Science.gov

Sample records for active solar system

  1. Solar active region display system

    NASA Astrophysics Data System (ADS)

    Golightly, M.; Raben, V.; Weyland, M.

    2003-04-01

    The Solar Active Region Display System (SARDS) is a client-server application that automatically collects a wide range of solar data and displays it in a format easy for users to assimilate and interpret. Users can rapidly identify active regions of interest or concern from color-coded indicators that visually summarize each region's size, magnetic configuration, recent growth history, and recent flare and CME production. The active region information can be overlaid onto solar maps, multiple solar images, and solar difference images in orthographic, Mercator or cylindrical equidistant projections. Near real-time graphs display the GOES soft and hard x-ray flux, flare events, and daily F10.7 value as a function of time; color-coded indicators show current trends in soft x-ray flux, flare temperature, daily F10.7 flux, and x-ray flare occurrence. Through a separate window up to 4 real-time or static graphs can simultaneously display values of KP, AP, daily F10.7 flux, GOES soft and hard x-ray flux, GOES >10 and >100 MeV proton flux, and Thule neutron monitor count rate. Climatologic displays use color-valued cells to show F10.7 and AP values as a function of Carrington/Bartel's rotation sequences - this format allows users to detect recurrent patterns in solar and geomagnetic activity as well as variations in activity levels over multiple solar cycles. Users can customize many of the display and graph features; all displays can be printed or copied to the system's clipboard for "pasting" into other applications. The system obtains and stores space weather data and images from sources such as the NOAA Space Environment Center, NOAA National Geophysical Data Center, the joint ESA/NASA SOHO spacecraft, and the Kitt Peak National Solar Observatory, and can be extended to include other data series and image sources. Data and images retrieved from the system's database are converted to XML and transported from a central server using HTTP and SOAP protocols, allowing

  2. Preliminary design activities for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information on the development of solar heating and cooling systems is presented. The major emphasis is placed on program organization, system size definition, site identification, system approaches, heat pump and equipment design, collector procurement, and other preliminary design activities.

  3. Assessment of active solar systems in the residential sector of North Carolina, 1974 - 1995

    NASA Astrophysics Data System (ADS)

    Brown, D.; St. John, K.

    1981-02-01

    An evaluation is presented of the contribution active solar systems can make in North Carolina's residential sector over the next 15 years. The report is divided into 5 parts: introduction; current solar industry status; projected use of active solar systems to 1995; maximum potential for active solar systems to 1995; recommendations for state solar incentives. Information in the appendices includes: conversion methodology; square feet of collector to Btu; economic analysis of solar systems based on life costs; methodology for percentage breakdowns on projected solar system sales; North Carolina solar manufacturers/distributors and national manufacturers; solar legislation; economic analysis of solar systems; and data sources.

  4. The Solar System Ballet: A Kinesthetic Spatial Astronomy Activity

    NASA Astrophysics Data System (ADS)

    Heyer, Inge; Slater, T. F.; Slater, S. J.; Astronomy, Center; Education ResearchCAPER, Physics

    2011-05-01

    The Solar System Ballet was developed in order for students of all ages to learn about the planets, their motions, their distances, and their individual characteristics. To teach people about the structure of our Solar System can be revealing and rewarding, for students and teachers. Little ones (and some bigger ones, too) often cannot yet grasp theoretical and spatial ideas purely with their minds. Showing a video is better, but being able to learn with their bodies, essentially being what they learn about, will help them understand and remember difficult concepts much more easily. There are three segments to this activity, which can be done together or separately, depending on time limits and age of the students. Part one involves a short introductory discussion about what students know about the planets. Then students will act out the orbital motions of the planets (and also moons for the older ones) while holding a physical model. During the second phase we look at the structure of the Solar System as well as the relative distances of the planets from the Sun, first by sketching it on paper, then by recreating a scaled version in the class room. Again the students act out the parts of the Solar System bodies with their models. The third segment concentrates on recreating historical measurements of Earth-Moon-Sun system. The Solar System Ballet activity is suitable for grades K-12+ as well as general public informal learning activities.

  5. Active other worlds in the Solar System and beyond

    NASA Astrophysics Data System (ADS)

    Forget, François

    2016-04-01

    Over the past decades, space exploration has moved planetology from the field of astronomy to the disciplines of geosciences. A fleet of spacecrafts have discovered and study tens of worlds in our solar system and beyond. Everywhere, we have been surprised by the diversity and the vigour of the geophysical activity, from volcanic eruptions to plasma waves... Every scientists present at EGU could -and should- be interested in the extraterrestrial processes that are discovered and analyzed elsewhere. In our solar system, a variety of clouds and fluid dynamical phenomena can be studied in six terrestrial atmospheres and on four giant planets. Active glaciers are found on Mars and Pluto. Rivers and lakes have sculpted the surface of Titan and Mars. Sometime, we can even study geophysical activity with no equivalent on our planet: ice caps made of frozen atmosphere that erupt in geysers, hazes formed by organic polymers which can completely shroud a moon, etc. We study these active worlds because we are curious and wish to understand our universe and our origins. However, more than ever, two specific motivations drive solar system geosciences in 2016: Firstly, as we become more and more familiar with the other worlds around us, we can use them to better understand our own planet. Throughout the solar system, we can access to data that are simply not available on the Earth, or study active processes that are subtle on Earth but of greater importance elsewhere, so that we can better understand them. Many geophysical concepts and tools developed for the Earth can also be tested on other planets. For instance the numerical Climate Models used to assess Earth's future climate change are applied to other planets. Much is learned from such experiments. Secondly, the time has come to generalize the fundamental lessons that we have learned from the examples in the solar system (including the Earth) to address the countless scientific questions that are -and will be- raised by

  6. Outline of the Solar System: Activities for elementary students

    NASA Technical Reports Server (NTRS)

    Hartsfield, J.; Sellers, M.

    1990-01-01

    An introduction to the solar system for the elementary school student is given. The introduction contains historical background, facts, and pertinent symbols concerning the sun, the nine major planets and their moons, and information about comets and asteroids. Aids to teaching are given, including a solar system crossword puzzle with answers.

  7. Solar electric systems

    SciTech Connect

    Warfield, G.

    1984-01-01

    Electricity from solar sources is the subject. The state-of-the-art of photovoltaics, wind energy and solar thermal electric systems is presented and also a broad range of solar energy activities throughout the Arab world is covered. Contents, abridged: Solar radiation fundamentals. Basic theory solar cells. Solar thermal power plants. Solar energy activities at the scientific research council in Iraq. Solar energy program at Kuwait Institute for Scientific Research. Prospects of solar energy for Egypt. Non-conventional energy in Syria. Wind and solar energies in Sudan. Index.

  8. Solar System Puzzle Kit: An Activity for Earth and Space Science.

    ERIC Educational Resources Information Center

    Vogt, Gregory L.; Rosenberg, Carla B.

    This Solar System Puzzle Kit for grades 5-8, allows students to create an eight-cube paper puzzle of the solar system and may be duplicated for classroom use or used as a take home activity for children and parents. By assembling the puzzle, hand-coloring the bodies of the solar system, and viewing the puzzle's 12 sides, students can reinforce…

  9. Solar Systems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar collectors shown are elements of domestic solar hot water systems produced by Solar One Ltd., Virginia Beach, Virginia. Design of these systems benefited from technical expertise provided Solar One by NASA's Langley Research Center. The company obtained a NASA technical support package describing the d e sign and operation of solar heating equipment in NASA's Tech House, a demonstration project in which aerospace and commercial building technology are combined in an energy- efficient home. Solar One received further assistance through personal contact with Langley solar experts. The company reports that the technical information provided by NASA influenced Solar One's panel design, its selection of a long-life panel coating which increases solar collection efficiency, and the method adopted for protecting solar collectors from freezing conditions.

  10. A Practical Application of Microcomputers to Control an Active Solar System.

    ERIC Educational Resources Information Center

    Goldman, David S.; Warren, William

    1984-01-01

    Describes the design and implementation of a microcomputer-based model active solar heating system. Includes discussions of: (1) the active solar components (solar collector, heat exchanger, pump, and fan necessary to provide forced air heating); (2) software components; and (3) hardware components (in the form of sensors and actuators). (JN)

  11. NASDA activities in space solar power system research, development and applications

    NASA Technical Reports Server (NTRS)

    Matsuda, Sumio; Yamamoto, Yasunari; Uesugi, Masato

    1993-01-01

    NASDA activities in solar cell research, development, and applications are described. First, current technologies for space solar cells such as Si, GaAs, and InP are reviewed. Second, future space solar cell technologies intended to be used on satellites of 21st century are discussed. Next, the flight data of solar cell monitor on ETS-V is shown. Finally, establishing the universal space solar cell calibration system is proposed.

  12. Activity of processes on the visible surfaces of Solar System bodies

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.

    2016-10-01

    We consider the physical processes on the surfaces of Solar System bodies, which lead to visible changes in their reflective characteristics. It is shown that each body in the Solar system has a set of chemical elements and their compounds, converting of which indicates significant activity in such a significant temperature change range from 700 K (for Mercury) to 30 K for Pluto. That is, all objects in the Solar system show a significant activity. However, they are very individual for the list and the type of the processes that take place on each body in the Solar system.

  13. Solar Activity and Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.

    2006-01-01

    Our Sun is a dynamic, ever-changing star. In general, its atmosphere displays major variation on an 11-year cycle. Throughout the cycle, the atmosphere occasionally exhibits large, sudden outbursts of energy. These "solar eruptions" manifest themselves in the form of solar flares, filament eruptions, coronal mass ejections (CMEs), and energetic particle releases. They are of high interest to scientists both because they represent fundamental processes that occur in various astrophysical context, and because, if directed toward Earth, they can disrupt Earth-based systems and satellites. Research over the last few decades has shown that the source of the eruptions is localized regions of energy-storing magnetic field on the Sun that become destabilized, leading to a release of the stored energy. Solar scientists have (probably) unraveled the basic outline of what happens in these eruptions, but many details are still not understood. In recent years we have been studying what triggers these magnetic eruptions, using ground-based and satellite-based solar observations in combination with predictions from various theoretical models. We will present an overview of solar activity and solar eruptions, give results from some of our own research, and discuss questions that remain to be explored.

  14. Solar electric systems

    NASA Astrophysics Data System (ADS)

    Warfield, G.

    Subjects discussed in connection with solar electricity are related to solar radiation fundamentals, wind electric conversion and utilization, the basic theory of solar cells, photovoltaic materials, photovoltaic technology, components of solar thermal electric systems, solar thermal power plants, and integrated solar thermal electric complexes. The solar technology development in the Arab world is also examined, taking into account the horizon of solar energy in the Arab countries, solar energy activities at the Scientific Research Council in Iraq, solar energy activities at the Royal Scientific Society in Jordan, the solar energy program at Kuwait Institute for Scientific Research, application of solar energy in Libya, prospects of solar energy for Egypt, solar energy programs in Qatar, performance characteristics of a 350 kW photovoltaic power system for Saudi Arabian villages, nonconventional energy in Syria, wind and solar energies in Sudan, solar electric research and development program in Tunisia, and solar energy research and utilization in Yemen Arab Republic. No individual items are abstracted in this volume

  15. Development and testing of heat transport fluids for use in active solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    Parker, J. C.

    1981-01-01

    Work on heat transport fluids for use with active solar heating and cooling systems is described. Program objectives and how they were accomplished including problems encountered during testing are discussed.

  16. Cost and performance goal methodology for active solar-cooling systems

    NASA Astrophysics Data System (ADS)

    Warren, M. L.; Wahlig, M. A.

    1982-02-01

    Economic and thermal performance analyses of typical residential and commercial active solar cooling systems are used to determine cost goals for systems to be installed between the years 1986 and 2000. Market studies indicate a relationship between market penetration (percent of market captured) and payback period for heating, ventilating, and air conditioning systems. Using reasonable values for fuel escalation and inflation rates, the payback period is related to the expected real return on investment. Postulating commercial introduction of solar cooling systems in 1986 with the market share increasing to 20% by the year 2000, payback and return on investment goals for cooling systems as a function of year of purchase are established. Using the results of systems analysis of representative 3 ton solar residential cooling/heating systems and 25 ton commercial solar cooling systems for four different cities (Ft. Worth, Phoenix, Miami, and Washington, DC), the return on investment goals are used to calculate the 20 year present value of energy savings of the solar energy systems.

  17. Solar Energy: Solar System Economics.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar system economics is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…

  18. Explorations of electric current system in solar active regions. I - Empirical inferences of the current flows

    NASA Technical Reports Server (NTRS)

    Ding, Y. J.; Hong, Q. F.; Hagyard, M. J.; Deloach, A. C.; Liu, X. P.

    1987-01-01

    Techniques to identify sources of electric current systems and their channels of flow in solar active regions are explored. Measured photospheric vector magnetic fields together with high-resolution white-light and H-alpha filtergrams provide the data base to derive the current systems in the photosphere and chromosphere. As an example, the techniques are then applied to infer current systems in AR 2372 in early April 1980.

  19. Solar system fault detection

    NASA Astrophysics Data System (ADS)

    Farrington, R. B.; Pruett, J. C., Jr.

    1984-05-01

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combing the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  20. Solar system fault detection

    DOEpatents

    Farrington, Robert B.; Pruett, Jr., James C.

    1986-01-01

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  1. Solar system fault detection

    DOEpatents

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  2. Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, Lidia; Schrijver, Carolus J.; Klimchuk, James A.; Charbonneau, Paul; Fletcher, Lyndsay; Hasan, S. Sirajul; Hudson, Hugh S.; Kusano, Kanya; Mandrini, Cristina H.; Peter, Hardi; Vršnak, Bojan; Yan, Yihua

    2012-04-01

    Commission 10 of the International Astronomical Union has more than 650 members who study a wide range of activity phenomena produced by our nearest star, the Sun. Solar activity is intrinsically related to solar magnetic fields and encompasses events from the smallest energy releases (nano- or even picoflares) to the largest eruptions in the Solar System, coronal mass ejections (CMEs), which propagate into the Heliosphere reaching the Earth and beyond. Solar activity is manifested in the appearance of sunspot groups or active regions, which are the principal sources of activity phenomena from the emergence of their magnetic flux through their dispersion and decay. The period 2008-2009 saw an unanticipated extended solar cycle minimum and unprecedentedly weak polar-cap and heliospheric field. Associated with that was the 2009 historical maximum in galactic cosmic rays flux since measurements begun in the middle of the 20th Century. Since then Cycle 24 has re-started solar activity producing some spectacular eruptions observed with a fleet of spacecraft and ground-based facilities. In the last triennium major advances in our knowledge and understanding of solar activity were due to continuing success of space missions as SOHO, Hinode, RHESSI and the twin STEREO spacecraft, further enriched by the breathtaking images of the solar atmosphere produced by the Solar Dynamic Observatory (SDO) launched on 11 February 2010 in the framework of NASA's Living with a Star program. In August 2012, at the time of the IAU General Assembly in Beijing when the mandate of this Commission ends, we will be in the unique position to have for the first time a full 3-D view of the Sun and solar activity phenomena provided by the twin STEREO missions about 120 degrees behind and ahead of Earth and other spacecraft around the Earth and ground-based observatories. These new observational insights are continuously posing new questions, inspiring and advancing theoretical analysis and

  3. An Outline of the Solar System: Activities for the Elementary Student.

    ERIC Educational Resources Information Center

    Hartsfield, John, Comp.; Sellers, Millie, Comp.

    This booklet provides information and five worksheets for elementary students studying the solar system. Fact sheets provide information on the sun, Mercury, Venus, Earth, Moon, Mars, asteroids, Jupiter, Saturn, Uranus, Neptune, Pluto, and comets. The worksheets are entitled: (1) Astronomical Unit; (2) Solar System Trivia; (3) Solar System Flash…

  4. Optimisation of concentrating solar cell systems with passive and active cooling

    NASA Astrophysics Data System (ADS)

    Blumenberg, J.

    1983-10-01

    Design considerations for concentrator solar cell arrays for space applications are reviewed, noting the restrictions on total mass that govern system selections. Consideration is given to systems with parabolic mirrors and Si and GaAs solar cells. Passive and active cooling systems for the arrays are discussed, as is the addition of a heat engine with a turbogenerator to utilize part of the waste heat of the cooling cycle. Attention is given to systems orbiting at 0.5, 1, and 3.5 AU from the sun. Flat panels are found to be more suitable for missions near the sun for Si solar cells, while GaAs cells with concentration are preferred to flat panel systems at all distances from the sun. Nuclear turboelectric systems are better than concentrator Si arrays at large distances from the sun, in terms of specific masses of the systems. The addition of a system to use waste heat is judged unfavorable from specific mass factors.

  5. Solar Spots - Activities to Introduce Solar Energy into the K-8 Curricula.

    ERIC Educational Resources Information Center

    Longe, Karen M.; McClelland, Michael J.

    Following an introduction to solar technology which reviews solar heating and cooling, passive solar systems (direct gain systems, thermal storage walls, sun spaces, roof ponds, and convection loops), active solar systems, solar electricity (photovoltaic and solar thermal conversion systems), wind energy, and biomass, activities to introduce solar…

  6. Activity of processes on the visible surface of planets of Solar system

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.

    2016-05-01

    According to modern concepts bodies of the solar system formed from a single cloud of gas and dust. Calculations show that in the protoplanetary nebula where the temperature is lowered to 1600 K - appeared the first type of metal (aluminum and titanium) and metal oxides in the form of dust particles. With further decreasing temperature of the nebula to 1400 K - appeared also dust of iron and iron-nikel alloy; at 1300 K - appear solid silicates; magnesium minerals formed at T 1200 K. These components are material for the formation of basaltic rocks. At temperatures T 300 K begins to form water molecules. At 100-200 K in a remote part of the nebula - ammonia, methane and their ice are formed. In the outer part of Solar system this ices are now preserved in comet nuclei and in the icy satellites of giant planets. During T 400 million years after the formation of the Sun, at first - from dust component of the protoplanetary cloud was formed many intermediate bodies with the size of hundreds kilometers. Their gravitational interaction was reinforced in process of their grow. The bodies, which were growing fastest, they became the embryos of the future planets. All bodies of the solar system in different degrees show manifestations of different types of activity processes on the surface or at the level of the visible clouds. This activity depends on the distance of a particular body from the Sun, surface chemical composition, physical conditions at the surface and so on. The farther away from the Sun is the object, the temperature of its visible surface is lower, and by that more interesting is the set of processes, of chemical and physical transformations that there is possible to register. The surface of each planets of Solar system is very active in a variety of set temperature and chemical composition

  7. Dynamic modeling and experimental simulation of active solar energy systems for the evaluation of control strategies

    NASA Astrophysics Data System (ADS)

    Schiller, S. R.; Warren, M. L.; Wahlig, M.

    1980-07-01

    Dynamic modeling and experimental simulation are used to evaluate control strategies for active solar energy systems. Performance of proportional and on/off collector loop controllers are evaluated and compared using a theoretical dynamic collector model. The effect of controls and control strategies on hydronic space heating system performance is discussed. Both the computer model and the test facility allow evaluation of control strategies using various flow rates, controller set points, insolation patterns, ambient temperature conditions, and collector types. The test facility also allows comparison of collector and load loop flow stragegies based on various system configurations and building load demands.

  8. The analysis of solar activity features by means of the BASIS digital imaging system

    NASA Astrophysics Data System (ADS)

    Messerotti, M.; Lampi, L.; Furlani, S.; Zlobec, P.

    CCD-based digital imaging systems are powerful tools for the analysis of solar activity features in real-time or as post-processing. Despite the actual sensor-limited resolutions of low-cost systems, interesting projects can be carried out such as, for instance, the tracing of photospheric motions, in principle also in automatic mode. With regard to that BASIS, a digital imaging system for the sun operated at Trieste, will be briefly described. Possible applications as mentioned above will be discussed with emphasis on photospheric and chromospheric patterns.

  9. Possible biophysical mechanism of the effect of the solar activity on the human central nervous system

    NASA Astrophysics Data System (ADS)

    Mikhailova, G. A.; Mikhailov, Y. M.

    Numerous studies, beginning with Tchizhevsky's works, demonstrated the undeniable effect of the solar activity on the human body. A possible geophysical mechanism of the effect of the solar activity on the human body was proposed by Vladimirsky. In this mechanism solar disturbances (powerful chromospheres flares) cause "magnetosphere and plasmasphere disturbances on the Earth (sudden magnetic storms), which are accompanied by a change in the spectrum of the electromagnetic field on the Earth's surface in the extremely low frequency band. In its turn, this brings about shifts in the phisiological indices of the human body". In this model, the human body is regarded as a self-oscillating system affected by external geophysical factors. We also adhere to the main principles of this model but refine the part of this model that describes the change in the spectrum of the electromagnetic field on the Earth's surface in the extremely low frequency band. Unlike Vladimirsky model, we regard the human is not as a self-oscillating system but as one of two coupled oscillating system with discrete resonance frequencies in the human-habitat ensemble. Solar processes and their induced changes in one of the two coupled oscillating systems, specifically, the habitat play the role of an external force. Such an approach is based on the fact that the brain rhythms have the following definite frequencies: the alpha rhythm, 8-13 Hz; the beta rhythm, 14-30 Hz; the gamma rhythm, above 30 Hz; the delta rhythm, 1.5-3 Hz; and the theta rhythm, 4-7 Hz. On the other hand, the natural electromagnetic field on the Earth's surface in the extremely low frequency band also has a quite distinct resonance distribution. There are so-called Schuman resonances of the cavity formed by the Earth's surface and the lower boundary of the ionosphere (the D and E layers) at f1=10.6; f2=18.3; f3=25.9; f4=33.5; f5=41.1 Hz. These resonance frequencies are variable and most sensitive to variations of the

  10. Combined Active and Passive Solar Space Heating and Solar Hot Water Systems for an Elementary School in Boise, Idaho.

    ERIC Educational Resources Information Center

    Smull, Neil A.; Armstrong, Gerald L.

    1979-01-01

    Amity Elementary School in Boise, Idaho, features a solar space heating and domestic hot water system along with an earth covering to accommodate the passive aspects of energy conservation. (Author/MLF)

  11. Solar System Educators Program

    NASA Astrophysics Data System (ADS)

    Knudsen, R.

    2004-11-01

    The Solar System Educators Program is a nationwide network of highly motivated teachers who lead workshops that show other teachers in their local communities how to successfully incorporate NASA materials and research into their classes. Currently there are 57 Solar System Educators in 37 states whose workshops are designed to assist their fellow teachers in understanding and including standards-based NASA materials into their classroom activities. Solar System Educators attend a training institute during their first year in the program and have the option of attending subsequent annual institutes. The volunteers in this program receive additional web-based mission-specific telecon trainings in conjunction with the Solar System Ambassadors. Resource and handout materials in the form of DVDs, posters, pamphlets, fact sheets, postcards and bookmarks are also provided. Scientists can get involved with this program by partnering with the Solar System Educators in their regions, presenting at their workshops and mentoring these outstanding volunteers. This formal education program helps optimize project funding set aside for education through the efforts of these volunteer master teachers. At the same time, teachers become familiar with NASA's educational materials with which to inspire students into pursuing careers in science, technology, engineering and math.

  12. Solar load ratio method applied to commercial building active solar system sizing

    SciTech Connect

    Schnurr, N.M.; Hunn, B.D.; Williamson, K.D. III

    1981-01-01

    The hourly simulation procedure is the DOE-2 building energy analysis computer program. It is capable of calculating the loads and of simulating various control strategies in detail for both residential and commercial buildings and yet is computationally efficient enough to be used for extensive parametric studies. In addition, to a Building Service Hot Water (BSHW) System and a combined space heating and hot water system using liquid collectors for a commercial building analyzed previously, a space heating system using an air collector is analyzed. A series of runs is made for systems using evacuated tube collectors for comparison to flat-plate collectors, and the effects of additional system design parameters are investigated. Also, the generic collector types are characterized by standard efficiency curves, rather than by detailed collector specifications. (MHR)

  13. Solar Energy Systems

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  14. Solar array drive system

    NASA Technical Reports Server (NTRS)

    Berkopec, F. D.; Sturman, J. C.; Stanhouse, R. W.

    1976-01-01

    A solar array drive system consisting of a solar array drive mechanism and the corresponding solar array drive electronics is being developed. The principal feature of the solar array drive mechanism is its bidirectional capability which enables its use in mechanical redundancy. The solar array drive system is of a widely applicable design. This configuration will be tested to determine its acceptability for generic mission sets. Foremost of the testing to be performed is the testing for extended duration.

  15. Activities for Teaching Solar Energy.

    ERIC Educational Resources Information Center

    Mason, Jack Lee; Cantrell, Joseph S.

    1980-01-01

    Plans and activities are suggested for teaching elementary children about solar energy. Directions are included for constructing a flat plate collector and a solar oven. Activities for a solar field day are given. (SA)

  16. Future NASA solar system exploration activities: A framework for international cooperation

    NASA Technical Reports Server (NTRS)

    French, Bevan M.; Ramlose, Terri; Briggs, Geoffrey A.

    1992-01-01

    The goals and approaches for planetary exploration as defined for the NASA Solar System Exploration Program are discussed. The evolution of the program since the formation of the Solar System Exploration Committee (SSEC) in 1980 is reviewed and the primary missions comprising the program are described.

  17. Solar tracking system

    DOEpatents

    Okandan, Murat; Nielson, Gregory N.

    2016-07-12

    Solar tracking systems, as well as methods of using such solar tracking systems, are disclosed. More particularly, embodiments of the solar tracking systems include lateral supports horizontally positioned between uprights to support photovoltaic modules. The lateral supports may be raised and lowered along the uprights or translated to cause the photovoltaic modules to track the moving sun.

  18. Dynamic modeling and experimental simulation of active solar energy systems for the evaluation of control strategies

    NASA Astrophysics Data System (ADS)

    Schiller, S. R.; Warren, M. L.; Wahlig, M.

    1980-11-01

    Dynamic modeling and experimental simulation are used to evaluate control strategies for active solar energy systems. Performance of proportional and on/off collector loop controllers are evaluated and compared using a theoretical dynamic collector model. Use of the experimental test facility at Lawrence Berkeley Laboratory for evaluating the effect of controls and control strategies on hydronic space heating system performance is also discussed. Both the computer model and the test facility allow evaluation of control strategies using various flow rates, controller set points, insolation patterns, ambient temperature conditions, and collector types. The test facility also allows comparison of collector and load loop flow strategies based on various system configurations and building load demands.

  19. Hands-on Activities for Exploring the Solar System in K-14 Formal and Informal Education Settings

    NASA Astrophysics Data System (ADS)

    Allen, J. S.; Tobola, K. W.

    2004-12-01

    Introduction: Activities developed by NASA scientists and teachers focus on integrating Planetary Science activities with existing Earth science, math, and language arts curriculum. Educators may choose activities that fit a particular concept or theme within their curriculum from activities that highlight missions and research pertaining to exploring the solar system. Most of the activities use simple, inexpensive techniques that help students understand the how and why of what scientists are learning about comets, asteroids, meteorites, moons and planets. The web sites for the activities contain current information so students experience recent mission information such as data from Mars rovers or the status of Stardust sample return. The Johnson Space Center Astromaterials Research and Exploration Science education team has compiled a variety of NASA solar system activities to produce an annotated thematic syllabus useful to classroom educators and informal educators as they teach space science. An important aspect of the syllabus is that it highlights appropriate science content information and key science and math concepts so educators can easily identify activities that will enhance curriculum development. The outline contains URLs for the activities and NASA educator guides as well as links to NASA mission science and technology. In the informal setting, educators can use solar system exploration activities to reinforce learning in association with thematic displays, planetarium programs, youth group gatherings, or community events. In both the informal and the primary education levels the activities are appropriately designed to excite interest, arouse curiosity and easily take the participants from pre-awareness to the awareness stage. Middle school educators will find activities that enhance thematic science and encourage students to think about the scientific process of investigation. Some of the activities offered may easily be adapted for the upper

  20. Deciphering Solar Magnetic Activity: On Grand Minima in Solar Activity

    NASA Astrophysics Data System (ADS)

    Mcintosh, Scott; Leamon, Robert

    2015-07-01

    The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well understood. There has been tremendous progress in the century since the discovery of solar magnetism - magnetism that ultimately drives the electromagnetic, particulate and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magnetism, perhaps even indicators of a significant downward trend, over recent decades. Are we entering a minimum in solar activity that is deeper and longer than a typical solar minimum, a "grand minimum"? How could we tell if we are? What is a grand minimum and how does the Sun recover? These are very pertinent questions for modern civilization. In this paper we present a hypothetical demonstration of entry and exit from grand minimum conditions based on a recent analysis of solar features over the past 20 years and their possible connection to the origins of the 11(-ish) year solar activity cycle.

  1. Methodology to determine cost and performance goals for active solar cooling systems

    NASA Astrophysics Data System (ADS)

    Warren, M. L.; Wahlig, M.

    1981-11-01

    Systems analysis is used to calculate the 20 yr. present value of energy savings of solar cooling systems located in Texas, Arizona, Florida, and Washington, DC, and methods of solar system development to meet the cost goals of economic operation are outlined. Solar cooling systems are projected to begin commercial entry in 1986 and reach 20% of the total cooling market by the year 2000, producing 0.14 quads of displaced energy. A numerical simulation was carried out for both residential and commercial solar cooling units with consideration for system cost goals, cost goals per unit collector area, and the cost goals per ton of cooling. System size was targeted as a 3 ton residential chiller and a 25 ton commercial absorption cooling unit. The costs for volume production are provided, along with trends for an incrementally decreasing need for tax incentives, ending in about 1994

  2. Implementation of gamma-ray instrumentation for solid solar system bodies using neutron activation method

    NASA Astrophysics Data System (ADS)

    Litvak, M. L.; Golovin, D. V.; Jun, I.; Kozyrev, A. S.; Mitrofanov, I. G.; Sanin, A. B.; Shvetsov, V. N.; Timoshenko, G. N.; Zontikov, A.

    2016-06-01

    In this paper we present the results of ground tests performed with a flight model and with industry prototypes of passive and active gamma ray spectrometers with the objective of understanding their capability to distinguish the elemental composition of planetary bodies in the solar system. The gamma instrumentation, which was developed for future space missions was used in the measurements at a special ground test facility where a simulant of planetary material was fabricated with a martian-like composition. In this study, a special attention was paid to the gamma lines from activation reaction products generated by a pulsed neutron generator. The instrumentation was able to detect and identify gamma lines attributed to O, Na, Mg, Al, Si, K, Ca and Fe.

  3. Integrated Solar System Exploration Education and Public Outreach: Theme, Products and Activities

    NASA Technical Reports Server (NTRS)

    Lowes, Leslie; Lindstrom, Marilyn; Stockman, Stephanie; Scalice, Daniela; Allen, Jaclyn; Tobola, Kay; Klug, Sheri; Harmon, Art

    2004-01-01

    NASA's Solar System Exploration Program is entering an unprecedented period of exploration and discovery. Its goal is to understand the origin and evolution of the solar system and life within it. SSE missions are operating or in development to study the far reaches of our solar system and beyond. These missions proceed in sequence for each body from reconnaissance flybys through orbiters and landers or rovers to sample returns. SSE research programs develop new instruments, analyze mission data or returned samples, and provide experimental or theoretical models to aid in interpretation.

  4. Solar ADEPT: Efficient Solar Energy Systems

    SciTech Connect

    2011-01-01

    Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

  5. Solar system positioning system

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I.; Chui, Talso

    2006-01-01

    Power-rich spacecraft envisioned in Prometheus initiative open up possibilities for long-range high-rate communication. A constellation of spacecraft on orbits several A.U. from the Sun, equipped with laser transponders and precise clocks can be configured to measure their mutual distances to within few cm. High on-board power can create substantial non-inertial contribution to the spacecraft trajectory. We propose to alleviate this contribution by employing secondary ranging to a passive daughter spacecraft. Such constellation can form the basis of it navigation system capable of providing position information anywhere in the soIar system with similar accuracy. Apart from obvious Solar System exploration implications, this system can provide robust reference for GPS and its successors.

  6. Early Solar System hydrothermal activity in chondritic asteroids on 1-10-year timescales.

    PubMed

    Dyl, Kathryn A; Bischoff, Addi; Ziegler, Karen; Young, Edward D; Wimmer, Karl; Bland, Phil A

    2012-11-01

    Chondritic meteorites are considered the most primitive remnants of planetesimals from the early Solar System. As undifferentiated objects, they also display widespread evidence of water-rock interaction on the parent body. Understanding this history has implications for the formation of planetary bodies, the delivery of water to the inner Solar System, and the formation of prebiotic molecules. The timescales of water-rock reactions in these early objects, however, are largely unknown. Here, we report evidence for short-lived water-rock reactions in the highly metamorphosed ordinary chondrite breccia Villalbeto de la Peña (L6). An exotic clast (d = 2cm) has coexisting variations in feldspar composition and oxygen isotope ratios that can only result from hydrothermal conditions. The profiles were modeled at T = 800 °C and P(H(2)O) = 1 bar using modified grain-boundary diffusion parameters for oxygen self-diffusion and reaction rates of NaSiCa(-1)Al(-1) exchange in a fumarole. The geochemical data are consistent with hydrothermal activity on the parent body lasting only 1-10 y. This result has wide-ranging implications for the geological history of chondritic asteroids.

  7. Early Solar System hydrothermal activity in chondritic asteroids on 1–10-year timescales

    PubMed Central

    Dyl, Kathryn A.; Bischoff, Addi; Ziegler, Karen; Young, Edward D.; Wimmer, Karl; Bland, Phil A.

    2012-01-01

    Chondritic meteorites are considered the most primitive remnants of planetesimals from the early Solar System. As undifferentiated objects, they also display widespread evidence of water–rock interaction on the parent body. Understanding this history has implications for the formation of planetary bodies, the delivery of water to the inner Solar System, and the formation of prebiotic molecules. The timescales of water–rock reactions in these early objects, however, are largely unknown. Here, we report evidence for short-lived water–rock reactions in the highly metamorphosed ordinary chondrite breccia Villalbeto de la Peña (L6). An exotic clast (d = 2cm) has coexisting variations in feldspar composition and oxygen isotope ratios that can only result from hydrothermal conditions. The profiles were modeled at T = 800 °C and P(H2O) = 1 bar using modified grain-boundary diffusion parameters for oxygen self-diffusion and reaction rates of NaSiCa-1Al-1 exchange in a fumarole. The geochemical data are consistent with hydrothermal activity on the parent body lasting only 1–10 y. This result has wide-ranging implications for the geological history of chondritic asteroids. PMID:23093668

  8. Sustainable Buildings. Using Active Solar Power

    SciTech Connect

    Sharp, M. Keith; Barnett, Russell

    2015-04-20

    The objective of this project is to promote awareness and knowledge of active solar energy technologies by installing and monitoring the following demonstration systems in Kentucky: 1) Pool heating system, Churchill Park School, 2) Water heating and daylighting systems, Middletown and Aiken Road Elementary Schools, 3) Photovoltaic street light comparison, Louisville Metro, 4) up to 25 domestic water heating systems across Kentucky. These tasks will be supported by outreach activities, including a solar energy installer training workshop and a Kentucky Solar Energy Conference.

  9. Origins of Solar Activity

    NASA Astrophysics Data System (ADS)

    Rust, David M.

    1996-05-01

    Work under the subject grant began in August 1992, when Mr. J. J. Blanchette began study and data analysis in the area of solar flare research. Mr. Blanchette passed all requirements toward a Ph.D., except for the thesis. Mr. Blanchette worked with the APL Flare Genesis Experiment team to build a balloon-borne solar vector magnetograph. Other work on the magnetograph was partially supported by AFOSR grant F49620-94-1-0079. Mr. Blanchette assisted the Flare Genesis team prepare the telescope and focal plane optical elements for a test flight. He participated in instrument integ ration and in launch preparations for the flight, which took place on January 23, 1994. Mr. Blanchette was awarded a Masters Degree in Astrophysics by the Johns Hopkins University in recognition of his achievements. Mr. Blanchette indicated a desire to suspend work on the Ph.D. degree, and he left the AASERT program on August 31, 1994. Under the guidance of his advisor at JHU/APL, Dr. David M. Rust, Mr. Blanchette gained enough background in solar physics so that he can contribute to observational, analytical, and presentation efforts in solar research. Beginning in August 1995, Mr. Ashok Kumar was supported by the grant. Mr. Kumar demonstrated remarkable theoretical insight into the problems of solar activity. He developed the concept of intrinsic scale magnetic flux ropes in the solar atmosphere and interplanetary space. His model can explain the heating of interplanetary magnetic clouds. Recently, his idea has been extended to explain solar wind heating. If the idea is confirmed by further comparison with observations, it will be a major breakthrough in space physics and it may lead to an explanation for why the solar corona's temperature is over a million degrees.

  10. Experimental investigation on the thermal performance of heat storage walls coupled with active solar systems

    NASA Astrophysics Data System (ADS)

    Zhao, Chunyu; You, Shijun; Zhu, Chunying; Yu, Wei

    2016-02-01

    This paper presents an experimental investigation of the performance of a system combining a low-temperature water wall radiant heating system and phase change energy storage technology with an active solar system. This system uses a thermal storage wall that is designed with multilayer thermal storage plates. The heat storage material is expanded graphite that absorbs a mixture of capric acid and lauric acid. An experiment is performed to study the actual effect. The following are studied under winter conditions: (1) the temperature of the radiation wall surface, (2) the melting status of the thermal storage material in the internal plate, (3) the density of the heat flux, and (4) the temperature distribution of the indoor space. The results reveal that the room temperature is controlled between 16 and 20 °C, and the thermal storage wall meets the heating and temperature requirements. The following are also studied under summer conditions: (1) the internal relationship between the indoor temperature distribution and the heat transfer within the regenerative plates during the day and (2) the relationship between the outlet air temperature and inlet air temperature in the thermal storage wall in cooling mode at night. The results indicate that the indoor temperature is approximately 27 °C, which satisfies the summer air-conditioning requirements.

  11. Reduction, analysis, and properties of electric current systems in solar active regions

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Demoulin, Pascal

    1995-01-01

    The specific attraction and, in large part, the significance of solar magnetograms lie in the fact that they give the most important data on the electric currents and the nonpotentiality of active regions. Using the vector magnetograms from the Marshall Space Flight Center (MSFC), we employ a unique technique in the area of data analysis for resolving the 180 deg ambiguity in order to calculate the spatial structure of the vertical electric current density. The 180 deg ambiguity is resolved by applying concepts from the nonlinear multivariable optimization theory. The technique is shown to be of particular importance in very nonpotential active regions. The characterization of the vertical electric current density for a set of vector magnetograms using this method then gives the spatial scale, locations, and magnitude of these current systems. The method, which employs an intermediate parametric function which covers the magnetogram and which defines the local `preferred' direction, minimizes a specific functional of the observed transverse magnetic field. The specific functional that is successful is the integral of the square of the vertical current density. We find that the vertical electric current densities have common characteristics for the extended bipolar (beta) (gamma) (delta)-regions studied. The largest current systems have j(sub z)'s which maximizes around 30 mA/sq m and have a linear decreasing distribution to a diameter of 30 Mn.

  12. Reduction, Analysis, and Properties of Electric Current Systems in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Demoulin, Pascal

    1995-01-01

    The specific attraction and, in large part, the significance of solar vector magnetograms lie in the fact that they give the most important data on the electric currents and the nonpotentiality of active regions. Using the vector magnetograms from the Marshall Space Flight Center (MSFC), we employ a unique technique in the area of data analysis for resolving the 180 degree ambiguity in order to calculate the spatial structure of the vertical electric current density. The 180 degree ambiguity is resolved by applying concepts from the nonlinear multivariable optimization theory. The technique is shown to be of particular importance in very nonpotential active regions. The characterization of the vertical electric current density for a set of vector magnetograms using this method then gives the spatial scale, locations, and magnitude of these current systems. The method, which employs an intermediate parametric function which covers the magnetogram and which defines the local "preferred" direction, minimizes a specific functional of the observed transverse magnetic field. The specific functional that is successful is the integral of the square of the vertical current density. We find that the vertical electric current densities have common characteristics for the extended bipolar beta gamma delta-regions studied. The largest current systems have j(sub z)'s which maximizes around 30 mA per square meter and have a linear decreasing distribution to a diameter of 30 Mm.

  13. Exploring the Solar System Activities Outline: Hands-On Planetary Science for Formal Education K-14 and Informal Settings

    NASA Technical Reports Server (NTRS)

    Allen, J. S.; Tobola, K. W.; Lindstrom, M. L.

    2003-01-01

    Activities by NASA scientists and teachers focus on integrating Planetary Science activities with existing Earth science, math, and language arts curriculum. The wealth of activities that highlight missions and research pertaining to the exploring the solar system allows educators to choose activities that fit a particular concept or theme within their curriculum. Most of the activities use simple, inexpensive techniques that help students understand the how and why of what scientists are learning about comets, asteroids, meteorites, moons and planets. With these NASA developed activities students experience recent mission information about our solar system such as Mars geology and the search for life using Mars meteorites and robotic data. The Johnson Space Center ARES Education team has compiled a variety of NASA solar system activities to produce an annotated thematic outline useful to classroom educators and informal educators as they teach space science. An important aspect of the outline annotation is that it highlights appropriate science content information and key science and math concepts so educators can easily identify activities that will enhance curriculum development. The outline contains URLs for the activities and NASA educator guides as well as links to NASA mission science and technology. In the informal setting educators can use solar system exploration activities to reinforce learning in association with thematic displays, planetarium programs, youth group gatherings, or community events. Within formal education at the primary level some of the activities are appropriately designed to excite interest and arouse curiosity. Middle school educators will find activities that enhance thematic science and encourage students to think about the scientific process of investigation. Some of the activities offered are appropriate for the upper levels of high school and early college in that they require students to use and analyze data.

  14. Solar activity and the weather

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1973-01-01

    Some evidence that the weather is influenced by solar activity is reviewed. It appears that the solar magnetic sector structure is related to the circulation of the earth's atmosphere during local winter. About 31/2 days after the passage of a sector boundary the maximum effect is seen: apparently the height of all pressure surfaces increases in high latitudes leading to anticyclogenesis, whereas at midlatitudes the height of the pressure surfaces decreases leading to low pressure systems or to deepening of existing systems. This later effect is clearly seen as an increase in the area of the base of air with absolute vorticity exceeding a given threshold. Since the increase of geomagnetic activity generally is small at a sector boundary, it is speculated that geomagnetic activity as such is not the cause of the response to the sector structure, but that both weather and geomagnetic activity are influenced by the same (unknown) mechanism.

  15. Solar activity and the weather

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1974-01-01

    Some new evidence that the weather is influenced by solar activity is reviewed. It appears that the solar magnetic sector structure is related to the circulation of the earth's atmosphere during local winter. About 3 1/2 days after the passage of a sector boundary the maximum effect is seen; apparently the height of all pressure surfaces increases in high latitudes leading to anticyclogenesis, whereas at midlatitudes the height of the pressure surfaces decreases leading to low pressure systems or to deepening of existing systems. This later effect is clearly seen as an increase in the area of the base of air with absolute vorticity exceeding a given threshold. Since the increase of geomagnetic activity generally is small at a sector boundary it is speculated that geomagnetic activity as such is not the cause of the response to the sector structure but that both weather and geomagnetic activity are influenced by the same (unknown) mechanism.

  16. Solar Energy Project, Activities: General Solar Topics.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of activities which introduce students to concepts and issues relating to solar energy. Lessons frequently presented in the context of solar energy as it relates to contemporary energy problems. Each unit presents an introduction; objectives; necessary skills and knowledge; materials; method;…

  17. Performance of active solar space-heating systems, 1980-1981 heating season

    SciTech Connect

    Welch, K.; Kendall, P.; Pakkala, P.; Cramer, M.

    1981-01-01

    Data are provided on 32 solar heating sites in the National Solar Data Network (NSDN). Of these, comprehensive data are included for 14 sites which cover a range of system types and solar applications. A brief description of the remaining sites is included along with system problems experienced which prevented comprehensive seasonal analyses. Tables and discussions of individual site parameters such as collector areas, storage tank sizes, manufacturers, building dimensions, etc. are provided. Tables and summaries of 1980-1981 heating season data are also provided. Analysis results are presented in graphic form to highlight key summary information. Performance indices are graphed for two major groups of collectors - liquid and air. Comparative results of multiple NSDN systems' operation for the 1980-1981 heating season are summarized with discussions of specific cases and conclusions which may be drawn from the data. (LEW)

  18. Homemade Solar Systems

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Through the use of NASA Tech Briefs, Peter Kask, was able to build a solarized domestic hot water system. Also by applying NASA's solar energy design information, he was able to build a swimming pool heating system with minimal outlay for materials.

  19. Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    Klimchuk, James A.; van Driel-Gesztelyi, Lidia; Schrijver, Carolus J.; Melrose, Donald B.; Fletcher, Lyndsay; Gopalswamy, Natchimuthuk; Harrison, Richard A.; Mandrini, Cristina H.; Peter, Hardi; Tsuneta, Saku; Vršnak, Bojan; Wang, Jing-Xiu

    Commission 10 deals with solar activity in all of its forms, ranging from the smallest nanoflares to the largest coronal mass ejections. This report reviews scientific progress over the roughly two-year period ending in the middle of 2008. This has been an exciting time in solar physics, highlighted by the launches of the Hinode and STEREO missions late in 2006. The report is reasonably comprehensive, though it is far from exhaustive. Limited space prevents the inclusion of many significant results. The report is divided into the following sections: Photosphere and chromosphere; Transition region; Corona and coronal heating; Coronal jets; flares; Coronal mass ejection initiation; Global coronal waves and shocks; Coronal dimming; The link between low coronal CME signatures and magnetic clouds; Coronal mass ejections in the heliosphere; and Coronal mass ejections and space weather. Primary authorship is indicated at the beginning of each section.

  20. Solar Electric System

    NASA Astrophysics Data System (ADS)

    1987-01-01

    Heat Pipe Technology, Inc. undertook the development of a PV system that could bring solar electricity to the individual home at reasonable cost. His system employs high efficiency PV modules plus a set of polished reflectors that concentrate the solar energy and enhance the output of the modules. Dinh incorporated a sun tracking system derived from space tracking technology. It automatically follows the sun throughout the day and turns the modules so that they get maximum exposure to the solar radiation, further enhancing the system efficiency.

  1. REDISTRIBUTION OF ALKALINE ELEMENTS IN ASSOCIATION WITH AQUEOUS ACTIVITY IN THE EARLY SOLAR SYSTEM

    SciTech Connect

    Hidaka, Hiroshi; Higuchi, Takuya; Yoneda, Shigekazu E-mail: s-yoneda@kahaku.go.jp

    2015-12-10

    It is known that the Sayama meteorite (CM2) shows an extensive signature for aqueous alteration on the meteorite parent body, and that most of the primary minerals in the chondrules are replaced with phyllosilicates as the result of the aqueous alteration. In this paper, it is confirmed from the observation of two-dimensional Raman spectra that a part of olivine in a chondrule collected from the Sayama chondrite is serperntinized. Ion microprobe analysis of the chondrule showed that alkaline elements such as Rb and Cs are heterogeneously redistributed in the chondrule. The result of higher Rb and Cs contents in serpentinized phases in the chondrule rather than in other parts suggested the selective adsorption of alkaline elements into the serpentine in association with early aqueous activity on the meteorite parent body. Furthermore Ba isotopic analysis provided variations of {sup 135}Ba/{sup 138}Ba and {sup 137}Ba/{sup 138}Ba in the chondrule. This result was consistent with our previous isotopic data suggesting isotopic evidence for the existence of the presently extinct nuclide {sup 135}Cs in the Sayama meteorite, but the abundance of {sup 135}Cs in the solar system remains unclear because of large analytical uncertainties.

