 to 160 kWhr/m/sup 2/. The Joint Institute reference design with natural lighting, an annual average heat pump coefficient of performance (COP) equal to 1.8, RIB, and the extendable overhang uses 71 kWhr/m/sup 2/. This figure was determined from NBSLD simulations corrected for the saving from RIB. The internal heat energy from lighting and equipment used in the simulation was 1653 kWhrs/month (high natural lighting case) which is much lower than conventional office buildings. This value was adopted because only a portion of the building will be used as office space and efforts will be made to keep internal heat generation low. The mass-storage wall and ambient air cooling will reduce energy consumption still further. The combined savings of the innovative features in the Joint Institute building are expected to result in a very energy efficient design. The building will be instrumented to monitor its performance and the measured data will provide a means of evaluating the energy-saving features. The efficiency of the design will be experimentally verified over the next several years.

  3. High Energetic Solar Flares in the Solar Minima Activity in Comparative Study with the Solar Maxima Activity from 1954 to 2014 and Their Effects on the Space Environment

    NASA Astrophysics Data System (ADS)

    Mohamed, Wael

    Solar 11-year cycle of solar activity is characterized by the rise and fall in the numbers and areas of sunspots. On solar maximum activity, many flares and CMEs can affect the near-earth space environment. But on the solar minimum activity, there are sometimes solar proton events, (e.g. High Energetic Solar Proton Flares on the declining phase of solar cycle 22 for M.A.Mosalam Shaltout, 1995), have the same effect for those on the solar maximum activity or more. So, a study must be made for the ascending and descending phases of solar activity for a set of solar cycles (from 1954 to 2014) to confirm the conclusion of Mosalam Shaltout on the light of the present high quality observations from ground and by artificial satellites.

  4. Wissler Simulations of a Liquid Cooled and Ventilation Garment (LCVG) for Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Kesterson, Matthew; Bue, Grant; Trevino, Luis

    2006-01-01

    In order to provide effective cooling for astronauts during extravehicular activities (EVAs), a liquid cooling and ventilation garment (LCVG) is used to remove heat by a series off tubes through which cooling water is circulated. To better predict the effectiveness of the LCG and determine possible modifications to improve performance, computer simulations dealing with the interaction of the cooling garment with the human body have been run using the Wissler Human Model. Simulations have been conducted to predict the heat removal rate for various liquid cooled garment configurations. The current LCVG uses 48 cooling tubes woven into a fabric with cooling water flowing through the tubes. The purpose of the current project is to decrease the overall weight of the LCVG system. In order to achieve this weight reduction, advances in the garment heat removal rates need to be obtained. Currently, increasing the fabric s thermal conductivity along with also examining an increase in the cooling tube conductivity to more efficiently remove the excess heat generated during EVA is being simulated. Initial trials varied cooling water temperature, water flow rate, garment conductivity, tube conductivity, and total number of cooling tubes in the LCVG. Results indicate that the total number of cooling tubes could be reduced to 22 and still achieve the desired heat removal rate of 361 W. Further improvements are being made to the garment network used in the model to account for temperature gradients associated with the spacing of the cooling tubes over the surface of the garment

  5. Solar Energy Education. Renewable energy activities for earth science

    SciTech Connect

    Not Available

    1980-01-01

    A teaching manual is provided to aid teachers in introducing renewable energy topics to earth science students. The main emphasis is placed on solar energy. Activities for the student include a study of the greenhouse effect, solar gain for home heating, measuring solar radiation, and the construction of a model solar still to obtain fresh water. Instructions for the construction of apparatus to demonstrate a solar still, the greenhouse effect and measurement of the altitude and azimuth of the sun are included. (BCS)

  6. Influence of solar activity on Jupiter's atmosphere

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.

    2016-05-01

    The influx of solar energy to different latitudes while Jupiter's orbital motion around the Sun varies significantly. This leads to a change in the optical and physical characteristics of its atmosphere. Analysis of the data for 1850-1991 on determination of the integral magnitude Mj Jupiter in the V filter, and a comparison with the changes of the Wolf numbers W, characterizing the variations of solar activity (SA) - showed that the change of Mj in maxima of the SA - has minima for odd, and maximums - for the even of SA cycles. That is, changing of the Jupiter brightness in visible light is much evident 22.3-year magnetic cycle, and not just about the 11.1-year cycle of solar activity. Analysis of the obtained in 1960-2015 data on the relative distribution of brightness along the central meridian of Jupiter, for which we calculated the ratio of the brightness Aj of northern to the southern part of the tropical and temperate latitudinal zones, allowed to approximate the change of Aj by sinusoid with a period of 11.91±0.07 earth years. Comparison of time variation of Aj from changes in the index of SA R, and the movement of the planet in its orbit - indicates the delay of response of the visible cloud layer in the atmosphere of the Sun's exposure mode for 6 years. This value coincides with the radiative relaxation of the hydrogen-helium atmosphere

  7. MEMS Device Being Developed for Active Cooling and Temperature Control

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    2001-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) is currently under development at the NASA Glenn Research Center to meet this need. It uses a thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface. The device can be used strictly in the cooling mode, or it can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly are accomplished by wet etching and wafer bonding techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces and limited failure modes, and minimal induced vibration.

  8. Tsunami related to solar and geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino

    2016-04-01

    The authors of this study wanted to verify the existence of a correlation between earthquakes of high intensity capable of generating tsunami and variations of solar and Earth's geomagnetic activity. To confirming or not the presence of this kind of correlation, the authors analyzed the conditions of Spaceweather "near Earth" and the characteristics of the Earth's geomagnetic field in the hours that preceded the four earthquakes of high intensity that have generated tsunamis: 1) Japan M9 earthquake occurred on March 11, 2011 at 05:46 UTC; 2) Japan M7.1 earthquake occurred on October 25, 2013 at 17:10 UTC; 3) Chile M8.2 earthquake occurred on April 1, 2014 at 23:46 UTC; 4) Chile M8.3 earthquake occurred on September 16, 2015 at 22:54 UTC. The data relating to the four earthquakes were provided by the United States Geological Survey (USGS). The data on ion density used to realize the correlation study are represented by: solar wind ion density variation detected by ACE (Advanced Composition Explorer) Satellite, in orbit near the L1 Lagrange point, at 1.5 million of km from Earth, in direction of the Sun. The instrument used to perform the measurement of the solar wind ion density is the Electron, Proton, and Alpha Monitor (EPAM) instrument, equipped on the ACE Satellite. To conduct the study, the authors have taken in consideration the variation of the solar wind protons density of three different energy fractions: differential proton flux 1060-1900 keV (p/cm^2-sec-ster-MeV); differential proton flux 761-1220 keV (p/cm^2-sec-ster-MeV); differential proton flux 310-580 keV (p/cm^2-sec-ster-MeV). Geomagnetic activity data were provided by Tromsø Geomagnetic Observatory (TGO), Norway; by Scoresbysund Geomagnetic Observatory (SCO), Greenland, Denmark and by Space Weather Prediction Center of Pushkov Institute of terrestrial magnetism, ionosphere and radio wave propagation (IZMIRAN), Troitsk, Moscow Region. The results of the study, in agreement with what already

  9. Active cooling design for scramjet engines using optimization methods

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J.; Martin, Carl J.; Lucas, Stephen H.

    1988-01-01

    A methodology for using optimization in designing metallic cooling jackets for scramjet engines is presented. The optimal design minimizes the required coolant flow rate subject to temperature, mechanical-stress, and thermal-fatigue-life constraints on the cooling-jacket panels, and Mach-number and pressure constraints on the coolant exiting the panel. The analytical basis for the methodology is presented, and results for the optimal design of panels are shown to demonstrate its utility.

  10. Active cooling design for scramjet engines using optimization methods

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J.; Martin, Carl J.; Lucas, Stephen H.

    1988-01-01

    A methodology for using optimization in designing metallic cooling jackets for scramjet engines is presented. The optimal design minimizes the required coolant flow rate subject to temperature, mechanical-stress, and thermal-fatigue-life constraints on the cooling-jacket panels, and Mach-number and pressure contraints on the coolant exiting the panel. The analytical basis for the methodology is presented, and results for the optimal design of panels are shown to demonstrate its utility.

  11. Activity and Kinematics of Cool and Ultracool Dwarfs

    NASA Astrophysics Data System (ADS)

    Schmidt, Sarah Jane

    The ages of cool and ultracool dwarfs are particularly important. For cool M dwarfs, accurate ages combined with their ubiquity in the stellar disk could lead to a new level of precision in age dating the Galaxy. A better understanding of the chromospheres of M dwarfs could provide important clues about the relationship between activity and age in these low mass stars. Ultracool (late-M and L) dwarfs have the distinction of including both warm, young brown dwarfs and stars with mean ages more representative of the stellar disk. Kinematics are a source of mean ages and could provide or confirm discriminating features between stars and brown dwarfs. This thesis is composed of several different projects, each investigating the activity or kinematics of cool or ultracool dwarfs. First, a sample of nearly 500 L dwarfs selected from SDSS DR7 photometry and spectroscopy is examined; we discovered 200 new L dwarfs and found evidence of a bias towards red J - KS colors in the entire population of previously known L dwarfs. Using the three-dimensional kinematics of 300 SDSS DR7 L dwarfs, we find that their kinematics are consistent with those of the stellar disk and include a previously undetected thick disk component. We also confirmed a relationship between age and J - KS color (due to our large sample of UVW motions and unbiased J - KS colors), with blue L dwarfs having hotter kinematics (consistent with older ages) and redder L dwarfs having colder, younger kinematics. The DR7 L dwarf sample showed no distinct kinematic difference between young brown dwarfs and disk-age stars, perhaps due to a bias towards early spectral types. In order to probe the kinematic distribution of L dwarfs in a volume-limited sample, we began a survey of radial velocities of nearby (d<20pc) L dwarfs using the TripleSpec instrument on the ARC 3.5-m telescope at APO. While several reduction packages were tested on the TripleSpec data, none were found to provide reductions of sufficient quality

  12. Preferred longitudes in solar and stellar activity

    NASA Astrophysics Data System (ADS)

    Berdyugina, S. V.

    An analysis of the distribution of starspots on the surfaces of very active stars, such as RS CVn- FK Com-type stars as well as young solar analogs, reveals preferred longitudes of spot formation and their quasi-periodic oscillations, i.e. flip-flop cycles. A non-linear migration of the preferred longitudes suggests the presence of the differential rotation and variations of mean spot latitudes. It enables recovering stellar butterfly diagrams. Such phenomena are found to persist in the sunspot activity as well. A comparison of the observed properties of preferred longitudes on the Sun with those detected on more active stars leads to the conclusion that we can learn fine details of the stellar dynamo by studying the Sun, while its global parameters on the evolutionary time scale are provided by a sample of active stars.

  13. Ultraviolet emission lines of Si II in cool star and solar spectra

    NASA Astrophysics Data System (ADS)

    Laha, Sibasish; Keenan, Francis P.; Ferland, Gary J.; Ramsbottom, Catherine A.; Aggarwal, Kanti M.; Ayres, Thomas R.; Chatzikos, Marios; van Hoof, Peter A. M.; Williams, Robin J. R.

    2016-01-01

    Recent atomic physics calculations for Si II are employed within the CLOUDY modelling code to analyse Hubble Space Telescope (HST) STIS ultraviolet spectra of three cool stars, β Geminorum, α Centauri A and B, as well as previously published HST/GHRS observations of α Tau, plus solar quiet Sun data from the High Resolution Telescope and Spectrograph. Discrepancies found previously between theory and observation for line intensity ratios involving the 3s23p 2PJ-3s3p2 4P_{J^' }} intercombination multiplet of Si II at ˜ 2335 Å are significantly reduced, as are those for ratios containing the 3s23p 2PJ-3s3p2 2D_{J^' }} transitions at ˜1816 Å. This is primarily due to the effect of the new Si II transition probabilities. However, these atomic data are not only very different from previous calculations, but also show large disagreements with measurements, specifically those of Calamai et al. for the intercombination lines. New measurements of transition probabilities for Si II are hence urgently required to confirm (or otherwise) the accuracy of the recently calculated values. If the new calculations are confirmed, then a long-standing discrepancy between theory and observation will have finally been resolved. However, if the older measurements are found to be correct, then the agreement between theory and observation is simply a coincidence and the existing discrepancies remain.

  14. Nanoflare activity in the solar chromosphere

    SciTech Connect

    Jess, D. B.; Mathioudakis, M.; Keys, P. H.

    2014-11-10

    We use ground-based images of high spatial and temporal resolution to search for evidence of nanoflare activity in the solar chromosphere. Through close examination of more than 1 × 10{sup 9} pixels in the immediate vicinity of an active region, we show that the distributions of observed intensity fluctuations have subtle asymmetries. A negative excess in the intensity fluctuations indicates that more pixels have fainter-than-average intensities compared with those that appear brighter than average. By employing Monte Carlo simulations, we reveal how the negative excess can be explained by a series of impulsive events, coupled with exponential decays, that are fractionally below the current resolving limits of low-noise equipment on high-resolution ground-based observatories. Importantly, our Monte Carlo simulations provide clear evidence that the intensity asymmetries cannot be explained by photon-counting statistics alone. A comparison to the coronal work of Terzo et al. suggests that nanoflare activity in the chromosphere is more readily occurring, with an impulsive event occurring every ∼360 s in a 10,000 km{sup 2} area of the chromosphere, some 50 times more events than a comparably sized region of the corona. As a result, nanoflare activity in the chromosphere is likely to play an important role in providing heat energy to this layer of the solar atmosphere.

  15. Active-solar-energy-system materials research priorities

    SciTech Connect

    Herzenberg, S.A.; Hien, L.K.; Silberglitt, R.

    1983-01-01

    THis report describes and prioritizes materials research alternatives to improve active solar heating and cooling system cost-effectiveness. Materials research areas analyzed are (polymer) glazings, heat mirrors, (selective) absorber surfaces, absorber adhesives, absorber substrates, fluids, thermal storage materials, and desiccants. Three classes of solar collectors are considered in the cost-effectiveness analysis: medium-temperature flat-plate collectors (operating temperature, 70/sup 0/C); high-temperature flat-plate collectors (operating temperature, 70 to 120/sup 0/C); and evacuated tubes (operating temperature 70 to 230/sup 0/C). We found the highest priority for medium-temperature flat-plate collectors to be research on polymeric materials to improve performance and durability characteristics. For the high-temperature, flat-plate collectors and evacuated tubes, heat mirror and selective absorber research is the highest priority. Research on storage materials, fluids, and desiccants is of relatively low priority for improving cost-effectiveness in all cases. The highest priority materials research areas identified include: optical properties and degradation of transparent conducting oxide heat mirrors and thickness insensitive selective paints; uv and thermal stabilization of polymeric glazing materials; and systems analysis of integrated polymeric collectors.

  16. MASC: Magnetic Activity of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Auchere, Frederic; Fineschi, Silvano; Gan, Weiqun; Peter, Hardi; Vial, Jean-Claude; Zhukov, Andrei; Parenti, Susanna; Li, Hui; Romoli, Marco

    We present MASC, an innovative payload designed to explore the magnetic activity of the solar corona. It is composed of three complementary instruments: a Hard-X-ray spectrometer, a UV / EUV imager, and a Visible Light / UV polarimetric coronagraph able to measure the coronal magnetic field. The solar corona is structured in magnetically closed and open structures from which slow and fast solar winds are respectively released. In spite of much progress brought by two decades of almost uninterrupted observations from several space missions, the sources and acceleration mechanisms of both types are still not understood. This continuous expansion of the solar atmosphere is disturbed by sporadic but frequent and violent events. Coronal mass ejections (CMEs) are large-scale massive eruptions of magnetic structures out of the corona, while solar flares trace the sudden heating of coronal plasma and the acceleration of electrons and ions to high, sometimes relativistic, energies. Both phenomena are most probably driven by instabilities of the magnetic field in the corona. The relations between flares and CMEs are still not understood in terms of initiation and energy partition between large-scale motions, small-scale heating and particle acceleration. The initiation is probably related to magnetic reconnection which itself results magnetic topological changes due to e.g. flux emergence, footpoints motions, etc. Acceleration and heating are also strongly coupled since the atmospheric heating is thought to result from the impact of accelerated particles. The measurement of both physical processes and their outputs is consequently of major importance. However, despite its fundamental importance as a driver for the physics of the Sun and of the heliosphere, the magnetic field of our star’s outer atmosphere remains poorly understood. This is due in large part to the fact that the magnetic field is a very difficult quantity to measure. Our knowledge of its strength and

  17. A chemical heat pump based on the reaction of calcium chloride and methanol for solar heating, cooling and storage

    NASA Astrophysics Data System (ADS)

    Offenhartz, P. O.

    1981-03-01

    An engineering development test prototype of the CaCl2-CheOH chemical heat pump was tested. The unit, which has storage capacity in excess of 100,000 BTU, completed over 100 full charge-discharge cycles. Cycling data show that the rate of heat pumping depends strongly on the absorber-evaporator temperature difference. These rates are more than adequate for solar heating or for solar cooling using dry ambient air heat rejection. Performance degradation after 100 cycles, expressed as a contact resistance, was less than 2 C. The heat exchangers showed some warpage due to plastic flow of the salt, producing the contact resistance. The experimental COP for cooling was 0.52, close to the theoretically predicted value.

  18. Transient flows of the solar wind associated with small-scale solar activity in solar minimum

    NASA Astrophysics Data System (ADS)

    Slemzin, Vladimir; Veselovsky, Igor; Kuzin, Sergey; Gburek, Szymon; Ulyanov, Artyom; Kirichenko, Alexey; Shugay, Yulia; Goryaev, Farid

    The data obtained by the modern high sensitive EUV-XUV telescopes and photometers such as CORONAS-Photon/TESIS and SPHINX, STEREO/EUVI, PROBA2/SWAP, SDO/AIA provide good possibilities for studying small-scale solar activity (SSA), which is supposed to play an important role in heating of the corona and producing transient flows of the solar wind. During the recent unusually weak solar minimum, a large number of SSA events, such as week solar flares, small CMEs and CME-like flows were observed and recorded in the databases of flares (STEREO, SWAP, SPHINX) and CMEs (LASCO, CACTUS). On the other hand, the solar wind data obtained in this period by ACE, Wind, STEREO contain signatures of transient ICME-like structures which have shorter duration (<10h), weaker magnetic field strength (<10 nT) and lower proton temperature than usual ICMEs. To verify the assumption that ICME-like transients may be associated with the SSA events we investigated the number of weak flares of C-class and lower detected by SPHINX in 2009 and STEREO/EUVI in 2010. The flares were classified on temperature and emission measure using the diagnostic means of SPHINX and Hinode/EIS and were confronted with the parameters of the solar wind (velocity, density, ion composition and temperature, magnetic field, pitch angle distribution of the suprathermal electrons). The outflows of plasma associated with the flares were identified by their coronal signatures - CMEs (only in few cases) and dimmings. It was found that the mean parameters of the solar wind projected to the source surface for the times of the studied flares were typical for the ICME-like transients. The results support the suggestion that weak flares can be indicators of sources of transient plasma flows contributing to the slow solar wind at solar minimum, although these flows may be too weak to be considered as separate CMEs and ICMEs. The research leading to these results has received funding from the European Union’s Seventh Programme

  19. Roof aperture system for selective collection and control of solar energy for building heating, cooling and daylighting

    DOEpatents

    Sanders, William J.; Snyder, Marvin K.; Harter, James W.

    1983-01-01

    The amount of building heating, cooling and daylighting is controlled by at least one pair of solar energy passing panels, with each panel of the pair of panels being exposed to a separate direction of sun incidence. A shutter-shade combination is associated with each pair of panels and the shutter is connected to the shade so that rectilinear movement of the shutter causes pivotal movement of the shade.

  20. DEVELOP A CONCENTRATED SOLAR POWER-BASED THERMAL COOLING SYSTEM VIA SIMULATION AND EXPERIMENTAL STUDIES

    EPA Science Inventory

    A small scale CSP-based cooling system prototype (300W cooling capacity) and the system performance simulation tool will be developed as a proof of concept. Practical issues will be identified to improve our design.

  1. Magnetic helicity in emerging solar active regions

    SciTech Connect

    Liu, Y.; Hoeksema, J. T.; Bobra, M.; Hayashi, K.; Sun, X.; Schuck, P. W.

    2014-04-10

    Using vector magnetic field data from the Helioseismic and Magnetic Imager instrument aboard the Solar Dynamics Observatory, we study magnetic helicity injection into the corona in emerging active regions (ARs) and examine the hemispheric helicity rule. In every region studied, photospheric shearing motion contributes most of the helicity accumulated in the corona. In a sample of 28 emerging ARs, 17 follow the hemisphere rule (61% ± 18% at a 95% confidence interval). Magnetic helicity and twist in 25 ARs (89% ± 11%) have the same sign. The maximum magnetic twist, which depends on the size of an AR, is inferred in a sample of 23 emerging ARs with a bipolar magnetic field configuration.

  2. Automatic Tracking of Active Regions and Detection of Solar Flares in Solar EUV Images

    NASA Astrophysics Data System (ADS)

    Caballero, C.; Aranda, M. C.