  2. Residential Solar Systems.

    ERIC Educational Resources Information Center

    Fulkerson, Dan

    This publication contains student and teacher instructional materials for a course in residential solar systems. The text is designed either as a basic solar course or as a supplement to extend student skills in areas such as architectural drafting, air conditioning and refrigeration, and plumbing. The materials are presented in four units…

  3. Solar energy collection system

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K. (Inventor)

    1977-01-01

    An improved solar energy collection system, having enhanced energy collection and conversion capabilities, is delineated. The system is characterized by a plurality of receivers suspended above a heliostat field comprising a multiplicity of reflector surfaces, each being adapted to direct a concentrated beam of solar energy to illuminate a target surface for a given receiver. A magnitude of efficiency, suitable for effectively competing with systems employed in collecting and converting energy extracted from fossil fuels, is indicated.

  4. Solar Energy: Solar System Design Fundamentals.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar system design fundamentals is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy…

  5. Shock waves in the solar system.

    NASA Technical Reports Server (NTRS)

    Spreiter, J. R.

    1972-01-01

    Review of the role of gasdynamic processes involving shock waves in the transfer of solar material and energy to the earth and elsewhere in the solar system. The role of shock waves in maintaining the high temperature of the solar corona and in establishing the steady-state solar wind is discussed. An approximate hydromagnetic theory is developed to explain the flow of a supersonic solar wind past planets and the moon. Data concerning the passage of interplanetary shock waves and the ability of a solar flare to produce such a wave are reviewed, and some terrestrial consequences of solar activity are cited.

  6. Fragmentary Solar System History

    NASA Technical Reports Server (NTRS)

    Marti, Kurt

    1997-01-01

    The objective of this research is an improved understanding of the early solar system environment and of the processes involved in the nebula and in the evolution of solid bodies. We present results of our studies on the isotopic signatures in selected primitive solar system objects and on the evaluation of the cosmic ray records and of inferred collisional events. Furthermore, we report data of trapped martian atmospheric gases in meteorites and the inferred early evolution of Mars' atmosphere.

  7. The new solar system

    SciTech Connect

    Beatty, J.K.; Oleary, B.; Chaikin, A.

    1981-01-01

    Current knowledge about the solar system is reviewed, with particular emphasis on the results of recent space exploration. Among the many topics discussed are the sun, magnetospheres and the interplanetary medium, the surfaces of the terrestrial bodies, the moon, Mars, asteroids, Jupiter and Saturn, planetary rings, the Galilean satellites, Titan, the outer solar system, comets, and meteorites. Particular attention is given to the Voyager 1 and 2 flybys of Jupiter and Saturn. The work includes many illustrative photographs of the celestial bodies discussed.

  8. Development of a system for accurate forecasting of solar activity. Final report, 15 Oct 87-14 Oct 90

    SciTech Connect

    Sofia, S.

    1991-07-11

    This is a continuing effort which has empirical, theoretical and experimental components related to the physics of solar activity. The empirical forecasting scheme, developed under this grant, has been very successful for solar cycle 22. Important elements of a highly sophisticated theoretical scheme to model the solar activity cycle have been produced and tested. The Solar Disk Sextant experiment is progressing well. In addition to the Principal Investigator, this work involves five students and two research associates.

  9. The New Solar System

    NASA Astrophysics Data System (ADS)

    Beatty, J. Kelly; Collins Petersen, Carolyn; Chaikin, Andrew

    1999-01-01

    As the definitive guide for the armchair astronomer, The New Solar System has established itself as the leading book on planetary science and solar system studies. Incorporating the latest knowledge of the solar system, a distinguished team of researchers, many of them Principal Investigators on NASA missions, explain the solar system with expert ease. The completely-revised text includes the most recent findings on asteroids, comets, the Sun, and our neighboring planets. The book examines the latest research and thinking about the solar system; looks at how the Sun and planets formed; and discusses our search for other planetary systems and the search for life in the solar system. In full-color and heavily-illustrated, the book contains more than 500 photographs, portrayals, and diagrams. An extensive set of tables with the latest characteristics of the planets, their moon and ring systems, comets, asteroids, meteorites, and interplanetary space missions complete the text. New to this edition are descriptions of collisions in the solar system, full scientific results from Galileo's mission to Jupiter and its moons, and the Mars Pathfinder mission. For the curious observer as well as the student of planetary science, this book will be an important library acquisition. J. Kelly Beatty is the senior editor of Sky & Telescope, where for more than twenty years he has reported the latest in planetary science. A renowned science writer, he was among the first journalists to gain access to the Soviet space program. Asteroid 2925 Beatty was named on the occasion of his marriage in 1983. Carolyn Collins Petersen is an award-winning science writer and co-author of Hubble Vision (Cambridge 1995). She has also written planetarium programs seen at hundreds of facilities around the world. Andrew L. Chaikin is a Boston-based science writer. He served as a research geologist at the Smithsonian Institution's Center for Earth and Planetary Studies. He is a contributing editor to

  10. Discovering the Solar System

    NASA Astrophysics Data System (ADS)

    Jones, Barrie W.

    1999-04-01

    Discovering the Solar System Barrie W. Jones The Open University, Milton Keynes, UK Discovering the Solar System is a comprehensive, up-to-date account of the Solar System and of the ways in which the various bodies have been investigated and modelled. The approach is thematic, with sequences of chapters on the interiors of planetary bodies, on their surfaces, and on their atmospheres. Within each sequence there is a chapter on general principles and processes followed by one or two chapters on specific bodies. There is also an introductory chapter, a chapter on the origin of the Solar System, and a chapter on asteroids, comets and meteorites. Liberally illustrated with diagrams, black and white photographs and colour plates, Discovering the Solar System also features: * tables of essential data * question and answers within the text * end of section review questions with answers and comments Discovering the Solar System is essential reading for all undergraduate students for whom astronomy or planetary science are components of their degrees, and for those at a more advanced level approaching the subject for the first time. It will also be of great interest to non-specialists with a keen interest in astronomy. A small amount of scientific knowledge is assumed plus familiarity with basic algebra and graphs. There is no calculus. Praise for this book includes: ".certainly qualifies as an authoritative text. The author clearly has an encyclopedic knowledge of the subject." Meteorics and Planetary Science ".liberally doused with relevant graphs, tables, and black and white figures of good quality." EOS, Transactions of the American Geophysical Union ".one of the best books on the Solar System I have seen. The general accuracy and quality of the content is excellent." Journal of the British Astronomical Association

  11. GLAST Solar System Science

    SciTech Connect

    Share, Gerald H.; Murphy, Ronald J.

    2007-07-12

    We briefly discuss GLAST's capabilities for observing high-energy radiation from various energetic phenomena in our solar system. These emissions include: bremsstrahlung, nuclear-line and pion-decay gamma-radiation, and neutrons from solar flares; bremsstrahlung and pion-decay gamma radiation from cosmic-ray interactions with the Sun, the Moon, and the Earth's atmosphere; and inverse Compton radiation from cosmic-ray electron interactions with sunlight.

  12. Solar system to scale

    NASA Astrophysics Data System (ADS)

    Gerwig López, Susanne

    2016-04-01

    One of the most important successes in astronomical observations has been to determine the limit of the Solar System. It is said that the first man able to measure the distance Earth-Sun with only a very slight mistake, in the second century BC, was the wise Greek man Aristarco de Samos. Thanks to Newtońs law of universal gravitation, it was possible to measure, with a little margin of error, the distances between the Sun and the planets. Twelve-year old students are very interested in everything related to the universe. However, it seems too difficult to imagine and understand the real distances among the different celestial bodies. To learn the differences among the inner and outer planets and how far away the outer ones are, I have considered to make my pupils work on the sizes and the distances in our solar system constructing it to scale. The purpose is to reproduce our solar system to scale on a cardboard. The procedure is very easy and simple. Students of first year of ESO (12 year-old) receive the instructions in a sheet of paper (things they need: a black cardboard, a pair of scissors, colored pencils, a ruler, adhesive tape, glue, the photocopies of the planets and satellites, the measurements they have to use). In another photocopy they get the pictures of the edge of the sun, the planets, dwarf planets and some satellites, which they have to color, cut and stick on the cardboard. This activity is planned for both Spanish and bilingual learning students as a science project. Depending on the group, they will receive these instructions in Spanish or in English. When the time is over, the students bring their works on their cardboard to the class. They obtain a final mark: passing, good or excellent, depending on the accuracy of the measurements, the position of all the celestial bodies, the asteroids belts, personal contributions, etc. If any of the students has not followed the instructions they get the chance to remake it again properly, in order not

  13. Gap between active and passive solar heating

    SciTech Connect

    Balcomb, J.D.

    1985-01-01

    The gap between active and passive solar could hardly be wider. The reasons for this are discussed and advantages to narrowing the gap are analyzed. Ten years of experience in both active and passive systems are reviewed, including costs, frequent problems, performance prediction, performance modeling, monitoring, and cooling concerns. Trends are analyzed, both for solar space heating and for service water heating. A tendency for the active and passive technologies to be converging is observed. Several recommendations for narrowing the gap are presented.

  14. Solar energy collection system

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B. (Inventor)

    1979-01-01

    A fixed, linear, ground-based primary reflector having an extended curved sawtooth-contoured surface covered with a metalized polymeric reflecting material, reflects solar energy to a movably supported collector that is kept at the concentrated line focus reflector primary. The primary reflector may be constructed by a process utilizing well known freeway paving machinery. The solar energy absorber is preferably a fluid transporting pipe. Efficient utilization leading to high temperatures from the reflected solar energy is obtained by cylindrical shaped secondary reflectors that direct off-angle energy to the absorber pipe. A seriatim arrangement of cylindrical secondary reflector stages and spot-forming reflector stages produces a high temperature solar energy collection system of greater efficiency.

  15. Solar-heating system

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Report describes solar modular domestic-hot-water and space-heating system intended for use in small single family dwelling where roof-mounted collectors are not feasible. Contents include design, performance, and hardware specifications for assembly, installation, operation, and maintenance of system.

  16. Baby Solar System

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Grady, Carol

    2012-01-01

    What did our solar system look like in its infancy,...... when the planets were forming? We cannot travel back in time to take an image of the early solar system, but in principle we can have the next best thing: images of infant planetary systems around Sun-like stars with ages of 1 to 5 million years, the time we think it took for the giant planets to form. Infant exoplanetary systems are critically important because they can help us understand how our solar system fits within the context of planet formation in general. More than 80% of stars are born with gas- and dust-rich disks, and thus have the potential to form planets. Through many methods we have identified more than 760 planetary systems around middle-aged stars like the Sun, but many of these have architectures that look nothing like our solar system. Young planetary systems are important missing links between various endpoints and may help us understand how and when these differences emerge. Well-known star-forming regions in Taurus, Scorpius. and Orion contain stars that could have infant planetary systems. But these stars are much more distant than our nearest neighbors such as Alpha Centauri or Sirius, making it extremely challenging to produce clear images of systems that can reveal signs of recent planet formation, let alone reveal the planets themselves. Recently, a star with the unassuming name LkCa 15 may have given us our first detailed "baby picture" of a young planetary system similar to our solar system. Located about 450 light-years away in the Taurus starforming region. LkCa 15 has a mass comparable to the Sun (0.97 solar mass) and an age of l to 5 million years, comparable to the time at which Saturn and perhaps Jupiter formed. The star is surrounded by a gas-rich disk similar in structure to the one in our solar system from which the planets formed. With new technologies and observing strategies, we have confirmed suspicions that LkCa 15's disk harbors a young planetary system.

  17. Solar system exploration

    NASA Astrophysics Data System (ADS)

    Briggs, Geoffrey A.; Quaide, William L.

    Two fundamental goals lie at the heart of U.S. solar system exploration efforts: first, to characterize the evolution of the solar system; second, to understand the processes which produced life. Progress in planetary science is traced from Newton's definition of the principles of gravitation through a variety of NASA planetary probes in orbit, on other planets and traveling beyond the solar system. It is noted that most of the planetary data collected by space probes are always eventually applied to improving the understanding of the earth, moon, Venus and Mars, the planets of greatest interest to humans. Significant data gathered by the Mariner, Viking, Apollo, Pioneer, and Voyager spacecraft are summarized, along with the required mission support capabilities and mission profiles. Proposed and planned future missions to Jupiter, Saturn, Titan, the asteroids and for a comet rendzvous are described.

  18. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    SciTech Connect

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  19. Solar System Dynamics

    NASA Technical Reports Server (NTRS)

    Wisdom, Jack

    2002-01-01

    In these 18 years, the research has touched every major dynamical problem in the solar system, including: the effect of chaotic zones on the distribution of asteroids, the delivery of meteorites along chaotic pathways, the chaotic motion of Pluto, the chaotic motion of the outer planets and that of the whole solar system, the delivery of short period comets from the Kuiper belt, the tidal evolution of the Uranian arid Galilean satellites, the chaotic tumbling of Hyperion and other irregular satellites, the large chaotic variations of the obliquity of Mars, the evolution of the Earth-Moon system, and the resonant core- mantle dynamics of Earth and Venus. It has introduced new analytical and numerical tools that are in widespread use. Today, nearly every long-term integration of our solar system, its subsystems, and other solar systems uses algorithms that was invented. This research has all been primarily Supported by this sequence of PGG NASA grants. During this period published major investigations of tidal evolution of the Earth-Moon system and of the passage of the Earth and Venus through non-linear core-mantle resonances were completed. It has published a major innovation in symplectic algorithms: the symplectic corrector. A paper was completed on non-perturbative hydrostatic equilibrium.

  20. Systemic administration of the apocarotenoid bixin protects skin against solar UV-induced damage through activation of NRF2.

    PubMed

    Tao, Shasha; Park, Sophia L; Rojo de la Vega, Montserrat; Zhang, Donna D; Wondrak, Georg T

    2015-12-01

    Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photodamage and carcinogenesis, and an urgent need exists for improved molecular photoprotective strategies different from (or synergistic with) photon absorption. Recent studies suggest a photoprotective role of cutaneous gene expression orchestrated by the transcription factor NRF2 (nuclear factor-E2-related factor 2). Here we have explored the molecular mechanism underlying carotenoid-based systemic skin photoprotection in SKH-1 mice and provide genetic evidence that photoprotection achieved by the FDA-approved apocarotenoid and food additive bixin depends on NRF2 activation. Bixin activates NRF2 through the critical Cys-151 sensor residue in KEAP1, orchestrating a broad cytoprotective response in cultured human keratinocytes as revealed by antioxidant gene expression array analysis. Following dose optimization studies for cutaneous NRF2 activation by systemic administration of bixin, feasibility of bixin-based suppression of acute cutaneous photodamage from solar UV exposure was investigated in Nrf2(+/+) versus Nrf2(-/-) SKH-1 mice. Systemic administration of bixin suppressed skin photodamage, attenuating epidermal oxidative DNA damage and inflammatory responses in Nrf2(+/+) but not in Nrf2(-/-) mice, confirming the NRF2-dependence of bixin-based cytoprotection. Taken together, these data demonstrate feasibility of achieving NRF2-dependent cutaneous photoprotection by systemic administration of the apocarotenoid bixin, a natural food additive consumed worldwide.

  1. Primitive Solar System Objects

    NASA Astrophysics Data System (ADS)

    Jewitt, David

    1999-10-01

    Some of the most fundamental and topical questions in astronomy concern the origin and evolution of planetary systems. In the solar system, these questions are most directly addressed through observations of chemically and physically primitive bodies in which a record of the initial conditions may be preserved. The most primitive materials in the solar system reside near its outer edge, in a trans-Neptunian ring known as the Kuiper Belt and in a surrounding spherical cloud first postulated by Oort. These regions supply comets to the inner solar system and, in the case of the Kuiper Belt, preserve evidence of dynamical processes operative in the first 100 million years after formation. The Kuiper Belt is also a source of collisionally produced dust and may be analogous to the dusty rings observed encircling a number of nearby main-sequence stars. I will review the currently known properties of these primitive objects, and discuss how ALMA can contribute to our understanding of the early solar system.

  2. Solar activity secular cycles

    NASA Astrophysics Data System (ADS)

    Kramynin, A. P.; Mordvinov, A. V.

    2013-12-01

    Long-term variations in solar activity secular cycles have been studied using a method for the expansion of reconstructed sunspot number series Sn( t) for 11400 years in terms of natural orthogonal functions. It has been established that three expansion components describe more than 98% of all Sn( t) variations. In this case, the contribution of the first expansion component is about 92%. The averaged form of the 88year secular cycle has been determined based on the form of the first expansion coordinate function. The quasi-periodicities modulating the secular cycle have been revealed based on the time function conjugate to the first function. The quasi-periodicities modulating the secular cycle coincide with those observed in the Sn( t) series spectrum. A change in the secular cycle form and the time variations in this form are described by the second and third expansion components, the contributions of which are about 4 and 2%, respectively. The variations in the steepness of the secular cycle branches are more pronounced in the 200-year cycle, and the secular cycle amplitude varies more evidently in the 2300-year cycle.

  3. Solar heating system

    SciTech Connect

    Larkin, W.J.

    1984-01-31

    A solar heating system is provided incorporating the flat plate collector and storage tanks substantially in the same unit and avoiding the usual reverse-siphon problems that are inherent in the nature of a passive integral system of this type by a piping system wherein heating and elevation of certain vertical components of connecting piping reverses, or almost reverses, the usual net pressure head which is responsible for creating the reverse siphon.

  4. Storage systems for solar thermal power

    NASA Technical Reports Server (NTRS)

    Calogeras, J. E.; Gordon, L. H.

    1978-01-01

    The development status is reviewed of some thermal energy storage technologies specifically oriented towards providing diurnal heat storage for solar central power systems and solar total energy systems. These technologies include sensible heat storage in caverns and latent heat storage using both active and passive heat exchange processes. In addition, selected thermal storage concepts which appear promising to a variety of advanced solar thermal system applications are discussed.

  5. Actual versus predicted performance of an active solar heating system - A comparison using FCHART 4.0

    NASA Astrophysics Data System (ADS)

    Wetzel, P. E.

    1981-11-01

    The performance of an active solar heating system added to a house in Denver, CO was compared with predictions made by the FCHART 4.0 computer program. The house featured 43.23 sq m of collectors with an ethylene-glycol/water heat transfer fluid, and a 3.23 cu m storage tank. The house hot water was preheated in the storage tank, and home space heat was furnished whenever the storage water was above 32 C. Actual meteorological and heating demand data were used for the comparison, rather than long-term averages. Although monthly predictions by the FCHART program were found to diverge from measured data, the annual demand and supply predictions provided a good fit, i.e. within 9%, and were within 1% of the measured solar energy contributed to storage.

  6. The New Solar System

    ERIC Educational Resources Information Center

    Wilkinson, John

    2009-01-01

    Since 2006, the details of bodies making up our solar system have been revised. This was largely as a result of new discoveries of a number of planet-like objects beyond the orbit of Pluto. The International Astronomical Union redefined what constituted a planet and established two new classifications--dwarf planets and plutoids. As a result, the…

  7. Solar System Remote Sensing

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This volume contains abstracts that have been accepted for presentation at the symposium on Solar System Remote Sensing, September 20-21, 2002, in Pittsburgh, Pennsylvania. Administration and publications support for this meeting were provided by the staff of the Publications and Program Services Departments at the Lunar and Planetary Institute.

  8. Probing the Solar System

    ERIC Educational Resources Information Center

    Wilkinson, John

    2013-01-01

    Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…

  9. Solar activity and the weather

    NASA Technical Reports Server (NTRS)

    Wilcox, J. M.

    1975-01-01

    The attempts during the past century to establish a connection between solar activity and the weather are discussed; some critical remarks about the quality of much of the literature in this field are given. Several recent investigations are summarized. Use of the solar/interplanetary magnetic sector structure in future investigations is suggested to add an element of cohesiveness and interaction to these investigations.

  10. Solar activity and the weather

    NASA Technical Reports Server (NTRS)

    Wilcox, J. M.

    1974-01-01

    The attempts during the past century to establish a connection between solar activity and the weather are discussed. Some critical remarks about the quality of much of the literature in this field are given. Several recent investigations are summarized. Use of the solar interplanetary magnetic sector structure in future investigations is suggested to perhaps add an element of cohesiveness and interaction to these investigations.

  11. Solar activity and the weather

    NASA Technical Reports Server (NTRS)

    Wilcox, J. M.

    1975-01-01

    Attempts during the past century to establish a connection between solar activity and the weather are discussed. Some critical remarks about the quality of much of the literature in this field are given, and several recent investigations are summarized. Use of the solar-interplanetary magnetic sector structure in future investigations may add an element of cohesiveness and interaction to these investigations.

  12. Solar activity and myocardial infarction.

    PubMed

    Szczeklik, E; Mergentaler, J; Kotlarek-Haus, S; Kuliszkiewicz-Janus, M; Kucharczyk, J; Janus, W

    1983-01-01

    The correlation between the incidence of myocardial infarction, sudden cardiac death, the solar activity and geomagnetism in the period 1969-1976 was studied, basing on Wrocław hospitals material registered according to WHO standards; sudden death was assumed when a person died within 24 hours after the onset of the disease. The highest number of infarctions and sudden deaths was detected for 1975, which coincided with the lowest solar activity, and the lowest one for the years 1969-1970 coinciding with the highest solar activity. Such an inverse, statistically significant correlation was not found to exist between the studied biological phenomena and geomagnetism. PMID:6851574

  13. Performance of an active/passive hybrid solar system utilizing vapor transport

    SciTech Connect

    Hedstrom, J.C.

    1984-01-01

    Vapor-phase heat-transport systems are being tested in two of the passive test cells at Los Alamos. The systems consist of an active fin-and-tube collector and a condenser inside a water storage tank. The refrigerant, R-11, can be returned to the collector with a pump or with a self-pumping scheme. A computer model was developed to predict the behavior of the system, after which the computer was used to predict the annual performance of these systems in five cities. The report compares the measured and the predicted results as well as the system's sensitivity to several parameters.

  14. Outer Solar System Nomenclature

    NASA Technical Reports Server (NTRS)

    Owen, Tobias C.; Grant, John (Technical Monitor)

    2003-01-01

    This grant has supported work by T. Owen and B. A. Smith on planetary and satellite nomenclature, carried out under the general auspices of the International Astronomical Union (IAU). The IAU maintains a Working Group on Planetary and Satellite Nomenclature (WGPSN) whose current chair is Prof.Kaare Aksnes of the Rosseland Institute for Theoretical Astrophysics in Oslo, Norway. Both Owen and Smith are members of the WGPSN; Owen as chair of the Outer Solar System Task Group, and Smith as chair of the Mars Task Group. The major activity during the last grant period (2002) was the approval of several new names for features on Mars by Smith's group and features on Jovian satellites plus new names for satellites of Jupiter, Saturn and Uranus by Owen's group. Much of this work was accomplished by e-mail exchanges, but the new nomenclature was formally discussed and approved at a meeting of the WGPSN held in conjunction with the Division for Planetary Sciences meeting in Birmingham, Alabama in October 2002.

  15. NASA's Solar System Exploration Program

    NASA Technical Reports Server (NTRS)

    Robinson, James

    2005-01-01

    A viewgraph presentation describing NASA's Solar System Exploration Program is shown. The topics include: 1) Solar System Exploration with Highlights and Status of Programs; 2) Technology Drivers and Plans; and 3) Summary

  16. Performance of active solar space-cooling systems: The 1980 cooling season

    NASA Astrophysics Data System (ADS)

    Blum, D.; Frock, S.; Logee, T.; Missal, D.; Wetzel, P.

    1980-12-01

    Solar cooling by an absorption chiller is not a cost effective method to use solar heat. This statement is substantiated by careful analysis of each subsystem and equipment component. Good designs and operating procedures are identified. The problems which reduce cost effectiveness are pointed out. There are specific suggestions for improvements. Finally, there is a comparison of solar cooling by absorption chilling and using photovoltaic cells.

  17. Solar activity over different timescales

    NASA Astrophysics Data System (ADS)

    Obridko, Vladimir; Nagovitsyn, Yuri

    The report deals with the “General History of the Sun” (multi-scale description of the long-term behavior of solar activity): the possibility of reconstruction. Time scales: • 100-150 years - the Solar Service. • 400 - instrumental observations. • 1000-2000 years - indirect data (polar auroras, sunspots seen with the naked eye). • Over-millennial scale (Holocene) -14С (10Be) Overview and comparison of data sets. General approaches to the problem of reconstruction of solar activity indices on a large timescale. North-South asymmetry of the sunspot formation activity. 200-year cycle over the “evolution timescales”.The relative contribution of the large-scale and low-latitude. components of the solar magnetic field to the general geomagnetic activity. “Large-scale” and low-latitude sources of geomagnetic disturbances.

  18. Meteorites and the early solar system

    SciTech Connect

    Kerridge, J.F.; Matthews, M.S.

    1988-01-01

    The present work discusses topics in the source regions for meteorites, their secondary processing, irradiation effects on meteorites, solar system chronology, the early solar system, the chemistry of chondrites and the early solar system, magnetic fields in the early solar system, the nature of chondrules, micrometeorites, inhomogeneity of the nebula, the survival of presolar material in meteorites, nucleosynthesis, and the relationship between extinct radionuclides and nucleocosmochronology. Attention is given to igneous activity in the early solar system, principles of radiometric aging, the cosmochemical classification of the elements, highly labile elements, the potential significance of pristine material, the astrophysical implications of presolar grains, boundary conditions for the origin of the solar system, and iodine-xenon dating.

  19. Solar System Voyage

    NASA Astrophysics Data System (ADS)

    Brunier, Serge

    2002-11-01

    In the last few decades, the exploration of our solar system has revealed fascinating details about the worlds that lie beyond our Earth. This lavishly illustrated book invites the reader on a journey through the solar system. After locating our planetary system in the Universe, Brunier describes the Sun and its planets, the large satellites, asteroids, and comets. Photographs and information taken from the latest space missions allow readers to experience spectacular scenes: the lunar plains scarred by asteroid impacts, the frozen deserts of Mars and Europa, the continuously erupting volcanoes of Io and the giant geysers of Triton, the rings of Saturn and the clouds of Venus and Titan, and the powerful crash of the comet Shoemaker-Levy into Jupiter. Inspired by the extraordinary photographs and incisive text, readers of Solar System Voyage will gain a greater appreciation of the hospitable planet we call home. Serge Brunier is chief editor of the journal Ciel et Espace, a photojournalist, and the author of many nonfiction books aimed at both specialists and the general public. His previous books include Space Odyssey (Cambridge, 2002), Glorious Eclipses with Jean-Pierre Luminet (Cambridge, 2000), and Majestic Universe (Cambridge, 1999).

  20. Digital solar system geology

    NASA Technical Reports Server (NTRS)

    Batson, R. M.; Kozak, R. C.; Isbell, Nancy K.

    1991-01-01

    All available synoptic maps of the solid-surface bodies of the Solar System were digitized for presentation in the planned Atlas of the Solar System by Greeley and Batson. Since the last report (Batson et al., 1990), preliminary Uranian satellite maps were replaced with improved versions, Galilean satellite geology was simplified and digitized, structure was added to many maps, and the maps were converted to a standard format, with corresponding standing colors for the mapped units. Following these changes, the maps were re-reviewed by their authors and are now undergoing final editing before preparation for publication. In some cases (for Mercury, Venus, and Mars), more detailed maps were digitized and then simplified for the Atlas. Other detailed maps are planned to be digitized in the coming year for the Moon and the Galilean satellites. For most of the remaining bodies such as the Uranian satellites, the current digitized versions contain virtually all the detail that can be mapped given the available data; those versions will be unchanged for the Atlas. These digital geologic maps are archived at the digital scale of 1/16 degree/ pixel, in sinusoidal format. The availability of geology of the Solar System in a digital database will facilitate comparisons and integration with other data: digitized lunar geologic maps have already been used in a comparison with Galileo SSI observations of the Moon.

  1. Geologic exploration of solar system

    SciTech Connect

    Wood, C.A.

    1987-11-01

    The processes that must have operated on the early Earth have been deduced from evidence from ancient surfaces of the Moon and planets. In particular, such comparative studies have demonstrated that only two geologic processes have been widespread throughout the history of the solar system: impact cratering and volcanism. Impact craters have formed throughout solar system history, indeed the planets themselves were formed by the accumulation of millions of smaller planetesimals, each of which formed an impact crater. Earth could not have escaped the intense bombardment that churned the surfaces of Mars, Mercury, and the Moon. The impact cratering rate dramatically declined about 3.9 billion years ago, but craters 10 km across still form on the Earth on the average of one every 140,000 years, and the 1.5-km wide Meteor Crater in Arizona formed only about 25,000 years ago. Volcanic flows and cones have been observed on nearly all planets and moons in the solar system; the variety and duration of volcanism are directly related to planet mass. Thus, a relatively large planet like the Earth has a wide range of volcanic morphologies and compositions, with activity continuing throughout Earth history. In contrast, the smaller Moon produced a narrow compositional range of basaltic lava flows, with most of the lavas having erupted about 3 billion years ago. Water and sulfur volcanism have also been discovered on the cold satellites of the outer solar system, thus expanding their terrestrial concept of volcanism. Many other processes and materials exist in the solar system, but the Earth remains unique in its richness of resources to support humans. Discovery and exploitation of extraterrestrial resources are beginning and must be greatly increased to prepare for their future as a space-faring race.

  2. Solar Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  3. Solar actuated drain system

    SciTech Connect

    Sarver, G. E.; Worstell, B. W.

    1985-04-30

    A temperature actuated drain system is provided that comprises a siphon that has an inlet end for immersing in a pool of water to be drained from a roof surface and a discharge end communicating with a pressure-responsive one-way valve. A solar actuated enclosed chamber that contains a solar heat energy collector is located on the roof surface and is in open communication with the siphon by means of a tubular member that has its inlet end positioned closely adjacent the bottom of the interior of the chamber. The arrangement causes any appreciable amounts of water that accumulate within the chamber to be discharged from the chamber during the pumping action created by the heating and cooling of air within the chamber.

  4. Solar system plasma waves

    NASA Technical Reports Server (NTRS)

    Gurnett, Donald A.

    1995-01-01

    An overview is given of spacecraft observations of plasma waves in the solar system. In situ measurements of plasma phenomena have now been obtained at all of the planets except Mercury and Pluto, and in the interplanetary medium at heliocentric radial distances ranging from 0.29 to 58 AU. To illustrate the range of phenomena involved, we discuss plasma waves in three regions of physical interest: (1) planetary radiation belts, (2) planetary auroral acceleration regions and (3) the solar wind. In each region we describe examples of plasma waves that are of some importance, either due to the role they play in determining the physical properties of the plasma, or to the unique mechanism involved in their generation.

  5. Solar system exploration

    NASA Technical Reports Server (NTRS)

    Chapman, Clark R.; Ramlose, Terri (Editor)

    1989-01-01

    The goal of planetary exploration is to understand the nature and development of the planets, as illustrated by pictures from the first two decades of spacecraft missions and by the imaginations of space artists. Planets, comets, asteroids, and moons are studied to discover the reasons for their similarities and differences and to find clues that contain information about the primordial process of planet origins. The scientific goals established by the National Academy of Sciences as the foundation of NASA's Solar System Exploration Program are covered: to determine the nature of the planetary system, to understand its origin and evolution, the development of life on Earth, and the principles that shape present day Earth.

  6. Advanced Solar Power Systems

    NASA Technical Reports Server (NTRS)

    Atkinson, J. H.; Hobgood, J. M.

    1984-01-01

    The Advanced Solar Power System (ASPS) concentrator uses a technically sophisticated design and extensive tooling to produce very efficient (80 to 90%) and versatile energy supply equipment which is inexpensive to manufacture and requires little maintenance. The advanced optical design has two 10th order, generalized aspheric surfaces in a Cassegrainian configuration which gives outstanding performance and is relatively insensitive to temperature changes and wind loading. Manufacturing tolerances also have been achieved. The key to the ASPS is the direct absorption of concentrated sunlight in the working fluid by radiative transfers in a black body cavity. The basic ASPS design concepts, efficiency, optical system, and tracking and focusing controls are described.

  7. Simulations of Solar AO Systems

    NASA Astrophysics Data System (ADS)

    Sridharan, R.; Bayanna, A. Raja; Venkatakrishnan, P.

    In this paper, first we compare the two kinds of algorithms that are being used in solar AO systems to sense a distorted wave-front through simulations. Then, we comment on the various issues related to solar AO systems and describe solar features that can be studied using AO as a tool. Then we briefly describe the laboratory model of AO that is being built at the Udaipur Solar Observatory (USO), India.

  8. Terrestrial solar thermionic energy conversion systems concept

    NASA Technical Reports Server (NTRS)

    Shimada, K.; Swerdling, M.

    1975-01-01

    Results obtained from studies of a (1) solar concentrator, (2) solar energy receiver - thermionic converter system, and (3) solar thermionic topping system are described. Peripheral subsystems, which are required for any solar energy conversion system, are also discussed.

  9. Solar thermal power system

    DOEpatents

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  10. Prediciting Solar Activity: Today, Tomorrow, Next Year

    NASA Technical Reports Server (NTRS)

    Pesnell, William Dean

    2008-01-01

    Fleets of satellites circle the Earth collecting science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to space weather effects. Predictions of drag on LEO spacecraft are one of the most important. Launching a satellite with less fuel can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory. Energetic events at the Sun can produce crippling radiation storms. Predicting those events that will affect our assets in space includes a solar prediction and how the radiation will propagate through the solar system. I will talk our need for solar activity predictions and anticipate how those predictions could be made more accurate in the future.

  11. Volcanoes of the Solar System

    NASA Astrophysics Data System (ADS)

    Frankel, Charles

    1996-09-01

    Nothing can be more breathtaking than the spectacle of a volcano erupting. Space-age lunar and planetary missions offer us an unprecedented perspective on volcanism. Starting with the Earth, Volcanoes of the Solar System takes the reader on a guided tour of the terrestrial planets and moons and their volcanic features. We see lunar lava fields through the eyes of the Apollo astronauts, and take an imaginary hike up the Martian slopes of Olympus Mons--the tallest volcano in the solar system. Complemented by over 150 photographs, this comprehensive and lucid account of volcanoes describes the most recent data on the unique and varied volcanic features of Venus and updates our knowledge on the prodigiously active volcanoes of Io. A member of the Association of European Volcanologists, Charles Frankel has directed documentary films on geology, astronomy and space exploration and has authored a number of articles on the earth sciences.

  12. Prototype solar heating and hot water systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Progress made in the development of a solar hot water and space heating system is described in four quarterly reports. The program schedules, technical status and other program activities from 6 October 1976 through 30 September 1977 are provided.

  13. Solar heating system

    DOEpatents

    Schreyer, James M.; Dorsey, George F.

    1982-01-01

    An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

  14. Improved solar heating systems

    DOEpatents

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  15. Outer Solar System Nomenclature

    NASA Technical Reports Server (NTRS)

    Owen, Tobias C.

    1998-01-01

    The Principal Investigator's responsibilities on this grant fell into two categories according to his participation. In the nomenclature work of the International Astronomical Union (IAU). Owen is chair of the Task Group for the Outer Solar System. He is also a member of the IAU's Working Group on Planetary and Satellite Nomenclature (WGPSN) which is composed of the chairs of the several Task Groups plus the presidents of two IAU Commissions and several outside consultants. The WGPSN is presided over by its President, Professor Kaare Aksnes from the Rosseland Institute for Theoretical Astrophysics in Oslo, Norway.

  16. Early Solar System Leftovers: Testing Solar System Formation Models

    NASA Astrophysics Data System (ADS)

    Meech, Karen Jean; Yang, Bin; Kleyna, Jan; Hainaut, Olivier R.; Keane, Jacqueline V.; Micheli, Marco; Berdyugina, Svetlana; Bhatt, Bhuwan; Sahu, Devendra; Hsieh, Henry; Veres, Peter; Wainscoat, Richard J.; Riesen, Timm-Emanuel; Kaluna, Heather

    2015-11-01

    One of the most intriguing predictions of the Grand Tack model is the presence of volatile poor objects in the Oort cloud that were swept from the region where the terrestrial planets formed. This volatile-poor material is represented today by ordinary chondrites, enstatite chondrites and differentiated planetesimals. These are the main constituents of the S-type asteroids that reside in the inner Solar system. According to the Grand Tack model, the fraction of S-type material in cometary orbits should be around 0.1-0.2%. Recent Pan-STARRS 1 discoveries of objects on long-period comet orbits that are minimally active while at small perihelia have suggested the intriguing possibility that these could potentially represent inner solar system material that was ejected into the outer solar system during planet migration, that is now making its way back in. The first object discovered, C/2013 P2 has a spectrum redder than D-type objects, but exhibits low-level activity throughout its perihelion passage. The second one, C/2014 S3, appears to have an S-type asteroid spectrum, and likewise exhibits low-level activity.Nearly 100 of these objects have now been identified, approximately half of which are still observable, and more are being discovered. We will report on observations made for a selection of these objects with several facilities including Gemini N 8 m, VLT 8 m, Canada-France-Hawaii 3.6 m, PS1 2 m, UH2.2 m, HCT 2 m, and the Lowell 1.8 m telescopes. We will discuss the implications of seeing volatile activity in these objects.

  17. Solar collector manufacturing activity, 1992

    SciTech Connect

    Not Available

    1993-11-09

    This report presents data provided by US-based manufacturers and importers of solar collectors. Summary data on solar thermal collector shipments are presented for the years 1974 through 1992. Summary data on photovoltaic cell and module shipments are presented for the years 1982 through 1992. Detailed information for solar thermal collectors and photovoltaic cells and modules are presented for 1992. Appendix A describes the survey methodology. Appendix B contains the 1992 survey forms and instructions. Appendices C and D list the companies that responded to the 1992 surveys and granted permission for their names and addresses to appear in the report. Appendix E provides selected tables from this report with data shown in the International System of Units (SI) metric units. Appendix F provides an estimate of installed capacity and energy production from solar collectors for 1992.

  18. Distant Comets in the Early Solar System

    NASA Technical Reports Server (NTRS)

    Meech, Karen J.

    2000-01-01

    The main goal of this project is to physically characterize the small outer solar system bodies. An understanding of the dynamics and physical properties of the outer solar system small bodies is currently one of planetary science's highest priorities. The measurement of the size distributions of these bodies will help constrain the early mass of the outer solar system as well as lead to an understanding of the collisional and accretional processes. A study of the physical properties of the small outer solar system bodies in comparison with comets in the inner solar system and in the Kuiper Belt will give us information about the nebular volatile distribution and small body surface processing. We will increase the database of comet nucleus sizes making it statistically meaningful (for both Short-Period and Centaur comets) to compare with those of the Trans-Neptunian Objects. In addition, we are proposing to do active ground-based observations in preparation for several upcoming space missions.

  19. Our Solar System's Cousin?

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This artist's concept illustrates two planetary systems -- 55 Cancri (top) and our own. Blue lines show the orbits of planets, including the dwarf planet Pluto in our solar system. The 55 Cancri system is currently the closest known analogue to our solar system, yet there are some fundamental differences.

    The similarities begin with the stars themselves, which are about the same mass and age. Both stars also host big families of planets. Our solar system has eight planets, while 55 Cancri has five, making it the record-holder for having the most known exoplanets. In fact, 55 Cancri could have additional planets, possibly even rocky ones that are too small to be seen with current technologies. All of the planets in the two systems have nearly circular orbits.

    In addition, both planetary systems have giant planets in their outer regions. The giant located far away from 55 Cancri is four times the mass of our Jupiter, and completes one orbit every 14 years at a distance of five times that between Earth and the sun (about 868 million kilometers or 539 million miles). Our Jupiter completes one orbit around the sun every 11.9 years, also at about five times the Earth-sun distance (778 million kilometers or 483 million miles). Fifty-five Cancri is still the only known star besides ours with a planet in a distant Jupiter-like orbit. Both systems also contain inner planets that are less massive than their outer planets.

    The differences begin with the planets' masses. The planets orbiting 55 Cancri are all larger than Earth, and represent a 'souped-up' version of our own solar system. In fact, this is the first star that boasts more giant planets than our sun!

    The arrangement of the planetary systems is also different. The inner four planets of 55 Cancri are all closer to the star than Earth is to the sun. The closest, about the mass of Uranus, whips around the star in just under three days at a distance of approximately 5.6 million kilometers (3

  20. Solar System Visualizations

    NASA Technical Reports Server (NTRS)

    Brown, Alison M.

    2005-01-01

    Solar System Visualization products enable scientists to compare models and measurements in new ways that enhance the scientific discovery process, enhance the information content and understanding of the science results for both science colleagues and the public, and create.visually appealing and intellectually stimulating visualization products. Missions supported include MER, MRO, and Cassini. Image products produced include pan and zoom animations of large mosaics to reveal the details of surface features and topography, animations into registered multi-resolution mosaics to provide context for microscopic images, 3D anaglyphs from left and right stereo pairs, and screen captures from video footage. Specific products include a three-part context animation of the Cassini Enceladus encounter highlighting images from 350 to 4 meter per pixel resolution; Mars Reconnaissance Orbiter screen captures illustrating various instruments during assembly and testing at the Payload Hazardous Servicing Facility at Kennedy Space Center; and an animation of Mars Exploration Rover Opportunity's 'Rub al Khali' panorama where the rover was stuck in the deep fine sand for more than a month. This task creates new visualization products that enable new science results and enhance the public's understanding of the Solar System and NASA's missions of exploration.

  1. [A possible biophysical mechanism of the solar activity effect on the central nervous system in man].

    PubMed

    Mikhaĭlova, G A

    2001-01-01

    A biophysical mechanism of interaction between the man and environment is proposed, which treats these components as two correlated oscillation contours with discrete resonance frequencies. The coincidence of biocurrent frequencies of the human brain with the resonance frequencies of the cavity formed by the Earth surface and the lower ionosphere boundary allows one to consider the influence of solar flares on the human organism in terms of variations of the cavity frequencies due to changes in the parameters of its upper wall.

  2. Extinct radionuclides. [in solar system

    NASA Technical Reports Server (NTRS)

    Podosek, F. A.; Swindle, T. D.

    1988-01-01

    Extinct radionuclides, or radioactive isotopes with lifetimes of the order of 1 to 100 Myr that are now extinct in the solar system are discussed. Evidence is presented for the presence of such radionuclides in the early solar system, including Al-26, Mn-53, Pd-107, I-129, Pu-244, and Sm-146. It is suggested that the abundances of these species provide constraints on nucleosynthetic time scales and the history of solar system materials before they became the solar system. The shortest-lived species is Al-26, which may have been sufficiently abundant to be the major heat source for meteorite parent-body metamorphism or igneous differentiation.

  3. Solar Energy Project, Activities: Biology.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of biology experiments. Each unit presents an introduction; objectives; skills and knowledge needed; materials; methods; questions; recommendations for further work; and a teacher information sheet. The teacher information…

  4. Automatic Tracking of Active Regions and Detection of Solar Flares in Solar EUV Images

    NASA Astrophysics Data System (ADS)

    Caballero, C.; Aranda, M. C.

    2014-05-01

    Solar catalogs are frequently handmade by experts using a manual approach or semi-automated approach. The appearance of new tools is very useful because the work is automated. Nowadays it is impossible to produce solar catalogs using these methods, because of the emergence of new spacecraft that provide a huge amount of information. In this article an automated system for detecting and tracking active regions and solar flares throughout their evolution using the Extreme UV Imaging Telescope (EIT) on the Solar and Heliospheric Observatory (SOHO) spacecraft is presented. The system is quite complex and consists of different phases: i) acquisition and preprocessing; ii) segmentation of regions of interest; iii) clustering of these regions to form candidate active regions which can become active regions; iv) tracking of active regions; v) detection of solar flares. This article describes all phases, but focuses on the phases of tracking and detection of active regions and solar flares. The system relies on consecutive solar images using a rotation law to track the active regions. Also, graphs of the evolution of a region and solar evolution are presented to detect solar flares. The procedure developed has been tested on 3500 full-disk solar images (corresponding to 35 days) taken from the spacecraft. More than 75 % of the active regions are tracked and more than 85 % of the solar flares are detected.

  5. Solar air-conditioning-active, hybrid and passive

    SciTech Connect

    Yellott, J. I.

    1981-04-01

    After a discussion of summer air conditioning requirements in the United States, active, hybrid, and passive cooling systems are defined. Active processes and systems include absorption, Rankine cycle, and a small variety of miscellaneous systems. The hybrid solar cooling and dehumidification technology of desiccation is covered as well as evaporative cooling. The passive solar cooling processes covered include convective, radiative and evaporative cooling. Federal and state involvement in solar cooling is then discussed. (LEW)

  6. Development of a system for accurate forecasting of solar activity. Annual report, 15 October 1991-14 October 1992

    SciTech Connect

    Sofia, S.

    1992-01-01

    Work on solar activity forecasting has concentrated on the search for correlations which would allow the forecast of a given cycle with an anticipation larger than 4 to 5 years. The work on solar dynamo modeling involved a formulation of a realistic model of magnetic diffusion. This work is essentially complete and is capable of handling reliably the small scale interaction between convection and magnetic fields. Significant progress has occurred in the Solar Disk Sextant work with the completion of the wedge fabricated by optical contact. A successful balloon flight has yielded 20 gigabytes of data for which reduction and analysis methods are being developed. This research is of interest to scientists in fields of solar energy, communications, and ionospheric/magnetospheric studies.

  7. Solar Energy Education. Industrial arts: student activities. Field test edition

    SciTech Connect

    Not Available

    1981-02-01

    In this teaching manual several activities are presented to introduce students to information on solar energy through classroom instruction. Wind power is also included. Instructions for constructing demonstration models for passive solar systems, photovoltaic cells, solar collectors and water heaters, and a bicycle wheel wind turbine are provided. (BCS)

  8. Influence of solar activity on red sprites and on vertical coupling in the system stratosphere-mesosphere

    NASA Astrophysics Data System (ADS)

    Tonev, Peter T.; Velinov, Peter I. Y.

    2016-04-01

    The positive downward propagating streamers of sprites are considered as factors of vertical coupling in middle atmosphere. Sprites are initiated in the lower ionosphere (at 75-85 km) and their streamers propagate in the mesosphere and upper stratosphere where the solar activity (SA) can have significant influence. The problem considered by us is whether sprites are sensitive to the solar activity. Different possible ways of such influence are considered. They concern: i) relations between solar activity and the occurrence of sprite-producing lightning discharges; ii) sensitivity of streamer inception to solar variability; iii) 11-year variations of conductivity in the night-time mesosphere and stratosphere during solar cycle due to modulation of the galactic cosmic ray flux by solar activity, which can lead to changes in sprite-driving electric fields, and therefore, in sprites. Accounting for the effects of sprites on minor constituents (in particular NOx), a link between SA level and the che^mical balance in the mesosphere and stratosphere is considered, as well. With respect to this we study by modeling the response of the sprite-driving electric fields to SA variations with the account to a complex of parameters of sprite-producing lightning discharges and atmospheric conductivity. The lightning-driven electric fields needed for streamer propagation show minor dependence on conductivity changes caused by variations in cosmic ray flux during a solar cycle. The long-term changes in sprite's lower boundary by different parameters of lightning discharges and atmospheric conductivity parameters are estimated. During solar minimum, of the vertical dimension of sprites increases by up to 1.5 km than those during solar maximum. We estimate also the effect of the reduction of conductivity in thunderclouds with respect to the adjacent air. Reduction of cloud conductivity by a factor of 5-10 leads to larger vertical dimension of sprites due to descending of the sprite

  9. Solar System Sleuth

    NASA Astrophysics Data System (ADS)

    Ryden, Barbara

    2005-11-01

    One of the great astronomers of the last century, Gerhard Peter Kuiper, was born 100 years ago this year. He is considered the father of modern planetary science and an expert on binary and white dwarf stars. Kuiper was recruited by Otto Struve to the Yerkes Observatory and used the 82-inch Telescope at McDonald Observatory for groundbreaking studies of Mars and the giant moons in the outer solar system. Later, he became the founding director of the Lunar and Planetary Laboratory at the University of Arizona. Kuiper predicted that a vast number of asteroid-like objects lie beyond the orbit of Pluto; this was later substantiated and called the Kuiper Belt. Late in life, Kuiper pioneered the use of infrared telescopes and instruments aboard aircraft and the NASA's original flying observatory was named the Kuiper Airborne Observatory in his honor.