    2014-05-01

    Solar catalogs are frequently handmade by experts using a manual approach or semi-automated approach. The appearance of new tools is very useful because the work is automated. Nowadays it is impossible to produce solar catalogs using these methods, because of the emergence of new spacecraft that provide a huge amount of information. In this article an automated system for detecting and tracking active regions and solar flares throughout their evolution using the Extreme UV Imaging Telescope (EIT) on the Solar and Heliospheric Observatory (SOHO) spacecraft is presented. The system is quite complex and consists of different phases: i) acquisition and preprocessing; ii) segmentation of regions of interest; iii) clustering of these regions to form candidate active regions which can become active regions; iv) tracking of active regions; v) detection of solar flares. This article describes all phases, but focuses on the phases of tracking and detection of active regions and solar flares. The system relies on consecutive solar images using a rotation law to track the active regions. Also, graphs of the evolution of a region and solar evolution are presented to detect solar flares. The procedure developed has been tested on 3500 full-disk solar images (corresponding to 35 days) taken from the spacecraft. More than 75 % of the active regions are tracked and more than 85 % of the solar flares are detected.

  3. Thermoelectric generator operating with a cooling device for converting solar energy into electric energy, and system for the use thereof

    SciTech Connect

    Cannelli, P.

    1981-06-30

    A generator of electric energy by the transformation of thermal, solar energy, or of heat of any source, is described. The generator consists in one or more thermocouples combined with a cooling device, cooling down the weldings of the thermocouples on which heat is produced by the Peltier effect, also producing a very high thermal gradient. The cooling device exploits, for the functioning thereof, the phenomena which can be observed along the thermocouples. The system for the use of such a generator provides a particular disposition of the same in parabolic collectors, as to increase the sun ray concentration onto the weldings exposed to the heat and as to allow a decentralization in the electric energy supply by means of a plurality of generators consisting in only one thermocouple, said generators being interconnected.

  4. Active Control of Jets in Cross-Flow for Film Cooling Applications

    NASA Technical Reports Server (NTRS)

    Nikitopoulos, Dimitris E.

    2003-01-01

    Jets in cross-flow have applications in film cooling of gas turbine vanes, blades and combustor liners. Their cooling effectiveness depends on the extent to which the cool jet-fluid adheres to the cooled component surface. Lift-off of the cooling jet flow or other mechanisms promoting mixing, cause loss of cooling effectiveness as they allow the hot "free-stream" fluid to come in contact with the component surface. The premise of this project is that cooling effectiveness can be improved by actively controlling (e.9. forcing, pulsing) the jet flow. Active control can be applied to prevent/delay lift-off and suppress mixing. Furthermore, an actively controlled film-cooling system coupled with appropriate sensory input (e.g. temperature or heat flux) can adapt to spatial and temporal variations of the hot-gas path. Thus, it is conceivable that the efficiency of film-cooling systems can be improved, resulting in coolant fluid economy. It is envisioned that Micro Electro-Mechanical Systems (MEMS) will play a role in the realization of such systems. As a first step, a feasibility study will be conducted to evaluate the concept, identify actuation and sensory elements and develop a control strategy. Part of this study will be the design of a proof-of-concept experiment and collection of necessary data.

  5. Radio magnetography of the solar active regions

    NASA Astrophysics Data System (ADS)

    Gelfreikh, G. B.; Shibasaki, K.

    The observations of the solar magnetic fields is one of the most important basics for study of all important processes in structuring the solar atmosphere and most kinds of the release of the energy. The radio methods are of the special interest here because they gain the information on the magnetic field strength in the solar corona and upper chromosphere where traditional optical methods do not work. The construction of the Nobeyama radio heliograph opens a new era in usage radio methods for solar radio magnetography due to some unique property of the instrument: - The 2D mapping of the whole disk of the sun both in I and V Stokes parameters with resolution of 10 arcsec. - Regular observations (without breaks due to weather conditions), eight hours a day, already for seven years. The most effective and representative radio method of measuring the solar magnetic fields is to use polarization measurements of the thermal bremsstrahlung (free-free emission). It is applicable both to analysis of chromospheric and coronal magnetic fields and presents information on longitude component of the magnetic field strength in solar active regions. Three problems are met, however: (i) One needs to measure very low degree of polarization (small fraction of a percent); (ii) To get the real value of the field the spectral data are necessary. (iii) While observing an active region on the disk we have got the overlapping effects on polarized signal of the chromospheric and coronal magnetic fields. To get higher sensitivity the averaging of the radio maps over periods of about ten minutes were used with the results of sensitivity on V-maps of the order 0.1%. Observations for a number of dates have been analysed (August 22, 1992, October 31, 1992; June 30, 1993, July 22,1994, June 15, 1995 and some more). In all cases a very good similarity was found of the polarized regions (V-maps) with the Ca^ + plages in form and total coincidence with the direction of the magnetic fields on the

  6. Composite Mg II solar activity index for solar cycles 21 and 22

    NASA Technical Reports Server (NTRS)

    Deland, Matthew T.; Cebula, Richard P.

    1993-01-01

    On the basis of version 1.0 of the composite MG II solar activity index data set, it is shown that the change in the 27-day running average of the Mg II index from solar maximum to solar minimum is about 8 percent for solar cycle 21 and about 9 percent for solar cycle 22 through January 1992. Scaling factors based on the short-term variations in the Mg II index and solar irradiance data sets are developed for each instrument to estimate solar variability at mid-UV and near-UV wavelengths. A set of composite scale factors are derived for use with the present composite MG index. Near 205 cm, where solar irradiance variations are important for stratospheric chemistry, the estimated change in irradiance during solar cycle 22 is about 10 +/- 1 percent using the composite Mg II index (version 1.0) and scale factors.

  7. Correlation of Doppler noise during solar conjunctions with fluctuations in solar activity

    NASA Technical Reports Server (NTRS)

    Berman, A. L.; Rockwell, S. T.

    1975-01-01

    Deviations betweeb observed Doppler noise and the noise model during solar conjunction were analyzed. It is tentatively concluded that these deviations are due to short-term fluctuations in solar activity as seen along the signal path, and not to solar/antenna structure effects or system noise temperature.

  8. Properties of the Carrol system and a machine design for solar-powered, air cooled, absorption space cooling

    NASA Astrophysics Data System (ADS)

    1981-05-01

    The name Carrol was selected as a convenient shorthand designation for a prime candidate chemical system comprising ethylene glycol-lithium bromide as an absorbent mixture with water as a refrigerant. The instrumentation, methods of handling data and numerical results from a systematic determination of Carrol property data required to design an air cooled absorption machine based on this chemical system are described. These data include saturation temperature, relative enthalpy, density, specific heat capacity, thermal conductivity, viscosity and absorber film heat transfer coefficient as functions of solution temperature and Carrol concentration over applicable ranges. For each of the major components of the absorption chiller, i.e., generator, chiller, absorber, condenser, heat exchanger, purge and controls, the report contains an assembly drawing and the principal operating characteristics of that component.

  9. Active noise canceling system for mechanically cooled germanium radiation detectors

    SciTech Connect

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  10. Modified Coronal Index of the Solar Activity

    NASA Astrophysics Data System (ADS)

    Lukáč, B.; Rybanský, M.

    2010-05-01

    The original coronal index of the solar activity (CI) has been constructed on the basis of ground-based measurements of the intensities of the coronal line of 530.3 nm (Rybanský in Bull. Astron. Inst. Czechoslov., 28, 367, 1975; Rybanský et al. in J. Geophys. Res., 110, A08106, 2005). In this paper, CI is compared with the EUV measurements on the CELIAS/SEM equipment based on the same idea as the original idea of the coronal index. The correlation is very good for the period 1996 - 2005 ( r=0.94 for daily values). The principal result of this paper is the introduction of the modified coronal index (MCI) which in all uses and contexts can replace the existing CI index. Daily MCI values extend over a time period of six solar activity cycles. Future MCI measurements will be derived from more reliable measurements made by space-based observatories that are not influenced by the weather. MCI measurements are and will continue to be archived at the web site of the Slovak Central Observatory in Hurbanovo ( http://www.suh.sk/obs/vysl/MCI.htm ).

  11. Long-term persistence of solar activity

    NASA Technical Reports Server (NTRS)

    Ruzmaikin, Alexander; Feynman, Joan; Robinson, Paul

    1994-01-01

    We examine the question of whether or not the non-periodic variations in solar activity are caused by a white-noise, random process. The Hurst exponent, which characterizes the persistence of a time series, is evaluated for the series of C-14 data for the time interval from about 6000 BC to 1950 AD. We find a constant Hurst exponent, suggesting that solar activity in the frequency range from 100 to 3000 years includes an important continuum component in addition to the well-known periodic variations. The value we calculate, H approximately 0.8, is significantly larger than the value of 0.5 that would correspond to variations produced by a white-noise process. This value is in good agreement with the results for the monthly sunspot data reported elsewhere, indicating that the physics that produces the continuum is a correlated random process and that it is the same type of process over a wide range of time interval lengths.

  12. Solar Energy Education. Industrial arts: student activities. Field test edition

    SciTech Connect

    Not Available

    1981-02-01

    In this teaching manual several activities are presented to introduce students to information on solar energy through classroom instruction. Wind power is also included. Instructions for constructing demonstration models for passive solar systems, photovoltaic cells, solar collectors and water heaters, and a bicycle wheel wind turbine are provided. (BCS)

  13. A Helium-Cooled Absolute Cavity Radiometer For Solar And Laboratory Irradiance Measurement

    NASA Astrophysics Data System (ADS)

    Foukal, P.; Miller, P.

    1983-09-01

    We describe the design and testing of a helium-cooled absolute radiometer (HCAR) devel-oped for highly reproducible measurements of total solar irradiance and ultraviolet flux, and for laboratory standards uses. The receiver of this cryogenic radiometer is a blackened cone of pure copper whose temperature is sensed by a germanium resistance thermometer. During a duty cycle, radiant power input is compared to electrical heating in an accurate resistor wound on the receiver, as in conventional self-calibrating radiometers of the PACRAD and ACR type. But operation at helium temperatures enables us to achieve excellent radia-tive shielding between the receiver and the radiometer thermal background. This enables us to attain a sensitivity level of 10-7 watts at 30 seconds integration time, at least 10 times better than achieved by room temperature cavities. The dramatic drop of copper specific heat at helium temperatures reduces the time constant for a given mass of receiver, by a factor of 103. Together with other cryogenic materials properties such as electrical superconductivity and the high thermal conductivity of copper, this can be used to greatly reduce non-equivalence errors between electrical and radiant heating, that presently limit the absolute accuracy of radiometers to approximately 0,2%. Absolute accuracy of better than 0.01% has been achieved with a similar cryogenic radiometer in laboratory measurements of the Stefan-Boltzmann constant at NPL in the U.K. Electrical and radiometric tests con-ducted so far on our prototype indicate that comparable accuracy and long-term reproducibility can be achieved in a versatile instrument of manageable size for Shuttle flight and laboratory standards uses. This work is supported at AER under NOAA contract NA8ORAC00204 and NSF grant DMR-8260273.

  14. Solar-terrestrial predictions proceedings. Volume 4: Prediction of terrestrial effects of solar activity

    NASA Technical Reports Server (NTRS)

    Donnelly, R. E. (Editor)

    1980-01-01

    Papers about prediction of ionospheric and radio propagation conditions based primarily on empirical or statistical relations is discussed. Predictions of sporadic E, spread F, and scintillations generally involve statistical or empirical predictions. The correlation between solar-activity and terrestrial seismic activity and the possible relation between solar activity and biological effects is discussed.