  10. Schedules, technical status, and program activities in the development of a single family solar space heating system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A collection of three quarterly reports are given covering the development of two prototype solar heating systems consisting of the following subsystems: collector, storage, control, transport, and site data acquisition. The two systems are being installed at York, Pennsylvania, and Manchester, New Hampshire.

  11. Wind in the Solar System

    ERIC Educational Resources Information Center

    McIntosh, Gordon

    2010-01-01

    As an astronomy instructor I am always looking for commonly experienced Earthly phenomena to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote short "TPT" articles on frost and precipitation. The present article is on winds in the solar system. A windy day or storm might motivate…

  12. Exploration of the solar system

    NASA Technical Reports Server (NTRS)

    Henderson, A., Jr.; Grey, J.

    1974-01-01

    A sourcebook of information on the solar system and the technology used for its exploration is presented. An outline of the potential achievements of solar system exploration is given along with a course of action which maximizes the rewards to mankind.

  13. Solar Heating Systems: Student Manual.

    ERIC Educational Resources Information Center

    Green, Joanne; And Others

    This Student Manual for a Solar Heating System curriculum contains 22 units of instructional materials for students to use in a course or courses on solar heating systems (see note). For each unit (task), objectives, assignment sheets, laboratory assignments, information sheets, checkpoints (tests), and job sheets are provided. Materials are set…

  14. Solar Heating Systems: Instructor's Guide.

    ERIC Educational Resources Information Center

    Green, Joanne; And Others

    This Instructor's Guide for a Solar Heating System Curriculum is designed to accompany the Student Manual and the Progress Checks and Test Manual for the course (see note), in order to facilitate the instruction of classes on solar heating systems. The Instructor's Guide contains a variety of materials used in teaching the courses, including…

  15. Seismic Forecasting of Solar Activity

    NASA Technical Reports Server (NTRS)

    Braun, Douglas; Lindsey, Charles

    2001-01-01

    We have developed and improved helioseismic imaging techniques of the far-side of the Sun as part of a synoptic monitor of solar activity. In collaboration with the MIDI team at Stanford University we are routinely applying our analysis to images within 24 hours of their acquisition by SOHO. For the first time, real-time seismic maps of large active regions on the Sun's far surface are publicly available. The synoptic images show examples of active regions persisting for one or more solar rotations, as well as those initially detected forming on the solar far side. Until recently, imaging the far surface of the Sun has been essentially blind to active regions more than about 50 degrees from the antipode of disk center. In a paper recently accepted for publication, we have demonstrated how acoustic travel-time perturbations may be mapped over the entire hemisphere of the Sun facing away from the Earth, including the polar regions. In addition to offering significant improvements to ongoing space weather forecasting efforts, the procedure offers the possibility of local seismic monitoring of both the temporal and spatial variations in the acoustic properties of the Sun over the entire far surface.

  16. Solar Energy Systems

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A waste water treatment plant in Wilton, Maine, where sludge is converted to methane gas, and Monsanto Company's Environmental Health Laboratory in St. Louis Missouri, where more than 200 solar collectors provide preheating of boiler feed water for laboratory use are representative of Grumman's Sunstream line of solar energy equipment. This equipment was developed with technology from NASA's Apollo lunar module program.

  17. Solar Power System Design for the Solar Probe+ Mission

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Schmitz, Paul C.; Kinnison, James; Fraeman, Martin; Roufberg, Lew; Vernon, Steve; Wirzburger, Melissa

    2008-01-01

    Solar Probe+ is an ambitious mission proposed to the solar corona, designed to make a perihelion approach of 9 solar radii from the surface of the sun. The high temperature, high solar flux environment makes this mission a significant challenge for power system design. This paper summarizes the power system conceptual design for the solar probe mission. Power supplies considered included nuclear, solar thermoelectric generation, solar dynamic generation using Stirling engines, and solar photovoltaic generation. The solar probe mission ranges from a starting distance from the sun of 1 AU, to a minimum distance of about 9.5 solar radii, or 0.044 AU, from the center of the sun. During the mission, the solar intensity ranges from one to about 510 times AM0. This requires power systems that can operate over nearly three orders of magnitude of incident intensity.

  18. Development of Solar Powered Irrigation System

    NASA Astrophysics Data System (ADS)

    Abdelkerim, A. I.; Sami Eusuf, M. M. R.; Salami, M. J. E.; Aibinu, A.; Eusuf, M. A.

    2013-12-01

    Development of a solar powered irrigation system has been discussed in this paper. This system would be SCADA-based and quite useful in areas where there is plenty of sunshine but insufficient water to carry out farming activities, such as rubber plantation, strawberry plantation, or any plantation, that requires frequent watering. The system is powered by solar system as a renewable energy which uses solar panel module to convert Sunlight into electricity. The development and implementation of an automated SCADA controlled system that uses PLC as a controller is significant to agricultural, oil and gas monitoring and control purpose purposes. In addition, the system is powered by an intelligent solar system in which solar panel targets the radiation from the Sun. Other than that, the solar system has reduced energy cost as well as pollution. The system is equipped with four input sensors; two soil moisture sensors, two level detection sensors. Soil moisture sensor measures the humidity of the soil, whereas the level detection sensors detect the level of water in the tank. The output sides consist of two solenoid valves, which are controlled respectively by two moistures sensors.

  19. Solar activities at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Klimas, Paul C.; Hasti, David E.

    The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earth's present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing and deploying many of these technologies over the last two decades. A common but special aspect of all of these activities is that they are all conducted in cooperation with various types of partners. Some of these partners have an interest in seeing these systems grow in the marketplace, while others are primarily concerned with economic benefits that can come from immediate use of these renewable energy systems. This paper describes solar thermal and photovoltaic technology activities at Sandia that are intended to accelerate the commercialization of these solar systems.

  20. Astrometric solar system anomalies

    SciTech Connect

    Nieto, Michael Martin; Anderson, John D

    2009-01-01

    There are at least four unexplained anomalies connected with astrometric data. perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it often experiences a change in total orbital energy per unit mass. next, a secular change in the astronomical unit AU is definitely a concern. It is increasing by about 15 cm yr{sup -1}. The other two anomalies are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions. Some astronomers and physicists are convinced this effect is of concern, but many others are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth anomaly is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction in both the Earth and Moon. However, there is a reported unexplained increase that is significant at the three-sigma level. It is produent to suspect that all four anomalies have mundane explanations, or that one or more anomalies are a result of systematic error. Yet they might eventually be explained by new physics. For example, a slightly modified theory of gravitation is not ruled out, perhaps analogous to Einstein's 1916 explanation for the excess precession of Mercury's perihelion.

  1. Space solar power systems

    NASA Technical Reports Server (NTRS)

    Toliver, C.

    1977-01-01

    Studies were done on the feasibility of placing a solar power station called POwersat, in space. A general description of the engineering features are given as well as a brief discussion of the economic considerations.

  2. Galaxy and the solar system

    SciTech Connect

    Smoluchowski, R.; Bahcall, J.M.; Matthews, M.S.

    1986-01-01

    The solar-Galactic neighborhood, massive interstellar clouds and other Galactic features, the Oort cloud, perturbations of the solar system, and the existence and stability of a solar companion star are examined in chapters based on contributions to a conference held in Tucson, AZ during January 1985. The individual topics addressed include: the Galactic environment of the solar system; stars within 25 pc of the sun; the path of the sun in 100 million years; the local velocity field in the last billion years; interstellar clouds near the sun; and evidence for a local recent supernova. Also considered are: dynamic influence of Galactic tides and molecular clouds on the Oort cloud; cometary evidence for a solar companion; dynamical interactions between the Oort cloud and the Galaxy; geological periodicities and the Galaxy; giant comets and the Galaxy; dynamical evidence for Planet X; evolution of the solar system in the presence of a solar companion star; mass extinctions, crater ages, and comet showers; evidence for Nemesis, a solar companion star.

  3. The Dimensions of the Solar System

    ERIC Educational Resources Information Center

    Schneider, Stephen E.; Davis, Kathleen S.

    2007-01-01

    A few new wrinkles have been added to the popular activity of building a scale model of the solar system. Students can learn about maps and scaling using easily accessible online resources that include satellite images. This is accomplished by taking advantage of some of the special features of Google Earth. This activity gives students a much…

  4. Solar Thermal Electricity Generating System

    NASA Astrophysics Data System (ADS)

    Mishra, Sambeet; Tripathy, Pratyasha

    2012-08-01

    A Solar Thermal Electricity generating system also known as Solar Thermal Power plant is an emerging renewable energy technology, where we generate the thermal energy by concentrating and converting the direct solar radiationat medium/high temperature (300∫C ñ 800∫C). The resulting thermal energy is then used in a thermodynamic cycleto produce electricity, by running a heat engine, which turns a generator to make electricity. Solar thermal power is currently paving the way for the most cost-effective solar technology on a large scale and is heading to establish a cleaner, pollution free and secured future. Photovoltaic (PV) and solar thermal technologies are two main ways of generating energy from the sun, which is considered the inexhaustible source of energy. PV converts sunlight directly into electricity whereas in Solar thermal technology, heat from the sun's rays is concentrated to heat a fluid, whose steam powers a generator that produces electricity. It is similar to the way fossil fuel-burning power plants work except that the steam is produced by the collected heat rather than from the combustion of fossil fuels. In order to generate electricity, five major varieties of solar thermal technologies used are:* Parabolic Trough Solar Electric Generating System (SEGS).* Central Receiver Power Plant.* Solar Chimney Power Plant.* Dish Sterling System.* Solar Pond Power Plant.Most parts of India,Asia experiences a clear sunny weather for about 250 to 300 days a year, because of its location in the equatorial sun belt of the earth, receiving fairly large amount of radiation as compared to many parts of the world especially Japan, Europe and the US where development and deployment of solar technologies is maximum.Whether accompanied with this benefit or not, usually we have to concentrate the solar radiation in order to compensate for the attenuation of solar radiation in its way to earthís surface, which results in from 63,2 GW/m2 at the Sun to 1 kW/m2 at

  5. Evolution of the Solar System

    NASA Technical Reports Server (NTRS)

    Alfven, H.; Arrhenius, G.

    1976-01-01

    The origin and evolution of the solar system are analyzed. Physical processes are first discussed, followed by experimental studies of plasma-solid reactions and chemical and mineralogical analyses of meteorites and lunar and terrestrial samples.

  6. Exobiology in Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Carle, Glenn C. (Editor); Schwartz, Deborah E. (Editor); Huntington, Judith L. (Editor)

    1992-01-01

    A symposium, 'Exobiology in Solar System Exploration,' was held on 24-26 Aug. 1988. The symposium provided an in-depth investigation of the role of Exobiology in solar system exploration. It is expected that the symposium will provide direction for future participation of the Exobiology community in solar system exploration and alert the Planetary community to the continued importance of an Exobiology Flight Program. Although the focus of the symposium was primarily on Exobiology in solar system exploration missions, several ground based and Earth-orbital projects such as the Search for Extraterrestrial Intelligence, Gas Grain Facility, and Cosmic Dust Collection Facility represent upcoming research opportunities planned to accommodate the goals and objectives of the Exobiology community as well. This report contains papers for all but one of the presentations given at the symposium.

  7. Views of the solar system

    SciTech Connect

    Hamilton, C.

    1995-02-01

    Views of the Solar System has been created as an educational tour of the solar system. It contains images and information about the Sun, planets, moons, asteroids and comets found within the solar system. The image processing for many of the images was done by the author. This tour uses hypertext to allow space travel by simply clicking on a desired planet. This causes information and images about the planet to appear on screen. While on a planet page, hyperlinks travel to pages about the moons and other relevant available resources. Unusual terms are linked to and defined in the Glossary page. Statistical information of the planets and satellites can be browsed through lists sorted by name, radius and distance. History of Space Exploration contains information about rocket history, early astronauts, space missions, spacecraft and detailed chronology tables of space exploration. The Table of Contents page has links to all of the various pages within Views Of the Solar System.

  8. Views of the solar system

    NASA Astrophysics Data System (ADS)

    Hamilton, C.

    Views of the Solar System has been created as an educational tour of the solar system. It contains images and information about the Sun, planets, moons, asteroids and comets found within the solar system. The image processing for many of the images was done by the author. This tour uses hypertext to allow space travel by simply clicking on a desired planet. This causes information and images about the planet to appear on screen. While on a planet page, hyperlinks travel to pages about the moons and other relevant available resources. Unusual terms are linked to and defined in the Glossary page. Statistical information of the planets and satellites can be browsed through lists sorted by name, radius and distance. History of Space Exploration contains information about rocket history, early astronauts, space missions, spacecraft and detailed chronology tables of space exploration. The Table of Contents page has links to all of the various pages within Views of the Solar System.

  9. Solar System Observations with JWST

    NASA Technical Reports Server (NTRS)

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; Ferruit, Pierre

    2014-01-01

    The James Webb Space Telescope will enable a wealth of new scientific investigations in the near- and mid- infrared, with sensitivity and spatial-spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010 (Lunine et al., 2010). It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV in 2012.

  10. Solar System binaries

    NASA Astrophysics Data System (ADS)

    Noll, Keith S.

    The discovery of binaries in each of the major populations of minor bodies in the solar system is propelling a rapid growth of heretofore unattainable physical information. The availability of mass and density constraints for minor bodies opens the door to studies of internal structure, comparisons with meteorite samples, and correlations between bulk-physical and surface-spectral properties. The number of known binaries is now more than 70 and is growing rapidly. A smaller number have had the extensive followup observations needed to derive mass and albedo information, but this list is growing as well. It will soon be the case that we will know more about the physical parameters of objects in the Kuiper Belt than has been known about asteroids in the Main Belt for the last 200 years. Another important aspect of binaries is understanding the mechanisms that lead to their formation and survival. The relative sizes and separations of binaries in the different minor body populations point to more than one mechanism for forming bound pairs. Collisions appear to play a major role in the Main Belt. Rotational and/or tidal fission may be important in the Near Earth population. For the Kuiper Belt, capture in multi-body interactions may be the preferred formation mechanism. However, all of these conclusions remain tentative and limited by observational and theoretical incompleteness. Observational techniques for identifying binaries are equally varied. High angular resolution observations from space and from the ground are critical for detection of the relatively distant binaries in the Main Belt and the Kuiper Belt. Radar has been the most productive method for detection of Near Earth binaries. Lightcurve analysis is an independent technique that is capable of exploring phase space inaccessible to direct observations. Finally, spacecraft flybys have played a crucial paradigm-changing role with discoveries that unlocked this now-burgeoning field.

  11. Coronal Streamers and Solar Activity

    NASA Astrophysics Data System (ADS)

    Delone, A. B.; Porfir'eva, G. A.; Smirnova, O. B.; Yakunina, G. V.

    2013-03-01

    We analyze the structure of the streamer belt and plasma ejection dynamics during the last two solar minima (1996-1997 and 2006-2009) using white light observations by SOHO and STEREO space observatories. We consider the role of activity centers and of the sectorial structure of the Sun's global magnetic field in the streamer belt topology. During the last minimum plasma was ejected from the streamer belt at a velocity several tens of km/s higher than that during the preceding minimum. We have used the data from Internet and papers published in science journals.

  12. Cryovolcanism in the outer solar system

    USGS Publications Warehouse

    Geissler, Paul E.

    2015-01-01

    Cryovolcanism is defined as the extrusion of liquids and vapors of materials that would be frozen solid at the planetary surface temperatures of the icy bodies of the outer solar system. Active cryovolcanism is now known to occur on Saturn's moon Enceladus and on Neptune's moon Triton and is suspected on Jupiter's moon Europa, while evidence for past cryovolcanic activity is widespread throughout the outer solar system. This chapter examines the mechanisms and manifestations of cryovolcanism, beginning with a review of the materials that make up these unusual ‘‘magmas’’ and the means by which they might erupt and concluding with a volcanologist's tour of the farthest reaches of the solar system.

  13. The Little Ice Age and Solar Activity

    NASA Astrophysics Data System (ADS)

    Velasco Herrera, Victor Manuel; Leal Silva, C. M. Carmen; Velasco Herrera, Graciela

    We analyze the ice winter severity index on the Baltic region since 1501-1995. We found that the variability of this index is modulated among other factors by the secular solar activity. The little ice ages that have appeared in the North Hemisphere occurred during periods of low solar activity. Seemingly our star is experiencing a new quiet stage compared with Maunder or Dalton minimum, this is important because it is estimated that even small changes in weather can represent a great impact in ice index. These results are relevant since ice is a very important element in the climate system of the Baltic region and it can affect directly or indirectly many of the oceanographic, climatic, eco-logical, economical and cultural patterns.

  14. Solar Program Assessment: Environmental Factors - Solar Total Energy Systems.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    The purpose of this report is to present and prioritize the major environmental, safety, and social/institutional issues associated with the further development of Solar Total Energy Systems (STES). Solar total energy systems represent a specific application of the Federally-funded solar technologies. To provide a background for this analysis, the…

  15. Hybrids of Solar Sail, Solar Electric, and Solar Thermal Propulsion for Solar-System Exploration

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.

    2012-01-01

    Solar sails have long been known to be an attractive method of propulsion in the inner solar system if the areal density of the overall spacecraft (S/C) could be reduced to approx.10 g/sq m. It has also long been recognized that the figure (precise shape) of useful solar sails needs to be reasonably good, so that the reflected light goes mostly in the desired direction. If one could make large reflective surfaces with reasonable figure at an areal density of approx.10 g/sq m, then several other attractive options emerge. One is to use such sails as solar concentrators for solar-electric propulsion. Current flight solar arrays have a specific output of approx. 100W/kg at 1 Astronomical Unit (AU) from the sun, and near-term advances promise to significantly increase this figure. A S/C with an areal density of 10 g/sq m could accelerate up to 29 km/s per year as a solar sail at 1 AU. Using the same sail as a concentrator at 30 AU, the same spacecraft could have up to approx. 45 W of electric power per kg of total S/C mass available for electric propulsion (EP). With an EP system that is 50% power-efficient, exhausting 10% of the initial S/C mass per year as propellant, the exhaust velocity is approx. 119 km/s and the acceleration is approx. 12 km/s per year. This hybrid thus opens attractive options for missions to the outer solar system, including sample-return missions. If solar-thermal propulsion were perfected, it would offer an attractive intermediate between solar sailing in the inner solar system and solar electric propulsion for the outer solar system. In the example above, both the solar sail and solar electric systems don't have a specific impulse that is near-optimal for the mission. Solar thermal propulsion, with an exhaust velocity of the order of 10 km/s, is better matched to many solar system exploration missions. This paper derives the basic relationships between these three propulsion options and gives examples of missions that might be enabled by

  16. Universal solar energy desalination system

    NASA Astrophysics Data System (ADS)

    Fusco, V. S.

    Design considerations to allow site-dependent flexibility in the choice of solar/wind powered desalinization plant configurations are discussed. A prototype design was developed for construction of 6300 cu m per day brackish water treatment in Brownsville, TX. The water is treated to reduce the amount of suspended solids and prevent scaling. A reverse osmosis unit processes the treated liquid to recover water at a ratio of 90%. The power system comprises a parabolic trough solar thermal system with an organic Rankine cycle generator, rock-oil thermal storage, and 200 kW wind turbines. Analysis of the complementarity of the solar and wind subsystems indicates that at any site one system will supplement the other. Energy storage, e.g., battery banks, would increase system costs to unacceptable levels. Climatic conditions will significantly influence the sizing of each segment of the total power system.

  17. Division E Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Fletcher, Lyndsay; van Driel-Gesztelyi, Lidia; Asai, Ayumi; Cally, Paul S.; Charbonneau, Paul; Gibson, Sarah E.; Gomez, Daniel; Hasan, Siraj S.; Veronig, Astrid M.; Yan, Yihua

    2016-04-01

    After more than half a century of community support related to the science of ``solar activity'', IAU's Commission 10 was formally discontinued in 2015, to be succeeded by C.E2 with the same area of responsibility. On this occasion, we look back at the growth of the scientific disciplines involved around the world over almost a full century. Solar activity and fields of research looking into the related physics of the heliosphere continue to be vibrant and growing, with currently over 2,000 refereed publications appearing per year from over 4,000 unique authors, publishing in dozens of distinct journals and meeting in dozens of workshops and conferences each year. The size of the rapidly growing community and of the observational and computational data volumes, along with the multitude of connections into other branches of astrophysics, pose significant challenges; aspects of these challenges are beginning to be addressed through, among others, the development of new systems of literature reviews, machine-searchable archives for data and publications, and virtual observatories. As customary in these reports, we highlight some of the research topics that have seen particular interest over the most recent triennium, specifically active-region magnetic fields, coronal thermal structure, coronal seismology, flares and eruptions, and the variability of solar activity on long time scales. We close with a collection of developments, discoveries, and surprises that illustrate the range and dynamics of the discipline.

  18. Solar tracking system

    SciTech Connect

    White, P.R.; Scott, D.R.

    1981-04-01

    A solar tracker for a solar collector is described in detail. The collector is angularly oriented by a motor wherein the outputs of two side-by-side photodetectors are discriminated as to three ranges: a first corresponding to a low light or darkness condition a second corresponding to light intensity lying in an intermediate range and a third corresponding to light above an intermediate range, direct sunlight. The first output drives the motor to a selected maximum easterly angular position the second enables the motor to be driven westerly at the Earth rotational rate and the third output, the separate outputs of the two photodetectors, differentially controls the direction of rotation of the motor to effect actual tracking of the Sun. Official Gazette of the U.S. Patent and Trademark Office

  19. Recurrence of solar activity - Evidence for active longitudes

    NASA Technical Reports Server (NTRS)

    Bogart, R. S.

    1982-01-01

    It is pointed out that the autocorrelation coefficients of the daily Wolf sunspot numbers over a period of 128 years reveal a number of interesting features of the variability of solar activity. Besides establishing periodicities for the solar rotation, solar activity cycle, and, perhaps, the 'Gleissberg Cycle', they suggest that active longitudes do exist, but with much greater strength and persistence in some solar cycles than in others. Evidence is adduced for a variation in the solar rotation period, as measured by sunspot number, of as much as two days between different solar cycles.

  20. Goldstone solar system radar

    NASA Technical Reports Server (NTRS)

    Jurgens, Raymond F.

    1988-01-01

    Planning, direction, experimental design, and coordination of data-acquisition and engineering activities in support of all Goldstone planetary radar astronomy were performed. This work demands familiarity with the various components of a planetary radar telescope (transmitter, receiver, antenna, computer hardware and software) as well as knowledge of how the entire system must function as a cohesive unit to meet the particular scientific objectives at hand in a given observation. Support radar data-processing facilities, currently being used for virtually all Goldstone data reduction includes: a VAX 11/780 computer system, an FPS 5210 array processor, terminals, tape drives, and image-display devices, as well as a large body of data-reduction software to accommodate the variety of data-acquisition formats and strategems. Successful 113-cm radar observation of Callisto and the near-Earth asteroid 1981 Midas and Goldstone/VLA radar observations of Saturn's rings were obtained. Quick-look verification programs from data taken with phase-coded cw (i.e., ranging) waveforms, applicable to Venus, the Moon, and small bodies were completed. Definition of scientific and engineering requirements on instrument performance, radar system configuration, and personnel, for all 1988 Goldstone radar investigations was accomplished.

  1. Chaos in the Solar System

    NASA Technical Reports Server (NTRS)

    Lecar, Myron; Franklin, Fred A.; Holman, Matthew J.; Murray, Norman J.

    2001-01-01

    The physical basis of chaos in the solar system is now better understood: In all cases investigated so far, chaotic orbits result from overlapping resonances. Perhaps the clearest examples are found in the asteroid belt. Overlapping resonances account for its kirkwood gaps and were used to predict and find evidence for very narrow gaps in the outer belt. Further afield, about one new "short-peroid" comet is discovered each year. They are believed to come from the "Kuiper Belt" (at 40 AU or more) via chaotic orbits produced by mean-motion and secular resonances with Neptune. Finally, the planetary system itself is not immune from chaos. In the inner solar system, overlapping secular resonances have been identified as the possible source of chaos. For example, Mercury in 1012 years, may suffer a close encounter with Venus or plunge into the Sun. In the outer solar system, three-body resonances have been identified as a source of chaos, but on an even longer time scale of 109 times the age of the solar system. On the human time scale, the planets do follow their orbits in a stately procession, and we can predict their trajectories for hundreds of thousands of years. That is because the mavericks, with shorter instability times, have long since been ejected. The solar system is not stable; it is just old!

  2. Solar Activities and Space Weather Hazards

    NASA Astrophysics Data System (ADS)

    Hady, Ahmed A.

    2013-03-01

    Geomagnetic storms have a good correlation with solar activity and solar radiation variability. Many proton events and geomagnetic storms have occurred during solar cycles21, 22, and 23. The solar activities during the last three cycles, gave us a good indication of the climatic change and its behavior during the 21st century. High energetic eruptive flares were recorded during the decline phase of the last three solar cycles. The appearances of the second peak on the decline phase of solar cycles have been detected. Halloween storms during Nov. 2003 and its effects on the geomagnetic storms have been studied analytically. The data of amplitude and phase of most common indicators of geomagnetic activities during solar cycle 23 have been analyzed.

  3. Solar irradiance measurements - Minimum through maximum solar activity

    NASA Technical Reports Server (NTRS)

    Lee, R. B., III; Gibson, M. A.; Shivakumar, N.; Wilson, R.; Kyle, H. L.; Mecherikunnel, A. T.

    1991-01-01

    The Earth Radiation Budget Satellite (ERBS) and the NOAA-9 spacecraft solar monitors were used to measure the total solar irradiance during the period October 1984 to December 1989. Decreasing trends in the irradiance measurements were observed as sunspot activity decreased to minimum levels in 1986; after 1986, increasing trends were observed as sunspot activity increased. The magnitude of the irradiance variability was found to be approximately 0.1 percent between sunspot minimum and maximum (late 1989). When compared with the 1984 to 1989 indices of solar magnetic activity, the irradiance trends appear to be in phase with the 11-year sunspot cycle. Both irradiance series yielded 1,365/sq Wm as the mean value of the solar irradiance, normalized to the mean earth/sun distance. The monitors are electrical substitution, active-cavity radiometers with estimated measurement precisions and accuracies of less than 0.02 and 0.2 percent, respectively.

  4. Integrated solar energy system optimization

    NASA Astrophysics Data System (ADS)

    Young, S. K.

    1982-11-01

    The computer program SYSOPT, intended as a tool for optimizing the subsystem sizing, performance, and economics of integrated wind and solar energy systems, is presented. The modular structure of the methodology additionally allows simulations when the solar subsystems are combined with conventional technologies, e.g., a utility grid. Hourly energy/mass flow balances are computed for interconnection points, yielding optimized sizing and time-dependent operation of various subsystems. The program requires meteorological data, such as insolation, diurnal and seasonal variations, and wind speed at the hub height of a wind turbine, all of which can be taken from simulations like the TRNSYS program. Examples are provided for optimization of a solar-powered (wind turbine and parabolic trough-Rankine generator) desalinization plant, and a design analysis for a solar powered greenhouse.

  5. Solar liquid heating system

    SciTech Connect

    Finn, D.J.

    1990-05-08

    This patent describes a solar heater for heating liquids. It comprises: a heatable bag, a support means supporting the heatable bag, a heatable body of liquid in the heatable bag, the heatable bag being disposed in sunlight so as to become heated thereby, a topside gas bag above the heatable bag, the topside gas bag containing a gas for serving as insulation, a topside fluid bag disposed above the topside gas bag and containing a fluid for further insulation. The bags being substantially gasproof and waterproof and also being flexible whereby the gravity pull on the bags and the flexibility thereof causes the upper sides of the bags to seek horizontal levels.

  6. Solar Eruptions Initiated in Sigmoidal Active Regions

    NASA Astrophysics Data System (ADS)

    Savcheva, Antonia

    2016-07-01

    active regions that have been shown to possess high probability for eruption. They present a direct evidence of the existence of flux ropes in the corona prior to the impulsive phase of eruptions. In order to gain insight into their eruptive behavior and how they get destabilized we need to know their 3D magnetic field structure. First, we review some recent observations and modeling of sigmoidal active regions as the primary hosts of solar eruptions, which can also be used as useful laboratories for studying these phenomena. Then, we concentrate on the analysis of observations and highly data-constrained non-linear force-free field (NLFFF) models over the lifetime of several sigmoidal active regions, where we have captured their magnetic field structure around the times of major flares. We present the topology analysis of a couple of sigmoidal regions pointing us to the probable sites of reconnection. A scenario for eruption is put forward by this analysis. We demonstrate the use of this topology analysis to reconcile the observed eruption features with the standard flare model. Finally, we show a glimpse of how such a NLFFF model of an erupting region can be used to initiate a CME in a global MHD code in an unprecedented realistic manner. Such simulations can show the effects of solar transients on the near-Earth environment and solar system space weather.

  7. Apparent Relations Between Solar Activity and Solar Tides Caused by the Planets

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    2007-01-01

    A solar storm is a storm of ions and electrons from the Sun. Large solar storms are usually preceded by solar flares, phenomena that can be characterized quantitatively from Earth. Twenty-five of the thirty-eight largest known solar flares were observed to start when one or more tide-producing planets (Mercury, Venus, Earth, and Jupiter) were either nearly above the event positions (less than 10 deg. longitude) or at the opposing side of the Sun. The probability for this to happen at random is 0.039 percent. This supports the hypothesis that the force or momentum balance (between the solar atmospheric pressure, the gravity field, and magnetic field) on plasma in the looping magnetic field lines in solar corona could be disturbed by tides, resulting in magnetic field reconnection, solar flares, and solar storms. Separately, from the daily position data of Venus, Earth, and Jupiter, an 11-year planet alignment cycle is observed to approximately match the sunspot cycle. This observation supports the hypothesis that the resonance and beat between the solar tide cycle and nontidal solar activity cycle influences the sunspot cycle and its varying magnitudes. The above relations between the unpredictable solar flares and the predictable solar tidal effects could be used and further developed to forecast the dangerous space weather and therefore reduce its destructive power against the humans in space and satellites controlling mobile phones and global positioning satellite (GPS) systems.

  8. Workshop on Solar Activity, Solar Wind, Terrestrial Effects, and Solar Acceleration

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A summary of the proceedings from the workshop are presented. The areas covered were solar activity, solar wind, terrestrial effects, and solar acceleration. Specific topics addressed include: (1) solar cycle manifestations, both large and small scale, as well as long-term and short-term changes, including transients such as flares; (2) sources of solar wind, as identified by interplanetary observations including coronal mass ejections (CME's) or x-ray bright points, and the theory for and evolution of large-scale and small-scale structures; (3) magnetosphere responses, as observed by spacecraft, to variable solar wind and transient energetic particle emissions; and (4) origin and propagation of solar cosmic rays as related to solar activity and terrestrial effects, and solar wind coronal-hole relationships and dynamics.

  9. Solar-powered cooling system

    DOEpatents

    Farmer, Joseph C

    2013-12-24

    A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

  10. Residential solar-heating system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Complete residential solar-heating and hot-water system, when installed in highly-insulated energy-saver home, can supply large percentage of total energy demand for space heating and domestic hot water. System which uses water-heating energy storage can be scaled to meet requirements of building in which it is installed.

  11. Solar hot-water system

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Design data brochure describes domestic solar water system that uses direct-feed system designed to produce 80 gallons of 140 F hot water per day to meet needs of single family dwelling. Brochure also reviews annual movements of sun relative to earth and explains geographic considerations in collector orientation and sizing.

  12. Performance evaluation of an active solar cooling system utilizing low cost plastic collectors and an evaporatively-cooled absorption chiller

    NASA Astrophysics Data System (ADS)

    Lof, G. O.; Westhoff, M. A.; Karaki, S.

    1984-02-01

    During the summer of 1982, air conditioning in Solar House 3 at Colorado State University was provided by an evaporatively-cooled absorption chiller. The single-effect lithium bromide chiller is an experimental three-ton unit from which heat is rejected by direct evaporative cooling of the condenser and absorber walls, thereby eliminating the need for a separate cooling tower. Domestic hot water was also provided by use of a double-walled heat exchanger and 80-gal hot water tank. A schematic of the system is given. Objectives of the project were: (1) evaluation of system performance over the course of one cooling season in Fort Collins, Colorado; (2) optimization of system operation and control; (3) development of a TRNSYS compatible model of the chiller; and (4) determination of cooling system performance in several U.S. climates by use of the model.

  13. Experiences in solar cooling systems

    NASA Astrophysics Data System (ADS)

    Ward, D. S.

    The results of performance evaluations for nine solar cooling systems are presented, and reasons fow low or high net energy balances are discussed. Six of the nine systems are noted to have performed unfavorably compared to standard cooling systems due to thermal storage losses, excessive system electrical demands, inappropriate control strategies, poor system-to-load matching, and poor chiller performance. A reduction in heat losses in one residential unit increased the total system efficiency by 2.5%, while eliminating heat losses to the building interior increased the efficiency by 3.3%. The best system incorporated a lithium bromide absorption chiller and a Rankine cycle compression unit for a commercial application. Improvements in the cooling tower and fan configurations to increase the solar cooling system efficiency are indicated. Best performances are expected to occur in climates inducing high annual cooling loads.

  14. Solar activity and oscillation frequency splittings

    NASA Technical Reports Server (NTRS)

    Woodard, M. F.; Libbrecht, K. G.

    1993-01-01

    Solar p-mode frequency splittings, parameterized by the coefficients through order N = 12 of a Legendre polynomial expansion of the mode frequencies as a function of m/L, were obtained from an analysis of helioseismology data taken at Big Bear Solar Observatory during the 4 years 1986 and 1988-1990 (approximately solar minimum to maximum). Inversion of the even-index splitting coefficients confirms that there is a significant contribution to the frequency splittings originating near the solar poles. The strength of the polar contribution is anti correlated with the overall level or solar activity in the active latitudes, suggesting a relation to polar faculae. From an analysis of the odd-index splitting coefficients we infer an uppor limit to changes in the solar equatorial near-surface rotatinal velocity of less than 1.9 m/s (3 sigma limit) between solar minimum and maximum.

  15. The HARPS search for southern extra-solar planets. XXX. Planetary systems around stars with solar-like magnetic cycles and short-term activity variation

    NASA Astrophysics Data System (ADS)

    Dumusque, X.; Lovis, C.; Ségransan, D.; Mayor, M.; Udry, S.; Benz, W.; Bouchy, F.; Lo Curto, G.; Mordasini, C.; Pepe, F.; Queloz, D.; Santos, N. C.; Naef, D.

    2011-11-01

    We present the discovery of four new long-period planets within the HARPS high-precision sample: HD 137388b (Msini = 0.22 MJ), HD 204941b (Msini = 0.27 MJ), HD 7199b (Msini = 0.29 MJ), HD 7449b (Msini = 1.04 MJ). A long-period companion, probably a second planet, is also found orbiting HD 7449. Planets around HD 137388, HD 204941, and HD 7199 have rather low eccentricities (less than 0.4) relative to the 0.82 eccentricity of HD 7449b. All these planets were discovered even though their hosting stars have clear signs of activity. Solar-like magnetic cycles, characterized by long-term activity variations, can be seen for HD 137388, HD 204941 and HD 7199, whereas the measurements of HD 7449 reveal a short-term activity variation, most probably induced by magnetic features on the stellar surface. We confirm that magnetic cycles induce a long-term radial velocity variation and propose a method to reduce considerably the associated noise. The procedure consists of fitting the activity index and applying the same solution to the radial velocities because a linear correlation between the activity index and the radial velocity is found. Tested on HD 137388, HD 204941, and HD 7199, this correction reduces considerably the stellar noise induced by magnetic cycles and allows us to derive precisely the orbital parameters of planetary companions. Based on observations made with the HARPS instrument on the ESO 3.6-m telescope at La Silla Observatory (Chile), under programme IDs 072.C-0488 and 183.C-0972.Radial velocities (Tables 4-7) are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/535/A55

  16. Solar thermophotovoltaic system using nanostructures.

    PubMed

    Ungaro, Craig; Gray, Stephen K; Gupta, Mool C

    2015-09-21

    This paper presents results on a highly efficient experimental solar thermophotovoltaic (STPV) system using simulated solar energy. An overall power conversion efficiency of 6.2% was recorded under solar simulation. This was matched with a thermodynamic model, and the losses within the system, as well as a path forward to mitigate these losses, have been investigated. The system consists of a planar, tungsten absorbing/emitting structure with an anti-reflection layer coated laser-microtextured absorbing surface and single-layer dielectric coated emitting surface. A GaSb PV cell was used to capture the emitted radiation and convert it into electrical energy. This simple structure is both easy to fabricate and temperature stable, and contains no moving parts or heat exchange fluids. PMID:26406745

  17. Solar thermophotovoltaic system using nanostructures.

    PubMed

    Ungaro, Craig; Gray, Stephen K; Gupta, Mool C

    2015-09-21

    This paper presents results on a highly efficient experimental solar thermophotovoltaic (STPV) system using simulated solar energy. An overall power conversion efficiency of 6.2% was recorded under solar simulation. This was matched with a thermodynamic model, and the losses within the system, as well as a path forward to mitigate these losses, have been investigated. The system consists of a planar, tungsten absorbing/emitting structure with an anti-reflection layer coated laser-microtextured absorbing surface and single-layer dielectric coated emitting surface. A GaSb PV cell was used to capture the emitted radiation and convert it into electrical energy. This simple structure is both easy to fabricate and temperature stable, and contains no moving parts or heat exchange fluids.

  18. Volcanic processes in the Solar System

    USGS Publications Warehouse

    Carr, M.H.

    1987-01-01

    This article stresses that terrestrial volcanism represents only part of the range of volcanism in the solar system. Earth processes of volcanicity are dominated by plate tectonics, which does not seem to operate on other planets, except possibly on Venus. Lunar volcanicity is dominated by lava effusion at enormous rates. Mars is similar, with the addition to huge shield volcanoes developed over fixed hotspots. Io, the moon closest to Jupiter, is the most active body in the Solar System and, for example, much sulphur and silicates are emitted. The eruptions of Io are generated by heating caused by tides induced by Jupiter. Europa nearby seems to emit water from fractures and Ganymede is similar. The satellites of Saturn and Uranus are also marked by volcanic craters, but they are of very low temperature melts, possibly of ammonia and water. The volcanism of the solar system is generally more exotic, the greater the distance from Earth. -A.Scarth

  19. Decentalized solar photovoltaic energy systems

    SciTech Connect

    Krupka, M. C.

    1980-09-01

    Environmental data for decentralized solar photovoltaic systems have been generated in support of the Technology Assessment of Solar Energy Systems program (TASE). Emphasis has been placed upon the selection and use of a model residential photovoltaic system to develop and quantify the necessary data. The model consists of a reference home located in Phoenix, AZ, utilizing a unique solar cell array-roof shingle combination. Silicon solar cells, rated at 13.5% efficiency at 28/sup 0/C and 100 mW/cm/sup 2/ (AMI) insolation are used to generate approx. 10 kW (peak). An all-electric home is considered with lead-acid battery storage, dc-ac inversion and utility backup. The reference home is compared to others in regions of different insolation. Major material requirements, scaled to quad levels of end-use energy include significant quantities of silicon, copper, lead, antimony, sulfuric acid and plastics. Operating residuals generated are negligible with the exception of those from the storage battery due to a short (10-year) lifetime. A brief general discussion of other environmental, health, and safety and resource availability impacts is presented. It is suggested that solar cell materials production and fabrication may have the major environmental impact when comparing all facets of photovoltaic system usage. Fabrication of the various types of solar cell systems involves the need, handling, and transportation of many toxic and hazardous chemicals with attendant health and safety impacts. Increases in production of such materials as lead, antimony, sulfuric acid, copper, plastics, cadmium and gallium will be required should large scale usage of photovoltaic systems be implemented.

  20. Our Solar System. Our Solar System Topic Set

    ERIC Educational Resources Information Center

    Phelan, Glen

    2006-01-01

    This book examines the planets and other objects in space that make up the solar system. It also shows how technology helps students learn about our neighbors in space. The suggested age range for this book is 3-8 with a guided reading level of Q-R. The Fry level is 3.2.

  1. Solar heating system installed at Troy, Ohio

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The completed system was composed of three basic subsystems: the collector system consisting of 3,264 square feet of Owens Illinois evacuated glass tube collectors; the storage system which included a 5,000 gallon insulated steel tank; and the distribution and control system which included piping, pumping and heat transfer components as well as the solemoid activated valves and control logic for the efficient and safe operation of the entire system. This solar heating system was installed in an existing facility and was, therefore, a retrofit system. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

  2. Advances in Solar Heating and Cooling Systems

    ERIC Educational Resources Information Center

    Ward, Dan S.

    1976-01-01

    Reports on technological advancements in the fields of solar collectors, thermal storage systems, and solar heating and cooling systems. Diagrams aid in the understanding of the thermodynamics of the systems. (CP)

  3. Dynamo theory prediction of solar activity

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1988-01-01

    The dynamo theory technique to predict decadal time scale solar activity variations is introduced. The technique was developed following puzzling correlations involved with geomagnetic precursors of solar activity. Based upon this, a dynamo theory method was developed to predict solar activity. The method was used successfully in solar cycle 21 by Schatten, Scherrer, Svalgaard, and Wilcox, after testing with 8 prior solar cycles. Schatten and Sofia used the technique to predict an exceptionally large cycle, peaking early (in 1990) with a sunspot value near 170, likely the second largest on record. Sunspot numbers are increasing, suggesting that: (1) a large cycle is developing, and (2) that the cycle may even surpass the largest cycle (19). A Sporer Butterfly method shows that the cycle can now be expected to peak in the latter half of 1989, consistent with an amplitude comparable to the value predicted near the last solar minimum.

  4. Solar desalination system and method

    SciTech Connect

    Kruse, C.L.

    1985-03-12

    A solar desalination system in which fresh water is derived from sea water by focussing solar ray energy from a collecting reflector onto an evaporator tube located at substantially the focal apex of the reflector. The reflector/evaporator tube assembly is mounted on a horizontal open grid platform which may support a plurality of parallel reflector/evaporator tube assemblies. The reflectors may serve as pontoons to support the desalination system unit on a body of sea water. The solar heat generated vapor is condensed in condenser tubes immersed in the sea water. Intermittently sea water concentrate is withdrawn from the evaporator tubes. Velocity of the vapor passing from the evaporator tubes to the condensers may be utilized for generating power.

  5. Solar neutrinos, solar flares, solar activity cycle and the proton decay

    NASA Technical Reports Server (NTRS)

    Raychaudhuri, P.

    1985-01-01

    It is shown that there may be a correlation between the galactic cosmic rays and the solar neutrino data, but it appears that the neutrino flux which may be generated during the large solar cosmic ray events cannot in any way effect the solar neutrino data in Davis experiment. Only initial stage of mixing between the solar core and solar outer layers after the sunspot maximum in the solar activity cycle can explain the higher (run number 27 and 71) of solar neutrino data in Davis experiment. But solar flare induced atmospheric neutrino flux may have effect in the nucleon decay detector on the underground. The neutrino flux from solar cosmic rays may be a useful guide to understand the background of nucleon decay, magnetic monopole search, and the detection of neutrino flux in sea water experiment.

  6. Forecasting the solar activity cycle: new insights

    NASA Astrophysics Data System (ADS)

    Nandy, Dibyendu; Karak, Bidya Binay

    2013-07-01

    Having advance knowledge of solar activity is important because the Sun's magnetic output governs space weather and impacts technologies reliant on space. However, the irregular nature of the solar cycle makes solar activity predictions a challenging task. This is best achieved through appropriately constrained solar dynamo simulations and as such the first step towards predictions is to understand the underlying physics of the solar dynamo mechanism. In Babcock-Leighton type dynamo models, the poloidal field is generated near the solar surface whereas the toroidal field is generated in the solar interior. Therefore a finite time is necessary for the coupling of the spatially segregated source layers of the dynamo. This time delay introduces a memory in the dynamo mechanism which allows forecasting of future solar activity. Here we discuss how this forecasting ability of the solar cycle is affected by downward turbulent pumping of magnetic flux. With significant turbulent pumping the memory of the dynamo is severely degraded and thus long term prediction of the solar cycle is not possible; only a short term prediction of the next cycle peak may be possible based on observational data assimilation at the previous cycle minimum.

  7. Decentralized solar photovoltaic energy systems

    NASA Astrophysics Data System (ADS)

    Krupka, M. C.

    1980-09-01

    Emphasis was placed upon the selection and use of a model residential photovoltaic system to develop and quantify the necessary data. The model consists of a reference home located in Phoenix, AZ utilizing a unique solar cell array roof shingle combination. Silicon solar cells, rated at 13.5 percent efficiency at 28 C and 100 mW/sq cm insolation are used to generate 10 kW (peak). An all electric home is considered with lead acid battery storage, DC AC inversion and utility backup. The reference home is compared to others in regions of different insolation. It is suggested that solar cell materials production and fabrication may have the major environmental impact when comparing all facets of photovoltaic system usage. Fabrication of the various types of solar cell systems involves the need, handling, and transportation of many toxic and hazardous chemicals with attendant health and safety impacts. Increases in production of such materials as lead, antimony, sulfuric acid, copper, plastics, cadmium and gallium will be required should large scale usage of photovoltaic systems be implemented.

  8. Sizing up the Solar System

    ERIC Educational Resources Information Center

    Wiebke, Heidi; Rogers, Meredith Park; Nargund-Joshi, Vanashri

    2011-01-01

    The American Association for the Advancement of Science (AAAS 1993) states that by the end of fifth grade, students should understand that a model, such as those depicting the solar system, is a smaller version of the real product, making it easier to physically work with and therefore learn from. However, for students and even adults,…

  9. Precipitation in the Solar System

    ERIC Educational Resources Information Center

    McIntosh, Gordon

    2007-01-01

    As an astronomy instructor, I am always looking for commonly observed Earthly experiences to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote a short TPT article on frost. This paper is on the related phenomena of precipitation. Precipitation, so common on most of the Earth's…

  10. Surveying of the solar system

    NASA Technical Reports Server (NTRS)

    Gehrels, Tom

    1991-01-01

    Some populations of objects in the solar system are poorly known, and the long range goal of this program is to improve that situation. For instance, the statistics of Trojan asteroids is being studied. A new technique is being developed for sky surveillance by scanning with CCD, particularly for the discovery of near Earth asteroids.

  11. Exploration of the Solar System.

    ERIC Educational Resources Information Center

    Henderson, Arthur, Jr., Ed.; Grey, Jerry, Ed.

    This review is one of a series of assessments and reviews prepared in the public interest by the American Institute of Aeronautics and Astronautics (AIAA). The purpose of this review is to outline the potential achievements of solar system exploration and suggest a course of action which will maximize the rewards to mankind. A secondary purpose is…

  12. Solafern solar system design brochure

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A complete residential solar space heating and hot water system is described. Low maintenance, durable, and efficient air heating collectors are used. The collectors have a selective absorber and a tempered glass cover nearly one-quarter of an inch thick with an aluminum frame. The solar energy can be delivered directly to the living area when there is a demand; otherwise, it is stored in the form of hot water. Hot water storage is accomplished through the use of an air-to-water exchanger. The hot water storage is used simultaneously to preheat the domestic hot water, as well as to store energy for space heating.

  13. Solar heating and cooling technical data and systems analysis

    NASA Technical Reports Server (NTRS)

    Christensen, D. L.

    1977-01-01

    The research activities described herein were concentrated on the areas of economics, heating and cooling systems, architectural design, materials characteristics, climatic conditions, educational information packages, and evaluation of solar energy systems and components.

  14. Science Activities in Energy: Solar Energy II.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Included in this science activities energy package are 14 activities related to solar energy for secondary students. Each activity is outlined on a single card and is introduced by a question such as: (1) how much solar heat comes from the sun? or (2) how many times do you have to run water through a flat-plate collector to get a 10 degree rise in…

  15. Stability of the Solar System

    NASA Astrophysics Data System (ADS)

    Leubner, I. H.

    2008-12-01

    It is a well established myth that the solar system is stable. The argument is generally based on the fact that the rate of the radiative plus solar wind mass loss of the Sun has a relatively small value of 8.81E-05 (1/Byr = 1/Ma) (radiative: 6.63E-05 (1/By)). Experimental results, e.g., that the Earth is separating from the Sun (10m/100year)(1), put the concept of stability of solar planetary orbits into doubt. An understanding of the stability of the solar system is a critical step towards the understanding of the stability of galaxies and the Universe.(2,3) The stability of planetary orbits, which is the other factor determining the stability of the solar system, has until recently not been modeled.(4) A model is presented which shows that the planetary orbits are weakly bound relative to orbital separation, ranging from 0.6 percent for Mercury to 0.006 for Pluto, and 0.0011 percent for CR105, the furthest reported planetesimal. These values are in the order of solar mass/gravity loss, and as a consequence, the model predicts that the solar system is expanding since its formation. The present separation rate of Earth is calculated to 3.0 m/year. Eventually orbital separation of planets will occur, e.g., at 133.8, 1.30, and 0.23 Billion years for Mercury, Pluto, Cr105, respectively under current conditions. The model shows that Mars was previously closer to the Sun and exposed to higher radiation, and that the transition from water to ice on its surface occurred 3.6 Billion years ago.(4) Predictions of the model are reported for all planets and dwarf planets. References: 1. C. Laemmerzahl, 2006, 70th Annual Meeting, German Physical Society, (DPG); Note: indirect measurements, quote: The cause for the drifting apart of Sun and Earth cannot be explained by present knowledge and methods of gravitation physics' 2. I. H. Leubner, 2003, 'The Formation of the universe (Big Bang) as a Crystallization Process', Rochester Academy of Science, 30th Fall Paper Session

  16. Polarization aberrations in the solar activity measurements experiments (SAMEX) solar vector magnetograph

    NASA Technical Reports Server (NTRS)

    Mcguire, James P., Jr.; Chipman, Russell A.

    1989-01-01

    An optical design and polarization analysis of the Air Force/NASA Solar Activity Measurements Experiments solar vector magnetograph optical system is performed. Polarization aberration theory demonstrates that conventional telescope coating designs introduce unacceptably high levels of polarization aberrations into the optical system. Several ultralow polarization mirror and lens coatings designs for this instrument are discussed. Balancing of polarization aberrations at different surfaces is demonstrated.

  17. Solar System Analog; WMO Statement

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Scientists searching for extra-solar planets have discovered the closest known analog to our own Solar System. A planet with a mass about twice that of Jupiter is in a near-circular orbit of the star HD70642, a team of astronomers from Australia, the United Kingdom, and the United States announced on 3 July at a conference in Paris on extra-solar planets.The planet measures about three-fifths the size of Jupiter, circles its star about every six years, and is in an orbit equivalent to being about halfway between Mars and Jupiter if it were located in our Solar System, according to the astronomers. The star is about 90 light years away from Earth in the constellation Puppis.Public concern about a spate of well-publicized, extreme weather events around the world this year has prompted the World Meteorological Organization to issue a statement that, as global temperatures continues to rise due to climate change, the number and intensity of extreme events might increase. The July 2 statement is based on scientific assessments by the Intergovernmental Panel on Climate Change and others, rather than on any new studies, according to Ken Davidson, director orf WMO's World Climate Program Department. The statement cites record high termperatures so far this summer in southern France and in Switzerland, an abnormally high number of tornadoes in the U.S. in May, and particularly heavy rains from tropical cyclones in Sri Lanka.

  18. History and Forecast of Solar Activity

    NASA Astrophysics Data System (ADS)

    Mikushina, O. V.; Klimenko, V. V.; Dovgalyuk, V. V.

    From a new reconstruction of the radiocarbon production rate in the atmosphere we obtain a long history of maximum Wolf sunspot numbers. Based on this reconstruction as well as on the history of other indicators of solar activity (10Be, aurora borealis), we derive a long-period trend which together with the results of spectral analysis of maximum Wolf numbers series (1506-1993) form a basis for prediction of solar activity up to 2100. The resulting trigonometric trend points to an essential decrease in solar activity in the coming decades.

  19. Steamy Solar System

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Annotated Version

    This diagram illustrates the earliest journeys of water in a young, forming star system. Stars are born out of icy cocoons of gas and dust. As the cocoon collapses under its own weight in an inside-out fashion, a stellar embryo forms at the center surrounded by a dense, dusty disk. The stellar embryo 'feeds' from the disk for a few million years, while material in the disk begins to clump together to form planets.

    NASA's Spitzer Space Telescope was able to probe a crucial phase of this stellar evolution - a time when the cocoon is vigorously falling onto the pre-planetary disk. The infrared telescope detected water vapor as it smacks down on a disk circling a forming star called NGC 1333-IRAS 4B. This vapor started out as ice in the outer envelope, but vaporized upon its arrival at the disk.

    By analyzing the water in the system, astronomers were also able learn about other characteristics of the disk, such as its size, density and temperature.

    How did Spitzer see the water vapor deep in the NGC 1333-IRAS 4B system? This is most likely because the system is oriented in just the right way, such that its thicker disk is seen face-on from our Earthly perspective. In this 'face-on' orientation, Spitzer can peer through a window carved by an outflow of material from the embryonic star. This system in this drawing is shown in the opposite 'edge-on' configuration.

  20. Adaptive, full-spectrum solar energy system

    DOEpatents

    Muhs, Jeffrey D.; Earl, Dennis D.

    2003-08-05

    An adaptive full spectrum solar energy system having at least one hybrid solar concentrator, at least one hybrid luminaire, at least one hybrid photobioreactor, and a light distribution system operably connected to each hybrid solar concentrator, each hybrid luminaire, and each hybrid photobioreactor. A lighting control system operates each component.

  1. The solar system's invariable plane

    NASA Astrophysics Data System (ADS)

    Souami, D.; Souchay, J.

    2012-07-01

    Context. The dynamics of solar system objects, such as dwarf planets and asteroids, has become a well-established field of celestial mechanics in the past thirty years, owing to the improvements that have been made in observational techniques and numerical studies. In general, the ecliptic is taken as the reference plane in these studies, although there is no dynamical reason for doing so. In contrast, the invariable plane as originally defined by Laplace, seems to be a far more natural choice. In this context, the latest study of this plane dates back to Burkhardt. Aims: We define and determine the orientation of the invariable plane of the solar system with respect to both the ICRF and the equinox-ecliptic of J2000.0, and evaluate the accuracy of our determination. Methods: Using the long-term numerical ephemerides DE405, DE406, and INPOP10a over their entire available time span, we computed the total angular momentum of the solar system, as well as the individual contribution to it made by each of the planets, the dwarf planets Pluto and Ceres, and the two asteroids Pallas and Vesta. We then deduced the orientation of the invariable plane from these ephemerides. Results: We update the previous results on the determination of the orientation of the invariable plane with more accurate data, and a more complete analysis of the problem, taking into account the effect of the dwarf planet (1) Ceres as well as two of the biggest asteroids, (4) Vesta and (2) Pallas. We show that the inclusion of these last three bodies significantly improves the accuracy of determination of the invariable plane, whose orientation over a 100 y interval does not vary more than 0.1 mas in inclination, and 0.3 mas in longitude of the ascending node. Moreover, we determine the individual contributions of each body to the total angular momentum of the solar system, as well as the inclination and longitude of the node with respect to this latter plane. Conclusions: Owing to the high accuracy

  2. The risk characteristics of solar and geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Podolska, Katerina

    2016-04-01

    The main aim of this contribution is a deeper analysis of the influence of solar activity which is expected to have an impact on human health, and therefore on mortality, in particular civilization and degenerative diseases. We have constructed the characteristics that represent the risk of solar and geomagnetic activity on human health on the basis of our previous analysis of association between the daily numbers of death on diseases of the nervous system and diseases of the circulatory system and solar and geomagnetic activity in the Czech Republic during the years 1994 - 2013. We used long period daily time series of numbers of deaths by cause, long period time series of solar activity indices (namely R and F10.7), geomagnetic indicies (Kp planetary index, Dst) and ionospheric parameters (foF2 and TEC). The ionospheric parameters were related to the geographic location of the Czech Republic and adjusted for middle geographic latitudes. The risk characteristics were composed by cluster analysis in time series according to the phases of the solar cycle resp. the seasonal insolation at mid-latitudes or the daily period according to the impact of solar and geomagnetic activity on mortality by cause of death from medical cause groups of death VI. Diseases of the nervous system and IX. Diseases of the circulatory system mortality by 10th Revision of International Classification of Diseases WHO (ICD-10).

  3. Prototype solar heating and cooling systems including potable hot water

    NASA Technical Reports Server (NTRS)

    1978-01-01

    These combined quarterly reports summarize the activities from November 1977 through September 1978, and over the progress made in the development, delivery and support of two prototype solar heating and cooling systems including potable hot water. The system consists of the following subsystems: solar collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  4. Inhabiting the solar system

    NASA Astrophysics Data System (ADS)

    Sherwood, Brent

    2011-03-01

    The new field of space architecture is introduced. Defined as the "theory and practice of designing and building inhabited environments in outer space," the field synthesizes human space flight systems engineering subjects with the long tradition of making environments that support human living, work, and aspiration. The scope of the field is outlined, and its three principal domains differentiated. The current state of the art is described in terms of executed projects. Foreseeable options for 21st century developments in human space flight provide a framework to tease out potential space architecture opportunities for the next century.

  5. Sources of solar wind over the solar activity cycle

    PubMed Central

    Poletto, Giannina

    2012-01-01

    Fast solar wind has been recognized, about 40 years ago, to originate in polar coronal holes (CHs), that, since then, have been identified with sources of recurrent high speed wind streams. As of today, however, there is no general consensus about whether there are, within CHs, preferential locations where the solar wind is accelerated. Knowledge of slow wind sources is far from complete as well. Slow wind observed in situ can be traced back to its solar source by backward extrapolation of magnetic fields whose field lines are streamlines of the outflowing plasma. However, this technique often has not the necessary precision for an indisputable identification of the region where wind originates. As the Sun progresses through its activity cycle, different wind sources prevail and contribute to filling the heliosphere. Our present knowledge of different wind sources is here summarized. Also, a Section addresses the problem of wind acceleration in the low corona, as inferred from an analysis of UV data, and illustrates changes between fast and slow wind profiles and possible signatures of changes along the solar cycle. A brief reference to recent work about the deep roots of solar wind and their changes over different solar cycles concludes the review. PMID:25685421

  6. Sources of solar wind over the solar activity cycle.

    PubMed

    Poletto, Giannina

    2013-05-01

    Fast solar wind has been recognized, about 40 years ago, to originate in polar coronal holes (CHs), that, since then, have been identified with sources of recurrent high speed wind streams. As of today, however, there is no general consensus about whether there are, within CHs, preferential locations where the solar wind is accelerated. Knowledge of slow wind sources is far from complete as well. Slow wind observed in situ can be traced back to its solar source by backward extrapolation of magnetic fields whose field lines are streamlines of the outflowing plasma. However, this technique often has not the necessary precision for an indisputable identification of the region where wind originates. As the Sun progresses through its activity cycle, different wind sources prevail and contribute to filling the heliosphere. Our present knowledge of different wind sources is here summarized. Also, a Section addresses the problem of wind acceleration in the low corona, as inferred from an analysis of UV data, and illustrates changes between fast and slow wind profiles and possible signatures of changes along the solar cycle. A brief reference to recent work about the deep roots of solar wind and their changes over different solar cycles concludes the review.

  7. Solar activities and Climate change hazards

    NASA Astrophysics Data System (ADS)

    Hady, A. A., II

    2014-12-01

    Throughout the geological history of Earth, climate change is one of the recurrent natural hazards. In recent history, the impact of man brought about additional climatic change. Solar activities have had notable effect on palaeoclimatic changes. Contemporary, both solar activities and building-up of green-house gases effect added to the climatic changes. This paper discusses if the global worming caused by the green-house gases effect will be equal or less than the global cooling resulting from the solar activities. In this respect, we refer to the Modern Dalton Minimum (MDM) which stated that starting from year 2005 for the next 40 years; the earth's surface temperature will become cooler than nowadays. However the degree of cooling, previously mentioned in old Dalton Minimum (c. 210 y ago), will be minimized by building-up of green-house gases effect during MDM period. Regarding to the periodicities of solar activities, it is clear that now we have a new solar cycle of around 210 years. Keywords: Solar activities; solar cycles; palaeoclimatic changes; Global cooling; Modern Dalton Minimum.

  8. Science Activities in Energy: Solar Energy.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 12 activities relating to solar energy. Activities are simple, concrete experiments for fourth, fifth, and sixth grades, which illustrate principles and problems relating to energy. Each activity is outlined on a single card which is introduced by a question. A teacher's supplement…

  9. Water in the Solar System

    NASA Astrophysics Data System (ADS)

    Encrenaz, Thérèse

    2008-09-01

    Water is ubiquitous in the Universe, and also in the Solar System. By setting the snow line at its condensation level in the protosolar disk, water was responsible for separating the planets into the terrestrial and the giant ones. Water ice is a major constituent of the comets and the small bodies of the outer Solar System, and water vapor is found in the giant planets, both in their interiors and in the stratospheres. Water is a trace element in the atmospheres of Venus and Mars today. It is very abundant on Earth, mostly in liquid form, but it was probably also abundant in the primitive atmospheres of Venus and Mars. Water is found in different states on the three planets, as vapor on Venus and ice (or permafrost) on Mars. Most likely, this difference has played a major role in the diverging destinies of the three planets.

  10. Solar-powered cooling system

    DOEpatents

    Farmer, Joseph C.

    2015-07-28

    A solar-powered adsorption-desorption refrigeration and air conditioning system that uses nanostructural materials such as aerogels, zeolites, and sol gels as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material while the material is at a relatively low temperature, perhaps at night. During daylight hours, when the nanostructural materials is heated by the sun, the refrigerant are thermally desorbed from the surface of the aerogel, thereby creating a pressurized gas phase in the vessel that contains the aerogel. This solar-driven pressurization forces the heated gaseous refrigerant through a condenser, followed by an expansion valve. In the condenser, heat is removed from the refrigerant, first by circulating air or water. Eventually, the cooled gaseous refrigerant expands isenthalpically through a throttle valve into an evaporator, in a fashion similar to that in more conventional vapor recompression systems.

  11. Goldstone Solar System Radar (GSSR)

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A.

    1991-01-01

    The primary objective of the Goldstone Solar System Radar is the investigation of solar system bodies by means of Earth-based radar. Targets of primary interest include the Galilean moons, Saturn's rings and moons, and Earth-approaching asteroids and comets. Planets are also of interest, particularly Mercury and the planets to which NASA has not yet planned spacecraft visits. Based on a history of solid achievement, including the definition of the Astronomical Unit, imaging and topography of Mars, Venus, and Mercury, and contributions to the general theory of relativity, the program will continue to support flight project requirements and its primary objectives. The individual target objectives are presented, and information on the following topics are presented in tabular form: Deep Space Network support, compatibility tests, telemetry, command, and tracking support responsibility.

  12. Hinode Captures Images of Solar Active Region

    NASA Video Gallery

    In these images, Hinode's Solar Optical Telescope (SOT) zoomed in on AR 11263 on August 4, 2011, five days before the active region produced the largest flare of this cycle, an X6.9. We show images...

  13. A review of vertical coupling in the Atmosphere-Ionosphere system: Effects of waves, sudden stratospheric warmings, space weather, and of solar activity

    NASA Astrophysics Data System (ADS)

    Yiğit, Erdal; Koucká Knížová, Petra; Georgieva, Katya; Ward, William

    2016-04-01

    This brief introductory review of some recent developments in atmosphere-ionosphere science is written for the "Vertical Coupling Special Issue" that is motivated by the 5th IAGA/ICMA/SCOSTEP Workshop on Vertical Coupling in the Atmosphere-Ionosphere System. Basic processes of vertical coupling in the atmosphere-ionosphere system are discussed, focusing on the effects of internal waves, such as gravity waves and solar tides, sudden stratospheric warmings (SSWs), and of solar activity on the structure of the atmosphere. Internal waves play a crucial role in the current state and evolution of the upper atmosphere-ionosphere system. SSW effects extend into the upper atmosphere, producing changes in the thermospheric circulation and ionospheric disturbances. Sun, the dominant energy source for the atmosphere, directly impacts the upper atmosphere and modulates wave-induced coupling. The emphasis is laid on the most recent developments in the field, while giving credits to older works where necessary. Various international activities in atmospheric vertical coupling, such as SCOSTEP's ROSMIC project, and a brief contextual discussion of the papers published in the special issue are presented.

  14. Low Latitude Aurora: Index of Solar Activity

    NASA Astrophysics Data System (ADS)

    Bekli, M. R.; Aissani, D.; Chadou, I.

    2010-10-01

    Observations of aurora borealis at low latitudes are rare, and are clearly associated with high solar activity. In this paper, we analyze some details of the solar activity during the years 1769-1792. Moreover, we describe in detail three low latitude auroras. The first event was reported by ash-Shalati and observed in North Africa (1770 AD). The second and third events were reported by l'Abbé Mann and observed in Europe (1770 and 1777 AD).

  15. Relationships between solar activity and climate change

    NASA Technical Reports Server (NTRS)

    Roberts, W. O.

    1975-01-01

    The relationship between recurrent droughts in the High Plains of the United States and the double sunspot cycle is discussed in detail. It is suggested that high solar activity is generally related to an increase in meridional circulation and blocking patterns at high and intermediate latitudes, especially in winter, and the effect is related to the sudden formation of cirrus clouds during strong geomagnetic activity that originates in the solar corpuscular emission.

  16. Systems and methods for solar energy storage, transportation, and conversion utilizing photochemically active organometallic isomeric compounds and solid-state catalysts

    DOEpatents

    Vollhardt, K. Peter C.; Segalman, Rachel A; Majumdar, Arunava; Meier, Steven

    2015-02-10

    A system for converting solar energy to chemical energy, and, subsequently, to thermal energy includes a light-harvesting station, a storage station, and a thermal energy release station. The system may include additional stations for converting the released thermal energy to other energy forms, e.g., to electrical energy and mechanical work. At the light-harvesting station, a photochemically active first organometallic compound, e.g., a fulvalenyl diruthenium complex, is exposed to light and is photochemically converted to a second, higher-energy organometallic compound, which is then transported to a storage station. At the storage station, the high-energy organometallic compound is stored for a desired time and/or is transported to a desired location for thermal energy release. At the thermal energy release station, the high-energy organometallic compound is catalytically converted back to the photochemically active organometallic compound by an exothermic process, while the released thermal energy is captured for subsequent use.

  17. 11 -year planetary index of solar activity

    NASA Astrophysics Data System (ADS)

    Okhlopkov, Victor

    In papers [1,2] introduced me parameter - the average difference between the heliocentric longitudes of planets ( ADL ) , which was used for comparison with solar activity. The best connection of solar activity ( Wolf numbers used ) was obtained for the three planets - Venus, Earth and Jupiter. In [1,2] has been allocated envelope curve of the minimum values ADL which has a main periodicity for 22 years and describes well the alternating series of solar activity , which also has a major periodicity of 22. It was shown that the minimum values of the envelope curve extremes ADL planets Venus, Earth and Jupiter are well matched with the 11- year solar activity cycle In these extremes observed linear configuration of the planets Venus, Earth and Jupiter both in their location on one side of the Sun ( conjunctions ) and at the location on the opposite side of the Sun ( three configurations ) This work is a continuation of the above-mentioned , and here for minimum ADL ( planets are in conjunction ) , as well as on the minimum deviation of the planets from a line drawn through them and Sun at the location of the planets on opposite sides of the Sun , compiled index (denoted for brevity as JEV ) that uniquely describes the 11- year solar cycle A comparison of the index JEV with solar activity during the time interval from 1000 to 2013 conducted. For the period from 1000 to 1699 used the Schove series of solar activity and the number of Wolf (1700 - 2013 ) During the time interval from 1000 to 2013 and the main periodicity of the solar activity and the index ADL is 11.07 years. 1. Okhlopkov V.P. Cycles of Solar Activity and the Configurations of Planets // Moscow University Physics Bulletin, 2012 , Vol. 67 , No. 4 , pp. 377-383 http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.3103/S0027134912040108. 2 Okhlopkov VP, Relationship of Solar Activity Cycles to Planetary Configurations // Bulletin of the Russian Academy of Sciences. Physics, 2013 , Vol. 77 , No. 5

  18. Small grains of truth. [solar system evolution

    NASA Technical Reports Server (NTRS)

    Nuth, Joe

    1991-01-01

    The evidence concerning the formation of the solar nebula from preexisting clouds found in the chemical composition of solar system grains is discussed. Evidence for sequential star formation in the grains is examined. It is argued that there is no model for the origin of the solar system which can account for the increasing complexity of the evidence.

  19. Basics of Solar Heating & Hot Water Systems.

    ERIC Educational Resources Information Center

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  20. Hybrid solar lighting distribution systems and components

    DOEpatents

    Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.

    2011-07-05

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  1. Hybrid solar lighting systems and components

    DOEpatents

    Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.

    2007-06-12

    A hybrid solar lighting system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates each component.

  2. Solar-powered hot-water system

    NASA Technical Reports Server (NTRS)

    Collins, E. R.

    1979-01-01

    Hot-water system requires no external power except solar energy. System is completely self-controlling. It includes solar-powered pump, solar-thermally and hydrothermally operated valves, and storage tank filled with open-celled foam, to maintain thermal stratification in stored water.

  3. Modular Solar Electric Power (MSEP) Systems (Presentation)

    SciTech Connect

    Hassani, V.

    2000-06-18

    This presentation discusses the development and deployment of Modular Solar Electric Power (MSEP) systems, the feasibility of application of existing binary power cycles to solar trough technology, and identification of next action items.

  4. Solar-Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  5. Solar-Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2001-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure. and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  6. An Analysis of Solar Global Activity

    NASA Astrophysics Data System (ADS)

    Mouradian, Zadig

    2013-02-01

    This article proposes a unified observational model of solar activity based on sunspot number and the solar global activity in the rotation of the structures, both per 11-year cycle. The rotation rates show a variation of a half-century period and the same period is also associated to the sunspot amplitude variation. The global solar rotation interweaves with the observed global organisation of solar activity. An important role for this assembly is played by the Grand Cycle formed by the merging of five sunspot cycles: a forgotten discovery by R. Wolf. On the basis of these elements, the nature of the Dalton Minimum, the Maunder Minimum, the Gleissberg Cycle, and the Grand Minima are presented.

  7. Jupiter: Giant of the solar system. [its solar orbits

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Jupiter, its relationship to the other planets in the solar system, its twelve natural satellites, solar orbit and the appearance of Jupiter in the sky, and the sightings and motions of Jupiter in 1973 are discussed. Educational study projects for students are also included.

  8. Statistical Properties of Extreme Solar Activity Intervals

    NASA Astrophysics Data System (ADS)

    Lioznova, A. V.; Blinov, A. V.

    2014-01-01

    A study of long-term solar variability reflected in indirect indices of past solar activity leads to stimulating results. We compare the statistics of intervals of very low and very high solar activity derived from two cosmogenic radionuclide records and look for consistency in their timing and physical interpretation. According to the applied criteria, the numbers of minima and of maxima are 61 and 68, respectively, from the 10Be record, and 42 and 46 from the 14C record. The difference between the enhanced and depressed states of solar activity becomes apparent in the difference in their statistical distributions. We find no correlation between the level or type (minimum or maximum) of an extremum and the level or type of the predecessor. The hypothesis of solar activity as a periodic process on the millennial time scale is not supported by the existing proxies. A new homogeneous series of 10Be measurements in polar ice covering the Holocene would be of great value for eliminating the existing discrepancy in the available solar activity reconstructions.

  9. Climatic variables as indicators of solar activity

    NASA Astrophysics Data System (ADS)

    Balybina, A. S.; Karakhanyan, A. A.

    2012-12-01

    Tree-ring analysis is used successfully in studies of solar-terrestrial relations. We consider a linear dependence between the radial increment in conifers in Eastern Siberia and solar activity parameters: the length and amplitude of an 11-year solar cycle in the 20th century. It is shown that the increment in conifers in the region is larger in a longer and lower solar cycle than in a short and high one. A correlation between the increment in the width of annual rings of Pinus sylvestris and Siberian pine and the length of the ascending phase of an 11-year cycle is revealed: the longer the ascending phase, the larger the radial increment in conifers. The dynamics of the annual increment in conifers in the region is inversely related to the cycle amplitude and magnetic disturbances in the main solar cycle.

  10. Solar activity and explosive transient eruptions

    NASA Astrophysics Data System (ADS)

    Ambastha, Ashok

    2016-07-01

    We discuss active and explosive behavior of the Sun observable in a wide range of wavelengths (or energies) and spatio-temporal scales that are not possible for any other star. On the longer time scales, the most notable form of solar activity is the well known so called 11-year solar activity cycle. On the other hand, at shorter time scales of a few minutes to several hours, spectacular explosive transient events, such as, solar flares, prominence eruptions, and coronal mass ejections (CMEs) occur in the outer layers of solar atmosphere. These solar activity cycle and explosive phenomena influence and disturb the space between the Sun and planets. The state of the interplanetary medium, including planetary and terrestrial surroundings, or "the space weather", and its forecasting has important practical consequences. The reliable forecasting of space weather lies in continuously observing of the Sun. We present an account of the recent developments in our understanding of these phenomena using both space-borne and ground-based solar observations.

  11. The solar wind-magnetosphere-ionosphere system

    PubMed

    Lyon

    2000-06-16

    The solar wind, magnetosphere, and ionosphere form a single system driven by the transfer of energy and momentum from the solar wind to the magnetosphere and ionosphere. Variations in the solar wind can lead to disruptions of space- and ground-based systems caused by enhanced currents flowing into the ionosphere and increased radiation in the near-Earth environment. The coupling between the solar wind and the magnetosphere is mediated and controlled by the magnetic field in the solar wind through the process of magnetic reconnection. Understanding of the global behavior of this system has improved markedly in the recent past from coordinated observations with a constellation of satellite and ground instruments.

  12. The Redox flow system for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Odonnell, P.; Gahn, R. F.

    1976-01-01

    A new method of storage was applied to a solar photovoltaic system. The storage method is a redox flow system which utilizes the oxidation-reduction capability of two soluble electrochemical redox couples for its storage capacity. The particular variant described separates the charging and discharging function of the system such that the electrochemical couples are simultaneously charged and discharged in separate parts of the system. The solar array had 12 solar cells; wired in order to give a range of voltages and currents. The system stored the solar energy so that a load could be run continually day and night. The main advantages of the redox system are that it can accept a charge in the low voltage range and produce a relatively constant output regardless of solar activity.

  13. The solar activity measurements experiments (SAMEX) for improved scientific understanding of solar activity

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Solar Activity Measurements Experiments (SAMEX) mission is described. It is designed to provide a look at the interactions of magnetic fields and plasmas that create flares and other explosive events on the sun in an effort to understand solar activity and the nature of the solar magnetic field. The need for this mission, the instruments to be used, and the expected benefits of SAMEX are discussed.

  14. Temporal offsets among solar activity indicators

    NASA Astrophysics Data System (ADS)

    Ramesh, K. B.; Vasantharaju, N.

    2014-04-01

    Temporal offsets between the time series of solar activity indicators provide important clues regarding the physical processes responsible for the cyclic variability in the solar atmosphere. Hysteresis patterns generated between any two indicators were popularly used to study their morphological features and further to understand their inter relationships. We use time series of different solar indicators to understand the possible cause-and-effect criteria between their respective source regions. Sensitivity of the upper atmosphere to the activity underneath might play an important role in introducing different evolutionary patterns in the profiles of solar indicators and in turn cause temporal offsets between them. Limitations in the observations may also cause relative shifts in the time series.

  15. Solar Cycle Variations of the Occurrence of Coronal Type III Radio Bursts and a New Solar Activity Index

    NASA Astrophysics Data System (ADS)

    Lobzin, V. V.; Cairns, I. H.; Robinson, P. A.

    2011-12-01

    The results of studies of solar cycle variations of the occurrence rate of coronal type III radio bursts are presented. The radio spectra are provided by the Learmonth Solar Radio Observatory (Western Australia), part of the USAF Radio Solar Telescope Network (RSTN). It is found that the occurrence rate of type III bursts strongly correlates with solar activity. However, the profiles for the smoothed type III burst occurrence rate differ considerably from those for the sunspot number, 10.7 cm solar radio flux, and solar flare index. The type III burst occurrence rate (T3BOR) is proposed as a new index of solar activity. T3BOR provides complementary information about solar activity and should be useful in different studies including solar cycle predictions and searches for different periodicities in solar activity. This index can be estimated from daily results of the Automated Radio Burst Identification System (ARBIS). Access to data from other RSTN sites will allow processing 24-hour radio spectra in near-real time and estimating true daily values of this index. It is also shown that coronal type III bursts can even occur when there are no visible sunspots on the Sun. However, no evidence is found that the bursts are not associated with active regions. It is also concluded that the type III burst productivity of active regions exhibits solar cycle variations.

  16. SOLAR CYCLE VARIATIONS OF THE OCCURRENCE OF CORONAL TYPE III RADIO BURSTS AND A NEW SOLAR ACTIVITY INDEX

    SciTech Connect

    Lobzin, Vasili; Cairns, Iver H.; Robinson, Peter A.

    2011-07-20

    This Letter presents the results of studies of solar cycle variations of the occurrence rate of coronal type III radio bursts. The radio spectra are provided by the Learmonth Solar Radio Observatory (Western Australia), part of the USAF Radio Solar Telescope Network (RSTN). It is found that the occurrence rate of type III bursts strongly correlates with solar activity. However, the profiles for the smoothed type III burst occurrence rate differ considerably from those for the sunspot number, 10.7 cm solar radio flux, and solar flare index. The type III burst occurrence rate (T3BOR) is proposed as a new index of solar activity. T3BOR provides complementary information about solar activity and should be useful in different studies including solar cycle predictions and searches for different periodicities in solar activity. This index can be estimated from daily results of the Automated Radio Burst Identification System. Access to data from other RSTN sites will allow processing 24 hr radio spectra in near-real time and estimating true daily values of this index. It is also shown that coronal type III bursts can even occur when there are no visible sunspots on the Sun. However, no evidence is found that the bursts are not associated with active regions. It is also concluded that the type III burst productivity of active regions exhibits solar cycle variations.

  17. The solar system beyond Neptune

    NASA Technical Reports Server (NTRS)

    Jewitt, David C.; Luu, Jane X.

    1995-01-01

    We present the results of a deep optical survey for distant solar system objects. An area of 1.2 sq deg of the ecliptic has been imaged to apparent red magnitude 25, resulting in the detection of seven trans-Neptunian objects. These are the first detected members of a trans-Neptunian disk that compries about 35 000 objects larger than 100 km in the 30-50 AU heliocentric distance range. We interpret the new measurements using a set of Monte Carlo models in which the effects of observational bias in the data are taken into account.

  18. Life in the solar system.

    NASA Astrophysics Data System (ADS)

    McKay, C. P.

    Liquid water is the quintessential requirement for life. Thus, the presence of liquid water provides the most useful environmental criteria for searching for life on other planets. In the present solar system, liquid water, and hence life, is definitely found only on Earth. There is convincing evidence that liquid water existed on Mars early in its history. While there may be no life on Mars at present it may hold the key to understanding the origin of life in Earth-like environments and provide a basis for estimates of the distribution of life in the universe.

  19. Tracking system for solar collectors

    DOEpatents

    Butler, Barry L.

    1984-01-01

    A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.

  20. Tracking system for solar collectors

    DOEpatents

    Butler, B.

    1980-10-01

    A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.

  1. Exceptional Solar-System Objects

    NASA Astrophysics Data System (ADS)

    Zellner, Benjamin

    1990-12-01

    This is a target-of-opportunity proposal for HST observations to be executed if a previously unknown, truly exceptional solar-system object or phenomenon is discovered either in the normal course of HST work or by anyone, anywhere. Trails due to unknown moving objects will often appear on HST images made for other purposes. A short trail seen near the opposition point or at high ecliptic latitude could represent a major addition to our knowledge of the solar system. Thus we further propose that all short trials seen on HST images taken in favorable regions of the sky be given a quick analysis in the Observation Support System for their possible significance. If an unusual object is found we propose to: (1) Seek from the owner of data rights permission to proceed as may be appropriate; (2) Contact the Minor Planet Center for an evaluation of the significance of the discovery; and (3) For an object that appears to be of great significance where effective groundbased followup appears unlikely, request the HST schedule be replanned for followup images and physical studies using HST.

  2. Geomagnetic activity: Dependence on solar wind parameters

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1977-01-01

    Current ideas about the interaction between the solar wind and the earth's magnetosphere are reviewed. The solar wind dynamic pressure as well as the influx of interplanetary magnetic field lines are both important for the generation of geomagnetic activity. The influence of the geometry of the situation as well as the variability of the interplanetary magnetic field are both found to be important factors. Semi-annual and universal time variations are discussed as well as the 22-year cycle in geomagnetic activity. All three are found to be explainable by the varying geometry of the interaction. Long term changes in geomagnetic activity are examined.

  3. Tracing Rays In A Solar Power System

    NASA Technical Reports Server (NTRS)

    Jefferies, Kent; Gallo, Chris

    1989-01-01

    OFFSET is ray-tracing computer code for analysis of optics of solar collector. Code models distributions of solar flux within receiver cavity, produced by reflections from collector. Developed to model mathematically offset solar collector of solar dynamic electric power system being developed for Space Station Freedom. Used to develop revised collector-facet concept of four groups of toroidally contoured facets. Also used to develop methods for tailoring distribution of flux incident on receiver. Written in FORTRAN 77 (100 percent).

  4. Aluminum-26 in the early solar system - Fossil or fuel

    NASA Technical Reports Server (NTRS)

    Lee, T.; Papanastassiou, D. A.; Wasserburg, G. J.

    1977-01-01

    The isotopic composition of Mg was measured in different phases of a Ca-Al-rich inclusion in the Allende meteorite. Large excesses of Mg-26 of up to 10% were found. These excesses correlate strictly with the Al-27/Mg-24 ratio for four coexisting phases with distinctive chemical compositions. Models of in situ decay of Al-26 within the solar system and of mixing of interstellar dust grains containing fossil Al-26 with normal solar system material are presented. The observed correlation provides definitive evidence for the presence of Al-26 in the early solar system. This requires either injection of freshly synthesized nucleosynthetic material into the solar system immediately before condensation and planet formation, or local production within the solar system by intense activity of the early sun. Planets promptly produced from material with the inferred Al-26/Al-27 would melt within about 300,000 years.

  5. Solar thermal power systems. Summary report

    SciTech Connect

    Not Available

    1980-06-01

    The work accomplished by the Aerospace Corporation from April 1973 through November 1979 in the mission analysis of solar thermal power systems is summarized. Sponsorship of this effort was initiated by the National Science Foundation, continued by the Energy Research and Development Administration, and most recently directed by the United States Department of Energy, Division of Solar Thermal Systems. Major findings and conclusions are sumarized for large power systems, small power systems, solar total energy systems, and solar irrigation systems, as well as special studies in the areas of energy storage, industrial process heat, and solar fuels and chemicals. The various data bases and computer programs utilized in these studies are described, and tables are provided listing financial and solar cost assumptions for each study. An extensive bibliography is included to facilitate review of specific study results and methodology.

  6. MULTIFUNCTIONAL SOLAR ENERGY SYSTEMS RESEARCH PROJECT

    SciTech Connect

    Byard Wood, Lance Seefeldt, Ronald Sims, Bradley Wahlen, and Dan Dye

    2012-06-29

    The solar energy available within the visible portion of the solar spectrum is about 300 W/m2 (43%) and that available in the UV and IR portion is about 400 W/m2 (57%). This provides opportunities for developing integrated energy systems that capture and use specific wavelengths of the solar spectrum for different purposes. For example: biofuels from photosynthetic microbes use only the visible light; solar cells use a narrow band of the solar spectrum that could be either mostly in the visible or in the IR regions of the solar spectrum, depending on the photovoltaic materials, e.g., gallium antimonide (GaSb) cells utilize predominately IR radiation; and finally, solar panels that heat water utilize a broad range of wavelengths (visible plus IR). The basic idea of this research is that sunlight has many possible end-use applications including both direct use and energy conversion schemes; it is technically feasible to develop multifunctional solar energy systems capable of addressing several end-use needs while increasing the overall solar energy utilization efficiency when compared to single-purpose solar technologies. Such a combination of technologies could lead to more cost-competitive ?multifunctional? systems that add value and broaden opportunities for integrated energy systems. The goal of this research is to increase the overall energy efficacy and cost competitiveness of solar systems. The specific objectives of this research were: 1) Evaluate the efficacy of a combined photobioreactor and electric power system; 2) Improve the reliability and cost effectiveness of hybrid solar lighting systems ? a technology in which sunlight is collected and distributed via optical fibers into the interior of a building; 3) Evaluate the efficacy of using filtered light to increase the production of biomass in photobioreactors and provide more solar energy for other uses; 4) Evaluates several concepts for wavelength shifting such that a greater percentage of the solar

  7. Solar System Exploration with LUVOIR

    NASA Astrophysics Data System (ADS)

    Harris, Walter M.; Villanueva, Geronimo Luis; Schmidt, Britney E.

    2016-10-01

    The Large UV/Optical/IR (LUVOIR) Surveyor is one of four mission concepts under study as a next-generation space observatory in the post Webb Telescope era. LUVOIR is envisioned as a large, 10 m class, remotely serviceable observatory with a suite of advanced-technology instruments designed to leap beyond the current generation of space-based telescopes to explore fundamental astrophysical phenomena on all scales. A 24-member science and technology definition team (STDT) represents all sectors of the astronomy and technologist communities, and it is charged with identifying the observational challenges best addressed with LUVOIR and the instrumental innovations that are required to achieve them.This presentation describes the developing science case for LUVOIR as a Solar System observatory for the study of Sun-planet interactions, thick and sublimation based atmospheres, the small body populations in the inner and outer solar system, surface volatility, and planet/satellite surfaces. We will provide an overview of several key science and technical drivers for each scientific target and how they can be addressed with a LUVOIR facility. We also solicit community input to refine these individual programs and to identify additional areas of emphasis in the development of a final report to NASA.

  8. Solar System Science with ALMA

    NASA Astrophysics Data System (ADS)

    Butler, Bryan J.; Gurwell, Mark A.

    1999-10-01

    Observations of solar system bodies with the ALMA array will undoubtedly allow significant progress to be made on our understanding of the individual bodies therein, their interactions, and possibly their formation. With its fantastic resolution, sensitivity, and speed, ALMA will be one of the most important ground based observatories for planetary science. While it is nearly impossible to predict what will be learned about the solar system and its bodies, we can predict some general areas where we expect that ALMA will make significant contributions. We will concentrate here on 2 such areas: observations of small bodies, and observations of the solid surfaces of the larger bodies. Small bodies Observations of comets will help disentangle the story of their formation and history, and shed light on the physical processes occuring in their atmospheres. Observations of NEAs by ALMA will contribute to knowledge of their properties and orbits (ALMA can observe in daytime). Observations of KBOs will help to determine their properties and origin. Larger bodies We imagine that observations of Mercury, Mars, the larger asteroids, the moons of Jupiter, Saturn, Uranus, and Neptune, and the Pluto/Charon will be undertaken to determine properties and physical processes of their surfaces and subsurfaces.

  9. Solar activity; weather and climate: a review

    NASA Astrophysics Data System (ADS)

    Pudovkin, M. I.

    2003-04-01

    In the proposed review, experimental evidences on a close relationship between the solar activity and the weather are discussed. Solar radiation variations associated with various manifestation of the solar activity on the Sun's surface (sunspots, flocculae) during both the short-term disturbances and 11-year solar cycles are considered. A conclusion is arrived on the intensity of those variations to be insufficient to produce observed disturbances in the lower atmosphere state (Foukal, Lin and others). Changes of the atmosphere transmittance and cloudiness associated with solar flares and geomagnetic disturbances are discussed. There is shown that variations of the solar radiation observed at the Earth's surface during the disturbances mentioned above may explain quantitatively the observed changes in the lower atmosphere state. There is supposed that the observed variations of the cloudiness and atmosphere transparency may be caused by the intensity variations of the cosmic rays flux of the galactic and cosmic origin (Tinsley, Scherrer, Hilis, Deer, Pudovkin, Veretenenko, Friis-Christensen, Svensmark and others). Various mechanisms of the cosmic rays influence on the atmospheric transparency and cloudiness variations are considered. Some numerical models describing the state and dynamics of the lower atmosphere are discussed and the possibility of incorporating in them as input parameters the observed variations of the cloudiness and atmosphere's transparency is analyzed.

  10. Prototype solar heating and cooling systems, including potable hot water

    NASA Technical Reports Server (NTRS)

    Bloomquist, D.; Oonk, R. L.

    1977-01-01

    Progress made in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water is reported. The system consists of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition. A comparison of the proposed Solaron Heat Pump and Solar Desiccant Heating and Cooling Systems, installation drawings, data on the Akron House at Akron, Ohio, and other program activities are included.

  11. Preliminary design package for prototype solar heating system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A summary is given of the preliminary analysis and design activity on solar heating systems. The analysis was made without site specific data other than weather; therefore, the results indicate performance expected under these special conditions. Major items include system candidates, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test.

  12. Irradiation chemistry in the outer solar system

    NASA Astrophysics Data System (ADS)

    Brown, Michael E.

    2014-11-01

    The dark, reddish tinged surfaces of icy bodies in the outer solar are usually attributed to the long term irradiation of simple hydrocarbons such as methane leading to the loss of hydrogen and the production of long carbon chains. While methane is stable and detected on the most massive bodies in the Kuiper belt, evidence of active irradiation chemistry is scant except for the presence of ethane on methane-rich Makemake and possible detections of ethane on more methane-poor Pluto and Quaoar. We have obtained deep high signal-to-noise spectra of Makemake from 1.5 to 2.5 microns in an attempt to trace the radiation chemistry in the outer solar system beyond the initial ethane formation. We present the first astrophysical detections of solid ethylene, acetylene, and possibly propane -- all expected products of the continued irradiation of methane, and use these species to map the chemical pathway from methane to long-chain hydrocarbons.

  13. Biospheres and solar system exploration

    NASA Technical Reports Server (NTRS)

    Paine, Thomas O.

    1990-01-01

    The implications of biosphere technology is briefly examined. The exploration status and prospects of each world in the solar system is briefly reviewed, including the asteroid belt, the moon, and comets. Five program elements are listed as particularly critical for future interplanetary operations during the coming extraterrestrial century. They include the following: (1) a highway to Space (earth orbits); (2) Orbital Spaceports to support spacecraft assembly, storage, repair, maintenance, refueling, launch, and recovery; (3) a Bridge Between Worlds to transport cargo and crews to the moon and beyond to Mars; (4) Prospecting and Resource Utilization Systems to map and characterize the resources of planets, moons, and asteroids; and (5) Closed Ecology Biospheres. The progress in these five field is reviewed.

  14. Solar Energy Education. Home economics: student activities. Field test edition

    SciTech Connect

    Not Available

    1981-03-01

    A view of solar energy from the standpoint of home economics is taken in this book of activities. Students are provided information on solar energy resources while performing these classroom activities. Instructions for the construction of a solar food dryer and a solar cooker are provided. Topics for study include window treatments, clothing, the history of solar energy, vitamins from the sun, and how to choose the correct solar home. (BCS)

  15. Sub-GLE Solar Particle Events and the Implications for Lightly-Shielded Systems Flown During an Era of Low Solar Activity

    NASA Technical Reports Server (NTRS)

    Atwell, William; Tylka, Allan J.; Dietrich, William; Rojdev, Kristina; Matzkind, Courtney

    2015-01-01

    Many of the large space missions must be very rigorous in their designs to reduce risk from radiation damage as much as possible. Some ways of reducing this risk have been to build in multiple redundancies, purchase/develop radiation hardened electronics parts, and plan for worst case radiation environment scenarios. These methods work well for these ambitious missions that can afford the costs associated with these meticulous efforts. However, there have been more small spacecraft and CubeSats with smaller duration missions entering the space arena, which can take some additional risks, but cannot afford to implement all of these risk-reducing methods. Therefore, one way to quantify the radiation exposure risk for these smaller spacecraft would be to investigate the radiation environment pertinent to the mission to better understand these radiation exposures, rather than always designing to the infrequent, worst-case environment. In this study, we have investigated 34 historical solar particle events (1974-2010) that occurred during a time period when the sun spot number (SSN) was less than 30. These events contain Ground Level Events (GLE), sub-GLEs, and sub-sub-GLEs(sup 1-3). GLEs are extremely energetic solar particle events (SPEs) having proton energies often extending into the several GeV range and producing secondary particles in the atmosphere, mostly neutrons, observed with ground station neutron monitors. Sub-GLE events are less energetic, extending into the several hundred MeV range, but without producing detectable levels of secondary atmospheric particles. Sub-sub GLEs are even less energetic with an observable increase in protons at energies greater than 30 MeV, but no observable proton flux above 300 MeV. The spectra for these events were fitted using a double power law fit in particle rigidity, called the Band fit method. The differential spectra were then input into the NASA Langley Research Center HZETRN 2005, which is a high-energy particle

  16. Economic Evaluation of Townhouse Solar Energy System

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Solar-energy site in Columbia, South Carolina, is comprised of four townhouse apartments. Report summarizes economic evaluation of solar--energy system and projected performance of similar systems in four other selected cities. System is designed to supply 65 percent of heating and 75 percent of hot water.

  17. Evaluating Performances of Solar-Energy Systems

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1987-01-01

    CONC11 computer program calculates performances of dish-type solar thermal collectors and power systems. Solar thermal power system consists of one or more collectors, power-conversion subsystems, and powerprocessing subsystems. CONC11 intended to aid system designer in comparing performance of various design alternatives. Written in Athena FORTRAN and Assembler.

  18. The solar wind effect on cosmic rays and solar activity

    NASA Technical Reports Server (NTRS)

    Fujimoto, K.; Kojima, H.; Murakami, K.

    1985-01-01

    The relation of cosmic ray intensity to solar wind velocity is investigated, using neutron monitor data from Kiel and Deep River. The analysis shows that the regression coefficient of the average intensity for a time interval to the corresponding average velocity is negative and that the absolute effect increases monotonously with the interval of averaging, tau, that is, from -0.5% per 100km/s for tau = 1 day to -1.1% per 100km/s for tau = 27 days. For tau 27 days the coefficient becomes almost constant independently of the value of tau. The analysis also shows that this tau-dependence of the regression coefficiently is varying with the solar activity.

  19. Solar system formation and the distribution of volatile species

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan I.