  15. TEC variability over Havana for different solar activity conditions

    NASA Astrophysics Data System (ADS)

    Lazo, B.; Alazo, K.; Rodríguez, M.; Calzadilla, A.

    2004-01-01

    The variability of total electron content measured over Havana using ATS-6, SMS-1 and GOES-3 geosynchronous satellite signals has been investigated for low, middle and high solar activity periods from 1974 to 1982. The results show that the standard deviation is smooth during the nighttime hours and maximal at the noon or postnoon hours. A strong solar activity dependence of the standard deviation has been found with maximum values during periods of high solar activity.

  16. Development of a single-family absorption chiller for use in a solar heating and cooling system. Phase III, final report. Volume II

    SciTech Connect

    Reimann, R.C.; Biermann, W.J.

    1984-10-01

    The appendices provide supporting information on: properties of a chemical system for solar fired, air-cooled absorption equipment, air-side performance of a one-inch tube, absorber plate-fin coil, listings of the programs used for simulation and data reduction, and evaluation of the Carrier 3-ton chiller in an integrated heating and cooling system. (LEW)

  17. Development of a single-family absorption chiller for use in a solar heating and cooling system, phase 3, volume 2

    NASA Astrophysics Data System (ADS)

    Reimann, R. C.; Biermann, W. J.

    1984-10-01

    Supporting information is presented on: properties of a chemical system for solar fired, air-cooled absorption equipment, air-side performance of a one-inch tube, absorber plate-fin coil, listings of the programs used for simulation and data reduction, and evaluation of the Carrier three-tone chiller in an integrated heating and cooling system.

  18. Solar wind turbulence as a driver of geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Ikechukwu Ugwu, Ernest Benjamin; Nneka Okeke, Francisca; Ugonabo, Obiageli Josephine

    2016-07-01

    We carried out simultaneous analyses of interplanetary and geomagnetic datasets for the period of (solar Maunder) least (2009) and maximum (2002) solar activity to determine the nature of solar wind turbulence on geomagnetic activity using AE, ASY-D, and ASY-H indices. We determined the role played by Alfvénic fluctuations in the solar wind so as to find out the nature of the turbulence. Our analyses showed that solar wind turbulence play a role in geomagnetic processes at high latitudes during periods of low and high solaractivity but does not have any effect at mid-low latitudes.

  19. The magnetic field structure in the active solar corona.

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.

    1971-01-01

    The structure of the magnetic field of the active solar corona is discussed with reference to optical and radio observations of the solar atmosphere. Eclipse observations provide evidence of fine scale structures in the solar atmosphere that appear to relate to the coronal magnetic field. The coronal magnetic field used for comparison is calculated from potential theory; the influence of solar activity upon the potential theory field is discussed with reference to observations of the Faraday rotation of a microwave signal from Pioneer 6 as it was occulted by the solar atmosphere. Evidence has been found suggesting the existence of expanding magnetic bottles located at 10 solar radii above flaring active regions. The dynamics of these events is discussed. It is further suggested that these magnetic bottles are an important component in the solar corona.

  20. Cool School.

    ERIC Educational Resources Information Center

    Stephens, Suzanne

    1980-01-01

    The design for Floyd Elementary School in Miami (Florida) seeks to harness solar energy to provide at least 70 percent of the annual energy for cooling needs and 90 percent for hot water. (Author/MLF)

  1. Solar Activity Studies using Microwave Imaging Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2016-01-01

    We report on the status of solar cycle 24 based on polar prominence eruptions (PEs) and microwave brightness enhancement (MBE) information obtained by the Nobeyama radioheliograph. The north polar region of the Sun had near-zero field strength for more than three years (2012-2015) and ended only in September 2015 as indicated by the presence of polar PEs and the lack of MBE. The zero-polar-field condition in the south started only around 2013, but it ended by June 2014. Thus the asymmetry in the times of polarity reversal switched between cycle 23 and 24. The polar MBE is a good proxy for the polar magnetic field strength as indicated by the high degree of correlation between the two. The cross-correlation between the high- and low-latitude MBEs is significant for a lag of approximately 5.5 to 7.3 years, suggesting that the polar field of one cycle indicates the sunspot number of the next cycle in agreement with the Babcock-Leighton mechanism of solar cycles. The extended period of near-zero field in the north-polar region should result in a weak and delayed sunspot activity in the northern hemisphere in cycle 25.

  2. Optimizing the performance of desiccant beds for solar-regenerated cooling

    NASA Astrophysics Data System (ADS)

    Barlow, R.; Collier, K.

    1981-03-01

    The use of computer simulations as well as a simplified psychrometric analysis to determine the increase in cooling system performance that can be realized through the use of nonhomogeneous or staged desiccant beds was investigated. A staged bed of four hypothetical desiccants gives, a 10% higher cooling capacity than a silica gel bed of the same thickness. Alternatively, the same cooling capacity is produced by a staged bed 37% thinner than the silica gel bed. It is suggested that these effects can be employed to reduce the parasitic power requirements of deciccant cooling systems.

  3. Installation package for integrated programmable electronic controller and hydronic subsystem - solar heating and cooling

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A description is given of the Installation, Operation, and Maintenance Manual and information on the power panel and programmable microprocessor, a hydronic solar pump system and a hydronic heating hot water pumping system. These systems are integrated into various configurations for usages in solar energy management, control and monitoring, lighting control, data logging and other solar related applications.

  4. The solar atmosphere and the structure of active regions. [aircraft accidents, weather

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.

    1975-01-01

    Numerical analyses of solar activities are presented. The effect of these activities on aircraft and weather conditions was studied. Topics considered are: (1) solar flares; (2) solar X-rays; and (3) solar magnetic fields (charts are shown).

  5. Limits of Predictability of Solar Activity

    NASA Astrophysics Data System (ADS)

    Kremliovsky, M. N.

    1995-07-01

    The study of a nonlinear chaotic map of 11-year cycle maxima evolution recently derived from observations is presented with the purpose of predicting the features of the long-term variability of solar activity. It is stressed that dynamical forecast is limited by the Lyapunov time and a statistical approach can be justified due to the ergodic properties of the chaotic evolution. The Gleissberg variation is described as a chaotic walk and its distribution over length is shown to be broad. The global minima are identified as laminar slots of temporal intermittency and their typical distribution over length is also given. We note that a long sunspot cycle can be used as a precursor of the global minimum and a close sequence of global minima (once in approximately 1500 2000 years) may be responsible for the climatic changes (Little Ice Ages).

  6. Active Vibration Damping of Solar Arrays

    NASA Astrophysics Data System (ADS)

    Reinicke, Gunar; Baier, Horst; Grillebeck, Anton; Scharfeld, Frank; Hunger, Joseph; Abou-El-Ela, A.; Lohberg, Andreas

    2012-07-01

    Current generations of large solar array panels are lightweight and flexible constructions to reduce net masses. They undergo strong vibrations during launch. The active vibration damping is one convenient option to reduce vibration responses and limit stresses in facesheets. In this study, two actuator concepts are used for vibration damping. A stack interface actuator replaces a panel hold down and is decoupled from bending moments and shear forces. Piezoelectric patch actuators are used as an alternative, where the number, position and size of actuators are mainly driven by controllability analyses. Linear Quadratic Gaussian control is used to attenuate vibrations of selected mode shapes with both actuators. Simulations as well as modal and acoustic tests show the feasibility of selected actuator concepts.

  7. Development and Implementation of Training Curriculum/Program in Solar Heating and Cooling at the Technician Level, December 1, 1976 - November 30, 1977. Final Report.

    ERIC Educational Resources Information Center

    Kuhnle, Carl J., Jr.

    The program proposal is designed to address the increasing demand for trained personnel to support the installation and maintenance of solar energy systems at residential and commercial sites. The three main objectives of the proposed program are: (1) to develop a flexible curricula to train a solar heating and cooling workforce; (2) to identify…

  8. Solar Heating and Cooling of Buildings: Phase 0. Feasibility and Planning Study. Volume 1: Executive Summary. Document No. 74SD419. Final Report.

    ERIC Educational Resources Information Center

    General Electric Co., Philadelphia, PA. Space Div.

    The purpose of this study was to establish the technical and economic feasibility of using solar energy for the heating and cooling of buildings and to provide baseline information for the widespread application of solar energy. The initial step in this program was a study of the technical, economic, societal, legal, and environmental factors…

  9. Solar Activity Forecasting for use in Orbit Prediction

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth

    2001-01-01

    Orbital prediction for satellites in low Earth orbit (LEO) or low planetary orbit depends strongly on exospheric densities. Solar activity forecasting is important in orbital prediction, as the solar UV and EUV inflate the upper atmospheric layers of the Earth and planets, forming the exosphere in which satellites orbit. Geomagnetic effects also relate to solar activity. Because of the complex and ephemeral nature of solar activity, with different cycles varying in strength by more than 100%, many different forecasting techniques have been utilized. The methods range from purely numerical techniques (essentially curve fitting) to numerous oddball schemes, as well as a small subset, called 'Precursor techniques.' The situation can be puzzling, owing to the numerous methodologies involved, somewhat akin to the numerous ether theories near the turn of the last century. Nevertheless, the Precursor techniques alone have a physical basis, namely dynamo theory, which provides a physical explanation for why this subset seems to work. I discuss this solar cycle's predictions, as well as the Sun's observed activity. I also discuss the SODA (Solar Dynamo Amplitude) index, which provides the user with the ability to track the Sun's hidden, interior dynamo magnetic fields. As a result, one may then update solar activity predictions continuously, by monitoring the solar magnetic fields as they change throughout the solar cycle. This paper ends by providing a glimpse into what the next solar cycle (#24) portends.

  10. High heat flux actively cooled honeycomb sandwich structural panel for a hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Koch, L. C.; Pagel, L. L.

    1978-01-01

    The results of a program to design and fabricate an unshielded actively cooled structural panel for a hypersonic aircraft are presented. The design is an all-aluminum honeycomb sandwich with embedded cooling passages soldered to the inside of the outer moldline skin. The overall finding is that an actively cooled structure appears feasible for application on a hypersonic aircraft, but the fabrication process is complex and some material and manufacturing technology developments are required. Results from the program are summarized and supporting details are presented.

  11. Growth and Decay of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Dobias, J. J.; Chapman, G. A.; Cookson, A. M.; Preminger, D. G.; Walton, S. R.

    2002-05-01

    We report here on a study of growth and decay rates of sunspot and facular areas of solar active regions. The data used in this project come from an ongoing program of daily photometric observations of the sun with the Cartesian Full Disk Telescope No. 1 (CFDT1) at the San Fernando Observatory (SFO). Sunspot regions are determined from images taken with a red filter centered at 672.3 nm with a bandpass of 9.7 nm, while images taken with a Ca II K line filter, centered at 393.4 nm and with a bandpass of only 1nm, are used to find facular areas. Before any areas can be found on any observed images, they have to be calibrated then flattened by removing limb darkening thus producing contrast images. Sunspot areas are then determined from any pixel with contrast of -8.5% or less, while any pixel on a K line contrast image with a contrast of +4.8%/μ or higher, where μ is the cosine of the heliocentric angle, is considered to be a facular pixel. To identify the areas as clearly as possible, studied active regions were usually observed on the sun with relatively low activity; that means that each region is either alone on the sun's disk or with only very few other active regions present. Furthermore, to obtain growth and decay patterns of the areas as reliably as possible, only such active regions must be chosen for which there is as complete observational coverage as possible. At the present time studies have been finished for only a few active regions, but analysis of several others is on going. Obtained results will be presented at the meeting. This work is supported by NSF grant ATM-9912132 and NASA grants NAG5-7191 and NAG5-7778.

  12. Solar activity during the deep minimum of 2009

    NASA Astrophysics Data System (ADS)

    Sylwester, Janusz; Siarkowski, Marek; Gburek, Szymon; Gryciuk, Magdalena; Kepa, Anna; Kowaliński, Mirosław; Mrozek, Tomek; Phillips, Kenneth J. H.; Podgórski, Piotr; Sylwester, Barbara

    2014-12-01

    We discuss the character of the unusually deep solar activity minimum of 2009 between Solar Cycles 23 and 24. Levels of solar activity in various parts of the solar atmosphere -- photosphere, chromosphere, transition region, and corona -- were observed to be at their lowest for a century. The soft X-ray emission from the corona (hot outer part of the Sun's atmosphere) was measured throughout most of 2009 with the Polish-built SphinX spectrophotometer. Unlike other X-ray monitoring spacecraft, this sensitive spacecraft-borne instrument was able to continue measurements throughout this extended period of low activity.

  13. Revisiting the question: Does high-latitude solar activity lead low-latitude solar activity in time phase?

    SciTech Connect

    Kong, D. F.; Qu, Z. N.; Guo, Q. L.

    2014-05-01

    Cross-correlation analysis and wavelet transform methods are used to investigate whether high-latitude solar activity leads low-latitude solar activity in time phase or not, using the data of the Carte Synoptique solar filaments archive from 1919 March to 1989 December. From the cross-correlation analysis, high-latitude solar filaments have a time lead of 12 Carrington solar rotations with respect to low-latitude ones. Both the cross-wavelet transform and wavelet coherence indicate that high-latitude solar filaments lead low-latitude ones in time phase. Furthermore, low-latitude solar activity is better correlated with high-latitude solar activity of the previous cycle than with that of the following cycle, which is statistically significant. Thus, the present study confirms that high-latitude solar activity in the polar regions is indeed better correlated with the low-latitude solar activity of the following cycle than with that of the previous cycle, namely, leading in time phase.

  14. Solar Irradiance Variations on Active Region Time Scales

    NASA Technical Reports Server (NTRS)

    Labonte, B. J. (Editor); Chapman, G. A. (Editor); Hudson, H. S. (Editor); Willson, R. C. (Editor)

    1984-01-01

    The variations of the total solar irradiance is an important tool for studying the Sun, thanks to the development of very precise sensors such as the ACRIM instrument on board the Solar Maximum Mission. The largest variations of the total irradiance occur on time scales of a few days are caused by solar active regions, especially sunspots. Efforts were made to describe the active region effects on total and spectral irradiance.

  15. COOL ROOF COATINGS INCORPORATING GLASS HOLLOW MICROSPHERES FOR IMPROVED SOLAR REFLECTANCE

    EPA Science Inventory

    Elastomeric cool-roof coatings can be applied to buildings to decrease heat gain, yielding energy savings and mitigating the “urban heat island” effect. Most cool-roof formulations are based on titanium dioxide (TiO2). While TiO2 and several TiO2

  16. Models of Impulsively Heated Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Airapetian, Vladimir; Klimchuk, J.

    2009-05-01

    A number of attempts to model solar active regions with steady coronal heating have been modestly successful at reproducing the observed soft X-ray emission, but they fail dramatically at explaining EUV observations. Since impulsive heating (nanoflare) models can reproduce individual EUV loops, it seems reasonable to consider that entire active regions are impulsively heated. However, nanoflares are characterized by many parameters, such as magnitude, duration, and time delay between successive events, and these parameters may depend on the strength of the magnetic field or the length of field lines, for example, so a wide range of active region models must be examined. We have recently begun such a study. Each model begins with a magnetic "skeleton” obtained by extrapolating an observed photospheric magnetogram into the corona. Field lines are populated with plasma using our highly efficient hydro code called Enthalpy Based Thermal Evolution of Loops (EBTEL). We then produce synthetic images corresponding to emission line or broad-band observations. By determining which set of nanoflare parameters best reproduces actual observations, we hope to constrain the properties of the heating and ultimately to reveal the physical mechanism. We here report on the initial progress of our study.

  17. MAGNETIC FIELD TOPOLOGY AND THE THERMAL STRUCTURE OF THE CORONA OVER SOLAR ACTIVE REGIONS

    SciTech Connect

    Schrijver, Carolus J.; DeRosa, Marc L.; Title, Alan M.

    2010-08-20

    Solar extreme ultraviolet (EUV) images of quiescent active-region coronae are characterized by ensembles of bright 1-2 MK loops that fan out from select locations. We investigate the conditions associated with the formation of these persistent, relatively cool, loop fans within and surrounding the otherwise 3-5 MK coronal environment by combining EUV observations of active regions made with TRACE with global source-surface potential-field models based on the full-sphere photospheric field from the assimilation of magnetograms that are obtained by the Michelson Doppler Imager (MDI) on SOHO. We find that in the selected active regions with largely potential-field configurations these fans are associated with (quasi-)separatrix layers (QSLs) within the strong-field regions of magnetic plage. Based on the empirical evidence, we argue that persistent active-region cool-loop fans are primarily related to the pronounced change in connectivity across a QSL to widely separated clusters of magnetic flux, and confirm earlier work that suggested that neither a change in loop length nor in base field strengths across such topological features are of prime importance to the formation of the cool-loop fans. We discuss the hypothesis that a change in the distribution of coronal heating with height may be involved in the phenomenon of relatively cool coronal loop fans in quiescent active regions.

  18. Hot topic, warm loops, cooling plasma? Multithermal analysis of active region loops

    SciTech Connect

    Schmelz, J. T.; Pathak, S.; Christian, G. M.; Dhaliwal, R. S.; Brooks, D. H.

    2014-11-10

    We have found indications of a relationship between the differential emission measure (DEM) weighted temperature and the cross-field DEM width for coronal loops. The data come from the Hinode X-ray Telescope, the Hinode EUV Imaging Spectrometer, and the Solar Dynamics Observatory Atmospheric Imaging Assembly. These data show that cooler loops tend to have narrower DEM widths. If most loops observed by these instruments are composed of bundles of unresolved magnetic strands and are only observed in their cooling phase, as some studies have suggested, then this relationship implies that the DEM of a coronal loop narrows as it cools. This could imply that fewer strands are seen emitting in the later cooling phase, potentially resolving the long standing controversy of whether the cross-field temperatures of coronal loops are multithermal or isothermal.

  19. A comparison of fuel savings in the residential and commercial sectors generated by the installation of solar heating and cooling systems under three tax credit scenarios

    NASA Astrophysics Data System (ADS)

    Moden, R.

    An analysis of expected energy savings between 1977 and 1980 under three different solar tax credit scenarios is presented. The results were obtained through the solar heating and cooling of buildings (SHACOB) commercialization model. This simulation provides projected savings of conventional fuels through the installation of solar heating and cooling systems on buildings in the residential and commercial sectors. The three scenarios analyzed considered the tax credits contained in the Windfall Profits Tax of April 1980, the National Tax Act of November 1978, and a case where no tax credit is in effect.

  20. Variation of solar activity recorded in Korean chronicles during the last millennium

    NASA Astrophysics Data System (ADS)

    Yang, Hong-Jin; Jeon, Junhyeok

    2015-08-01

    Korea has a long history in astronomy, which is proved by many observational records written in Korean chronicles. There are 43 sunspot records in Goryeo dynasty (918-1392) and 13 records in Joseon dynasty (1392-1910). According to analysis of Korean historical records, it is known that sunspot records in Goryeo dynasty show well in match with the well-known solar activity of 11.3 years. It means that Korean historical sunspot records show real solar phenomena. Korean sunspot records also show that solar activity decrease in Joseon dynasty compared with the previous ~500 years. In order to know the change of solar activity in detail, we examine Korean historical atmospheric records which can indicate climate change. We first analyze historical frost records. Korean chronicles have around 600 frost records during the last millennium. We find that the climate change shows sign of cooling down when check the variation of epoch that the first and last frost events in each year are written. This result is well in accord with that of historical sunspot records. Therefore, we claim that solar activity decrease during the last thousand years.

  1. Flightweight radiantly and actively cooled panel: Thermal and structural performance

    NASA Technical Reports Server (NTRS)

    Shore, C. P.; Nowak, R. J.; Kelly, H. N.

    1982-01-01

    A 2- by 4-ft flightweight panel was subjected to thermal/structural tests representative of design flight conditions for a Mach 6.7 transport and to off-design conditions simulating flight maneuvers and cooling system failures. The panel utilized Rene 41 heat shields backed by a thin layer of insulation to radiate away most of the 12 Btu/ft2-sec incident heating. A solution of ethylene glycol in water circulating through tubes in an aluminum-honeycomb-sandwich panel absorbed the remainder of the incident heating (0.8 Btu/sq ft-sec). The panel successfully withstood (1) 46.7 hr of radiant heating which included 53 thermal cycles and 5000 cycles of uniaxial inplane loading of + or - 1200 lfb/in; (2) simulated 2g-maneuver heating conditions and simulated cooling system failures without excessive temperatures on the structural panel; and (3) the extensive thermal/structural tests and the aerothermal tests reported in NASA TP-1595 without significant damage to the structural panel, coolant leaks, or hot-gas ingress to the structural panel.

  2. Apparent Relations Between Solar Activity and Solar Tides Caused by the Planets

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    2007-01-01

    A solar storm is a storm of ions and electrons from the Sun. Large solar storms are usually preceded by solar flares, phenomena that can be characterized quantitatively from Earth. Twenty-five of the thirty-eight largest known solar flares were observed to start when one or more tide-producing planets (Mercury, Venus, Earth, and Jupiter) were either nearly above the event positions (less than 10 deg. longitude) or at the opposing side of the Sun. The probability for this to happen at random is 0.039 percent. This supports the hypothesis that the force or momentum balance (between the solar atmospheric pressure, the gravity field, and magnetic field) on plasma in the looping magnetic field lines in solar corona could be disturbed by tides, resulting in magnetic field reconnection, solar flares, and solar storms. Separately, from the daily position data of Venus, Earth, and Jupiter, an 11-year planet alignment cycle is observed to approximately match the sunspot cycle. This observation supports the hypothesis that the resonance and beat between the solar tide cycle and nontidal solar activity cycle influences the sunspot cycle and its varying magnitudes. The above relations between the unpredictable solar flares and the predictable solar tidal effects could be used and further developed to forecast the dangerous space weather and therefore reduce its destructive power against the humans in space and satellites controlling mobile phones and global positioning satellite (GPS) systems.