    1994-01-01

    To understand how the solar system formed we must understand the compositional distribution of the current system. Volatile species are particularly important in that their stability as condensed phases is limited in temperature-pressure space, and hence variations in their distribution at present potentially contain an imprint of processes by which temperature and pressure varied in the solar nebula. In this talk we restrict ourselves to species more volatile than water ice, and address issues related to processes in the outer solar system and the formation of bodies there; others in this conference will cover volatile species relevant to inner solar system processes. Study of the outer solar system is relevant both to understanding the interface between the solar nebula and the progenitor giant molecular cloud (since the chemical links to present-day observables in molecular clouds are species like methane, carbon monoxide, etc.), as well as the origin of terrestrial planet atmospheres and oceans (the latter to be covered by Owen). The wealth of compositional information on outer solar system bodies which has become available from spacecraft and ground-based observations challenges traditional simplistic views of the composition and hence dynamics of the solar nebula. The basic assumption of thermochemical equilibrium, promulgated in the 1950's, in which methane and ammonia dominate nitrogen- and carbon-bearing species, is demonstrably incorrect on both observational and theoretical grounds. However, the kinetic inhibition model which replaced it, in which carbon monoxide and molecular nitrogen dominate a nebula which is fully mixed and hence cycles outer solar system gases through a hot, chemically active zone near the disk center, is not supported either by observations. Instead, a picture of the outer solar system emerges in which the gas and grains are a mixture of relatively unaltered, or modestly altered, molecular cloud material, along with a fraction

  20. Implementing slab solar water heating system

    NASA Astrophysics Data System (ADS)

    Raveendran, S. K.; Shen, C. Q.

    2015-08-01

    Water heating contributes a significant part of energy consumption in typical household. One of the most employed technologies today that helps in reducing the energy consumption of water heating would be conventional solar water heating system. However, this system is expensive and less affordable by most family. The main objective of this project is to design and implement an alternative type of solar water heating system that utilize only passive solar energy which is known as slab solar water heating system. Slab solar water heating system is a system that heat up cold water using the solar radiance from the sun. The unique part of this system is that it does not require any form of electricity in order to operate. Solar radiance is converted into heat energy through convection method and cold water will be heated up by using conduction method [1]. The design of this system is governed by the criteria of low implementation cost and energy saving. Selection of material in the construction of a slab solar water heating system is important as it will directly affect the efficiency and performance of the system. A prototype has been built to realize the idea and it had been proven that this system was able to provide sufficient hot water supply for typical household usage at any given time.

  1. Nonlinear techniques for forecasting solar activity directly from its time series

    NASA Technical Reports Server (NTRS)

    Ashrafi, S.; Roszman, L.; Cooley, J.

    1993-01-01

    This paper presents numerical techniques for constructing nonlinear predictive models to forecast solar flux directly from its time series. This approach makes it possible to extract dynamical in variants of our system without reference to any underlying solar physics. We consider the dynamical evolution of solar activity in a reconstructed phase space that captures the attractor (strange), give a procedure for constructing a predictor of future solar activity, and discuss extraction of dynamical invariants such as Lyapunov exponents and attractor dimension.

  2. Nonlinear techniques for forecasting solar activity directly from its time series

    NASA Technical Reports Server (NTRS)

    Ashrafi, S.; Roszman, L.; Cooley, J.

    1992-01-01

    Numerical techniques for constructing nonlinear predictive models to forecast solar flux directly from its time series are presented. This approach makes it possible to extract dynamical invariants of our system without reference to any underlying solar physics. We consider the dynamical evolution of solar activity in a reconstructed phase space that captures the attractor (strange), given a procedure for constructing a predictor of future solar activity, and discuss extraction of dynamical invariants such as Lyapunov exponents and attractor dimension.

  3. Short review on solar energy systems

    NASA Astrophysics Data System (ADS)

    Herez, Amal; Ramadan, Mohamad; Abdulhay, Bakri; Khaled, Mahmoud

    2016-07-01

    Solar energy can be utilized mainly in heat generation and electricity production. International energy agency (IEA) shows, in a comparative study on the world energy consumption that in 2050 solar arrays installation will provide about 45% of world energy demand. Solar energy is one of the most important renewable energy source which plays a great role in providing energy solutions. As known there is wide variety of types of collectors and applications of solar energy. This paper aimed to make a short review on solar energy systems, according to types of collectors and applications used.

  4. Methanogens in the Solar System

    NASA Astrophysics Data System (ADS)

    Taubner, Ruth-Sophie; Schleper, Christa; Firneis, Maria G.; Rittmann, Simon

    2015-04-01

    The last decade of space science revealed that potential habitats in the Solar System may not be limited to the classical habitable zone supporting life as we know it. These microorganisms were shown to thrive under extremophilic growth conditions. Here, we outline the main eco-physiological characteristics of methanogens like their response on temperature, pressure, or pH changes or their resistance against radiation or desiccation. They can withstand extreme environmental conditions which makes them intriguing organisms for astrobiological studies. On Earth, they are found for example in wetlands, in arctic and antarctic subglacial environments, in ruminants, and even in the environment surrounding the Mars Desert Research Station in Utah. These obligate anaerobic chemolithoautotrophs or chemolithoheterotrophs are able to use e.g. hydrogen and C1 compounds like CO2, formate, or methanol as energy source and carbon source, respectively. We point out their capability to be able to habitat potential extraterrestrial biospheres all over the planetary system. We will give an overview about these possible environments on Mars, icy moons like Europa or Enceladus, and minor planets. We present an overview about studies of methanogens with an astrobiological relevance and we show our conclusions about the role of methanogens for the search for extraterrestrial life in the Solar System. We will present first results of our study about the possibility to cultivate methanogens under Enceladus-like conditions. For that, based on the observations obtained by the Cassini spacecraft concerning the plume compounds, we produce a medium with a composition similar to the ocean composition of this icy moon which is far more Enceladus-like than in any (published) experiment before. Eventually, we give an outlook on the feasibility and the necessity of future astrobiological studies with these microbes. We point out the importance of future in-situ or even sample and return missions to

  5. Prototype solar-heating system design package

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Design package for complete residential solar-heating system is given. Includes documents and drawings describing performance design, verification standards, and analysis of system with sufficient information to assemble working system.

  6. Installation package for a solar heating system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Installation information is given for a solar heating system installed in Concho Indian School at El Reno, Oklahoma. This package includes a system Operation and Maintenance Manual, hardware brochures, schematics, system operating modes and drawings.

  7. Solar activity geomagnetic field and terrestrial weather

    NASA Technical Reports Server (NTRS)

    Knight, J. W.; Sturrock, P. A.

    1976-01-01

    Spectral analysis is used as an independent test of the reported association between interplanetary-magnetic-field structure and terrestrial weather. Spectra of the Ap geomagnetic activity index and the vorticity area index for the years from 1964 to 1970 are examined for common features that may be associated with solar-related phenomena, specifically for peaks in the power spectra of both time series with periods near 27.1 days. The spectra are compared in three ways, and the largest peak with the smallest probability estimate is found to occur at a period of 27.49 days. This result is considered to be statistically significant at the 98% level. It is concluded that the period derived from the Ap spectrum is related to solar rotation and that the analysis provides supporting evidence for a connection between the vorticity area index and solar activity.

  8. Summary of solar activity observed in the Mauna Loa Solar Observatory, 1980 - 1983

    NASA Astrophysics Data System (ADS)

    Rock, K.; Fisher, R.; Garcia, C.; Yasukawa, E.

    1983-11-01

    The following technical note summarizes solar activity observed during the first four years operation of the experiment systems of the Coronal Dynamics Project, which are located at the Mauna Loa Solar Observatory. This short report has been produced with the general aim of providing users of Mauna Loa observations with a summary of data for specific events. So that this table might be as useful as possible, a comprehensive review of three sources was performed. The plain language logs, identified as the so-called observer's logs, the now-discontinued activity logs, and the prominence monitor quality control logs were the sources from which the information in the following tables was obtained.

  9. THE MAGNETIC SYSTEMS TRIGGERING THE M6.6 CLASS SOLAR FLARE IN NOAA ACTIVE REGION 11158

    SciTech Connect

    Toriumi, Shin; Iida, Yusuke; Bamba, Yumi; Kusano, Kanya; Imada, Shinsuke; Inoue, Satoshi

    2013-08-20

    We report a detailed event analysis of the M6.6 class flare in the active region (AR) NOAA 11158 on 2011 February 13. AR 11158, which consisted of two major emerging bipoles, showed prominent activity including one X- and several M-class flares. In order to investigate the magnetic structures related to the M6.6 event, particularly the formation process of a flare-triggering magnetic region, we analyzed multiple spacecraft observations and numerical results of a flare simulation. We observed that, in the center of this quadrupolar AR, a highly sheared polarity inversion line (PIL) was formed through proper motions of the major magnetic elements, which built a sheared coronal arcade lying over the PIL. The observations lend support to the interpretation that the target flare was triggered by a localized magnetic region that had an intrusive structure, namely, a positive polarity penetrating into a negative counterpart. The geometrical relationship between the sheared coronal arcade and the triggering region is consistent with the theoretical flare model based on the previous numerical study. We found that the formation of the trigger region was due to the continuous accumulation of small-scale magnetic patches. A few hours before the flare occurred, the series of emerged/advected patches reconnected with a pre-existing field. Finally, the abrupt flare eruption of the M6.6 event started around 17:30 UT. Our analysis suggests that in the process of triggering flare activity, all magnetic systems on multiple scales are included, not only the entire AR evolution but also the fine magnetic elements.

  10. The Solar System Origin Revisited

    NASA Astrophysics Data System (ADS)

    Johnson, Fred M.

    2016-10-01

    A novel theory will be presented based in part on astronomical observations, plasma physics experiments, principles of physics and forensic techniques. The new theory correctly predicts planetary distances with a 1% precision. It accounts for energy production mechanism inside all of the planets including our Earth. A log-log mass-luminosity plot of G2 class stars and solar system planets results in a straight line plot, whose slope implies that a fission rather than a proton-proton fusion energy production is operating. Furthermore, it is a confirmation that all our planets had originated from within our Sun. Other still-born planets continue to appear on the Sun's surface, they are mislabeled as sunspots.

  11. The Solar System Beyond Neptune

    NASA Technical Reports Server (NTRS)

    Jewitt, David; Nava, David (Technical Monitor)

    2002-01-01

    This proposal supported deep and wide-field optical imaging of the trans-Neptunian Solar System capitalizing on our broad access to state-of-the-art facilities on Mauna Kea. Key quantities determined include the size distribution of Kuiper Belt objects (a differential power law with an index -4), and the inclination and radial distance distributions. We identified an outer edge to the classical Kuiper Belt that has since been confirmed by independent workers. We also obtained an assessment of the population densities in the mean-motion resonances with Neptune and discovered the Scattered Kuiper Belt Object dynamical class. Scientific issues on which these measurements have direct bearing include the collisional environment of the Kuiper Belt, the origin of the short-period comets, and the origin by capture into resonance of Pluto and other Kuiper Belt objects.

  12. Solar System Searches for Life

    NASA Astrophysics Data System (ADS)

    Chyba, C. F.

    1998-12-01

    Exobiology--the search for extraterrestrial life and the study of conditions relevant to its origins--has been reborn in the past decade. This rebirth has been driven largely by discoveries related to Earth's deep biosphere, and the recognition that there may be several extraterrestrial environments within our own Solar System that could provide plausible environments for subsurface ecologies. Most prominent among these are Mars and Jupiter's moon Europa. In 2003 NASA intends to launch an orbiting spacecraft to Europa, to determine whether a subsurface ocean does in fact exist beneath that world's ice layer. A subsequent lander mission is in the initial planning stages. Lessons learned from the Viking spacecrafts' search for life on Mars over 25 years ago need to be carefully considered. More broadly, the interrelationships between planetary exploration and our understanding of the origin of life are becoming increasingly important.

  13. Seismic Holography of Solar Activity

    NASA Technical Reports Server (NTRS)

    Lindsey, Charles

    2000-01-01

    The basic goal of the project was to extend holographic seismic imaging techniques developed under a previous NASA contract, and to incorporate phase diagnostics. Phase-sensitive imaging gives us a powerful probe of local thermal and Doppler perturbations in active region subphotospheres, allowing us to map thermal structure and flows associated with "acoustic moats" and "acoustic glories". These remarkable features were discovered during our work, by applying simple acoustic power holography to active regions. Included in the original project statement was an effort to obtain the first seismic images of active regions on the Sun's far surface.

  14. Working With Solar System Ambassadors

    NASA Astrophysics Data System (ADS)

    Ferrari, K.

    2001-11-01

    The Solar System Ambassadors Program is a public outreach program designed to work with motivated volunteers across the nation. These competitively selected volunteers organize and conduct public events that communicate exciting discoveries and plans in Solar System research, exploration and technology through non-traditional forums; e.g. community service clubs, libraries, museums, planetariums, "star parties," mall displays, etc. Each Ambassador participates in on-line (web-based) training sessions that provide interaction with NASA scientists, engineers and project team members. As such, each Ambassador's experience with the space program becomes personalized. Training sessions provide Ambassadors with general background on each mission and educate them concerning specific mission milestones, such as launches, planetary flybys, first image returns, arrivals, and ongoing key discoveries. Additionally, projects provide limited supplies of videos, slide sets, booklets, pamphlets, posters, postcards, lithographs, on-line materials, resource links and information. In addition to participating in on-line trainings with Ambassadors, scientists will be given the opportunity to interact with, and mentor volunteer Ambassadors at regional, weekend conferences designed to strengthen the Ambassadors' knowledge of space science and exploration, thereby improving the space science message that goes out to the general public through these enthusiastic volunteers. Integrating volunteers across the country in a public-engagement program helps optimize project funding set aside for education and outreach purposes, establishing a nationwide network of regional contacts. At the same time, members of communities across the country become an extended part of each mission's team and an important interface between the space exploration community and the general public at large.

  15. Solar Energy Project, Activities: Junior High Science.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of the junior high science curriculum. Each unit presents an introduction; objectives; skills and knowledge needed; materials; methods; questions; recommendations for further work; and a teacher information sheet. The teacher…

  16. Solar Energy Project, Activities: Earth Science.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of earth science experiments. Each unit presents an introduction; objectives; skills and knowledge needed; materials; method; questions; recommendations for further study; and a teacher information sheet. The teacher…

  17. Solar Energy Project, Activities: Chemistry & Physics.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of chemistry and physics experiments. Each unit presents an introduction to the unit; objectives; required skills and knowledge; materials; method; questions; recommendations for further work; and a teacher information sheet.…

  18. Solar energy system performance evaluation, October 1980 - April 1981

    NASA Astrophysics Data System (ADS)

    Kendall, P. W.

    The energy system of a single-story, concrete block office building with 1670 square feet of conditioned space was studied. The retrofit active solar energy system is designed to supply 65% of the total heating. The system is equipped with 400 square feet of hydronic flat-plate collectors, a 2000-gallon steel tank for heat storage, and an auxiliary gas-fired boiler. The system can operate at low collection/storage temperature levels or utilize solar energy directly from storage in an oversized duct coil located in the system air handling unit. The measured solar fraction was 80%, compared to a predicted 82%. The solar savings ratio, accounting for system operating energy, was 65%.

  19. Some problems in coupling solar activity to meteorological phenomena

    NASA Technical Reports Server (NTRS)

    Dessler, A. J.

    1975-01-01

    The development of a theory of coupling of solar activity to meteorological phenomena is hindered by the difficulties of devising a mechanism that can modify the behavior of the troposphere while employing only a negligible amount of energy compared with the energy necessary to drive the normal meteorological system, and determining how such a mechanism can effectively couple some relevant magnetospheric process into the troposphere in such a way as to influence the weather. A clue to the nature of the interaction between the weather and solar activity might be provided by the fact that most solar activity undergoes a definite 11-yr cycle, and meteorological phenomena undergo either no closely correlated variation, an 11-yr variation, or a 22-yr variation.

  20. Some problems in coupling solar activity to meteorological phenomena

    NASA Technical Reports Server (NTRS)

    Dessler, A. J.

    1974-01-01

    The development of a theory of coupling of solar activity to meteorological phenomena has to date foundered on the two difficulties of (1) devising a mechanism that can modify the behavior of the troposphere while employing only a negligible amount of energy compared with the energy necessary to drive the normal meteorological system; and (2) determining how such a mechanism can effectively couple some relevant magnetospheric process into the troposphere in such a way as to influence the weather. A clue to the nature of the interaction between the weather and solar activity might be provided by the fact that most solar activity undergoes a definite 11-year cycle, while meteorological phenomena undergo either no closely correlated variation, or an 11-year variation, or a 22-year variation.

  1. Dormitory Solar-Energy-System Economics

    NASA Technical Reports Server (NTRS)

    1982-01-01

    102-page report analyzes long-term economic performance of a prepackaged solar energy assembly system at a dormitory installation and extrapolates to four additional sites about the U.S. Method of evaluation is f-chart procedure for solar-heating and domestic hotwater systems.

  2. Gamma ray observations of the solar system

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach; and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  3. Gamma ray observations of the solar system

    SciTech Connect

    Not Available

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  4. Solar-heating system design package

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Report describes solar heating system composed of warm-air solar collector, logic control unit, and switching and transport unit, that meets government standards for installation in residential dwellings. Text describes system operation and performance specifications complemented by comprehensive set of subcomponent design drawings.

  5. Neptune and Triton: Essential pieces of the Solar System puzzle

    NASA Astrophysics Data System (ADS)

    Masters, A.; Achilleos, N.; Agnor, C. B.; Campagnola, S.; Charnoz, S.; Christophe, B.; Coates, A. J.; Fletcher, L. N.; Jones, G. H.; Lamy, L.; Marzari, F.; Nettelmann, N.; Ruiz, J.; Ambrosi, R.; Andre, N.; Bhardwaj, A.; Fortney, J. J.; Hansen, C. J.; Helled, R.; Moragas-Klostermeyer, G.; Orton, G.; Ray, L.; Reynaud, S.; Sergis, N.; Srama, R.; Volwerk, M.

    2014-12-01

    The planet Neptune and its largest moon Triton hold the keys to major advances across multiple fields of Solar System science. The ice giant Neptune played a unique and important role in the process of Solar System formation, has the most meteorologically active atmosphere in the Solar System (despite its great distance from the Sun), and may be the best Solar System analogue of the dominant class of exoplanets detected to date. Neptune's moon Triton is very likely a captured Kuiper Belt object, holding the answers to questions about the icy dwarf planets that formed in the outer Solar System. Triton is geologically active, has a tenuous nitrogen atmosphere, and is predicted to have a subsurface ocean. However, our exploration of the Neptune system remains limited to a single spacecraft flyby, made by Voyager 2 in 1989. Here, we present the high-level science case for further exploration of this outermost planetary system, based on a white paper submitted to the European Space Agency (ESA) for the definition of the second and third large missions in the ESA Cosmic Vision Programme 2015-2025. We discuss all the major science themes that are relevant for further spacecraft exploration of the Neptune system, and identify key scientific questions in each area. We present an overview of the results of a European-led Neptune orbiter mission analysis. Such a mission has significant scope for international collaboration, and is essential to achieve our aim of understanding how the Solar System formed, and how it works today.

  6. Catawba Science Center solar activities. Final report

    SciTech Connect

    1983-01-01

    Two demonstration solar water heaters were built. One was to be used at the Science Center and the other with traveling programs. This was completed and both units are being used for these programs which continue. We were able to build a library of 99 solar energy books and booklets that are available to the public for reference. We also conducted programs for 683 students of all ages. The culminating activity was the planned Energy Awareness Festival. This was held on September 26, 1981 and attracted 450 area citizens. We offered free exhibit space and hosted 17 exhibitors.

  7. An image stabilization system for solar observations

    NASA Astrophysics Data System (ADS)

    Sridharan, R.; Raja Bayanna, A.; Louis, Rohan Eugene; Kumar, Brajesh; Mathew, Shibu K.; Venkatakrishnan, P.

    2007-09-01

    An image stabilization system has been developed and demonstrated for solar observations in the visible wave-length at Udaipur Solar Observatory (USO) with a 15 cm Coudé-refractor. The softwa4re and hardware components of the system are similar to that of the low cost solar adaptive optics system developed for the 1.5 m McMath-Pierce solar telescope at Kitt Peak observatory for solar observations in the infrared. The first results presented. The system has a closed loop correction bandwidth in the range of 70 to 100 Hz. The root mean by a factor of 10 to 20. The software developes and key issues concerning optimum system performance have been addressed.

  8. Grid-connected distributed solar power systems

    NASA Astrophysics Data System (ADS)

    Moyle, R.; Chernoff, H.; Schweizer, T.

    This paper discusses some important, though often ignored, technical and economic issues of distributed solar power systems: protection of the utility system and nonsolar customers requires suitable interfaced equipment. Purchase criteria must mirror reality; most analyses use life-cycle costing with low discount rates - most buyers use short payback periods. Distributing, installing, and marketing small, distributed solar systems is more costly than most analyses estimate. Results show that certain local conditions and uncommon purchase considerations can combine to make small, distributed solar power attractive, but lower interconnect costs (per kW), lower marketing and product distribution costs, and more favorable purchase criteria make large, centralized solar energy more attractive. Specifically, the value of dispersed solar systems to investors and utilities can be higher than $2000/kw. However, typical residential owners place a value of well under $1000 on the installed system.

  9. Division II: Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, Lidia; Scrijver, Karel J.; Klimchuk, James A.; Charbonneau, Paul; Fletcher, Lyndsay; Hasan, S. Sirajul; Hudson, Hugh S.; Kusano, Kanya; Mandrini, Cristina H.; Peter, Hardi; Vršnak, Bojan; Yan, Yihua

    2015-08-01

    The Business Meeting of Commission 10 was held as part of the Business Meeting of Division II (Sun and Heliosphere), chaired by Valentin Martínez-Pillet, the President of the Division. The President of Commission 10 (C10; Solar activity), Lidia van Driel-Gesztelyi, took the chair for the business meeting of C10. She summarised the activities of C10 over the triennium and the election of the incoming OC.

  10. Argonne Solar Energy Program annual report. Summary of solar program activities for fiscal year 1979

    SciTech Connect

    1980-06-01

    The R and D work done at Argonne National Laboratory on solar energy technologies during the period October 1, 1978 to September 30, 1979 is described. Technical areas included in the ANL solar program are solar energy collection, heating and cooling, thermal energy storage, ocean thermal energy conversion, photovoltaics, biomass conversion, satellite power systems, and solar liquid-metal MHD power systems.

  11. Bidirectional control system for energy flow in solar powered flywheel

    NASA Technical Reports Server (NTRS)

    Nola, Frank J. (Inventor)

    1987-01-01

    An energy storage system for a spacecraft is provided which employs a solar powered flywheel arrangement including a motor/generator which, in different operating modes, drives the flywheel and is driven thereby. A control circuit, including a threshold comparator, senses the output of a solar energy converter, and when a threshold voltage is exceeded thereby indicating the availability of solar power for the spacecraft loads, activates a speed control loop including the motor/generator so as to accelerate the flywheel to a constant speed and thereby store mechanical energy, while also supplying energy from the solar converter to the loads. Under circumstances where solar energy is not available and thus the threshold voltage is not exceeded, the control circuit deactivates the speed control loop and activates a voltage control loop that provides for operation of the motor as a generator so that mechanical energy from the flywheel is converted into electrical energy for supply to the spacecraft loads.

  12. Resonant Rossby waves and solar activity

    NASA Technical Reports Server (NTRS)

    Krivolutsky, A. A.; Loshkova, O. A.

    1989-01-01

    Large scale transient waves are an essential part of atmospheric dynamics. Some of these waves (like 27 day waves) could have a solar nature. The contribution of the 27 day planetary waves to a total long period spectrum of the atmospheric processes during one solar cycle was investigated. Ivanovsky and Krivolutsky proposed that the 27 day wave has a resonant nature. The real atmospheric processes were investigated. The method of 2-D wave analysis used is described by Krivolutsky. It was concluded that the resonant nature of the 27 day wave is not unicum. There are long periods waves (50 day wave) in stratosphere which belong to the resonant waves, too. It is a very interesting fact for the solar activity-weather problem.

  13. Solar heated fluidized bed gasification system

    NASA Technical Reports Server (NTRS)

    Qader, S. A. (Inventor)

    1981-01-01

    A solar-powered fluidized bed gasification system for gasifying carbonaceous material is presented. The system includes a solar gasifier which is heated by fluidizing gas and steam. Energy to heat the gas and steam is supplied by a high heat capacity refractory honeycomb which surrounds the fluid bed reactor zone. The high heat capacity refractory honeycomb is heated by solar energy focused on the honeycomb by solar concentrator through solar window. The fluid bed reaction zone is also heated directly and uniformly by thermal contact of the high heat capacity ceramic honeycomb with the walls of the fluidized bed reactor. Provisions are also made for recovering and recycling catalysts used in the gasification process. Back-up furnace is provided for start-up procedures and for supplying heat to the fluid bed reaction zone when adequate supplies of solar energy are not available.

  14. The UV signature of carbon in the solar system

    NASA Astrophysics Data System (ADS)

    Hendrix, Amanda R.; Vilas, Faith; Li, Jian-Yang

    2016-01-01

    Carbon compounds are ubiquitous in the solar system but are challenging to study using remote sensing due to the mostly bland spectral nature of these species in the traditional visible-near-infrared regime. In contrast, carbonaceous species are spectrally active in the ultraviolet (UV) but have largely not been considered for studies of solar system surfaces. We compile existing UV data of carbon compounds—well-studied in contemplation of the ISM extinction "bump"—to review trends in UV spectral behavior. Thermal and/or irradiation processing of carbon species results in the loss of H and ultimately graphitization. Graphitization is shown to produce distinct spectral features in the UV, which are predicted to be more readily detected in the inner solar system, whereas outer solar system bodies are expected to be more dominated by less-processed carbon compounds. Throughout the solar system, we can thus consider a "carbon continuum" where the more evolved carbons in the inner solar system exhibit a stronger UV absorption feature and associated far-UV rise. We compare carbon spectral models with spacecraft data of two bodies from different points in the carbon continuum, Ceres and Iapetus. We find that the apparent strong far-UV upturn in Ceres' spectrum (in the 150-200 nm range) can be explained by an anthracite-like species while Iapetus' spectrum features a reflectance peak consistent with polycyclic aromatic hydrocarbons. We make generalized predictions for UV spectral characteristics in other regions of the solar system.

  15. Solar technology assessment project. Volume 4: Solar air conditioning: Active, hybrid and passive

    NASA Astrophysics Data System (ADS)

    Yellott, J. I.

    1981-04-01

    The status of absorption cycle solar air conditioning and the Rankine cycle solar cooling system is reviewed. Vapor jet ejector chillers, solar pond based cooling, and photovoltaic compression air conditioning are also briefly discussed. Hybrid solar cooling by direct and indirect evaporative cooling, and dehumidification by desiccation are described and discussed. Passive solar cooling by convective and radiative processes, evaporative cooling by passive processes, and cooling with roof ponds and movable insulation are reviewed. Federal and state involvement in solar cooling is discussed.

  16. The Solar System and Its Origin

    ERIC Educational Resources Information Center

    Dormand, J. R.

    1973-01-01

    Presents a brief explanation of the solar system, including planets, asteroids, satellites, comets, planetary orbits, as well as, old and recent cosmogonic theories. Indicates that man is nearer a solution to the origin of the planetary system than ever before.

  17. Manned exploration and exploitation of solar system: Passive and active shielding for protecting astronauts from ionizing radiation-A short overview

    NASA Astrophysics Data System (ADS)

    Spillantini, Piero

    2014-11-01

    In deep space manned missions for the exploration and exploitation of celestial bodies of Solar System astronauts are not shielded by the terrestrial magnetic field and must be protected against the action of Solar Cosmic Rays (SCRs) and Galactic Cosmic Rays (GCRs). SCRs are sporadically emitted, and in very rare but possible events, their fluence can be so high to be lethal to a unprotected crew. Their relatively low energy allows us to conceive fully passive shields, also if active systems can somewhat reduce the needed mass penalty. GCRs continuously flow without intensity peaks, and are dangerous to the health and operability of the crew in long duration (>1year) missions. Their very high energy excludes the possible use of passive systems, so that recourse must be made to electromagnetic fields for preventing ionizing particles to reach the habitat where astronauts spend most of their living and working time. A short overview is presented of the many ideas developed in last decades of last century; ideas are mainly based on very intense electrostatic shields, flowing plasma bubbles, or enormous superconducting coil systems for producing high magnetic fields. In the first decade of this century the problem began to be afforded in more realistic scenarios, taking into account the present and foreseeable possibilities of launchers (payload mass, diameter and length of the shroud of the rocket, etc.) and of assembling and/or inflating structures in space. Driving parameters are the volume of the habitat to be protected and the level of mitigation of the radiation dose to be guaranteed to the crew. Superconducting magnet systems based on multi-solenoid complexes or on one huge magnetic torus surrounding the habitat are being evaluated for defining the needed parameters: masses, mechanical structures for supporting the huge magnetic forces, needed equipments and safety systems. Technological tests are in preparation or planned for improving density of the current

  18. Solar heating system installed at Stamford, Connecticut

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar heating system installed at the Lutz-Sotire Partnership Executive East Office Building, Stamford, Connecticut is described. The Executive East Office Building is of moderate size with 25,000 sq ft of heated space in 2 1/2 stories. The solar system was designed to provide approximately 50 percent of the heating requirements. The system components are described. Appended data includes: the system design acceptance test, the operation and maintenance manual, and as-built drawings and photographs.

  19. Solar System Science with LSST

    NASA Astrophysics Data System (ADS)

    Jones, R. L.; Chesley, S. R.; Connolly, A. J.; Harris, A. W.; Ivezic, Z.; Knezevic, Z.; Kubica, J.; Milani, A.; Trilling, D. E.

    2008-09-01

    The Large Synoptic Survey Telescope (LSST) will provide a unique tool to study moving objects throughout the solar system, creating massive catalogs of Near Earth Objects (NEOs), asteroids, Trojans, TransNeptunian Objects (TNOs), comets and planetary satellites with well-measured orbits and high quality, multi-color photometry accurate to 0.005 magnitudes for the brightest objects. In the baseline LSST observing plan, back-to-back 15-second images will reach a limiting magnitude as faint as r=24.7 in each 9.6 square degree image, twice per night; a total of approximately 15,000 square degrees of the sky will be imaged in multiple filters every 3 nights. This time sampling will continue throughout each lunation, creating a huge database of observations. Fig. 1 Sky coverage of LSST over 10 years; separate panels for each of the 6 LSST filters. Color bars indicate number of observations in filter. The catalogs will include more than 80% of the potentially hazardous asteroids larger than 140m in diameter within the first 10 years of LSST operation, millions of main-belt asteroids and perhaps 20,000 Trans-Neptunian Objects. Objects with diameters as small as 100m in the Main Belt and <100km in the Kuiper Belt can be detected in individual images. Specialized `deep drilling' observing sequences will detect KBOs down to 10s of kilometers in diameter. Long period comets will be detected at larger distances than previously possible, constrainting models of the Oort cloud. With the large number of objects expected in the catalogs, it may be possible to observe a pristine comet start outgassing on its first journey into the inner solar system. By observing fields over a wide range of ecliptic longitudes and latitudes, including large separations from the ecliptic plane, not only will these catalogs greatly increase the numbers of known objects, the characterization of the inclination distributions of these populations will be much improved. Derivation of proper elements for

  20. The Origin and Evolution of the Solar System.

    ERIC Educational Resources Information Center

    Woolfson, M. M.

    1987-01-01

    Describes the major components of the solar system and proposes several features that a theory about the solar system should include. Contains explanations of several theories about the origin of the solar system. (TW)

  1. Impact of Magnetic Activity on Solar and Stellar Environments

    NASA Astrophysics Data System (ADS)

    Nandi, Dibyendu

    2015-08-01

    The variable activity of stars such as the Sun is mediated via stellar magnetic fields, radiative and energetic particle fluxes, stellar winds and magnetic storms. This activity influences planetary atmospheres, climate and habitability. Studies of this intimate relationship between the parent star, its astrosphere (i.e., the equivalent of the heliosphere) and the planets that it hosts have reached a certain level of maturity within our own solar system - fuelled both by advances in theoretical modelling and a host of satellites that observe the Sun-Earth system. Based on this understanding the first attempts are being made to characterize the interactions between stars and planets and their coupled evolution, which have relevance for habitability and the search for habitable planets. In this talk I will review recent findings in this context and highlight the activities of the IAU Inter-Division E-F Woking Group on “Impact of Magnetic Activity on Solar and Stellar Environments”.

  2. High voltage solar cell power generating system

    NASA Technical Reports Server (NTRS)

    Levy, E., Jr.; Opjorden, R. W.; Hoffman, A. C.

    1974-01-01

    A laboratory solar power system regulated by on-panel switches has been delivered for operating high power (3 kW), high voltage (15,000 volt) loads (communication tubes, ion thrusters). The modular system consists of 26 solar arrays, each with an integral light source and cooling system. A typical array contains 2,560 series-connected cells. Each light source consists of twenty 500-watt tungsten iodide lamps providing plus or minus 5 percent uniformity at one solar constant. An array temperature of less than 40 C is achieved using an infrared filter, a water-cooled plate, a vacuum hold-down system, and air flushing.

  3. Forecasts of solar and geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Joselyn, Joann

    1987-01-01

    Forecasts of solar and geomagnetic activity are critical since these quantities are such important inputs to the thermospheric density models. At this time in the history of solar science there is no way to make such a forecast from first principles. Physical theory applied to the Sun is developing rapidly, but is still primitive. Techniques used for forecasting depend upon the observations over about 130 years, which is only twelve solar cycles. It has been noted that even-numbered cycles systematically tend to be smaller than the odd-numbered ones by about 20 percent. Another observation is that for the last 12 cycle pairs, an even-numbered sunspot cycle looks rather like the next odd-numbered cycle, but with the top cut off. These observations are examples of approximate periodicities that forecasters try to use to achieve some insight into the nature of an upcoming cycle. Another new and useful forecasting aid is a correlation that has been noted between geomagnetic indices and the size of the next solar cycle. Some best estimates are given concerning both activities.

  4. Heliobiology, its development, successes and tasks. [solar activity effects on life on earth

    NASA Technical Reports Server (NTRS)

    Platonova, A. T.

    1974-01-01

    Heliobiology studies the influence of changes in solar activity on life. Considered are the influence of periodic solar activity on the development and growth of epidemics, mortality from various diseases, the functional activity of the nervous system, the development of psychic disturbances, the details of the development of microorganisms and many other phenomena in the living world.

  5. Bactericidal activity of TiO[sub 2] photocatalyst in aqueous media. Toward a solar-assisted water disinfection system

    SciTech Connect

    Wei, C.; Lin, W.Y.; Zainal, Z.; Williams, N.E.; Zhu, K.; Kruzic, A.P.; Smith, R.L.; Rajeshwar, K. )

    1994-05-01

    Irradiation of suspensions of Escherichia coli ([approximately] 10[sup 6] cells/mL) and TiO[sub 2] (anatase) with UV-visible light of wave-lengths longer than 380 nm resulted in the killing of the bacteria within minutes. Oxygen was found to be a prerequisite for the bactericidal properties of the photocatalyst. Bacterial killing was found to adhere to first-order kinetics. The rate constant was proportional to the square root of the concentration of TiO[sub 2] and proportional to the incident light intensity in the range [approximately] 180- [approximately] 1660 [mu]E s[sup [minus]1] m[sup [minus]2]. The trends in these simulated laboratory experiments were mimicked by outdoor tests conducted under the summer noonday sun in Texas. The implications of these results as well as those of previous investigations in terms of practical applicability to solar-assisted water treatment and disinfection at remote sites are discussed relative to water technologies currently considered as viable as alternatives to chlorination. 24 refs., 8 figs.

  6. Bring NASA's Year of the Solar System into Your Programs

    NASA Astrophysics Data System (ADS)

    Shupla, C.; Shipp, S.; LaConte, K.; Dalton, H.; Buxner, S.; Boonstra, D.; Ristvey, J.; Wessen, A.; Zimmerman-Brachman, R.; CoBabe-Ammann, E.

    2012-08-01

    NASA's Year of the Solar System ( http://solarsystem.nasa.gov/yss) is a celebration of our exploration of the solar system, which began in October 2010 and continues for one Martian year (687 Earth days) ending in late summer 2012. The diverse planetary missions in this period create a rare opportunity to engage students and the public, using NASA missions to reveal new worlds and new discoveries. Each month focuses on a particular topic, such as the scale of the solar system, its formation, water in the solar system, volcanism, atmospheres, and more! All educators are invited to join the celebration; indeed, the EPO community is needed in order for this event to be successful! Participants at the 2011 ASP Conference surveyed a variety of thematic activities, received resources and implementation ideas, and were invited to share their own experiences and upcoming events!

  7. Non-tracking solar energy collector system

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K. (Inventor)

    1978-01-01

    A solar energy collector system characterized by an improved concentrator for directing incident rays of solar energy on parallel vacuum-jacketed receivers or absorbers is described. Numerous individually mounted reflector modules of a common asymmetrical triangular cross-sectional configuration are supported for independent reorientation. Asymmetric vee-trough concentrators are defined.

  8. Combined solar collector and energy storage system

    NASA Technical Reports Server (NTRS)

    Jensen, R. N. (Inventor)

    1980-01-01

    A combined solar energy collector, fluid chiller and energy storage system is disclosed. A movable interior insulated panel in a storage tank is positionable flush against the storage tank wall to insulate the tank for energy storage. The movable interior insulated panel is alternately positionable to form a solar collector or fluid chiller through which the fluid flows by natural circulation.

  9. Prototype solar heating and hot water system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Progress is reported in the development of a solar heating and hot water system which uses a pyramidal optics solar concentrator for heating, and consists of the following subsystems: collector, control, transport, and site data acquisition. Improvements made in the components and subsystems are discussed.

  10. Communicating across the solar system

    NASA Technical Reports Server (NTRS)

    Reid, M. S.; Lyman, P. T.; Force, C. T.

    1984-01-01

    The exploration of the solar system by means of spacecraft would not be possible in its present form without the art and science of communications. Particularly exacting requirements arise in connection with the study of the planets and the interplanetary medium beyond the orbit of Jupiter. Developments in technology providing the required communication capability are partly based on the principle of the phase-locked loop as a narrow-band tracking filter. Mission objectives and performance are discussed for Pioneers 10 and 11 and Voyagers 1 and 2 which at present are the only spacecraft beyond the orbit of Jupiter. A description is given of challenges related to communication in the case of the passage of Voyager 2 near Uranus in 1986 and near Neptune in 1989, taking into account the approaches employed to meet these challenges. Attention is given to requirements concerning international cooperation regarding the ground network, the development of interagency and intra-agency arraying, and the improvement of antenna efficiency.

  11. Astrometric solar-system anomalies

    NASA Astrophysics Data System (ADS)

    Anderson, John D.; Nieto, Michael Martin

    2010-01-01

    There are at least four unexplained anomalies connected with astrometric data. Perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it often experiences a change in total orbital energy per unit mass. Next, a secular change in the astronomical unit AU is definitely a concern. It is reportedly increasing by about 15 cm yr-1. The other two anomalies are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions. Some astronomers and physicists, including us, are convinced this effect is of concern, but many others are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth anomaly is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction in both the Earth and Moon. However, there is a reported unexplained increase that is significant at the three-sigma level. It is prudent to suspect that all four anomalies have mundane explanations, or that one or more anomalies are a result of systematic error. Yet they might eventually be explained by new physics. For example, a slightly modified theory of gravitation is not ruled out, perhaps analogous to Einstein's 1916 explanation for the excess precession of Mercury's perihelion.

  12. Geomagnetic responses to the solar wind and the solar activity

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1975-01-01

    Following some historical notes, the formation of the magnetosphere and the magnetospheric tail is discussed. The importance of electric fields is stressed and the magnetospheric convection of plasma and magnetic field lines under the influence of large-scale magnetospheric electric fields is outlined. Ionospheric electric fields and currents are intimately related to electric fields and currents in the magnetosphere and the strong coupling between the two regions is discussed. The energy input of the solar wind to the magnetosphere and upper atmosphere is discussed in terms of the reconnection model where interplanetary magnetic field lines merge or connect with the terrestrial field on the sunward side of the magnetosphere. The merged field lines are then stretched behind earth to form the magnetotail so that kinetic energy from the solar wind is converted into magnetic energy in the field lines in the tail. Localized collapses of the crosstail current, which is driven by the large-scale dawn/dusk electric field in the magnetosphere, divert part of this current along geomagnetic field lines to the ionosphere, causing substorms with auroral activity and magnetic disturbances. The collapses also inject plasma into the radiation belts and build up a ring current. Frequent collapses in rapid succession constitute the geomagnetic storm.

  13. Cosmic rays, solar activity and the climate

    NASA Astrophysics Data System (ADS)

    Sloan, T.; Wolfendale, A. W.

    2013-12-01

    Although it is generally believed that the increase in the mean global surface temperature since industrialization is caused by the increase in green house gases in the atmosphere, some people cite solar activity, either directly or through its effect on cosmic rays, as an underestimated contributor to such global warming. In this letter a simplified version of the standard picture of the role of greenhouse gases in causing the global warming since industrialization is described. The conditions necessary for this picture to be wholly or partially wrong are then introduced. Evidence is presented from which the contributions of either cosmic rays or solar activity to this warming is deduced. The contribution is shown to be less than 10% of the warming seen in the twentieth century.

  14. Solar- and wind-powered irrigation systems

    NASA Astrophysics Data System (ADS)

    Enochian, R. V.

    1982-02-01

    Five different direct solar and wind energy systems are technically feasible for powering irrigation pumps. However, with projected rates of fossil fuel costs, only two may produce significant unsubsidied energy for irrigation pumping before the turn of the century. These are photovoltaic systems with nonconcentrating collectors (providing that projected costs of manufacturing solar cells prove correct); and wind systems, especially in remote areas where adequate wind is available.

  15. Prototype solar domestic hot water systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Construction of a double wall heat exchanger using soft copper tube coiled around a hot water storage tank was completed and preliminary tests were conducted. Solar transport water to tank potable water heat exchange tests were performed with a specially constructed test stand. Work was done to improve the component hardware and system design for the solar water heater. The installation of both a direct feed system and a double wall heat exchanger system provided experience and site data to enable informative decisions to be made as the solar market expands into areas where freeze protection is required.

  16. Optimal control studies of solar heating systems

    SciTech Connect

    Winn, C B

    1980-01-01

    In the past few years fuel prices have seen steady increases. Also, the supply of fuel has been on the decline. Because of these two problems there has been an increase in the number of solar heated buildings. Since conventional fuel prices are increasing and as a solar heating system represents a high capital cost it is desirable to obtain the maximum performance from a solar heating system. The control scheme that is used in a solar heated building has an effect on the performance of the solar system. The best control scheme possible would, of course, be desired. This report deals with the control problems of a solar heated building. The first of these problems is to control the inside temperature of the building and to minimize the fuel consumption. This problem applies to both solar and conventionally heated buildings. The second problem considered is to control the collector fluid flow to maximize the difference between the useful energy collected and the energy required to pump the fluid. The third problem is to control the enclosure temperature of a building which has two sources of heat, one solar and the other conventional.

  17. Solar Spectral Irradiance, Solar Activity, and the Near-Ultra-Violet

    NASA Astrophysics Data System (ADS)

    Fontenla, J. M.; Stancil, P. C.; Landi, E.

    2015-08-01

    The previous calculations of the Solar Spectral Irradiance (SSI) by the Solar Radiation Physical Modeling, version 2 system, are updated in this work by including new molecular photodissociation cross-sections of important species, and many more levels and lines in its treatment of non-LTE radiative transfer. The current calculations including the new molecular photodissociation opacities produce a reduced over-ionizaton of heavy elements in the lower chromosphere and solve the problems with prior studies of the UV SSI in the wavelength range 160-400 nm and now reproduce the available observations with much greater accuracy. Calculations and observations of the near-UV at 0.1 nm resolution and higher are compared. The current set of physical models includes four quiet-Sun and five active-region components, from which radiance is computed for ten observing angles. These radiances are combined with images of the solar disk to obtain the SSI and Total Solar Irradiance and their variations. The computed SSI is compared with measurements from space at several nm resolution and agreement is found within the accuracy level of these measurements. An important result is that the near-UV SSI increase with solar activity is significant for the photodissociation of ozone in the terrestrial atmosphere because a number of highly variable upper chromospheric lines overlap the ozone Hartley band.

  18. Solar irradiance variations due to active regions

    SciTech Connect

    Oster, L.; Schatten, K.H.; Sofia, S.

    1982-05-15

    We have been able to reproduce the variations of the solar irradiance observed by ACRIM to an accuracy of better than +- 0.4 W m/sup -2/, assuming that during the 6 month observation period in 1980 the solar luminosity was constant. The improvement over previous attempts is primarily due to the inclusion of faculae. The reproduction scheme uses simple geometrical data on spot and facula areas, and conventional parameters for the respective fluxes and angular dependencies. The quality of reproduction is not very sensitive to most of the details of these parameters; nevertheless, there conventional parameters cannot be very different from their actual values in the solar atmosphere. It is interesting that the time average of the integrated excess emission (over directions) of the faculae cancels out the integrated deficit produced by the spots, within an accuracy of about 10%. If this behavior were maintained over longer periods of time, say, on the order of an activity cycle, active regions could be viewed as a kind of lighthouse where the energy deficit near the normal direction, associated with the spots, is primarily reemitted close to the tangential directions by the faculae. The currently available data suggest that energy ''storage'' associated with the redirection of flux near active regions on the Sun is comparable to the lifetime of the faculae.

  19. The Magnetic Origins of Solar Activity

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.

    2012-01-01

    The defining physical property of the Sun's corona is that the magnetic field dominates the plasma. This property is the genesis for all solar activity ranging from quasi-steady coronal loops to the giant magnetic explosions observed as coronal mass ejections/eruptive flares. The coronal magnetic field is also the fundamental driver of all space weather; consequently, understanding the structure and dynamics of the field, especially its free energy, has long been a central objective in Heliophysics. The main obstacle to achieving this understanding has been the lack of accurate direct measurements of the coronal field. Most attempts to determine the magnetic free energy have relied on extrapolation of photospheric measurements, a notoriously unreliable procedure. In this presentation I will discuss what measurements of the coronal field would be most effective for understanding solar activity. Not surprisingly, the key process for driving solar activity is magnetic reconnection. I will discuss, therefore, how next-generation measurements of the coronal field will allow us to understand not only the origins of space weather, but also one of the most important fundamental processes in cosmic and laboratory plasmas.

  20. Inner solar system material discovered in the Oort cloud

    PubMed Central

    Meech, Karen J.; Yang, Bin; Kleyna, Jan; Hainaut, Olivier R.; Berdyugina, Svetlana; Keane, Jacqueline V.; Micheli, Marco; Morbidelli, Alessandro; Wainscoat, Richard J.