  3. Effects of Solar Magnetic Activity on the Charge States of Minor Ions of Solar Wind

    NASA Astrophysics Data System (ADS)

    Wang, Xuyu

    We present an investigation of the effects of solar magnetic activity on the charge states of minor ions (Fe, Si, Mg, Ne, O, C) in the solar wind using ACE solar wind data, the Current Sheet Source Surface (CSSS) model of the corona and SoHO/MDI data during the 23rd solar cycle. We found that the mean charge states indicate a clear trend to increase with the solar activity when the solar wind speed is above 550 km/s. Below this speed, no significant solar activity dependence is found. When displayed as a function of solar wind speed, iron is different from other elements in that it displays lower charge states in slow wind than in fast wind. The percentages of the high charge states for species with higher m/q (Fe) increase with the solar wind speed, while for the species with lower m/q (Si,Mg, O, C), the percentages of the high charge states decrease with the solar wind speed.

  4. Active charge/passive discharge solar heating systems: Thermal analysis and performance comparisons and performance comparisons

    NASA Astrophysics Data System (ADS)

    Swisher, J.

    1981-06-01

    This type of system combines liquid-cooled solar collector panels with a massive integral storage component that passively heats the building interior by radiation and free convection. The TRNSYS simulation program is used to evaluate system performance and to provide input for the development of a simplified analysis method. This method, which provides monthly calculations of delivered solar energy, is based on Klein's Phi-bar procedure and data from hourly TRNSYS simulations. The method can be applied to systems using a floor slab, a structural wall, or a water tank as the storage component. Important design parameters include collector area and orientation, building heat loss, collector and heat exchanger efficiencies, storage capacity, and storage to room coupling. Performance simulation results are used for comparisons with active and passive solar designs.

  5. Stellar activity as noise in exoplanet detection - I. Methods and application to solar-like stars and activity cycles

    NASA Astrophysics Data System (ADS)

    Korhonen, H.; Andersen, J. M.; Piskunov, N.; Hackman, T.; Juncher, D.; Järvinen, S. P.; Jørgensen, U. G.

    2015-04-01

    The detection of exoplanets using any method is prone to confusion due to the intrinsic variability of the host star. We investigate the effect of cool starspots on the detectability of the exoplanets around solar-like stars using the radial velocity method. For investigating this activity-caused `jitter' we calculate synthetic spectra using radiative transfer, known stellar atomic and molecular lines, different surface spot configurations and an added planetary signal. Here, the methods are described in detail, tested and compared to previously published studies. The methods are also applied to investigate the activity jitter in old and young solar-like stars, and over a solar-like activity cycles. We find that the mean full jitter amplitude obtained from the spot surfaces mimicking the solar activity varies during the cycle approximately between 1 and 9 m s-1. With a realistic observing frequency a Neptune-mass planet on a 1-yr orbit can be reliably recovered. On the other hand, the recovery of an Earth-mass planet on a similar orbit is not feasible with high significance. The methods developed in this study have a great potential for doing statistical studies of planet detectability, and also for investigating the effect of stellar activity on recovered planetary parameters.

  6. Membrane-Based Absorption Refrigeration Systems: Nanoengineered Membrane-Based Absorption Cooling for Buildings Using Unconcentrated Solar & Waste Heat

    SciTech Connect

    2010-09-01

    BEETIT Project: UFL is improving a refrigeration system that uses low quality heat to provide the energy needed to drive cooling. This system, known as absorption refrigeration system (ARS), typically consists of large coils that transfer heat. Unfortunately, these large heat exchanger coils are responsible for bulkiness and high cost of ARS. UFL is using new materials as well as system design innovations to develop nanoengineered membranes to allow for enhanced heat exchange that reduces bulkiness. UFL’s design allows for compact, cheaper and more reliable use of ARS that use solar or waste heat.

  7. Recent Perplexing Behavior in Solar Activity Indices

    NASA Astrophysics Data System (ADS)

    Lopresto, James C.

    1997-05-01

    Calcium K and Hα and SOHO He II UV plage and sunspot ara have been monitored using images on the INTERNET since November of 1992. The purpose of the project is to determine the degree of correlation between changing plage area and solar irradiance changes (also obtained via the INTERNET). Also the project provides a low cost process to involve undergraduates in astronomy research. When using weighted weekly averages for both spot Hα plage pixel counts, we see the expected decline from the last maximum. The activity continues to decline, or at best, has flattened out over the past several months. In contrast, the K-line plage pixel count from both Big Bear and Sacramento Peak show an upswing since mid-1995 or earlier. The k2 measurments from both Kitt Peak and Sacramento Peak are in general agreement with the spot and Hα behavior, indicating wer are in, or barely passed minimum. Images high in the chromosphere, detailing the magnetic network, may be more senstive to smaller field changes. This might be a partial explanation for the earlier upswing in K line and He 304 activity, which are receiving radiation near or at the top of the chromosphere.

  8. Brazing of the Tore Supra actively cooled Phase III Limiter

    SciTech Connect

    Nygren, R.E.; Walker, C.A.; Lutz, T.J.; Hosking, F.M.; McGrath, R.T.

    1993-12-31

    The head of the water-cooled Tore Supra Phase 3 Limiter is a bank of 14 round OFHC copper tubes, curved to fit the plasma radius, onto which several hundred pyrolytic graphite (PG) tiles and a lesser number of carbon fiber composite tiles are brazed. The small allowable tolerances for fitting the tiles to the tubes and mating of compound curvatures made the brazing and fabrication extremely challenging. The paper describes the fabrication process with emphasis on the procedure for brazing. In the fixturing for vacuum furnace brazing, the tiles were each independently clamped to the tube with an elaborate set of window frame clamps. Braze quality was evaluated with transient heating tests. Some rebrazing was necessary.

  9. HITCAN for actively cooled hot-composite thermostructural analysis

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Murthy, P. L. N.; Singhal, S. N.; Lackney, J. J.

    1992-01-01

    A computer code, high temperature composite analyzer (HITCAN), was developed to analyze/design hot metal matrix composite structures. HITCAN is a general purpose code for predicting the global structural and local stress-strain response of multilayered (arbitrarily oriented) metal matrix structures both at the constituent (fiber, matrix, and interphase) and the structural level, including the fabrication process effects. The thermomechanical properties of the constituents are considered to be nonlinearly dependent on several parameters, including temperature, stress, and stress rate. The computational procedure employs an incremental iterative nonlinear approach utilizing a multifactor-interaction material behavior model, i.e., the material properties are expressed in terms of a product of several factors that affect the properties. HITCAN structural analysis capabilities (static, load stepping - a multistep static analysis with material properties updated at each step, modal, and buckling) for cooled hot structures are demonstrated through a specific example problem.

  10. HITCAN for actively cooled hot-composite thermostructural analysis

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Murthy, P. L. N.; Singhal, S. N.; Lackney, J. J.

    1991-01-01

    A computer code, high temperature composite analyzer (HITCAN), was developed to analyze/design hot metal matrix composite structures. HITCAN is a general purpose code for predicting the global structural and local stress-strain response of multilayered (arbitrarily oriented) metal matrix structures both at the constituent (fiber, matrix, and interphase) and the structural level, including the fabrication process effects. The thermomechanical properties of the constituents are considered to be nonlinearly dependent on several parameters, including temperature, stress, and stress rate. The computational procedure employs an incremental iterative nonlinear approach utilizing a multifactor-interaction material behavior model, i.e., the material properties are expressed in terms of a product of several factors that affect the properties. HITCAN structural analysis capabilities (static, load stepping - a multistep static analysis with material properties updated at each step, modal, and buckling) for cooled hot structures are demonstrated through a specific example problem.

  11. Initiation of non-tropical thunderstorms by solar activity

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Goldberg, R. A.

    1978-01-01

    A theory of thunderstorm initiation is proposed to account for the statistical correlation between solar activity and thunderstorm occurrence in middle to high latitudes. It is suggested that cosmic ray decreases and/or high-energy solar protons associated with active solar events enhance the electric field at low heights so that, if appropriate meteorological conditions are present during a solar event, the atmospheric electric field enhancement may be sufficient to trigger thunderstorm development. Statistical correlations and atmospheric electric effects are described. The theory could be tested if the possible forcing functions and the responding atmospheric electrical and ionic species' characteristics were measured.

  12. Analytical Study of Geomagnetic and Solar Activities During Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Hady, A. A.

    The data of amplitude and phase of most common indicators of geomagnetic activities (especially aa index, A? index) have been analyzed and compared with the solar ac- tivities in the time of solar cycle 23(started from 1996 to 2007). The data taken from NOAA space environment center (SES), USA. during the period starting April 1996 Until Dec. 2001, have been analyzed by power spectrum method. The prediction until year 2007 of geomagnetic activities were studied according to the whole of behavior of solar cycle 23. The results show a good indication of the effects of solar activities on changes of earth climate and weather forecasting. The results are important to various techniques including the operation of low earth orbiting satellites. The climatologi- cal approach makes use of the secular trend since year 1900 until now, by about 15 nanotesla. This indication was recorded too, in solar activity changes during the last century.

  13. Solar Activity, Different Geomagnetic Activity Levels and Acute Myocardial Infarction

    NASA Astrophysics Data System (ADS)

    Dimitrova, Svetla; Jordanova, Malina; Stoilova, Irina; Taseva, Tatiana; Maslarov, Dimitar

    Results on revealing a possible relationship between solar activity (SA) and geomagnetic activity (GMA) and acute myocardial infarction (AMI) morbidity are presented. Studies were based on medical data covering the period from 1.12.1995 to 31.12.2004 and concerned daily distribution of patients with AMI diagnose (in total 1192 cases) from Sofia region on the day of admission at the hospital. Analysis of variance (ANOVA) was applied to check the significance of GMA intensity effect and the type of geomagnetic storms, those caused by Magnetic Clouds (MC) and by High Speed Solar Wind Streams (HSSWS), on AMI morbidity. Relevant correlation coefficients were calculated. Results revealed statistically significant positive correlation between considered GMA indices and AMI. ANOVA revealed that AMI number was signifi- cantly increased from the day before (-1st) till the day after (+1st) geomagnetic storms with different intensities. Geomagnetic storms caused by MC were related to significant increase of AMI number in comparison with the storms caused by HSSWS. There was a trend for such different effects even on -1st and +1st day.

  14. Multi-wavelength solar activity complexes evolution from Solar Dynamic Observatory (SDO)

    NASA Astrophysics Data System (ADS)

    Korolkova, Olga; Benevolenskaya, Elena

    The main problem of the solar physics is to understand a nature of the solar magnetic activity. New space missions and background observations provide us by data describing solar activity with a good space and time resolution. Space missions data observe the solar activity in multi-wavelength emissions come from photosphere to corona. The complex of the solar activity has roots in inte-rior and extends to the solar corona. Thus, modern data give an opportunity to study the activity on the Sun at different levels simultaneously. Solar Dynamics Observatory (SDO) [1] which launched at the beginning of 2010, looks at Sun in different wavelengths such as coronal lines 171Å & 335Å. Also SDO measures photospheric magnetic flux (line-of-sight component of the magnetic field strength) and gives images in continuum. We have studied a stable complexes of the solar activity (about 30 com-plexes) during 6 hours from 10 March 2013 to 14 October 2013 using 720s ca-dence of HMI (Helioseismic and Magnetic Imager) [2] and AIA (Atmospheric Imaging Assembly) [3] instruments of SDO. We have found a good relationship between the magnetic flux and coronal emissions. Here we discuss properties of the complexes in the different levels from photosphere to corona. References 1. W. Dean Pesnell, B.J. Thompson, P.C. Chamberlin // Solar Phys., v. 275, p. 3-15, (2012). 2. P.H. Scherrer, J. Schou, R.I. Bush et al. // Solar Phys., v. 275, p. 207-227, (2012). 3. James R. Lemen • Alan M. Title • David J. Akin et al. // Solar Phys., v. 275, p. 17-40, (2012).

  15. Numerical simulation of an innovated building cooling system with combination of solar chimney and water spraying system

    NASA Astrophysics Data System (ADS)

    Rabani, Ramin; Faghih, Ahmadreza K.; Rabani, Mehrdad; Rabani, Mehran

    2014-05-01

    In this study, passive cooling of a room using a solar chimney and water spraying system in the room inlet vents is simulated numerically in Yazd, Iran (a hot and arid city with very high solar radiation). The performance of this system has been investigated for the warmest day of the year (5 August) which depends on the variation of some parameters such as water flow rate, solar heat flux, and inlet air temperature. In order to get the best performance of the system for maximum air change and also absorb the highest solar heat flux by the absorber in the warmest time of the day, different directions (West, East, North and South) have been studied and the West direction has been selected as the best direction. The minimum amount of water used in spraying system to set the inside air averaged relative humidity <65 % is obtained using trial and error method. The simulation results show that this proposed system decreases the averaged air temperature in the middle of the room by 9-14 °C and increases the room relative humidity about 28-45 %.

  16. Ionospheric effects of the extreme solar activity of February 1986

    NASA Technical Reports Server (NTRS)

    Boska, J.; Pancheva, D.

    1989-01-01

    During February 1986, near the minimum of the 11 year Solar sunspot cycle, after a long period of totally quiet solar activity (R sub z = 0 on most days in January) a period of a suddenly enhanced solar activity occurred in the minimum between solar cycles 21 and 22. Two proton flares were observed during this period. A few other flares, various phenomena accompanying proton flares, an extremely severe geomagnetic storm and strong disturbances in the Earth's ionosphere were observed in this period of enhanced solar activity. Two active regions appeared on the solar disc. The flares in both active regions were associated with enhancement of solar high energy proton flux which started on 4 February of 0900 UT. Associated with the flares, the magnetic storm with sudden commencement had its onset on 6 February 1312 UT and attained its maximum on 8 February (Kp = 9). The sudden enhancement in solar activity in February 1986 was accompanied by strong disturbances in the Earth's ionosphere, SIDs and ionospheric storm. These events and their effects on the ionosphere are discussed.

  17. Fail-safe system for activity cooled supersonic and hypersonic aircraft. [using liquid hydrogen fuel

    NASA Technical Reports Server (NTRS)

    Jones, R. A.; Braswell, D. O.; Richie, C. B.

    1975-01-01

    A fail-safe-system concept was studied as an alternative to a redundant active cooling system for supersonic and hypersonic aircraft which use the heat sink of liquid-hydrogen fuel for cooling the aircraft structure. This concept consists of an abort maneuver by the aircraft and a passive thermal protection system (TPS) for the aircraft skin. The abort manuever provides a low-heat-load descent from normal cruise speed to a lower speed at which cooling is unnecessary, and the passive TPS allows the aircraft skin to absorb the abort heat load without exceeding critical skin temperature. On the basis of results obtained, it appears that this fail-safe-system concept warrants further consideration, inasmuch as a fail-safe system could possibly replace a redundant active cooling system with no increase in weight and would offer other potential advantages.

  18. Numerical modelling of heat and mass transfer in adsorption solar reactor of ammonia on active carbon

    NASA Astrophysics Data System (ADS)

    Aroudam, El. H.

    In this paper, we present a modelling of the performance of a reactor of a solar cooling machine based carbon-ammonia activated bed. Hence, for a solar radiation, measured in the Energetic Laboratory of the Faculty of Sciences in Tetouan (northern Morocco), the proposed model computes the temperature distribution, the pressure and the ammonia concentration within the activated carbon bed. The Dubinin-Radushkevich formula is used to compute the ammonia concentration distribution and the daily cycled mass necessary to produce a cooling effect for an ideal machine. The reactor is heated at a maximum temperature during the day and cool at the night. A numerical simulation is carried out employing the recorded solar radiation data measured locally and the daily ambient temperature for the typical clear days. Initially the reactor is at ambient temperature, evaporating pressure; Pev=Pst(Tev=0 ∘C) and maintained at uniform concentration. It is heated successively until the threshold temperature corresponding to the condensing pressure; Pcond=Pst(Tam) (saturation pressure at ambient temperature; in the condenser) and until a maximum temperature at a constant pressure; Pcond. The cooling of the reactor is characterised by a fall of temperature to the minimal values at night corresponding to the end of a daily cycle. We use the mass balance equations as well as energy equation to describe heat and mass transfer inside the medium of three phases. A numerical solution of the obtained non linear equations system based on the implicit finite difference method allows to know all parameters characteristic of the thermodynamic cycle and consider principally the daily evolution of temperature, ammonia concentration for divers positions inside the reactor. The tube diameter of the reactor shows the dependence of the optimum value on meteorological parameters for 1 m2 of collector surface.

  19. Owens-Illinois subsystem design package for the SEC-601 air-cooled solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The subsystem design of the SEC-601 solar collector was evaluated. The collector is of modular design and is approximately 12 feet three inches wide and eight feet seven inches tall. It contains 72 collector tube elements and weighs approximately 300 pounds. Included in this report are the subsystem performance specifications and the assembly and installation drawings of the solar collectors and manifold.

  20. Bayesian Infernce for Indentifying Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Pap, Judit; Turmon, Michael; Mukhtar, Saleem

    1997-01-01

    The solar chromosphere consists of three classes-- plage, network, background -- which contribute differently to ultraviolet radiation reaching the earth. Solar physicists are interested in relating plage area and intensity to UV irradiance, as well as understanding the spatial and temporal evolution of plage shapes.

  1. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas. Final report

    SciTech Connect

    1980-11-01

    The building has approximately 5600 square feet of conditioned space. Solar energy is used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system has an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water is the transfer medium that delivers solar energy to a tube-in-shell heat exchanger that in turn delivers solar-heated water to a 1100 gallon pressurized hot water storage tank. When solar energy is insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provides auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are included.

  2. Heliospheric Consecuences of Solar Activity In Several Interplanetary Phenomena

    NASA Astrophysics Data System (ADS)

    Valdés-Galicia, J. F.; Mendoza, B.; Lara, A.; Maravilla, D.

    We have done an analysis of several phenomena related to solar activity such as the total magnetic flux, coronal hole area and sunspots, investigated its long trend evolu- tion over several solar cycles and its possible relationships with interplanetary shocks, sudden storm commencements at earth and cosmic ray variations. Our results stress the physical connection between the solar magnetic flux emergence and the interplan- etary medium dynamics, in particular the importance of coronal hole evolution in the structuring of the heliosphere.

  3. MAGNETIC ENERGY SPECTRA IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Abramenko, Valentyna; Yurchyshyn, Vasyl

    2010-09-01

    Line-of-sight magnetograms for 217 active regions (ARs) with different flare rates observed at the solar disk center from 1997 January until 2006 December are utilized to study the turbulence regime and its relationship to flare productivity. Data from the SOHO/MDI instrument recorded in the high-resolution mode and data from the BBSO magnetograph were used. The turbulence regime was probed via magnetic energy spectra and magnetic dissipation spectra. We found steeper energy spectra for ARs with higher flare productivity. We also report that both the power index, {alpha}, of the energy spectrum, E(k) {approx} k{sup -}{alpha}, and the total spectral energy, W = {integral}E(k)dk, are comparably correlated with the flare index, A, of an AR. The correlations are found to be stronger than those found between the flare index and the total unsigned flux. The flare index for an AR can be estimated based on measurements of {alpha} and W as A = 10{sup b}({alpha}W){sup c}, with b = -7.92 {+-} 0.58 and c = 1.85 {+-} 0.13. We found that the regime of the fully developed turbulence occurs in decaying ARs and in emerging ARs (at the very early stage of emergence). Well-developed ARs display underdeveloped turbulence with strong magnetic dissipation at all scales.

  4. Flip-flop cycles in solar and stellar activity

    NASA Astrophysics Data System (ADS)

    Berdyugina, S. V.

    2006-08-01

    Doppler images and long time series of photometric observations of cool active stars reveal permanent active longitudes on their surfaces. They are found to alternate their dominant activity quasi-periodically which indicates a new type of the activity cycles, flip-flop cycles. In this talk I will review properties of active longitudes and flip-flop cycles on different types of active stars including the Sun.

  5. System and method of active vibration control for an electro-mechanically cooled device

    DOEpatents

    Lavietes, Anthony D.; Mauger, Joseph; Anderson, Eric H.

    2000-01-01

    A system and method of active vibration control of an electro-mechanically cooled device is disclosed. A cryogenic cooling system is located within an environment. The cooling system is characterized by a vibration transfer function, which requires vibration transfer function coefficients. A vibration controller generates the vibration transfer function coefficients in response to various triggering events. The environments may differ by mounting apparatus, by proximity to vibration generating devices, or by temperature. The triggering event may be powering on the cooling system, reaching an operating temperature, or a reset action. A counterbalance responds to a drive signal generated by the vibration controller, based on the vibration signal and the vibration transfer function, which adjusts vibrations. The method first places a cryogenic cooling system within a first environment and then generates a first set of vibration transfer function coefficients, for a vibration transfer function of the cooling system. Next, the cryogenic cooling system is placed within a second environment and a second set of vibration transfer function coefficients are generated. Then, a counterbalance is driven, based on the vibration transfer function, to reduce vibrations received by a vibration sensitive element.