    2016-01-01

    We have observed C/2014 S3 (PANSTARRS), a recently discovered object on a cometary orbit coming from the Oort cloud that is physically similar to an inner main belt rocky S-type asteroid. Recent dynamical models successfully reproduce the key characteristics of our current solar system; some of these models require significant migration of the giant planets, whereas others do not. These models provide different predictions on the presence of rocky material expelled from the inner solar system in the Oort cloud. C/2014 S3 could be the key to verifying these predictions of the migration-based dynamical models. Furthermore, this object displays a very faint, weak level of comet-like activity, five to six orders of magnitude less than that of typical ice-rich comets on similar Orbits coming from the Oort cloud. For the nearly tailless appearance, we are calling C/2014 S3 a Manx object. Various arguments convince us that this activity is produced by sublimation of volatile ice, that is, normal cometary activity. The activity implies that C/2014 S3 has retained a tiny fraction of the water that is expected to be present at its formation distance in the inner solar system. We may be looking at fresh inner solar system Earth-forming material that was ejected from the inner solar system and preserved for billions of years in the Oort cloud. PMID:27386512

  1. Inner solar system material discovered in the Oort cloud.

    PubMed

    Meech, Karen J; Yang, Bin; Kleyna, Jan; Hainaut, Olivier R; Berdyugina, Svetlana; Keane, Jacqueline V; Micheli, Marco; Morbidelli, Alessandro; Wainscoat, Richard J

    2016-04-01

    We have observed C/2014 S3 (PANSTARRS), a recently discovered object on a cometary orbit coming from the Oort cloud that is physically similar to an inner main belt rocky S-type asteroid. Recent dynamical models successfully reproduce the key characteristics of our current solar system; some of these models require significant migration of the giant planets, whereas others do not. These models provide different predictions on the presence of rocky material expelled from the inner solar system in the Oort cloud. C/2014 S3 could be the key to verifying these predictions of the migration-based dynamical models. Furthermore, this object displays a very faint, weak level of comet-like activity, five to six orders of magnitude less than that of typical ice-rich comets on similar Orbits coming from the Oort cloud. For the nearly tailless appearance, we are calling C/2014 S3 a Manx object. Various arguments convince us that this activity is produced by sublimation of volatile ice, that is, normal cometary activity. The activity implies that C/2014 S3 has retained a tiny fraction of the water that is expected to be present at its formation distance in the inner solar system. We may be looking at fresh inner solar system Earth-forming material that was ejected from the inner solar system and preserved for billions of years in the Oort cloud. PMID:27386512

  2. Inner solar system material discovered in the Oort cloud.

    PubMed

    Meech, Karen J; Yang, Bin; Kleyna, Jan; Hainaut, Olivier R; Berdyugina, Svetlana; Keane, Jacqueline V; Micheli, Marco; Morbidelli, Alessandro; Wainscoat, Richard J

    2016-04-01

    We have observed C/2014 S3 (PANSTARRS), a recently discovered object on a cometary orbit coming from the Oort cloud that is physically similar to an inner main belt rocky S-type asteroid. Recent dynamical models successfully reproduce the key characteristics of our current solar system; some of these models require significant migration of the giant planets, whereas others do not. These models provide different predictions on the presence of rocky material expelled from the inner solar system in the Oort cloud. C/2014 S3 could be the key to verifying these predictions of the migration-based dynamical models. Furthermore, this object displays a very faint, weak level of comet-like activity, five to six orders of magnitude less than that of typical ice-rich comets on similar Orbits coming from the Oort cloud. For the nearly tailless appearance, we are calling C/2014 S3 a Manx object. Various arguments convince us that this activity is produced by sublimation of volatile ice, that is, normal cometary activity. The activity implies that C/2014 S3 has retained a tiny fraction of the water that is expected to be present at its formation distance in the inner solar system. We may be looking at fresh inner solar system Earth-forming material that was ejected from the inner solar system and preserved for billions of years in the Oort cloud.

  3. A Systematical Method to Search for Active Solar System Objects from the Pan-STARRS Postage Stamp Images

    NASA Astrophysics Data System (ADS)

    Cheng, Yu-Chi; Wing, Wing-Huen; Hsieh, Henry; Lin, Hsing-Wen

    2015-04-01

    The outgassing effect and dust coma formation process can provide important information on the composition of a comet. The observational study of cometary activity at large heliocentric distance is particularly valuable from this point of view (Epifani et al., 2009; Meech et al., 2009; Kelly et al., 2013). Since mid-2009 the Pan-STARRS project with a wide-field 1.8-m telescope has provided continuous all-sky 3-π survey of time variable phenomena. The data archive is an excellent source for the study of outgassing activities of comets as they orbited around the Sun. We have evaluated the level of gas emission rates of Jupiter Family Comets (JFCs) at different heliocentric distanced by examining the corresponding point-spread function profiles in the postage stamp images. In total, the time evolutionary history of the dust comas of 300 comets has been investigated in terms of the Afρ parameter. In the present work, we will report on the interesting finding that many JFCs exhibited coma activities at heliocentric distance beyond the snow line of about 2.5 AU outside which water ice sublimation will become negligible. Moreover, some comets were active even close to Jupiter's orbit. Four classes of Afρ variability can be identified: (1) activity around perihelion as expected of water sublimation process; (2) presence of coma activity independent of heliocentric distance; (3) point source like nucleus; and (4) no detection. Examples of these different coma behaviors will be described. In addition. Highlights will be given to the detection of outburst-like events near aphelion.

  4. Solar Water Heater Systems for Building Trades Class.

    ERIC Educational Resources Information Center

    Ryan, Milton; And Others

    This teaching unit serves as a guide for the installation of active solar water heating systems. It contains a project designed for use with secondary level students of a building trades class. Students typically would meet 2 to 3 hours per day and would be able to complete the activity within a 1-week time period. Objectives of this unit include:…

  5. Solar maximum mission panel jettison analysis remote manipulator system

    NASA Technical Reports Server (NTRS)

    Bauer, R. B.

    1980-01-01

    A study is presented of the development of the Remote Manipulator System (RMS) configurations for jettison of the solar panels on the Solar Maximum Mission/Multimission Satellite. A valid RMS maneuver between jettison configurations was developed. Arm and longeron loads and effector excursions due to the solar panel jettison were determined to see if they were within acceptable limits. These loads and end effector excursions were analyzed under two RMS modes, servos active in position hold submode, and in the brakes on mode.

  6. The complex planetary synchronization structure of the solar system

    NASA Astrophysics Data System (ADS)

    Scafetta, N.

    2014-01-01

    The complex planetary synchronization structure of the solar system, which since Pythagoras of Samos (ca. 570-495 BC) is known as the music of the spheres, is briefly reviewed from the Renaissance up to contemporary research. Copernicus' heliocentric model from 1543 suggested that the planets of our solar system form a kind of mutually ordered and quasi-synchronized system. From 1596 to 1619 Kepler formulated preliminary mathematical relations of approximate commensurabilities among the planets, which were later reformulated in the Titius-Bode rule (1766-1772), which successfully predicted the orbital position of Ceres and Uranus. Following the discovery of the ~ 11 yr sunspot cycle, in 1859 Wolf suggested that the observed solar variability could be approximately synchronized with the orbital movements of Venus, Earth, Jupiter and Saturn. Modern research has further confirmed that (1) the planetary orbital periods can be approximately deduced from a simple system of resonant frequencies; (2) the solar system oscillates with a specific set of gravitational frequencies, and many of them (e.g., within the range between 3 yr and 100 yr) can be approximately constructed as harmonics of a base period of ~ 178.38 yr; and (3) solar and climate records are also characterized by planetary harmonics from the monthly to the millennial timescales. This short review concludes with an emphasis on the contribution of the author's research on the empirical evidences and physical modeling of both solar and climate variability based on astronomical harmonics. The general conclusion is that the solar system works as a resonator characterized by a specific harmonic planetary structure that also synchronizes the Sun's activity and the Earth's climate. The special issue Pattern in solar variability, their planetary origin and terrestrial impacts (Mörner et al., 2013) further develops the ideas about the planetary-solar-terrestrial interaction with the personal contribution of 10

  7. Solar Energy Education. Renewable energy activities for earth science

    SciTech Connect

    Not Available

    1980-01-01

    A teaching manual is provided to aid teachers in introducing renewable energy topics to earth science students. The main emphasis is placed on solar energy. Activities for the student include a study of the greenhouse effect, solar gain for home heating, measuring solar radiation, and the construction of a model solar still to obtain fresh water. Instructions for the construction of apparatus to demonstrate a solar still, the greenhouse effect and measurement of the altitude and azimuth of the sun are included. (BCS)

  8. Design data brochure: Solar hot water system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A design calculation is detailed for a single-family residence housing a family of four in a nonspecific geographical area. The solar water heater system is designed to provide 80 gallons of 140 F hot water per day.

  9. Solar System Visualization: Global Science Maps

    NASA Technical Reports Server (NTRS)

    DeJong, E. M.

    1994-01-01

    The goal of the Solar System Visualization (SSV) project is to re-explore the planets using the data from previous National Aeronautics and Space Administration (NASA) planetary missions on and public information.

  10. The NASA atlas of the solar system

    USGS Publications Warehouse

    Greeley, Ronald; Batson, Raymond M.

    1997-01-01

    Describes every planet, moon, and body that has been the subject of a NASA mission, including images of 30 solar system objects and maps of 26 objects. The presentation includes geologic history, geologic and reference maps, and shaded relief maps.

  11. Design information for solar-heating systems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Report contains preliminary design information for two solar-heating and hot water systems presently under development. Information includes quality control data, special tooling specifications, hazard analysis, and preliminary training program for installation contractors.

  12. Modular solar-heating system - design package

    NASA Technical Reports Server (NTRS)

    Sinton, D. S.

    1979-01-01

    Compilation contains design, performance, and hardware specifications in sufficient detail to fabricate or procure materials and install, operate, and maintain complete modular solar heating and hot water system for single family size dwellings.

  13. Prototype solar-heating system - installation manual

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Manual for prototype solar-heating system gives detailed installation procedures for each of seven subsystems. Procedures for operation and maintenance are also included. It discusses architectural considerations, building construction considerations, and checkout-test procedures.

  14. Solar Heating System at a Racquetball Club

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Detailed 93-page report describes Arlington, Virginia racquetball club which obtains heat and hot water for its support area from solar collectors. Report explains modes of operation of system and details of acceptance-test plan.

  15. Solar System Exploration -- What Comes Next?

    NASA Video Gallery

    Do you think we already know everything about our solar system? Think again. We've barely scratched the surface of what there is to learn. Join NASA as it sends missions to the far ends of the sola...

  16. The Birth Environment of the Solar System

    NASA Astrophysics Data System (ADS)

    Brown, Michael; Allen, Lori; Trilling, Davif

    2014-02-01

    In his comprehensive review on the birth environment of the solar system, Adams (2010) uses four primary dynamical, chemical, and radiation constraints to conclude that the solar system formed in a cluster with between 1000 and 10,000 members. The existence of the planetoid Sedna, on a highly elliptical orbit disconnected from the giant planets, is perhaps the weakest of these primary constraints. We propose a small Gemini imaging program to followup serendipitous discoveries of distant objets in the outer solar system from a 30 night Dark Energy Camera near earth asteroid survey. The Gemini observations will allow us to determine orbits of these distant objects which will allow us to (1) determine if Sedna was indeed emplaced by a birth cluster and (2) use full orbital population statistics to constrain the birth environment of the sun using this unique fossil record of the earliest history of our solar system.

  17. Planetary science: Birth of a Solar System

    NASA Astrophysics Data System (ADS)

    Cameron, A. G. W.

    2002-08-01

    Radioisotope dating of meteorites suggests that planets formed in the Solar System over shorter timescales than had been thought. There are consequences for how the Moon formed, but is this the final word?

  18. Paleomagnetism of the Solar System.

    NASA Astrophysics Data System (ADS)

    Fuller, M.

    2005-12-01

    In addition to the paleomagnetic record from Earth, we have paleomagnetic results from samples from the Moon, Mars, and from a variety of meteorites. The record from the Moon involves numerous samples and appears to define a strong field interval from about 3.85 to 3.65 Ga. Subsequently the field may have turned off rapidly as some have advocated, or decayed over a period of billions of years as advocated by others. The record from Mars comes to us via the Martian meteorites, which include only one ancient rock ALH84001, a cataclastic pyroxenite. It has a crystallization age of 4.5 Ga. However, it was severely shocked at 4.0 Ga, from which time much of the magnetization probably originated. Estimates of the strength of the field in which it was magnetized vary, but it was probably at least a few microteslas. Younger volcanic rocks from Mars have given more reliable, but weaker field estimates. The paleomagnetic record from meteorites other than those from the Moon and Mars is probably the hardest of all records to interpret, but at least the achondrites may carry a record of fields on parent bodies. Besides the intrinsic interest in the paleomagnetism of samples from the solar system, the results provide some "groundtruth" to aid in the interpretation of the magnetic fields of the parent bodies. Such interpretations immediately encounter the role of shock on the magnetization of the recovered samples. Both on the Moon and Mars the effects of impacts and shock are pervasive on all scales. Indeed the least improbable model of lunar magnetism is related to giant impacts and on Mars the large impact basins play a key role.

  19. Origin of Outer Solar System

    NASA Technical Reports Server (NTRS)

    Holman, Matthew J.; Boyce, J. (Technical Monitor)

    2003-01-01

    We feel that at the present moment the available theoretical models of the Kuiper belt are still in advance of the data, and thus our main task has been to conduct observational work guided by theoretical motivations. Our efforts over the past year can be divided into four categories: A) Wide-field Searches for Kuiper Belt Objects; B) Pencil-beam Searches for Kuiper Belt Objects; C) Wide-field Searches for Moons of the Outer Planets; D) Pencil-beam Searches for Faint Uranian and Neptunian Moons; E) Recovery Observations. As of April 2002, we have conducted several searches for Kuiper belt objects using large-format mosaic CCD camera on 4-meter class telescopes. In May 1999, we used the Kitt Peak 4-meter with the NOAO Mosaic camera we attempted a search for KBOs at a range of ecliptic latitudes. In addition to our wide-field searches, we have conducted three 'pencil-beam' searches in the past year. In a pencil-beam search we take repeated integrations of the same field throughout a night. After preprocessing the resulting images we shift and recombine them along a range of rates and directions consistent with the motion of KBOs. Stationary objects then smear out, while objects moving at near the shift rate appear as point sources. In addition to our searches for Kuiper belt objects, we are completing the inventory of the outer solar system by search for faint satellites of the outer planets. In August 2001 we conducted pencil beam searches for faint Uranian and Neptunian satellites at CFHT and CTIO. These searches resulted in the discover of two Neptunian and four Uranian satellite candidates. The discovery of Kuiper belt objects and outer planet satellites is of little use if the discoveries are not followed by systematic, repeated astrometric observations that permit reliable estimates of their orbits.

  20. Astrometric Solar-System Anomalies

    NASA Astrophysics Data System (ADS)

    Anderson, John D.

    2009-05-01

    There are four unexplained anomalies connected with astrometric data. Perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it experiences a gain in total orbital energy per unit mass (Anderson et al., Phys. Rev. Lett. 100, 091102). This amounts to a net velocity increase of 13.5 mm/s for the NEAR spacecraft at a closest approach of 539 km, 3.9 mm/s for the Galileo spacecraft at 960 km, and 1.8 mm/s for the Rosetta spacecraft at 1956 km. Next, I suggest the change in the astronomical unit AU is definitely a concern. It is increasing by about 15 cm/yr (Krasinsky and Brumberg, Celes. Mech. & Dynam. Astron. 90, 267). The other two anomalies are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions (Anderson et al., Phys. Rev. D 65, 082004). Some, including me, are convinced this effect is of concern, but many are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth anomaly is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction in both the Earth and Moon. However, there is a reported increase that is about three times larger than expected (J. G. Williams, DDA/AAS Brouwer Award Lecture, Halifax, Nova Scotia 2006). We suspect that all four anomalies have mundane explanations. However, the possibility that they will be explained by a new theory of gravitation is not ruled out, perhaps analogous to Einstein's 1916 explanation of the excess precession of Mercury's perihelion.

  1. Solar Energy Systems for Ohioan Residential Homeowners

    NASA Astrophysics Data System (ADS)

    Luckett, Rickey D.

    Dwindling nonrenewable energy resources and rising energy costs have forced the United States to develop alternative renewable energy sources. The United States' solar energy industry has seen an upsurge in recent years, and photovoltaic holds considerable promise as a renewable energy technology. The purpose of this case study was to explore homeowner's awareness of the benefits of solar energy. Disruptive-innovation theory was used to explore marketing strategies for conveying information to homeowners about access to new solar energy products and services. Twenty residential homeowners were interviewed face-to-face to explore (a) perceived benefits of solar energy in their county in Ohio, and (b) perceptions on the rationale behind the marketing strategy of solar energy systems sold for residential use. The study findings used inductive analyses and coding interpretation to explore the participants' responses that revealed 3 themes: the existence of environmental benefits for using solar energy systems, the expensive cost of equipment associated with government incentives, and the lack of marketing information that is available for consumer use. The implications for positive social change include the potential to enable corporate leaders, small business owners, and entrepreneurs to develop marketing strategies for renewable energy systems. These strategies may promote use of solar energy systems as a clean, renewable, and affordable alternative electricity energy source for the 21st century.

  2. Solar energy control system. [temperature measurement

    NASA Technical Reports Server (NTRS)

    Currie, J. R. (Inventor)

    1981-01-01

    A solar energy control system for a hot air type solar energy heating system wherein thermocouples are arranged to sense the temperature of a solar collector, a space to be heated, and a top and bottom of a heat storage unit is disclosed. Pertinent thermocouples are differentially connected together, and these are employed to effect the operation of dampers, a fan, and an auxiliary heat source. In accomplishing this, the differential outputs from the thermocouples are amplified by a single amplifier by multiplexing techniques. Additionally, the amplifier is corrected as to offset by including as one multiplex channel a common reference signal.

  3. Tehachapi solar thermal system first annual report

    SciTech Connect

    Rosenthal, A.

    1993-05-01

    The staff of the Southwest Technology Development Institute (SWTDI), in conjunction with the staff of Industrial Solar Technology (IST), have analyzed the performance, operation, and maintenance of a large solar process heat system in use at the 5,000 inmate California Correctional Institution (CCI) in Tehachapi, CA. This report summarizes the key design features of the solar plant, its construction and maintenance histories through the end of 1991, and the performance data collected at the plant by a dedicated on-site data acquisition system (DAS).

  4. Influence of solar activity on Jupiter's atmosphere

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.

    2016-05-01

    The influx of solar energy to different latitudes while Jupiter's orbital motion around the Sun varies significantly. This leads to a change in the optical and physical characteristics of its atmosphere. Analysis of the data for 1850-1991 on determination of the integral magnitude Mj Jupiter in the V filter, and a comparison with the changes of the Wolf numbers W, characterizing the variations of solar activity (SA) - showed that the change of Mj in maxima of the SA - has minima for odd, and maximums - for the even of SA cycles. That is, changing of the Jupiter brightness in visible light is much evident 22.3-year magnetic cycle, and not just about the 11.1-year cycle of solar activity. Analysis of the obtained in 1960-2015 data on the relative distribution of brightness along the central meridian of Jupiter, for which we calculated the ratio of the brightness Aj of northern to the southern part of the tropical and temperate latitudinal zones, allowed to approximate the change of Aj by sinusoid with a period of 11.91±0.07 earth years. Comparison of time variation of Aj from changes in the index of SA R, and the movement of the planet in its orbit - indicates the delay of response of the visible cloud layer in the atmosphere of the Sun's exposure mode for 6 years. This value coincides with the radiative relaxation of the hydrogen-helium atmosphere

  5. Meteoroids: The Smallest Solar System Bodies

    NASA Technical Reports Server (NTRS)

    Moser, Danielle E. (Compiler); Hardin, B. F. (Compiler); Janches, Diego (Compiler)

    2011-01-01

    This volume is a compilation of articles reflecting the current state of knowledge on the physics, chemistry, astronomy, and aeronomy of small bodies in the solar system. The articles included here represent the most recent results in meteor, meteoroid, and related research fields and were presented May 24-28, 2010, in Breckenridge, Colorado, USA at Meteoroids 2010: An International Conference on Minor Bodies in the Solar System.

  6. The Solar System: Recent Exploration Results

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2006-01-01

    The solar system has been visited by space probes, ranging from the Mariner Mercury-Venus mission exploring inward toward the sun, and continuing through the Voyager probes out into interstellar space and (on its way now) the New Horizons probe to Pluto and the Kuiper belt. This talk examines what we know of the planets of the solar system from probes, and talks about where we will go from here.

  7. Chemical evolution: A solar system perspective

    NASA Technical Reports Server (NTRS)

    Oro, J.

    1989-01-01

    During the last three decades major advances were made in the understanding of the formation of carbon compounds in the universe and of the occurrence of processes of chemical evolution in the solar system and beyond. This was made possible by the development of new astronomical techniques and by the exploration of the solar system by means of properly instrumented spacecraft. Some of the major findings made as a result of these observations are summarized.

  8. Tsunami related to solar and geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino

    2016-04-01

    The authors of this study wanted to verify the existence of a correlation between earthquakes of high intensity capable of generating tsunami and variations of solar and Earth's geomagnetic activity. To confirming or not the presence of this kind of correlation, the authors analyzed the conditions of Spaceweather "near Earth" and the characteristics of the Earth's geomagnetic field in the hours that preceded the four earthquakes of high intensity that have generated tsunamis: 1) Japan M9 earthquake occurred on March 11, 2011 at 05:46 UTC; 2) Japan M7.1 earthquake occurred on October 25, 2013 at 17:10 UTC; 3) Chile M8.2 earthquake occurred on April 1, 2014 at 23:46 UTC; 4) Chile M8.3 earthquake occurred on September 16, 2015 at 22:54 UTC. The data relating to the four earthquakes were provided by the United States Geological Survey (USGS). The data on ion density used to realize the correlation study are represented by: solar wind ion density variation detected by ACE (Advanced Composition Explorer) Satellite, in orbit near the L1 Lagrange point, at 1.5 million of km from Earth, in direction of the Sun. The instrument used to perform the measurement of the solar wind ion density is the Electron, Proton, and Alpha Monitor (EPAM) instrument, equipped on the ACE Satellite. To conduct the study, the authors have taken in consideration the variation of the solar wind protons density of three different energy fractions: differential proton flux 1060-1900 keV (p/cm^2-sec-ster-MeV); differential proton flux 761-1220 keV (p/cm^2-sec-ster-MeV); differential proton flux 310-580 keV (p/cm^2-sec-ster-MeV). Geomagnetic activity data were provided by Tromsø Geomagnetic Observatory (TGO), Norway; by Scoresbysund Geomagnetic Observatory (SCO), Greenland, Denmark and by Space Weather Prediction Center of Pushkov Institute of terrestrial magnetism, ionosphere and radio wave propagation (IZMIRAN), Troitsk, Moscow Region. The results of the study, in agreement with what already

  9. Solar-heating system performance tests

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Report contains results of performance tests on complete system for solar space and hot-water heating system that uses commercially available components. Results were used to determine system suitability for field installation and to generate performance data base for comparison with future tests on field installed systems.

  10. On the possible relations between solar activities and global seismicity in the solar cycle 20 to 23

    SciTech Connect

    Herdiwijaya, Dhani; Arif, Johan; Nurzaman, Muhamad Zamzam; Astuti, Isna Kusuma Dewi

    2015-09-30

    Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth’s climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicate technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth’s global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.

  11. On the possible relations between solar activities and global seismicity in the solar cycle 20 to 23

    NASA Astrophysics Data System (ADS)

    Herdiwijaya, Dhani; Arif, Johan; Nurzaman, Muhamad Zamzam; Astuti, Isna Kusuma Dewi

    2015-09-01

    Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth's climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicate technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth's global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.

  12. Concentrators Enhance Solar Power Systems

    NASA Technical Reports Server (NTRS)

    2013-01-01

    "Right now, solar electric propulsion is being looked at very seriously," says Michael Piszczor, chief of the photovoltaic and power technologies branch at Glen Research Center. The reason, he explains, originates with a unique NASA mission from the late 1990s. In 1998, the Deep Space 1 spacecraft launched from Kennedy Space Center to test a dozen different space technologies, including SCARLET, or the Solar Concentrator Array with Refractive Linear Element Technology. As a solar array that focused sunlight on a smaller solar cell to generate electric power, SCARLET not only powered Deep Space 1 s instruments but also powered its ion engine, which propelled the spacecraft throughout its journey. Deep Space 1 was the first spacecraft powered by a refractive concentrator design like SCARLET, and also utilized multi-junction solar cells, or cells made of multiple layers of different materials. For the duration of its 38-month mission, SCARLET performed flawlessly, even as Deep Space 1 flew by Comet Borrelly and Asteroid Braille. "Everyone remembers the ion engine on Deep Space 1, but they tend to forget that the SCARLET array powered it," says Piszczor. "Not only did both technologies work as designed, but the synergy between the two, solar power and propulsion together, is really the important aspect of this technology demonstration mission. It was the first successful use of solar electric propulsion for primary propulsion." More than a decade later, NASA is keenly interested in using solar electric propulsion (SEP) for future space missions. A key issue is cost, and SEP has the potential to substantially reduce cost compared to conventional chemical propulsion technology. "SEP allows you to use spacecraft that are smaller, lighter, and less costly," says Piszczor. "Even though it might take longer to get somewhere using SEP, if you are willing to trade time for cost and smaller vehicles, it s a good trade." Potentially, SEP could be used on future science missions

  13. Basics of a Solar Electric System: Better Buildings Series Solar Electric Fact Sheet

    SciTech Connect

    Not Available

    2002-07-01

    Today's solar technologies are more efficient and versatile than ever before, adding to the appeal of an already desirable energy source. This fact sheet provides information on the basics of a solar electric system, including components of a system, how to choose solar modules, and how to choose a solar system.

  14. Preferred longitudes in solar and stellar activity

    NASA Astrophysics Data System (ADS)

    Berdyugina, S. V.

    An analysis of the distribution of starspots on the surfaces of very active stars, such as RS CVn- FK Com-type stars as well as young solar analogs, reveals preferred longitudes of spot formation and their quasi-periodic oscillations, i.e. flip-flop cycles. A non-linear migration of the preferred longitudes suggests the presence of the differential rotation and variations of mean spot latitudes. It enables recovering stellar butterfly diagrams. Such phenomena are found to persist in the sunspot activity as well. A comparison of the observed properties of preferred longitudes on the Sun with those detected on more active stars leads to the conclusion that we can learn fine details of the stellar dynamo by studying the Sun, while its global parameters on the evolutionary time scale are provided by a sample of active stars.

  15. Nanoflare activity in the solar chromosphere

    SciTech Connect

    Jess, D. B.; Mathioudakis, M.; Keys, P. H.

    2014-11-10

    We use ground-based images of high spatial and temporal resolution to search for evidence of nanoflare activity in the solar chromosphere. Through close examination of more than 1 × 10{sup 9} pixels in the immediate vicinity of an active region, we show that the distributions of observed intensity fluctuations have subtle asymmetries. A negative excess in the intensity fluctuations indicates that more pixels have fainter-than-average intensities compared with those that appear brighter than average. By employing Monte Carlo simulations, we reveal how the negative excess can be explained by a series of impulsive events, coupled with exponential decays, that are fractionally below the current resolving limits of low-noise equipment on high-resolution ground-based observatories. Importantly, our Monte Carlo simulations provide clear evidence that the intensity asymmetries cannot be explained by photon-counting statistics alone. A comparison to the coronal work of Terzo et al. suggests that nanoflare activity in the chromosphere is more readily occurring, with an impulsive event occurring every ∼360 s in a 10,000 km{sup 2} area of the chromosphere, some 50 times more events than a comparably sized region of the corona. As a result, nanoflare activity in the chromosphere is likely to play an important role in providing heat energy to this layer of the solar atmosphere.

  16. Volcanic processes in the solar system

    USGS Publications Warehouse

    Carr, M.H.

    1987-01-01

    Eruptions of ammonia, water, and sulfur. These have become some of the concerns of planetary volcanologists as they try to understand volcanic processes on other planetary bodies. As exploration of the Solar System has continues, we have been confronted with more and more exotic forms of volcanism and have come to realize that the types of volcanic activity observed on Earth represent only a fraction of the array of volcanic phenomena that are possible. Some volcanic features of other planets have close terrestrial counterparts and appear to have been formed by similar mechanisms and from similar magmas to those on the Earth. but other features are totally different and appear to have been formed from materials that are not normally associated with volcanism on Earth.

  17. Solar system events at high spatial resolution

    SciTech Connect

    Baines, K H; Gavel, D T; Getz, A M; Gibbartd, S G; MacIntosh, B; Max, C E; McKay, C P; Young, E F; de Pater, I

    1999-02-19

    Until relatively recent advances in technology, astronomical observations from the ground were limited in image resolution by the blurring effects of earth's atmosphere. The blur extent, ranging typically from 0.5 to 2 seconds of arc at the best astronomical sights, precluded ground-based observations of the details of the solar system's moons, asteroids, and outermost planets. With the maturing of a high resolution image processing technique called speckle imaging the resolution limitation of the atmosphere can now be largely overcome. Over the past three years they have used speckle imaging to observe Titan, a moon of Saturn with an atmospheric density comparable to Earth's, Io, the volcanically active innermost moon of Jupiter, and Neptune, a gas giant outer planet which has continually changing planet-encircling storms. These observations were made at the world's largest telescope, the Keck telescope in Hawaii and represent the highest resolution infrared images of these objects ever taken.

  18. Photovoltaics: solar electric power systems

    SciTech Connect

    1980-02-01

    The operation and uses of solar cells and the National Photovoltaic Program are briefly described. Eleven DOE photovoltaic application projects are described including forest lookout towers; Wilcox Memorial Hospital in Hawaii; WBNO daytime AM radio station; Schuchuli Indian Village; Meade, Nebraska, agricultural experiment; Mt. Laguna Air Force Station; public schools and colleges; residential applications; and Sea World of Florida. (WHK)

  19. Desalting system utilizing solar energy

    SciTech Connect

    Iida, T.

    1985-06-25

    A heat-transfer medium is heated by a solar heat collector and then adiabatically compressed. The heat-transfer medium thus compressed exchanges heat with the seawater to heat it, and is then adiabatically expanded with the heated seawater being evaporated and the steam thus produced, upon heat exchange with the seawater, changed into fresh water.

  20. Statistical analysis of solar energetic particle events and related solar activity

    NASA Astrophysics Data System (ADS)

    Dierckxsens, Mark; Patsou, Ioanna; Tziotziou, Kostas; Marsh, Michael; Lygeros, Nik; Crosby, Norma; Dalla, Silvia; Malandraki, Olga

    2013-04-01

    The FP7 COMESEP (COronal Mass Ejections and Solar Energetic Particles: forecasting the space weather impact) project is developing tools for forecasting geomagnetic storms and solar energetic particle (SEP) radiation storms. Here we present preliminary results on a statistical analysis of SEP events and their parent solar activity during Solar Cycle 23. The work aims to identify correlations between solar events and SEP events relevant for space weather, as well as to quantify SEP event probabilities for use within the COMESEP alert system. The data sample covers the SOHO era and is based on the SEPEM reference event list [http://dev.sepem.oma.be/]. Events are subdivided if separate enhancements are observed in higher energy channels as defined for the list of Cane et al (2010). Energetic Storm Particle (ESP) enhancements during these events are identified by associating ESP-like increases in the proton channels with shocks detected in ACE and WIND data. Their contribution has been estimated and subtracted from the proton fluxes. Relationships are investigated between solar flare parameters such as X-ray intensity and heliographic location on the one hand, and the probability of occurrence and strength of energetic proton flux increases on the other hand. The same exercise is performed using the velocity and width of coronal mass ejections to examine their SEP productiveness. Relationships between solar event characteristics and SEP event spectral indices and fluences are also studied, as well as enhancements in heavy ion fluxes measured by the SIS instrument on board the ACE spacecraft during the same event periods. This work has received funding from the European Commission FP7 Project COMESEP (263252).

  1. Market development directory for solar industrial process heat systems

    SciTech Connect

    1980-02-01

    The purpose of this directory is to provide a basis for market development activities through a location listing of key trade associations, trade periodicals, and key firms for three target groups. Potential industrial users and potential IPH system designers were identified as the prime targets for market development activities. The bulk of the directory is a listing of these two groups. The third group, solar IPH equipment manufacturers, was included to provide an information source for potential industrial users and potential IPH system designers. Trade associates and their publications are listed for selected four-digit Standard Industrial Code (SIC) industries. Since industries requiring relatively lower temperature process heat probably will comprise most of the near-term market for solar IPH systems, the 80 SIC's included in this chapter have process temperature requirements less than 350/sup 0/F. Some key statistics and a location list of the largest plants (according to number of employees) in each state are included for 15 of the 80 SIC's. Architectural/engineering and consulting firms are listed which are known to have solar experience. Professional associated and periodicals to which information on solar IPH sytstems may be directed also are included. Solar equipment manufacturers and their associations are listed. The listing is based on the SERI Solar Energy Information Data Base (SEIDB).

  2. Evidence of active region imprints on the solar wind structure

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B. V.

    1995-01-01

    A common descriptive framework for discussing the solar wind structure in the inner heliosphere uses the global magnetic field as a reference: low density, high velocity solar wind emanates from open magnetic fields, with high density, low speed solar wind flowing outward near the current sheet. In this picture, active regions, underlying closed magnetic field structures in the streamer belt, leave little or no imprint on the solar wind. We present evidence from interplanetary scintillation measurements of the 'disturbance factor' g that active regions play a role in modulating the solar wind and possibly contribute to the solar wind mass output. Hence we find that the traditional view of the solar wind, though useful in understanding many features of solar wind structure, is oversimplified and possibly neglects important aspects of solar wind dynamics

  3. Transient flows of the solar wind associated with small-scale solar activity in solar minimum

    NASA Astrophysics Data System (ADS)

    Slemzin, Vladimir; Veselovsky, Igor; Kuzin, Sergey; Gburek, Szymon; Ulyanov, Artyom; Kirichenko, Alexey; Shugay, Yulia; Goryaev, Farid

    The data obtained by the modern high sensitive EUV-XUV telescopes and photometers such as CORONAS-Photon/TESIS and SPHINX, STEREO/EUVI, PROBA2/SWAP, SDO/AIA provide good possibilities for studying small-scale solar activity (SSA), which is supposed to play an important role in heating of the corona and producing transient flows of the solar wind. During the recent unusually weak solar minimum, a large number of SSA events, such as week solar flares, small CMEs and CME-like flows were observed and recorded in the databases of flares (STEREO, SWAP, SPHINX) and CMEs (LASCO, CACTUS). On the other hand, the solar wind data obtained in this period by ACE, Wind, STEREO contain signatures of transient ICME-like structures which have shorter duration (<10h), weaker magnetic field strength (<10 nT) and lower proton temperature than usual ICMEs. To verify the assumption that ICME-like transients may be associated with the SSA events we investigated the number of weak flares of C-class and lower detected by SPHINX in 2009 and STEREO/EUVI in 2010. The flares were classified on temperature and emission measure using the diagnostic means of SPHINX and Hinode/EIS and were confronted with the parameters of the solar wind (velocity, density, ion composition and temperature, magnetic field, pitch angle distribution of the suprathermal electrons). The outflows of plasma associated with the flares were identified by their coronal signatures - CMEs (only in few cases) and dimmings. It was found that the mean parameters of the solar wind projected to the source surface for the times of the studied flares were typical for the ICME-like transients. The results support the suggestion that weak flares can be indicators of sources of transient plasma flows contributing to the slow solar wind at solar minimum, although these flows may be too weak to be considered as separate CMEs and ICMEs. The research leading to these results has received funding from the European Union’s Seventh Programme

  4. 24 CFR 203.18a - Solar energy system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Solar energy system. 203.18a... § 203.18a Solar energy system. (a) The dollar limitation provided in § 203.18(a) may be increased by up... to the installation of a solar energy system. (b) Solar energy system is defined as any...

  5. 24 CFR 203.18a - Solar energy system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Solar energy system. 203.18a... § 203.18a Solar energy system. (a) The dollar limitation provided in § 203.18(a) may be increased by up... to the installation of a solar energy system. (b) Solar energy system is defined as any...

  6. 24 CFR 203.18a - Solar energy system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Solar energy system. 203.18a... § 203.18a Solar energy system. (a) The dollar limitation provided in § 203.18(a) may be increased by up... to the installation of a solar energy system. (b) Solar energy system is defined as any...

  7. MASC: Magnetic Activity of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Auchere, Frederic; Fineschi, Silvano; Gan, Weiqun; Peter, Hardi; Vial, Jean-Claude; Zhukov, Andrei; Parenti, Susanna; Li, Hui; Romoli, Marco

    We present MASC, an innovative payload designed to explore the magnetic activity of the solar corona. It is composed of three complementary instruments: a Hard-X-ray spectrometer, a UV / EUV imager, and a Visible Light / UV polarimetric coronagraph able to measure the coronal magnetic field. The solar corona is structured in magnetically closed and open structures from which slow and fast solar winds are respectively released. In spite of much progress brought by two decades of almost uninterrupted observations from several space missions, the sources and acceleration mechanisms of both types are still not understood. This continuous expansion of the solar atmosphere is disturbed by sporadic but frequent and violent events. Coronal mass ejections (CMEs) are large-scale massive eruptions of magnetic structures out of the corona, while solar flares trace the sudden heating of coronal plasma and the acceleration of electrons and ions to high, sometimes relativistic, energies. Both phenomena are most probably driven by instabilities of the magnetic field in the corona. The relations between flares and CMEs are still not understood in terms of initiation and energy partition between large-scale motions, small-scale heating and particle acceleration. The initiation is probably related to magnetic reconnection which itself results magnetic topological changes due to e.g. flux emergence, footpoints motions, etc. Acceleration and heating are also strongly coupled since the atmospheric heating is thought to result from the impact of accelerated particles. The measurement of both physical processes and their outputs is consequently of major importance. However, despite its fundamental importance as a driver for the physics of the Sun and of the heliosphere, the magnetic field of our star’s outer atmosphere remains poorly understood. This is due in large part to the fact that the magnetic field is a very difficult quantity to measure. Our knowledge of its strength and

  8. Solar System Exploration, 1995-2000

    NASA Technical Reports Server (NTRS)

    Squyres, S.; Varsi, G.; Veverka, J.; Soderblom, L.; Black, D.; Stern, A.; Stetson, D.; Brown, R. A.; Niehoff, J.; Squibb, G.

    1994-01-01

    Goals for planetary exploration during the next decade include: (1) determine how our solar system formed, and understand whether planetary systems are a common phenomenon through out the cosmos; (2) explore the diverse changes that planets have undergone throughout their history and that take place at present, including those that distinguish Earth as a planet; (3) understand how life might have formed on Earth, whether life began anywhere else in the solar system, and whether life (including intelligent beings) might be a common cosmic phenomenon; (4) discover and investigate natural phenomena that occur under conditions not realizable in laboratories; (5) discover and inventory resources in the solar system that could be used by human civilizations in the future; and (6) make the solar system a part of the human experience in the same way that Earth is, and hence lay the groundwork for human expansion into the solar system in the coming century. The plan for solar system exploration is motivated by these goals as well as the following principle: The solar system exploration program will conduct flight programs and supporting data analysis and scientific research commensurate with United States leadership in space exploration. These programs and research must be of the highest scientific merit, they must be responsive to public excitement regarding planetary exploration, and they must contribute to larger national goals in technology and education. The result will be new information, which is accessible to the public, creates new knowledge, and stimulates programs of education to increase the base of scientific knowledge in the general public.

  9. Data Assimilation Approach for Forecast of Solar Activity Cycles

    NASA Astrophysics Data System (ADS)

    Kitiashvili, Irina N.

    2016-11-01

    Numerous attempts to predict future solar cycles are mostly based on empirical relations derived from observations of previous cycles, and they yield a wide range of predicted strengths and durations of the cycles. Results obtained with current dynamo models also deviate strongly from each other, thus raising questions about criteria to quantify the reliability of such predictions. The primary difficulties in modeling future solar activity are shortcomings of both the dynamo models and observations that do not allow us to determine the current and past states of the global solar magnetic structure and its dynamics. Data assimilation is a relatively new approach to develop physics-based predictions and estimate their uncertainties in situations where the physical properties of a system are not well-known. This paper presents an application of the ensemble Kalman filter method for modeling and prediction of solar cycles through use of a low-order nonlinear dynamo model that includes the essential physics and can describe general properties of the sunspot cycles. Despite the simplicity of this model, the data assimilation approach provides reasonable estimates for the strengths of future solar cycles. In particular, the prediction of Cycle 24 calculated and published in 2008 is so far holding up quite well. In this paper, I will present my first attempt to predict Cycle 25 using the data assimilation approach, and discuss the uncertainties of that prediction.

  10. ADASY (Active Daylighting System)

    NASA Astrophysics Data System (ADS)

    Vázquez-Moliní, Daniel; González-Montes, Mario; Fernández-Balbuena, Antonio Á.; Bernabéu, Eusebio; García-Botella, Ángel; García-Rodríguez, Lucas; Pohl, Wilfried

    2009-08-01

    The main objective of ADASY (Active Daylighting System) work is to design a façade static daylighting system oriented to office applications, mainly. The goal of the project is to save energy by guiding daylight into a building for lighting purpose. With this approach we can reduce the electrical load for artificial lighting, completing it with sustainable energy. The collector of the system is integrated on a vertical façade and its distribution guide is always horizontal inside of the false ceiling. ADASY is designed with a specific patent pending caption system, a modular light-guide and light extractor luminaire system. Special care has been put on the final cost of the system and its building integration purpose. The current ADASY configuration is able to illuminate 40 m2 area with a 300lx-400lx level in the mid time work hours; furthermore it has a good enough spatial uniformity distribution and a controlled glare. The data presented in this study are the result of simulation models and have been confirmed by a physical scaled prototype. ADASY's main advantages over regular illumination systems are: -Low maintenance; it has not mobile pieces and therefore it lasts for a long time and require little attention once installed. - No energy consumption; solar light continue working even if there has been a power outage. - High quality of light: the colour rendering of light is very high - Psychological benefits: People working with daylight get less stress and more comfort, increasing productivity. - Health benefits

  11. Prototype solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A collection of monthly status reports on the development of eight prototype solar heating and cooling systems is presented. The effort calls for the development, manufacture, test, system installation, maintenance, problem resolution, and performance evaluation. The systems are 3, 25, and 75 ton size units.

  12. Prototype solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A collection of monthly status reports are given on the development of eight prototype solar heating and cooling systems. This effort calls for the development, manufacturing, test, system installation, maintenance, problem resolution, and performance evaluation. The systems are 3-, 25-, and 75-ton size units.

  13. Residential solar-heating/cooling system

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Report documents progress of residential solar-heating and cooling system development program at 5-month mark of anticipated 17-month program. System design has been completed, and development and component testing has been initiated. Report includes diagrams, operation overview, optimization studies of subcomponents, and marketing plans for system.

  14. Residential solar-heating system - design brochure

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Design brochure for commercially-available solar-heating system is valuable to architects, engineers, and designers. It contains information on system configuration, system sizing, and mechanical layout. Drawings and specifications of all components and typical installation details are included in appendix.

  15. Solar Thermal Power Systems parabolic dish project

    NASA Technical Reports Server (NTRS)

    Truscello, V. C.

    1981-01-01

    The status of the Solar Thermal Power Systems Project for FY 1980 is summarized. Included is: a discussion of the project's goals, program structure, and progress in parabolic dish technology. Analyses and test results of concentrators, receivers, and power converters are discussed. Progress toward the objectives of technology feasibility, technology readiness, system feasibility, and system readiness are covered.

  16. Prototype residential solar-energy system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Complete solar-energy domestic-hot-water system for single-family residences is described in brochure. It contains data on procurement, installation, operation, and maintainance of system in residential or light commercial buildings. Appendix includes vendor brochures for major system components. Drawings, tables, and graphs complement text.

  17. Theory and Simulations of Solar System Plasmas

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.

    2011-01-01

    "Theory and simulations of solar system plasmas" aims to highlight results from microscopic to global scales, achieved by theoretical investigations and numerical simulations of the plasma dynamics in the solar system. The theoretical approach must allow evidencing the universality of the phenomena being considered, whatever the region is where their role is studied; at the Sun, in the solar corona, in the interplanetary space or in planetary magnetospheres. All possible theoretical issues concerning plasma dynamics are welcome, especially those using numerical models and simulations, since these tools are mandatory whenever analytical treatments fail, in particular when complex nonlinear phenomena are at work. Comparative studies for ongoing missions like Cassini, Cluster, Demeter, Stereo, Wind, SDO, Hinode, as well as those preparing future missions and proposals, like, e.g., MMS and Solar Orbiter, are especially encouraged.

  18. The Birth Environment of the Solar System

    NASA Astrophysics Data System (ADS)

    Adams, Fred C.

    2010-09-01

    This review examines our current understanding of the possible birth environments of our Solar System. Because most stars form within groups and clusters, the question becomes one of determining the nature of the birth aggregate of the Sun. This discussion starts by reviewing Solar System properties that provide constraints on our environmental history. We then outline the range of star-forming environments that are available in the Galaxy and discuss how they affect star and planet formation. The nature of the solar birth cluster is constrained by many physical considerations, including radiation fields provided by the background environment, dynamical scattering interactions, and by the necessity of producing the short-lived radioactive nuclear species inferred from meteoritic measurements. Working scenarios for the solar birth aggregate can be constructed, as discussed herein, although significant uncertainties remain.

  19. Performance predictions for passive solar water heating systems. Report 1: Performance monitoring to validate site-specific estimates of passive solar water heaters. Report 2: Laboratory report. Passive solar water heater tests

    NASA Astrophysics Data System (ADS)

    Robinson, David; Martin, Ken

    1988-05-01

    The two reports included in this publication describe work done to validate performance prediction procedures and test methods for passive solar domestic hot water systems. The reports assess established prediction procedures and investigate the validity of testing techniques. The intent is to develop methodologies for passive solar systems at a level similar to that already in place for active solar systems.

  20. An orientable solar panel system for nanospacecraft

    NASA Astrophysics Data System (ADS)

    Santoni, Fabio; Piergentili, Fabrizio; Candini, Gian Paolo; Perelli, Massimo; Negri, Andrea; Marino, Michele

    2014-08-01

    An orientable deployed solar array system for 1-5 kg weight nanospacecraft is described, enhancing the achievable performance of these typically power-limited systems. The system is based on a deployable solar panel system, previously developed with cooperation between Laboratorio di Sistemi Aerospaziali of University of Roma “la Sapienza” and the company IMT (Ingegneria Marketing Tecnologia). The system proposed is a modular one, and suitable in principle for the 1U, 2U and 3U standard Cubesat bus, even if the need for three axis attitude stabilization makes it typically preferred for 3U Cubesats. The size of each solar panel is the size of a lateral Cubesat surface. A single degree of freedom maneuvering capability is given to the deployed solar array, in order to follow the apparent motion of the sun as close as possible, given the mission requirements on the spacecraft attitude. Considerable effort has been devoted to design the system compatible with the Cubesat standard, being mounted outside on the external spacecraft structure, without requiring modifications on the standard prescriptions. The small available volume is the major constraint, which forces to use miniaturized electric motor technology. The system design trade-off is discussed, leading to the selection of an architecture based on two independently steerable solar array wings.

  1. Magnetic helicity in emerging solar active regions

    SciTech Connect

    Liu, Y.; Hoeksema, J. T.; Bobra, M.; Hayashi, K.; Sun, X.; Schuck, P. W.

    2014-04-10

    Using vector magnetic field data from the Helioseismic and Magnetic Imager instrument aboard the Solar Dynamics Observatory, we study magnetic helicity injection into the corona in emerging active regions (ARs) and examine the hemispheric helicity rule. In every region studied, photospheric shearing motion contributes most of the helicity accumulated in the corona. In a sample of 28 emerging ARs, 17 follow the hemisphere rule (61% ± 18% at a 95% confidence interval). Magnetic helicity and twist in 25 ARs (89% ± 11%) have the same sign. The maximum magnetic twist, which depends on the size of an AR, is inferred in a sample of 23 emerging ARs with a bipolar magnetic field configuration.