  6. Comparison of active cooling devices to passive cooling for rehabilitation of firefighters performing exercise in thermal protective clothing: A report from the Fireground Rehab Evaluation (FIRE) trial

    PubMed Central

    Hostler, David; Reis, Steven E; Bednez, James C; Kerin, Sarah; Suyama, Joe

    2010-01-01

    Background Thermal protective clothing (TPC) worn by firefighters provides considerable protection from the external environment during structural fire suppression. However, TPC is associated with physiological derangements that may have adverse cardiovascular consequences. These derangements should be treated during on-scene rehabilitation periods. Objective The present study examined heart rate and core temperature responses during the application of four active cooling devices, currently being marketed to the fire service for on-scene rehab, and compared them to passive cooling in a moderate temperature (approximately 24°C) and to an infusion of cold (4°C) saline. Methods Subjects exercised in TPC in a heated room. Following an initial exercise period (BOUT 1) the subjects exited the room, removed TPC, and for 20 minutes cooled passively at room temperature, received an infusion of cold normal saline, or were cooled by one of four devices (fan, forearm immersion in water, hand cooling, water perfused cooling vest). After cooling, subjects donned TPC and entered the heated room for another 50-minute exercise period (BOUT 2). Results Subjects were not able to fully recover core temperature during a 20-minute rehab period when provided rehydration and the opportunity to completely remove TPC. Exercise duration was shorter during BOUT 2 when compared to BOUT 1 but did not differ by cooling intervention. The overall magnitude and rate of cooling and heart rate recovery did not differ by intervention. Conclusions No clear advantage was identified when active cooling devices and cold intravenous saline were compared to passive cooling in a moderate temperature after treadmill exercise in TPC. PMID:20397868

  7. A practical cooling strategy for reducing the physiological strain associated with firefighting activity in the heat.

    PubMed

    Barr, D; Gregson, W; Sutton, L; Reilly, T

    2009-04-01

    The aim of this study was to establish whether a practical cooling strategy reduces the physiological strain during simulated firefighting activity in the heat. On two separate occasions under high ambient temperatures (49.6 +/- 1.8 degrees C, relative humidity (RH) 13 +/- 2%), nine male firefighters wearing protective clothing completed two 20-min bouts of treadmill walking (5 km/h, 7.5% gradient) separated by a 15-min recovery period, during which firefighters were either cooled (cool) via application of an ice vest and hand and forearm water immersion ( approximately 19 degrees C) or remained seated without cooling (control). There was no significant difference between trials in any of the dependent variables during the first bout of exercise. Core body temperature (37.72 +/- 0.34 vs. 38.21 +/- 0.17 degrees C), heart rate (HR) (81 +/- 9 vs. 96 +/- 17 beats/min) and mean skin temperature (31.22 +/- 1.04 degrees C vs. 33.31 +/- 1 degrees C) were significantly lower following the recovery period in cool compared with control (p < 0.05). Core body temperature remained consistently lower (0.49 +/- 0.02 degrees C; p < 0.01) throughout the second bout of activity in cool compared to control. Mean skin temperature, HR and thermal sensation were significantly lower during bout 2 in cool compared with control (p < 0.05). It is concluded that this practical cooling strategy is effective at reducing the physiological strain associated with demanding firefighting activity under high ambient temperatures. PMID:19401892

  8. On the Relationship Between Solar Wind Speed, Geomagnetic Activity, and the Solar Cycle Using Annual Values

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    The aa index can be decomposed into two separate components: the leading sporadic component due to solar activity as measured by sunspot number and the residual or recurrent component due to interplanetary disturbances, such as coronal holes. For the interval 1964-2006, a highly statistically important correlation (r = 0.749) is found between annual averages of the aa index and the solar wind speed (especially between the residual component of aa and the solar wind speed, r = 0.865). Because cyclic averages of aa (and the residual component) have trended upward during cycles 11-23, cyclic averages of solar wind speed are inferred to have also trended upward.

  9. Possible relationships between solar activity and atmospheric constituents

    NASA Technical Reports Server (NTRS)

    Roosen, R. G.; Angione, R. J.

    1975-01-01

    The large body of data on solar variations and atmospheric constituents collected between 1902 and 1953 by the Astrophysical Observatory of the Smithsonian Institution (APO) was examined. Short-term variations in amounts of atmospheric aerosols and water vapor due to seasonal changes, volcanic activity, air pollution, and frontal activity are discussed. Preliminary evidence indicates that increased solar activity is at times associated with a decrease in attenuation due to airborne particulates.

  10. Possible relationships between solar activity and atmospheric constituents

    NASA Technical Reports Server (NTRS)

    Roosen, R. G.; Angione, R. J.

    1974-01-01

    The large body of data on solar variations and atmospheric constituents collected between 1902 and 1953 by the Astrophysical Observatory of the Smithsonian Institution (APO) is examined. Short term variations in amounts of atmospheric aerosols and water vapor due to seasonal changes, volcanic activity, air pollution, and frontal activity are discussed. Preliminary evidence indicates that increased solar activity is at times associated with a decrease in attenuation due to airborne particulates.

  11. Solar activity index for long-term ionospheric forecasts

    NASA Astrophysics Data System (ADS)

    Deminov, M. G.

    2016-01-01

    Based on the comparison of solar activity indices (annual average values of the relative number of sunspots Rz 12 and solar radio emission flux at a wavelength of 10.7 cm F 12) with the ionospheric index of solar activity IG 12 for 1954-2013, we have found that the index F 12 is a more accurate (than Rz 12) indicator of solar activity for the long-term forecast of foF2 (the critical frequency of the F2-layer). This advantage of the F 12 index becomes especially significant after 2000 if the specific features of extreme ultraviolet radiation of the Sun are additionally taken into account in the minima of solar cycles, using an appropriate correction to F 12. Qualitative arguments are given in favor of the use of F 12 for the long-term forecast of both foF2 and other ionospheric parameters.

  12. Low-Dimensional Chaos of High-Latitude Solar Activity

    NASA Astrophysics Data System (ADS)

    Li, Qi-Xiu; Li, Ke-Jun

    2007-10-01

    The chaos of high-latitude solar activity has been investigated by determining the behavior of the monthly averaged polar facula counts obtained from the National Astronomical Observatory of Japan (NAOJ) on the basis of nonlinear dynamics theories and methods. It is found that the high-latitude solar activity is also governed by a low-dimensional chaotic attractor in both the northern and southern solar hemispheres, which is the same as that of the low-latitude solar activity. However, their maximal Lyapunov exponents are different, showing different strength of chaos. The maximal Lyapunov exponent (MLE) of polar faculae in the southern solar hemisphere is about 0.0211 ± 0.0003 (month-1), which is nearly consistent with the low-latitude Wolf sunspot numbers, while the MLE in the northern one is approximately 0.0944 ± 0.0066 (month-1), which is obviously greater than the above two.

  13. Recent perspectives in solar physics - Elemental composition, coronal structure and magnetic fields, solar activity

    NASA Technical Reports Server (NTRS)

    Newkirk, G., Jr.

    1975-01-01

    Elemental abundances in the solar corona are studied. Abundances in the corona, solar wind and solar cosmic rays are compared to those in the photosphere. The variation in silicon and iron abundance in the solar wind as compared to helium is studied. The coronal small and large scale structure is investigated, emphasizing magnetic field activity and examining cosmic ray generation mechanisms. The corona is observed in the X-ray and EUV regions. The nature of coronal transients is discussed with emphasis on solar-wind modulation of galactic cosmic rays. A schematic plan view of the interplanetary magnetic field during sunspot minimum is given showing the presence of magnetic bubbles and their concentration in the region around 4-5 AU by a fast solar wind stream.

  14. Solar-collector manufacturing activity, July through December, 1981

    SciTech Connect

    1982-03-01

    Solar thermal collector and solar cell manufacturing activity is both summarized and tabulated. Data are compared for three survey periods (July through December, 1981; January through June, 1981; and July through December, 1980). Annual totals are also provided for the years 1979 through 1981. Data include total producer shipments, end use, market sector, imports and exports. (LEW)

  15. Solar Energy Education. Renewable energy activities for biology

    SciTech Connect

    Not Available

    1982-01-01

    An instructional aid for teachers is presented that will allow biology students the opportunity to learn about renewable energy sources. Some of the school activities include using leaves as collectors of solar energy, solar energy stored in wood, and a fuel value test for green and dry woods. A study of organic wastes as a source of fuel is included. (BCS)

  16. Solar energy education. Renewable energy activities for general science

    SciTech Connect

    Not Available

    1985-01-01

    Renewable energy topics are integrated with the study of general science. The literature is provided in the form of a teaching manual and includes such topics as passive solar homes, siting a home for solar energy, and wind power for the home. Other energy topics are explored through library research activities. (BCS)

  17. Martian induced magnetosphere variations with solar activity cycle

    NASA Astrophysics Data System (ADS)

    Fedorov, Andrey; Ronan, Modolo; Jarninen, Riku; Mazelle, Christian; Barabash, Stas

    2014-05-01

    During the last 6 years of ESA Mars Express mission we have accumulated plasma data taken inside and around the Martian induced magnetosphere corresponding to the increasing branch of solar activity. This data allows to make an enhanced study of the magnetosphere variations as a response of the solar activity level. Since Mars Express has no onboard magnetometer, we used the hybrid models of the Martian plasma environment to get a proper frame to make an adequate statistics of the magnetospheric response. In this paper we present a spatial distribution of the planetary plasma in the planetary wake as well as the ionsospheric escape as a function of the solar activity.

  18. Influenza pandemics, solar activity cycles, and vitamin D.

    PubMed

    Hayes, Daniel P

    2010-05-01

    There is historic evidence that influenza pandemics are associated with solar activity cycles (the Schwabe-cycle of about 11-years periodicity). The hypothesis is presented and developed that influenza pandemics are associated with solar control of vitamin D levels in humans which waxes and wanes in concert with solar cycle dependent ultraviolet radiation. It is proposed that this solar cycle dependence arises both directly from cyclic control of the amount of ultraviolet radiation as well as indirectly through cyclic control of atmospheric circulation and dynamics. PMID:20056531

  19. System integration of marketable subsystems. [for residential solar heating and cooling

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Progress is reported in the following areas: systems integration of marketable subsystems; development, design, and building of site data acquisition subsystems; development and operation of the central data processing system; operation of the MSFC Solar Test Facility; and systems analysis.

  20. Development of flat-plate solar collectors for the heating and cooling of buildings

    NASA Technical Reports Server (NTRS)

    Ramsey, J. W.; Borzoni, J. T.; Holland, T. H.

    1975-01-01

    The relevant design parameters in the fabrication of a solar collector for heating liquids were examined. The objective was to design, fabricate, and test a low-cost, flat-plate solar collector with high collection efficiency, high durability, and requiring little maintenance. Computer-aided math models of the heat transfer processes in the collector assisted in the design. The preferred physical design parameters were determined from a heat transfer standpoint and the absorber panel configuration, the surface treatment of the absorber panel, the type and thickness of insulation, and the number, spacing and material of the covers were defined. Variations of this configuration were identified, prototypes built, and performance tests performed using a solar simulator. Simulated operation of the baseline collector configuration was combined with insolation data for a number of locations and compared with a predicted load to determine the degree of solar utilization.