  2. Chaos and stability of the solar system

    PubMed Central

    Malhotra, Renu; Holman, Matthew; Ito, Takashi

    2001-01-01

    Over the last two decades, there has come about a recognition that chaotic dynamics is pervasive in the solar system. We now understand that the orbits of small members of the solar system—asteroids, comets, and interplanetary dust—are chaotic and undergo large changes on geological time scales. Are the major planets' orbits also chaotic? The answer is not straightforward, and the subtleties have prompted new questions. PMID:11606772

  3. Solar energy system with wind vane

    DOEpatents

    Grip, Robert E

    2015-11-03

    A solar energy system including a pedestal defining a longitudinal axis, a frame that is supported by the pedestal and that is rotateable relative to the pedestal about the longitudinal axis, the frame including at least one solar device, and a wind vane operatively connected to the frame to urge the frame relative to the pedestal about the longitudinal axis in response to wind acting on the wind vane.

  4. Planetary magnetism in the outer solar system.

    NASA Technical Reports Server (NTRS)

    Sonett, C. P.

    1973-01-01

    A brief review of the salient considerations which apply to the existence of magnetic fields in connection with planetary and subplanetary objects in the outer solar system is given. Consideration is given to internal dynamo fields, fields which might originate from interaction with the solar wind or magnetospheres (externally driven dynamos) and lastly fossil magnetic fields such as have been discovered on the moon. Where possible, connection is made between magnetism, means of detection, and internal body properties.

  5. Solar-Electric Dish Stirling System Development

    SciTech Connect

    Mancini, T.R.

    1997-12-31

    Electrical power generated with the heat from the sun, called solar thermal power, is produced with three types of concentrating solar systems - trough or line-focus systems; power towers in which a centrally-located thermal receiver is illuminated with a large field of sun-tracking heliostats; and dish/engine systems. A special case of the third type of system, a dish/Stirling system, is the subject of this paper. A dish/Stirling system comprises a parabolic dish concentrator, a thermal receiver, and a Stirling engine/generator located at the focus of the dish. Several different dish/Stirling systems have been built and operated during the past 15 years. One system claims the world record for net conversion of solar energy to electric power of 29.4%; and two different company`s systems have accumulated thousands of hours of on-sun operation. Due to de-regulation and intense competition in global energy markets as well as the immaturity of the technology, dish/Stirling systems have not yet found their way into the marketplace. This situation is changing as solar technologies become more mature and manufacturers identify high-value niche markets for their products. In this paper, I review the history of dish/Stirling system development with an emphasis on technical and other issues that directly impact the Stirling engine. I also try to provide some insight to the opportunities and barriers confronting the application of dish/Stirling in power generation markets.

  6. Review of legal and institutional issues in the use of decentralized solar energy systems

    SciTech Connect

    Schweitzer, M.

    1980-04-01

    The legal and institutional issues involved in the use of decentralized solar energy systems are examined for the purpose of advising government planners and policymakers, the solar industry, solar researchers, and prospective solar users of present and potential impediments and incentives to solar commercialization. This information was gathered primarily through a comprehensive literature review, with supplementary data provided through interviews with representatives of organizations active in the solar field. Five major issue areas were identified in the course of this study: (1) prohibitions on the use of solar equipment, (2) regulation of the production and placement of solar systems, (3) access to sunlight, (4) financial incentives and impediments to the use of solar technologies, and (5) the public utility-solar user interface. Each can be important in its impacts on the incidence of solar usage. The major actors involved with the issues identified above represent both the private and public sectors. Important private sector participants include solar manufacturers and installers, labor unions, lending institutions, utility companies, solar users themselves, and other community property owners. In the public sector, local, state, and federal governments are all capable of acting in ways that can influence the solar commercialization effort. Implementation options are available for all levels of government seeking to take an active role in addressing the previously mentioned legal and institutional issues. The appropriate actions will vary from federal to state to local governments, but each level can be important in removing existing barriers and creating new incentives for solar use.

  7. Background solar velocity spectrum at high and low phases of solar activity cycle

    NASA Astrophysics Data System (ADS)

    Régulo, C.; Roca Cortés, T.; Vázquez Ramió, H.

    2002-12-01

    Using GOLF/SOHO data a detailed analysis of the solar background spectrum has been performed at high and low phases of solar activity cycle. The analysis includes not only the non-periodic components of the background power spectrum but also the periodic ones. Apart from the solar activity, other causes produce similar effects in the data, particularly the different depths in the solar atmosphere where the measurements are done, because due to the sun-satellite relative velocity, we are observing at different positions in the line profile. Another effect is that different line wings are used in the observation at two different epochs, before and after SOHO loss and recovery which, unfortunately, coincide with minimum and maximum of solar activity. In this work we have tried to separate all these effects in order to really understand what is being seen in the data and ultimately extract the effects of solar activity on the acoustic background solar spectrum.

  8. A Model for Infusing Energy Concepts into Vocational Education Programs. Advanced Solar Systems.

    ERIC Educational Resources Information Center

    Delta Vocational Technical School, Marked Tree, AR.

    This instructional unit consists of materials designed to help students understand terms associated with solar energy; identify components of advanced solar systems; and identify applications of solar energy in business, industry, agriculture, and photovoltaics. Included in the unit are the following materials: suggested activities, instructional…

  9. Solar Activity and its Impact on Earth's Climate

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.

    2004-01-01

    The Sun's activity is now approaching an expected 2006 minimum, following the dramatic maximum of Solar Cycle 23, that included events such as the 2001 "Bastille Day" Coronal Mass Ejection, and the record-setting Oct-Nov 2003 solar flares, with their associated sunspots and variations in Total Solar Irradiance, or TSI. On Nov 4,2003 the largest X-ray flare ever detected (X-28) was observed in detail. We discuss recent satellite measurements of TSI by ACRIM 2 and 3 and Virgo, and new precision observations of TSI and SSI (Solar Spectral Irradiance) from the SORCE mission, that launched on January 25,2003. TSI variations recorded during the June 8,2004 transit of Venus show the unprecedented precision of the SORCE Total Irradiance Monitor (TIM) instrument, the first of its kind to employ phase-sensitive detection. The SORCE spectral instruments, XPS, Solstice, and SIM, record the Sun's changes over a wide range of wavelengths, from 1 to more than 2000 nanometers, for the first time covering the peak of the solar spectrum, including spectral components that provide energy inputs to key components of the climate system - ultraviolet (UV) into the upper atmospheric ozone layer, infrared (IR) into the lower atmosphere and clouds, and Visible into the Oceans and biosphere. Succeeding satellite missions are planned to monitor both TSI and SSI through Cycle 24. We summarize current ideas about decadal and longer solar variability, and associated potential impacts on Earth's climate on time scales from decades to centuries, especially highlighting the role of feedbacks in the climate system.

  10. Development of a Conceptual Structure for Architectural Solar Energy Systems.

    ERIC Educational Resources Information Center

    Ringel, Robert F.

    Solar subsystems and components were identified and conceptual structure was developed for architectural solar energy heating and cooling systems. Recent literature related to solar energy systems was reviewed and analyzed. Solar heating and cooling system, subsystem, and component data were compared for agreement and completeness. Significant…

  11. Solar engineering - 1981; Proceedings of the Third Annual Conference on Systems Simulation, Economic Analysis/Solar Heating and Cooling Operational Results, Reno, NV, April 27-May 1, 1981

    NASA Astrophysics Data System (ADS)

    Reid, R. L.; Murphy, L. M.; Ward, D. S.

    Progress made toward the commercialization of solar energy technologies as of 1981 is assessed, and attention is given to the future uses and impacts of solar energy. Attention is given to the results of several years of monitoring and modifying solar heating and cooling on residential and commercial structures. Solar system simulation and analysis methods are reviewed, covering the performance and operations of passive and active systems, thermosyphon systems, heat pumps and phase change systems. Simulations of system components are discussed, as are means to validate existing computer simulation codes, particularly the TRNSYS program. Control systems and logic for collector systems are explored, including analyses of building loads and climates, and numerical models of the economics of solar heating systems are presented. Performance simulations and economic analyses are also outlined for wind and photovoltaic systems, and for industrial solar heating systems. Finally, fundamental studies of corrosion, steam flow, wind loading, and scaling in solar systems are described.

  12. Solar thermal power systems. Annual technical progress report, FY 1979

    SciTech Connect

    Braun, Gerald W.

    1980-06-01

    The Solar Thermal Power Systems Program is the key element in the national effort to establish solar thermal conversion technologies within the major sectors of the national energy market. It provides for the development of concentrating mirror/lens heat collection and conversion technologies for both central and dispersed receiver applications to produce electricity, provide heat at its point of use in industrial processes, provide heat and electricity in combination for industrial, commercial, and residential needs, and ultimately, drive processes for production of liquid and gaseous fuels. This report is the second Annual Technical Progress Report for the Solar Thermal Power Systems Program and is structured according to the organization of the Solar Thermal Power Systems Program on September 30, 1979. Emphasis is on the technical progress of the projects rather than on activities and individual contractor efforts. Each project description indicates its place in the Solar Thermal Power Systems Program, a brief history, the significant achievements and real progress during FY 1979, also future project activities as well as anticipated significant achievements are forecast. (WHK)

  13. Long-term persistence of solar activity

    NASA Technical Reports Server (NTRS)

    Ruzmaikin, Alexander; Feynman, Joan; Robinson, Paul

    1994-01-01

    We examine the question of whether or not the non-periodic variations in solar activity are caused by a white-noise, random process. The Hurst exponent, which characterizes the persistence of a time series, is evaluated for the series of C-14 data for the time interval from about 6000 BC to 1950 AD. We find a constant Hurst exponent, suggesting that solar activity in the frequency range from 100 to 3000 years includes an important continuum component in addition to the well-known periodic variations. The value we calculate, H approximately 0.8, is significantly larger than the value of 0.5 that would correspond to variations produced by a white-noise process. This value is in good agreement with the results for the monthly sunspot data reported elsewhere, indicating that the physics that produces the continuum is a correlated random process and that it is the same type of process over a wide range of time interval lengths.

  14. Stevens Home, Rancho Santa Fe, California: Solar-energy-system performance evaluation, Oct. 1981 - Apr. 1982

    NASA Astrophysics Data System (ADS)

    Wetzel, P. E.

    Performance data on a solar water heating system are given. The Stevens Home in Califorina is a single family residence whose active solar energy system is designed to supply 70% of the hot water load. The system is equipped with 68 square feet of flat plate collectors, a 120 gallon solar preheat water tank, and a 40 gallon propane water heater. The solar fraction predicted by computer simulation and measured were the same, 44%. The system solar savings ratio, conventional fuel savings, and solar system coefficient of performance for the period covered are given. Monthly performance data are tabulated for the overall system and for the collector, storage, and domestic hot water subsystems. System operation is illustrated for a typical day by graphs of the temperatures at collector array, inlet and outlet, and at the preheat tank, and of water consumption. The typical operating sequence and solar energy use and heat losses are also graphed.

  15. Solar dynamic space power system heat rejection

    NASA Technical Reports Server (NTRS)

    Carlson, A. W.; Gustafson, E.; Mclallin, K. L.

    1986-01-01

    A radiator system concept is described that meets the heat rejection requirements of the NASA Space Station solar dynamic power modules. The heat pipe radiator is a high-reliability, high-performance approach that is capable of erection in space and is maintainable on orbit. Results are present of trade studies that compare the radiator system area and weight estimates for candidate advanced high performance heat pipes. The results indicate the advantages of the dual-slot heat pipe radiator for high temperature applications as well as its weight-reduction potential over the range of temperatures to be encountered in the solar dynamic heat rejection systems.

  16. Application and design of solar photovoltaic system

    NASA Astrophysics Data System (ADS)

    Tianze, Li; Hengwei, Lu; Chuan, Jiang; Luan, Hou; Xia, Zhang

    2011-02-01

    Solar modules, power electronic equipments which include the charge-discharge controller, the inverter, the test instrumentation and the computer monitoring, and the storage battery or the other energy storage and auxiliary generating plant make up of the photovoltaic system which is shown in the thesis. PV system design should follow to meet the load supply requirements, make system low cost, seriously consider the design of software and hardware, and make general software design prior to hardware design in the paper. To take the design of PV system for an example, the paper gives the analysis of the design of system software and system hardware, economic benefit, and basic ideas and steps of the installation and the connection of the system. It elaborates on the information acquisition, the software and hardware design of the system, the evaluation and optimization of the system. Finally, it shows the analysis and prospect of the application of photovoltaic technology in outer space, solar lamps, freeways and communications.

  17. Exploring the Solar System with a Human Orrery

    ERIC Educational Resources Information Center

    Newbury, Peter

    2010-01-01

    One of the fundamental learning goals of introductory astronomy is for the students to gain some perspective on the scale and structure of the solar system. Many astronomy teachers have laid out the planets along a long strip of paper or across a school grounds or campus. Other activities that investigate the motion of the planets are often…

  18. Space Science in Action: Planets and the Solar System [Videotape].

    ERIC Educational Resources Information Center

    1999

    This videotape recording teaches students about the key characteristics of each planet, the differences between inner and outer planets, and which planets have their own moons. Students look at how remote-control rovers are designed to explore other surfaces in the solar system. A hands-on activity demonstrates how gravity keeps all the members of…

  19. Solar-terrestrial predictions proceedings. Volume 4: Prediction of terrestrial effects of solar activity

    NASA Technical Reports Server (NTRS)

    Donnelly, R. E. (Editor)

    1980-01-01

    Papers about prediction of ionospheric and radio propagation conditions based primarily on empirical or statistical relations is discussed. Predictions of sporadic E, spread F, and scintillations generally involve statistical or empirical predictions. The correlation between solar-activity and terrestrial seismic activity and the possible relation between solar activity and biological effects is discussed.

  20. Solar Hot-Air System --Memphis, Tennessee

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Solar collectors using air as collection medium provide space heating for four-building office complex in Memphis. 98 page report furnishes details on installation, including: description of system; system startup and acceptance-test results; technical data on collector; installation manuals for collectors, air handler and heat-storage unit.

  1. Pump efficiency in solar-energy systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Study investigates characteristics of typical off-the-shelf pumping systems that might be used in solar systems. Report includes discussion of difficulties in predicting pump efficiency from manufacturers' data. Sample calculations are given. Peak efficiencies, flow-rate control, and noise levels are investigated. Review or theory of pumps types and operating characteristics is presented.

  2. The Angular Momentum of the Solar System

    NASA Astrophysics Data System (ADS)

    Cang, Rongquin; Guo, Jianpo; Hu, Juanxiu; He, Chaoquiong

    2016-05-01

    The angular momentum of the Solar System is a very important physical quantity to the formation and evolution of the Solar System. Previously, the spin angular momentum of the Sun and the orbital angular momentum of the Eight Giant Planets were only taken into consideration, when researchers calculated the angular momentum of the Solar System. Nowadays, it seems narrow and conservative. Using Eggleton's code, we calculate the rotational inertia of the Sun. Furthermore, we obtain that the spin angular momentum of the Sun is 1.8838 x 10^41 kg m^2 s^-1. Besides the spin angular momentum of the Sun and the orbital angular momentum of the Eight Giant Planets, we also account for the orbital angular momentum of the Asteroid Belt, the Kuiper Belt, the Oort Cloud, the Ninth Giant Planet and the Solar Companion. We obtain that the angular momentum of the whole Solar System is 3.3212 x 10^45 kg m^2 s^-1.

  3. Preliminary design package for prototype solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A summary is given of the preliminary analysis and design activity on solar heating and cooling systems. The analysis was made without site specific data other than weather; therefore, the results indicate performance expected under these special conditions. Major items include a market analysis, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test. Two heating and six heating and cooling units will be delivered for Single Family Residences, Multiple-family Residences and commercial applications.

  4. Solar wind turbulence as a driver of geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Ikechukwu Ugwu, Ernest Benjamin; Nneka Okeke, Francisca; Ugonabo, Obiageli Josephine

    2016-07-01

    We carried out simultaneous analyses of interplanetary and geomagnetic datasets for the period of (solar Maunder) least (2009) and maximum (2002) solar activity to determine the nature of solar wind turbulence on geomagnetic activity using AE, ASY-D, and ASY-H indices. We determined the role played by Alfvénic fluctuations in the solar wind so as to find out the nature of the turbulence. Our analyses showed that solar wind turbulence play a role in geomagnetic processes at high latitudes during periods of low and high solaractivity but does not have any effect at mid-low latitudes.

  5. Simple solar water heating systems: The SWAP program in Florida

    SciTech Connect

    Harrison, J.

    1997-11-01

    This article describes the development of a solar water heating system appropriate for low-income Florida residents and the appliances developed in conjunction with it that may appeal to a wider market. Among the topics discussed are size and design of the system including passive preheaters and affordable active systems. Electric water heaters with 40 and 50 gallon capacity were found to be the most cost effective. The feed-back from customers is also discussed. 3 figs.

  6. The Cambridge Guide to the Solar System

    NASA Astrophysics Data System (ADS)

    Lang, Kenneth R.

    2011-03-01

    Part I. Changing Views and Fundamental Concepts: 1. Evolving perspectives: a historical prologue; 2. The new, close-up view from space; 3. The invisible buffer zone with space: atmospheres, magnetospheres and the solar wind; Part II. The Inner System - Rocky Worlds: 4. Third rock from the Sun: restless Earth; 5. The Moon: stepping stone to the planets; 6. Mercury: a dense battered world; 7. Venus: the veiled planet; 8. Mars: the red planet; Part III. The Giant Planets, Their Satellites and Their Rings - Worlds of Liquid, Ice and Gas: 9. Jupiter: a giant primitive planet; 10. Saturn: lord of the rings; 11. Uranus and Neptune; Part IV. Remnants of Creation - Small Worlds in the Solar System: 12. Asteroids and meteorites; 13. Colliding worlds; 14. Comets; 15. Beyond Neptune; Part V. Origin of the Solar System and Extrasolar Planets: 16. Brave new worlds; Index.

  7. Star Formation and the Solar System

    NASA Technical Reports Server (NTRS)

    Bally, John; Boss, Alan; Papanastassiou, Dimitri; Sandford, Scott; Sargent, Anneila

    1988-01-01

    We have seen that studies of nearby star-forming regions are beginning to reveal the first signs of protoplanetary disks. Studies of interstellar and interplanetary grains are starting to provide clues about the processing and incorporation of matter into the Solar System. Studies of meteorites have yielded isotopic anomalies which indicate that some of the grains and inclusions in these bodies are very primitive. Although we have not yet detected a true interstellar grain, some of these materials have not been extensively modified since their removal from the ISM. We are indeed close to seeing our interstellar heritage. The overlap between astronomical and Solar System studies is in its infancy. What future experiments, observations, and missions can be performed in the near future that will greatly enhance our understanding of star formation and the formation of the Solar System?

  8. The Search for Life in the Solar System

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, Pascale

    2016-07-01

    To unravel the origins of life on Earth and possibly elsewhere remains one of mankind's most important discoveries. Basic building blocks of life are widespread in planetary systems in our Milky Way and other galaxies. Extraterrestrial material delivered to young terrestrial planetary surfaces in the early history of our solar system through asteroids, comets and meteorites may have provided significant raw material for the emergence of life on Earth. Since August 2014 the comet rendezvous mission Rosetta has monitored the evolution of comet 67P/Churyumov-Gerasimenko during its approach to the Sun and observed numerous volatiles and complex organic compounds on the comet surface. Several asteroid sample return missions as well as the improved analyses of key meteorites increase our knowledge about the organic inventory that seeded the young planets. Prokaryotic, anaerobic bacteria, which are approximately 3.5 billion years old, represent the first evidence for life on Earth. Since then, life has evolved to high complexity and adapted to nearly every explored environment on our planet. Extreme life on Earth has expanded the list of potentially habitable solar system environments. However, our neighbor planet Mars is the most promising target to search for life within our solar system. Data from the Curiosity rover show regions that were habitable in the past, traces of organic carbon and active CH_4 in the Martian atmosphere at present. Recent discoveries such as the plumes from the southern polar region of Enceladus and plume activity on Europa strengthen the long-standing hypothesis that moons in our solar system contain substantial bodies of water and are probably habitable. Since decades, a fleet of robotic space missions target planets, moons and small bodies to reveal clues on the origin of our solar system and life beyond Earth. This lecture will review and discuss past, current and future space missions investigating habitability and biosignatures in our

  9. Prominences: The Key to Understanding Solar Activity

    NASA Technical Reports Server (NTRS)

    Karpen, Judy T.

    2011-01-01

    Prominences are spectacular manifestations of both quiescent and eruptive solar activity. The largest examples can be seen with the naked eye during eclipses, making prominences among the first solar features to be described and catalogued. Steady improvements in temporal and spatial resolution from both ground- and space-based instruments have led us to recognize how complex and dynamic these majestic structures really are. Their distinguishing characteristics - cool knots and threads suspended in the hot corona, alignment along inversion lines in the photospheric magnetic field within highly sheared filament channels, and a tendency to disappear through eruption - offer vital clues as to their origin and dynamic evolution. Interpreting these clues has proven to be contentious, however, leading to fundamentally different models that address the basic questions: What is the magnetic structure supporting prominences, and how does so much cool, dense plasma appear in the corona? Despite centuries of increasingly detailed observations, the magnetic and plasma structures in prominences are poorly known. Routine measurements of the vector magnetic field in and around prominences have become possible only recently, while long-term monitoring of the underlying filament-channel formation process also remains scarce. The process responsible for prominence mass is equally difficult to establish, although we have long known that the chromosphere is the only plausible source. As I will discuss, however, the motions and locations of prominence material can be used to trace the coronal field, thus defining the magnetic origins of solar eruptions. A combination of observations, theory, and numerical modeling must be used to determine whether any of the competing theories accurately represents the physics of prominences. I will discuss the criteria for a successful prominence model, compare the leading models, and present in detail one promising, comprehensive scenario for

  10. Chronology of the early solar system

    NASA Astrophysics Data System (ADS)

    Trieloff, M.

    2008-09-01

    2-3 Ma after CAIs [10]. The formation of solids in the early solar system (CAIs, chondrules, planetesimals and terrestrial planets) are still insufficiently linked to astrophysically constrained processes like early protostellar activity, disk dissipation, formation and migration of gas planets interacting with young disks [13,14]. Models of Earth and Mars formation based on 182Hf -182W core formation ages estimate the presence of planetary embryos of 60% the size of Mars after 2- 4 Ma [15]. This requires the early presence of Jupiter to effectively prevent the formation of a proto-planet in the asteroid belt. Planetesimal formation in the asteroid belt and the terrestrial planet formation zone at <3 Ma after CAIs was likely accompanied by inner disk clearing permitting solar wind irradiation (and possibly volatile element depletion) of terrestrial - and partly asteroidal - precursor planetesimals [16]. Inner disk gas loss may also have been responsible for preventing the migration of Jupiter into the inner solar system. References [1] Allègre C.J., Manhès G., Göpel C. Geochim. Cosmochim. Acta 59, 1445 (1995) [2] Amelin Y., Krot A. N. et al. Science 297, 1678 (2002) [3] Trieloff M., Jessberger E.K., et al. Nature 422, 502 (2003) [4] Brazzle R.H., Pravdivtseva O.V., Meshik A.P., Hohenberg C.M. Geochim. Cosmochim Acta 63, 739 (1999) [5] Gilmour J.D., Saxton, J.M. Phil. Trans. R. Soc. Lond. A 359, 2037 (2001) [6] Bizzarro, M., Baker, J. A., Haack, H. Nature 431, 275 (2004). [7] Lugmair G.W., Shukolyukov A. Geochim. Cosmochim. Acta 62, 2863 (1998) [8] Kleine, T., Münker, C. et al. Nature 418, 952 (2002) [9] Kleine T., Mezger C. et al. Geochim. Cosmochim. Acta 68, 2935 (2004) [10] Trieloff M., Palme H. (2006) in: Planet Formation - Theory, Observations, and Experiments (Eds. H. Klahr & W. Brandner), Cambridge University Press, pp.64-89 [11] Clayton, R. N. Annu. Rev. Earth Planet. Sci. 21, 115 (1993). [12] Palme, H. Phil. Trans. R. Soc. Lond. A 359, 2061 (2001) [13

  11. Redox storage systems for solar applications

    NASA Technical Reports Server (NTRS)

    Hagedorn, N. H.; Thaller, L. H.

    1980-01-01

    The NASA Redox energy storage system is described. The system is based on soluble aqueous iron and chromium chloride redox couples. The needed technology advances in the two elements (electrodes and membranes) that are key to its technological feasibility have been achieved and system development has begun. The design, construction, and test of a 1 kilowatt system integrated with a solar photovoltaic array is discussed.

  12. Solar-Cell-Junction Processing System

    NASA Technical Reports Server (NTRS)

    Bunker, S. N.; Armini, A. J.

    1986-01-01

    System under development reduces equipment costs. Processing system will produce solar-cell junctions on 4 in. (10.2 cm) round silicon wafers at rate of 10 to seventh power per year. System includes non-mass-analyzed ion implanter, microcomputer-controlled, pulsed-electron-beam annealer, and wafertransport system with vacuum interlock. These features eliminate large, expensive magnet and plates, circuitry, and power source otherwise needed for scanning.

  13. Solar parabolic dish thermal power systems - Technology and applications

    NASA Technical Reports Server (NTRS)

    Lucas, J. W.; Marriott, A. T.

    1979-01-01

    Activities of two projects at JPL in support of DOE's Small Power Systems Program are reported. These two projects are the Point-Focusing Distributed Receiver (PFDR) Technology Project and the Point-Focusing Thermal and Electric Applications (PFTEA) Project. The PFDR Technology Project's major activity is developing the technology of solar concentrators, receivers and power conversion subsystems suitable for parabolic dish or point-focusing distributed receiver power systems. Other PFDR activities include system integration and cost estimation under mass production, as well as the testing of the hardware. The PFTEA Project's first major activity is applications analysis, that is seeking ways to introduce PFDR systems into appropriate user sectors. The second activity is systems engineering and development wherein power plant systems are analyzed for specific applications. The third activity is the installation of a series of engineering experiments in various user environments to obtain actual operating experience

  14. The chaotic "sculpting" of the Solar System

    NASA Astrophysics Data System (ADS)

    Tsiganis, K.

    2006-01-01

    The orbits of the large celestial bodies in our Solar System are stable for very long times, as can be shown by numerical simulation. This gives the erroneous impression of perpetual stability of the system. It is only when we study the orbital distribution of the numerous minor bodies in the Solar System that we discover the rich variety of complex dynamical processes that have in fact shaped our system. During the last decade, enormous progress has been made, in understanding the evolution of the system over the last ~3.9 Gy. However, it also became clear that, in order to unveil its behaviour during the first ~700 million years of its lifetime, we have to find convincing explanations for observations that appear as details of its dynamical architecture. In the following we are going to show how the two best known - and up to now unexplained - observations in the Solar System, namely (i) the heavily cratered surface of the Moon and (ii) the elliptic (and not circular) motion of the planets, lead us to the discovery of the chaotic sculpting of the Solar System [1]-[3].

  15. Centennial Scale Variations in Lake Productivity Linked to Solar Activity

    NASA Astrophysics Data System (ADS)

    Englebrecht, A.; Bhattacharyya, S.; Guilderson, T. P.; Ingram, L.; Byrne, R.

    2012-12-01

    Solar variations on both decadal and centennial timescales have been associated with climate phenomena (van Loon et al., 2004; Hodell et al., 2001; White et al., 1997). The energy received by the Earth at the peak of the solar cycle increases by <0.1%; so the question has remained of how this could be amplified to produce an observable climate response. Recent modeling shows that the response of the Earth's climate system to the 11-year solar cycle may be amplified through stratosphere and ocean feedbacks and has the potential to impact climate variability on a multidecadal to centennial timescales (Meehl et al., 2009). Here, we report a 1000-year record of changes in the stratigraphy and carbon isotope composition of varved lake sediment from Isla Isabela (22°N, 106°W) in the subtropical northeast Pacific. Stable carbon isotopes and carbonate stratigraphy can be used to infer surface productivity in the lake. Our analysis shows variations in primary productivity on centennial timescales and suggests that solar activity may be an important component of Pacific climate variability. A possible response during solar maxima acts to keep the eastern equatorial Pacific cooler and drier than usual, producing conditions similar to a La Niña event. In the region around Isla Isabela peak solar years were characterized by decreased surface temperatures and suppressed precipitation (Meehl et al., 2009), which enhance productivity at Isabela (Kienel et al. 2011). In the future, we plan to analyze the data using advanced time series analysis techniques like the wavelets together with techniques to handle irregularly spaced time series data. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-571672

  16. Testing and evaluation of Btu meters used for measuring solar system performance

    NASA Astrophysics Data System (ADS)

    Guinn, G. R.; Hummer, L. L.

    The operational experience and calibration results of three makes of meters which are widely used as primary instrumentation on active solar energy systems are described. Btu (heat) meters are widely utilized as a utility metering device and as a low cost instrument for evaluating performance of solar energy systems. Approximately 35 Btu meters were tested prior to installation in active solar DWH systems under evaluation. It is indicated that the meter are capable to measure water volume and Btu's at flow rates typically found in solar systems.

  17. Infrared observations of small solar system bodies

    NASA Technical Reports Server (NTRS)

    Brown, R. H.

    1991-01-01

    Infrared reflectance spectra were measured of dark primitive asteroids in the 2 to 5 micron wavelength region. The search was for organic complexes such and CN, CH, and NH in dark material on small bodies in the solar system. A search and study was made of volatiles such as nitrogen, methane, ammonia, and carbon monoxide, both as free ices and hydrates/clathrates, on icy surfaces in the outer solar system, using high resolution spectra obtained with a multichannel cooled grating, infrared spectrometer. An absorption that can be attributed to X-C (triple bond) N in the matrix of dark materials on the primitive asteroids.

  18. High throughput solar cell ablation system

    SciTech Connect

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2014-10-14

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  19. Solar System dynamics with the Gaia mission

    NASA Astrophysics Data System (ADS)

    Hestroffer, D.; Berthier, J.; Carry, B.; David, P.; Lainey, V.; Rambaux, N.; Thuillot, W.; Arlot, J.-E.; Bancelin, D.; Colas, F.; Desmars, J.; Devillepoix, H.; Fouchard, M.; Ivantsov, A.; Kovalenko, I.; Robert, V.

    2014-12-01

    The Gaia mission is to be launched on December 19th, 2013 by the European Space Agency (ESA). Solar System science is well covered by the mission and has been included since the early stages of its concept and development. We present here some aspects on the astrometry and dynamics of Solar System Objects (SSO) - in particular asteroids, comets and satellites - as well as ground-based support. We also touch upon the future of SSO astrometry that will be achieved indirectly, after mission completion, from the Gaia astrometric catalogue.

  20. Testing relativity with solar system dynamics

    NASA Technical Reports Server (NTRS)

    Hellings, R. W.

    1984-01-01

    A major breakthrough is described in the accuracy of Solar System dynamical tests of relativistic gravity. The breakthrough was achieved by factoring in ranging data from Viking Landers 1 and 2 from the surface of Mars. Other key data sources included optical transit circle observations, lunar laser ranging, planetary radar, and spacecraft (Mariner 9 to Mars and Mariner 10 to Mercury). The Solar System model which is used to fit the data and the process by which such fits are performed are explained and results are discussed. The results are fully consistent with the predictions of General Relativity.

  1. Photometric Properties of Solar System Ices

    NASA Astrophysics Data System (ADS)

    Verbiscer, A. J.; Helfenstein, P.; Buratti, B. J.

    We present an overview of fundamental photometric properties of icy surfaces throughout the Solar System and investigate the extent to which these properties reflect the evolution of the bodies on which they reside. We review photometric models and their parameters and discuss the physical interpretability of those parameters. We focus on those fundamental photometric properties, primarily albedo and the near-opposition phase function, which are independent of any interpretation from the application of a photometric model. Finally, we offer suggestions for future work, both observational and laboratory measurements, which will enhance the scientific return from continued photometric studies of icy bodies in the Solar System.

  2. High throughput solar cell ablation system

    SciTech Connect

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2012-09-11

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  3. Solar-System Tests of Gravitational Theories

    NASA Technical Reports Server (NTRS)

    Shapiro, Irwin I.

    2005-01-01

    This research is aimed at testing gravitational theory, primarily on an interplanetary scale and using mainly observations of objects in the solar system. Our goal is either to detect departures from the standard model (general relativity) - if any exist within the level of sensitivity of our data - or to support this model by placing tighter bounds on any departure from it. For this project, we have analyzed a combination of observational data with our model of the solar system, including planetary radar ranging, lunar laser ranging, and spacecraft tracking, as well as pulsar timing and pulsar VLBI measurements.

  4. Online educative activities for solar ultraviolet radiation based on measurements of cloud amount and solar exposures.

    PubMed

    Parisi, A V; Downs, N; Turner, J; Amar, A

    2016-09-01

    A set of online activities for children and the community that are based on an integrated real-time solar UV and cloud measurement system are described. These activities use the functionality of the internet to provide an educative tool for school children and the public on the influence of cloud and the angle of the sun above the horizon on the global erythemal UV or sunburning UV, the diffuse erythemal UV, the global UVA (320-400nm) and the vitamin D effective UV. Additionally, the units of UV exposure and UV irradiance are investigated, along with the meaning and calculation of the UV index (UVI). This research will help ensure that children and the general public are better informed about sun safety by improving their personal understanding of the daily and the atmospheric factors that influence solar UV radiation and the solar UV exposures of the various wavebands in the natural environment. The activities may correct common misconceptions of children and the public about UV irradiances and exposure, utilising the widespread reach of the internet to increase the public's awareness of the factors influencing UV irradiances and exposures in order to provide clear information for minimizing UV exposure, while maintaining healthy, outdoor lifestyles.

  5. Online educative activities for solar ultraviolet radiation based on measurements of cloud amount and solar exposures.

    PubMed

    Parisi, A V; Downs, N; Turner, J; Amar, A

    2016-09-01

    A set of online activities for children and the community that are based on an integrated real-time solar UV and cloud measurement system are described. These activities use the functionality of the internet to provide an educative tool for school children and the public on the influence of cloud and the angle of the sun above the horizon on the global erythemal UV or sunburning UV, the diffuse erythemal UV, the global UVA (320-400nm) and the vitamin D effective UV. Additionally, the units of UV exposure and UV irradiance are investigated, along with the meaning and calculation of the UV index (UVI). This research will help ensure that children and the general public are better informed about sun safety by improving their personal understanding of the daily and the atmospheric factors that influence solar UV radiation and the solar UV exposures of the various wavebands in the natural environment. The activities may correct common misconceptions of children and the public about UV irradiances and exposure, utilising the widespread reach of the internet to increase the public's awareness of the factors influencing UV irradiances and exposures in order to provide clear information for minimizing UV exposure, while maintaining healthy, outdoor lifestyles. PMID:27450297

  6. Solar Activity Studies using Microwave Imaging Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2016-01-01

    We report on the status of solar cycle 24 based on polar prominence eruptions (PEs) and microwave brightness enhancement (MBE) information obtained by the Nobeyama radioheliograph. The north polar region of the Sun had near-zero field strength for more than three years (2012-2015) and ended only in September 2015 as indicated by the presence of polar PEs and the lack of MBE. The zero-polar-field condition in the south started only around 2013, but it ended by June 2014. Thus the asymmetry in the times of polarity reversal switched between cycle 23 and 24. The polar MBE is a good proxy for the polar magnetic field strength as indicated by the high degree of correlation between the two. The cross-correlation between the high- and low-latitude MBEs is significant for a lag of approximately 5.5 to 7.3 years, suggesting that the polar field of one cycle indicates the sunspot number of the next cycle in agreement with the Babcock-Leighton mechanism of solar cycles. The extended period of near-zero field in the north-polar region should result in a weak and delayed sunspot activity in the northern hemisphere in cycle 25.

  7. Solar-System Tests of Gravitational Theories

    NASA Technical Reports Server (NTRS)

    Shapiro, Irwin I.

    2005-01-01

    We are engaged in testing gravitational theory, mainly using observations of objects in the solar system and mainly on the interplanetary scale. Our goal is either to detect departures from the standard model (general relativity) - if any exist within the level of sensitivity of our data - or to support this model by placing tighter bounds on any departure from it. For this project, we have analyzed a combination of observational data with our model of the solar system, including planetary radar ranging, lunar laser ranging, and spacecraft tracking, as well as pulsar timing and pulsar VLBI measurements. In the past year, we have added to our data, primarily lunar laser ranging measurements, but also supplementary data concerning the physical properties of solar-system objects, such as the solar quadrupole moment, planetary masses, and asteroid radii. Because the solar quadrupole moment contributes to the classical precession of planetary perihelia, but with a dependence on distance from the Sun that differs from that of the relativistic precession, it is possible to estimate effects simultaneously. However, our interest is mainly in the relativistic effect, and we find that imposing a constraint on the quadrupole moment from helioseismology studies, gives us a dramatic (about ten-fold) decrease in the standard error of our estimate of the relativistic component of the perihelion advance.

  8. Observing large-scale solar surface flows with GONG: Investigation of a key element in solar activity buildup

    NASA Technical Reports Server (NTRS)

    Beck, John G.; Simon, George W.; Hathaway, David H.

    1996-01-01

    The Global Oscillation Network Group (GONG) solar telescope network has begun regular operations, and will provide continuous Doppler images of large-scale nearly-steady motions at the solar surface, primarily those due to supergranulation. Not only the Sun's well-known magnetic network, but also flux diffusion, dispersal, and concentration at the surface appear to be controlled by supergranulation. Through such magnetoconvective interactions, magnetic stresses develop, leading to solar activity. We show a Doppler movie made from a 45.5 hr time series obtained 1995 May 9-10 using data from three of the six GONG sites (Learmonth, Tenerife, Tucson), to demonstrate the capability of this system.

  9. Solar dynamic power system definition study

    NASA Technical Reports Server (NTRS)

    Wallin, Wayne E.; Friefeld, Jerry M.

    1988-01-01

    The solar dynamic power system design and analysis study compared Brayton, alkali-metal Rankine, and free-piston Stirling cycles with silicon planar and GaAs concentrator photovoltaic power systems for application to missions beyond the Phase 2 Space Station level of technology for all power systems. Conceptual designs for Brayton and Stirling power systems were developed for 35 kWe and 7 kWe power levels. All power systems were designed for 7-year end-of-life conditions in low Earth orbit. LiF was selected for thermal energy storage for the solar dynamic systems. Results indicate that the Stirling cycle systems have the highest performance (lowest weight and area) followed by the Brayton cycle, with photovoltaic systems considerably lower in performance. For example, based on the performance assumptions used, the planar silicon power system weight was 55 to 75 percent higher than for the Stirling system. A technology program was developed to address areas wherein significant performance improvements could be realized relative to the current state-of-the-art as represented by Space Station. In addition, a preliminary evaluation of hardenability potential found that solar dynamic systems can be hardened beyond the hardness inherent in the conceptual designs of this study.

  10. Non-Stationary Effects and Cross Correlations in Solar Activity

    NASA Astrophysics Data System (ADS)

    Nefedyev, Yuri; Panischev, Oleg; Demin, Sergey

    2016-07-01

    In this paper within the framework of the Flicker-Noise Spectroscopy (FNS) we consider the dynamic properties of the solar activity by analyzing the Zurich sunspot numbers. As is well-known astrophysics objects are the non-stationary open systems, whose evolution are the quite individual and have the alternation effects. The main difference of FNS compared to other related methods is the separation of the original signal reflecting the dynamics of solar activity into three frequency bands: system-specific "resonances" and their interferential contributions at lower frequencies, chaotic "random walk" ("irregularity-jump") components at larger frequencies, and chaotic "irregularity-spike" (inertial) components in the highest frequency range. Specific parameters corresponding to each of the bands are introduced and calculated. These irregularities as well as specific resonance frequencies are considered as the information carriers on every hierarchical level of the evolution of a complex natural system with intermittent behavior, consecutive alternation of rapid chaotic changes in the values of dynamic variables on small time intervals with small variations of the values on longer time intervals ("laminar" phases). The jump and spike irregularities are described by power spectra and difference moments (transient structural functions) of the second order. FNS allows revealing the most crucial points of the solar activity dynamics by means of "spikiness" factor. It is shown that this variable behaves as the predictor of crucial changes of the sunspot number dynamics, particularly when the number comes up to maximum value. The change of averaging interval allows revealing the non-stationary effects depending by 11-year cycle and by inside processes in a cycle. To consider the cross correlations between the different variables of solar activity we use the Zurich sunspot numbers and the sequence of corona's radiation energy. The FNS-approach allows extracting the

  11. Active space heating and hot water supply with solar energy

    SciTech Connect

    Karaki, S.; Loef, G. O.G.

    1981-04-01

    Technical and economic assessments are given of solar water heaters, both circulating, and of air-based and liquid-based solar space heating systems. Both new and retrofit systems are considered. The technical status of flat-plate and evacuated tube collectors and of thermal storage is also covered. Non-technical factors are also briefly discussed, including the participants in the use of solar heat, incentives and deterrents. Policy implications are considered as regards acceleration of solar use, goals for solar use, means for achieving goals, and interaction of governments, suppliers, and users. Government actions are recommended. (LEW)

  12. Meteorites: messengers from the early solar system.

    PubMed

    Hofmann, Beda A

    2010-01-01

    Meteorites are fragments from solar system bodies, dominantly asteroids. A small fraction is derived from the Moon and from Mars. These rocks tell a rich history of the early solar system and range from solids little changed since the earliest phases of solid matter condensation in the solar nebula (chondrites) to material representing asteroidal metamorphism and melting, impact processes on the Moon and even aqueous alteration near the surface of Mars. Meteorites are very rare. Currently many meteorites result from searches in Antarctica and the hot deserts of North Africa and Arabia. The present high find rate likely represents a unique short-term event, asking for a careful management of this scarce scientific resource.

  13. Meteorites: messengers from the early solar system.

    PubMed

    Hofmann, Beda A

    2010-01-01

    Meteorites are fragments from solar system bodies, dominantly asteroids. A small fraction is derived from the Moon and from Mars. These rocks tell a rich history of the early solar system and range from solids little changed since the earliest phases of solid matter condensation in the solar nebula (chondrites) to material representing asteroidal metamorphism and melting, impact processes on the Moon and even aqueous alteration near the surface of Mars. Meteorites are very rare. Currently many meteorites result from searches in Antarctica and the hot deserts of North Africa and Arabia. The present high find rate likely represents a unique short-term event, asking for a careful management of this scarce scientific resource. PMID:21138163

  14. Exploring the Trans-Neptunian Solar System

    NASA Astrophysics Data System (ADS)

    1998-01-01

    A profound question for scientists, philosophers and, indeed, all humans concerns how the solar system originated and subsequently evolved. To understand the solar system's formation, it is necessary to document fully the chemical and physical makeup of its components today, particularly those parts thought to retain clues about primordial conditions and processes.] In the past decade, our knowledge of the outermost, or trans-neptunian, region of the solar system has been transformed as a result of Earth-based observations of the Pluto-Charon system, Voyager 2's encounter with Neptune and its satellite Triton, and recent discoveries of dozens of bodies near to or beyond the orbit of Neptune. As a class, these newly detected objects, along with Pluto, Charon, and Triton, occupy the inner region of a hitherto unexplored component of the solar system, the Kuiper Belt. The Kuiper Belt is believed to be a reservoir of primordial objects of the type that formed in the solar nebula and eventually accreted to form the major planets. The Kuiper Belt is also thought to be the source of short-period comets and a population of icy bodies, the Centaurs, with orbits among the giant planets. Additional components of the distant outer solar system, such as dust and the Oort comet cloud, as well as the planet Neptune itself, are not discussed in this report. Our increasing knowledge of the trans-neptunian solar system has been matched by a corresponding increase in our capabilities for remote and in situ observation of these distant regions. Over the next 10 to 15 years, a new generation of ground- and space-based instruments, including the Keck and Gemini telescopes and the Space Infrared Telescope Facility, will greatly expand our ability to search for and conduct physical and chemical studies on these distant bodies. Over the same time span, a new generation of lightweight spacecraft should become available and enable the first missions designed specifically to explore the icy

  15. High efficiency solar cells combining a perovskite and a silicon heterojunction solar cells via an optical splitting system

    SciTech Connect

    Uzu, Hisashi E-mail: npark@skku.edu; Ichikawa, Mitsuru; Hino, Masashi; Nakano, Kunihiro; Meguro, Tomomi; Yamamoto, Kenji; Hernández, José Luis; Kim, Hui-Seon; Park, Nam-Gyu E-mail: npark@skku.edu

    2015-01-05

    We have applied an optical splitting system in order to achieve very high conversion efficiency for a full spectrum multi-junction solar cell. This system consists of multiple solar cells with different band gap optically coupled via an “optical splitter.” An optical splitter is a multi-layered beam splitter with very high reflection in the shorter-wave-length range and very high transmission in the longer-wave-length range. By splitting the incident solar spectrum and distributing it to each solar cell, the solar energy can be managed more efficiently. We have fabricated optical splitters and used them with a wide-gap amorphous silicon (a-Si) solar cell or a CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cell as top cells, combined with mono-crystalline silicon heterojunction (HJ) solar cells as bottom cells. We have achieved with a 550 nm cutoff splitter an active area conversion efficiency of over 25% using a-Si and HJ solar cells and 28% using perovskite and HJ solar cells.

  16. Solar heating system final design package

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The system is composed of a warm air collector, a logic control unit and a universal switching and transport unit. The collector was originally conceived and designed as an integrated roof/wall system and therefore provides a dual function in the structure. The collector serves both as a solar energy conversion system and as a structural weather resistant skin. The control unit provides totally automatic control over the operation of the system. It receives input data from sensor probes in collectors, storage and living space. The logic was designed so as to make maximum use of solar energy and minimize use of conventional energy. The transport and switching unit is a high-efficiency air-handling system equipped with gear motor valves that respond to outputs from the control system. The fan unit was designed for maximum durability and efficiency in operation, and has permanently lubricated ball bearings and excellent air-handling efficiency.

  17. Active Vibration Damping of Solar Arrays

    NASA Astrophysics Data System (ADS)

    Reinicke, Gunar; Baier, Horst; Grillebeck, Anton; Scharfeld, Frank; Hunger, Joseph; Abou-El-Ela, A.; Lohberg, Andreas

    2012-07-01

    Current generations of large solar array panels are lightweight and flexible constructions to reduce net masses. They undergo strong vibrations during launch. The active vibration damping is one convenient option to reduce vibration responses and limit stresses in facesheets. In this study, two actuator concepts are used for vibration damping. A stack interface actuator replaces a panel hold down and is decoupled from bending moments and shear forces. Piezoelectric patch actuators are used as an alternative, where the number, position and size of actuators are mainly driven by controllability analyses. Linear Quadratic Gaussian control is used to attenuate vibrations of selected mode shapes with both actuators. Simulations as well as modal and acoustic tests show the feasibility of selected actuator concepts.

  18. Solar Activity Forecasting for use in Orbit Prediction

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth

    2001-01-01

    Orbital prediction for satellites in low Earth orbit (LEO) or low planetary orbit depends strongly on exospheric densities. Solar activity forecasting is important in orbital prediction, as the solar UV and EUV inflate the upper atmospheric layers of the Earth and planets, forming the exosphere in which satellites orbit. Geomagnetic effects also relate to solar activity. Because of the complex and ephemeral nature of solar activity, with different cycles varying in strength by more than 100%, many different forecasting techniques have been utilized. The methods range from purely numerical techniques (essentially curve fitting) to numerous oddball schemes, as well as a small subset, called 'Precursor techniques.' The situation can be puzzling, owing to the numerous methodologies involved, somewhat akin to the numerous ether theories near the turn of the last century. Nevertheless, the Precursor techniques alone have a physical basis, namely dynamo theory, which provides a physical explanation for why this subset seems to work. I discuss this solar cycle's predictions, as well as the Sun's observed activity. I also discuss the SODA (Solar Dynamo Amplitude) index, which provides the user with the ability to track the Sun's hidden, interior dynamo magnetic fields. As a result, one may then update solar activity predictions continuously, by monitoring the solar magnetic fields as they change throughout the solar cycle. This paper ends by providing a glimpse into what the next solar cycle (#24) portends.

  19. Solar dynamic power systems for space station

    NASA Technical Reports Server (NTRS)

    Irvine, Thomas B.; Nall, Marsha M.; Seidel, Robert C.

    1986-01-01

    The Parabolic Offset Linearly Actuated Reflector (POLAR) solar dynamic module was selected as the baseline design for a solar dynamic power system aboard the space station. The POLAR concept was chosen over other candidate designs after extensive trade studies. The primary advantages of the POLAR concept are the low mass moment of inertia of the module about the transverse boom and the compactness of the stowed module which enables packaging of two complete modules in the Shuttle orbiter payload bay. The fine pointing control system required for the solar dynamic module has been studied and initial results indicate that if disturbances from the station are allowed to back drive the rotary alpha joint, pointing errors caused by transient loads on the space station can be minimized. This would allow pointing controls to operate in bandwidths near system structural frequencies. The incorporation of the fine pointing control system into the solar dynamic module is fairly straightforward for the three strut concentrator support structure. However, results of structural analyses indicate that this three strut support is not optimum. Incorporation of a vernier pointing system into the proposed six strut support structure is being studied.

  20. Supernova Debris in the Solar System

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2000-03-01

    Meteorites contain clear evidence that isotopes with short half lives (as short as 100,000 years) were present in the cloud of gas and dust (the called solar nebula) from which the Sun and planets formed. Supernovae, the powerful explosions of spent stars, produce elements, including short-lived radioactive isotopes. Given the short lifetimes, these elements must have been added immediately before solids formed in the Solar System, and it is possible that a supernova triggered the collapse of the vast interstellar cloud in which the Solar System formed. However, there is some evidence that two isotopes, aluminum-26 and manganese-53, were not distributed uniformly in the solar nebula. If correct, does this mean that the supernova debris was not mixed thoroughly into the collapsing interstellar cloud? This possibility was tested by Robert H. Nichols, Frank Podosek, and Cristine Jennings (Washington University in St. Louis) and Brad Meyer (Clemson University). They evaluated how thoroughly supernova products were mixed into the solar nebula by searching for the effects on the isotopic make up of other elements. They conclude that the explosive products of a supernova would have been mixed uniformly into the nebula. Thus, either the evidence of heterogeneous distribution of short-lived isotopes is incorrect, or some isotopes were not formed in a supernova, but came from somewhere else. This research project is one of many that link studies of meteorites, astronomical observations, and astrophysical calculations.

  1. Solar system installation at Louisville, Kentucky

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The installation of a solar space heating and domestic hot water system is described. The overall philosophy used was to install both a liquid and a hot air system retrofitted to existing office and combined warehouse building. The 1080 sq. ft. office space is heated first and excess heat is dumped into the warehouse. The two systems offer a unique opportunity to measure the performance and compare results of both air and liquid at one site.

  2. Commerical solar water heating systems operational test

    NASA Astrophysics Data System (ADS)

    Guinn, G. R.; Novell, B. J.; Hummer, L. L.

    The performance of six commercially available solar water heaters is evaluated. The six systems are installed side-by-side on a typical roof structure and provide two examples each of silicone oil, antifreeze, and drain-back freeze protection. Each system is instrumented with Btu and KWH meters to assess performance under an imposed load profile. The systems, the instrumentation, operational results acquired over a 19 month interval, and performance over a 4 month interval are described.

  3. Passive vapor transport solar heating systems

    SciTech Connect

    Hedstrom, J.C.; Neeper, D.A.

    1985-01-01

    In the systems under consideration, refrigerant is evaporated in a solar collector and condensed in thermal storage for space or water heating located within the building at a level below that of the collector. Condensed liquid is lifted to an accumulator above the collector by the vapor pressure generated in the collector. Tests of two systems are described, and it is concluded that one of these systems offers distinct advantages.

  4. Solar activity during the deep minimum of 2009

    NASA Astrophysics Data System (ADS)

    Sylwester, Janusz; Siarkowski, Marek; Gburek, Szymon; Gryciuk, Magdalena; Kepa, Anna; Kowaliński, Mirosław; Mrozek, Tomek; Phillips, Kenneth J. H.; Podgórski, Piotr; Sylwester, Barbara

    2014-12-01

    We discuss the character of the unusually deep solar activity minimum of 2009 between Solar Cycles 23 and 24. Levels of solar activity in various parts of the solar atmosphere -- photosphere, chromosphere, transition region, and corona -- were observed to be at their lowest for a century. The soft X-ray emission from the corona (hot outer part of the Sun's atmosphere) was measured throughout most of 2009 with the Polish-built SphinX spectrophotometer. Unlike other X-ray monitoring spacecraft, this sensitive spacecraft-borne instrument was able to continue measurements throughout this extended period of low activity.

  5. Revisiting the question: Does high-latitude solar activity lead low-latitude solar activity in time phase?

    SciTech Connect

    Kong, D. F.; Qu, Z. N.; Guo, Q. L.

    2014-05-01

    Cross-correlation analysis and wavelet transform methods are used to investigate whether high-latitude solar activity leads low-latitude solar activity in time phase or not, using the data of the Carte Synoptique solar filaments archive from 1919 March to 1989 December. From the cross-correlation analysis, high-latitude solar filaments have a time lead of 12 Carrington solar rotations with respect to low-latitude ones. Both the cross-wavelet transform and wavelet coherence indicate that high-latitude solar filaments lead low-latitude ones in time phase. Furthermore, low-latitude solar activity is better correlated with high-latitude solar activity of the previous cycle than with that of the following cycle, which is statistically significant. Thus, the present study confirms that high-latitude solar activity in the polar regions is indeed better correlated with the low-latitude solar activity of the following cycle than with that of the previous cycle, namely, leading in time phase.

  6. Solar cells based on particulate structure of active layer: Investigation of light absorption by an ordered system of spherical submicron silicon particles

    NASA Astrophysics Data System (ADS)

    Miskevich, Alexander A.; Loiko, Valery A.

    2015-12-01

    Enhancement of the performance of photovoltaic cells through increasing light absorption due to optimization of an active layer is considered. The optimization consists in creation of particulate structure of active layer. The ordered monolayers and multilayers of submicron crystalline silicon (c-Si) spherical particles are examined. The quasicrystalline approximation (QCA) and the transfer matrix method (TMM) are used to calculate light absorption in the wavelength range from 0.28 μm to 1.12 μm. The integrated over the terrestial solar spectral irradiance "Global tilt" ASTM G173-03 absorption coefficient is calculated. In the wavelength range of small absorption index of c-Si (0.8-1.12 μm) the integral absorption coefficient of monolayer can be more than 20 times higher than the one of the plane-parallel plate of the equivalent volume of material. In the overall considered range (0.28-1.12 μm) the enhancement factor up to ~1.45 for individual monolayer is observed. Maximum value of the spectral absorption coefficient approaches unity for multilayers consisting of large amount of sparse monolayers of small particles. Multilayers with variable concentration and size of particles in the monolayer sequences are considered. Absorption increasing by such gradient multilayers as compared to the non-gradient ones is illustrated. The considered structures are promising for creation of high efficiency thin-film solar cells.

  7. Optical waveguide solar energy system for lunar material processing

    SciTech Connect

    Nakamura, T.; Senior, C.L.; Shoji, J.M.; Waldron, R.D.

    1995-11-01

    This paper summarizes the study on the optical waveguide (OW) solar energy system for lunar material processing. In the OW solar energy system, solar radiation is collected by the concentrator which transfers the concentrated solar radiation to the OW transmission line consisting of low-loss optical fibers and related optical components. The OW line transmits the high intensity solar radiation to the thermal reactor of the lunar materials processing plant. Based on the results discussed in this paper the authors conclude that the OW solar energy system is a viable concept which can effectively utilize solar energy for lunar material processing.

  8. Solar Irradiance Variations on Active Region Time Scales

    NASA Technical Reports Server (NTRS)

    Labonte, B. J. (Editor); Chapman, G. A. (Editor); Hudson, H. S. (Editor); Willson, R. C. (Editor)

    1984-01-01

    The variations of the total solar irradiance is an important tool for studying the Sun, thanks to the development of very precise sensors such as the ACRIM instrument on board the Solar Maximum Mission. The largest variations of the total irradiance occur on time scales of a few days are caused by solar active regions, especially sunspots. Efforts were made to describe the active region effects on total and spectral irradiance.

  9. The development of a solar residential heating and cooling system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The MSFC solar heating and cooling facility was assembled to demonstrate the engineering feasibility of utilizing solar energy for heating and cooling buildings, to provide an engineering evaluation of the total system and the key subsystems, and to investigate areas of possible improvement in design and efficiency. The basic solar heating and cooling system utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating, and an absorption cycle air conditioner for space cooling. A complete description of all systems is given. Development activities for this test system included assembly, checkout, operation, modification, and data analysis, all of which are discussed. Selected data analyses for the first 15 weeks of testing are included, findings associated with energy storage and the energy storage system are outlined, and conclusions resulting from test findings are provided. An evaluation of the data for summer operation indicates that the current system is capable of supplying an average of 50 percent of the thermal energy required to drive the air conditioner. Preliminary evaluation of data collected for operation in the heating mode during the winter indicates that nearly 100 percent of the thermal energy required for heating can be supplied by the system.

  10. Coronal activity cycles in solar analog stars

    NASA Astrophysics Data System (ADS)

    Favata, Fabio

    2013-10-01

    We propose continuation into AO13 of the ongoing long-term program for the monitoring of coronal cycles in a sample of five solar-type stars in three stellar systems. The targets have been monitored continuously since AO1, yielding the first unambiguous evidence of cyclic behavior in the X-ray emission from the coronae of cool stars. Thanks to the long-term monitoring our program is starting to show evidence of the complex behavior of stellar cycles, with significant cycle-to-cycle variability becoming apparent. The observations requested in AO-13 will allow us to capitalize on our long-term investment of XMM-Newton observing time and to continue assembling a unique long-term data set that is likely to remain unmatched for a long time.

  11. The chaotic history of the Solar System

    NASA Astrophysics Data System (ADS)

    Morbidelli, Alessandro

    2015-08-01

    I will provide a review of the models proposed to explain the structure of the Solar System, with emphasis on their predicitions regarding the origin of asteroids and comets and the build-up of the two major cometary reservoirs: the scattered disk and the Oort cloud

  12. Solar Heating Systems: Progress Checks & Tests Manual.

    ERIC Educational Resources Information Center

    Green, Joanne; And Others

    This manual contains Progress Checks and Tests for use in a Solar Heating Systems curriculum (see note). It contains master copies of all Progress Checks and Unit Tests accompanying the curriculum, organized by unit. (The master copies are to be duplicated by each school so that adequate copies are available for student use in a self-paced student…

  13. Embodying Earth's Place in the Solar System

    ERIC Educational Resources Information Center

    Plummer, Julia

    2015-01-01

    Elementary students find it difficult to connect the apparent motion of objects in the sky with how celestial objects actually move in the solar system. As a university astronomy education researcher, the author has been investigating methods to help children learn astronomy through workshops and summer camps at science museums and planetariums.…

  14. The Colorado Scale-Model Solar System.

    ERIC Educational Resources Information Center

    Bennett, Jeffrey O.; And Others

    1991-01-01

    Describes the Colorado Scale-Model Solar System, a display illustrating the sizes and distances to the Sun and the nine planets on the campus of Colorado University. Discusses the model's educational value and uses for the classroom and the community. (MDH)

  15. Solar tracking control system Sun Chaser

    NASA Technical Reports Server (NTRS)

    Scott, D. R.; White, P. R.

    1978-01-01

    The solar tracking control system, Sun Chaser, a method of tracking the Sun in all types of weather conditions is described. The Sun Chaser follows the Sun from east to west in clear or cloudy weather, and resets itself to the east position after sundown in readiness for the next sunrise.

  16. Solar-powered hot-air system

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Solar-powered air heater supplies part or all of space heating requirements of residential or commercial buildings and is interfaced with air to water heat exchanger to heat domestic hot water. System has potential application in drying agricultural products such as cotton, lumber, corn, grains, and peanuts.

  17. Assessment of a Solar System Walk

    ERIC Educational Resources Information Center

    LoPresto, Michael C.; Murrell, Steven R.; Kirchner, Brian

    2010-01-01

    The idea of sending students and the general public on a walk through a scale model of the solar system in an attempt to instill an appreciation of the relative scales of the sizes of the objects compared to the immense distances between them is certainly not new. A good number of such models exist, including one on the National Mall in…

  18. The invariable plane of the solar system

    NASA Astrophysics Data System (ADS)

    Souami, D.; Souchay, J.

    2012-04-01

    The invariable plane of the solar system is defined as the plane perpendicular to the total angular momentum of the system and passing through its centre of mass. The idea of using the invariable plane as a reference plane in the study of the dynamics of solar system bodies goes back at least to Laplace [3]. The latest study on this plane dates back to Burkhardt [2]. The aim of this work is to determine at best the orientation of the invariable plane with respect to both the ICRS and the equinox-ecliptic of J2000.0, and to evaluate the accuracy of its determination. Such a determination is of fundamental interest in the topic of solar system studies, as suggested by the WGCCRE 2009 [1] for the determination of planet's and satellites' rotational elements. Using the long-term numerical ephemerides DE405, DE406 [6] and INPOP10a[4] over their entire available time span, we compute the total angular momentum of the solar system, as well as the individual contribution of each planet. We then deduce the orientation of the invariable plane for each ephemeris, and establish their relative differences. Preliminary results can be found in [5]. Here we update them with more accurate data, and a more complete analysis of the problem, taking into account the effect of the dwarf planet (1) Ceres as well as two of the biggest asteroids, (4) Vesta and (2) Pallas. Moreover, we give the orbital elements (inclination, longitude of the ascending node) with respect to the invariable plane. As given its accuracy of determination, and its fundamental dynamical meaning, the invariable plane provides a permanent natural reference plane that should be used when studying solar system dynamics, instead of the ecliptic. Thus, we recommend referring to it when working on long-term dynamics.

  19. Did Solar Energetic Particles Produce the Short-lived Nuclides Present in the Early Solar System?

    NASA Astrophysics Data System (ADS)

    Goswami, J. N.; Marhas, K. K.; Sahijpal, S.

    2001-03-01

    Production of the short-lived nuclides 41Ca, 36Cl, 26Al, and 53Mn by solar energetic particles (SEP) interacting with dust grains of chondritic (=solar) composition is estimated considering a broad range of spectral parameters for the SEP and appropriate nuclear reaction cross sections. The dust grains are assumed to follow a power-law size distribution and to range in size from 10 μm to 1 cm. The possibility that an enhanced flux of SEP from an active early (T Tauri) Sun could have been responsible for the production of these short-lived nuclides in the early solar system is investigated. SEP production of 41Ca and 36Cl will match their abundances in the early solar system inferred from meteorite data if the SEP irradiation duration was ~5×105-106 yr and the SEP flux was higher by a factor of more than 5×103 than the contemporary long-term averaged value of Nproton (E>10 MeV)~100 cm-2 s-1. However, corresponding production of 26Al will be much below the level needed to match its inferred abundance in the early solar system. SEP production, therefore, fails to explain the observed correlated presence of 41Ca and 26Al with canonical initial abundances in early solar system solids. The abundance of 53Mn in the early solar system is not tightly constrained by the meteorite data, and the various estimates differ by a factor of 5. Coproduction of 41Ca, 36Cl, and 53Mn that will match the meteorite data for the higher initial abundance of 53Mn is possible if the SEP irradiation persisted for about a million years or more with a flux enhancement factor of ~5000-10,000. On the other hand, the lower initial value of 53Mn can also be matched by a flux enhancement factor of ~1000 and an irradiation duration of a few million years; the corresponding production of the other nuclides will be <=10% of the level needed to match their abundances in the early solar system. Target abundance consideration rules out the possibility of SEP production of 60Fe, another short

  20. Simultaneous Solar Maximum Mission (SMM) and Very Large Array (VLA) observations of solar active regions

    NASA Technical Reports Server (NTRS)

    Willson, Robert F.

    1991-01-01

    Very Large Array observations at 20 cm wavelength can detect the hot coronal plasma previously observed at soft x ray wavelengths. Thermal cyclotron line emission was detected at the apex of coronal loops where the magnetic field strength is relatively constant. Detailed comparison of simultaneous Solar Maximum Mission (SMM) Satellite and VLA data indicate that physical parameters such as electron temperature, electron density, and magnetic field strength can be obtained, but that some coronal loops remain invisible in either spectral domain. The unprecedent spatial resolution of the VLA at 20 cm wavelength showed that the precursor, impulsive, and post-flare components of solar bursts originate in nearby, but separate loops or systems of loops.. In some cases preburst heating and magnetic changes are observed from loops tens of minutes prior to the impulsive phase. Comparisons with soft x ray images and spectra and with hard x ray data specify the magnetic field strength and emission mechanism of flaring coronal loops. At the longer 91 cm wavelength, the VLA detected extensive emission interpreted as a hot 10(exp 5) K interface between cool, dense H alpha filaments and the surrounding hotter, rarefield corona. Observations at 91 cm also provide evidence for time-correlated bursts in active regions on opposite sides of the solar equator; they are attributed to flare triggering by relativistic particles that move along large-scale, otherwise-invisible, magnetic conduits that link active regions in opposite hemispheres of the Sun.

  1. Solar energy conversions: solar-electric thermophotovoltaic systems and solar-powered gas lasers

    SciTech Connect

    Yesil, O.

    1980-12-01

    This paper deals with conversions of solar energy efficiently into electricity and into gas laser radiation. In the first section, a review study of the possibility of a solar-electric thermophotovoltaic (TPV) device has been done. In a proposed extension of the TPV concept, a Cassagranian optical system concentrates solar radiation to heat a blackbody cavity to 2400/sup 0/K. A double-layer solar cell, GaAs and Si, forming the cylindrical surface concentric to the blackbody cavity, receives the blackbody radiation and converts it into electricity efficiently. A cell conversion efficiency of 50% or more would be possible with the TPV system. The second section explores the concept of blackbody radiation pumping of gas laser media as a step toward utilization of solar energy as a laser pumping source. To demonstrate this concept, an experiment was performed in which various gas mixtures of CO/sub 2/ and He were exposed to 1500/sup 0/K thermal radiation for brief periods of time. A gain coefficient of 2.8 x 10/sup -3/cm/sup -1/ has been measured at 10.6..mu.. and 1 Torr of pressure. At 2 Torr and 0.5 Torr, the measured optical gain is less than that at 1 Torr. A simple analytical model was used to describe the rate of change of energy distribution of the vibrational modes of CO/sub 2/ and to predict the gain. There is a good agreement between prediction and experiment.

  2. Demonstration of a 10-m Solar Sail System

    NASA Technical Reports Server (NTRS)

    Murphy, David M.; Macy, Brian D.; Gaspar, James L.

    2004-01-01

    The NASA In-Space Propulsion (ISP) program has been sponsoring system design development and hardware demonstration activities of solar sail technology over the past 16 months. Efforts to validate by test a moderate-scale (10-m) 1/4 symmetry ground demonstration sail system are nearly complete. Results of testing and analytical model validation of component and assembly functional, strength, stiffness, shape, and dynamic behavior are discussed.

  3. How Normal is Our Solar System?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-10-01

    To date, weve discovered nearly 2000 confirmed exoplanets, as well as thousands of additional candidates. Amidst this vast sea of solar systems, how special is our own? A new study explores the answer to this question.Analyzing DistributionsKnowing whether our solar system is unique among exoplanetary systems can help us to better understand future observations of exoplanets. Furthermore, if our solar system is typical, this allows us to be optimistic about the possibility of life existing elsewhere in the universe.In a recent study, Rebecca Martin (University of Nevada, Las Vegas) and Mario Livio (Space Telescope Science Institute) examine how normal our solar system is, by comparing the properties of our planets to the averages obtained from known exoplanets.Comparing PropertiesSo how do we measure up?Densities of planets as a function of their mass. Exoplanets (N=287) are shown in blue, planets in our solar system are shown in red. [MartinLivio 2015]Planet masses and densitiesThose of the gas giants in our solar system are pretty typical. The terrestrial planets are on the low side for mass, but thats probably a selection effect: its very difficult to detect low-mass planets.Age of the solar systemRoughly half the stars in the disk of our galaxy are younger than the Sun, and half are older. Were definitely not special in age.Orbital locations of the planetsThis is actually a little strange: our solar system is lacking close-in planets. All of our planets, in fact, orbit at a distance that is larger than the mean distance observed in exoplanetary systems. Again, however, this might be a selection effect at work: its easier to detect large planets orbiting very close to their stars.Eccentricities of the planets orbitsOur planets are on very circular orbits and that actually makes us somewhat special too, compared to typical exoplanet systems. There is a possible explanation though: eccentricity of orbits tends to decrease with more planets in the system. Because

  4. Research on solar-blind UV optical imaging system

    NASA Astrophysics Data System (ADS)

    Wang, Baohua; Wang, Yuanyuan; Zhong, Xiaoming; Ruan, Ningjuan

    2015-02-01

    Solar blind UV detecting system has many advantages such as strong environmental adaptability, low error rate, small volume and without refrigeration. To in-depth develop UV solar blind detection system research work has important significance for further improving solar blind UV detection technology. The working principle of solar blind UV detection system and the basic components were introduced firstly, and then the key technology of solar blind UV detection system was deeply analyzed. Finally, large coverage solar blind UV optical imaging system was designed according to the actual demand for greater coverage of the solar blind UV detection system. The result shows that the system has good imaging quality, simple and compact structure. This system can be used in various types of solar blind UV detection system, and is of high application value.

  5. Phase change fluids for solar thermal systems

    SciTech Connect

    Sama, D.A.; Sladek, K.J.

    1981-01-01

    This study explores the use, for storage of solar energy, of phase change materials which are suspended or emulsified in an immiscible carrier fluid. Emulsions of up to 50 weight % paraffin wax in water were found to be very fluid, highly stable, and quite flame resistant. Such easily pumped emulsions allow for an increase in stored energy density while avoiding the severe heat transfer rate problems normally encountered with phase change storage. Since the suspended phase change materials can be used both to collect and store solar energy, a heat transfer step is eliminated and the energy may be stored at a higher average temperature. This in turn results in a higher thermodynamic availability which is shown to be particularly advantageous in the storage of solar energy for refrigeration or heat pump systems. 6 refs.

  6. Focus Groups for Solar System Investigations with the JWST

    NASA Astrophysics Data System (ADS)

    Hines, Dean C.; Milam, Stefanie N.; Stansberry, John; Hammel, Heidi B.; Sonneborn, George; Lunine, Jonathan; Rivkin, Andrew; Woodward, Charles; Norwood, Jim; Villanueva, Geronimo; Thomas, Cristina; Santos-Sanz, Pablo; Tiscareno, Matthew; Kestay, Laszlo; Nixon, Conor; Parker, Alex

    2014-11-01

    The unprecedented sensitivity and angular resolution of the James Webb Space Telescope (JWST) will make it NASA’s premier space-based facility for infrared astronomy. This 6.5-meter telescope, which is optimized for observations in the near and mid infrared, will be equipped with four state-of-the-art instruments that include imaging, spectroscopy, and coronagraphy. These instruments, along with the telescope’s moving target capabilities, will enable the infrared study of solar system objects with unprecedented detail. A new white paper (Norwood et al., 2014) provides a general overview of JWST observatory and instrument capabilities for Solar System science, and updates and expands upon an earlier study by Lunine et al. (2010). In order to fully realize the potential of JWST for Solar System observations, we have recently organized 10 focus groups to explore various science use cases in more detail on topics including: Asteroids, Comets, Giant Planets, Mars, Near Earth Objects, Occultations, Rings, Satellites, Titan, and Trans-Neptunian Objects. The findings from these groups will help guide the project as it develops and implements planning tools, observing templates, the data pipeline and archives so that they enable a broad range of Solar System Science investigations. The purpose of this presentation is to raise awareness of the JWST Solar System planning, and to invite participation of DPS members with our Focus Groups and other pre-launch activities.References:Lunine, J., Hammel, H., Schaller, E., Sonneborn, G., Orton, G., Rieke, G., and Rieke, M. 2010, JWST Planetary Observations within the Solar System, http://www.stsci.edu/jwst/doc-archive/white-papers.Norwood, J., Hammel, H., Milam, S.,Stansberry, J., Lunine, J., Chanover, N., Hines, D., Sonneborn, G., Tiscareno, M., Brown, M. and Ferruit, P., 2014, ArXiv e-prints, 1403.6845.

  7. Similarity Rules for Scaling Solar Sail Systems

    NASA Technical Reports Server (NTRS)

    Canfield, Stephen L.; Peddieson, John; Garbe, Gregory

    2010-01-01

    Future science missions will require solar sails on the order of 200 square meters (or larger). However, ground demonstrations and flight demonstrations must be conducted at significantly smaller sizes, due to limitations of ground-based facilities and cost and availability of flight opportunities. For this reason, the ability to understand the process of scalability, as it applies to solar sail system models and test data, is crucial to the advancement of this technology. This paper will approach the problem of scaling in solar sail models by developing a set of scaling laws or similarity criteria that will provide constraints in the sail design process. These scaling laws establish functional relationships between design parameters of a prototype and model sail that are created at different geometric sizes. This work is applied to a specific solar sail configuration and results in three (four) similarity criteria for static (dynamic) sail models. Further, it is demonstrated that even in the context of unique sail material requirements and gravitational load of earth-bound experiments, it is possible to develop appropriate scaled sail experiments. In the longer term, these scaling laws can be used in the design of scaled experimental tests for solar sails and in analyzing the results from such tests.

  8. SIMS prototype system 1: Design data brochure. [solar heating system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A prototype solar heating and hot water system using air as the collector fluid and a pebble bed for heat storage was designed for installation into a single family dwelling. The system, subsystem, and installation requirements are described. System operation and performance are discussed, and procedures for sizing the system to a specific site are presented.

  9. Solar Powered Automobile Interior Climate Control System

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor)

    2003-01-01

    There is provided a climate control system for a parked vehicle that includes a solar panel, thermostatic switch, fans, and thermoelectric coolers. The solar panel can serve as the sole source of electricity for the system. The system affords convenient installation and removal by including solar panels that are removably attached to the exterior of a vehicle. A connecting wire electrically connects the solar panels to a housing that is removably mounted to a partially opened window on the vehicle. The thermostatic switch, fans, and thermoelectric coolers are included within the housing. The thermostatic switch alternates the direction of the current flow through the thermoelectric coolers to selectively heat or cool the interior of the vehicle. The interior surface of the thermoelectric coolers are in contact with interior heat sinks that have air circulated across them by an interior fan. Similarly, the exterior surface of the thermoelectric coolers are in contact with exterior heat sinks that have air circulated across them by an exterior fan.

  10. Water Desalination Systems Powered by Solar Energy

    NASA Astrophysics Data System (ADS)

    Barseghyan, A.

    2015-12-01

    The supply of potable water from polluted rivers, lakes, unsafe wells, etc. is a problem of high priority. One of the most effective methods to obtain low cost drinking water is desalination. Advanced water treatment system powered by Solar Energy and based on electrodialysis for water desalination and purification, is suggested. Technological and economic evaluations and the benefits of the suggested system are discussed. The Advanced Water Treatment System proposed clears water not only from different salts, but also from some infections, thus decreasing the count of diseases which are caused by the usage of non-clear water. Using Solar Energy makes the system stand alone which is convenient to use in places where power supply is problem.

  11. The Solar Dynamics Observatory, Studying the Sun and Its Influence on Other Bodies in the Solar System

    NASA Technical Reports Server (NTRS)

    Chamberlin, P. C.

    2011-01-01

    The solar photon output, which was once thought to be constant, varies over all time scales from seconds during solar flares to years due to the solar cycle. These solar variations cause significant deviations in the Earth and space environments on similar time scales, such as affecting the atmospheric densities and composition of particular atoms, molecules, and ions in the atmospheres of the Earth and other planets. Presented and discussed will be examples of unprecedented observations from NASA's new solar observatory, the Solar Dynamics Observatory (SDO). Using three specialized instruments, SDO measures the origins of solar activity from inside the Sun, though its atmosphere, then accurately measuring the Sun's radiative output in X-ray and EUV wavelengths (0.1-121 nm). Along with the visually appealing observations will be discussions of what these measurements can tell us about how the plasma motions in all layers of the Sun modifies and strengthens the weak solar dipole magnetic field to drive large energy releases in solar eruptions. Also presented will be examples of how the release of the Sun's energy, in the form of photons and high energy particles, physically influence other bodies in the solar system such as Earth, Mars, and the Moon, and how these changes drive changes in the technology that we are becoming dependent upon. The presentation will continuously emphasize how SDO, the first satellite in NASA's Living with a Star program, improving our understanding of the variable Sun and its Heliospheric influence.

  12. Recent Perplexing Behavior in Solar Activity Indices

    NASA Astrophysics Data System (ADS)

    Lopresto, James C.

    1997-05-01

    Calcium K and Hα and SOHO He II UV plage and sunspot ara have been monitored using images on the INTERNET since November of 1992. The purpose of the project is to determine the degree of correlation between changing plage area and solar irradiance changes (also obtained via the INTERNET). Also the project provides a low cost process to involve undergraduates in astronomy research. When using weighted weekly averages for both spot Hα plage pixel counts, we see the expected decline from the last maximum. The activity continues to decline, or at best, has flattened out over the past several months. In contrast, the K-line plage pixel count from both Big Bear and Sacramento Peak show an upswing since mid-1995 or earlier. The k2 measurments from both Kitt Peak and Sacramento Peak are in general agreement with the spot and Hα behavior, indicating wer are in, or barely passed minimum. Images high in the chromosphere, detailing the magnetic network, may be more senstive to smaller field changes. This might be a partial explanation for the earlier upswing in K line and He 304 activity, which are receiving radiation near or at the top of the chromosphere.

  13. Commercial dissemination approaches for solar home systems

    SciTech Connect

    Terrado, E.

    1997-12-01

    The author discusses the issue of providing solar home systems to primarily rural areas from the perspective of how to commercialize the process. He considers two different approaches, one an open market approach and the other an exclusive market approach. He describes examples of the exclusive market approach which are in process in Argentina and Brazil. Coming from a banking background, the business aspects are discussed in detail. He points out the strengths and weaknesses of both approaches toward developing such systems.

  14. Chaotic evolution of the solar system

    NASA Technical Reports Server (NTRS)

    Sussman, Gerald J.; Wisdom, Jack

    1992-01-01

    The evolution of the entire planetary system has been numerically integrated for a time span of nearly 100 million years. This calculation confirms that the evolution of the solar system as a whole is chaotic, with a time scale of exponential divergence of about 4 million years. Additional numerical experiments indicate that the Jovian planet subsystem is chaotic, although some small variations in the model can yield quasi-periodic motion. The motion of Pluto is independently and robustly chaotic.

  15. Solar-System Tests of Gravitational Theories

    NASA Technical Reports Server (NTRS)

    Shapiro, Irwin I.

    2002-01-01

    We are engaged in testing gravitational theory by means of observations of objects in the solar system. This work tests the equivalence principle (EP), the Shapiro time delay, the advances of planetary perihelion, the possibility of a secular variation G(dot) in the 'gravitational constant' G, and the rate of the de Sitter (geodetic) precession of the Earth-Moon system. We describe here the results under this contract.

  16. Trachyandesitic volcanism in the early Solar System

    PubMed Central

    Bischoff, Addi; Horstmann, Marian; Barrat, Jean-Alix; Chaussidon, Marc; Pack, Andreas; Herwartz, Daniel; Ward, Dustin; Vollmer, Christian; Decker, Stephan

    2014-01-01

    Volcanism is a substantial process during crustal growth on planetary bodies and well documented to have occurred in the early Solar System from the recognition of numerous basaltic meteorites. Considering the ureilite parent body (UPB), the compositions of magmas that formed a potential UPB crust and were complementary to the ultramafic ureilite mantle rocks are poorly constrained. Among the Almahata Sitta meteorites, a unique trachyandesite lava (with an oxygen isotope composition identical to that of common ureilites) documents the presence of volatile- and SiO2-rich magmas on the UPB. The magma was extracted at low degrees of disequilibrium partial melting of the UPB mantle. This trachyandesite extends the range of known ancient volcanic, crust-forming rocks and documents that volcanic rocks, similar in composition to trachyandesites on Earth, also formed on small planetary bodies ∼4.56 billion years ago. It also extends the volcanic activity on the UPB by ∼1 million years (Ma) and thus constrains the time of disruption of the body to later than 6.5 Ma after the formation of Ca–Al-rich inclusions. PMID:25136108

  17. Trachyandesitic volcanism in the early Solar System.

    PubMed

    Bischoff, Addi; Horstmann, Marian; Barrat, Jean-Alix; Chaussidon, Marc; Pack, Andreas; Herwartz, Daniel; Ward, Dustin; Vollmer, Christian; Decker, Stephan

    2014-09-01

    Volcanism is a substantial process during crustal growth on planetary bodies and well documented to have occurred in the early Solar System from the recognition of numerous basaltic meteorites. Considering the ureilite parent body (UPB), the compositions of magmas that formed a potential UPB crust and were complementary to the ultramafic ureilite mantle rocks are poorly constrained. Among the Almahata Sitta meteorites, a unique trachyandesite lava (with an oxygen isotope composition identical to that of common ureilites) documents the presence of volatile- and SiO2-rich magmas on the UPB. The magma was extracted at low degrees of disequilibrium partial melting of the UPB mantle. This trachyandesite extends the range of known ancient volcanic, crust-forming rocks and documents that volcanic rocks, similar in composition to trachyandesites on Earth, also formed on small planetary bodies ∼ 4.56 billion years ago. It also extends the volcanic activity on the UPB by ∼ 1 million years (Ma) and thus constrains the time of disruption of the body to later than 6.5 Ma after the formation of Ca-Al-rich inclusions.

  18. Trachyandesitic volcanism in the early Solar System.

    PubMed

    Bischoff, Addi; Horstmann, Marian; Barrat, Jean-Alix; Chaussidon, Marc; Pack, Andreas; Herwartz, Daniel; Ward, Dustin; Vollmer, Christian; Decker, Stephan

    2014-09-01

    Volcanism is a substantial process during crustal growth on planetary bodies and well documented to have occurred in the early Solar System from the recognition of numerous basaltic meteorites. Considering the ureilite parent body (UPB), the compositions of magmas that formed a potential UPB crust and were complementary to the ultramafic ureilite mantle rocks are poorly constrained. Among the Almahata Sitta meteorites, a unique trachyandesite lava (with an oxygen isotope composition identical to that of common ureilites) documents the presence of volatile- and SiO2-rich magmas on the UPB. The magma was extracted at low degrees of disequilibrium partial melting of the UPB mantle. This trachyandesite extends the range of known ancient volcanic, crust-forming rocks and documents that volcanic rocks, similar in composition to trachyandesites on Earth, also formed on small planetary bodies ∼ 4.56 billion years ago. It also extends the volcanic activity on the UPB by ∼ 1 million years (Ma) and thus constrains the time of disruption of the body to later than 6.5 Ma after the formation of Ca-Al-rich inclusions. PMID:25136108

  19. Solar power satellite system definition study, volume 7

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Guidelines and assumptions used in the design of a system of geosynchronous satellites for transmitting solar power to earth were discussed as well as the design evolutions of the principle types of solar power satellites and space support systems.

  20. Higher than Everest: An Adventurer's Guide to the Solar System

    NASA Astrophysics Data System (ADS)

    Hodge, Paul W.

    In this unique guidebook, Paul Hodge takes you on a virtual tour of the most spectacular sites in the solar system. Hodge includes the latest information about the solar system into his vivid descriptions of imaginary, challenging expeditions.

  1. Jet Propulsion Laboratory's Space Explorations Part 2: Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Chau, Savio

    2005-01-01

    This slide presentation reviews what is currently known about the solar system and the objects that make up the solar system. Information about the individual planets, comets, asteroids and moons is reviewed.

  2. Solar heating and cooling systems design and development

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Solar heating and heating/cooling systems were designed for single family, multifamily, and commercial applications. Subsystems considered included solar collectors, heat storage systems, auxiliary energy sources, working fluids, and supplementary controls, piping, and pumps.

  3. Solar Thermal Upper Stage Cryogen System Engineering Checkout Test

    NASA Technical Reports Server (NTRS)

    Olsen, A. D; Cady, E. C.; Jenkins, D. S.

    1999-01-01

    The Solar Thermal Upper Stage technology (STUSTD) program is a solar thermal propulsion technology program cooperatively sponsored by a Boeing led team and by NASA MSFC. A key element of its technology program is development of a liquid hydrogen (LH2) storage and supply system which employs multi-layer insulation, liquid acquisition devices, active and passive thermodynamic vent systems, and variable 40W tank heaters to reliably provide near constant pressure H2 to a solar thermal engine in the low-gravity of space operation. The LH2 storage and supply system is designed to operate as a passive, pressure fed supply system at a constant pressure of about 45 psia. During operation of the solar thermal engine over a small portion of the orbit the LH2 storage and supply system propulsively vents through the enjoy at a controlled flowrate. During the long coast portion of the orbit, the LH2 tank is locked up (unvented). Thus, all of the vented H2 flow is used in the engine for thrust and none is wastefully vented overboard. The key to managing the tank pressure and therefore the H2 flow to the engine is to manage and balance the energy flow into the LH2 tank with the MLI and tank heaters with the energy flow out of the LH2 tank through the vented H2 flow. A moderate scale (71 cu ft) LH2 storage and supply system was installed and insulated at the NASA MSFC Test Area 300. The operation of the system is described in this paper. The test program for the LH2 system consisted of two parts: 1) a series of engineering tests to characterize the performance of the various components in the system: and 2) a 30-day simulation of a complete LEO and GEO transfer mission. This paper describes the results of the engineering tests, and correlates these results with analytical models used to design future advanced Solar Orbit Transfer Vehicles.

  4. Initiation of non-tropical thunderstorms by solar activity

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Goldberg, R. A.

    1978-01-01

    A theory of thunderstorm initiation is proposed to account for the statistical correlation between solar activity and thunderstorm occurrence in middle to high latitudes. It is suggested that cosmic ray decreases and/or high-energy solar protons associated with active solar events enhance the electric field at low heights so that, if appropriate meteorological conditions are present during a solar event, the atmospheric electric field enhancement may be sufficient to trigger thunderstorm development. Statistical correlations and atmospheric electric effects are described. The theory could be tested if the possible forcing functions and the responding atmospheric electrical and ionic species' characteristics were measured.

  5. Solar System Number-Crunching.

    ERIC Educational Resources Information Center

    Albrecht, Bob; Firedrake, George

    1997-01-01

    Defines terrestrial and Jovian planets and provides directions to obtain planetary data from the National Space Science Data Center Web sites. Provides "number-crunching" activities for the terrestrial planets using Texas Instruments TI-83 graphing calculators: computing volumetric mean radius and volume, density, ellipticity, speed, surface…

  6. Combined Solar and Wind Energy Systems

    NASA Astrophysics Data System (ADS)

    Tripanagnostopoulos, Y.; Souliotis, M.; Makris, Th.

    2010-01-01

    In this paper we present the new concept of combined solar and wind energy systems for buildings applications. Photovoltaics (PV) and small wind turbines (WTs) can be install on buildings, in case of sufficient wind potential, providing the building with electricity. PVs can be combined with thermal collectors to form the hybrid photovoltaic/thermal (PV/T) systems. The PVs (or the PV/Ts) and WT subsystems can supplement each other to cover building electrical load. In case of using PV/T collectors, the surplus of electricity, if not used or stored in batteries, can increase the temperature of the thermal storage tank of the solar thermal unit. The description of the experimental set-up of the suggested PV/T/WT system and experimental results are presented. In PV/T/WT systems the output from the solar part depends on the sunshine time and the output of the wind turbine part depends on the wind speed and is obtained any time of day or night. The use of the three subsystems can cover a great part of building energy load, contributing to conventional energy saving and environment protection. The PV/T/WT systems are considered suitable in rural and remote areas with electricity supply from stand-alone units or mini-grid connection. PV/T/WT systems can also be used in typical grid connected applications.

  7. Preliminary design package for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Summarized preliminary design information on activities associated with the development, delivery and support of solar heating and cooling systems is given. These systems are for single family dwellings and commercial applications. The heating/cooling system use a reversible vapor compression heat pump that is driven in the cooling mode by a Rankine power loop, and in the heating mode by a variable speed electric motor. The heating/cooling systems differ from the heating-only systems in the arrangement of the heat pump subsystem and the addition of a cooling tower to provide the heat sink for cooling mode operation.

  8. Chemistry of the solar system: An elementary introductionto cosmochemistry

    NASA Technical Reports Server (NTRS)

    Suess, Hans E.

    1987-01-01

    An introduction is presented to the chemistry of the solar system. The qualitative and quantitative elemental analysis of the solar system is reviewed, and the elemental synthesis processes that led to the formation of the solar system are discussed. The chemical processes of the primordial mixture from which the solar system formed are examined, and the resulting chemical composition of meteorites, asteroids, comets, and planets is described.

  9. Ionospheric effects of the extreme solar activity of February 1986

    NASA Technical Reports Server (NTRS)

    Boska, J.; Pancheva, D.

    1989-01-01

    During February 1986, near the minimum of the 11 year Solar sunspot cycle, after a long period of totally quiet solar activity (R sub z = 0 on most days in January) a period of a suddenly enhanced solar activity occurred in the minimum between solar cycles 21 and 22. Two proton flares were observed during this period. A few other flares, various phenomena accompanying proton flares, an extremely severe geomagnetic storm and strong disturbances in the Earth's ionosphere were observed in this period of enhanced solar activity. Two active regions appeared on the solar disc. The flares in both active regions were associated with enhancement of solar high energy proton flux which started on 4 February of 0900 UT. Associated with the flares, the magnetic storm with sudden commencement had its onset on 6 February 1312 UT and attained its maximum on 8 February (Kp = 9). The sudden enhancement in solar activity in February 1986 was accompanied by strong disturbances in the Earth's ionosphere, SIDs and ionospheric storm. These events and their effects on the ionosphere are discussed.

  10. Solar energy system economic evaluation: IBM System 2, Togus, Maine

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The economic analysis of the solar energy system, is developed for Torgus and four other sites typical of a wide range of environmental and economic conditions in the continental United States. This analysis is accomplished based on the technical and economic models in the f-chart design procedure with inputs taken on the characteristics of the installed system and local conditions. The results are expressed in terms of the economic parameters of present worth of system cost over a projected twenty year life, life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated. Results demonstrate that the solar energy system is economically viable at all of the five sites for which the analysis was conducted.

  11. Solar Activity, Different Geomagnetic Activity Levels and Acute Myocardial Infarction

    NASA Astrophysics Data System (ADS)

    Dimitrova, Svetla; Jordanova, Malina; Stoilova, Irina; Taseva, Tatiana; Maslarov, Dimitar

    Results on revealing a possible relationship between solar activity (SA) and geomagnetic activity (GMA) and acute myocardial infarction (AMI) morbidity are presented. Studies were based on medical data covering the period from 1.12.1995 to 31.12.2004 and concerned daily distribution of patients with AMI diagnose (in total 1192 cases) from Sofia region on the day of admission at the hospital. Analysis of variance (ANOVA) was applied to check the significance of GMA intensity effect and the type of geomagnetic storms, those caused by Magnetic Clouds (MC) and by High Speed Solar Wind Streams (HSSWS), on AMI morbidity. Relevant correlation coefficients were calculated. Results revealed statistically significant positive correlation between considered GMA indices and AMI. ANOVA revealed that AMI number was signifi- cantly increased from the day before (-1st) till the day after (+1st) geomagnetic storms with different intensities. Geomagnetic storms caused by MC were related to significant increase of AMI number in comparison with the storms caused by HSSWS. There was a trend for such different effects even on -1st and +1st day.

  12. Prototype solar-heating system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Complete air-collector system to meet needs of single-family dwelling is designed to operate in any region of United States except extreme north and south. Design can be scaled up or down to accomodate wide range of heating and hot-water requirements for single-family, multi-family, or commercial buildings without significantly changing design concept.

  13. Solar Energy Systems for Lunar Oxygen Generation

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.

    2010-01-01

    An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.

  14. Representing Solar Active Regions with Triangulations

    NASA Technical Reports Server (NTRS)

    Turmon, M. J.; Mukhtar, S.

    1998-01-01

    The solar chromosphere consists of three classes which contribute differently to ultraviolet radiation reaching the earth. We describe a data set of solar images, means of segmenting the images into the constituent classes, and novel high-level representation for compact objects based on a triangulation spatial 'membership function'.

  15. Bayesian Infernce for Indentifying Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Pap, Judit; Turmon, Michael; Mukhtar, Saleem

    1997-01-01

    The solar chromosphere consists of three classes-- plage, network, background -- which contribute differently to ultraviolet radiation reaching the earth. Solar physicists are interested in relating plage area and intensity to UV irradiance, as well as understanding the spatial and temporal evolution of plage shapes.

  16. Prototype solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Eight prototype systems were developed. The systems are 3, 25, and 75-ton size units. The manufacture, test, installation, maintenance, problem resolution, and performance evaluation of the systems is described. Size activities for the various systems are included.

  17. Elementary Students' Mental Models of the Solar System

    ERIC Educational Resources Information Center

    Calderon-Canales, Elena; Flores-Camacho, Fernando; Gallegos-Cazares, Leticia

    2013-01-01

    This research project aimed to identify and analyze Mexican primary school students' ideas about the components of the solar system. In particular, this study focused on conceptions of the solar system and representations of the dynamics of the solar system based on the functional and structural models that students make in school. Using a…

  18. Installation package for a sunspot cascade solar water heating system

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Solar water heating systems installed at Tempe, Arizona and San Diego, California are described. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank, and controls. General guidelines which may be utilized in development of detailed installation plans and specifications are provided along with instruction on operation, maintenance, and installation of solar hot water systems.

  19. Heliospheric Consecuences of Solar Activity In Several Interplanetary Phenomena

    NASA Astrophysics Data System (ADS)

    Valdés-Galicia, J. F.; Mendoza, B.; Lara, A.; Maravilla, D.

    We have done an analysis of several phenomena related to solar activity such as the total magnetic flux, coronal hole area and sunspots, investigated its long trend evolu- tion over several solar cycles and its possible relationships with interplanetary shocks, sudden storm commencements at earth and cosmic ray variations. Our results stress the physical connection between the solar magnetic flux emergence and the interplan- etary medium dynamics, in particular the importance of coronal hole evolution in the structuring of the heliosphere.

  20. IPS activity observed as a precursor of solar induced terrestrial activity. [solar wind density fluctuations

    NASA Technical Reports Server (NTRS)

    Cronyn, W. M.; Shawhan, S. D.; Rickard, J. J.; Mitchell, D. G.; Roelof, E. C.; Gotwols, B. L.

    1978-01-01

    A radio telescope designed to exploit the interplanetary scintillation (IPS) technique and locate, map, and track solar wind disturbances which result in geomagnetic disturbances, thereby providing a forecast capability, is described. Preliminary results from operation of the telescope include: (1) evidence for a precursor signal in the IPS activity with a 1-2 day lead time with respect to density enhancements which frequently give rise to geomagnetic activity; (2) detection of a spectral broadening signature which also serves as a precursor of geomagnetic activity; (3) out-of-the-ecliptic plasma density enhancements which were not detected by near-Earth, ecliptic plane spacecraft; (4) detection of 12 corotating density enhancements;(5) detection of over 80 sources which give detectable scintillation of which 45 have been used for detailed synoptic analysis and 9 for spectral analysis; and (6) measurement of 0-lag coefficient of 0.56 between density and IPS activity enhancements.